acpi_cpu_pstate.c revision 1.33 1 1.33 jmcneill /* $NetBSD: acpi_cpu_pstate.c,v 1.33 2010/08/21 13:12:15 jmcneill Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.1 jruoho * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.33 jmcneill __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.33 2010/08/21 13:12:15 jmcneill Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.7 jruoho #include <sys/evcnt.h>
34 1.1 jruoho #include <sys/kmem.h>
35 1.1 jruoho #include <sys/once.h>
36 1.1 jruoho
37 1.1 jruoho #include <dev/acpi/acpireg.h>
38 1.1 jruoho #include <dev/acpi/acpivar.h>
39 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
40 1.1 jruoho
41 1.1 jruoho #define _COMPONENT ACPI_BUS_COMPONENT
42 1.1 jruoho ACPI_MODULE_NAME ("acpi_cpu_pstate")
43 1.1 jruoho
44 1.1 jruoho static void acpicpu_pstate_attach_print(struct acpicpu_softc *);
45 1.7 jruoho static void acpicpu_pstate_attach_evcnt(struct acpicpu_softc *);
46 1.7 jruoho static void acpicpu_pstate_detach_evcnt(struct acpicpu_softc *);
47 1.21 jruoho static ACPI_STATUS acpicpu_pstate_pss(struct acpicpu_softc *);
48 1.1 jruoho static ACPI_STATUS acpicpu_pstate_pss_add(struct acpicpu_pstate *,
49 1.1 jruoho ACPI_OBJECT *);
50 1.21 jruoho static ACPI_STATUS acpicpu_pstate_xpss(struct acpicpu_softc *);
51 1.21 jruoho static ACPI_STATUS acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
52 1.21 jruoho ACPI_OBJECT *);
53 1.1 jruoho static ACPI_STATUS acpicpu_pstate_pct(struct acpicpu_softc *);
54 1.1 jruoho static int acpicpu_pstate_max(struct acpicpu_softc *);
55 1.27 jruoho static int acpicpu_pstate_min(struct acpicpu_softc *);
56 1.1 jruoho static void acpicpu_pstate_change(struct acpicpu_softc *);
57 1.28 jruoho static void acpicpu_pstate_reset(struct acpicpu_softc *);
58 1.1 jruoho static void acpicpu_pstate_bios(void);
59 1.1 jruoho
60 1.29 jruoho static uint32_t acpicpu_pstate_saved = 0;
61 1.25 jruoho
62 1.1 jruoho void
63 1.1 jruoho acpicpu_pstate_attach(device_t self)
64 1.1 jruoho {
65 1.1 jruoho struct acpicpu_softc *sc = device_private(self);
66 1.3 jruoho const char *str;
67 1.27 jruoho ACPI_HANDLE tmp;
68 1.1 jruoho ACPI_STATUS rv;
69 1.1 jruoho
70 1.1 jruoho rv = acpicpu_pstate_pss(sc);
71 1.1 jruoho
72 1.3 jruoho if (ACPI_FAILURE(rv)) {
73 1.3 jruoho str = "_PSS";
74 1.3 jruoho goto fail;
75 1.3 jruoho }
76 1.1 jruoho
77 1.21 jruoho /*
78 1.21 jruoho * Check the availability of extended _PSS.
79 1.21 jruoho * If present, this will override the data.
80 1.21 jruoho * Note that XPSS can not be used on Intel
81 1.21 jruoho * systems where _PDC or _OSC may be used.
82 1.21 jruoho */
83 1.21 jruoho if (sc->sc_cap == 0) {
84 1.21 jruoho rv = acpicpu_pstate_xpss(sc);
85 1.21 jruoho
86 1.21 jruoho if (ACPI_SUCCESS(rv))
87 1.21 jruoho sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
88 1.21 jruoho }
89 1.21 jruoho
90 1.1 jruoho rv = acpicpu_pstate_pct(sc);
91 1.1 jruoho
92 1.3 jruoho if (ACPI_FAILURE(rv)) {
93 1.3 jruoho str = "_PCT";
94 1.3 jruoho goto fail;
95 1.3 jruoho }
96 1.1 jruoho
97 1.24 jruoho /*
98 1.24 jruoho * The ACPI 3.0 and 4.0 specifications mandate three
99 1.24 jruoho * objects for P-states: _PSS, _PCT, and _PPC. A less
100 1.24 jruoho * strict wording is however used in the earlier 2.0
101 1.24 jruoho * standard, and some systems conforming to ACPI 2.0
102 1.24 jruoho * do not have _PPC, the method for dynamic maximum.
103 1.24 jruoho */
104 1.27 jruoho rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
105 1.27 jruoho
106 1.27 jruoho if (ACPI_FAILURE(rv))
107 1.27 jruoho aprint_debug_dev(self, "_PPC missing\n");
108 1.27 jruoho
109 1.30 jruoho /*
110 1.30 jruoho * Employ the XPSS structure by filling
111 1.30 jruoho * it with MD information required for FFH.
