Home | History | Annotate | Line # | Download | only in acpi
acpi_cpu_pstate.c revision 1.36
      1 /* $NetBSD: acpi_cpu_pstate.c,v 1.36 2010/12/30 12:05:02 jruoho Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2010 Jukka Ruohonen <jruohonen (at) iki.fi>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  *
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     27  * SUCH DAMAGE.
     28  */
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.36 2010/12/30 12:05:02 jruoho Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/evcnt.h>
     34 #include <sys/kmem.h>
     35 #include <sys/once.h>
     36 
     37 #include <dev/acpi/acpireg.h>
     38 #include <dev/acpi/acpivar.h>
     39 #include <dev/acpi/acpi_cpu.h>
     40 
     41 #define _COMPONENT	 ACPI_BUS_COMPONENT
     42 ACPI_MODULE_NAME	 ("acpi_cpu_pstate")
     43 
     44 static void		 acpicpu_pstate_attach_print(struct acpicpu_softc *);
     45 static void		 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *);
     46 static void		 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *);
     47 static ACPI_STATUS	 acpicpu_pstate_pss(struct acpicpu_softc *);
     48 static ACPI_STATUS	 acpicpu_pstate_pss_add(struct acpicpu_pstate *,
     49 						ACPI_OBJECT *);
     50 static ACPI_STATUS	 acpicpu_pstate_xpss(struct acpicpu_softc *);
     51 static ACPI_STATUS	 acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
     52 						 ACPI_OBJECT *);
     53 static ACPI_STATUS	 acpicpu_pstate_pct(struct acpicpu_softc *);
     54 static int		 acpicpu_pstate_max(struct acpicpu_softc *);
     55 static int		 acpicpu_pstate_min(struct acpicpu_softc *);
     56 static void		 acpicpu_pstate_change(struct acpicpu_softc *);
     57 static void		 acpicpu_pstate_reset(struct acpicpu_softc *);
     58 static void		 acpicpu_pstate_bios(void);
     59 
     60 static uint32_t		 acpicpu_pstate_saved = 0;
     61 
     62 void
     63 acpicpu_pstate_attach(device_t self)
     64 {
     65 	struct acpicpu_softc *sc = device_private(self);
     66 	const char *str;
     67 	ACPI_HANDLE tmp;
     68 	ACPI_STATUS rv;
     69 
     70 	rv = acpicpu_pstate_pss(sc);
     71 
     72 	if (ACPI_FAILURE(rv)) {
     73 		str = "_PSS";
     74 		goto fail;
     75 	}
     76 
     77 	/*
     78 	 * Append additional information from the
     79 	 * extended _PSS, if available. Note that
     80 	 * XPSS can not be used on Intel systems
     81 	 * that use either _PDC or _OSC.
     82 	 */
     83 	if (sc->sc_cap == 0) {
     84 
     85 		rv = acpicpu_pstate_xpss(sc);
     86 
     87 		if (ACPI_SUCCESS(rv))
     88 			sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
     89 	}
     90 
     91 	rv = acpicpu_pstate_pct(sc);
     92 
     93 	if (ACPI_FAILURE(rv)) {
     94 		str = "_PCT";
     95 		goto fail;
     96 	}
     97 
     98 	/*
     99 	 * The ACPI 3.0 and 4.0 specifications mandate three
    100 	 * objects for P-states: _PSS, _PCT, and _PPC. A less
    101 	 * strict wording is however used in the earlier 2.0
    102 	 * standard, and some systems conforming to ACPI 2.0
    103 	 * do not have _PPC, the method for dynamic maximum.
    104 	 */
    105 	rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
    106 
    107 	if (ACPI_FAILURE(rv))
    108 		aprint_debug_dev(self, "_PPC missing\n");
    109 
    110 	/*
    111 	 * Employ the XPSS structure by filling
    112 	 * it with MD information required for FFH.
