Home | History | Annotate | Line # | Download | only in cprng_fast
cprng_fast.c revision 1.2
      1 /*	$NetBSD: cprng_fast.c,v 1.2 2014/08/10 16:44:35 tls Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: cprng_fast.c,v 1.2 2014/08/10 16:44:35 tls Exp $");
     34 
     35 #include <sys/types.h>
     36 #include <sys/bitops.h>
     37 #include <sys/param.h>
     38 #include <sys/cpu.h>
     39 #include <sys/intr.h>
     40 #include <sys/percpu.h>
     41 #include <sys/cprng.h>
     42 
     43 
     44 /* ChaCha core */
     46 
     47 #define	crypto_core_OUTPUTWORDS	16
     48 #define	crypto_core_INPUTWORDS	4
     49 #define	crypto_core_KEYWORDS	8
     50 #define	crypto_core_CONSTWORDS	4
     51 
     52 #define	crypto_core_ROUNDS	8
     53 
     54 static uint32_t
     55 rotate(uint32_t u, unsigned c)
     56 {
     57 
     58 	return (u << c) | (u >> (32 - c));
     59 }
     60 
     61 #define	QUARTERROUND(a, b, c, d) do {					      \
     62 	(a) += (b); (d) ^= (a); (d) = rotate((d), 16);			      \
     63 	(c) += (d); (b) ^= (c); (b) = rotate((b), 12);			      \
     64 	(a) += (b); (d) ^= (a); (d) = rotate((d),  8);			      \
     65 	(c) += (d); (b) ^= (c); (b) = rotate((b),  7);			      \
     66 } while (0)
     67 
     68 static void
     69 crypto_core(uint32_t *out, const uint32_t *in, const uint32_t *k,
     70     const uint32_t *c)
     71 {
     72 	uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
     73 	int i;
     74 
     75 	x0 = c[0];
     76 	x1 = c[1];
     77 	x2 = c[2];
     78 	x3 = c[3];
     79 	x4 = k[0];
     80 	x5 = k[1];
     81 	x6 = k[2];
     82 	x7 = k[3];
     83 	x8 = k[4];
     84 	x9 = k[5];
     85 	x10 = k[6];
     86 	x11 = k[7];
     87 	x12 = in[0];
     88 	x13 = in[1];
     89 	x14 = in[2];
     90 	x15 = in[3];
     91 
     92 	for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
     93 		QUARTERROUND( x0, x4, x8,x12);
     94 		QUARTERROUND( x1, x5, x9,x13);
     95 		QUARTERROUND( x2, x6,x10,x14);
     96 		QUARTERROUND( x3, x7,x11,x15);
     97 		QUARTERROUND( x0, x5,x10,x15);
     98 		QUARTERROUND( x1, x6,x11,x12);
     99 		QUARTERROUND( x2, x7, x8,x13);
    100 		QUARTERROUND( x3, x4, x9,x14);
    101 	}
    102 
    103 	out[0] = x0 + c[0];
    104 	out[1] = x1 + c[1];
    105 	out[2] = x2 + c[2];
    106 	out[3] = x3 + c[3];
    107 	out[4] = x4 + k[0];
    108 	out[5] = x5 + k[1];
    109 	out[6] = x6 + k[2];
    110 	out[7] = x7 + k[3];
    111 	out[8] = x8 + k[4];
    112 	out[9] = x9 + k[5];
    113 	out[10] = x10 + k[6];
    114 	out[11] = x11 + k[7];
    115 	out[12] = x12 + in[0];
    116 	out[13] = x13 + in[1];
    117 	out[14] = x14 + in[2];
    118 	out[15] = x15 + in[3];
    119 }
    120 
    121 /* `expand 32-byte k' */
    123 static const uint32_t crypto_core_constant32[4] = {
    124 	0x61707865U, 0x3320646eU, 0x79622d32U, 0x6b206574U,
    125 };
    126 
    127 /*
    128  * Test vector for ChaCha20 from
    129  * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
    130  * test vectors for ChaCha12 and ChaCha8 generated by the same
    131  * crypto_core code with crypto_core_ROUNDS varied.