112 1.30 jruoho */
113 1.30 jruoho rv = acpicpu_md_pstate_pss(sc);
114 1.30 jruoho
115 1.30 jruoho if (rv != 0) {
116 1.30 jruoho rv = AE_SUPPORT;
117 1.30 jruoho goto fail;
118 1.30 jruoho }
119 1.30 jruoho
120 1.1 jruoho sc->sc_flags |= ACPICPU_FLAG_P;
121 1.1 jruoho
122 1.1 jruoho acpicpu_pstate_bios();
123 1.28 jruoho acpicpu_pstate_reset(sc);
124 1.7 jruoho acpicpu_pstate_attach_evcnt(sc);
125 1.1 jruoho acpicpu_pstate_attach_print(sc);
126 1.3 jruoho
127 1.3 jruoho return;
128 1.3 jruoho
129 1.3 jruoho fail:
130 1.15 jruoho switch (rv) {
131 1.15 jruoho
132 1.15 jruoho case AE_NOT_FOUND:
133 1.15 jruoho return;
134 1.15 jruoho
135 1.15 jruoho case AE_SUPPORT:
136 1.15 jruoho aprint_verbose_dev(sc->sc_dev, "P-states not supported\n");
137 1.15 jruoho return;
138 1.15 jruoho
139 1.15 jruoho default:
140 1.15 jruoho aprint_error_dev(sc->sc_dev, "failed to evaluate "
141 1.15 jruoho "%s: %s\n", str, AcpiFormatException(rv));
142 1.15 jruoho }
143 1.1 jruoho }
144 1.1 jruoho
145 1.1 jruoho static void
146 1.1 jruoho acpicpu_pstate_attach_print(struct acpicpu_softc *sc)
147 1.1 jruoho {
148 1.1 jruoho const uint8_t method = sc->sc_pstate_control.reg_spaceid;
149 1.1 jruoho struct acpicpu_pstate *ps;
150 1.12 jruoho static bool once = false;
151 1.1 jruoho const char *str;
152 1.1 jruoho uint32_t i;
153 1.1 jruoho
154 1.12 jruoho if (once != false)
155 1.12 jruoho return;
156 1.12 jruoho
157 1.8 jruoho str = (method != ACPI_ADR_SPACE_SYSTEM_IO) ? "FFH" : "I/O";
158 1.1 jruoho
159 1.1 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
160 1.1 jruoho
161 1.1 jruoho ps = &sc->sc_pstate[i];
162 1.1 jruoho
163 1.1 jruoho if (ps->ps_freq == 0)
164 1.1 jruoho continue;
165 1.1 jruoho
166 1.8 jruoho aprint_debug_dev(sc->sc_dev, "P%d: %3s, "
167 1.15 jruoho "lat %3u us, pow %5u mW, %4u MHz\n", i, str,
168 1.15 jruoho ps->ps_latency, ps->ps_power, ps->ps_freq);
169 1.1 jruoho }
170 1.12 jruoho
171 1.12 jruoho once = true;
172 1.1 jruoho }
173 1.1 jruoho
174 1.7 jruoho static void
175 1.7 jruoho acpicpu_pstate_attach_evcnt(struct acpicpu_softc *sc)
176 1.7 jruoho {
177 1.7 jruoho struct acpicpu_pstate *ps;
178 1.7 jruoho uint32_t i;
179 1.7 jruoho
180 1.7 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
181 1.7 jruoho
182 1.7 jruoho ps = &sc->sc_pstate[i];
183 1.7 jruoho
184 1.7 jruoho if (ps->ps_freq == 0)
185 1.7 jruoho continue;
186 1.7 jruoho
187 1.7 jruoho (void)snprintf(ps->ps_name, sizeof(ps->ps_name),
188 1.7 jruoho "P%u (%u MHz)", i, ps->ps_freq);
189 1.7 jruoho
190 1.7 jruoho evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
191 1.7 jruoho NULL, device_xname(sc->sc_dev), ps->ps_name);
192 1.7 jruoho }
193 1.7 jruoho }
194 1.7 jruoho
195 1.1 jruoho int
196 1.1 jruoho acpicpu_pstate_detach(device_t self)
197 1.1 jruoho {
198 1.1 jruoho struct acpicpu_softc *sc = device_private(self);
199 1.1 jruoho static ONCE_DECL(once_detach);
200 1.1 jruoho size_t size;
201 1.1 jruoho int rv;
202 1.1 jruoho
203 1.1 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
204 1.1 jruoho return 0;
205 1.1 jruoho
206 1.1 jruoho rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
207 1.1 jruoho
208 1.1 jruoho if (rv != 0)
209 1.1 jruoho return rv;
210 1.1 jruoho
211 1.1 jruoho size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
212 1.1 jruoho
213 1.1 jruoho if (sc->sc_pstate != NULL)
214 1.1 jruoho kmem_free(sc->sc_pstate, size);
215 1.1 jruoho
216 1.1 jruoho sc->sc_flags &= ~ACPICPU_FLAG_P;
217 1.7 jruoho acpicpu_pstate_detach_evcnt(sc);
218 1.1 jruoho
219 1.1 jruoho return 0;
220 1.1 jruoho }
221 1.1 jruoho
222 1.7 jruoho static void
223 1.7 jruoho acpicpu_pstate_detach_evcnt(struct acpicpu_softc *sc)
224 1.7 jruoho {
225 1.7 jruoho struct acpicpu_pstate *ps;
226 1.7 jruoho uint32_t i;
227 1.7 jruoho
228 1.7 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
229 1.7 jruoho
230 1.7 jruoho ps = &sc->sc_pstate[i];
231 1.7 jruoho
232 1.7 jruoho if (ps->ps_freq != 0)
233 1.7 jruoho evcnt_detach(&ps->ps_evcnt);
234 1.7 jruoho }
235 1.7 jruoho }
236 1.7 jruoho
237 1.24 jruoho void
238 1.1 jruoho acpicpu_pstate_start(device_t self)
239 1.1 jruoho {
240 1.1 jruoho struct acpicpu_softc *sc = device_private(self);
241 1.25 jruoho struct acpicpu_pstate *ps;
242 1.25 jruoho uint32_t i;
243 1.24 jruoho int rv;
244 1.1 jruoho
245 1.24 jruoho rv = acpicpu_md_pstate_start();
246 1.24 jruoho
247 1.25 jruoho if (rv != 0)
248 1.25 jruoho goto fail;
249 1.25 jruoho
250 1.25 jruoho /*
251 1.27 jruoho * Initialize the state to P0.
252 1.25 jruoho */
253 1.25 jruoho for (i = 0, rv = ENXIO; i < sc->sc_pstate_count; i++) {
254 1.25 jruoho
255 1.25 jruoho ps = &sc->sc_pstate[i];
256 1.25 jruoho
257 1.25 jruoho if (ps->ps_freq != 0) {
258 1.25 jruoho sc->sc_cold = false;
259 1.25 jruoho rv = acpicpu_pstate_set(sc, ps->ps_freq);
260 1.25 jruoho break;
261 1.25 jruoho }
262 1.25 jruoho }
263 1.25 jruoho
264 1.25 jruoho if (rv != 0)
265 1.25 jruoho goto fail;
266 1.25 jruoho
267 1.25 jruoho return;
268 1.1 jruoho
269 1.25 jruoho fail:
270 1.24 jruoho sc->sc_flags &= ~ACPICPU_FLAG_P;
271 1.32 jruoho
272 1.32 jruoho if (rv == EEXIST) {
273 1.32 jruoho aprint_error_dev(self, "driver conflicts with existing one\n");
274 1.32 jruoho return;
275 1.32 jruoho }
276 1.32 jruoho
277 1.24 jruoho aprint_error_dev(self, "failed to start P-states (err %d)\n", rv);
278 1.1 jruoho }
279 1.1 jruoho
280 1.1 jruoho bool
281 1.1 jruoho acpicpu_pstate_suspend(device_t self)
282 1.1 jruoho {
283 1.25 jruoho struct acpicpu_softc *sc = device_private(self);
284 1.25 jruoho struct acpicpu_pstate *ps = NULL;
285 1.25 jruoho int32_t i;
286 1.25 jruoho
287 1.29 jruoho mutex_enter(&sc->sc_mtx);
288 1.28 jruoho acpicpu_pstate_reset(sc);
289 1.29 jruoho mutex_exit(&sc->sc_mtx);
290 1.28 jruoho
291 1.25 jruoho if (acpicpu_pstate_saved != 0)
292 1.25 jruoho return true;
293 1.25 jruoho
294 1.25 jruoho /*
295 1.25 jruoho * Following design notes for Windows, we set the highest
296 1.25 jruoho * P-state when entering any of the system sleep states.
