Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_pstate.c revision 1.13.2.3
      1 /* $NetBSD: acpi_cpu_pstate.c,v 1.13.2.3 2010/10/09 03:32:04 yamt Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.13.2.3 2010/10/09 03:32:04 yamt Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/evcnt.h>
     34 #include <sys/kmem.h>
     35 #include <sys/once.h>
     36 
     37 #include <dev/acpi/acpireg.h>
     38 #include <dev/acpi/acpivar.h>
     39 #include <dev/acpi/acpi_cpu.h>
     40 
     41 #define _COMPONENT	 ACPI_BUS_COMPONENT
     42 ACPI_MODULE_NAME	 ("acpi_cpu_pstate")
     43 
     44 static void		 acpicpu_pstate_attach_print(struct acpicpu_softc *);
     45 static void		 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *);
     46 static void		 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *);
     47 static ACPI_STATUS	 acpicpu_pstate_pss(struct acpicpu_softc *);
     48 static ACPI_STATUS	 acpicpu_pstate_pss_add(struct acpicpu_pstate *,
     49 						ACPI_OBJECT *);
     50 static ACPI_STATUS	 acpicpu_pstate_xpss(struct acpicpu_softc *);
     51 static ACPI_STATUS	 acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
     52 						 ACPI_OBJECT *);
     53 static ACPI_STATUS	 acpicpu_pstate_pct(struct acpicpu_softc *);
     54 static int		 acpicpu_pstate_max(struct acpicpu_softc *);
     55 static int		 acpicpu_pstate_min(struct acpicpu_softc *);
     56 static void		 acpicpu_pstate_change(struct acpicpu_softc *);
     57 static void		 acpicpu_pstate_reset(struct acpicpu_softc *);
     58 static void		 acpicpu_pstate_bios(void);
     59 
     60 static uint32_t		 acpicpu_pstate_saved = 0;
     61 
     62 void
     63 acpicpu_pstate_attach(device_t self)
     64 {
     65 	struct acpicpu_softc *sc = device_private(self);
     66 	const char *str;
     67 	ACPI_HANDLE tmp;
     68 	ACPI_STATUS rv;
     69 
     70 	rv = acpicpu_pstate_pss(sc);
     71 
     72 	if (ACPI_FAILURE(rv)) {
     73 		str = "_PSS";
     74 		goto fail;
     75 	}
     76 
     77 	/*
     78 	 * Check the availability of extended _PSS.
     79 	 * If present, this will override the data.
     80 	 * Note that XPSS can not be used on Intel
     81 	 * systems where _PDC or _OSC may be used.
     82 	 */
     83 	if (sc->sc_cap == 0) {
     84 		rv = acpicpu_pstate_xpss(sc);
     85 
     86 		if (ACPI_SUCCESS(rv))
     87 			sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
     88 	}
     89 
     90 	rv = acpicpu_pstate_pct(sc);
     91 
     92 	if (ACPI_FAILURE(rv)) {
     93 		str = "_PCT";
     94 		goto fail;
     95 	}
     96 
     97 	/*
     98 	 * The ACPI 3.0 and 4.0 specifications mandate three
     99 	 * objects for P-states: _PSS, _PCT, and _PPC. A less
    100 	 * strict wording is however used in the earlier 2.0
    101 	 * standard, and some systems conforming to ACPI 2.0
    102 	 * do not have _PPC, the method for dynamic maximum.
    103 	 */
    104 	rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
    105 
    106 	if (ACPI_FAILURE(rv))
    107 		aprint_debug_dev(self, "_PPC missing\n");
    108 
    109 	/*
    110 	 * Employ the XPSS structure by filling
    111 	 * it with MD information required for FFH.
