Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_pstate.c revision 1.29
      1 /* $NetBSD: acpi_cpu_pstate.c,v 1.29 2010/08/17 10:57:30 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.29 2010/08/17 10:57:30 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/evcnt.h>
     34 #include <sys/kmem.h>
     35 #include <sys/once.h>
     36 
     37 #include <dev/acpi/acpireg.h>
     38 #include <dev/acpi/acpivar.h>
     39 #include <dev/acpi/acpi_cpu.h>
     40 
     41 #define _COMPONENT	 ACPI_BUS_COMPONENT
     42 ACPI_MODULE_NAME	 ("acpi_cpu_pstate")
     43 
     44 static void		 acpicpu_pstate_attach_print(struct acpicpu_softc *);
     45 static void		 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *);
     46 static void		 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *);
     47 static ACPI_STATUS	 acpicpu_pstate_pss(struct acpicpu_softc *);
     48 static ACPI_STATUS	 acpicpu_pstate_pss_add(struct acpicpu_pstate *,
     49 						ACPI_OBJECT *);
     50 static ACPI_STATUS	 acpicpu_pstate_xpss(struct acpicpu_softc *);
     51 static ACPI_STATUS	 acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
     52 						 ACPI_OBJECT *);
     53 static ACPI_STATUS	 acpicpu_pstate_pct(struct acpicpu_softc *);
     54 static int		 acpicpu_pstate_max(struct acpicpu_softc *);
     55 static int		 acpicpu_pstate_min(struct acpicpu_softc *);
     56 static void		 acpicpu_pstate_change(struct acpicpu_softc *);
     57 static void		 acpicpu_pstate_reset(struct acpicpu_softc *);
     58 static void		 acpicpu_pstate_bios(void);
     59 
     60 static uint32_t		 acpicpu_pstate_saved = 0;
     61 
     62 void
     63 acpicpu_pstate_attach(device_t self)
     64 {
     65 	struct acpicpu_softc *sc = device_private(self);
     66 	const char *str;
     67 	ACPI_HANDLE tmp;
     68 	ACPI_STATUS rv;
     69 
     70 	rv = acpicpu_pstate_pss(sc);
     71 
     72 	if (ACPI_FAILURE(rv)) {
     73 		str = "_PSS";
     74 		goto fail;
     75 	}
     76 
     77 	/*
     78 	 * Check the availability of extended _PSS.
     79 	 * If present, this will override the data.
     80 	 * Note that XPSS can not be used on Intel
     81 	 * systems where _PDC or _OSC may be used.
     82 	 */
     83 	if (sc->sc_cap == 0) {
     84 
     85 		rv = acpicpu_pstate_xpss(sc);
     86 
     87 		if (ACPI_SUCCESS(rv))
     88 			sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
     89 
     90 		if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND) {
     91 			str = "XPSS";
     92 			goto fail;
     93 		}
     94 	}
     95 
     96 	rv = acpicpu_pstate_pct(sc);
     97 
     98 	if (ACPI_FAILURE(rv)) {
     99 		str = "_PCT";
    100 		goto fail;
    101 	}
    102 
    103 	/*
    104 	 * The ACPI 3.0 and 4.0 specifications mandate three
    105 	 * objects for P-states: _PSS, _PCT, and _PPC. A less
    106 	 * strict wording is however used in the earlier 2.0
    107 	 * standard, and some systems conforming to ACPI 2.0
    108 	 * do not have _PPC, the method for dynamic maximum.
