Home | History | Annotate | Line # | Download | only in netbsd32
netbsd32_time.c revision 1.9
      1  1.9  christos /*	$NetBSD: netbsd32_time.c,v 1.9 2005/05/31 00:41:09 christos Exp $	*/
      2  1.1       mrg 
      3  1.1       mrg /*
      4  1.1       mrg  * Copyright (c) 1998, 2001 Matthew R. Green
      5  1.1       mrg  * All rights reserved.
      6  1.1       mrg  *
      7  1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8  1.1       mrg  * modification, are permitted provided that the following conditions
      9  1.1       mrg  * are met:
     10  1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11  1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12  1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14  1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15  1.1       mrg  * 3. The name of the author may not be used to endorse or promote products
     16  1.1       mrg  *    derived from this software without specific prior written permission.
     17  1.1       mrg  *
     18  1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  1.1       mrg  * SUCH DAMAGE.
     29  1.1       mrg  */
     30  1.3     lukem 
     31  1.3     lukem #include <sys/cdefs.h>
     32  1.9  christos __KERNEL_RCSID(0, "$NetBSD: netbsd32_time.c,v 1.9 2005/05/31 00:41:09 christos Exp $");
     33  1.1       mrg 
     34  1.2       mrg #if defined(_KERNEL_OPT)
     35  1.1       mrg #include "opt_ntp.h"
     36  1.1       mrg #endif
     37  1.1       mrg 
     38  1.1       mrg #include <sys/param.h>
     39  1.1       mrg #include <sys/systm.h>
     40  1.1       mrg #include <sys/mount.h>
     41  1.1       mrg #include <sys/time.h>
     42  1.1       mrg #include <sys/timex.h>
     43  1.1       mrg #include <sys/proc.h>
     44  1.5   thorpej #include <sys/pool.h>
     45  1.1       mrg #include <sys/resourcevar.h>
     46  1.1       mrg 
     47  1.1       mrg #include <compat/netbsd32/netbsd32.h>
     48  1.1       mrg #include <compat/netbsd32/netbsd32_syscallargs.h>
     49  1.1       mrg #include <compat/netbsd32/netbsd32_conv.h>
     50  1.1       mrg 
     51  1.1       mrg #ifdef NTP
     52  1.1       mrg int
     53  1.5   thorpej netbsd32_ntp_gettime(l, v, retval)
     54  1.5   thorpej 	struct lwp *l;
     55  1.1       mrg 	void *v;
     56  1.1       mrg 	register_t *retval;
     57  1.1       mrg {
     58  1.1       mrg 	struct netbsd32_ntp_gettime_args /* {
     59  1.1       mrg 		syscallarg(netbsd32_ntptimevalp_t) ntvp;
     60  1.1       mrg 	} */ *uap = v;
     61  1.1       mrg 	struct netbsd32_ntptimeval ntv32;
     62  1.1       mrg 	struct timeval atv;
     63  1.1       mrg 	struct ntptimeval ntv;
     64  1.1       mrg 	int error = 0;
     65  1.1       mrg 	int s;
     66  1.1       mrg 
     67  1.1       mrg 	/* The following are NTP variables */
     68  1.1       mrg 	extern long time_maxerror;
     69  1.1       mrg 	extern long time_esterror;
     70  1.1       mrg 	extern int time_status;
     71  1.1       mrg 	extern int time_state;	/* clock state */
     72  1.1       mrg 	extern int time_status;	/* clock status bits */
     73  1.1       mrg 
     74  1.1       mrg 	if (SCARG(uap, ntvp)) {
     75  1.1       mrg 		s = splclock();
     76  1.1       mrg #ifdef EXT_CLOCK
     77  1.1       mrg 		/*
     78  1.1       mrg 		 * The microtime() external clock routine returns a
     79  1.1       mrg 		 * status code. If less than zero, we declare an error
     80  1.1       mrg 		 * in the clock status word and return the kernel
     81  1.1       mrg 		 * (software) time variable. While there are other
     82  1.1       mrg 		 * places that call microtime(), this is the only place
     83  1.1       mrg 		 * that matters from an application point of view.
     84  1.1       mrg 		 */
     85  1.1       mrg 		if (microtime(&atv) < 0) {
     86  1.1       mrg 			time_status |= STA_CLOCKERR;
     87  1.1       mrg 			ntv.time = time;
     88  1.1       mrg 		} else
     89  1.1       mrg 			time_status &= ~STA_CLOCKERR;
     90  1.1       mrg #else /* EXT_CLOCK */
     91  1.1       mrg 		microtime(&atv);
     92  1.1       mrg #endif /* EXT_CLOCK */
     93  1.1       mrg 		ntv.time = atv;
     94  1.1       mrg 		ntv.maxerror = time_maxerror;
     95  1.1       mrg 		ntv.esterror = time_esterror;
     96  1.1       mrg 		(void) splx(s);
     97  1.1       mrg 
     98  1.1       mrg 		netbsd32_from_timeval(&ntv.time, &ntv32.time);
     99  1.1       mrg 		ntv32.maxerror = (netbsd32_long)ntv.maxerror;
    100  1.1       mrg 		ntv32.esterror = (netbsd32_long)ntv.esterror;
    101  1.4       scw 		error = copyout((caddr_t)&ntv32,
    102  1.4       scw 		    (caddr_t)NETBSD32PTR64(SCARG(uap, ntvp)), sizeof(ntv32));
    103  1.1       mrg 	}
    104  1.1       mrg 	if (!error) {
    105  1.1       mrg 
    106  1.1       mrg 		/*
    107  1.1       mrg 		 * Status word error decode. If any of these conditions
    108  1.1       mrg 		 * occur, an error is returned, instead of the status
    109  1.1       mrg 		 * word. Most applications will care only about the fact
    110  1.1       mrg 		 * the system clock may not be trusted, not about the
    111  1.1       mrg 		 * details.
