acpi_cpu_pstate.c revision 1.32 1 1.32 jruoho /* $NetBSD: acpi_cpu_pstate.c,v 1.32 2010/08/20 06:36:40 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.1 jruoho * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.32 jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.32 2010/08/20 06:36:40 jruoho Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.7 jruoho #include <sys/evcnt.h>
34 1.1 jruoho #include <sys/kmem.h>
35 1.1 jruoho #include <sys/once.h>
36 1.1 jruoho
37 1.1 jruoho #include <dev/acpi/acpireg.h>
38 1.1 jruoho #include <dev/acpi/acpivar.h>
39 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
40 1.1 jruoho
41 1.1 jruoho #define _COMPONENT ACPI_BUS_COMPONENT
42 1.1 jruoho ACPI_MODULE_NAME ("acpi_cpu_pstate")
43 1.1 jruoho
44 1.1 jruoho static void acpicpu_pstate_attach_print(struct acpicpu_softc *);
45 1.7 jruoho static void acpicpu_pstate_attach_evcnt(struct acpicpu_softc *);
46 1.7 jruoho static void acpicpu_pstate_detach_evcnt(struct acpicpu_softc *);
47 1.21 jruoho static ACPI_STATUS acpicpu_pstate_pss(struct acpicpu_softc *);
48 1.1 jruoho static ACPI_STATUS acpicpu_pstate_pss_add(struct acpicpu_pstate *,
49 1.1 jruoho ACPI_OBJECT *);
50 1.21 jruoho static ACPI_STATUS acpicpu_pstate_xpss(struct acpicpu_softc *);
51 1.21 jruoho static ACPI_STATUS acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
52 1.21 jruoho ACPI_OBJECT *);
53 1.1 jruoho static ACPI_STATUS acpicpu_pstate_pct(struct acpicpu_softc *);
54 1.1 jruoho static int acpicpu_pstate_max(struct acpicpu_softc *);
55 1.27 jruoho static int acpicpu_pstate_min(struct acpicpu_softc *);
56 1.1 jruoho static void acpicpu_pstate_change(struct acpicpu_softc *);
57 1.28 jruoho static void acpicpu_pstate_reset(struct acpicpu_softc *);
58 1.1 jruoho static void acpicpu_pstate_bios(void);
59 1.1 jruoho
60 1.29 jruoho static uint32_t acpicpu_pstate_saved = 0;
61 1.25 jruoho
62 1.1 jruoho void
63 1.1 jruoho acpicpu_pstate_attach(device_t self)
64 1.1 jruoho {
65 1.1 jruoho struct acpicpu_softc *sc = device_private(self);
66 1.3 jruoho const char *str;
67 1.27 jruoho ACPI_HANDLE tmp;
68 1.1 jruoho ACPI_STATUS rv;
69 1.1 jruoho
70 1.1 jruoho rv = acpicpu_pstate_pss(sc);
71 1.1 jruoho
72 1.3 jruoho if (ACPI_FAILURE(rv)) {
73 1.3 jruoho str = "_PSS";
74 1.3 jruoho goto fail;
75 1.3 jruoho }
76 1.1 jruoho
77 1.21 jruoho /*
78 1.21 jruoho * Check the availability of extended _PSS.
79 1.21 jruoho * If present, this will override the data.
80 1.21 jruoho * Note that XPSS can not be used on Intel
81 1.21 jruoho * systems where _PDC or _OSC may be used.
82 1.21 jruoho */
83 1.21 jruoho if (sc->sc_cap == 0) {
84 1.21 jruoho
85 1.21 jruoho rv = acpicpu_pstate_xpss(sc);
86 1.21 jruoho
87 1.21 jruoho if (ACPI_SUCCESS(rv))
88 1.21 jruoho sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
89 1.21 jruoho
90 1.21 jruoho if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND) {
91 1.21 jruoho str = "XPSS";
92 1.21 jruoho goto fail;
93 1.21 jruoho }
94 1.21 jruoho }
95 1.21 jruoho
96 1.1 jruoho rv = acpicpu_pstate_pct(sc);
97 1.1 jruoho
98 1.3 jruoho if (ACPI_FAILURE(rv)) {
99 1.3 jruoho str = "_PCT";
100 1.3 jruoho goto fail;
101 1.3 jruoho }
102 1.1 jruoho
103 1.24 jruoho /*
104 1.24 jruoho * The ACPI 3.0 and 4.0 specifications mandate three
105 1.24 jruoho * objects for P-states: _PSS, _PCT, and _PPC. A less
106 1.24 jruoho * strict wording is however used in the earlier 2.0
107 1.24 jruoho * standard, and some systems conforming to ACPI 2.0
108 1.24 jruoho * do not have _PPC, the method for dynamic maximum.
109 1.24 jruoho */
110 1.27 jruoho rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
111 1.27 jruoho
112 1.27 jruoho if (ACPI_FAILURE(rv))
113 1.27 jruoho aprint_debug_dev(self, "_PPC missing\n");
114 1.27 jruoho
115 1.30 jruoho /*
116 1.30 jruoho * Employ the XPSS structure by filling
117 1.30 jruoho * it with MD information required for FFH.
