cprng_fast.c revision 1.3 1 /* $NetBSD: cprng_fast.c,v 1.3 2014/08/10 22:35:32 justin Exp $ */
2
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: cprng_fast.c,v 1.3 2014/08/10 22:35:32 justin Exp $");
34
35 #include <sys/types.h>
36 #include <sys/bitops.h>
37 #include <sys/param.h>
38 #include <sys/cpu.h>
39 #include <sys/intr.h>
40 #include <sys/percpu.h>
41 #include <sys/cprng.h>
42
43
44 /* ChaCha core */
46
47 #define crypto_core_OUTPUTWORDS 16
48 #define crypto_core_INPUTWORDS 4
49 #define crypto_core_KEYWORDS 8
50 #define crypto_core_CONSTWORDS 4
51
52 #define crypto_core_ROUNDS 8
53
54 static uint32_t
55 rotate(uint32_t u, unsigned c)
56 {
57
58 return (u << c) | (u >> (32 - c));
59 }
60
61 #define QUARTERROUND(a, b, c, d) do { \
62 (a) += (b); (d) ^= (a); (d) = rotate((d), 16); \
63 (c) += (d); (b) ^= (c); (b) = rotate((b), 12); \
64 (a) += (b); (d) ^= (a); (d) = rotate((d), 8); \
65 (c) += (d); (b) ^= (c); (b) = rotate((b), 7); \
66 } while (0)
67
68 static void
69 crypto_core(uint32_t *out, const uint32_t *in, const uint32_t *k,
70 const uint32_t *c)
71 {
72 uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
73 int i;
74
75 x0 = c[0];
76 x1 = c[1];
77 x2 = c[2];
78 x3 = c[3];
79 x4 = k[0];
80 x5 = k[1];
81 x6 = k[2];
82 x7 = k[3];
83 x8 = k[4];
84 x9 = k[5];
85 x10 = k[6];
86 x11 = k[7];
87 x12 = in[0];
88 x13 = in[1];
89 x14 = in[2];
90 x15 = in[3];
91
92 for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
93 QUARTERROUND( x0, x4, x8,x12);
94 QUARTERROUND( x1, x5, x9,x13);
95 QUARTERROUND( x2, x6,x10,x14);
96 QUARTERROUND( x3, x7,x11,x15);
97 QUARTERROUND( x0, x5,x10,x15);
98 QUARTERROUND( x1, x6,x11,x12);
99 QUARTERROUND( x2, x7, x8,x13);
100 QUARTERROUND( x3, x4, x9,x14);
101 }
102
103 out[0] = x0 + c[0];
104 out[1] = x1 + c[1];
105 out[2] = x2 + c[2];
106 out[3] = x3 + c[3];
107 out[4] = x4 + k[0];
108 out[5] = x5 + k[1];
109 out[6] = x6 + k[2];
110 out[7] = x7 + k[3];
111 out[8] = x8 + k[4];
112 out[9] = x9 + k[5];
113 out[10] = x10 + k[6];
114 out[11] = x11 + k[7];
115 out[12] = x12 + in[0];
116 out[13] = x13 + in[1];
117 out[14] = x14 + in[2];
118 out[15] = x15 + in[3];
119 }
120
121 /* `expand 32-byte k' */
123 static const uint32_t crypto_core_constant32[4] = {
124 0x61707865U, 0x3320646eU, 0x79622d32U, 0x6b206574U,
125 };
126
127 /*
128 * Test vector for ChaCha20 from
129 * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
130 * test vectors for ChaCha12 and ChaCha8 generated by the same
131 * crypto_core code with crypto_core_ROUNDS varied.
