acpi_cpu_pstate.c revision 1.36 1 /* $NetBSD: acpi_cpu_pstate.c,v 1.36 2010/12/30 12:05:02 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.36 2010/12/30 12:05:02 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/evcnt.h>
34 #include <sys/kmem.h>
35 #include <sys/once.h>
36
37 #include <dev/acpi/acpireg.h>
38 #include <dev/acpi/acpivar.h>
39 #include <dev/acpi/acpi_cpu.h>
40
41 #define _COMPONENT ACPI_BUS_COMPONENT
42 ACPI_MODULE_NAME ("acpi_cpu_pstate")
43
44 static void acpicpu_pstate_attach_print(struct acpicpu_softc *);
45 static void acpicpu_pstate_attach_evcnt(struct acpicpu_softc *);
46 static void acpicpu_pstate_detach_evcnt(struct acpicpu_softc *);
47 static ACPI_STATUS acpicpu_pstate_pss(struct acpicpu_softc *);
48 static ACPI_STATUS acpicpu_pstate_pss_add(struct acpicpu_pstate *,
49 ACPI_OBJECT *);
50 static ACPI_STATUS acpicpu_pstate_xpss(struct acpicpu_softc *);
51 static ACPI_STATUS acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
52 ACPI_OBJECT *);
53 static ACPI_STATUS acpicpu_pstate_pct(struct acpicpu_softc *);
54 static int acpicpu_pstate_max(struct acpicpu_softc *);
55 static int acpicpu_pstate_min(struct acpicpu_softc *);
56 static void acpicpu_pstate_change(struct acpicpu_softc *);
57 static void acpicpu_pstate_reset(struct acpicpu_softc *);
58 static void acpicpu_pstate_bios(void);
59
60 static uint32_t acpicpu_pstate_saved = 0;
61
62 void
63 acpicpu_pstate_attach(device_t self)
64 {
65 struct acpicpu_softc *sc = device_private(self);
66 const char *str;
67 ACPI_HANDLE tmp;
68 ACPI_STATUS rv;
69
70 rv = acpicpu_pstate_pss(sc);
71
72 if (ACPI_FAILURE(rv)) {
73 str = "_PSS";
74 goto fail;
75 }
76
77 /*
78 * Append additional information from the
79 * extended _PSS, if available. Note that
80 * XPSS can not be used on Intel systems
81 * that use either _PDC or _OSC.
82 */
83 if (sc->sc_cap == 0) {
84
85 rv = acpicpu_pstate_xpss(sc);
86
87 if (ACPI_SUCCESS(rv))
88 sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
89 }
90
91 rv = acpicpu_pstate_pct(sc);
92
93 if (ACPI_FAILURE(rv)) {
94 str = "_PCT";
95 goto fail;
96 }
97
98 /*
99 * The ACPI 3.0 and 4.0 specifications mandate three
100 * objects for P-states: _PSS, _PCT, and _PPC. A less
101 * strict wording is however used in the earlier 2.0
102 * standard, and some systems conforming to ACPI 2.0
103 * do not have _PPC, the method for dynamic maximum.
104 */
105 rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
106
107 if (ACPI_FAILURE(rv))
108 aprint_debug_dev(self, "_PPC missing\n");
109
110 /*
111 * Employ the XPSS structure by filling
112 * it with MD information required for FFH.
