audio.c revision 1.1.2.4 1 /* $NetBSD: audio.c,v 1.1.2.4 2019/05/03 05:15:33 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * drain x x (Not used in AUDIO2)
107 * query_format - x
108 * set_format - x
109 * round_blocksize - x
110 * commit_settings - x
111 * init_output x x
112 * init_input x x
113 * start_output x x +
114 * start_input x x +
115 * halt_output x x +
116 * halt_input x x +
117 * speaker_ctl x x
118 * getdev - x
119 * setfd - x (Not used in AUDIO2)
120 * set_port - x +
121 * get_port - x +
122 * query_devinfo - x
123 * allocm - - + (*1)
124 * freem - - + (*1)
125 * round_buffersize - x
126 * mappage - - (Not used in AUDIO2)
127 * get_props - x
128 * trigger_output x x +
129 * trigger_input x x +
130 * dev_ioctl - x
131 * get_locks - - Called at attach time
132 *
133 * *1 Note: Before 8.0, since these have been called only at attach time,
134 * neither lock were necessary. In AUDIO2, on the other hand, since
135 * these may be also called after attach, the thread lock is required.
136 *
137 * In addition, there are two additional locks.
138 *
139 * - file->lock. This is a variable protected by sc_lock and is similar
140 * to the "thread lock". This is one for each file. If any thread
141 * context and software interrupt context who want to access the file
142 * structure, they must acquire this lock before. It protects
143 * descriptor's consistency among multithreaded accesses. Since this
144 * lock uses sc_lock, don't acquire from hardware interrupt context.
145 *
146 * - track->lock. This is an atomic variable and is similar to the
147 * "interrupt lock". This is one for each track. If any thread context
148 * (and software interrupt context) and hardware interrupt context who
149 * want to access some variables on this track, they must acquire this
150 * lock before. It protects track's consistency between hardware
151 * interrupt context and others.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.1.2.4 2019/05/03 05:15:33 isaki Exp $");
156
157 #ifdef _KERNEL_OPT
158 #include "audio.h"
159 #include "midi.h"
160 #endif
161
162 #if NAUDIO > 0
163
164 #ifdef _KERNEL
165
166 #include <sys/types.h>
167 #include <sys/param.h>
168 #include <sys/atomic.h>
169 #include <sys/audioio.h>
170 #include <sys/conf.h>
171 #include <sys/cpu.h>
172 #include <sys/device.h>
173 #include <sys/fcntl.h>
174 #include <sys/file.h>
175 #include <sys/filedesc.h>
176 #include <sys/intr.h>
177 #include <sys/ioctl.h>
178 #include <sys/kauth.h>
179 #include <sys/kernel.h>
180 #include <sys/kmem.h>
181 #include <sys/malloc.h>
182 #include <sys/mman.h>
183 #include <sys/module.h>
184 #include <sys/poll.h>
185 #include <sys/proc.h>
186 #include <sys/queue.h>
187 #include <sys/select.h>
188 #include <sys/signalvar.h>
189 #include <sys/stat.h>
190 #include <sys/sysctl.h>
191 #include <sys/systm.h>
192 #include <sys/syslog.h>
193 #include <sys/vnode.h>
194
195 #include <dev/audio_if.h>
196 #include <dev/audiovar.h>
197 #include <dev/audio/audiodef.h>
198 #include <dev/audio/linear.h>
199 #include <dev/audio/mulaw.h>
200
201 #include <machine/endian.h>
202
203 #include <uvm/uvm.h>
204
205 #include "ioconf.h"
206 #endif /* _KERNEL */
207
208 /*
209 * 0: No debug logs
210 * 1: action changes like open/close/set_format...
211 * 2: + normal operations like read/write/ioctl...
212 * 3: + TRACEs except interrupt
213 * 4: + TRACEs including interrupt
214 */
215 //#define AUDIO_DEBUG 1
216
217 #if defined(AUDIO_DEBUG)
218
219 int audiodebug = AUDIO_DEBUG;
220 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
221 const char *, va_list);
222 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
223 __printflike(3, 4);
224 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
225 __printflike(3, 4);
226 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
227 __printflike(3, 4);
228
229 /* XXX sloppy memory logger */
230 static void audio_mlog_init(void);
231 static void audio_mlog_free(void);
232 static void audio_mlog_softintr(void *);
233 extern void audio_mlog_flush(void);
234 extern void audio_mlog_printf(const char *, ...);
235
236 static int mlog_refs; /* reference counter */
237 static char *mlog_buf[2]; /* double buffer */
238 static int mlog_buflen; /* buffer length */
239 static int mlog_used; /* used length */
240 static int mlog_full; /* number of dropped lines by buffer full */
241 static int mlog_drop; /* number of dropped lines by busy */
242 static volatile uint32_t mlog_inuse; /* in-use */
243 static int mlog_wpage; /* active page */
244 static void *mlog_sih; /* softint handle */
245
246 static void
247 audio_mlog_init(void)
248 {
249 mlog_refs++;
250 if (mlog_refs > 1)
251 return;
252 mlog_buflen = 4096;
253 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
254 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
255 mlog_used = 0;
256 mlog_full = 0;
257 mlog_drop = 0;
258 mlog_inuse = 0;
259 mlog_wpage = 0;
260 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
261 if (mlog_sih == NULL)
262 printf("%s: softint_establish failed\n", __func__);
263 }
264
265 static void
266 audio_mlog_free(void)
267 {
268 mlog_refs--;
269 if (mlog_refs > 0)
270 return;
271
272 audio_mlog_flush();
273 if (mlog_sih)
274 softint_disestablish(mlog_sih);
275 kmem_free(mlog_buf[0], mlog_buflen);
276 kmem_free(mlog_buf[1], mlog_buflen);
277 }
278
279 /*
280 * Flush memory buffer.
281 * It must not be called from hardware interrupt context.
282 */
283 void
284 audio_mlog_flush(void)
285 {
286 if (mlog_refs == 0)
287 return;
288
289 /* Nothing to do if already in use ? */
290 if (atomic_swap_32(&mlog_inuse, 1) == 1)
291 return;
292
293 int rpage = mlog_wpage;
294 mlog_wpage ^= 1;
295 mlog_buf[mlog_wpage][0] = '\0';
296 mlog_used = 0;
297
298 atomic_swap_32(&mlog_inuse, 0);
299
300 if (mlog_buf[rpage][0] != '\0') {
301 printf("%s", mlog_buf[rpage]);
302 if (mlog_drop > 0)
303 printf("mlog_drop %d\n", mlog_drop);
304 if (mlog_full > 0)
305 printf("mlog_full %d\n", mlog_full);
306 }
307 mlog_full = 0;
308 mlog_drop = 0;
309 }
310
311 static void
312 audio_mlog_softintr(void *cookie)
313 {
314 audio_mlog_flush();
315 }
316
317 void
318 audio_mlog_printf(const char *fmt, ...)
319 {
320 int len;
321 va_list ap;
322
323 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
324 /* already inuse */
325 mlog_drop++;
326 return;
327 }
328
329 va_start(ap, fmt);
330 len = vsnprintf(
331 mlog_buf[mlog_wpage] + mlog_used,
332 mlog_buflen - mlog_used,
333 fmt, ap);
334 va_end(ap);
335
336 mlog_used += len;
337 if (mlog_buflen - mlog_used <= 1) {
338 mlog_full++;
339 }
340
341 atomic_swap_32(&mlog_inuse, 0);
342
343 if (mlog_sih)
344 softint_schedule(mlog_sih);
345 }
346
347 /* trace functions */
348 static void
349 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
350 const char *fmt, va_list ap)
351 {
352 char buf[256];
353 int n;
354
355 n = 0;
356 buf[0] = '\0';
357 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
358 funcname, device_unit(sc->sc_dev), header);
359 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
360
361 if (cpu_intr_p()) {
362 audio_mlog_printf("%s\n", buf);
363 } else {
364 audio_mlog_flush();
365 printf("%s\n", buf);
366 }
367 }
368
369 static void
370 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
371 {
372 va_list ap;
373
374 va_start(ap, fmt);
375 audio_vtrace(sc, funcname, "", fmt, ap);
376 va_end(ap);
377 }
378
379 static void
380 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
381 {
382 char hdr[16];
383 va_list ap;
384
385 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
386 va_start(ap, fmt);
387 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
388 va_end(ap);
389 }
390
391 static void
392 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
393 {
394 char hdr[32];
395 char phdr[16], rhdr[16];
396 va_list ap;
397
398 phdr[0] = '\0';
399 rhdr[0] = '\0';
400 if (file->ptrack)
401 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
402 if (file->rtrack)
403 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
404 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
405
406 va_start(ap, fmt);
407 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
408 va_end(ap);
409 }
410
411 #define DPRINTF(n, fmt...) do { \
412 if (audiodebug >= (n)) { \
413 audio_mlog_flush(); \
414 printf(fmt); \
415 } \
416 } while (0)
417 #define TRACE(n, fmt...) do { \
418 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
419 } while (0)
420 #define TRACET(n, t, fmt...) do { \
421 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
422 } while (0)
423 #define TRACEF(n, f, fmt...) do { \
424 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
425 } while (0)
426
427 struct audio_track_debugbuf {
428 char usrbuf[32];
429 char codec[32];
430 char chvol[32];
431 char chmix[32];
432 char freq[32];
433 char outbuf[32];
434 };
435
436 static void
437 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
438 {
439
440 memset(buf, 0, sizeof(*buf));
441
442 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
443 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
444 if (track->freq.filter)
445 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
446 track->freq.srcbuf.head,
447 track->freq.srcbuf.used,
448 track->freq.srcbuf.capacity);
449 if (track->chmix.filter)
450 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
451 track->chmix.srcbuf.used);
452 if (track->chvol.filter)
453 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
454 track->chvol.srcbuf.used);
455 if (track->codec.filter)
456 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
457 track->codec.srcbuf.used);
458 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
459 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
460 }
461 #else
462 #define DPRINTF(n, fmt...) do { } while (0)
463 #define TRACE(n, fmt, ...) do { } while (0)
464 #define TRACET(n, t, fmt, ...) do { } while (0)
465 #define TRACEF(n, f, fmt, ...) do { } while (0)
466 #endif
467
468 #define SPECIFIED(x) ((x) != ~0)
469 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
470
471 /* Device timeout in msec */
472 #define AUDIO_TIMEOUT (3000)
473
474 /* #define AUDIO_PM_IDLE */
475 #ifdef AUDIO_PM_IDLE
476 int audio_idle_timeout = 30;
477 #endif
478
479 struct portname {
480 const char *name;
481 int mask;
482 };
483
484 static int audiomatch(device_t, cfdata_t, void *);
485 static void audioattach(device_t, device_t, void *);
486 static int audiodetach(device_t, int);
487 static int audioactivate(device_t, enum devact);
488 static void audiochilddet(device_t, device_t);
489 static int audiorescan(device_t, const char *, const int *);
490
491 static int audio_modcmd(modcmd_t, void *);
492
493 #ifdef AUDIO_PM_IDLE
494 static void audio_idle(void *);
495 static void audio_activity(device_t, devactive_t);
496 #endif
497
498 static bool audio_suspend(device_t dv, const pmf_qual_t *);
499 static bool audio_resume(device_t dv, const pmf_qual_t *);
500 static void audio_volume_down(device_t);
501 static void audio_volume_up(device_t);
502 static void audio_volume_toggle(device_t);
503
504 static void audio_mixer_capture(struct audio_softc *);
505 static void audio_mixer_restore(struct audio_softc *);
506
507 static void audio_softintr_rd(void *);
508 static void audio_softintr_wr(void *);
509
510 static int audio_enter_exclusive(struct audio_softc *);
511 static void audio_exit_exclusive(struct audio_softc *);
512 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
513 static int audio_file_acquire(struct audio_softc *, audio_file_t *);
514 static void audio_file_release(struct audio_softc *, audio_file_t *);
515
516 static int audioclose(struct file *);
517 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
518 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
519 static int audioioctl(struct file *, u_long, void *);
520 static int audiopoll(struct file *, int);
521 static int audiokqfilter(struct file *, struct knote *);
522 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
523 struct uvm_object **, int *);
524 static int audiostat(struct file *, struct stat *);
525
526 static void filt_audiowrite_detach(struct knote *);
527 static int filt_audiowrite_event(struct knote *, long);
528 static void filt_audioread_detach(struct knote *);
529 static int filt_audioread_event(struct knote *, long);
530
531 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
532 struct audiobell_arg *);
533 static int audio_close(struct audio_softc *, audio_file_t *);
534 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
535 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
536 static void audio_file_clear(struct audio_softc *, audio_file_t *);
537 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
538 struct lwp *, audio_file_t *);
539 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
540 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
541 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
542 struct uvm_object **, int *, audio_file_t *);
543
544 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
545
546 static void audio_pintr(void *);
547 static void audio_rintr(void *);
548
549 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
550
551 static __inline int audio_track_readablebytes(const audio_track_t *);
552 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
553 const struct audio_info *);
554 static int audio_track_setinfo_check(audio_format2_t *,
555 const struct audio_prinfo *);
556 static void audio_track_setinfo_water(audio_track_t *,
557 const struct audio_info *);
558 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
559 struct audio_info *);
560 static int audio_hw_set_format(struct audio_softc *, int,
561 audio_format2_t *, audio_format2_t *,
562 audio_filter_reg_t *, audio_filter_reg_t *);
563 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
564 audio_file_t *);
565 static int audio_get_props(struct audio_softc *);
566 static bool audio_can_playback(struct audio_softc *);
567 static bool audio_can_capture(struct audio_softc *);
568 static int audio_check_params(audio_format2_t *);
569 static int audio_mixers_init(struct audio_softc *sc, int,
570 const audio_format2_t *, const audio_format2_t *,
571 const audio_filter_reg_t *, const audio_filter_reg_t *);
572 static int audio_select_freq(const struct audio_format *);
573 static int audio_hw_probe(struct audio_softc *, int, int *,
574 audio_format2_t *, audio_format2_t *);
575 static int audio_hw_probe_fmt(struct audio_softc *, audio_format2_t *, int);
576 static int audio_hw_validate_format(struct audio_softc *, int,
577 const audio_format2_t *);
578 static int audio_mixers_set_format(struct audio_softc *,
579 const struct audio_info *);
580 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
581 static int audio_sysctl_volume(SYSCTLFN_PROTO);
582 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
583 #if defined(AUDIO_DEBUG)
584 static int audio_sysctl_debug(SYSCTLFN_PROTO);
585 #endif
586 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
587 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
588 #endif
589 #if defined(AUDIO_DEBUG)
590 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
591 #endif
592
593 static void *audio_realloc(void *, size_t);
594 static int audio_realloc_usrbuf(audio_track_t *, int);
595 static void audio_free_usrbuf(audio_track_t *);
596
597 static audio_track_t *audio_track_create(struct audio_softc *,
598 audio_trackmixer_t *);
599 static void audio_track_destroy(audio_track_t *);
600 static audio_filter_t audio_track_get_codec(audio_track_t *,
601 const audio_format2_t *, const audio_format2_t *);
602 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
603 static void audio_track_play(audio_track_t *);
604 static int audio_track_drain(struct audio_softc *, audio_track_t *);
605 static void audio_track_record(audio_track_t *);
606 static void audio_track_clear(struct audio_softc *, audio_track_t *);
607
608 static int audio_mixer_init(struct audio_softc *, int,
609 const audio_format2_t *, const audio_filter_reg_t *);
610 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
611 static void audio_pmixer_start(struct audio_softc *, bool);
612 static void audio_pmixer_process(struct audio_softc *);
613 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
614 static void audio_pmixer_output(struct audio_softc *);
615 static int audio_pmixer_halt(struct audio_softc *);
616 static void audio_rmixer_start(struct audio_softc *);
617 static void audio_rmixer_process(struct audio_softc *);
618 static void audio_rmixer_input(struct audio_softc *);
619 static int audio_rmixer_halt(struct audio_softc *);
620
621 static void mixer_init(struct audio_softc *);
622 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
623 static int mixer_close(struct audio_softc *, audio_file_t *);
624 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
625 static void mixer_remove(struct audio_softc *);
626 static void mixer_signal(struct audio_softc *);
627
628 static int au_portof(struct audio_softc *, char *, int);
629
630 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
631 mixer_devinfo_t *, const struct portname *);
632 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
633 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
634 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
635 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
636 u_int *, u_char *);
637 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
638 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
639 static int au_set_monitor_gain(struct audio_softc *, int);
640 static int au_get_monitor_gain(struct audio_softc *);
641 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
642 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
643
644 static __inline struct audio_params
645 format2_to_params(const audio_format2_t *f2)
646 {
647 audio_params_t p;
648
649 /* validbits/precision <-> precision/stride */
650 p.sample_rate = f2->sample_rate;
651 p.channels = f2->channels;
652 p.encoding = f2->encoding;
653 p.validbits = f2->precision;
654 p.precision = f2->stride;
655 return p;
656 }
657
658 static __inline audio_format2_t
659 params_to_format2(const struct audio_params *p)
660 {
661 audio_format2_t f2;
662
663 /* precision/stride <-> validbits/precision */
664 f2.sample_rate = p->sample_rate;
665 f2.channels = p->channels;
666 f2.encoding = p->encoding;
667 f2.precision = p->validbits;
668 f2.stride = p->precision;
669 return f2;
670 }
671
672 /* Return true if this track is a playback track. */
673 static __inline bool
674 audio_track_is_playback(const audio_track_t *track)
675 {
676
677 return ((track->mode & AUMODE_PLAY) != 0);
678 }
679
680 /* Return true if this track is a recording track. */
681 static __inline bool
682 audio_track_is_record(const audio_track_t *track)
683 {
684
685 return ((track->mode & AUMODE_RECORD) != 0);
686 }
687
688 #if 0 /* XXX Not used yet */
689 /*
690 * Convert 0..255 volume used in userland to internal presentation 0..256.
691 */
692 static __inline u_int
693 audio_volume_to_inner(u_int v)
694 {
695
696 return v < 127 ? v : v + 1;
697 }
698
699 /*
700 * Convert 0..256 internal presentation to 0..255 volume used in userland.
701 */
702 static __inline u_int
703 audio_volume_to_outer(u_int v)
704 {
705
706 return v < 127 ? v : v - 1;
707 }
708 #endif /* 0 */
709
710 static dev_type_open(audioopen);
711 /* XXXMRG use more dev_type_xxx */
712
713 const struct cdevsw audio_cdevsw = {
714 .d_open = audioopen,
715 .d_close = noclose,
716 .d_read = noread,
717 .d_write = nowrite,
718 .d_ioctl = noioctl,
719 .d_stop = nostop,
720 .d_tty = notty,
721 .d_poll = nopoll,
722 .d_mmap = nommap,
723 .d_kqfilter = nokqfilter,
724 .d_discard = nodiscard,
725 .d_flag = D_OTHER | D_MPSAFE
726 };
727
728 const struct fileops audio_fileops = {
729 .fo_name = "audio",
730 .fo_read = audioread,
731 .fo_write = audiowrite,
732 .fo_ioctl = audioioctl,
733 .fo_fcntl = fnullop_fcntl,
734 .fo_stat = audiostat,
735 .fo_poll = audiopoll,
736 .fo_close = audioclose,
737 .fo_mmap = audiommap,
738 .fo_kqfilter = audiokqfilter,
739 .fo_restart = fnullop_restart
740 };
741
742 /* The default audio mode: 8 kHz mono mu-law */
743 static const struct audio_params audio_default = {
744 .sample_rate = 8000,
745 .encoding = AUDIO_ENCODING_ULAW,
746 .precision = 8,
747 .validbits = 8,
748 .channels = 1,
749 };
750
751 static const char *encoding_names[] = {
752 "none",
753 AudioEmulaw,
754 AudioEalaw,
755 "pcm16",
756 "pcm8",
757 AudioEadpcm,
758 AudioEslinear_le,
759 AudioEslinear_be,
760 AudioEulinear_le,
761 AudioEulinear_be,
762 AudioEslinear,
763 AudioEulinear,
764 AudioEmpeg_l1_stream,
765 AudioEmpeg_l1_packets,
766 AudioEmpeg_l1_system,
767 AudioEmpeg_l2_stream,
768 AudioEmpeg_l2_packets,
769 AudioEmpeg_l2_system,
770 AudioEac3,
771 };
772
773 /*
774 * Returns encoding name corresponding to AUDIO_ENCODING_*.
775 * Note that it may return a local buffer because it is mainly for debugging.
776 */
777 const char *
778 audio_encoding_name(int encoding)
779 {
780 static char buf[16];
781
782 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
783 return encoding_names[encoding];
784 } else {
785 snprintf(buf, sizeof(buf), "enc=%d", encoding);
786 return buf;
787 }
788 }
789
790 /*
791 * Supported encodings used by AUDIO_GETENC.
792 * index and flags are set by code.
793 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
794 */
795 static const audio_encoding_t audio_encodings[] = {
796 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
797 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
798 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
799 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
800 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
801 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
802 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
803 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
804 #if defined(AUDIO_SUPPORT_LINEAR24)
805 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
806 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
807 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
808 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
809 #endif
810 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
811 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
812 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
813 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
814 };
815
816 static const struct portname itable[] = {
817 { AudioNmicrophone, AUDIO_MICROPHONE },
818 { AudioNline, AUDIO_LINE_IN },
819 { AudioNcd, AUDIO_CD },
820 { 0, 0 }
821 };
822 static const struct portname otable[] = {
823 { AudioNspeaker, AUDIO_SPEAKER },
824 { AudioNheadphone, AUDIO_HEADPHONE },
825 { AudioNline, AUDIO_LINE_OUT },
826 { 0, 0 }
827 };
828
829 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
830 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
831 audiochilddet, DVF_DETACH_SHUTDOWN);
832
833 static int
834 audiomatch(device_t parent, cfdata_t match, void *aux)
835 {
836 struct audio_attach_args *sa;
837
838 sa = aux;
839 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
840 __func__, sa->type, sa, sa->hwif);
841 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
842 }
843
844 static void
845 audioattach(device_t parent, device_t self, void *aux)
846 {
847 struct audio_softc *sc;
848 struct audio_attach_args *sa;
849 const struct audio_hw_if *hw_if;
850 audio_format2_t phwfmt;
851 audio_format2_t rhwfmt;
852 audio_filter_reg_t pfil;
853 audio_filter_reg_t rfil;
854 const struct sysctlnode *node;
855 void *hdlp;
856 bool is_indep;
857 int mode;
858 int props;
859 int error;
860
861 sc = device_private(self);
862 sc->sc_dev = self;
863 sa = (struct audio_attach_args *)aux;
864 hw_if = sa->hwif;
865 hdlp = sa->hdl;
866
867 if (hw_if == NULL || hw_if->get_locks == NULL) {
868 panic("audioattach: missing hw_if method");
869 }
870
871 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
872
873 #ifdef DIAGNOSTIC
874 if (hw_if->query_format == NULL ||
875 hw_if->set_format == NULL ||
876 (hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
877 (hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
878 hw_if->halt_output == NULL ||
879 hw_if->halt_input == NULL ||
880 hw_if->getdev == NULL ||
881 hw_if->set_port == NULL ||
882 hw_if->get_port == NULL ||
883 hw_if->query_devinfo == NULL ||
884 hw_if->get_props == NULL) {
885 aprint_error(": missing method\n");
886 return;
887 }
888 #endif
889
890 sc->hw_if = hw_if;
891 sc->hw_hdl = hdlp;
892 sc->hw_dev = parent;
893
894 sc->sc_blk_ms = AUDIO_BLK_MS;
895 SLIST_INIT(&sc->sc_files);
896 cv_init(&sc->sc_exlockcv, "audiolk");
897
898 mutex_enter(sc->sc_lock);
899 props = audio_get_props(sc);
900 mutex_exit(sc->sc_lock);
901
902 if ((props & AUDIO_PROP_FULLDUPLEX))
903 aprint_normal(": full duplex");
904 else
905 aprint_normal(": half duplex");
906
907 is_indep = (props & AUDIO_PROP_INDEPENDENT);
908 mode = 0;
909 if ((props & AUDIO_PROP_PLAYBACK)) {
910 mode |= AUMODE_PLAY;
911 aprint_normal(", playback");
912 }
913 if ((props & AUDIO_PROP_CAPTURE)) {
914 mode |= AUMODE_RECORD;
915 aprint_normal(", capture");
916 }
917 if ((props & AUDIO_PROP_MMAP) != 0)
918 aprint_normal(", mmap");
919 if (is_indep)
920 aprint_normal(", independent");
921
922 aprint_naive("\n");
923 aprint_normal("\n");
924
925 KASSERT((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0);
926
927 /* probe hw params */
928 memset(&phwfmt, 0, sizeof(phwfmt));
929 memset(&rhwfmt, 0, sizeof(rhwfmt));
930 memset(&pfil, 0, sizeof(pfil));
931 memset(&rfil, 0, sizeof(rfil));
932 mutex_enter(sc->sc_lock);
933 if (audio_hw_probe(sc, is_indep, &mode, &phwfmt, &rhwfmt) != 0) {
934 mutex_exit(sc->sc_lock);
935 goto bad;
936 }
937 if (mode == 0) {
938 mutex_exit(sc->sc_lock);
939 goto bad;
940 }
941 /* Init hardware. */
942 /* hw_probe() also validates [pr]hwfmt. */
943 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
944 if (error) {
945 mutex_exit(sc->sc_lock);
946 goto bad;
947 }
948
949 /*
950 * Init track mixers. If at least one direction is available on
951 * attach time, we assume a success.
