acpi_srat.c revision 1.8.32.1 1 1.8.32.1 perseant /* $NetBSD: acpi_srat.c,v 1.8.32.1 2024/07/01 01:01:14 perseant Exp $ */
2 1.1 cegger
3 1.1 cegger /*
4 1.1 cegger * Copyright (c) 2009 The NetBSD Foundation, Inc.
5 1.1 cegger * All rights reserved.
6 1.1 cegger *
7 1.1 cegger * This code is derived from software contributed to The NetBSD Foundation
8 1.1 cegger * by Christoph Egger.
9 1.1 cegger *
10 1.1 cegger * Redistribution and use in source and binary forms, with or without
11 1.1 cegger * modification, are permitted provided that the following conditions
12 1.1 cegger * are met:
13 1.1 cegger * 1. Redistributions of source code must retain the above copyright
14 1.1 cegger * notice, this list of conditions and the following disclaimer.
15 1.1 cegger * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cegger * notice, this list of conditions and the following disclaimer in the
17 1.1 cegger * documentation and/or other materials provided with the distribution.
18 1.1 cegger *
19 1.1 cegger * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 cegger * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 cegger * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 cegger * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 cegger * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 cegger * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 cegger * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 cegger * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 cegger * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 cegger * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 cegger * POSSIBILITY OF SUCH DAMAGE.
30 1.1 cegger */
31 1.1 cegger
32 1.1 cegger #include <sys/cdefs.h>
33 1.8.32.1 perseant __KERNEL_RCSID(0, "$NetBSD: acpi_srat.c,v 1.8.32.1 2024/07/01 01:01:14 perseant Exp $");
34 1.1 cegger
35 1.1 cegger #include <sys/param.h>
36 1.3 jruoho #include <sys/kmem.h>
37 1.1 cegger #include <sys/systm.h>
38 1.1 cegger
39 1.1 cegger #include <dev/acpi/acpivar.h>
40 1.1 cegger #include <dev/acpi/acpi_srat.h>
41 1.1 cegger
42 1.8 ad #include <uvm/uvm_extern.h>
43 1.8 ad
44 1.1 cegger static ACPI_TABLE_SRAT *srat;
45 1.1 cegger
46 1.1 cegger static uint32_t nnodes; /* Number of NUMA nodes */
47 1.1 cegger static struct acpisrat_node *node_array; /* Array of NUMA nodes */
48 1.1 cegger static uint32_t ncpus; /* Number of CPUs */
49 1.1 cegger static struct acpisrat_cpu *cpu_array; /* Array of cpus */
50 1.1 cegger static uint32_t nmems; /* Number of Memory ranges */
51 1.1 cegger static struct acpisrat_mem *mem_array;
52 1.1 cegger
53 1.1 cegger struct cpulist {
54 1.1 cegger struct acpisrat_cpu cpu;
55 1.1 cegger TAILQ_ENTRY(cpulist) entry;
56 1.1 cegger };
57 1.1 cegger
58 1.1 cegger static TAILQ_HEAD(, cpulist) cpulisthead;
59 1.1 cegger
60 1.5 maxv #define CPU_INIT() TAILQ_INIT(&cpulisthead);
61 1.1 cegger #define CPU_FOREACH(cpu) TAILQ_FOREACH(cpu, &cpulisthead, entry)
