acpi_cpu_cstate.c revision 1.45 1 /* $NetBSD: acpi_cpu_cstate.c,v 1.45 2011/02/25 12:08:35 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_cstate.c,v 1.45 2011/02/25 12:08:35 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/cpu.h>
34 #include <sys/device.h>
35 #include <sys/evcnt.h>
36 #include <sys/kernel.h>
37 #include <sys/once.h>
38 #include <sys/mutex.h>
39 #include <sys/timetc.h>
40
41 #include <dev/acpi/acpireg.h>
42 #include <dev/acpi/acpivar.h>
43 #include <dev/acpi/acpi_cpu.h>
44 #include <dev/acpi/acpi_timer.h>
45
46 #include <machine/acpi_machdep.h>
47
48 #define _COMPONENT ACPI_BUS_COMPONENT
49 ACPI_MODULE_NAME ("acpi_cpu_cstate")
50
51 static void acpicpu_cstate_attach_print(struct acpicpu_softc *);
52 static void acpicpu_cstate_attach_evcnt(struct acpicpu_softc *);
53 static void acpicpu_cstate_detach_evcnt(struct acpicpu_softc *);
54 static ACPI_STATUS acpicpu_cstate_cst(struct acpicpu_softc *);
55 static ACPI_STATUS acpicpu_cstate_cst_add(struct acpicpu_softc *,
56 ACPI_OBJECT *, int );
57 static void acpicpu_cstate_cst_bios(void);
58 static void acpicpu_cstate_memset(struct acpicpu_softc *);
59 static void acpicpu_cstate_fadt(struct acpicpu_softc *);
60 static void acpicpu_cstate_quirks(struct acpicpu_softc *);
61 static int acpicpu_cstate_latency(struct acpicpu_softc *);
62 static bool acpicpu_cstate_bm_check(void);
63 static void acpicpu_cstate_idle_enter(struct acpicpu_softc *,int);
64
65 extern struct acpicpu_softc **acpicpu_sc;
66
67 /*
68 * XXX: The local APIC timer (as well as TSC) is typically stopped in C3.
69 * For now, we cannot but disable C3. But there appears to be timer-
70 * related interrupt issues also in C2. The only entirely safe option
71 * at the moment is to use C1.
72 */
73 #ifdef ACPICPU_ENABLE_C3
74 static int cs_state_max = ACPI_STATE_C3;
75 #else
76 static int cs_state_max = ACPI_STATE_C1;
77 #endif
78
79 void
80 acpicpu_cstate_attach(device_t self)
81 {
82 struct acpicpu_softc *sc = device_private(self);
83 ACPI_STATUS rv;
84
85 /*
86 * Either use the preferred _CST or resort to FADT.
87 */
88 rv = acpicpu_cstate_cst(sc);
89
90 switch (rv) {
91
92 case AE_OK:
93 acpicpu_cstate_cst_bios();
94 break;
95
96 default:
97 sc->sc_flags |= ACPICPU_FLAG_C_FADT;
98 acpicpu_cstate_fadt(sc);
99 break;
100 }
101
102 sc->sc_flags |= ACPICPU_FLAG_C;
103
104 acpicpu_cstate_quirks(sc);
105 acpicpu_cstate_attach_evcnt(sc);
106 acpicpu_cstate_attach_print(sc);
107 }
108
109 void
110 acpicpu_cstate_attach_print(struct acpicpu_softc *sc)
111 {
112 struct acpicpu_cstate *cs;
113 static bool once = false;
114 const char *str;
115 int i;
116
117 if (once != false)
118 return;
119
