Home | History | Annotate | Line # | Download | only in acpi
apei_interp.c revision 1.3
      1 /*	$NetBSD: apei_interp.c,v 1.3 2024/03/22 18:19:03 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2024 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * APEI action interpreter.
     31  *
     32  * APEI provides a generalized abstraction to implement the actions an
     33  * OS must take to inject an error, or save state in a persistent error
     34  * record for the next boot, since there are many different hardware
     35  * register interfaces for, e.g., injecting errors.
     36  *
     37  * You might think that APEI, being part of ACPI, would use the usual
     38  * ACPI interpreter to run ACPI methods for these actions.  You would
     39  * be wrong.  Alas.
     40  *
     41  * Instead, there is an entirely different little language of actions
     42  * that an OS must write programs in to inject errors, and an entirely
     43  * different little language of instructions that the interpreter for
     44  * the actions uses to interpret the OS's error injection program.  Got
     45  * it?
     46  *
     47  * The EINJ and ERST tables provide a series entries that look like:
     48  *
     49  *	+-----------------------------------------------+
     50  *	| Action=SET_ERROR_TYPE				|
     51  *	| Instruction=SKIP_NEXT_INSTRUCTION_IF_TRUE	|
     52  *	| Register=0x7fabcd10 [memory]			|
     53  *	| Value=0xdeadbeef				|
     54  *	+-----------------------------------------------+
     55  *	| Action=SET_ERROR_TYPE				|
     56  *	| Instruction=WRITE_REGISTER_VALUE		|
     57  *	| Register=0x7fabcd14 [memory]			|
     58  *	| Value=1					|
     59  *	+-----------------------------------------------+
     60  *	| Action=SET_ERROR_TYPE				|
     61  *	| Instruction=READ_REGISTER			|
     62  *	| Register=0x7fabcd1c [memory]			|
     63  *	+-----------------------------------------------+
     64  *	| Action=SET_ERROR_TYPE				|
     65  *	| Instruction=WRITE_REGISTER			|
     66  *	| Register=0x7fabcd20 [memory]			|
     67  *	+-----------------------------------------------+
     68  *	| Action=EXECUTE_OPERATION			|
     69  *	| Instruction=LOAD_VAR1				|
     70  *	| Register=0x7fabcf00 [memory]			|
     71  *	+-----------------------------------------------+
     72  *	| Action=SET_ERROR_TYPE				|
     73  *	| Instruction=WRITE_REGISTER_VALUE		|
     74  *	| Register=0x7fabcd24 [memory]			|
     75  *	| Value=42					|
     76  *	+-----------------------------------------------+
     77  *	| ...						|
     78  *	+-----------------------------------------------+
     79  *
     80  * The entries tell the OS, for each action the OS might want to
     81  * perform like BEGIN_INJECTION_OPERATION or SET_ERROR_TYPE or
     82  * EXECUTE_OPERATION, what instructions must be executed and in what
     83  * order.
     84  *
     85  * The instructions run in one of two little state machines -- there's
     86  * a different instruction set for EINJ and ERST -- and vary from noops
     87  * to reading and writing registers to arithmetic on registers to
     88  * conditional and unconditional branches.
     89  *
     90  * Yes, that means this little language -- the ERST language, anyway,
     91  * not the EINJ language -- is Turing-complete.
     92  *
     93  * This APEI interpreter first compiles the table into a contiguous
     94  * sequence of instructions for each action, to make execution easier,
     95  * since there's no requirement that the instructions for an action be
     96  * contiguous in the table, and the GOTO instruction relies on
     97  * contiguous indexing of the instructions for an action.
     98  *
     99  * This interpreter also does a little validation so the firmware
    100  * doesn't, e.g., GOTO somewhere in oblivion.  The validation is mainly
    101  * a convenience for catching mistakes in firmware, not a security
    102  * measure, since the OS is absolutely vulnerable to malicious firmware
    103  * anyway.
    104  *
    105  * XXX Map instruction registers in advance so ERST is safe in nasty
    106  * contexts, e.g. to save dmesg?
    107  */
    108 
    109 #include <sys/cdefs.h>
    110 __KERNEL_RCSID(0, "$NetBSD: apei_interp.c,v 1.3 2024/03/22 18:19:03 riastradh Exp $");
    111 
    112 #include <sys/types.h>
    113 
    114 #include <sys/kmem.h>
    115 #include <sys/systm.h>
    116 
    117 #include <dev/acpi/acpivar.h>
    118 #include <dev/acpi/apei_interp.h>
    119 
    120 /*
    121  * struct apei_actinst
    122  *
    123  *	Sequence of instructions to execute for an action.
    124  */
    125 struct apei_actinst {
    126 	uint32_t		ninst;
    127 	uint32_t		ip;
    128 	struct acpi_whea_header	**inst;
    129 };
    130 
    131 /*
    132  * struct apei_interp
    133  *
    134  *	Table of instructions to interpret APEI actions.
