acpi_cpu_cstate.c revision 1.25 1 /* $NetBSD: acpi_cpu_cstate.c,v 1.25 2010/08/14 05:13:21 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_cstate.c,v 1.25 2010/08/14 05:13:21 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/cpu.h>
34 #include <sys/device.h>
35 #include <sys/evcnt.h>
36 #include <sys/kernel.h>
37 #include <sys/once.h>
38 #include <sys/mutex.h>
39 #include <sys/timetc.h>
40
41 #include <dev/acpi/acpireg.h>
42 #include <dev/acpi/acpivar.h>
43 #include <dev/acpi/acpi_cpu.h>
44 #include <dev/acpi/acpi_timer.h>
45
46 #include <machine/acpi_machdep.h>
47
48 #define _COMPONENT ACPI_BUS_COMPONENT
49 ACPI_MODULE_NAME ("acpi_cpu_cstate")
50
51 static void acpicpu_cstate_attach_print(struct acpicpu_softc *);
52 static void acpicpu_cstate_attach_evcnt(struct acpicpu_softc *);
53 static void acpicpu_cstate_detach_evcnt(struct acpicpu_softc *);
54 static ACPI_STATUS acpicpu_cstate_cst(struct acpicpu_softc *);
55 static ACPI_STATUS acpicpu_cstate_cst_add(struct acpicpu_softc *,
56 ACPI_OBJECT *);
57 static void acpicpu_cstate_cst_bios(void);
58 static void acpicpu_cstate_memset(struct acpicpu_softc *);
59 static void acpicpu_cstate_fadt(struct acpicpu_softc *);
60 static void acpicpu_cstate_quirks(struct acpicpu_softc *);
61 static int acpicpu_cstate_latency(struct acpicpu_softc *);
62 static bool acpicpu_cstate_bm_check(void);
63 static void acpicpu_cstate_idle_enter(struct acpicpu_softc *,int);
64
65 extern struct acpicpu_softc **acpicpu_sc;
66
67 /*
68 * XXX: The local APIC timer (as well as TSC) is typically stopped in C3.
69 * For now, we cannot but disable C3. But there appears to be timer-
70 * related interrupt issues also in C2. The only entirely safe option
71 * at the moment is to use C1.
72 */
73 #ifdef ACPICPU_ENABLE_C3
74 static int cs_state_max = ACPI_STATE_C3;
75 #else
76 static int cs_state_max = ACPI_STATE_C1;
77 #endif
78
79 void
80 acpicpu_cstate_attach(device_t self)
81 {
82 struct acpicpu_softc *sc = device_private(self);
83 ACPI_STATUS rv;
84
85 /*
86 * Either use the preferred _CST or resort to FADT.
87 */
88 rv = acpicpu_cstate_cst(sc);
89
90 switch (rv) {
91
92 case AE_OK:
93 acpicpu_cstate_cst_bios();
94 break;
95
96 default:
97 sc->sc_flags |= ACPICPU_FLAG_C_FADT;
98 acpicpu_cstate_fadt(sc);
99 break;
100 }
101
102 acpicpu_cstate_quirks(sc);
103 acpicpu_cstate_attach_evcnt(sc);
104 acpicpu_cstate_attach_print(sc);
105 }
106
107 void
108 acpicpu_cstate_attach_print(struct acpicpu_softc *sc)
109 {
110 struct acpicpu_cstate *cs;
111 static bool once = false;
112 const char *str;
113 int i;
114
115 if (once != false)
116 return;
117
118 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
119
120 cs = &sc->sc_cstate[i];
121
122 if (cs->cs_method == 0)
123 continue;
124
125 switch (cs->cs_method) {
