netbsd32_signal.c revision 1.41 1 1.41 christos /* $NetBSD: netbsd32_signal.c,v 1.41 2016/09/17 02:44:38 christos Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1998, 2001 Matthew R. Green
5 1.1 mrg * All rights reserved.
6 1.1 mrg *
7 1.1 mrg * Redistribution and use in source and binary forms, with or without
8 1.1 mrg * modification, are permitted provided that the following conditions
9 1.1 mrg * are met:
10 1.1 mrg * 1. Redistributions of source code must retain the above copyright
11 1.1 mrg * notice, this list of conditions and the following disclaimer.
12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mrg * notice, this list of conditions and the following disclaimer in the
14 1.1 mrg * documentation and/or other materials provided with the distribution.
15 1.1 mrg *
16 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 mrg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 mrg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 mrg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 mrg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 mrg * SUCH DAMAGE.
27 1.1 mrg */
28 1.2 lukem
29 1.2 lukem #include <sys/cdefs.h>
30 1.41 christos __KERNEL_RCSID(0, "$NetBSD: netbsd32_signal.c,v 1.41 2016/09/17 02:44:38 christos Exp $");
31 1.41 christos
32 1.41 christos #if defined(_KERNEL_OPT)
33 1.41 christos #include "opt_ktrace.h"
34 1.41 christos #endif
35 1.1 mrg
36 1.1 mrg #include <sys/param.h>
37 1.1 mrg #include <sys/systm.h>
38 1.1 mrg #include <sys/mount.h>
39 1.1 mrg #include <sys/stat.h>
40 1.1 mrg #include <sys/time.h>
41 1.1 mrg #include <sys/signalvar.h>
42 1.40 martin #include <sys/ktrace.h>
43 1.1 mrg #include <sys/proc.h>
44 1.7 fvdl #include <sys/wait.h>
45 1.11 christos #include <sys/dirent.h>
46 1.7 fvdl
47 1.7 fvdl #include <uvm/uvm_extern.h>
48 1.1 mrg
49 1.1 mrg #include <compat/netbsd32/netbsd32.h>
50 1.10 cube #include <compat/netbsd32/netbsd32_conv.h>
51 1.1 mrg #include <compat/netbsd32/netbsd32_syscallargs.h>
52 1.1 mrg
53 1.12 christos #include <compat/sys/signal.h>
54 1.12 christos #include <compat/sys/signalvar.h>
55 1.13 christos #include <compat/sys/siginfo.h>
56 1.12 christos #include <compat/sys/ucontext.h>
57 1.25 dsl #include <compat/common/compat_sigaltstack.h>
58 1.12 christos
59 1.1 mrg int
60 1.28 dsl netbsd32_sigaction(struct lwp *l, const struct netbsd32_sigaction_args *uap, register_t *retval)
61 1.1 mrg {
62 1.28 dsl /* {
63 1.1 mrg syscallarg(int) signum;
64 1.1 mrg syscallarg(const netbsd32_sigactionp_t) nsa;
65 1.1 mrg syscallarg(netbsd32_sigactionp_t) osa;
66 1.28 dsl } */
67 1.1 mrg struct sigaction nsa, osa;
68 1.38 christos struct netbsd32_sigaction13 *sa32p, sa32;
69 1.1 mrg int error;
70 1.1 mrg
71 1.23 dsl if (SCARG_P32(uap, nsa)) {
72 1.23 dsl sa32p = SCARG_P32(uap, nsa);
73 1.1 mrg if (copyin(sa32p, &sa32, sizeof(sa32)))
74 1.1 mrg return EFAULT;
75 1.5 atatat nsa.sa_handler = (void *)NETBSD32PTR64(sa32.netbsd32_sa_handler);
