acpi_cpu_pstate.c revision 1.40 1 /* $NetBSD: acpi_cpu_pstate.c,v 1.40 2011/02/25 19:55:06 jruoho Exp $ */
2
3 /*-
4 * Copyright (c) 2010, 2011 Jukka Ruohonen <jruohonen (at) iki.fi>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.40 2011/02/25 19:55:06 jruoho Exp $");
31
32 #include <sys/param.h>
33 #include <sys/evcnt.h>
34 #include <sys/kmem.h>
35 #include <sys/once.h>
36
37 #include <dev/acpi/acpireg.h>
38 #include <dev/acpi/acpivar.h>
39 #include <dev/acpi/acpi_cpu.h>
40
41 #define _COMPONENT ACPI_BUS_COMPONENT
42 ACPI_MODULE_NAME ("acpi_cpu_pstate")
43
44 static void acpicpu_pstate_attach_print(struct acpicpu_softc *);
45 static void acpicpu_pstate_attach_evcnt(struct acpicpu_softc *);
46 static void acpicpu_pstate_detach_evcnt(struct acpicpu_softc *);
47 static ACPI_STATUS acpicpu_pstate_pss(struct acpicpu_softc *);
48 static ACPI_STATUS acpicpu_pstate_pss_add(struct acpicpu_pstate *,
49 ACPI_OBJECT *);
50 static ACPI_STATUS acpicpu_pstate_xpss(struct acpicpu_softc *);
51 static ACPI_STATUS acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
52 ACPI_OBJECT *);
53 static ACPI_STATUS acpicpu_pstate_pct(struct acpicpu_softc *);
54 static ACPI_STATUS acpicpu_pstate_dep(struct acpicpu_softc *);
55 static int acpicpu_pstate_max(struct acpicpu_softc *);
56 static int acpicpu_pstate_min(struct acpicpu_softc *);
57 static void acpicpu_pstate_change(struct acpicpu_softc *);
58 static void acpicpu_pstate_reset(struct acpicpu_softc *);
59 static void acpicpu_pstate_bios(void);
60
61 static uint32_t acpicpu_pstate_saved = 0;
62
63 void
64 acpicpu_pstate_attach(device_t self)
65 {
66 struct acpicpu_softc *sc = device_private(self);
67 const char *str;
68 ACPI_HANDLE tmp;
69 ACPI_STATUS rv;
70
71 rv = acpicpu_pstate_pss(sc);
72
73 if (ACPI_FAILURE(rv)) {
74 str = "_PSS";
75 goto fail;
76 }
77
78 /*
79 * Append additional information from the extended _PSS,
80 * if available. Note that XPSS can not be used on Intel
81 * systems that use either _PDC or _OSC. From the XPSS
82 * method specification:
83 *
84 * "The platform must not require the use of the
85 * optional _PDC or _OSC methods to coordinate
86 * between the operating system and firmware for
87 * the purposes of enabling specific processor
88 * power management features or implementations."
89 */
90 if (sc->sc_cap == 0) {
91
92 rv = acpicpu_pstate_xpss(sc);
93
94 if (ACPI_SUCCESS(rv))
95 sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
96 }
97
98 rv = acpicpu_pstate_pct(sc);
99
100 if (ACPI_FAILURE(rv)) {
101 str = "_PCT";
102 goto fail;
103 }
104
105 /*
106 * The ACPI 3.0 and 4.0 specifications mandate three
107 * objects for P-states: _PSS, _PCT, and _PPC. A less
108 * strict wording is however used in the earlier 2.0
109 * standard, and some systems conforming to ACPI 2.0
110 * do not have _PPC, the method for dynamic maximum.
111 */
112 rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);
113
114 if (ACPI_FAILURE(rv))
115 aprint_debug_dev(self, "_PPC missing\n");
116
117 /*
118 * Employ the XPSS structure by filling
119 * it with MD information required for FFH.
120 */
121 rv = acpicpu_md_pstate_pss(sc);
122
123 if (rv != 0) {
124 rv = AE_SUPPORT;
125 goto fail;
126 }
127
128 /*
129 * Query the optional _PSD.