    109 	 */
    110 	rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
    111 
    112 	if (ACPI_FAILURE(rv))
    113 		aprint_debug_dev(self, "_PPC missing\n");
    114 
    115 	sc->sc_flags |= ACPICPU_FLAG_P;
    116 
    117 	acpicpu_pstate_bios();
    118 	acpicpu_pstate_reset(sc);
    119 	acpicpu_pstate_attach_evcnt(sc);
    120 	acpicpu_pstate_attach_print(sc);
    121 
    122 	return;
    123 
    124 fail:
    125 	switch (rv) {
    126 
    127 	case AE_NOT_FOUND:
    128 		return;
    129 
    130 	case AE_SUPPORT:
    131 		aprint_verbose_dev(sc->sc_dev, "P-states not supported\n");
    132 		return;
    133 
    134 	default:
    135 		aprint_error_dev(sc->sc_dev, "failed to evaluate "
    136 		    "%s: %s\n", str, AcpiFormatException(rv));
    137 	}
    138 }
    139 
    140 static void
    141 acpicpu_pstate_attach_print(struct acpicpu_softc *sc)
    142 {
    143 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
    144 	struct acpicpu_pstate *ps;
    145 	static bool once = false;
    146 	const char *str;
    147 	uint32_t i;
    148 
    149 	if (once != false)
    150 		return;
    151 
    152 	str = (method != ACPI_ADR_SPACE_SYSTEM_IO) ? "FFH" : "I/O";
    153 
    154 	for (i = 0; i < sc->sc_pstate_count; i++) {
    155 
    156 		ps = &sc->sc_pstate[i];
    157 
    158 		if (ps->ps_freq == 0)
    159 			continue;
    160 
    161 		aprint_debug_dev(sc->sc_dev, "P%d: %3s, "
    162 		    "lat %3u us, pow %5u mW, %4u MHz\n", i, str,
    163 		    ps->ps_latency, ps->ps_power, ps->ps_freq);
    164 	}
    165 
    166 	once = true;
    167 }
    168 
    169 static void
    170 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *sc)
    171 {
    172 	struct acpicpu_pstate *ps;
    173 	uint32_t i;
    174 
    175 	for (i = 0; i < sc->sc_pstate_count; i++) {
    176 
    177 		ps = &sc->sc_pstate[i];
    178 
    179 		if (ps->ps_freq == 0)
    180 			continue;
    181 
    182 		(void)snprintf(ps->ps_name, sizeof(ps->ps_name),
    183 		    "P%u (%u MHz)", i, ps->ps_freq);
    184 
    185 		evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
    186 		    NULL, device_xname(sc->sc_dev), ps->ps_name);
    187 	}
    188 }
    189 
    190 int
    191 acpicpu_pstate_detach(device_t self)
    192 {
    193 	struct acpicpu_softc *sc = device_private(self);
    194 	static ONCE_DECL(once_detach);
    195 	size_t size;
    196 	int rv;
    197 
    198 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
    199 		return 0;
    200 
    201 	rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
    202 
    203 	if (rv != 0)
    204 		return rv;
    205 
    206 	size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
    207 
    208 	if (sc->sc_pstate != NULL)
    209 		kmem_free(sc->sc_pstate, size);
    210 
    211 	sc->sc_flags &= ~ACPICPU_FLAG_P;
    212 	acpicpu_pstate_detach_evcnt(sc);
    213 
    214 	return 0;
    215 }
    216 
    217 static void
    218 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *sc)
    219 {
    220 	struct acpicpu_pstate *ps;
    221 	uint32_t i;
    222 
    223 	for (i = 0; i < sc->sc_pstate_count; i++) {
    224 
    225 		ps = &sc->sc_pstate[i];
    226 
    227 		if (ps->ps_freq != 0)
    228 			evcnt_detach(&ps->ps_evcnt);
    229 	}
    230 }
    231 
    232 void
    233 acpicpu_pstate_start(device_t self)
    234 {
    235 	struct acpicpu_softc *sc = device_private(self);
    236 	struct acpicpu_pstate *ps;
    237 	uint32_t i;
    238 	int rv;
    239 
    240 	rv = acpicpu_md_pstate_start();
    241 
    242 	if (rv != 0)
    243 		goto fail;
    244 
    245 	/*
    246 	 * Initialize the state to P0.
    247 	 */
    248 	for (i = 0, rv = ENXIO; i < sc->sc_pstate_count; i++) {
    249 
    250 		ps = &sc->sc_pstate[i];
    251 
    252 		if (ps->ps_freq != 0) {
    253 			sc->sc_cold = false;
    254 			rv = acpicpu_pstate_set(sc, ps->ps_freq);
    255 			break;
    256 		}
    257 	}
    258 
    259 	if (rv != 0)
    260 		goto fail;
    261 
    262 	return;
    263 
    264 fail:
    265 	sc->sc_flags &= ~ACPICPU_FLAG_P;
    266 	aprint_error_dev(self, "failed to start P-states (err %d)\n", rv);
    267 }
    268 
    269 bool
    270 acpicpu_pstate_suspend(device_t self)
    271 {
    272 	struct acpicpu_softc *sc = device_private(self);
    273 	struct acpicpu_pstate *ps = NULL;
    274 	int32_t i;
    275 
    276 	mutex_enter(&sc->sc_mtx);
    277 	acpicpu_pstate_reset(sc);
    278 	mutex_exit(&sc->sc_mtx);
    279 
    280 	if (acpicpu_pstate_saved != 0)
    281 		return true;
    282 
    283 	/*
    284 	 * Following design notes for Windows, we set the highest
    285 	 * P-state when entering any of the system sleep states.
