Home | History | Annotate | Line # | Download | only in cprng_fast
cprng_fast.c revision 1.9
      1 /*	$NetBSD: cprng_fast.c,v 1.9 2014/08/11 13:12:53 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: cprng_fast.c,v 1.9 2014/08/11 13:12:53 riastradh Exp $");
     34 
     35 #include <sys/types.h>
     36 #include <sys/param.h>
     37 #include <sys/bitops.h>
     38 #include <sys/cprng.h>
     39 #include <sys/cpu.h>
     40 #include <sys/intr.h>
     41 #include <sys/percpu.h>
     42 #include <sys/rnd.h>
     43 
     44 /* ChaCha core */
     46 
     47 #define	crypto_core_OUTPUTWORDS	16
     48 #define	crypto_core_INPUTWORDS	4
     49 #define	crypto_core_KEYWORDS	8
     50 #define	crypto_core_CONSTWORDS	4
     51 
     52 #define	crypto_core_ROUNDS	8
     53 
     54 static uint32_t
     55 rotate(uint32_t u, unsigned c)
     56 {
     57 
     58 	return (u << c) | (u >> (32 - c));
     59 }
     60 
     61 #define	QUARTERROUND(a, b, c, d) do {					      \
     62 	(a) += (b); (d) ^= (a); (d) = rotate((d), 16);			      \
     63 	(c) += (d); (b) ^= (c); (b) = rotate((b), 12);			      \
     64 	(a) += (b); (d) ^= (a); (d) = rotate((d),  8);			      \
     65 	(c) += (d); (b) ^= (c); (b) = rotate((b),  7);			      \
     66 } while (0)
     67 
     68 static void
     69 crypto_core(uint32_t *out, const uint32_t *in, const uint32_t *k,
     70     const uint32_t *c)
     71 {
     72 	uint32_t x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15;
     73 	int i;
     74 
     75 	x0 = c[0];
     76 	x1 = c[1];
     77 	x2 = c[2];
     78 	x3 = c[3];
     79 	x4 = k[0];
     80 	x5 = k[1];
     81 	x6 = k[2];
     82 	x7 = k[3];
     83 	x8 = k[4];
     84 	x9 = k[5];
     85 	x10 = k[6];
     86 	x11 = k[7];
     87 	x12 = in[0];
     88 	x13 = in[1];
     89 	x14 = in[2];
     90 	x15 = in[3];
     91 
     92 	for (i = crypto_core_ROUNDS; i > 0; i -= 2) {
     93 		QUARTERROUND( x0, x4, x8,x12);
     94 		QUARTERROUND( x1, x5, x9,x13);
     95 		QUARTERROUND( x2, x6,x10,x14);
     96 		QUARTERROUND( x3, x7,x11,x15);
     97 		QUARTERROUND( x0, x5,x10,x15);
     98 		QUARTERROUND( x1, x6,x11,x12);
     99 		QUARTERROUND( x2, x7, x8,x13);
    100 		QUARTERROUND( x3, x4, x9,x14);
    101 	}
    102 
    103 	out[0] = x0 + c[0];
    104 	out[1] = x1 + c[1];
    105 	out[2] = x2 + c[2];
    106 	out[3] = x3 + c[3];
    107 	out[4] = x4 + k[0];
    108 	out[5] = x5 + k[1];
    109 	out[6] = x6 + k[2];
    110 	out[7] = x7 + k[3];
    111 	out[8] = x8 + k[4];
    112 	out[9] = x9 + k[5];
    113 	out[10] = x10 + k[6];
    114 	out[11] = x11 + k[7];
    115 	out[12] = x12 + in[0];
    116 	out[13] = x13 + in[1];
    117 	out[14] = x14 + in[2];
    118 	out[15] = x15 + in[3];
    119 }
    120 
    121 /* `expand 32-byte k' */
    123 static const uint32_t crypto_core_constant32[4] = {
    124 	0x61707865U, 0x3320646eU, 0x79622d32U, 0x6b206574U,
    125 };
    126 
    127 /*
    128  * Test vector for ChaCha20 from
    129  * <http://tools.ietf.org/html/draft-strombergson-chacha-test-vectors-00>,
    130  * test vectors for ChaCha12 and ChaCha8 generated by the same
    131  * crypto_core code with crypto_core_ROUNDS varied.