126
127 case ACPICPU_C_STATE_HALT:
128 str = "HLT";
129 break;
130
131 case ACPICPU_C_STATE_FFH:
132 str = "FFH";
133 break;
134
135 case ACPICPU_C_STATE_SYSIO:
136 str = "I/O";
137 break;
138
139 default:
140 panic("NOTREACHED");
141 }
142
143 aprint_debug_dev(sc->sc_dev, "C%d: %3s, "
144 "lat %3u us, pow %5u mW, flags 0x%02x\n", i, str,
145 cs->cs_latency, cs->cs_power, cs->cs_flags);
146 }
147
148 once = true;
149 }
150
151 static void
152 acpicpu_cstate_attach_evcnt(struct acpicpu_softc *sc)
153 {
154 struct acpicpu_cstate *cs;
155 const char *str;
156 int i;
157
158 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
159
160 cs = &sc->sc_cstate[i];
161
162 if (cs->cs_method == 0)
163 continue;
164
165 str = "HALT";
166
167 if (cs->cs_method == ACPICPU_C_STATE_FFH)
168 str = "MWAIT";
169
170 if (cs->cs_method == ACPICPU_C_STATE_SYSIO)
171 str = "I/O";
172
173 (void)snprintf(cs->cs_name, sizeof(cs->cs_name),
174 "C%d (%s)", i, str);
175
176 evcnt_attach_dynamic(&cs->cs_evcnt, EVCNT_TYPE_MISC,
177 NULL, device_xname(sc->sc_dev), cs->cs_name);
178 }
179 }
180
181 int
182 acpicpu_cstate_detach(device_t self)
183 {
184 struct acpicpu_softc *sc = device_private(self);
185 static ONCE_DECL(once_detach);
186 int rv;
187
188 rv = RUN_ONCE(&once_detach, acpicpu_md_idle_stop);
189
190 if (rv != 0)
191 return rv;
192
193 sc->sc_flags &= ~ACPICPU_FLAG_C;
194 acpicpu_cstate_detach_evcnt(sc);
195
196 return 0;
197 }
198
199 static void
200 acpicpu_cstate_detach_evcnt(struct acpicpu_softc *sc)
201 {
202 struct acpicpu_cstate *cs;
203 int i;
204
205 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
206
207 cs = &sc->sc_cstate[i];
208
209 if (cs->cs_method != 0)
210 evcnt_detach(&cs->cs_evcnt);
211 }
212 }
213
214 int
215 acpicpu_cstate_start(device_t self)
216 {
217 struct acpicpu_softc *sc = device_private(self);
218 static ONCE_DECL(once_start);
219 int rv;
220
221 /*
222 * Save the existing idle-mechanism and claim the cpu_idle(9).
223 * This should be called after all ACPI CPUs have been attached.
224 */
225 rv = RUN_ONCE(&once_start, acpicpu_md_idle_start);
226
227 if (rv == 0)
228 sc->sc_flags |= ACPICPU_FLAG_C;
229
230 return rv;
231 }
232
233 bool
234 acpicpu_cstate_suspend(device_t self)
235 {
236
237 return true;
238 }
239
240 bool
241 acpicpu_cstate_resume(device_t self)
242 {
243 static const ACPI_OSD_EXEC_CALLBACK func = acpicpu_cstate_callback;
244 struct acpicpu_softc *sc = device_private(self);
245
246 if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) == 0)
247 (void)AcpiOsExecute(OSL_NOTIFY_HANDLER, func, sc->sc_dev);
248
249 return true;
250 }
251
252 void
253 acpicpu_cstate_callback(void *aux)
254 {
255 struct acpicpu_softc *sc;
256 device_t self = aux;
257
258 sc = device_private(self);
259