297 1.25 jruoho * When resuming, the saved P-state will be restored.
298 1.25 jruoho *
299 1.25 jruoho * Microsoft Corporation: Windows Native Processor
300 1.25 jruoho * Performance Control. Version 1.1a, November, 2002.
301 1.25 jruoho */
302 1.25 jruoho for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
303 1.25 jruoho
304 1.25 jruoho if (sc->sc_pstate[i].ps_freq != 0) {
305 1.25 jruoho ps = &sc->sc_pstate[i];
306 1.25 jruoho break;
307 1.25 jruoho }
308 1.25 jruoho }
309 1.25 jruoho
310 1.25 jruoho if (__predict_false(ps == NULL))
311 1.25 jruoho return true;
312 1.25 jruoho
313 1.25 jruoho mutex_enter(&sc->sc_mtx);
314 1.25 jruoho acpicpu_pstate_saved = sc->sc_pstate_current;
315 1.25 jruoho mutex_exit(&sc->sc_mtx);
316 1.25 jruoho
317 1.25 jruoho if (acpicpu_pstate_saved == ps->ps_freq)
318 1.25 jruoho return true;
319 1.25 jruoho
320 1.25 jruoho (void)acpicpu_pstate_set(sc, ps->ps_freq);
321 1.1 jruoho
322 1.1 jruoho return true;
323 1.1 jruoho }
324 1.1 jruoho
325 1.1 jruoho bool
326 1.1 jruoho acpicpu_pstate_resume(device_t self)
327 1.1 jruoho {
328 1.25 jruoho struct acpicpu_softc *sc = device_private(self);
329 1.25 jruoho
330 1.25 jruoho if (acpicpu_pstate_saved != 0) {
331 1.25 jruoho (void)acpicpu_pstate_set(sc, acpicpu_pstate_saved);
332 1.25 jruoho acpicpu_pstate_saved = 0;
333 1.25 jruoho }
334 1.1 jruoho
335 1.1 jruoho return true;
336 1.1 jruoho }
337 1.1 jruoho
338 1.1 jruoho void
339 1.1 jruoho acpicpu_pstate_callback(void *aux)
340 1.1 jruoho {
341 1.1 jruoho struct acpicpu_softc *sc;
342 1.1 jruoho device_t self = aux;
343 1.1 jruoho uint32_t old, new;
344 1.1 jruoho
345 1.1 jruoho sc = device_private(self);
346 1.1 jruoho
347 1.1 jruoho mutex_enter(&sc->sc_mtx);
348 1.1 jruoho old = sc->sc_pstate_max;
349 1.1 jruoho acpicpu_pstate_change(sc);
350 1.1 jruoho new = sc->sc_pstate_max;
351 1.1 jruoho mutex_exit(&sc->sc_mtx);
352 1.1 jruoho
353 1.1 jruoho if (old != new) {
354 1.1 jruoho
355 1.14 jruoho aprint_debug_dev(sc->sc_dev, "maximum frequency "
356 1.14 jruoho "changed from P%u (%u MHz) to P%u (%u MHz)\n",
357 1.14 jruoho old, sc->sc_pstate[old].ps_freq, new,
358 1.14 jruoho sc->sc_pstate[sc->sc_pstate_max].ps_freq);
359 1.14 jruoho #if 0
360 1.1 jruoho /*
361 1.1 jruoho * If the maximum changed, proactively
362 1.1 jruoho * raise or lower the target frequency.
363 1.1 jruoho */
364 1.25 jruoho (void)acpicpu_pstate_set(sc, sc->sc_pstate[new].ps_freq);
365 1.1 jruoho
366 1.14 jruoho #endif
367 1.1 jruoho }
368 1.1 jruoho }
369 1.1 jruoho
370 1.1 jruoho ACPI_STATUS
371 1.1 jruoho acpicpu_pstate_pss(struct acpicpu_softc *sc)
372 1.1 jruoho {
373 1.1 jruoho struct acpicpu_pstate *ps;
374 1.1 jruoho ACPI_OBJECT *obj;
375 1.1 jruoho ACPI_BUFFER buf;
376 1.1 jruoho ACPI_STATUS rv;
377 1.1 jruoho uint32_t count;
378 1.1 jruoho uint32_t i, j;
379 1.1 jruoho
380 1.1 jruoho rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
381 1.1 jruoho
382 1.1 jruoho if (ACPI_FAILURE(rv))
383 1.1 jruoho return rv;
384 1.1 jruoho
385 1.1 jruoho obj = buf.Pointer;
386 1.1 jruoho
387 1.1 jruoho if (obj->Type != ACPI_TYPE_PACKAGE) {
388 1.1 jruoho rv = AE_TYPE;
389 1.1 jruoho goto out;
390 1.1 jruoho }
391 1.1 jruoho
392 1.1 jruoho sc->sc_pstate_count = obj->Package.Count;
393 1.1 jruoho
394 1.1 jruoho if (sc->sc_pstate_count == 0) {
395 1.1 jruoho rv = AE_NOT_EXIST;
396 1.1 jruoho goto out;
397 1.1 jruoho }
398 1.1 jruoho
399 1.9 jruoho if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
400 1.1 jruoho rv = AE_LIMIT;
401 1.1 jruoho goto out;
402 1.1 jruoho }
403 1.1 jruoho
404 1.1 jruoho sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
405 1.1 jruoho sizeof(struct acpicpu_pstate), KM_SLEEP);
406 1.1 jruoho
407 1.1 jruoho if (sc->sc_pstate == NULL) {
408 1.1 jruoho rv = AE_NO_MEMORY;
409 1.1 jruoho goto out;
410 1.1 jruoho }
411 1.1 jruoho
412 1.1 jruoho for (count = i = 0; i < sc->sc_pstate_count; i++) {
413 1.1 jruoho
414 1.1 jruoho ps = &sc->sc_pstate[i];
415 1.1 jruoho rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
416 1.1 jruoho
417 1.13 jruoho if (ACPI_FAILURE(rv)) {
418 1.13 jruoho ps->ps_freq = 0;
419 1.1 jruoho continue;
420 1.13 jruoho }
421 1.1 jruoho
422 1.1 jruoho for (j = 0; j < i; j++) {
423 1.1 jruoho