113 */
114 rv = acpicpu_md_pstate_pss(sc);
115
116 if (rv != 0) {
117 rv = AE_SUPPORT;
118 goto fail;
119 }
120
121 sc->sc_flags |= ACPICPU_FLAG_P;
122
123 acpicpu_pstate_bios();
124 acpicpu_pstate_reset(sc);
125 acpicpu_pstate_attach_evcnt(sc);
126 acpicpu_pstate_attach_print(sc);
127
128 return;
129
130 fail:
131 switch (rv) {
132
133 case AE_NOT_FOUND:
134 return;
135
136 case AE_SUPPORT:
137 aprint_verbose_dev(sc->sc_dev, "P-states not supported\n");
138 return;
139
140 default:
141 aprint_error_dev(sc->sc_dev, "failed to evaluate "
142 "%s: %s\n", str, AcpiFormatException(rv));
143 }
144 }
145
146 static void
147 acpicpu_pstate_attach_print(struct acpicpu_softc *sc)
148 {
149 const uint8_t method = sc->sc_pstate_control.reg_spaceid;
150 struct acpicpu_pstate *ps;
151 static bool once = false;
152 const char *str;
153 uint32_t i;
154
155 if (once != false)
156 return;
157
158 str = (method != ACPI_ADR_SPACE_SYSTEM_IO) ? "FFH" : "I/O";
159
160 for (i = 0; i < sc->sc_pstate_count; i++) {
161
162 ps = &sc->sc_pstate[i];
163
164 if (ps->ps_freq == 0)
165 continue;
166
167 aprint_debug_dev(sc->sc_dev, "P%d: %3s, "
168 "lat %3u us, pow %5u mW, %4u MHz\n", i, str,
169 ps->ps_latency, ps->ps_power, ps->ps_freq);
170 }
171
172 once = true;
173 }
174
175 static void
176 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *sc)
177 {
178 struct acpicpu_pstate *ps;
179 uint32_t i;
180
181 for (i = 0; i < sc->sc_pstate_count; i++) {
182
183 ps = &sc->sc_pstate[i];
184
185 if (ps->ps_freq == 0)
186 continue;
187
188 (void)snprintf(ps->ps_name, sizeof(ps->ps_name),
189 "P%u (%u MHz)", i, ps->ps_freq);
190
191 evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
192 NULL, device_xname(sc->sc_dev), ps->ps_name);
193 }
194 }
195
196 int
197 acpicpu_pstate_detach(device_t self)
198 {
199 struct acpicpu_softc *sc = device_private(self);
200 static ONCE_DECL(once_detach);
201 size_t size;
202 int rv;
203
204 if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
205 return 0;
206
207 rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
208
209 if (rv != 0)
210 return rv;
211
212 size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
213
214 if (sc->sc_pstate != NULL)
215 kmem_free(sc->sc_pstate, size);
216
217 sc->sc_flags &= ~ACPICPU_FLAG_P;
218 acpicpu_pstate_detach_evcnt(sc);
219
220 return 0;
221 }
222
223 static void
224 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *sc)
225 {
226 struct acpicpu_pstate *ps;
227 uint32_t i;
228
229 for (i = 0; i < sc->sc_pstate_count; i++) {
230
231 ps = &sc->sc_pstate[i];
232
233 if (ps->ps_freq != 0)
234 evcnt_detach(&ps->ps_evcnt);
235 }
236 }
237
238 void
239 acpicpu_pstate_start(device_t self)
240 {
241 struct acpicpu_softc *sc = device_private(self);
242 struct acpicpu_pstate *ps;
243 uint32_t i;
244 int rv;
245
246 rv = acpicpu_md_pstate_start();
247
248 if (rv != 0)
249 goto fail;
250
251 /*
252 * Initialize the state to P0.
253 */
254 for (i = 0, rv = ENXIO; i < sc->sc_pstate_count; i++) {
255
256 ps = &sc->sc_pstate[i];
257
258 if (ps->ps_freq != 0) {
259 sc->sc_cold = false;
260 rv = acpicpu_pstate_set(sc, ps->ps_freq);
261 break;
262 }
263 }
264
265 if (rv != 0)
266 goto fail;
267
268 return;
269
270 fail:
271 sc->sc_flags &= ~ACPICPU_FLAG_P;
272
273 if (rv == EEXIST) {
274 aprint_error_dev(self, "driver conflicts with existing one\n");
275 return;
276 }
277
278 aprint_error_dev(self, "failed to start P-states (err %d)\n", rv);
279 }
280
281 bool
282 acpicpu_pstate_suspend(device_t self)
283 {
284 struct acpicpu_softc *sc = device_private(self);
285 struct acpicpu_pstate *ps = NULL;
286 int32_t i;
287
288 mutex_enter(&sc->sc_mtx);
289 acpicpu_pstate_reset(sc);
290 mutex_exit(&sc->sc_mtx);
291
292 if (acpicpu_pstate_saved != 0)
293 return true;
294
295 /*
296 * Following design notes for Windows, we set the highest
297 * P-state when entering any of the system sleep states.
298 * When resuming, the saved P-state will be restored.