130 */
131 rv = acpicpu_pstate_dep(sc);
132
133 if (ACPI_SUCCESS(rv))
134 sc->sc_flags |= ACPICPU_FLAG_P_DEP;
135
136 sc->sc_flags |= ACPICPU_FLAG_P;
137
138 acpicpu_pstate_bios();
139 acpicpu_pstate_reset(sc);
140 acpicpu_pstate_attach_evcnt(sc);
141 acpicpu_pstate_attach_print(sc);
142
143 return;
144
145 fail:
146 switch (rv) {
147
148 case AE_NOT_FOUND:
149 return;
150
151 case AE_SUPPORT:
152 aprint_verbose_dev(self, "P-states not supported\n");
153 return;
154
155 default:
156 aprint_error_dev(self, "failed to evaluate "
157 "%s: %s\n", str, AcpiFormatException(rv));
158 }
159 }
160
161 static void
162 acpicpu_pstate_attach_print(struct acpicpu_softc *sc)
163 {
164 const uint8_t method = sc->sc_pstate_control.reg_spaceid;
165 struct acpicpu_pstate *ps;
166 static bool once = false;
167 const char *str;
168 uint32_t i;
169
170 if (once != false)
171 return;
172
173 str = (method != ACPI_ADR_SPACE_SYSTEM_IO) ? "FFH" : "I/O";
174
175 for (i = 0; i < sc->sc_pstate_count; i++) {
176
177 ps = &sc->sc_pstate[i];
178
179 if (ps->ps_freq == 0)
180 continue;
181
182 aprint_verbose_dev(sc->sc_dev, "P%d: %3s, "
183 "lat %3u us, pow %5u mW, %4u MHz\n", i, str,
184 ps->ps_latency, ps->ps_power, ps->ps_freq);
185 }
186
187 once = true;
188 }
189
190 static void
191 acpicpu_pstate_attach_evcnt(struct acpicpu_softc *sc)
192 {
193 struct acpicpu_pstate *ps;
194 uint32_t i;
195
196 for (i = 0; i < sc->sc_pstate_count; i++) {
197
198 ps = &sc->sc_pstate[i];
199
200 if (ps->ps_freq == 0)
201 continue;
202
203 (void)snprintf(ps->ps_name, sizeof(ps->ps_name),
204 "P%u (%u MHz)", i, ps->ps_freq);
205
206 evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
207 NULL, device_xname(sc->sc_dev), ps->ps_name);
208 }
209 }
210
211 int
212 acpicpu_pstate_detach(device_t self)
213 {
214 struct acpicpu_softc *sc = device_private(self);
215 static ONCE_DECL(once_detach);
216 size_t size;
217 int rv;
218
219 if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
220 return 0;
221
222 rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
223
224 if (rv != 0)
225 return rv;
226
227 size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
228
229 if (sc->sc_pstate != NULL)
230 kmem_free(sc->sc_pstate, size);
231
232 sc->sc_flags &= ~ACPICPU_FLAG_P;
233 acpicpu_pstate_detach_evcnt(sc);
234
235 return 0;
236 }
237
238 static void
239 acpicpu_pstate_detach_evcnt(struct acpicpu_softc *sc)
240 {
241 struct acpicpu_pstate *ps;
242 uint32_t i;
243
244 for (i = 0; i < sc->sc_pstate_count; i++) {
245
246 ps = &sc->sc_pstate[i];
247
248 if (ps->ps_freq != 0)
249 evcnt_detach(&ps->ps_evcnt);
250 }
251 }
252
253 void
254 acpicpu_pstate_start(device_t self)
255 {
256 struct acpicpu_softc *sc = device_private(self);
257 struct acpicpu_pstate *ps;
258 uint32_t i;
259 int rv;
260
261 rv = acpicpu_md_pstate_start(sc);
262
263 if (rv != 0)
264 goto fail;
265
266 /*
267 * Initialize the state to P0.
