acpi_cpu_cstate.c revision 1.36.2.1 1 /* $NetBSD: acpi_cpu_cstate.c,v 1.36.2.1 2011/06/06 09:07:41 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_cstate.c,v 1.36.2.1 2011/06/06 09:07:41 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/cpu.h>
34 #include <sys/device.h>
35 #include <sys/kernel.h>
36 #include <sys/once.h>
37 #include <sys/mutex.h>
38 #include <sys/timetc.h>
39
40 #include <dev/acpi/acpireg.h>
41 #include <dev/acpi/acpivar.h>
42 #include <dev/acpi/acpi_cpu.h>
43 #include <dev/acpi/acpi_timer.h>
44
45 #include <machine/acpi_machdep.h>
46
47 #define _COMPONENT ACPI_BUS_COMPONENT
48 ACPI_MODULE_NAME ("acpi_cpu_cstate")
49
50 static ACPI_STATUS acpicpu_cstate_cst(struct acpicpu_softc *);
51 static ACPI_STATUS acpicpu_cstate_cst_add(struct acpicpu_softc *,
52 ACPI_OBJECT *, int );
53 static void acpicpu_cstate_cst_bios(void);
54 static void acpicpu_cstate_memset(struct acpicpu_softc *);
55 static ACPI_STATUS acpicpu_cstate_dep(struct acpicpu_softc *);
56 static void acpicpu_cstate_fadt(struct acpicpu_softc *);
57 static void acpicpu_cstate_quirks(struct acpicpu_softc *);
58 static int acpicpu_cstate_latency(struct acpicpu_softc *);
59 static bool acpicpu_cstate_bm_check(void);
60 static void acpicpu_cstate_idle_enter(struct acpicpu_softc *,int);
61
62 extern struct acpicpu_softc **acpicpu_sc;
63
64 /*
65 * XXX: The local APIC timer (as well as TSC) is typically stopped in C3.
66 * For now, we cannot but disable C3. But there appears to be timer-
67 * related interrupt issues also in C2. The only entirely safe option
68 * at the moment is to use C1.
69 */
70 #ifdef ACPICPU_ENABLE_C3
71 static int cs_state_max = ACPI_STATE_C3;
72 #else
73 static int cs_state_max = ACPI_STATE_C1;
74 #endif
75
76 void
77 acpicpu_cstate_attach(device_t self)
78 {
79 struct acpicpu_softc *sc = device_private(self);
80 ACPI_STATUS rv;
81
82 /*
83 * Either use the preferred _CST or resort to FADT.
84 */
85 rv = acpicpu_cstate_cst(sc);
86
87 switch (rv) {
88
89 case AE_OK:
90 acpicpu_cstate_cst_bios();
91 break;
92
93 default:
94 sc->sc_flags |= ACPICPU_FLAG_C_FADT;
95 acpicpu_cstate_fadt(sc);
96 break;
97 }
98
99 /*
100 * Query the optional _CSD.