299 *
300 * Microsoft Corporation: Windows Native Processor
301 * Performance Control. Version 1.1a, November, 2002.
302 */
303 for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
304
305 if (sc->sc_pstate[i].ps_freq != 0) {
306 ps = &sc->sc_pstate[i];
307 break;
308 }
309 }
310
311 if (__predict_false(ps == NULL))
312 return true;
313
314 mutex_enter(&sc->sc_mtx);
315 acpicpu_pstate_saved = sc->sc_pstate_current;
316 mutex_exit(&sc->sc_mtx);
317
318 if (acpicpu_pstate_saved == ps->ps_freq)
319 return true;
320
321 (void)acpicpu_pstate_set(sc, ps->ps_freq);
322
323 return true;
324 }
325
326 bool
327 acpicpu_pstate_resume(device_t self)
328 {
329 struct acpicpu_softc *sc = device_private(self);
330
331 if (acpicpu_pstate_saved != 0) {
332 (void)acpicpu_pstate_set(sc, acpicpu_pstate_saved);
333 acpicpu_pstate_saved = 0;
334 }
335
336 return true;
337 }
338
339 void
340 acpicpu_pstate_callback(void *aux)
341 {
342 struct acpicpu_softc *sc;
343 device_t self = aux;
344 uint32_t old, new;
345
346 sc = device_private(self);
347
348 mutex_enter(&sc->sc_mtx);
349
350 old = sc->sc_pstate_max;
351 acpicpu_pstate_change(sc);
352 new = sc->sc_pstate_max;
353
354 if (old == new) {
355 mutex_exit(&sc->sc_mtx);
356 return;
357 }
358
359 mutex_exit(&sc->sc_mtx);
360
361 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "maximum frequency "
362 "changed from P%u (%u MHz) to P%u (%u MHz)\n",
363 old, sc->sc_pstate[old].ps_freq, new,
364 sc->sc_pstate[sc->sc_pstate_max].ps_freq));
365
366 (void)acpicpu_pstate_set(sc, sc->sc_pstate[new].ps_freq);
367 }
368
369 ACPI_STATUS
370 acpicpu_pstate_pss(struct acpicpu_softc *sc)
371 {
372 struct acpicpu_pstate *ps;
373 ACPI_OBJECT *obj;
374 ACPI_BUFFER buf;
375 ACPI_STATUS rv;
376 uint32_t count;
377 uint32_t i, j;
378
379 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
380
381 if (ACPI_FAILURE(rv))
382 return rv;
383
384 obj = buf.Pointer;
385
386 if (obj->Type != ACPI_TYPE_PACKAGE) {
387 rv = AE_TYPE;
388 goto out;
389 }
390
391 sc->sc_pstate_count = obj->Package.Count;
392
393 if (sc->sc_pstate_count == 0) {
394 rv = AE_NOT_EXIST;
395 goto out;
396 }
397
398 if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
399 rv = AE_LIMIT;
400 goto out;
401 }
402
403 sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
404 sizeof(struct acpicpu_pstate), KM_SLEEP);
405
406 if (sc->sc_pstate == NULL) {
407 rv = AE_NO_MEMORY;
408 goto out;
409 }
410
411 for (count = i = 0; i < sc->sc_pstate_count; i++) {
412
413 ps = &sc->sc_pstate[i];
414 rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
415
416 if (ACPI_FAILURE(rv)) {
417 ps->ps_freq = 0;
418 continue;
419 }
420
421 for (j = 0; j < i; j++) {
422
423 if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
424 ps->ps_freq = 0;
425 break;
426 }
427 }
428
429 if (ps->ps_freq != 0)
430 count++;
431 }
432
433 rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
434
435 out:
436 if (buf.Pointer != NULL)
437 ACPI_FREE(buf.Pointer);
438
439 return rv;
440 }
441
442 static ACPI_STATUS
443 acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
444 {
445 ACPI_OBJECT *elm;
446 int i;
447
448 if (obj->Type != ACPI_TYPE_PACKAGE)
449 return AE_TYPE;
450
451 if (obj->Package.Count != 6)
452 return AE_BAD_DATA;
453
454 elm = obj->Package.Elements;
455
456 for (i = 0; i < 6; i++) {
457
458 if (elm[i].Type != ACPI_TYPE_INTEGER)
459 return AE_TYPE;
460
461 if (elm[i].Integer.Value > UINT32_MAX)
462 return AE_AML_NUMERIC_OVERFLOW;
463 }
464
465 ps->ps_freq = elm[0].Integer.Value;
466 ps->ps_power = elm[1].Integer.Value;
467 ps->ps_latency = elm[2].Integer.Value;
468 ps->ps_latency_bm = elm[3].Integer.Value;
469 ps->ps_control = elm[4].Integer.Value;
470 ps->ps_status = elm[5].Integer.Value;
471
472 if (ps->ps_freq == 0 || ps->ps_freq > 9999)
473 return AE_BAD_DECIMAL_CONSTANT;
474
475 /*
476 * The latency is typically around 10 usec
477 * on Intel CPUs. Use that as the minimum.