    113 	 */
    114 	rv = acpicpu_md_pstate_pss(sc);
    115 
    116 	if (rv != 0) {
    117 		rv = AE_SUPPORT;
    118 		goto fail;
    119 	}
    120 
    121 	sc->sc_flags |= ACPICPU_FLAG_P;
    122 
    123 	acpicpu_pstate_bios();
    124 	acpicpu_pstate_reset(sc);
    125 	acpicpu_pstate_attach_evcnt(sc);
    126 	acpicpu_pstate_attach_print(sc);
    127 
    128 	return;
    129 
    130 fail:
    131 	switch (rv) {
    132 
    133 	case AE_NOT_FOUND:
    134 		return;
    135 
    136 	case AE_SUPPORT:
    137 		aprint_verbose_dev(sc->sc_dev, "P-states not supported\n");
    138 		return;
    139 
    140 	default:
    141 		aprint_error_dev(sc->sc_dev, "failed to evaluate "
    142 		    "%s: %s\n", str, AcpiFormatException(rv));
    143 	}
    144 }
    145 
    146 static void
    147 acpicpu_pstate_attach_print(struct acpicpu_softc *sc)
    148 {
    149 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
    150 	struct acpicpu_pstate *ps;
    151 	static bool once = false;
    152 	const char *str;
    153 	uint32_t i;
    154 
    155 	if (once != false)
    156 		return;
    157 
    158 	str = (method != ACPI_ADR_SPACE_SYSTEM_IO) ? "FFH" : "I/O";
    159 
    160 	for (i = 0; i < sc->sc_pstate_count; i++) {
    161 
    162 		ps = &sc->sc_pstate[i];
    163 
    164 		if (ps->ps_freq == 0)
    165 			continue;
    166 
    167 		aprint_debug_dev(sc->sc_dev, "P%d: %3s, "
    168 		    "lat %3u us, pow %5u mW, %4u MHz\n", i, str,
    169 		    ps->ps_latency, ps->ps_power, ps->ps_freq);
    170 	}
    171 
    172 	once = true;
    173 }
    174 
    175 static void
    176 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *sc)
    177 {
    178 	struct acpicpu_pstate *ps;
    179 	uint32_t i;
    180 
    181 	for (i = 0; i < sc->sc_pstate_count; i++) {
    182 
    183 		ps = &sc->sc_pstate[i];
    184 
    185 		if (ps->ps_freq == 0)
    186 			continue;
    187 
    188 		(void)snprintf(ps->ps_name, sizeof(ps->ps_name),
    189 		    "P%u (%u MHz)", i, ps->ps_freq);
    190 
    191 		evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
    192 		    NULL, device_xname(sc->sc_dev), ps->ps_name);
    193 	}
    194 }
    195 
    196 int
    197 acpicpu_pstate_detach(device_t self)
    198 {
    199 	struct acpicpu_softc *sc = device_private(self);
    200 	static ONCE_DECL(once_detach);
    201 	size_t size;
    202 	int rv;
    203 
    204 	if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
    205 		return 0;
    206 
    207 	rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
    208 
    209 	if (rv != 0)
    210 		return rv;
    211 
    212 	size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
    213 
    214 	if (sc->sc_pstate != NULL)
    215 		kmem_free(sc->sc_pstate, size);
    216 
    217 	sc->sc_flags &= ~ACPICPU_FLAG_P;
    218 	acpicpu_pstate_detach_evcnt(sc);
    219 
    220 	return 0;
    221 }
    222 
    223 static void
    224 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *sc)
    225 {
    226 	struct acpicpu_pstate *ps;
    227 	uint32_t i;
    228 
    229 	for (i = 0; i < sc->sc_pstate_count; i++) {
    230 
    231 		ps = &sc->sc_pstate[i];
    232 
    233 		if (ps->ps_freq != 0)
    234 			evcnt_detach(&ps->ps_evcnt);
    235 	}
    236 }
    237 
    238 void
    239 acpicpu_pstate_start(device_t self)
    240 {
    241 	struct acpicpu_softc *sc = device_private(self);
    242 	struct acpicpu_pstate *ps;
    243 	uint32_t i;
    244 	int rv;
    245 
    246 	rv = acpicpu_md_pstate_start();
    247 
    248 	if (rv != 0)
    249 		goto fail;
    250 
    251 	/*
    252 	 * Initialize the state to P0.