120 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
121
122 cs = &sc->sc_cstate[i];
123
124 if (cs->cs_method == 0)
125 continue;
126
127 switch (cs->cs_method) {
128
129 case ACPICPU_C_STATE_HALT:
130 str = "HLT";
131 break;
132
133 case ACPICPU_C_STATE_FFH:
134 str = "FFH";
135 break;
136
137 case ACPICPU_C_STATE_SYSIO:
138 str = "I/O";
139 break;
140
141 default:
142 panic("NOTREACHED");
143 }
144
145 aprint_verbose_dev(sc->sc_dev, "C%d: %3s, "
146 "lat %3u us, pow %5u mW, flags 0x%02x\n", i, str,
147 cs->cs_latency, cs->cs_power, cs->cs_flags);
148 }
149
150 once = true;
151 }
152
153 static void
154 acpicpu_cstate_attach_evcnt(struct acpicpu_softc *sc)
155 {
156 struct acpicpu_cstate *cs;
157 const char *str;
158 int i;
159
160 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
161
162 cs = &sc->sc_cstate[i];
163
164 if (cs->cs_method == 0)
165 continue;
166
167 str = "HALT";
168
169 if (cs->cs_method == ACPICPU_C_STATE_FFH)
170 str = "MWAIT";
171
172 if (cs->cs_method == ACPICPU_C_STATE_SYSIO)
173 str = "I/O";
174
175 (void)snprintf(cs->cs_name, sizeof(cs->cs_name),
176 "C%d (%s)", i, str);
177
178 evcnt_attach_dynamic(&cs->cs_evcnt, EVCNT_TYPE_MISC,
179 NULL, device_xname(sc->sc_dev), cs->cs_name);
180 }
181 }
182
183 int
184 acpicpu_cstate_detach(device_t self)
185 {
186 struct acpicpu_softc *sc = device_private(self);
187 static ONCE_DECL(once_detach);
188 int rv;
189
190 rv = RUN_ONCE(&once_detach, acpicpu_md_cstate_stop);
191
192 if (rv != 0)
193 return rv;
194
195 sc->sc_flags &= ~ACPICPU_FLAG_C;
196 acpicpu_cstate_detach_evcnt(sc);
197
198 return 0;
199 }
200
201 static void
202 acpicpu_cstate_detach_evcnt(struct acpicpu_softc *sc)
203 {
204 struct acpicpu_cstate *cs;
205 int i;
206
207 for (i = 0; i < ACPI_C_STATE_COUNT; i++) {
208
209 cs = &sc->sc_cstate[i];
210
211 if (cs->cs_method != 0)
212 evcnt_detach(&cs->cs_evcnt);
213 }
214 }
215
216 void
217 acpicpu_cstate_start(device_t self)
218 {
219 struct acpicpu_softc *sc = device_private(self);
220
221 (void)acpicpu_md_cstate_start(sc);
222 }
223
224 bool
225 acpicpu_cstate_suspend(device_t self)
226 {
227 return true;
228 }
229
230 bool
231 acpicpu_cstate_resume(device_t self)
232 {
233 static const ACPI_OSD_EXEC_CALLBACK func = acpicpu_cstate_callback;
234 struct acpicpu_softc *sc = device_private(self);
235
236 if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) == 0)
237 (void)AcpiOsExecute(OSL_NOTIFY_HANDLER, func, sc->sc_dev);
238
239 return true;
240 }
241
242 void
243 acpicpu_cstate_callback(void *aux)
244 {
245 struct acpicpu_softc *sc;
246 device_t self = aux;
247
248 sc = device_private(self);
249
250 if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) != 0)