62 1.1 cegger #define CPU_ADD(cpu) TAILQ_INSERT_TAIL(&cpulisthead, cpu, entry)
63 1.1 cegger #define CPU_REM(cpu) TAILQ_REMOVE(&cpulisthead, cpu, entry)
64 1.5 maxv #define CPU_FIRST() TAILQ_FIRST(&cpulisthead)
65 1.1 cegger
66 1.1 cegger struct memlist {
67 1.1 cegger struct acpisrat_mem mem;
68 1.1 cegger TAILQ_ENTRY(memlist) entry;
69 1.1 cegger };
70 1.1 cegger
71 1.1 cegger static TAILQ_HEAD(, memlist) memlisthead;
72 1.1 cegger
73 1.5 maxv #define MEM_INIT() TAILQ_INIT(&memlisthead)
74 1.1 cegger #define MEM_FOREACH(mem) TAILQ_FOREACH(mem, &memlisthead, entry)
75 1.1 cegger #define MEM_ADD(mem) TAILQ_INSERT_TAIL(&memlisthead, mem, entry)
76 1.1 cegger #define MEM_ADD_BEFORE(mem, b) TAILQ_INSERT_BEFORE(b, mem, entry)
77 1.1 cegger #define MEM_REM(mem) TAILQ_REMOVE(&memlisthead, mem, entry)
78 1.5 maxv #define MEM_FIRST() TAILQ_FIRST(&memlisthead)
79 1.1 cegger
80 1.1 cegger
81 1.1 cegger static struct cpulist *
82 1.1 cegger cpu_alloc(void)
83 1.1 cegger {
84 1.6 chs return kmem_zalloc(sizeof(struct cpulist), KM_SLEEP);
85 1.1 cegger }
86 1.1 cegger
87 1.1 cegger static void
88 1.1 cegger cpu_free(struct cpulist *c)
89 1.1 cegger {
90 1.1 cegger kmem_free(c, sizeof(struct cpulist));
91 1.1 cegger }
92 1.1 cegger
93 1.1 cegger static struct memlist *
94 1.1 cegger mem_alloc(void)
95 1.1 cegger {
96 1.6 chs return kmem_zalloc(sizeof(struct memlist), KM_SLEEP);
97 1.1 cegger }
98 1.1 cegger
99 1.1 cegger static void
100 1.1 cegger mem_free(struct memlist *m)
101 1.1 cegger {
102 1.1 cegger kmem_free(m, sizeof(struct memlist));
103 1.1 cegger }
104 1.1 cegger
105 1.1 cegger static struct memlist *
106 1.1 cegger mem_get(acpisrat_nodeid_t nodeid)
107 1.1 cegger {
108 1.1 cegger struct memlist *tmp;
109 1.1 cegger
110 1.1 cegger MEM_FOREACH(tmp) {
111 1.1 cegger if (tmp->mem.nodeid == nodeid)
112 1.1 cegger return tmp;
113 1.1 cegger }
114 1.1 cegger
115 1.1 cegger return NULL;
116 1.1 cegger }
117 1.1 cegger
118 1.5 maxv /*
119 1.5 maxv * Returns true if ACPI SRAT table is available. If table does not exist, all
120 1.5 maxv * functions below have undefined behaviour.
121 1.5 maxv */
122 1.1 cegger bool
123 1.1 cegger acpisrat_exist(void)
124 1.1 cegger {
125 1.1 cegger ACPI_TABLE_HEADER *table;
126 1.1 cegger ACPI_STATUS rv;
127 1.1 cegger
128 1.1 cegger rv = AcpiGetTable(ACPI_SIG_SRAT, 1, (ACPI_TABLE_HEADER **)&table);
129 1.1 cegger if (ACPI_FAILURE(rv))
130 1.1 cegger return false;
131 1.1 cegger
132 1.1 cegger /* Check if header is valid */
133 1.1 cegger if (table == NULL)
134 1.1 cegger return false;
135 1.1 cegger
136 1.1 cegger if (table->Length == 0xffffffff)
137 1.1 cegger return false;
138 1.1 cegger
139 1.1 cegger srat = (ACPI_TABLE_SRAT *)table;
140 1.1 cegger
141 1.1 cegger return true;
142 1.1 cegger }
143 1.1 cegger
144 1.1 cegger static int
145 1.1 cegger acpisrat_parse(void)
146 1.1 cegger {
147 1.1 cegger ACPI_SUBTABLE_HEADER *subtable;
148 1.1 cegger ACPI_SRAT_CPU_AFFINITY *srat_cpu;
