netbsd32_signal.c revision 1.48 1 1.48 rin /* $NetBSD: netbsd32_signal.c,v 1.48 2019/11/18 10:14:52 rin Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1998, 2001 Matthew R. Green
5 1.1 mrg * All rights reserved.
6 1.1 mrg *
7 1.1 mrg * Redistribution and use in source and binary forms, with or without
8 1.1 mrg * modification, are permitted provided that the following conditions
9 1.1 mrg * are met:
10 1.1 mrg * 1. Redistributions of source code must retain the above copyright
11 1.1 mrg * notice, this list of conditions and the following disclaimer.
12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mrg * notice, this list of conditions and the following disclaimer in the
14 1.1 mrg * documentation and/or other materials provided with the distribution.
15 1.1 mrg *
16 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 mrg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 mrg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 mrg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 mrg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 mrg * SUCH DAMAGE.
27 1.1 mrg */
28 1.2 lukem
29 1.2 lukem #include <sys/cdefs.h>
30 1.48 rin __KERNEL_RCSID(0, "$NetBSD: netbsd32_signal.c,v 1.48 2019/11/18 10:14:52 rin Exp $");
31 1.41 christos
32 1.41 christos #if defined(_KERNEL_OPT)
33 1.41 christos #include "opt_ktrace.h"
34 1.41 christos #endif
35 1.1 mrg
36 1.1 mrg #include <sys/param.h>
37 1.1 mrg #include <sys/systm.h>
38 1.1 mrg #include <sys/mount.h>
39 1.1 mrg #include <sys/stat.h>
40 1.1 mrg #include <sys/time.h>
41 1.1 mrg #include <sys/signalvar.h>
42 1.40 martin #include <sys/ktrace.h>
43 1.1 mrg #include <sys/proc.h>
44 1.7 fvdl #include <sys/wait.h>
45 1.11 christos #include <sys/dirent.h>
46 1.7 fvdl
47 1.7 fvdl #include <uvm/uvm_extern.h>
48 1.1 mrg
49 1.1 mrg #include <compat/netbsd32/netbsd32.h>
50 1.10 cube #include <compat/netbsd32/netbsd32_conv.h>
51 1.1 mrg #include <compat/netbsd32/netbsd32_syscallargs.h>
52 1.1 mrg
53 1.12 christos #include <compat/sys/signal.h>
54 1.12 christos #include <compat/sys/signalvar.h>
55 1.13 christos #include <compat/sys/siginfo.h>
56 1.12 christos #include <compat/sys/ucontext.h>
57 1.25 dsl #include <compat/common/compat_sigaltstack.h>
58 1.12 christos
59 1.1 mrg int
60 1.28 dsl netbsd32_sigaction(struct lwp *l, const struct netbsd32_sigaction_args *uap, register_t *retval)
61 1.1 mrg {
62 1.28 dsl /* {
63 1.1 mrg syscallarg(int) signum;
64 1.1 mrg syscallarg(const netbsd32_sigactionp_t) nsa;
65 1.1 mrg syscallarg(netbsd32_sigactionp_t) osa;
66 1.28 dsl } */
67 1.1 mrg struct sigaction nsa, osa;
68 1.38 christos struct netbsd32_sigaction13 *sa32p, sa32;
69 1.1 mrg int error;
70 1.1 mrg
71 1.23 dsl if (SCARG_P32(uap, nsa)) {
72 1.23 dsl sa32p = SCARG_P32(uap, nsa);
73 1.1 mrg if (copyin(sa32p, &sa32, sizeof(sa32)))
74 1.1 mrg return EFAULT;