    253 	 */
    254 	for (i = 0, rv = ENXIO; i < sc->sc_pstate_count; i++) {
    255 
    256 		ps = &sc->sc_pstate[i];
    257 
    258 		if (ps->ps_freq != 0) {
    259 			sc->sc_cold = false;
    260 			rv = acpicpu_pstate_set(sc, ps->ps_freq);
    261 			break;
    262 		}
    263 	}
    264 
    265 	if (rv != 0)
    266 		goto fail;
    267 
    268 	return;
    269 
    270 fail:
    271 	sc->sc_flags &= ~ACPICPU_FLAG_P;
    272 
    273 	if (rv == EEXIST) {
    274 		aprint_error_dev(self, "driver conflicts with existing one\n");
    275 		return;
    276 	}
    277 
    278 	aprint_error_dev(self, "failed to start P-states (err %d)\n", rv);
    279 }
    280 
    281 bool
    282 acpicpu_pstate_suspend(device_t self)
    283 {
    284 	struct acpicpu_softc *sc = device_private(self);
    285 	struct acpicpu_pstate *ps = NULL;
    286 	int32_t i;
    287 
    288 	mutex_enter(&sc->sc_mtx);
    289 	acpicpu_pstate_reset(sc);
    290 	mutex_exit(&sc->sc_mtx);
    291 
    292 	if (acpicpu_pstate_saved != 0)
    293 		return true;
    294 
    295 	/*
    296 	 * Following design notes for Windows, we set the highest
    297 	 * P-state when entering any of the system sleep states.
    298 	 * When resuming, the saved P-state will be restored.
    299 	 *
    300 	 *	Microsoft Corporation: Windows Native Processor
    301 	 *	Performance Control. Version 1.1a, November, 2002.
    302 	 */
    303 	for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
    304 
    305 		if (sc->sc_pstate[i].ps_freq != 0) {
    306 			ps = &sc->sc_pstate[i];
    307 			break;
    308 		}
    309 	}
    310 
    311 	if (__predict_false(ps == NULL))
    312 		return true;
    313 
    314 	mutex_enter(&sc->sc_mtx);
    315 	acpicpu_pstate_saved = sc->sc_pstate_current;
    316 	mutex_exit(&sc->sc_mtx);
    317 
    318 	if (acpicpu_pstate_saved == ps->ps_freq)
    319 		return true;
    320 
    321 	(void)acpicpu_pstate_set(sc, ps->ps_freq);
    322 
    323 	return true;
    324 }
    325 
    326 bool
    327 acpicpu_pstate_resume(device_t self)
    328 {
    329 	struct acpicpu_softc *sc = device_private(self);
    330 
    331 	if (acpicpu_pstate_saved != 0) {
    332 		(void)acpicpu_pstate_set(sc, acpicpu_pstate_saved);
    333 		acpicpu_pstate_saved = 0;
    334 	}
    335 
    336 	return true;
    337 }
    338 
    339 void
    340 acpicpu_pstate_callback(void *aux)
    341 {
    342 	struct acpicpu_softc *sc;
    343 	device_t self = aux;
    344 	uint32_t old, new;
    345 
    346 	sc = device_private(self);
    347 
    348 	mutex_enter(&sc->sc_mtx);
    349 
    350 	old = sc->sc_pstate_max;
    351 	acpicpu_pstate_change(sc);
    352 	new = sc->sc_pstate_max;
    353 
    354 	if (old == new) {
    355 		mutex_exit(&sc->sc_mtx);
    356 		return;
    357 	}
    358 
    359 	mutex_exit(&sc->sc_mtx);
    360 
    361 	ACPI_DEBUG_PRINT((ACPI_DB_INFO, "maximum frequency "
    362 		"changed from P%u (%u MHz) to P%u (%u MHz)\n",
    363 		old, sc->sc_pstate[old].ps_freq, new,
    364 		sc->sc_pstate[sc->sc_pstate_max].ps_freq));
    365 
    366 	(void)acpicpu_pstate_set(sc, sc->sc_pstate[new].ps_freq);
    367 }
    368 
    369 ACPI_STATUS
    370 acpicpu_pstate_pss(struct acpicpu_softc *sc)
    371 {
    372 	struct acpicpu_pstate *ps;
    373 	ACPI_OBJECT *obj;
    374 	ACPI_BUFFER buf;
    375 	ACPI_STATUS rv;
    376 	uint32_t count;
    377 	uint32_t i, j;
    378 
    379 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
    380 
    381 	if (ACPI_FAILURE(rv))
    382 		return rv;
    383 
    384 	obj = buf.Pointer;
    385 
    386 	if (obj->Type != ACPI_TYPE_PACKAGE) {
    387 		rv = AE_TYPE;
    388 		goto out;
    389 	}
    390 
    391 	sc->sc_pstate_count = obj->Package.Count;
    392 
    393 	if (sc->sc_pstate_count == 0) {
    394 		rv = AE_NOT_EXIST;
    395 		goto out;
    396 	}
    397 
    398 	if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
    399 		rv = AE_LIMIT;
    400 		goto out;
    401 	}
    402 
    403 	sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