478 */
479 if (ps->ps_latency < 10)
480 ps->ps_latency = 10;
481
482 return AE_OK;
483 }
484
485 static ACPI_STATUS
486 acpicpu_pstate_xpss(struct acpicpu_softc *sc)
487 {
488 struct acpicpu_pstate *ps;
489 ACPI_OBJECT *obj;
490 ACPI_BUFFER buf;
491 ACPI_STATUS rv;
492 uint32_t i = 0;
493
494 rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
495
496 if (ACPI_FAILURE(rv))
497 return rv;
498
499 obj = buf.Pointer;
500
501 if (obj->Type != ACPI_TYPE_PACKAGE) {
502 rv = AE_TYPE;
503 goto out;
504 }
505
506 if (obj->Package.Count != sc->sc_pstate_count) {
507 rv = AE_LIMIT;
508 goto out;
509 }
510
511 while (i < sc->sc_pstate_count) {
512
513 ps = &sc->sc_pstate[i];
514 acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
515
516 i++;
517 }
518
519 out:
520 if (buf.Pointer != NULL)
521 ACPI_FREE(buf.Pointer);
522
523 return rv;
524 }
525
526 static ACPI_STATUS
527 acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
528 {
529 ACPI_OBJECT *elm;
530 int i;
531
532 if (obj->Type != ACPI_TYPE_PACKAGE)
533 return AE_TYPE;
534
535 if (obj->Package.Count != 8)
536 return AE_BAD_DATA;
537
538 elm = obj->Package.Elements;
539
540 for (i = 0; i < 4; i++) {
541
542 if (elm[i].Type != ACPI_TYPE_INTEGER)
543 return AE_TYPE;
544
545 if (elm[i].Integer.Value > UINT32_MAX)
546 return AE_AML_NUMERIC_OVERFLOW;
547 }
548
549 for (; i < 8; i++) {
550
551 if (elm[i].Type != ACPI_TYPE_BUFFER)
552 return AE_TYPE;
553
554 if (elm[i].Buffer.Length != 8)
555 return AE_LIMIT;
556 }
557
558 /*
559 * Only overwrite the elements that were
560 * not available from the conventional _PSS.
561 */
562 if (ps->ps_freq == 0)
563 ps->ps_freq = elm[0].Integer.Value;
564
565 if (ps->ps_power == 0)
566 ps->ps_power = elm[1].Integer.Value;
567
568 if (ps->ps_latency == 0)
569 ps->ps_latency = elm[2].Integer.Value;
570
571 if (ps->ps_latency_bm == 0)
572 ps->ps_latency_bm = elm[3].Integer.Value;
573
574 if (ps->ps_control == 0)
575 ps->ps_control = ACPI_GET64(elm[4].Buffer.Pointer);
576
577 if (ps->ps_status == 0)
578 ps->ps_status = ACPI_GET64(elm[5].Buffer.Pointer);
579
580 if (ps->ps_control_mask == 0)
581 ps->ps_control_mask = ACPI_GET64(elm[6].Buffer.Pointer);
582
583 if (ps->ps_status_mask == 0)
584 ps->ps_status_mask = ACPI_GET64(elm[7].Buffer.Pointer);
585
586 /*
587 * The latency is often defined to be
588 * zero on AMD systems. Raise that to 1.