76 1.38 christos memset(&nsa.sa_mask, 0, sizeof(nsa.sa_mask));
77 1.38 christos nsa.sa_mask.__bits[0] = sa32.netbsd32_sa_mask;
78 1.5 atatat nsa.sa_flags = sa32.netbsd32_sa_flags;
79 1.1 mrg }
80 1.19 ad error = sigaction1(l, SCARG(uap, signum),
81 1.23 dsl SCARG_P32(uap, nsa) ? &nsa : 0,
82 1.23 dsl SCARG_P32(uap, osa) ? &osa : 0,
83 1.3 thorpej NULL, 0);
84 1.8 perry
85 1.1 mrg if (error)
86 1.1 mrg return (error);
87 1.1 mrg
88 1.23 dsl if (SCARG_P32(uap, osa)) {
89 1.22 dsl NETBSD32PTR32(sa32.netbsd32_sa_handler, osa.sa_handler);
90 1.38 christos sa32.netbsd32_sa_mask = osa.sa_mask.__bits[0];
91 1.5 atatat sa32.netbsd32_sa_flags = osa.sa_flags;
92 1.23 dsl sa32p = SCARG_P32(uap, osa);
93 1.1 mrg if (copyout(&sa32, sa32p, sizeof(sa32)))
94 1.1 mrg return EFAULT;
95 1.1 mrg }
96 1.1 mrg
97 1.1 mrg return (0);
98 1.1 mrg }
99 1.1 mrg
100 1.1 mrg int
101 1.28 dsl netbsd32___sigaltstack14(struct lwp *l, const struct netbsd32___sigaltstack14_args *uap, register_t *retval)
102 1.1 mrg {
103 1.28 dsl /* {
104 1.1 mrg syscallarg(const netbsd32_sigaltstackp_t) nss;
105 1.1 mrg syscallarg(netbsd32_sigaltstackp_t) oss;
106 1.28 dsl } */
107 1.25 dsl compat_sigaltstack(uap, netbsd32_sigaltstack, SS_ONSTACK, SS_DISABLE);
108 1.1 mrg }
109 1.1 mrg
110 1.1 mrg /* ARGSUSED */
111 1.1 mrg int
112 1.28 dsl netbsd32___sigaction14(struct lwp *l, const struct netbsd32___sigaction14_args *uap, register_t *retval)
113 1.1 mrg {
114 1.28 dsl /* {
115 1.1 mrg syscallarg(int) signum;
116 1.1 mrg syscallarg(const struct sigaction *) nsa;
117 1.1 mrg syscallarg(struct sigaction *) osa;
118 1.28 dsl } */
119 1.1 mrg struct netbsd32_sigaction sa32;
120 1.1 mrg struct sigaction nsa, osa;
121 1.1 mrg int error;
122 1.1 mrg
123 1.23 dsl if (SCARG_P32(uap, nsa)) {
124 1.23 dsl error = copyin(SCARG_P32(uap, nsa), &sa32, sizeof(sa32));
125 1.1 mrg if (error)
126 1.1 mrg return (error);
127 1.22 dsl nsa.sa_handler = NETBSD32PTR64(sa32.netbsd32_sa_handler);
128 1.5 atatat nsa.sa_mask = sa32.netbsd32_sa_mask;
129 1.5 atatat nsa.sa_flags = sa32.netbsd32_sa_flags;
130 1.1 mrg }
131 1.19 ad error = sigaction1(l, SCARG(uap, signum),
132 1.23 dsl SCARG_P32(uap, nsa) ? &nsa : 0,
133 1.23 dsl SCARG_P32(uap, osa) ? &osa : 0,
134 1.22 dsl NULL, 0);
135 1.1 mrg if (error)
136 1.1 mrg return (error);
137 1.23 dsl if (SCARG_P32(uap, osa)) {
138 1.22 dsl NETBSD32PTR32(sa32.netbsd32_sa_handler, osa.sa_handler);
139 1.5 atatat sa32.netbsd32_sa_mask = osa.sa_mask;
140 1.5 atatat sa32.netbsd32_sa_flags = osa.sa_flags;
141 1.23 dsl error = copyout(&sa32, SCARG_P32(uap, osa), sizeof(sa32));
142 1.4 scw if (error)
143 1.4 scw return (error);
144 1.4 scw }
145 1.4 scw return (0);
146 1.4 scw }
147 1.4 scw
148 1.4 scw /* ARGSUSED */
149 1.4 scw int
150 1.28 dsl netbsd32___sigaction_sigtramp(struct lwp *l, const struct netbsd32___sigaction_sigtramp_args *uap, register_t *retval)
151 1.4 scw {
152 1.28 dsl /* {
153 1.4 scw syscallarg(int) signum;
154 1.4 scw syscallarg(const netbsd32_sigactionp_t) nsa;