75 1.5 atatat nsa.sa_handler = (void *)NETBSD32PTR64(sa32.netbsd32_sa_handler);
76 1.38 christos memset(&nsa.sa_mask, 0, sizeof(nsa.sa_mask));
77 1.38 christos nsa.sa_mask.__bits[0] = sa32.netbsd32_sa_mask;
78 1.5 atatat nsa.sa_flags = sa32.netbsd32_sa_flags;
79 1.1 mrg }
80 1.19 ad error = sigaction1(l, SCARG(uap, signum),
81 1.23 dsl SCARG_P32(uap, nsa) ? &nsa : 0,
82 1.23 dsl SCARG_P32(uap, osa) ? &osa : 0,
83 1.3 thorpej NULL, 0);
84 1.8 perry
85 1.1 mrg if (error)
86 1.1 mrg return (error);
87 1.1 mrg
88 1.23 dsl if (SCARG_P32(uap, osa)) {
89 1.22 dsl NETBSD32PTR32(sa32.netbsd32_sa_handler, osa.sa_handler);
90 1.38 christos sa32.netbsd32_sa_mask = osa.sa_mask.__bits[0];
91 1.5 atatat sa32.netbsd32_sa_flags = osa.sa_flags;
92 1.23 dsl sa32p = SCARG_P32(uap, osa);
93 1.1 mrg if (copyout(&sa32, sa32p, sizeof(sa32)))
94 1.1 mrg return EFAULT;
95 1.1 mrg }
96 1.1 mrg
97 1.1 mrg return (0);
98 1.1 mrg }
99 1.1 mrg
100 1.1 mrg int
101 1.28 dsl netbsd32___sigaltstack14(struct lwp *l, const struct netbsd32___sigaltstack14_args *uap, register_t *retval)
102 1.1 mrg {
103 1.28 dsl /* {
104 1.1 mrg syscallarg(const netbsd32_sigaltstackp_t) nss;
105 1.1 mrg syscallarg(netbsd32_sigaltstackp_t) oss;
106 1.28 dsl } */
107 1.25 dsl compat_sigaltstack(uap, netbsd32_sigaltstack, SS_ONSTACK, SS_DISABLE);
108 1.1 mrg }
109 1.1 mrg
110 1.1 mrg /* ARGSUSED */
111 1.1 mrg int
112 1.28 dsl netbsd32___sigaction14(struct lwp *l, const struct netbsd32___sigaction14_args *uap, register_t *retval)
113 1.1 mrg {
114 1.28 dsl /* {
115 1.1 mrg syscallarg(int) signum;
116 1.1 mrg syscallarg(const struct sigaction *) nsa;
117 1.1 mrg syscallarg(struct sigaction *) osa;
118 1.28 dsl } */
119 1.1 mrg struct netbsd32_sigaction sa32;
120 1.1 mrg struct sigaction nsa, osa;
121 1.1 mrg int error;
122 1.1 mrg
123 1.23 dsl if (SCARG_P32(uap, nsa)) {
124 1.23 dsl error = copyin(SCARG_P32(uap, nsa), &sa32, sizeof(sa32));
125 1.1 mrg if (error)
126 1.1 mrg return (error);
127 1.22 dsl nsa.sa_handler = NETBSD32PTR64(sa32.netbsd32_sa_handler);
128 1.5 atatat nsa.sa_mask = sa32.netbsd32_sa_mask;
129 1.5 atatat nsa.sa_flags = sa32.netbsd32_sa_flags;
130 1.1 mrg }
131 1.19 ad error = sigaction1(l, SCARG(uap, signum),
132 1.23 dsl SCARG_P32(uap, nsa) ? &nsa : 0,
133 1.23 dsl SCARG_P32(uap, osa) ? &osa : 0,
134 1.22 dsl NULL, 0);
135 1.1 mrg if (error)
136 1.1 mrg return (error);
137 1.23 dsl if (SCARG_P32(uap, osa)) {
138 1.22 dsl NETBSD32PTR32(sa32.netbsd32_sa_handler, osa.sa_handler);
139 1.5 atatat sa32.netbsd32_sa_mask = osa.sa_mask;
140 1.5 atatat sa32.netbsd32_sa_flags = osa.sa_flags;
141 1.23 dsl error = copyout(&sa32, SCARG_P32(uap, osa), sizeof(sa32));
142 1.4 scw if (error)
143 1.4 scw return (error);
144 1.4 scw }
145 1.4 scw return (0);
146 1.4 scw }
147 1.4 scw
148 1.4 scw /* ARGSUSED */
149 1.4 scw int
150 1.28 dsl netbsd32___sigaction_sigtramp(struct lwp *l, const struct netbsd32___sigaction_sigtramp_args *uap, register_t *retval)
