acpi_cpu_cstate.c revision 1.28 1 /* $NetBSD: acpi_cpu_cstate.c,v 1.28 2010/08/15 08:53:19 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_cstate.c,v 1.28 2010/08/15 08:53:19 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/cpu.h>
34 #include <sys/device.h>
35 #include <sys/evcnt.h>
36 #include <sys/kernel.h>
37 #include <sys/once.h>
38 #include <sys/mutex.h>
39 #include <sys/timetc.h>
40
41 #include <dev/acpi/acpireg.h>
42 #include <dev/acpi/acpivar.h>
43 #include <dev/acpi/acpi_cpu.h>
44 #include <dev/acpi/acpi_timer.h>
45
46 #include <machine/acpi_machdep.h>
47
48 #define _COMPONENT ACPI_BUS_COMPONENT
49 ACPI_MODULE_NAME ("acpi_cpu_cstate")
50
51 static void acpicpu_cstate_attach_print(struct acpicpu_softc *);
52 static void acpicpu_cstate_attach_evcnt(struct acpicpu_softc *);
53 static void acpicpu_cstate_detach_evcnt(struct acpicpu_softc *);
54 static ACPI_STATUS acpicpu_cstate_cst(struct acpicpu_softc *);
55 static ACPI_STATUS acpicpu_cstate_cst_add(struct acpicpu_softc *,
56 ACPI_OBJECT *);
57 static void acpicpu_cstate_cst_bios(void);
58 static void acpicpu_cstate_memset(struct acpicpu_softc *);
59 static void acpicpu_cstate_fadt(struct acpicpu_softc *);
60 static void acpicpu_cstate_quirks(struct acpicpu_softc *);
61 static int acpicpu_cstate_latency(struct acpicpu_softc *);
62 static bool acpicpu_cstate_bm_check(void);
63 static void acpicpu_cstate_idle_enter(struct acpicpu_softc *,int);
64
65 extern struct acpicpu_softc **acpicpu_sc;
66
67 /*
68 * XXX: The local APIC timer (as well as TSC) is typically stopped in C3.
69 * For now, we cannot but disable C3. But there appears to be timer-
70 * related interrupt issues also in C2. The only entirely safe option
71 * at the moment is to use C1.
72 */
73 #ifdef ACPICPU_ENABLE_C3
74 static int cs_state_max = ACPI_STATE_C3;
75 #else
76 static int cs_state_max = ACPI_STATE_C1;
77 #endif
78
79 void
80 acpicpu_cstate_attach(device_t self)
81 {
82 struct acpicpu_softc *sc = device_private(self);
83 ACPI_STATUS rv;
84
85 /*
86 * Either use the preferred _CST or resort to FADT.
87 */
88 rv = acpicpu_cstate_cst(sc);
89
90 switch (rv) {
91
92 case AE_OK:
93 acpicpu_cstate_cst_bios();
94 break;
95
96 default:
97 sc->sc_flags |= ACPICPU_FLAG_C_FADT;
98 acpicpu_cstate_fadt(sc);
99 break;
100 }
101
102 acpicpu_cstate_quirks(sc);
103 acpicpu_cstate_attach_evcnt(sc);
104 acpicpu_cstate_attach_print(sc);
105 }
106
107 void
108 acpicpu_cstate_attach_print(struct acpicpu_softc *sc)
109 {
110 struct acpicpu_cstate *cs;
111 static bool once = false;
112 const char *str;
113 int i;
114
115 if (once != false)
116 return;
117
118 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
119
120 cs = &sc->sc_cstate[i];
121
122 if (cs->cs_method == 0)
123 continue;
124
125 switch (cs->cs_method) {
126
127 case ACPICPU_C_STATE_HALT:
128 str = "HLT";
129 break;
130
131 case ACPICPU_C_STATE_FFH:
132 str = "FFH";
133 break;
134
135 case ACPICPU_C_STATE_SYSIO:
136 str = "I/O";
137 break;
138
