netbsd32_time.c revision 1.4 1 1.4 scw /* $NetBSD: netbsd32_time.c,v 1.4 2002/10/23 13:16:46 scw Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1998, 2001 Matthew R. Green
5 1.1 mrg * All rights reserved.
6 1.1 mrg *
7 1.1 mrg * Redistribution and use in source and binary forms, with or without
8 1.1 mrg * modification, are permitted provided that the following conditions
9 1.1 mrg * are met:
10 1.1 mrg * 1. Redistributions of source code must retain the above copyright
11 1.1 mrg * notice, this list of conditions and the following disclaimer.
12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mrg * notice, this list of conditions and the following disclaimer in the
14 1.1 mrg * documentation and/or other materials provided with the distribution.
15 1.1 mrg * 3. The name of the author may not be used to endorse or promote products
16 1.1 mrg * derived from this software without specific prior written permission.
17 1.1 mrg *
18 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 1.1 mrg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 1.1 mrg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 1.1 mrg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 1.1 mrg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 mrg * SUCH DAMAGE.
29 1.1 mrg */
30 1.3 lukem
31 1.3 lukem #include <sys/cdefs.h>
32 1.4 scw __KERNEL_RCSID(0, "$NetBSD: netbsd32_time.c,v 1.4 2002/10/23 13:16:46 scw Exp $");
33 1.1 mrg
34 1.2 mrg #if defined(_KERNEL_OPT)
35 1.1 mrg #include "opt_ntp.h"
36 1.1 mrg #endif
37 1.1 mrg
38 1.1 mrg #include <sys/param.h>
39 1.1 mrg #include <sys/systm.h>
40 1.1 mrg #include <sys/mount.h>
41 1.1 mrg #include <sys/time.h>
42 1.1 mrg #include <sys/timex.h>
43 1.1 mrg #include <sys/proc.h>
44 1.1 mrg #include <sys/resourcevar.h>
45 1.1 mrg
46 1.1 mrg #include <compat/netbsd32/netbsd32.h>
47 1.1 mrg #include <compat/netbsd32/netbsd32_syscallargs.h>
48 1.1 mrg #include <compat/netbsd32/netbsd32_conv.h>
49 1.1 mrg
50 1.1 mrg #ifdef NTP
51 1.1 mrg int
52 1.1 mrg netbsd32_ntp_gettime(p, v, retval)
53 1.1 mrg struct proc *p;
54 1.1 mrg void *v;
55 1.1 mrg register_t *retval;
56 1.1 mrg {
57 1.1 mrg struct netbsd32_ntp_gettime_args /* {
58 1.1 mrg syscallarg(netbsd32_ntptimevalp_t) ntvp;
59 1.1 mrg } */ *uap = v;
60 1.1 mrg struct netbsd32_ntptimeval ntv32;
61 1.1 mrg struct timeval atv;
62 1.1 mrg struct ntptimeval ntv;
63 1.1 mrg int error = 0;
64 1.1 mrg int s;
65 1.1 mrg
66 1.1 mrg /* The following are NTP variables */
67 1.1 mrg extern long time_maxerror;
68 1.1 mrg extern long time_esterror;
69 1.1 mrg extern int time_status;
70 1.1 mrg extern int time_state; /* clock state */
71 1.1 mrg extern int time_status; /* clock status bits */
72 1.1 mrg
73 1.1 mrg if (SCARG(uap, ntvp)) {
74 1.1 mrg s = splclock();
75 1.1 mrg #ifdef EXT_CLOCK
76 1.1 mrg /*
77 1.1 mrg * The microtime() external clock routine returns a
78 1.1 mrg * status code. If less than zero, we declare an error
79 1.1 mrg * in the clock status word and return the kernel
80 1.1 mrg * (software) time variable. While there are other
81 1.1 mrg * places that call microtime(), this is the only place
82 1.1 mrg * that matters from an application point of view.