    286 	 * When resuming, the saved P-state will be restored.
    287 	 *
    288 	 *	Microsoft Corporation: Windows Native Processor
    289 	 *	Performance Control. Version 1.1a, November, 2002.
    290 	 */
    291 	for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
    292 
    293 		if (sc->sc_pstate[i].ps_freq != 0) {
    294 			ps = &sc->sc_pstate[i];
    295 			break;
    296 		}
    297 	}
    298 
    299 	if (__predict_false(ps == NULL))
    300 		return true;
    301 
    302 	mutex_enter(&sc->sc_mtx);
    303 	acpicpu_pstate_saved = sc->sc_pstate_current;
    304 	mutex_exit(&sc->sc_mtx);
    305 
    306 	if (acpicpu_pstate_saved == ps->ps_freq)
    307 		return true;
    308 
    309 	(void)acpicpu_pstate_set(sc, ps->ps_freq);
    310 
    311 	return true;
    312 }
    313 
    314 bool
    315 acpicpu_pstate_resume(device_t self)
    316 {
    317 	struct acpicpu_softc *sc = device_private(self);
    318 
    319 	if (acpicpu_pstate_saved != 0) {
    320 		(void)acpicpu_pstate_set(sc, acpicpu_pstate_saved);
    321 		acpicpu_pstate_saved = 0;
    322 	}
    323 
    324 	return true;
    325 }
    326 
    327 void
    328 acpicpu_pstate_callback(void *aux)
    329 {
    330 	struct acpicpu_softc *sc;
    331 	device_t self = aux;
    332 	uint32_t old, new;
    333 
    334 	sc = device_private(self);
    335 
    336 	mutex_enter(&sc->sc_mtx);
    337 	old = sc->sc_pstate_max;
    338 	acpicpu_pstate_change(sc);
    339 	new = sc->sc_pstate_max;
    340 	mutex_exit(&sc->sc_mtx);
    341 
    342 	if (old != new) {
    343 
    344 		aprint_debug_dev(sc->sc_dev, "maximum frequency "
    345 		    "changed from P%u (%u MHz) to P%u (%u MHz)\n",
    346 		    old, sc->sc_pstate[old].ps_freq, new,
    347 		    sc->sc_pstate[sc->sc_pstate_max].ps_freq);
    348 #if 0
    349 		/*
    350 		 * If the maximum changed, proactively
    351 		 * raise or lower the target frequency.