    112  1.1       mrg 		 *
    113  1.1       mrg 		 * Hardware or software error
    114  1.1       mrg 		 */
    115  1.1       mrg 		if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    116  1.1       mrg 
    117  1.1       mrg 		/*
    118  1.1       mrg 		 * PPS signal lost when either time or frequency
    119  1.1       mrg 		 * synchronization requested
    120  1.1       mrg 		 */
    121  1.1       mrg 		    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    122  1.1       mrg 		    !(time_status & STA_PPSSIGNAL)) ||
    123  1.1       mrg 
    124  1.1       mrg 		/*
    125  1.1       mrg 		 * PPS jitter exceeded when time synchronization
    126  1.1       mrg 		 * requested
    127  1.1       mrg 		 */
    128  1.1       mrg 		    (time_status & STA_PPSTIME &&
    129  1.1       mrg 		    time_status & STA_PPSJITTER) ||
    130  1.1       mrg 
    131  1.1       mrg 		/*
    132  1.1       mrg 		 * PPS wander exceeded or calibration error when
    133  1.1       mrg 		 * frequency synchronization requested
    134  1.1       mrg 		 */
    135  1.1       mrg 		    (time_status & STA_PPSFREQ &&
    136  1.1       mrg 		    time_status & (STA_PPSWANDER | STA_PPSERROR)))
    137  1.1       mrg 			*retval = TIME_ERROR;
    138  1.1       mrg 		else
    139  1.1       mrg 			*retval = time_state;
    140  1.1       mrg 	}
    141  1.1       mrg 	return (error);
    142  1.1       mrg }
    143  1.1       mrg 
    144  1.1       mrg int
    145  1.5   thorpej netbsd32_ntp_adjtime(l, v, retval)
    146  1.5   thorpej 	struct lwp *l;
    147  1.1       mrg 	void *v;
    148  1.1       mrg 	register_t *retval;
    149  1.1       mrg {
    150  1.1       mrg 	struct netbsd32_ntp_adjtime_args /* {
    151  1.1       mrg 		syscallarg(netbsd32_timexp_t) tp;
    152  1.1       mrg 	} */ *uap = v;
    153  1.1       mrg 	struct netbsd32_timex ntv32;
    154  1.1       mrg 	struct timex ntv;
    155  1.1       mrg 	int error = 0;
    156  1.1       mrg 	int modes;
    157  1.1       mrg 	int s;
    158  1.5   thorpej 	struct proc *p = l->l_proc;
    159  1.1       mrg 	extern long time_freq;		/* frequency offset (scaled ppm) */
    160  1.1       mrg 	extern long time_maxerror;
    161  1.1       mrg 	extern long time_esterror;
    162  1.1       mrg 	extern int time_state;	/* clock state */
    163  1.1       mrg 	extern int time_status;	/* clock status bits */
    164  1.1       mrg 	extern long time_constant;		/* pll time constant */
    165  1.1       mrg 	extern long time_offset;		/* time offset (us) */
    166  1.1       mrg 	extern long time_tolerance;	/* frequency tolerance (scaled ppm) */
    167  1.1       mrg 	extern long time_precision;	/* clock precision (us) */
    168  1.1       mrg 
    169  1.4       scw 	if ((error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
    170  1.4       scw 	    (caddr_t)&ntv32, sizeof(ntv32))))
    171  1.1       mrg 		return (error);
    172  1.1       mrg 	netbsd32_to_timex(&ntv32, &ntv);
    173  1.1       mrg 
    174  1.1       mrg 	/*
    175  1.1       mrg 	 * Update selected clock variables - only the superuser can
    176  1.1       mrg 	 * change anything. Note that there is no error checking here on
    177  1.1       mrg 	 * the assumption the superuser should know what it is doing.
