acpi_srat.c revision 1.5.4.1 1 1.5.4.1 martin /* $NetBSD: acpi_srat.c,v 1.5.4.1 2020/04/13 08:04:18 martin Exp $ */
2 1.1 cegger
3 1.1 cegger /*
4 1.1 cegger * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 1.1 cegger * All rights reserved.
6 1.1 cegger *
7 1.1 cegger * This code is derived from software contributed to The NetBSD Foundation
8 1.1 cegger * by Christoph Egger.
9 1.1 cegger *
10 1.1 cegger * Redistribution and use in source and binary forms, with or without
11 1.1 cegger * modification, are permitted provided that the following conditions
12 1.1 cegger * are met:
13 1.1 cegger * 1. Redistributions of source code must retain the above copyright
14 1.1 cegger * notice, this list of conditions and the following disclaimer.
15 1.1 cegger * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cegger * notice, this list of conditions and the following disclaimer in the
17 1.1 cegger * documentation and/or other materials provided with the distribution.
18 1.1 cegger *
19 1.1 cegger * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 cegger * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 cegger * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 cegger * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 cegger * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 cegger * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 cegger * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 cegger * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 cegger * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 cegger * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 cegger * POSSIBILITY OF SUCH DAMAGE.
30 1.1 cegger */
31 1.1 cegger
32 1.1 cegger #include <sys/cdefs.h>
33 1.5.4.1 martin __KERNEL_RCSID(0, "$NetBSD: acpi_srat.c,v 1.5.4.1 2020/04/13 08:04:18 martin Exp $");
34 1.1 cegger
35 1.1 cegger #include <sys/param.h>
36 1.3 jruoho #include <sys/kmem.h>
37 1.1 cegger #include <sys/systm.h>
38 1.1 cegger
39 1.1 cegger #include <dev/acpi/acpivar.h>
40 1.1 cegger #include <dev/acpi/acpi_srat.h>
41 1.1 cegger
42 1.5.4.1 martin #include <uvm/uvm_extern.h>
43 1.5.4.1 martin
44 1.1 cegger static ACPI_TABLE_SRAT *srat;
45 1.1 cegger
46 1.1 cegger static uint32_t nnodes; /* Number of NUMA nodes */
47 1.1 cegger static struct acpisrat_node *node_array; /* Array of NUMA nodes */
48 1.1 cegger static uint32_t ncpus; /* Number of CPUs */
49 1.1 cegger static struct acpisrat_cpu *cpu_array; /* Array of cpus */
50 1.1 cegger static uint32_t nmems; /* Number of Memory ranges */
51 1.1 cegger static struct acpisrat_mem *mem_array;
52 1.1 cegger
53 1.1 cegger struct cpulist {
54 1.1 cegger struct acpisrat_cpu cpu;
55 1.1 cegger TAILQ_ENTRY(cpulist) entry;
56 1.1 cegger };
57 1.1 cegger
58 1.1 cegger static TAILQ_HEAD(, cpulist) cpulisthead;
59 1.1 cegger
60 1.5 maxv #define CPU_INIT() TAILQ_INIT(&cpulisthead);
61 1.1 cegger #define CPU_FOREACH(cpu) TAILQ_FOREACH(cpu, &cpulisthead, entry)