    112 	 */
    113 	rv = acpicpu_md_pstate_pss(sc);
    114 
    115 	if (rv != 0) {
    116 		rv = AE_SUPPORT;
    117 		goto fail;
    118 	}
    119 
    120 	sc->sc_flags |= ACPICPU_FLAG_P;
    121 
    122 	acpicpu_pstate_bios();
    123 	acpicpu_pstate_reset(sc);
    124 	acpicpu_pstate_attach_evcnt(sc);
    125 	acpicpu_pstate_attach_print(sc);
    126 
    127 	return;
    128 
    129 fail:
    130 	switch (rv) {
    131 
    132 	case AE_NOT_FOUND:
    133 		return;
    134 
    135 	case AE_SUPPORT:
    136 		aprint_verbose_dev(sc->sc_dev, "P-states not supported\n");
    137 		return;
    138 
    139 	default:
    140 		aprint_error_dev(sc->sc_dev, "failed to evaluate "
    141 		    "%s: %s\n", str, AcpiFormatException(rv));
    142 	}
    143 }
    144 
    145 static void
    146 acpicpu_pstate_attach_print(struct acpicpu_softc *sc)
    147 {
    148 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
    149 	struct acpicpu_pstate *ps;
    150 	static bool once = false;
    151 	const char *str;
    152 	uint32_t i;
    153 
    154 	if (once != false)
    155 		return;
    156 
    157 	str = (method != ACPI_ADR_SPACE_SYSTEM_IO) ? "FFH" : "I/O";
    158 
    159 	for (i = 0; i < sc->sc_pstate_count; i++) {
    160 
    161 		ps = &sc->sc_pstate[i];
    162 
    163 		if (ps->ps_freq == 0)
    164 			continue;
    165 
    166 		aprint_debug_dev(sc->sc_dev, "P%d: %3s, "
    167 		    "lat %3u us, pow %5u mW, %4u MHz\n", i, str,
    168 		    ps->ps_latency, ps->ps_power, ps->ps_freq);
    169 	}
    170 
    171 	once = true;
    172 }
    173 
    174 static void
    175 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *sc)
    176 {
    177 	struct acpicpu_pstate *ps;
    178 	uint32_t i;
    179 
    180 	for (i = 0; i < sc->sc_pstate_count; i++) {
    181 
    182 		ps = &sc->sc_pstate[i];
    183 
    184 		if (ps->ps_freq == 0)
    185 			continue;
    186 
    187 		(void)snprintf(ps->ps_name, sizeof(ps->ps_name),
    188 		    "P%u (%u MHz)", i, ps->ps_freq);
    189 
    190 		evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
    191 		    NULL, device_xname(sc->sc_dev), ps->ps_name);
    192 	}
    193 }
    194 
    195 int
    196 acpicpu_pstate_detach(device_t self)
    197 {
    198 	struct acpicpu_softc *sc = device_private(self);
    199 	static ONCE_DECL(once_detach);
    200 	size_t size;
    201 	int rv;
    202 
    203 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
    204 		return 0;
    205 
    206 	rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
    207 
    208 	if (rv != 0)
    209 		return rv;
    210 
    211 	size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
    212 
    213 	if (sc->sc_pstate != NULL)
    214 		kmem_free(sc->sc_pstate, size);
    215 
    216 	sc->sc_flags &= ~ACPICPU_FLAG_P;
    217 	acpicpu_pstate_detach_evcnt(sc);
    218 
    219 	return 0;
    220 }
    221 
    222 static void
    223 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *sc)
    224 {
    225 	struct acpicpu_pstate *ps;
    226 	uint32_t i;
    227 
    228 	for (i = 0; i < sc->sc_pstate_count; i++) {
    229 
    230 		ps = &sc->sc_pstate[i];
    231 
    232 		if (ps->ps_freq != 0)
    233 			evcnt_detach(&ps->ps_evcnt);
    234 	}
    235 }
    236 
    237 void
    238 acpicpu_pstate_start(device_t self)
    239 {
    240 	struct acpicpu_softc *sc = device_private(self);
    241 	struct acpicpu_pstate *ps;
    242 	uint32_t i;
    243 	int rv;
    244 
    245 	rv = acpicpu_md_pstate_start();
    246 
    247 	if (rv != 0)
    248 		goto fail;
    249 
    250 	/*
    251 	 * Initialize the state to P0.
