aes_ct.c revision 1.2 1 /* $NetBSD: aes_ct.c,v 1.2 2020/06/29 23:36:59 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2016 Thomas Pornin <pornin (at) bolet.org>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining
7 * a copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sublicense, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be
15 * included in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
18 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
20 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
21 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
22 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 */
26
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(1, "$NetBSD: aes_ct.c,v 1.2 2020/06/29 23:36:59 riastradh Exp $");
29
30 #include <sys/types.h>
31
32 #include <lib/libkern/libkern.h>
33
34 #include <crypto/aes/aes_bear.h>
35
36 /* see inner.h */
37 void
38 br_aes_ct_bitslice_Sbox(uint32_t *q)
39 {
40 /*
41 * This S-box implementation is a straightforward translation of
42 * the circuit described by Boyar and Peralta in "A new
43 * combinational logic minimization technique with applications
44 * to cryptology" (https://eprint.iacr.org/2009/191.pdf).
45 *
46 * Note that variables x* (input) and s* (output) are numbered
47 * in "reverse" order (x0 is the high bit, x7 is the low bit).
48 */
49
50 uint32_t x0, x1, x2, x3, x4, x5, x6, x7;
51 uint32_t y1, y2, y3, y4, y5, y6, y7, y8, y9;
52 uint32_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
53 uint32_t y20, y21;
54 uint32_t z0, z1, z2, z3, z4, z5, z6, z7, z8, z9;
55 uint32_t z10, z11, z12, z13, z14, z15, z16, z17;
56 uint32_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
57 uint32_t t10, t11, t12, t13, t14, t15, t16, t17, t18, t19;
58 uint32_t t20, t21, t22, t23, t24, t25, t26, t27, t28, t29;
59 uint32_t t30, t31, t32, t33, t34, t35, t36, t37, t38, t39;
60 uint32_t t40, t41, t42, t43, t44, t45, t46, t47, t48, t49;
61 uint32_t t50, t51, t52, t53, t54, t55, t56, t57, t58, t59;
62 uint32_t t60, t61, t62, t63, t64, t65, t66, t67;
63 uint32_t s0, s1, s2, s3, s4, s5, s6, s7;
64
65 x0 = q[7];
66 x1 = q[6];
67 x2 = q[5];
68 x3 = q[4];
69 x4 = q[3];
70 x5 = q[2];
71 x6 = q[1];
72 x7 = q[0];
73
74 /*
75 * Top linear transformation.
76 */
77 y14 = x3 ^ x5;
78 y13 = x0 ^ x6;
79 y9 = x0 ^ x3;
80 y8 = x0 ^ x5;
81 t0 = x1 ^ x2;
82 y1 = t0 ^ x7;
83 y4 = y1 ^ x3;
84 y12 = y13 ^ y14;
85 y2 = y1 ^ x0;
86 y5 = y1 ^ x6;
87 y3 = y5 ^ y8;
88 t1 = x4 ^ y12;
89 y15 = t1 ^ x5;
90 y20 = t1 ^ x1;
91 y6 = y15 ^ x7;
92 y10 = y15 ^ t0;
93 y11 = y20 ^ y9;
94 y7 = x7 ^ y11;
95 y17 = y10 ^ y11;
96 y19 = y10 ^ y8;
97 y16 = t0 ^ y11;
98 y21 = y13 ^ y16;
99 y18 = x0 ^ y16;
100
101 /*
102 * Non-linear section.
103 */
104 t2 = y12 & y15;
105 t3 = y3 & y6;
106 t4 = t3 ^ t2;
107 t5 = y4 & x7;
108 t6 = t5 ^ t2;
109 t7 = y13 & y16;
110 t8 = y5 & y1;
111 t9 = t8 ^ t7;
112 t10 = y2 & y7;
113 t11 = t10 ^ t7;
114 t12 = y9 & y11;
115 t13 = y14 & y17;
116 t14 = t13 ^ t12;
117 t15 = y8 & y10;
118 t16 = t15 ^ t12;
119 t17 = t4 ^ t14;
120 t18 = t6 ^ t16;
121 t19 = t9 ^ t14;
122 t20 = t11 ^ t16;
123 t21 = t17 ^ y20;
124 t22 = t18 ^ y19;
125 t23 = t19 ^ y21;
126 t24 = t20 ^ y18;
127
128 t25 = t21 ^ t22;
129 t26 = t21 & t23;
130 t27 = t24 ^ t26;
131 t28 = t25 & t27;
132 t29 = t28 ^ t22;
133 t30 = t23 ^ t24;
134 t31 = t22 ^ t26;
135 t32 = t31 & t30;
136 t33 = t32 ^ t24;
137 t34 = t23 ^ t33;
138 t35 = t27 ^ t33;
139 t36 = t24 & t35;
140 t37 = t36 ^ t34;
141 t38 = t27 ^ t36;
142 t39 = t29 & t38;
143 t40 = t25 ^ t39;
144
145 t41 = t40 ^ t37;
146 t42 = t29 ^ t33;
147 t43 = t29 ^ t40;
148 t44 = t33 ^ t37;
149 t45 = t42 ^ t41;
150 z0 = t44 & y15;
151 z1 = t37 & y6;
152 z2 = t33 & x7;
153 z3 = t43 & y16;
154 z4 = t40 & y1;
155 z5 = t29 & y7;
156 z6 = t42 & y11;
157 z7 = t45 & y17;
158 z8 = t41 & y10;
159 z9 = t44 & y12;
160 z10 = t37 & y3;
161 z11 = t33 & y4;
162 z12 = t43 & y13;
163 z13 = t40 & y5;
164 z14 = t29 & y2;
165 z15 = t42 & y9;
166 z16 = t45 & y14;
167 z17 = t41 & y8;
168
169 /*
170 * Bottom linear transformation.