149 1.1 cegger ACPI_SRAT_MEM_AFFINITY *srat_mem;
150 1.1 cegger ACPI_SRAT_X2APIC_CPU_AFFINITY *srat_x2apic;
151 1.8.32.1 perseant ACPI_SRAT_GICC_AFFINITY *srat_gicc;
152 1.1 cegger
153 1.1 cegger acpisrat_nodeid_t nodeid;
154 1.1 cegger struct cpulist *cpuentry = NULL;
155 1.1 cegger struct memlist *mementry;
156 1.1 cegger uint32_t srat_pos;
157 1.1 cegger bool ignore_cpu_affinity = false;
158 1.1 cegger
159 1.1 cegger KASSERT(srat != NULL);
160 1.1 cegger
161 1.1 cegger /* Content starts right after the header */
162 1.1 cegger srat_pos = sizeof(ACPI_TABLE_SRAT);
163 1.1 cegger
164 1.1 cegger while (srat_pos < srat->Header.Length) {
165 1.1 cegger subtable = (ACPI_SUBTABLE_HEADER *)((char *)srat + srat_pos);
166 1.1 cegger srat_pos += subtable->Length;
167 1.1 cegger
168 1.1 cegger switch (subtable->Type) {
169 1.1 cegger case ACPI_SRAT_TYPE_CPU_AFFINITY:
170 1.1 cegger if (ignore_cpu_affinity)
171 1.1 cegger continue;
172 1.1 cegger
173 1.1 cegger srat_cpu = (ACPI_SRAT_CPU_AFFINITY *)subtable;
174 1.4 msaitoh if ((srat_cpu->Flags & ACPI_SRAT_CPU_ENABLED) == 0)
175 1.4 msaitoh break;
176 1.1 cegger nodeid = (srat_cpu->ProximityDomainHi[2] << 24) |
177 1.1 cegger (srat_cpu->ProximityDomainHi[1] << 16) |
178 1.1 cegger (srat_cpu->ProximityDomainHi[0] << 8) |
179 1.1 cegger (srat_cpu->ProximityDomainLo);
180 1.1 cegger
181 1.1 cegger cpuentry = cpu_alloc();
182 1.1 cegger if (cpuentry == NULL)
183 1.1 cegger return ENOMEM;
184 1.1 cegger CPU_ADD(cpuentry);
185 1.1 cegger
186 1.1 cegger cpuentry->cpu.nodeid = nodeid;
187 1.1 cegger cpuentry->cpu.apicid = srat_cpu->ApicId;
188 1.1 cegger cpuentry->cpu.sapiceid = srat_cpu->LocalSapicEid;
189 1.1 cegger cpuentry->cpu.flags = srat_cpu->Flags;
190 1.1 cegger cpuentry->cpu.clockdomain = srat_cpu->ClockDomain;
191 1.1 cegger break;
192 1.1 cegger
193 1.1 cegger case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
194 1.1 cegger srat_mem = (ACPI_SRAT_MEM_AFFINITY *)subtable;
195 1.1 cegger nodeid = srat_mem->ProximityDomain;
196 1.4 msaitoh if ((srat_mem->Flags & ACPI_SRAT_MEM_ENABLED) == 0)
197 1.4 msaitoh break;
198 1.1 cegger
199 1.1 cegger mementry = mem_alloc();
200 1.1 cegger if (mementry == NULL)
201 1.1 cegger return ENOMEM;
202 1.1 cegger MEM_ADD(mementry);
203 1.1 cegger
204 1.1 cegger mementry->mem.nodeid = nodeid;
205 1.1 cegger mementry->mem.baseaddress = srat_mem->BaseAddress;
206 1.1 cegger mementry->mem.length = srat_mem->Length;
207 1.1 cegger mementry->mem.flags = srat_mem->Flags;
208 1.1 cegger break;
209 1.1 cegger
210 1.1 cegger case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
211 1.1 cegger srat_x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)subtable;
212 1.4 msaitoh if ((srat_x2apic->Flags & ACPI_SRAT_CPU_ENABLED) == 0)
213 1.4 msaitoh break;
214 1.1 cegger nodeid = srat_x2apic->ProximityDomain;
215 1.1 cegger
216 1.5 maxv /*
217 1.5 maxv * This table entry overrides
218 1.1 cegger * ACPI_SRAT_TYPE_CPU_AFFINITY.