952 */
953 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
954 mutex_exit(sc->sc_lock);
955 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL)
956 goto bad;
957
958 selinit(&sc->sc_wsel);
959 selinit(&sc->sc_rsel);
960
961 /* Initial parameter of /dev/sound */
962 sc->sc_sound_pparams = params_to_format2(&audio_default);
963 sc->sc_sound_rparams = params_to_format2(&audio_default);
964 sc->sc_sound_ppause = false;
965 sc->sc_sound_rpause = false;
966
967 /* XXX TODO: consider about sc_ai */
968
969 mixer_init(sc);
970 TRACE(2, "inputs ports=0x%x, input master=%d, "
971 "output ports=0x%x, output master=%d",
972 sc->sc_inports.allports, sc->sc_inports.master,
973 sc->sc_outports.allports, sc->sc_outports.master);
974
975 sysctl_createv(&sc->sc_log, 0, NULL, &node,
976 0,
977 CTLTYPE_NODE, device_xname(sc->sc_dev),
978 SYSCTL_DESCR("audio test"),
979 NULL, 0,
980 NULL, 0,
981 CTL_HW,
982 CTL_CREATE, CTL_EOL);
983
984 if (node != NULL) {
985 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
986 CTLFLAG_READWRITE,
987 CTLTYPE_INT, "volume",
988 SYSCTL_DESCR("software volume test"),
989 audio_sysctl_volume, 0, (void *)sc, 0,
990 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
991
992 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
993 CTLFLAG_READWRITE,
994 CTLTYPE_INT, "blk_ms",
995 SYSCTL_DESCR("blocksize in msec"),
996 audio_sysctl_blk_ms, 0, (void *)sc, 0,
997 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
998
999 #if defined(AUDIO_DEBUG)
1000 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1001 CTLFLAG_READWRITE,
1002 CTLTYPE_INT, "debug",
1003 SYSCTL_DESCR("debug level (0..4)"),
1004 audio_sysctl_debug, 0, (void *)sc, 0,
1005 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1006 #endif
1007 }
1008
1009 #ifdef AUDIO_PM_IDLE
1010 callout_init(&sc->sc_idle_counter, 0);
1011 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1012 #endif
1013
1014 if (!pmf_device_register(self, audio_suspend, audio_resume))
1015 aprint_error_dev(self, "couldn't establish power handler\n");
1016 #ifdef AUDIO_PM_IDLE
1017 if (!device_active_register(self, audio_activity))
1018 aprint_error_dev(self, "couldn't register activity handler\n");
1019 #endif
1020
1021 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1022 audio_volume_down, true))
1023 aprint_error_dev(self, "couldn't add volume down handler\n");
1024 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1025 audio_volume_up, true))
1026 aprint_error_dev(self, "couldn't add volume up handler\n");
1027 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1028 audio_volume_toggle, true))
1029 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1030
1031 #ifdef AUDIO_PM_IDLE
1032 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1033 #endif
1034
1035 #if defined(AUDIO_DEBUG)
1036 audio_mlog_init();
1037 #endif
1038
1039 audiorescan(self, "audio", NULL);
1040 return;
1041
1042 bad:
1043 /* Clearing hw_if means that device is attached but disabled. */
1044 sc->hw_if = NULL;
1045 aprint_error_dev(sc->sc_dev, "disabled\n");
1046 return;
1047 }
1048
1049 /*
1050 * Initialize hardware mixer.
1051 * This function is called from audioattach().
1052 */
1053 static void
1054 mixer_init(struct audio_softc *sc)
1055 {
1056 mixer_devinfo_t mi;
1057 int iclass, mclass, oclass, rclass;
1058 int record_master_found, record_source_found;
1059
1060 iclass = mclass = oclass = rclass = -1;
1061 sc->sc_inports.index = -1;
1062 sc->sc_inports.master = -1;
1063 sc->sc_inports.nports = 0;
1064 sc->sc_inports.isenum = false;
1065 sc->sc_inports.allports = 0;
1066 sc->sc_inports.isdual = false;
1067 sc->sc_inports.mixerout = -1;
1068 sc->sc_inports.cur_port = -1;
1069 sc->sc_outports.index = -1;
1070 sc->sc_outports.master = -1;
1071 sc->sc_outports.nports = 0;
1072 sc->sc_outports.isenum = false;
1073 sc->sc_outports.allports = 0;
1074 sc->sc_outports.isdual = false;
1075 sc->sc_outports.mixerout = -1;
1076 sc->sc_outports.cur_port = -1;
1077 sc->sc_monitor_port = -1;
1078 /*
1079 * Read through the underlying driver's list, picking out the class
1080 * names from the mixer descriptions. We'll need them to decode the
1081 * mixer descriptions on the next pass through the loop.
1082 */
1083 mutex_enter(sc->sc_lock);
1084 for(mi.index = 0; ; mi.index++) {
1085 if (audio_query_devinfo(sc, &mi) != 0)
1086 break;
1087 /*
1088 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1089 * All the other types describe an actual mixer.
1090 */
1091 if (mi.type == AUDIO_MIXER_CLASS) {
1092 if (strcmp(mi.label.name, AudioCinputs) == 0)
1093 iclass = mi.mixer_class;
1094 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1095 mclass = mi.mixer_class;
1096 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1097 oclass = mi.mixer_class;
1098 if (strcmp(mi.label.name, AudioCrecord) == 0)
1099 rclass = mi.mixer_class;
1100 }
1101 }
1102 mutex_exit(sc->sc_lock);
1103
1104 /* Allocate save area. Ensure non-zero allocation. */
1105 sc->sc_nmixer_states = mi.index;
1106 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1107 (sc->sc_nmixer_states + 1), KM_SLEEP);
1108
1109 /*
1110 * This is where we assign each control in the "audio" model, to the
1111 * underlying "mixer" control. We walk through the whole list once,
1112 * assigning likely candidates as we come across them.
1113 */
1114 record_master_found = 0;
1115 record_source_found = 0;
1116 mutex_enter(sc->sc_lock);
1117 for(mi.index = 0; ; mi.index++) {
1118 if (audio_query_devinfo(sc, &mi) != 0)
1119 break;
1120 KASSERT(mi.index < sc->sc_nmixer_states);
1121 if (mi.type == AUDIO_MIXER_CLASS)
1122 continue;
1123 if (mi.mixer_class == iclass) {
1124 /*
1125 * AudioCinputs is only a fallback, when we don't
1126 * find what we're looking for in AudioCrecord, so
1127 * check the flags before accepting one of these.
1128 */
1129 if (strcmp(mi.label.name, AudioNmaster) == 0
1130 && record_master_found == 0)
1131 sc->sc_inports.master = mi.index;
1132 if (strcmp(mi.label.name, AudioNsource) == 0
1133 && record_source_found == 0) {
1134 if (mi.type == AUDIO_MIXER_ENUM) {
1135 int i;
1136 for(i = 0; i < mi.un.e.num_mem; i++)
1137 if (strcmp(mi.un.e.member[i].label.name,
1138 AudioNmixerout) == 0)
1139 sc->sc_inports.mixerout =
1140 mi.un.e.member[i].ord;
1141 }
1142 au_setup_ports(sc, &sc->sc_inports, &mi,
1143 itable);
1144 }
1145 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1146 sc->sc_outports.master == -1)
1147 sc->sc_outports.master = mi.index;
1148 } else if (mi.mixer_class == mclass) {
1149 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1150 sc->sc_monitor_port = mi.index;
1151 } else if (mi.mixer_class == oclass) {
1152 if (strcmp(mi.label.name, AudioNmaster) == 0)
1153 sc->sc_outports.master = mi.index;
1154 if (strcmp(mi.label.name, AudioNselect) == 0)
1155 au_setup_ports(sc, &sc->sc_outports, &mi,
1156 otable);
1157 } else if (mi.mixer_class == rclass) {
1158 /*
1159 * These are the preferred mixers for the audio record
1160 * controls, so set the flags here, but don't check.
1161 */
1162 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1163 sc->sc_inports.master = mi.index;
1164 record_master_found = 1;
1165 }
1166 #if 1 /* Deprecated. Use AudioNmaster. */
1167 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1168 sc->sc_inports.master = mi.index;
1169 record_master_found = 1;
1170 }
1171 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1172 sc->sc_inports.master = mi.index;
1173 record_master_found = 1;
1174 }
1175 #endif
1176 if (strcmp(mi.label.name, AudioNsource) == 0) {
1177 if (mi.type == AUDIO_MIXER_ENUM) {
1178 int i;
1179 for(i = 0; i < mi.un.e.num_mem; i++)
1180 if (strcmp(mi.un.e.member[i].label.name,
1181 AudioNmixerout) == 0)
1182 sc->sc_inports.mixerout =
1183 mi.un.e.member[i].ord;
1184 }
1185 au_setup_ports(sc, &sc->sc_inports, &mi,
1186 itable);
1187 record_source_found = 1;
1188 }
1189 }
1190 }
1191 mutex_exit(sc->sc_lock);
1192 }
1193
1194 static int
1195 audioactivate(device_t self, enum devact act)
1196 {
1197 struct audio_softc *sc = device_private(self);
1198
1199 switch (act) {
1200 case DVACT_DEACTIVATE:
1201 mutex_enter(sc->sc_lock);
1202 sc->sc_dying = true;
1203 cv_broadcast(&sc->sc_exlockcv);
1204 mutex_exit(sc->sc_lock);
1205 return 0;
1206 default:
1207 return EOPNOTSUPP;
1208 }
1209 }
1210
1211 static int
1212 audiodetach(device_t self, int flags)
1213 {
1214 struct audio_softc *sc;
1215 int maj, mn;
1216 int error;
1217
1218 sc = device_private(self);
1219 TRACE(2, "flags=%d", flags);
1220
1221 /* device is not initialized */
1222 if (sc->hw_if == NULL)
1223 return 0;
1224
1225 /* Start draining existing accessors of the device. */
1226 error = config_detach_children(self, flags);
1227 if (error)
1228 return error;
1229
1230 mutex_enter(sc->sc_lock);
1231 sc->sc_dying = true;
1232 cv_broadcast(&sc->sc_exlockcv);
1233 if (sc->sc_pmixer)
1234 cv_broadcast(&sc->sc_pmixer->outcv);
1235 if (sc->sc_rmixer)
1236 cv_broadcast(&sc->sc_rmixer->outcv);
1237 mutex_exit(sc->sc_lock);
1238
1239 /* locate the major number */
1240 maj = cdevsw_lookup_major(&audio_cdevsw);
1241
1242 /*
1243 * Nuke the vnodes for any open instances (calls close).
1244 * Will wait until any activity on the device nodes has ceased.
1245 */
1246 mn = device_unit(self);
1247 vdevgone(maj, mn | SOUND_DEVICE, mn | SOUND_DEVICE, VCHR);
1248 vdevgone(maj, mn | AUDIO_DEVICE, mn | AUDIO_DEVICE, VCHR);
1249 vdevgone(maj, mn | AUDIOCTL_DEVICE, mn | AUDIOCTL_DEVICE, VCHR);
1250 vdevgone(maj, mn | MIXER_DEVICE, mn | MIXER_DEVICE, VCHR);
1251
1252 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1253 audio_volume_down, true);
1254 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1255 audio_volume_up, true);
1256 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1257 audio_volume_toggle, true);
1258
1259 #ifdef AUDIO_PM_IDLE
1260 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1261
1262 device_active_deregister(self, audio_activity);
1263 #endif
1264
1265 pmf_device_deregister(self);
1266
1267 /* Free resources */
1268 mutex_enter(sc->sc_lock);
1269 if (sc->sc_pmixer) {
1270 audio_mixer_destroy(sc, sc->sc_pmixer);
1271 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1272 }
1273 if (sc->sc_rmixer) {
1274 audio_mixer_destroy(sc, sc->sc_rmixer);
1275 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1276 }
1277 mutex_exit(sc->sc_lock);
1278
1279 seldestroy(&sc->sc_wsel);
1280 seldestroy(&sc->sc_rsel);
1281
1282 #ifdef AUDIO_PM_IDLE
1283 callout_destroy(&sc->sc_idle_counter);
1284 #endif
1285
1286 cv_destroy(&sc->sc_exlockcv);
1287
1288 #if defined(AUDIO_DEBUG)
1289 audio_mlog_free();
1290 #endif
1291
1292 return 0;
1293 }
1294
1295 static void
1296 audiochilddet(device_t self, device_t child)
1297 {
1298
1299 /* we hold no child references, so do nothing */
1300 }
1301
1302 static int
1303 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1304 {
1305
1306 if (config_match(parent, cf, aux))
1307 config_attach_loc(parent, cf, locs, aux, NULL);
1308
1309 return 0;
1310 }
1311
1312 static int
1313 audiorescan(device_t self, const char *ifattr, const int *flags)
1314 {
1315 struct audio_softc *sc = device_private(self);
1316
1317 if (!ifattr_match(ifattr, "audio"))
1318 return 0;
1319
1320 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1321
1322 return 0;
1323 }
1324
1325 /*
1326 * Called from hardware driver. This is where the MI audio driver gets
1327 * probed/attached to the hardware driver.
1328 */
1329 device_t
1330 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1331 {
1332 struct audio_attach_args arg;
1333
1334 #ifdef DIAGNOSTIC
1335 if (ahwp == NULL) {
1336 aprint_error("audio_attach_mi: NULL\n");
1337 return 0;
1338 }
1339 #endif
1340 arg.type = AUDIODEV_TYPE_AUDIO;
1341 arg.hwif = ahwp;
1342 arg.hdl = hdlp;
1343 return config_found(dev, &arg, audioprint);
1344 }
1345
1346 /*
1347 * Acquire sc_lock and enter exlock critical section.
1348 * If successful, it returns 0. Otherwise returns errno.
1349 */
1350 static int
1351 audio_enter_exclusive(struct audio_softc *sc)
1352 {
1353 int error;
1354
1355 KASSERT(!mutex_owned(sc->sc_lock));
1356
1357 mutex_enter(sc->sc_lock);
1358 if (sc->sc_dying) {
1359 mutex_exit(sc->sc_lock);
1360 return EIO;
1361 }
1362
1363 while (__predict_false(sc->sc_exlock != 0)) {
1364 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1365 if (sc->sc_dying)
1366 error = EIO;
1367 if (error) {
1368 mutex_exit(sc->sc_lock);
1369 return error;
1370 }
1371 }
1372
1373 /* Acquire */
1374 sc->sc_exlock = 1;
1375 return 0;
1376 }
1377
1378 /*
1379 * Leave exlock critical section and release sc_lock.
1380 * Must be called with sc_lock held.
1381 */
1382 static void
1383 audio_exit_exclusive(struct audio_softc *sc)
1384 {
1385
1386 KASSERT(mutex_owned(sc->sc_lock));
1387 KASSERT(sc->sc_exlock);
1388
1389 /* Leave critical section */
1390 sc->sc_exlock = 0;
1391 cv_broadcast(&sc->sc_exlockcv);
1392 mutex_exit(sc->sc_lock);
1393 }
1394
1395 /*
1396 * Wait for I/O to complete, releasing sc_lock.
1397 * Must be called with sc_lock held.
1398 */
1399 static int
1400 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1401 {
1402 int error;
1403
1404 KASSERT(track);
1405 KASSERT(mutex_owned(sc->sc_lock));
1406
1407 /* Wait for pending I/O to complete. */
1408 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1409 mstohz(AUDIO_TIMEOUT));
1410 if (sc->sc_dying) {
1411 error = EIO;
1412 }
1413 if (error) {
1414 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1415 if (error == EWOULDBLOCK)
1416 device_printf(sc->sc_dev, "device timeout\n");
1417 } else {
1418 TRACET(3, track, "wakeup");
1419 }
1420 return error;
1421 }
1422
1423 /*
1424 * Acquire the file lock.
1425 * If file is acquired successfully, returns 0. Otherwise returns errno.
1426 * In both case, sc_lock is released.
1427 */
1428 static int
1429 audio_file_acquire(struct audio_softc *sc, audio_file_t *file)
1430 {
1431 int error;
1432
1433 KASSERT(!mutex_owned(sc->sc_lock));
1434
1435 mutex_enter(sc->sc_lock);
1436 if (sc->sc_dying) {
1437 mutex_exit(sc->sc_lock);
1438 return EIO;
1439 }
1440
1441 while (__predict_false(file->lock != 0)) {
1442 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1443 if (sc->sc_dying)
1444 error = EIO;
1445 if (error) {
1446 mutex_exit(sc->sc_lock);
1447 return error;
1448 }
1449 }
1450
1451 /* Mark this file locked */
1452 file->lock = 1;
1453 mutex_exit(sc->sc_lock);
1454
1455 return 0;
1456 }
1457
1458 /*
1459 * Release the file lock.
1460 */
1461 static void
1462 audio_file_release(struct audio_softc *sc, audio_file_t *file)
1463 {
1464
1465 KASSERT(!mutex_owned(sc->sc_lock));
1466
1467 mutex_enter(sc->sc_lock);
1468 KASSERT(file->lock);
1469 file->lock = 0;
1470 cv_broadcast(&sc->sc_exlockcv);
1471 mutex_exit(sc->sc_lock);
1472 }
1473
1474 /*
1475 * Try to acquire track lock.
1476 * It doesn't block if the track lock is already aquired.
1477 * Returns true if the track lock was acquired, or false if the track
1478 * lock was already acquired.
1479 */
1480 static __inline bool
1481 audio_track_lock_tryenter(audio_track_t *track)
1482 {
1483 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1484 }
1485
1486 /*
1487 * Acquire track lock.
1488 */
1489 static __inline void
1490 audio_track_lock_enter(audio_track_t *track)
1491 {
1492 /* Don't sleep here. */
1493 while (audio_track_lock_tryenter(track) == false)
1494 ;
1495 }
1496
1497 /*
1498 * Release track lock.
1499 */
1500 static __inline void
1501 audio_track_lock_exit(audio_track_t *track)
1502 {
1503 atomic_swap_uint(&track->lock, 0);
1504 }
1505
1506
1507 static int
1508 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1509 {
1510 struct audio_softc *sc;
1511 int error;
1512
1513 /* Find the device */
1514 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1515 if (sc == NULL || sc->hw_if == NULL)
1516 return ENXIO;
1517
1518 error = audio_enter_exclusive(sc);
1519 if (error)
1520 return error;
1521
1522 device_active(sc->sc_dev, DVA_SYSTEM);
1523 switch (AUDIODEV(dev)) {
1524 case SOUND_DEVICE:
1525 case AUDIO_DEVICE:
1526 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1527 break;
1528 case AUDIOCTL_DEVICE:
1529 error = audioctl_open(dev, sc, flags, ifmt, l);
1530 break;
1531 case MIXER_DEVICE:
1532 error = mixer_open(dev, sc, flags, ifmt, l);
1533 break;
1534 default:
1535 error = ENXIO;
1536 break;
1537 }
1538 audio_exit_exclusive(sc);
1539
1540 return error;
1541 }
1542
1543 static int
1544 audioclose(struct file *fp)
1545 {
1546 struct audio_softc *sc;
1547 audio_file_t *file;
1548 int error;
1549 dev_t dev;
1550
1551 KASSERT(fp->f_audioctx);
1552 file = fp->f_audioctx;
1553 sc = file->sc;
1554 dev = file->dev;
1555
1556 /* Acquire file lock and exlock */
1557 /* XXX what should I do when an error occurs? */
1558 error = audio_file_acquire(sc, file);
1559 if (error)
1560 return error;
1561
1562 device_active(sc->sc_dev, DVA_SYSTEM);
1563 switch (AUDIODEV(dev)) {
1564 case SOUND_DEVICE:
1565 case AUDIO_DEVICE:
1566 error = audio_close(sc, file);
1567 break;
1568 case AUDIOCTL_DEVICE:
1569 error = 0;
1570 break;
1571 case MIXER_DEVICE:
1572 error = mixer_close(sc, file);
1573 break;
1574 default:
1575 error = ENXIO;
1576 break;
1577 }
1578 if (error == 0) {
1579 kmem_free(fp->f_audioctx, sizeof(audio_file_t));
1580 fp->f_audioctx = NULL;
1581 }
1582
1583 /*
1584 * Since file has already been destructed,
1585 * audio_file_release() is not necessary.
1586 */
1587
1588 return error;
1589 }
1590
1591 static int
1592 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1593 int ioflag)
1594 {
1595 struct audio_softc *sc;
1596 audio_file_t *file;
1597 int error;
1598 dev_t dev;
1599
1600 KASSERT(fp->f_audioctx);
1601 file = fp->f_audioctx;
1602 sc = file->sc;
1603 dev = file->dev;
1604
1605 error = audio_file_acquire(sc, file);
1606 if (error)
1607 return error;
1608
1609 if (fp->f_flag & O_NONBLOCK)
1610 ioflag |= IO_NDELAY;
1611
1612 switch (AUDIODEV(dev)) {
1613 case SOUND_DEVICE:
1614 case AUDIO_DEVICE:
1615 error = audio_read(sc, uio, ioflag, file);
1616 break;
1617 case AUDIOCTL_DEVICE:
1618 case MIXER_DEVICE:
1619 error = ENODEV;
1620 break;
1621 default:
1622 error = ENXIO;
1623 break;
1624 }
1625 audio_file_release(sc, file);
1626
1627 return error;
1628 }
1629
1630 static int
1631 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1632 int ioflag)
1633 {
1634 struct audio_softc *sc;
1635 audio_file_t *file;
1636 int error;
1637 dev_t dev;
1638
1639 KASSERT(fp->f_audioctx);
1640 file = fp->f_audioctx;
1641 sc = file->sc;
1642 dev = file->dev;
1643
1644 error = audio_file_acquire(sc, file);
1645 if (error)
1646 return error;
1647
1648 if (fp->f_flag & O_NONBLOCK)
1649 ioflag |= IO_NDELAY;
1650
1651 switch (AUDIODEV(dev)) {
1652 case SOUND_DEVICE:
1653 case AUDIO_DEVICE:
1654 error = audio_write(sc, uio, ioflag, file);
1655 break;
1656 case AUDIOCTL_DEVICE:
1657 case MIXER_DEVICE:
1658 error = ENODEV;
1659 break;
1660 default:
1661 error = ENXIO;
1662 break;
1663 }
1664 audio_file_release(sc, file);
1665
1666 return error;
1667 }
1668
1669 static int
1670 audioioctl(struct file *fp, u_long cmd, void *addr)
1671 {
1672 struct audio_softc *sc;
1673 audio_file_t *file;
1674 struct lwp *l = curlwp;
1675 int error;
1676 dev_t dev;
1677
1678 KASSERT(fp->f_audioctx);
1679 file = fp->f_audioctx;
1680 sc = file->sc;
1681 dev = file->dev;
1682
1683 error = audio_file_acquire(sc, file);
1684 if (error)
1685 return error;
1686
1687 switch (AUDIODEV(dev)) {
1688 case SOUND_DEVICE:
1689 case AUDIO_DEVICE:
1690 case AUDIOCTL_DEVICE:
1691 mutex_enter(sc->sc_lock);
1692 device_active(sc->sc_dev, DVA_SYSTEM);
1693 mutex_exit(sc->sc_lock);
1694 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1695 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1696 else
1697 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1698 file);
1699 break;
1700 case MIXER_DEVICE:
1701 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1702 break;
1703 default:
1704 error = ENXIO;
1705 break;
1706 }
1707 audio_file_release(sc, file);
1708
1709 return error;
1710 }
1711
1712 static int
1713 audiostat(struct file *fp, struct stat *st)
1714 {
1715 audio_file_t *file;
1716
1717 KASSERT(fp->f_audioctx);
1718 file = fp->f_audioctx;
1719
1720 memset(st, 0, sizeof(*st));
1721
1722 st->st_dev = file->dev;
1723 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1724 st->st_gid = kauth_cred_getegid(fp->f_cred);
1725 st->st_mode = S_IFCHR;
1726 return 0;
1727 }
1728
1729 static int
1730 audiopoll(struct file *fp, int events)
1731 {
1732 struct audio_softc *sc;
1733 audio_file_t *file;
1734 struct lwp *l = curlwp;
1735 int revents;
1736 dev_t dev;
1737
1738 KASSERT(fp->f_audioctx);
1739 file = fp->f_audioctx;
1740 sc = file->sc;
1741 dev = file->dev;
1742
1743 if (audio_file_acquire(sc, file) != 0)
1744 return 0;
1745
1746 switch (AUDIODEV(dev)) {
1747 case SOUND_DEVICE:
1748 case AUDIO_DEVICE:
1749 revents = audio_poll(sc, events, l, file);
1750 break;
1751 case AUDIOCTL_DEVICE:
1752 case MIXER_DEVICE:
1753 revents = 0;
1754 break;
1755 default:
1756 revents = POLLERR;
1757 break;
1758 }
1759 audio_file_release(sc, file);
1760
1761 return revents;
1762 }
1763
1764 static int
1765 audiokqfilter(struct file *fp, struct knote *kn)
1766 {
1767 struct audio_softc *sc;
1768 audio_file_t *file;
1769 dev_t dev;
1770 int error;
1771
1772 KASSERT(fp->f_audioctx);
1773 file = fp->f_audioctx;
1774 sc = file->sc;
1775 dev = file->dev;
1776
1777 error = audio_file_acquire(sc, file);
1778 if (error)
1779 return error;
1780
1781 switch (AUDIODEV(dev)) {
1782 case SOUND_DEVICE:
1783 case AUDIO_DEVICE:
1784 error = audio_kqfilter(sc, file, kn);
1785 break;
1786 case AUDIOCTL_DEVICE:
1787 case MIXER_DEVICE:
1788 error = ENODEV;
1789 break;
1790 default:
1791 error = ENXIO;
1792 break;
1793 }
1794 audio_file_release(sc, file);
1795
1796 return error;
1797 }
1798
1799 static int
1800 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1801 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1802 {
1803 struct audio_softc *sc;
1804 audio_file_t *file;
1805 dev_t dev;
1806 int error;
1807
1808 KASSERT(fp->f_audioctx);
1809 file = fp->f_audioctx;
1810 sc = file->sc;
1811 dev = file->dev;
1812
1813 error = audio_file_acquire(sc, file);
1814 if (error)
1815 return error;
1816
1817 mutex_enter(sc->sc_lock);
1818 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1819 mutex_exit(sc->sc_lock);
1820
1821 switch (AUDIODEV(dev)) {
1822 case SOUND_DEVICE:
1823 case AUDIO_DEVICE:
1824 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1825 uobjp, maxprotp, file);
1826 break;
1827 case AUDIOCTL_DEVICE:
1828 case MIXER_DEVICE:
1829 default:
1830 error = ENOTSUP;
1831 break;
1832 }
1833 audio_file_release(sc, file);
1834
1835 return error;
1836 }
1837
1838
1839 /* Exported interfaces for audiobell. */
1840
1841 /*
1842 * Open for audiobell.