    252 	 */
    253 	for (i = 0, rv = ENXIO; i < sc->sc_pstate_count; i++) {
    254 
    255 		ps = &sc->sc_pstate[i];
    256 
    257 		if (ps->ps_freq != 0) {
    258 			sc->sc_cold = false;
    259 			rv = acpicpu_pstate_set(sc, ps->ps_freq);
    260 			break;
    261 		}
    262 	}
    263 
    264 	if (rv != 0)
    265 		goto fail;
    266 
    267 	return;
    268 
    269 fail:
    270 	sc->sc_flags &= ~ACPICPU_FLAG_P;
    271 
    272 	if (rv == EEXIST) {
    273 		aprint_error_dev(self, "driver conflicts with existing one\n");
    274 		return;
    275 	}
    276 
    277 	aprint_error_dev(self, "failed to start P-states (err %d)\n", rv);
    278 }
    279 
    280 bool
    281 acpicpu_pstate_suspend(device_t self)
    282 {
    283 	struct acpicpu_softc *sc = device_private(self);
    284 	struct acpicpu_pstate *ps = NULL;
    285 	int32_t i;
    286 
    287 	mutex_enter(&sc->sc_mtx);
    288 	acpicpu_pstate_reset(sc);
    289 	mutex_exit(&sc->sc_mtx);
    290 
    291 	if (acpicpu_pstate_saved != 0)
    292 		return true;
    293 
    294 	/*
    295 	 * Following design notes for Windows, we set the highest
    296 	 * P-state when entering any of the system sleep states.
    297 	 * When resuming, the saved P-state will be restored.
    298 	 *
    299 	 *	Microsoft Corporation: Windows Native Processor
    300 	 *	Performance Control. Version 1.1a, November, 2002.
    301 	 */
    302 	for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
    303 
    304 		if (sc->sc_pstate[i].ps_freq != 0) {
    305 			ps = &sc->sc_pstate[i];
    306 			break;
    307 		}
    308 	}
    309 
    310 	if (__predict_false(ps == NULL))
    311 		return true;
    312 
    313 	mutex_enter(&sc->sc_mtx);
    314 	acpicpu_pstate_saved = sc->sc_pstate_current;
    315 	mutex_exit(&sc->sc_mtx);
    316 
    317 	if (acpicpu_pstate_saved == ps->ps_freq)
    318 		return true;
    319 
    320 	(void)acpicpu_pstate_set(sc, ps->ps_freq);
    321 
    322 	return true;
    323 }
    324 
    325 bool
    326 acpicpu_pstate_resume(device_t self)
    327 {
    328 	struct acpicpu_softc *sc = device_private(self);
    329 
    330 	if (acpicpu_pstate_saved != 0) {
    331 		(void)acpicpu_pstate_set(sc, acpicpu_pstate_saved);
    332 		acpicpu_pstate_saved = 0;
    333 	}
    334 
    335 	return true;
    336 }
    337 
    338 void
    339 acpicpu_pstate_callback(void *aux)
    340 {
    341 	struct acpicpu_softc *sc;
    342 	device_t self = aux;
    343 	uint32_t old, new;
    344 
    345 	sc = device_private(self);
    346 
    347 	mutex_enter(&sc->sc_mtx);
    348 	old = sc->sc_pstate_max;
    349 	acpicpu_pstate_change(sc);
    350 	new = sc->sc_pstate_max;
    351 	mutex_exit(&sc->sc_mtx);
    352 
    353 	if (old != new) {
    354 
    355 		aprint_debug_dev(sc->sc_dev, "maximum frequency "
    356 		    "changed from P%u (%u MHz) to P%u (%u MHz)\n",
    357 		    old, sc->sc_pstate[old].ps_freq, new,
    358 		    sc->sc_pstate[sc->sc_pstate_max].ps_freq);
    359 #if 0
    360 		/*
    361 		 * If the maximum changed, proactively
    362 		 * raise or lower the target frequency.