268 */
269 for (i = 0, rv = ENXIO; i < sc->sc_pstate_count; i++) {
270
271 ps = &sc->sc_pstate[i];
272
273 if (ps->ps_freq != 0) {
274 sc->sc_cold = false;
275 rv = acpicpu_pstate_set(sc, ps->ps_freq);
276 break;
277 }
278 }
279
280 if (rv != 0)
281 goto fail;
282
283 return;
284
285 fail:
286 sc->sc_flags &= ~ACPICPU_FLAG_P;
287
288 if (rv == EEXIST) {
289 aprint_error_dev(self, "driver conflicts with existing one\n");
290 return;
291 }
292
293 aprint_error_dev(self, "failed to start P-states (err %d)\n", rv);
294 }
295
296 bool
297 acpicpu_pstate_suspend(device_t self)
298 {
299 struct acpicpu_softc *sc = device_private(self);
300 struct acpicpu_pstate *ps = NULL;
301 int32_t i;
302
303 mutex_enter(&sc->sc_mtx);
304 acpicpu_pstate_reset(sc);
305 mutex_exit(&sc->sc_mtx);
306
307 if (acpicpu_pstate_saved != 0)
308 return true;
309
310 /*
311 * Following design notes for Windows, we set the highest
312 * P-state when entering any of the system sleep states.
313 * When resuming, the saved P-state will be restored.
314 *
315 * Microsoft Corporation: Windows Native Processor
316 * Performance Control. Version 1.1a, November, 2002.
317 */
318 for (i = sc->sc_pstate_count - 1; i >= 0; i--) {
319
320 if (sc->sc_pstate[i].ps_freq != 0) {
321 ps = &sc->sc_pstate[i];
322 break;
323 }
324 }
325
326 if (__predict_false(ps == NULL))
327 return true;
328
329 mutex_enter(&sc->sc_mtx);
330 acpicpu_pstate_saved = sc->sc_pstate_current;
331 mutex_exit(&sc->sc_mtx);
332
333 if (acpicpu_pstate_saved == ps->ps_freq)
334 return true;
335
336 (void)acpicpu_pstate_set(sc, ps->ps_freq);
337
338 return true;
339 }
340
341 bool
342 acpicpu_pstate_resume(device_t self)
343 {
344 struct acpicpu_softc *sc = device_private(self);
345
346 if (acpicpu_pstate_saved != 0) {
347 (void)acpicpu_pstate_set(sc, acpicpu_pstate_saved);
348 acpicpu_pstate_saved = 0;
349 }
350
351 return true;
352 }
353
354 void
355 acpicpu_pstate_callback(void *aux)
356 {
357 struct acpicpu_softc *sc;
358 device_t self = aux;
359 uint32_t old, new;
360
361 sc = device_private(self);
362
363 mutex_enter(&sc->sc_mtx);
364
365 old = sc->sc_pstate_max;
366 acpicpu_pstate_change(sc);
367 new = sc->sc_pstate_max;
368
369 if (old == new) {
370 mutex_exit(&sc->sc_mtx);
371 return;
372 }
373
374 mutex_exit(&sc->sc_mtx);
375
376 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "maximum frequency "
377 "changed from P%u (%u MHz) to P%u (%u MHz)\n",
378 old, sc->sc_pstate[old].ps_freq, new,
379 sc->sc_pstate[sc->sc_pstate_max].ps_freq));
380
381 (void)acpicpu_pstate_set(sc, sc->sc_pstate[new].ps_freq);
382 }
383
384 ACPI_STATUS
385 acpicpu_pstate_pss(struct acpicpu_softc *sc)
386 {
387 struct acpicpu_pstate *ps;
388 ACPI_OBJECT *obj;
389 ACPI_BUFFER buf;
390 ACPI_STATUS rv;
391 uint32_t count;
392 uint32_t i, j;
393
394 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
395
396 if (ACPI_FAILURE(rv))
397 return rv;
398
399 obj = buf.Pointer;
400
401 if (obj->Type != ACPI_TYPE_PACKAGE) {
402 rv = AE_TYPE;
403 goto out;
404 }
405
406 sc->sc_pstate_count = obj->Package.Count;
407
408 if (sc->sc_pstate_count == 0) {
409 rv = AE_NOT_EXIST;
410 goto out;
411 }
412
413 if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
414 rv = AE_LIMIT;
415 goto out;
416 }
417
418 sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
419 sizeof(struct acpicpu_pstate), KM_SLEEP);