83 1.1 mrg */
84 1.1 mrg if (microtime(&atv) < 0) {
85 1.1 mrg time_status |= STA_CLOCKERR;
86 1.1 mrg ntv.time = time;
87 1.1 mrg } else
88 1.1 mrg time_status &= ~STA_CLOCKERR;
89 1.1 mrg #else /* EXT_CLOCK */
90 1.1 mrg microtime(&atv);
91 1.1 mrg #endif /* EXT_CLOCK */
92 1.1 mrg ntv.time = atv;
93 1.1 mrg ntv.maxerror = time_maxerror;
94 1.1 mrg ntv.esterror = time_esterror;
95 1.1 mrg (void) splx(s);
96 1.1 mrg
97 1.1 mrg netbsd32_from_timeval(&ntv.time, &ntv32.time);
98 1.1 mrg ntv32.maxerror = (netbsd32_long)ntv.maxerror;
99 1.1 mrg ntv32.esterror = (netbsd32_long)ntv.esterror;
100 1.4 scw error = copyout((caddr_t)&ntv32,
101 1.4 scw (caddr_t)NETBSD32PTR64(SCARG(uap, ntvp)), sizeof(ntv32));
102 1.1 mrg }
103 1.1 mrg if (!error) {
104 1.1 mrg
105 1.1 mrg /*
106 1.1 mrg * Status word error decode. If any of these conditions
107 1.1 mrg * occur, an error is returned, instead of the status
108 1.1 mrg * word. Most applications will care only about the fact
109 1.1 mrg * the system clock may not be trusted, not about the
110 1.1 mrg * details.
111 1.1 mrg *
112 1.1 mrg * Hardware or software error
113 1.1 mrg */
114 1.1 mrg if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
115 1.1 mrg
116 1.1 mrg /*
117 1.1 mrg * PPS signal lost when either time or frequency
118 1.1 mrg * synchronization requested
119 1.1 mrg */
120 1.1 mrg (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
121 1.1 mrg !(time_status & STA_PPSSIGNAL)) ||
122 1.1 mrg
123 1.1 mrg /*
124 1.1 mrg * PPS jitter exceeded when time synchronization
125 1.1 mrg * requested
126 1.1 mrg */
127 1.1 mrg (time_status & STA_PPSTIME &&
128 1.1 mrg time_status & STA_PPSJITTER) ||
129 1.1 mrg
130 1.1 mrg /*
131 1.1 mrg * PPS wander exceeded or calibration error when
132 1.1 mrg * frequency synchronization requested
133 1.1 mrg */
134 1.1 mrg (time_status & STA_PPSFREQ &&
135 1.1 mrg time_status & (STA_PPSWANDER | STA_PPSERROR)))
136 1.1 mrg *retval = TIME_ERROR;
137 1.1 mrg else
138 1.1 mrg *retval = time_state;
139 1.1 mrg }
140 1.1 mrg return (error);
141 1.1 mrg }
142 1.1 mrg
143 1.1 mrg int
144 1.1 mrg netbsd32_ntp_adjtime(p, v, retval)
145 1.1 mrg struct proc *p;
146 1.1 mrg void *v;
147 1.1 mrg register_t *retval;
148 1.1 mrg {
149 1.1 mrg struct netbsd32_ntp_adjtime_args /* {
150 1.1 mrg syscallarg(netbsd32_timexp_t) tp;
151 1.1 mrg } */ *uap = v;
152 1.1 mrg struct netbsd32_timex ntv32;
153 1.1 mrg struct timex ntv;
154 1.1 mrg int error = 0;
155 1.1 mrg int modes;
156 1.1 mrg int s;
157 1.1 mrg extern long time_freq; /* frequency offset (scaled ppm) */
158 1.1 mrg extern long time_maxerror;
159 1.1 mrg extern long time_esterror;
160 1.1 mrg extern int time_state; /* clock state */
161 1.1 mrg extern int time_status; /* clock status bits */
162 1.1 mrg extern long time_constant; /* pll time constant */
163 1.1 mrg extern long time_offset; /* time offset (us) */
164 1.1 mrg extern long time_tolerance; /* frequency tolerance (scaled ppm) */
165 1.1 mrg extern long time_precision; /* clock precision (us) */
166 1.1 mrg
167 1.4 scw if ((error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
168 1.4 scw (caddr_t)&ntv32, sizeof(ntv32))))
169 1.1 mrg return (error);
170 1.1 mrg netbsd32_to_timex(&ntv32, &ntv);
171 1.1 mrg
172 1.1 mrg /*
173 1.1 mrg * Update selected clock variables - only the superuser can
174 1.1 mrg * change anything. Note that there is no error checking here on
175 1.1 mrg * the assumption the superuser should know what it is doing.