171 */
172 t46 = z15 ^ z16;
173 t47 = z10 ^ z11;
174 t48 = z5 ^ z13;
175 t49 = z9 ^ z10;
176 t50 = z2 ^ z12;
177 t51 = z2 ^ z5;
178 t52 = z7 ^ z8;
179 t53 = z0 ^ z3;
180 t54 = z6 ^ z7;
181 t55 = z16 ^ z17;
182 t56 = z12 ^ t48;
183 t57 = t50 ^ t53;
184 t58 = z4 ^ t46;
185 t59 = z3 ^ t54;
186 t60 = t46 ^ t57;
187 t61 = z14 ^ t57;
188 t62 = t52 ^ t58;
189 t63 = t49 ^ t58;
190 t64 = z4 ^ t59;
191 t65 = t61 ^ t62;
192 t66 = z1 ^ t63;
193 s0 = t59 ^ t63;
194 s6 = t56 ^ ~t62;
195 s7 = t48 ^ ~t60;
196 t67 = t64 ^ t65;
197 s3 = t53 ^ t66;
198 s4 = t51 ^ t66;
199 s5 = t47 ^ t65;
200 s1 = t64 ^ ~s3;
201 s2 = t55 ^ ~t67;
202
203 q[7] = s0;
204 q[6] = s1;
205 q[5] = s2;
206 q[4] = s3;
207 q[3] = s4;
208 q[2] = s5;
209 q[1] = s6;
210 q[0] = s7;
211 }
212
213 /* see inner.h */
214 void
215 br_aes_ct_ortho(uint32_t *q)
216 {
217 #define SWAPN(cl, ch, s, x, y) do { \
218 uint32_t a, b; \
219 a = (x); \
220 b = (y); \
221 (x) = (a & (uint32_t)cl) | ((b & (uint32_t)cl) << (s)); \
222 (y) = ((a & (uint32_t)ch) >> (s)) | (b & (uint32_t)ch); \
223 } while (0)
224
225 #define SWAP2(x, y) SWAPN(0x55555555, 0xAAAAAAAA, 1, x, y)
226 #define SWAP4(x, y) SWAPN(0x33333333, 0xCCCCCCCC, 2, x, y)
227 #define SWAP8(x, y) SWAPN(0x0F0F0F0F, 0xF0F0F0F0, 4, x, y)
228
229 SWAP2(q[0], q[1]);
230 SWAP2(q[2], q[3]);
231 SWAP2(q[4], q[5]);
232 SWAP2(q[6], q[7]);
233
234 SWAP4(q[0], q[2]);
235 SWAP4(q[1], q[3]);
236 SWAP4(q[4], q[6]);
237 SWAP4(q[5], q[7]);
238
239 SWAP8(q[0], q[4]);
240 SWAP8(q[1], q[5]);
241 SWAP8(q[2], q[6]);
242 SWAP8(q[3], q[7]);
243 }
244
245 static const unsigned char Rcon[] = {
246 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36
247 };
248
249 static uint32_t
250 sub_word(uint32_t x)
251 {
252 uint32_t q[8];
253 int i;
254
255 for (i = 0; i < 8; i ++) {
256 q[i] = x;
257 }
258 br_aes_ct_ortho(q);
259 br_aes_ct_bitslice_Sbox(q);
260 br_aes_ct_ortho(q);
261 return q[0];
262 }
263
264 /* see inner.h */
265 unsigned
266 br_aes_ct_keysched(uint32_t *comp_skey, const void *key, size_t key_len)
267 {
268 unsigned num_rounds;
269 int i, j, k, nk, nkf;
270 uint32_t tmp;
271 uint32_t skey[120];
272
273 switch (key_len) {
274 case 16:
275 num_rounds = 10;
276 break;
277 case 24:
278 num_rounds = 12;
279 break;
280 case 32:
281 num_rounds = 14;
282 break;
283 default:
284 /* abort(); */
285 return 0;
286 }
287 nk = (int)(key_len >> 2);
288 nkf = (int)((num_rounds + 1) << 2);
289 tmp = 0;
290 for (i = 0; i < nk; i ++) {
291 tmp = br_dec32le((const unsigned char *)key + (i << 2));
292 skey[(i << 1) + 0] = tmp;
293 skey[(i << 1) + 1] = tmp;
294 }
295 for (i = nk, j = 0, k = 0; i < nkf; i ++) {
296 if (j == 0) {
297 tmp = (tmp << 24) | (tmp >> 8);
298 tmp = sub_word(tmp) ^ Rcon[k];
299 } else if (nk > 6 && j == 4) {
300 tmp = sub_word(tmp);
301 }
302 tmp ^= skey[(i - nk) << 1];
303 skey[(i << 1) + 0] = tmp;
304 skey[(i << 1) + 1] = tmp;
305 if (++ j == nk) {