    178  1.1       mrg 	 */
    179  1.1       mrg 	modes = ntv.modes;
    180  1.1       mrg 	if (modes != 0 && (error = suser(p->p_ucred, &p->p_acflag)))
    181  1.1       mrg 		return (error);
    182  1.1       mrg 
    183  1.1       mrg 	s = splclock();
    184  1.1       mrg 	if (modes & MOD_FREQUENCY)
    185  1.1       mrg #ifdef PPS_SYNC
    186  1.1       mrg 		time_freq = ntv.freq - pps_freq;
    187  1.1       mrg #else /* PPS_SYNC */
    188  1.1       mrg 		time_freq = ntv.freq;
    189  1.1       mrg #endif /* PPS_SYNC */
    190  1.1       mrg 	if (modes & MOD_MAXERROR)
    191  1.1       mrg 		time_maxerror = ntv.maxerror;
    192  1.1       mrg 	if (modes & MOD_ESTERROR)
    193  1.1       mrg 		time_esterror = ntv.esterror;
    194  1.1       mrg 	if (modes & MOD_STATUS) {
    195  1.1       mrg 		time_status &= STA_RONLY;
    196  1.1       mrg 		time_status |= ntv.status & ~STA_RONLY;
    197  1.1       mrg 	}
    198  1.1       mrg 	if (modes & MOD_TIMECONST)
    199  1.1       mrg 		time_constant = ntv.constant;
    200  1.1       mrg 	if (modes & MOD_OFFSET)
    201  1.1       mrg 		hardupdate(ntv.offset);
    202  1.1       mrg 
    203  1.1       mrg 	/*
    204  1.1       mrg 	 * Retrieve all clock variables
    205  1.1       mrg 	 */
    206  1.1       mrg 	if (time_offset < 0)
    207  1.1       mrg 		ntv.offset = -(-time_offset >> SHIFT_UPDATE);
    208  1.1       mrg 	else
    209  1.1       mrg 		ntv.offset = time_offset >> SHIFT_UPDATE;
    210  1.1       mrg #ifdef PPS_SYNC
    211  1.1       mrg 	ntv.freq = time_freq + pps_freq;
    212  1.1       mrg #else /* PPS_SYNC */
    213  1.1       mrg 	ntv.freq = time_freq;
    214  1.1       mrg #endif /* PPS_SYNC */
    215  1.1       mrg 	ntv.maxerror = time_maxerror;
    216  1.1       mrg 	ntv.esterror = time_esterror;
    217  1.1       mrg 	ntv.status = time_status;
    218  1.1       mrg 	ntv.constant = time_constant;
    219  1.1       mrg 	ntv.precision = time_precision;
    220  1.1       mrg 	ntv.tolerance = time_tolerance;
    221  1.1       mrg #ifdef PPS_SYNC
    222  1.1       mrg 	ntv.shift = pps_shift;
    223  1.1       mrg 	ntv.ppsfreq = pps_freq;
    224  1.1       mrg 	ntv.jitter = pps_jitter >> PPS_AVG;
    225  1.1       mrg 	ntv.stabil = pps_stabil;
    226  1.1       mrg 	ntv.calcnt = pps_calcnt;
    227  1.1       mrg 	ntv.errcnt = pps_errcnt;
    228  1.1       mrg 	ntv.jitcnt = pps_jitcnt;
    229  1.1       mrg 	ntv.stbcnt = pps_stbcnt;
    230  1.1       mrg #endif /* PPS_SYNC */
    231  1.1       mrg 	(void)splx(s);
    232  1.1       mrg 
    233  1.1       mrg 	netbsd32_from_timex(&ntv, &ntv32);
    234  1.4       scw 	error = copyout((caddr_t)&ntv32, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
    235  1.1       mrg 	    sizeof(ntv32));
    236  1.1       mrg 	if (!error) {
    237  1.1       mrg 
    238  1.1       mrg 		/*
    239  1.1       mrg 		 * Status word error decode. See comments in
    240  1.1       mrg 		 * ntp_gettime() routine.
    241  1.1       mrg 		 */
    242  1.1       mrg 		if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
    243  1.1       mrg 		    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
    244  1.1       mrg 		    !(time_status & STA_PPSSIGNAL)) ||
    245  1.1       mrg 		    (time_status & STA_PPSTIME &&
    246  1.1       mrg 		    time_status & STA_PPSJITTER) ||
    247  1.1       mrg 		    (time_status & STA_PPSFREQ &&
    248  1.1       mrg 		    time_status & (STA_PPSWANDER | STA_PPSERROR)))
    249  1.1       mrg 			*retval = TIME_ERROR;
    250  1.1       mrg 		else
    251  1.1       mrg 			*retval = time_state;
    252  1.1       mrg 	}
    253  1.1       mrg 	return error;
    254  1.1       mrg }
    255  1.1       mrg #else
    256  1.1       mrg int
    257  1.5   thorpej netbsd32_ntp_gettime(l, v, retval)
    258  1.5   thorpej 	struct lwp *l;
    259  1.1       mrg 	void *v;
    260  1.1       mrg 	register_t *retval;
    261  1.1       mrg {
    262  1.1       mrg 
    263  1.1       mrg 	return (ENOSYS);
    264  1.1       mrg }
    265  1.1       mrg 
    266  1.1       mrg int
    267  1.5   thorpej netbsd32_ntp_adjtime(l, v, retval)
    268  1.5   thorpej 	struct lwp *l;