176 1.1 mrg */
177 1.1 mrg modes = ntv.modes;
178 1.1 mrg if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
179 1.1 mrg return (error);
180 1.1 mrg
181 1.1 mrg s = splclock();
182 1.1 mrg if (modes & MOD_FREQUENCY)
183 1.1 mrg #ifdef PPS_SYNC
184 1.1 mrg time_freq = ntv.freq - pps_freq;
185 1.1 mrg #else /* PPS_SYNC */
186 1.1 mrg time_freq = ntv.freq;
187 1.1 mrg #endif /* PPS_SYNC */
188 1.1 mrg if (modes & MOD_MAXERROR)
189 1.1 mrg time_maxerror = ntv.maxerror;
190 1.1 mrg if (modes & MOD_ESTERROR)
191 1.1 mrg time_esterror = ntv.esterror;
192 1.1 mrg if (modes & MOD_STATUS) {
193 1.1 mrg time_status &= STA_RONLY;
194 1.1 mrg time_status |= ntv.status & ~STA_RONLY;
195 1.1 mrg }
196 1.1 mrg if (modes & MOD_TIMECONST)
197 1.1 mrg time_constant = ntv.constant;
198 1.1 mrg if (modes & MOD_OFFSET)
199 1.1 mrg hardupdate(ntv.offset);
200 1.1 mrg
201 1.1 mrg /*
202 1.1 mrg * Retrieve all clock variables
203 1.1 mrg */
204 1.1 mrg if (time_offset < 0)
205 1.1 mrg ntv.offset = -(-time_offset >> SHIFT_UPDATE);
206 1.1 mrg else
207 1.1 mrg ntv.offset = time_offset >> SHIFT_UPDATE;
208 1.1 mrg #ifdef PPS_SYNC
209 1.1 mrg ntv.freq = time_freq + pps_freq;
210 1.1 mrg #else /* PPS_SYNC */
211 1.1 mrg ntv.freq = time_freq;
212 1.1 mrg #endif /* PPS_SYNC */
213 1.1 mrg ntv.maxerror = time_maxerror;
214 1.1 mrg ntv.esterror = time_esterror;
215 1.1 mrg ntv.status = time_status;
216 1.1 mrg ntv.constant = time_constant;
217 1.1 mrg ntv.precision = time_precision;
218 1.1 mrg ntv.tolerance = time_tolerance;
219 1.1 mrg #ifdef PPS_SYNC
220 1.1 mrg ntv.shift = pps_shift;
221 1.1 mrg ntv.ppsfreq = pps_freq;
222 1.1 mrg ntv.jitter = pps_jitter >> PPS_AVG;
223 1.1 mrg ntv.stabil = pps_stabil;
224 1.1 mrg ntv.calcnt = pps_calcnt;
225 1.1 mrg ntv.errcnt = pps_errcnt;
226 1.1 mrg ntv.jitcnt = pps_jitcnt;
227 1.1 mrg ntv.stbcnt = pps_stbcnt;
228 1.1 mrg #endif /* PPS_SYNC */
229 1.1 mrg (void)splx(s);
230 1.1 mrg
231 1.1 mrg netbsd32_from_timex(&ntv, &ntv32);
232 1.4 scw error = copyout((caddr_t)&ntv32, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
233 1.1 mrg sizeof(ntv32));
234 1.1 mrg if (!error) {
235 1.1 mrg
236 1.1 mrg /*
237 1.1 mrg * Status word error decode. See comments in
238 1.1 mrg * ntp_gettime() routine.