139 default:
140 panic("NOTREACHED");
141 }
142
143 aprint_debug_dev(sc->sc_dev, "C%d: %3s, "
144 "lat %3u us, pow %5u mW, flags 0x%02x\n", i, str,
145 cs->cs_latency, cs->cs_power, cs->cs_flags);
146 }
147
148 once = true;
149 }
150
151 static void
152 acpicpu_cstate_attach_evcnt(struct acpicpu_softc *sc)
153 {
154 struct acpicpu_cstate *cs;
155 const char *str;
156 int i;
157
158 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
159
160 cs = &sc->sc_cstate[i];
161
162 if (cs->cs_method == 0)
163 continue;
164
165 str = "HALT";
166
167 if (cs->cs_method == ACPICPU_C_STATE_FFH)
168 str = "MWAIT";
169
170 if (cs->cs_method == ACPICPU_C_STATE_SYSIO)
171 str = "I/O";
172
173 (void)snprintf(cs->cs_name, sizeof(cs->cs_name),
174 "C%d (%s)", i, str);
175
176 evcnt_attach_dynamic(&cs->cs_evcnt, EVCNT_TYPE_MISC,
177 NULL, device_xname(sc->sc_dev), cs->cs_name);
178 }
179 }
180
181 int
182 acpicpu_cstate_detach(device_t self)
183 {
184 struct acpicpu_softc *sc = device_private(self);
185 static ONCE_DECL(once_detach);
186 int rv;
187
188 rv = RUN_ONCE(&once_detach, acpicpu_md_idle_stop);
189
190 if (rv != 0)
191 return rv;
192
193 sc->sc_flags &= ~ACPICPU_FLAG_C;
194 acpicpu_cstate_detach_evcnt(sc);
195
196 return 0;
197 }
198
199 static void
200 acpicpu_cstate_detach_evcnt(struct acpicpu_softc *sc)
201 {
202 struct acpicpu_cstate *cs;
203 int i;
204
205 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
206
207 cs = &sc->sc_cstate[i];
208
209 if (cs->cs_method != 0)
210 evcnt_detach(&cs->cs_evcnt);
211 }
212 }
213
214 int
215 acpicpu_cstate_start(device_t self)
216 {
217 struct acpicpu_softc *sc = device_private(self);
218 static ONCE_DECL(once_start);
219 int rv;
220
221 /*
222 * Save the existing idle-mechanism and claim the cpu_idle(9).
223 * This should be called after all ACPI CPUs have been attached.
224 */
225 rv = RUN_ONCE(&once_start, acpicpu_md_idle_start);
226
227 if (rv == 0)
228 sc->sc_flags |= ACPICPU_FLAG_C;
229
230 return rv;
231 }
232
233 bool
234 acpicpu_cstate_suspend(device_t self)
235 {
236
237 return true;
238 }
239
240 bool
241 acpicpu_cstate_resume(device_t self)
242 {
243 struct acpicpu_softc *sc = device_private(self);
244
245 if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) == 0)
246 acpicpu_cstate_callback(self);
247
248 return true;
249 }
250
251 void
252 acpicpu_cstate_callback(void *aux)
253 {
254 struct acpicpu_softc *sc;
255 device_t self = aux;
256
257 sc = device_private(self);
258
259 if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) != 0)
260 return;
261
262 mutex_enter(&sc->sc_mtx);
263 (void)acpicpu_cstate_cst(sc);
264 mutex_exit(&sc->sc_mtx);
265 }
266
267 static ACPI_STATUS
268 acpicpu_cstate_cst(struct acpicpu_softc *sc)
269 {
270 ACPI_OBJECT *elm, *obj;
271 ACPI_BUFFER buf;
272 ACPI_STATUS rv;
273 uint32_t i, n;
274 uint8_t count;
275
276 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CST", &buf);
277
278 if (ACPI_FAILURE(rv))
279 return rv;
280
281 obj = buf.Pointer;