    363 		 */
    364 		(void)acpicpu_pstate_set(sc, sc->sc_pstate[new].ps_freq);
    365 
    366 #endif
    367 	}
    368 }
    369 
    370 ACPI_STATUS
    371 acpicpu_pstate_pss(struct acpicpu_softc *sc)
    372 {
    373 	struct acpicpu_pstate *ps;
    374 	ACPI_OBJECT *obj;
    375 	ACPI_BUFFER buf;
    376 	ACPI_STATUS rv;
    377 	uint32_t count;
    378 	uint32_t i, j;
    379 
    380 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
    381 
    382 	if (ACPI_FAILURE(rv))
    383 		return rv;
    384 
    385 	obj = buf.Pointer;
    386 
    387 	if (obj->Type != ACPI_TYPE_PACKAGE) {
    388 		rv = AE_TYPE;
    389 		goto out;
    390 	}
    391 
    392 	sc->sc_pstate_count = obj->Package.Count;
    393 
    394 	if (sc->sc_pstate_count == 0) {
    395 		rv = AE_NOT_EXIST;
    396 		goto out;
    397 	}
    398 
    399 	if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
    400 		rv = AE_LIMIT;
    401 		goto out;
    402 	}
    403 
    404 	sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
    405 	    sizeof(struct acpicpu_pstate), KM_SLEEP);
    406 
    407 	if (sc->sc_pstate == NULL) {
    408 		rv = AE_NO_MEMORY;
    409 		goto out;
    410 	}
    411 
    412 	for (count = i = 0; i < sc->sc_pstate_count; i++) {
    413 
    414 		ps = &sc->sc_pstate[i];
    415 		rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
    416 
    417 		if (ACPI_FAILURE(rv)) {
    418 			ps->ps_freq = 0;
    419 			continue;
    420 		}
    421 
    422 		for (j = 0; j < i; j++) {
    423 
    424 			if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
    425 				ps->ps_freq = 0;
    426 				break;
    427 			}
    428 		}
    429 
    430 		if (ps->ps_freq != 0)
    431 			count++;
    432 	}
    433 
    434 	rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
    435 
    436 out:
    437 	if (buf.Pointer != NULL)
    438 		ACPI_FREE(buf.Pointer);
    439 
    440 	return rv;
    441 }
    442 
    443 static ACPI_STATUS
    444 acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
    445 {
    446 	ACPI_OBJECT *elm;
    447 	int i;
    448 
    449 	if (obj->Type != ACPI_TYPE_PACKAGE)
    450 		return AE_TYPE;
    451 
    452 	if (obj->Package.Count != 6)
    453 		return AE_BAD_DATA;
    454 
    455 	elm = obj->Package.Elements;
    456 
    457 	for (i = 0; i < 6; i++) {
    458 
    459 		if (elm[i].Type != ACPI_TYPE_INTEGER)
    460 			return AE_TYPE;
    461 
    462 		if (elm[i].Integer.Value > UINT32_MAX)
    463 			return AE_AML_NUMERIC_OVERFLOW;
    464 	}
    465 
    466 	ps->ps_freq       = elm[0].Integer.Value;
    467 	ps->ps_power      = elm[1].Integer.Value;
    468 	ps->ps_latency    = elm[2].Integer.Value;
    469 	ps->ps_latency_bm = elm[3].Integer.Value;
    470 	ps->ps_control    = elm[4].Integer.Value;
    471 	ps->ps_status     = elm[5].Integer.Value;
    472 
    473 	if (ps->ps_freq == 0 || ps->ps_freq > 9999)
    474 		return AE_BAD_DECIMAL_CONSTANT;
    475 
    476 	/*
    477 	 * The latency is typically around 10 usec
    478 	 * on Intel CPUs. Use that as the minimum.
    479 	 */
    480 	if (ps->ps_latency < 10)
    481 		ps->ps_latency = 10;
    482 
    483 	return AE_OK;
    484 }
    485 
    486 static ACPI_STATUS
    487 acpicpu_pstate_xpss(struct acpicpu_softc *sc)
    488 {
    489 	static const size_t size = sizeof(struct acpicpu_pstate);