    404 	    sizeof(struct acpicpu_pstate), KM_SLEEP);
    405 
    406 	if (sc->sc_pstate == NULL) {
    407 		rv = AE_NO_MEMORY;
    408 		goto out;
    409 	}
    410 
    411 	for (count = i = 0; i < sc->sc_pstate_count; i++) {
    412 
    413 		ps = &sc->sc_pstate[i];
    414 		rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
    415 
    416 		if (ACPI_FAILURE(rv)) {
    417 			ps->ps_freq = 0;
    418 			continue;
    419 		}
    420 
    421 		for (j = 0; j < i; j++) {
    422 
    423 			if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
    424 				ps->ps_freq = 0;
    425 				break;
    426 			}
    427 		}
    428 
    429 		if (ps->ps_freq != 0)
    430 			count++;
    431 	}
    432 
    433 	rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
    434 
    435 out:
    436 	if (buf.Pointer != NULL)
    437 		ACPI_FREE(buf.Pointer);
    438 
    439 	return rv;
    440 }
    441 
    442 static ACPI_STATUS
    443 acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
    444 {
    445 	ACPI_OBJECT *elm;
    446 	int i;
    447 
    448 	if (obj->Type != ACPI_TYPE_PACKAGE)
    449 		return AE_TYPE;
    450 
    451 	if (obj->Package.Count != 6)
    452 		return AE_BAD_DATA;
    453 
    454 	elm = obj->Package.Elements;
    455 
    456 	for (i = 0; i < 6; i++) {
    457 
    458 		if (elm[i].Type != ACPI_TYPE_INTEGER)
    459 			return AE_TYPE;
    460 
    461 		if (elm[i].Integer.Value > UINT32_MAX)
    462 			return AE_AML_NUMERIC_OVERFLOW;
    463 	}
    464 
    465 	ps->ps_freq       = elm[0].Integer.Value;
    466 	ps->ps_power      = elm[1].Integer.Value;
    467 	ps->ps_latency    = elm[2].Integer.Value;
    468 	ps->ps_latency_bm = elm[3].Integer.Value;
    469 	ps->ps_control    = elm[4].Integer.Value;
    470 	ps->ps_status     = elm[5].Integer.Value;
    471 
    472 	if (ps->ps_freq == 0 || ps->ps_freq > 9999)
    473 		return AE_BAD_DECIMAL_CONSTANT;
    474 
    475 	/*
    476 	 * The latency is typically around 10 usec
    477 	 * on Intel CPUs. Use that as the minimum.
    478 	 */
    479 	if (ps->ps_latency < 10)
    480 		ps->ps_latency = 10;
    481 
    482 	return AE_OK;
    483 }
    484 
    485 static ACPI_STATUS
    486 acpicpu_pstate_xpss(struct acpicpu_softc *sc)
    487 {
    488 	struct acpicpu_pstate *ps;
    489 	ACPI_OBJECT *obj;
    490 	ACPI_BUFFER buf;
    491 	ACPI_STATUS rv;
    492 	uint32_t i = 0;
    493 
    494 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
    495 
    496 	if (ACPI_FAILURE(rv))
    497 		return rv;
    498 
    499 	obj = buf.Pointer;
    500 
    501 	if (obj->Type != ACPI_TYPE_PACKAGE) {
    502 		rv = AE_TYPE;
    503 		goto out;
    504 	}
    505 
    506 	if (obj->Package.Count != sc->sc_pstate_count) {
    507 		rv = AE_LIMIT;
    508 		goto out;
    509 	}
    510 
    511 	while (i < sc->sc_pstate_count) {
    512 
    513 		ps = &sc->sc_pstate[i];
    514 		acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
    515 
    516 		i++;
    517 	}
    518 
    519 out:
    520 	if (buf.Pointer != NULL)
    521 		ACPI_FREE(buf.Pointer);
    522 
    523 	return rv;
    524 }
    525 
    526 static ACPI_STATUS
    527 acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
    528 {
    529 	ACPI_OBJECT *elm;
    530 	int i;
    531 
    532 	if (obj->Type != ACPI_TYPE_PACKAGE)
    533 		return AE_TYPE;
    534 
    535 	if (obj->Package.Count != 8)
    536 		return AE_BAD_DATA;
    537 
    538 	elm = obj->Package.Elements;
    539 
    540 	for (i = 0; i < 4; i++) {
    541 
    542 		if (elm[i].Type != ACPI_TYPE_INTEGER)
    543 			return AE_TYPE;
    544 
    545 		if (elm[i].Integer.Value > UINT32_MAX)
    546 			return AE_AML_NUMERIC_OVERFLOW;
    547 	}
    548 
    549 	for (; i < 8; i++) {
    550 
    551 		if (elm[i].Type != ACPI_TYPE_BUFFER)
    552 			return AE_TYPE;
    553 
    554 		if (elm[i].Buffer.Length != 8)
    555 			return AE_LIMIT;
    556 	}
    557 
    558 	/*
    559 	 * Only overwrite the elements that were
    560 	 * not available from the conventional _PSS.