101 */
102 rv = acpicpu_cstate_dep(sc);
103
104 if (ACPI_SUCCESS(rv))
105 sc->sc_flags |= ACPICPU_FLAG_C_DEP;
106
107 sc->sc_flags |= ACPICPU_FLAG_C;
108
109 acpicpu_cstate_quirks(sc);
110 }
111
112 int
113 acpicpu_cstate_detach(device_t self)
114 {
115 struct acpicpu_softc *sc = device_private(self);
116 static ONCE_DECL(once_detach);
117 int rv;
118
119 rv = RUN_ONCE(&once_detach, acpicpu_md_cstate_stop);
120
121 if (rv != 0)
122 return rv;
123
124 sc->sc_flags &= ~ACPICPU_FLAG_C;
125
126 return 0;
127 }
128
129 void
130 acpicpu_cstate_start(device_t self)
131 {
132 struct acpicpu_softc *sc = device_private(self);
133
134 (void)acpicpu_md_cstate_start(sc);
135 }
136
137 void
138 acpicpu_cstate_suspend(void *aux)
139 {
140 /* Nothing. */
141 }
142
143 void
144 acpicpu_cstate_resume(void *aux)
145 {
146 acpicpu_cstate_callback(aux);
147 }
148
149 void
150 acpicpu_cstate_callback(void *aux)
151 {
152 struct acpicpu_softc *sc;
153 device_t self = aux;
154
155 sc = device_private(self);
156
157 if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) != 0)
158 return;
159
160 mutex_enter(&sc->sc_mtx);
161 (void)acpicpu_cstate_cst(sc);
162 mutex_exit(&sc->sc_mtx);
163 }
164
165 static ACPI_STATUS
166 acpicpu_cstate_cst(struct acpicpu_softc *sc)
167 {
168 ACPI_OBJECT *elm, *obj;
169 ACPI_BUFFER buf;
170 ACPI_STATUS rv;
171 uint32_t i, n;
172 uint8_t count;
173
174 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CST", &buf);
175
176 if (ACPI_FAILURE(rv))
177 return rv;
178
179 obj = buf.Pointer;
180
181 if (obj->Type != ACPI_TYPE_PACKAGE) {
182 rv = AE_TYPE;
183 goto out;
184 }
185
186 if (obj->Package.Count < 2) {
187 rv = AE_LIMIT;
188 goto out;
189 }
190
191 elm = obj->Package.Elements;
192
193 if (elm[0].Type != ACPI_TYPE_INTEGER) {
194 rv = AE_TYPE;
195 goto out;
196 }
197
198 n = elm[0].Integer.Value;
199
200 if (n != obj->Package.Count - 1) {
201 rv = AE_BAD_VALUE;
202 goto out;
203 }
204
205 if (n > ACPI_C_STATES_MAX) {
206 rv = AE_LIMIT;
207 goto out;
208 }
209
210 acpicpu_cstate_memset(sc);
211
212 CTASSERT(ACPI_STATE_C0 == 0 && ACPI_STATE_C1 == 1);
213 CTASSERT(ACPI_STATE_C2 == 2 && ACPI_STATE_C3 == 3);
214
215 for (count = 0, i = 1; i <= n; i++) {
216
217 elm = &obj->Package.Elements[i];
218 rv = acpicpu_cstate_cst_add(sc, elm, i);
219
220 if (ACPI_SUCCESS(rv))
221 count++;
222 }
223
224 rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
225
226 out:
227 if (buf.Pointer != NULL)
228 ACPI_FREE(buf.Pointer);
229
230 return rv;
231 }
232
233 static ACPI_STATUS
234 acpicpu_cstate_cst_add(struct acpicpu_softc *sc, ACPI_OBJECT *elm, int i)
235 {
236 struct acpicpu_cstate *cs = sc->sc_cstate;
237 struct acpicpu_cstate state;
238 struct acpicpu_reg *reg;
239 ACPI_STATUS rv = AE_OK;
240 ACPI_OBJECT *obj;
241 uint32_t type;
242
243 (void)memset(&state, 0, sizeof(*cs));
244
245 state.cs_flags = ACPICPU_FLAG_C_BM_STS;
246
247 if (elm->Type != ACPI_TYPE_PACKAGE) {
248 rv = AE_TYPE;
249 goto out;
250 }
251
252 if (elm->Package.Count != 4) {
253 rv = AE_LIMIT;
254 goto out;
255 }
256
257 /*
258 * Type.
259 */
260 obj = &elm->Package.Elements[1];
261
262 if (obj->Type != ACPI_TYPE_INTEGER) {
263 rv = AE_TYPE;
264 goto out;
265 }
266
267 type = obj->Integer.Value;
268
269 if (type < ACPI_STATE_C1 || type > ACPI_STATE_C3) {
270 rv = AE_TYPE;
271 goto out;
272 }
273
274 /*
275 * Latency.
276 */
277 obj = &elm->Package.Elements[2];
278
279 if (obj->Type != ACPI_TYPE_INTEGER) {
280 rv = AE_TYPE;
281 goto out;
282 }
283
284 state.cs_latency = obj->Integer.Value;
285
286 /*
287 * Power.