420
421 if (sc->sc_pstate == NULL) {
422 rv = AE_NO_MEMORY;
423 goto out;
424 }
425
426 for (count = i = 0; i < sc->sc_pstate_count; i++) {
427
428 ps = &sc->sc_pstate[i];
429 rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
430
431 if (ACPI_FAILURE(rv)) {
432 aprint_error_dev(sc->sc_dev, "failed to add "
433 "P-state: %s\n", AcpiFormatException(rv));
434 ps->ps_freq = 0;
435 continue;
436 }
437
438 for (j = 0; j < i; j++) {
439
440 if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
441 ps->ps_freq = 0;
442 break;
443 }
444 }
445
446 if (ps->ps_freq != 0)
447 count++;
448 }
449
450 rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
451
452 out:
453 if (buf.Pointer != NULL)
454 ACPI_FREE(buf.Pointer);
455
456 return rv;
457 }
458
459 static ACPI_STATUS
460 acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
461 {
462 ACPI_OBJECT *elm;
463 int i;
464
465 if (obj->Type != ACPI_TYPE_PACKAGE)
466 return AE_TYPE;
467
468 if (obj->Package.Count != 6)
469 return AE_BAD_DATA;
470
471 elm = obj->Package.Elements;
472
473 for (i = 0; i < 6; i++) {
474
475 if (elm[i].Type != ACPI_TYPE_INTEGER)
476 return AE_TYPE;
477
478 if (elm[i].Integer.Value > UINT32_MAX)
479 return AE_AML_NUMERIC_OVERFLOW;
480 }
481
482 ps->ps_freq = elm[0].Integer.Value;
483 ps->ps_power = elm[1].Integer.Value;
484 ps->ps_latency = elm[2].Integer.Value;
485 ps->ps_latency_bm = elm[3].Integer.Value;
486 ps->ps_control = elm[4].Integer.Value;
487 ps->ps_status = elm[5].Integer.Value;
488
489 if (ps->ps_freq == 0 || ps->ps_freq > 9999)
490 return AE_BAD_DECIMAL_CONSTANT;
491
492 if (ps->ps_latency == 0 || ps->ps_latency > 1000)
493 ps->ps_latency = 1;
494
495 return AE_OK;
496 }
497
498 static ACPI_STATUS
499 acpicpu_pstate_xpss(struct acpicpu_softc *sc)
500 {
501 struct acpicpu_pstate *ps;
502 ACPI_OBJECT *obj;
503 ACPI_BUFFER buf;
504 ACPI_STATUS rv;
505 uint32_t i = 0;
506
507 rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);
508
509 if (ACPI_FAILURE(rv))
510 goto out;
511
512 obj = buf.Pointer;
513
514 if (obj->Type != ACPI_TYPE_PACKAGE) {
515 rv = AE_TYPE;
516 goto out;
517 }
518
519 if (obj->Package.Count != sc->sc_pstate_count) {
520 rv = AE_LIMIT;
521 goto out;
522 }
523
524 while (i < sc->sc_pstate_count) {
525
526 ps = &sc->sc_pstate[i];
527 acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);
528
529 i++;
530 }
531
532 out:
533 if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
534 aprint_error_dev(sc->sc_dev, "failed to evaluate "
535 "XPSS: %s\n", AcpiFormatException(rv));
536
537 if (buf.Pointer != NULL)
538 ACPI_FREE(buf.Pointer);
539
540 return rv;
541 }
542
543 static ACPI_STATUS
544 acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
545 {
546 ACPI_OBJECT *elm;
547 int i;
548
549 if (obj->Type != ACPI_TYPE_PACKAGE)
550 return AE_TYPE;
551
552 if (obj->Package.Count != 8)
553 return AE_BAD_DATA;
554
555 elm = obj->Package.Elements;
556
557 for (i = 0; i < 4; i++) {
558
559 if (elm[i].Type != ACPI_TYPE_INTEGER)
560 return AE_TYPE;
561
562 if (elm[i].Integer.Value > UINT32_MAX)
563 return AE_AML_NUMERIC_OVERFLOW;
564 }
565
566 for (; i < 8; i++) {
567
568 if (elm[i].Type != ACPI_TYPE_BUFFER)
569 return AE_TYPE;
570
571 if (elm[i].Buffer.Length != 8)
572 return AE_LIMIT;
573 }
574
575 /*
576 * Only overwrite the elements that were
577 * not available from the conventional _PSS.