155 1.4 scw syscallarg(netbsd32_sigactionp_t) osa;
156 1.4 scw syscallarg(netbsd32_voidp) tramp;
157 1.4 scw syscallarg(int) vers;
158 1.28 dsl } */
159 1.4 scw struct netbsd32_sigaction sa32;
160 1.4 scw struct sigaction nsa, osa;
161 1.4 scw int error;
162 1.4 scw
163 1.23 dsl if (SCARG_P32(uap, nsa)) {
164 1.23 dsl error = copyin(SCARG_P32(uap, nsa), &sa32, sizeof(sa32));
165 1.4 scw if (error)
166 1.4 scw return (error);
167 1.22 dsl nsa.sa_handler = NETBSD32PTR64(sa32.netbsd32_sa_handler);
168 1.5 atatat nsa.sa_mask = sa32.netbsd32_sa_mask;
169 1.5 atatat nsa.sa_flags = sa32.netbsd32_sa_flags;
170 1.4 scw }
171 1.19 ad error = sigaction1(l, SCARG(uap, signum),
172 1.23 dsl SCARG_P32(uap, nsa) ? &nsa : 0,
173 1.23 dsl SCARG_P32(uap, osa) ? &osa : 0,
174 1.23 dsl SCARG_P32(uap, tramp), SCARG(uap, vers));
175 1.4 scw if (error)
176 1.4 scw return (error);
177 1.23 dsl if (SCARG_P32(uap, osa)) {
178 1.22 dsl NETBSD32PTR32(sa32.netbsd32_sa_handler, osa.sa_handler);
179 1.5 atatat sa32.netbsd32_sa_mask = osa.sa_mask;
180 1.5 atatat sa32.netbsd32_sa_flags = osa.sa_flags;
181 1.23 dsl error = copyout(&sa32, SCARG_P32(uap, osa), sizeof(sa32));
182 1.1 mrg if (error)
183 1.1 mrg return (error);
184 1.1 mrg }
185 1.1 mrg return (0);
186 1.7 fvdl }
187 1.7 fvdl
188 1.39 martin void
189 1.39 martin netbsd32_ksi32_to_ksi(struct _ksiginfo *si, const struct __ksiginfo32 *si32)
190 1.7 fvdl {
191 1.7 fvdl memset(si, 0, sizeof (*si));
192 1.39 martin si->_signo = si32->_signo;
193 1.39 martin si->_code = si32->_code;
194 1.39 martin si->_errno = si32->_errno;
195 1.7 fvdl
196 1.39 martin switch (si32->_signo) {
197 1.7 fvdl case SIGILL:
198 1.7 fvdl case SIGBUS:
199 1.7 fvdl case SIGSEGV:
200 1.7 fvdl case SIGFPE:
201 1.7 fvdl case SIGTRAP:
202 1.39 martin si->_reason._fault._addr = NETBSD32IPTR64(si32->_reason._fault._addr);
203 1.39 martin si->_reason._fault._trap = si32->_reason._fault._trap;
204 1.7 fvdl break;
205 1.7 fvdl case SIGALRM:
206 1.7 fvdl case SIGVTALRM:
207 1.7 fvdl case SIGPROF:
208 1.39 martin default: /* see sigqueue() and kill1() */
209 1.39 martin si->_reason._rt._pid = si32->_reason._rt._pid;
210 1.39 martin si->_reason._rt._uid = si32->_reason._rt._uid;
211 1.39 martin si->_reason._rt._value.sival_int = si32->_reason._rt._value.sival_int;
212 1.7 fvdl break;
213 1.7 fvdl case SIGCHLD:
214 1.39 martin si->_reason._child._pid = si32->_reason._child._pid;
215 1.39 martin si->_reason._child._uid = si32->_reason._child._uid;
216 1.39 martin si->_reason._child._utime = si32->_reason._child._utime;
217 1.39 martin si->_reason._child._stime = si32->_reason._child._stime;
218 1.7 fvdl break;
219 1.7 fvdl case SIGURG:
220 1.7 fvdl case SIGIO:
221 1.39 martin si->_reason._poll._band = si32->_reason._poll._band;
222 1.39 martin si->_reason._poll._fd = si32->_reason._poll._fd;
223 1.7 fvdl break;
224 1.7 fvdl }
225 1.7 fvdl }
226 1.7 fvdl
227 1.40 martin static void
228 1.40 martin netbsd32_ksi_to_ksi32(struct __ksiginfo32 *si32, const struct _ksiginfo *si)