62 1.1 cegger #define CPU_ADD(cpu) TAILQ_INSERT_TAIL(&cpulisthead, cpu, entry)
63 1.1 cegger #define CPU_REM(cpu) TAILQ_REMOVE(&cpulisthead, cpu, entry)
64 1.5 maxv #define CPU_FIRST() TAILQ_FIRST(&cpulisthead)
65 1.1 cegger
66 1.1 cegger struct memlist {
67 1.1 cegger struct acpisrat_mem mem;
68 1.1 cegger TAILQ_ENTRY(memlist) entry;
69 1.1 cegger };
70 1.1 cegger
71 1.1 cegger static TAILQ_HEAD(, memlist) memlisthead;
72 1.1 cegger
73 1.5 maxv #define MEM_INIT() TAILQ_INIT(&memlisthead)
74 1.1 cegger #define MEM_FOREACH(mem) TAILQ_FOREACH(mem, &memlisthead, entry)
75 1.1 cegger #define MEM_ADD(mem) TAILQ_INSERT_TAIL(&memlisthead, mem, entry)
76 1.1 cegger #define MEM_ADD_BEFORE(mem, b) TAILQ_INSERT_BEFORE(b, mem, entry)
77 1.1 cegger #define MEM_REM(mem) TAILQ_REMOVE(&memlisthead, mem, entry)
78 1.5 maxv #define MEM_FIRST() TAILQ_FIRST(&memlisthead)
79 1.1 cegger
80 1.1 cegger
81 1.1 cegger static struct cpulist *
82 1.1 cegger cpu_alloc(void)
83 1.1 cegger {
84 1.5.4.1 martin return kmem_zalloc(sizeof(struct cpulist), KM_SLEEP);
85 1.1 cegger }
86 1.1 cegger
87 1.1 cegger static void
88 1.1 cegger cpu_free(struct cpulist *c)
89 1.1 cegger {
90 1.1 cegger kmem_free(c, sizeof(struct cpulist));
91 1.1 cegger }
92 1.1 cegger
93 1.1 cegger static struct memlist *
94 1.1 cegger mem_alloc(void)
95 1.1 cegger {
96 1.5.4.1 martin return kmem_zalloc(sizeof(struct memlist), KM_SLEEP);
97 1.1 cegger }
98 1.1 cegger
99 1.1 cegger static void
100 1.1 cegger mem_free(struct memlist *m)
101 1.1 cegger {
102 1.1 cegger kmem_free(m, sizeof(struct memlist));
103 1.1 cegger }
104 1.1 cegger
105 1.1 cegger static struct memlist *
106 1.1 cegger mem_get(acpisrat_nodeid_t nodeid)
107 1.1 cegger {
108 1.1 cegger struct memlist *tmp;
109 1.1 cegger
110 1.1 cegger MEM_FOREACH(tmp) {
111 1.1 cegger if (tmp->mem.nodeid == nodeid)
112 1.1 cegger return tmp;
113 1.1 cegger }
114 1.1 cegger
115 1.1 cegger return NULL;
116 1.1 cegger }
117 1.1 cegger
118 1.5 maxv /*
119 1.5 maxv * Returns true if ACPI SRAT table is available. If table does not exist, all
120 1.5 maxv * functions below have undefined behaviour.
121 1.5 maxv */
122 1.1 cegger bool
123 1.1 cegger acpisrat_exist(void)
124 1.1 cegger {
125 1.1 cegger ACPI_TABLE_HEADER *table;
126 1.1 cegger ACPI_STATUS rv;
127 1.1 cegger
128 1.1 cegger rv = AcpiGetTable(ACPI_SIG_SRAT, 1, (ACPI_TABLE_HEADER **)&table);
129 1.1 cegger if (ACPI_FAILURE(rv))
130 1.1 cegger return false;
131 1.1 cegger
132 1.1 cegger /* Check if header is valid */
133 1.1 cegger if (table == NULL)
134 1.1 cegger return false;
135 1.1 cegger
136 1.1 cegger if (table->Length == 0xffffffff)
137 1.1 cegger return false;
138 1.1 cegger
139 1.1 cegger srat = (ACPI_TABLE_SRAT *)table;
140 1.1 cegger
141 1.1 cegger return true;
142 1.1 cegger }
143 1.1 cegger
144 1.1 cegger static int
145 1.1 cegger acpisrat_parse(void)
146 1.1 cegger {
147 1.1 cegger ACPI_SUBTABLE_HEADER *subtable;