151 1.4 scw {
152 1.28 dsl /* {
153 1.4 scw syscallarg(int) signum;
154 1.4 scw syscallarg(const netbsd32_sigactionp_t) nsa;
155 1.4 scw syscallarg(netbsd32_sigactionp_t) osa;
156 1.4 scw syscallarg(netbsd32_voidp) tramp;
157 1.4 scw syscallarg(int) vers;
158 1.28 dsl } */
159 1.4 scw struct netbsd32_sigaction sa32;
160 1.4 scw struct sigaction nsa, osa;
161 1.4 scw int error;
162 1.4 scw
163 1.23 dsl if (SCARG_P32(uap, nsa)) {
164 1.23 dsl error = copyin(SCARG_P32(uap, nsa), &sa32, sizeof(sa32));
165 1.4 scw if (error)
166 1.4 scw return (error);
167 1.22 dsl nsa.sa_handler = NETBSD32PTR64(sa32.netbsd32_sa_handler);
168 1.5 atatat nsa.sa_mask = sa32.netbsd32_sa_mask;
169 1.5 atatat nsa.sa_flags = sa32.netbsd32_sa_flags;
170 1.4 scw }
171 1.19 ad error = sigaction1(l, SCARG(uap, signum),
172 1.23 dsl SCARG_P32(uap, nsa) ? &nsa : 0,
173 1.23 dsl SCARG_P32(uap, osa) ? &osa : 0,
174 1.23 dsl SCARG_P32(uap, tramp), SCARG(uap, vers));
175 1.4 scw if (error)
176 1.4 scw return (error);
177 1.23 dsl if (SCARG_P32(uap, osa)) {
178 1.22 dsl NETBSD32PTR32(sa32.netbsd32_sa_handler, osa.sa_handler);
179 1.5 atatat sa32.netbsd32_sa_mask = osa.sa_mask;
180 1.5 atatat sa32.netbsd32_sa_flags = osa.sa_flags;
181 1.23 dsl error = copyout(&sa32, SCARG_P32(uap, osa), sizeof(sa32));
182 1.1 mrg if (error)
183 1.1 mrg return (error);
184 1.1 mrg }
185 1.1 mrg return (0);
186 1.7 fvdl }
187 1.7 fvdl
188 1.39 martin void
189 1.39 martin netbsd32_ksi32_to_ksi(struct _ksiginfo *si, const struct __ksiginfo32 *si32)
190 1.7 fvdl {
191 1.46 rin size_t i;
192 1.46 rin
193 1.7 fvdl memset(si, 0, sizeof (*si));
194 1.39 martin si->_signo = si32->_signo;
195 1.39 martin si->_code = si32->_code;
196 1.39 martin si->_errno = si32->_errno;
197 1.7 fvdl
198 1.39 martin switch (si32->_signo) {
199 1.7 fvdl case SIGILL:
200 1.47 rin case SIGFPE:
201 1.7 fvdl case SIGBUS:
202 1.7 fvdl case SIGSEGV:
203 1.46 rin fill_fault:
204 1.42 christos si->_reason._fault._addr =
205 1.42 christos NETBSD32IPTR64(si32->_reason._fault._addr);
206 1.39 martin si->_reason._fault._trap = si32->_reason._fault._trap;
207 1.7 fvdl break;
208 1.46 rin case SIGTRAP:
209 1.48 rin switch (si32->_code) {
210 1.48 rin case TRAP_EXEC:
211 1.48 rin case TRAP_CHLD:
212 1.48 rin case TRAP_LWP:
213 1.48 rin si->_reason._ptrace_state._pe_report_event =
214 1.48 rin si32->_reason._ptrace_state._pe_report_event;
215 1.48 rin CTASSERT(sizeof(si->_reason._ptrace_state._option._pe_other_pid) ==
216 1.48 rin sizeof(si->_reason._ptrace_state._option._pe_lwp));
217 1.48 rin si->_reason._ptrace_state._option._pe_other_pid =
218 1.48 rin si32->_reason._ptrace_state._option._pe_other_pid;
219 1.48 rin break;
220 1.48 rin case TRAP_SCE:
221 1.48 rin case TRAP_SCX:
222 1.48 rin si->_reason._syscall._sysnum =
223 1.48 rin si32->_reason._syscall._sysnum;
224 1.48 rin si->_reason._syscall._retval[0] =