288 */
289 obj = &elm->Package.Elements[3];
290
291 if (obj->Type != ACPI_TYPE_INTEGER) {
292 rv = AE_TYPE;
293 goto out;
294 }
295
296 state.cs_power = obj->Integer.Value;
297
298 /*
299 * Register.
300 */
301 obj = &elm->Package.Elements[0];
302
303 if (obj->Type != ACPI_TYPE_BUFFER) {
304 rv = AE_TYPE;
305 goto out;
306 }
307
308 CTASSERT(sizeof(struct acpicpu_reg) == 15);
309
310 if (obj->Buffer.Length < sizeof(struct acpicpu_reg)) {
311 rv = AE_LIMIT;
312 goto out;
313 }
314
315 reg = (struct acpicpu_reg *)obj->Buffer.Pointer;
316
317 switch (reg->reg_spaceid) {
318
319 case ACPI_ADR_SPACE_SYSTEM_IO:
320 state.cs_method = ACPICPU_C_STATE_SYSIO;
321
322 if (reg->reg_addr == 0) {
323 rv = AE_AML_ILLEGAL_ADDRESS;
324 goto out;
325 }
326
327 if (reg->reg_bitwidth != 8) {
328 rv = AE_AML_BAD_RESOURCE_LENGTH;
329 goto out;
330 }
331
332 state.cs_addr = reg->reg_addr;
333 break;
334
335 case ACPI_ADR_SPACE_FIXED_HARDWARE:
336 state.cs_method = ACPICPU_C_STATE_FFH;
337
338 switch (type) {
339
340 case ACPI_STATE_C1:
341
342 /*
343 * If ACPI wants native access (FFH), but the
344 * MD code does not support MONITOR/MWAIT, use
345 * HLT for C1 and error out for higher C-states.
346 */
347 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0)
348 state.cs_method = ACPICPU_C_STATE_HALT;
349
350 break;
351
352 default:
353
354 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) {
355 rv = AE_SUPPORT;
356 goto out;
357 }
358 }
359
360 if (sc->sc_cap != 0) {
361
362 /*
363 * The _CST FFH GAS encoding may contain
364 * additional hints on Intel processors.
365 * Use these to determine whether we can
366 * avoid the bus master activity check.
367 */
368 if ((reg->reg_accesssize & ACPICPU_PDC_GAS_BM) == 0)
369 state.cs_flags &= ~ACPICPU_FLAG_C_BM_STS;
370 }
371
372 break;
373
374 default:
375 rv = AE_AML_INVALID_SPACE_ID;
376 goto out;
377 }
378
379 /*
380 * As some systems define the type arbitrarily,
381 * we use a sequential counter instead of the
382 * BIOS data. For instance, AMD family 14h is
383 * instructed to only use the value 2; see
384 *
385 * Advanced Micro Devices: BIOS and Kernel
386 * Developer's Guide (BKDG) for AMD Family
387 * 14h Models 00h-0Fh Processors. Revision
388 * 3.00, January 4, 2011.