    352 		 */
    353 		(void)acpicpu_pstate_set(sc, sc->sc_pstate[new].ps_freq);
    354 
    355 #endif
    356 	}
    357 }
    358 
    359 ACPI_STATUS
    360 acpicpu_pstate_pss(struct acpicpu_softc *sc)
    361 {
    362 	struct acpicpu_pstate *ps;
    363 	ACPI_OBJECT *obj;
    364 	ACPI_BUFFER buf;
    365 	ACPI_STATUS rv;
    366 	uint32_t count;
    367 	uint32_t i, j;
    368 
    369 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
    370 
    371 	if (ACPI_FAILURE(rv))
    372 		return rv;
    373 
    374 	obj = buf.Pointer;
    375 
    376 	if (obj->Type != ACPI_TYPE_PACKAGE) {
    377 		rv = AE_TYPE;
    378 		goto out;
    379 	}
    380 
    381 	sc->sc_pstate_count = obj->Package.Count;
    382 
    383 	if (sc->sc_pstate_count == 0) {
    384 		rv = AE_NOT_EXIST;
    385 		goto out;
    386 	}
    387 
    388 	if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
    389 		rv = AE_LIMIT;
    390 		goto out;
    391 	}
    392 
    393 	sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
    394 	    sizeof(struct acpicpu_pstate), KM_SLEEP);
    395 
    396 	if (sc->sc_pstate == NULL) {
    397 		rv = AE_NO_MEMORY;
    398 		goto out;
    399 	}
    400 
    401 	for (count = i = 0; i < sc->sc_pstate_count; i++) {
    402 
    403 		ps = &sc->sc_pstate[i];
    404 		rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
    405 
    406 		if (ACPI_FAILURE(rv)) {
    407 			ps->ps_freq = 0;
    408 			continue;
    409 		}
    410 
    411 		for (j = 0; j < i; j++) {
    412 
    413 			if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
    414 				ps->ps_freq = 0;
    415 				break;
    416 			}
    417 		}
    418 
    419 		if (ps->ps_freq != 0)
    420 			count++;
    421 	}
    422 
    423 	rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
    424 
    425 out:
    426 	if (buf.Pointer != NULL)
    427 		ACPI_FREE(buf.Pointer);
    428 
    429 	return rv;
    430 }
    431 
    432 static ACPI_STATUS
    433 acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
    434 {
    435 	ACPI_OBJECT *elm;
    436 	int i;
    437 
    438 	if (obj->Type != ACPI_TYPE_PACKAGE)
    439 		return AE_TYPE;
    440 
    441 	if (obj->Package.Count != 6)
    442 		return AE_BAD_DATA;
    443 
    444 	elm = obj->Package.Elements;
    445 
    446 	for (i = 0; i < 6; i++) {
    447 
    448 		if (elm[i].Type != ACPI_TYPE_INTEGER)
    449 			return AE_TYPE;
    450 
    451 		if (elm[i].Integer.Value > UINT32_MAX)
    452 			return AE_AML_NUMERIC_OVERFLOW;
    453 	}
    454 
    455 	ps->ps_freq       = elm[0].Integer.Value;
    456 	ps->ps_power      = elm[1].Integer.Value;
    457 	ps->ps_latency    = elm[2].Integer.Value;
    458 	ps->ps_latency_bm = elm[3].Integer.Value;
    459 	ps->ps_control    = elm[4].Integer.Value;
    460 	ps->ps_status     = elm[5].Integer.Value;
    461 
    462 	if (ps->ps_freq == 0 || ps->ps_freq > 9999)
    463 		return AE_BAD_DECIMAL_CONSTANT;
    464 
    465 	/*
    466 	 * The latency is typically around 10 usec
    467 	 * on Intel CPUs. Use that as the minimum.
    468 	 */
    469 	if (ps->ps_latency < 10)
    470 		ps->ps_latency = 10;
    471 
    472 	return AE_OK;
    473 }
    474 
    475 static ACPI_STATUS
    476 acpicpu_pstate_xpss(struct acpicpu_softc *sc)
    477 {
    478 	static const size_t size = sizeof(struct acpicpu_pstate);