    561 	 */
    562 	if (ps->ps_freq == 0)
    563 		ps->ps_freq = elm[0].Integer.Value;
    564 
    565 	if (ps->ps_power == 0)
    566 		ps->ps_power = elm[1].Integer.Value;
    567 
    568 	if (ps->ps_latency == 0)
    569 		ps->ps_latency = elm[2].Integer.Value;
    570 
    571 	if (ps->ps_latency_bm == 0)
    572 		ps->ps_latency_bm = elm[3].Integer.Value;
    573 
    574 	if (ps->ps_control == 0)
    575 		ps->ps_control = ACPI_GET64(elm[4].Buffer.Pointer);
    576 
    577 	if (ps->ps_status == 0)
    578 		ps->ps_status = ACPI_GET64(elm[5].Buffer.Pointer);
    579 
    580 	if (ps->ps_control_mask == 0)
    581 		ps->ps_control_mask = ACPI_GET64(elm[6].Buffer.Pointer);
    582 
    583 	if (ps->ps_status_mask == 0)
    584 		ps->ps_status_mask = ACPI_GET64(elm[7].Buffer.Pointer);
    585 
    586 	/*
    587 	 * The latency is often defined to be
    588 	 * zero on AMD systems. Raise that to 1.
    589 	 */
    590 	if (ps->ps_latency == 0)
    591 		ps->ps_latency = 1;
    592 
    593 	ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
    594 
    595 	if (ps->ps_freq > 9999)
    596 		return AE_BAD_DECIMAL_CONSTANT;
    597 
    598 	return AE_OK;
    599 }
    600 
    601 ACPI_STATUS
    602 acpicpu_pstate_pct(struct acpicpu_softc *sc)
    603 {
    604 	static const size_t size = sizeof(struct acpicpu_reg);
    605 	struct acpicpu_reg *reg[2];
    606 	struct acpicpu_pstate *ps;
    607 	ACPI_OBJECT *elm, *obj;
    608 	ACPI_BUFFER buf;
    609 	ACPI_STATUS rv;
    610 	uint8_t width;
    611 	uint32_t i;
    612 
    613 	rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
    614 
    615 	if (ACPI_FAILURE(rv))
    616 		return rv;
    617 
    618 	obj = buf.Pointer;
    619 
    620 	if (obj->Type != ACPI_TYPE_PACKAGE) {
    621 		rv = AE_TYPE;
    622 		goto out;
    623 	}
    624 
    625 	if (obj->Package.Count != 2) {
    626 		rv = AE_LIMIT;
    627 		goto out;
    628 	}
    629 
    630 	for (i = 0; i < 2; i++) {
    631 
    632 		elm = &obj->Package.Elements[i];
    633 
    634 		if (elm->Type != ACPI_TYPE_BUFFER) {
    635 			rv = AE_TYPE;
    636 			goto out;
    637 		}
    638 
    639 		if (size > elm->Buffer.Length) {
    640 			rv = AE_AML_BAD_RESOURCE_LENGTH;
    641 			goto out;
    642 		}
    643 
    644 		reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
    645 
    646 		switch (reg[i]->reg_spaceid) {
    647 
    648 		case ACPI_ADR_SPACE_SYSTEM_IO:
    649 
    650 			if (reg[i]->reg_addr == 0) {
    651 				rv = AE_AML_ILLEGAL_ADDRESS;
    652 				goto out;
    653 			}
    654 
    655 			width = reg[i]->reg_bitwidth;
    656 
    657 			if (width + reg[i]->reg_bitoffset > 32) {
    658 				rv = AE_AML_BAD_RESOURCE_VALUE;
    659 				goto out;
    660 			}
    661 
    662 			if (width != 8 && width != 16 && width != 32) {
    663 				rv = AE_AML_BAD_RESOURCE_VALUE;
    664 				goto out;
    665 			}
    666 
    667 			break;
    668 
    669 		case ACPI_ADR_SPACE_FIXED_HARDWARE:
    670 
    671 			if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