260 if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) != 0)
261 return;
262
263 mutex_enter(&sc->sc_mtx);
264 (void)acpicpu_cstate_cst(sc);
265 mutex_exit(&sc->sc_mtx);
266 }
267
268 static ACPI_STATUS
269 acpicpu_cstate_cst(struct acpicpu_softc *sc)
270 {
271 ACPI_OBJECT *elm, *obj;
272 ACPI_BUFFER buf;
273 ACPI_STATUS rv;
274 uint32_t i, n;
275 uint8_t count;
276
277 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CST", &buf);
278
279 if (ACPI_FAILURE(rv))
280 return rv;
281
282 obj = buf.Pointer;
283
284 if (obj->Type != ACPI_TYPE_PACKAGE) {
285 rv = AE_TYPE;
286 goto out;
287 }
288
289 if (obj->Package.Count < 2) {
290 rv = AE_LIMIT;
291 goto out;
292 }
293
294 elm = obj->Package.Elements;
295
296 if (elm[0].Type != ACPI_TYPE_INTEGER) {
297 rv = AE_TYPE;
298 goto out;
299 }
300
301 n = elm[0].Integer.Value;
302
303 if (n != obj->Package.Count - 1) {
304 rv = AE_BAD_VALUE;
305 goto out;
306 }
307
308 if (n > ACPI_C_STATES_MAX) {
309 rv = AE_LIMIT;
310 goto out;
311 }
312
313 acpicpu_cstate_memset(sc);
314
315 CTASSERT(ACPI_STATE_C0 == 0 && ACPI_STATE_C1 == 1);
316 CTASSERT(ACPI_STATE_C2 == 2 && ACPI_STATE_C3 == 3);
317
318 for (count = 0, i = 1; i <= n; i++) {
319
320 elm = &obj->Package.Elements[i];
321 rv = acpicpu_cstate_cst_add(sc, elm);
322
323 if (ACPI_SUCCESS(rv))
324 count++;
325 }
326
327 rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
328
329 out:
330 if (buf.Pointer != NULL)
331 ACPI_FREE(buf.Pointer);
332
333 return rv;
334 }
335
336 static ACPI_STATUS
337 acpicpu_cstate_cst_add(struct acpicpu_softc *sc, ACPI_OBJECT *elm)
338 {
339 const struct acpicpu_object *ao = &sc->sc_object;
340 struct acpicpu_cstate *cs = sc->sc_cstate;
341 struct acpicpu_cstate state;
342 struct acpicpu_reg *reg;
343 ACPI_STATUS rv = AE_OK;
344 ACPI_OBJECT *obj;
345 uint32_t type;
346
347 (void)memset(&state, 0, sizeof(*cs));
348
349 state.cs_flags = ACPICPU_FLAG_C_BM_STS;
350
351 if (elm->Type != ACPI_TYPE_PACKAGE) {
352 rv = AE_TYPE;
353 goto out;
354 }
355
356 if (elm->Package.Count != 4) {
357 rv = AE_LIMIT;
358 goto out;
359 }
360
361 /*
362 * Type.
363 */
364 obj = &elm->Package.Elements[1];
365
366 if (obj->Type != ACPI_TYPE_INTEGER) {
367 rv = AE_TYPE;
368 goto out;
369 }
370
371 type = obj->Integer.Value;
372
373 if (type < ACPI_STATE_C1 || type > ACPI_STATE_C3) {
374 rv = AE_TYPE;
375 goto out;
376 }
377
378 /*
379 * Latency.
380 */
381 obj = &elm->Package.Elements[2];
382
383 if (obj->Type != ACPI_TYPE_INTEGER) {
384 rv = AE_TYPE;
385 goto out;
386 }
387
388 state.cs_latency = obj->Integer.Value;
389
390 /*
391 * Power.
392 */
393 obj = &elm->Package.Elements[3];
394
395 if (obj->Type != ACPI_TYPE_INTEGER) {
396 rv = AE_TYPE;
397 goto out;
398 }
399
400 state.cs_power = obj->Integer.Value;
401
402 /*
403 * Register.