    132  */
    133 
    134 #define	check(E)	do						\
    135 {									\
    136 	if (!(E))							\
    137 		panic("crypto self-test failed: %s", #E);		\
    138 } while (0)
    139 
    140 static void
    141 crypto_core_selftest(void)
    142 {
    143 	const uint32_t zero32[8] = {0};
    144 	const uint8_t sigma[] = "expand 32-byte k";
    145 	uint32_t block[16];
    146 	unsigned i;
    147 
    148 #if crypto_core_ROUNDS == 8
    149 	static const uint8_t out[64] = {
    150 		0x3e,0x00,0xef,0x2f,0x89,0x5f,0x40,0xd6,
    151 		0x7f,0x5b,0xb8,0xe8,0x1f,0x09,0xa5,0xa1,
    152 		0x2c,0x84,0x0e,0xc3,0xce,0x9a,0x7f,0x3b,
    153 		0x18,0x1b,0xe1,0x88,0xef,0x71,0x1a,0x1e,
    154 		0x98,0x4c,0xe1,0x72,0xb9,0x21,0x6f,0x41,
    155 		0x9f,0x44,0x53,0x67,0x45,0x6d,0x56,0x19,
    156 		0x31,0x4a,0x42,0xa3,0xda,0x86,0xb0,0x01,
    157 		0x38,0x7b,0xfd,0xb8,0x0e,0x0c,0xfe,0x42,
    158 	};
    159 #elif crypto_core_ROUNDS == 12
    160 	static const uint8_t out[64] = {
    161 		0x9b,0xf4,0x9a,0x6a,0x07,0x55,0xf9,0x53,
    162 		0x81,0x1f,0xce,0x12,0x5f,0x26,0x83,0xd5,
    163 		0x04,0x29,0xc3,0xbb,0x49,0xe0,0x74,0x14,
    164 		0x7e,0x00,0x89,0xa5,0x2e,0xae,0x15,0x5f,
    165 		0x05,0x64,0xf8,0x79,0xd2,0x7a,0xe3,0xc0,
    166 		0x2c,0xe8,0x28,0x34,0xac,0xfa,0x8c,0x79,
    167 		0x3a,0x62,0x9f,0x2c,0xa0,0xde,0x69,0x19,
    168 		0x61,0x0b,0xe8,0x2f,0x41,0x13,0x26,0xbe,
    169 	};
    170 #elif crypto_core_ROUNDS == 20
    171 	static const uint8_t out[64] = {
    172 		0x76,0xb8,0xe0,0xad,0xa0,0xf1,0x3d,0x90,
    173 		0x40,0x5d,0x6a,0xe5,0x53,0x86,0xbd,0x28,
    174 		0xbd,0xd2,0x19,0xb8,0xa0,0x8d,0xed,0x1a,
    175 		0xa8,0x36,0xef,0xcc,0x8b,0x77,0x0d,0xc7,
    176 		0xda,0x41,0x59,0x7c,0x51,0x57,0x48,0x8d,
    177 		0x77,0x24,0xe0,0x3f,0xb8,0xd8,0x4a,0x37,
    178 		0x6a,0x43,0xb8,0xf4,0x15,0x18,0xa1,0x1c,
    179 		0xc3,0x87,0xb6,0x69,0xb2,0xee,0x65,0x86,
    180 	};
    181 #else
    182 #error crypto_core_ROUNDS must be 8, 12, or 20.