219 1.1 cegger */
220 1.1 cegger if (!ignore_cpu_affinity) {
221 1.1 cegger struct cpulist *citer;
222 1.5 maxv while ((citer = CPU_FIRST()) != NULL) {
223 1.1 cegger CPU_REM(citer);
224 1.1 cegger cpu_free(citer);
225 1.1 cegger }
226 1.1 cegger ignore_cpu_affinity = true;
227 1.1 cegger }
228 1.1 cegger
229 1.1 cegger cpuentry = cpu_alloc();
230 1.1 cegger if (cpuentry == NULL)
231 1.1 cegger return ENOMEM;
232 1.1 cegger CPU_ADD(cpuentry);
233 1.1 cegger
234 1.1 cegger cpuentry->cpu.nodeid = nodeid;
235 1.1 cegger cpuentry->cpu.apicid = srat_x2apic->ApicId;
236 1.1 cegger cpuentry->cpu.clockdomain = srat_x2apic->ClockDomain;
237 1.1 cegger cpuentry->cpu.flags = srat_x2apic->Flags;
238 1.1 cegger break;
239 1.1 cegger
240 1.8.32.1 perseant case ACPI_SRAT_TYPE_GICC_AFFINITY:
241 1.8.32.1 perseant srat_gicc = (ACPI_SRAT_GICC_AFFINITY *)subtable;
242 1.8.32.1 perseant if ((srat_gicc->Flags & ACPI_SRAT_GICC_ENABLED) == 0)
243 1.8.32.1 perseant break;
244 1.8.32.1 perseant nodeid = srat_gicc->ProximityDomain;
245 1.8.32.1 perseant
246 1.8.32.1 perseant /*
247 1.8.32.1 perseant * This table entry overrides
248 1.8.32.1 perseant * ACPI_SRAT_TYPE_CPU_AFFINITY.
249 1.8.32.1 perseant */
250 1.8.32.1 perseant if (!ignore_cpu_affinity) {
251 1.8.32.1 perseant struct cpulist *citer;
252 1.8.32.1 perseant while ((citer = CPU_FIRST()) != NULL) {
253 1.8.32.1 perseant CPU_REM(citer);
254 1.8.32.1 perseant cpu_free(citer);
255 1.8.32.1 perseant }
256 1.8.32.1 perseant ignore_cpu_affinity = true;
257 1.8.32.1 perseant }
258 1.8.32.1 perseant
259 1.8.32.1 perseant cpuentry = cpu_alloc();
260 1.8.32.1 perseant if (cpuentry == NULL)
261 1.8.32.1 perseant return ENOMEM;
262 1.8.32.1 perseant CPU_ADD(cpuentry);
263 1.8.32.1 perseant
264 1.8.32.1 perseant cpuentry->cpu.nodeid = nodeid;
265 1.8.32.1 perseant cpuentry->cpu.apicid = srat_gicc->AcpiProcessorUid;
266 1.8.32.1 perseant cpuentry->cpu.clockdomain = srat_gicc->ClockDomain;
267 1.8.32.1 perseant cpuentry->cpu.flags = srat_gicc->Flags;
268 1.8.32.1 perseant break;
269 1.8.32.1 perseant
270 1.1 cegger case ACPI_SRAT_TYPE_RESERVED:
271 1.1 cegger printf("ACPI SRAT subtable reserved, length: 0x%x\n",
272 1.1 cegger subtable->Length);
273 1.1 cegger break;
274 1.1 cegger }
275 1.1 cegger }
276 1.1 cegger
277 1.1 cegger return 0;
278 1.1 cegger }
279 1.1 cegger
280 1.1 cegger static int
281 1.1 cegger acpisrat_quirks(void)
282 1.1 cegger {
283 1.1 cegger struct cpulist *citer;
284 1.1 cegger struct memlist *mem, *miter;
285 1.1 cegger
286 1.1 cegger /* Some sanity checks. */
287 1.1 cegger
288 1.5 maxv /*
289 1.5 maxv * Deal with holes in the memory nodes. BIOS doesn't enlist memory
290 1.5 maxv * nodes which don't have any memory modules plugged in. This behaviour
291 1.5 maxv * has been observed on AMD machines.
