acpi_cpu_pstate.c revision 1.39 1 1.39 jruoho /* $NetBSD: acpi_cpu_pstate.c,v 1.39 2011/02/25 09:16:00 jruoho Exp $ */
2 1.1 jruoho
3 1.1 jruoho /*-
4 1.39 jruoho * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 1.1 jruoho * All rights reserved.
6 1.1 jruoho *
7 1.1 jruoho * Redistribution and use in source and binary forms, with or without
8 1.1 jruoho * modification, are permitted provided that the following conditions
9 1.1 jruoho * are met:
10 1.1 jruoho *
11 1.1 jruoho * 1. Redistributions of source code must retain the above copyright
12 1.1 jruoho * notice, this list of conditions and the following disclaimer.
13 1.1 jruoho * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 jruoho * notice, this list of conditions and the following disclaimer in the
15 1.1 jruoho * documentation and/or other materials provided with the distribution.
16 1.1 jruoho *
17 1.1 jruoho * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 1.1 jruoho * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 jruoho * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 1.1 jruoho * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 1.1 jruoho * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 1.1 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 1.1 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 1.1 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 1.1 jruoho * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 1.1 jruoho * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 1.1 jruoho * SUCH DAMAGE.
28 1.1 jruoho */
29 1.1 jruoho #include <sys/cdefs.h>
30 1.39 jruoho __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.39 2011/02/25 09:16:00 jruoho Exp $");
31 1.1 jruoho
32 1.1 jruoho #include <sys/param.h>
33 1.7 jruoho #include <sys/evcnt.h>
34 1.1 jruoho #include <sys/kmem.h>
35 1.1 jruoho #include <sys/once.h>
36 1.1 jruoho
37 1.1 jruoho #include <dev/acpi/acpireg.h>
38 1.1 jruoho #include <dev/acpi/acpivar.h>
39 1.1 jruoho #include <dev/acpi/acpi_cpu.h>
40 1.1 jruoho
41 1.1 jruoho #define _COMPONENT ACPI_BUS_COMPONENT
42 1.1 jruoho ACPI_MODULE_NAME ("acpi_cpu_pstate")
43 1.1 jruoho
44 1.1 jruoho static void acpicpu_pstate_attach_print(struct acpicpu_softc *);
45 1.7 jruoho static void acpicpu_pstate_attach_evcnt(struct acpicpu_softc *);
46 1.7 jruoho static void acpicpu_pstate_detach_evcnt(struct acpicpu_softc *);
47 1.21 jruoho static ACPI_STATUS acpicpu_pstate_pss(struct acpicpu_softc *);
48 1.1 jruoho static ACPI_STATUS acpicpu_pstate_pss_add(struct acpicpu_pstate *,
49 1.1 jruoho ACPI_OBJECT *);
50 1.21 jruoho static ACPI_STATUS acpicpu_pstate_xpss(struct acpicpu_softc *);
51 1.21 jruoho static ACPI_STATUS acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
52 1.21 jruoho ACPI_OBJECT *);
53 1.1 jruoho static ACPI_STATUS acpicpu_pstate_pct(struct acpicpu_softc *);
54 1.1 jruoho static int acpicpu_pstate_max(struct acpicpu_softc *);
55 1.27 jruoho static int acpicpu_pstate_min(struct acpicpu_softc *);
56 1.1 jruoho static void acpicpu_pstate_change(struct acpicpu_softc *);
57 1.28 jruoho static void acpicpu_pstate_reset(struct acpicpu_softc *);
58 1.1 jruoho static void acpicpu_pstate_bios(void);
59 1.1 jruoho
60 1.29 jruoho static uint32_t acpicpu_pstate_saved = 0;
61 1.25 jruoho
62 1.1 jruoho void
63 1.1 jruoho acpicpu_pstate_attach(device_t self)
64 1.1 jruoho {
65 1.1 jruoho struct acpicpu_softc *sc = device_private(self);
66 1.3 jruoho const char *str;
67 1.27 jruoho ACPI_HANDLE tmp;
68 1.1 jruoho ACPI_STATUS rv;
69 1.1 jruoho
70 1.1 jruoho rv = acpicpu_pstate_pss(sc);
71 1.1 jruoho
72 1.3 jruoho if (ACPI_FAILURE(rv)) {
73 1.3 jruoho str = "_PSS";
74 1.3 jruoho goto fail;
75 1.3 jruoho }
76 1.1 jruoho
77 1.21 jruoho /*
78 1.37 jruoho * Append additional information from the extended _PSS,
79 1.37 jruoho * if available. Note that XPSS can not be used on Intel
80 1.37 jruoho * systems that use either _PDC or _OSC. From the XPSS
81 1.37 jruoho * method specification:
82 1.37 jruoho *
83 1.37 jruoho * "The platform must not require the use of the
84 1.37 jruoho * optional _PDC or _OSC methods to coordinate
85 1.37 jruoho * between the operating system and firmware for
86 1.37 jruoho * the purposes of enabling specific processor
87 1.37 jruoho * power management features or implementations."
88 1.21 jruoho */
89 1.21 jruoho if (sc->sc_cap == 0) {
90 1.34 jruoho
91 1.21 jruoho rv = acpicpu_pstate_xpss(sc);
92 1.21 jruoho
93 1.21 jruoho if (ACPI_SUCCESS(rv))
94 1.21 jruoho sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
95 1.21 jruoho }
96 1.21 jruoho
97 1.1 jruoho rv = acpicpu_pstate_pct(sc);
98 1.1 jruoho
99 1.3 jruoho if (ACPI_FAILURE(rv)) {
100 1.3 jruoho str = "_PCT";
101 1.3 jruoho goto fail;
102 1.3 jruoho }
103 1.1 jruoho
104 1.24 jruoho /*
105 1.24 jruoho * The ACPI 3.0 and 4.0 specifications mandate three
106 1.24 jruoho * objects for P-states: _PSS, _PCT, and _PPC. A less
107 1.24 jruoho * strict wording is however used in the earlier 2.0
108 1.24 jruoho * standard, and some systems conforming to ACPI 2.0
109 1.24 jruoho * do not have _PPC, the method for dynamic maximum.
110 1.24 jruoho */
111 1.27 jruoho rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
112 1.27 jruoho
113 1.27 jruoho if (ACPI_FAILURE(rv))
114 1.27 jruoho aprint_debug_dev(self, "_PPC missing\n");
115 1.27 jruoho
116 1.30 jruoho /*
117 1.30 jruoho * Employ the XPSS structure by filling
118 1.30 jruoho * it with MD information required for FFH.