    183 #endif
    184 
    185 	check(crypto_core_constant32[0] == le32dec(&sigma[0]));
    186 	check(crypto_core_constant32[1] == le32dec(&sigma[4]));
    187 	check(crypto_core_constant32[2] == le32dec(&sigma[8]));
    188 	check(crypto_core_constant32[3] == le32dec(&sigma[12]));
    189 
    190 	crypto_core(block, zero32, zero32, crypto_core_constant32);
    191 	for (i = 0; i < 16; i++)
    192 		check(block[i] == le32dec(&out[i*4]));
    193 }
    194 
    195 #undef check
    196 
    197 #define	CPRNG_FAST_SEED_BYTES	(crypto_core_KEYWORDS * sizeof(uint32_t))
    199 
    200 struct cprng_fast {
    201 	uint32_t 	buffer[crypto_core_OUTPUTWORDS];
    202 	uint32_t 	key[crypto_core_KEYWORDS];
    203 	uint32_t 	nonce[crypto_core_INPUTWORDS];
    204 	bool		have_initial;
    205 };
    206 
    207 __CTASSERT(sizeof ((struct cprng_fast *)0)->key == CPRNG_FAST_SEED_BYTES);
    208 
    209 static void	cprng_fast_init_cpu(void *, void *, struct cpu_info *);
    210 static void	cprng_fast_schedule_reseed(struct cprng_fast *);
    211 static void	cprng_fast_intr(void *);
    212 
    213 static void	cprng_fast_seed(struct cprng_fast *, const void *);
    214 static void	cprng_fast_buf(struct cprng_fast *, void *, unsigned);
    215 
    216 static void	cprng_fast_buf_short(void *, size_t);
    217 static void	cprng_fast_buf_long(void *, size_t);
    218 
    219 static percpu_t	*cprng_fast_percpu	__read_mostly;
    220 static void	*cprng_fast_softint	__read_mostly;
    221 
    222 void
    223 cprng_fast_init(void)
    224 {
    225 
    226 	crypto_core_selftest();
    227 	cprng_fast_percpu = percpu_alloc(sizeof(struct cprng_fast));
    228 	percpu_foreach(cprng_fast_percpu, &cprng_fast_init_cpu, NULL);
    229 	cprng_fast_softint = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
    230 	    &cprng_fast_intr, NULL);
    231 }
    232 
    233 static void
    234 cprng_fast_init_cpu(void *p, void *arg __unused, struct cpu_info *ci __unused)
    235 {
    236 	struct cprng_fast *const cprng = p;
    237 	uint8_t seed[CPRNG_FAST_SEED_BYTES];
    238 
    239 	cprng_strong(kern_cprng, seed, sizeof seed, FASYNC);
    240 	cprng_fast_seed(cprng, seed);
    241 	cprng->have_initial = rnd_initial_entropy;
    242 	(void)explicit_memset(seed, 0, sizeof seed);
    243 }
    244 
    245 static inline int
    247 cprng_fast_get(struct cprng_fast **cprngp)
    248 {
    249 	struct cprng_fast *cprng;
    250 	int s;
    251 
    252 	*cprngp = cprng = percpu_getref(cprng_fast_percpu);
    253 	s = splvm();
    254 
    255 	if (__predict_false(!cprng->have_initial))
    256 		cprng_fast_schedule_reseed(cprng);
    257 
    258 	return s;
    259 }
    260 
    261 static inline void
    262 cprng_fast_put(struct cprng_fast *cprng, int s)
    263 {
    264 
    265 	KASSERT((cprng == percpu_getref(cprng_fast_percpu)) &&
    266 	    (percpu_putref(cprng_fast_percpu), true));
    267 	splx(s);
    268 	percpu_putref(cprng_fast_percpu);
    269 }
    270 
    271 static inline void
    272 cprng_fast_schedule_reseed(struct cprng_fast *cprng __unused)
    273 {
    274 
    275 	softint_schedule(cprng_fast_softint);
    276 }
    277 
    278 static void
    279 cprng_fast_intr(void *cookie __unused)
    280 {
    281 	struct cprng_fast *cprng;
    282 	uint8_t seed[CPRNG_FAST_SEED_BYTES];
    283 	int s;
    284 
    285 	cprng_strong(kern_cprng, seed, sizeof(seed), FASYNC);
    286 
    287 	cprng = percpu_getref(cprng_fast_percpu);
    288 	s = splvm();
    289 	cprng_fast_seed(cprng, seed);
    290 	cprng->have_initial = rnd_initial_entropy;
    291 	splx(s);
    292 	percpu_putref(cprng_fast_percpu);
    293 
    294 	explicit_memset(seed, 0, sizeof(seed));
    295 }
    296 
    297 /* CPRNG algorithm */
    299 
    300 /*
    301  * The state consists of a key, the current nonce, and a 64-byte buffer
    302  * of output.  Since we fill the buffer only when we need output, and
    303  * eat a 32-bit word at a time, one 32-bit word of the buffer would be
    304  * wasted.  Instead, we repurpose it to count the number of entries in
    305  * the buffer remaining, counting from high to low in order to allow
    306  * comparison to zero to detect when we need to refill it.