132 */
133
134 #define check(E) do \
135 { \
136 if (!(E)) \
137 panic("crypto self-test failed: %s", #E); \
138 } while (0)
139
140 static void
141 crypto_core_selftest(void)
142 {
143 const uint32_t zero32[8] = {0};
144 const uint8_t sigma[] = "expand 32-byte k";
145 uint32_t block[16];
146 unsigned i;
147
148 #if crypto_core_ROUNDS == 8
149 static const uint8_t out[64] = {
150 0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
151 0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
152 0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
153 0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
154 0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
155 0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
156 0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
157 0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
158 };
159 #elif crypto_core_ROUNDS == 12
160 static const uint8_t out[64] = {
161 0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
162 0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
163 0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
164 0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
165 0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
166 0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
167 0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
168 0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
169 };
170 #elif crypto_core_ROUNDS == 20
171 static const uint8_t out[64] = {
172 0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
173 0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
174 0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
175 0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
176 0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
177 0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
178 0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
179 0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
180 };
181 #else
182 #error crypto_core_ROUNDS must be 8, 12, or 20.
183 #endif
184
185 check(crypto_core_constant32[0] == le32dec(&sigma[0]));
186 check(crypto_core_constant32[1] == le32dec(&sigma[4]));
187 check(crypto_core_constant32[2] == le32dec(&sigma[8]));
188 check(crypto_core_constant32[3] == le32dec(&sigma[12]));
189
190 crypto_core(block, zero32, zero32, crypto_core_constant32);
191 for (i = 0; i < 16; i++)
192 check(block[i] == le32dec(&out[i*4]));
193 }
194
195 #undef check
196
197 #define CPRNG_FAST_SEED_BYTES (crypto_core_KEYWORDS * sizeof(uint32_t))
199
200 struct cprng_fast {
201 uint32_t buffer[crypto_core_OUTPUTWORDS];
202 uint32_t key[crypto_core_KEYWORDS];
203 uint32_t nonce[crypto_core_INPUTWORDS];
204 bool have_initial;
205 };
206
207 __CTASSERT(sizeof ((struct cprng_fast *)0)->key == CPRNG_FAST_SEED_BYTES);
208
209 static void cprng_fast_schedule_reseed(struct cprng_fast *);
210 static void cprng_fast_intr(void *);
211
212 static inline void cprng_fast_seed(struct cprng_fast *, const void *);
213 static void cprng_fast_buf(struct cprng_fast *, void *, unsigned);
214
215 static void cprng_fast_buf_short(void *, size_t);
216 static void cprng_fast_buf_long(void *, size_t);
217
218 static percpu_t *cprng_fast_percpu __read_mostly;
219 static void *cprng_fast_softint __read_mostly;
220
221 extern int rnd_initial_entropy;
222
223 void
224 cprng_fast_init(void)
225 {
226 struct cpu_info *ci;
227 CPU_INFO_ITERATOR cii;
228
229 crypto_core_selftest();
230 cprng_fast_percpu = percpu_alloc(sizeof(struct cprng_fast));
231 for (CPU_INFO_FOREACH(cii, ci)) {
232 struct cprng_fast *cprng;
233 uint8_t seed[CPRNG_FAST_SEED_BYTES];
234
235 percpu_traverse_enter();
236 cprng = percpu_getptr_remote(cprng_fast_percpu, ci);
237 cprng_strong(kern_cprng, seed, sizeof(seed), FASYNC);
238 /* Can't do anything about it if not full entropy. */
239 cprng_fast_seed(cprng, seed);
240 explicit_memset(seed, 0, sizeof(seed));
241 percpu_traverse_exit();
242 }
243 cprng_fast_softint = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
244 &cprng_fast_intr, NULL);
245 }
246
247 static inline int
248 cprng_fast_get(struct cprng_fast **cprngp)
249 {
250
251 *cprngp = percpu_getref(cprng_fast_percpu);
252 return splvm();
253 }
254
255 static inline void
256 cprng_fast_put(struct cprng_fast *cprng, int s)
257 {
258
259 KASSERT((cprng == percpu_getref(cprng_fast_percpu)) &&
260 (percpu_putref(cprng_fast_percpu), true));
261 splx(s);
262 percpu_putref(cprng_fast_percpu);
263 }
264
265 static inline void
267 cprng_fast_schedule_reseed(struct cprng_fast *cprng __unused)
268 {
269
270 softint_schedule(cprng_fast_softint);
271 }
272
273 static void
274 cprng_fast_intr(void *cookie __unused)
275 {
276 struct cprng_fast *cprng;
277 uint8_t seed[CPRNG_FAST_SEED_BYTES];
278
279 cprng_strong(kern_cprng, seed, sizeof(seed), FASYNC);
280
281 cprng = percpu_getref(cprng_fast_percpu);
282 cprng_fast_seed(cprng, seed);
283 percpu_putref(cprng_fast_percpu);
284
285 explicit_memset(seed, 0, sizeof(seed));
286 }
287
288 /* CPRNG algorithm */
290
291 /*
292 * The state consists of a key, the current nonce, and a 64-byte buffer
293 * of output. Since we fill the buffer only when we need output, and
294 * eat a 32-bit word at a time, one 32-bit word of the buffer would be
295 * wasted. Instead, we repurpose it to count the number of entries in
296 * the buffer remaining, counting from high to low in order to allow
297 * comparison to zero to detect when we need to refill it.