292 1.1 cegger *
293 1.5 maxv * Do that by searching for CPUs in NUMA nodes which don't exist in the
294 1.5 maxv * memory and then insert a zero memory range for the missing node.
295 1.1 cegger */
296 1.1 cegger CPU_FOREACH(citer) {
297 1.1 cegger mem = mem_get(citer->cpu.nodeid);
298 1.1 cegger if (mem != NULL)
299 1.1 cegger continue;
300 1.1 cegger mem = mem_alloc();
301 1.1 cegger if (mem == NULL)
302 1.1 cegger return ENOMEM;
303 1.1 cegger mem->mem.nodeid = citer->cpu.nodeid;
304 1.1 cegger /* all other fields are already zero filled */
305 1.1 cegger
306 1.1 cegger MEM_FOREACH(miter) {
307 1.1 cegger if (miter->mem.nodeid < citer->cpu.nodeid)
308 1.1 cegger continue;
309 1.1 cegger MEM_ADD_BEFORE(mem, miter);
310 1.1 cegger break;
311 1.1 cegger }
312 1.1 cegger }
313 1.1 cegger
314 1.1 cegger return 0;
315 1.1 cegger }
316 1.1 cegger
317 1.5 maxv /*
318 1.5 maxv * Initializes parser. Must be the first function being called when table is
319 1.5 maxv * available.
320 1.5 maxv */
321 1.1 cegger int
322 1.1 cegger acpisrat_init(void)
323 1.1 cegger {
324 1.1 cegger if (!acpisrat_exist())
325 1.1 cegger return EEXIST;
326 1.1 cegger return acpisrat_refresh();
327 1.1 cegger }
328 1.1 cegger
329 1.5 maxv /*
330 1.5 maxv * Re-parse ACPI SRAT table. Useful after hotplugging cpu or RAM.
331 1.5 maxv */
332 1.1 cegger int
333 1.1 cegger acpisrat_refresh(void)
334 1.1 cegger {
335 1.1 cegger int rc, i, j, k;
336 1.1 cegger struct cpulist *citer;
337 1.1 cegger struct memlist *miter;
338 1.1 cegger uint32_t cnodes = 0, mnodes = 0;
339 1.1 cegger
340 1.5 maxv CPU_INIT();
341 1.5 maxv MEM_INIT();
342 1.1 cegger
343 1.1 cegger rc = acpisrat_parse();
344 1.1 cegger if (rc)
345 1.1 cegger return rc;
346 1.1 cegger
347 1.1 cegger rc = acpisrat_quirks();
348 1.1 cegger if (rc)
349 1.1 cegger return rc;
350 1.1 cegger
351 1.1 cegger /* cleanup resources */
352 1.1 cegger rc = acpisrat_exit();
353 1.1 cegger if (rc)
354 1.1 cegger return rc;
355 1.1 cegger
356 1.1 cegger ncpus = 0;
357 1.1 cegger CPU_FOREACH(citer) {
358 1.1 cegger cnodes = MAX(citer->cpu.nodeid, cnodes);
359 1.1 cegger ncpus++;
360 1.1 cegger }
361 1.1 cegger
362 1.1 cegger nmems = 0;
363 1.1 cegger MEM_FOREACH(miter) {
364 1.1 cegger mnodes = MAX(miter->mem.nodeid, mnodes);
365 1.1 cegger nmems++;
366 1.1 cegger }
367 1.1 cegger
368 1.1 cegger nnodes = MAX(cnodes, mnodes) + 1;
369 1.1 cegger
370 1.7 ad if (nnodes == 0 || nmems == 0 || ncpus == 0) {