    490 	struct acpicpu_pstate *ps, *pstate = NULL;
    491 	ACPI_OBJECT *obj;
    492 	ACPI_BUFFER buf;
    493 	ACPI_STATUS rv;
    494 	uint32_t count, pstate_count;
    495 	uint32_t i, j;
    496 
    497 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
    498 
    499 	if (ACPI_FAILURE(rv))
    500 		return rv;
    501 
    502 	obj = buf.Pointer;
    503 
    504 	if (obj->Type != ACPI_TYPE_PACKAGE) {
    505 		rv = AE_TYPE;
    506 		goto out;
    507 	}
    508 
    509 	pstate_count = count = obj->Package.Count;
    510 
    511 	if (count == 0) {
    512 		rv = AE_NOT_EXIST;
    513 		goto out;
    514 	}
    515 
    516 	if (count > ACPICPU_P_STATE_MAX) {
    517 		rv = AE_LIMIT;
    518 		goto out;
    519 	}
    520 
    521 	pstate = kmem_zalloc(count * size, KM_SLEEP);
    522 
    523 	if (pstate == NULL) {
    524 		rv = AE_NO_MEMORY;
    525 		goto out;
    526 	}
    527 
    528 	for (count = i = 0; i < pstate_count; i++) {
    529 
    530 		ps = &pstate[i];
    531 		rv = acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
    532 
    533 		if (ACPI_FAILURE(rv)) {
    534 			ps->ps_freq = 0;
    535 			continue;
    536 		}
    537 
    538 		for (j = 0; j < i; j++) {
    539 
    540 			if (ps->ps_freq >= pstate[j].ps_freq) {
    541 				ps->ps_freq = 0;
    542 				break;
    543 			}
    544 		}
    545 
    546 		if (ps->ps_freq != 0)
    547 			count++;
    548 	}
    549 
    550 	if (count > 0) {
    551 		if (sc->sc_pstate != NULL)
    552 			kmem_free(sc->sc_pstate, sc->sc_pstate_count * size);
    553 		sc->sc_pstate = pstate;
    554 		sc->sc_pstate_count = pstate_count;
    555 		rv = AE_OK;
    556 	} else {
    557 		kmem_free(pstate, pstate_count * size);
    558 		rv = AE_NOT_EXIST;
    559 	}
    560 
    561 out:
    562 	if (buf.Pointer != NULL)
    563 		ACPI_FREE(buf.Pointer);
    564 
    565 	return rv;
    566 }
    567 
    568 static ACPI_STATUS
    569 acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
    570 {
    571 	ACPI_OBJECT *elm;
    572 	int i;
    573 
    574 	if (obj->Type != ACPI_TYPE_PACKAGE)
    575 		return AE_TYPE;
    576 
    577 	if (obj->Package.Count != 8)
    578 		return AE_BAD_DATA;
    579 
    580 	elm = obj->Package.Elements;
    581 
    582 	for (i = 0; i < 4; i++) {
    583 
    584 		if (elm[i].Type != ACPI_TYPE_INTEGER)
    585 			return AE_TYPE;
    586 
    587 		if (elm[i].Integer.Value > UINT32_MAX)
    588 			return AE_AML_NUMERIC_OVERFLOW;
    589 	}
    590 
    591 	for (; i < 8; i++) {
    592 
    593 		if (elm[i].Type != ACPI_TYPE_BUFFER)
    594 			return AE_TYPE;
    595 
    596 		if (elm[i].Buffer.Length != 8)
    597 			return AE_LIMIT;
    598 	}
    599 
    600 	ps->ps_freq       = elm[0].Integer.Value;
    601 	ps->ps_power      = elm[1].Integer.Value;
    602 	ps->ps_latency    = elm[2].Integer.Value;
    603 	ps->ps_latency_bm = elm[3].Integer.Value;
    604 
    605 	if (ps->ps_freq == 0 || ps->ps_freq > 9999)
    606 		return AE_BAD_DECIMAL_CONSTANT;
    607 
    608 	ps->ps_control = ACPI_GET64(elm[4].Buffer.Pointer);
    609 	ps->ps_status = ACPI_GET64(elm[5].Buffer.Pointer);
    610 	ps->ps_control_mask = ACPI_GET64(elm[6].Buffer.Pointer);
    611 	ps->ps_status_mask = ACPI_GET64(elm[7].Buffer.Pointer);
    612 
    613 	/*
    614 	 * The latency is often defined to be
    615 	 * zero on AMD systems. Raise that to 1.