    269  1.1       mrg 	void *v;
    270  1.1       mrg 	register_t *retval;
    271  1.1       mrg {
    272  1.1       mrg 
    273  1.1       mrg 	return (ENOSYS);
    274  1.1       mrg }
    275  1.1       mrg #endif
    276  1.1       mrg 
    277  1.1       mrg int
    278  1.5   thorpej netbsd32_setitimer(l, v, retval)
    279  1.5   thorpej 	struct lwp *l;
    280  1.1       mrg 	void *v;
    281  1.1       mrg 	register_t *retval;
    282  1.1       mrg {
    283  1.1       mrg 	struct netbsd32_setitimer_args /* {
    284  1.1       mrg 		syscallarg(int) which;
    285  1.1       mrg 		syscallarg(const netbsd32_itimervalp_t) itv;
    286  1.1       mrg 		syscallarg(netbsd32_itimervalp_t) oitv;
    287  1.1       mrg 	} */ *uap = v;
    288  1.5   thorpej 	struct proc *p = l->l_proc;
    289  1.1       mrg 	struct netbsd32_itimerval s32it, *itvp;
    290  1.1       mrg 	int which = SCARG(uap, which);
    291  1.1       mrg 	struct netbsd32_getitimer_args getargs;
    292  1.1       mrg 	struct itimerval aitv;
    293  1.1       mrg 	int s, error;
    294  1.5   thorpej 	struct ptimer *pt;
    295  1.1       mrg 
    296  1.1       mrg 	if ((u_int)which > ITIMER_PROF)
    297  1.1       mrg 		return (EINVAL);
    298  1.4       scw 	itvp = (struct netbsd32_itimerval *)NETBSD32PTR64(SCARG(uap, itv));
    299  1.1       mrg 	if (itvp && (error = copyin(itvp, &s32it, sizeof(s32it))))
    300  1.1       mrg 		return (error);
    301  1.1       mrg 	netbsd32_to_itimerval(&s32it, &aitv);
    302  1.6      fvdl 	if (SCARG(uap, oitv) != 0) {
    303  1.1       mrg 		SCARG(&getargs, which) = which;
    304  1.1       mrg 		SCARG(&getargs, itv) = SCARG(uap, oitv);
    305  1.5   thorpej 		if ((error = netbsd32_getitimer(l, &getargs, retval)) != 0)
    306  1.1       mrg 			return (error);
    307  1.1       mrg 	}
    308  1.1       mrg 	if (itvp == 0)
    309  1.1       mrg 		return (0);
    310  1.1       mrg 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
    311  1.1       mrg 		return (EINVAL);
    312  1.5   thorpej 
    313  1.5   thorpej /* XXX there should be a way to share code with kern_time */
    314  1.5   thorpej /* XXX just copied some from there */
    315  1.8     perry 	/*
    316  1.5   thorpej 	 * Don't bother allocating data structures if the process just
    317  1.5   thorpej 	 * wants to clear the timer.
    318  1.5   thorpej 	 */
    319  1.8     perry 	if (!timerisset(&aitv.it_value) &&
    320  1.5   thorpej 	    ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)))
    321  1.5   thorpej 		return (0);
    322  1.5   thorpej 
    323  1.5   thorpej 	if (p->p_timers == NULL)
    324  1.5   thorpej 		timers_alloc(p);
    325  1.5   thorpej 	if (p->p_timers->pts_timers[which] == NULL) {
    326  1.5   thorpej 		pt = pool_get(&ptimer_pool, PR_WAITOK);
    327  1.5   thorpej 		callout_init(&pt->pt_ch);
    328  1.5   thorpej 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
    329  1.5   thorpej 		pt->pt_overruns = 0;
    330  1.5   thorpej 		pt->pt_proc = p;
    331  1.5   thorpej 		pt->pt_type = which;
    332  1.5   thorpej 		switch (which) {
    333  1.5   thorpej 		case ITIMER_REAL:
    334  1.5   thorpej 			pt->pt_ev.sigev_signo = SIGALRM;
    335  1.5   thorpej 			break;
    336  1.5   thorpej 		case ITIMER_VIRTUAL:
    337  1.5   thorpej 			pt->pt_ev.sigev_signo = SIGVTALRM;
    338  1.5   thorpej 			break;
    339  1.5   thorpej 		case ITIMER_PROF:
    340  1.5   thorpej 			pt->pt_ev.sigev_signo = SIGPROF;
    341  1.5   thorpej 			break;
    342  1.5   thorpej 		}
    343  1.5   thorpej 	} else
    344  1.5   thorpej 		pt = p->p_timers->pts_timers[which];
    345  1.5   thorpej 
    346  1.5   thorpej 	pt->pt_time = aitv;
    347  1.5   thorpej 	p->p_timers->pts_timers[which] = pt;
    348  1.1       mrg 	if (which == ITIMER_REAL) {
    349  1.5   thorpej 		s = splclock();
    350  1.5   thorpej 		callout_stop(&pt->pt_ch);
    351  1.5   thorpej 		if (timerisset(&pt->pt_time.it_value)) {
    352  1.8     perry 			timeradd(&pt->pt_time.it_value, &time,
    353  1.5   thorpej 			    &pt->pt_time.it_value);
    354  1.1       mrg 			/*
    355  1.1       mrg 			 * Don't need to check hzto() return value, here.