119 1.30 jruoho */
120 1.30 jruoho rv = acpicpu_md_pstate_pss(sc);
121 1.30 jruoho
122 1.30 jruoho if (rv != 0) {
123 1.30 jruoho rv = AE_SUPPORT;
124 1.30 jruoho goto fail;
125 1.30 jruoho }
126 1.30 jruoho
127 1.1 jruoho sc->sc_flags |= ACPICPU_FLAG_P;
128 1.1 jruoho
129 1.1 jruoho acpicpu_pstate_bios();
130 1.28 jruoho acpicpu_pstate_reset(sc);
131 1.7 jruoho acpicpu_pstate_attach_evcnt(sc);
132 1.1 jruoho acpicpu_pstate_attach_print(sc);
133 1.3 jruoho
134 1.3 jruoho return;
135 1.3 jruoho
136 1.3 jruoho fail:
137 1.15 jruoho switch (rv) {
138 1.15 jruoho
139 1.15 jruoho case AE_NOT_FOUND:
140 1.15 jruoho return;
141 1.15 jruoho
142 1.15 jruoho case AE_SUPPORT:
143 1.37 jruoho aprint_verbose_dev(self, "P-states not supported\n");
144 1.15 jruoho return;
145 1.15 jruoho
146 1.15 jruoho default:
147 1.37 jruoho aprint_error_dev(self, "failed to evaluate "
148 1.15 jruoho "%s: %s\n", str, AcpiFormatException(rv));
149 1.15 jruoho }
150 1.1 jruoho }
151 1.1 jruoho
152 1.1 jruoho static void
153 1.1 jruoho acpicpu_pstate_attach_print(struct acpicpu_softc *sc)
154 1.1 jruoho {
155 1.1 jruoho const uint8_t method = sc->sc_pstate_control.reg_spaceid;
156 1.1 jruoho struct acpicpu_pstate *ps;
157 1.12 jruoho static bool once = false;
158 1.1 jruoho const char *str;
159 1.1 jruoho uint32_t i;
160 1.1 jruoho
161 1.12 jruoho if (once != false)
162 1.12 jruoho return;
163 1.12 jruoho
164 1.8 jruoho str = (method != ACPI_ADR_SPACE_SYSTEM_IO) ? "FFH" : "I/O";
165 1.1 jruoho
166 1.1 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
167 1.1 jruoho
168 1.1 jruoho ps = &sc->sc_pstate[i];
169 1.1 jruoho
170 1.1 jruoho if (ps->ps_freq == 0)
171 1.1 jruoho continue;
172 1.1 jruoho
173 1.37 jruoho aprint_verbose_dev(sc->sc_dev, "P%d: %3s, "
174 1.15 jruoho "lat %3u us, pow %5u mW, %4u MHz\n", i, str,
175 1.15 jruoho ps->ps_latency, ps->ps_power, ps->ps_freq);
176 1.1 jruoho }
177 1.12 jruoho
178 1.12 jruoho once = true;
179 1.1 jruoho }
180 1.1 jruoho
181 1.7 jruoho static void
182 1.7 jruoho acpicpu_pstate_attach_evcnt(struct acpicpu_softc *sc)
183 1.7 jruoho {
184 1.7 jruoho struct acpicpu_pstate *ps;
185 1.7 jruoho uint32_t i;
186 1.7 jruoho
187 1.7 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
188 1.7 jruoho
189 1.7 jruoho ps = &sc->sc_pstate[i];
190 1.7 jruoho
191 1.7 jruoho if (ps->ps_freq == 0)
192 1.7 jruoho continue;
193 1.7 jruoho
194 1.7 jruoho (void)snprintf(ps->ps_name, sizeof(ps->ps_name),
195 1.7 jruoho "P%u (%u MHz)", i, ps->ps_freq);
196 1.7 jruoho
197 1.7 jruoho evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
198 1.7 jruoho NULL, device_xname(sc->sc_dev), ps->ps_name);
199 1.7 jruoho }
200 1.7 jruoho }
201 1.7 jruoho
202 1.1 jruoho int
203 1.1 jruoho acpicpu_pstate_detach(device_t self)
204 1.1 jruoho {
205 1.1 jruoho struct acpicpu_softc *sc = device_private(self);
206 1.1 jruoho static ONCE_DECL(once_detach);
207 1.1 jruoho size_t size;
208 1.1 jruoho int rv;
209 1.1 jruoho
210 1.1 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
211 1.1 jruoho return 0;
212 1.1 jruoho
213 1.1 jruoho rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
214 1.1 jruoho
215 1.1 jruoho if (rv != 0)
216 1.1 jruoho return rv;
217 1.1 jruoho
218 1.1 jruoho size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
219 1.1 jruoho
220 1.1 jruoho if (sc->sc_pstate != NULL)
221 1.1 jruoho kmem_free(sc->sc_pstate, size);
222 1.1 jruoho
223 1.1 jruoho sc->sc_flags &= ~ACPICPU_FLAG_P;
224 1.7 jruoho acpicpu_pstate_detach_evcnt(sc);
225 1.1 jruoho
226 1.1 jruoho return 0;
227 1.1 jruoho }
228 1.1 jruoho
229 1.7 jruoho static void
230 1.7 jruoho acpicpu_pstate_detach_evcnt(struct acpicpu_softc *sc)
231 1.7 jruoho {
232 1.7 jruoho struct acpicpu_pstate *ps;
233 1.7 jruoho uint32_t i;
234 1.7 jruoho
235 1.7 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
236 1.7 jruoho
237 1.7 jruoho ps = &sc->sc_pstate[i];
238 1.7 jruoho
239 1.7 jruoho if (ps->ps_freq != 0)
240 1.7 jruoho evcnt_detach(&ps->ps_evcnt);
241 1.7 jruoho }
242 1.7 jruoho }
243 1.7 jruoho
244 1.24 jruoho void
245 1.1 jruoho acpicpu_pstate_start(device_t self)
246 1.1 jruoho {
247 1.1 jruoho struct acpicpu_softc *sc = device_private(self);
248 1.25 jruoho struct acpicpu_pstate *ps;
249 1.25 jruoho uint32_t i;
250 1.24 jruoho int rv;
251 1.1 jruoho
252 1.39 jruoho rv = acpicpu_md_pstate_start(sc);
253 1.24 jruoho
254 1.25 jruoho if (rv != 0)
255 1.25 jruoho goto fail;
256 1.25 jruoho
257 1.25 jruoho /*
258 1.27 jruoho * Initialize the state to P0.