306 j = 0;
307 k ++;
308 }
309 }
310 for (i = 0; i < nkf; i += 4) {
311 br_aes_ct_ortho(skey + (i << 1));
312 }
313 for (i = 0, j = 0; i < nkf; i ++, j += 2) {
314 comp_skey[i] = (skey[j + 0] & 0x55555555)
315 | (skey[j + 1] & 0xAAAAAAAA);
316 }
317 return num_rounds;
318 }
319
320 /* see inner.h */
321 void
322 br_aes_ct_skey_expand(uint32_t *skey,
323 unsigned num_rounds, const uint32_t *comp_skey)
324 {
325 unsigned u, v, n;
326
327 n = (num_rounds + 1) << 2;
328 for (u = 0, v = 0; u < n; u ++, v += 2) {
329 uint32_t x, y;
330
331 x = y = comp_skey[u];
332 x &= 0x55555555;
333 skey[v + 0] = x | (x << 1);
334 y &= 0xAAAAAAAA;
335 skey[v + 1] = y | (y >> 1);
336 }
337 }
338
339 /* NetBSD additions, for computing the standard AES key schedule */
340
341 unsigned
342 br_aes_ct_keysched_stdenc(uint32_t *skey, const void *key, size_t key_len)
343 {
344 unsigned num_rounds;
345 int i, j, k, nk, nkf;
346 uint32_t tmp;
347
348 switch (key_len) {
349 case 16:
350 num_rounds = 10;
351 break;
352 case 24:
353 num_rounds = 12;
354 break;
355 case 32:
356 num_rounds = 14;
357 break;
358 default:
359 /* abort(); */
360 return 0;
361 }
362 nk = (int)(key_len >> 2);
363 nkf = (int)((num_rounds + 1) << 2);
364 tmp = 0;
365 for (i = 0; i < nk; i ++) {
366 tmp = br_dec32le((const unsigned char *)key + (i << 2));
367 skey[i] = tmp;
368 }
369 for (i = nk, j = 0, k = 0; i < nkf; i ++) {
370 if (j == 0) {
371 tmp = (tmp << 24) | (tmp >> 8);
372 tmp = sub_word(tmp) ^ Rcon[k];
373 } else if (nk > 6 && j == 4) {
374 tmp = sub_word(tmp);
375 }
376 tmp ^= skey[i - nk];
377 skey[i] = tmp;
378 if (++ j == nk) {
379 j = 0;
380 k ++;
381 }
382 }
383 return num_rounds;
384 }
385
386 unsigned
387 br_aes_ct_keysched_stddec(uint32_t *skey, const void *key, size_t key_len)
388 {
389 uint32_t tkey[60];
390 uint32_t q[8];
391 unsigned num_rounds;
392 unsigned i;
393
394 num_rounds = br_aes_ct_keysched_stdenc(skey, key, key_len);
395 if (num_rounds == 0)
396 return 0;
397
398 tkey[0] = skey[4*num_rounds + 0];
399 tkey[1] = skey[4*num_rounds + 1];
400 tkey[2] = skey[4*num_rounds + 2];
401 tkey[3] = skey[4*num_rounds + 3];
402 for (i = 1; i < num_rounds; i++) {
403 q[2*0] = skey[4*i + 0];
404 q[2*1] = skey[4*i + 1];
405 q[2*2] = skey[4*i + 2];
406 q[2*3] = skey[4*i + 3];
407 q[1] = q[3] = q[5] = q[7] = 0;
408
409 br_aes_ct_ortho(q);
410 br_aes_ct_inv_mix_columns(q);
411 br_aes_ct_ortho(q);
412
413 tkey[4*(num_rounds - i) + 0] = q[2*0];
414 tkey[4*(num_rounds - i) + 1] = q[2*1];
415 tkey[4*(num_rounds - i) + 2] = q[2*2];
416 tkey[4*(num_rounds - i) + 3] = q[2*3];
417 }
418 tkey[4*num_rounds + 0] = skey[0];
419 tkey[4*num_rounds + 1] = skey[1];
420 tkey[4*num_rounds + 2] = skey[2];
421 tkey[4*num_rounds + 3] = skey[3];
422
423 memcpy(skey, tkey, 4*(num_rounds + 1)*sizeof(uint32_t));
424 explicit_memset(tkey, 0, 4*(num_rounds + 1)*sizeof(uint32_t));
425 return num_rounds;
426 }
427