118 1.30 jruoho */
119 1.30 jruoho rv = acpicpu_md_pstate_pss(sc);
120 1.30 jruoho
121 1.30 jruoho if (rv != 0) {
122 1.30 jruoho rv = AE_SUPPORT;
123 1.30 jruoho goto fail;
124 1.30 jruoho }
125 1.30 jruoho
126 1.1 jruoho sc->sc_flags |= ACPICPU_FLAG_P;
127 1.1 jruoho
128 1.1 jruoho acpicpu_pstate_bios();
129 1.28 jruoho acpicpu_pstate_reset(sc);
130 1.7 jruoho acpicpu_pstate_attach_evcnt(sc);
131 1.1 jruoho acpicpu_pstate_attach_print(sc);
132 1.3 jruoho
133 1.3 jruoho return;
134 1.3 jruoho
135 1.3 jruoho fail:
136 1.15 jruoho switch (rv) {
137 1.15 jruoho
138 1.15 jruoho case AE_NOT_FOUND:
139 1.15 jruoho return;
140 1.15 jruoho
141 1.15 jruoho case AE_SUPPORT:
142 1.15 jruoho aprint_verbose_dev(sc->sc_dev, "P-states not supported\n");
143 1.15 jruoho return;
144 1.15 jruoho
145 1.15 jruoho default:
146 1.15 jruoho aprint_error_dev(sc->sc_dev, "failed to evaluate "
147 1.15 jruoho "%s: %s\n", str, AcpiFormatException(rv));
148 1.15 jruoho }
149 1.1 jruoho }
150 1.1 jruoho
151 1.1 jruoho static void
152 1.1 jruoho acpicpu_pstate_attach_print(struct acpicpu_softc *sc)
153 1.1 jruoho {
154 1.1 jruoho const uint8_t method = sc->sc_pstate_control.reg_spaceid;
155 1.1 jruoho struct acpicpu_pstate *ps;
156 1.12 jruoho static bool once = false;
157 1.1 jruoho const char *str;
158 1.1 jruoho uint32_t i;
159 1.1 jruoho
160 1.12 jruoho if (once != false)
161 1.12 jruoho return;
162 1.12 jruoho
163 1.8 jruoho str = (method != ACPI_ADR_SPACE_SYSTEM_IO) ? "FFH" : "I/O";
164 1.1 jruoho
165 1.1 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
166 1.1 jruoho
167 1.1 jruoho ps = &sc->sc_pstate[i];
168 1.1 jruoho
169 1.1 jruoho if (ps->ps_freq == 0)
170 1.1 jruoho continue;
171 1.1 jruoho
172 1.8 jruoho aprint_debug_dev(sc->sc_dev, "P%d: %3s, "
173 1.15 jruoho "lat %3u us, pow %5u mW, %4u MHz\n", i, str,
174 1.15 jruoho ps->ps_latency, ps->ps_power, ps->ps_freq);
175 1.1 jruoho }
176 1.12 jruoho
177 1.12 jruoho once = true;
178 1.1 jruoho }
179 1.1 jruoho
180 1.7 jruoho static void
181 1.7 jruoho acpicpu_pstate_attach_evcnt(struct acpicpu_softc *sc)
182 1.7 jruoho {
183 1.7 jruoho struct acpicpu_pstate *ps;
184 1.7 jruoho uint32_t i;
185 1.7 jruoho
186 1.7 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
187 1.7 jruoho
188 1.7 jruoho ps = &sc->sc_pstate[i];
189 1.7 jruoho
190 1.7 jruoho if (ps->ps_freq == 0)
191 1.7 jruoho continue;
192 1.7 jruoho
193 1.7 jruoho (void)snprintf(ps->ps_name, sizeof(ps->ps_name),
194 1.7 jruoho "P%u (%u MHz)", i, ps->ps_freq);
195 1.7 jruoho
196 1.7 jruoho evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
197 1.7 jruoho NULL, device_xname(sc->sc_dev), ps->ps_name);
198 1.7 jruoho }
199 1.7 jruoho }
200 1.7 jruoho
201 1.1 jruoho int
202 1.1 jruoho acpicpu_pstate_detach(device_t self)
203 1.1 jruoho {
204 1.1 jruoho struct acpicpu_softc *sc = device_private(self);
205 1.1 jruoho static ONCE_DECL(once_detach);
206 1.1 jruoho size_t size;
207 1.1 jruoho int rv;
208 1.1 jruoho
209 1.1 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
210 1.1 jruoho return 0;
211 1.1 jruoho
212 1.1 jruoho rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
213 1.1 jruoho
214 1.1 jruoho if (rv != 0)
215 1.1 jruoho return rv;
216 1.1 jruoho
217 1.1 jruoho size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
218 1.1 jruoho
219 1.1 jruoho if (sc->sc_pstate != NULL)
220 1.1 jruoho kmem_free(sc->sc_pstate, size);
221 1.1 jruoho
222 1.1 jruoho sc->sc_flags &= ~ACPICPU_FLAG_P;
223 1.7 jruoho acpicpu_pstate_detach_evcnt(sc);
224 1.1 jruoho
225 1.1 jruoho return 0;
226 1.1 jruoho }
227 1.1 jruoho
228 1.7 jruoho static void
229 1.7 jruoho acpicpu_pstate_detach_evcnt(struct acpicpu_softc *sc)
230 1.7 jruoho {
231 1.7 jruoho struct acpicpu_pstate *ps;
232 1.7 jruoho uint32_t i;
233 1.7 jruoho
234 1.7 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
235 1.7 jruoho
236 1.7 jruoho ps = &sc->sc_pstate[i];
237 1.7 jruoho
238 1.7 jruoho if (ps->ps_freq != 0)
239 1.7 jruoho evcnt_detach(&ps->ps_evcnt);
240 1.7 jruoho }
241 1.7 jruoho }
242 1.7 jruoho
243 1.24 jruoho void
244 1.1 jruoho acpicpu_pstate_start(device_t self)
245 1.1 jruoho {
246 1.1 jruoho struct acpicpu_softc *sc = device_private(self);
247 1.25 jruoho struct acpicpu_pstate *ps;
248 1.25 jruoho uint32_t i;
249 1.24 jruoho int rv;
250 1.1 jruoho
251 1.24 jruoho rv = acpicpu_md_pstate_start();
252 1.24 jruoho
253 1.25 jruoho if (rv != 0)
254 1.25 jruoho goto fail;
255 1.25 jruoho
256 1.25 jruoho /*
257 1.27 jruoho * Initialize the state to P0.