404 */
405 obj = &elm->Package.Elements[0];
406
407 if (obj->Type != ACPI_TYPE_BUFFER) {
408 rv = AE_TYPE;
409 goto out;
410 }
411
412 CTASSERT(sizeof(struct acpicpu_reg) == 15);
413
414 if (obj->Buffer.Length < sizeof(struct acpicpu_reg)) {
415 rv = AE_LIMIT;
416 goto out;
417 }
418
419 reg = (struct acpicpu_reg *)obj->Buffer.Pointer;
420
421 switch (reg->reg_spaceid) {
422
423 case ACPI_ADR_SPACE_SYSTEM_IO:
424 state.cs_method = ACPICPU_C_STATE_SYSIO;
425
426 if (reg->reg_addr == 0) {
427 rv = AE_AML_ILLEGAL_ADDRESS;
428 goto out;
429 }
430
431 if (reg->reg_bitwidth != 8) {
432 rv = AE_AML_BAD_RESOURCE_LENGTH;
433 goto out;
434 }
435
436 /*
437 * Check only that the address is in the mapped space.
438 * Systems are allowed to change it when operating
439 * with _CST (see ACPI 4.0, pp. 94-95). For instance,
440 * the offset of P_LVL3 may change depending on whether
441 * acpiacad(4) is connected or disconnected.
442 */
443 if (reg->reg_addr > ao->ao_pblkaddr + ao->ao_pblklen) {
444 rv = AE_BAD_ADDRESS;
445 goto out;
446 }
447
448 state.cs_addr = reg->reg_addr;
449 break;
450
451 case ACPI_ADR_SPACE_FIXED_HARDWARE:
452 state.cs_method = ACPICPU_C_STATE_FFH;
453
454 switch (type) {
455
456 case ACPI_STATE_C1:
457
458 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0)
459 state.cs_method = ACPICPU_C_STATE_HALT;
460
461 break;
462
463 default:
464
465 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) {
466 rv = AE_SUPPORT;
467 goto out;
468 }
469 }
470
471 if (sc->sc_cap != 0) {
472
473 /*
474 * The _CST FFH GAS encoding may contain
475 * additional hints on Intel processors.
476 * Use these to determine whether we can
477 * avoid the bus master activity check.
478 */
479 if ((reg->reg_accesssize & ACPICPU_PDC_GAS_BM) == 0)
480 state.cs_flags &= ~ACPICPU_FLAG_C_BM_STS;
481 }
482
483 break;
484
485 default:
486 rv = AE_AML_INVALID_SPACE_ID;
487 goto out;
488 }
489
490 if (cs[type].cs_method != 0) {
491 rv = AE_ALREADY_EXISTS;
492 goto out;
493 }
494
495 cs[type].cs_addr = state.cs_addr;
496 cs[type].cs_power = state.cs_power;
497 cs[type].cs_flags = state.cs_flags;
498 cs[type].cs_method = state.cs_method;
499 cs[type].cs_latency = state.cs_latency;
500
501 out:
502 if (ACPI_FAILURE(rv))
503 aprint_debug_dev(sc->sc_dev, "invalid "
504 "_CST: %s\n", AcpiFormatException(rv));
505
506 return rv;
507 }
508
509 static void
510 acpicpu_cstate_cst_bios(void)
511 {
512 const uint8_t val = AcpiGbl_FADT.CstControl;
513 const uint32_t addr = AcpiGbl_FADT.SmiCommand;
514
515 if (addr == 0)
516 return;
517
518 (void)AcpiOsWritePort(addr, val, 8);
519 }
520
521 static void
522 acpicpu_cstate_memset(struct acpicpu_softc *sc)
523 {
524 int i = 0;
525
526 while (i < ACPI_C_STATE_COUNT) {
527
528 sc->sc_cstate[i].cs_addr = 0;
529 sc->sc_cstate[i].cs_power = 0;
530 sc->sc_cstate[i].cs_flags = 0;
531 sc->sc_cstate[i].cs_method = 0;
532 sc->sc_cstate[i].cs_latency = 0;
533
534 i++;
535 }
536 }
537
538 static void
539 acpicpu_cstate_fadt(struct acpicpu_softc *sc)
540 {
541 struct acpicpu_cstate *cs = sc->sc_cstate;
542
543 acpicpu_cstate_memset(sc);
544
545 /*
546 * All x86 processors should support C1 (a.k.a. HALT).