229 1.40 martin {
230 1.40 martin memset(si32, 0, sizeof (*si32));
231 1.40 martin si32->_signo = si->_signo;
232 1.40 martin si32->_code = si->_code;
233 1.40 martin si32->_errno = si->_errno;
234 1.40 martin
235 1.40 martin switch (si->_signo) {
236 1.40 martin case SIGILL:
237 1.40 martin case SIGBUS:
238 1.40 martin case SIGSEGV:
239 1.40 martin case SIGFPE:
240 1.40 martin case SIGTRAP:
241 1.40 martin si32->_reason._fault._addr =
242 1.40 martin NETBSD32PTR32I(si->_reason._fault._addr);
243 1.40 martin si32->_reason._fault._trap = si->_reason._fault._trap;
244 1.40 martin break;
245 1.40 martin case SIGALRM:
246 1.40 martin case SIGVTALRM:
247 1.40 martin case SIGPROF:
248 1.40 martin default: /* see sigqueue() and kill1() */
249 1.40 martin si32->_reason._rt._pid = si->_reason._rt._pid;
250 1.40 martin si32->_reason._rt._uid = si->_reason._rt._uid;
251 1.40 martin si32->_reason._rt._value.sival_int = si->_reason._rt._value.sival_int;
252 1.40 martin break;
253 1.40 martin case SIGCHLD:
254 1.40 martin si32->_reason._child._pid = si->_reason._child._pid;
255 1.40 martin si32->_reason._child._uid = si->_reason._child._uid;
256 1.40 martin si32->_reason._child._utime = si->_reason._child._utime;
257 1.40 martin si32->_reason._child._stime = si->_reason._child._stime;
258 1.40 martin break;
259 1.40 martin case SIGURG:
260 1.40 martin case SIGIO:
261 1.40 martin si32->_reason._poll._band = si->_reason._poll._band;
262 1.40 martin si32->_reason._poll._fd = si->_reason._poll._fd;
263 1.40 martin break;
264 1.40 martin }
265 1.40 martin }
266 1.40 martin
267 1.15 chs void
268 1.9 drochner netbsd32_si_to_si32(siginfo32_t *si32, const siginfo_t *si)
269 1.7 fvdl {
270 1.7 fvdl memset(si32, 0, sizeof (*si32));
271 1.7 fvdl si32->si_signo = si->si_signo;
272 1.7 fvdl si32->si_code = si->si_code;
273 1.7 fvdl si32->si_errno = si->si_errno;
274 1.7 fvdl
275 1.7 fvdl switch (si32->si_signo) {
276 1.17 cube case 0: /* SA */
277 1.24 christos si32->si_value.sival_int = si->si_value.sival_int;
278 1.17 cube break;
279 1.7 fvdl case SIGILL:
280 1.7 fvdl case SIGBUS:
281 1.7 fvdl case SIGSEGV:
282 1.7 fvdl case SIGFPE:
283 1.7 fvdl case SIGTRAP:
284 1.7 fvdl si32->si_addr = (uint32_t)(uintptr_t)si->si_addr;
285 1.7 fvdl si32->si_trap = si->si_trap;
286 1.7 fvdl break;
287 1.7 fvdl case SIGALRM:
288 1.7 fvdl case SIGVTALRM:
289 1.7 fvdl case SIGPROF:
290 1.39 martin default:
291 1.7 fvdl si32->si_pid = si->si_pid;
292 1.7 fvdl si32->si_uid = si->si_uid;
293 1.24 christos si32->si_value.sival_int = si->si_value.sival_int;
294 1.7 fvdl break;
295 1.7 fvdl case SIGCHLD:
296 1.7 fvdl si32->si_pid = si->si_pid;
297 1.7 fvdl si32->si_uid = si->si_uid;
298 1.7 fvdl si32->si_status = si->si_status;
299 1.7 fvdl si32->si_utime = si->si_utime;
300 1.7 fvdl si32->si_stime = si->si_stime;
301 1.7 fvdl break;
302 1.7 fvdl case SIGURG:
303 1.7 fvdl case SIGIO:
304 1.7 fvdl si32->si_band = si->si_band;
305 1.7 fvdl si32->si_fd = si->si_fd;