    616 	 */
    617 	if (ps->ps_latency == 0)
    618 		ps->ps_latency = 1;
    619 
    620 	ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
    621 
    622 	return AE_OK;
    623 }
    624 
    625 ACPI_STATUS
    626 acpicpu_pstate_pct(struct acpicpu_softc *sc)
    627 {
    628 	static const size_t size = sizeof(struct acpicpu_reg);
    629 	struct acpicpu_reg *reg[2];
    630 	struct acpicpu_pstate *ps;
    631 	ACPI_OBJECT *elm, *obj;
    632 	ACPI_BUFFER buf;
    633 	ACPI_STATUS rv;
    634 	uint8_t width;
    635 	uint32_t i;
    636 
    637 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
    638 
    639 	if (ACPI_FAILURE(rv))
    640 		return rv;
    641 
    642 	obj = buf.Pointer;
    643 
    644 	if (obj->Type != ACPI_TYPE_PACKAGE) {
    645 		rv = AE_TYPE;
    646 		goto out;
    647 	}
    648 
    649 	if (obj->Package.Count != 2) {
    650 		rv = AE_LIMIT;
    651 		goto out;
    652 	}
    653 
    654 	for (i = 0; i < 2; i++) {
    655 
    656 		elm = &obj->Package.Elements[i];
    657 
    658 		if (elm->Type != ACPI_TYPE_BUFFER) {
    659 			rv = AE_TYPE;
    660 			goto out;
    661 		}
    662 
    663 		if (size > elm->Buffer.Length) {
    664 			rv = AE_AML_BAD_RESOURCE_LENGTH;
    665 			goto out;
    666 		}
    667 
    668 		reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
    669 
    670 		switch (reg[i]->reg_spaceid) {
    671 
    672 		case ACPI_ADR_SPACE_SYSTEM_IO:
    673 
    674 			if (reg[i]->reg_addr == 0) {
    675 				rv = AE_AML_ILLEGAL_ADDRESS;
    676 				goto out;
    677 			}
    678 
    679 			width = reg[i]->reg_bitwidth;
    680 
    681 			if (width + reg[i]->reg_bitoffset > 32) {
    682 				rv = AE_AML_BAD_RESOURCE_VALUE;
    683 				goto out;
    684 			}
    685 
    686 			if (width != 8 && width != 16 && width != 32) {
    687 				rv = AE_AML_BAD_RESOURCE_VALUE;
    688 				goto out;
    689 			}
    690 
    691 			break;
    692 
    693 		case ACPI_ADR_SPACE_FIXED_HARDWARE:
    694 
    695 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
    696 
    697 				if (reg[i]->reg_bitwidth != 64) {
    698 					rv = AE_AML_BAD_RESOURCE_VALUE;
    699 					goto out;
    700 				}
    701 
    702 				if (reg[i]->reg_bitoffset != 0) {
    703 					rv = AE_AML_BAD_RESOURCE_VALUE;
    704 					goto out;
    705 				}
    706 
    707 				break;
    708 			}
    709 
    710 			if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
    711 				rv = AE_SUPPORT;
    712 				goto out;
    713 			}
    714 
    715 			break;
    716 
    717 		default:
    718 			rv = AE_AML_INVALID_SPACE_ID;
    719 			goto out;
    720 		}
    721 	}
    722 
    723 	if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
    724 		rv = AE_AML_INVALID_SPACE_ID;
    725 		goto out;
    726 	}
    727 
    728 	(void)memcpy(&sc->sc_pstate_control, reg[0], size);
    729 	(void)memcpy(&sc->sc_pstate_status,  reg[1], size);
    730 
    731 	if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    732 		goto out;
    733 
    734 	/*
    735 	 * In XPSS the control address can not be zero,
    736 	 * but the status address may be. In this case,
    737 	 * comparable to T-states, we can ignore the status
    738 	 * check during the P-state (FFH) transition.
    739 	 */
    740 	if (sc->sc_pstate_control.reg_addr == 0) {
    741 		rv = AE_AML_BAD_RESOURCE_LENGTH;
    742 		goto out;
    743 	}
    744 
    745 	/*
    746 	 * If XPSS is present, copy the MSR addresses
    747 	 * to the P-state structures for convenience.
    748 	 */
    749 	for (i = 0; i < sc->sc_pstate_count; i++) {
    750 
    751 		ps = &sc->sc_pstate[i];
    752 
    753 		if (ps->ps_freq == 0)
    754 			continue;
    755 
    756 		ps->ps_status_addr  = sc->sc_pstate_status.reg_addr;
    757 		ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
    758 	}
    759 
    760 out:
    761 	if (buf.Pointer != NULL)
    762 		ACPI_FREE(buf.Pointer);
    763 
    764 	return rv;
    765 }
    766 
    767 static int
    768 acpicpu_pstate_max(struct acpicpu_softc *sc)
    769 {
    770 	ACPI_INTEGER val;
    771 	ACPI_STATUS rv;
    772 
    773 	/*
    774 	 * Evaluate the currently highest P-state that can be used.
    775 	 * If available, we can use either this state or any lower
    776 	 * power (i.e. higher numbered) state from the _PSS object.
    777 	 * Note that the return value must match the _OST parameter.