371 1.7 ad rc = ENOENT;
372 1.7 ad goto fail;
373 1.7 ad }
374 1.7 ad
375 1.1 cegger node_array = kmem_zalloc(nnodes * sizeof(struct acpisrat_node),
376 1.6 chs KM_SLEEP);
377 1.1 cegger cpu_array = kmem_zalloc(ncpus * sizeof(struct acpisrat_cpu),
378 1.6 chs KM_SLEEP);
379 1.1 cegger mem_array = kmem_zalloc(nmems * sizeof(struct acpisrat_mem),
380 1.6 chs KM_SLEEP);
381 1.1 cegger
382 1.1 cegger i = 0;
383 1.1 cegger CPU_FOREACH(citer) {
384 1.1 cegger memcpy(&cpu_array[i], &citer->cpu, sizeof(struct acpisrat_cpu));
385 1.1 cegger i++;
386 1.1 cegger node_array[citer->cpu.nodeid].ncpus++;
387 1.1 cegger }
388 1.1 cegger
389 1.1 cegger i = 0;
390 1.1 cegger MEM_FOREACH(miter) {
391 1.1 cegger memcpy(&mem_array[i], &miter->mem, sizeof(struct acpisrat_mem));
392 1.1 cegger i++;
393 1.1 cegger node_array[miter->mem.nodeid].nmems++;
394 1.1 cegger }
395 1.1 cegger
396 1.1 cegger for (i = 0; i < nnodes; i++) {
397 1.1 cegger node_array[i].nodeid = i;
398 1.1 cegger
399 1.7 ad if (node_array[i].ncpus != 0) {
400 1.7 ad node_array[i].cpu = kmem_zalloc(node_array[i].ncpus *
401 1.7 ad sizeof(struct acpisrat_cpu *), KM_SLEEP);
402 1.7 ad }
403 1.7 ad if (node_array[i].nmems != 0) {
404 1.7 ad node_array[i].mem = kmem_zalloc(node_array[i].nmems *
405 1.7 ad sizeof(struct acpisrat_mem *), KM_SLEEP);
406 1.7 ad }
407 1.1 cegger
408 1.1 cegger k = 0;
409 1.1 cegger for (j = 0; j < ncpus; j++) {
410 1.1 cegger if (cpu_array[j].nodeid != i)
411 1.1 cegger continue;
412 1.7 ad KASSERT(node_array[i].cpu != NULL);
413 1.1 cegger node_array[i].cpu[k] = &cpu_array[j];
414 1.1 cegger k++;
415 1.1 cegger }
416 1.1 cegger
417 1.1 cegger k = 0;
418 1.1 cegger for (j = 0; j < nmems; j++) {
419 1.1 cegger if (mem_array[j].nodeid != i)
420 1.1 cegger continue;
421 1.7 ad KASSERT(node_array[i].mem != NULL);
422 1.1 cegger node_array[i].mem[k] = &mem_array[j];
423 1.1 cegger k++;
424 1.1 cegger }
425 1.1 cegger }
426 1.1 cegger
427 1.7 ad fail:
428 1.5 maxv while ((citer = CPU_FIRST()) != NULL) {
429 1.1 cegger CPU_REM(citer);
430 1.1 cegger cpu_free(citer);
431 1.1 cegger }
432 1.1 cegger
433 1.5 maxv while ((miter = MEM_FIRST()) != NULL) {
434 1.1 cegger MEM_REM(miter);
435 1.1 cegger mem_free(miter);
436 1.1 cegger }
437 1.1 cegger
438 1.7 ad return rc;
439 1.1 cegger }
440 1.1 cegger
441 1.5 maxv /*
442 1.5 maxv * Free allocated memory. Should be called when acpisrat is no longer of any
443 1.5 maxv * use.
