acpi_cpu_cstate.c revision 1.58 1 /* $NetBSD: acpi_cpu_cstate.c,v 1.58 2011/10/13 05:20:45 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_cstate.c,v 1.58 2011/10/13 05:20:45 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/cpu.h>
34 #include <sys/device.h>
35 #include <sys/kernel.h>
36 #include <sys/mutex.h>
37 #include <sys/timetc.h>
38
39 #include <dev/acpi/acpireg.h>
40 #include <dev/acpi/acpivar.h>
41 #include <dev/acpi/acpi_cpu.h>
42 #include <dev/acpi/acpi_timer.h>
43
44 #include <machine/acpi_machdep.h>
45
46 #define _COMPONENT ACPI_BUS_COMPONENT
47 ACPI_MODULE_NAME ("acpi_cpu_cstate")
48
49 static ACPI_STATUS acpicpu_cstate_cst(struct acpicpu_softc *);
50 static ACPI_STATUS acpicpu_cstate_cst_add(struct acpicpu_softc *,
51 ACPI_OBJECT *);
52 static void acpicpu_cstate_cst_bios(void);
53 static void acpicpu_cstate_memset(struct acpicpu_softc *);
54 static ACPI_STATUS acpicpu_cstate_dep(struct acpicpu_softc *);
55 static void acpicpu_cstate_fadt(struct acpicpu_softc *);
56 static void acpicpu_cstate_quirks(struct acpicpu_softc *);
57 static int acpicpu_cstate_latency(struct acpicpu_softc *);
58 static bool acpicpu_cstate_bm_check(void);
59 static void acpicpu_cstate_idle_enter(struct acpicpu_softc *,int);
60
61 extern struct acpicpu_softc **acpicpu_sc;
62
63 /*
64 * XXX: The local APIC timer (as well as TSC) is typically stopped in C3.
65 * For now, we cannot but disable C3. But there appears to be timer-
66 * related interrupt issues also in C2. The only entirely safe option
67 * at the moment is to use C1.
68 */
69 #ifdef ACPICPU_ENABLE_C3
70 static int cs_state_max = ACPI_STATE_C3;
71 #else
72 static int cs_state_max = ACPI_STATE_C1;
73 #endif
74
75 void
76 acpicpu_cstate_attach(device_t self)
77 {
78 struct acpicpu_softc *sc = device_private(self);
79 ACPI_STATUS rv;
80
81 /*
82 * Either use the preferred _CST or resort to FADT.
83 */
84 rv = acpicpu_cstate_cst(sc);
85
86 switch (rv) {
87
88 case AE_OK:
89 acpicpu_cstate_cst_bios();
90 break;
91
92 default:
93 sc->sc_flags |= ACPICPU_FLAG_C_FADT;
94 acpicpu_cstate_fadt(sc);
95 break;
96 }
97
98 /*
99 * Query the optional _CSD.