259 1.25 jruoho */
260 1.25 jruoho for (i = 0, rv = ENXIO; i < sc->sc_pstate_count; i++) {
261 1.25 jruoho
262 1.25 jruoho ps = &sc->sc_pstate[i];
263 1.25 jruoho
264 1.25 jruoho if (ps->ps_freq != 0) {
265 1.25 jruoho sc->sc_cold = false;
266 1.25 jruoho rv = acpicpu_pstate_set(sc, ps->ps_freq);
267 1.25 jruoho break;
268 1.25 jruoho }
269 1.25 jruoho }
270 1.25 jruoho
271 1.25 jruoho if (rv != 0)
272 1.25 jruoho goto fail;
273 1.25 jruoho
274 1.25 jruoho return;
275 1.1 jruoho
276 1.25 jruoho fail:
277 1.24 jruoho sc->sc_flags &= ~ACPICPU_FLAG_P;
278 1.32 jruoho
279 1.32 jruoho if (rv == EEXIST) {
280 1.32 jruoho aprint_error_dev(self, "driver conflicts with existing one\n");
281 1.32 jruoho return;
282 1.32 jruoho }
283 1.32 jruoho
284 1.24 jruoho aprint_error_dev(self, "failed to start P-states (err %d)\n", rv);
285 1.1 jruoho }
286 1.1 jruoho
287 1.1 jruoho bool
288 1.1 jruoho acpicpu_pstate_suspend(device_t self)
289 1.1 jruoho {
290 1.25 jruoho struct acpicpu_softc *sc = device_private(self);
291 1.25 jruoho struct acpicpu_pstate *ps = NULL;
292 1.25 jruoho int32_t i;
293 1.25 jruoho
294 1.29 jruoho mutex_enter(&sc->sc_mtx);
295 1.28 jruoho acpicpu_pstate_reset(sc);
296 1.29 jruoho mutex_exit(&sc->sc_mtx);
297 1.28 jruoho
298 1.25 jruoho if (acpicpu_pstate_saved != 0)
299 1.25 jruoho return true;
300 1.25 jruoho
301 1.25 jruoho /*
302 1.25 jruoho * Following design notes for Windows, we set the highest
303 1.25 jruoho * P-state when entering any of the system sleep states.
304 1.25 jruoho * When resuming, the saved P-state will be restored.
305 1.25 jruoho *
306 1.25 jruoho * Microsoft Corporation: Windows Native Processor
307 1.25 jruoho * Performance Control. Version 1.1a, November, 2002.
308 1.25 jruoho */
309 1.25 jruoho for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
310 1.25 jruoho
311 1.25 jruoho if (sc->sc_pstate[i].ps_freq != 0) {
312 1.25 jruoho ps = &sc->sc_pstate[i];
313 1.25 jruoho break;
314 1.25 jruoho }
315 1.25 jruoho }
316 1.25 jruoho
317 1.25 jruoho if (__predict_false(ps == NULL))
318 1.25 jruoho return true;
319 1.25 jruoho
320 1.25 jruoho mutex_enter(&sc->sc_mtx);
321 1.25 jruoho acpicpu_pstate_saved = sc->sc_pstate_current;
322 1.25 jruoho mutex_exit(&sc->sc_mtx);
323 1.25 jruoho
324 1.25 jruoho if (acpicpu_pstate_saved == ps->ps_freq)
325 1.25 jruoho return true;
326 1.25 jruoho
327 1.25 jruoho (void)acpicpu_pstate_set(sc, ps->ps_freq);
328 1.1 jruoho
329 1.1 jruoho return true;
330 1.1 jruoho }
331 1.1 jruoho
332 1.1 jruoho bool
333 1.1 jruoho acpicpu_pstate_resume(device_t self)
334 1.1 jruoho {
335 1.25 jruoho struct acpicpu_softc *sc = device_private(self);
336 1.25 jruoho
337 1.25 jruoho if (acpicpu_pstate_saved != 0) {
338 1.25 jruoho (void)acpicpu_pstate_set(sc, acpicpu_pstate_saved);
339 1.25 jruoho acpicpu_pstate_saved = 0;
340 1.25 jruoho }
341 1.1 jruoho
342 1.1 jruoho return true;
343 1.1 jruoho }
344 1.1 jruoho
345 1.1 jruoho void
346 1.1 jruoho acpicpu_pstate_callback(void *aux)
347 1.1 jruoho {
348 1.1 jruoho struct acpicpu_softc *sc;
349 1.1 jruoho device_t self = aux;
350 1.1 jruoho uint32_t old, new;
351 1.1 jruoho
352 1.1 jruoho sc = device_private(self);
353 1.1 jruoho
354 1.1 jruoho mutex_enter(&sc->sc_mtx);
355 1.36 jruoho
356 1.1 jruoho old = sc->sc_pstate_max;
357 1.1 jruoho acpicpu_pstate_change(sc);
358 1.1 jruoho new = sc->sc_pstate_max;
359 1.36 jruoho
360 1.36 jruoho if (old == new) {
361 1.36 jruoho mutex_exit(&sc->sc_mtx);
362 1.36 jruoho return;
363 1.36 jruoho }
364 1.36 jruoho
365 1.1 jruoho mutex_exit(&sc->sc_mtx);
366 1.1 jruoho
367 1.36 jruoho ACPI_DEBUG_PRINT((ACPI_DB_INFO, "maximum frequency "
368 1.36 jruoho "changed from P%u (%u MHz) to P%u (%u MHz)\n",
369 1.36 jruoho old, sc->sc_pstate[old].ps_freq, new,
370 1.36 jruoho sc->sc_pstate[sc->sc_pstate_max].ps_freq));
371 1.1 jruoho
372 1.36 jruoho (void)acpicpu_pstate_set(sc, sc->sc_pstate[new].ps_freq);
373 1.1 jruoho }
374 1.1 jruoho
375 1.1 jruoho ACPI_STATUS
376 1.1 jruoho acpicpu_pstate_pss(struct acpicpu_softc *sc)
377 1.1 jruoho {
378 1.1 jruoho struct acpicpu_pstate *ps;
379 1.1 jruoho ACPI_OBJECT *obj;
380 1.1 jruoho ACPI_BUFFER buf;
381 1.1 jruoho ACPI_STATUS rv;
382 1.1 jruoho uint32_t count;
383 1.1 jruoho uint32_t i, j;
384 1.1 jruoho
385 1.1 jruoho rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
386 1.1 jruoho
387 1.1 jruoho if (ACPI_FAILURE(rv))
388 1.1 jruoho return rv;