148 1.1 cegger ACPI_SRAT_CPU_AFFINITY *srat_cpu;
149 1.1 cegger ACPI_SRAT_MEM_AFFINITY *srat_mem;
150 1.1 cegger ACPI_SRAT_X2APIC_CPU_AFFINITY *srat_x2apic;
151 1.1 cegger
152 1.1 cegger acpisrat_nodeid_t nodeid;
153 1.1 cegger struct cpulist *cpuentry = NULL;
154 1.1 cegger struct memlist *mementry;
155 1.1 cegger uint32_t srat_pos;
156 1.1 cegger bool ignore_cpu_affinity = false;
157 1.1 cegger
158 1.1 cegger KASSERT(srat != NULL);
159 1.1 cegger
160 1.1 cegger /* Content starts right after the header */
161 1.1 cegger srat_pos = sizeof(ACPI_TABLE_SRAT);
162 1.1 cegger
163 1.1 cegger while (srat_pos < srat->Header.Length) {
164 1.1 cegger subtable = (ACPI_SUBTABLE_HEADER *)((char *)srat + srat_pos);
165 1.1 cegger srat_pos += subtable->Length;
166 1.1 cegger
167 1.1 cegger switch (subtable->Type) {
168 1.1 cegger case ACPI_SRAT_TYPE_CPU_AFFINITY:
169 1.1 cegger if (ignore_cpu_affinity)
170 1.1 cegger continue;
171 1.1 cegger
172 1.1 cegger srat_cpu = (ACPI_SRAT_CPU_AFFINITY *)subtable;
173 1.4 msaitoh if ((srat_cpu->Flags & ACPI_SRAT_CPU_ENABLED) == 0)
174 1.4 msaitoh break;
175 1.1 cegger nodeid = (srat_cpu->ProximityDomainHi[2] << 24) |
176 1.1 cegger (srat_cpu->ProximityDomainHi[1] << 16) |
177 1.1 cegger (srat_cpu->ProximityDomainHi[0] << 8) |
178 1.1 cegger (srat_cpu->ProximityDomainLo);
179 1.1 cegger
180 1.1 cegger cpuentry = cpu_alloc();
181 1.1 cegger if (cpuentry == NULL)
182 1.1 cegger return ENOMEM;
183 1.1 cegger CPU_ADD(cpuentry);
184 1.1 cegger
185 1.1 cegger cpuentry->cpu.nodeid = nodeid;
186 1.1 cegger cpuentry->cpu.apicid = srat_cpu->ApicId;
187 1.1 cegger cpuentry->cpu.sapiceid = srat_cpu->LocalSapicEid;
188 1.1 cegger cpuentry->cpu.flags = srat_cpu->Flags;
189 1.1 cegger cpuentry->cpu.clockdomain = srat_cpu->ClockDomain;
190 1.1 cegger break;
191 1.1 cegger
192 1.1 cegger case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
193 1.1 cegger srat_mem = (ACPI_SRAT_MEM_AFFINITY *)subtable;
194 1.1 cegger nodeid = srat_mem->ProximityDomain;
195 1.4 msaitoh if ((srat_mem->Flags & ACPI_SRAT_MEM_ENABLED) == 0)
196 1.4 msaitoh break;
197 1.1 cegger
198 1.1 cegger mementry = mem_alloc();
199 1.1 cegger if (mementry == NULL)
200 1.1 cegger return ENOMEM;
201 1.1 cegger MEM_ADD(mementry);
202 1.1 cegger
203 1.1 cegger mementry->mem.nodeid = nodeid;
204 1.1 cegger mementry->mem.baseaddress = srat_mem->BaseAddress;
205 1.1 cegger mementry->mem.length = srat_mem->Length;
206 1.1 cegger mementry->mem.flags = srat_mem->Flags;
207 1.1 cegger break;
208 1.1 cegger
209 1.1 cegger case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
210 1.1 cegger srat_x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)subtable;
211 1.4 msaitoh if ((srat_x2apic->Flags & ACPI_SRAT_CPU_ENABLED) == 0)
212 1.4 msaitoh break;
213 1.1 cegger nodeid = srat_x2apic->ProximityDomain;
214 1.1 cegger
215 1.5 maxv /*
216 1.5 maxv * This table entry overrides
217 1.1 cegger * ACPI_SRAT_TYPE_CPU_AFFINITY.