    356  1.1       mrg 			 * callout_reset() does it for us.
    357  1.1       mrg 			 */
    358  1.8     perry 			callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
    359  1.5   thorpej 			    realtimerexpire, pt);
    360  1.1       mrg 		}
    361  1.5   thorpej 		splx(s);
    362  1.5   thorpej 	}
    363  1.1       mrg 	return (0);
    364  1.1       mrg }
    365  1.1       mrg 
    366  1.1       mrg int
    367  1.5   thorpej netbsd32_getitimer(l, v, retval)
    368  1.5   thorpej 	struct lwp *l;
    369  1.1       mrg 	void *v;
    370  1.1       mrg 	register_t *retval;
    371  1.1       mrg {
    372  1.1       mrg 	struct netbsd32_getitimer_args /* {
    373  1.1       mrg 		syscallarg(int) which;
    374  1.1       mrg 		syscallarg(netbsd32_itimervalp_t) itv;
    375  1.1       mrg 	} */ *uap = v;
    376  1.5   thorpej 	struct proc *p = l->l_proc;
    377  1.1       mrg 	int which = SCARG(uap, which);
    378  1.1       mrg 	struct netbsd32_itimerval s32it;
    379  1.1       mrg 	struct itimerval aitv;
    380  1.1       mrg 	int s;
    381  1.1       mrg 
    382  1.1       mrg 	if ((u_int)which > ITIMER_PROF)
    383  1.1       mrg 		return (EINVAL);
    384  1.5   thorpej 
    385  1.5   thorpej /* XXX same as setitimer */
    386  1.5   thorpej 	if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)) {
    387  1.5   thorpej 		timerclear(&aitv.it_value);
    388  1.5   thorpej 		timerclear(&aitv.it_interval);
    389  1.5   thorpej 	} else {
    390  1.5   thorpej 		s = splclock();
    391  1.5   thorpej 		if (which == ITIMER_REAL) {
    392  1.5   thorpej 			/*
    393  1.5   thorpej 			 * Convert from absolute to relative time in
    394  1.5   thorpej 			 * .it_value part of real time timer.  If time
    395  1.5   thorpej 			 * for real time timer has passed return 0,
    396  1.5   thorpej 			 * else return difference between current time
    397  1.8     perry 			 * and time for the timer to go off.
    398  1.5   thorpej 			 */
    399  1.5   thorpej 			aitv = p->p_timers->pts_timers[ITIMER_REAL]->pt_time;
    400  1.5   thorpej 			if (timerisset(&aitv.it_value)) {
    401  1.5   thorpej 				if (timercmp(&aitv.it_value, &time, <))
    402  1.5   thorpej 					timerclear(&aitv.it_value);
    403  1.5   thorpej 				else
    404  1.5   thorpej 					timersub(&aitv.it_value, &time, &aitv.it_value);
    405  1.5   thorpej 			}
    406  1.5   thorpej 		} else
    407  1.5   thorpej 			aitv = p->p_timers->pts_timers[which]->pt_time;
    408  1.5   thorpej 		splx(s);
    409  1.5   thorpej 	}
    410  1.1       mrg 	netbsd32_from_itimerval(&aitv, &s32it);
    411  1.4       scw 	return (copyout(&s32it, (caddr_t)NETBSD32PTR64(SCARG(uap, itv)),
    412  1.4       scw 	    sizeof(s32it)));
    413  1.1       mrg }
    414  1.1       mrg 
    415  1.1       mrg int
    416  1.5   thorpej netbsd32_gettimeofday(l, v, retval)
    417  1.5   thorpej 	struct lwp *l;
    418  1.1       mrg 	void *v;
    419  1.1       mrg 	register_t *retval;
    420  1.1       mrg {
    421  1.1       mrg 	struct netbsd32_gettimeofday_args /* {
    422  1.1       mrg 		syscallarg(netbsd32_timevalp_t) tp;
    423  1.1       mrg 		syscallarg(netbsd32_timezonep_t) tzp;
    424  1.1       mrg 	} */ *uap = v;
    425  1.1       mrg 	struct timeval atv;
    426  1.1       mrg 	struct netbsd32_timeval tv32;
    427  1.1       mrg 	int error = 0;
    428  1.1       mrg 	struct netbsd32_timezone tzfake;
    429  1.1       mrg 
    430  1.1       mrg 	if (SCARG(uap, tp)) {
    431  1.1       mrg 		microtime(&atv);
    432  1.1       mrg 		netbsd32_from_timeval(&atv, &tv32);
    433  1.4       scw 		error = copyout(&tv32, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
    434  1.4       scw 		    sizeof(tv32));
    435  1.1       mrg 		if (error)
    436  1.1       mrg 			return (error);
    437  1.1       mrg 	}
    438  1.1       mrg 	if (SCARG(uap, tzp)) {
    439  1.1       mrg 		/*
    440  1.1       mrg 		 * NetBSD has no kernel notion of time zone, so we just
    441  1.1       mrg 		 * fake up a timezone struct and return it if demanded.