225 1.48 rin si32->_reason._syscall._retval[0];
226 1.48 rin si->_reason._syscall._retval[1] =
227 1.48 rin si32->_reason._syscall._retval[1];
228 1.48 rin si->_reason._syscall._error =
229 1.48 rin si32->_reason._syscall._error;
230 1.48 rin for (i = 0;
231 1.48 rin i < __arraycount(si->_reason._syscall._args); i++)
232 1.48 rin si->_reason._syscall._args[i] =
233 1.48 rin si32->_reason._syscall._args[i];
234 1.48 rin break;
235 1.48 rin default:
236 1.46 rin goto fill_fault;
237 1.48 rin }
238 1.46 rin break;
239 1.7 fvdl case SIGALRM:
240 1.7 fvdl case SIGVTALRM:
241 1.7 fvdl case SIGPROF:
242 1.39 martin default: /* see sigqueue() and kill1() */
243 1.39 martin si->_reason._rt._pid = si32->_reason._rt._pid;
244 1.39 martin si->_reason._rt._uid = si32->_reason._rt._uid;
245 1.42 christos si->_reason._rt._value.sival_int =
246 1.42 christos si32->_reason._rt._value.sival_int;
247 1.7 fvdl break;
248 1.47 rin case SIGURG:
249 1.47 rin case SIGIO:
250 1.47 rin si->_reason._poll._band = si32->_reason._poll._band;
251 1.47 rin si->_reason._poll._fd = si32->_reason._poll._fd;
252 1.47 rin break;
253 1.7 fvdl case SIGCHLD:
254 1.39 martin si->_reason._child._pid = si32->_reason._child._pid;
255 1.39 martin si->_reason._child._uid = si32->_reason._child._uid;
256 1.46 rin si->_reason._child._status = si32->_reason._child._status;
257 1.39 martin si->_reason._child._utime = si32->_reason._child._utime;
258 1.39 martin si->_reason._child._stime = si32->_reason._child._stime;
259 1.7 fvdl break;
260 1.7 fvdl }
261 1.7 fvdl }
262 1.7 fvdl
263 1.47 rin void
264 1.47 rin netbsd32_si32_to_si(siginfo_t *si, const siginfo32_t *si32)
265 1.47 rin {
266 1.47 rin
267 1.47 rin memset(si, 0, sizeof (*si));
268 1.47 rin netbsd32_ksi32_to_ksi(&si->_info, &si32->_info);
269 1.47 rin }
270 1.47 rin
271 1.40 martin static void
272 1.40 martin netbsd32_ksi_to_ksi32(struct __ksiginfo32 *si32, const struct _ksiginfo *si)
273 1.40 martin {
274 1.46 rin size_t i;
275 1.46 rin
276 1.40 martin memset(si32, 0, sizeof (*si32));
277 1.40 martin si32->_signo = si->_signo;
278 1.40 martin si32->_code = si->_code;
279 1.40 martin si32->_errno = si->_errno;
280 1.40 martin
281 1.40 martin switch (si->_signo) {
282 1.40 martin case SIGILL:
283 1.47 rin case SIGFPE:
284 1.40 martin case SIGBUS:
285 1.40 martin case SIGSEGV:
286 1.46 rin fill_fault:
287 1.40 martin si32->_reason._fault._addr =
288 1.40 martin NETBSD32PTR32I(si->_reason._fault._addr);
289 1.40 martin si32->_reason._fault._trap = si->_reason._fault._trap;
290 1.40 martin break;
291 1.46 rin case SIGTRAP:
292 1.48 rin switch (si->_code) {
293 1.48 rin case TRAP_EXEC:
294 1.48 rin case TRAP_CHLD:
295 1.48 rin case TRAP_LWP:
296 1.48 rin si32->_reason._ptrace_state._pe_report_event =
297 1.48 rin si->_reason._ptrace_state._pe_report_event;
298 1.48 rin CTASSERT(sizeof(si32->_reason._ptrace_state._option._pe_other_pid) ==