444 1.5 maxv */
445 1.1 cegger int
446 1.1 cegger acpisrat_exit(void)
447 1.1 cegger {
448 1.1 cegger int i;
449 1.1 cegger
450 1.1 cegger if (node_array) {
451 1.1 cegger for (i = 0; i < nnodes; i++) {
452 1.1 cegger if (node_array[i].cpu)
453 1.1 cegger kmem_free(node_array[i].cpu,
454 1.1 cegger node_array[i].ncpus * sizeof(struct acpisrat_cpu *));
455 1.1 cegger if (node_array[i].mem)
456 1.1 cegger kmem_free(node_array[i].mem,
457 1.1 cegger node_array[i].nmems * sizeof(struct acpisrat_mem *));
458 1.1 cegger }
459 1.1 cegger kmem_free(node_array, nnodes * sizeof(struct acpisrat_node));
460 1.1 cegger }
461 1.1 cegger node_array = NULL;
462 1.1 cegger
463 1.1 cegger if (cpu_array)
464 1.1 cegger kmem_free(cpu_array, ncpus * sizeof(struct acpisrat_cpu));
465 1.1 cegger cpu_array = NULL;
466 1.1 cegger
467 1.1 cegger if (mem_array)
468 1.1 cegger kmem_free(mem_array, nmems * sizeof(struct acpisrat_mem));
469 1.1 cegger mem_array = NULL;
470 1.1 cegger
471 1.1 cegger nnodes = 0;
472 1.1 cegger ncpus = 0;
473 1.1 cegger nmems = 0;
474 1.1 cegger
475 1.1 cegger return 0;
476 1.1 cegger }
477 1.1 cegger
478 1.1 cegger void
479 1.1 cegger acpisrat_dump(void)
480 1.1 cegger {
481 1.1 cegger uint32_t i, j, nn, nc, nm;
482 1.1 cegger struct acpisrat_cpu c;
483 1.1 cegger struct acpisrat_mem m;
484 1.1 cegger
485 1.1 cegger nn = acpisrat_nodes();
486 1.1 cegger aprint_debug("SRAT: %u NUMA nodes\n", nn);
487 1.1 cegger for (i = 0; i < nn; i++) {
488 1.1 cegger nc = acpisrat_node_cpus(i);
489 1.1 cegger for (j = 0; j < nc; j++) {
490 1.1 cegger acpisrat_cpu(i, j, &c);
491 1.1 cegger aprint_debug("SRAT: node %u cpu %u "
492 1.1 cegger "(apic %u, sapic %u, flags %u, clockdomain %u)\n",
493 1.1 cegger c.nodeid, j, c.apicid, c.sapiceid, c.flags,
494 1.1 cegger c.clockdomain);
495 1.1 cegger }
496 1.1 cegger
497 1.1 cegger nm = acpisrat_node_memoryranges(i);
498 1.1 cegger for (j = 0; j < nm; j++) {
499 1.1 cegger acpisrat_mem(i, j, &m);
500 1.1 cegger aprint_debug("SRAT: node %u memory range %u (0x%"
501 1.1 cegger PRIx64" - 0x%"PRIx64" flags %u)\n",
502 1.1 cegger m.nodeid, j, m.baseaddress,
503 1.1 cegger m.baseaddress + m.length, m.flags);
504 1.1 cegger }
505 1.1 cegger }
506 1.1 cegger }
507 1.1 cegger
508 1.8 ad void
509 1.8 ad acpisrat_load_uvm(void)
510 1.8 ad {
511 1.8 ad uint32_t i, j, nn, nm;
512 1.8 ad struct acpisrat_mem m;
513 1.8 ad
514 1.8 ad nn = acpisrat_nodes();
515 1.8 ad aprint_debug("SRAT: %u NUMA nodes\n", nn);
516 1.8 ad for (i = 0; i < nn; i++) {
517 1.8 ad nm = acpisrat_node_memoryranges(i);
518 1.8 ad for (j = 0; j < nm; j++) {
519 1.8 ad acpisrat_mem(i, j, &m);
520 1.8 ad aprint_debug("SRAT: node %u memory range %u (0x%"
521 1.8 ad PRIx64" - 0x%"PRIx64" flags %u)\n",
522 1.8 ad m.nodeid, j, m.baseaddress,
523 1.8 ad m.baseaddress + m.length, m.flags);
524 1.8 ad uvm_page_numa_load(trunc_page(m.baseaddress),
525 1.8 ad trunc_page(m.length), m.nodeid);
526 1.8 ad }
527 1.8 ad }
528 1.8 ad }
529 1.8 ad
530 1.5 maxv /*
531 1.5 maxv * Get number of NUMA nodes.