    672 
    673 				if (reg[i]->reg_bitwidth != 64) {
    674 					rv = AE_AML_BAD_RESOURCE_VALUE;
    675 					goto out;
    676 				}
    677 
    678 				if (reg[i]->reg_bitoffset != 0) {
    679 					rv = AE_AML_BAD_RESOURCE_VALUE;
    680 					goto out;
    681 				}
    682 
    683 				break;
    684 			}
    685 
    686 			if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
    687 				rv = AE_SUPPORT;
    688 				goto out;
    689 			}
    690 
    691 			break;
    692 
    693 		default:
    694 			rv = AE_AML_INVALID_SPACE_ID;
    695 			goto out;
    696 		}
    697 	}
    698 
    699 	if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
    700 		rv = AE_AML_INVALID_SPACE_ID;
    701 		goto out;
    702 	}
    703 
    704 	(void)memcpy(&sc->sc_pstate_control, reg[0], size);
    705 	(void)memcpy(&sc->sc_pstate_status,  reg[1], size);
    706 
    707 	if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
    708 		goto out;
    709 
    710 	/*
    711 	 * In XPSS the control address can not be zero,
    712 	 * but the status address may be. In this case,
    713 	 * comparable to T-states, we can ignore the status
    714 	 * check during the P-state (FFH) transition.
    715 	 */
    716 	if (sc->sc_pstate_control.reg_addr == 0) {
    717 		rv = AE_AML_BAD_RESOURCE_LENGTH;
    718 		goto out;
    719 	}
    720 
    721 	/*
    722 	 * If XPSS is present, copy the MSR addresses
    723 	 * to the P-state structures for convenience.
    724 	 */
    725 	for (i = 0; i < sc->sc_pstate_count; i++) {
    726 
    727 		ps = &sc->sc_pstate[i];
    728 
    729 		if (ps->ps_freq == 0)
    730 			continue;
    731 
    732 		ps->ps_status_addr  = sc->sc_pstate_status.reg_addr;
    733 		ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
    734 	}
    735 
    736 out:
    737 	if (buf.Pointer != NULL)
    738 		ACPI_FREE(buf.Pointer);
    739 
    740 	return rv;
    741 }
    742 
    743 static int
    744 acpicpu_pstate_max(struct acpicpu_softc *sc)
    745 {
    746 	ACPI_INTEGER val;
    747 	ACPI_STATUS rv;
    748 
    749 	/*
    750 	 * Evaluate the currently highest P-state that can be used.
    751 	 * If available, we can use either this state or any lower
    752 	 * power (i.e. higher numbered) state from the _PSS object.
    753 	 * Note that the return value must match the _OST parameter.
    754 	 */
    755 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
    756 
    757 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
    758 
    759 		if (sc->sc_pstate[val].ps_freq != 0) {
    760 			sc->sc_pstate_max = val;
    761 			return 0;
    762 		}
    763 	}
    764 
    765 	return 1;
    766 }
    767 
    768 static int
    769 acpicpu_pstate_min(struct acpicpu_softc *sc)
    770 {
    771 	ACPI_INTEGER val;
    772 	ACPI_STATUS rv;
    773 
    774 	/*
    775 	 * The _PDL object defines the minimum when passive cooling
    776 	 * is being performed. If available, we can use the returned
    777 	 * state or any higher power (i.e. lower numbered) state.