299 1.48 rin sizeof(si32->_reason._ptrace_state._option._pe_lwp));
300 1.48 rin si32->_reason._ptrace_state._option._pe_other_pid =
301 1.48 rin si->_reason._ptrace_state._option._pe_other_pid;
302 1.48 rin break;
303 1.48 rin case TRAP_SCE:
304 1.48 rin case TRAP_SCX:
305 1.48 rin si32->_reason._syscall._sysnum =
306 1.48 rin si->_reason._syscall._sysnum;
307 1.48 rin si32->_reason._syscall._retval[0] =
308 1.48 rin si->_reason._syscall._retval[0];
309 1.48 rin si32->_reason._syscall._retval[1] =
310 1.48 rin si->_reason._syscall._retval[1];
311 1.48 rin si32->_reason._syscall._error =
312 1.48 rin si->_reason._syscall._error;
313 1.48 rin for (i = 0;
314 1.48 rin i < __arraycount(si->_reason._syscall._args); i++)
315 1.48 rin si32->_reason._syscall._args[i] =
316 1.48 rin si->_reason._syscall._args[i];
317 1.48 rin break;
318 1.48 rin default:
319 1.46 rin goto fill_fault;
320 1.48 rin }
321 1.46 rin break;
322 1.40 martin case SIGALRM:
323 1.40 martin case SIGVTALRM:
324 1.40 martin case SIGPROF:
325 1.40 martin default: /* see sigqueue() and kill1() */
326 1.40 martin si32->_reason._rt._pid = si->_reason._rt._pid;
327 1.40 martin si32->_reason._rt._uid = si->_reason._rt._uid;
328 1.42 christos si32->_reason._rt._value.sival_int =
329 1.42 christos si->_reason._rt._value.sival_int;
330 1.40 martin break;
331 1.47 rin case SIGURG:
332 1.47 rin case SIGIO:
333 1.47 rin si32->_reason._poll._band = si->_reason._poll._band;
334 1.47 rin si32->_reason._poll._fd = si->_reason._poll._fd;
335 1.47 rin break;
336 1.40 martin case SIGCHLD:
337 1.40 martin si32->_reason._child._pid = si->_reason._child._pid;
338 1.40 martin si32->_reason._child._uid = si->_reason._child._uid;
339 1.46 rin si32->_reason._child._status = si->_reason._child._status;
340 1.40 martin si32->_reason._child._utime = si->_reason._child._utime;
341 1.40 martin si32->_reason._child._stime = si->_reason._child._stime;
342 1.40 martin break;
343 1.40 martin }
344 1.40 martin }
345 1.40 martin
346 1.15 chs void
347 1.9 drochner netbsd32_si_to_si32(siginfo32_t *si32, const siginfo_t *si)
348 1.7 fvdl {
349 1.46 rin
350 1.7 fvdl memset(si32, 0, sizeof (*si32));
351 1.46 rin netbsd32_ksi_to_ksi32(&si32->_info, &si->_info);
352 1.7 fvdl }
353 1.7 fvdl
354 1.7 fvdl void
355 1.7 fvdl getucontext32(struct lwp *l, ucontext32_t *ucp)
356 1.7 fvdl {
357 1.20 cube struct proc *p = l->l_proc;
358 1.7 fvdl
359 1.29 ad KASSERT(mutex_owned(p->p_lock));
360 1.7 fvdl
361 1.7 fvdl ucp->uc_flags = 0;
362 1.7 fvdl ucp->uc_link = (uint32_t)(intptr_t)l->l_ctxlink;
363 1.37 rmind ucp->uc_sigmask = l->l_sigmask;
364 1.7 fvdl ucp->uc_flags |= _UC_SIGMASK;
365 1.7 fvdl
366 1.7 fvdl /*
367 1.7 fvdl * The (unsupplied) definition of the `current execution stack'
368 1.7 fvdl * in the System V Interface Definition appears to allow returning
369 1.7 fvdl * the main context stack.