218 1.1 cegger */
219 1.1 cegger if (!ignore_cpu_affinity) {
220 1.1 cegger struct cpulist *citer;
221 1.5 maxv while ((citer = CPU_FIRST()) != NULL) {
222 1.1 cegger CPU_REM(citer);
223 1.1 cegger cpu_free(citer);
224 1.1 cegger }
225 1.1 cegger ignore_cpu_affinity = true;
226 1.1 cegger }
227 1.1 cegger
228 1.1 cegger cpuentry = cpu_alloc();
229 1.1 cegger if (cpuentry == NULL)
230 1.1 cegger return ENOMEM;
231 1.1 cegger CPU_ADD(cpuentry);
232 1.1 cegger
233 1.1 cegger cpuentry->cpu.nodeid = nodeid;
234 1.1 cegger cpuentry->cpu.apicid = srat_x2apic->ApicId;
235 1.1 cegger cpuentry->cpu.clockdomain = srat_x2apic->ClockDomain;
236 1.1 cegger cpuentry->cpu.flags = srat_x2apic->Flags;
237 1.1 cegger break;
238 1.1 cegger
239 1.1 cegger case ACPI_SRAT_TYPE_RESERVED:
240 1.1 cegger printf("ACPI SRAT subtable reserved, length: 0x%x\n",
241 1.1 cegger subtable->Length);
242 1.1 cegger break;
243 1.1 cegger }
244 1.1 cegger }
245 1.1 cegger
246 1.1 cegger return 0;
247 1.1 cegger }
248 1.1 cegger
249 1.1 cegger static int
250 1.1 cegger acpisrat_quirks(void)
251 1.1 cegger {
252 1.1 cegger struct cpulist *citer;
253 1.1 cegger struct memlist *mem, *miter;
254 1.1 cegger
255 1.1 cegger /* Some sanity checks. */
256 1.1 cegger
257 1.5 maxv /*
258 1.5 maxv * Deal with holes in the memory nodes. BIOS doesn't enlist memory
259 1.5 maxv * nodes which don't have any memory modules plugged in. This behaviour
260 1.5 maxv * has been observed on AMD machines.
261 1.1 cegger *
262 1.5 maxv * Do that by searching for CPUs in NUMA nodes which don't exist in the
263 1.5 maxv * memory and then insert a zero memory range for the missing node.
264 1.1 cegger */
265 1.1 cegger CPU_FOREACH(citer) {
266 1.1 cegger mem = mem_get(citer->cpu.nodeid);
267 1.1 cegger if (mem != NULL)
268 1.1 cegger continue;
269 1.1 cegger mem = mem_alloc();
270 1.1 cegger if (mem == NULL)
271 1.1 cegger return ENOMEM;
272 1.1 cegger mem->mem.nodeid = citer->cpu.nodeid;
273 1.1 cegger /* all other fields are already zero filled */
274 1.1 cegger
275 1.1 cegger MEM_FOREACH(miter) {
276 1.1 cegger if (miter->mem.nodeid < citer->cpu.nodeid)
277 1.1 cegger continue;
278 1.1 cegger MEM_ADD_BEFORE(mem, miter);
279 1.1 cegger break;
280 1.1 cegger }
281 1.1 cegger }
282 1.1 cegger
283 1.1 cegger return 0;
284 1.1 cegger }
285 1.1 cegger
286 1.5 maxv /*
287 1.5 maxv * Initializes parser. Must be the first function being called when table is
288 1.5 maxv * available.
289 1.5 maxv */
290 1.1 cegger int
291 1.1 cegger acpisrat_init(void)
292 1.1 cegger {
293 1.1 cegger if (!acpisrat_exist())
294 1.1 cegger return EEXIST;
295 1.1 cegger return acpisrat_refresh();
296 1.1 cegger }
297 1.1 cegger
298 1.5 maxv /*
299 1.5 maxv * Re-parse ACPI SRAT table. Useful after hotplugging cpu or RAM.