298 */
299 #define CPRNG_FAST_BUFIDX (crypto_core_OUTPUTWORDS - 1)
300
301 static inline void
302 cprng_fast_seed(struct cprng_fast *cprng, const void *seed)
303 {
304
305 (void)memset(cprng->buffer, 0, sizeof cprng->buffer);
306 (void)memcpy(cprng->key, seed, sizeof cprng->key);
307 (void)memset(cprng->nonce, 0, sizeof cprng->nonce);
308
309 if (__predict_true(rnd_initial_entropy)) {
310 cprng->have_initial = true;
311 } else {
312 cprng->have_initial = false;
313 }
314 }
315
316 static inline uint32_t
317 cprng_fast_word(struct cprng_fast *cprng)
318 {
319 uint32_t v;
320
321 if (__predict_true(0 < cprng->buffer[CPRNG_FAST_BUFIDX])) {
322 v = cprng->buffer[--cprng->buffer[CPRNG_FAST_BUFIDX]];
323 } else {
324 /* If we don't have enough words, refill the buffer. */
325 crypto_core(cprng->buffer, cprng->nonce, cprng->key,
326 crypto_core_constant32);
327 if (__predict_false(++cprng->nonce[0] == 0)) {
328 cprng->nonce[1]++;
329 cprng_fast_schedule_reseed(cprng);
330 } else {
331 if (__predict_false(false == cprng->have_initial)) {
332 if (rnd_initial_entropy) {
333 cprng_fast_schedule_reseed(cprng);
334 }
335 }
336 }
337 v = cprng->buffer[CPRNG_FAST_BUFIDX];
338 cprng->buffer[CPRNG_FAST_BUFIDX] = CPRNG_FAST_BUFIDX;
339 }
340
341 return v;
342 }
343
344 static inline void
345 cprng_fast_buf(struct cprng_fast *cprng, void *buf, unsigned n)
346 {
347 uint8_t *p = buf;
348 uint32_t v;
349 unsigned r;
350
351 while (n) {
352 r = MIN(n, 4);
353 n -= r;
354 v = cprng_fast_word(cprng);
355 while (r--) {
356 *p++ = (v & 0xff);
357 v >>= 8;
358 }
359 }
360 }
361
362 /*
364 * crypto_onetimestream: Expand a short unpredictable one-time seed
365 * into a long unpredictable output.
366 */
367 static void
368 crypto_onetimestream(const uint32_t seed[crypto_core_KEYWORDS], void *buf,
369 size_t n)
370 {
371 uint32_t block[crypto_core_OUTPUTWORDS];
372 uint32_t nonce[crypto_core_INPUTWORDS] = {0};
373 uint8_t *p8;
374 uint32_t *p32;
375 size_t ni, nb, nf;
376
377 /*
378 * Guarantee we can generate up to n bytes. We have
379 * 2^(32*INPUTWORDS) possible inputs yielding output of
380 * 4*OUTPUTWORDS*2^(32*INPUTWORDS) bytes. It suffices to
381 * require that sizeof n > (1/CHAR_BIT) log_2 n be less than
382 * (1/CHAR_BIT) log_2 of the total output stream length. We
383 * have
384 *
385 * log_2 (4 o 2^(32 i)) = log_2 (4 o) + log_2 2^(32 i)
386 * = 2 + log_2 o + 32 i.
