acpi_cpu_cstate.c revision 1.51 1 /* $NetBSD: acpi_cpu_cstate.c,v 1.51 2011/03/17 15:32:18 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_cstate.c,v 1.51 2011/03/17 15:32:18 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/cpu.h>
34 #include <sys/device.h>
35 #include <sys/kernel.h>
36 #include <sys/once.h>
37 #include <sys/mutex.h>
38 #include <sys/timetc.h>
39
40 #include <dev/acpi/acpireg.h>
41 #include <dev/acpi/acpivar.h>
42 #include <dev/acpi/acpi_cpu.h>
43 #include <dev/acpi/acpi_timer.h>
44
45 #include <machine/acpi_machdep.h>
46
47 #define _COMPONENT ACPI_BUS_COMPONENT
48 ACPI_MODULE_NAME ("acpi_cpu_cstate")
49
50 static ACPI_STATUS acpicpu_cstate_cst(struct acpicpu_softc *);
51 static ACPI_STATUS acpicpu_cstate_cst_add(struct acpicpu_softc *,
52 ACPI_OBJECT *, int );
53 static void acpicpu_cstate_cst_bios(void);
54 static void acpicpu_cstate_memset(struct acpicpu_softc *);
55 static ACPI_STATUS acpicpu_cstate_dep(struct acpicpu_softc *);
56 static void acpicpu_cstate_fadt(struct acpicpu_softc *);
57 static void acpicpu_cstate_quirks(struct acpicpu_softc *);
58 static int acpicpu_cstate_latency(struct acpicpu_softc *);
59 static bool acpicpu_cstate_bm_check(void);
60 static void acpicpu_cstate_idle_enter(struct acpicpu_softc *,int);
61
62 extern struct acpicpu_softc **acpicpu_sc;
63
64 /*
65 * XXX: The local APIC timer (as well as TSC) is typically stopped in C3.
66 * For now, we cannot but disable C3. But there appears to be timer-
67 * related interrupt issues also in C2. The only entirely safe option
68 * at the moment is to use C1.
69 */
70 #ifdef ACPICPU_ENABLE_C3
71 static int cs_state_max = ACPI_STATE_C3;
72 #else
73 static int cs_state_max = ACPI_STATE_C1;
74 #endif
75
76 void
77 acpicpu_cstate_attach(device_t self)
78 {
79 struct acpicpu_softc *sc = device_private(self);
80 ACPI_STATUS rv;
81
82 /*
83 * Either use the preferred _CST or resort to FADT.
84 */
85 rv = acpicpu_cstate_cst(sc);
86
87 switch (rv) {
88
89 case AE_OK:
90 acpicpu_cstate_cst_bios();
91 break;
92
93 default:
94 sc->sc_flags |= ACPICPU_FLAG_C_FADT;
95 acpicpu_cstate_fadt(sc);
96 break;
97 }
98
99 /*
100 * Query the optional _CSD.