1843 * sample_rate, encoding, precision and channels in arg are in-parameter
1844 * and indicates input encoding.
1845 * Stores allocated file to arg->file.
1846 * Stores blocksize to arg->blocksize.
1847 * If successful returns 0, otherwise errno.
1848 */
1849 int
1850 audiobellopen(dev_t dev, struct audiobell_arg *arg)
1851 {
1852 struct audio_softc *sc;
1853 int error;
1854
1855 /* Find the device */
1856 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1857 if (sc == NULL || sc->hw_if == NULL)
1858 return ENXIO;
1859
1860 error = audio_enter_exclusive(sc);
1861 if (error)
1862 return error;
1863
1864 device_active(sc->sc_dev, DVA_SYSTEM);
1865 error = audio_open(dev, sc, FWRITE, 0, curlwp, arg);
1866
1867 audio_exit_exclusive(sc);
1868 return error;
1869 }
1870
1871 /* Close for audiobell */
1872 int
1873 audiobellclose(audio_file_t *file)
1874 {
1875 struct audio_softc *sc;
1876 int error;
1877
1878 sc = file->sc;
1879
1880 /* XXX what should I do when an error occurs? */
1881 error = audio_file_acquire(sc, file);
1882 if (error)
1883 return error;
1884
1885 device_active(sc->sc_dev, DVA_SYSTEM);
1886 error = audio_close(sc, file);
1887
1888 /*
1889 * Since file has already been destructed,
1890 * audio_file_release() is not necessary.
1891 */
1892
1893 return error;
1894 }
1895
1896 /* Playback for audiobell */
1897 int
1898 audiobellwrite(audio_file_t *file, struct uio *uio)
1899 {
1900 struct audio_softc *sc;
1901 int error;
1902
1903 sc = file->sc;
1904 error = audio_file_acquire(sc, file);
1905 if (error)
1906 return error;
1907
1908 error = audio_write(sc, uio, 0, file);
1909
1910 audio_file_release(sc, file);
1911 return error;
1912 }
1913
1914
1915 /*
1916 * Audio driver
1917 */
1918 int
1919 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
1920 struct lwp *l, struct audiobell_arg *bell)
1921 {
1922 struct audio_info ai;
1923 struct file *fp;
1924 audio_file_t *af;
1925 audio_ring_t *hwbuf;
1926 bool fullduplex;
1927 int fd;
1928 int error;
1929
1930 KASSERT(mutex_owned(sc->sc_lock));
1931 KASSERT(sc->sc_exlock);
1932
1933 TRACE(1, "%sflags=0x%x po=%d ro=%d",
1934 (audiodebug >= 3) ? "start " : "",
1935 flags, sc->sc_popens, sc->sc_ropens);
1936
1937 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
1938 af->sc = sc;
1939 af->dev = dev;
1940 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
1941 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
1942 if ((flags & FREAD) != 0 && audio_can_capture(sc))
1943 af->mode |= AUMODE_RECORD;
1944 if (af->mode == 0) {
1945 error = ENXIO;
1946 goto bad1;
1947 }
1948
1949 fullduplex = (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX);
1950
1951 /*
1952 * On half duplex hardware,
1953 * 1. if mode is (PLAY | REC), let mode PLAY.
1954 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
1955 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
1956 */
1957 if (fullduplex == false) {
1958 if ((af->mode & AUMODE_PLAY)) {
1959 if (sc->sc_ropens != 0) {
1960 TRACE(1, "record track already exists");
1961 error = ENODEV;
1962 goto bad1;
1963 }
1964 /* Play takes precedence */
1965 af->mode &= ~AUMODE_RECORD;
1966 }
1967 if ((af->mode & AUMODE_RECORD)) {
1968 if (sc->sc_popens != 0) {
1969 TRACE(1, "play track already exists");
1970 error = ENODEV;
1971 goto bad1;
1972 }
1973 }
1974 }
1975
1976 /* Create tracks */
1977 if ((af->mode & AUMODE_PLAY))
1978 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
1979 if ((af->mode & AUMODE_RECORD))
1980 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
1981
1982 /* Set parameters */
1983 AUDIO_INITINFO(&ai);
1984 if (bell) {
1985 ai.play.sample_rate = bell->sample_rate;
1986 ai.play.encoding = bell->encoding;
1987 ai.play.channels = bell->channels;
1988 ai.play.precision = bell->precision;
1989 ai.play.pause = false;
1990 } else if (ISDEVAUDIO(dev)) {
1991 /* If /dev/audio, initialize everytime. */
1992 ai.play.sample_rate = audio_default.sample_rate;
1993 ai.play.encoding = audio_default.encoding;
1994 ai.play.channels = audio_default.channels;
1995 ai.play.precision = audio_default.precision;
1996 ai.play.pause = false;
1997 ai.record.sample_rate = audio_default.sample_rate;
1998 ai.record.encoding = audio_default.encoding;
1999 ai.record.channels = audio_default.channels;
2000 ai.record.precision = audio_default.precision;
2001 ai.record.pause = false;
2002 } else {
2003 /* If /dev/sound, take over the previous parameters. */
2004 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2005 ai.play.encoding = sc->sc_sound_pparams.encoding;
2006 ai.play.channels = sc->sc_sound_pparams.channels;
2007 ai.play.precision = sc->sc_sound_pparams.precision;
2008 ai.play.pause = sc->sc_sound_ppause;
2009 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2010 ai.record.encoding = sc->sc_sound_rparams.encoding;
2011 ai.record.channels = sc->sc_sound_rparams.channels;
2012 ai.record.precision = sc->sc_sound_rparams.precision;
2013 ai.record.pause = sc->sc_sound_rpause;
2014 }
2015 error = audio_file_setinfo(sc, af, &ai);
2016 if (error)
2017 goto bad2;
2018
2019 if (sc->sc_popens + sc->sc_ropens == 0) {
2020 /* First open */
2021
2022 sc->sc_cred = kauth_cred_get();
2023 kauth_cred_hold(sc->sc_cred);
2024
2025 if (sc->hw_if->open) {
2026 int hwflags;
2027
2028 /*
2029 * Call hw_if->open() only at first open of
2030 * combination of playback and recording.
2031 * On full duplex hardware, the flags passed to
2032 * hw_if->open() is always (FREAD | FWRITE)
2033 * regardless of this open()'s flags.
2034 * see also dev/isa/aria.c
2035 * On half duplex hardware, the flags passed to
2036 * hw_if->open() is either FREAD or FWRITE.
2037 * see also arch/evbarm/mini2440/audio_mini2440.c
2038 */
2039 if (fullduplex) {
2040 hwflags = FREAD | FWRITE;
2041 } else {
2042 /* Construct hwflags from af->mode. */
2043 hwflags = 0;
2044 if ((af->mode & AUMODE_PLAY) != 0)
2045 hwflags |= FWRITE;
2046 if ((af->mode & AUMODE_RECORD) != 0)
2047 hwflags |= FREAD;
2048 }
2049
2050 mutex_enter(sc->sc_intr_lock);
2051 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2052 mutex_exit(sc->sc_intr_lock);
2053 if (error)
2054 goto bad2;
2055 }
2056
2057 /*
2058 * Set speaker mode when a half duplex.
2059 * XXX I'm not sure this is correct.
2060 */
2061 if (1/*XXX*/) {
2062 if (sc->hw_if->speaker_ctl) {
2063 int on;
2064 if (af->ptrack) {
2065 on = 1;
2066 } else {
2067 on = 0;
2068 }
2069 mutex_enter(sc->sc_intr_lock);
2070 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2071 mutex_exit(sc->sc_intr_lock);
2072 if (error)
2073 goto bad3;
2074 }
2075 }
2076 } else /* if (sc->sc_multiuser == false) XXX not yet */ {
2077 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2078 if (euid != 0 && kauth_cred_geteuid(sc->sc_cred) != euid) {
2079 error = EPERM;
2080 goto bad2;
2081 }
2082 }
2083
2084 /* Call init_output if this is the first playback open. */
2085 if (af->ptrack && sc->sc_popens == 0) {
2086 if (sc->hw_if->init_output) {
2087 hwbuf = &sc->sc_pmixer->hwbuf;
2088 mutex_enter(sc->sc_intr_lock);
2089 error = sc->hw_if->init_output(sc->hw_hdl,
2090 hwbuf->mem,
2091 hwbuf->capacity *
2092 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2093 mutex_exit(sc->sc_intr_lock);
2094 if (error)
2095 goto bad3;
2096 }
2097 }
2098 /* Call init_input if this is the first recording open. */
2099 if (af->rtrack && sc->sc_ropens == 0) {
2100 if (sc->hw_if->init_input) {
2101 hwbuf = &sc->sc_rmixer->hwbuf;
2102 mutex_enter(sc->sc_intr_lock);
2103 error = sc->hw_if->init_input(sc->hw_hdl,
2104 hwbuf->mem,
2105 hwbuf->capacity *
2106 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2107 mutex_exit(sc->sc_intr_lock);
2108 if (error)
2109 goto bad3;
2110 }
2111 }
2112
2113 if (bell == NULL) {
2114 error = fd_allocfile(&fp, &fd);
2115 if (error)
2116 goto bad3;
2117 }
2118
2119 /*
2120 * Count up finally.
2121 * Don't fail from here.
2122 */
2123 if (af->ptrack)
2124 sc->sc_popens++;
2125 if (af->rtrack)
2126 sc->sc_ropens++;
2127 mutex_enter(sc->sc_intr_lock);
2128 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2129 mutex_exit(sc->sc_intr_lock);
2130
2131 if (bell) {
2132 bell->file = af;
2133 } else {
2134 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2135 KASSERT(error == EMOVEFD);
2136 }
2137
2138 TRACEF(3, af, "done");
2139 return error;
2140
2141 /*
2142 * Since track here is not yet linked to sc_files,
2143 * you can call track_destroy() without sc_intr_lock.
2144 */
2145 bad3:
2146 if (sc->sc_popens + sc->sc_ropens == 0) {
2147 if (sc->hw_if->close) {
2148 mutex_enter(sc->sc_intr_lock);
2149 sc->hw_if->close(sc->hw_hdl);
2150 mutex_exit(sc->sc_intr_lock);
2151 }
2152 }
2153 bad2:
2154 if (af->rtrack) {
2155 audio_track_destroy(af->rtrack);
2156 af->rtrack = NULL;
2157 }
2158 if (af->ptrack) {
2159 audio_track_destroy(af->ptrack);
2160 af->ptrack = NULL;
2161 }
2162 bad1:
2163 kmem_free(af, sizeof(*af));
2164 return error;
2165 }
2166
2167 int
2168 audio_close(struct audio_softc *sc, audio_file_t *file)
2169 {
2170 audio_track_t *oldtrack;
2171 int error;
2172
2173 KASSERT(!mutex_owned(sc->sc_lock));
2174 KASSERT(file->lock);
2175
2176 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2177 (audiodebug >= 3) ? "start " : "",
2178 (int)curproc->p_pid, (int)curlwp->l_lid,
2179 sc->sc_popens, sc->sc_ropens);
2180 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2181 "sc->sc_popens=%d, sc->sc_ropens=%d",
2182 sc->sc_popens, sc->sc_ropens);
2183
2184 /*
2185 * Drain first.
2186 * It must be done before acquiring exclusive lock.
2187 */
2188 if (file->ptrack) {
2189 mutex_enter(sc->sc_lock);
2190 audio_track_drain(sc, file->ptrack);
2191 mutex_exit(sc->sc_lock);
2192 }
2193
2194 /* Then, acquire exclusive lock to protect counters. */
2195 /* XXX what should I do when an error occurs? */
2196 error = audio_enter_exclusive(sc);
2197 if (error) {
2198 audio_file_release(sc, file);
2199 return error;
2200 }
2201
2202 if (file->ptrack) {
2203 /* Call hw halt_output if this is the last playback track. */
2204 if (sc->sc_popens == 1 && sc->sc_pbusy) {
2205 error = audio_pmixer_halt(sc);
2206 if (error) {
2207 device_printf(sc->sc_dev,
2208 "halt_output failed with %d\n", error);
2209 }
2210 }
2211
2212 /* Destroy the track. */
2213 oldtrack = file->ptrack;
2214 mutex_enter(sc->sc_intr_lock);
2215 file->ptrack = NULL;
2216 mutex_exit(sc->sc_intr_lock);
2217 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2218 oldtrack->dropframes);
2219 audio_track_destroy(oldtrack);
2220
2221 KASSERT(sc->sc_popens > 0);
2222 sc->sc_popens--;
2223 }
2224 if (file->rtrack) {
2225 /* Call hw halt_input if this is the last recording track. */
2226 if (sc->sc_ropens == 1 && sc->sc_rbusy) {
2227 error = audio_rmixer_halt(sc);
2228 if (error) {
2229 device_printf(sc->sc_dev,
2230 "halt_input failed with %d\n", error);
2231 }
2232 }
2233
2234 /* Destroy the track. */
2235 oldtrack = file->rtrack;
2236 mutex_enter(sc->sc_intr_lock);
2237 file->rtrack = NULL;
2238 mutex_exit(sc->sc_intr_lock);
2239 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2240 oldtrack->dropframes);
2241 audio_track_destroy(oldtrack);
2242
2243 KASSERT(sc->sc_ropens > 0);
2244 sc->sc_ropens--;
2245 }
2246
2247 /* Call hw close if this is the last track. */
2248 if (sc->sc_popens + sc->sc_ropens == 0) {
2249 if (sc->hw_if->close) {
2250 TRACE(2, "hw_if close");
2251 mutex_enter(sc->sc_intr_lock);
2252 sc->hw_if->close(sc->hw_hdl);
2253 mutex_exit(sc->sc_intr_lock);
2254 }
2255
2256 kauth_cred_free(sc->sc_cred);
2257 }
2258
2259 mutex_enter(sc->sc_intr_lock);
2260 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2261 mutex_exit(sc->sc_intr_lock);
2262
2263 TRACE(3, "done");
2264 audio_exit_exclusive(sc);
2265 return 0;
2266 }
2267
2268 int
2269 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2270 audio_file_t *file)
2271 {
2272 audio_track_t *track;
2273 audio_ring_t *usrbuf;
2274 audio_ring_t *input;
2275 int error;
2276
2277 track = file->rtrack;
2278 KASSERT(track);
2279 TRACET(2, track, "resid=%zd", uio->uio_resid);
2280
2281 KASSERT(!mutex_owned(sc->sc_lock));
2282 KASSERT(file->lock);
2283
2284 /* I think it's better than EINVAL. */
2285 if (track->mmapped)
2286 return EPERM;
2287
2288 #ifdef AUDIO_PM_IDLE
2289 mutex_enter(sc->sc_lock);
2290 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2291 device_active(&sc->sc_dev, DVA_SYSTEM);
2292 mutex_exit(sc->sc_lock);
2293 #endif
2294
2295 /*
2296 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2297 * However read() system call itself can be called because it's
2298 * opened with O_RDWR. So in this case, deny this read().
2299 */
2300 if ((file->mode & AUMODE_RECORD) == 0) {
2301 return EBADF;
2302 }
2303
2304 TRACET(3, track, "resid=%zd", uio->uio_resid);
2305
2306 usrbuf = &track->usrbuf;
2307 input = track->input;
2308
2309 /*
2310 * The first read starts rmixer.
2311 */
2312 error = audio_enter_exclusive(sc);
2313 if (error)
2314 return error;
2315 if (sc->sc_rbusy == false)
2316 audio_rmixer_start(sc);
2317 audio_exit_exclusive(sc);
2318
2319 error = 0;
2320 while (uio->uio_resid > 0 && error == 0) {
2321 int bytes;
2322
2323 TRACET(3, track,
2324 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2325 uio->uio_resid,
2326 input->head, input->used, input->capacity,
2327 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2328
2329 /* Wait when buffers are empty. */
2330 mutex_enter(sc->sc_lock);
2331 for (;;) {
2332 bool empty;
2333 audio_track_lock_enter(track);
2334 empty = (input->used == 0 && usrbuf->used == 0);
2335 audio_track_lock_exit(track);
2336 if (!empty)
2337 break;
2338
2339 if ((ioflag & IO_NDELAY)) {
2340 mutex_exit(sc->sc_lock);
2341 return EWOULDBLOCK;
2342 }
2343
2344 TRACET(3, track, "sleep");
2345 error = audio_track_waitio(sc, track);
2346 if (error) {
2347 mutex_exit(sc->sc_lock);
2348 return error;
2349 }
2350 }
2351 mutex_exit(sc->sc_lock);
2352
2353 audio_track_lock_enter(track);
2354 audio_track_record(track);
2355 audio_track_lock_exit(track);
2356
2357 /* uiomove from usrbuf as much as possible. */
2358 bytes = uimin(usrbuf->used, uio->uio_resid);
2359 while (bytes > 0) {
2360 int head = usrbuf->head;
2361 int len = uimin(bytes, usrbuf->capacity - head);
2362 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2363 uio);
2364 if (error) {
2365 device_printf(sc->sc_dev,
2366 "uiomove(len=%d) failed with %d\n",
2367 len, error);
2368 goto abort;
2369 }
2370 auring_take(usrbuf, len);
2371 track->useriobytes += len;
2372 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2373 len,
2374 usrbuf->head, usrbuf->used, usrbuf->capacity);
2375 bytes -= len;
2376 }
2377 }
2378
2379 abort:
2380 return error;
2381 }
2382
2383
2384 /*
2385 * Clear file's playback and/or record track buffer immediately.
2386 */
2387 static void
2388 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2389 {
2390
2391 if (file->ptrack)
2392 audio_track_clear(sc, file->ptrack);
2393 if (file->rtrack)
2394 audio_track_clear(sc, file->rtrack);
2395 }
2396
2397 int
2398 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2399 audio_file_t *file)
2400 {
2401 audio_track_t *track;
2402 audio_ring_t *usrbuf;
2403 audio_ring_t *outbuf;
2404 int error;
2405
2406 track = file->ptrack;
2407 KASSERT(track);
2408 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2409 audiodebug >= 3 ? "begin " : "",
2410 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2411
2412 KASSERT(!mutex_owned(sc->sc_lock));
2413 KASSERT(file->lock);
2414
2415 /* I think it's better than EINVAL. */
2416 if (track->mmapped)
2417 return EPERM;
2418
2419 if (uio->uio_resid == 0) {
2420 track->eofcounter++;
2421 return 0;
2422 }
2423
2424 #ifdef AUDIO_PM_IDLE
2425 mutex_enter(sc->sc_lock);
2426 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2427 device_active(&sc->sc_dev, DVA_SYSTEM);
2428 mutex_exit(sc->sc_lock);
2429 #endif
2430
2431 usrbuf = &track->usrbuf;
2432 outbuf = &track->outbuf;
2433
2434 /*
2435 * The first write starts pmixer.
2436 */
2437 error = audio_enter_exclusive(sc);
2438 if (error)
2439 return error;
2440 if (sc->sc_pbusy == false)
2441 audio_pmixer_start(sc, false);
2442 audio_exit_exclusive(sc);
2443
2444 track->pstate = AUDIO_STATE_RUNNING;
2445 error = 0;
2446 while (uio->uio_resid > 0 && error == 0) {
2447 int bytes;
2448
2449 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2450 uio->uio_resid,
2451 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2452
2453 /* Wait when buffers are full. */
2454 mutex_enter(sc->sc_lock);
2455 for (;;) {
2456 bool full;
2457 audio_track_lock_enter(track);
2458 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2459 outbuf->used >= outbuf->capacity);
2460 audio_track_lock_exit(track);
2461 if (!full)
2462 break;
2463
2464 if ((ioflag & IO_NDELAY)) {
2465 error = EWOULDBLOCK;
2466 mutex_exit(sc->sc_lock);
2467 goto abort;
2468 }
2469
2470 TRACET(3, track, "sleep usrbuf=%d/H%d",
2471 usrbuf->used, track->usrbuf_usedhigh);
2472 error = audio_track_waitio(sc, track);
2473 if (error) {
2474 mutex_exit(sc->sc_lock);
2475 goto abort;
2476 }
2477 }
2478 mutex_exit(sc->sc_lock);
2479
2480 /* uiomove to usrbuf as much as possible. */
2481 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2482 uio->uio_resid);
2483 while (bytes > 0) {
2484 int tail = auring_tail(usrbuf);
2485 int len = uimin(bytes, usrbuf->capacity - tail);
2486 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2487 uio);
2488 if (error) {
2489 device_printf(sc->sc_dev,
2490 "uiomove(len=%d) failed with %d\n",
2491 len, error);
2492 goto abort;
2493 }
2494 auring_push(usrbuf, len);
2495 track->useriobytes += len;
2496 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2497 len,
2498 usrbuf->head, usrbuf->used, usrbuf->capacity);
2499 bytes -= len;
2500 }
2501
2502 /* Convert them as much as possible. */
2503 audio_track_lock_enter(track);
2504 while (usrbuf->used >= track->usrbuf_blksize &&
2505 outbuf->used < outbuf->capacity) {
2506 audio_track_play(track);
2507 }
2508 audio_track_lock_exit(track);
2509 }
2510
2511 abort:
2512 TRACET(3, track, "done error=%d", error);
2513 return error;
2514 }
2515
2516 int
2517 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2518 struct lwp *l, audio_file_t *file)
2519 {
2520 struct audio_offset *ao;
2521 struct audio_info ai;
2522 audio_track_t *track;
2523 audio_encoding_t *ae;
2524 audio_format_query_t *query;
2525 u_int stamp;
2526 u_int offs;
2527 int fd;
2528 int index;
2529 int error;
2530
2531 KASSERT(!mutex_owned(sc->sc_lock));
2532 KASSERT(file->lock);
2533
2534 #if defined(AUDIO_DEBUG)
2535 const char *ioctlnames[] = {
2536 " AUDIO_GETINFO", /* 21 */
2537 " AUDIO_SETINFO", /* 22 */
2538 " AUDIO_DRAIN", /* 23 */
2539 " AUDIO_FLUSH", /* 24 */
2540 " AUDIO_WSEEK", /* 25 */
2541 " AUDIO_RERROR", /* 26 */
2542 " AUDIO_GETDEV", /* 27 */
2543 " AUDIO_GETENC", /* 28 */
2544 " AUDIO_GETFD", /* 29 */
2545 " AUDIO_SETFD", /* 30 */
2546 " AUDIO_PERROR", /* 31 */
2547 " AUDIO_GETIOFFS", /* 32 */
2548 " AUDIO_GETOOFFS", /* 33 */
2549 " AUDIO_GETPROPS", /* 34 */
2550 " AUDIO_GETBUFINFO", /* 35 */
2551 " AUDIO_SETCHAN", /* 36 */
2552 " AUDIO_GETCHAN", /* 37 */
2553 " AUDIO_QUERYFORMAT", /* 38 */
2554 " AUDIO_GETFORMAT", /* 39 */
2555 " AUDIO_SETFORMAT", /* 40 */
2556 };
2557 int nameidx = (cmd & 0xff);
2558 const char *ioctlname = "";
2559 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2560 ioctlname = ioctlnames[nameidx - 21];
2561 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2562 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2563 (int)curproc->p_pid, (int)l->l_lid);
2564 #endif
2565
2566 error = 0;
2567 switch (cmd) {
2568 case FIONBIO:
2569 /* All handled in the upper FS layer. */
2570 break;
2571
2572 case FIONREAD:
2573 /* Get the number of bytes that can be read. */
2574 if (file->rtrack) {
2575 *(int *)addr = audio_track_readablebytes(file->rtrack);
2576 } else {
2577 *(int *)addr = 0;
2578 }
2579 break;
2580
2581 case FIOASYNC:
2582 /* Set/Clear ASYNC I/O. */
2583 if (*(int *)addr) {
2584 file->async_audio = curproc->p_pid;
2585 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2586 } else {
2587 file->async_audio = 0;
2588 TRACEF(2, file, "FIOASYNC off");
2589 }
2590 break;
2591
2592 case AUDIO_FLUSH:
2593 /* XXX TODO: clear errors and restart? */
2594 audio_file_clear(sc, file);
2595 break;
2596
2597 case AUDIO_RERROR:
2598 /*
2599 * Number of read bytes dropped. We don't know where
2600 * or when they were dropped (including conversion stage).
2601 * Therefore, the number of accurate bytes or samples is
2602 * also unknown.