547 */
548 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C1_SUPPORTED) != 0)
549 cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
550
551 if (sc->sc_object.ao_pblkaddr == 0)
552 return;
553
554 if (acpicpu_md_cpus_running() > 1) {
555
556 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C2_MP_SUPPORTED) == 0)
557 return;
558 }
559
560 cs[ACPI_STATE_C2].cs_method = ACPICPU_C_STATE_SYSIO;
561 cs[ACPI_STATE_C3].cs_method = ACPICPU_C_STATE_SYSIO;
562
563 cs[ACPI_STATE_C2].cs_latency = AcpiGbl_FADT.C2Latency;
564 cs[ACPI_STATE_C3].cs_latency = AcpiGbl_FADT.C3Latency;
565
566 cs[ACPI_STATE_C2].cs_addr = sc->sc_object.ao_pblkaddr + 4;
567 cs[ACPI_STATE_C3].cs_addr = sc->sc_object.ao_pblkaddr + 5;
568
569 /*
570 * The P_BLK length should always be 6. If it
571 * is not, reduce functionality accordingly.
572 * Sanity check also FADT's latency levels.
573 */
574 if (sc->sc_object.ao_pblklen < 5)
575 cs[ACPI_STATE_C2].cs_method = 0;
576
577 if (sc->sc_object.ao_pblklen < 6)
578 cs[ACPI_STATE_C3].cs_method = 0;
579
580 CTASSERT(ACPICPU_C_C2_LATENCY_MAX == 100);
581 CTASSERT(ACPICPU_C_C3_LATENCY_MAX == 1000);
582
583 if (AcpiGbl_FADT.C2Latency > ACPICPU_C_C2_LATENCY_MAX)
584 cs[ACPI_STATE_C2].cs_method = 0;
585
586 if (AcpiGbl_FADT.C3Latency > ACPICPU_C_C3_LATENCY_MAX)
587 cs[ACPI_STATE_C3].cs_method = 0;
588 }
589
590 static void
591 acpicpu_cstate_quirks(struct acpicpu_softc *sc)
592 {
593 const uint32_t reg = AcpiGbl_FADT.Pm2ControlBlock;
594 const uint32_t len = AcpiGbl_FADT.Pm2ControlLength;
595
596 /*
597 * Disable C3 for PIIX4.
598 */
599 if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0) {
600 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
601 return;
602 }
603
604 /*
605 * Check bus master arbitration. If ARB_DIS
606 * is not available, processor caches must be
607 * flushed before C3 (ACPI 4.0, section 8.2).
608 */
609 if (reg != 0 && len != 0) {
610 sc->sc_flags |= ACPICPU_FLAG_C_ARB;
611 return;
612 }
613
614 /*
615 * Disable C3 entirely if WBINVD is not present.
616 */
617 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) == 0)
618 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
619 else {
620 /*
621 * If WBINVD is present and functioning properly,
622 * flush all processor caches before entering C3.
623 */
624 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0)
625 sc->sc_flags &= ~ACPICPU_FLAG_C_BM;
626 else
627 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
628 }
629 }
630
631 static int
632 acpicpu_cstate_latency(struct acpicpu_softc *sc)
633 {
634 static const uint32_t cs_factor = 3;
635 struct acpicpu_cstate *cs;
636 int i;
637
638 for (i = cs_state_max; i > 0; i--) {
639
640 cs = &sc->sc_cstate[i];
641
642 if (__predict_false(cs->cs_method == 0))
643 continue;
644
645 /*
646 * Choose a state if we have previously slept
647 * longer than the worst case latency of the
648 * state times an arbitrary multiplier.
649 */
650 if (sc->sc_cstate_sleep > cs->cs_latency * cs_factor)
651 return i;
652 }
653
654 return ACPI_STATE_C1;
655 }
656
657 /*
658 * The main idle loop.