101 */
102 rv = acpicpu_cstate_dep(sc);
103
104 if (ACPI_SUCCESS(rv))
105 sc->sc_flags |= ACPICPU_FLAG_C_DEP;
106
107 sc->sc_flags |= ACPICPU_FLAG_C;
108
109 acpicpu_cstate_quirks(sc);
110 }
111
112 int
113 acpicpu_cstate_detach(device_t self)
114 {
115 struct acpicpu_softc *sc = device_private(self);
116 static ONCE_DECL(once_detach);
117 int rv;
118
119 rv = RUN_ONCE(&once_detach, acpicpu_md_cstate_stop);
120
121 if (rv != 0)
122 return rv;
123
124 sc->sc_flags &= ~ACPICPU_FLAG_C;
125
126 return 0;
127 }
128
129 void
130 acpicpu_cstate_start(device_t self)
131 {
132 struct acpicpu_softc *sc = device_private(self);
133
134 (void)acpicpu_md_cstate_start(sc);
135 }
136
137 bool
138 acpicpu_cstate_suspend(device_t self)
139 {
140 return true;
141 }
142
143 bool
144 acpicpu_cstate_resume(device_t self)
145 {
146 static const ACPI_OSD_EXEC_CALLBACK func = acpicpu_cstate_callback;
147 struct acpicpu_softc *sc = device_private(self);
148
149 if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) == 0)
150 (void)AcpiOsExecute(OSL_NOTIFY_HANDLER, func, sc->sc_dev);
151
152 return true;
153 }
154
155 void
156 acpicpu_cstate_callback(void *aux)
157 {
158 struct acpicpu_softc *sc;
159 device_t self = aux;
160
161 sc = device_private(self);
162
163 if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) != 0)
164 return;
165
166 mutex_enter(&sc->sc_mtx);
167 (void)acpicpu_cstate_cst(sc);
168 mutex_exit(&sc->sc_mtx);
169 }
170
171 static ACPI_STATUS
172 acpicpu_cstate_cst(struct acpicpu_softc *sc)
173 {
174 ACPI_OBJECT *elm, *obj;
175 ACPI_BUFFER buf;
176 ACPI_STATUS rv;
177 uint32_t i, n;
178 uint8_t count;
179
180 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CST", &buf);
181
182 if (ACPI_FAILURE(rv))
183 return rv;
184
185 obj = buf.Pointer;
186
187 if (obj->Type != ACPI_TYPE_PACKAGE) {
188 rv = AE_TYPE;
189 goto out;
190 }
191
192 if (obj->Package.Count < 2) {
193 rv = AE_LIMIT;
194 goto out;
195 }
196
197 elm = obj->Package.Elements;
198
199 if (elm[0].Type != ACPI_TYPE_INTEGER) {
200 rv = AE_TYPE;
201 goto out;
202 }
203
204 n = elm[0].Integer.Value;
205
206 if (n != obj->Package.Count - 1) {
207 rv = AE_BAD_VALUE;
208 goto out;
209 }
210
211 if (n > ACPI_C_STATES_MAX) {
212 rv = AE_LIMIT;
213 goto out;
214 }
215
216 acpicpu_cstate_memset(sc);
217
218 CTASSERT(ACPI_STATE_C0 == 0 && ACPI_STATE_C1 == 1);
219 CTASSERT(ACPI_STATE_C2 == 2 && ACPI_STATE_C3 == 3);
220
221 for (count = 0, i = 1; i <= n; i++) {
222
223 elm = &obj->Package.Elements[i];
224 rv = acpicpu_cstate_cst_add(sc, elm, i);
225
226 if (ACPI_SUCCESS(rv))
227 count++;
228 }
229
230 rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
231
232 out:
233 if (buf.Pointer != NULL)
234 ACPI_FREE(buf.Pointer);
235
236 return rv;
237 }
238
239 static ACPI_STATUS
240 acpicpu_cstate_cst_add(struct acpicpu_softc *sc, ACPI_OBJECT *elm, int i)
241 {
242 struct acpicpu_cstate *cs = sc->sc_cstate;
243 struct acpicpu_cstate state;
244 struct acpicpu_reg *reg;
245 ACPI_STATUS rv = AE_OK;
246 ACPI_OBJECT *obj;
247 uint32_t type;
248
249 (void)memset(&state, 0, sizeof(*cs));
250
251 state.cs_flags = ACPICPU_FLAG_C_BM_STS;
252
253 if (elm->Type != ACPI_TYPE_PACKAGE) {
254 rv = AE_TYPE;
255 goto out;
256 }
257
258 if (elm->Package.Count != 4) {
259 rv = AE_LIMIT;
260 goto out;
261 }
262
263 /*
264 * Type.
265 */
266 obj = &elm->Package.Elements[1];
267
268 if (obj->Type != ACPI_TYPE_INTEGER) {
269 rv = AE_TYPE;
270 goto out;
271 }
272
273 type = obj->Integer.Value;
274
275 if (type < ACPI_STATE_C1 || type > ACPI_STATE_C3) {
276 rv = AE_TYPE;
277 goto out;
278 }
279
280 /*
281 * Latency.