251 return;
252
253 mutex_enter(&sc->sc_mtx);
254 (void)acpicpu_cstate_cst(sc);
255 mutex_exit(&sc->sc_mtx);
256 }
257
258 static ACPI_STATUS
259 acpicpu_cstate_cst(struct acpicpu_softc *sc)
260 {
261 ACPI_OBJECT *elm, *obj;
262 ACPI_BUFFER buf;
263 ACPI_STATUS rv;
264 uint32_t i, n;
265 uint8_t count;
266
267 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CST", &buf);
268
269 if (ACPI_FAILURE(rv))
270 return rv;
271
272 obj = buf.Pointer;
273
274 if (obj->Type != ACPI_TYPE_PACKAGE) {
275 rv = AE_TYPE;
276 goto out;
277 }
278
279 if (obj->Package.Count < 2) {
280 rv = AE_LIMIT;
281 goto out;
282 }
283
284 elm = obj->Package.Elements;
285
286 if (elm[0].Type != ACPI_TYPE_INTEGER) {
287 rv = AE_TYPE;
288 goto out;
289 }
290
291 n = elm[0].Integer.Value;
292
293 if (n != obj->Package.Count - 1) {
294 rv = AE_BAD_VALUE;
295 goto out;
296 }
297
298 if (n > ACPI_C_STATES_MAX) {
299 rv = AE_LIMIT;
300 goto out;
301 }
302
303 acpicpu_cstate_memset(sc);
304
305 CTASSERT(ACPI_STATE_C0 == 0 && ACPI_STATE_C1 == 1);
306 CTASSERT(ACPI_STATE_C2 == 2 && ACPI_STATE_C3 == 3);
307
308 for (count = 0, i = 1; i <= n; i++) {
309
310 elm = &obj->Package.Elements[i];
311 rv = acpicpu_cstate_cst_add(sc, elm, i);
312
313 if (ACPI_SUCCESS(rv))
314 count++;
315 }
316
317 rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
318
319 out:
320 if (buf.Pointer != NULL)
321 ACPI_FREE(buf.Pointer);
322
323 return rv;
324 }
325
326 static ACPI_STATUS
327 acpicpu_cstate_cst_add(struct acpicpu_softc *sc, ACPI_OBJECT *elm, int i)
328 {
329 struct acpicpu_cstate *cs = sc->sc_cstate;
330 struct acpicpu_cstate state;
331 struct acpicpu_reg *reg;
332 ACPI_STATUS rv = AE_OK;
333 ACPI_OBJECT *obj;
334 uint32_t type;
335
336 (void)memset(&state, 0, sizeof(*cs));
337
338 state.cs_flags = ACPICPU_FLAG_C_BM_STS;
339
340 if (elm->Type != ACPI_TYPE_PACKAGE) {
341 rv = AE_TYPE;
342 goto out;
343 }
344
345 if (elm->Package.Count != 4) {
346 rv = AE_LIMIT;
347 goto out;
348 }
349
350 /*
351 * Type.
352 */
353 obj = &elm->Package.Elements[1];
354
355 if (obj->Type != ACPI_TYPE_INTEGER) {
356 rv = AE_TYPE;
357 goto out;
358 }
359
360 type = obj->Integer.Value;
361
362 if (type < ACPI_STATE_C1 || type > ACPI_STATE_C3) {
363 rv = AE_TYPE;
364 goto out;
365 }
366
367 /*
368 * Latency.
369 */
370 obj = &elm->Package.Elements[2];
371
372 if (obj->Type != ACPI_TYPE_INTEGER) {
373 rv = AE_TYPE;
374 goto out;
375 }
376
377 state.cs_latency = obj->Integer.Value;
378
379 /*
380 * Power.
381 */
382 obj = &elm->Package.Elements[3];
383
384 if (obj->Type != ACPI_TYPE_INTEGER) {
385 rv = AE_TYPE;
386 goto out;
387 }
388
389 state.cs_power = obj->Integer.Value;
390
391 /*
392 * Register.