2603 */
2604 track = file->rtrack;
2605 if (track) {
2606 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2607 track->dropframes);
2608 }
2609 break;
2610
2611 case AUDIO_PERROR:
2612 /*
2613 * Number of write bytes dropped. We don't know where
2614 * or when they were dropped (including conversion stage).
2615 * Therefore, the number of accurate bytes or samples is
2616 * also unknown.
2617 */
2618 track = file->ptrack;
2619 if (track) {
2620 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2621 track->dropframes);
2622 }
2623 break;
2624
2625 case AUDIO_GETIOFFS:
2626 /* XXX TODO */
2627 ao = (struct audio_offset *)addr;
2628 ao->samples = 0;
2629 ao->deltablks = 0;
2630 ao->offset = 0;
2631 break;
2632
2633 case AUDIO_GETOOFFS:
2634 ao = (struct audio_offset *)addr;
2635 track = file->ptrack;
2636 if (track == NULL) {
2637 ao->samples = 0;
2638 ao->deltablks = 0;
2639 ao->offset = 0;
2640 break;
2641 }
2642 mutex_enter(sc->sc_lock);
2643 mutex_enter(sc->sc_intr_lock);
2644 /* figure out where next DMA will start */
2645 stamp = track->usrbuf_stamp;
2646 offs = track->usrbuf.head;
2647 mutex_exit(sc->sc_intr_lock);
2648 mutex_exit(sc->sc_lock);
2649
2650 ao->samples = stamp;
2651 ao->deltablks = (stamp / track->usrbuf_blksize) -
2652 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2653 track->usrbuf_stamp_last = stamp;
2654 offs = rounddown(offs, track->usrbuf_blksize)
2655 + track->usrbuf_blksize;
2656 if (offs >= track->usrbuf.capacity)
2657 offs -= track->usrbuf.capacity;
2658 ao->offset = offs;
2659
2660 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2661 ao->samples, ao->deltablks, ao->offset);
2662 break;
2663
2664 case AUDIO_WSEEK:
2665 /* XXX return value does not include outbuf one. */
2666 if (file->ptrack)
2667 *(u_long *)addr = file->ptrack->usrbuf.used;
2668 break;
2669
2670 case AUDIO_SETINFO:
2671 error = audio_enter_exclusive(sc);
2672 if (error)
2673 break;
2674 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2675 if (error) {
2676 audio_exit_exclusive(sc);
2677 break;
2678 }
2679 /* XXX TODO: update last_ai if /dev/sound ? */
2680 if (ISDEVSOUND(dev))
2681 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2682 audio_exit_exclusive(sc);
2683 break;
2684
2685 case AUDIO_GETINFO:
2686 error = audio_enter_exclusive(sc);
2687 if (error)
2688 break;
2689 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2690 audio_exit_exclusive(sc);
2691 break;
2692
2693 case AUDIO_GETBUFINFO:
2694 mutex_enter(sc->sc_lock);
2695 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2696 mutex_exit(sc->sc_lock);
2697 break;
2698
2699 case AUDIO_DRAIN:
2700 if (file->ptrack) {
2701 mutex_enter(sc->sc_lock);
2702 error = audio_track_drain(sc, file->ptrack);
2703 mutex_exit(sc->sc_lock);
2704 }
2705 break;
2706
2707 case AUDIO_GETDEV:
2708 mutex_enter(sc->sc_lock);
2709 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2710 mutex_exit(sc->sc_lock);
2711 break;
2712
2713 case AUDIO_GETENC:
2714 ae = (audio_encoding_t *)addr;
2715 index = ae->index;
2716 if (index < 0 || index >= __arraycount(audio_encodings)) {
2717 error = EINVAL;
2718 break;
2719 }
2720 *ae = audio_encodings[index];
2721 ae->index = index;
2722 /*
2723 * EMULATED always.
2724 * EMULATED flag at that time used to mean that it could
2725 * not be passed directly to the hardware as-is. But
2726 * currently, all formats including hardware native is not
2727 * passed directly to the hardware. So I set EMULATED
2728 * flag for all formats.
2729 */
2730 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2731 break;
2732
2733 case AUDIO_GETFD:
2734 /*
2735 * Returns the current setting of full duplex mode.
2736 * If HW has full duplex mode and there are two mixers,
2737 * it is full duplex. Otherwise half duplex.
2738 */
2739 mutex_enter(sc->sc_lock);
2740 fd = (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX)
2741 && (sc->sc_pmixer && sc->sc_rmixer);
2742 mutex_exit(sc->sc_lock);
2743 *(int *)addr = fd;
2744 break;
2745
2746 case AUDIO_GETPROPS:
2747 mutex_enter(sc->sc_lock);
2748 *(int *)addr = audio_get_props(sc);
2749 mutex_exit(sc->sc_lock);
2750 break;
2751
2752 case AUDIO_QUERYFORMAT:
2753 query = (audio_format_query_t *)addr;
2754 if (sc->hw_if->query_format) {
2755 mutex_enter(sc->sc_lock);
2756 error = sc->hw_if->query_format(sc->hw_hdl, query);
2757 mutex_exit(sc->sc_lock);
2758 /* Hide internal infomations */
2759 query->fmt.driver_data = NULL;
2760 } else {
2761 error = ENODEV;
2762 }
2763 break;
2764
2765 case AUDIO_GETFORMAT:
2766 audio_mixers_get_format(sc, (struct audio_info *)addr);
2767 break;
2768
2769 case AUDIO_SETFORMAT:
2770 mutex_enter(sc->sc_lock);
2771 audio_mixers_get_format(sc, &ai);
2772 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2773 if (error) {
2774 /* Rollback */
2775 audio_mixers_set_format(sc, &ai);
2776 }
2777 mutex_exit(sc->sc_lock);
2778 break;
2779
2780 case AUDIO_SETFD:
2781 case AUDIO_SETCHAN:
2782 case AUDIO_GETCHAN:
2783 /* Obsoleted */
2784 break;
2785
2786 default:
2787 if (sc->hw_if->dev_ioctl) {
2788 error = audio_enter_exclusive(sc);
2789 if (error)
2790 break;
2791 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2792 cmd, addr, flag, l);
2793 audio_exit_exclusive(sc);
2794 } else {
2795 TRACEF(2, file, "unknown ioctl");
2796 error = EINVAL;
2797 }
2798 break;
2799 }
2800 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2801 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2802 error);
2803 return error;
2804 }
2805
2806 /*
2807 * Returns the number of bytes that can be read on recording buffer.
2808 */
2809 static __inline int
2810 audio_track_readablebytes(const audio_track_t *track)
2811 {
2812 int bytes;
2813
2814 KASSERT(track);
2815 KASSERT(track->mode == AUMODE_RECORD);
2816
2817 /*
2818 * Although usrbuf is primarily readable data, recorded data
2819 * also stays in track->input until reading. So it is necessary
2820 * to add it. track->input is in frame, usrbuf is in byte.
2821 */
2822 bytes = track->usrbuf.used +
2823 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
2824 return bytes;
2825 }
2826
2827 int
2828 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
2829 audio_file_t *file)
2830 {
2831 audio_track_t *track;
2832 int revents;
2833 bool in_is_valid;
2834 bool out_is_valid;
2835
2836 KASSERT(!mutex_owned(sc->sc_lock));
2837 KASSERT(file->lock);
2838
2839 #if defined(AUDIO_DEBUG)
2840 #define POLLEV_BITMAP "\177\020" \
2841 "b\10WRBAND\0" \
2842 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
2843 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
2844 char evbuf[64];
2845 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
2846 TRACEF(2, file, "pid=%d.%d events=%s",
2847 (int)curproc->p_pid, (int)l->l_lid, evbuf);
2848 #endif
2849
2850 revents = 0;
2851 in_is_valid = false;
2852 out_is_valid = false;
2853 if (events & (POLLIN | POLLRDNORM)) {
2854 track = file->rtrack;
2855 if (track) {
2856 int used;
2857 in_is_valid = true;
2858 used = audio_track_readablebytes(track);
2859 if (used > 0)
2860 revents |= events & (POLLIN | POLLRDNORM);
2861 }
2862 }
2863 if (events & (POLLOUT | POLLWRNORM)) {
2864 track = file->ptrack;
2865 if (track) {
2866 out_is_valid = true;
2867 if (track->usrbuf.used <= track->usrbuf_usedlow)
2868 revents |= events & (POLLOUT | POLLWRNORM);
2869 }
2870 }
2871
2872 if (revents == 0) {
2873 mutex_enter(sc->sc_lock);
2874 if (in_is_valid) {
2875 TRACEF(3, file, "selrecord rsel");
2876 selrecord(l, &sc->sc_rsel);
2877 }
2878 if (out_is_valid) {
2879 TRACEF(3, file, "selrecord wsel");
2880 selrecord(l, &sc->sc_wsel);
2881 }
2882 mutex_exit(sc->sc_lock);
2883 }
2884
2885 #if defined(AUDIO_DEBUG)
2886 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
2887 TRACEF(2, file, "revents=%s", evbuf);
2888 #endif
2889 return revents;
2890 }
2891
2892 static const struct filterops audioread_filtops = {
2893 .f_isfd = 1,
2894 .f_attach = NULL,
2895 .f_detach = filt_audioread_detach,
2896 .f_event = filt_audioread_event,
2897 };
2898
2899 static void
2900 filt_audioread_detach(struct knote *kn)
2901 {
2902 struct audio_softc *sc;
2903 audio_file_t *file;
2904
2905 file = kn->kn_hook;
2906 sc = file->sc;
2907 TRACEF(3, file, "");
2908
2909 mutex_enter(sc->sc_lock);
2910 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
2911 mutex_exit(sc->sc_lock);
2912 }
2913
2914 static int
2915 filt_audioread_event(struct knote *kn, long hint)
2916 {
2917 audio_file_t *file;
2918 audio_track_t *track;
2919
2920 file = kn->kn_hook;
2921 track = file->rtrack;
2922
2923 /*
2924 * kn_data must contain the number of bytes can be read.
2925 * The return value indicates whether the event occurs or not.
2926 */
2927
2928 if (track == NULL) {
2929 /* can not read with this descriptor. */
2930 kn->kn_data = 0;
2931 return 0;
2932 }
2933
2934 kn->kn_data = audio_track_readablebytes(track);
2935 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2936 return kn->kn_data > 0;
2937 }
2938
2939 static const struct filterops audiowrite_filtops = {
2940 .f_isfd = 1,
2941 .f_attach = NULL,
2942 .f_detach = filt_audiowrite_detach,
2943 .f_event = filt_audiowrite_event,
2944 };
2945
2946 static void
2947 filt_audiowrite_detach(struct knote *kn)
2948 {
2949 struct audio_softc *sc;
2950 audio_file_t *file;
2951
2952 file = kn->kn_hook;
2953 sc = file->sc;
2954 TRACEF(3, file, "");
2955
2956 mutex_enter(sc->sc_lock);
2957 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
2958 mutex_exit(sc->sc_lock);
2959 }
2960
2961 static int
2962 filt_audiowrite_event(struct knote *kn, long hint)
2963 {
2964 audio_file_t *file;
2965 audio_track_t *track;
2966
2967 file = kn->kn_hook;
2968 track = file->ptrack;
2969
2970 /*
2971 * kn_data must contain the number of bytes can be write.
2972 * The return value indicates whether the event occurs or not.
2973 */
2974
2975 if (track == NULL) {
2976 /* can not write with this descriptor. */
2977 kn->kn_data = 0;
2978 return 0;
2979 }
2980
2981 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
2982 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2983 return (track->usrbuf.used < track->usrbuf_usedlow);
2984 }
2985
2986 int
2987 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
2988 {
2989 struct klist *klist;
2990
2991 KASSERT(!mutex_owned(sc->sc_lock));
2992 KASSERT(file->lock);
2993
2994 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
2995
2996 switch (kn->kn_filter) {
2997 case EVFILT_READ:
2998 klist = &sc->sc_rsel.sel_klist;
2999 kn->kn_fop = &audioread_filtops;
3000 break;
3001
3002 case EVFILT_WRITE:
3003 klist = &sc->sc_wsel.sel_klist;
3004 kn->kn_fop = &audiowrite_filtops;
3005 break;
3006
3007 default:
3008 return EINVAL;
3009 }
3010
3011 kn->kn_hook = file;
3012
3013 mutex_enter(sc->sc_lock);
3014 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3015 mutex_exit(sc->sc_lock);
3016
3017 return 0;
3018 }
3019
3020 int
3021 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3022 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3023 audio_file_t *file)
3024 {
3025 audio_track_t *track;
3026 vsize_t vsize;
3027 int error;
3028
3029 KASSERT(!mutex_owned(sc->sc_lock));
3030 KASSERT(file->lock);
3031
3032 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3033
3034 if (*offp < 0)
3035 return EINVAL;
3036
3037 #if 0
3038 /* XXX
3039 * The idea here was to use the protection to determine if
3040 * we are mapping the read or write buffer, but it fails.
3041 * The VM system is broken in (at least) two ways.
3042 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3043 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3044 * has to be used for mmapping the play buffer.
3045 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3046 * audio_mmap will get called at some point with VM_PROT_READ
3047 * only.
3048 * So, alas, we always map the play buffer for now.
3049 */
3050 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3051 prot == VM_PROT_WRITE)
3052 track = file->ptrack;
3053 else if (prot == VM_PROT_READ)
3054 track = file->rtrack;
3055 else
3056 return EINVAL;
3057 #else
3058 track = file->ptrack;
3059 #endif
3060 if (track == NULL)
3061 return EACCES;
3062
3063 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3064 if (len > vsize)
3065 return EOVERFLOW;
3066 if (*offp > (uint)(vsize - len))
3067 return EOVERFLOW;
3068
3069 /* XXX TODO: what happens when mmap twice. */
3070 if (!track->mmapped) {
3071 track->mmapped = true;
3072
3073 if (!track->is_pause) {
3074 error = audio_enter_exclusive(sc);
3075 if (error)
3076 return error;
3077 if (sc->sc_pbusy == false)
3078 audio_pmixer_start(sc, true);
3079 audio_exit_exclusive(sc);
3080 }
3081 /* XXX mmapping record buffer is not supported */
3082 }
3083
3084 /* get ringbuffer */
3085 *uobjp = track->uobj;
3086
3087 /* Acquire a reference for the mmap. munmap will release. */
3088 uao_reference(*uobjp);
3089 *maxprotp = prot;
3090 *advicep = UVM_ADV_RANDOM;
3091 *flagsp = MAP_SHARED;
3092 return 0;
3093 }
3094
3095 /*
3096 * /dev/audioctl has to be able to open at any time without interference
3097 * with any /dev/audio or /dev/sound.
3098 */
3099 static int
3100 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3101 struct lwp *l)
3102 {
3103 struct file *fp;
3104 audio_file_t *af;
3105 int fd;
3106 int error;
3107
3108 KASSERT(mutex_owned(sc->sc_lock));
3109 KASSERT(sc->sc_exlock);
3110
3111 TRACE(1, "");
3112
3113 error = fd_allocfile(&fp, &fd);
3114 if (error)
3115 return error;
3116
3117 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3118 af->sc = sc;
3119 af->dev = dev;
3120
3121 /* Not necessary to insert sc_files. */
3122
3123 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3124 KASSERT(error == EMOVEFD);
3125
3126 return error;
3127 }
3128
3129 /*
3130 * Reallocate 'memblock' with specified 'bytes' if 'bytes' > 0.
3131 * Or free 'memblock' and return NULL if 'byte' is zero.
3132 */
3133 static void *
3134 audio_realloc(void *memblock, size_t bytes)
3135 {
3136
3137 if (memblock != NULL) {
3138 if (bytes != 0) {
3139 return kern_realloc(memblock, bytes, M_NOWAIT);
3140 } else {
3141 kern_free(memblock);
3142 return NULL;
3143 }
3144 } else {
3145 if (bytes != 0) {
3146 return kern_malloc(bytes, M_NOWAIT);
3147 } else {
3148 return NULL;
3149 }
3150 }
3151 }
3152
3153 /*
3154 * Free 'mem' if available, and initialize the pointer.
3155 * For this reason, this is implemented as macro.
3156 */
3157 #define audio_free(mem) do { \
3158 if (mem != NULL) { \
3159 kern_free(mem); \
3160 mem = NULL; \
3161 } \
3162 } while (0)
3163
3164 /*
3165 * (Re)allocate usrbuf with 'newbufsize' bytes.
3166 * Use this function for usrbuf because only usrbuf can be mmapped.
3167 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3168 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3169 * and returns errno.
3170 * It must be called before updating usrbuf.capacity.
3171 */
3172 static int
3173 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3174 {
3175 struct audio_softc *sc;
3176 vaddr_t vstart;
3177 vsize_t oldvsize;
3178 vsize_t newvsize;
3179 int error;
3180
3181 KASSERT(newbufsize > 0);
3182 sc = track->mixer->sc;
3183
3184 /* Get a nonzero multiple of PAGE_SIZE */
3185 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3186
3187 if (track->usrbuf.mem != NULL) {
3188 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3189 PAGE_SIZE);
3190 if (oldvsize == newvsize) {
3191 track->usrbuf.capacity = newbufsize;
3192 return 0;
3193 }
3194 vstart = (vaddr_t)track->usrbuf.mem;
3195 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3196 /* uvm_unmap also detach uobj */
3197 track->uobj = NULL; /* paranoia */
3198 track->usrbuf.mem = NULL;
3199 }
3200
3201 /* Create a uvm anonymous object */
3202 track->uobj = uao_create(newvsize, 0);
3203
3204 /* Map it into the kernel virtual address space */
3205 vstart = 0;
3206 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3207 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3208 UVM_ADV_RANDOM, 0));
3209 if (error) {
3210 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3211 uao_detach(track->uobj); /* release reference */
3212 goto abort;
3213 }
3214
3215 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3216 false, 0);
3217 if (error) {
3218 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3219 error);
3220 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3221 /* uvm_unmap also detach uobj */
3222 goto abort;
3223 }
3224
3225 track->usrbuf.mem = (void *)vstart;
3226 track->usrbuf.capacity = newbufsize;
3227 memset(track->usrbuf.mem, 0, newvsize);
3228 return 0;
3229
3230 /* failure */
3231 abort:
3232 track->uobj = NULL; /* paranoia */
3233 track->usrbuf.mem = NULL;
3234 track->usrbuf.capacity = 0;
3235 return error;
3236 }
3237
3238 /*
3239 * Free usrbuf (if available).
3240 */
3241 static void
3242 audio_free_usrbuf(audio_track_t *track)
3243 {
3244 vaddr_t vstart;
3245 vsize_t vsize;
3246
3247 vstart = (vaddr_t)track->usrbuf.mem;
3248 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3249 if (track->usrbuf.mem != NULL) {
3250 /*
3251 * Unmap the kernel mapping. uvm_unmap releases the
3252 * reference to the uvm object, and this should be the
3253 * last virtual mapping of the uvm object, so no need
3254 * to explicitly release (`detach') the object.
3255 */
3256 uvm_unmap(kernel_map, vstart, vstart + vsize);
3257
3258 track->uobj = NULL;
3259 track->usrbuf.mem = NULL;
3260 track->usrbuf.capacity = 0;
3261 }
3262 }
3263
3264 /*
3265 * This filter changes the volume for each channel.
3266 * arg->context points track->ch_volume[].
3267 */
3268 static void
3269 audio_track_chvol(audio_filter_arg_t *arg)
3270 {
3271 int16_t *ch_volume;
3272 const aint_t *s;
3273 aint_t *d;
3274 u_int i;
3275 u_int ch;
3276 u_int channels;
3277
3278 DIAGNOSTIC_filter_arg(arg);
3279 KASSERT(arg->srcfmt->channels == arg->dstfmt->channels);
3280 KASSERT(arg->context != NULL);
3281 KASSERT(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS);
3282
3283 s = arg->src;
3284 d = arg->dst;
3285 ch_volume = arg->context;
3286
3287 channels = arg->srcfmt->channels;
3288 for (i = 0; i < arg->count; i++) {
3289 for (ch = 0; ch < channels; ch++) {
3290 aint2_t val;
3291 val = *s++;
3292 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
3293 val = val * ch_volume[ch] >> 8;
3294 #else
3295 val = val * ch_volume[ch] / 256;
3296 #endif
3297 *d++ = (aint_t)val;
3298 }
3299 }
3300 }
3301
3302 /*
3303 * This filter performs conversion from stereo (or more channels) to mono.
3304 */
3305 static void
3306 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3307 {
3308 const aint_t *s;
3309 aint_t *d;
3310 u_int i;
3311
3312 DIAGNOSTIC_filter_arg(arg);
3313
3314 s = arg->src;
3315 d = arg->dst;
3316
3317 for (i = 0; i < arg->count; i++) {
3318 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
3319 *d++ = (s[0] >> 1) + (s[1] >> 1);
3320 #else
3321 *d++ = (s[0] / 2) + (s[1] / 2);
3322 #endif
3323 s += arg->srcfmt->channels;
3324 }
3325 }
3326
3327 /*
3328 * This filter performs conversion from mono to stereo (or more channels).
3329 */
3330 static void
3331 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3332 {
3333 const aint_t *s;
3334 aint_t *d;
3335 u_int i;
3336 u_int ch;
3337 u_int dstchannels;
3338
3339 DIAGNOSTIC_filter_arg(arg);
3340
3341 s = arg->src;
3342 d = arg->dst;
3343 dstchannels = arg->dstfmt->channels;
3344
3345 for (i = 0; i < arg->count; i++) {
3346 d[0] = s[0];
3347 d[1] = s[0];
3348 s++;
3349 d += dstchannels;
3350 }
3351 if (dstchannels > 2) {
3352 d = arg->dst;
3353 for (i = 0; i < arg->count; i++) {
3354 for (ch = 2; ch < dstchannels; ch++) {
3355 d[ch] = 0;
3356 }
3357 d += dstchannels;
3358 }
3359 }
3360 }
3361
3362 /*
3363 * This filter shrinks M channels into N channels.
3364 * Extra channels are discarded.
3365 */
3366 static void
3367 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3368 {
3369 const aint_t *s;
3370 aint_t *d;
3371 u_int i;
3372 u_int ch;
3373
3374 DIAGNOSTIC_filter_arg(arg);
3375
3376 s = arg->src;
3377 d = arg->dst;
3378
3379 for (i = 0; i < arg->count; i++) {
3380 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3381 *d++ = s[ch];
3382 }
3383 s += arg->srcfmt->channels;
3384 }
3385 }
3386
3387 /*
3388 * This filter expands M channels into N channels.
3389 * Silence is inserted for missing channels.
3390 */
3391 static void
3392 audio_track_chmix_expand(audio_filter_arg_t *arg)
3393 {
3394 const aint_t *s;
3395 aint_t *d;
3396 u_int i;
3397 u_int ch;
3398 u_int srcchannels;
3399 u_int dstchannels;
3400
3401 DIAGNOSTIC_filter_arg(arg);
3402
3403 s = arg->src;
3404 d = arg->dst;
3405
3406 srcchannels = arg->srcfmt->channels;
3407 dstchannels = arg->dstfmt->channels;
3408 for (i = 0; i < arg->count; i++) {
3409 for (ch = 0; ch < srcchannels; ch++) {
3410 *d++ = *s++;
3411 }
3412 for (; ch < dstchannels; ch++) {
3413 *d++ = 0;
3414 }
3415 }
3416 }
3417
3418 /*
3419 * This filter performs frequency conversion (up sampling).
3420 * It uses linear interpolation.
3421 */
3422 static void
3423 audio_track_freq_up(audio_filter_arg_t *arg)
3424 {
3425 audio_track_t *track;
3426 audio_ring_t *src;
3427 audio_ring_t *dst;
3428 const aint_t *s;
3429 aint_t *d;
3430 aint_t prev[AUDIO_MAX_CHANNELS];
3431 aint_t curr[AUDIO_MAX_CHANNELS];
3432 aint_t grad[AUDIO_MAX_CHANNELS];
3433 u_int i;
3434 u_int t;
3435 u_int step;
3436 u_int channels;
3437 u_int ch;
3438 int srcused;
3439
3440 track = arg->context;
3441 KASSERT(track);
3442 src = &track->freq.srcbuf;
3443 dst = track->freq.dst;
3444 DIAGNOSTIC_ring(dst);
3445 DIAGNOSTIC_ring(src);
3446 KASSERT(src->used > 0);
3447 KASSERT(src->fmt.channels == dst->fmt.channels);
3448 KASSERT(src->head % track->mixer->frames_per_block == 0);
3449
3450 s = arg->src;
3451 d = arg->dst;
3452
3453 /*
3454 * In order to faciliate interpolation for each block, slide (delay)
3455 * input by one sample. As a result, strictly speaking, the output
3456 * phase is delayed by 1/dstfreq. However, I believe there is no
3457 * observable impact.