282 */
283 obj = &elm->Package.Elements[2];
284
285 if (obj->Type != ACPI_TYPE_INTEGER) {
286 rv = AE_TYPE;
287 goto out;
288 }
289
290 state.cs_latency = obj->Integer.Value;
291
292 /*
293 * Power.
294 */
295 obj = &elm->Package.Elements[3];
296
297 if (obj->Type != ACPI_TYPE_INTEGER) {
298 rv = AE_TYPE;
299 goto out;
300 }
301
302 state.cs_power = obj->Integer.Value;
303
304 /*
305 * Register.
306 */
307 obj = &elm->Package.Elements[0];
308
309 if (obj->Type != ACPI_TYPE_BUFFER) {
310 rv = AE_TYPE;
311 goto out;
312 }
313
314 CTASSERT(sizeof(struct acpicpu_reg) == 15);
315
316 if (obj->Buffer.Length < sizeof(struct acpicpu_reg)) {
317 rv = AE_LIMIT;
318 goto out;
319 }
320
321 reg = (struct acpicpu_reg *)obj->Buffer.Pointer;
322
323 switch (reg->reg_spaceid) {
324
325 case ACPI_ADR_SPACE_SYSTEM_IO:
326 state.cs_method = ACPICPU_C_STATE_SYSIO;
327
328 if (reg->reg_addr == 0) {
329 rv = AE_AML_ILLEGAL_ADDRESS;
330 goto out;
331 }
332
333 if (reg->reg_bitwidth != 8) {
334 rv = AE_AML_BAD_RESOURCE_LENGTH;
335 goto out;
336 }
337
338 state.cs_addr = reg->reg_addr;
339 break;
340
341 case ACPI_ADR_SPACE_FIXED_HARDWARE:
342 state.cs_method = ACPICPU_C_STATE_FFH;
343
344 switch (type) {
345
346 case ACPI_STATE_C1:
347
348 /*
349 * If ACPI wants native access (FFH), but the
350 * MD code does not support MONITOR/MWAIT, use
351 * HLT for C1 and error out for higher C-states.
352 */
353 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0)
354 state.cs_method = ACPICPU_C_STATE_HALT;
355
356 break;
357
358 default:
359
360 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) {
361 rv = AE_SUPPORT;
362 goto out;
363 }
364 }
365
366 if (sc->sc_cap != 0) {
367
368 /*
369 * The _CST FFH GAS encoding may contain
370 * additional hints on Intel processors.
371 * Use these to determine whether we can
372 * avoid the bus master activity check.
373 */
374 if ((reg->reg_accesssize & ACPICPU_PDC_GAS_BM) == 0)
375 state.cs_flags &= ~ACPICPU_FLAG_C_BM_STS;
376 }
377
378 break;
379
380 default:
381 rv = AE_AML_INVALID_SPACE_ID;
382 goto out;
383 }
384
385 /*
386 * As some systems define the type arbitrarily,
387 * we use a sequential counter instead of the
388 * BIOS data. For instance, AMD family 14h is
389 * instructed to only use the value 2; see
390 *
391 * Advanced Micro Devices: BIOS and Kernel
392 * Developer's Guide (BKDG) for AMD Family
393 * 14h Models 00h-0Fh Processors. Revision
394 * 3.00, January 4, 2011.