387 */
388 __CTASSERT(CHAR_BIT*sizeof n <=
389 (2 + ilog2(crypto_core_OUTPUTWORDS) + 32*crypto_core_INPUTWORDS));
390
391 p8 = buf;
392 p32 = (uint32_t *)roundup2((uintptr_t)p8, sizeof(uint32_t));
393 ni = (uint8_t *)p32 - p8;
394 if (n < ni)
395 ni = n;
396 nb = (n - ni) / sizeof block;
397 nf = (n - ni) % sizeof block;
398
399 KASSERT(((uintptr_t)p32 & 3) == 0);
400 KASSERT(ni <= n);
401 KASSERT(nb <= (n / sizeof block));
402 KASSERT(nf <= n);
403 KASSERT(n == (ni + (nb * sizeof block) + nf));
404 KASSERT(ni < sizeof(uint32_t));
405 KASSERT(nf < sizeof block);
406
407 if (ni) {
408 crypto_core(block, nonce, seed, crypto_core_constant32);
409 nonce[0]++;
410 (void)memcpy(p8, block, ni);
411 }
412 while (nb--) {
413 crypto_core(p32, nonce, seed, crypto_core_constant32);
414 if (++nonce[0] == 0)
415 nonce[1]++;
416 p32 += crypto_core_OUTPUTWORDS;
417 }
418 if (nf) {
419 crypto_core(block, nonce, seed, crypto_core_constant32);
420 if (++nonce[0] == 0)
421 nonce[1]++;
422 (void)memcpy(p32, block, nf);
423 }
424
425 if (ni | nf)
426 (void)explicit_memset(block, 0, sizeof block);
427 }
428
429 /* Public API */
431
432 uint32_t
433 cprng_fast32(void)
434 {
435 struct cprng_fast *cprng;
436 uint32_t v;
437 int s;
438
439 s = cprng_fast_get(&cprng);
440 v = cprng_fast_word(cprng);
441 cprng_fast_put(cprng, s);
442
443 return v;
444 }
445
446 uint64_t
447 cprng_fast64(void)
448 {
449 struct cprng_fast *cprng;
450 uint32_t hi, lo;
451 int s;
452
453 s = cprng_fast_get(&cprng);
454 hi = cprng_fast_word(cprng);
455 lo = cprng_fast_word(cprng);
456 cprng_fast_put(cprng, s);
457
458 return ((uint64_t)hi << 32) | lo;
459 }
460
461 static void
462 cprng_fast_buf_short(void *buf, size_t len)
463 {
464 struct cprng_fast *cprng;
465 int s;
466
467 s = cprng_fast_get(&cprng);
468 cprng_fast_buf(cprng, buf, len);
469 cprng_fast_put(cprng, s);
470 }
471
472 static __noinline void
473 cprng_fast_buf_long(void *buf, size_t len)
474 {
475 uint32_t seed[crypto_core_KEYWORDS];
476 struct cprng_fast *cprng;
477 int s;
478
479 s = cprng_fast_get(&cprng);
480 cprng_fast_buf(cprng, seed, sizeof seed);
481 cprng_fast_put(cprng, s);
482
483 crypto_onetimestream(seed, buf, len);
484
485 (void)explicit_memset(seed, 0, sizeof seed);
486 }
487
488 size_t
489 cprng_fast(void *buf, size_t len)
490 {
491
492 /*
493 * We don't want to hog the CPU, so we use the short version,
494 * to generate output without preemption, only if we can do it
495 * with at most one crypto_core.
496 */
497 if (len <= (sizeof(uint32_t) * crypto_core_OUTPUTWORDS))
498 cprng_fast_buf_short(buf, len);
499 else
500 cprng_fast_buf_long(buf, len);
501
502 return len;
503 }
504