100 */
101 rv = acpicpu_cstate_dep(sc);
102
103 if (ACPI_SUCCESS(rv))
104 sc->sc_flags |= ACPICPU_FLAG_C_DEP;
105
106 sc->sc_flags |= ACPICPU_FLAG_C;
107
108 acpicpu_cstate_quirks(sc);
109 }
110
111 void
112 acpicpu_cstate_detach(device_t self)
113 {
114 struct acpicpu_softc *sc = device_private(self);
115
116 if ((sc->sc_flags & ACPICPU_FLAG_C) == 0)
117 return;
118
119 (void)acpicpu_md_cstate_stop();
120
121 sc->sc_flags &= ~ACPICPU_FLAG_C;
122 }
123
124 void
125 acpicpu_cstate_start(device_t self)
126 {
127 struct acpicpu_softc *sc = device_private(self);
128
129 (void)acpicpu_md_cstate_start(sc);
130 }
131
132 void
133 acpicpu_cstate_suspend(void *aux)
134 {
135 /* Nothing. */
136 }
137
138 void
139 acpicpu_cstate_resume(void *aux)
140 {
141 acpicpu_cstate_callback(aux);
142 }
143
144 void
145 acpicpu_cstate_callback(void *aux)
146 {
147 struct acpicpu_softc *sc;
148 device_t self = aux;
149
150 sc = device_private(self);
151
152 if ((sc->sc_flags & ACPICPU_FLAG_C_FADT) != 0)
153 return;
154
155 mutex_enter(&sc->sc_mtx);
156 (void)acpicpu_cstate_cst(sc);
157 mutex_exit(&sc->sc_mtx);
158 }
159
160 static ACPI_STATUS
161 acpicpu_cstate_cst(struct acpicpu_softc *sc)
162 {
163 struct acpicpu_cstate *cs = sc->sc_cstate;
164 ACPI_OBJECT *elm, *obj;
165 ACPI_BUFFER buf;
166 ACPI_STATUS rv;
167 uint32_t i, n;
168 uint8_t count;
169
170 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CST", &buf);
171
172 if (ACPI_FAILURE(rv))
173 return rv;
174
175 obj = buf.Pointer;
176
177 if (obj->Type != ACPI_TYPE_PACKAGE) {
178 rv = AE_TYPE;
179 goto out;
180 }
181
182 if (obj->Package.Count < 2) {
183 rv = AE_LIMIT;
184 goto out;
185 }
186
187 elm = obj->Package.Elements;
188
189 if (elm[0].Type != ACPI_TYPE_INTEGER) {
190 rv = AE_TYPE;
191 goto out;
192 }
193
194 n = elm[0].Integer.Value;
195
196 if (n != obj->Package.Count - 1) {
197 rv = AE_BAD_VALUE;
198 goto out;
199 }
200
201 if (n > ACPI_C_STATES_MAX) {
202 rv = AE_LIMIT;
203 goto out;
204 }
205
206 acpicpu_cstate_memset(sc);
207
208 /*
209 * All x86 processors should support C1 (a.k.a. HALT).
210 */
211 cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
212
213 CTASSERT(ACPI_STATE_C0 == 0 && ACPI_STATE_C1 == 1);
214 CTASSERT(ACPI_STATE_C2 == 2 && ACPI_STATE_C3 == 3);
215
216 for (count = 0, i = 1; i <= n; i++) {
217
218 elm = &obj->Package.Elements[i];
219 rv = acpicpu_cstate_cst_add(sc, elm);
220
221 if (ACPI_SUCCESS(rv))
222 count++;
223 }
224
225 rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
226
227 out:
228 if (buf.Pointer != NULL)
229 ACPI_FREE(buf.Pointer);
230
231 return rv;
232 }
233
234 static ACPI_STATUS
235 acpicpu_cstate_cst_add(struct acpicpu_softc *sc, ACPI_OBJECT *elm)
236 {
237 struct acpicpu_cstate *cs = sc->sc_cstate;
238 struct acpicpu_cstate state;
239 struct acpicpu_reg *reg;
240 ACPI_STATUS rv = AE_OK;
241 ACPI_OBJECT *obj;
242 uint32_t type;
243
244 (void)memset(&state, 0, sizeof(*cs));
245
246 state.cs_flags = ACPICPU_FLAG_C_BM_STS;
247
248 if (elm->Type != ACPI_TYPE_PACKAGE) {
249 rv = AE_TYPE;
250 goto out;
251 }
252
253 if (elm->Package.Count != 4) {
254 rv = AE_LIMIT;
255 goto out;
256 }
257
258 /*
259 * Type.
260 */
261 obj = &elm->Package.Elements[1];
262
263 if (obj->Type != ACPI_TYPE_INTEGER) {
264 rv = AE_TYPE;
265 goto out;
266 }
267
268 type = obj->Integer.Value;
269
270 if (type < ACPI_STATE_C1 || type > ACPI_STATE_C3) {
271 rv = AE_TYPE;
272 goto out;
273 }
274
275 /*
276 * Latency.