424 1.1 jruoho if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
425 1.1 jruoho ps->ps_freq = 0;
426 1.1 jruoho break;
427 1.1 jruoho }
428 1.1 jruoho }
429 1.1 jruoho
430 1.1 jruoho if (ps->ps_freq != 0)
431 1.1 jruoho count++;
432 1.1 jruoho }
433 1.1 jruoho
434 1.1 jruoho rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
435 1.1 jruoho
436 1.1 jruoho out:
437 1.1 jruoho if (buf.Pointer != NULL)
438 1.1 jruoho ACPI_FREE(buf.Pointer);
439 1.1 jruoho
440 1.1 jruoho return rv;
441 1.1 jruoho }
442 1.1 jruoho
443 1.1 jruoho static ACPI_STATUS
444 1.1 jruoho acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
445 1.1 jruoho {
446 1.1 jruoho ACPI_OBJECT *elm;
447 1.1 jruoho int i;
448 1.1 jruoho
449 1.1 jruoho if (obj->Type != ACPI_TYPE_PACKAGE)
450 1.1 jruoho return AE_TYPE;
451 1.1 jruoho
452 1.1 jruoho if (obj->Package.Count != 6)
453 1.1 jruoho return AE_BAD_DATA;
454 1.1 jruoho
455 1.1 jruoho elm = obj->Package.Elements;
456 1.1 jruoho
457 1.1 jruoho for (i = 0; i < 6; i++) {
458 1.1 jruoho
459 1.1 jruoho if (elm[i].Type != ACPI_TYPE_INTEGER)
460 1.1 jruoho return AE_TYPE;
461 1.1 jruoho
462 1.1 jruoho if (elm[i].Integer.Value > UINT32_MAX)
463 1.1 jruoho return AE_AML_NUMERIC_OVERFLOW;
464 1.1 jruoho }
465 1.1 jruoho
466 1.21 jruoho ps->ps_freq = elm[0].Integer.Value;
467 1.21 jruoho ps->ps_power = elm[1].Integer.Value;
468 1.21 jruoho ps->ps_latency = elm[2].Integer.Value;
469 1.21 jruoho ps->ps_latency_bm = elm[3].Integer.Value;
470 1.21 jruoho ps->ps_control = elm[4].Integer.Value;
471 1.21 jruoho ps->ps_status = elm[5].Integer.Value;
472 1.1 jruoho
473 1.13 jruoho if (ps->ps_freq == 0 || ps->ps_freq > 9999)
474 1.13 jruoho return AE_BAD_DECIMAL_CONSTANT;
475 1.13 jruoho
476 1.1 jruoho /*
477 1.1 jruoho * The latency is typically around 10 usec
478 1.1 jruoho * on Intel CPUs. Use that as the minimum.
479 1.1 jruoho */
480 1.1 jruoho if (ps->ps_latency < 10)
481 1.1 jruoho ps->ps_latency = 10;
482 1.1 jruoho
483 1.1 jruoho return AE_OK;
484 1.1 jruoho }
485 1.1 jruoho
486 1.21 jruoho static ACPI_STATUS
487 1.21 jruoho acpicpu_pstate_xpss(struct acpicpu_softc *sc)
488 1.21 jruoho {
489 1.21 jruoho static const size_t size = sizeof(struct acpicpu_pstate);
490 1.33 jmcneill struct acpicpu_pstate *ps, *pstate = NULL;
491 1.21 jruoho ACPI_OBJECT *obj;
492 1.21 jruoho ACPI_BUFFER buf;
493 1.21 jruoho ACPI_STATUS rv;
494 1.33 jmcneill uint32_t count, pstate_count;
495 1.21 jruoho uint32_t i, j;
496 1.21 jruoho
497 1.21 jruoho rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
498 1.21 jruoho
499 1.21 jruoho if (ACPI_FAILURE(rv))
500 1.21 jruoho return rv;
501 1.21 jruoho
502 1.21 jruoho obj = buf.Pointer;
503 1.21 jruoho
504 1.21 jruoho if (obj->Type != ACPI_TYPE_PACKAGE) {
505 1.21 jruoho rv = AE_TYPE;
506 1.21 jruoho goto out;
507 1.21 jruoho }
508 1.21 jruoho
509 1.33 jmcneill pstate_count = count = obj->Package.Count;
510 1.21 jruoho
511 1.21 jruoho if (count == 0) {
512 1.21 jruoho rv = AE_NOT_EXIST;
513 1.21 jruoho goto out;
514 1.21 jruoho }
515 1.21 jruoho
516 1.21 jruoho if (count > ACPICPU_P_STATE_MAX) {
517 1.21 jruoho rv = AE_LIMIT;
518 1.21 jruoho goto out;
519 1.21 jruoho }
520 1.21 jruoho
521 1.33 jmcneill pstate = kmem_zalloc(count * size, KM_SLEEP);
522 1.21 jruoho
523 1.33 jmcneill if (pstate == NULL) {
524 1.21 jruoho rv = AE_NO_MEMORY;
525 1.21 jruoho goto out;
526 1.21 jruoho }
527 1.21 jruoho
528 1.33 jmcneill for (count = i = 0; i < pstate_count; i++) {
529 1.21 jruoho
530 1.33 jmcneill ps = &pstate[i];
531 1.21 jruoho rv = acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
532 1.21 jruoho
533 1.21 jruoho if (ACPI_FAILURE(rv)) {
534 1.21 jruoho ps->ps_freq = 0;
535 1.21 jruoho continue;
536 1.21 jruoho }
537 1.21 jruoho
538 1.21 jruoho for (j = 0; j < i; j++) {
539 1.21 jruoho
540 1.33 jmcneill if (ps->ps_freq >= pstate[j].ps_freq) {
541 1.21 jruoho ps->ps_freq = 0;
542 1.21 jruoho break;
543 1.21 jruoho }
544 1.21 jruoho }
545 1.21 jruoho
546 1.21 jruoho if (ps->ps_freq != 0)
547 1.21 jruoho count++;
548 1.21 jruoho }
549 1.21 jruoho
550 1.33 jmcneill if (count > 0) {
551 1.33 jmcneill if (sc->sc_pstate != NULL)
552 1.33 jmcneill kmem_free(sc->sc_pstate, sc->sc_pstate_count * size);