258 1.25 jruoho */
259 1.25 jruoho for (i = 0, rv = ENXIO; i < sc->sc_pstate_count; i++) {
260 1.25 jruoho
261 1.25 jruoho ps = &sc->sc_pstate[i];
262 1.25 jruoho
263 1.25 jruoho if (ps->ps_freq != 0) {
264 1.25 jruoho sc->sc_cold = false;
265 1.25 jruoho rv = acpicpu_pstate_set(sc, ps->ps_freq);
266 1.25 jruoho break;
267 1.25 jruoho }
268 1.25 jruoho }
269 1.25 jruoho
270 1.25 jruoho if (rv != 0)
271 1.25 jruoho goto fail;
272 1.25 jruoho
273 1.25 jruoho return;
274 1.1 jruoho
275 1.25 jruoho fail:
276 1.24 jruoho sc->sc_flags &= ~ACPICPU_FLAG_P;
277 1.32 jruoho
278 1.32 jruoho if (rv == EEXIST) {
279 1.32 jruoho aprint_error_dev(self, "driver conflicts with existing one\n");
280 1.32 jruoho return;
281 1.32 jruoho }
282 1.32 jruoho
283 1.24 jruoho aprint_error_dev(self, "failed to start P-states (err %d)\n", rv);
284 1.1 jruoho }
285 1.1 jruoho
286 1.1 jruoho bool
287 1.1 jruoho acpicpu_pstate_suspend(device_t self)
288 1.1 jruoho {
289 1.25 jruoho struct acpicpu_softc *sc = device_private(self);
290 1.25 jruoho struct acpicpu_pstate *ps = NULL;
291 1.25 jruoho int32_t i;
292 1.25 jruoho
293 1.29 jruoho mutex_enter(&sc->sc_mtx);
294 1.28 jruoho acpicpu_pstate_reset(sc);
295 1.29 jruoho mutex_exit(&sc->sc_mtx);
296 1.28 jruoho
297 1.25 jruoho if (acpicpu_pstate_saved != 0)
298 1.25 jruoho return true;
299 1.25 jruoho
300 1.25 jruoho /*
301 1.25 jruoho * Following design notes for Windows, we set the highest
302 1.25 jruoho * P-state when entering any of the system sleep states.
303 1.25 jruoho * When resuming, the saved P-state will be restored.
304 1.25 jruoho *
305 1.25 jruoho * Microsoft Corporation: Windows Native Processor
306 1.25 jruoho * Performance Control. Version 1.1a, November, 2002.
307 1.25 jruoho */
308 1.25 jruoho for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
309 1.25 jruoho
310 1.25 jruoho if (sc->sc_pstate[i].ps_freq != 0) {
311 1.25 jruoho ps = &sc->sc_pstate[i];
312 1.25 jruoho break;
313 1.25 jruoho }
314 1.25 jruoho }
315 1.25 jruoho
316 1.25 jruoho if (__predict_false(ps == NULL))
317 1.25 jruoho return true;
318 1.25 jruoho
319 1.25 jruoho mutex_enter(&sc->sc_mtx);
320 1.25 jruoho acpicpu_pstate_saved = sc->sc_pstate_current;
321 1.25 jruoho mutex_exit(&sc->sc_mtx);
322 1.25 jruoho
323 1.25 jruoho if (acpicpu_pstate_saved == ps->ps_freq)
324 1.25 jruoho return true;
325 1.25 jruoho
326 1.25 jruoho (void)acpicpu_pstate_set(sc, ps->ps_freq);
327 1.1 jruoho
328 1.1 jruoho return true;
329 1.1 jruoho }
330 1.1 jruoho
331 1.1 jruoho bool
332 1.1 jruoho acpicpu_pstate_resume(device_t self)
333 1.1 jruoho {
334 1.25 jruoho struct acpicpu_softc *sc = device_private(self);
335 1.25 jruoho
336 1.25 jruoho if (acpicpu_pstate_saved != 0) {
337 1.25 jruoho (void)acpicpu_pstate_set(sc, acpicpu_pstate_saved);
338 1.25 jruoho acpicpu_pstate_saved = 0;
339 1.25 jruoho }
340 1.1 jruoho
341 1.1 jruoho return true;
342 1.1 jruoho }
343 1.1 jruoho
344 1.1 jruoho void
345 1.1 jruoho acpicpu_pstate_callback(void *aux)
346 1.1 jruoho {
347 1.1 jruoho struct acpicpu_softc *sc;
348 1.1 jruoho device_t self = aux;
349 1.1 jruoho uint32_t old, new;
350 1.1 jruoho
351 1.1 jruoho sc = device_private(self);
352 1.1 jruoho
353 1.1 jruoho mutex_enter(&sc->sc_mtx);
354 1.1 jruoho old = sc->sc_pstate_max;
355 1.1 jruoho acpicpu_pstate_change(sc);
356 1.1 jruoho new = sc->sc_pstate_max;
357 1.1 jruoho mutex_exit(&sc->sc_mtx);
358 1.1 jruoho
359 1.1 jruoho if (old != new) {
360 1.1 jruoho
361 1.14 jruoho aprint_debug_dev(sc->sc_dev, "maximum frequency "
362 1.14 jruoho "changed from P%u (%u MHz) to P%u (%u MHz)\n",
363 1.14 jruoho old, sc->sc_pstate[old].ps_freq, new,
364 1.14 jruoho sc->sc_pstate[sc->sc_pstate_max].ps_freq);
365 1.14 jruoho #if 0
366 1.1 jruoho /*
367 1.1 jruoho * If the maximum changed, proactively
368 1.1 jruoho * raise or lower the target frequency.