393 */
394 obj = &elm->Package.Elements[0];
395
396 if (obj->Type != ACPI_TYPE_BUFFER) {
397 rv = AE_TYPE;
398 goto out;
399 }
400
401 CTASSERT(sizeof(struct acpicpu_reg) == 15);
402
403 if (obj->Buffer.Length < sizeof(struct acpicpu_reg)) {
404 rv = AE_LIMIT;
405 goto out;
406 }
407
408 reg = (struct acpicpu_reg *)obj->Buffer.Pointer;
409
410 switch (reg->reg_spaceid) {
411
412 case ACPI_ADR_SPACE_SYSTEM_IO:
413 state.cs_method = ACPICPU_C_STATE_SYSIO;
414
415 if (reg->reg_addr == 0) {
416 rv = AE_AML_ILLEGAL_ADDRESS;
417 goto out;
418 }
419
420 if (reg->reg_bitwidth != 8) {
421 rv = AE_AML_BAD_RESOURCE_LENGTH;
422 goto out;
423 }
424
425 state.cs_addr = reg->reg_addr;
426 break;
427
428 case ACPI_ADR_SPACE_FIXED_HARDWARE:
429 state.cs_method = ACPICPU_C_STATE_FFH;
430
431 switch (type) {
432
433 case ACPI_STATE_C1:
434
435 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0)
436 state.cs_method = ACPICPU_C_STATE_HALT;
437
438 break;
439
440 default:
441
442 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) {
443 rv = AE_SUPPORT;
444 goto out;
445 }
446 }
447
448 if (sc->sc_cap != 0) {
449
450 /*
451 * The _CST FFH GAS encoding may contain
452 * additional hints on Intel processors.
453 * Use these to determine whether we can
454 * avoid the bus master activity check.
455 */
456 if ((reg->reg_accesssize & ACPICPU_PDC_GAS_BM) == 0)
457 state.cs_flags &= ~ACPICPU_FLAG_C_BM_STS;
458 }
459
460 break;
461
462 default:
463 rv = AE_AML_INVALID_SPACE_ID;
464 goto out;
465 }
466
467 /*
468 * As some systems define the type arbitrarily,
469 * we use a sequential counter instead of the
470 * BIOS data. For instance, AMD family 14h is
471 * instructed to only use the value 2; see
472 *
473 * Advanced Micro Devices: BIOS and Kernel
474 * Developer's Guide (BKDG) for AMD Family
475 * 14h Models 00h-0Fh Processors. Revision
476 * 3.00, January 4, 2011.
477 */
478 if (i != (int)type) {
479
480 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
481 "C%d != C%u from BIOS", i, type));
482 }
483
484 KASSERT(cs[i].cs_method == 0);
485
486 cs[i].cs_addr = state.cs_addr;
487 cs[i].cs_power = state.cs_power;
488 cs[i].cs_flags = state.cs_flags;
489 cs[i].cs_method = state.cs_method;
490 cs[i].cs_latency = state.cs_latency;
491
492 out:
493 if (ACPI_FAILURE(rv))
494 aprint_error_dev(sc->sc_dev, "failed to add "
495 "C-state: %s\n", AcpiFormatException(rv));
496
497 i++;
498
499 return rv;
500 }
501
502 static void
503 acpicpu_cstate_cst_bios(void)
504 {
505 const uint8_t val = AcpiGbl_FADT.CstControl;
506 const uint32_t addr = AcpiGbl_FADT.SmiCommand;
507
508 if (addr == 0 || val == 0)
509 return;
510
511 (void)AcpiOsWritePort(addr, val, 8);
512 }
513
514 static void
515 acpicpu_cstate_memset(struct acpicpu_softc *sc)
516 {
517 int i = 0;
518
519 while (i < ACPI_C_STATE_COUNT) {
520
521 sc->sc_cstate[i].cs_addr = 0;
522 sc->sc_cstate[i].cs_power = 0;
523 sc->sc_cstate[i].cs_flags = 0;
524 sc->sc_cstate[i].cs_method = 0;
525 sc->sc_cstate[i].cs_latency = 0;
526
527 i++;
528 }
529 }
530
531 static void
532 acpicpu_cstate_fadt(struct acpicpu_softc *sc)
533 {
534 struct acpicpu_cstate *cs = sc->sc_cstate;
535
536 acpicpu_cstate_memset(sc);
537
538 /*
539 * All x86 processors should support C1 (a.k.a. HALT).