    479 	struct acpicpu_pstate *ps;
    480 	ACPI_OBJECT *obj;
    481 	ACPI_BUFFER buf;
    482 	ACPI_STATUS rv;
    483 	uint32_t count;
    484 	uint32_t i, j;
    485 
    486 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
    487 
    488 	if (ACPI_FAILURE(rv))
    489 		return rv;
    490 
    491 	obj = buf.Pointer;
    492 
    493 	if (obj->Type != ACPI_TYPE_PACKAGE) {
    494 		rv = AE_TYPE;
    495 		goto out;
    496 	}
    497 
    498 	count = obj->Package.Count;
    499 
    500 	if (count == 0) {
    501 		rv = AE_NOT_EXIST;
    502 		goto out;
    503 	}
    504 
    505 	if (count > ACPICPU_P_STATE_MAX) {
    506 		rv = AE_LIMIT;
    507 		goto out;
    508 	}
    509 
    510 	if (sc->sc_pstate != NULL)
    511 		kmem_free(sc->sc_pstate, sc->sc_pstate_count * size);
    512 
    513 	sc->sc_pstate = kmem_zalloc(count * size, KM_SLEEP);
    514 
    515 	if (sc->sc_pstate == NULL) {
    516 		rv = AE_NO_MEMORY;
    517 		goto out;
    518 	}
    519 
    520 	sc->sc_pstate_count = count;
    521 
    522 	for (count = i = 0; i < sc->sc_pstate_count; i++) {
    523 
    524 		ps = &sc->sc_pstate[i];
    525 		rv = acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
    526 
    527 		if (ACPI_FAILURE(rv)) {
    528 			ps->ps_freq = 0;
    529 			continue;
    530 		}
    531 
    532 		for (j = 0; j < i; j++) {
    533 
    534 			if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
    535 				ps->ps_freq = 0;
    536 				break;
    537 			}
    538 		}
    539 
    540 		if (ps->ps_freq != 0)
    541 			count++;
    542 	}
    543 
    544 	rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
    545 
    546 out:
    547 	if (buf.Pointer != NULL)
    548 		ACPI_FREE(buf.Pointer);
    549 
    550 	return rv;
    551 }
    552 
    553 static ACPI_STATUS
    554 acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
    555 {
    556 	static const size_t size = sizeof(uint64_t);
    557 	ACPI_OBJECT *elm;
    558 	int i;
    559 
    560 	if (obj->Type != ACPI_TYPE_PACKAGE)
    561 		return AE_TYPE;
    562 
    563 	if (obj->Package.Count != 8)
    564 		return AE_BAD_DATA;
    565 
    566 	elm = obj->Package.Elements;
    567 
    568 	for (i = 0; i < 4; i++) {
    569 
    570 		if (elm[i].Type != ACPI_TYPE_INTEGER)
    571 			return AE_TYPE;
    572 
    573 		if (elm[i].Integer.Value > UINT32_MAX)
    574 			return AE_AML_NUMERIC_OVERFLOW;
    575 	}
    576 
    577 	for (; i < 8; i++) {
    578 
    579 		if (elm[i].Type != ACPI_TYPE_BUFFER)
    580 			return AE_TYPE;
    581 
    582 		if (elm[i].Buffer.Length > size)
    583 			return AE_LIMIT;
    584 	}
    585 
    586 	ps->ps_freq       = elm[0].Integer.Value;
    587 	ps->ps_power      = elm[1].Integer.Value;
    588 	ps->ps_latency    = elm[2].Integer.Value;
    589 	ps->ps_latency_bm = elm[3].Integer.Value;
    590 
    591 	if (ps->ps_freq == 0 || ps->ps_freq > 9999)
    592 		return AE_BAD_DECIMAL_CONSTANT;
    593 
    594 	(void)memcpy(&ps->ps_control, elm[4].Buffer.Pointer, size);
    595 	(void)memcpy(&ps->ps_status,  elm[5].Buffer.Pointer, size);
    596 
    597 	(void)memcpy(&ps->ps_control_mask, elm[6].Buffer.Pointer, size);
    598 	(void)memcpy(&ps->ps_status_mask,  elm[7].Buffer.Pointer, size);
    599 
    600 	/*
    601 	 * The latency is often defined to be
    602 	 * zero on AMD systems. Raise that to 1.