578 */
579 if (ps->ps_freq == 0)
580 ps->ps_freq = elm[0].Integer.Value;
581
582 if (ps->ps_power == 0)
583 ps->ps_power = elm[1].Integer.Value;
584
585 if (ps->ps_latency == 0)
586 ps->ps_latency = elm[2].Integer.Value;
587
588 if (ps->ps_latency_bm == 0)
589 ps->ps_latency_bm = elm[3].Integer.Value;
590
591 if (ps->ps_control == 0)
592 ps->ps_control = ACPI_GET64(elm[4].Buffer.Pointer);
593
594 if (ps->ps_status == 0)
595 ps->ps_status = ACPI_GET64(elm[5].Buffer.Pointer);
596
597 if (ps->ps_control_mask == 0)
598 ps->ps_control_mask = ACPI_GET64(elm[6].Buffer.Pointer);
599
600 if (ps->ps_status_mask == 0)
601 ps->ps_status_mask = ACPI_GET64(elm[7].Buffer.Pointer);
602
603 ps->ps_flags |= ACPICPU_FLAG_P_XPSS;
604
605 if (ps->ps_freq == 0 || ps->ps_freq > 9999)
606 return AE_BAD_DECIMAL_CONSTANT;
607
608 if (ps->ps_latency == 0 || ps->ps_latency > 1000)
609 ps->ps_latency = 1;
610
611 return AE_OK;
612 }
613
614 ACPI_STATUS
615 acpicpu_pstate_pct(struct acpicpu_softc *sc)
616 {
617 static const size_t size = sizeof(struct acpicpu_reg);
618 struct acpicpu_reg *reg[2];
619 struct acpicpu_pstate *ps;
620 ACPI_OBJECT *elm, *obj;
621 ACPI_BUFFER buf;
622 ACPI_STATUS rv;
623 uint8_t width;
624 uint32_t i;
625
626 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
627
628 if (ACPI_FAILURE(rv))
629 return rv;
630
631 obj = buf.Pointer;
632
633 if (obj->Type != ACPI_TYPE_PACKAGE) {
634 rv = AE_TYPE;
635 goto out;
636 }
637
638 if (obj->Package.Count != 2) {
639 rv = AE_LIMIT;
640 goto out;
641 }
642
643 for (i = 0; i < 2; i++) {
644
645 elm = &obj->Package.Elements[i];
646
647 if (elm->Type != ACPI_TYPE_BUFFER) {
648 rv = AE_TYPE;
649 goto out;
650 }
651
652 if (size > elm->Buffer.Length) {
653 rv = AE_AML_BAD_RESOURCE_LENGTH;
654 goto out;
655 }
656
657 reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
658
659 switch (reg[i]->reg_spaceid) {
660
661 case ACPI_ADR_SPACE_SYSTEM_IO:
662
663 if (reg[i]->reg_addr == 0) {
664 rv = AE_AML_ILLEGAL_ADDRESS;
665 goto out;
666 }
667
668 width = reg[i]->reg_bitwidth;
669
670 if (width + reg[i]->reg_bitoffset > 32) {
671 rv = AE_AML_BAD_RESOURCE_VALUE;
672 goto out;
673 }
674
675 if (width != 8 && width != 16 && width != 32) {
676 rv = AE_AML_BAD_RESOURCE_VALUE;
677 goto out;
678 }
679
680 break;
681
682 case ACPI_ADR_SPACE_FIXED_HARDWARE:
683
684 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {
685
686 if (reg[i]->reg_bitwidth != 64) {
687 rv = AE_AML_BAD_RESOURCE_VALUE;
688 goto out;
689 }
690
691 if (reg[i]->reg_bitoffset != 0) {
692 rv = AE_AML_BAD_RESOURCE_VALUE;
693 goto out;
694 }
695
696 break;
697 }
698
699 if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
700 rv = AE_SUPPORT;
701 goto out;
702 }
703
704 break;
705
706 default:
707 rv = AE_AML_INVALID_SPACE_ID;
708 goto out;
709 }
710 }
711
712 if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
713 rv = AE_AML_INVALID_SPACE_ID;
714 goto out;
715 }
716
717 (void)memcpy(&sc->sc_pstate_control, reg[0], size);
718 (void)memcpy(&sc->sc_pstate_status, reg[1], size);
719
720 if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) == 0)
721 goto out;
722
723 /*
724 * In XPSS the control address can not be zero,
725 * but the status address may be. In this case,
726 * comparable to T-states, we can ignore the status
727 * check during the P-state (FFH) transition.