306 1.7 fvdl break;
307 1.7 fvdl }
308 1.7 fvdl }
309 1.7 fvdl
310 1.7 fvdl void
311 1.7 fvdl getucontext32(struct lwp *l, ucontext32_t *ucp)
312 1.7 fvdl {
313 1.20 cube struct proc *p = l->l_proc;
314 1.7 fvdl
315 1.29 ad KASSERT(mutex_owned(p->p_lock));
316 1.7 fvdl
317 1.7 fvdl ucp->uc_flags = 0;
318 1.7 fvdl ucp->uc_link = (uint32_t)(intptr_t)l->l_ctxlink;
319 1.37 rmind ucp->uc_sigmask = l->l_sigmask;
320 1.7 fvdl ucp->uc_flags |= _UC_SIGMASK;
321 1.7 fvdl
322 1.7 fvdl /*
323 1.7 fvdl * The (unsupplied) definition of the `current execution stack'
324 1.7 fvdl * in the System V Interface Definition appears to allow returning
325 1.7 fvdl * the main context stack.
326 1.7 fvdl */
327 1.19 ad if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
328 1.7 fvdl ucp->uc_stack.ss_sp = USRSTACK32;
329 1.7 fvdl ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
330 1.7 fvdl ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
331 1.7 fvdl } else {
332 1.7 fvdl /* Simply copy alternate signal execution stack. */
333 1.7 fvdl ucp->uc_stack.ss_sp =
334 1.19 ad (uint32_t)(intptr_t)l->l_sigstk.ss_sp;
335 1.19 ad ucp->uc_stack.ss_size = l->l_sigstk.ss_size;
336 1.19 ad ucp->uc_stack.ss_flags = l->l_sigstk.ss_flags;
337 1.7 fvdl }
338 1.7 fvdl ucp->uc_flags |= _UC_STACK;
339 1.29 ad mutex_exit(p->p_lock);
340 1.7 fvdl cpu_getmcontext32(l, &ucp->uc_mcontext, &ucp->uc_flags);
341 1.29 ad mutex_enter(p->p_lock);
342 1.7 fvdl }
343 1.7 fvdl
344 1.7 fvdl int
345 1.28 dsl netbsd32_getcontext(struct lwp *l, const struct netbsd32_getcontext_args *uap, register_t *retval)
346 1.7 fvdl {
347 1.28 dsl /* {
348 1.7 fvdl syscallarg(netbsd32_ucontextp) ucp;
349 1.28 dsl } */
350 1.20 cube struct proc *p = l->l_proc;
351 1.7 fvdl ucontext32_t uc;
352 1.7 fvdl
353 1.35 joerg memset(&uc, 0, sizeof(uc));
354 1.35 joerg
355 1.29 ad mutex_enter(p->p_lock);
356 1.7 fvdl getucontext32(l, &uc);
357 1.29 ad mutex_exit(p->p_lock);
358 1.7 fvdl
359 1.23 dsl return copyout(&uc, SCARG_P32(uap, ucp), sizeof (ucontext32_t));
360 1.7 fvdl }
361 1.7 fvdl
362 1.7 fvdl int
363 1.7 fvdl setucontext32(struct lwp *l, const ucontext32_t *ucp)
364 1.7 fvdl {
365 1.20 cube struct proc *p = l->l_proc;
366 1.20 cube int error;
367 1.20 cube
368 1.29 ad KASSERT(mutex_owned(p->p_lock));
369 1.20 cube
370 1.20 cube if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
371 1.20 cube error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
372 1.20 cube if (error != 0)
373 1.20 cube return error;
374 1.20 cube }
375 1.7 fvdl
376 1.29 ad mutex_exit(p->p_lock);
377 1.20 cube error = cpu_setmcontext32(l, &ucp->uc_mcontext, ucp->uc_flags);
378 1.29 ad mutex_enter(p->p_lock);
379 1.20 cube if (error != 0)
380 1.7 fvdl return (error);
381 1.20 cube
382 1.7 fvdl l->l_ctxlink = (void *)(intptr_t)ucp->uc_link;
383 1.20 cube
384 1.7 fvdl /*
385 1.20 cube * If there was stack information, update whether or not we are
386 1.20 cube * still running on an alternate signal stack.