540 */
541 cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
542
543 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C1_SUPPORTED) == 0)
544 aprint_debug_dev(sc->sc_dev, "HALT not supported?\n");
545
546 if (sc->sc_object.ao_pblkaddr == 0)
547 return;
548
549 if (acpi_md_ncpus() > 1) {
550
551 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C2_MP_SUPPORTED) == 0)
552 return;
553 }
554
555 cs[ACPI_STATE_C2].cs_method = ACPICPU_C_STATE_SYSIO;
556 cs[ACPI_STATE_C3].cs_method = ACPICPU_C_STATE_SYSIO;
557
558 cs[ACPI_STATE_C2].cs_latency = AcpiGbl_FADT.C2Latency;
559 cs[ACPI_STATE_C3].cs_latency = AcpiGbl_FADT.C3Latency;
560
561 cs[ACPI_STATE_C2].cs_addr = sc->sc_object.ao_pblkaddr + 4;
562 cs[ACPI_STATE_C3].cs_addr = sc->sc_object.ao_pblkaddr + 5;
563
564 /*
565 * The P_BLK length should always be 6. If it
566 * is not, reduce functionality accordingly.
567 */
568 if (sc->sc_object.ao_pblklen < 5)
569 cs[ACPI_STATE_C2].cs_method = 0;
570
571 if (sc->sc_object.ao_pblklen < 6)
572 cs[ACPI_STATE_C3].cs_method = 0;
573
574 /*
575 * Sanity check the latency levels in FADT.
576 * Values above the thresholds are used to
577 * inform that C-states are not supported.
578 */
579 CTASSERT(ACPICPU_C_C2_LATENCY_MAX == 100);
580 CTASSERT(ACPICPU_C_C3_LATENCY_MAX == 1000);
581
582 if (AcpiGbl_FADT.C2Latency > ACPICPU_C_C2_LATENCY_MAX)
583 cs[ACPI_STATE_C2].cs_method = 0;
584
585 if (AcpiGbl_FADT.C3Latency > ACPICPU_C_C3_LATENCY_MAX)
586 cs[ACPI_STATE_C3].cs_method = 0;
587 }
588
589 static void
590 acpicpu_cstate_quirks(struct acpicpu_softc *sc)
591 {
592 const uint32_t reg = AcpiGbl_FADT.Pm2ControlBlock;
593 const uint32_t len = AcpiGbl_FADT.Pm2ControlLength;
594
595 /*
596 * Disable C3 for PIIX4.
597 */
598 if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0) {
599 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
600 return;
601 }
602
603 /*
604 * Check bus master arbitration. If ARB_DIS
605 * is not available, processor caches must be
606 * flushed before C3 (ACPI 4.0, section 8.2).
607 */
608 if (reg != 0 && len != 0) {
609 sc->sc_flags |= ACPICPU_FLAG_C_ARB;
610 return;
611 }
612
613 /*
614 * Disable C3 entirely if WBINVD is not present.
615 */
616 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) == 0)
617 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
618 else {
619 /*
620 * If WBINVD is present and functioning properly,
621 * flush all processor caches before entering C3.
622 */
623 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0)
624 sc->sc_flags &= ~ACPICPU_FLAG_C_BM;
625 else
626 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
627 }
628 }
629
630 static int
631 acpicpu_cstate_latency(struct acpicpu_softc *sc)
632 {
633 static const uint32_t cs_factor = 3;
634 struct acpicpu_cstate *cs;
635 int i;
636
637 for (i = cs_state_max; i > 0; i--) {
638
639 cs = &sc->sc_cstate[i];
640
641 if (__predict_false(cs->cs_method == 0))
642 continue;
643
644 /*
645 * Choose a state if we have previously slept
646 * longer than the worst case latency of the
647 * state times an arbitrary multiplier.
648 */
649 if (sc->sc_cstate_sleep > cs->cs_latency * cs_factor)
650 return i;
651 }
652
653 return ACPI_STATE_C1;
654 }
655
656 /*
657 * The main idle loop.