    307  */
    308 #define	CPRNG_FAST_BUFIDX	(crypto_core_OUTPUTWORDS - 1)
    309 
    310 static void
    311 cprng_fast_seed(struct cprng_fast *cprng, const void *seed)
    312 {
    313 
    314 	(void)memset(cprng->buffer, 0, sizeof cprng->buffer);
    315 	(void)memcpy(cprng->key, seed, sizeof cprng->key);
    316 	(void)memset(cprng->nonce, 0, sizeof cprng->nonce);
    317 }
    318 
    319 static inline uint32_t
    320 cprng_fast_word(struct cprng_fast *cprng)
    321 {
    322 	uint32_t v;
    323 
    324 	if (__predict_true(0 < cprng->buffer[CPRNG_FAST_BUFIDX])) {
    325 		v = cprng->buffer[--cprng->buffer[CPRNG_FAST_BUFIDX]];
    326 	} else {
    327 		/* If we don't have enough words, refill the buffer.  */
    328 		crypto_core(cprng->buffer, cprng->nonce, cprng->key,
    329 		    crypto_core_constant32);
    330 		if (__predict_false(++cprng->nonce[0] == 0)) {
    331 			cprng->nonce[1]++;
    332 			cprng_fast_schedule_reseed(cprng);
    333 		}
    334 		v = cprng->buffer[CPRNG_FAST_BUFIDX];
    335 		cprng->buffer[CPRNG_FAST_BUFIDX] = CPRNG_FAST_BUFIDX;
    336 	}
    337 
    338 	return v;
    339 }
    340 
    341 static inline void
    342 cprng_fast_buf(struct cprng_fast *cprng, void *buf, unsigned n)
    343 {
    344 	uint8_t *p = buf;
    345 	uint32_t v;
    346 	unsigned r;
    347 
    348 	while (n) {
    349 		r = MIN(n, 4);
    350 		n -= r;
    351 		v = cprng_fast_word(cprng);
    352 		while (r--) {
    353 			*p++ = (v & 0xff);
    354 			v >>= 8;
    355 		}
    356 	}
    357 }
    358 
    359 /*
    361  * crypto_onetimestream: Expand a short unpredictable one-time seed
    362  * into a long unpredictable output.
    363  */
    364 static void
    365 crypto_onetimestream(const uint32_t seed[crypto_core_KEYWORDS], void *buf,
    366     size_t n)
    367 {
    368 	uint32_t block[crypto_core_OUTPUTWORDS];
    369 	uint32_t nonce[crypto_core_INPUTWORDS] = {0};
    370 	uint8_t *p8;
    371 	uint32_t *p32;
    372 	size_t ni, nb, nf;
    373 
    374 	/*
    375 	 * Guarantee we can generate up to n bytes.  We have
    376 	 * 2^(32*INPUTWORDS) possible inputs yielding output of
    377 	 * 4*OUTPUTWORDS*2^(32*INPUTWORDS) bytes.  It suffices to
    378 	 * require that sizeof n > (1/CHAR_BIT) log_2 n be less than
    379 	 * (1/CHAR_BIT) log_2 of the total output stream length.  We
    380 	 * have
    381 	 *
    382 	 *	log_2 (4 o 2^(32 i)) = log_2 (4 o) + log_2 2^(32 i)
    383 	 *	  = 2 + log_2 o + 32 i.