3458 *
3459 * Example)
3460 * srcfreq:dstfreq = 1:3
3461 *
3462 * A - -
3463 * |
3464 * |
3465 * | B - -
3466 * +-----+-----> input timeframe
3467 * 0 1
3468 *
3469 * 0 1
3470 * +-----+-----> input timeframe
3471 * | A
3472 * | x x
3473 * | x x
3474 * x (B)
3475 * +-+-+-+-+-+-> output timeframe
3476 * 0 1 2 3 4 5
3477 */
3478
3479 /* Last samples in previous block */
3480 channels = src->fmt.channels;
3481 for (ch = 0; ch < channels; ch++) {
3482 prev[ch] = track->freq_prev[ch];
3483 curr[ch] = track->freq_curr[ch];
3484 grad[ch] = curr[ch] - prev[ch];
3485 }
3486
3487 step = track->freq_step;
3488 t = track->freq_current;
3489 //#define FREQ_DEBUG
3490 #if defined(FREQ_DEBUG)
3491 #define PRINTF(fmt...) printf(fmt)
3492 #else
3493 #define PRINTF(fmt...) do { } while (0)
3494 #endif
3495 srcused = src->used;
3496 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3497 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3498 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3499 PRINTF(" t=%d\n", t);
3500
3501 for (i = 0; i < arg->count; i++) {
3502 PRINTF("i=%d t=%5d", i, t);
3503 if (t >= 65536) {
3504 for (ch = 0; ch < channels; ch++) {
3505 prev[ch] = curr[ch];
3506 curr[ch] = *s++;
3507 grad[ch] = curr[ch] - prev[ch];
3508 }
3509 PRINTF(" prev=%d s[%d]=%d",
3510 prev[0], src->used - srcused, curr[0]);
3511
3512 /* Update */
3513 t -= 65536;
3514 srcused--;
3515 if (srcused < 0) {
3516 PRINTF(" break\n");
3517 break;
3518 }
3519 }
3520
3521 for (ch = 0; ch < channels; ch++) {
3522 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3523 #if defined(FREQ_DEBUG)
3524 if (ch == 0)
3525 printf(" t=%5d *d=%d", t, d[-1]);
3526 #endif
3527 }
3528 t += step;
3529
3530 PRINTF("\n");
3531 }
3532 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3533
3534 auring_take(src, src->used);
3535 auring_push(dst, i);
3536
3537 /* Adjust */
3538 t += track->freq_leap;
3539
3540 track->freq_current = t;
3541 for (ch = 0; ch < channels; ch++) {
3542 track->freq_prev[ch] = prev[ch];
3543 track->freq_curr[ch] = curr[ch];
3544 }
3545 }
3546
3547 /*
3548 * This filter performs frequency conversion (down sampling).
3549 * It uses simple thinning.
3550 */
3551 static void
3552 audio_track_freq_down(audio_filter_arg_t *arg)
3553 {
3554 audio_track_t *track;
3555 audio_ring_t *src;
3556 audio_ring_t *dst;
3557 const aint_t *s0;
3558 aint_t *d;
3559 u_int i;
3560 u_int t;
3561 u_int step;
3562 u_int ch;
3563 u_int channels;
3564
3565 track = arg->context;
3566 KASSERT(track);
3567 src = &track->freq.srcbuf;
3568 dst = track->freq.dst;
3569
3570 DIAGNOSTIC_ring(dst);
3571 DIAGNOSTIC_ring(src);
3572 KASSERT(src->used > 0);
3573 KASSERT(src->fmt.channels == dst->fmt.channels);
3574 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3575 "src->head=%d fpb=%d",
3576 src->head, track->mixer->frames_per_block);
3577
3578 s0 = arg->src;
3579 d = arg->dst;
3580 t = track->freq_current;
3581 step = track->freq_step;
3582 channels = dst->fmt.channels;
3583 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3584 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3585 PRINTF(" t=%d\n", t);
3586
3587 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3588 const aint_t *s;
3589 PRINTF("i=%4d t=%10d", i, t);
3590 s = s0 + (t / 65536) * channels;
3591 PRINTF(" s=%5ld", (s - s0) / channels);
3592 for (ch = 0; ch < channels; ch++) {
3593 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3594 *d++ = s[ch];
3595 }
3596 PRINTF("\n");
3597 t += step;
3598 }
3599 t += track->freq_leap;
3600 PRINTF("end t=%d\n", t);
3601 auring_take(src, src->used);
3602 auring_push(dst, i);
3603 track->freq_current = t % 65536;
3604 }
3605
3606 /*
3607 * Creates track and returns it.
3608 */
3609 audio_track_t *
3610 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3611 {
3612 audio_track_t *track;
3613 static int newid = 0;
3614
3615 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3616
3617 track->id = newid++;
3618 track->mixer = mixer;
3619 track->mode = mixer->mode;
3620
3621 /* Do TRACE after id is assigned. */
3622 TRACET(3, track, "for %s",
3623 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3624
3625 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3626 track->volume = 256;
3627 #endif
3628 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3629 track->ch_volume[i] = 256;
3630 }
3631
3632 return track;
3633 }
3634
3635 /*
3636 * Release all resources of the track and track itself.
3637 * track must not be NULL. Don't specify the track within the file
3638 * structure linked from sc->sc_files.
3639 */
3640 static void
3641 audio_track_destroy(audio_track_t *track)
3642 {
3643
3644 KASSERT(track);
3645
3646 audio_free_usrbuf(track);
3647 audio_free(track->codec.srcbuf.mem);
3648 audio_free(track->chvol.srcbuf.mem);
3649 audio_free(track->chmix.srcbuf.mem);
3650 audio_free(track->freq.srcbuf.mem);
3651 audio_free(track->outbuf.mem);
3652
3653 kmem_free(track, sizeof(*track));
3654 }
3655
3656 /*
3657 * It returns encoding conversion filter according to src and dst format.
3658 * If it is not a convertible pair, it returns NULL. Either src or dst
3659 * must be internal format.
3660 */
3661 static audio_filter_t
3662 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3663 const audio_format2_t *dst)
3664 {
3665
3666 if (audio_format2_is_internal(src)) {
3667 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3668 return audio_internal_to_mulaw;
3669 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3670 return audio_internal_to_alaw;
3671 } else if (audio_format2_is_linear(dst)) {
3672 switch (dst->stride) {
3673 case 8:
3674 return audio_internal_to_linear8;
3675 case 16:
3676 return audio_internal_to_linear16;
3677 #if defined(AUDIO_SUPPORT_LINEAR24)
3678 case 24:
3679 return audio_internal_to_linear24;
3680 #endif
3681 case 32:
3682 return audio_internal_to_linear32;
3683 default:
3684 TRACET(1, track, "unsupported %s stride %d",
3685 "dst", dst->stride);
3686 goto abort;
3687 }
3688 }
3689 } else if (audio_format2_is_internal(dst)) {
3690 if (src->encoding == AUDIO_ENCODING_ULAW) {
3691 return audio_mulaw_to_internal;
3692 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3693 return audio_alaw_to_internal;
3694 } else if (audio_format2_is_linear(src)) {
3695 switch (src->stride) {
3696 case 8:
3697 return audio_linear8_to_internal;
3698 case 16:
3699 return audio_linear16_to_internal;
3700 #if defined(AUDIO_SUPPORT_LINEAR24)
3701 case 24:
3702 return audio_linear24_to_internal;
3703 #endif
3704 case 32:
3705 return audio_linear32_to_internal;
3706 default:
3707 TRACET(1, track, "unsupported %s stride %d",
3708 "src", src->stride);
3709 goto abort;
3710 }
3711 }
3712 }
3713
3714 TRACET(1, track, "unsupported encoding");
3715 abort:
3716 #if defined(AUDIO_DEBUG)
3717 if (audiodebug >= 2) {
3718 char buf[100];
3719 audio_format2_tostr(buf, sizeof(buf), src);
3720 TRACET(2, track, "src %s", buf);
3721 audio_format2_tostr(buf, sizeof(buf), dst);
3722 TRACET(2, track, "dst %s", buf);
3723 }
3724 #endif
3725 return NULL;
3726 }
3727
3728 /*
3729 * Initialize the codec stage of this track as necessary.
3730 * If successful, it initializes the codec stage as necessary, stores updated
3731 * last_dst in *last_dstp in any case, and returns 0.
3732 * Otherwise, it returns errno without modifying *last_dstp.
3733 */
3734 static int
3735 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3736 {
3737 struct audio_softc *sc;
3738 audio_ring_t *last_dst;
3739 audio_ring_t *srcbuf;
3740 audio_format2_t *srcfmt;
3741 audio_format2_t *dstfmt;
3742 audio_filter_arg_t *arg;
3743 u_int len;
3744 int error;
3745
3746 KASSERT(track);
3747
3748 sc = track->mixer->sc;
3749 last_dst = *last_dstp;
3750 dstfmt = &last_dst->fmt;
3751 srcfmt = &track->inputfmt;
3752 srcbuf = &track->codec.srcbuf;
3753 error = 0;
3754
3755 if (srcfmt->encoding != dstfmt->encoding
3756 || srcfmt->precision != dstfmt->precision
3757 || srcfmt->stride != dstfmt->stride) {
3758 track->codec.dst = last_dst;
3759
3760 srcbuf->fmt = *dstfmt;
3761 srcbuf->fmt.encoding = srcfmt->encoding;
3762 srcbuf->fmt.precision = srcfmt->precision;
3763 srcbuf->fmt.stride = srcfmt->stride;
3764
3765 track->codec.filter = audio_track_get_codec(track,
3766 &srcbuf->fmt, dstfmt);
3767 if (track->codec.filter == NULL) {
3768 error = EINVAL;
3769 goto abort;
3770 }
3771
3772 srcbuf->head = 0;
3773 srcbuf->used = 0;
3774 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3775 len = auring_bytelen(srcbuf);
3776 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3777 if (srcbuf->mem == NULL) {
3778 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3779 __func__, len);
3780 error = ENOMEM;
3781 goto abort;
3782 }
3783
3784 arg = &track->codec.arg;
3785 arg->srcfmt = &srcbuf->fmt;
3786 arg->dstfmt = dstfmt;
3787 arg->context = NULL;
3788
3789 *last_dstp = srcbuf;
3790 return 0;
3791 }
3792
3793 abort:
3794 track->codec.filter = NULL;
3795 audio_free(srcbuf->mem);
3796 return error;
3797 }
3798
3799 /*
3800 * Initialize the chvol stage of this track as necessary.
3801 * If successful, it initializes the chvol stage as necessary, stores updated
3802 * last_dst in *last_dstp in any case, and returns 0.
3803 * Otherwise, it returns errno without modifying *last_dstp.
3804 */
3805 static int
3806 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3807 {
3808 struct audio_softc *sc;
3809 audio_ring_t *last_dst;
3810 audio_ring_t *srcbuf;
3811 audio_format2_t *srcfmt;
3812 audio_format2_t *dstfmt;
3813 audio_filter_arg_t *arg;
3814 u_int len;
3815 int error;
3816
3817 KASSERT(track);
3818
3819 sc = track->mixer->sc;
3820 last_dst = *last_dstp;
3821 dstfmt = &last_dst->fmt;
3822 srcfmt = &track->inputfmt;
3823 srcbuf = &track->chvol.srcbuf;
3824 error = 0;
3825
3826 /* Check whether channel volume conversion is necessary. */
3827 bool use_chvol = false;
3828 for (int ch = 0; ch < srcfmt->channels; ch++) {
3829 if (track->ch_volume[ch] != 256) {
3830 use_chvol = true;
3831 break;
3832 }
3833 }
3834
3835 if (use_chvol == true) {
3836 track->chvol.dst = last_dst;
3837 track->chvol.filter = audio_track_chvol;
3838
3839 srcbuf->fmt = *dstfmt;
3840 /* no format conversion occurs */
3841
3842 srcbuf->head = 0;
3843 srcbuf->used = 0;
3844 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3845 len = auring_bytelen(srcbuf);
3846 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3847 if (srcbuf->mem == NULL) {
3848 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3849 __func__, len);
3850 error = ENOMEM;
3851 goto abort;
3852 }
3853
3854 arg = &track->chvol.arg;
3855 arg->srcfmt = &srcbuf->fmt;
3856 arg->dstfmt = dstfmt;
3857 arg->context = track->ch_volume;
3858
3859 *last_dstp = srcbuf;
3860 return 0;
3861 }
3862
3863 abort:
3864 track->chvol.filter = NULL;
3865 audio_free(srcbuf->mem);
3866 return error;
3867 }
3868
3869 /*
3870 * Initialize the chmix stage of this track as necessary.
3871 * If successful, it initializes the chmix stage as necessary, stores updated
3872 * last_dst in *last_dstp in any case, and returns 0.
3873 * Otherwise, it returns errno without modifying *last_dstp.
3874 */
3875 static int
3876 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
3877 {
3878 struct audio_softc *sc;
3879 audio_ring_t *last_dst;
3880 audio_ring_t *srcbuf;
3881 audio_format2_t *srcfmt;
3882 audio_format2_t *dstfmt;
3883 audio_filter_arg_t *arg;
3884 u_int srcch;
3885 u_int dstch;
3886 u_int len;
3887 int error;
3888
3889 KASSERT(track);
3890
3891 sc = track->mixer->sc;
3892 last_dst = *last_dstp;
3893 dstfmt = &last_dst->fmt;
3894 srcfmt = &track->inputfmt;
3895 srcbuf = &track->chmix.srcbuf;
3896 error = 0;
3897
3898 srcch = srcfmt->channels;
3899 dstch = dstfmt->channels;
3900 if (srcch != dstch) {
3901 track->chmix.dst = last_dst;
3902
3903 if (srcch >= 2 && dstch == 1) {
3904 track->chmix.filter = audio_track_chmix_mixLR;
3905 } else if (srcch == 1 && dstch >= 2) {
3906 track->chmix.filter = audio_track_chmix_dupLR;
3907 } else if (srcch > dstch) {
3908 track->chmix.filter = audio_track_chmix_shrink;
3909 } else {
3910 track->chmix.filter = audio_track_chmix_expand;
3911 }
3912
3913 srcbuf->fmt = *dstfmt;
3914 srcbuf->fmt.channels = srcch;
3915
3916 srcbuf->head = 0;
3917 srcbuf->used = 0;
3918 /* XXX The buffer size should be able to calculate. */
3919 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3920 len = auring_bytelen(srcbuf);
3921 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3922 if (srcbuf->mem == NULL) {
3923 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3924 __func__, len);
3925 error = ENOMEM;
3926 goto abort;
3927 }
3928
3929 arg = &track->chmix.arg;
3930 arg->srcfmt = &srcbuf->fmt;
3931 arg->dstfmt = dstfmt;
3932 arg->context = NULL;
3933
3934 *last_dstp = srcbuf;
3935 return 0;
3936 }
3937
3938 abort:
3939 track->chmix.filter = NULL;
3940 audio_free(srcbuf->mem);
3941 return error;
3942 }
3943
3944 /*
3945 * Initialize the freq stage of this track as necessary.
3946 * If successful, it initializes the freq stage as necessary, stores updated
3947 * last_dst in *last_dstp in any case, and returns 0.
3948 * Otherwise, it returns errno without modifying *last_dstp.
3949 */
3950 static int
3951 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
3952 {
3953 struct audio_softc *sc;
3954 audio_ring_t *last_dst;
3955 audio_ring_t *srcbuf;
3956 audio_format2_t *srcfmt;
3957 audio_format2_t *dstfmt;
3958 audio_filter_arg_t *arg;
3959 uint32_t srcfreq;
3960 uint32_t dstfreq;
3961 u_int dst_capacity;
3962 u_int mod;
3963 u_int len;
3964 int error;
3965
3966 KASSERT(track);
3967
3968 sc = track->mixer->sc;
3969 last_dst = *last_dstp;
3970 dstfmt = &last_dst->fmt;
3971 srcfmt = &track->inputfmt;
3972 srcbuf = &track->freq.srcbuf;
3973 error = 0;
3974
3975 srcfreq = srcfmt->sample_rate;
3976 dstfreq = dstfmt->sample_rate;
3977 if (srcfreq != dstfreq) {
3978 track->freq.dst = last_dst;
3979
3980 memset(track->freq_prev, 0, sizeof(track->freq_prev));
3981 memset(track->freq_curr, 0, sizeof(track->freq_curr));
3982
3983 /* freq_step is the ratio of src/dst when let dst 65536. */
3984 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
3985
3986 dst_capacity = frame_per_block(track->mixer, dstfmt);
3987 mod = (uint64_t)srcfreq * 65536 % dstfreq;
3988 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
3989
3990 if (track->freq_step < 65536) {
3991 track->freq.filter = audio_track_freq_up;
3992 /* In order to carry at the first time. */
3993 track->freq_current = 65536;
3994 } else {
3995 track->freq.filter = audio_track_freq_down;
3996 track->freq_current = 0;
3997 }
3998
3999 srcbuf->fmt = *dstfmt;
4000 srcbuf->fmt.sample_rate = srcfreq;
4001
4002 srcbuf->head = 0;
4003 srcbuf->used = 0;
4004 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4005 len = auring_bytelen(srcbuf);
4006 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4007 if (srcbuf->mem == NULL) {
4008 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
4009 __func__, len);
4010 error = ENOMEM;
4011 goto abort;
4012 }
4013
4014 arg = &track->freq.arg;
4015 arg->srcfmt = &srcbuf->fmt;
4016 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4017 arg->context = track;
4018
4019 *last_dstp = srcbuf;
4020 return 0;
4021 }
4022
4023 abort:
4024 track->freq.filter = NULL;
4025 audio_free(srcbuf->mem);
4026 return error;
4027 }
4028
4029 /*
4030 * When playing back: (e.g. if codec and freq stage are valid)
4031 *
4032 * write
4033 * | uiomove
4034 * v
4035 * usrbuf [...............] byte ring buffer (mmap-able)
4036 * | memcpy
4037 * v
4038 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4039 * .dst ----+
4040 * | convert
4041 * v
4042 * freq.srcbuf [....] 1 block (ring) buffer
4043 * .dst ----+
4044 * | convert
4045 * v
4046 * outbuf [...............] NBLKOUT blocks ring buffer
4047 *
4048 *
4049 * When recording:
4050 *
4051 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4052 * .dst ----+
4053 * | convert
4054 * v
4055 * codec.srcbuf[.....] 1 block (ring) buffer
4056 * .dst ----+
4057 * | convert
4058 * v
4059 * outbuf [.....] 1 block (ring) buffer
4060 * | memcpy
4061 * v
4062 * usrbuf [...............] byte ring buffer (mmap-able *)
4063 * | uiomove
4064 * v
4065 * read
4066 *
4067 * *: usrbuf for recording is also mmap-able due to symmetry with
4068 * playback buffer, but for now mmap will never happen for recording.
4069 */
4070
4071 /*
4072 * Set the userland format of this track.
4073 * usrfmt argument should be parameter verified with audio_check_params().
4074 * It will release and reallocate all internal conversion buffers.
4075 * It returns 0 if successful. Otherwise it returns errno with clearing all
4076 * internal buffers.
4077 * It must be called without sc_intr_lock since uvm_* routines require non
4078 * intr_lock state.
4079 * It must be called with track lock held since it may release and reallocate
4080 * outbuf.
4081 */
4082 static int
4083 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4084 {
4085 struct audio_softc *sc;
4086 u_int newbufsize;
4087 u_int oldblksize;
4088 u_int len;
4089 int error;
4090
4091 KASSERT(track);
4092 sc = track->mixer->sc;
4093
4094 /* usrbuf is the closest buffer to the userland. */
4095 track->usrbuf.fmt = *usrfmt;
4096
4097 /*
4098 * For references, one block size (in 40msec) is:
4099 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4100 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4101 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4102 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4103 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4104 *
4105 * For example,
4106 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4107 * newbufsize = rounddown(65536 / 7056) = 63504
4108 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4109 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4110 *
4111 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4112 * newbufsize = rounddown(65536 / 7680) = 61440
4113 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4114 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4115 */
4116 oldblksize = track->usrbuf_blksize;
4117 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4118 frame_per_block(track->mixer, &track->usrbuf.fmt));
4119 track->usrbuf.head = 0;
4120 track->usrbuf.used = 0;
4121 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4122 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4123 error = audio_realloc_usrbuf(track, newbufsize);
4124 if (error) {
4125 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4126 newbufsize);
4127 goto error;
4128 }
4129
4130 /* Recalc water mark. */
4131 if (track->usrbuf_blksize != oldblksize) {
4132 if (audio_track_is_playback(track)) {
4133 /* Set high at 100%, low at 75%. */
4134 track->usrbuf_usedhigh = track->usrbuf.capacity;
4135 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4136 } else {
4137 /* Set high at 100% minus 1block(?), low at 0% */
4138 track->usrbuf_usedhigh = track->usrbuf.capacity -
4139 track->usrbuf_blksize;
4140 track->usrbuf_usedlow = 0;
4141 }
4142 }
4143
4144 /* Stage buffer */
4145 audio_ring_t *last_dst = &track->outbuf;
4146 if (audio_track_is_playback(track)) {
4147 /* On playback, initialize from the mixer side in order. */
4148 track->inputfmt = *usrfmt;
4149 track->outbuf.fmt = track->mixer->track_fmt;
4150
4151 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4152 goto error;
4153 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4154 goto error;
4155 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4156 goto error;
4157 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4158 goto error;
4159 } else {
4160 /* On recording, initialize from userland side in order. */
4161 track->inputfmt = track->mixer->track_fmt;
4162 track->outbuf.fmt = *usrfmt;
4163
4164 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4165 goto error;
4166 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4167 goto error;
4168 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4169 goto error;
4170 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4171 goto error;
4172 }
4173 #if 0
4174 /* debug */
4175 if (track->freq.filter) {
4176 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4177 audio_print_format2("freq dst", &track->freq.dst->fmt);
4178 }
4179 if (track->chmix.filter) {
4180 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4181 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4182 }
4183 if (track->chvol.filter) {
4184 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4185 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4186 }
4187 if (track->codec.filter) {
4188 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4189 audio_print_format2("codec dst", &track->codec.dst->fmt);
4190 }
4191 #endif
4192
4193 /* Stage input buffer */
4194 track->input = last_dst;
4195
4196 /*
4197 * On the recording track, make the first stage a ring buffer.
4198 * XXX is there a better way?
4199 */
4200 if (audio_track_is_record(track)) {
4201 track->input->capacity = NBLKOUT *
4202 frame_per_block(track->mixer, &track->input->fmt);
4203 len = auring_bytelen(track->input);
4204 track->input->mem = audio_realloc(track->input->mem, len);
4205 if (track->input->mem == NULL) {
4206 device_printf(sc->sc_dev, "malloc input(%d) failed\n",
4207 len);
4208 error = ENOMEM;
4209 goto error;
4210 }
4211 }
4212
4213 /*
4214 * Output buffer.
4215 * On the playback track, its capacity is NBLKOUT blocks.
4216 * On the recording track, its capacity is 1 block.
4217 */
4218 track->outbuf.head = 0;
4219 track->outbuf.used = 0;
4220 track->outbuf.capacity = frame_per_block(track->mixer,
4221 &track->outbuf.fmt);
4222 if (audio_track_is_playback(track))
4223 track->outbuf.capacity *= NBLKOUT;
4224 len = auring_bytelen(&track->outbuf);
4225 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4226 if (track->outbuf.mem == NULL) {
4227 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4228 error = ENOMEM;
4229 goto error;
4230 }
4231
4232 #if defined(AUDIO_DEBUG)
4233 if (audiodebug >= 3) {
4234 struct audio_track_debugbuf m;
4235
4236 memset(&m, 0, sizeof(m));
4237 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4238 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4239 if (track->freq.filter)
4240 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4241 track->freq.srcbuf.capacity *
4242 frametobyte(&track->freq.srcbuf.fmt, 1));
4243 if (track->chmix.filter)
4244 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4245 track->chmix.srcbuf.capacity *
4246 frametobyte(&track->chmix.srcbuf.fmt, 1));
4247 if (track->chvol.filter)
4248 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4249 track->chvol.srcbuf.capacity *
4250 frametobyte(&track->chvol.srcbuf.fmt, 1));
4251 if (track->codec.filter)
4252 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4253 track->codec.srcbuf.capacity *
4254 frametobyte(&track->codec.srcbuf.fmt, 1));
4255 snprintf(m.usrbuf, sizeof(m.usrbuf),
4256 " usr=%d", track->usrbuf.capacity);
4257
4258 if (audio_track_is_playback(track)) {
4259 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4260 m.outbuf, m.freq, m.chmix,
4261 m.chvol, m.codec, m.usrbuf);
4262 } else {
4263 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4264 m.freq, m.chmix, m.chvol,
4265 m.codec, m.outbuf, m.usrbuf);
4266 }
4267 }
4268 #endif
4269 return 0;
4270
4271 error:
4272 audio_free_usrbuf(track);
4273 audio_free(track->codec.srcbuf.mem);
4274 audio_free(track->chvol.srcbuf.mem);
4275 audio_free(track->chmix.srcbuf.mem);
4276 audio_free(track->freq.srcbuf.mem);
4277 audio_free(track->outbuf.mem);
4278 return error;
4279 }
4280
4281 /*
4282 * Fill silence frames (as the internal format) up to 1 block
4283 * if the ring is not empty and less than 1 block.
4284 * It returns the number of appended frames.
4285 */
4286 static int
4287 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4288 {
4289 int fpb;
4290 int n;
4291
4292 KASSERT(track);
4293 KASSERT(audio_format2_is_internal(&ring->fmt));
4294
4295 /* XXX is n correct? */
4296 /* XXX memset uses frametobyte()? */
4297
4298 if (ring->used == 0)
4299 return 0;
4300
4301 fpb = frame_per_block(track->mixer, &ring->fmt);
4302 if (ring->used >= fpb)
4303 return 0;
4304
4305 n = (ring->capacity - ring->used) % fpb;
4306
4307 KASSERT(auring_get_contig_free(ring) >= n);
4308
4309 memset(auring_tailptr_aint(ring), 0,
4310 n * ring->fmt.channels * sizeof(aint_t));
4311 auring_push(ring, n);
4312 return n;
4313 }
4314
4315 /*
4316 * Execute the conversion stage.
4317 * It prepares arg from this stage and executes stage->filter.