387 1.7 fvdl */
388 1.20 cube if ((ucp->uc_flags & _UC_STACK) != 0) {
389 1.20 cube if (ucp->uc_stack.ss_flags & SS_ONSTACK)
390 1.20 cube l->l_sigstk.ss_flags |= SS_ONSTACK;
391 1.20 cube else
392 1.20 cube l->l_sigstk.ss_flags &= ~SS_ONSTACK;
393 1.20 cube }
394 1.7 fvdl
395 1.7 fvdl return 0;
396 1.7 fvdl }
397 1.7 fvdl
398 1.7 fvdl /* ARGSUSED */
399 1.7 fvdl int
400 1.28 dsl netbsd32_setcontext(struct lwp *l, const struct netbsd32_setcontext_args *uap, register_t *retval)
401 1.7 fvdl {
402 1.28 dsl /* {
403 1.7 fvdl syscallarg(netbsd32_ucontextp) ucp;
404 1.28 dsl } */
405 1.7 fvdl ucontext32_t uc;
406 1.7 fvdl int error;
407 1.20 cube struct proc *p = l->l_proc;
408 1.7 fvdl
409 1.23 dsl error = copyin(SCARG_P32(uap, ucp), &uc, sizeof (uc));
410 1.18 drochner if (error)
411 1.18 drochner return (error);
412 1.18 drochner if (!(uc.uc_flags & _UC_CPU))
413 1.18 drochner return (EINVAL);
414 1.29 ad mutex_enter(p->p_lock);
415 1.18 drochner error = setucontext32(l, &uc);
416 1.29 ad mutex_exit(p->p_lock);
417 1.18 drochner if (error)
418 1.7 fvdl return (error);
419 1.7 fvdl
420 1.7 fvdl return (EJUSTRETURN);
421 1.1 mrg }
422 1.10 cube
423 1.10 cube static int
424 1.10 cube netbsd32_sigtimedwait_put_info(const void *src, void *dst, size_t size)
425 1.10 cube {
426 1.10 cube const siginfo_t *info = src;
427 1.10 cube siginfo32_t info32;
428 1.10 cube
429 1.10 cube netbsd32_si_to_si32(&info32, info);
430 1.10 cube
431 1.10 cube return copyout(&info32, dst, sizeof(info32));
432 1.10 cube }
433 1.10 cube
434 1.10 cube static int
435 1.10 cube netbsd32_sigtimedwait_fetch_timeout(const void *src, void *dst, size_t size)
436 1.10 cube {
437 1.10 cube struct timespec *ts = dst;
438 1.10 cube struct netbsd32_timespec ts32;
439 1.10 cube int error;
440 1.10 cube
441 1.10 cube error = copyin(src, &ts32, sizeof(ts32));
442 1.10 cube if (error)
443 1.10 cube return error;
444 1.10 cube
445 1.10 cube netbsd32_to_timespec(&ts32, ts);
446 1.10 cube return 0;
447 1.10 cube }
448 1.10 cube
449 1.10 cube static int
450 1.10 cube netbsd32_sigtimedwait_put_timeout(const void *src, void *dst, size_t size)
451 1.10 cube {
452 1.10 cube const struct timespec *ts = src;
453 1.10 cube struct netbsd32_timespec ts32;
454 1.10 cube
455 1.10 cube netbsd32_from_timespec(ts, &ts32);
456 1.10 cube
457 1.10 cube return copyout(&ts32, dst, sizeof(ts32));
458 1.10 cube }
459 1.10 cube
460 1.10 cube int
461 1.32 christos netbsd32_____sigtimedwait50(struct lwp *l, const struct netbsd32_____sigtimedwait50_args *uap, register_t *retval)
462 1.10 cube {
463 1.28 dsl /* {
464 1.10 cube syscallarg(netbsd32_sigsetp_t) set;
465 1.10 cube syscallarg(netbsd32_siginfop_t) info;
466 1.32 christos syscallarg(netbsd32_timespec50p_t) timeout;
467 1.28 dsl } */
468 1.32 christos struct sys_____sigtimedwait50_args ua;