    442  1.1       mrg 		 */
    443  1.1       mrg 		tzfake.tz_minuteswest = 0;
    444  1.1       mrg 		tzfake.tz_dsttime = 0;
    445  1.4       scw 		error = copyout(&tzfake,
    446  1.4       scw 		    (caddr_t)NETBSD32PTR64(SCARG(uap, tzp)), sizeof(tzfake));
    447  1.1       mrg 	}
    448  1.1       mrg 	return (error);
    449  1.1       mrg }
    450  1.1       mrg 
    451  1.1       mrg int
    452  1.5   thorpej netbsd32_settimeofday(l, v, retval)
    453  1.5   thorpej 	struct lwp *l;
    454  1.1       mrg 	void *v;
    455  1.1       mrg 	register_t *retval;
    456  1.1       mrg {
    457  1.1       mrg 	struct netbsd32_settimeofday_args /* {
    458  1.1       mrg 		syscallarg(const netbsd32_timevalp_t) tv;
    459  1.1       mrg 		syscallarg(const netbsd32_timezonep_t) tzp;
    460  1.1       mrg 	} */ *uap = v;
    461  1.1       mrg 	struct netbsd32_timeval atv32;
    462  1.1       mrg 	struct timeval atv;
    463  1.1       mrg 	int error;
    464  1.5   thorpej 	struct proc *p = l->l_proc;
    465  1.1       mrg 
    466  1.1       mrg 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    467  1.1       mrg 		return (error);
    468  1.1       mrg 	/* Verify all parameters before changing time. */
    469  1.4       scw 	if (SCARG(uap, tv) &&
    470  1.4       scw 	    (error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, tv)), &atv32,
    471  1.4       scw 	    sizeof(atv32))))
    472  1.1       mrg 		return (error);
    473  1.1       mrg 	netbsd32_to_timeval(&atv32, &atv);
    474  1.1       mrg 	if (SCARG(uap, tv))
    475  1.1       mrg 		if ((error = settime(&atv)))
    476  1.1       mrg 			return (error);
    477  1.1       mrg 	/* don't bother copying the tz in, we don't use it. */
    478  1.1       mrg 	/*
    479  1.1       mrg 	 * NetBSD has no kernel notion of time zone, and only an
    480  1.1       mrg 	 * obsolete program would try to set it, so we log a warning.
    481  1.1       mrg 	 */
    482  1.1       mrg 	if (SCARG(uap, tzp))
    483  1.1       mrg 		printf("pid %d attempted to set the "
    484  1.8     perry 		    "(obsolete) kernel time zone\n", p->p_pid);
    485  1.1       mrg 	return (0);
    486  1.1       mrg }
    487  1.1       mrg 
    488  1.1       mrg int
    489  1.5   thorpej netbsd32_adjtime(l, v, retval)
    490  1.5   thorpej 	struct lwp *l;
    491  1.1       mrg 	void *v;
    492  1.1       mrg 	register_t *retval;
    493  1.1       mrg {
    494  1.1       mrg 	struct netbsd32_adjtime_args /* {
    495  1.1       mrg 		syscallarg(const netbsd32_timevalp_t) delta;
    496  1.1       mrg 		syscallarg(netbsd32_timevalp_t) olddelta;
    497  1.1       mrg 	} */ *uap = v;
    498  1.1       mrg 	struct netbsd32_timeval atv;
    499  1.1       mrg 	int32_t ndelta, ntickdelta, odelta;
    500  1.1       mrg 	int s, error;
    501  1.5   thorpej 	struct proc *p = l->l_proc;
    502  1.1       mrg 	extern long bigadj, timedelta;
    503  1.1       mrg 	extern int tickdelta;
    504  1.1       mrg 
    505  1.1       mrg 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    506  1.1       mrg 		return (error);
    507  1.1       mrg 
    508  1.4       scw 	error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, delta)), &atv,
    509  1.4       scw 	    sizeof(struct timeval));
    510  1.1       mrg 	if (error)
    511  1.1       mrg 		return (error);
    512  1.1       mrg 	/*
    513  1.1       mrg 	 * Compute the total correction and the rate at which to apply it.
    514  1.1       mrg 	 * Round the adjustment down to a whole multiple of the per-tick
    515  1.1       mrg 	 * delta, so that after some number of incremental changes in
    516  1.1       mrg 	 * hardclock(), tickdelta will become zero, lest the correction
    517  1.1       mrg 	 * overshoot and start taking us away from the desired final time.
    518  1.1       mrg 	 */
    519  1.1       mrg 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
    520  1.1       mrg 	if (ndelta > bigadj)
    521  1.1       mrg 		ntickdelta = 10 * tickadj;
    522  1.1       mrg 	else
    523  1.1       mrg 		ntickdelta = tickadj;
    524  1.1       mrg 	if (ndelta % ntickdelta)
    525  1.1       mrg 		ndelta = ndelta / ntickdelta * ntickdelta;
    526  1.1       mrg 
    527  1.1       mrg 	/*
    528  1.1       mrg 	 * To make hardclock()'s job easier, make the per-tick delta negative
    529  1.1       mrg 	 * if we want time to run slower; then hardclock can simply compute
    530  1.1       mrg 	 * tick + tickdelta, and subtract tickdelta from timedelta.