277 */
278 obj = &elm->Package.Elements[2];
279
280 if (obj->Type != ACPI_TYPE_INTEGER) {
281 rv = AE_TYPE;
282 goto out;
283 }
284
285 state.cs_latency = obj->Integer.Value;
286
287 /*
288 * Power.
289 */
290 obj = &elm->Package.Elements[3];
291
292 if (obj->Type != ACPI_TYPE_INTEGER) {
293 rv = AE_TYPE;
294 goto out;
295 }
296
297 state.cs_power = obj->Integer.Value;
298
299 /*
300 * Register.
301 */
302 obj = &elm->Package.Elements[0];
303
304 if (obj->Type != ACPI_TYPE_BUFFER) {
305 rv = AE_TYPE;
306 goto out;
307 }
308
309 CTASSERT(sizeof(struct acpicpu_reg) == 15);
310
311 if (obj->Buffer.Length < sizeof(struct acpicpu_reg)) {
312 rv = AE_LIMIT;
313 goto out;
314 }
315
316 reg = (struct acpicpu_reg *)obj->Buffer.Pointer;
317
318 switch (reg->reg_spaceid) {
319
320 case ACPI_ADR_SPACE_SYSTEM_IO:
321 state.cs_method = ACPICPU_C_STATE_SYSIO;
322
323 if (reg->reg_addr == 0) {
324 rv = AE_AML_ILLEGAL_ADDRESS;
325 goto out;
326 }
327
328 if (reg->reg_bitwidth != 8) {
329 rv = AE_AML_BAD_RESOURCE_LENGTH;
330 goto out;
331 }
332
333 state.cs_addr = reg->reg_addr;
334 break;
335
336 case ACPI_ADR_SPACE_FIXED_HARDWARE:
337 state.cs_method = ACPICPU_C_STATE_FFH;
338
339 switch (type) {
340
341 case ACPI_STATE_C1:
342
343 /*
344 * If ACPI wants native access (FFH), but the
345 * MD code does not support MONITOR/MWAIT, use
346 * HLT for C1 and error out for higher C-states.
347 */
348 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0)
349 state.cs_method = ACPICPU_C_STATE_HALT;
350
351 break;
352
353 default:
354
355 if ((sc->sc_flags & ACPICPU_FLAG_C_FFH) == 0) {
356 rv = AE_SUPPORT;
357 goto out;
358 }
359 }
360
361 if (sc->sc_cap != 0) {
362
363 /*
364 * The _CST FFH GAS encoding may contain
365 * additional hints on Intel processors.
366 * Use these to determine whether we can
367 * avoid the bus master activity check.
368 */
369 if ((reg->reg_accesssize & ACPICPU_PDC_GAS_BM) == 0)
370 state.cs_flags &= ~ACPICPU_FLAG_C_BM_STS;
371 }
372
373 break;
374
375 default:
376 rv = AE_AML_INVALID_SPACE_ID;
377 goto out;
378 }
379
380 cs[type].cs_addr = state.cs_addr;
381 cs[type].cs_power = state.cs_power;
382 cs[type].cs_flags = state.cs_flags;
383 cs[type].cs_method = state.cs_method;
384 cs[type].cs_latency = state.cs_latency;
385
386 out:
387 if (ACPI_FAILURE(rv))
388 aprint_error_dev(sc->sc_dev, "failed to add "
389 "C-state: %s\n", AcpiFormatException(rv));
390
391 return rv;
392 }
393
394 static void
395 acpicpu_cstate_cst_bios(void)
396 {
397 const uint8_t val = AcpiGbl_FADT.CstControl;
398 const uint32_t addr = AcpiGbl_FADT.SmiCommand;
399
400 if (addr == 0 || val == 0)
401 return;
402
403 (void)AcpiOsWritePort(addr, val, 8);
404 }
405
406 static void
407 acpicpu_cstate_memset(struct acpicpu_softc *sc)
408 {
409 uint8_t i = 0;
410
411 while (i < __arraycount(sc->sc_cstate)) {
412
413 sc->sc_cstate[i].cs_addr = 0;
414 sc->sc_cstate[i].cs_power = 0;
415 sc->sc_cstate[i].cs_flags = 0;
416 sc->sc_cstate[i].cs_method = 0;