589 */
590 if (ps->ps_latency == 0)
591 ps->ps_latency = 1;
592
593 ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
594
595 if (ps->ps_freq > 9999)
596 return AE_BAD_DECIMAL_CONSTANT;
597
598 return AE_OK;
599 }
600
601 ACPI_STATUS
602 acpicpu_pstate_pct(struct acpicpu_softc *sc)
603 {
604 static const size_t size = sizeof(struct acpicpu_reg);
605 struct acpicpu_reg *reg[2];
606 struct acpicpu_pstate *ps;
607 ACPI_OBJECT *elm, *obj;
608 ACPI_BUFFER buf;
609 ACPI_STATUS rv;
610 uint8_t width;
611 uint32_t i;
612
613 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
614
615 if (ACPI_FAILURE(rv))
616 return rv;
617
618 obj = buf.Pointer;
619
620 if (obj->Type != ACPI_TYPE_PACKAGE) {
621 rv = AE_TYPE;
622 goto out;
623 }
624
625 if (obj->Package.Count != 2) {
626 rv = AE_LIMIT;
627 goto out;
628 }
629
630 for (i = 0; i < 2; i++) {
631
632 elm = &obj->Package.Elements[i];
633
634 if (elm->Type != ACPI_TYPE_BUFFER) {
635 rv = AE_TYPE;
636 goto out;
637 }
638
639 if (size > elm->Buffer.Length) {
640 rv = AE_AML_BAD_RESOURCE_LENGTH;
641 goto out;
642 }
643
644 reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
645
646 switch (reg[i]->reg_spaceid) {
647
648 case ACPI_ADR_SPACE_SYSTEM_IO:
649
650 if (reg[i]->reg_addr == 0) {
651 rv = AE_AML_ILLEGAL_ADDRESS;
652 goto out;
653 }
654
655 width = reg[i]->reg_bitwidth;
656
657 if (width + reg[i]->reg_bitoffset > 32) {
658 rv = AE_AML_BAD_RESOURCE_VALUE;
659 goto out;
660 }
661
662 if (width != 8 && width != 16 && width != 32) {
663 rv = AE_AML_BAD_RESOURCE_VALUE;
664 goto out;
665 }
666
667 break;
668
669 case ACPI_ADR_SPACE_FIXED_HARDWARE:
670
671 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
672
673 if (reg[i]->reg_bitwidth != 64) {
674 rv = AE_AML_BAD_RESOURCE_VALUE;
675 goto out;
676 }
677
678 if (reg[i]->reg_bitoffset != 0) {
679 rv = AE_AML_BAD_RESOURCE_VALUE;
680 goto out;
681 }
682
683 break;
684 }
685
686 if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
687 rv = AE_SUPPORT;
688 goto out;
689 }
690
691 break;
692
693 default:
694 rv = AE_AML_INVALID_SPACE_ID;
695 goto out;
696 }
697 }
698
699 if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
700 rv = AE_AML_INVALID_SPACE_ID;
701 goto out;
702 }
703
704 (void)memcpy(&sc->sc_pstate_control, reg[0], size);
705 (void)memcpy(&sc->sc_pstate_status, reg[1], size);
706
707 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
708 goto out;
709
710 /*
711 * In XPSS the control address can not be zero,
712 * but the status address may be. In this case,
713 * comparable to T-states, we can ignore the status
714 * check during the P-state (FFH) transition.
715 */
716 if (sc->sc_pstate_control.reg_addr == 0) {
717 rv = AE_AML_BAD_RESOURCE_LENGTH;
718 goto out;
719 }
720
721 /*
722 * If XPSS is present, copy the MSR addresses
723 * to the P-state structures for convenience.
724 */
725 for (i = 0; i < sc->sc_pstate_count; i++) {
726
727 ps = &sc->sc_pstate[i];
728
729 if (ps->ps_freq == 0)
730 continue;
731
732 ps->ps_status_addr = sc->sc_pstate_status.reg_addr;
733 ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
734 }
735
736 out:
737 if (buf.Pointer != NULL)
738 ACPI_FREE(buf.Pointer);
739
740 return rv;
741 }
742
743 static int
744 acpicpu_pstate_max(struct acpicpu_softc *sc)
745 {
746 ACPI_INTEGER val;
747 ACPI_STATUS rv;
748
749 /*
750 * Evaluate the currently highest P-state that can be used.