239 1.1 mrg */
240 1.1 mrg if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
241 1.1 mrg (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
242 1.1 mrg !(time_status & STA_PPSSIGNAL)) ||
243 1.1 mrg (time_status & STA_PPSTIME &&
244 1.1 mrg time_status & STA_PPSJITTER) ||
245 1.1 mrg (time_status & STA_PPSFREQ &&
246 1.1 mrg time_status & (STA_PPSWANDER | STA_PPSERROR)))
247 1.1 mrg *retval = TIME_ERROR;
248 1.1 mrg else
249 1.1 mrg *retval = time_state;
250 1.1 mrg }
251 1.1 mrg return error;
252 1.1 mrg }
253 1.1 mrg #else
254 1.1 mrg int
255 1.1 mrg netbsd32_ntp_gettime(p, v, retval)
256 1.1 mrg struct proc *p;
257 1.1 mrg void *v;
258 1.1 mrg register_t *retval;
259 1.1 mrg {
260 1.1 mrg
261 1.1 mrg return (ENOSYS);
262 1.1 mrg }
263 1.1 mrg
264 1.1 mrg int
265 1.1 mrg netbsd32_ntp_adjtime(p, v, retval)
266 1.1 mrg struct proc *p;
267 1.1 mrg void *v;
268 1.1 mrg register_t *retval;
269 1.1 mrg {
270 1.1 mrg
271 1.1 mrg return (ENOSYS);
272 1.1 mrg }
273 1.1 mrg #endif
274 1.1 mrg
275 1.1 mrg int
276 1.1 mrg netbsd32_setitimer(p, v, retval)
277 1.1 mrg struct proc *p;
278 1.1 mrg void *v;
279 1.1 mrg register_t *retval;
280 1.1 mrg {
281 1.1 mrg struct netbsd32_setitimer_args /* {
282 1.1 mrg syscallarg(int) which;
283 1.1 mrg syscallarg(const netbsd32_itimervalp_t) itv;
284 1.1 mrg syscallarg(netbsd32_itimervalp_t) oitv;
285 1.1 mrg } */ *uap = v;
286 1.1 mrg struct netbsd32_itimerval s32it, *itvp;
287 1.1 mrg int which = SCARG(uap, which);
288 1.1 mrg struct netbsd32_getitimer_args getargs;
289 1.1 mrg struct itimerval aitv;
290 1.1 mrg int s, error;
291 1.1 mrg
292 1.1 mrg if ((u_int)which > ITIMER_PROF)
293 1.1 mrg return (EINVAL);
294 1.4 scw itvp = (struct netbsd32_itimerval *)NETBSD32PTR64(SCARG(uap, itv));
295 1.1 mrg if (itvp && (error = copyin(itvp, &s32it, sizeof(s32it))))
296 1.1 mrg return (error);
297 1.1 mrg netbsd32_to_itimerval(&s32it, &aitv);
298 1.1 mrg if (SCARG(uap, oitv) != NULL) {
299 1.1 mrg SCARG(&getargs, which) = which;
300 1.1 mrg SCARG(&getargs, itv) = SCARG(uap, oitv);
301 1.1 mrg if ((error = netbsd32_getitimer(p, &getargs, retval)) != 0)
302 1.1 mrg return (error);
303 1.1 mrg }
304 1.1 mrg if (itvp == 0)
305 1.1 mrg return (0);
306 1.1 mrg if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
307 1.1 mrg return (EINVAL);
308 1.1 mrg s = splclock();
309 1.1 mrg if (which == ITIMER_REAL) {
310 1.1 mrg callout_stop(&p->p_realit_ch);
311 1.1 mrg if (timerisset(&aitv.it_value)) {
312 1.1 mrg /*
313 1.1 mrg * Don't need to check hzto() return value, here.
314 1.1 mrg * callout_reset() does it for us.