    603 	 */
    604 	if (ps->ps_latency == 0)
    605 		ps->ps_latency = 1;
    606 
    607 	ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
    608 
    609 	return AE_OK;
    610 }
    611 
    612 ACPI_STATUS
    613 acpicpu_pstate_pct(struct acpicpu_softc *sc)
    614 {
    615 	static const size_t size = sizeof(struct acpicpu_reg);
    616 	struct acpicpu_reg *reg[2];
    617 	struct acpicpu_pstate *ps;
    618 	ACPI_OBJECT *elm, *obj;
    619 	ACPI_BUFFER buf;
    620 	ACPI_STATUS rv;
    621 	uint8_t width;
    622 	uint32_t i;
    623 
    624 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
    625 
    626 	if (ACPI_FAILURE(rv))
    627 		return rv;
    628 
    629 	obj = buf.Pointer;
    630 
    631 	if (obj->Type != ACPI_TYPE_PACKAGE) {
    632 		rv = AE_TYPE;
    633 		goto out;
    634 	}
    635 
    636 	if (obj->Package.Count != 2) {
    637 		rv = AE_LIMIT;
    638 		goto out;
    639 	}
    640 
    641 	for (i = 0; i < 2; i++) {
    642 
    643 		elm = &obj->Package.Elements[i];
    644 
    645 		if (elm->Type != ACPI_TYPE_BUFFER) {
    646 			rv = AE_TYPE;
    647 			goto out;
    648 		}
    649 
    650 		if (size > elm->Buffer.Length) {
    651 			rv = AE_AML_BAD_RESOURCE_LENGTH;
    652 			goto out;
    653 		}
    654 
    655 		reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
    656 
    657 		switch (reg[i]->reg_spaceid) {
    658 
    659 		case ACPI_ADR_SPACE_SYSTEM_IO:
    660 
    661 			if (reg[i]->reg_addr == 0) {
    662 				rv = AE_AML_ILLEGAL_ADDRESS;
    663 				goto out;
    664 			}
    665 
    666 			width = reg[i]->reg_bitwidth;
    667 
    668 			if (width + reg[i]->reg_bitoffset > 32) {
    669 				rv = AE_AML_BAD_RESOURCE_VALUE;
    670 				goto out;
    671 			}
    672 
    673 			if (width != 8 && width != 16 && width != 32) {
    674 				rv = AE_AML_BAD_RESOURCE_VALUE;
    675 				goto out;
    676 			}
    677 
    678 			break;
    679 
    680 		case ACPI_ADR_SPACE_FIXED_HARDWARE:
    681 
    682 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
    683 
    684 				if (reg[i]->reg_bitwidth != 64) {
    685 					rv = AE_AML_BAD_RESOURCE_VALUE;
    686 					goto out;
    687 				}
    688 
    689 				if (reg[i]->reg_bitoffset != 0) {
    690 					rv = AE_AML_BAD_RESOURCE_VALUE;
    691 					goto out;
    692 				}
    693 
    694 				break;
    695 			}
    696 
    697 			if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
    698 				rv = AE_SUPPORT;
    699 				goto out;
    700 			}
    701 
    702 			break;
    703 
    704 		default:
    705 			rv = AE_AML_INVALID_SPACE_ID;
    706 			goto out;
    707 		}
    708 	}
    709 
    710 	if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
    711 		rv = AE_AML_INVALID_SPACE_ID;
    712 		goto out;
    713 	}
    714 
    715 	(void)memcpy(&sc->sc_pstate_control, reg[0], size);
    716 	(void)memcpy(&sc->sc_pstate_status,  reg[1], size);
    717 
    718 	if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    719 		goto out;
    720 
    721 	/*
    722 	 * In XPSS the control address can not be zero,
    723 	 * but the status address may be. In this case,
    724 	 * comparable to T-states, we can ignore the status
    725 	 * check during the P-state (FFH) transition.
    726 	 */
    727 	if (sc->sc_pstate_control.reg_addr == 0) {
    728 		rv = AE_AML_BAD_RESOURCE_LENGTH;
    729 		goto out;
    730 	}
    731 
    732 	/*
    733 	 * If XPSS is present, copy the MSR addresses
    734 	 * to the P-state structures for convenience.
    735 	 */
    736 	for (i = 0; i < sc->sc_pstate_count; i++) {
    737 
    738 		ps = &sc->sc_pstate[i];
    739 
    740 		if (ps->ps_freq == 0)
    741 			continue;
    742 
    743 		ps->ps_status_addr  = sc->sc_pstate_status.reg_addr;
    744 		ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
    745 	}
    746 
    747 out:
    748 	if (buf.Pointer != NULL)
    749 		ACPI_FREE(buf.Pointer);
    750 
    751 	return rv;
    752 }
    753 
    754 static int
    755 acpicpu_pstate_max(struct acpicpu_softc *sc)
    756 {
    757 	ACPI_INTEGER val;
    758 	ACPI_STATUS rv;
    759 
    760 	/*
    761 	 * Evaluate the currently highest P-state that can be used.
    762 	 * If available, we can use either this state or any lower
    763 	 * power (i.e. higher numbered) state from the _PSS object.
    764 	 * Note that the return value must match the _OST parameter.