    778 	 */
    779 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
    780 
    781 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
    782 
    783 		if (sc->sc_pstate[val].ps_freq != 0) {
    784 			sc->sc_pstate_max = val;
    785 			return 0;
    786 		}
    787 	}
    788 
    789 	return 1;
    790 }
    791 
    792 static int
    793 acpicpu_pstate_min(struct acpicpu_softc *sc)
    794 {
    795 	ACPI_INTEGER val;
    796 	ACPI_STATUS rv;
    797 
    798 	/*
    799 	 * The _PDL object defines the minimum when passive cooling
    800 	 * is being performed. If available, we can use the returned
    801 	 * state or any higher power (i.e. lower numbered) state.
    802 	 */
    803 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
    804 
    805 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
    806 
    807 		if (sc->sc_pstate[val].ps_freq == 0)
    808 			return 1;
    809 
    810 		if (val >= sc->sc_pstate_max) {
    811 			sc->sc_pstate_min = val;
    812 			return 0;
    813 		}
    814 	}
    815 
    816 	return 1;
    817 }
    818 
    819 static void
    820 acpicpu_pstate_change(struct acpicpu_softc *sc)
    821 {
    822 	static ACPI_STATUS rv = AE_OK;
    823 	ACPI_OBJECT_LIST arg;
    824 	ACPI_OBJECT obj[2];
    825 
    826 	acpicpu_pstate_reset(sc);
    827 
    828 	arg.Count = 2;
    829 	arg.Pointer = obj;
    830 
    831 	obj[0].Type = ACPI_TYPE_INTEGER;
    832 	obj[1].Type = ACPI_TYPE_INTEGER;
    833 
    834 	obj[0].Integer.Value = ACPICPU_P_NOTIFY;
    835 	obj[1].Integer.Value = acpicpu_pstate_max(sc);
    836 
    837 	if (sc->sc_passive != false)
    838 		(void)acpicpu_pstate_min(sc);
    839 
    840 	if (ACPI_FAILURE(rv))
    841 		return;
    842 
    843 	rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
    844 }
    845 
    846 static void
    847 acpicpu_pstate_reset(struct acpicpu_softc *sc)
    848 {
    849 
    850 	sc->sc_pstate_max = 0;
    851 	sc->sc_pstate_min = sc->sc_pstate_count - 1;
    852 
    853 }
    854 
    855 static void
    856 acpicpu_pstate_bios(void)
    857 {
    858 	const uint8_t val = AcpiGbl_FADT.PstateControl;
    859 	const uint32_t addr = AcpiGbl_FADT.SmiCommand;
    860 
    861 	if (addr == 0 || val == 0)
    862 		return;
    863 
    864 	(void)AcpiOsWritePort(addr, val, 8);
    865 }
    866 
    867 int
    868 acpicpu_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    869 {
    870 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
    871 	struct acpicpu_pstate *ps = NULL;
    872 	uint32_t i, val = 0;
    873 	uint64_t addr;
    874 	uint8_t width;
    875 	int rv;
    876 
    877 	if (sc->sc_cold != false) {
    878 		rv = EBUSY;
    879 		goto fail;
    880 	}
    881 
    882 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0) {
    883 		rv = ENODEV;
    884 		goto fail;
    885 	}
    886 
    887 	mutex_enter(&sc->sc_mtx);
    888 
    889 	if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
    890 		*freq = sc->sc_pstate_current;
    891 		mutex_exit(&sc->sc_mtx);
    892 		return 0;
    893 	}
    894 
    895 	mutex_exit(&sc->sc_mtx);
    896 
    897 	switch (method) {
    898 
    899 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
    900 
    901 		rv = acpicpu_md_pstate_get(sc, freq);
    902 
    903 		if (rv != 0)
    904 			goto fail;
    905 
    906 		break;
    907 
    908 	case ACPI_ADR_SPACE_SYSTEM_IO:
    909 
    910 		addr  = sc->sc_pstate_status.reg_addr;
    911 		width = sc->sc_pstate_status.reg_bitwidth;
    912 
    913 		(void)AcpiOsReadPort(addr, &val, width);
    914 
    915 		if (val == 0) {
    916 			rv = EIO;
    917 			goto fail;
    918 		}
    919 
    920 		for (i = 0; i < sc->sc_pstate_count; i++) {