    384 	 */
    385 	__CTASSERT(CHAR_BIT*sizeof n <=
    386 	    (2 + ilog2(crypto_core_OUTPUTWORDS) + 32*crypto_core_INPUTWORDS));
    387 
    388 	p8 = buf;
    389 	p32 = (uint32_t *)roundup2((uintptr_t)p8, sizeof(uint32_t));
    390 	ni = (uint8_t *)p32 - p8;
    391 	if (n < ni)
    392 		ni = n;
    393 	nb = (n - ni) / sizeof block;
    394 	nf = (n - ni) % sizeof block;
    395 
    396 	KASSERT(((uintptr_t)p32 & 3) == 0);
    397 	KASSERT(ni <= n);
    398 	KASSERT(nb <= (n / sizeof block));
    399 	KASSERT(nf <= n);
    400 	KASSERT(n == (ni + (nb * sizeof block) + nf));
    401 	KASSERT(ni < sizeof(uint32_t));
    402 	KASSERT(nf < sizeof block);
    403 
    404 	if (ni) {
    405 		crypto_core(block, nonce, seed, crypto_core_constant32);
    406 		nonce[0]++;
    407 		(void)memcpy(p8, block, ni);
    408 	}
    409 	while (nb--) {
    410 		crypto_core(p32, nonce, seed, crypto_core_constant32);
    411 		if (++nonce[0] == 0)
    412 			nonce[1]++;
    413 		p32 += crypto_core_OUTPUTWORDS;
    414 	}
    415 	if (nf) {
    416 		crypto_core(block, nonce, seed, crypto_core_constant32);
    417 		if (++nonce[0] == 0)
    418 			nonce[1]++;
    419 		(void)memcpy(p32, block, nf);
    420 	}
    421 
    422 	if (ni | nf)
    423 		(void)explicit_memset(block, 0, sizeof block);
    424 }
    425 
    426 /* Public API */
    428 
    429 uint32_t
    430 cprng_fast32(void)
    431 {
    432 	struct cprng_fast *cprng;
    433 	uint32_t v;
    434 	int s;
    435 
    436 	s = cprng_fast_get(&cprng);
    437 	v = cprng_fast_word(cprng);
    438 	cprng_fast_put(cprng, s);
    439 
    440 	return v;
    441 }
    442 
    443 uint64_t
    444 cprng_fast64(void)
    445 {
    446 	struct cprng_fast *cprng;
    447 	uint32_t hi, lo;
    448 	int s;
    449 
    450 	s = cprng_fast_get(&cprng);
    451 	hi = cprng_fast_word(cprng);
    452 	lo = cprng_fast_word(cprng);
    453 	cprng_fast_put(cprng, s);
    454 
    455 	return ((uint64_t)hi << 32) | lo;
    456 }
    457 
    458 static void
    459 cprng_fast_buf_short(void *buf, size_t len)
    460 {
    461 	struct cprng_fast *cprng;
    462 	int s;
    463 
    464 	s = cprng_fast_get(&cprng);
    465 	cprng_fast_buf(cprng, buf, len);
    466 	cprng_fast_put(cprng, s);
    467 }
    468 
    469 static __noinline void
    470 cprng_fast_buf_long(void *buf, size_t len)
    471 {
    472 	uint32_t seed[crypto_core_KEYWORDS];
    473 	struct cprng_fast *cprng;
    474 	int s;
    475 
    476 	s = cprng_fast_get(&cprng);
    477 	cprng_fast_buf(cprng, seed, sizeof seed);
    478 	cprng_fast_put(cprng, s);
    479 
    480 	crypto_onetimestream(seed, buf, len);
    481 
    482 	(void)explicit_memset(seed, 0, sizeof seed);
    483 }
    484 
    485 size_t
    486 cprng_fast(void *buf, size_t len)
    487 {
    488 
    489 	/*
    490 	 * We don't want to hog the CPU, so we use the short version,
    491 	 * to generate output without preemption, only if we can do it
    492 	 * with at most one crypto_core.
    493 	 */
    494 	if (len <= (sizeof(uint32_t) * crypto_core_OUTPUTWORDS))
    495 		cprng_fast_buf_short(buf, len);
    496 	else
    497 		cprng_fast_buf_long(buf, len);
    498 
    499 	return len;
    500 }
    501