553 1.33 jmcneill sc->sc_pstate = pstate;
554 1.33 jmcneill sc->sc_pstate_count = pstate_count;
555 1.33 jmcneill rv = AE_OK;
556 1.33 jmcneill } else {
557 1.33 jmcneill kmem_free(pstate, pstate_count * size);
558 1.33 jmcneill rv = AE_NOT_EXIST;
559 1.33 jmcneill }
560 1.21 jruoho
561 1.21 jruoho out:
562 1.21 jruoho if (buf.Pointer != NULL)
563 1.21 jruoho ACPI_FREE(buf.Pointer);
564 1.21 jruoho
565 1.21 jruoho return rv;
566 1.21 jruoho }
567 1.21 jruoho
568 1.21 jruoho static ACPI_STATUS
569 1.21 jruoho acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
570 1.21 jruoho {
571 1.21 jruoho ACPI_OBJECT *elm;
572 1.21 jruoho int i;
573 1.21 jruoho
574 1.21 jruoho if (obj->Type != ACPI_TYPE_PACKAGE)
575 1.21 jruoho return AE_TYPE;
576 1.21 jruoho
577 1.21 jruoho if (obj->Package.Count != 8)
578 1.21 jruoho return AE_BAD_DATA;
579 1.21 jruoho
580 1.21 jruoho elm = obj->Package.Elements;
581 1.21 jruoho
582 1.21 jruoho for (i = 0; i < 4; i++) {
583 1.21 jruoho
584 1.21 jruoho if (elm[i].Type != ACPI_TYPE_INTEGER)
585 1.21 jruoho return AE_TYPE;
586 1.21 jruoho
587 1.21 jruoho if (elm[i].Integer.Value > UINT32_MAX)
588 1.21 jruoho return AE_AML_NUMERIC_OVERFLOW;
589 1.21 jruoho }
590 1.21 jruoho
591 1.21 jruoho for (; i < 8; i++) {
592 1.21 jruoho
593 1.21 jruoho if (elm[i].Type != ACPI_TYPE_BUFFER)
594 1.21 jruoho return AE_TYPE;
595 1.21 jruoho
596 1.33 jmcneill if (elm[i].Buffer.Length != 8)
597 1.21 jruoho return AE_LIMIT;
598 1.21 jruoho }
599 1.21 jruoho
600 1.21 jruoho ps->ps_freq = elm[0].Integer.Value;
601 1.21 jruoho ps->ps_power = elm[1].Integer.Value;
602 1.21 jruoho ps->ps_latency = elm[2].Integer.Value;
603 1.21 jruoho ps->ps_latency_bm = elm[3].Integer.Value;
604 1.21 jruoho
605 1.21 jruoho if (ps->ps_freq == 0 || ps->ps_freq > 9999)
606 1.21 jruoho return AE_BAD_DECIMAL_CONSTANT;
607 1.21 jruoho
608 1.33 jmcneill ps->ps_control = ACPI_GET64(elm[4].Buffer.Pointer);
609 1.33 jmcneill ps->ps_status = ACPI_GET64(elm[5].Buffer.Pointer);
610 1.33 jmcneill ps->ps_control_mask = ACPI_GET64(elm[6].Buffer.Pointer);
611 1.33 jmcneill ps->ps_status_mask = ACPI_GET64(elm[7].Buffer.Pointer);
612 1.21 jruoho
613 1.21 jruoho /*
614 1.21 jruoho * The latency is often defined to be
615 1.21 jruoho * zero on AMD systems. Raise that to 1.
616 1.21 jruoho */
617 1.21 jruoho if (ps->ps_latency == 0)
618 1.21 jruoho ps->ps_latency = 1;
619 1.21 jruoho
620 1.21 jruoho ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
621 1.21 jruoho
622 1.21 jruoho return AE_OK;
623 1.21 jruoho }
624 1.21 jruoho
625 1.1 jruoho ACPI_STATUS
626 1.1 jruoho acpicpu_pstate_pct(struct acpicpu_softc *sc)
627 1.1 jruoho {
628 1.1 jruoho static const size_t size = sizeof(struct acpicpu_reg);
629 1.1 jruoho struct acpicpu_reg *reg[2];
630 1.21 jruoho struct acpicpu_pstate *ps;
631 1.1 jruoho ACPI_OBJECT *elm, *obj;
632 1.1 jruoho ACPI_BUFFER buf;
633 1.1 jruoho ACPI_STATUS rv;
634 1.1 jruoho uint8_t width;
635 1.21 jruoho uint32_t i;
636 1.1 jruoho
637 1.1 jruoho rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
638 1.1 jruoho
639 1.1 jruoho if (ACPI_FAILURE(rv))
640 1.1 jruoho return rv;
641 1.1 jruoho
642 1.1 jruoho obj = buf.Pointer;
643 1.1 jruoho
644 1.1 jruoho if (obj->Type != ACPI_TYPE_PACKAGE) {
645 1.1 jruoho rv = AE_TYPE;
646 1.1 jruoho goto out;
647 1.1 jruoho }
648 1.1 jruoho
649 1.1 jruoho if (obj->Package.Count != 2) {
650 1.1 jruoho rv = AE_LIMIT;
651 1.1 jruoho goto out;
652 1.1 jruoho }
653 1.1 jruoho
654 1.1 jruoho for (i = 0; i < 2; i++) {
655 1.1 jruoho
656 1.1 jruoho elm = &obj->Package.Elements[i];
657 1.1 jruoho
658 1.1 jruoho if (elm->Type != ACPI_TYPE_BUFFER) {
659 1.1 jruoho rv = AE_TYPE;
660 1.1 jruoho goto out;
661 1.1 jruoho }
662 1.1 jruoho
663 1.1 jruoho if (size > elm->Buffer.Length) {
664 1.1 jruoho rv = AE_AML_BAD_RESOURCE_LENGTH;
665 1.1 jruoho goto out;
666 1.1 jruoho }
667 1.1 jruoho
668 1.1 jruoho reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
669 1.1 jruoho
670 1.1 jruoho switch (reg[i]->reg_spaceid) {
671 1.1 jruoho
672 1.1 jruoho case ACPI_ADR_SPACE_SYSTEM_IO:
673 1.1 jruoho
674 1.1 jruoho if (reg[i]->reg_addr == 0) {
675 1.1 jruoho rv = AE_AML_ILLEGAL_ADDRESS;
676 1.1 jruoho goto out;
677 1.1 jruoho }
678 1.1 jruoho