4318 * It must be called only if stage->filter is not NULL.
4319 *
4320 * For stages other than frequency conversion, the function increments
4321 * src and dst counters here. For frequency conversion stage, on the
4322 * other hand, the function does not touch src and dst counters and
4323 * filter side has to increment them.
4324 */
4325 static void
4326 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4327 {
4328 audio_filter_arg_t *arg;
4329 int srccount;
4330 int dstcount;
4331 int count;
4332
4333 KASSERT(track);
4334 KASSERT(stage->filter);
4335
4336 srccount = auring_get_contig_used(&stage->srcbuf);
4337 dstcount = auring_get_contig_free(stage->dst);
4338
4339 if (isfreq) {
4340 KASSERTMSG(srccount > 0, "freq but srccount == %d", srccount);
4341 count = uimin(dstcount, track->mixer->frames_per_block);
4342 } else {
4343 count = uimin(srccount, dstcount);
4344 }
4345
4346 if (count > 0) {
4347 arg = &stage->arg;
4348 arg->src = auring_headptr(&stage->srcbuf);
4349 arg->dst = auring_tailptr(stage->dst);
4350 arg->count = count;
4351
4352 stage->filter(arg);
4353
4354 if (!isfreq) {
4355 auring_take(&stage->srcbuf, count);
4356 auring_push(stage->dst, count);
4357 }
4358 }
4359 }
4360
4361 /*
4362 * Produce output buffer for playback from user input buffer.
4363 * It must be called only if usrbuf is not empty and outbuf is
4364 * available at least one free block.
4365 */
4366 static void
4367 audio_track_play(audio_track_t *track)
4368 {
4369 audio_ring_t *usrbuf;
4370 audio_ring_t *input;
4371 int count;
4372 int framesize;
4373 int bytes;
4374 u_int dropcount;
4375
4376 KASSERT(track);
4377 KASSERT(track->lock);
4378 TRACET(4, track, "start pstate=%d", track->pstate);
4379
4380 /* At this point usrbuf must not be empty. */
4381 KASSERT(track->usrbuf.used > 0);
4382 /* Also, outbuf must be available at least one block. */
4383 count = auring_get_contig_free(&track->outbuf);
4384 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4385 "count=%d fpb=%d",
4386 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4387
4388 /* XXX TODO: is this necessary for now? */
4389 int track_count_0 = track->outbuf.used;
4390
4391 usrbuf = &track->usrbuf;
4392 input = track->input;
4393 dropcount = 0;
4394
4395 /*
4396 * framesize is always 1 byte or more since all formats supported as
4397 * usrfmt(=input) have 8bit or more stride.
4398 */
4399 framesize = frametobyte(&input->fmt, 1);
4400 KASSERT(framesize >= 1);
4401
4402 /* The next stage of usrbuf (=input) must be available. */
4403 KASSERT(auring_get_contig_free(input) > 0);
4404
4405 /*
4406 * Copy usrbuf up to 1block to input buffer.
4407 * count is the number of frames to copy from usrbuf.
4408 * bytes is the number of bytes to copy from usrbuf. However it is
4409 * not copied less than one frame.
4410 */
4411 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4412 bytes = count * framesize;
4413
4414 /*
4415 * If bytes is less than one block,
4416 * if not draining, buffer is not filled so return.
4417 * if draining, fall through.
4418 */
4419 if (count < track->usrbuf_blksize / framesize) {
4420 dropcount = track->usrbuf_blksize / framesize - count;
4421
4422 if (track->pstate != AUDIO_STATE_DRAINING) {
4423 /* Wait until filled. */
4424 TRACET(4, track, "not enough; return");
4425 return;
4426 }
4427 }
4428
4429 track->usrbuf_stamp += bytes;
4430
4431 if (usrbuf->head + bytes < usrbuf->capacity) {
4432 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4433 (uint8_t *)usrbuf->mem + usrbuf->head,
4434 bytes);
4435 auring_push(input, count);
4436 auring_take(usrbuf, bytes);
4437 } else {
4438 int bytes1;
4439 int bytes2;
4440
4441 bytes1 = auring_get_contig_used(usrbuf);
4442 KASSERT(bytes1 % framesize == 0);
4443 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4444 (uint8_t *)usrbuf->mem + usrbuf->head,
4445 bytes1);
4446 auring_push(input, bytes1 / framesize);
4447 auring_take(usrbuf, bytes1);
4448
4449 bytes2 = bytes - bytes1;
4450 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4451 (uint8_t *)usrbuf->mem + usrbuf->head,
4452 bytes2);
4453 auring_push(input, bytes2 / framesize);
4454 auring_take(usrbuf, bytes2);
4455 }
4456
4457 /* Encoding conversion */
4458 if (track->codec.filter)
4459 audio_apply_stage(track, &track->codec, false);
4460
4461 /* Channel volume */
4462 if (track->chvol.filter)
4463 audio_apply_stage(track, &track->chvol, false);
4464
4465 /* Channel mix */
4466 if (track->chmix.filter)
4467 audio_apply_stage(track, &track->chmix, false);
4468
4469 /* Frequency conversion */
4470 /*
4471 * Since the frequency conversion needs correction for each block,
4472 * it rounds up to 1 block.
4473 */
4474 if (track->freq.filter) {
4475 int n;
4476 n = audio_append_silence(track, &track->freq.srcbuf);
4477 if (n > 0) {
4478 TRACET(4, track,
4479 "freq.srcbuf add silence %d -> %d/%d/%d",
4480 n,
4481 track->freq.srcbuf.head,
4482 track->freq.srcbuf.used,
4483 track->freq.srcbuf.capacity);
4484 }
4485 if (track->freq.srcbuf.used > 0) {
4486 audio_apply_stage(track, &track->freq, true);
4487 }
4488 }
4489
4490 if (dropcount != 0) {
4491 /*
4492 * Clear all conversion buffer pointer if the conversion was
4493 * not exactly one block. These conversion stage buffers are
4494 * certainly circular buffers because of symmetry with the
4495 * previous and next stage buffer. However, since they are
4496 * treated as simple contiguous buffers in operation, so head
4497 * always should point 0. This may happen during drain-age.
4498 */
4499 TRACET(4, track, "reset stage");
4500 if (track->codec.filter) {
4501 KASSERT(track->codec.srcbuf.used == 0);
4502 track->codec.srcbuf.head = 0;
4503 }
4504 if (track->chvol.filter) {
4505 KASSERT(track->chvol.srcbuf.used == 0);
4506 track->chvol.srcbuf.head = 0;
4507 }
4508 if (track->chmix.filter) {
4509 KASSERT(track->chmix.srcbuf.used == 0);
4510 track->chmix.srcbuf.head = 0;
4511 }
4512 if (track->freq.filter) {
4513 KASSERT(track->freq.srcbuf.used == 0);
4514 track->freq.srcbuf.head = 0;
4515 }
4516 }
4517
4518 if (track->input == &track->outbuf) {
4519 track->outputcounter = track->inputcounter;
4520 } else {
4521 track->outputcounter += track->outbuf.used - track_count_0;
4522 }
4523
4524 #if defined(AUDIO_DEBUG)
4525 if (audiodebug >= 3) {
4526 struct audio_track_debugbuf m;
4527 audio_track_bufstat(track, &m);
4528 TRACET(0, track, "end%s%s%s%s%s%s",
4529 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4530 }
4531 #endif
4532 }
4533
4534 /*
4535 * Produce user output buffer for recording from input buffer.
4536 */
4537 static void
4538 audio_track_record(audio_track_t *track)
4539 {
4540 audio_ring_t *outbuf;
4541 audio_ring_t *usrbuf;
4542 int count;
4543 int bytes;
4544 int framesize;
4545
4546 KASSERT(track);
4547 KASSERT(track->lock);
4548
4549 /* Number of frames to process */
4550 count = auring_get_contig_used(track->input);
4551 count = uimin(count, track->mixer->frames_per_block);
4552 if (count == 0) {
4553 TRACET(4, track, "count == 0");
4554 return;
4555 }
4556
4557 /* Frequency conversion */
4558 if (track->freq.filter) {
4559 if (track->freq.srcbuf.used > 0) {
4560 audio_apply_stage(track, &track->freq, true);
4561 /* XXX should input of freq be from beginning of buf? */
4562 }
4563 }
4564
4565 /* Channel mix */
4566 if (track->chmix.filter)
4567 audio_apply_stage(track, &track->chmix, false);
4568
4569 /* Channel volume */
4570 if (track->chvol.filter)
4571 audio_apply_stage(track, &track->chvol, false);
4572
4573 /* Encoding conversion */
4574 if (track->codec.filter)
4575 audio_apply_stage(track, &track->codec, false);
4576
4577 /* Copy outbuf to usrbuf */
4578 outbuf = &track->outbuf;
4579 usrbuf = &track->usrbuf;
4580 /*
4581 * framesize is always 1 byte or more since all formats supported
4582 * as usrfmt(=output) have 8bit or more stride.
4583 */
4584 framesize = frametobyte(&outbuf->fmt, 1);
4585 KASSERT(framesize >= 1);
4586 /*
4587 * count is the number of frames to copy to usrbuf.
4588 * bytes is the number of bytes to copy to usrbuf.
4589 */
4590 count = outbuf->used;
4591 count = uimin(count,
4592 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4593 bytes = count * framesize;
4594 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4595 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4596 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4597 bytes);
4598 auring_push(usrbuf, bytes);
4599 auring_take(outbuf, count);
4600 } else {
4601 int bytes1;
4602 int bytes2;
4603
4604 bytes1 = auring_get_contig_used(usrbuf);
4605 KASSERT(bytes1 % framesize == 0);
4606 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4607 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4608 bytes1);
4609 auring_push(usrbuf, bytes1);
4610 auring_take(outbuf, bytes1 / framesize);
4611
4612 bytes2 = bytes - bytes1;
4613 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4614 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4615 bytes2);
4616 auring_push(usrbuf, bytes2);
4617 auring_take(outbuf, bytes2 / framesize);
4618 }
4619
4620 /* XXX TODO: any counters here? */
4621
4622 #if defined(AUDIO_DEBUG)
4623 if (audiodebug >= 3) {
4624 struct audio_track_debugbuf m;
4625 audio_track_bufstat(track, &m);
4626 TRACET(0, track, "end%s%s%s%s%s%s",
4627 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4628 }
4629 #endif
4630 }
4631
4632 /*
4633 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4634 * Must be called with sc_lock held.
4635 */
4636 static u_int
4637 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4638 {
4639 audio_format2_t *fmt;
4640 u_int blktime;
4641 u_int frames_per_block;
4642
4643 KASSERT(mutex_owned(sc->sc_lock));
4644
4645 fmt = &mixer->hwbuf.fmt;
4646 blktime = sc->sc_blk_ms;
4647
4648 /*
4649 * If stride is not multiples of 8, special treatment is necessary.
4650 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4651 */
4652 if (fmt->stride == 4) {
4653 frames_per_block = fmt->sample_rate * blktime / 1000;
4654 if ((frames_per_block & 1) != 0)
4655 blktime *= 2;
4656 }
4657 #ifdef DIAGNOSTIC
4658 else if (fmt->stride % NBBY != 0) {
4659 panic("unsupported HW stride %d", fmt->stride);
4660 }
4661 #endif
4662
4663 return blktime;
4664 }
4665
4666 /*
4667 * Initialize the mixer corresponding to the mode.
4668 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4669 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4670 * This function returns 0 on sucessful. Otherwise returns errno.
4671 * Must be called with sc_lock held.
4672 */
4673 static int
4674 audio_mixer_init(struct audio_softc *sc, int mode,
4675 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4676 {
4677 char codecbuf[64];
4678 audio_trackmixer_t *mixer;
4679 void (*softint_handler)(void *);
4680 int len;
4681 int blksize;
4682 int capacity;
4683 size_t bufsize;
4684 int hwblks;
4685 int blkms;
4686 int error;
4687
4688 KASSERT(hwfmt != NULL);
4689 KASSERT(reg != NULL);
4690 KASSERT(mutex_owned(sc->sc_lock));
4691
4692 error = 0;
4693 if (mode == AUMODE_PLAY)
4694 mixer = sc->sc_pmixer;
4695 else
4696 mixer = sc->sc_rmixer;
4697
4698 mixer->sc = sc;
4699 mixer->mode = mode;
4700
4701 mixer->hwbuf.fmt = *hwfmt;
4702 mixer->volume = 256;
4703 mixer->blktime_d = 1000;
4704 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4705 sc->sc_blk_ms = mixer->blktime_n;
4706 hwblks = NBLKHW;
4707
4708 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4709 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4710 if (sc->hw_if->round_blocksize) {
4711 int rounded;
4712 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4713 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4714 mode, &p);
4715 TRACE(2, "round_blocksize %d -> %d", blksize, rounded);
4716 if (rounded != blksize) {
4717 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4718 mixer->hwbuf.fmt.channels) != 0) {
4719 device_printf(sc->sc_dev,
4720 "blksize not configured %d -> %d\n",
4721 blksize, rounded);
4722 return EINVAL;
4723 }
4724 /* Recalculation */
4725 blksize = rounded;
4726 mixer->frames_per_block = blksize * NBBY /
4727 (mixer->hwbuf.fmt.stride *
4728 mixer->hwbuf.fmt.channels);
4729 }
4730 }
4731 mixer->blktime_n = mixer->frames_per_block;
4732 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4733
4734 capacity = mixer->frames_per_block * hwblks;
4735 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4736 if (sc->hw_if->round_buffersize) {
4737 size_t rounded;
4738 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4739 bufsize);
4740 TRACE(2, "round_buffersize %zd -> %zd", bufsize, rounded);
4741 if (rounded < bufsize) {
4742 /* buffersize needs NBLKHW blocks at least. */
4743 device_printf(sc->sc_dev,
4744 "buffersize too small: buffersize=%zd blksize=%d\n",
4745 rounded, blksize);
4746 return EINVAL;
4747 }
4748 if (rounded % blksize != 0) {
4749 /* buffersize/blksize constraint mismatch? */
4750 device_printf(sc->sc_dev,
4751 "buffersize must be multiple of blksize: "
4752 "buffersize=%zu blksize=%d\n",
4753 rounded, blksize);
4754 return EINVAL;
4755 }
4756 if (rounded != bufsize) {
4757 /* Recalcuration */
4758 bufsize = rounded;
4759 hwblks = bufsize / blksize;
4760 capacity = mixer->frames_per_block * hwblks;
4761 }
4762 }
4763 TRACE(2, "buffersize for %s = %zu",
4764 (mode == AUMODE_PLAY) ? "playback" : "recording",
4765 bufsize);
4766 mixer->hwbuf.capacity = capacity;
4767
4768 /*
4769 * XXX need to release sc_lock for compatibility?
4770 */
4771 if (sc->hw_if->allocm) {
4772 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4773 if (mixer->hwbuf.mem == NULL) {
4774 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4775 __func__, bufsize);
4776 return ENOMEM;
4777 }
4778 } else {
4779 mixer->hwbuf.mem = kern_malloc(bufsize, M_NOWAIT);
4780 if (mixer->hwbuf.mem == NULL) {
4781 device_printf(sc->sc_dev,
4782 "%s: malloc hwbuf(%zu) failed\n",
4783 __func__, bufsize);
4784 return ENOMEM;
4785 }
4786 }
4787
4788 /* From here, audio_mixer_destroy is necessary to exit. */
4789 if (mode == AUMODE_PLAY) {
4790 cv_init(&mixer->outcv, "audiowr");
4791 } else {
4792 cv_init(&mixer->outcv, "audiord");
4793 }
4794
4795 if (mode == AUMODE_PLAY) {
4796 softint_handler = audio_softintr_wr;
4797 } else {
4798 softint_handler = audio_softintr_rd;
4799 }
4800 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4801 softint_handler, sc);
4802 if (mixer->sih == NULL) {
4803 device_printf(sc->sc_dev, "softint_establish failed\n");
4804 goto abort;
4805 }
4806
4807 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4808 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4809 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4810 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4811 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4812
4813 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4814 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4815 mixer->swap_endian = true;
4816 TRACE(1, "swap_endian");
4817 }
4818
4819 if (mode == AUMODE_PLAY) {
4820 /* Mixing buffer */
4821 mixer->mixfmt = mixer->track_fmt;
4822 mixer->mixfmt.precision *= 2;
4823 mixer->mixfmt.stride *= 2;
4824 /* XXX TODO: use some macros? */
4825 len = mixer->frames_per_block * mixer->mixfmt.channels *
4826 mixer->mixfmt.stride / NBBY;
4827 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4828 if (mixer->mixsample == NULL) {
4829 device_printf(sc->sc_dev,
4830 "%s: malloc mixsample(%d) failed\n",
4831 __func__, len);
4832 error = ENOMEM;
4833 goto abort;
4834 }
4835 } else {
4836 /* No mixing buffer for recording */
4837 }
4838
4839 if (reg->codec) {
4840 mixer->codec = reg->codec;
4841 mixer->codecarg.context = reg->context;
4842 if (mode == AUMODE_PLAY) {
4843 mixer->codecarg.srcfmt = &mixer->track_fmt;
4844 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4845 } else {
4846 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4847 mixer->codecarg.dstfmt = &mixer->track_fmt;
4848 }
4849 mixer->codecbuf.fmt = mixer->track_fmt;
4850 mixer->codecbuf.capacity = mixer->frames_per_block;
4851 len = auring_bytelen(&mixer->codecbuf);
4852 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4853 if (mixer->codecbuf.mem == NULL) {
4854 device_printf(sc->sc_dev,
4855 "%s: malloc codecbuf(%d) failed\n",
4856 __func__, len);
4857 error = ENOMEM;
4858 goto abort;
4859 }
4860 }
4861
4862 /* Succeeded so display it. */
4863 codecbuf[0] = '\0';
4864 if (mixer->codec || mixer->swap_endian) {
4865 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4866 (mode == AUMODE_PLAY) ? "->" : "<-",
4867 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4868 mixer->hwbuf.fmt.precision);
4869 }
4870 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
4871 aprint_normal_dev(sc->sc_dev, "%s:%d%s %dch %dHz, blk %dms for %s\n",
4872 audio_encoding_name(mixer->track_fmt.encoding),
4873 mixer->track_fmt.precision,
4874 codecbuf,
4875 mixer->track_fmt.channels,
4876 mixer->track_fmt.sample_rate,
4877 blkms,
4878 (mode == AUMODE_PLAY) ? "playback" : "recording");
4879
4880 return 0;
4881
4882 abort:
4883 audio_mixer_destroy(sc, mixer);
4884 return error;
4885 }
4886
4887 /*
4888 * Releases all resources of 'mixer'.
4889 * Note that it does not release the memory area of 'mixer' itself.
4890 * Must be called with sc_lock held.
4891 */
4892 static void
4893 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
4894 {
4895 int mode;
4896
4897 KASSERT(mutex_owned(sc->sc_lock));
4898
4899 mode = mixer->mode;
4900 KASSERT(mode == AUMODE_PLAY || mode == AUMODE_RECORD);
4901
4902 if (mixer->hwbuf.mem != NULL) {
4903 if (sc->hw_if->freem) {
4904 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, mode);
4905 } else {
4906 kern_free(mixer->hwbuf.mem);
4907 }
4908 mixer->hwbuf.mem = NULL;
4909 }
4910
4911 audio_free(mixer->codecbuf.mem);
4912 audio_free(mixer->mixsample);
4913
4914 cv_destroy(&mixer->outcv);
4915
4916 if (mixer->sih) {
4917 softint_disestablish(mixer->sih);
4918 mixer->sih = NULL;
4919 }
4920 }
4921
4922 /*
4923 * Starts playback mixer.
4924 * Must be called only if sc_pbusy is false.
4925 * Must be called with sc_lock held.
4926 * Must not be called from the interrupt context.
4927 */
4928 static void
4929 audio_pmixer_start(struct audio_softc *sc, bool force)
4930 {
4931 audio_trackmixer_t *mixer;
4932 int minimum;
4933
4934 KASSERT(mutex_owned(sc->sc_lock));
4935 KASSERT(sc->sc_pbusy == false);
4936
4937 mutex_enter(sc->sc_intr_lock);
4938
4939 mixer = sc->sc_pmixer;
4940 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
4941 (audiodebug >= 3) ? "begin " : "",
4942 (int)mixer->mixseq, (int)mixer->hwseq,
4943 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
4944 force ? " force" : "");
4945
4946 /* Need two blocks to start normally. */
4947 minimum = (force) ? 1 : 2;
4948 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
4949 audio_pmixer_process(sc);
4950 }
4951
4952 /* Start output */
4953 audio_pmixer_output(sc);
4954 sc->sc_pbusy = true;
4955
4956 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
4957 (int)mixer->mixseq, (int)mixer->hwseq,
4958 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
4959
4960 mutex_exit(sc->sc_intr_lock);
4961 }
4962
4963 /*
4964 * When playing back with MD filter:
4965 *
4966 * track track ...
4967 * v v
4968 * + mix (with aint2_t)
4969 * | master volume (with aint2_t)
4970 * v
4971 * mixsample [::::] wide-int 1 block (ring) buffer
4972 * |
4973 * | convert aint2_t -> aint_t
4974 * v
4975 * codecbuf [....] 1 block (ring) buffer
4976 * |
4977 * | convert to hw format
4978 * v
4979 * hwbuf [............] NBLKHW blocks ring buffer
4980 *
4981 * When playing back without MD filter:
4982 *
4983 * mixsample [::::] wide-int 1 block (ring) buffer
4984 * |
4985 * | convert aint2_t -> aint_t
4986 * | (with byte swap if necessary)
4987 * v
4988 * hwbuf [............] NBLKHW blocks ring buffer
4989 *
4990 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
4991 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
4992 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
4993 */
4994
4995 /*
4996 * Performs track mixing and converts it to hwbuf.
4997 * Note that this function doesn't transfer hwbuf to hardware.
4998 * Must be called with sc_intr_lock held.
4999 */
5000 static void
5001 audio_pmixer_process(struct audio_softc *sc)
5002 {
5003 audio_trackmixer_t *mixer;
5004 audio_file_t *f;
5005 int frame_count;
5006 int sample_count;
5007 int mixed;
5008 int i;
5009 aint2_t *m;
5010 aint_t *h;
5011
5012 mixer = sc->sc_pmixer;
5013
5014 frame_count = mixer->frames_per_block;
5015 KASSERT(auring_get_contig_free(&mixer->hwbuf) >= frame_count);
5016 sample_count = frame_count * mixer->mixfmt.channels;
5017
5018 mixer->mixseq++;
5019
5020 /* Mix all tracks */
5021 mixed = 0;
5022 SLIST_FOREACH(f, &sc->sc_files, entry) {
5023 audio_track_t *track = f->ptrack;
5024
5025 if (track == NULL)
5026 continue;
5027
5028 if (track->is_pause) {
5029 TRACET(4, track, "skip; paused");
5030 continue;
5031 }
5032
5033 /* Skip if the track is used by process context. */
5034 if (audio_track_lock_tryenter(track) == false) {
5035 TRACET(4, track, "skip; in use");
5036 continue;
5037 }
5038
5039 /* Emulate mmap'ped track */
5040 if (track->mmapped) {
5041 auring_push(&track->usrbuf, track->usrbuf_blksize);
5042 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5043 track->usrbuf.head,
5044 track->usrbuf.used,
5045 track->usrbuf.capacity);
5046 }
5047
5048 if (track->outbuf.used < mixer->frames_per_block &&
5049 track->usrbuf.used > 0) {
5050 TRACET(4, track, "process");
5051 audio_track_play(track);
5052 }
5053
5054 if (track->outbuf.used > 0) {
5055 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5056 } else {
5057 TRACET(4, track, "skip; empty");
5058 }
5059
5060 audio_track_lock_exit(track);
5061 }
5062
5063 if (mixed == 0) {
5064 /* Silence */
5065 memset(mixer->mixsample, 0,
5066 frametobyte(&mixer->mixfmt, frame_count));
5067 } else {
5068 aint2_t ovf_plus;
5069 aint2_t ovf_minus;
5070 int vol;
5071
5072 /* Overflow detection */
5073 ovf_plus = AINT_T_MAX;
5074 ovf_minus = AINT_T_MIN;
5075 m = mixer->mixsample;
5076 for (i = 0; i < sample_count; i++) {
5077 aint2_t val;
5078
5079 val = *m++;
5080 if (val > ovf_plus)
5081 ovf_plus = val;
5082 else if (val < ovf_minus)
5083 ovf_minus = val;
5084 }
5085
5086 /* Master Volume Auto Adjust */
5087 vol = mixer->volume;
5088 if (ovf_plus > (aint2_t)AINT_T_MAX
5089 || ovf_minus < (aint2_t)AINT_T_MIN) {
5090 aint2_t ovf;
5091 int vol2;
5092
5093 /* XXX TODO: Check AINT2_T_MIN ? */
5094 ovf = ovf_plus;
5095 if (ovf < -ovf_minus)
5096 ovf = -ovf_minus;
5097
5098 /* Turn down the volume if overflow occured. */
5099 vol2 = (int)((aint2_t)AINT_T_MAX * 256 / ovf);
5100 if (vol2 < vol)
5101 vol = vol2;
5102
5103 if (vol < mixer->volume) {
5104 /* Turn down gradually to 128. */
5105 if (mixer->volume > 128) {
5106 mixer->volume =
5107 (mixer->volume * 95) / 100;
5108 device_printf(sc->sc_dev,
5109 "auto volume adjust: volume %d\n",
5110 mixer->volume);
5111 }
5112 }
5113 }
5114
5115 /* Apply Master Volume. */
5116 if (vol != 256) {
5117 m = mixer->mixsample;
5118 for (i = 0; i < sample_count; i++) {
5119 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5120 *m = *m * vol >> 8;
5121 #else
5122 *m = *m * vol / 256;
5123 #endif
5124 m++;
5125 }
5126 }
5127 }
5128
5129 /*
5130 * The rest is the hardware part.