315 1.1 mrg */
316 1.1 mrg timeradd(&aitv.it_value, &time, &aitv.it_value);
317 1.1 mrg callout_reset(&p->p_realit_ch, hzto(&aitv.it_value),
318 1.1 mrg realitexpire, p);
319 1.1 mrg }
320 1.1 mrg p->p_realtimer = aitv;
321 1.1 mrg } else
322 1.1 mrg p->p_stats->p_timer[which] = aitv;
323 1.1 mrg splx(s);
324 1.1 mrg return (0);
325 1.1 mrg }
326 1.1 mrg
327 1.1 mrg int
328 1.1 mrg netbsd32_getitimer(p, v, retval)
329 1.1 mrg struct proc *p;
330 1.1 mrg void *v;
331 1.1 mrg register_t *retval;
332 1.1 mrg {
333 1.1 mrg struct netbsd32_getitimer_args /* {
334 1.1 mrg syscallarg(int) which;
335 1.1 mrg syscallarg(netbsd32_itimervalp_t) itv;
336 1.1 mrg } */ *uap = v;
337 1.1 mrg int which = SCARG(uap, which);
338 1.1 mrg struct netbsd32_itimerval s32it;
339 1.1 mrg struct itimerval aitv;
340 1.1 mrg int s;
341 1.1 mrg
342 1.1 mrg if ((u_int)which > ITIMER_PROF)
343 1.1 mrg return (EINVAL);
344 1.1 mrg s = splclock();
345 1.1 mrg if (which == ITIMER_REAL) {
346 1.1 mrg /*
347 1.1 mrg * Convert from absolute to relative time in .it_value
348 1.1 mrg * part of real time timer. If time for real time timer
349 1.1 mrg * has passed return 0, else return difference between
350 1.1 mrg * current time and time for the timer to go off.
351 1.1 mrg */
352 1.1 mrg aitv = p->p_realtimer;
353 1.1 mrg if (timerisset(&aitv.it_value)) {
354 1.1 mrg if (timercmp(&aitv.it_value, &time, <))
355 1.1 mrg timerclear(&aitv.it_value);
356 1.1 mrg else
357 1.1 mrg timersub(&aitv.it_value, &time, &aitv.it_value);
358 1.1 mrg }
359 1.1 mrg } else
360 1.1 mrg aitv = p->p_stats->p_timer[which];
361 1.1 mrg splx(s);
362 1.1 mrg netbsd32_from_itimerval(&aitv, &s32it);
363 1.4 scw return (copyout(&s32it, (caddr_t)NETBSD32PTR64(SCARG(uap, itv)),
364 1.4 scw sizeof(s32it)));
365 1.1 mrg }
366 1.1 mrg
367 1.1 mrg int
368 1.1 mrg netbsd32_gettimeofday(p, v, retval)
369 1.1 mrg struct proc *p;
370 1.1 mrg void *v;
371 1.1 mrg register_t *retval;
372 1.1 mrg {
373 1.1 mrg struct netbsd32_gettimeofday_args /* {
374 1.1 mrg syscallarg(netbsd32_timevalp_t) tp;
375 1.1 mrg syscallarg(netbsd32_timezonep_t) tzp;
376 1.1 mrg } */ *uap = v;
377 1.1 mrg struct timeval atv;
378 1.1 mrg struct netbsd32_timeval tv32;
379 1.1 mrg int error = 0;
380 1.1 mrg struct netbsd32_timezone tzfake;
381 1.1 mrg
382 1.1 mrg if (SCARG(uap, tp)) {
383 1.1 mrg microtime(&atv);
384 1.1 mrg netbsd32_from_timeval(&atv, &tv32);
385 1.4 scw error = copyout(&tv32, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
386 1.4 scw sizeof(tv32));
387 1.1 mrg if (error)
388 1.1 mrg return (error);
389 1.1 mrg }
390 1.1 mrg if (SCARG(uap, tzp)) {
391 1.1 mrg /*
392 1.1 mrg * NetBSD has no kernel notion of time zone, so we just
393 1.1 mrg * fake up a timezone struct and return it if demanded.