389 */
390 if (i != (int)type) {
391
392 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
393 "C%d != C%u from BIOS", i, type));
394 }
395
396 KASSERT(cs[i].cs_method == 0);
397
398 cs[i].cs_addr = state.cs_addr;
399 cs[i].cs_power = state.cs_power;
400 cs[i].cs_flags = state.cs_flags;
401 cs[i].cs_method = state.cs_method;
402 cs[i].cs_latency = state.cs_latency;
403
404 out:
405 if (ACPI_FAILURE(rv))
406 aprint_error_dev(sc->sc_dev, "failed to add "
407 "C-state: %s\n", AcpiFormatException(rv));
408
409 return rv;
410 }
411
412 static void
413 acpicpu_cstate_cst_bios(void)
414 {
415 const uint8_t val = AcpiGbl_FADT.CstControl;
416 const uint32_t addr = AcpiGbl_FADT.SmiCommand;
417
418 if (addr == 0 || val == 0)
419 return;
420
421 (void)AcpiOsWritePort(addr, val, 8);
422 }
423
424 static void
425 acpicpu_cstate_memset(struct acpicpu_softc *sc)
426 {
427 uint8_t i = 0;
428
429 while (i < __arraycount(sc->sc_cstate)) {
430
431 sc->sc_cstate[i].cs_addr = 0;
432 sc->sc_cstate[i].cs_power = 0;
433 sc->sc_cstate[i].cs_flags = 0;
434 sc->sc_cstate[i].cs_method = 0;
435 sc->sc_cstate[i].cs_latency = 0;
436
437 i++;
438 }
439 }
440
441 static ACPI_STATUS
442 acpicpu_cstate_dep(struct acpicpu_softc *sc)
443 {
444 ACPI_OBJECT *elm, *obj;
445 ACPI_BUFFER buf;
446 ACPI_STATUS rv;
447 uint32_t val;
448 uint8_t i, n;
449
450 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CSD", &buf);
451
452 if (ACPI_FAILURE(rv))
453 goto out;
454
455 obj = buf.Pointer;
456
457 if (obj->Type != ACPI_TYPE_PACKAGE) {
458 rv = AE_TYPE;
459 goto out;
460 }
461
462 if (obj->Package.Count != 1) {
463 rv = AE_LIMIT;
464 goto out;
465 }
466
467 elm = &obj->Package.Elements[0];
468
469 if (obj->Type != ACPI_TYPE_PACKAGE) {
470 rv = AE_TYPE;
471 goto out;
472 }
473
474 n = elm->Package.Count;
475
476 if (n != 6) {
477 rv = AE_LIMIT;
478 goto out;
479 }
480
481 elm = elm->Package.Elements;
482
483 for (i = 0; i < n; i++) {
484
485 if (elm[i].Type != ACPI_TYPE_INTEGER) {
486 rv = AE_TYPE;
487 goto out;
488 }
489
490 if (elm[i].Integer.Value > UINT32_MAX) {
491 rv = AE_AML_NUMERIC_OVERFLOW;
492 goto out;
493 }
494 }
495
496 val = elm[1].Integer.Value;
497
498 if (val != 0)
499 aprint_debug_dev(sc->sc_dev, "invalid revision in _CSD\n");
500
501 val = elm[3].Integer.Value;
502
503 if (val < ACPICPU_DEP_SW_ALL || val > ACPICPU_DEP_HW_ALL) {
504 rv = AE_AML_BAD_RESOURCE_VALUE;
505 goto out;
506 }
507
508 val = elm[4].Integer.Value;
509
510 if (val > sc->sc_ncpus) {
511 rv = AE_BAD_VALUE;
512 goto out;
513 }
514
515 sc->sc_cstate_dep.dep_domain = elm[2].Integer.Value;
516 sc->sc_cstate_dep.dep_type = elm[3].Integer.Value;
517 sc->sc_cstate_dep.dep_ncpus = elm[4].Integer.Value;
518 sc->sc_cstate_dep.dep_index = elm[5].Integer.Value;
519
520 out:
521 if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
522 aprint_debug_dev(sc->sc_dev, "failed to evaluate "
523 "_CSD: %s\n", AcpiFormatException(rv));
524
525 if (buf.Pointer != NULL)
526 ACPI_FREE(buf.Pointer);
527
528 return rv;
529 }
530
531 static void
532 acpicpu_cstate_fadt(struct acpicpu_softc *sc)
533 {
534 struct acpicpu_cstate *cs = sc->sc_cstate;
535
536 acpicpu_cstate_memset(sc);
537
538 /*
539 * All x86 processors should support C1 (a.k.a. HALT).