300 1.5 maxv */
301 1.1 cegger int
302 1.1 cegger acpisrat_refresh(void)
303 1.1 cegger {
304 1.1 cegger int rc, i, j, k;
305 1.1 cegger struct cpulist *citer;
306 1.1 cegger struct memlist *miter;
307 1.1 cegger uint32_t cnodes = 0, mnodes = 0;
308 1.1 cegger
309 1.5 maxv CPU_INIT();
310 1.5 maxv MEM_INIT();
311 1.1 cegger
312 1.1 cegger rc = acpisrat_parse();
313 1.1 cegger if (rc)
314 1.1 cegger return rc;
315 1.1 cegger
316 1.1 cegger rc = acpisrat_quirks();
317 1.1 cegger if (rc)
318 1.1 cegger return rc;
319 1.1 cegger
320 1.1 cegger /* cleanup resources */
321 1.1 cegger rc = acpisrat_exit();
322 1.1 cegger if (rc)
323 1.1 cegger return rc;
324 1.1 cegger
325 1.1 cegger ncpus = 0;
326 1.1 cegger CPU_FOREACH(citer) {
327 1.1 cegger cnodes = MAX(citer->cpu.nodeid, cnodes);
328 1.1 cegger ncpus++;
329 1.1 cegger }
330 1.1 cegger
331 1.1 cegger nmems = 0;
332 1.1 cegger MEM_FOREACH(miter) {
333 1.1 cegger mnodes = MAX(miter->mem.nodeid, mnodes);
334 1.1 cegger nmems++;
335 1.1 cegger }
336 1.1 cegger
337 1.1 cegger nnodes = MAX(cnodes, mnodes) + 1;
338 1.1 cegger
339 1.5.4.1 martin if (nnodes == 0 || nmems == 0 || ncpus == 0) {
340 1.5.4.1 martin rc = ENOENT;
341 1.5.4.1 martin goto fail;
342 1.5.4.1 martin }
343 1.1 cegger
344 1.5.4.1 martin node_array = kmem_zalloc(nnodes * sizeof(struct acpisrat_node),
345 1.5.4.1 martin KM_SLEEP);
346 1.1 cegger cpu_array = kmem_zalloc(ncpus * sizeof(struct acpisrat_cpu),
347 1.5.4.1 martin KM_SLEEP);
348 1.1 cegger mem_array = kmem_zalloc(nmems * sizeof(struct acpisrat_mem),
349 1.5.4.1 martin KM_SLEEP);
350 1.1 cegger
351 1.1 cegger i = 0;
352 1.1 cegger CPU_FOREACH(citer) {
353 1.1 cegger memcpy(&cpu_array[i], &citer->cpu, sizeof(struct acpisrat_cpu));
354 1.1 cegger i++;
355 1.1 cegger node_array[citer->cpu.nodeid].ncpus++;
356 1.1 cegger }
357 1.1 cegger
358 1.1 cegger i = 0;
359 1.1 cegger MEM_FOREACH(miter) {
360 1.1 cegger memcpy(&mem_array[i], &miter->mem, sizeof(struct acpisrat_mem));
361 1.1 cegger i++;
362 1.1 cegger node_array[miter->mem.nodeid].nmems++;
363 1.1 cegger }
364 1.1 cegger
365 1.1 cegger for (i = 0; i < nnodes; i++) {
366 1.1 cegger node_array[i].nodeid = i;
367 1.1 cegger
368 1.5.4.1 martin if (node_array[i].ncpus != 0) {
369 1.5.4.1 martin node_array[i].cpu = kmem_zalloc(node_array[i].ncpus *
370 1.5.4.1 martin sizeof(struct acpisrat_cpu *), KM_SLEEP);
371 1.5.4.1 martin }
372 1.5.4.1 martin if (node_array[i].nmems != 0) {
373 1.5.4.1 martin node_array[i].mem = kmem_zalloc(node_array[i].nmems *
374 1.5.4.1 martin sizeof(struct acpisrat_mem *), KM_SLEEP);
375 1.5.4.1 martin }
376 1.1 cegger
377 1.1 cegger k = 0;
378 1.1 cegger for (j = 0; j < ncpus; j++) {
379 1.1 cegger if (cpu_array[j].nodeid != i)
380 1.1 cegger continue;
381 1.5.4.1 martin KASSERT(node_array[i].cpu != NULL);
382 1.1 cegger node_array[i].cpu[k] = &cpu_array[j];
383 1.1 cegger k++;
384 1.1 cegger }
385 1.1 cegger
386 1.1 cegger k = 0;
387 1.1 cegger for (j = 0; j < nmems; j++) {
388 1.1 cegger if (mem_array[j].nodeid != i)
389 1.1 cegger continue;
390 1.5.4.1 martin KASSERT(node_array[i].mem != NULL);
391 1.1 cegger node_array[i].mem[k] = &mem_array[j];
392 1.1 cegger k++;
393 1.1 cegger }
394 1.1 cegger }
395 1.1 cegger
396 1.5.4.1 martin fail:
397 1.5 maxv while ((citer = CPU_FIRST()) != NULL) {
398 1.1 cegger CPU_REM(citer);
399 1.1 cegger cpu_free(citer);
400 1.1 cegger }
401 1.1 cegger
402 1.5 maxv while ((miter = MEM_FIRST()) != NULL) {
403 1.1 cegger MEM_REM(miter);
404 1.1 cegger mem_free(miter);
405 1.1 cegger }
406 1.1 cegger
407 1.5.4.1 martin return rc;
408 1.1 cegger }
409 1.1 cegger
410 1.5 maxv /*
411 1.5 maxv * Free allocated memory. Should be called when acpisrat is no longer of any
412 1.5 maxv * use.