395 */
396 if (i != (int)type) {
397
398 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
399 "C%d != C%u from BIOS", i, type));
400 }
401
402 KASSERT(cs[i].cs_method == 0);
403
404 cs[i].cs_addr = state.cs_addr;
405 cs[i].cs_power = state.cs_power;
406 cs[i].cs_flags = state.cs_flags;
407 cs[i].cs_method = state.cs_method;
408 cs[i].cs_latency = state.cs_latency;
409
410 out:
411 if (ACPI_FAILURE(rv))
412 aprint_error_dev(sc->sc_dev, "failed to add "
413 "C-state: %s\n", AcpiFormatException(rv));
414
415 return rv;
416 }
417
418 static void
419 acpicpu_cstate_cst_bios(void)
420 {
421 const uint8_t val = AcpiGbl_FADT.CstControl;
422 const uint32_t addr = AcpiGbl_FADT.SmiCommand;
423
424 if (addr == 0 || val == 0)
425 return;
426
427 (void)AcpiOsWritePort(addr, val, 8);
428 }
429
430 static void
431 acpicpu_cstate_memset(struct acpicpu_softc *sc)
432 {
433 uint8_t i = 0;
434
435 while (i < __arraycount(sc->sc_cstate)) {
436
437 sc->sc_cstate[i].cs_addr = 0;
438 sc->sc_cstate[i].cs_power = 0;
439 sc->sc_cstate[i].cs_flags = 0;
440 sc->sc_cstate[i].cs_method = 0;
441 sc->sc_cstate[i].cs_latency = 0;
442
443 i++;
444 }
445 }
446
447 static ACPI_STATUS
448 acpicpu_cstate_dep(struct acpicpu_softc *sc)
449 {
450 ACPI_OBJECT *elm, *obj;
451 ACPI_BUFFER buf;
452 ACPI_STATUS rv;
453 uint32_t val;
454 uint8_t i, n;
455
456 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CSD", &buf);
457
458 if (ACPI_FAILURE(rv))
459 goto out;
460
461 obj = buf.Pointer;
462
463 if (obj->Type != ACPI_TYPE_PACKAGE) {
464 rv = AE_TYPE;
465 goto out;
466 }
467
468 if (obj->Package.Count != 1) {
469 rv = AE_LIMIT;
470 goto out;
471 }
472
473 elm = &obj->Package.Elements[0];
474
475 if (obj->Type != ACPI_TYPE_PACKAGE) {
476 rv = AE_TYPE;
477 goto out;
478 }
479
480 n = elm->Package.Count;
481
482 if (n != 6) {
483 rv = AE_LIMIT;
484 goto out;
485 }
486
487 elm = elm->Package.Elements;
488
489 for (i = 0; i < n; i++) {
490
491 if (elm[i].Type != ACPI_TYPE_INTEGER) {
492 rv = AE_TYPE;
493 goto out;
494 }
495
496 if (elm[i].Integer.Value > UINT32_MAX) {
497 rv = AE_AML_NUMERIC_OVERFLOW;
498 goto out;
499 }
500 }
501
502 val = elm[1].Integer.Value;
503
504 if (val != 0)
505 aprint_debug_dev(sc->sc_dev, "invalid revision in _CSD\n");
506
507 val = elm[3].Integer.Value;
508
509 if (val < ACPICPU_DEP_SW_ALL || val > ACPICPU_DEP_HW_ALL) {
510 rv = AE_AML_BAD_RESOURCE_VALUE;
511 goto out;
512 }
513
514 val = elm[4].Integer.Value;
515
516 if (val > sc->sc_ncpus) {
517 rv = AE_BAD_VALUE;
518 goto out;
519 }
520
521 sc->sc_cstate_dep.dep_domain = elm[2].Integer.Value;
522 sc->sc_cstate_dep.dep_type = elm[3].Integer.Value;
523 sc->sc_cstate_dep.dep_ncpus = elm[4].Integer.Value;
524 sc->sc_cstate_dep.dep_index = elm[5].Integer.Value;
525
526 out:
527 if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
528 aprint_debug_dev(sc->sc_dev, "failed to evaluate "
529 "_CSD: %s\n", AcpiFormatException(rv));
530
531 if (buf.Pointer != NULL)
532 ACPI_FREE(buf.Pointer);
533
534 return rv;
535 }
536
537 static void
538 acpicpu_cstate_fadt(struct acpicpu_softc *sc)
539 {
540 struct acpicpu_cstate *cs = sc->sc_cstate;
541
542 acpicpu_cstate_memset(sc);
543
544 /*
545 * All x86 processors should support C1 (a.k.a. HALT).