532 1.5 maxv */
533 1.1 cegger uint32_t
534 1.1 cegger acpisrat_nodes(void)
535 1.1 cegger {
536 1.1 cegger return nnodes;
537 1.1 cegger }
538 1.1 cegger
539 1.5 maxv /*
540 1.5 maxv * Get number of cpus in the node. 0 means, this is a cpu-less node.
541 1.5 maxv */
542 1.1 cegger uint32_t
543 1.1 cegger acpisrat_node_cpus(acpisrat_nodeid_t nodeid)
544 1.1 cegger {
545 1.1 cegger return node_array[nodeid].ncpus;
546 1.1 cegger }
547 1.1 cegger
548 1.5 maxv /*
549 1.5 maxv * Get number of memory ranges in the node 0 means, this node has no RAM.
550 1.5 maxv */
551 1.1 cegger uint32_t
552 1.1 cegger acpisrat_node_memoryranges(acpisrat_nodeid_t nodeid)
553 1.1 cegger {
554 1.1 cegger return node_array[nodeid].nmems;
555 1.1 cegger }
556 1.1 cegger
557 1.1 cegger void
558 1.1 cegger acpisrat_cpu(acpisrat_nodeid_t nodeid, uint32_t cpunum,
559 1.1 cegger struct acpisrat_cpu *c)
560 1.1 cegger {
561 1.1 cegger memcpy(c, node_array[nodeid].cpu[cpunum],
562 1.1 cegger sizeof(struct acpisrat_cpu));
563 1.1 cegger }
564 1.1 cegger
565 1.1 cegger void
566 1.1 cegger acpisrat_mem(acpisrat_nodeid_t nodeid, uint32_t memrange,
567 1.1 cegger struct acpisrat_mem *mem)
568 1.1 cegger {
569 1.1 cegger memcpy(mem, node_array[nodeid].mem[memrange],
570 1.1 cegger sizeof(struct acpisrat_mem));
571 1.1 cegger }
572 1.5 maxv
573 1.5 maxv /*
574 1.5 maxv * Get a node from an APIC id (belonging to a cpu).
575 1.5 maxv */
576 1.5 maxv struct acpisrat_node *
577 1.5 maxv acpisrat_get_node(uint32_t apicid)
578 1.5 maxv {
579 1.5 maxv struct acpisrat_node *node;
580 1.5 maxv struct acpisrat_cpu *cpu;
581 1.5 maxv size_t i, n;
582 1.5 maxv
583 1.5 maxv for (i = 0; i < nnodes; i++) {
584 1.5 maxv node = &node_array[i];
585 1.5 maxv
586 1.5 maxv for (n = 0; n < node->ncpus; n++) {
587 1.5 maxv cpu = node->cpu[n];
588 1.5 maxv if (cpu->apicid == apicid) {
589 1.5 maxv return node;
590 1.5 maxv }
591 1.5 maxv }
592 1.5 maxv }
593 1.5 maxv
594 1.5 maxv return NULL;
595 1.5 maxv }
596