413 1.5 maxv */
414 1.1 cegger int
415 1.1 cegger acpisrat_exit(void)
416 1.1 cegger {
417 1.1 cegger int i;
418 1.1 cegger
419 1.1 cegger if (node_array) {
420 1.1 cegger for (i = 0; i < nnodes; i++) {
421 1.1 cegger if (node_array[i].cpu)
422 1.1 cegger kmem_free(node_array[i].cpu,
423 1.1 cegger node_array[i].ncpus * sizeof(struct acpisrat_cpu *));
424 1.1 cegger if (node_array[i].mem)
425 1.1 cegger kmem_free(node_array[i].mem,
426 1.1 cegger node_array[i].nmems * sizeof(struct acpisrat_mem *));
427 1.1 cegger }
428 1.1 cegger kmem_free(node_array, nnodes * sizeof(struct acpisrat_node));
429 1.1 cegger }
430 1.1 cegger node_array = NULL;
431 1.1 cegger
432 1.1 cegger if (cpu_array)
433 1.1 cegger kmem_free(cpu_array, ncpus * sizeof(struct acpisrat_cpu));
434 1.1 cegger cpu_array = NULL;
435 1.1 cegger
436 1.1 cegger if (mem_array)
437 1.1 cegger kmem_free(mem_array, nmems * sizeof(struct acpisrat_mem));
438 1.1 cegger mem_array = NULL;
439 1.1 cegger
440 1.1 cegger nnodes = 0;
441 1.1 cegger ncpus = 0;
442 1.1 cegger nmems = 0;
443 1.1 cegger
444 1.1 cegger return 0;
445 1.1 cegger }
446 1.1 cegger
447 1.1 cegger void
448 1.1 cegger acpisrat_dump(void)
449 1.1 cegger {
450 1.1 cegger uint32_t i, j, nn, nc, nm;
451 1.1 cegger struct acpisrat_cpu c;
452 1.1 cegger struct acpisrat_mem m;
453 1.1 cegger
454 1.1 cegger nn = acpisrat_nodes();
455 1.1 cegger aprint_debug("SRAT: %u NUMA nodes\n", nn);
456 1.1 cegger for (i = 0; i < nn; i++) {
457 1.1 cegger nc = acpisrat_node_cpus(i);
458 1.1 cegger for (j = 0; j < nc; j++) {
459 1.1 cegger acpisrat_cpu(i, j, &c);
460 1.1 cegger aprint_debug("SRAT: node %u cpu %u "
461 1.1 cegger "(apic %u, sapic %u, flags %u, clockdomain %u)\n",
462 1.1 cegger c.nodeid, j, c.apicid, c.sapiceid, c.flags,
463 1.1 cegger c.clockdomain);
464 1.1 cegger }
465 1.1 cegger
466 1.1 cegger nm = acpisrat_node_memoryranges(i);
467 1.1 cegger for (j = 0; j < nm; j++) {
468 1.1 cegger acpisrat_mem(i, j, &m);
469 1.1 cegger aprint_debug("SRAT: node %u memory range %u (0x%"
470 1.1 cegger PRIx64" - 0x%"PRIx64" flags %u)\n",
471 1.1 cegger m.nodeid, j, m.baseaddress,
472 1.1 cegger m.baseaddress + m.length, m.flags);
473 1.1 cegger }
474 1.1 cegger }
475 1.1 cegger }
476 1.1 cegger
477 1.5.4.1 martin void
478 1.5.4.1 martin acpisrat_load_uvm(void)
479 1.5.4.1 martin {
480 1.5.4.1 martin uint32_t i, j, nn, nm;
481 1.5.4.1 martin struct acpisrat_mem m;
482 1.5.4.1 martin
483 1.5.4.1 martin nn = acpisrat_nodes();
484 1.5.4.1 martin aprint_debug("SRAT: %u NUMA nodes\n", nn);
485 1.5.4.1 martin for (i = 0; i < nn; i++) {
486 1.5.4.1 martin nm = acpisrat_node_memoryranges(i);
487 1.5.4.1 martin for (j = 0; j < nm; j++) {
488 1.5.4.1 martin acpisrat_mem(i, j, &m);
489 1.5.4.1 martin aprint_debug("SRAT: node %u memory range %u (0x%"
490 1.5.4.1 martin PRIx64" - 0x%"PRIx64" flags %u)\n",
491 1.5.4.1 martin m.nodeid, j, m.baseaddress,
492 1.5.4.1 martin m.baseaddress + m.length, m.flags);
493 1.5.4.1 martin uvm_page_numa_load(trunc_page(m.baseaddress),
494 1.5.4.1 martin trunc_page(m.length), m.nodeid);
495 1.5.4.1 martin }
496 1.5.4.1 martin }
497 1.5.4.1 martin }
498 1.5.4.1 martin
499 1.5 maxv /*
500 1.5 maxv * Get number of NUMA nodes.