679 1.1 jruoho width = reg[i]->reg_bitwidth;
680 1.1 jruoho
681 1.10 jruoho if (width + reg[i]->reg_bitoffset > 32) {
682 1.10 jruoho rv = AE_AML_BAD_RESOURCE_VALUE;
683 1.10 jruoho goto out;
684 1.10 jruoho }
685 1.10 jruoho
686 1.1 jruoho if (width != 8 && width != 16 && width != 32) {
687 1.4 jruoho rv = AE_AML_BAD_RESOURCE_VALUE;
688 1.1 jruoho goto out;
689 1.1 jruoho }
690 1.1 jruoho
691 1.1 jruoho break;
692 1.1 jruoho
693 1.1 jruoho case ACPI_ADR_SPACE_FIXED_HARDWARE:
694 1.1 jruoho
695 1.21 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
696 1.21 jruoho
697 1.21 jruoho if (reg[i]->reg_bitwidth != 64) {
698 1.21 jruoho rv = AE_AML_BAD_RESOURCE_VALUE;
699 1.21 jruoho goto out;
700 1.21 jruoho }
701 1.21 jruoho
702 1.21 jruoho if (reg[i]->reg_bitoffset != 0) {
703 1.21 jruoho rv = AE_AML_BAD_RESOURCE_VALUE;
704 1.21 jruoho goto out;
705 1.21 jruoho }
706 1.21 jruoho
707 1.21 jruoho break;
708 1.21 jruoho }
709 1.21 jruoho
710 1.1 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
711 1.4 jruoho rv = AE_SUPPORT;
712 1.1 jruoho goto out;
713 1.1 jruoho }
714 1.1 jruoho
715 1.1 jruoho break;
716 1.1 jruoho
717 1.1 jruoho default:
718 1.1 jruoho rv = AE_AML_INVALID_SPACE_ID;
719 1.1 jruoho goto out;
720 1.1 jruoho }
721 1.1 jruoho }
722 1.1 jruoho
723 1.1 jruoho if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
724 1.1 jruoho rv = AE_AML_INVALID_SPACE_ID;
725 1.1 jruoho goto out;
726 1.1 jruoho }
727 1.1 jruoho
728 1.15 jruoho (void)memcpy(&sc->sc_pstate_control, reg[0], size);
729 1.15 jruoho (void)memcpy(&sc->sc_pstate_status, reg[1], size);
730 1.1 jruoho
731 1.22 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
732 1.22 jruoho goto out;
733 1.22 jruoho
734 1.22 jruoho /*
735 1.22 jruoho * In XPSS the control address can not be zero,
736 1.26 jruoho * but the status address may be. In this case,
737 1.26 jruoho * comparable to T-states, we can ignore the status
738 1.22 jruoho * check during the P-state (FFH) transition.
739 1.22 jruoho */
740 1.22 jruoho if (sc->sc_pstate_control.reg_addr == 0) {
741 1.23 jmcneill rv = AE_AML_BAD_RESOURCE_LENGTH;
742 1.22 jruoho goto out;
743 1.22 jruoho }
744 1.22 jruoho
745 1.21 jruoho /*
746 1.21 jruoho * If XPSS is present, copy the MSR addresses
747 1.21 jruoho * to the P-state structures for convenience.
748 1.21 jruoho */
749 1.21 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
750 1.21 jruoho
751 1.21 jruoho ps = &sc->sc_pstate[i];
752 1.21 jruoho
753 1.21 jruoho if (ps->ps_freq == 0)
754 1.21 jruoho continue;
755 1.21 jruoho
756 1.21 jruoho ps->ps_status_addr = sc->sc_pstate_status.reg_addr;
757 1.21 jruoho ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
758 1.21 jruoho }
759 1.21 jruoho
760 1.1 jruoho out:
761 1.1 jruoho if (buf.Pointer != NULL)
762 1.1 jruoho ACPI_FREE(buf.Pointer);
763 1.1 jruoho
764 1.1 jruoho return rv;
765 1.1 jruoho }
766 1.1 jruoho
767 1.1 jruoho static int
768 1.1 jruoho acpicpu_pstate_max(struct acpicpu_softc *sc)
769 1.1 jruoho {
770 1.1 jruoho ACPI_INTEGER val;
771 1.1 jruoho ACPI_STATUS rv;
772 1.1 jruoho
773 1.1 jruoho /*
774 1.1 jruoho * Evaluate the currently highest P-state that can be used.
775 1.1 jruoho * If available, we can use either this state or any lower
776 1.1 jruoho * power (i.e. higher numbered) state from the _PSS object.
777 1.27 jruoho * Note that the return value must match the _OST parameter.
778 1.1 jruoho */
779 1.1 jruoho rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
780 1.1 jruoho
781 1.27 jruoho if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
782 1.27 jruoho
783 1.27 jruoho if (sc->sc_pstate[val].ps_freq != 0) {
784 1.27 jruoho sc->sc_pstate_max = val;
785 1.27 jruoho return 0;
786 1.27 jruoho }
787 1.27 jruoho }
788 1.27 jruoho
789 1.27 jruoho return 1;
790 1.27 jruoho }
791 1.27 jruoho
792 1.27 jruoho static int
793 1.27 jruoho acpicpu_pstate_min(struct acpicpu_softc *sc)
794 1.27 jruoho {
795 1.27 jruoho ACPI_INTEGER val;
796 1.27 jruoho ACPI_STATUS rv;
797 1.1 jruoho
798 1.27 jruoho /*
799 1.27 jruoho * The _PDL object defines the minimum when passive cooling
800 1.27 jruoho * is being performed. If available, we can use the returned
801 1.27 jruoho * state or any higher power (i.e. lower numbered) state.