417 sc->sc_cstate[i].cs_latency = 0;
418
419 i++;
420 }
421 }
422
423 static ACPI_STATUS
424 acpicpu_cstate_dep(struct acpicpu_softc *sc)
425 {
426 ACPI_OBJECT *elm, *obj;
427 ACPI_BUFFER buf;
428 ACPI_STATUS rv;
429 uint32_t val;
430 uint8_t i, n;
431
432 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_CSD", &buf);
433
434 if (ACPI_FAILURE(rv))
435 goto out;
436
437 obj = buf.Pointer;
438
439 if (obj->Type != ACPI_TYPE_PACKAGE) {
440 rv = AE_TYPE;
441 goto out;
442 }
443
444 if (obj->Package.Count != 1) {
445 rv = AE_LIMIT;
446 goto out;
447 }
448
449 elm = &obj->Package.Elements[0];
450
451 if (obj->Type != ACPI_TYPE_PACKAGE) {
452 rv = AE_TYPE;
453 goto out;
454 }
455
456 n = elm->Package.Count;
457
458 if (n != 6) {
459 rv = AE_LIMIT;
460 goto out;
461 }
462
463 elm = elm->Package.Elements;
464
465 for (i = 0; i < n; i++) {
466
467 if (elm[i].Type != ACPI_TYPE_INTEGER) {
468 rv = AE_TYPE;
469 goto out;
470 }
471
472 if (elm[i].Integer.Value > UINT32_MAX) {
473 rv = AE_AML_NUMERIC_OVERFLOW;
474 goto out;
475 }
476 }
477
478 val = elm[1].Integer.Value;
479
480 if (val != 0)
481 aprint_debug_dev(sc->sc_dev, "invalid revision in _CSD\n");
482
483 val = elm[3].Integer.Value;
484
485 if (val < ACPICPU_DEP_SW_ALL || val > ACPICPU_DEP_HW_ALL) {
486 rv = AE_AML_BAD_RESOURCE_VALUE;
487 goto out;
488 }
489
490 val = elm[4].Integer.Value;
491
492 if (val > sc->sc_ncpus) {
493 rv = AE_BAD_VALUE;
494 goto out;
495 }
496
497 sc->sc_cstate_dep.dep_domain = elm[2].Integer.Value;
498 sc->sc_cstate_dep.dep_type = elm[3].Integer.Value;
499 sc->sc_cstate_dep.dep_ncpus = elm[4].Integer.Value;
500 sc->sc_cstate_dep.dep_index = elm[5].Integer.Value;
501
502 out:
503 if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
504 aprint_debug_dev(sc->sc_dev, "failed to evaluate "
505 "_CSD: %s\n", AcpiFormatException(rv));
506
507 if (buf.Pointer != NULL)
508 ACPI_FREE(buf.Pointer);
509
510 return rv;
511 }
512
513 static void
514 acpicpu_cstate_fadt(struct acpicpu_softc *sc)
515 {
516 struct acpicpu_cstate *cs = sc->sc_cstate;
517
518 acpicpu_cstate_memset(sc);
519
520 /*
521 * All x86 processors should support C1 (a.k.a. HALT).
522 */
523 cs[ACPI_STATE_C1].cs_method = ACPICPU_C_STATE_HALT;
524
525 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C1_SUPPORTED) == 0)
526 aprint_debug_dev(sc->sc_dev, "HALT not supported?\n");
527
528 if (sc->sc_object.ao_pblkaddr == 0)
529 return;
530
531 if (sc->sc_ncpus > 1) {
532
533 if ((AcpiGbl_FADT.Flags & ACPI_FADT_C2_MP_SUPPORTED) == 0)
534 return;
535 }
536
537 cs[ACPI_STATE_C2].cs_method = ACPICPU_C_STATE_SYSIO;
538 cs[ACPI_STATE_C3].cs_method = ACPICPU_C_STATE_SYSIO;
539
540 cs[ACPI_STATE_C2].cs_latency = AcpiGbl_FADT.C2Latency;
541 cs[ACPI_STATE_C3].cs_latency = AcpiGbl_FADT.C3Latency;
542
543 cs[ACPI_STATE_C2].cs_addr = sc->sc_object.ao_pblkaddr + 4;
544 cs[ACPI_STATE_C3].cs_addr = sc->sc_object.ao_pblkaddr + 5;
545
546 /*
547 * The P_BLK length should always be 6. If it
548 * is not, reduce functionality accordingly.