369 1.1 jruoho */
370 1.25 jruoho (void)acpicpu_pstate_set(sc, sc->sc_pstate[new].ps_freq);
371 1.1 jruoho
372 1.14 jruoho #endif
373 1.1 jruoho }
374 1.1 jruoho }
375 1.1 jruoho
376 1.1 jruoho ACPI_STATUS
377 1.1 jruoho acpicpu_pstate_pss(struct acpicpu_softc *sc)
378 1.1 jruoho {
379 1.1 jruoho struct acpicpu_pstate *ps;
380 1.1 jruoho ACPI_OBJECT *obj;
381 1.1 jruoho ACPI_BUFFER buf;
382 1.1 jruoho ACPI_STATUS rv;
383 1.1 jruoho uint32_t count;
384 1.1 jruoho uint32_t i, j;
385 1.1 jruoho
386 1.1 jruoho rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
387 1.1 jruoho
388 1.1 jruoho if (ACPI_FAILURE(rv))
389 1.1 jruoho return rv;
390 1.1 jruoho
391 1.1 jruoho obj = buf.Pointer;
392 1.1 jruoho
393 1.1 jruoho if (obj->Type != ACPI_TYPE_PACKAGE) {
394 1.1 jruoho rv = AE_TYPE;
395 1.1 jruoho goto out;
396 1.1 jruoho }
397 1.1 jruoho
398 1.1 jruoho sc->sc_pstate_count = obj->Package.Count;
399 1.1 jruoho
400 1.1 jruoho if (sc->sc_pstate_count == 0) {
401 1.1 jruoho rv = AE_NOT_EXIST;
402 1.1 jruoho goto out;
403 1.1 jruoho }
404 1.1 jruoho
405 1.9 jruoho if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
406 1.1 jruoho rv = AE_LIMIT;
407 1.1 jruoho goto out;
408 1.1 jruoho }
409 1.1 jruoho
410 1.1 jruoho sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
411 1.1 jruoho sizeof(struct acpicpu_pstate), KM_SLEEP);
412 1.1 jruoho
413 1.1 jruoho if (sc->sc_pstate == NULL) {
414 1.1 jruoho rv = AE_NO_MEMORY;
415 1.1 jruoho goto out;
416 1.1 jruoho }
417 1.1 jruoho
418 1.1 jruoho for (count = i = 0; i < sc->sc_pstate_count; i++) {
419 1.1 jruoho
420 1.1 jruoho ps = &sc->sc_pstate[i];
421 1.1 jruoho rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
422 1.1 jruoho
423 1.13 jruoho if (ACPI_FAILURE(rv)) {
424 1.13 jruoho ps->ps_freq = 0;
425 1.1 jruoho continue;
426 1.13 jruoho }
427 1.1 jruoho
428 1.1 jruoho for (j = 0; j < i; j++) {
429 1.1 jruoho
430 1.1 jruoho if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
431 1.1 jruoho ps->ps_freq = 0;
432 1.1 jruoho break;
433 1.1 jruoho }
434 1.1 jruoho }
435 1.1 jruoho
436 1.1 jruoho if (ps->ps_freq != 0)
437 1.1 jruoho count++;
438 1.1 jruoho }
439 1.1 jruoho
440 1.1 jruoho rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
441 1.1 jruoho
442 1.1 jruoho out:
443 1.1 jruoho if (buf.Pointer != NULL)
444 1.1 jruoho ACPI_FREE(buf.Pointer);
445 1.1 jruoho
446 1.1 jruoho return rv;
447 1.1 jruoho }
448 1.1 jruoho
449 1.1 jruoho static ACPI_STATUS
450 1.1 jruoho acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
451 1.1 jruoho {
452 1.1 jruoho ACPI_OBJECT *elm;
453 1.1 jruoho int i;
454 1.1 jruoho
455 1.1 jruoho if (obj->Type != ACPI_TYPE_PACKAGE)
456 1.1 jruoho return AE_TYPE;
457 1.1 jruoho
458 1.1 jruoho if (obj->Package.Count != 6)
459 1.1 jruoho return AE_BAD_DATA;
460 1.1 jruoho
461 1.1 jruoho elm = obj->Package.Elements;
462 1.1 jruoho
463 1.1 jruoho for (i = 0; i < 6; i++) {
464 1.1 jruoho
465 1.1 jruoho if (elm[i].Type != ACPI_TYPE_INTEGER)
466 1.1 jruoho return AE_TYPE;
467 1.1 jruoho
468 1.1 jruoho if (elm[i].Integer.Value > UINT32_MAX)
469 1.1 jruoho return AE_AML_NUMERIC_OVERFLOW;
470 1.1 jruoho }
471 1.1 jruoho
472 1.21 jruoho ps->ps_freq = elm[0].Integer.Value;
473 1.21 jruoho ps->ps_power = elm[1].Integer.Value;
474 1.21 jruoho ps->ps_latency = elm[2].Integer.Value;
475 1.21 jruoho ps->ps_latency_bm = elm[3].Integer.Value;
476 1.21 jruoho ps->ps_control = elm[4].Integer.Value;
477 1.21 jruoho ps->ps_status = elm[5].Integer.Value;
478 1.1 jruoho
479 1.13 jruoho if (ps->ps_freq == 0 || ps->ps_freq > 9999)
480 1.13 jruoho return AE_BAD_DECIMAL_CONSTANT;
481 1.13 jruoho
482 1.1 jruoho /*
483 1.1 jruoho * The latency is typically around 10 usec
484 1.1 jruoho * on Intel CPUs. Use that as the minimum.
485 1.1 jruoho */
486 1.1 jruoho if (ps->ps_latency < 10)
487 1.1 jruoho ps->ps_latency = 10;
488 1.1 jruoho
489 1.1 jruoho return AE_OK;
490 1.1 jruoho }
491 1.1 jruoho
492 1.21 jruoho static ACPI_STATUS
493 1.21 jruoho acpicpu_pstate_xpss(struct acpicpu_softc *sc)
494 1.21 jruoho {
495 1.21 jruoho static const size_t size = sizeof(struct acpicpu_pstate);
496 1.21 jruoho struct acpicpu_pstate *ps;
497 1.21 jruoho ACPI_OBJECT *obj;
498 1.21 jruoho ACPI_BUFFER buf;
499 1.21 jruoho ACPI_STATUS rv;
500 1.21 jruoho uint32_t count;
501 1.21 jruoho uint32_t i, j;
502 1.21 jruoho
503 1.21 jruoho rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
504 1.21 jruoho
505 1.21 jruoho if (ACPI_FAILURE(rv))
506 1.21 jruoho return rv;
507 1.21 jruoho
508 1.21 jruoho obj = buf.Pointer;
509 1.21 jruoho
510 1.21 jruoho if (obj->Type != ACPI_TYPE_PACKAGE) {
511 1.21 jruoho rv = AE_TYPE;
512 1.21 jruoho goto out;
513 1.21 jruoho }
514 1.21 jruoho
515 1.21 jruoho count = obj->Package.Count;
516 1.21 jruoho
517 1.21 jruoho if (count == 0) {
518 1.21 jruoho rv = AE_NOT_EXIST;
519 1.21 jruoho goto out;