282
283 if (obj->Type != ACPI_TYPE_PACKAGE) {
284 rv = AE_TYPE;
285 goto out;
286 }
287
288 if (obj->Package.Count < 2) {
289 rv = AE_LIMIT;
290 goto out;
291 }
292
293 elm = obj->Package.Elements;
294
295 if (elm[0].Type != ACPI_TYPE_INTEGER) {
296 rv = AE_TYPE;
297 goto out;
298 }
299
300 n = elm[0].Integer.Value;
301
302 if (n != obj->Package.Count - 1) {
303 rv = AE_BAD_VALUE;
304 goto out;
305 }
306
307 if (n > ACPI_C_STATES_MAX) {
308 rv = AE_LIMIT;
309 goto out;
310 }
311
312 acpicpu_cstate_memset(sc);
313
314 CTASSERT(ACPI_STATE_C0 == 0 && ACPI_STATE_C1 == 1);
315 CTASSERT(ACPI_STATE_C2 == 2 && ACPI_STATE_C3 == 3);
316
317 for (count = 0, i = 1; i <= n; i++) {
318
319 elm = &obj->Package.Elements[i];
320 rv = acpicpu_cstate_cst_add(sc, elm);
321
322 if (ACPI_SUCCESS(rv))
323 count++;
324 }
325
326 rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
327
328 out:
329 if (buf.Pointer != NULL)
330 ACPI_FREE(buf.Pointer);
331
332 return rv;
333 }
334
335 static ACPI_STATUS
336 acpicpu_cstate_cst_add(struct acpicpu_softc *sc, ACPI_OBJECT *elm)
337 {
338 const struct acpicpu_object *ao = &sc->sc_object;
339 struct acpicpu_cstate *cs = sc->sc_cstate;
340 struct acpicpu_cstate state;
341 struct acpicpu_reg *reg;
342 ACPI_STATUS rv = AE_OK;
343 ACPI_OBJECT *obj;
344 uint32_t type;
345
346 (void)memset(&state, 0, sizeof(*cs));
347
348 state.cs_flags = ACPICPU_FLAG_C_BM_STS;
349
350 if (elm->Type != ACPI_TYPE_PACKAGE) {
351 rv = AE_TYPE;
352 goto out;
353 }
354
355 if (elm->Package.Count != 4) {
356 rv = AE_LIMIT;
357 goto out;
358 }
359
360 /*
361 * Type.
362 */
363 obj = &elm->Package.Elements[1];
364
365 if (obj->Type != ACPI_TYPE_INTEGER) {
366 rv = AE_TYPE;
367 goto out;
368 }
369
370 type = obj->Integer.Value;
371
372 if (type < ACPI_STATE_C1 || type > ACPI_STATE_C3) {
373 rv = AE_TYPE;
374 goto out;
375 }
376
377 /*
378 * Latency.
379 */
380 obj = &elm->Package.Elements[2];
381
382 if (obj->Type != ACPI_TYPE_INTEGER) {
383 rv = AE_TYPE;
384 goto out;
385 }
386
387 state.cs_latency = obj->Integer.Value;
388
389 /*
390 * Power.
391 */
392 obj = &elm->Package.Elements[3];
393
394 if (obj->Type != ACPI_TYPE_INTEGER) {
395 rv = AE_TYPE;
396 goto out;
397 }
398
399 state.cs_power = obj->Integer.Value;
400
401 /*
402 * Register.
403 */
404 obj = &elm->Package.Elements[0];
405
406 if (obj->Type != ACPI_TYPE_BUFFER) {
407 rv = AE_TYPE;
408 goto out;
409 }
410
411 CTASSERT(sizeof(struct acpicpu_reg) == 15);
412
413 if (obj->Buffer.Length < sizeof(struct acpicpu_reg)) {
414 rv = AE_LIMIT;
415 goto out;
416 }
417
418 reg = (struct acpicpu_reg *)obj->Buffer.Pointer;
419
420 switch (reg->reg_spaceid) {
421
422 case ACPI_ADR_SPACE_SYSTEM_IO:
423 state.cs_method = ACPICPU_C_STATE_SYSIO;
424
425 if (reg->reg_addr == 0) {
426 rv = AE_AML_ILLEGAL_ADDRESS;
427 goto out;
428 }
429
430 if (reg->reg_bitwidth != 8) {
431 rv = AE_AML_BAD_RESOURCE_LENGTH;
432 goto out;
433 }
434
435 /*
436 * Check only that the address is in the mapped space.