802 1.27 jruoho */
803 1.27 jruoho rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
804 1.1 jruoho
805 1.27 jruoho if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
806 1.1 jruoho
807 1.27 jruoho if (sc->sc_pstate[val].ps_freq == 0)
808 1.27 jruoho return 1;
809 1.1 jruoho
810 1.27 jruoho if (val >= sc->sc_pstate_max) {
811 1.27 jruoho sc->sc_pstate_min = val;
812 1.27 jruoho return 0;
813 1.27 jruoho }
814 1.27 jruoho }
815 1.1 jruoho
816 1.27 jruoho return 1;
817 1.1 jruoho }
818 1.1 jruoho
819 1.1 jruoho static void
820 1.1 jruoho acpicpu_pstate_change(struct acpicpu_softc *sc)
821 1.1 jruoho {
822 1.27 jruoho static ACPI_STATUS rv = AE_OK;
823 1.1 jruoho ACPI_OBJECT_LIST arg;
824 1.1 jruoho ACPI_OBJECT obj[2];
825 1.1 jruoho
826 1.28 jruoho acpicpu_pstate_reset(sc);
827 1.27 jruoho
828 1.1 jruoho arg.Count = 2;
829 1.1 jruoho arg.Pointer = obj;
830 1.1 jruoho
831 1.1 jruoho obj[0].Type = ACPI_TYPE_INTEGER;
832 1.1 jruoho obj[1].Type = ACPI_TYPE_INTEGER;
833 1.1 jruoho
834 1.1 jruoho obj[0].Integer.Value = ACPICPU_P_NOTIFY;
835 1.1 jruoho obj[1].Integer.Value = acpicpu_pstate_max(sc);
836 1.1 jruoho
837 1.27 jruoho if (sc->sc_passive != false)
838 1.27 jruoho (void)acpicpu_pstate_min(sc);
839 1.27 jruoho
840 1.27 jruoho if (ACPI_FAILURE(rv))
841 1.27 jruoho return;
842 1.27 jruoho
843 1.27 jruoho rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
844 1.1 jruoho }
845 1.1 jruoho
846 1.1 jruoho static void
847 1.28 jruoho acpicpu_pstate_reset(struct acpicpu_softc *sc)
848 1.28 jruoho {
849 1.28 jruoho
850 1.28 jruoho sc->sc_pstate_max = 0;
851 1.28 jruoho sc->sc_pstate_min = sc->sc_pstate_count - 1;
852 1.28 jruoho
853 1.28 jruoho }
854 1.28 jruoho
855 1.28 jruoho static void
856 1.1 jruoho acpicpu_pstate_bios(void)
857 1.1 jruoho {
858 1.1 jruoho const uint8_t val = AcpiGbl_FADT.PstateControl;
859 1.1 jruoho const uint32_t addr = AcpiGbl_FADT.SmiCommand;
860 1.1 jruoho
861 1.19 jruoho if (addr == 0 || val == 0)
862 1.1 jruoho return;
863 1.1 jruoho
864 1.1 jruoho (void)AcpiOsWritePort(addr, val, 8);
865 1.1 jruoho }
866 1.1 jruoho
867 1.1 jruoho int
868 1.1 jruoho acpicpu_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
869 1.1 jruoho {
870 1.1 jruoho const uint8_t method = sc->sc_pstate_control.reg_spaceid;
871 1.1 jruoho struct acpicpu_pstate *ps = NULL;
872 1.1 jruoho uint32_t i, val = 0;
873 1.1 jruoho uint64_t addr;
874 1.1 jruoho uint8_t width;
875 1.1 jruoho int rv;
876 1.1 jruoho
877 1.11 jruoho if (sc->sc_cold != false) {
878 1.11 jruoho rv = EBUSY;
879 1.11 jruoho goto fail;
880 1.11 jruoho }
881 1.11 jruoho
882 1.1 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P) == 0) {
883 1.1 jruoho rv = ENODEV;
884 1.1 jruoho goto fail;
885 1.1 jruoho }
886 1.1 jruoho
887 1.14 jruoho mutex_enter(&sc->sc_mtx);
888 1.14 jruoho
889 1.1 jruoho if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
890 1.1 jruoho *freq = sc->sc_pstate_current;
891 1.14 jruoho mutex_exit(&sc->sc_mtx);
892 1.1 jruoho return 0;
893 1.1 jruoho }
894 1.1 jruoho
895 1.14 jruoho mutex_exit(&sc->sc_mtx);
896 1.14 jruoho
897 1.1 jruoho switch (method) {
898 1.1 jruoho
899 1.1 jruoho case ACPI_ADR_SPACE_FIXED_HARDWARE:
900 1.1 jruoho
901 1.1 jruoho rv = acpicpu_md_pstate_get(sc, freq);
902 1.1 jruoho
903 1.1 jruoho if (rv != 0)
904 1.1 jruoho goto fail;
905 1.1 jruoho
906 1.1 jruoho break;
907 1.1 jruoho
908 1.1 jruoho case ACPI_ADR_SPACE_SYSTEM_IO:
909 1.1 jruoho
910 1.1 jruoho addr = sc->sc_pstate_status.reg_addr;
911 1.1 jruoho width = sc->sc_pstate_status.reg_bitwidth;
912 1.1 jruoho
913 1.1 jruoho (void)AcpiOsReadPort(addr, &val, width);
914 1.1 jruoho
915 1.1 jruoho if (val == 0) {
916 1.1 jruoho rv = EIO;
917 1.1 jruoho goto fail;
918 1.1 jruoho }
919 1.1 jruoho
920 1.5 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
921 1.1 jruoho
922 1.1 jruoho if (sc->sc_pstate[i].ps_freq == 0)
923 1.1 jruoho continue;
924 1.1 jruoho
925 1.1 jruoho if (val == sc->sc_pstate[i].ps_status) {
926 1.1 jruoho ps = &sc->sc_pstate[i];
927 1.1 jruoho break;
928 1.1 jruoho }
929 1.1 jruoho }
930 1.1 jruoho
931 1.15 jruoho if (__predict_false(ps == NULL)) {
932 1.1 jruoho rv = EIO;
933 1.1 jruoho goto fail;
934 1.1 jruoho }
935 1.1 jruoho