751 * If available, we can use either this state or any lower
752 * power (i.e. higher numbered) state from the _PSS object.
753 * Note that the return value must match the _OST parameter.
754 */
755 rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
756
757 if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
758
759 if (sc->sc_pstate[val].ps_freq != 0) {
760 sc->sc_pstate_max = val;
761 return 0;
762 }
763 }
764
765 return 1;
766 }
767
768 static int
769 acpicpu_pstate_min(struct acpicpu_softc *sc)
770 {
771 ACPI_INTEGER val;
772 ACPI_STATUS rv;
773
774 /*
775 * The _PDL object defines the minimum when passive cooling
776 * is being performed. If available, we can use the returned
777 * state or any higher power (i.e. lower numbered) state.
778 */
779 rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
780
781 if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
782
783 if (sc->sc_pstate[val].ps_freq == 0)
784 return 1;
785
786 if (val >= sc->sc_pstate_max) {
787 sc->sc_pstate_min = val;
788 return 0;
789 }
790 }
791
792 return 1;
793 }
794
795 static void
796 acpicpu_pstate_change(struct acpicpu_softc *sc)
797 {
798 static ACPI_STATUS rv = AE_OK;
799 ACPI_OBJECT_LIST arg;
800 ACPI_OBJECT obj[2];
801 static int val = 0;
802
803 acpicpu_pstate_reset(sc);
804
805 /*
806 * Cache the checks as the optional
807 * _PDL and _OST are rarely present.
808 */
809 if (val == 0)
810 val = acpicpu_pstate_min(sc);
811
812 arg.Count = 2;
813 arg.Pointer = obj;
814
815 obj[0].Type = ACPI_TYPE_INTEGER;
816 obj[1].Type = ACPI_TYPE_INTEGER;
817
818 obj[0].Integer.Value = ACPICPU_P_NOTIFY;
819 obj[1].Integer.Value = acpicpu_pstate_max(sc);
820
821 if (ACPI_FAILURE(rv))
822 return;
823
824 rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
825 }
826
827 static void
828 acpicpu_pstate_reset(struct acpicpu_softc *sc)
829 {
830
831 sc->sc_pstate_max = 0;
832 sc->sc_pstate_min = sc->sc_pstate_count - 1;
833
834 }
835
836 static void
837 acpicpu_pstate_bios(void)
838 {
839 const uint8_t val = AcpiGbl_FADT.PstateControl;
840 const uint32_t addr = AcpiGbl_FADT.SmiCommand;
841
842 if (addr == 0 || val == 0)
843 return;
844
845 (void)AcpiOsWritePort(addr, val, 8);
846 }
847
848 int
849 acpicpu_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
850 {
851 const uint8_t method = sc->sc_pstate_control.reg_spaceid;
852 struct acpicpu_pstate *ps = NULL;
853 uint32_t i, val = 0;
854 uint64_t addr;
855 uint8_t width;
856 int rv;
857
858 if (__predict_false(sc->sc_cold != false)) {
859 rv = EBUSY;
860 goto fail;
861 }
862
863 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
864 rv = ENODEV;
865 goto fail;
866 }
867
868 mutex_enter(&sc->sc_mtx);
869
870 /*
871 * Use the cached value, if available.