5131 */
5132
5133 if (mixer->codec) {
5134 h = auring_tailptr_aint(&mixer->codecbuf);
5135 } else {
5136 h = auring_tailptr_aint(&mixer->hwbuf);
5137 }
5138
5139 m = mixer->mixsample;
5140 if (mixer->swap_endian) {
5141 for (i = 0; i < sample_count; i++) {
5142 *h++ = bswap16(*m++);
5143 }
5144 } else {
5145 for (i = 0; i < sample_count; i++) {
5146 *h++ = *m++;
5147 }
5148 }
5149
5150 /* Hardware driver's codec */
5151 if (mixer->codec) {
5152 auring_push(&mixer->codecbuf, frame_count);
5153 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5154 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5155 mixer->codecarg.count = frame_count;
5156 mixer->codec(&mixer->codecarg);
5157 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5158 }
5159
5160 auring_push(&mixer->hwbuf, frame_count);
5161
5162 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5163 (int)mixer->mixseq,
5164 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5165 (mixed == 0) ? " silent" : "");
5166 }
5167
5168 /*
5169 * Mix one track.
5170 * 'mixed' specifies the number of tracks mixed so far.
5171 * It returns the number of tracks mixed. In other words, it returns
5172 * mixed + 1 if this track is mixed.
5173 */
5174 static int
5175 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5176 int mixed)
5177 {
5178 int count;
5179 int sample_count;
5180 int remain;
5181 int i;
5182 const aint_t *s;
5183 aint2_t *d;
5184
5185 /* XXX TODO: Is this necessary for now? */
5186 if (mixer->mixseq < track->seq)
5187 return mixed;
5188
5189 count = auring_get_contig_used(&track->outbuf);
5190 count = uimin(count, mixer->frames_per_block);
5191
5192 s = auring_headptr_aint(&track->outbuf);
5193 d = mixer->mixsample;
5194
5195 /*
5196 * Apply track volume with double-sized integer and perform
5197 * additive synthesis.
5198 *
5199 * XXX If you limit the track volume to 1.0 or less (<= 256),
5200 * it would be better to do this in the track conversion stage
5201 * rather than here. However, if you accept the volume to
5202 * be greater than 1.0 (> 256), it's better to do it here.
5203 * Because the operation here is done by double-sized integer.
5204 */
5205 sample_count = count * mixer->mixfmt.channels;
5206 if (mixed == 0) {
5207 /* If this is the first track, assignment can be used. */
5208 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5209 if (track->volume != 256) {
5210 for (i = 0; i < sample_count; i++) {
5211 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5212 *d++ = ((aint2_t)*s++) * track->volume >> 8;
5213 #else
5214 *d++ = ((aint2_t)*s++) * track->volume / 256;
5215 #endif
5216 }
5217 } else
5218 #endif
5219 {
5220 for (i = 0; i < sample_count; i++) {
5221 *d++ = ((aint2_t)*s++);
5222 }
5223 }
5224 } else {
5225 /* If this is the second or later, add it. */
5226 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5227 if (track->volume != 256) {
5228 for (i = 0; i < sample_count; i++) {
5229 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5230 *d++ += ((aint2_t)*s++) * track->volume >> 8;
5231 #else
5232 *d++ += ((aint2_t)*s++) * track->volume / 256;
5233 #endif
5234 }
5235 } else
5236 #endif
5237 {
5238 for (i = 0; i < sample_count; i++) {
5239 *d++ += ((aint2_t)*s++);
5240 }
5241 }
5242 }
5243
5244 auring_take(&track->outbuf, count);
5245 /*
5246 * The counters have to align block even if outbuf is less than
5247 * one block. XXX Is this still necessary?
5248 */
5249 remain = mixer->frames_per_block - count;
5250 if (__predict_false(remain != 0)) {
5251 auring_push(&track->outbuf, remain);
5252 auring_take(&track->outbuf, remain);
5253 }
5254
5255 /*
5256 * Update track sequence.
5257 * mixseq has previous value yet at this point.
5258 */
5259 track->seq = mixer->mixseq + 1;
5260
5261 return mixed + 1;
5262 }
5263
5264 /*
5265 * Output one block from hwbuf to HW.
5266 * Must be called with sc_intr_lock held.
5267 */
5268 static void
5269 audio_pmixer_output(struct audio_softc *sc)
5270 {
5271 audio_trackmixer_t *mixer;
5272 audio_params_t params;
5273 void *start;
5274 void *end;
5275 int blksize;
5276 int error;
5277
5278 mixer = sc->sc_pmixer;
5279 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5280 sc->sc_pbusy,
5281 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5282 KASSERT(mixer->hwbuf.used >= mixer->frames_per_block);
5283
5284 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5285
5286 if (sc->hw_if->trigger_output) {
5287 /* trigger (at once) */
5288 if (!sc->sc_pbusy) {
5289 start = mixer->hwbuf.mem;
5290 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5291 params = format2_to_params(&mixer->hwbuf.fmt);
5292
5293 error = sc->hw_if->trigger_output(sc->hw_hdl,
5294 start, end, blksize, audio_pintr, sc, ¶ms);
5295 if (error) {
5296 device_printf(sc->sc_dev,
5297 "trigger_output failed with %d", error);
5298 return;
5299 }
5300 }
5301 } else {
5302 /* start (everytime) */
5303 start = auring_headptr(&mixer->hwbuf);
5304
5305 error = sc->hw_if->start_output(sc->hw_hdl,
5306 start, blksize, audio_pintr, sc);
5307 if (error) {
5308 device_printf(sc->sc_dev,
5309 "start_output failed with %d", error);
5310 return;
5311 }
5312 }
5313 }
5314
5315 /*
5316 * This is an interrupt handler for playback.
5317 * It is called with sc_intr_lock held.
5318 *
5319 * It is usually called from hardware interrupt. However, note that
5320 * for some drivers (e.g. uaudio) it is called from software interrupt.
5321 */
5322 static void
5323 audio_pintr(void *arg)
5324 {
5325 struct audio_softc *sc;
5326 audio_trackmixer_t *mixer;
5327
5328 sc = arg;
5329 KASSERT(mutex_owned(sc->sc_intr_lock));
5330
5331 if (sc->sc_dying)
5332 return;
5333 #if defined(DIAGNOSTIC)
5334 if (sc->sc_pbusy == false) {
5335 device_printf(sc->sc_dev, "stray interrupt\n");
5336 return;
5337 }
5338 #endif
5339
5340 mixer = sc->sc_pmixer;
5341 mixer->hw_complete_counter += mixer->frames_per_block;
5342 mixer->hwseq++;
5343
5344 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5345
5346 TRACE(4,
5347 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5348 mixer->hwseq, mixer->hw_complete_counter,
5349 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5350
5351 #if !defined(_KERNEL)
5352 /* This is a debug code for userland test. */
5353 return;
5354 #endif
5355
5356 #if defined(AUDIO_HW_SINGLE_BUFFER)
5357 /*
5358 * Create a new block here and output it immediately.
5359 * It makes a latency lower but needs machine power.
5360 */
5361 audio_pmixer_process(sc);
5362 audio_pmixer_output(sc);
5363 #else
5364 /*
5365 * It is called when block N output is done.
5366 * Output immediately block N+1 created by the last interrupt.
5367 * And then create block N+2 for the next interrupt.
5368 * This method makes playback robust even on slower machines.
5369 * Instead the latency is increased by one block.
5370 */
5371
5372 /* At first, output ready block. */
5373 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5374 audio_pmixer_output(sc);
5375 }
5376
5377 bool later = false;
5378
5379 if (mixer->hwbuf.used < mixer->frames_per_block) {
5380 later = true;
5381 }
5382
5383 /* Then, process next block. */
5384 audio_pmixer_process(sc);
5385
5386 if (later) {
5387 audio_pmixer_output(sc);
5388 }
5389 #endif
5390
5391 /*
5392 * When this interrupt is the real hardware interrupt, disabling
5393 * preemption here is not necessary. But some drivers (e.g. uaudio)
5394 * emulate it by software interrupt, so kpreempt_disable is necessary.
5395 */
5396 kpreempt_disable();
5397 softint_schedule(mixer->sih);
5398 kpreempt_enable();
5399 }
5400
5401 /*
5402 * Starts record mixer.
5403 * Must be called only if sc_rbusy is false.
5404 * Must be called with sc_lock held.
5405 * Must not be called from the interrupt context.
5406 */
5407 static void
5408 audio_rmixer_start(struct audio_softc *sc)
5409 {
5410
5411 KASSERT(mutex_owned(sc->sc_lock));
5412 KASSERT(sc->sc_rbusy == false);
5413
5414 mutex_enter(sc->sc_intr_lock);
5415
5416 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5417 audio_rmixer_input(sc);
5418 sc->sc_rbusy = true;
5419 TRACE(3, "end");
5420
5421 mutex_exit(sc->sc_intr_lock);
5422 }
5423
5424 /*
5425 * When recording with MD filter:
5426 *
5427 * hwbuf [............] NBLKHW blocks ring buffer
5428 * |
5429 * | convert from hw format
5430 * v
5431 * codecbuf [....] 1 block (ring) buffer
5432 * | |
5433 * v v
5434 * track track ...
5435 *
5436 * When recording without MD filter:
5437 *
5438 * hwbuf [............] NBLKHW blocks ring buffer
5439 * | |
5440 * v v
5441 * track track ...
5442 *
5443 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5444 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5445 */
5446
5447 /*
5448 * Distribute a recorded block to all recording tracks.
5449 */
5450 static void
5451 audio_rmixer_process(struct audio_softc *sc)
5452 {
5453 audio_trackmixer_t *mixer;
5454 audio_ring_t *mixersrc;
5455 audio_file_t *f;
5456 aint_t *p;
5457 int count;
5458 int bytes;
5459 int i;
5460
5461 mixer = sc->sc_rmixer;
5462
5463 /*
5464 * count is the number of frames to be retrieved this time.
5465 * count should be one block.
5466 */
5467 count = auring_get_contig_used(&mixer->hwbuf);
5468 count = uimin(count, mixer->frames_per_block);
5469 if (count <= 0) {
5470 TRACE(4, "count %d: too short", count);
5471 return;
5472 }
5473 bytes = frametobyte(&mixer->track_fmt, count);
5474
5475 /* Hardware driver's codec */
5476 if (mixer->codec) {
5477 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5478 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5479 mixer->codecarg.count = count;
5480 mixer->codec(&mixer->codecarg);
5481 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5482 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5483 mixersrc = &mixer->codecbuf;
5484 } else {
5485 mixersrc = &mixer->hwbuf;
5486 }
5487
5488 if (mixer->swap_endian) {
5489 /* inplace conversion */
5490 p = auring_headptr_aint(mixersrc);
5491 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5492 *p = bswap16(*p);
5493 }
5494 }
5495
5496 /* Distribute to all tracks. */
5497 SLIST_FOREACH(f, &sc->sc_files, entry) {
5498 audio_track_t *track = f->rtrack;
5499 audio_ring_t *input;
5500
5501 if (track == NULL)
5502 continue;
5503
5504 if (track->is_pause) {
5505 TRACET(4, track, "skip; paused");
5506 continue;
5507 }
5508
5509 if (audio_track_lock_tryenter(track) == false) {
5510 TRACET(4, track, "skip; in use");
5511 continue;
5512 }
5513
5514 /* If the track buffer is full, discard the oldest one? */
5515 input = track->input;
5516 if (input->capacity - input->used < mixer->frames_per_block) {
5517 int drops = mixer->frames_per_block -
5518 (input->capacity - input->used);
5519 track->dropframes += drops;
5520 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5521 drops,
5522 input->head, input->used, input->capacity);
5523 auring_take(input, drops);
5524 }
5525 KASSERT(input->used % mixer->frames_per_block == 0);
5526
5527 memcpy(auring_tailptr_aint(input),
5528 auring_headptr_aint(mixersrc),
5529 bytes);
5530 auring_push(input, count);
5531
5532 /* XXX sequence counter? */
5533
5534 audio_track_lock_exit(track);
5535 }
5536
5537 auring_take(mixersrc, count);
5538 }
5539
5540 /*
5541 * Input one block from HW to hwbuf.
5542 * Must be called with sc_intr_lock held.
5543 */
5544 static void
5545 audio_rmixer_input(struct audio_softc *sc)
5546 {
5547 audio_trackmixer_t *mixer;
5548 audio_params_t params;
5549 void *start;
5550 void *end;
5551 int blksize;
5552 int error;
5553
5554 mixer = sc->sc_rmixer;
5555 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5556
5557 if (sc->hw_if->trigger_input) {
5558 /* trigger (at once) */
5559 if (!sc->sc_rbusy) {
5560 start = mixer->hwbuf.mem;
5561 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5562 params = format2_to_params(&mixer->hwbuf.fmt);
5563
5564 error = sc->hw_if->trigger_input(sc->hw_hdl,
5565 start, end, blksize, audio_rintr, sc, ¶ms);
5566 if (error) {
5567 device_printf(sc->sc_dev,
5568 "trigger_input failed with %d", error);
5569 return;
5570 }
5571 }
5572 } else {
5573 /* start (everytime) */
5574 start = auring_tailptr(&mixer->hwbuf);
5575
5576 error = sc->hw_if->start_input(sc->hw_hdl,
5577 start, blksize, audio_rintr, sc);
5578 if (error) {
5579 device_printf(sc->sc_dev,
5580 "start_input failed with %d", error);
5581 return;
5582 }
5583 }
5584 }
5585
5586 /*
5587 * This is an interrupt handler for recording.
5588 * It is called with sc_intr_lock.
5589 *
5590 * It is usually called from hardware interrupt. However, note that
5591 * for some drivers (e.g. uaudio) it is called from software interrupt.
5592 */
5593 static void
5594 audio_rintr(void *arg)
5595 {
5596 struct audio_softc *sc;
5597 audio_trackmixer_t *mixer;
5598
5599 sc = arg;
5600 KASSERT(mutex_owned(sc->sc_intr_lock));
5601
5602 if (sc->sc_dying)
5603 return;
5604 #if defined(DIAGNOSTIC)
5605 if (sc->sc_rbusy == false) {
5606 device_printf(sc->sc_dev, "stray interrupt\n");
5607 return;
5608 }
5609 #endif
5610
5611 mixer = sc->sc_rmixer;
5612 mixer->hw_complete_counter += mixer->frames_per_block;
5613 mixer->hwseq++;
5614
5615 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5616
5617 TRACE(4,
5618 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5619 mixer->hwseq, mixer->hw_complete_counter,
5620 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5621
5622 /* Distrubute recorded block */
5623 audio_rmixer_process(sc);
5624
5625 /* Request next block */
5626 audio_rmixer_input(sc);
5627
5628 /*
5629 * When this interrupt is the real hardware interrupt, disabling
5630 * preemption here is not necessary. But some drivers (e.g. uaudio)
5631 * emulate it by software interrupt, so kpreempt_disable is necessary.
5632 */
5633 kpreempt_disable();
5634 softint_schedule(mixer->sih);
5635 kpreempt_enable();
5636 }
5637
5638 /*
5639 * Halts playback mixer.
5640 * This function also clears related parameters, so call this function
5641 * instead of calling halt_output directly.
5642 * Must be called only if sc_pbusy is true.
5643 * Must be called with sc_lock && sc_exlock held.
5644 */
5645 static int
5646 audio_pmixer_halt(struct audio_softc *sc)
5647 {
5648 int error;
5649
5650 TRACE(2, "");
5651 KASSERT(mutex_owned(sc->sc_lock));
5652 KASSERT(sc->sc_exlock);
5653
5654 mutex_enter(sc->sc_intr_lock);
5655 error = sc->hw_if->halt_output(sc->hw_hdl);
5656 mutex_exit(sc->sc_intr_lock);
5657
5658 /* Halts anyway even if some error has occurred. */
5659 sc->sc_pbusy = false;
5660 sc->sc_pmixer->hwbuf.head = 0;
5661 sc->sc_pmixer->hwbuf.used = 0;
5662 sc->sc_pmixer->mixseq = 0;
5663 sc->sc_pmixer->hwseq = 0;
5664
5665 return error;
5666 }
5667
5668 /*
5669 * Halts recording mixer.
5670 * This function also clears related parameters, so call this function
5671 * instead of calling halt_input directly.
5672 * Must be called only if sc_rbusy is true.
5673 * Must be called with sc_lock && sc_exlock held.
5674 */
5675 static int
5676 audio_rmixer_halt(struct audio_softc *sc)
5677 {
5678 int error;
5679
5680 TRACE(2, "");
5681 KASSERT(mutex_owned(sc->sc_lock));
5682 KASSERT(sc->sc_exlock);
5683
5684 mutex_enter(sc->sc_intr_lock);
5685 error = sc->hw_if->halt_input(sc->hw_hdl);
5686 mutex_exit(sc->sc_intr_lock);
5687
5688 /* Halts anyway even if some error has occurred. */
5689 sc->sc_rbusy = false;
5690 sc->sc_rmixer->hwbuf.head = 0;
5691 sc->sc_rmixer->hwbuf.used = 0;
5692 sc->sc_rmixer->mixseq = 0;
5693 sc->sc_rmixer->hwseq = 0;
5694
5695 return error;
5696 }
5697
5698 /*
5699 * Flush this track.
5700 * Halts all operations, clears all buffers, reset error counters.
5701 * XXX I'm not sure...
5702 */
5703 static void
5704 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5705 {
5706
5707 KASSERT(track);
5708 TRACET(3, track, "clear");
5709
5710 audio_track_lock_enter(track);
5711
5712 track->usrbuf.used = 0;
5713 /* Clear all internal parameters. */
5714 if (track->codec.filter) {
5715 track->codec.srcbuf.used = 0;
5716 track->codec.srcbuf.head = 0;
5717 }
5718 if (track->chvol.filter) {
5719 track->chvol.srcbuf.used = 0;
5720 track->chvol.srcbuf.head = 0;
5721 }
5722 if (track->chmix.filter) {
5723 track->chmix.srcbuf.used = 0;
5724 track->chmix.srcbuf.head = 0;
5725 }
5726 if (track->freq.filter) {
5727 track->freq.srcbuf.used = 0;
5728 track->freq.srcbuf.head = 0;
5729 if (track->freq_step < 65536)
5730 track->freq_current = 65536;
5731 else
5732 track->freq_current = 0;
5733 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5734 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5735 }
5736 /* Clear buffer, then operation halts naturally. */
5737 track->outbuf.used = 0;
5738
5739 /* Clear counters. */
5740 track->dropframes = 0;
5741
5742 audio_track_lock_exit(track);
5743 }
5744
5745 /*
5746 * Drain the track.
5747 * track must be present and for playback.
5748 * If successful, it returns 0. Otherwise returns errno.
5749 * Must be called with sc_lock held.
5750 */
5751 static int
5752 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5753 {
5754 audio_trackmixer_t *mixer;
5755 int done;
5756 int error;
5757
5758 KASSERT(track);
5759 TRACET(3, track, "start");
5760 mixer = track->mixer;
5761 KASSERT(mutex_owned(sc->sc_lock));
5762
5763 /* Ignore them if pause. */
5764 if (track->is_pause) {
5765 TRACET(3, track, "pause -> clear");
5766 track->pstate = AUDIO_STATE_CLEAR;
5767 }
5768 /* Terminate early here if there is no data in the track. */
5769 if (track->pstate == AUDIO_STATE_CLEAR) {
5770 TRACET(3, track, "no need to drain");
5771 return 0;
5772 }
5773 track->pstate = AUDIO_STATE_DRAINING;
5774
5775 for (;;) {
5776 /* I want to display it bofore condition evaluation. */
5777 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5778 (int)curproc->p_pid, (int)curlwp->l_lid,
5779 (int)track->seq, (int)mixer->hwseq,
5780 track->outbuf.head, track->outbuf.used,
5781 track->outbuf.capacity);
5782
5783 /* Condition to terminate */
5784 audio_track_lock_enter(track);
5785 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5786 track->outbuf.used == 0 &&
5787 track->seq <= mixer->hwseq);
5788 audio_track_lock_exit(track);
5789 if (done)
5790 break;
5791
5792 TRACET(3, track, "sleep");
5793 error = audio_track_waitio(sc, track);
5794 if (error)
5795 return error;
5796
5797 /* XXX call audio_track_play here ? */
5798 }
5799
5800 track->pstate = AUDIO_STATE_CLEAR;
5801 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5802 (int)track->inputcounter, (int)track->outputcounter);
5803 return 0;
5804 }
5805
5806 /*
5807 * This is software interrupt handler for record.
5808 * It is called from recording hardware interrupt everytime.
5809 * It does:
5810 * - Deliver SIGIO for all async processes.
5811 * - Notify to audio_read() that data has arrived.
5812 * - selnotify() for select/poll-ing processes.
5813 */
5814 /*
5815 * XXX If a process issues FIOASYNC between hardware interrupt and
5816 * software interrupt, (stray) SIGIO will be sent to the process
5817 * despite the fact that it has not receive recorded data yet.
5818 */
5819 static void
5820 audio_softintr_rd(void *cookie)
5821 {
5822 struct audio_softc *sc = cookie;
5823 audio_file_t *f;
5824 proc_t *p;
5825 pid_t pid;
5826
5827 mutex_enter(sc->sc_lock);
5828 mutex_enter(sc->sc_intr_lock);
5829
5830 SLIST_FOREACH(f, &sc->sc_files, entry) {
5831 audio_track_t *track = f->rtrack;
5832
5833 if (track == NULL)
5834 continue;
5835
5836 TRACET(4, track, "broadcast; inp=%d/%d/%d",
5837 track->input->head,
5838 track->input->used,
5839 track->input->capacity);
5840
5841 pid = f->async_audio;
5842 if (pid != 0) {
5843 TRACEF(4, f, "sending SIGIO %d", pid);
5844 mutex_enter(proc_lock);
5845 if ((p = proc_find(pid)) != NULL)
5846 psignal(p, SIGIO);
5847 mutex_exit(proc_lock);
5848 }
5849 }
5850 mutex_exit(sc->sc_intr_lock);
5851
5852 /* Notify that data has arrived. */
5853 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
5854 KNOTE(&sc->sc_rsel.sel_klist, 0);
5855 cv_broadcast(&sc->sc_rmixer->outcv);
5856
5857 mutex_exit(sc->sc_lock);
5858 }
5859
5860 /*
5861 * This is software interrupt handler for playback.
5862 * It is called from playback hardware interrupt everytime.
5863 * It does:
5864 * - Deliver SIGIO for all async and writable (used < lowat) processes.
5865 * - Notify to audio_write() that outbuf block available.
5866 * - selnotify() for select/poll-ing processes if there are any writable
5867 * (used < lowat) processes. Checking each descriptor will be done by
5868 * filt_audiowrite_event().
5869 */
5870 static void
5871 audio_softintr_wr(void *cookie)
5872 {
5873 struct audio_softc *sc = cookie;
5874 audio_file_t *f;
5875 bool found;
5876 proc_t *p;
5877 pid_t pid;
5878
5879 TRACE(4, "called");
5880 found = false;
5881
5882 mutex_enter(sc->sc_lock);
5883 mutex_enter(sc->sc_intr_lock);
5884
5885 SLIST_FOREACH(f, &sc->sc_files, entry) {
5886 audio_track_t *track = f->ptrack;
5887
5888 if (track == NULL)
5889 continue;
5890
5891 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
5892 (int)track->seq,
5893 track->outbuf.head,
5894 track->outbuf.used,
5895 track->outbuf.capacity);
5896
5897 /*
5898 * Send a signal if the process is async mode and
5899 * used is lower than lowat.
5900 */
5901 if (track->usrbuf.used <= track->usrbuf_usedlow &&
5902 !track->is_pause) {
5903 found = true;
5904 pid = f->async_audio;
5905 if (pid != 0) {
5906 TRACEF(4, f, "sending SIGIO %d", pid);
5907 mutex_enter(proc_lock);
5908 if ((p = proc_find(pid)) != NULL)
5909 psignal(p, SIGIO);
5910 mutex_exit(proc_lock);
5911 }
5912 }
5913 }
5914 mutex_exit(sc->sc_intr_lock);
5915
5916 /*
5917 * Notify for select/poll when someone become writable.
5918 * It needs sc_lock (and not sc_intr_lock).
5919 */
5920 if (found) {
5921 TRACE(4, "selnotify");
5922 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
5923 KNOTE(&sc->sc_wsel.sel_klist, 0);
5924 }
5925
5926 /* Notify to audio_write() that outbuf available. */
5927 cv_broadcast(&sc->sc_pmixer->outcv);
5928
5929 mutex_exit(sc->sc_lock);
5930 }
5931
5932 /*
5933 * Check (and convert) the format *p came from userland.
5934 * If successful, it writes back the converted format to *p if necessary
5935 * and returns 0. Otherwise returns errno (*p may change even this case).
5936 */
5937 static int
5938 audio_check_params(audio_format2_t *p)
5939 {
5940
5941 /* Convert obsoleted AUDIO_ENCODING_PCM* */
5942 /* XXX Is this conversion right? */
5943 if (p->encoding == AUDIO_ENCODING_PCM16) {
5944 if (p->precision == 8)
5945 p->encoding = AUDIO_ENCODING_ULINEAR;
5946 else
5947 p->encoding = AUDIO_ENCODING_SLINEAR;
5948 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
5949 if (p->precision == 8)
5950 p->encoding = AUDIO_ENCODING_ULINEAR;
5951 else
5952 return EINVAL;
5953 }
5954
5955 /*
5956 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
5957 * suffix.