389 1.1 jruoho
390 1.1 jruoho obj = buf.Pointer;
391 1.1 jruoho
392 1.1 jruoho if (obj->Type != ACPI_TYPE_PACKAGE) {
393 1.1 jruoho rv = AE_TYPE;
394 1.1 jruoho goto out;
395 1.1 jruoho }
396 1.1 jruoho
397 1.1 jruoho sc->sc_pstate_count = obj->Package.Count;
398 1.1 jruoho
399 1.1 jruoho if (sc->sc_pstate_count == 0) {
400 1.1 jruoho rv = AE_NOT_EXIST;
401 1.1 jruoho goto out;
402 1.1 jruoho }
403 1.1 jruoho
404 1.9 jruoho if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
405 1.1 jruoho rv = AE_LIMIT;
406 1.1 jruoho goto out;
407 1.1 jruoho }
408 1.1 jruoho
409 1.1 jruoho sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
410 1.1 jruoho sizeof(struct acpicpu_pstate), KM_SLEEP);
411 1.1 jruoho
412 1.1 jruoho if (sc->sc_pstate == NULL) {
413 1.1 jruoho rv = AE_NO_MEMORY;
414 1.1 jruoho goto out;
415 1.1 jruoho }
416 1.1 jruoho
417 1.1 jruoho for (count = i = 0; i < sc->sc_pstate_count; i++) {
418 1.1 jruoho
419 1.1 jruoho ps = &sc->sc_pstate[i];
420 1.1 jruoho rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
421 1.1 jruoho
422 1.13 jruoho if (ACPI_FAILURE(rv)) {
423 1.37 jruoho aprint_error_dev(sc->sc_dev, "failed to add "
424 1.37 jruoho "P-state: %s\n", AcpiFormatException(rv));
425 1.13 jruoho ps->ps_freq = 0;
426 1.1 jruoho continue;
427 1.13 jruoho }
428 1.1 jruoho
429 1.1 jruoho for (j = 0; j < i; j++) {
430 1.1 jruoho
431 1.1 jruoho if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
432 1.1 jruoho ps->ps_freq = 0;
433 1.1 jruoho break;
434 1.1 jruoho }
435 1.1 jruoho }
436 1.1 jruoho
437 1.1 jruoho if (ps->ps_freq != 0)
438 1.1 jruoho count++;
439 1.1 jruoho }
440 1.1 jruoho
441 1.1 jruoho rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
442 1.1 jruoho
443 1.1 jruoho out:
444 1.1 jruoho if (buf.Pointer != NULL)
445 1.1 jruoho ACPI_FREE(buf.Pointer);
446 1.1 jruoho
447 1.1 jruoho return rv;
448 1.1 jruoho }
449 1.1 jruoho
450 1.1 jruoho static ACPI_STATUS
451 1.1 jruoho acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
452 1.1 jruoho {
453 1.1 jruoho ACPI_OBJECT *elm;
454 1.1 jruoho int i;
455 1.1 jruoho
456 1.1 jruoho if (obj->Type != ACPI_TYPE_PACKAGE)
457 1.1 jruoho return AE_TYPE;
458 1.1 jruoho
459 1.1 jruoho if (obj->Package.Count != 6)
460 1.1 jruoho return AE_BAD_DATA;
461 1.1 jruoho
462 1.1 jruoho elm = obj->Package.Elements;
463 1.1 jruoho
464 1.1 jruoho for (i = 0; i < 6; i++) {
465 1.1 jruoho
466 1.1 jruoho if (elm[i].Type != ACPI_TYPE_INTEGER)
467 1.1 jruoho return AE_TYPE;
468 1.1 jruoho
469 1.1 jruoho if (elm[i].Integer.Value > UINT32_MAX)
470 1.1 jruoho return AE_AML_NUMERIC_OVERFLOW;
471 1.1 jruoho }
472 1.1 jruoho
473 1.21 jruoho ps->ps_freq = elm[0].Integer.Value;
474 1.21 jruoho ps->ps_power = elm[1].Integer.Value;
475 1.21 jruoho ps->ps_latency = elm[2].Integer.Value;
476 1.21 jruoho ps->ps_latency_bm = elm[3].Integer.Value;
477 1.21 jruoho ps->ps_control = elm[4].Integer.Value;
478 1.21 jruoho ps->ps_status = elm[5].Integer.Value;
479 1.1 jruoho
480 1.13 jruoho if (ps->ps_freq == 0 || ps->ps_freq > 9999)
481 1.13 jruoho return AE_BAD_DECIMAL_CONSTANT;
482 1.13 jruoho
483 1.38 jruoho if (ps->ps_latency == 0 || ps->ps_latency > 1000)
484 1.38 jruoho ps->ps_latency = 1;
485 1.1 jruoho
486 1.1 jruoho return AE_OK;
487 1.1 jruoho }
488 1.1 jruoho
489 1.21 jruoho static ACPI_STATUS
490 1.21 jruoho acpicpu_pstate_xpss(struct acpicpu_softc *sc)
491 1.21 jruoho {
492 1.34 jruoho struct acpicpu_pstate *ps;
493 1.21 jruoho ACPI_OBJECT *obj;
494 1.21 jruoho ACPI_BUFFER buf;
495 1.21 jruoho ACPI_STATUS rv;
496 1.34 jruoho uint32_t i = 0;
497 1.21 jruoho
498 1.21 jruoho rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
499 1.21 jruoho
500 1.21 jruoho if (ACPI_FAILURE(rv))
501 1.37 jruoho goto out;
502 1.21 jruoho
503 1.21 jruoho obj = buf.Pointer;
504 1.21 jruoho
505 1.21 jruoho if (obj->Type != ACPI_TYPE_PACKAGE) {
506 1.21 jruoho rv = AE_TYPE;
507 1.21 jruoho goto out;
508 1.21 jruoho }
509 1.21 jruoho
510 1.34 jruoho if (obj->Package.Count != sc->sc_pstate_count) {
511 1.21 jruoho rv = AE_LIMIT;
512 1.21 jruoho goto out;
513 1.21 jruoho }
514 1.21 jruoho
515 1.34 jruoho while (i < sc->sc_pstate_count) {
516 1.21 jruoho
517 1.34 jruoho ps = &sc->sc_pstate[i];
518 1.34 jruoho acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
519 1.21 jruoho
520 1.34 jruoho i++;
521 1.33 jmcneill }
522 1.21 jruoho
523 1.21 jruoho out:
524 1.37 jruoho if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
525 1.37 jruoho aprint_error_dev(sc->sc_dev, "failed to evaluate "
526 1.37 jruoho "XPSS: %s\n", AcpiFormatException(rv));
527 1.37 jruoho
528 1.21 jruoho if (buf.Pointer != NULL)
529 1.21 jruoho ACPI_FREE(buf.Pointer);
530 1.21 jruoho
531 1.21 jruoho return rv;
532 1.21 jruoho }
533 1.21 jruoho
534 1.21 jruoho static ACPI_STATUS
535 1.21 jruoho acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
536 1.21 jruoho {
537 1.21 jruoho ACPI_OBJECT *elm;
538 1.21 jruoho int i;
539 1.21 jruoho
540 1.21 jruoho if (obj->Type != ACPI_TYPE_PACKAGE)
541 1.21 jruoho return AE_TYPE;
542 1.21 jruoho
543 1.21 jruoho if (obj->Package.Count != 8)
544 1.21 jruoho return AE_BAD_DATA;
545 1.21 jruoho
546 1.21 jruoho elm = obj->Package.Elements;
547 1.21 jruoho
548 1.21 jruoho for (i = 0; i < 4; i++) {
549 1.21 jruoho
550 1.21 jruoho if (elm[i].Type != ACPI_TYPE_INTEGER)
551 1.21 jruoho return AE_TYPE;
552 1.21 jruoho
553 1.21 jruoho if (elm[i].Integer.Value > UINT32_MAX)
554 1.21 jruoho return AE_AML_NUMERIC_OVERFLOW;
555 1.21 jruoho }
556 1.21 jruoho
557 1.21 jruoho for (; i < 8; i++) {
558 1.21 jruoho
559 1.21 jruoho if (elm[i].Type != ACPI_TYPE_BUFFER)
560 1.21 jruoho return AE_TYPE;
561 1.21 jruoho
562 1.33 jmcneill if (elm[i].Buffer.Length != 8)
563 1.21 jruoho return AE_LIMIT;
564 1.21 jruoho }
565 1.21 jruoho
566 1.34 jruoho /*
567 1.34 jruoho * Only overwrite the elements that were
568 1.34 jruoho * not available from the conventional _PSS.
569 1.34 jruoho */
570 1.34 jruoho if (ps->ps_freq == 0)
571 1.34 jruoho ps->ps_freq = elm[0].Integer.Value;
572 1.34 jruoho
573 1.34 jruoho if (ps->ps_power == 0)
574 1.34 jruoho ps->ps_power = elm[1].Integer.Value;
575 1.34 jruoho
576 1.34 jruoho if (ps->ps_latency == 0)
577 1.34 jruoho ps->ps_latency = elm[2].Integer.Value;
578 1.34 jruoho
579 1.34 jruoho if (ps->ps_latency_bm == 0)
580 1.34 jruoho ps->ps_latency_bm = elm[3].Integer.Value;
581 1.34 jruoho
582 1.34 jruoho if (ps->ps_control == 0)
583 1.34 jruoho ps->ps_control = ACPI_GET64(elm[4].Buffer.Pointer);
584 1.34 jruoho
585 1.34 jruoho if (ps->ps_status == 0)
586 1.34 jruoho ps->ps_status = ACPI_GET64(elm[5].Buffer.Pointer);
587 1.21 jruoho
588 1.34 jruoho if (ps->ps_control_mask == 0)
589 1.34 jruoho ps->ps_control_mask = ACPI_GET64(elm[6].Buffer.Pointer);
590 1.21 jruoho
591 1.34 jruoho if (ps->ps_status_mask == 0)
592 1.34 jruoho ps->ps_status_mask = ACPI_GET64(elm[7].Buffer.Pointer);
593 1.21 jruoho
594 1.21 jruoho ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
595 1.21 jruoho
596 1.38 jruoho if (ps->ps_freq == 0 || ps->ps_freq > 9999)
597 1.34 jruoho return AE_BAD_DECIMAL_CONSTANT;
598 1.34 jruoho
599 1.38 jruoho if (ps->ps_latency == 0 || ps->ps_latency > 1000)
600 1.38 jruoho ps->ps_latency = 1;
601 1.38 jruoho
602 1.21 jruoho return AE_OK;
603 1.21 jruoho }
604 1.21 jruoho
605 1.1 jruoho ACPI_STATUS
606 1.1 jruoho acpicpu_pstate_pct(struct acpicpu_softc *sc)
607 1.1 jruoho {
608 1.1 jruoho static const size_t size = sizeof(struct acpicpu_reg);
609 1.1 jruoho struct acpicpu_reg *reg[2];
610 1.21 jruoho struct acpicpu_pstate *ps;
611 1.1 jruoho ACPI_OBJECT *elm, *obj;
612 1.1 jruoho ACPI_BUFFER buf;
613 1.1 jruoho ACPI_STATUS rv;
614 1.1 jruoho uint8_t width;
615 1.21 jruoho uint32_t i;
616 1.1 jruoho
617 1.1 jruoho rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
618 1.1 jruoho
619 1.1 jruoho if (ACPI_FAILURE(rv))
620 1.1 jruoho return rv;
621 1.1 jruoho
622 1.1 jruoho obj = buf.Pointer;
623 1.1 jruoho
624 1.1 jruoho if (obj->Type != ACPI_TYPE_PACKAGE) {
625 1.1 jruoho rv = AE_TYPE;
626 1.1 jruoho goto out;
627 1.1 jruoho }
628 1.1 jruoho
629 1.1 jruoho if (obj->Package.Count != 2) {
630 1.1 jruoho rv = AE_LIMIT;
631 1.1 jruoho goto out;
632 1.1 jruoho }
633 1.1 jruoho
634 1.1 jruoho for (i = 0; i < 2; i++) {
635 1.1 jruoho
636 1.1 jruoho elm = &obj->Package.Elements[i];
637 1.1 jruoho
638 1.1 jruoho if (elm->Type != ACPI_TYPE_BUFFER) {
639 1.1 jruoho rv = AE_TYPE;
640 1.1 jruoho goto out;
641 1.1 jruoho }
642 1.1 jruoho
643 1.1 jruoho if (size > elm->Buffer.Length) {
644 1.1 jruoho rv = AE_AML_BAD_RESOURCE_LENGTH;
645 1.1 jruoho goto out;
646 1.1 jruoho }
647 1.1 jruoho
648 1.1 jruoho reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
649 1.1 jruoho
650 1.1 jruoho switch (reg[i]->reg_spaceid) {
651 1.1 jruoho
652 1.1 jruoho case ACPI_ADR_SPACE_SYSTEM_IO:
653 1.1 jruoho