    135 */
    136 struct apei_interp {
    137 	const char		*name;
    138 	const char		*const *actname;
    139 	unsigned		nact;
    140 	const char		*const *instname;
    141 	unsigned		ninst;
    142 	bool			(*instvalid)(ACPI_WHEA_HEADER *, uint32_t,
    143 				    uint32_t);
    144 	void			(*instfunc)(ACPI_WHEA_HEADER *, void *,
    145 				    uint32_t *, uint32_t);
    146 	struct apei_actinst	actinst[];
    147 };
    148 
    149 struct apei_interp *
    150 apei_interp_create(const char *name,
    151     const char *const *actname, unsigned nact,
    152     const char *const *instname, unsigned ninst,
    153     bool (*instvalid)(ACPI_WHEA_HEADER *, uint32_t, uint32_t),
    154     void (*instfunc)(ACPI_WHEA_HEADER *, void *, uint32_t *, uint32_t))
    155 {
    156 	struct apei_interp *I;
    157 
    158 	I = kmem_zalloc(offsetof(struct apei_interp, actinst[nact]), KM_SLEEP);
    159 	I->name = name;
    160 	I->actname = actname;
    161 	I->nact = nact;
    162 	I->instname = instname;
    163 	I->ninst = ninst;
    164 	I->instvalid = instvalid;
    165 	I->instfunc = instfunc;
    166 
    167 	return I;
    168 }
    169 
    170 void
    171 apei_interp_destroy(struct apei_interp *I)
    172 {
    173 	unsigned action, nact = I->nact;
    174 
    175 	for (action = 0; action < nact; action++) {
    176 		struct apei_actinst *const A = &I->actinst[action];
    177 
    178 		if (A->ninst == 0 || A->ninst == UINT32_MAX || A->inst == NULL)
    179 			continue;
    180 		kmem_free(A->inst, A->ninst * sizeof(A->inst[0]));
    181 		A->inst = NULL;
    182 	}
    183 
    184 	kmem_free(I, offsetof(struct apei_interp, actinst[nact]));
    185 }
    186 
    187 /*
    188  * apei_interp_pass1_load(I, i, E)
    189  *
    190  *	Load the ith table entry E into the interpreter I.  To be
    191  *	called for each entry in the table sequentially.
    192  *
    193  *	This first pass counts the number of instructions for each
    194  *	action, so we can allocate an array of instructions for
    195  *	indexing each action.
    196  */
    197 void
    198 apei_interp_pass1_load(struct apei_interp *I, uint32_t i,
    199     ACPI_WHEA_HEADER *E)
    200 {
    201 
    202 	/*
    203 	 * If we don't recognize this action, ignore it and move on.
    204 	 */
    205 	if (E->Action >= I->nact || I->actname[E->Action] == NULL) {
    206 		aprint_error("%s[%"PRIu32"]: unknown action: 0x%"PRIx8"\n",
    207 		    I->name, i, E->Action);
    208 		return;
    209 	}
    210 	struct apei_actinst *const A = &I->actinst[E->Action];
    211 
    212 	/*
    213 	 * If we can't interpret this instruction for this action, or
    214 	 * if we couldn't interpret a previous instruction for this
    215 	 * action, ignore _all_ instructions for this action -- by
    216 	 * marking the action as having UINT32_MAX instructions -- and
    217 	 * move on.
    218 	 */
    219 	if (E->Instruction >= I->ninst ||
    220 	    I->instname[E->Instruction] == NULL) {
    221 		aprint_error("%s[%"PRIu32"]: unknown instruction: 0x%02"PRIx8
    222 		    "\n", I->name, i, E->Instruction);
    223 		A->ninst = UINT32_MAX;
    224 		return;
    225 	}
    226 	if (A->ninst == UINT32_MAX)
    227 		return;
    228 
    229 	/*
    230 	 * Count another instruction.  We will make a pointer
    231 	 * to it in a later pass.
    232 	 */
    233 	A->ninst++;
    234 
    235 	/*
    236 	 * If it overflows a reasonable size, bail on this instruction.
    237 	 */
    238 	if (A->ninst >= 256) {
    239 		aprint_error("%s[%"PRIu32"]:"
    240 		    " too many instructions for action %"PRIu32" (%s)\n",
    241 		    I->name, i,
    242 		    E->Action, I->actname[E->Action]);
    243 		A->ninst = UINT32_MAX;
    244 		return;
    245 	}
    246 }
    247 
    248 /*
    249  * apei_interp_pass2_verify(I, i, E)
    250  *
    251  *	Verify the ith entry's instruction, using the caller's
    252  *	instvalid function, now that all the instructions have been
    253  *	counted.  To be called for each entry in the table
    254  *	sequentially.
    255  *
    256  *	This second pass checks that GOTO instructions in particular
    257  *	don't jump out of bounds.