520 1.21 jruoho }
521 1.21 jruoho
522 1.21 jruoho if (count > ACPICPU_P_STATE_MAX) {
523 1.21 jruoho rv = AE_LIMIT;
524 1.21 jruoho goto out;
525 1.21 jruoho }
526 1.21 jruoho
527 1.21 jruoho if (sc->sc_pstate != NULL)
528 1.21 jruoho kmem_free(sc->sc_pstate, sc->sc_pstate_count * size);
529 1.21 jruoho
530 1.21 jruoho sc->sc_pstate = kmem_zalloc(count * size, KM_SLEEP);
531 1.21 jruoho
532 1.21 jruoho if (sc->sc_pstate == NULL) {
533 1.21 jruoho rv = AE_NO_MEMORY;
534 1.21 jruoho goto out;
535 1.21 jruoho }
536 1.21 jruoho
537 1.21 jruoho sc->sc_pstate_count = count;
538 1.21 jruoho
539 1.21 jruoho for (count = i = 0; i < sc->sc_pstate_count; i++) {
540 1.21 jruoho
541 1.21 jruoho ps = &sc->sc_pstate[i];
542 1.21 jruoho rv = acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
543 1.21 jruoho
544 1.21 jruoho if (ACPI_FAILURE(rv)) {
545 1.21 jruoho ps->ps_freq = 0;
546 1.21 jruoho continue;
547 1.21 jruoho }
548 1.21 jruoho
549 1.21 jruoho for (j = 0; j < i; j++) {
550 1.21 jruoho
551 1.21 jruoho if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
552 1.21 jruoho ps->ps_freq = 0;
553 1.21 jruoho break;
554 1.21 jruoho }
555 1.21 jruoho }
556 1.21 jruoho
557 1.21 jruoho if (ps->ps_freq != 0)
558 1.21 jruoho count++;
559 1.21 jruoho }
560 1.21 jruoho
561 1.21 jruoho rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
562 1.21 jruoho
563 1.21 jruoho out:
564 1.21 jruoho if (buf.Pointer != NULL)
565 1.21 jruoho ACPI_FREE(buf.Pointer);
566 1.21 jruoho
567 1.21 jruoho return rv;
568 1.21 jruoho }
569 1.21 jruoho
570 1.21 jruoho static ACPI_STATUS
571 1.21 jruoho acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
572 1.21 jruoho {
573 1.21 jruoho static const size_t size = sizeof(uint64_t);
574 1.21 jruoho ACPI_OBJECT *elm;
575 1.21 jruoho int i;
576 1.21 jruoho
577 1.21 jruoho if (obj->Type != ACPI_TYPE_PACKAGE)
578 1.21 jruoho return AE_TYPE;
579 1.21 jruoho
580 1.21 jruoho if (obj->Package.Count != 8)
581 1.21 jruoho return AE_BAD_DATA;
582 1.21 jruoho
583 1.21 jruoho elm = obj->Package.Elements;
584 1.21 jruoho
585 1.21 jruoho for (i = 0; i < 4; i++) {
586 1.21 jruoho
587 1.21 jruoho if (elm[i].Type != ACPI_TYPE_INTEGER)
588 1.21 jruoho return AE_TYPE;
589 1.21 jruoho
590 1.21 jruoho if (elm[i].Integer.Value > UINT32_MAX)
591 1.21 jruoho return AE_AML_NUMERIC_OVERFLOW;
592 1.21 jruoho }
593 1.21 jruoho
594 1.21 jruoho for (; i < 8; i++) {
595 1.21 jruoho
596 1.21 jruoho if (elm[i].Type != ACPI_TYPE_BUFFER)
597 1.21 jruoho return AE_TYPE;
598 1.21 jruoho
599 1.21 jruoho if (elm[i].Buffer.Length > size)
600 1.21 jruoho return AE_LIMIT;
601 1.21 jruoho }
602 1.21 jruoho
603 1.21 jruoho ps->ps_freq = elm[0].Integer.Value;
604 1.21 jruoho ps->ps_power = elm[1].Integer.Value;
605 1.21 jruoho ps->ps_latency = elm[2].Integer.Value;
606 1.21 jruoho ps->ps_latency_bm = elm[3].Integer.Value;
607 1.21 jruoho
608 1.21 jruoho if (ps->ps_freq == 0 || ps->ps_freq > 9999)
609 1.21 jruoho return AE_BAD_DECIMAL_CONSTANT;
610 1.21 jruoho
611 1.21 jruoho (void)memcpy(&ps->ps_control, elm[4].Buffer.Pointer, size);
612 1.21 jruoho (void)memcpy(&ps->ps_status, elm[5].Buffer.Pointer, size);
613 1.21 jruoho
614 1.21 jruoho (void)memcpy(&ps->ps_control_mask, elm[6].Buffer.Pointer, size);
615 1.21 jruoho (void)memcpy(&ps->ps_status_mask, elm[7].Buffer.Pointer, size);
616 1.21 jruoho
617 1.21 jruoho /*
618 1.21 jruoho * The latency is often defined to be
619 1.21 jruoho * zero on AMD systems. Raise that to 1.
620 1.21 jruoho */
621 1.21 jruoho if (ps->ps_latency == 0)
622 1.21 jruoho ps->ps_latency = 1;
623 1.21 jruoho
624 1.21 jruoho ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
625 1.21 jruoho
626 1.21 jruoho return AE_OK;
627 1.21 jruoho }
628 1.21 jruoho
629 1.1 jruoho ACPI_STATUS
630 1.1 jruoho acpicpu_pstate_pct(struct acpicpu_softc *sc)
631 1.1 jruoho {
632 1.1 jruoho static const size_t size = sizeof(struct acpicpu_reg);
633 1.1 jruoho struct acpicpu_reg *reg[2];
634 1.21 jruoho struct acpicpu_pstate *ps;
635 1.1 jruoho ACPI_OBJECT *elm, *obj;
636 1.1 jruoho ACPI_BUFFER buf;
637 1.1 jruoho ACPI_STATUS rv;
638 1.1 jruoho uint8_t width;
639 1.21 jruoho uint32_t i;
640 1.1 jruoho
641 1.1 jruoho rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
642 1.1 jruoho
643 1.1 jruoho if (ACPI_FAILURE(rv))
644 1.1 jruoho return rv;
645 1.1 jruoho
646 1.1 jruoho obj = buf.Pointer;
647 1.1 jruoho
648 1.1 jruoho if (obj->Type != ACPI_TYPE_PACKAGE) {
649 1.1 jruoho rv = AE_TYPE;
650 1.1 jruoho goto out;
651 1.1 jruoho }
652 1.1 jruoho
653 1.1 jruoho if (obj->Package.Count != 2) {
654 1.1 jruoho rv = AE_LIMIT;
655 1.1 jruoho goto out;
656 1.1 jruoho }
657 1.1 jruoho
658 1.1 jruoho for (i = 0; i < 2; i++) {
659 1.1 jruoho
660 1.1 jruoho elm = &obj->Package.Elements[i];
661 1.1 jruoho
662 1.1 jruoho if (elm->Type != ACPI_TYPE_BUFFER) {