370 1.7 fvdl */
371 1.19 ad if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) {
372 1.7 fvdl ucp->uc_stack.ss_sp = USRSTACK32;
373 1.7 fvdl ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize);
374 1.7 fvdl ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */
375 1.7 fvdl } else {
376 1.7 fvdl /* Simply copy alternate signal execution stack. */
377 1.7 fvdl ucp->uc_stack.ss_sp =
378 1.19 ad (uint32_t)(intptr_t)l->l_sigstk.ss_sp;
379 1.19 ad ucp->uc_stack.ss_size = l->l_sigstk.ss_size;
380 1.19 ad ucp->uc_stack.ss_flags = l->l_sigstk.ss_flags;
381 1.7 fvdl }
382 1.7 fvdl ucp->uc_flags |= _UC_STACK;
383 1.29 ad mutex_exit(p->p_lock);
384 1.7 fvdl cpu_getmcontext32(l, &ucp->uc_mcontext, &ucp->uc_flags);
385 1.29 ad mutex_enter(p->p_lock);
386 1.7 fvdl }
387 1.7 fvdl
388 1.7 fvdl int
389 1.28 dsl netbsd32_getcontext(struct lwp *l, const struct netbsd32_getcontext_args *uap, register_t *retval)
390 1.7 fvdl {
391 1.28 dsl /* {
392 1.7 fvdl syscallarg(netbsd32_ucontextp) ucp;
393 1.28 dsl } */
394 1.20 cube struct proc *p = l->l_proc;
395 1.7 fvdl ucontext32_t uc;
396 1.7 fvdl
397 1.35 joerg memset(&uc, 0, sizeof(uc));
398 1.35 joerg
399 1.29 ad mutex_enter(p->p_lock);
400 1.7 fvdl getucontext32(l, &uc);
401 1.29 ad mutex_exit(p->p_lock);
402 1.7 fvdl
403 1.23 dsl return copyout(&uc, SCARG_P32(uap, ucp), sizeof (ucontext32_t));
404 1.7 fvdl }
405 1.7 fvdl
406 1.7 fvdl int
407 1.7 fvdl setucontext32(struct lwp *l, const ucontext32_t *ucp)
408 1.7 fvdl {
409 1.20 cube struct proc *p = l->l_proc;
410 1.20 cube int error;
411 1.20 cube
412 1.29 ad KASSERT(mutex_owned(p->p_lock));
413 1.20 cube
414 1.20 cube if ((ucp->uc_flags & _UC_SIGMASK) != 0) {
415 1.20 cube error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL);
416 1.20 cube if (error != 0)
417 1.20 cube return error;
418 1.20 cube }
419 1.7 fvdl
420 1.29 ad mutex_exit(p->p_lock);
421 1.20 cube error = cpu_setmcontext32(l, &ucp->uc_mcontext, ucp->uc_flags);
422 1.29 ad mutex_enter(p->p_lock);
423 1.20 cube if (error != 0)
424 1.7 fvdl return (error);
425 1.20 cube
426 1.7 fvdl l->l_ctxlink = (void *)(intptr_t)ucp->uc_link;
427 1.20 cube
428 1.7 fvdl /*
429 1.20 cube * If there was stack information, update whether or not we are
430 1.20 cube * still running on an alternate signal stack.