549 */
550 if (sc->sc_object.ao_pblklen < 5)
551 cs[ACPI_STATE_C2].cs_method = 0;
552
553 if (sc->sc_object.ao_pblklen < 6)
554 cs[ACPI_STATE_C3].cs_method = 0;
555
556 /*
557 * Sanity check the latency levels in FADT. Values above
558 * the thresholds may be used to inform that C2 and C3 are
559 * not supported -- AMD family 11h is an example;
560 *
561 * Advanced Micro Devices: BIOS and Kernel Developer's
562 * Guide (BKDG) for AMD Family 11h Processors. Section
563 * 2.4.3, Revision 3.00, July, 2008.
564 */
565 CTASSERT(ACPICPU_C_C2_LATENCY_MAX == 100);
566 CTASSERT(ACPICPU_C_C3_LATENCY_MAX == 1000);
567
568 if (AcpiGbl_FADT.C2Latency > ACPICPU_C_C2_LATENCY_MAX)
569 cs[ACPI_STATE_C2].cs_method = 0;
570
571 if (AcpiGbl_FADT.C3Latency > ACPICPU_C_C3_LATENCY_MAX)
572 cs[ACPI_STATE_C3].cs_method = 0;
573 }
574
575 static void
576 acpicpu_cstate_quirks(struct acpicpu_softc *sc)
577 {
578 const uint32_t reg = AcpiGbl_FADT.Pm2ControlBlock;
579 const uint32_t len = AcpiGbl_FADT.Pm2ControlLength;
580
581 /*
582 * Disable C3 for PIIX4.
583 */
584 if ((sc->sc_flags & ACPICPU_FLAG_PIIX4) != 0) {
585 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
586 return;
587 }
588
589 /*
590 * Check bus master arbitration. If ARB_DIS
591 * is not available, processor caches must be
592 * flushed before C3 (ACPI 4.0, section 8.2).
593 */
594 if (reg != 0 && len != 0) {
595 sc->sc_flags |= ACPICPU_FLAG_C_ARB;
596 return;
597 }
598
599 /*
600 * Disable C3 entirely if WBINVD is not present.
601 */
602 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) == 0)
603 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
604 else {
605 /*
606 * If WBINVD is present and functioning properly,
607 * flush all processor caches before entering C3.
608 */
609 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0)
610 sc->sc_flags &= ~ACPICPU_FLAG_C_BM;
611 else
612 sc->sc_cstate[ACPI_STATE_C3].cs_method = 0;
613 }
614 }
615
616 static int
617 acpicpu_cstate_latency(struct acpicpu_softc *sc)
618 {
619 static const uint32_t cs_factor = 3;
620 struct acpicpu_cstate *cs;
621 int i;
622
623 KASSERT(mutex_owned(&sc->sc_mtx) != 0);
624
625 for (i = cs_state_max; i > 0; i--) {
626
627 cs = &sc->sc_cstate[i];
628
629 if (__predict_false(cs->cs_method == 0))
630 continue;
631
632 /*
633 * Choose a state if we have previously slept
634 * longer than the worst case latency of the
635 * state times an arbitrary multiplier.
636 */
637 if (sc->sc_cstate_sleep > cs->cs_latency * cs_factor)
638 return i;
639 }
640
641 return ACPI_STATE_C1;
642 }
643
644 /*
645 * The main idle loop.