663 1.1 jruoho rv = AE_TYPE;
664 1.1 jruoho goto out;
665 1.1 jruoho }
666 1.1 jruoho
667 1.1 jruoho if (size > elm->Buffer.Length) {
668 1.1 jruoho rv = AE_AML_BAD_RESOURCE_LENGTH;
669 1.1 jruoho goto out;
670 1.1 jruoho }
671 1.1 jruoho
672 1.1 jruoho reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
673 1.1 jruoho
674 1.1 jruoho switch (reg[i]->reg_spaceid) {
675 1.1 jruoho
676 1.1 jruoho case ACPI_ADR_SPACE_SYSTEM_IO:
677 1.1 jruoho
678 1.1 jruoho if (reg[i]->reg_addr == 0) {
679 1.1 jruoho rv = AE_AML_ILLEGAL_ADDRESS;
680 1.1 jruoho goto out;
681 1.1 jruoho }
682 1.1 jruoho
683 1.1 jruoho width = reg[i]->reg_bitwidth;
684 1.1 jruoho
685 1.10 jruoho if (width + reg[i]->reg_bitoffset > 32) {
686 1.10 jruoho rv = AE_AML_BAD_RESOURCE_VALUE;
687 1.10 jruoho goto out;
688 1.10 jruoho }
689 1.10 jruoho
690 1.1 jruoho if (width != 8 && width != 16 && width != 32) {
691 1.4 jruoho rv = AE_AML_BAD_RESOURCE_VALUE;
692 1.1 jruoho goto out;
693 1.1 jruoho }
694 1.1 jruoho
695 1.1 jruoho break;
696 1.1 jruoho
697 1.1 jruoho case ACPI_ADR_SPACE_FIXED_HARDWARE:
698 1.1 jruoho
699 1.21 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
700 1.21 jruoho
701 1.21 jruoho if (reg[i]->reg_bitwidth != 64) {
702 1.21 jruoho rv = AE_AML_BAD_RESOURCE_VALUE;
703 1.21 jruoho goto out;
704 1.21 jruoho }
705 1.21 jruoho
706 1.21 jruoho if (reg[i]->reg_bitoffset != 0) {
707 1.21 jruoho rv = AE_AML_BAD_RESOURCE_VALUE;
708 1.21 jruoho goto out;
709 1.21 jruoho }
710 1.21 jruoho
711 1.21 jruoho break;
712 1.21 jruoho }
713 1.21 jruoho
714 1.1 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
715 1.4 jruoho rv = AE_SUPPORT;
716 1.1 jruoho goto out;
717 1.1 jruoho }
718 1.1 jruoho
719 1.1 jruoho break;
720 1.1 jruoho
721 1.1 jruoho default:
722 1.1 jruoho rv = AE_AML_INVALID_SPACE_ID;
723 1.1 jruoho goto out;
724 1.1 jruoho }
725 1.1 jruoho }
726 1.1 jruoho
727 1.1 jruoho if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
728 1.1 jruoho rv = AE_AML_INVALID_SPACE_ID;
729 1.1 jruoho goto out;
730 1.1 jruoho }
731 1.1 jruoho
732 1.15 jruoho (void)memcpy(&sc->sc_pstate_control, reg[0], size);
733 1.15 jruoho (void)memcpy(&sc->sc_pstate_status, reg[1], size);
734 1.1 jruoho
735 1.22 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
736 1.22 jruoho goto out;
737 1.22 jruoho
738 1.22 jruoho /*
739 1.22 jruoho * In XPSS the control address can not be zero,
740 1.26 jruoho * but the status address may be. In this case,
741 1.26 jruoho * comparable to T-states, we can ignore the status
742 1.22 jruoho * check during the P-state (FFH) transition.
743 1.22 jruoho */
744 1.22 jruoho if (sc->sc_pstate_control.reg_addr == 0) {
745 1.23 jmcneill rv = AE_AML_BAD_RESOURCE_LENGTH;
746 1.22 jruoho goto out;
747 1.22 jruoho }
748 1.22 jruoho
749 1.21 jruoho /*
750 1.21 jruoho * If XPSS is present, copy the MSR addresses
751 1.21 jruoho * to the P-state structures for convenience.
752 1.21 jruoho */
753 1.21 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
754 1.21 jruoho
755 1.21 jruoho ps = &sc->sc_pstate[i];
756 1.21 jruoho
757 1.21 jruoho if (ps->ps_freq == 0)
758 1.21 jruoho continue;
759 1.21 jruoho
760 1.21 jruoho ps->ps_status_addr = sc->sc_pstate_status.reg_addr;
761 1.21 jruoho ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
762 1.21 jruoho }
763 1.21 jruoho
764 1.1 jruoho out:
765 1.1 jruoho if (buf.Pointer != NULL)
766 1.1 jruoho ACPI_FREE(buf.Pointer);
767 1.1 jruoho
768 1.1 jruoho return rv;
769 1.1 jruoho }
770 1.1 jruoho
771 1.1 jruoho static int
772 1.1 jruoho acpicpu_pstate_max(struct acpicpu_softc *sc)
773 1.1 jruoho {
774 1.1 jruoho ACPI_INTEGER val;
775 1.1 jruoho ACPI_STATUS rv;
776 1.1 jruoho
777 1.1 jruoho /*
778 1.1 jruoho * Evaluate the currently highest P-state that can be used.
779 1.1 jruoho * If available, we can use either this state or any lower
780 1.1 jruoho * power (i.e. higher numbered) state from the _PSS object.
781 1.27 jruoho * Note that the return value must match the _OST parameter.
782 1.1 jruoho */
783 1.1 jruoho rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
784 1.1 jruoho
785 1.27 jruoho if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
786 1.27 jruoho
787 1.27 jruoho if (sc->sc_pstate[val].ps_freq != 0) {
788 1.27 jruoho sc->sc_pstate_max = val;
789 1.27 jruoho return 0;
790 1.27 jruoho }
791 1.27 jruoho }
792 1.27 jruoho
793 1.27 jruoho return 1;
794 1.27 jruoho }
795 1.27 jruoho
796 1.27 jruoho static int
797 1.27 jruoho acpicpu_pstate_min(struct acpicpu_softc *sc)
798 1.27 jruoho {
799 1.27 jruoho ACPI_INTEGER val;
800 1.27 jruoho ACPI_STATUS rv;
801 1.1 jruoho
802 1.27 jruoho /*
803 1.27 jruoho * The _PDL object defines the minimum when passive cooling
804 1.27 jruoho * is being performed. If available, we can use the returned
805 1.27 jruoho * state or any higher power (i.e. lower numbered) state.