501 1.5 maxv */
502 1.1 cegger uint32_t
503 1.1 cegger acpisrat_nodes(void)
504 1.1 cegger {
505 1.1 cegger return nnodes;
506 1.1 cegger }
507 1.1 cegger
508 1.5 maxv /*
509 1.5 maxv * Get number of cpus in the node. 0 means, this is a cpu-less node.
510 1.5 maxv */
511 1.1 cegger uint32_t
512 1.1 cegger acpisrat_node_cpus(acpisrat_nodeid_t nodeid)
513 1.1 cegger {
514 1.1 cegger return node_array[nodeid].ncpus;
515 1.1 cegger }
516 1.1 cegger
517 1.5 maxv /*
518 1.5 maxv * Get number of memory ranges in the node 0 means, this node has no RAM.
519 1.5 maxv */
520 1.1 cegger uint32_t
521 1.1 cegger acpisrat_node_memoryranges(acpisrat_nodeid_t nodeid)
522 1.1 cegger {
523 1.1 cegger return node_array[nodeid].nmems;
524 1.1 cegger }
525 1.1 cegger
526 1.1 cegger void
527 1.1 cegger acpisrat_cpu(acpisrat_nodeid_t nodeid, uint32_t cpunum,
528 1.1 cegger struct acpisrat_cpu *c)
529 1.1 cegger {
530 1.1 cegger memcpy(c, node_array[nodeid].cpu[cpunum],
531 1.1 cegger sizeof(struct acpisrat_cpu));
532 1.1 cegger }
533 1.1 cegger
534 1.1 cegger void
535 1.1 cegger acpisrat_mem(acpisrat_nodeid_t nodeid, uint32_t memrange,
536 1.1 cegger struct acpisrat_mem *mem)
537 1.1 cegger {
538 1.1 cegger memcpy(mem, node_array[nodeid].mem[memrange],
539 1.1 cegger sizeof(struct acpisrat_mem));
540 1.1 cegger }
541 1.5 maxv
542 1.5 maxv /*
543 1.5 maxv * Get a node from an APIC id (belonging to a cpu).
544 1.5 maxv */
545 1.5 maxv struct acpisrat_node *
546 1.5 maxv acpisrat_get_node(uint32_t apicid)
547 1.5 maxv {
548 1.5 maxv struct acpisrat_node *node;
549 1.5 maxv struct acpisrat_cpu *cpu;
550 1.5 maxv size_t i, n;
551 1.5 maxv
552 1.5 maxv for (i = 0; i < nnodes; i++) {
553 1.5 maxv node = &node_array[i];
554 1.5 maxv
555 1.5 maxv for (n = 0; n < node->ncpus; n++) {
556 1.5 maxv cpu = node->cpu[n];
557 1.5 maxv if (cpu->apicid == apicid) {
558 1.5 maxv return node;
559 1.5 maxv }
560 1.5 maxv }
561 1.5 maxv }
562 1.5 maxv
563 1.5 maxv return NULL;
564 1.5 maxv }
565