394 1.1 mrg */
395 1.1 mrg tzfake.tz_minuteswest = 0;
396 1.1 mrg tzfake.tz_dsttime = 0;
397 1.4 scw error = copyout(&tzfake,
398 1.4 scw (caddr_t)NETBSD32PTR64(SCARG(uap, tzp)), sizeof(tzfake));
399 1.1 mrg }
400 1.1 mrg return (error);
401 1.1 mrg }
402 1.1 mrg
403 1.1 mrg int
404 1.1 mrg netbsd32_settimeofday(p, v, retval)
405 1.1 mrg struct proc *p;
406 1.1 mrg void *v;
407 1.1 mrg register_t *retval;
408 1.1 mrg {
409 1.1 mrg struct netbsd32_settimeofday_args /* {
410 1.1 mrg syscallarg(const netbsd32_timevalp_t) tv;
411 1.1 mrg syscallarg(const netbsd32_timezonep_t) tzp;
412 1.1 mrg } */ *uap = v;
413 1.1 mrg struct netbsd32_timeval atv32;
414 1.1 mrg struct timeval atv;
415 1.1 mrg int error;
416 1.1 mrg
417 1.1 mrg if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
418 1.1 mrg return (error);
419 1.1 mrg /* Verify all parameters before changing time. */
420 1.4 scw if (SCARG(uap, tv) &&
421 1.4 scw (error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, tv)), &atv32,
422 1.4 scw sizeof(atv32))))
423 1.1 mrg return (error);
424 1.1 mrg netbsd32_to_timeval(&atv32, &atv);
425 1.1 mrg if (SCARG(uap, tv))
426 1.1 mrg if ((error = settime(&atv)))
427 1.1 mrg return (error);
428 1.1 mrg /* don't bother copying the tz in, we don't use it. */
429 1.1 mrg /*
430 1.1 mrg * NetBSD has no kernel notion of time zone, and only an
431 1.1 mrg * obsolete program would try to set it, so we log a warning.
432 1.1 mrg */
433 1.1 mrg if (SCARG(uap, tzp))
434 1.1 mrg printf("pid %d attempted to set the "
435 1.1 mrg "(obsolete) kernel time zone\n", p->p_pid);
436 1.1 mrg return (0);
437 1.1 mrg }
438 1.1 mrg
439 1.1 mrg int
440 1.1 mrg netbsd32_adjtime(p, v, retval)
441 1.1 mrg struct proc *p;
442 1.1 mrg void *v;
443 1.1 mrg register_t *retval;
444 1.1 mrg {
445 1.1 mrg struct netbsd32_adjtime_args /* {
446 1.1 mrg syscallarg(const netbsd32_timevalp_t) delta;
447 1.1 mrg syscallarg(netbsd32_timevalp_t) olddelta;
448 1.1 mrg } */ *uap = v;
449 1.1 mrg struct netbsd32_timeval atv;
450 1.1 mrg int32_t ndelta, ntickdelta, odelta;
451 1.1 mrg int s, error;
452 1.1 mrg extern long bigadj, timedelta;
453 1.1 mrg extern int tickdelta;
454 1.1 mrg
455 1.1 mrg if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
456 1.1 mrg return (error);
457 1.1 mrg
458 1.4 scw error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, delta)), &atv,
459 1.4 scw sizeof(struct timeval));
460 1.1 mrg if (error)
461 1.1 mrg return (error);
462 1.1 mrg /*
463 1.1 mrg * Compute the total correction and the rate at which to apply it.
464 1.1 mrg * Round the adjustment down to a whole multiple of the per-tick
465 1.1 mrg * delta, so that after some number of incremental changes in
466 1.1 mrg * hardclock(), tickdelta will become zero, lest the correction
467 1.1 mrg * overshoot and start taking us away from the desired final time.
468 1.1 mrg */
469 1.1 mrg ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
470 1.1 mrg if (ndelta > bigadj)
471 1.1 mrg ntickdelta = 10 * tickadj;
472 1.1 mrg else
473 1.1 mrg ntickdelta = tickadj;
474 1.1 mrg if (ndelta % ntickdelta)
475 1.1 mrg ndelta = ndelta / ntickdelta * ntickdelta;
476 1.1 mrg
477 1.1 mrg /*
478 1.1 mrg * To make hardclock()'s job easier, make the per-tick delta negative
479 1.1 mrg * if we want time to run slower; then hardclock can simply compute
480 1.1 mrg * tick + tickdelta, and subtract tickdelta from timedelta.