    132  */
    133 
    134 #define	check(E)	do						\
    135 {									\
    136 	if (!(E))							\
    137 		panic("crypto self-test failed: %s", #E);		\
    138 } while (0)
    139 
    140 static void
    141 crypto_core_selftest(void)
    142 {
    143 	const uint32_t zero32[8] = {0};
    144 	const uint8_t sigma[] = "expand 32-byte k";
    145 	uint32_t block[16];
    146 	unsigned i;
    147 
    148 #if crypto_core_ROUNDS == 8
    149 	static const uint8_t out[64] = {
    150 		0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
    151 		0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
    152 		0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
    153 		0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
    154 		0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
    155 		0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
    156 		0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
    157 		0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
    158 	};
    159 #elif crypto_core_ROUNDS == 12
    160 	static const uint8_t out[64] = {
    161 		0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
    162 		0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
    163 		0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
    164 		0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
    165 		0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
    166 		0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
    167 		0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
    168 		0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
    169 	};
    170 #elif crypto_core_ROUNDS == 20
    171 	static const uint8_t out[64] = {
    172 		0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
    173 		0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
    174 		0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
    175 		0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
    176 		0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
    177 		0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
    178 		0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
    179 		0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
    180 	};
    181 #else
    182 #error crypto_core_ROUNDS must be 8, 12, or 20.
    183 #endif
    184 
    185 	check(crypto_core_constant32[0] == le32dec(&sigma[0]));
    186 	check(crypto_core_constant32[1] == le32dec(&sigma[4]));
    187 	check(crypto_core_constant32[2] == le32dec(&sigma[8]));
    188 	check(crypto_core_constant32[3] == le32dec(&sigma[12]));
    189 
    190 	crypto_core(block, zero32, zero32, crypto_core_constant32);
    191 	for (i = 0; i < 16; i++)
    192 		check(block[i] == le32dec(&out[i*4]));
    193 }
    194 
    195 #undef check
    196 
    197 #define	CPRNG_FAST_SEED_BYTES	(crypto_core_KEYWORDS * sizeof(uint32_t))
    199 
    200 struct cprng_fast {
    201 	uint32_t 	buffer[crypto_core_OUTPUTWORDS];
    202 	uint32_t 	key[crypto_core_KEYWORDS];
    203 	uint32_t 	nonce[crypto_core_INPUTWORDS];
    204 	bool		have_initial;
    205 };
    206 
    207 __CTASSERT(sizeof ((struct cprng_fast *)0)->key == CPRNG_FAST_SEED_BYTES);
    208 
    209 static void	cprng_fast_schedule_reseed(struct cprng_fast *);
    210 static void	cprng_fast_intr(void *);
    211 
    212 static void	cprng_fast_seed(struct cprng_fast *, const void *);
    213 static void	cprng_fast_buf(struct cprng_fast *, void *, unsigned);
    214 
    215 static void	cprng_fast_buf_short(void *, size_t);
    216 static void	cprng_fast_buf_long(void *, size_t);
    217 
    218 static percpu_t	*cprng_fast_percpu	__read_mostly;
    219 static void	*cprng_fast_softint	__read_mostly;
    220 
    221 extern int	rnd_initial_entropy;
    222 
    223 void
    224 cprng_fast_init(void)
    225 {
    226 	struct cpu_info *ci;
    227 	CPU_INFO_ITERATOR cii;
    228 
    229 	crypto_core_selftest();
    230 	cprng_fast_percpu = percpu_alloc(sizeof(struct cprng_fast));
    231 	for (CPU_INFO_FOREACH(cii, ci)) {
    232 		struct cprng_fast *cprng;
    233 		uint8_t seed[CPRNG_FAST_SEED_BYTES];
    234 
    235 		percpu_traverse_enter();
    236 		cprng = percpu_getptr_remote(cprng_fast_percpu, ci);
    237 		cprng_strong(kern_cprng, seed, sizeof(seed), FASYNC);
    238 		/* Can't do anything about it if not full entropy.  */
    239 		cprng_fast_seed(cprng, seed);
    240 		explicit_memset(seed, 0, sizeof(seed));
    241 		percpu_traverse_exit();
    242 	}
    243 	cprng_fast_softint = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
    244 	    &cprng_fast_intr, NULL);
    245 }
    246 
    247 static inline int
    248 cprng_fast_get(struct cprng_fast **cprngp)
    249 {
    250 
    251 	*cprngp = percpu_getref(cprng_fast_percpu);
    252 	return splvm();
    253 }
    254 
    255 static inline void
    256 cprng_fast_put(struct cprng_fast *cprng, int s)
    257 {
    258 
    259 	KASSERT((cprng == percpu_getref(cprng_fast_percpu)) &&
    260 	    (percpu_putref(cprng_fast_percpu), true));
    261 	splx(s);
    262 	percpu_putref(cprng_fast_percpu);
    263 }
    264 
    265 static inline void
    267 cprng_fast_schedule_reseed(struct cprng_fast *cprng __unused)
    268 {
    269 
    270 	softint_schedule(cprng_fast_softint);
    271 }
    272 
    273 static void
    274 cprng_fast_intr(void *cookie __unused)
    275 {
    276 	struct cprng_fast *cprng;
    277 	uint8_t seed[CPRNG_FAST_SEED_BYTES];
    278 
    279 	cprng_strong(kern_cprng, seed, sizeof(seed), FASYNC);
    280 
    281 	cprng = percpu_getref(cprng_fast_percpu);
    282 	cprng_fast_seed(cprng, seed);
    283 	percpu_putref(cprng_fast_percpu);
    284 
    285 	explicit_memset(seed, 0, sizeof(seed));
    286 }
    287 
    288 /* CPRNG algorithm */
    290 
    291 /*
    292  * The state consists of a key, the current nonce, and a 64-byte buffer
    293  * of output.  Since we fill the buffer only when we need output, and
    294  * eat a 32-bit word at a time, one 32-bit word of the buffer would be
    295  * wasted.  Instead, we repurpose it to count the number of entries in
    296  * the buffer remaining, counting from high to low in order to allow
    297  * comparison to zero to detect when we need to refill it.