728 */
729 if (sc->sc_pstate_control.reg_addr == 0) {
730 rv = AE_AML_BAD_RESOURCE_LENGTH;
731 goto out;
732 }
733
734 /*
735 * If XPSS is present, copy the MSR addresses
736 * to the P-state structures for convenience.
737 */
738 for (i = 0; i < sc->sc_pstate_count; i++) {
739
740 ps = &sc->sc_pstate[i];
741
742 if (ps->ps_freq == 0)
743 continue;
744
745 ps->ps_status_addr = sc->sc_pstate_status.reg_addr;
746 ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
747 }
748
749 out:
750 if (buf.Pointer != NULL)
751 ACPI_FREE(buf.Pointer);
752
753 return rv;
754 }
755
756 static ACPI_STATUS
757 acpicpu_pstate_dep(struct acpicpu_softc *sc)
758 {
759 ACPI_OBJECT *elm, *obj;
760 ACPI_BUFFER buf;
761 ACPI_STATUS rv;
762 uint32_t val;
763 uint8_t i, n;
764
765 rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSD", &buf);
766
767 if (ACPI_FAILURE(rv))
768 goto out;
769
770 obj = buf.Pointer;
771
772 if (obj->Type != ACPI_TYPE_PACKAGE) {
773 rv = AE_TYPE;
774 goto out;
775 }
776
777 if (obj->Package.Count != 1) {
778 rv = AE_LIMIT;
779 goto out;
780 }
781
782 elm = &obj->Package.Elements[0];
783
784 if (obj->Type != ACPI_TYPE_PACKAGE) {
785 rv = AE_TYPE;
786 goto out;
787 }
788
789 n = elm->Package.Count;
790
791 if (n != 5) {
792 rv = AE_LIMIT;
793 goto out;
794 }
795
796 elm = elm->Package.Elements;
797
798 for (i = 0; i < n; i++) {
799
800 if (elm[i].Type != ACPI_TYPE_INTEGER) {
801 rv = AE_TYPE;
802 goto out;
803 }
804
805 if (elm[i].Integer.Value > UINT32_MAX) {
806 rv = AE_AML_NUMERIC_OVERFLOW;
807 goto out;
808 }
809 }
810
811 val = elm[1].Integer.Value;
812
813 if (val != 0)
814 aprint_debug_dev(sc->sc_dev, "invalid revision in _PSD\n");
815
816 val = elm[3].Integer.Value;
817
818 if (val < ACPICPU_DEP_SW_ALL || val > ACPICPU_DEP_HW_ALL) {
819 rv = AE_AML_BAD_RESOURCE_VALUE;
820 goto out;
821 }
822
823 val = elm[4].Integer.Value;
824
825 if (val > sc->sc_ncpus) {
826 rv = AE_BAD_VALUE;
827 goto out;
828 }
829
830 sc->sc_pstate_dep.dep_domain = elm[2].Integer.Value;
831 sc->sc_pstate_dep.dep_type = elm[3].Integer.Value;
832 sc->sc_pstate_dep.dep_ncpus = elm[4].Integer.Value;
833
834 out:
835 if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
836 aprint_debug_dev(sc->sc_dev, "failed to evaluate "
837 "_PSD: %s\n", AcpiFormatException(rv));
838
839 if (buf.Pointer != NULL)
840 ACPI_FREE(buf.Pointer);
841
842 return rv;
843 }
844
845 static int
846 acpicpu_pstate_max(struct acpicpu_softc *sc)
847 {
848 ACPI_INTEGER val;
849 ACPI_STATUS rv;
850
851 /*
852 * Evaluate the currently highest P-state that can be used.
853 * If available, we can use either this state or any lower
854 * power (i.e. higher numbered) state from the _PSS object.
855 * Note that the return value must match the _OST parameter.