806 1.27 jruoho */
807 1.27 jruoho rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
808 1.1 jruoho
809 1.27 jruoho if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
810 1.1 jruoho
811 1.27 jruoho if (sc->sc_pstate[val].ps_freq == 0)
812 1.27 jruoho return 1;
813 1.1 jruoho
814 1.27 jruoho if (val >= sc->sc_pstate_max) {
815 1.27 jruoho sc->sc_pstate_min = val;
816 1.27 jruoho return 0;
817 1.27 jruoho }
818 1.27 jruoho }
819 1.1 jruoho
820 1.27 jruoho return 1;
821 1.1 jruoho }
822 1.1 jruoho
823 1.1 jruoho static void
824 1.1 jruoho acpicpu_pstate_change(struct acpicpu_softc *sc)
825 1.1 jruoho {
826 1.27 jruoho static ACPI_STATUS rv = AE_OK;
827 1.1 jruoho ACPI_OBJECT_LIST arg;
828 1.1 jruoho ACPI_OBJECT obj[2];
829 1.1 jruoho
830 1.28 jruoho acpicpu_pstate_reset(sc);
831 1.27 jruoho
832 1.1 jruoho arg.Count = 2;
833 1.1 jruoho arg.Pointer = obj;
834 1.1 jruoho
835 1.1 jruoho obj[0].Type = ACPI_TYPE_INTEGER;
836 1.1 jruoho obj[1].Type = ACPI_TYPE_INTEGER;
837 1.1 jruoho
838 1.1 jruoho obj[0].Integer.Value = ACPICPU_P_NOTIFY;
839 1.1 jruoho obj[1].Integer.Value = acpicpu_pstate_max(sc);
840 1.1 jruoho
841 1.27 jruoho if (sc->sc_passive != false)
842 1.27 jruoho (void)acpicpu_pstate_min(sc);
843 1.27 jruoho
844 1.27 jruoho if (ACPI_FAILURE(rv))
845 1.27 jruoho return;
846 1.27 jruoho
847 1.27 jruoho rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
848 1.1 jruoho }
849 1.1 jruoho
850 1.1 jruoho static void
851 1.28 jruoho acpicpu_pstate_reset(struct acpicpu_softc *sc)
852 1.28 jruoho {
853 1.28 jruoho
854 1.28 jruoho sc->sc_pstate_max = 0;
855 1.28 jruoho sc->sc_pstate_min = sc->sc_pstate_count - 1;
856 1.28 jruoho
857 1.28 jruoho }
858 1.28 jruoho
859 1.28 jruoho static void
860 1.1 jruoho acpicpu_pstate_bios(void)
861 1.1 jruoho {
862 1.1 jruoho const uint8_t val = AcpiGbl_FADT.PstateControl;
863 1.1 jruoho const uint32_t addr = AcpiGbl_FADT.SmiCommand;
864 1.1 jruoho
865 1.19 jruoho if (addr == 0 || val == 0)
866 1.1 jruoho return;
867 1.1 jruoho
868 1.1 jruoho (void)AcpiOsWritePort(addr, val, 8);
869 1.1 jruoho }
870 1.1 jruoho
871 1.1 jruoho int
872 1.1 jruoho acpicpu_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
873 1.1 jruoho {
874 1.1 jruoho const uint8_t method = sc->sc_pstate_control.reg_spaceid;
875 1.1 jruoho struct acpicpu_pstate *ps = NULL;
876 1.1 jruoho uint32_t i, val = 0;
877 1.1 jruoho uint64_t addr;
878 1.1 jruoho uint8_t width;
879 1.1 jruoho int rv;
880 1.1 jruoho
881 1.11 jruoho if (sc->sc_cold != false) {
882 1.11 jruoho rv = EBUSY;
883 1.11 jruoho goto fail;
884 1.11 jruoho }
885 1.11 jruoho
886 1.1 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P) == 0) {
887 1.1 jruoho rv = ENODEV;
888 1.1 jruoho goto fail;
889 1.1 jruoho }
890 1.1 jruoho
891 1.14 jruoho mutex_enter(&sc->sc_mtx);
892 1.14 jruoho
893 1.1 jruoho if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
894 1.1 jruoho *freq = sc->sc_pstate_current;
895 1.14 jruoho mutex_exit(&sc->sc_mtx);
896 1.1 jruoho return 0;
897 1.1 jruoho }
898 1.1 jruoho
899 1.14 jruoho mutex_exit(&sc->sc_mtx);
900 1.14 jruoho
901 1.1 jruoho switch (method) {
902 1.1 jruoho
903 1.1 jruoho case ACPI_ADR_SPACE_FIXED_HARDWARE:
904 1.1 jruoho
905 1.1 jruoho rv = acpicpu_md_pstate_get(sc, freq);
906 1.1 jruoho
907 1.1 jruoho if (rv != 0)
908 1.1 jruoho goto fail;
909 1.1 jruoho
910 1.1 jruoho break;
911 1.1 jruoho
912 1.1 jruoho case ACPI_ADR_SPACE_SYSTEM_IO:
913 1.1 jruoho
914 1.1 jruoho addr = sc->sc_pstate_status.reg_addr;
915 1.1 jruoho width = sc->sc_pstate_status.reg_bitwidth;
916 1.1 jruoho
917 1.1 jruoho (void)AcpiOsReadPort(addr, &val, width);
918 1.1 jruoho
919 1.1 jruoho if (val == 0) {
920 1.1 jruoho rv = EIO;
921 1.1 jruoho goto fail;
922 1.1 jruoho }
923 1.1 jruoho
924 1.5 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
925 1.1 jruoho
926 1.1 jruoho if (sc->sc_pstate[i].ps_freq == 0)
927 1.1 jruoho continue;
928 1.1 jruoho
929 1.1 jruoho if (val == sc->sc_pstate[i].ps_status) {
930 1.1 jruoho ps = &sc->sc_pstate[i];
931 1.1 jruoho break;
932 1.1 jruoho }
933 1.1 jruoho }
934 1.1 jruoho
935 1.15 jruoho if (__predict_false(ps == NULL)) {
936 1.1 jruoho rv = EIO;
937 1.1 jruoho goto fail;
938 1.1 jruoho }
939 1.1 jruoho