431 1.7 fvdl */
432 1.20 cube if ((ucp->uc_flags & _UC_STACK) != 0) {
433 1.20 cube if (ucp->uc_stack.ss_flags & SS_ONSTACK)
434 1.20 cube l->l_sigstk.ss_flags |= SS_ONSTACK;
435 1.20 cube else
436 1.20 cube l->l_sigstk.ss_flags &= ~SS_ONSTACK;
437 1.20 cube }
438 1.7 fvdl
439 1.7 fvdl return 0;
440 1.7 fvdl }
441 1.7 fvdl
442 1.7 fvdl /* ARGSUSED */
443 1.7 fvdl int
444 1.28 dsl netbsd32_setcontext(struct lwp *l, const struct netbsd32_setcontext_args *uap, register_t *retval)
445 1.7 fvdl {
446 1.28 dsl /* {
447 1.7 fvdl syscallarg(netbsd32_ucontextp) ucp;
448 1.28 dsl } */
449 1.7 fvdl ucontext32_t uc;
450 1.7 fvdl int error;
451 1.20 cube struct proc *p = l->l_proc;
452 1.7 fvdl
453 1.23 dsl error = copyin(SCARG_P32(uap, ucp), &uc, sizeof (uc));
454 1.18 drochner if (error)
455 1.18 drochner return (error);
456 1.18 drochner if (!(uc.uc_flags & _UC_CPU))
457 1.18 drochner return (EINVAL);
458 1.29 ad mutex_enter(p->p_lock);
459 1.18 drochner error = setucontext32(l, &uc);
460 1.29 ad mutex_exit(p->p_lock);
461 1.18 drochner if (error)
462 1.7 fvdl return (error);
463 1.7 fvdl
464 1.7 fvdl return (EJUSTRETURN);
465 1.1 mrg }
466 1.10 cube
467 1.10 cube static int
468 1.10 cube netbsd32_sigtimedwait_put_info(const void *src, void *dst, size_t size)
469 1.10 cube {
470 1.10 cube const siginfo_t *info = src;
471 1.10 cube siginfo32_t info32;
472 1.10 cube
473 1.10 cube netbsd32_si_to_si32(&info32, info);
474 1.10 cube
475 1.10 cube return copyout(&info32, dst, sizeof(info32));
476 1.10 cube }
477 1.10 cube
478 1.10 cube static int
479 1.10 cube netbsd32_sigtimedwait_fetch_timeout(const void *src, void *dst, size_t size)
480 1.10 cube {
481 1.10 cube struct timespec *ts = dst;
482 1.10 cube struct netbsd32_timespec ts32;
483 1.10 cube int error;
484 1.10 cube
485 1.10 cube error = copyin(src, &ts32, sizeof(ts32));
486 1.10 cube if (error)
487 1.10 cube return error;
488 1.10 cube
489 1.10 cube netbsd32_to_timespec(&ts32, ts);
490 1.10 cube return 0;
491 1.10 cube }
492 1.10 cube
493 1.10 cube static int
494 1.10 cube netbsd32_sigtimedwait_put_timeout(const void *src, void *dst, size_t size)
495 1.10 cube {
496 1.10 cube const struct timespec *ts = src;
497 1.10 cube struct netbsd32_timespec ts32;
498 1.10 cube
499 1.10 cube netbsd32_from_timespec(ts, &ts32);
500 1.10 cube
501 1.10 cube return copyout(&ts32, dst, sizeof(ts32));
502 1.10 cube }
503 1.10 cube
504 1.10 cube int
505 1.32 christos netbsd32_____sigtimedwait50(struct lwp *l, const struct netbsd32_____sigtimedwait50_args *uap, register_t *retval)
506 1.10 cube {
507 1.28 dsl /* {
508 1.10 cube syscallarg(netbsd32_sigsetp_t) set;
509 1.10 cube syscallarg(netbsd32_siginfop_t) info;
510 1.32 christos syscallarg(netbsd32_timespec50p_t) timeout;
511 1.28 dsl } */
512 1.32 christos struct sys_____sigtimedwait50_args ua;
513 1.10 cube