546 */
547 cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
548
549 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C1_SUPPORTED) == 0)
550 aprint_debug_dev(sc->sc_dev, "HALT not supported?\n");
551
552 if (sc->sc_object.ao_pblkaddr == 0)
553 return;
554
555 if (sc->sc_ncpus > 1) {
556
557 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C2_MP_SUPPORTED) == 0)
558 return;
559 }
560
561 cs[ACPI_STATE_C2].cs_method = ACPICPU_C_STATE_SYSIO;
562 cs[ACPI_STATE_C3].cs_method = ACPICPU_C_STATE_SYSIO;
563
564 cs[ACPI_STATE_C2].cs_latency = AcpiGbl_FADT.C2Latency;
565 cs[ACPI_STATE_C3].cs_latency = AcpiGbl_FADT.C3Latency;
566
567 cs[ACPI_STATE_C2].cs_addr = sc->sc_object.ao_pblkaddr + 4;
568 cs[ACPI_STATE_C3].cs_addr = sc->sc_object.ao_pblkaddr + 5;
569
570 /*
571 * The P_BLK length should always be 6. If it
572 * is not, reduce functionality accordingly.
573 */
574 if (sc->sc_object.ao_pblklen < 5)
575 cs[ACPI_STATE_C2].cs_method = 0;
576
577 if (sc->sc_object.ao_pblklen < 6)
578 cs[ACPI_STATE_C3].cs_method = 0;
579
580 /*
581 * Sanity check the latency levels in FADT.
582 * Values above the thresholds are used to
583 * inform that C-states are not supported.
584 */
585 CTASSERT(ACPICPU_C_C2_LATENCY_MAX == 100);
586 CTASSERT(ACPICPU_C_C3_LATENCY_MAX == 1000);
587
588 if (AcpiGbl_FADT.C2Latency > ACPICPU_C_C2_LATENCY_MAX)
589 cs[ACPI_STATE_C2].cs_method = 0;
590
591 if (AcpiGbl_FADT.C3Latency > ACPICPU_C_C3_LATENCY_MAX)
592 cs[ACPI_STATE_C3].cs_method = 0;
593 }
594
595 static void
596 acpicpu_cstate_quirks(struct acpicpu_softc *sc)
597 {
598 const uint32_t reg = AcpiGbl_FADT.Pm2ControlBlock;
599 const uint32_t len = AcpiGbl_FADT.Pm2ControlLength;
600
601 /*
602 * Disable C3 for PIIX4.
603 */
604 if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0) {
605 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
606 return;
607 }
608
609 /*
610 * Check bus master arbitration. If ARB_DIS
611 * is not available, processor caches must be
612 * flushed before C3 (ACPI 4.0, section 8.2).
613 */
614 if (reg != 0 && len != 0) {
615 sc->sc_flags |= ACPICPU_FLAG_C_ARB;
616 return;
617 }
618
619 /*
620 * Disable C3 entirely if WBINVD is not present.
621 */
622 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) == 0)
623 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
624 else {
625 /*
626 * If WBINVD is present and functioning properly,
627 * flush all processor caches before entering C3.
628 */
629 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0)
630 sc->sc_flags &= ~ACPICPU_FLAG_C_BM;
631 else
632 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
633 }
634 }
635
636 static int
637 acpicpu_cstate_latency(struct acpicpu_softc *sc)
638 {
639 static const uint32_t cs_factor = 3;
640 struct acpicpu_cstate *cs;
641 int i;
642
643 for (i = cs_state_max; i > 0; i--) {
644
645 cs = &sc->sc_cstate[i];
646
647 if (__predict_false(cs->cs_method == 0))
648 continue;
649
650 /*
651 * Choose a state if we have previously slept
652 * longer than the worst case latency of the
653 * state times an arbitrary multiplier.
654 */
655 if (sc->sc_cstate_sleep > cs->cs_latency * cs_factor)
656 return i;
657 }
658
659 return ACPI_STATE_C1;
660 }
661
662 /*
663 * The main idle loop.