469 1.10 cube
470 1.10 cube NETBSD32TOP_UAP(set, const sigset_t);
471 1.10 cube NETBSD32TOP_UAP(info, siginfo_t);
472 1.10 cube NETBSD32TOP_UAP(timeout, struct timespec);
473 1.10 cube
474 1.33 pooka return sigtimedwait1(l, &ua, retval,
475 1.36 christos copyin,
476 1.32 christos netbsd32_sigtimedwait_put_info,
477 1.10 cube netbsd32_sigtimedwait_fetch_timeout,
478 1.10 cube netbsd32_sigtimedwait_put_timeout);
479 1.10 cube }
480 1.39 martin
481 1.39 martin int
482 1.39 martin netbsd32_sigqueueinfo(struct lwp *l,
483 1.39 martin const struct netbsd32_sigqueueinfo_args *uap, register_t *retval)
484 1.39 martin {
485 1.39 martin /* {
486 1.39 martin syscallarg(pid_t) pid;
487 1.39 martin syscallarg(const netbsd32_siginfop_t) info;
488 1.39 martin } */
489 1.39 martin struct __ksiginfo32 ksi32;
490 1.39 martin ksiginfo_t ksi;
491 1.39 martin int error;
492 1.39 martin
493 1.39 martin if ((error = copyin(SCARG_P32(uap, info), &ksi32,
494 1.39 martin sizeof(ksi32))) != 0)
495 1.39 martin return error;
496 1.39 martin
497 1.39 martin KSI_INIT(&ksi);
498 1.39 martin netbsd32_ksi32_to_ksi(&ksi.ksi_info, &ksi32);
499 1.39 martin
500 1.39 martin return kill1(l, SCARG(uap, pid), &ksi, retval);
501 1.39 martin }
502 1.40 martin
503 1.40 martin struct netbsd32_ktr_psig {
504 1.40 martin int signo;
505 1.40 martin netbsd32_pointer_t action;
506 1.40 martin sigset_t mask;
507 1.40 martin int code;
508 1.40 martin /* and optional siginfo_t */
509 1.40 martin };
510 1.40 martin
511 1.41 christos #ifdef KTRACE
512 1.40 martin void
513 1.40 martin netbsd32_ktrpsig(int sig, sig_t action, const sigset_t *mask,
514 1.40 martin const ksiginfo_t *ksi)
515 1.40 martin {
516 1.40 martin struct ktrace_entry *kte;
517 1.40 martin lwp_t *l = curlwp;
518 1.40 martin struct {
519 1.40 martin struct netbsd32_ktr_psig kp;
520 1.40 martin siginfo32_t si;
521 1.40 martin } *kbuf;
522 1.40 martin
523 1.40 martin if (!KTRPOINT(l->l_proc, KTR_PSIG))
524 1.40 martin return;
525 1.40 martin
526 1.40 martin if (ktealloc(&kte, (void *)&kbuf, l, KTR_PSIG, sizeof(*kbuf)))
527 1.40 martin return;
528 1.40 martin
529 1.40 martin kbuf->kp.signo = (char)sig;
530 1.40 martin NETBSD32PTR32(kbuf->kp.action, action);
531 1.40 martin kbuf->kp.mask = *mask;
532 1.40 martin
533 1.40 martin if (ksi) {
534 1.40 martin kbuf->kp.code = KSI_TRAPCODE(ksi);
535 1.40 martin (void)memset(&kbuf->si, 0, sizeof(kbuf->si));
536 1.40 martin netbsd32_ksi_to_ksi32(&kbuf->si._info, &ksi->ksi_info);
537 1.40 martin ktesethdrlen(kte, sizeof(*kbuf));
538 1.40 martin } else {
539 1.40 martin kbuf->kp.code = 0;
540 1.40 martin ktesethdrlen(kte, sizeof(struct netbsd32_ktr_psig));
541 1.40 martin }
542 1.40 martin
543 1.40 martin ktraddentry(l, kte, KTA_WAITOK);
544 1.40 martin }
545 1.41 christos #endif
546 1.40 martin
547 1.40 martin
548