514 1.10 cube NETBSD32TOP_UAP(set, const sigset_t);
515 1.10 cube NETBSD32TOP_UAP(info, siginfo_t);
516 1.10 cube NETBSD32TOP_UAP(timeout, struct timespec);
517 1.10 cube
518 1.33 pooka return sigtimedwait1(l, &ua, retval,
519 1.36 christos copyin,
520 1.32 christos netbsd32_sigtimedwait_put_info,
521 1.10 cube netbsd32_sigtimedwait_fetch_timeout,
522 1.10 cube netbsd32_sigtimedwait_put_timeout);
523 1.10 cube }
524 1.39 martin
525 1.39 martin int
526 1.39 martin netbsd32_sigqueueinfo(struct lwp *l,
527 1.39 martin const struct netbsd32_sigqueueinfo_args *uap, register_t *retval)
528 1.39 martin {
529 1.39 martin /* {
530 1.39 martin syscallarg(pid_t) pid;
531 1.39 martin syscallarg(const netbsd32_siginfop_t) info;
532 1.39 martin } */
533 1.39 martin struct __ksiginfo32 ksi32;
534 1.39 martin ksiginfo_t ksi;
535 1.39 martin int error;
536 1.39 martin
537 1.39 martin if ((error = copyin(SCARG_P32(uap, info), &ksi32,
538 1.39 martin sizeof(ksi32))) != 0)
539 1.39 martin return error;
540 1.39 martin
541 1.39 martin KSI_INIT(&ksi);
542 1.39 martin netbsd32_ksi32_to_ksi(&ksi.ksi_info, &ksi32);
543 1.39 martin
544 1.39 martin return kill1(l, SCARG(uap, pid), &ksi, retval);
545 1.39 martin }
546 1.40 martin
547 1.40 martin struct netbsd32_ktr_psig {
548 1.40 martin int signo;
549 1.40 martin netbsd32_pointer_t action;
550 1.40 martin sigset_t mask;
551 1.40 martin int code;
552 1.40 martin /* and optional siginfo_t */
553 1.40 martin };
554 1.40 martin
555 1.44 christos #ifdef notyet
556 1.41 christos #ifdef KTRACE
557 1.40 martin void
558 1.40 martin netbsd32_ktrpsig(int sig, sig_t action, const sigset_t *mask,
559 1.40 martin const ksiginfo_t *ksi)
560 1.40 martin {
561 1.40 martin struct ktrace_entry *kte;
562 1.40 martin lwp_t *l = curlwp;
563 1.40 martin struct {
564 1.40 martin struct netbsd32_ktr_psig kp;
565 1.40 martin siginfo32_t si;
566 1.40 martin } *kbuf;
567 1.40 martin
568 1.40 martin if (!KTRPOINT(l->l_proc, KTR_PSIG))
569 1.40 martin return;
570 1.40 martin
571 1.40 martin if (ktealloc(&kte, (void *)&kbuf, l, KTR_PSIG, sizeof(*kbuf)))
572 1.40 martin return;
573 1.40 martin
574 1.40 martin kbuf->kp.signo = (char)sig;
575 1.40 martin NETBSD32PTR32(kbuf->kp.action, action);
576 1.40 martin kbuf->kp.mask = *mask;
577 1.40 martin
578 1.40 martin if (ksi) {
579 1.40 martin kbuf->kp.code = KSI_TRAPCODE(ksi);
580 1.40 martin (void)memset(&kbuf->si, 0, sizeof(kbuf->si));
581 1.40 martin netbsd32_ksi_to_ksi32(&kbuf->si._info, &ksi->ksi_info);
582 1.40 martin ktesethdrlen(kte, sizeof(*kbuf));
583 1.40 martin } else {
584 1.40 martin kbuf->kp.code = 0;
585 1.40 martin ktesethdrlen(kte, sizeof(struct netbsd32_ktr_psig));
586 1.40 martin }
587 1.40 martin
588 1.40 martin ktraddentry(l, kte, KTA_WAITOK);
589 1.40 martin }
590 1.41 christos #endif
591 1.44 christos #endif
592