    258  */
    259 void
    260 apei_interp_pass2_verify(struct apei_interp *I, uint32_t i,
    261     ACPI_WHEA_HEADER *E)
    262 {
    263 
    264 	/*
    265 	 * If there's no instruction validation function, skip this
    266 	 * pass.
    267 	 */
    268 	if (I->instvalid == NULL)
    269 		return;
    270 
    271 	/*
    272 	 * If we skipped it in earlier passes, skip it now.
    273 	 */
    274 	if (E->Action > I->nact || I->actname[E->Action] == NULL)
    275 		return;
    276 
    277 	/*
    278 	 * If the instruction is invalid, disable the whole action.
    279 	 */
    280 	struct apei_actinst *const A = &I->actinst[E->Action];
    281 	if (!(*I->instvalid)(E, A->ninst, i))
    282 		A->ninst = UINT32_MAX;
    283 }
    284 
    285 /*
    286  * apei_interp_pass3_alloc(I)
    287  *
    288  *	Allocate an array of instructions for each action that we
    289  *	didn't decide to bail on, marked with UINT32_MAX.
    290  */
    291 void
    292 apei_interp_pass3_alloc(struct apei_interp *I)
    293 {
    294 	unsigned action;
    295 
    296 	for (action = 0; action < I->nact; action++) {
    297 		struct apei_actinst *const A = &I->actinst[action];
    298 		if (A->ninst == 0 || A->ninst == UINT32_MAX)
    299 			continue;
    300 		A->inst = kmem_zalloc(A->ninst * sizeof(A->inst[0]), KM_SLEEP);
    301 	}
    302 }
    303 
    304 /*
    305  * apei_interp_pass4_assemble(I, i, E)
    306  *
    307  *	Put the instruction for the ith entry E into the instruction
    308  *	array for its action.  To be called for each entry in the table
    309  *	sequentially.
    310  */
    311 void
    312 apei_interp_pass4_assemble(struct apei_interp *I, uint32_t i,
    313     ACPI_WHEA_HEADER *E)
    314 {
    315 
    316 	/*
    317 	 * If we skipped it in earlier passes, skip it now.
    318 	 */
    319 	if (E->Action >= I->nact || I->actname[E->Action] == NULL)
    320 		return;
    321 
    322 	struct apei_actinst *const A = &I->actinst[E->Action];
    323 	if (A->ninst == UINT32_MAX)
    324 		return;
    325 
    326 	KASSERT(A->ip < A->ninst);
    327 	A->inst[A->ip++] = E;
    328 }
    329 
    330 /*
    331  * apei_interp_pass5_verify(I)
    332  *
    333  *	Paranoia: Verify we got all the instructions for each action,
    334  *	verify the actions point to their own instructions, and dump
    335  *	the instructions for each action, collated, with aprint_debug.
    336  */
    337 void
    338 apei_interp_pass5_verify(struct apei_interp *I)
    339 {
    340 	unsigned action;
    341 
    342 	for (action = 0; action < I->nact; action++) {
    343 		struct apei_actinst *const A = &I->actinst[action];
    344 		unsigned j;
    345 
    346 		/*
    347 		 * If the action is disabled, it's all set.
    348 		 */
    349 		if (A->ninst == UINT32_MAX)
    350 			continue;
    351 		KASSERTMSG(A->ip == A->ninst,
    352 		    "action %s ip=%"PRIu32" ninstruction=%"PRIu32,
    353 		    I->actname[action], A->ip, A->ninst);
    354 
    355 		/*
    356 		 * XXX Dump the complete instruction table.
    357 		 */
    358 		for (j = 0; j < A->ninst; j++) {
    359 			ACPI_WHEA_HEADER *const E = A->inst[j];
    360 
    361 			KASSERT(E->Action == action);
    362 			aprint_debug("%s: %s[%"PRIu32"]: %s\n",
    363 			    I->name, I->actname[action], j,
    364 			    I->instname[E->Instruction]);
    365 		}
    366 	}
    367 }
    368 
    369 /*
    370  * apei_interpret(I, action, cookie)
    371  *
    372  *	Run the instructions associated with the given action by
    373  *	calling the interpreter's instfunc for each one.
    374  *
    375  *	Halt when the instruction pointer runs past the end of the
    376  *	array, or after 1000 cycles, whichever comes first.
    377  */
    378 void
    379 apei_interpret(struct apei_interp *I, unsigned action, void *cookie)
    380 {
    381 	unsigned juice = 1000;
    382 	uint32_t ip = 0;
    383 
    384 	if (action > I->nact || I->actname[action] == NULL)
    385 		return;
    386 	struct apei_actinst *const A = &I->actinst[action];
    387 
    388 	while (ip < A->ninst && juice --> 0) {
    389 		ACPI_WHEA_HEADER *const E = A->inst[ip++];
    390 
    391 		(*I->instfunc)(E, cookie, &ip, A->ninst);
    392 	}
    393 }
    394