654 1.1 jruoho if (reg[i]->reg_addr == 0) {
655 1.1 jruoho rv = AE_AML_ILLEGAL_ADDRESS;
656 1.1 jruoho goto out;
657 1.1 jruoho }
658 1.1 jruoho
659 1.1 jruoho width = reg[i]->reg_bitwidth;
660 1.1 jruoho
661 1.10 jruoho if (width + reg[i]->reg_bitoffset > 32) {
662 1.10 jruoho rv = AE_AML_BAD_RESOURCE_VALUE;
663 1.10 jruoho goto out;
664 1.10 jruoho }
665 1.10 jruoho
666 1.1 jruoho if (width != 8 && width != 16 && width != 32) {
667 1.4 jruoho rv = AE_AML_BAD_RESOURCE_VALUE;
668 1.1 jruoho goto out;
669 1.1 jruoho }
670 1.1 jruoho
671 1.1 jruoho break;
672 1.1 jruoho
673 1.1 jruoho case ACPI_ADR_SPACE_FIXED_HARDWARE:
674 1.1 jruoho
675 1.21 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
676 1.21 jruoho
677 1.21 jruoho if (reg[i]->reg_bitwidth != 64) {
678 1.21 jruoho rv = AE_AML_BAD_RESOURCE_VALUE;
679 1.21 jruoho goto out;
680 1.21 jruoho }
681 1.21 jruoho
682 1.21 jruoho if (reg[i]->reg_bitoffset != 0) {
683 1.21 jruoho rv = AE_AML_BAD_RESOURCE_VALUE;
684 1.21 jruoho goto out;
685 1.21 jruoho }
686 1.21 jruoho
687 1.21 jruoho break;
688 1.21 jruoho }
689 1.21 jruoho
690 1.1 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
691 1.4 jruoho rv = AE_SUPPORT;
692 1.1 jruoho goto out;
693 1.1 jruoho }
694 1.1 jruoho
695 1.1 jruoho break;
696 1.1 jruoho
697 1.1 jruoho default:
698 1.1 jruoho rv = AE_AML_INVALID_SPACE_ID;
699 1.1 jruoho goto out;
700 1.1 jruoho }
701 1.1 jruoho }
702 1.1 jruoho
703 1.1 jruoho if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
704 1.1 jruoho rv = AE_AML_INVALID_SPACE_ID;
705 1.1 jruoho goto out;
706 1.1 jruoho }
707 1.1 jruoho
708 1.15 jruoho (void)memcpy(&sc->sc_pstate_control, reg[0], size);
709 1.15 jruoho (void)memcpy(&sc->sc_pstate_status, reg[1], size);
710 1.1 jruoho
711 1.22 jruoho if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
712 1.22 jruoho goto out;
713 1.22 jruoho
714 1.22 jruoho /*
715 1.22 jruoho * In XPSS the control address can not be zero,
716 1.26 jruoho * but the status address may be. In this case,
717 1.26 jruoho * comparable to T-states, we can ignore the status
718 1.22 jruoho * check during the P-state (FFH) transition.
719 1.22 jruoho */
720 1.22 jruoho if (sc->sc_pstate_control.reg_addr == 0) {
721 1.23 jmcneill rv = AE_AML_BAD_RESOURCE_LENGTH;
722 1.22 jruoho goto out;
723 1.22 jruoho }
724 1.22 jruoho
725 1.21 jruoho /*
726 1.21 jruoho * If XPSS is present, copy the MSR addresses
727 1.21 jruoho * to the P-state structures for convenience.
728 1.21 jruoho */
729 1.21 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
730 1.21 jruoho
731 1.21 jruoho ps = &sc->sc_pstate[i];
732 1.21 jruoho
733 1.21 jruoho if (ps->ps_freq == 0)
734 1.21 jruoho continue;
735 1.21 jruoho
736 1.21 jruoho ps->ps_status_addr = sc->sc_pstate_status.reg_addr;
737 1.21 jruoho ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
738 1.21 jruoho }
739 1.21 jruoho
740 1.1 jruoho out:
741 1.1 jruoho if (buf.Pointer != NULL)
742 1.1 jruoho ACPI_FREE(buf.Pointer);
743 1.1 jruoho
744 1.1 jruoho return rv;
745 1.1 jruoho }
746 1.1 jruoho
747 1.1 jruoho static int
748 1.1 jruoho acpicpu_pstate_max(struct acpicpu_softc *sc)
749 1.1 jruoho {
750 1.1 jruoho ACPI_INTEGER val;
751 1.1 jruoho ACPI_STATUS rv;
752 1.1 jruoho
753 1.1 jruoho /*
754 1.1 jruoho * Evaluate the currently highest P-state that can be used.
755 1.1 jruoho * If available, we can use either this state or any lower
756 1.1 jruoho * power (i.e. higher numbered) state from the _PSS object.
757 1.27 jruoho * Note that the return value must match the _OST parameter.
758 1.1 jruoho */
759 1.1 jruoho rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
760 1.1 jruoho
761 1.27 jruoho if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
762 1.27 jruoho
763 1.27 jruoho if (sc->sc_pstate[val].ps_freq != 0) {
764 1.27 jruoho sc->sc_pstate_max = val;
765 1.27 jruoho return 0;
766 1.27 jruoho }
767 1.27 jruoho }
768 1.27 jruoho
769 1.27 jruoho return 1;
770 1.27 jruoho }
771 1.27 jruoho
772 1.27 jruoho static int
773 1.27 jruoho acpicpu_pstate_min(struct acpicpu_softc *sc)
774 1.27 jruoho {
775 1.27 jruoho ACPI_INTEGER val;
776 1.27 jruoho ACPI_STATUS rv;
777 1.1 jruoho
778 1.27 jruoho /*
779 1.27 jruoho * The _PDL object defines the minimum when passive cooling
780 1.27 jruoho * is being performed. If available, we can use the returned
781 1.27 jruoho * state or any higher power (i.e. lower numbered) state.