872 */
873 if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
874 *freq = sc->sc_pstate_current;
875 mutex_exit(&sc->sc_mtx);
876 return 0;
877 }
878
879 mutex_exit(&sc->sc_mtx);
880
881 switch (method) {
882
883 case ACPI_ADR_SPACE_FIXED_HARDWARE:
884
885 rv = acpicpu_md_pstate_get(sc, freq);
886
887 if (__predict_false(rv != 0))
888 goto fail;
889
890 break;
891
892 case ACPI_ADR_SPACE_SYSTEM_IO:
893
894 addr = sc->sc_pstate_status.reg_addr;
895 width = sc->sc_pstate_status.reg_bitwidth;
896
897 (void)AcpiOsReadPort(addr, &val, width);
898
899 if (val == 0) {
900 rv = EIO;
901 goto fail;
902 }
903
904 for (i = 0; i < sc->sc_pstate_count; i++) {
905
906 if (sc->sc_pstate[i].ps_freq == 0)
907 continue;
908
909 if (val == sc->sc_pstate[i].ps_status) {
910 ps = &sc->sc_pstate[i];
911 break;
912 }
913 }
914
915 if (ps == NULL) {
916 rv = EIO;
917 goto fail;
918 }
919
920 *freq = ps->ps_freq;
921 break;
922
923 default:
924 rv = ENOTTY;
925 goto fail;
926 }
927
928 mutex_enter(&sc->sc_mtx);
929 sc->sc_pstate_current = *freq;
930 mutex_exit(&sc->sc_mtx);
931
932 return 0;
933
934 fail:
935 aprint_error_dev(sc->sc_dev, "failed "
936 "to get frequency (err %d)\n", rv);
937
938 mutex_enter(&sc->sc_mtx);
939 *freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
940 mutex_exit(&sc->sc_mtx);
941
942 return rv;
943 }
944
945 int
946 acpicpu_pstate_set(struct acpicpu_softc *sc, uint32_t freq)
947 {
948 const uint8_t method = sc->sc_pstate_control.reg_spaceid;
949 struct acpicpu_pstate *ps = NULL;
950 uint32_t i, val;
951 uint64_t addr;
952 uint8_t width;
953 int rv;
954
955 if (__predict_false(sc->sc_cold != false)) {
956 rv = EBUSY;
957 goto fail;
958 }
959
960 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
961 rv = ENODEV;
962 goto fail;
963 }
964
965 mutex_enter(&sc->sc_mtx);
966
967 if (sc->sc_pstate_current == freq) {
968 mutex_exit(&sc->sc_mtx);
969 return 0;
970 }
971
972 /*
973 * Verify that the requested frequency is available.
974 *
975 * The access needs to be protected since the currently
976 * available maximum and minimum may change dynamically.
977 */
978 for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
979
980 if (__predict_false(sc->sc_pstate[i].ps_freq == 0))
981 continue;
982
983 if (sc->sc_pstate[i].ps_freq == freq) {
984 ps = &sc->sc_pstate[i];
985 break;
986 }
987 }
988
989 mutex_exit(&sc->sc_mtx);
990
991 if (__predict_false(ps == NULL)) {
992 rv = EINVAL;
993 goto fail;
994 }
995
996 switch (method) {
997
998 case ACPI_ADR_SPACE_FIXED_HARDWARE:
999
1000 rv = acpicpu_md_pstate_set(ps);
1001
1002 if (__predict_false(rv != 0))
1003 goto fail;
1004
1005 break;
1006
1007 case ACPI_ADR_SPACE_SYSTEM_IO:
1008
1009 addr = sc->sc_pstate_control.reg_addr;
1010 width = sc->sc_pstate_control.reg_bitwidth;
1011
1012 (void)AcpiOsWritePort(addr, ps->ps_control, width);
1013
1014 addr = sc->sc_pstate_status.reg_addr;
1015 width = sc->sc_pstate_status.reg_bitwidth;
1016
1017 /*
1018 * Some systems take longer to respond
1019 * than the reported worst-case latency.
1020 */
1021 for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
1022
1023 (void)AcpiOsReadPort(addr, &val, width);
1024
1025 if (val == ps->ps_status)
1026 break;
1027
1028 DELAY(ps->ps_latency);
1029 }
1030
1031 if (i == ACPICPU_P_STATE_RETRY) {
1032 rv = EAGAIN;
1033 goto fail;
1034 }
1035
1036 break;
1037
1038 default:
1039 rv = ENOTTY;
1040 goto fail;
1041 }
1042
1043 mutex_enter(&sc->sc_mtx);
1044 ps->ps_evcnt.ev_count++;
1045 sc->sc_pstate_current = freq;
1046 mutex_exit(&sc->sc_mtx);
1047
1048 return 0;
1049
1050 fail:
1051 aprint_error_dev(sc->sc_dev, "failed to set "
1052 "frequency to %u (err %d)\n", freq, rv);
1053
1054 mutex_enter(&sc->sc_mtx);
1055 sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
1056 mutex_exit(&sc->sc_mtx);
1057
1058 return rv;
1059 }
1060