    778 	 */
    779 	rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
    780 
    781 	if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
    782 
    783 		if (sc->sc_pstate[val].ps_freq == 0)
    784 			return 1;
    785 
    786 		if (val >= sc->sc_pstate_max) {
    787 			sc->sc_pstate_min = val;
    788 			return 0;
    789 		}
    790 	}
    791 
    792 	return 1;
    793 }
    794 
    795 static void
    796 acpicpu_pstate_change(struct acpicpu_softc *sc)
    797 {
    798 	static ACPI_STATUS rv = AE_OK;
    799 	ACPI_OBJECT_LIST arg;
    800 	ACPI_OBJECT obj[2];
    801 	static int val = 0;
    802 
    803 	acpicpu_pstate_reset(sc);
    804 
    805 	/*
    806 	 * Cache the checks as the optional
    807 	 * _PDL and _OST are rarely present.
    808 	 */
    809 	if (val == 0)
    810 		val = acpicpu_pstate_min(sc);
    811 
    812 	arg.Count = 2;
    813 	arg.Pointer = obj;
    814 
    815 	obj[0].Type = ACPI_TYPE_INTEGER;
    816 	obj[1].Type = ACPI_TYPE_INTEGER;
    817 
    818 	obj[0].Integer.Value = ACPICPU_P_NOTIFY;
    819 	obj[1].Integer.Value = acpicpu_pstate_max(sc);
    820 
    821 	if (ACPI_FAILURE(rv))
    822 		return;
    823 
    824 	rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
    825 }
    826 
    827 static void
    828 acpicpu_pstate_reset(struct acpicpu_softc *sc)
    829 {
    830 
    831 	sc->sc_pstate_max = 0;
    832 	sc->sc_pstate_min = sc->sc_pstate_count - 1;
    833 
    834 }
    835 
    836 static void
    837 acpicpu_pstate_bios(void)
    838 {
    839 	const uint8_t val = AcpiGbl_FADT.PstateControl;
    840 	const uint32_t addr = AcpiGbl_FADT.SmiCommand;
    841 
    842 	if (addr == 0 || val == 0)
    843 		return;
    844 
    845 	(void)AcpiOsWritePort(addr, val, 8);
    846 }
    847 
    848 int
    849 acpicpu_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
    850 {
    851 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
    852 	struct acpicpu_pstate *ps = NULL;
    853 	uint32_t i, val = 0;
    854 	uint64_t addr;
    855 	uint8_t width;
    856 	int rv;
    857 
    858 	if (__predict_false(sc->sc_cold != false)) {
    859 		rv = EBUSY;
    860 		goto fail;
    861 	}
    862 
    863 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
    864 		rv = ENODEV;
    865 		goto fail;
    866 	}
    867 
    868 	mutex_enter(&sc->sc_mtx);
    869 
    870 	/*
    871 	 * Use the cached value, if available.
    872 	 */
    873 	if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
    874 		*freq = sc->sc_pstate_current;
    875 		mutex_exit(&sc->sc_mtx);
    876 		return 0;
    877 	}
    878 
    879 	mutex_exit(&sc->sc_mtx);
    880 
    881 	switch (method) {
    882 
    883 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
    884 
    885 		rv = acpicpu_md_pstate_get(sc, freq);
    886 
    887 		if (__predict_false(rv != 0))
    888 			goto fail;
    889 
    890 		break;
    891 
    892 	case ACPI_ADR_SPACE_SYSTEM_IO:
    893 
    894 		addr  = sc->sc_pstate_status.reg_addr;
    895 		width = sc->sc_pstate_status.reg_bitwidth;
    896 
    897 		(void)AcpiOsReadPort(addr, &val, width);
    898 
    899 		if (val == 0) {
    900 			rv = EIO;
    901 			goto fail;
    902 		}
    903 
    904 		for (i = 0; i < sc->sc_pstate_count; i++) {
    905 
    906 			if (sc->sc_pstate[i].ps_freq == 0)
    907 				continue;
    908 
    909 			if (val == sc->sc_pstate[i].ps_status) {
    910 				ps = &sc->sc_pstate[i];
    911 				break;
    912 			}
    913 		}
    914 
    915 		if (ps == NULL) {
    916 			rv = EIO;
    917 			goto fail;
    918 		}
    919 
    920 		*freq = ps->ps_freq;