856 */
857 rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
858
859 if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
860
861 if (sc->sc_pstate[val].ps_freq != 0) {
862 sc->sc_pstate_max = val;
863 return 0;
864 }
865 }
866
867 return 1;
868 }
869
870 static int
871 acpicpu_pstate_min(struct acpicpu_softc *sc)
872 {
873 ACPI_INTEGER val;
874 ACPI_STATUS rv;
875
876 /*
877 * The _PDL object defines the minimum when passive cooling
878 * is being performed. If available, we can use the returned
879 * state or any higher power (i.e. lower numbered) state.
880 */
881 rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);
882
883 if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {
884
885 if (sc->sc_pstate[val].ps_freq == 0)
886 return 1;
887
888 if (val >= sc->sc_pstate_max) {
889 sc->sc_pstate_min = val;
890 return 0;
891 }
892 }
893
894 return 1;
895 }
896
897 static void
898 acpicpu_pstate_change(struct acpicpu_softc *sc)
899 {
900 static ACPI_STATUS rv = AE_OK;
901 ACPI_OBJECT_LIST arg;
902 ACPI_OBJECT obj[2];
903 static int val = 0;
904
905 acpicpu_pstate_reset(sc);
906
907 /*
908 * Cache the checks as the optional
909 * _PDL and _OST are rarely present.
910 */
911 if (val == 0)
912 val = acpicpu_pstate_min(sc);
913
914 arg.Count = 2;
915 arg.Pointer = obj;
916
917 obj[0].Type = ACPI_TYPE_INTEGER;
918 obj[1].Type = ACPI_TYPE_INTEGER;
919
920 obj[0].Integer.Value = ACPICPU_P_NOTIFY;
921 obj[1].Integer.Value = acpicpu_pstate_max(sc);
922
923 if (ACPI_FAILURE(rv))
924 return;
925
926 rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
927 }
928
929 static void
930 acpicpu_pstate_reset(struct acpicpu_softc *sc)
931 {
932
933 sc->sc_pstate_max = 0;
934 sc->sc_pstate_min = sc->sc_pstate_count - 1;
935
936 }
937
938 static void
939 acpicpu_pstate_bios(void)
940 {
941 const uint8_t val = AcpiGbl_FADT.PstateControl;
942 const uint32_t addr = AcpiGbl_FADT.SmiCommand;
943
944 if (addr == 0 || val == 0)
945 return;
946
947 (void)AcpiOsWritePort(addr, val, 8);
948 }
949
950 int
951 acpicpu_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
952 {
953 const uint8_t method = sc->sc_pstate_control.reg_spaceid;
954 struct acpicpu_pstate *ps = NULL;
955 uint32_t i, val = 0;
956 uint64_t addr;
957 uint8_t width;
958 int rv;
959
960 if (__predict_false(sc->sc_cold != false)) {
961 rv = EBUSY;
962 goto fail;
963 }
964
965 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
966 rv = ENODEV;
967 goto fail;
968 }
969
970 mutex_enter(&sc->sc_mtx);
971
972 /*
973 * Use the cached value, if available.