782 1.27 jruoho */
783 1.27 jruoho rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
784 1.1 jruoho
785 1.27 jruoho if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
786 1.1 jruoho
787 1.27 jruoho if (sc->sc_pstate[val].ps_freq == 0)
788 1.27 jruoho return 1;
789 1.1 jruoho
790 1.27 jruoho if (val >= sc->sc_pstate_max) {
791 1.27 jruoho sc->sc_pstate_min = val;
792 1.27 jruoho return 0;
793 1.27 jruoho }
794 1.27 jruoho }
795 1.1 jruoho
796 1.27 jruoho return 1;
797 1.1 jruoho }
798 1.1 jruoho
799 1.1 jruoho static void
800 1.1 jruoho acpicpu_pstate_change(struct acpicpu_softc *sc)
801 1.1 jruoho {
802 1.27 jruoho static ACPI_STATUS rv = AE_OK;
803 1.1 jruoho ACPI_OBJECT_LIST arg;
804 1.1 jruoho ACPI_OBJECT obj[2];
805 1.36 jruoho static int val = 0;
806 1.1 jruoho
807 1.28 jruoho acpicpu_pstate_reset(sc);
808 1.27 jruoho
809 1.36 jruoho /*
810 1.36 jruoho * Cache the checks as the optional
811 1.36 jruoho * _PDL and _OST are rarely present.
812 1.36 jruoho */
813 1.36 jruoho if (val == 0)
814 1.36 jruoho val = acpicpu_pstate_min(sc);
815 1.36 jruoho
816 1.1 jruoho arg.Count = 2;
817 1.1 jruoho arg.Pointer = obj;
818 1.1 jruoho
819 1.1 jruoho obj[0].Type = ACPI_TYPE_INTEGER;
820 1.1 jruoho obj[1].Type = ACPI_TYPE_INTEGER;
821 1.1 jruoho
822 1.1 jruoho obj[0].Integer.Value = ACPICPU_P_NOTIFY;
823 1.1 jruoho obj[1].Integer.Value = acpicpu_pstate_max(sc);
824 1.1 jruoho
825 1.27 jruoho if (ACPI_FAILURE(rv))
826 1.27 jruoho return;
827 1.27 jruoho
828 1.27 jruoho rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
829 1.1 jruoho }
830 1.1 jruoho
831 1.1 jruoho static void
832 1.28 jruoho acpicpu_pstate_reset(struct acpicpu_softc *sc)
833 1.28 jruoho {
834 1.28 jruoho
835 1.28 jruoho sc->sc_pstate_max = 0;
836 1.28 jruoho sc->sc_pstate_min = sc->sc_pstate_count - 1;
837 1.28 jruoho
838 1.28 jruoho }
839 1.28 jruoho
840 1.28 jruoho static void
841 1.1 jruoho acpicpu_pstate_bios(void)
842 1.1 jruoho {
843 1.1 jruoho const uint8_t val = AcpiGbl_FADT.PstateControl;
844 1.1 jruoho const uint32_t addr = AcpiGbl_FADT.SmiCommand;
845 1.1 jruoho
846 1.19 jruoho if (addr == 0 || val == 0)
847 1.1 jruoho return;
848 1.1 jruoho
849 1.1 jruoho (void)AcpiOsWritePort(addr, val, 8);
850 1.1 jruoho }
851 1.1 jruoho
852 1.1 jruoho int
853 1.1 jruoho acpicpu_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
854 1.1 jruoho {
855 1.1 jruoho const uint8_t method = sc->sc_pstate_control.reg_spaceid;
856 1.1 jruoho struct acpicpu_pstate *ps = NULL;
857 1.1 jruoho uint32_t i, val = 0;
858 1.1 jruoho uint64_t addr;
859 1.1 jruoho uint8_t width;
860 1.1 jruoho int rv;
861 1.1 jruoho
862 1.35 jruoho if (__predict_false(sc->sc_cold != false)) {
863 1.11 jruoho rv = EBUSY;
864 1.11 jruoho goto fail;
865 1.11 jruoho }
866 1.11 jruoho
867 1.35 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
868 1.1 jruoho rv = ENODEV;
869 1.1 jruoho goto fail;
870 1.1 jruoho }
871 1.1 jruoho
872 1.14 jruoho mutex_enter(&sc->sc_mtx);
873 1.14 jruoho
874 1.35 jruoho /*
875 1.35 jruoho * Use the cached value, if available.
876 1.35 jruoho */
877 1.1 jruoho if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
878 1.1 jruoho *freq = sc->sc_pstate_current;
879 1.14 jruoho mutex_exit(&sc->sc_mtx);
880 1.1 jruoho return 0;
881 1.1 jruoho }
882 1.1 jruoho
883 1.14 jruoho mutex_exit(&sc->sc_mtx);
884 1.14 jruoho
885 1.1 jruoho switch (method) {
886 1.1 jruoho
887 1.1 jruoho case ACPI_ADR_SPACE_FIXED_HARDWARE:
888 1.1 jruoho
889 1.1 jruoho rv = acpicpu_md_pstate_get(sc, freq);
890 1.1 jruoho
891 1.35 jruoho if (__predict_false(rv != 0))
892 1.1 jruoho goto fail;
893 1.1 jruoho
894 1.1 jruoho break;
895 1.1 jruoho
896 1.1 jruoho case ACPI_ADR_SPACE_SYSTEM_IO:
897 1.1 jruoho
898 1.1 jruoho addr = sc->sc_pstate_status.reg_addr;
899 1.1 jruoho width = sc->sc_pstate_status.reg_bitwidth;
900 1.1 jruoho
901 1.1 jruoho (void)AcpiOsReadPort(addr, &val, width);
902 1.1 jruoho
903 1.1 jruoho if (val == 0) {
904 1.1 jruoho rv = EIO;
905 1.1 jruoho goto fail;
906 1.1 jruoho }
907 1.1 jruoho
908 1.5 jruoho for (i = 0; i < sc->sc_pstate_count; i++) {
909 1.1 jruoho
910 1.1 jruoho if (sc->sc_pstate[i].ps_freq == 0)
911 1.1 jruoho continue;
912 1.1 jruoho
913 1.1 jruoho if (val == sc->sc_pstate[i].ps_status) {
914 1.1 jruoho ps = &sc->sc_pstate[i];
915 1.1 jruoho break;
916 1.1 jruoho }
917 1.1 jruoho }
918 1.1 jruoho
919 1.35 jruoho if (ps == NULL) {
920 1.1 jruoho rv = EIO;
921 1.1 jruoho goto fail;
922 1.1 jruoho }
923 1.1 jruoho
924 1.1 jruoho *freq = ps->ps_freq;