    921 		break;
    922 
    923 	default:
    924 		rv = ENOTTY;
    925 		goto fail;
    926 	}
    927 
    928 	mutex_enter(&sc->sc_mtx);
    929 	sc->sc_pstate_current = *freq;
    930 	mutex_exit(&sc->sc_mtx);
    931 
    932 	return 0;
    933 
    934 fail:
    935 	aprint_error_dev(sc->sc_dev, "failed "
    936 	    "to get frequency (err %d)\n", rv);
    937 
    938 	mutex_enter(&sc->sc_mtx);
    939 	*freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
    940 	mutex_exit(&sc->sc_mtx);
    941 
    942 	return rv;
    943 }
    944 
    945 int
    946 acpicpu_pstate_set(struct acpicpu_softc *sc, uint32_t freq)
    947 {
    948 	const uint8_t method = sc->sc_pstate_control.reg_spaceid;
    949 	struct acpicpu_pstate *ps = NULL;
    950 	uint32_t i, val;
    951 	uint64_t addr;
    952 	uint8_t width;
    953 	int rv;
    954 
    955 	if (__predict_false(sc->sc_cold != false)) {
    956 		rv = EBUSY;
    957 		goto fail;
    958 	}
    959 
    960 	if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
    961 		rv = ENODEV;
    962 		goto fail;
    963 	}
    964 
    965 	mutex_enter(&sc->sc_mtx);
    966 
    967 	if (sc->sc_pstate_current == freq) {
    968 		mutex_exit(&sc->sc_mtx);
    969 		return 0;
    970 	}
    971 
    972 	/*
    973 	 * Verify that the requested frequency is available.
    974 	 *
    975 	 * The access needs to be protected since the currently
    976 	 * available maximum and minimum may change dynamically.
    977 	 */
    978 	for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
    979 
    980 		if (__predict_false(sc->sc_pstate[i].ps_freq == 0))
    981 			continue;
    982 
    983 		if (sc->sc_pstate[i].ps_freq == freq) {
    984 			ps = &sc->sc_pstate[i];
    985 			break;
    986 		}
    987 	}
    988 
    989 	mutex_exit(&sc->sc_mtx);
    990 
    991 	if (__predict_false(ps == NULL)) {
    992 		rv = EINVAL;
    993 		goto fail;
    994 	}
    995 
    996 	switch (method) {
    997 
    998 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
    999 
   1000 		rv = acpicpu_md_pstate_set(ps);
   1001 
   1002 		if (__predict_false(rv != 0))
   1003 			goto fail;
   1004 
   1005 		break;
   1006 
   1007 	case ACPI_ADR_SPACE_SYSTEM_IO:
   1008 
   1009 		addr  = sc->sc_pstate_control.reg_addr;
   1010 		width = sc->sc_pstate_control.reg_bitwidth;
   1011 
   1012 		(void)AcpiOsWritePort(addr, ps->ps_control, width);
   1013 
   1014 		addr  = sc->sc_pstate_status.reg_addr;
   1015 		width = sc->sc_pstate_status.reg_bitwidth;
   1016 
   1017 		/*
   1018 		 * Some systems take longer to respond
   1019 		 * than the reported worst-case latency.
   1020 		 */
   1021 		for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
   1022 
   1023 			(void)AcpiOsReadPort(addr, &val, width);
   1024 
   1025 			if (val == ps->ps_status)
   1026 				break;
   1027 
   1028 			DELAY(ps->ps_latency);
   1029 		}
   1030 
   1031 		if (i == ACPICPU_P_STATE_RETRY) {
   1032 			rv = EAGAIN;
   1033 			goto fail;
   1034 		}
   1035 
   1036 		break;
   1037 
   1038 	default:
   1039 		rv = ENOTTY;
   1040 		goto fail;
   1041 	}
   1042 
   1043 	mutex_enter(&sc->sc_mtx);
   1044 	ps->ps_evcnt.ev_count++;
   1045 	sc->sc_pstate_current = freq;
   1046 	mutex_exit(&sc->sc_mtx);
   1047 
   1048 	return 0;
   1049 
   1050 fail:
   1051 	aprint_error_dev(sc->sc_dev, "failed to set "
   1052 	    "frequency to %u (err %d)\n", freq, rv);
   1053 
   1054 	mutex_enter(&sc->sc_mtx);
   1055 	sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
   1056 	mutex_exit(&sc->sc_mtx);
   1057 
   1058 	return rv;
   1059 }
   1060