437 * Systems are allowed to change it when operating
438 * with _CST (see ACPI 4.0, pp. 94-95). For instance,
439 * the offset of P_LVL3 may change depending on whether
440 * acpiacad(4) is connected or disconnected.
441 */
442 if (reg->reg_addr > ao->ao_pblkaddr + ao->ao_pblklen) {
443 rv = AE_BAD_ADDRESS;
444 goto out;
445 }
446
447 state.cs_addr = reg->reg_addr;
448 break;
449
450 case ACPI_ADR_SPACE_FIXED_HARDWARE:
451 state.cs_method = ACPICPU_C_STATE_FFH;
452
453 switch (type) {
454
455 case ACPI_STATE_C1:
456
457 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0)
458 state.cs_method = ACPICPU_C_STATE_HALT;
459
460 break;
461
462 default:
463
464 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) {
465 rv = AE_SUPPORT;
466 goto out;
467 }
468 }
469
470 if (sc->sc_cap != 0) {
471
472 /*
473 * The _CST FFH GAS encoding may contain
474 * additional hints on Intel processors.
475 * Use these to determine whether we can
476 * avoid the bus master activity check.
477 */
478 if ((reg->reg_accesssize & ACPICPU_PDC_GAS_BM) == 0)
479 state.cs_flags &= ~ACPICPU_FLAG_C_BM_STS;
480 }
481
482 break;
483
484 default:
485 rv = AE_AML_INVALID_SPACE_ID;
486 goto out;
487 }
488
489 if (cs[type].cs_method != 0) {
490 rv = AE_ALREADY_EXISTS;
491 goto out;
492 }
493
494 cs[type].cs_addr = state.cs_addr;
495 cs[type].cs_power = state.cs_power;
496 cs[type].cs_flags = state.cs_flags;
497 cs[type].cs_method = state.cs_method;
498 cs[type].cs_latency = state.cs_latency;
499
500 out:
501 if (ACPI_FAILURE(rv))
502 aprint_debug_dev(sc->sc_dev, "invalid "
503 "_CST: %s\n", AcpiFormatException(rv));
504
505 return rv;
506 }
507
508 static void
509 acpicpu_cstate_cst_bios(void)
510 {
511 const uint8_t val = AcpiGbl_FADT.CstControl;
512 const uint32_t addr = AcpiGbl_FADT.SmiCommand;
513
514 if (addr == 0 || val == 0)
515 return;
516
517 (void)AcpiOsWritePort(addr, val, 8);
518 }
519
520 static void
521 acpicpu_cstate_memset(struct acpicpu_softc *sc)
522 {
523 int i = 0;
524
525 while (i < ACPI_C_STATE_COUNT) {
526
527 sc->sc_cstate[i].cs_addr = 0;
528 sc->sc_cstate[i].cs_power = 0;
529 sc->sc_cstate[i].cs_flags = 0;
530 sc->sc_cstate[i].cs_method = 0;
531 sc->sc_cstate[i].cs_latency = 0;
532
533 i++;
534 }
535 }
536
537 static void
538 acpicpu_cstate_fadt(struct acpicpu_softc *sc)
539 {
540 struct acpicpu_cstate *cs = sc->sc_cstate;
541
542 acpicpu_cstate_memset(sc);
543
544 /*
545 * All x86 processors should support C1 (a.k.a. HALT).