646 */
647 void
648 acpicpu_cstate_idle(void)
649 {
650 struct cpu_info *ci = curcpu();
651 struct acpicpu_softc *sc;
652 int state;
653
654 KASSERT(acpicpu_sc != NULL);
655 KASSERT(ci->ci_acpiid < maxcpus);
656
657 sc = acpicpu_sc[ci->ci_acpiid];
658
659 if (__predict_false(sc == NULL))
660 return;
661
662 KASSERT(ci->ci_ilevel == IPL_NONE);
663 KASSERT((sc->sc_flags & ACPICPU_FLAG_C) != 0);
664
665 if (__predict_false(sc->sc_cold != false))
666 return;
667
668 if (__predict_false(mutex_tryenter(&sc->sc_mtx) == 0))
669 return;
670
671 state = acpicpu_cstate_latency(sc);
672 mutex_exit(&sc->sc_mtx);
673
674 /*
675 * Apply AMD C1E quirk.
676 */
677 if ((sc->sc_flags & ACPICPU_FLAG_C_C1E) != 0)
678 acpicpu_md_quirk_c1e();
679
680 /*
681 * Check for bus master activity. Note that particularly usb(4)
682 * causes high activity, which may prevent the use of C3 states.
683 */
684 if ((sc->sc_cstate[state].cs_flags & ACPICPU_FLAG_C_BM_STS) != 0) {
685
686 if (acpicpu_cstate_bm_check() != false)
687 state--;
688
689 if (__predict_false(sc->sc_cstate[state].cs_method == 0))
690 state = ACPI_STATE_C1;
691 }
692
693 KASSERT(state != ACPI_STATE_C0);
694
695 if (state != ACPI_STATE_C3) {
696 acpicpu_cstate_idle_enter(sc, state);
697 return;
698 }
699
700 /*
701 * On all recent (Intel) CPUs caches are shared
702 * by CPUs and bus master control is required to
703 * keep these coherent while in C3. Flushing the
704 * CPU caches is only the last resort.
705 */
706 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) == 0)
707 ACPI_FLUSH_CPU_CACHE();
708
709 /*
710 * Allow the bus master to request that any given
711 * CPU should return immediately to C0 from C3.
712 */
713 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
714 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
715
716 /*
717 * It may be necessary to disable bus master arbitration
718 * to ensure that bus master cycles do not occur while
719 * sleeping in C3 (see ACPI 4.0, section 8.1.4).
720 */
721 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
722 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
723
724 acpicpu_cstate_idle_enter(sc, state);
725
726 /*
727 * Disable bus master wake and re-enable the arbiter.
728 */
729 if ((sc->sc_flags & ACPICPU_FLAG_C_BM) != 0)
730 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
731
732 if ((sc->sc_flags & ACPICPU_FLAG_C_ARB) != 0)
733 (void)AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
734 }
735
736 static void
737 acpicpu_cstate_idle_enter(struct acpicpu_softc *sc, int state)
738 {
739 struct acpicpu_cstate *cs = &sc->sc_cstate[state];
740 uint32_t end, start, val;
741
742 start = acpitimer_read_fast(NULL);
743
744 switch (cs->cs_method) {
745
746 case ACPICPU_C_STATE_FFH:
747 case ACPICPU_C_STATE_HALT:
748 acpicpu_md_cstate_enter(cs->cs_method, state);
749 break;
750
751 case ACPICPU_C_STATE_SYSIO:
752 (void)AcpiOsReadPort(cs->cs_addr, &val, 8);
753 break;
754 }
755
756 cs->cs_evcnt.ev_count++;
757 end = acpitimer_read_fast(NULL);
758 sc->sc_cstate_sleep = hztoms(acpitimer_delta(end, start)) * 1000;
759 }
760
761 static bool
762 acpicpu_cstate_bm_check(void)
763 {
764 uint32_t val = 0;
765 ACPI_STATUS rv;
766
767 rv = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &val);
768
769 if (ACPI_FAILURE(rv) || val == 0)
770 return false;
771
772 (void)AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
773
774 return true;
775 }
776