925 1.1 jruoho break;
926 1.1 jruoho
927 1.1 jruoho default:
928 1.1 jruoho rv = ENOTTY;
929 1.1 jruoho goto fail;
930 1.1 jruoho }
931 1.1 jruoho
932 1.14 jruoho mutex_enter(&sc->sc_mtx);
933 1.1 jruoho sc->sc_pstate_current = *freq;
934 1.14 jruoho mutex_exit(&sc->sc_mtx);
935 1.1 jruoho
936 1.1 jruoho return 0;
937 1.1 jruoho
938 1.1 jruoho fail:
939 1.1 jruoho aprint_error_dev(sc->sc_dev, "failed "
940 1.1 jruoho "to get frequency (err %d)\n", rv);
941 1.1 jruoho
942 1.14 jruoho mutex_enter(&sc->sc_mtx);
943 1.1 jruoho *freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
944 1.14 jruoho mutex_exit(&sc->sc_mtx);
945 1.1 jruoho
946 1.1 jruoho return rv;
947 1.1 jruoho }
948 1.1 jruoho
949 1.1 jruoho int
950 1.1 jruoho acpicpu_pstate_set(struct acpicpu_softc *sc, uint32_t freq)
951 1.1 jruoho {
952 1.1 jruoho const uint8_t method = sc->sc_pstate_control.reg_spaceid;
953 1.1 jruoho struct acpicpu_pstate *ps = NULL;
954 1.1 jruoho uint32_t i, val;
955 1.1 jruoho uint64_t addr;
956 1.1 jruoho uint8_t width;
957 1.1 jruoho int rv;
958 1.1 jruoho
959 1.35 jruoho if (__predict_false(sc->sc_cold != false)) {
960 1.11 jruoho rv = EBUSY;
961 1.11 jruoho goto fail;
962 1.11 jruoho }
963 1.11 jruoho
964 1.35 jruoho if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
965 1.1 jruoho rv = ENODEV;
966 1.1 jruoho goto fail;
967 1.1 jruoho }
968 1.1 jruoho
969 1.1 jruoho mutex_enter(&sc->sc_mtx);
970 1.1 jruoho
971 1.31 jruoho if (sc->sc_pstate_current == freq) {
972 1.31 jruoho mutex_exit(&sc->sc_mtx);
973 1.31 jruoho return 0;
974 1.31 jruoho }
975 1.31 jruoho
976 1.35 jruoho /*
977 1.35 jruoho * Verify that the requested frequency is available.
978 1.35 jruoho *
979 1.35 jruoho * The access needs to be protected since the currently
980 1.35 jruoho * available maximum and minimum may change dynamically.
981 1.35 jruoho */
982 1.27 jruoho for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
983 1.1 jruoho
984 1.35 jruoho if (__predict_false(sc->sc_pstate[i].ps_freq == 0))
985 1.1 jruoho continue;
986 1.1 jruoho
987 1.1 jruoho if (sc->sc_pstate[i].ps_freq == freq) {
988 1.1 jruoho ps = &sc->sc_pstate[i];
989 1.1 jruoho break;
990 1.1 jruoho }
991 1.1 jruoho }
992 1.1 jruoho
993 1.1 jruoho mutex_exit(&sc->sc_mtx);
994 1.1 jruoho
995 1.15 jruoho if (__predict_false(ps == NULL)) {
996 1.1 jruoho rv = EINVAL;
997 1.1 jruoho goto fail;
998 1.1 jruoho }
999 1.1 jruoho
1000 1.1 jruoho switch (method) {
1001 1.1 jruoho
1002 1.1 jruoho case ACPI_ADR_SPACE_FIXED_HARDWARE:
1003 1.1 jruoho
1004 1.1 jruoho rv = acpicpu_md_pstate_set(ps);
1005 1.1 jruoho
1006 1.35 jruoho if (__predict_false(rv != 0))
1007 1.1 jruoho goto fail;
1008 1.1 jruoho
1009 1.1 jruoho break;
1010 1.1 jruoho
1011 1.1 jruoho case ACPI_ADR_SPACE_SYSTEM_IO:
1012 1.1 jruoho
1013 1.1 jruoho addr = sc->sc_pstate_control.reg_addr;
1014 1.1 jruoho width = sc->sc_pstate_control.reg_bitwidth;
1015 1.1 jruoho
1016 1.1 jruoho (void)AcpiOsWritePort(addr, ps->ps_control, width);
1017 1.1 jruoho
1018 1.1 jruoho addr = sc->sc_pstate_status.reg_addr;
1019 1.1 jruoho width = sc->sc_pstate_status.reg_bitwidth;
1020 1.1 jruoho
1021 1.1 jruoho /*
1022 1.1 jruoho * Some systems take longer to respond
1023 1.1 jruoho * than the reported worst-case latency.
1024 1.1 jruoho */
1025 1.1 jruoho for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
1026 1.1 jruoho
1027 1.1 jruoho (void)AcpiOsReadPort(addr, &val, width);
1028 1.1 jruoho
1029 1.1 jruoho if (val == ps->ps_status)
1030 1.1 jruoho break;
1031 1.1 jruoho
1032 1.1 jruoho DELAY(ps->ps_latency);
1033 1.1 jruoho }
1034 1.1 jruoho
1035 1.1 jruoho if (i == ACPICPU_P_STATE_RETRY) {
1036 1.1 jruoho rv = EAGAIN;
1037 1.1 jruoho goto fail;
1038 1.1 jruoho }
1039 1.1 jruoho
1040 1.1 jruoho break;
1041 1.1 jruoho
1042 1.1 jruoho default:
1043 1.1 jruoho rv = ENOTTY;
1044 1.1 jruoho goto fail;
1045 1.1 jruoho }
1046 1.1 jruoho
1047 1.16 jruoho mutex_enter(&sc->sc_mtx);
1048 1.7 jruoho ps->ps_evcnt.ev_count++;
1049 1.1 jruoho sc->sc_pstate_current = freq;
1050 1.14 jruoho mutex_exit(&sc->sc_mtx);
1051 1.1 jruoho
1052 1.1 jruoho return 0;
1053 1.1 jruoho
1054 1.1 jruoho fail:
1055 1.1 jruoho aprint_error_dev(sc->sc_dev, "failed to set "
1056 1.1 jruoho "frequency to %u (err %d)\n", freq, rv);
1057 1.1 jruoho
1058 1.14 jruoho mutex_enter(&sc->sc_mtx);
1059 1.1 jruoho sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
1060 1.14 jruoho mutex_exit(&sc->sc_mtx);
1061 1.1 jruoho
1062 1.1 jruoho return rv;
1063 1.1 jruoho }
1064