    765 	 */
    766 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
    767 
    768 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
    769 
    770 		if (sc->sc_pstate[val].ps_freq != 0) {
    771 			sc->sc_pstate_max = val;
    772 			return 0;
    773 		}
    774 	}
    775 
    776 	return 1;
    777 }
    778 
    779 static int
    780 acpicpu_pstate_min(struct acpicpu_softc *sc)
    781 {
    782 	ACPI_INTEGER val;
    783 	ACPI_STATUS rv;
    784 
    785 	/*
    786 	 * The _PDL object defines the minimum when passive cooling
    787 	 * is being performed. If available, we can use the returned
    788 	 * state or any higher power (i.e. lower numbered) state.
    789 	 */
    790 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
    791 
    792 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
    793 
    794 		if (sc->sc_pstate[val].ps_freq == 0)
    795 			return 1;
    796 
    797 		if (val >= sc->sc_pstate_max) {
    798 			sc->sc_pstate_min = val;
    799 			return 0;
    800 		}
    801 	}
    802 
    803 	return 1;
    804 }
    805 
    806 static void
    807 acpicpu_pstate_change(struct acpicpu_softc *sc)
    808 {
    809 	static ACPI_STATUS rv = AE_OK;
    810 	ACPI_OBJECT_LIST arg;
    811 	ACPI_OBJECT obj[2];
    812 
    813 	acpicpu_pstate_reset(sc);
    814 
    815 	arg.Count = 2;
    816 	arg.Pointer = obj;
    817 
    818 	obj[0].Type = ACPI_TYPE_INTEGER;
    819 	obj[1].Type = ACPI_TYPE_INTEGER;
    820 
    821 	obj[0].Integer.Value = ACPICPU_P_NOTIFY;
    822 	obj[1].Integer.Value = acpicpu_pstate_max(sc);
    823 
    824 	if (sc->sc_passive != false)
    825 		(void)acpicpu_pstate_min(sc);
    826 
    827 	if (ACPI_FAILURE(rv))
    828 		return;
    829 
    830 	rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
    831 }
    832 
    833 static void
    834 acpicpu_pstate_reset(struct acpicpu_softc *sc)
    835 {
    836 
    837 	sc->sc_pstate_max = 0;
    838 	sc->sc_pstate_min = sc->sc_pstate_count - 1;
    839 
    840 }
    841 
    842 static void
    843 acpicpu_pstate_bios(void)
    844 {
    845 	const uint8_t val = AcpiGbl_FADT.PstateControl;
    846 	const uint32_t addr = AcpiGbl_FADT.SmiCommand;
    847 
    848 	if (addr == 0 || val == 0)
    849 		return;
    850 
    851 	(void)AcpiOsWritePort(addr, val, 8);
    852 }
    853 
    854 int
    855 acpicpu_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    856 {
    857 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
    858 	struct acpicpu_pstate *ps = NULL;
    859 	uint32_t i, val = 0;
    860 	uint64_t addr;
    861 	uint8_t width;
    862 	int rv;
    863 
    864 	if (sc->sc_cold != false) {
    865 		rv = EBUSY;
    866 		goto fail;
    867 	}
    868 
    869 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0) {
    870 		rv = ENODEV;
    871 		goto fail;
    872 	}
    873 
    874 	mutex_enter(&sc->sc_mtx);
    875 
    876 	if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
    877 		*freq = sc->sc_pstate_current;
    878 		mutex_exit(&sc->sc_mtx);
    879 		return 0;
    880 	}
    881 
    882 	mutex_exit(&sc->sc_mtx);
    883 
    884 	switch (method) {
    885 
    886 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
    887 
    888 		rv = acpicpu_md_pstate_get(sc, freq);
    889 
    890 		if (rv != 0)
    891 			goto fail;
    892 
    893 		break;
    894 
    895 	case ACPI_ADR_SPACE_SYSTEM_IO:
    896 
    897 		addr  = sc->sc_pstate_status.reg_addr;
    898 		width = sc->sc_pstate_status.reg_bitwidth;
    899 
    900 		(void)AcpiOsReadPort(addr, &val, width);
    901 
    902 		if (val == 0) {
    903 			rv = EIO;
    904 			goto fail;