540 */
541 cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
542
543 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C1_SUPPORTED) == 0)
544 aprint_debug_dev(sc->sc_dev, "HALT not supported?\n");
545
546 if (sc->sc_object.ao_pblkaddr == 0)
547 return;
548
549 if (sc->sc_ncpus > 1) {
550
551 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C2_MP_SUPPORTED) == 0)
552 return;
553 }
554
555 cs[ACPI_STATE_C2].cs_method = ACPICPU_C_STATE_SYSIO;
556 cs[ACPI_STATE_C3].cs_method = ACPICPU_C_STATE_SYSIO;
557
558 cs[ACPI_STATE_C2].cs_latency = AcpiGbl_FADT.C2Latency;
559 cs[ACPI_STATE_C3].cs_latency = AcpiGbl_FADT.C3Latency;
560
561 cs[ACPI_STATE_C2].cs_addr = sc->sc_object.ao_pblkaddr + 4;
562 cs[ACPI_STATE_C3].cs_addr = sc->sc_object.ao_pblkaddr + 5;
563
564 /*
565 * The P_BLK length should always be 6. If it
566 * is not, reduce functionality accordingly.
567 */
568 if (sc->sc_object.ao_pblklen < 5)
569 cs[ACPI_STATE_C2].cs_method = 0;
570
571 if (sc->sc_object.ao_pblklen < 6)
572 cs[ACPI_STATE_C3].cs_method = 0;
573
574 /*
575 * Sanity check the latency levels in FADT.
576 * Values above the thresholds are used to
577 * inform that C-states are not supported.
578 */
579 CTASSERT(ACPICPU_C_C2_LATENCY_MAX == 100);
580 CTASSERT(ACPICPU_C_C3_LATENCY_MAX == 1000);
581
582 if (AcpiGbl_FADT.C2Latency > ACPICPU_C_C2_LATENCY_MAX)
583 cs[ACPI_STATE_C2].cs_method = 0;
584
585 if (AcpiGbl_FADT.C3Latency > ACPICPU_C_C3_LATENCY_MAX)
586 cs[ACPI_STATE_C3].cs_method = 0;
587 }
588
589 static void
590 acpicpu_cstate_quirks(struct acpicpu_softc *sc)
591 {
592 const uint32_t reg = AcpiGbl_FADT.Pm2ControlBlock;
593 const uint32_t len = AcpiGbl_FADT.Pm2ControlLength;
594
595 /*
596 * Disable C3 for PIIX4.
597 */
598 if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0) {
599 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
600 return;
601 }
602
603 /*
604 * Check bus master arbitration. If ARB_DIS
605 * is not available, processor caches must be
606 * flushed before C3 (ACPI 4.0, section 8.2).
607 */
608 if (reg != 0 && len != 0) {
609 sc->sc_flags |= ACPICPU_FLAG_C_ARB;
610 return;
611 }
612
613 /*
614 * Disable C3 entirely if WBINVD is not present.
615 */
616 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) == 0)
617 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
618 else {
619 /*
620 * If WBINVD is present and functioning properly,
621 * flush all processor caches before entering C3.
622 */
623 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0)
624 sc->sc_flags &= ~ACPICPU_FLAG_C_BM;
625 else
626 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
627 }
628 }
629
630 static int
631 acpicpu_cstate_latency(struct acpicpu_softc *sc)
632 {
633 static const uint32_t cs_factor = 3;
634 struct acpicpu_cstate *cs;
635 int i;
636
637 for (i = cs_state_max; i > 0; i--) {
638
639 cs = &sc->sc_cstate[i];
640
641 if (__predict_false(cs->cs_method == 0))
642 continue;
643
644 /*
645 * Choose a state if we have previously slept
646 * longer than the worst case latency of the
647 * state times an arbitrary multiplier.
648 */
649 if (sc->sc_cstate_sleep > cs->cs_latency * cs_factor)
650 return i;
651 }
652
653 return ACPI_STATE_C1;
654 }
655
656 /*
657 * The main idle loop.