940 1.1 jruoho *freq = ps->ps_freq;
941 1.1 jruoho break;
942 1.1 jruoho
943 1.1 jruoho default:
944 1.1 jruoho rv = ENOTTY;
945 1.1 jruoho goto fail;
946 1.1 jruoho }
947 1.1 jruoho
948 1.14 jruoho mutex_enter(&sc->sc_mtx);
949 1.1 jruoho sc->sc_pstate_current = *freq;
950 1.14 jruoho mutex_exit(&sc->sc_mtx);
951 1.1 jruoho
952 1.1 jruoho return 0;
953 1.1 jruoho
954 1.1 jruoho fail:
955 1.1 jruoho aprint_error_dev(sc->sc_dev, "failed "
956 1.1 jruoho "to get frequency (err %d)\n", rv);
957 1.1 jruoho
958 1.14 jruoho mutex_enter(&sc->sc_mtx);
959 1.1 jruoho *freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
960 1.14 jruoho mutex_exit(&sc->sc_mtx);
961 1.1 jruoho
962 1.1 jruoho return rv;
963 1.1 jruoho }
964 1.1 jruoho
965 1.1 jruoho int
966 1.1 jruoho acpicpu_pstate_set(struct acpicpu_softc *sc, uint32_t freq)
967 1.1 jruoho {
968 1.1 jruoho const uint8_t method = sc->sc_pstate_control.reg_spaceid;
969 1.1 jruoho struct acpicpu_pstate *ps = NULL;
970 1.1 jruoho uint32_t i, val;
971 1.1 jruoho uint64_t addr;
972 1.1 jruoho uint8_t width;
973 1.1 jruoho int rv;
974 1.1 jruoho
975 1.11 jruoho if (sc->sc_cold != false) {
976 1.11 jruoho rv = EBUSY;
977 1.11 jruoho goto fail;
978 1.11 jruoho }
979 1.11 jruoho
980 1.1 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P) == 0) {
981 1.1 jruoho rv = ENODEV;
982 1.1 jruoho goto fail;
983 1.1 jruoho }
984 1.1 jruoho
985 1.1 jruoho mutex_enter(&sc->sc_mtx);
986 1.1 jruoho
987 1.31 jruoho if (sc->sc_pstate_current == freq) {
988 1.31 jruoho mutex_exit(&sc->sc_mtx);
989 1.31 jruoho return 0;
990 1.31 jruoho }
991 1.31 jruoho
992 1.27 jruoho for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
993 1.1 jruoho
994 1.1 jruoho if (sc->sc_pstate[i].ps_freq == 0)
995 1.1 jruoho continue;
996 1.1 jruoho
997 1.1 jruoho if (sc->sc_pstate[i].ps_freq == freq) {
998 1.1 jruoho ps = &sc->sc_pstate[i];
999 1.1 jruoho break;
1000 1.1 jruoho }
1001 1.1 jruoho }
1002 1.1 jruoho
1003 1.1 jruoho mutex_exit(&sc->sc_mtx);
1004 1.1 jruoho
1005 1.15 jruoho if (__predict_false(ps == NULL)) {
1006 1.1 jruoho rv = EINVAL;
1007 1.1 jruoho goto fail;
1008 1.1 jruoho }
1009 1.1 jruoho
1010 1.1 jruoho switch (method) {
1011 1.1 jruoho
1012 1.1 jruoho case ACPI_ADR_SPACE_FIXED_HARDWARE:
1013 1.1 jruoho
1014 1.1 jruoho rv = acpicpu_md_pstate_set(ps);
1015 1.1 jruoho
1016 1.1 jruoho if (rv != 0)
1017 1.1 jruoho goto fail;
1018 1.1 jruoho
1019 1.1 jruoho break;
1020 1.1 jruoho
1021 1.1 jruoho case ACPI_ADR_SPACE_SYSTEM_IO:
1022 1.1 jruoho
1023 1.1 jruoho addr = sc->sc_pstate_control.reg_addr;
1024 1.1 jruoho width = sc->sc_pstate_control.reg_bitwidth;
1025 1.1 jruoho
1026 1.1 jruoho (void)AcpiOsWritePort(addr, ps->ps_control, width);
1027 1.1 jruoho
1028 1.1 jruoho addr = sc->sc_pstate_status.reg_addr;
1029 1.1 jruoho width = sc->sc_pstate_status.reg_bitwidth;
1030 1.1 jruoho
1031 1.1 jruoho /*
1032 1.1 jruoho * Some systems take longer to respond
1033 1.1 jruoho * than the reported worst-case latency.
1034 1.1 jruoho */
1035 1.1 jruoho for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
1036 1.1 jruoho
1037 1.1 jruoho (void)AcpiOsReadPort(addr, &val, width);
1038 1.1 jruoho
1039 1.1 jruoho if (val == ps->ps_status)
1040 1.1 jruoho break;
1041 1.1 jruoho
1042 1.1 jruoho DELAY(ps->ps_latency);
1043 1.1 jruoho }
1044 1.1 jruoho
1045 1.1 jruoho if (i == ACPICPU_P_STATE_RETRY) {
1046 1.1 jruoho rv = EAGAIN;
1047 1.1 jruoho goto fail;
1048 1.1 jruoho }
1049 1.1 jruoho
1050 1.1 jruoho break;
1051 1.1 jruoho
1052 1.1 jruoho default:
1053 1.1 jruoho rv = ENOTTY;
1054 1.1 jruoho goto fail;
1055 1.1 jruoho }
1056 1.1 jruoho
1057 1.16 jruoho mutex_enter(&sc->sc_mtx);
1058 1.7 jruoho ps->ps_evcnt.ev_count++;
1059 1.1 jruoho sc->sc_pstate_current = freq;
1060 1.14 jruoho mutex_exit(&sc->sc_mtx);
1061 1.1 jruoho
1062 1.1 jruoho return 0;
1063 1.1 jruoho
1064 1.1 jruoho fail:
1065 1.1 jruoho aprint_error_dev(sc->sc_dev, "failed to set "
1066 1.1 jruoho "frequency to %u (err %d)\n", freq, rv);
1067 1.1 jruoho
1068 1.14 jruoho mutex_enter(&sc->sc_mtx);
1069 1.1 jruoho sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
1070 1.14 jruoho mutex_exit(&sc->sc_mtx);
1071 1.1 jruoho
1072 1.1 jruoho return rv;
1073 1.1 jruoho }
1074