974 */
975 if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
976 *freq = sc->sc_pstate_current;
977 mutex_exit(&sc->sc_mtx);
978 return 0;
979 }
980
981 mutex_exit(&sc->sc_mtx);
982
983 switch (method) {
984
985 case ACPI_ADR_SPACE_FIXED_HARDWARE:
986
987 rv = acpicpu_md_pstate_get(sc, freq);
988
989 if (__predict_false(rv != 0))
990 goto fail;
991
992 break;
993
994 case ACPI_ADR_SPACE_SYSTEM_IO:
995
996 addr = sc->sc_pstate_status.reg_addr;
997 width = sc->sc_pstate_status.reg_bitwidth;
998
999 (void)AcpiOsReadPort(addr, &val, width);
1000
1001 if (val == 0) {
1002 rv = EIO;
1003 goto fail;
1004 }
1005
1006 for (i = 0; i < sc->sc_pstate_count; i++) {
1007
1008 if (sc->sc_pstate[i].ps_freq == 0)
1009 continue;
1010
1011 if (val == sc->sc_pstate[i].ps_status) {
1012 ps = &sc->sc_pstate[i];
1013 break;
1014 }
1015 }
1016
1017 if (ps == NULL) {
1018 rv = EIO;
1019 goto fail;
1020 }
1021
1022 *freq = ps->ps_freq;
1023 break;
1024
1025 default:
1026 rv = ENOTTY;
1027 goto fail;
1028 }
1029
1030 mutex_enter(&sc->sc_mtx);
1031 sc->sc_pstate_current = *freq;
1032 mutex_exit(&sc->sc_mtx);
1033
1034 return 0;
1035
1036 fail:
1037 aprint_error_dev(sc->sc_dev, "failed "
1038 "to get frequency (err %d)\n", rv);
1039
1040 mutex_enter(&sc->sc_mtx);
1041 *freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
1042 mutex_exit(&sc->sc_mtx);
1043
1044 return rv;
1045 }
1046
1047 int
1048 acpicpu_pstate_set(struct acpicpu_softc *sc, uint32_t freq)
1049 {
1050 const uint8_t method = sc->sc_pstate_control.reg_spaceid;
1051 struct acpicpu_pstate *ps = NULL;
1052 uint32_t i, val;
1053 uint64_t addr;
1054 uint8_t width;
1055 int rv;
1056
1057 if (__predict_false(sc->sc_cold != false)) {
1058 rv = EBUSY;
1059 goto fail;
1060 }
1061
1062 if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
1063 rv = ENODEV;
1064 goto fail;
1065 }
1066
1067 mutex_enter(&sc->sc_mtx);
1068
1069 if (sc->sc_pstate_current == freq) {
1070 mutex_exit(&sc->sc_mtx);
1071 return 0;
1072 }
1073
1074 /*
1075 * Verify that the requested frequency is available.
1076 *
1077 * The access needs to be protected since the currently
1078 * available maximum and minimum may change dynamically.
1079 */
1080 for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {
1081
1082 if (__predict_false(sc->sc_pstate[i].ps_freq == 0))
1083 continue;
1084
1085 if (sc->sc_pstate[i].ps_freq == freq) {
1086 ps = &sc->sc_pstate[i];
1087 break;
1088 }
1089 }
1090
1091 mutex_exit(&sc->sc_mtx);
1092
1093 if (__predict_false(ps == NULL)) {
1094 rv = EINVAL;
1095 goto fail;
1096 }
1097
1098 switch (method) {
1099
1100 case ACPI_ADR_SPACE_FIXED_HARDWARE:
1101
1102 rv = acpicpu_md_pstate_set(ps);
1103
1104 if (__predict_false(rv != 0))
1105 goto fail;
1106
1107 break;
1108
1109 case ACPI_ADR_SPACE_SYSTEM_IO:
1110
1111 addr = sc->sc_pstate_control.reg_addr;
1112 width = sc->sc_pstate_control.reg_bitwidth;
1113
1114 (void)AcpiOsWritePort(addr, ps->ps_control, width);
1115
1116 addr = sc->sc_pstate_status.reg_addr;
1117 width = sc->sc_pstate_status.reg_bitwidth;
1118
1119 /*
1120 * Some systems take longer to respond
1121 * than the reported worst-case latency.
1122 */
1123 for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
1124
1125 (void)AcpiOsReadPort(addr, &val, width);
1126
1127 if (val == ps->ps_status)
1128 break;
1129
1130 DELAY(ps->ps_latency);
1131 }
1132
1133 if (i == ACPICPU_P_STATE_RETRY) {
1134 rv = EAGAIN;
1135 goto fail;
1136 }
1137
1138 break;
1139
1140 default:
1141 rv = ENOTTY;
1142 goto fail;
1143 }
1144
1145 mutex_enter(&sc->sc_mtx);
1146 ps->ps_evcnt.ev_count++;
1147 sc->sc_pstate_current = freq;
1148 mutex_exit(&sc->sc_mtx);
1149
1150 return 0;
1151
1152 fail:
1153 aprint_error_dev(sc->sc_dev, "failed to set "
1154 "frequency to %u (err %d)\n", freq, rv);
1155
1156 mutex_enter(&sc->sc_mtx);
1157 sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
1158 mutex_exit(&sc->sc_mtx);
1159
1160 return rv;
1161 }
1162