    298  */
    299 #define	CPRNG_FAST_BUFIDX	(crypto_core_OUTPUTWORDS - 1)
    300 
    301 static inline void
    302 cprng_fast_seed(struct cprng_fast *cprng, const void *seed)
    303 {
    304 
    305 	(void)memset(cprng->buffer, 0, sizeof cprng->buffer);
    306 	(void)memcpy(cprng->key, seed, sizeof cprng->key);
    307 	(void)memset(cprng->nonce, 0, sizeof cprng->nonce);
    308 
    309 	if (__predict_true(rnd_initial_entropy)) {
    310 		cprng->have_initial = true;
    311 	} else {
    312 		cprng->have_initial = false;
    313 	}
    314 }
    315 
    316 static inline uint32_t
    317 cprng_fast_word(struct cprng_fast *cprng)
    318 {
    319 	uint32_t v;
    320 
    321 	if (__predict_true(0 < cprng->buffer[CPRNG_FAST_BUFIDX])) {
    322 		v = cprng->buffer[--cprng->buffer[CPRNG_FAST_BUFIDX]];
    323 	} else {
    324 		/* If we don't have enough words, refill the buffer.  */
    325 		crypto_core(cprng->buffer, cprng->nonce, cprng->key,
    326 		    crypto_core_constant32);
    327 		if (__predict_false(++cprng->nonce[0] == 0)) {
    328 			cprng->nonce[1]++;
    329 			cprng_fast_schedule_reseed(cprng);
    330 		} else {
    331 			if (__predict_false(false == cprng->have_initial)) {
    332 				if (rnd_initial_entropy) {
    333 					cprng_fast_schedule_reseed(cprng);
    334 				}
    335 			}
    336 		}
    337 		v = cprng->buffer[CPRNG_FAST_BUFIDX];
    338 		cprng->buffer[CPRNG_FAST_BUFIDX] = CPRNG_FAST_BUFIDX;
    339 	}
    340 
    341 	return v;
    342 }
    343 
    344 static inline void
    345 cprng_fast_buf(struct cprng_fast *cprng, void *buf, unsigned n)
    346 {
    347 	uint8_t *p = buf;
    348 	uint32_t v;
    349 	unsigned r;
    350 
    351 	while (n) {
    352 		r = MIN(n, 4);
    353 		n -= r;
    354 		v = cprng_fast_word(cprng);
    355 		while (r--) {
    356 			*p++ = (v & 0xff);
    357 			v >>= 8;
    358 		}
    359 	}
    360 }
    361 
    362 /*
    364  * crypto_onetimestream: Expand a short unpredictable one-time seed
    365  * into a long unpredictable output.
    366  */
    367 static void
    368 crypto_onetimestream(const uint32_t seed[crypto_core_KEYWORDS], void *buf,
    369     size_t n)
    370 {
    371 	uint32_t block[crypto_core_OUTPUTWORDS];
    372 	uint32_t nonce[crypto_core_INPUTWORDS] = {0};
    373 	uint8_t *p8;
    374 	uint32_t *p32;
    375 	size_t ni, nb, nf;
    376 
    377 	/*
    378 	 * Guarantee we can generate up to n bytes.  We have
    379 	 * 2^(32*INPUTWORDS) possible inputs yielding output of
    380 	 * 4*OUTPUTWORDS*2^(32*INPUTWORDS) bytes.  It suffices to
    381 	 * require that sizeof n > (1/CHAR_BIT) log_2 n be less than
    382 	 * (1/CHAR_BIT) log_2 of the total output stream length.  We
    383 	 * have
    384 	 *
    385 	 *	log_2 (4 o 2^(32 i)) = log_2 (4 o) + log_2 2^(32 i)
    386 	 *	  = 2 + log_2 o + 32 i.