    531  1.1       mrg 	 */
    532  1.1       mrg 	if (ndelta < 0)
    533  1.1       mrg 		ntickdelta = -ntickdelta;
    534  1.1       mrg 	s = splclock();
    535  1.1       mrg 	odelta = timedelta;
    536  1.1       mrg 	timedelta = ndelta;
    537  1.1       mrg 	tickdelta = ntickdelta;
    538  1.1       mrg 	splx(s);
    539  1.1       mrg 
    540  1.1       mrg 	if (SCARG(uap, olddelta)) {
    541  1.1       mrg 		atv.tv_sec = odelta / 1000000;
    542  1.1       mrg 		atv.tv_usec = odelta % 1000000;
    543  1.4       scw 		(void) copyout(&atv,
    544  1.4       scw 		    (caddr_t)NETBSD32PTR64(SCARG(uap, olddelta)), sizeof(atv));
    545  1.1       mrg 	}
    546  1.1       mrg 	return (0);
    547  1.1       mrg }
    548  1.1       mrg 
    549  1.1       mrg int
    550  1.5   thorpej netbsd32_clock_gettime(l, v, retval)
    551  1.5   thorpej 	struct lwp *l;
    552  1.1       mrg 	void *v;
    553  1.1       mrg 	register_t *retval;
    554  1.1       mrg {
    555  1.1       mrg 	struct netbsd32_clock_gettime_args /* {
    556  1.1       mrg 		syscallarg(netbsd32_clockid_t) clock_id;
    557  1.1       mrg 		syscallarg(netbsd32_timespecp_t) tp;
    558  1.1       mrg 	} */ *uap = v;
    559  1.1       mrg 	clockid_t clock_id;
    560  1.1       mrg 	struct timeval atv;
    561  1.1       mrg 	struct timespec ats;
    562  1.1       mrg 	struct netbsd32_timespec ts32;
    563  1.1       mrg 
    564  1.1       mrg 	clock_id = SCARG(uap, clock_id);
    565  1.1       mrg 	if (clock_id != CLOCK_REALTIME)
    566  1.1       mrg 		return (EINVAL);
    567  1.1       mrg 
    568  1.1       mrg 	microtime(&atv);
    569  1.1       mrg 	TIMEVAL_TO_TIMESPEC(&atv,&ats);
    570  1.1       mrg 	netbsd32_from_timespec(&ats, &ts32);
    571  1.1       mrg 
    572  1.4       scw 	return copyout(&ts32, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
    573  1.4       scw 	    sizeof(ts32));
    574  1.1       mrg }
    575  1.1       mrg 
    576  1.1       mrg int
    577  1.5   thorpej netbsd32_clock_settime(l, v, retval)
    578  1.5   thorpej 	struct lwp *l;
    579  1.1       mrg 	void *v;
    580  1.1       mrg 	register_t *retval;
    581  1.1       mrg {
    582  1.1       mrg 	struct netbsd32_clock_settime_args /* {
    583  1.1       mrg 		syscallarg(netbsd32_clockid_t) clock_id;
    584  1.1       mrg 		syscallarg(const netbsd32_timespecp_t) tp;
    585  1.1       mrg 	} */ *uap = v;
    586  1.1       mrg 	struct netbsd32_timespec ts32;
    587  1.1       mrg 	clockid_t clock_id;
    588  1.1       mrg 	struct timeval atv;
    589  1.1       mrg 	struct timespec ats;
    590  1.1       mrg 	int error;
    591  1.5   thorpej 	struct proc *p = l->l_proc;
    592  1.1       mrg 
    593  1.1       mrg 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
    594  1.1       mrg 		return (error);
    595  1.1       mrg 
    596  1.1       mrg 	clock_id = SCARG(uap, clock_id);
    597  1.1       mrg 	if (clock_id != CLOCK_REALTIME)
    598  1.1       mrg 		return (EINVAL);
    599  1.1       mrg 
    600  1.4       scw 	if ((error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, tp)), &ts32,
    601  1.4       scw 	    sizeof(ts32))) != 0)
    602  1.1       mrg 		return (error);
    603  1.1       mrg 
    604  1.1       mrg 	netbsd32_to_timespec(&ts32, &ats);
    605  1.1       mrg 	TIMESPEC_TO_TIMEVAL(&atv,&ats);
    606  1.1       mrg 	if ((error = settime(&atv)))
    607  1.1       mrg 		return (error);
    608  1.1       mrg 
    609  1.1       mrg 	return 0;
    610  1.1       mrg }
    611  1.1       mrg 
    612  1.1       mrg int
    613  1.5   thorpej netbsd32_clock_getres(l, v, retval)
    614  1.5   thorpej 	struct lwp *l;
    615  1.1       mrg 	void *v;
    616  1.1       mrg 	register_t *retval;
    617  1.1       mrg {