658 */
659 void
660 acpicpu_cstate_idle(void)
661 {
662 struct cpu_info *ci = curcpu();
663 struct acpicpu_softc *sc;
664 int state;
665
666 acpi_md_OsDisableInterrupt();
667
668 if (__predict_false(ci->ci_want_resched != 0))
669 goto out;
670
671 KASSERT(acpicpu_sc != NULL);
672 KASSERT(ci->ci_acpiid < maxcpus);
673
674 sc = acpicpu_sc[ci->ci_acpiid];
675
676 if (__predict_false(sc == NULL))
677 goto out;
678
679 KASSERT(ci->ci_ilevel == IPL_NONE);
680 KASSERT((sc->sc_flags & ACPICPU_FLAG_C) != 0);
681
682 if (__predict_false(sc->sc_cold != false))
683 goto out;
684
685 if (__predict_false(mutex_tryenter(&sc->sc_mtx) == 0))
686 goto out;
687
688 mutex_exit(&sc->sc_mtx);
689 state = acpicpu_cstate_latency(sc);
690
691 /*
692 * Apply AMD C1E quirk.
693 */
694 if ((sc->sc_flags & ACPICPU_FLAG_C_C1E) != 0)
695 acpicpu_md_quirk_c1e();
696
697 /*
698 * Check for bus master activity. Note that particularly usb(4)
699 * causes high activity, which may prevent the use of C3 states.
700 */
701 if ((sc->sc_cstate[state].cs_flags & ACPICPU_FLAG_C_BM_STS) != 0) {
702
703 if (acpicpu_cstate_bm_check() != false)
704 state--;
705
706 if (__predict_false(sc->sc_cstate[state].cs_method == 0))
707 state = ACPI_STATE_C1;
708 }
709
710 KASSERT(state != ACPI_STATE_C0);
711
712 if (state != ACPI_STATE_C3) {
713 acpicpu_cstate_idle_enter(sc, state);
714 return;
715 }
716
717 /*
718 * On all recent (Intel) CPUs caches are shared
719 * by CPUs and bus master control is required to
720 * keep these coherent while in C3. Flushing the
721 * CPU caches is only the last resort.
722 */
723 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) == 0)
724 ACPI_FLUSH_CPU_CACHE();
725
726 /*
727 * Allow the bus master to request that any given
728 * CPU should return immediately to C0 from C3.
729 */
730 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
731 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
732
733 /*
734 * It may be necessary to disable bus master arbitration
735 * to ensure that bus master cycles do not occur while
736 * sleeping in C3 (see ACPI 4.0, section 8.1.4).
737 */
738 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
739 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
740
741 acpicpu_cstate_idle_enter(sc, state);
742
743 /*
744 * Disable bus master wake and re-enable the arbiter.
745 */
746 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
747 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
748
749 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
750 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
751
752 return;
753
754 out:
755 acpi_md_OsEnableInterrupt();
756 }
757
758 static void
759 acpicpu_cstate_idle_enter(struct acpicpu_softc *sc, int state)
760 {
761 struct acpicpu_cstate *cs = &sc->sc_cstate[state];
762 uint32_t end, start, val;
763
764 start = acpitimer_read_fast(NULL);
765
766 switch (cs->cs_method) {
767
768 case ACPICPU_C_STATE_FFH:
769 case ACPICPU_C_STATE_HALT:
770 acpicpu_md_cstate_enter(cs->cs_method, state);
771 break;
772
773 case ACPICPU_C_STATE_SYSIO:
774 (void)AcpiOsReadPort(cs->cs_addr, &val, 8);
775 break;
776 }
777
778 acpi_md_OsEnableInterrupt();
779
780 cs->cs_evcnt.ev_count++;
781 end = acpitimer_read_fast(NULL);
782 sc->sc_cstate_sleep = hztoms(acpitimer_delta(end, start)) * 1000;
783 }
784
785 static bool
786 acpicpu_cstate_bm_check(void)
787 {
788 uint32_t val = 0;
789 ACPI_STATUS rv;
790
791 rv = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &val);
792
793 if (ACPI_FAILURE(rv) || val == 0)
794 return false;
795
796 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
797
798 return true;
799 }
800