659 */
660 void
661 acpicpu_cstate_idle(void)
662 {
663 struct cpu_info *ci = curcpu();
664 struct acpicpu_softc *sc;
665 int state;
666
667 if (__predict_false(ci->ci_want_resched) != 0)
668 return;
669
670 acpi_md_OsDisableInterrupt();
671
672 KASSERT(acpicpu_sc != NULL);
673 KASSERT(ci->ci_acpiid < maxcpus);
674 KASSERT(ci->ci_ilevel == IPL_NONE);
675
676 sc = acpicpu_sc[ci->ci_acpiid];
677
678 if (__predict_false(sc == NULL))
679 goto halt;
680
681 if (__predict_false(sc->sc_cold != false))
682 goto halt;
683
684 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_C) == 0))
685 goto halt;
686
687 if (__predict_false(mutex_tryenter(&sc->sc_mtx) == 0))
688 goto halt;
689
690 mutex_exit(&sc->sc_mtx);
691 state = acpicpu_cstate_latency(sc);
692
693 /*
694 * Check for bus master activity. Note that particularly usb(4)
695 * causes high activity, which may prevent the use of C3 states.
696 */
697 if ((sc->sc_cstate[state].cs_flags & ACPICPU_FLAG_C_BM_STS) != 0) {
698
699 if (acpicpu_cstate_bm_check() != false)
700 state--;
701
702 if (__predict_false(sc->sc_cstate[state].cs_method == 0))
703 state = ACPI_STATE_C1;
704 }
705
706 KASSERT(state != ACPI_STATE_C0);
707
708 if (state != ACPI_STATE_C3) {
709 acpicpu_cstate_idle_enter(sc, state);
710 return;
711 }
712
713 /*
714 * On all recent (Intel) CPUs caches are shared
715 * by CPUs and bus master control is required to
716 * keep these coherent while in C3. Flushing the
717 * CPU caches is only the last resort.
718 */
719 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) == 0)
720 ACPI_FLUSH_CPU_CACHE();
721
722 /*
723 * Allow the bus master to request that any given
724 * CPU should return immediately to C0 from C3.
725 */
726 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
727 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
728
729 /*
730 * It may be necessary to disable bus master arbitration
731 * to ensure that bus master cycles do not occur while
732 * sleeping in C3 (see ACPI 4.0, section 8.1.4).
733 */
734 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
735 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
736
737 acpicpu_cstate_idle_enter(sc, state);
738
739 /*
740 * Disable bus master wake and re-enable the arbiter.
741 */
742 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
743 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
744
745 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
746 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
747
748 return;
749
750 halt:
751 acpicpu_md_idle_enter(ACPICPU_C_STATE_HALT, ACPI_STATE_C1);
752 }
753
754 static void
755 acpicpu_cstate_idle_enter(struct acpicpu_softc *sc, int state)
756 {
757 struct acpicpu_cstate *cs = &sc->sc_cstate[state];
758 uint32_t end, start, val;
759
760 start = acpitimer_read_safe(NULL);
761
762 switch (cs->cs_method) {
763
764 case ACPICPU_C_STATE_FFH:
765 case ACPICPU_C_STATE_HALT:
766 acpicpu_md_idle_enter(cs->cs_method, state);
767 break;
768
769 case ACPICPU_C_STATE_SYSIO:
770 (void)AcpiOsReadPort(cs->cs_addr, &val, 8);
771 break;
772
773 default:
774 acpicpu_md_idle_enter(ACPICPU_C_STATE_HALT, ACPI_STATE_C1);
775 break;
776 }
777
778 cs->cs_evcnt.ev_count++;
779
780 end = acpitimer_read_safe(NULL);
781 sc->sc_cstate_sleep = hztoms(acpitimer_delta(end, start)) * 1000;
782
783 acpi_md_OsEnableInterrupt();
784 }
785
786 static bool
787 acpicpu_cstate_bm_check(void)
788 {
789 uint32_t val = 0;
790 ACPI_STATUS rv;
791
792 rv = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &val);
793
794 if (ACPI_FAILURE(rv) || val == 0)
795 return false;
796
797 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
798
799 return true;
800 }
801