481 1.1 mrg */
482 1.1 mrg if (ndelta < 0)
483 1.1 mrg ntickdelta = -ntickdelta;
484 1.1 mrg s = splclock();
485 1.1 mrg odelta = timedelta;
486 1.1 mrg timedelta = ndelta;
487 1.1 mrg tickdelta = ntickdelta;
488 1.1 mrg splx(s);
489 1.1 mrg
490 1.1 mrg if (SCARG(uap, olddelta)) {
491 1.1 mrg atv.tv_sec = odelta / 1000000;
492 1.1 mrg atv.tv_usec = odelta % 1000000;
493 1.4 scw (void) copyout(&atv,
494 1.4 scw (caddr_t)NETBSD32PTR64(SCARG(uap, olddelta)), sizeof(atv));
495 1.1 mrg }
496 1.1 mrg return (0);
497 1.1 mrg }
498 1.1 mrg
499 1.1 mrg int
500 1.1 mrg netbsd32_clock_gettime(p, v, retval)
501 1.1 mrg struct proc *p;
502 1.1 mrg void *v;
503 1.1 mrg register_t *retval;
504 1.1 mrg {
505 1.1 mrg struct netbsd32_clock_gettime_args /* {
506 1.1 mrg syscallarg(netbsd32_clockid_t) clock_id;
507 1.1 mrg syscallarg(netbsd32_timespecp_t) tp;
508 1.1 mrg } */ *uap = v;
509 1.1 mrg clockid_t clock_id;
510 1.1 mrg struct timeval atv;
511 1.1 mrg struct timespec ats;
512 1.1 mrg struct netbsd32_timespec ts32;
513 1.1 mrg
514 1.1 mrg clock_id = SCARG(uap, clock_id);
515 1.1 mrg if (clock_id != CLOCK_REALTIME)
516 1.1 mrg return (EINVAL);
517 1.1 mrg
518 1.1 mrg microtime(&atv);
519 1.1 mrg TIMEVAL_TO_TIMESPEC(&atv,&ats);
520 1.1 mrg netbsd32_from_timespec(&ats, &ts32);
521 1.1 mrg
522 1.4 scw return copyout(&ts32, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
523 1.4 scw sizeof(ts32));
524 1.1 mrg }
525 1.1 mrg
526 1.1 mrg int
527 1.1 mrg netbsd32_clock_settime(p, v, retval)
528 1.1 mrg struct proc *p;
529 1.1 mrg void *v;
530 1.1 mrg register_t *retval;
531 1.1 mrg {
532 1.1 mrg struct netbsd32_clock_settime_args /* {
533 1.1 mrg syscallarg(netbsd32_clockid_t) clock_id;
534 1.1 mrg syscallarg(const netbsd32_timespecp_t) tp;
535 1.1 mrg } */ *uap = v;
536 1.1 mrg struct netbsd32_timespec ts32;
537 1.1 mrg clockid_t clock_id;
538 1.1 mrg struct timeval atv;
539 1.1 mrg struct timespec ats;
540 1.1 mrg int error;
541 1.1 mrg
542 1.1 mrg if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
543 1.1 mrg return (error);
544 1.1 mrg
545 1.1 mrg clock_id = SCARG(uap, clock_id);
546 1.1 mrg if (clock_id != CLOCK_REALTIME)
547 1.1 mrg return (EINVAL);
548 1.1 mrg
549 1.4 scw if ((error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, tp)), &ts32,
550 1.4 scw sizeof(ts32))) != 0)
551 1.1 mrg return (error);
552 1.1 mrg
553 1.1 mrg netbsd32_to_timespec(&ts32, &ats);
554 1.1 mrg TIMESPEC_TO_TIMEVAL(&atv,&ats);
555 1.1 mrg if ((error = settime(&atv)))
556 1.1 mrg return (error);
557 1.1 mrg
558 1.1 mrg return 0;
559 1.1 mrg }
560 1.1 mrg
561 1.1 mrg int
562 1.1 mrg netbsd32_clock_getres(p, v, retval)
563 1.1 mrg struct proc *p;
564 1.1 mrg void *v;
565 1.1 mrg register_t *retval;
566 1.1 mrg {