546 */
547 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C1_SUPPORTED) != 0)
548 cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
549
550 if (sc->sc_object.ao_pblkaddr == 0)
551 return;
552
553 if (acpicpu_md_cpus_running() > 1) {
554
555 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C2_MP_SUPPORTED) == 0)
556 return;
557 }
558
559 cs[ACPI_STATE_C2].cs_method = ACPICPU_C_STATE_SYSIO;
560 cs[ACPI_STATE_C3].cs_method = ACPICPU_C_STATE_SYSIO;
561
562 cs[ACPI_STATE_C2].cs_latency = AcpiGbl_FADT.C2Latency;
563 cs[ACPI_STATE_C3].cs_latency = AcpiGbl_FADT.C3Latency;
564
565 cs[ACPI_STATE_C2].cs_addr = sc->sc_object.ao_pblkaddr + 4;
566 cs[ACPI_STATE_C3].cs_addr = sc->sc_object.ao_pblkaddr + 5;
567
568 /*
569 * The P_BLK length should always be 6. If it
570 * is not, reduce functionality accordingly.
571 */
572 if (sc->sc_object.ao_pblklen < 5)
573 cs[ACPI_STATE_C2].cs_method = 0;
574
575 if (sc->sc_object.ao_pblklen < 6)
576 cs[ACPI_STATE_C3].cs_method = 0;
577
578 /*
579 * Sanity check the latency levels in FADT.
580 * Values above the thresholds are used to
581 * inform that C-states are not supported.
582 */
583 CTASSERT(ACPICPU_C_C2_LATENCY_MAX == 100);
584 CTASSERT(ACPICPU_C_C3_LATENCY_MAX == 1000);
585
586 if (AcpiGbl_FADT.C2Latency > ACPICPU_C_C2_LATENCY_MAX)
587 cs[ACPI_STATE_C2].cs_method = 0;
588
589 if (AcpiGbl_FADT.C3Latency > ACPICPU_C_C3_LATENCY_MAX)
590 cs[ACPI_STATE_C3].cs_method = 0;
591 }
592
593 static void
594 acpicpu_cstate_quirks(struct acpicpu_softc *sc)
595 {
596 const uint32_t reg = AcpiGbl_FADT.Pm2ControlBlock;
597 const uint32_t len = AcpiGbl_FADT.Pm2ControlLength;
598
599 /*
600 * Disable C3 for PIIX4.
601 */
602 if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0) {
603 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
604 return;
605 }
606
607 /*
608 * Check bus master arbitration. If ARB_DIS
609 * is not available, processor caches must be
610 * flushed before C3 (ACPI 4.0, section 8.2).
611 */
612 if (reg != 0 && len != 0) {
613 sc->sc_flags |= ACPICPU_FLAG_C_ARB;
614 return;
615 }
616
617 /*
618 * Disable C3 entirely if WBINVD is not present.
619 */
620 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) == 0)
621 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
622 else {
623 /*
624 * If WBINVD is present and functioning properly,
625 * flush all processor caches before entering C3.
626 */
627 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0)
628 sc->sc_flags &= ~ACPICPU_FLAG_C_BM;
629 else
630 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
631 }
632 }
633
634 static int
635 acpicpu_cstate_latency(struct acpicpu_softc *sc)
636 {
637 static const uint32_t cs_factor = 3;
638 struct acpicpu_cstate *cs;
639 int i;
640
641 for (i = cs_state_max; i > 0; i--) {
642
643 cs = &sc->sc_cstate[i];
644
645 if (__predict_false(cs->cs_method == 0))
646 continue;
647
648 /*
649 * Choose a state if we have previously slept
650 * longer than the worst case latency of the
651 * state times an arbitrary multiplier.
652 */
653 if (sc->sc_cstate_sleep > cs->cs_latency * cs_factor)
654 return i;
655 }
656
657 return ACPI_STATE_C1;
658 }
659
660 /*
661 * The main idle loop.