658 */
659 void
660 acpicpu_cstate_idle(void)
661 {
662 struct cpu_info *ci = curcpu();
663 struct acpicpu_softc *sc;
664 int state;
665
666 acpi_md_OsDisableInterrupt();
667
668 if (__predict_false(ci->ci_want_resched != 0))
669 goto out;
670
671 KASSERT(acpicpu_sc != NULL);
672 KASSERT(ci->ci_acpiid < maxcpus);
673
674 sc = acpicpu_sc[ci->ci_acpiid];
675
676 if (__predict_false(sc == NULL))
677 goto out;
678
679 KASSERT(ci->ci_ilevel == IPL_NONE);
680 KASSERT((sc->sc_flags & ACPICPU_FLAG_C) != 0);
681
682 if (__predict_false(sc->sc_cold != false))
683 goto out;
684
685 if (__predict_false(mutex_tryenter(&sc->sc_mtx) == 0))
686 goto out;
687
688 mutex_exit(&sc->sc_mtx);
689 state = acpicpu_cstate_latency(sc);
690
691 /*
692 * Apply AMD C1E quirk.
693 */
694 if ((sc->sc_flags & ACPICPU_FLAG_C_C1E) != 0)
695 acpicpu_md_quirk_c1e();
696
697 /*
698 * Check for bus master activity. Note that particularly usb(4)
699 * causes high activity, which may prevent the use of C3 states.
700 */
701 if ((sc->sc_cstate[state].cs_flags & ACPICPU_FLAG_C_BM_STS) != 0) {
702
703 if (acpicpu_cstate_bm_check() != false)
704 state--;
705
706 if (__predict_false(sc->sc_cstate[state].cs_method == 0))
707 state = ACPI_STATE_C1;
708 }
709
710 KASSERT(state != ACPI_STATE_C0);
711
712 if (state != ACPI_STATE_C3) {
713 acpicpu_cstate_idle_enter(sc, state);
714 return;
715 }
716
717 /*
718 * On all recent (Intel) CPUs caches are shared
719 * by CPUs and bus master control is required to
720 * keep these coherent while in C3. Flushing the
721 * CPU caches is only the last resort.
722 */
723 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) == 0)
724 ACPI_FLUSH_CPU_CACHE();
725
726 /*
727 * Allow the bus master to request that any given
728 * CPU should return immediately to C0 from C3.
729 */
730 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
731 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
732
733 /*
734 * It may be necessary to disable bus master arbitration
735 * to ensure that bus master cycles do not occur while
736 * sleeping in C3 (see ACPI 4.0, section 8.1.4).
737 */
738 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
739 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
740
741 acpicpu_cstate_idle_enter(sc, state);
742
743 /*
744 * Disable bus master wake and re-enable the arbiter.
745 */
746 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
747 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
748
749 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
750 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
751
752 return;
753
754 out:
755 acpi_md_OsEnableInterrupt();
756 }
757
758 static void
759 acpicpu_cstate_idle_enter(struct acpicpu_softc *sc, int state)
760 {
761 struct acpicpu_cstate *cs = &sc->sc_cstate[state];
762 uint32_t end, start, val;
763
764 start = acpitimer_read_fast(NULL);
765
766 switch (cs->cs_method) {
767
768 case ACPICPU_C_STATE_FFH:
769 case ACPICPU_C_STATE_HALT:
770 acpicpu_md_cstate_enter(cs->cs_method, state);
771 break;
772
773 case ACPICPU_C_STATE_SYSIO:
774 (void)AcpiOsReadPort(cs->cs_addr, &val, 8);
775 break;
776 }
777
778 acpi_md_OsEnableInterrupt();
779
780 cs->cs_evcnt.ev_count++;
781 end = acpitimer_read_fast(NULL);
782 sc->sc_cstate_sleep = hztoms(acpitimer_delta(end, start)) * 1000;
783 }
784
785 static bool
786 acpicpu_cstate_bm_check(void)
787 {
788 uint32_t val = 0;
789 ACPI_STATUS rv;
790
791 rv = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &val);
792
793 if (ACPI_FAILURE(rv) || val == 0)
794 return false;
795
796 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
797
798 return true;
799 }
800