    618  1.1       mrg 	struct netbsd32_clock_getres_args /* {
    619  1.1       mrg 		syscallarg(netbsd32_clockid_t) clock_id;
    620  1.1       mrg 		syscallarg(netbsd32_timespecp_t) tp;
    621  1.1       mrg 	} */ *uap = v;
    622  1.1       mrg 	struct netbsd32_timespec ts32;
    623  1.1       mrg 	clockid_t clock_id;
    624  1.1       mrg 	struct timespec ts;
    625  1.1       mrg 	int error = 0;
    626  1.1       mrg 
    627  1.1       mrg 	clock_id = SCARG(uap, clock_id);
    628  1.1       mrg 	if (clock_id != CLOCK_REALTIME)
    629  1.1       mrg 		return (EINVAL);
    630  1.1       mrg 
    631  1.1       mrg 	if (SCARG(uap, tp)) {
    632  1.1       mrg 		ts.tv_sec = 0;
    633  1.1       mrg 		ts.tv_nsec = 1000000000 / hz;
    634  1.1       mrg 
    635  1.1       mrg 		netbsd32_from_timespec(&ts, &ts32);
    636  1.4       scw 		error = copyout(&ts, (caddr_t)NETBSD32PTR64(SCARG(uap, tp)),
    637  1.4       scw 		    sizeof(ts));
    638  1.1       mrg 	}
    639  1.1       mrg 
    640  1.1       mrg 	return error;
    641  1.1       mrg }
    642  1.1       mrg 
    643  1.1       mrg int
    644  1.5   thorpej netbsd32_nanosleep(l, v, retval)
    645  1.5   thorpej 	struct lwp *l;
    646  1.1       mrg 	void *v;
    647  1.1       mrg 	register_t *retval;
    648  1.1       mrg {
    649  1.1       mrg 	struct netbsd32_nanosleep_args /* {
    650  1.1       mrg 		syscallarg(const netbsd32_timespecp_t) rqtp;
    651  1.1       mrg 		syscallarg(netbsd32_timespecp_t) rmtp;
    652  1.1       mrg 	} */ *uap = v;
    653  1.1       mrg 	static int nanowait;
    654  1.1       mrg 	struct netbsd32_timespec ts32;
    655  1.1       mrg 	struct timespec rqt;
    656  1.1       mrg 	struct timespec rmt;
    657  1.1       mrg 	struct timeval atv, utv;
    658  1.1       mrg 	int error, s, timo;
    659  1.1       mrg 
    660  1.4       scw 	error = copyin((caddr_t)NETBSD32PTR64(SCARG(uap, rqtp)), (caddr_t)&ts32,
    661  1.4       scw 	    sizeof(ts32));
    662  1.1       mrg 	if (error)
    663  1.1       mrg 		return (error);
    664  1.1       mrg 
    665  1.1       mrg 	netbsd32_to_timespec(&ts32, &rqt);
    666  1.7    atatat 	TIMESPEC_TO_TIMEVAL(&atv,&rqt);
    667  1.1       mrg 	if (itimerfix(&atv))
    668  1.1       mrg 		return (EINVAL);
    669  1.1       mrg 
    670  1.1       mrg 	s = splclock();
    671  1.1       mrg 	timeradd(&atv,&time,&atv);
    672  1.1       mrg 	timo = hzto(&atv);
    673  1.8     perry 	/*
    674  1.1       mrg 	 * Avoid inadvertantly sleeping forever
    675  1.1       mrg 	 */
    676  1.1       mrg 	if (timo == 0)
    677  1.1       mrg 		timo = 1;
    678  1.1       mrg 	splx(s);
    679  1.1       mrg 
    680  1.1       mrg 	error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
    681  1.1       mrg 	if (error == ERESTART)
    682  1.1       mrg 		error = EINTR;
    683  1.1       mrg 	if (error == EWOULDBLOCK)
    684  1.1       mrg 		error = 0;
    685  1.1       mrg 
    686  1.1       mrg 	if (SCARG(uap, rmtp)) {
    687  1.9  christos 		int error1;
    688  1.1       mrg 
    689  1.1       mrg 		s = splclock();
    690  1.1       mrg 		utv = time;
    691  1.1       mrg 		splx(s);
    692  1.1       mrg 
    693  1.1       mrg 		timersub(&atv, &utv, &utv);
    694  1.1       mrg 		if (utv.tv_sec < 0)
    695  1.1       mrg 			timerclear(&utv);
    696  1.1       mrg 
    697  1.1       mrg 		TIMEVAL_TO_TIMESPEC(&utv,&rmt);
    698  1.1       mrg 		netbsd32_from_timespec(&rmt, &ts32);
    699  1.9  christos 		error1 = copyout(&ts32,
    700  1.9  christos 		    NETBSD32PTR64(SCARG(uap,rmtp)), sizeof(ts32));
    701  1.9  christos 		if (error1)
    702  1.9  christos 			return (error1);
    703  1.1       mrg 	}
    704  1.1       mrg 
    705  1.1       mrg 	return error;
    706  1.1       mrg }
    707