664 */
665 void
666 acpicpu_cstate_idle(void)
667 {
668 struct cpu_info *ci = curcpu();
669 struct acpicpu_softc *sc;
670 int state;
671
672 acpi_md_OsDisableInterrupt();
673
674 if (__predict_false(ci->ci_want_resched != 0))
675 goto out;
676
677 KASSERT(acpicpu_sc != NULL);
678 KASSERT(ci->ci_acpiid < maxcpus);
679
680 sc = acpicpu_sc[ci->ci_acpiid];
681
682 if (__predict_false(sc == NULL))
683 goto out;
684
685 KASSERT(ci->ci_ilevel == IPL_NONE);
686 KASSERT((sc->sc_flags & ACPICPU_FLAG_C) != 0);
687
688 if (__predict_false(sc->sc_cold != false))
689 goto out;
690
691 if (__predict_false(mutex_tryenter(&sc->sc_mtx) == 0))
692 goto out;
693
694 mutex_exit(&sc->sc_mtx);
695 state = acpicpu_cstate_latency(sc);
696
697 /*
698 * Apply AMD C1E quirk.
699 */
700 if ((sc->sc_flags & ACPICPU_FLAG_C_C1E) != 0)
701 acpicpu_md_quirk_c1e();
702
703 /*
704 * Check for bus master activity. Note that particularly usb(4)
705 * causes high activity, which may prevent the use of C3 states.
706 */
707 if ((sc->sc_cstate[state].cs_flags & ACPICPU_FLAG_C_BM_STS) != 0) {
708
709 if (acpicpu_cstate_bm_check() != false)
710 state--;
711
712 if (__predict_false(sc->sc_cstate[state].cs_method == 0))
713 state = ACPI_STATE_C1;
714 }
715
716 KASSERT(state != ACPI_STATE_C0);
717
718 if (state != ACPI_STATE_C3) {
719 acpicpu_cstate_idle_enter(sc, state);
720 return;
721 }
722
723 /*
724 * On all recent (Intel) CPUs caches are shared
725 * by CPUs and bus master control is required to
726 * keep these coherent while in C3. Flushing the
727 * CPU caches is only the last resort.
728 */
729 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) == 0)
730 ACPI_FLUSH_CPU_CACHE();
731
732 /*
733 * Allow the bus master to request that any given
734 * CPU should return immediately to C0 from C3.
735 */
736 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
737 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
738
739 /*
740 * It may be necessary to disable bus master arbitration
741 * to ensure that bus master cycles do not occur while
742 * sleeping in C3 (see ACPI 4.0, section 8.1.4).
743 */
744 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
745 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
746
747 acpicpu_cstate_idle_enter(sc, state);
748
749 /*
750 * Disable bus master wake and re-enable the arbiter.
751 */
752 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
753 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
754
755 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
756 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
757
758 return;
759
760 out:
761 acpi_md_OsEnableInterrupt();
762 }
763
764 static void
765 acpicpu_cstate_idle_enter(struct acpicpu_softc *sc, int state)
766 {
767 struct acpicpu_cstate *cs = &sc->sc_cstate[state];
768 uint32_t end, start, val;
769
770 start = acpitimer_read_fast(NULL);
771
772 switch (cs->cs_method) {
773
774 case ACPICPU_C_STATE_FFH:
775 case ACPICPU_C_STATE_HALT:
776 acpicpu_md_cstate_enter(cs->cs_method, state);
777 break;
778
779 case ACPICPU_C_STATE_SYSIO:
780 (void)AcpiOsReadPort(cs->cs_addr, &val, 8);
781 break;
782 }
783
784 acpi_md_OsEnableInterrupt();
785
786 cs->cs_evcnt.ev_count++;
787 end = acpitimer_read_fast(NULL);
788 sc->sc_cstate_sleep = hztoms(acpitimer_delta(end, start)) * 1000;
789 }
790
791 static bool
792 acpicpu_cstate_bm_check(void)
793 {
794 uint32_t val = 0;
795 ACPI_STATUS rv;
796
797 rv = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &val);
798
799 if (ACPI_FAILURE(rv) || val == 0)
800 return false;
801
802 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
803
804 return true;
805 }
806