662 */
663 void
664 acpicpu_cstate_idle(void)
665 {
666 struct cpu_info *ci = curcpu();
667 struct acpicpu_softc *sc;
668 int state;
669
670 if (__predict_false(ci->ci_want_resched) != 0)
671 return;
672
673 acpi_md_OsDisableInterrupt();
674
675 KASSERT(acpicpu_sc != NULL);
676 KASSERT(ci->ci_acpiid < maxcpus);
677 KASSERT(ci->ci_ilevel == IPL_NONE);
678
679 sc = acpicpu_sc[ci->ci_acpiid];
680
681 if (__predict_false(sc == NULL))
682 goto halt;
683
684 if (__predict_false(sc->sc_cold != false))
685 goto halt;
686
687 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_C) == 0))
688 goto halt;
689
690 if (__predict_false(mutex_tryenter(&sc->sc_mtx) == 0))
691 goto halt;
692
693 mutex_exit(&sc->sc_mtx);
694 state = acpicpu_cstate_latency(sc);
695
696 /*
697 * Check for bus master activity. Note that particularly usb(4)
698 * causes high activity, which may prevent the use of C3 states.
699 */
700 if ((sc->sc_cstate[state].cs_flags & ACPICPU_FLAG_C_BM_STS) != 0) {
701
702 if (acpicpu_cstate_bm_check() != false)
703 state--;
704
705 if (__predict_false(sc->sc_cstate[state].cs_method == 0))
706 state = ACPI_STATE_C1;
707 }
708
709 KASSERT(state != ACPI_STATE_C0);
710
711 if (state != ACPI_STATE_C3) {
712 acpicpu_cstate_idle_enter(sc, state);
713 return;
714 }
715
716 /*
717 * On all recent (Intel) CPUs caches are shared
718 * by CPUs and bus master control is required to
719 * keep these coherent while in C3. Flushing the
720 * CPU caches is only the last resort.
721 */
722 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) == 0)
723 ACPI_FLUSH_CPU_CACHE();
724
725 /*
726 * Allow the bus master to request that any given
727 * CPU should return immediately to C0 from C3.
728 */
729 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
730 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
731
732 /*
733 * It may be necessary to disable bus master arbitration
734 * to ensure that bus master cycles do not occur while
735 * sleeping in C3 (see ACPI 4.0, section 8.1.4).
736 */
737 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
738 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
739
740 acpicpu_cstate_idle_enter(sc, state);
741
742 /*
743 * Disable bus master wake and re-enable the arbiter.
744 */
745 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
746 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
747
748 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
749 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
750
751 return;
752
753 halt:
754 acpicpu_md_idle_enter(ACPICPU_C_STATE_HALT, ACPI_STATE_C1);
755 }
756
757 static void
758 acpicpu_cstate_idle_enter(struct acpicpu_softc *sc, int state)
759 {
760 struct acpicpu_cstate *cs = &sc->sc_cstate[state];
761 uint32_t end, start, val;
762
763 start = acpitimer_read_safe(NULL);
764
765 switch (cs->cs_method) {
766
767 case ACPICPU_C_STATE_FFH:
768 case ACPICPU_C_STATE_HALT:
769 acpicpu_md_idle_enter(cs->cs_method, state);
770 break;
771
772 case ACPICPU_C_STATE_SYSIO:
773 (void)AcpiOsReadPort(cs->cs_addr, &val, 8);
774 break;
775
776 default:
777 acpicpu_md_idle_enter(ACPICPU_C_STATE_HALT, ACPI_STATE_C1);
778 break;
779 }
780
781 cs->cs_evcnt.ev_count++;
782
783 end = acpitimer_read_safe(NULL);
784 sc->sc_cstate_sleep = hztoms(acpitimer_delta(end, start)) * 1000;
785
786 acpi_md_OsEnableInterrupt();
787 }
788
789 static bool
790 acpicpu_cstate_bm_check(void)
791 {
792 uint32_t val = 0;
793 ACPI_STATUS rv;
794
795 rv = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &val);
796
797 if (ACPI_FAILURE(rv) || val == 0)
798 return false;
799
800 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
801
802 return true;
803 }
804