567 1.1 mrg struct netbsd32_clock_getres_args /* {
568 1.1 mrg syscallarg(netbsd32_clockid_t) clock_id;
569 1.1 mrg syscallarg(netbsd32_timespecp_t) tp;
570 1.1 mrg } */ *uap = v;
571 1.1 mrg struct netbsd32_timespec ts32;
572 1.1 mrg clockid_t clock_id;
573 1.1 mrg struct timespec ts;
574 1.1 mrg int error = 0;
575 1.1 mrg
576 1.1 mrg clock_id = SCARG(uap, clock_id);
577 1.1 mrg if (clock_id != CLOCK_REALTIME)
578 1.1 mrg return (EINVAL);
579 1.1 mrg
580 1.1 mrg if (SCARG(uap, tp)) {
581 1.1 mrg ts.tv_sec = 0;
582 1.1 mrg ts.tv_nsec = 1000000000 / hz;
583 1.1 mrg
584 1.1 mrg netbsd32_from_timespec(&ts, &ts32);
585 1.4 scw error = copyout(&ts, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
586 1.4 scw sizeof(ts));
587 1.1 mrg }
588 1.1 mrg
589 1.1 mrg return error;
590 1.1 mrg }
591 1.1 mrg
592 1.1 mrg int
593 1.1 mrg netbsd32_nanosleep(p, v, retval)
594 1.1 mrg struct proc *p;
595 1.1 mrg void *v;
596 1.1 mrg register_t *retval;
597 1.1 mrg {
598 1.1 mrg struct netbsd32_nanosleep_args /* {
599 1.1 mrg syscallarg(const netbsd32_timespecp_t) rqtp;
600 1.1 mrg syscallarg(netbsd32_timespecp_t) rmtp;
601 1.1 mrg } */ *uap = v;
602 1.1 mrg static int nanowait;
603 1.1 mrg struct netbsd32_timespec ts32;
604 1.1 mrg struct timespec rqt;
605 1.1 mrg struct timespec rmt;
606 1.1 mrg struct timeval atv, utv;
607 1.1 mrg int error, s, timo;
608 1.1 mrg
609 1.4 scw error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, rqtp)), (caddr_t)&ts32,
610 1.4 scw sizeof(ts32));
611 1.1 mrg if (error)
612 1.1 mrg return (error);
613 1.1 mrg
614 1.1 mrg netbsd32_to_timespec(&ts32, &rqt);
615 1.1 mrg TIMESPEC_TO_TIMEVAL(&atv,&rqt)
616 1.1 mrg if (itimerfix(&atv))
617 1.1 mrg return (EINVAL);
618 1.1 mrg
619 1.1 mrg s = splclock();
620 1.1 mrg timeradd(&atv,&time,&atv);
621 1.1 mrg timo = hzto(&atv);
622 1.1 mrg /*
623 1.1 mrg * Avoid inadvertantly sleeping forever
624 1.1 mrg */
625 1.1 mrg if (timo == 0)
626 1.1 mrg timo = 1;
627 1.1 mrg splx(s);
628 1.1 mrg
629 1.1 mrg error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
630 1.1 mrg if (error == ERESTART)
631 1.1 mrg error = EINTR;
632 1.1 mrg if (error == EWOULDBLOCK)
633 1.1 mrg error = 0;
634 1.1 mrg
635 1.1 mrg if (SCARG(uap, rmtp)) {
636 1.1 mrg int error;
637 1.1 mrg
638 1.1 mrg s = splclock();
639 1.1 mrg utv = time;
640 1.1 mrg splx(s);
641 1.1 mrg
642 1.1 mrg timersub(&atv, &utv, &utv);
643 1.1 mrg if (utv.tv_sec < 0)
644 1.1 mrg timerclear(&utv);
645 1.1 mrg
646 1.1 mrg TIMEVAL_TO_TIMESPEC(&utv,&rmt);
647 1.1 mrg netbsd32_from_timespec(&rmt, &ts32);
648 1.4 scw error = copyout((caddr_t)&ts32,
649 1.4 scw (caddr_t)NETBSD32PTR64(SCARG(uap,rmtp)), sizeof(ts32));
650 1.1 mrg if (error)
651 1.1 mrg return (error);
652 1.1 mrg }
653 1.1 mrg
654 1.1 mrg return error;
655 1.1 mrg }
656