    921 
    922 			if (sc->sc_pstate[i].ps_freq == 0)
    923 				continue;
    924 
    925 			if (val == sc->sc_pstate[i].ps_status) {
    926 				ps = &sc->sc_pstate[i];
    927 				break;
    928 			}
    929 		}
    930 
    931 		if (__predict_false(ps == NULL)) {
    932 			rv = EIO;
    933 			goto fail;
    934 		}
    935 
    936 		*freq = ps->ps_freq;
    937 		break;
    938 
    939 	default:
    940 		rv = ENOTTY;
    941 		goto fail;
    942 	}
    943 
    944 	mutex_enter(&sc->sc_mtx);
    945 	sc->sc_pstate_current = *freq;
    946 	mutex_exit(&sc->sc_mtx);
    947 
    948 	return 0;
    949 
    950 fail:
    951 	aprint_error_dev(sc->sc_dev, "failed "
    952 	    "to get frequency (err %d)\n", rv);
    953 
    954 	mutex_enter(&sc->sc_mtx);
    955 	*freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
    956 	mutex_exit(&sc->sc_mtx);
    957 
    958 	return rv;
    959 }
    960 
    961 int
    962 acpicpu_pstate_set(struct acpicpu_softc *sc, uint32_t freq)
    963 {
    964 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
    965 	struct acpicpu_pstate *ps = NULL;
    966 	uint32_t i, val;
    967 	uint64_t addr;
    968 	uint8_t width;
    969 	int rv;
    970 
    971 	if (sc->sc_cold != false) {
    972 		rv = EBUSY;
    973 		goto fail;
    974 	}
    975 
    976 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0) {
    977 		rv = ENODEV;
    978 		goto fail;
    979 	}
    980 
    981 	mutex_enter(&sc->sc_mtx);
    982 
    983 	if (sc->sc_pstate_current == freq) {
    984 		mutex_exit(&sc->sc_mtx);
    985 		return 0;
    986 	}
    987 
    988 	for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
    989 
    990 		if (sc->sc_pstate[i].ps_freq == 0)
    991 			continue;
    992 
    993 		if (sc->sc_pstate[i].ps_freq == freq) {
    994 			ps = &sc->sc_pstate[i];
    995 			break;
    996 		}
    997 	}
    998 
    999 	mutex_exit(&sc->sc_mtx);
   1000 
   1001 	if (__predict_false(ps == NULL)) {
   1002 		rv = EINVAL;
   1003 		goto fail;
   1004 	}
   1005 
   1006 	switch (method) {
   1007 
   1008 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
   1009 
   1010 		rv = acpicpu_md_pstate_set(ps);
   1011 
   1012 		if (rv != 0)
   1013 			goto fail;
   1014 
   1015 		break;
   1016 
   1017 	case ACPI_ADR_SPACE_SYSTEM_IO:
   1018 
   1019 		addr  = sc->sc_pstate_control.reg_addr;
   1020 		width = sc->sc_pstate_control.reg_bitwidth;
   1021 
   1022 		(void)AcpiOsWritePort(addr, ps->ps_control, width);
   1023 
   1024 		addr  = sc->sc_pstate_status.reg_addr;
   1025 		width = sc->sc_pstate_status.reg_bitwidth;
   1026 
   1027 		/*
   1028 		 * Some systems take longer to respond
   1029 		 * than the reported worst-case latency.
   1030 		 */
   1031 		for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
   1032 
   1033 			(void)AcpiOsReadPort(addr, &val, width);
   1034 
   1035 			if (val == ps->ps_status)
   1036 				break;
   1037 
   1038 			DELAY(ps->ps_latency);
   1039 		}
   1040 
   1041 		if (i == ACPICPU_P_STATE_RETRY) {
   1042 			rv = EAGAIN;
   1043 			goto fail;
   1044 		}
   1045 
   1046 		break;
   1047 
   1048 	default:
   1049 		rv = ENOTTY;
   1050 		goto fail;
   1051 	}
   1052 
   1053 	mutex_enter(&sc->sc_mtx);
   1054 	ps->ps_evcnt.ev_count++;
   1055 	sc->sc_pstate_current = freq;
   1056 	mutex_exit(&sc->sc_mtx);
   1057 
   1058 	return 0;
   1059 
   1060 fail:
   1061 	aprint_error_dev(sc->sc_dev, "failed to set "
   1062 	    "frequency to %u (err %d)\n", freq, rv);
   1063 
   1064 	mutex_enter(&sc->sc_mtx);
   1065 	sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
   1066 	mutex_exit(&sc->sc_mtx);
   1067 
   1068 	return rv;
   1069 }
   1070