936 1.1 jruoho *freq = ps->ps_freq;
937 1.1 jruoho break;
938 1.1 jruoho
939 1.1 jruoho default:
940 1.1 jruoho rv = ENOTTY;
941 1.1 jruoho goto fail;
942 1.1 jruoho }
943 1.1 jruoho
944 1.14 jruoho mutex_enter(&sc->sc_mtx);
945 1.1 jruoho sc->sc_pstate_current = *freq;
946 1.14 jruoho mutex_exit(&sc->sc_mtx);
947 1.1 jruoho
948 1.1 jruoho return 0;
949 1.1 jruoho
950 1.1 jruoho fail:
951 1.1 jruoho aprint_error_dev(sc->sc_dev, "failed "
952 1.1 jruoho "to get frequency (err %d)\n", rv);
953 1.1 jruoho
954 1.14 jruoho mutex_enter(&sc->sc_mtx);
955 1.1 jruoho *freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
956 1.14 jruoho mutex_exit(&sc->sc_mtx);
957 1.1 jruoho
958 1.1 jruoho return rv;
959 1.1 jruoho }
960 1.1 jruoho
961 1.1 jruoho int
962 1.1 jruoho acpicpu_pstate_set(struct acpicpu_softc *sc, uint32_t freq)
963 1.1 jruoho {
964 1.1 jruoho const uint8_t method = sc->sc_pstate_control.reg_spaceid;
965 1.1 jruoho struct acpicpu_pstate *ps = NULL;
966 1.1 jruoho uint32_t i, val;
967 1.1 jruoho uint64_t addr;
968 1.1 jruoho uint8_t width;
969 1.1 jruoho int rv;
970 1.1 jruoho
971 1.11 jruoho if (sc->sc_cold != false) {
972 1.11 jruoho rv = EBUSY;
973 1.11 jruoho goto fail;
974 1.11 jruoho }
975 1.11 jruoho
976 1.1 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P) == 0) {
977 1.1 jruoho rv = ENODEV;
978 1.1 jruoho goto fail;
979 1.1 jruoho }
980 1.1 jruoho
981 1.1 jruoho mutex_enter(&sc->sc_mtx);
982 1.1 jruoho
983 1.31 jruoho if (sc->sc_pstate_current == freq) {
984 1.31 jruoho mutex_exit(&sc->sc_mtx);
985 1.31 jruoho return 0;
986 1.31 jruoho }
987 1.31 jruoho
988 1.27 jruoho for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
989 1.1 jruoho
990 1.1 jruoho if (sc->sc_pstate[i].ps_freq == 0)
991 1.1 jruoho continue;
992 1.1 jruoho
993 1.1 jruoho if (sc->sc_pstate[i].ps_freq == freq) {
994 1.1 jruoho ps = &sc->sc_pstate[i];
995 1.1 jruoho break;
996 1.1 jruoho }
997 1.1 jruoho }
998 1.1 jruoho
999 1.1 jruoho mutex_exit(&sc->sc_mtx);
1000 1.1 jruoho
1001 1.15 jruoho if (__predict_false(ps == NULL)) {
1002 1.1 jruoho rv = EINVAL;
1003 1.1 jruoho goto fail;
1004 1.1 jruoho }
1005 1.1 jruoho
1006 1.1 jruoho switch (method) {
1007 1.1 jruoho
1008 1.1 jruoho case ACPI_ADR_SPACE_FIXED_HARDWARE:
1009 1.1 jruoho
1010 1.1 jruoho rv = acpicpu_md_pstate_set(ps);
1011 1.1 jruoho
1012 1.1 jruoho if (rv != 0)
1013 1.1 jruoho goto fail;
1014 1.1 jruoho
1015 1.1 jruoho break;
1016 1.1 jruoho
1017 1.1 jruoho case ACPI_ADR_SPACE_SYSTEM_IO:
1018 1.1 jruoho
1019 1.1 jruoho addr = sc->sc_pstate_control.reg_addr;
1020 1.1 jruoho width = sc->sc_pstate_control.reg_bitwidth;
1021 1.1 jruoho
1022 1.1 jruoho (void)AcpiOsWritePort(addr, ps->ps_control, width);
1023 1.1 jruoho
1024 1.1 jruoho addr = sc->sc_pstate_status.reg_addr;
1025 1.1 jruoho width = sc->sc_pstate_status.reg_bitwidth;
1026 1.1 jruoho
1027 1.1 jruoho /*
1028 1.1 jruoho * Some systems take longer to respond
1029 1.1 jruoho * than the reported worst-case latency.
1030 1.1 jruoho */
1031 1.1 jruoho for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
1032 1.1 jruoho
1033 1.1 jruoho (void)AcpiOsReadPort(addr, &val, width);
1034 1.1 jruoho
1035 1.1 jruoho if (val == ps->ps_status)
1036 1.1 jruoho break;
1037 1.1 jruoho
1038 1.1 jruoho DELAY(ps->ps_latency);
1039 1.1 jruoho }
1040 1.1 jruoho
1041 1.1 jruoho if (i == ACPICPU_P_STATE_RETRY) {
1042 1.1 jruoho rv = EAGAIN;
1043 1.1 jruoho goto fail;
1044 1.1 jruoho }
1045 1.1 jruoho
1046 1.1 jruoho break;
1047 1.1 jruoho
1048 1.1 jruoho default:
1049 1.1 jruoho rv = ENOTTY;
1050 1.1 jruoho goto fail;
1051 1.1 jruoho }
1052 1.1 jruoho
1053 1.16 jruoho mutex_enter(&sc->sc_mtx);
1054 1.7 jruoho ps->ps_evcnt.ev_count++;
1055 1.1 jruoho sc->sc_pstate_current = freq;
1056 1.14 jruoho mutex_exit(&sc->sc_mtx);
1057 1.1 jruoho
1058 1.1 jruoho return 0;
1059 1.1 jruoho
1060 1.1 jruoho fail:
1061 1.1 jruoho aprint_error_dev(sc->sc_dev, "failed to set "
1062 1.1 jruoho "frequency to %u (err %d)\n", freq, rv);
1063 1.1 jruoho
1064 1.14 jruoho mutex_enter(&sc->sc_mtx);
1065 1.1 jruoho sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
1066 1.14 jruoho mutex_exit(&sc->sc_mtx);
1067 1.1 jruoho
1068 1.1 jruoho return rv;
1069 1.1 jruoho }
1070