    905 		}
    906 
    907 		for (i = 0; i < sc->sc_pstate_count; i++) {
    908 
    909 			if (sc->sc_pstate[i].ps_freq == 0)
    910 				continue;
    911 
    912 			if (val == sc->sc_pstate[i].ps_status) {
    913 				ps = &sc->sc_pstate[i];
    914 				break;
    915 			}
    916 		}
    917 
    918 		if (__predict_false(ps == NULL)) {
    919 			rv = EIO;
    920 			goto fail;
    921 		}
    922 
    923 		*freq = ps->ps_freq;
    924 		break;
    925 
    926 	default:
    927 		rv = ENOTTY;
    928 		goto fail;
    929 	}
    930 
    931 	mutex_enter(&sc->sc_mtx);
    932 	sc->sc_pstate_current = *freq;
    933 	mutex_exit(&sc->sc_mtx);
    934 
    935 	return 0;
    936 
    937 fail:
    938 	aprint_error_dev(sc->sc_dev, "failed "
    939 	    "to get frequency (err %d)\n", rv);
    940 
    941 	mutex_enter(&sc->sc_mtx);
    942 	*freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
    943 	mutex_exit(&sc->sc_mtx);
    944 
    945 	return rv;
    946 }
    947 
    948 int
    949 acpicpu_pstate_set(struct acpicpu_softc *sc, uint32_t freq)
    950 {
    951 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
    952 	struct acpicpu_pstate *ps = NULL;
    953 	uint32_t i, val;
    954 	uint64_t addr;
    955 	uint8_t width;
    956 	int rv;
    957 
    958 	if (sc->sc_cold != false) {
    959 		rv = EBUSY;
    960 		goto fail;
    961 	}
    962 
    963 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0) {
    964 		rv = ENODEV;
    965 		goto fail;
    966 	}
    967 
    968 	mutex_enter(&sc->sc_mtx);
    969 
    970 	for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
    971 
    972 		if (sc->sc_pstate[i].ps_freq == 0)
    973 			continue;
    974 
    975 		if (sc->sc_pstate[i].ps_freq == freq) {
    976 			ps = &sc->sc_pstate[i];
    977 			break;
    978 		}
    979 	}
    980 
    981 	mutex_exit(&sc->sc_mtx);
    982 
    983 	if (__predict_false(ps == NULL)) {
    984 		rv = EINVAL;
    985 		goto fail;
    986 	}
    987 
    988 	switch (method) {
    989 
    990 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
    991 
    992 		rv = acpicpu_md_pstate_set(ps);
    993 
    994 		if (rv != 0)
    995 			goto fail;
    996 
    997 		break;
    998 
    999 	case ACPI_ADR_SPACE_SYSTEM_IO:
   1000 
   1001 		addr  = sc->sc_pstate_control.reg_addr;
   1002 		width = sc->sc_pstate_control.reg_bitwidth;
   1003 
   1004 		(void)AcpiOsWritePort(addr, ps->ps_control, width);
   1005 
   1006 		addr  = sc->sc_pstate_status.reg_addr;
   1007 		width = sc->sc_pstate_status.reg_bitwidth;
   1008 
   1009 		/*
   1010 		 * Some systems take longer to respond
   1011 		 * than the reported worst-case latency.
   1012 		 */
   1013 		for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
   1014 
   1015 			(void)AcpiOsReadPort(addr, &val, width);
   1016 
   1017 			if (val == ps->ps_status)
   1018 				break;
   1019 
   1020 			DELAY(ps->ps_latency);
   1021 		}
   1022 
   1023 		if (i == ACPICPU_P_STATE_RETRY) {
   1024 			rv = EAGAIN;
   1025 			goto fail;
   1026 		}
   1027 
   1028 		break;
   1029 
   1030 	default:
   1031 		rv = ENOTTY;
   1032 		goto fail;
   1033 	}
   1034 
   1035 	mutex_enter(&sc->sc_mtx);
   1036 	ps->ps_evcnt.ev_count++;
   1037 	sc->sc_pstate_current = freq;
   1038 	mutex_exit(&sc->sc_mtx);
   1039 
   1040 	return 0;
   1041 
   1042 fail:
   1043 	aprint_error_dev(sc->sc_dev, "failed to set "
   1044 	    "frequency to %u (err %d)\n", freq, rv);
   1045 
   1046 	mutex_enter(&sc->sc_mtx);
   1047 	sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
   1048 	mutex_exit(&sc->sc_mtx);
   1049 
   1050 	return rv;
   1051 }
   1052