    387 	 */
    388 	__CTASSERT(CHAR_BIT*sizeof n <=
    389 	    (2 + ilog2(crypto_core_OUTPUTWORDS) + 32*crypto_core_INPUTWORDS));
    390 
    391 	p8 = buf;
    392 	p32 = (uint32_t *)roundup2((uintptr_t)p8, sizeof(uint32_t));
    393 	ni = (uint8_t *)p32 - p8;
    394 	if (n < ni)
    395 		ni = n;
    396 	nb = (n - ni) / sizeof block;
    397 	nf = (n - ni) % sizeof block;
    398 
    399 	KASSERT(((uintptr_t)p32 & 3) == 0);
    400 	KASSERT(ni <= n);
    401 	KASSERT(nb <= (n / sizeof block));
    402 	KASSERT(nf <= n);
    403 	KASSERT(n == (ni + (nb * sizeof block) + nf));
    404 	KASSERT(ni < sizeof(uint32_t));
    405 	KASSERT(nf < sizeof block);
    406 
    407 	if (ni) {
    408 		crypto_core(block, nonce, seed, crypto_core_constant32);
    409 		nonce[0]++;
    410 		(void)memcpy(p8, block, ni);
    411 	}
    412 	while (nb--) {
    413 		crypto_core(p32, nonce, seed, crypto_core_constant32);
    414 		if (++nonce[0] == 0)
    415 			nonce[1]++;
    416 		p32 += crypto_core_OUTPUTWORDS;
    417 	}
    418 	if (nf) {
    419 		crypto_core(block, nonce, seed, crypto_core_constant32);
    420 		if (++nonce[0] == 0)
    421 			nonce[1]++;
    422 		(void)memcpy(p32, block, nf);
    423 	}
    424 
    425 	if (ni | nf)
    426 		(void)explicit_memset(block, 0, sizeof block);
    427 }
    428 
    429 /* Public API */
    431 
    432 uint32_t
    433 cprng_fast32(void)
    434 {
    435 	struct cprng_fast *cprng;
    436 	uint32_t v;
    437 	int s;
    438 
    439 	s = cprng_fast_get(&cprng);
    440 	v = cprng_fast_word(cprng);
    441 	cprng_fast_put(cprng, s);
    442 
    443 	return v;
    444 }
    445 
    446 uint64_t
    447 cprng_fast64(void)
    448 {
    449 	struct cprng_fast *cprng;
    450 	uint32_t hi, lo;
    451 	int s;
    452 
    453 	s = cprng_fast_get(&cprng);
    454 	hi = cprng_fast_word(cprng);
    455 	lo = cprng_fast_word(cprng);
    456 	cprng_fast_put(cprng, s);
    457 
    458 	return ((uint64_t)hi << 32) | lo;
    459 }
    460 
    461 static void
    462 cprng_fast_buf_short(void *buf, size_t len)
    463 {
    464 	struct cprng_fast *cprng;
    465 	int s;
    466 
    467 	s = cprng_fast_get(&cprng);
    468 	cprng_fast_buf(cprng, buf, len);
    469 	cprng_fast_put(cprng, s);
    470 }
    471 
    472 static __noinline void
    473 cprng_fast_buf_long(void *buf, size_t len)
    474 {
    475 	uint32_t seed[crypto_core_KEYWORDS];
    476 	struct cprng_fast *cprng;
    477 	int s;
    478 
    479 	s = cprng_fast_get(&cprng);
    480 	cprng_fast_buf(cprng, seed, sizeof seed);
    481 	cprng_fast_put(cprng, s);
    482 
    483 	crypto_onetimestream(seed, buf, len);
    484 
    485 	(void)explicit_memset(seed, 0, sizeof seed);
    486 }
    487 
    488 size_t
    489 cprng_fast(void *buf, size_t len)
    490 {
    491 
    492 	/*
    493 	 * We don't want to hog the CPU, so we use the short version,
    494 	 * to generate output without preemption, only if we can do it
    495 	 * with at most one crypto_core.
    496 	 */
    497 	if (len <= (sizeof(uint32_t) * crypto_core_OUTPUTWORDS))
    498 		cprng_fast_buf_short(buf, len);
    499 	else
    500 		cprng_fast_buf_long(buf, len);
    501 
    502 	return len;
    503 }
    504