5958 */
5959 if (p->encoding == AUDIO_ENCODING_SLINEAR)
5960 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5961 if (p->encoding == AUDIO_ENCODING_ULINEAR)
5962 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5963
5964 switch (p->encoding) {
5965 case AUDIO_ENCODING_ULAW:
5966 case AUDIO_ENCODING_ALAW:
5967 if (p->precision != 8)
5968 return EINVAL;
5969 break;
5970 case AUDIO_ENCODING_ADPCM:
5971 if (p->precision != 4 && p->precision != 8)
5972 return EINVAL;
5973 break;
5974 case AUDIO_ENCODING_SLINEAR_LE:
5975 case AUDIO_ENCODING_SLINEAR_BE:
5976 case AUDIO_ENCODING_ULINEAR_LE:
5977 case AUDIO_ENCODING_ULINEAR_BE:
5978 if (p->precision != 8 && p->precision != 16 &&
5979 p->precision != 24 && p->precision != 32)
5980 return EINVAL;
5981
5982 /* 8bit format does not have endianness. */
5983 if (p->precision == 8) {
5984 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
5985 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5986 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
5987 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5988 }
5989
5990 if (p->precision > p->stride)
5991 return EINVAL;
5992 break;
5993 case AUDIO_ENCODING_MPEG_L1_STREAM:
5994 case AUDIO_ENCODING_MPEG_L1_PACKETS:
5995 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
5996 case AUDIO_ENCODING_MPEG_L2_STREAM:
5997 case AUDIO_ENCODING_MPEG_L2_PACKETS:
5998 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
5999 case AUDIO_ENCODING_AC3:
6000 break;
6001 default:
6002 return EINVAL;
6003 }
6004
6005 /* sanity check # of channels*/
6006 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6007 return EINVAL;
6008
6009 return 0;
6010 }
6011
6012 /*
6013 * Initialize playback and record mixers.
6014 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initalized.
6015 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6016 * the filter registration information. These four must not be NULL.
6017 * If successful returns 0. Otherwise returns errno.
6018 * Must be called with sc_lock held.
6019 * Must not be called if there are any tracks.
6020 * Caller should check that the initialization succeed by whether
6021 * sc_[pr]mixer is not NULL.
6022 */
6023 static int
6024 audio_mixers_init(struct audio_softc *sc, int mode,
6025 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6026 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6027 {
6028 int error;
6029
6030 KASSERT(phwfmt != NULL);
6031 KASSERT(rhwfmt != NULL);
6032 KASSERT(pfil != NULL);
6033 KASSERT(rfil != NULL);
6034 KASSERT(mutex_owned(sc->sc_lock));
6035
6036 if ((mode & AUMODE_PLAY)) {
6037 if (sc->sc_pmixer) {
6038 audio_mixer_destroy(sc, sc->sc_pmixer);
6039 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6040 }
6041 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer), KM_SLEEP);
6042 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6043 if (error) {
6044 aprint_error_dev(sc->sc_dev,
6045 "configuring playback mode failed\n");
6046 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6047 sc->sc_pmixer = NULL;
6048 return error;
6049 }
6050 }
6051 if ((mode & AUMODE_RECORD)) {
6052 if (sc->sc_rmixer) {
6053 audio_mixer_destroy(sc, sc->sc_rmixer);
6054 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6055 }
6056 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer), KM_SLEEP);
6057 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6058 if (error) {
6059 aprint_error_dev(sc->sc_dev,
6060 "configuring record mode failed\n");
6061 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6062 sc->sc_rmixer = NULL;
6063 return error;
6064 }
6065 }
6066
6067 return 0;
6068 }
6069
6070 /*
6071 * Select a frequency.
6072 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6073 * XXX Better algorithm?
6074 */
6075 static int
6076 audio_select_freq(const struct audio_format *fmt)
6077 {
6078 int freq;
6079 int high;
6080 int low;
6081 int j;
6082
6083 if (fmt->frequency_type == 0) {
6084 low = fmt->frequency[0];
6085 high = fmt->frequency[1];
6086 freq = 48000;
6087 if (low <= freq && freq <= high) {
6088 return freq;
6089 }
6090 freq = 44100;
6091 if (low <= freq && freq <= high) {
6092 return freq;
6093 }
6094 return high;
6095 } else {
6096 for (j = 0; j < fmt->frequency_type; j++) {
6097 if (fmt->frequency[j] == 48000) {
6098 return fmt->frequency[j];
6099 }
6100 }
6101 high = 0;
6102 for (j = 0; j < fmt->frequency_type; j++) {
6103 if (fmt->frequency[j] == 44100) {
6104 return fmt->frequency[j];
6105 }
6106 if (fmt->frequency[j] > high) {
6107 high = fmt->frequency[j];
6108 }
6109 }
6110 return high;
6111 }
6112 }
6113
6114 /*
6115 * Probe playback and/or recording format (depending on *modep).
6116 * *modep is an in-out parameter. It indicates the direction to configure
6117 * as an argument, and the direction configured is written back as out
6118 * parameter.
6119 * If successful, probed hardware format is stored into *phwfmt, *rhwfmt
6120 * depending on *modep, and return 0. Otherwise it returns errno.
6121 * Must be called with sc_lock held.
6122 */
6123 static int
6124 audio_hw_probe(struct audio_softc *sc, int is_indep, int *modep,
6125 audio_format2_t *phwfmt, audio_format2_t *rhwfmt)
6126 {
6127 audio_format2_t fmt;
6128 int mode;
6129 int error = 0;
6130
6131 KASSERT(mutex_owned(sc->sc_lock));
6132
6133 mode = *modep;
6134 KASSERTMSG((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0,
6135 "invalid mode = %x", mode);
6136
6137 if (is_indep) {
6138 /* On independent devices, probe separately. */
6139 if ((mode & AUMODE_PLAY) != 0) {
6140 error = audio_hw_probe_fmt(sc, phwfmt, AUMODE_PLAY);
6141 if (error)
6142 mode &= ~AUMODE_PLAY;
6143 }
6144 if ((mode & AUMODE_RECORD) != 0) {
6145 error = audio_hw_probe_fmt(sc, rhwfmt, AUMODE_RECORD);
6146 if (error)
6147 mode &= ~AUMODE_RECORD;
6148 }
6149 } else {
6150 /* On non independent devices, probe simultaneously. */
6151 error = audio_hw_probe_fmt(sc, &fmt, mode);
6152 if (error) {
6153 mode = 0;
6154 } else {
6155 *phwfmt = fmt;
6156 *rhwfmt = fmt;
6157 }
6158 }
6159
6160 *modep = mode;
6161 return error;
6162 }
6163
6164 /*
6165 * Choose the most preferred hardware format.
6166 * If successful, it will store the chosen format into *cand and return 0.
6167 * Otherwise, return errno.
6168 * Must be called with sc_lock held.
6169 */
6170 static int
6171 audio_hw_probe_fmt(struct audio_softc *sc, audio_format2_t *cand, int mode)
6172 {
6173 audio_format_query_t query;
6174 int cand_score;
6175 int score;
6176 int i;
6177 int error;
6178
6179 KASSERT(mutex_owned(sc->sc_lock));
6180
6181 /*
6182 * Score each formats and choose the highest one.
6183 *
6184 * +---- priority(0-3)
6185 * |+--- encoding/precision
6186 * ||+-- channels
6187 * score = 0x000000PEC
6188 */
6189
6190 cand_score = 0;
6191 for (i = 0; ; i++) {
6192 memset(&query, 0, sizeof(query));
6193 query.index = i;
6194
6195 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6196 if (error == EINVAL)
6197 break;
6198 if (error)
6199 return error;
6200
6201 #if defined(AUDIO_DEBUG)
6202 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6203 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6204 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6205 query.fmt.priority,
6206 audio_encoding_name(query.fmt.encoding),
6207 query.fmt.validbits,
6208 query.fmt.precision,
6209 query.fmt.channels);
6210 if (query.fmt.frequency_type == 0) {
6211 DPRINTF(1, "{%d-%d",
6212 query.fmt.frequency[0], query.fmt.frequency[1]);
6213 } else {
6214 int j;
6215 for (j = 0; j < query.fmt.frequency_type; j++) {
6216 DPRINTF(1, "%c%d",
6217 (j == 0) ? '{' : ',',
6218 query.fmt.frequency[j]);
6219 }
6220 }
6221 DPRINTF(1, "}\n");
6222 #endif
6223
6224 if ((query.fmt.mode & mode) == 0) {
6225 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6226 mode);
6227 continue;
6228 }
6229
6230 if (query.fmt.priority < 0) {
6231 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6232 continue;
6233 }
6234
6235 /* Score */
6236 score = (query.fmt.priority & 3) * 0x100;
6237 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6238 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6239 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6240 score += 0x20;
6241 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6242 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6243 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6244 score += 0x10;
6245 }
6246 score += query.fmt.channels;
6247
6248 if (score < cand_score) {
6249 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6250 score, cand_score);
6251 continue;
6252 }
6253
6254 /* Update candidate */
6255 cand_score = score;
6256 cand->encoding = query.fmt.encoding;
6257 cand->precision = query.fmt.validbits;
6258 cand->stride = query.fmt.precision;
6259 cand->channels = query.fmt.channels;
6260 cand->sample_rate = audio_select_freq(&query.fmt);
6261 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6262 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6263 cand_score, query.fmt.priority,
6264 audio_encoding_name(query.fmt.encoding),
6265 cand->precision, cand->stride,
6266 cand->channels, cand->sample_rate);
6267 }
6268
6269 if (cand_score == 0) {
6270 DPRINTF(1, "%s no fmt\n", __func__);
6271 return ENXIO;
6272 }
6273 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6274 audio_encoding_name(cand->encoding),
6275 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6276 return 0;
6277 }
6278
6279 /*
6280 * Validate fmt with query_format.
6281 * If fmt is included in the result of query_format, returns 0.
6282 * Otherwise returns EINVAL.
6283 * Must be called with sc_lock held.
6284 */
6285 static int
6286 audio_hw_validate_format(struct audio_softc *sc, int mode,
6287 const audio_format2_t *fmt)
6288 {
6289 audio_format_query_t query;
6290 struct audio_format *q;
6291 int index;
6292 int error;
6293 int j;
6294
6295 KASSERT(mutex_owned(sc->sc_lock));
6296
6297 /*
6298 * If query_format is not supported by hardware driver,
6299 * a rough check instead will be performed.
6300 * XXX This will gone in the future.
6301 */
6302 if (sc->hw_if->query_format == NULL) {
6303 if (fmt->encoding != AUDIO_ENCODING_SLINEAR_NE)
6304 return EINVAL;
6305 if (fmt->precision != AUDIO_INTERNAL_BITS)
6306 return EINVAL;
6307 if (fmt->stride != AUDIO_INTERNAL_BITS)
6308 return EINVAL;
6309 return 0;
6310 }
6311
6312 for (index = 0; ; index++) {
6313 query.index = index;
6314 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6315 if (error == EINVAL)
6316 break;
6317 if (error)
6318 return error;
6319
6320 q = &query.fmt;
6321 /*
6322 * Note that fmt is audio_format2_t (precision/stride) but
6323 * q is audio_format_t (validbits/precision).
6324 */
6325 if ((q->mode & mode) == 0) {
6326 continue;
6327 }
6328 if (fmt->encoding != q->encoding) {
6329 continue;
6330 }
6331 if (fmt->precision != q->validbits) {
6332 continue;
6333 }
6334 if (fmt->stride != q->precision) {
6335 continue;
6336 }
6337 if (fmt->channels != q->channels) {
6338 continue;
6339 }
6340 if (q->frequency_type == 0) {
6341 if (fmt->sample_rate < q->frequency[0] ||
6342 fmt->sample_rate > q->frequency[1]) {
6343 continue;
6344 }
6345 } else {
6346 for (j = 0; j < q->frequency_type; j++) {
6347 if (fmt->sample_rate == q->frequency[j])
6348 break;
6349 }
6350 if (j == query.fmt.frequency_type) {
6351 continue;
6352 }
6353 }
6354
6355 /* Matched. */
6356 return 0;
6357 }
6358
6359 return EINVAL;
6360 }
6361
6362 /*
6363 * Set track mixer's format depending on ai->mode.
6364 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6365 * with ai.play.{channels, sample_rate}.
6366 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6367 * with ai.record.{channels, sample_rate}.
6368 * All other fields in ai are ignored.
6369 * If successful returns 0. Otherwise returns errno.
6370 * This function does not roll back even if it fails.
6371 * Must be called with sc_lock held.
6372 */
6373 static int
6374 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6375 {
6376 audio_format2_t phwfmt;
6377 audio_format2_t rhwfmt;
6378 audio_filter_reg_t pfil;
6379 audio_filter_reg_t rfil;
6380 int mode;
6381 int props;
6382 int error;
6383
6384 KASSERT(mutex_owned(sc->sc_lock));
6385
6386 /*
6387 * Even when setting either one of playback and recording,
6388 * both must be halted.
6389 */
6390 if (sc->sc_popens + sc->sc_ropens > 0)
6391 return EBUSY;
6392
6393 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6394 return ENOTTY;
6395
6396 /* Only channels and sample_rate are changeable. */
6397 mode = ai->mode;
6398 if ((mode & AUMODE_PLAY)) {
6399 phwfmt.encoding = ai->play.encoding;
6400 phwfmt.precision = ai->play.precision;
6401 phwfmt.stride = ai->play.precision;
6402 phwfmt.channels = ai->play.channels;
6403 phwfmt.sample_rate = ai->play.sample_rate;
6404 }
6405 if ((mode & AUMODE_RECORD)) {
6406 rhwfmt.encoding = ai->record.encoding;
6407 rhwfmt.precision = ai->record.precision;
6408 rhwfmt.stride = ai->record.precision;
6409 rhwfmt.channels = ai->record.channels;
6410 rhwfmt.sample_rate = ai->record.sample_rate;
6411 }
6412
6413 /* On non-independent devices, use the same format for both. */
6414 props = audio_get_props(sc);
6415 if ((props & AUDIO_PROP_INDEPENDENT) == 0) {
6416 if (mode == AUMODE_RECORD) {
6417 phwfmt = rhwfmt;
6418 } else {
6419 rhwfmt = phwfmt;
6420 }
6421 mode = AUMODE_PLAY | AUMODE_RECORD;
6422 }
6423
6424 /* Then, unset the direction not exist on the hardware. */
6425 if ((props & AUDIO_PROP_PLAYBACK) == 0)
6426 mode &= ~AUMODE_PLAY;
6427 if ((props & AUDIO_PROP_CAPTURE) == 0)
6428 mode &= ~AUMODE_RECORD;
6429
6430 /* debug */
6431 if ((mode & AUMODE_PLAY)) {
6432 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6433 audio_encoding_name(phwfmt.encoding),
6434 phwfmt.precision,
6435 phwfmt.stride,
6436 phwfmt.channels,
6437 phwfmt.sample_rate);
6438 }
6439 if ((mode & AUMODE_RECORD)) {
6440 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6441 audio_encoding_name(rhwfmt.encoding),
6442 rhwfmt.precision,
6443 rhwfmt.stride,
6444 rhwfmt.channels,
6445 rhwfmt.sample_rate);
6446 }
6447
6448 /* Check the format */
6449 if ((mode & AUMODE_PLAY)) {
6450 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6451 TRACE(1, "invalid format");
6452 return EINVAL;
6453 }
6454 }
6455 if ((mode & AUMODE_RECORD)) {
6456 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6457 TRACE(1, "invalid format");
6458 return EINVAL;
6459 }
6460 }
6461
6462 /* Configure the mixers. */
6463 memset(&pfil, 0, sizeof(pfil));
6464 memset(&rfil, 0, sizeof(rfil));
6465 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6466 if (error)
6467 return error;
6468
6469 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6470 if (error)
6471 return error;
6472
6473 return 0;
6474 }
6475
6476 /*
6477 * Store current mixers format into *ai.
6478 */
6479 static void
6480 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6481 {
6482 /*
6483 * There is no stride information in audio_info but it doesn't matter.
6484 * trackmixer always treats stride and precision as the same.
6485 */
6486 AUDIO_INITINFO(ai);
6487 ai->mode = 0;
6488 if (sc->sc_pmixer) {
6489 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6490 ai->play.encoding = fmt->encoding;
6491 ai->play.precision = fmt->precision;
6492 ai->play.channels = fmt->channels;
6493 ai->play.sample_rate = fmt->sample_rate;
6494 ai->mode |= AUMODE_PLAY;
6495 }
6496 if (sc->sc_rmixer) {
6497 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6498 ai->record.encoding = fmt->encoding;
6499 ai->record.precision = fmt->precision;
6500 ai->record.channels = fmt->channels;
6501 ai->record.sample_rate = fmt->sample_rate;
6502 ai->mode |= AUMODE_RECORD;
6503 }
6504 }
6505
6506 /*
6507 * audio_info details:
6508 *
6509 * ai.{play,record}.sample_rate (R/W)
6510 * ai.{play,record}.encoding (R/W)
6511 * ai.{play,record}.precision (R/W)
6512 * ai.{play,record}.channels (R/W)
6513 * These specify the playback or recording format.
6514 * Ignore members within an inactive track.
6515 *
6516 * ai.mode (R/W)
6517 * It specifies the playback or recording mode, AUMODE_*.
6518 * In AUDIO2, A mode change operation by ai.mode after opening is
6519 * prohibited.
6520 * In AUDIO2, AUMODE_PLAY_ALL no longer makes sense. However, it's
6521 * possible to get or to set for backward compatibility.
6522 *
6523 * ai.{hiwat,lowat} (R/W)
6524 * These specify the high water mark and low water mark for playback
6525 * track. The unit is block.
6526 *
6527 * ai.{play,record}.gain (R/W)
6528 * It specifies the HW mixer volume in 0-255.
6529 * It is historical reason that the gain is connected to HW mixer.
6530 *
6531 * ai.{play,record}.balance (R/W)
6532 * It specifies the left-right balance of HW mixer in 0-64.
6533 * 32 means the center.
6534 * It is historical reason that the balance is connected to HW mixer.
6535 *
6536 * ai.{play,record}.port (R/W)
6537 * It specifies the input/output port of HW mixer.
6538 *
6539 * ai.monitor_gain (R/W)
6540 * It specifies the recording monitor gain(?) of HW mixer.
6541 *
6542 * ai.{play,record}.pause (R/W)
6543 * Non-zero means the track is paused.
6544 *
6545 * ai.play.seek (R/-)
6546 * It indicates the number of bytes written but not processed.
6547 * ai.record.seek (R/-)
6548 * It indicates the number of bytes to be able to read.
6549 *
6550 * ai.{play,record}.avail_ports (R/-)
6551 * Mixer info.
6552 *
6553 * ai.{play,record}.buffer_size (R/-)
6554 * It indicates the buffer size in bytes. Internally it means usrbuf.
6555 *
6556 * ai.{play,record}.samples (R/-)
6557 * It indicates the total number of bytes played or recorded.
6558 *
6559 * ai.{play,record}.eof (R/-)
6560 * It indicates the number of times reached EOF(?).
6561 *
6562 * ai.{play,record}.error (R/-)
6563 * Non-zero indicates overflow/underflow has occured.
6564 *
6565 * ai.{play,record}.waiting (R/-)
6566 * Non-zero indicates that other process waits to open.
6567 * It will never happen anymore.
6568 *
6569 * ai.{play,record}.open (R/-)
6570 * Non-zero indicates the direction is opened by this process(?).
6571 * XXX Is this better to indicate that "the device is opened by
6572 * at least one process"?
6573 *
6574 * ai.{play,record}.active (R/-)
6575 * Non-zero indicates that I/O is currently active.
6576 *
6577 * ai.blocksize (R/-)
6578 * It indicates the block size in bytes.
6579 * XXX In AUDIO2, the blocksize of playback and recording may be
6580 * different.
6581 */
6582
6583 /*
6584 * Pause consideration:
6585 *
6586 * The introduction of these two behavior makes pause/unpause operation
6587 * simple.
6588 * 1. The first read/write access of the first track makes mixer start.
6589 * 2. A pause of the last track doesn't make mixer stop.
6590 */
6591
6592 /*
6593 * Set both track's parameters within a file depending on ai.
6594 * Update sc_sound_[pr]* if set.
6595 * Must be called with sc_lock and sc_exlock held.
6596 */
6597 static int
6598 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6599 const struct audio_info *ai)
6600 {
6601 const struct audio_prinfo *pi;
6602 const struct audio_prinfo *ri;
6603 audio_track_t *ptrack;
6604 audio_track_t *rtrack;
6605 audio_format2_t pfmt;
6606 audio_format2_t rfmt;
6607 int pchanges;
6608 int rchanges;
6609 int mode;
6610 struct audio_info saved_ai;
6611 audio_format2_t saved_pfmt;
6612 audio_format2_t saved_rfmt;
6613 int error;
6614
6615 KASSERT(mutex_owned(sc->sc_lock));
6616 KASSERT(sc->sc_exlock);
6617
6618 pi = &ai->play;
6619 ri = &ai->record;
6620 pchanges = 0;
6621 rchanges = 0;
6622
6623 ptrack = file->ptrack;
6624 rtrack = file->rtrack;
6625
6626 #if defined(AUDIO_DEBUG)
6627 if (audiodebug >= 2) {
6628 char buf[256];
6629 char p[64];
6630 int buflen;
6631 int plen;
6632 #define SPRINTF(var, fmt...) do { \
6633 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6634 } while (0)
6635
6636 buflen = 0;
6637 plen = 0;
6638 if (SPECIFIED(pi->encoding))
6639 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6640 if (SPECIFIED(pi->precision))
6641 SPRINTF(p, "/%dbit", pi->precision);
6642 if (SPECIFIED(pi->channels))
6643 SPRINTF(p, "/%dch", pi->channels);
6644 if (SPECIFIED(pi->sample_rate))
6645 SPRINTF(p, "/%dHz", pi->sample_rate);
6646 if (plen > 0)
6647 SPRINTF(buf, ",play.param=%s", p + 1);
6648
6649 plen = 0;
6650 if (SPECIFIED(ri->encoding))
6651 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6652 if (SPECIFIED(ri->precision))
6653 SPRINTF(p, "/%dbit", ri->precision);
6654 if (SPECIFIED(ri->channels))
6655 SPRINTF(p, "/%dch", ri->channels);
6656 if (SPECIFIED(ri->sample_rate))
6657 SPRINTF(p, "/%dHz", ri->sample_rate);
6658 if (plen > 0)
6659 SPRINTF(buf, ",record.param=%s", p + 1);
6660
6661 if (SPECIFIED(ai->mode))
6662 SPRINTF(buf, ",mode=%d", ai->mode);
6663 if (SPECIFIED(ai->hiwat))
6664 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6665 if (SPECIFIED(ai->lowat))
6666 SPRINTF(buf, ",lowat=%d", ai->lowat);
6667 if (SPECIFIED(ai->play.gain))
6668 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6669 if (SPECIFIED(ai->record.gain))
6670 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6671 if (SPECIFIED_CH(ai->play.balance))
6672 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6673 if (SPECIFIED_CH(ai->record.balance))
6674 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6675 if (SPECIFIED(ai->play.port))
6676 SPRINTF(buf, ",play.port=%d", ai->play.port);
6677 if (SPECIFIED(ai->record.port))
6678 SPRINTF(buf, ",record.port=%d", ai->record.port);
6679 if (SPECIFIED(ai->monitor_gain))
6680 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6681 if (SPECIFIED_CH(ai->play.pause))
6682 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6683 if (SPECIFIED_CH(ai->record.pause))
6684 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6685
6686 if (buflen > 0)
6687 TRACE(2, "specified %s", buf + 1);
6688 }
6689 #endif
6690
6691 AUDIO_INITINFO(&saved_ai);
6692 /* XXX shut up gcc */
6693 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6694 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6695
6696 /* Set default value and save current parameters */
6697 if (ptrack) {
6698 pfmt = ptrack->usrbuf.fmt;
6699 saved_pfmt = ptrack->usrbuf.fmt;
6700 saved_ai.play.pause = ptrack->is_pause;
6701 }
6702 if (rtrack) {
6703 rfmt = rtrack->usrbuf.fmt;
6704 saved_rfmt = rtrack->usrbuf.fmt;
6705 saved_ai.record.pause = rtrack->is_pause;
6706 }
6707 saved_ai.mode = file->mode;
6708
6709 /* Overwrite if specified */
6710 mode = file->mode;
6711 if (SPECIFIED(ai->mode)) {
6712 /*
6713 * Setting ai->mode no longer does anything because it's
6714 * prohibited to change playback/recording mode after open
6715 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6716 * keeps the state of AUMODE_PLAY_ALL itself for backward
6717 * compatibility.
6718 * In the internal, only file->mode has the state of
6719 * AUMODE_PLAY_ALL flag and track->mode in both track does
6720 * not have.
6721 */
6722 if ((file->mode & AUMODE_PLAY)) {
6723 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6724 | (ai->mode & AUMODE_PLAY_ALL);
6725 }
6726 }
6727
6728 if (ptrack) {
6729 pchanges = audio_track_setinfo_check(&pfmt, pi);
6730 if (pchanges == -1) {
6731 TRACET(1, ptrack, "check play.params failed");
6732 return EINVAL;
6733 }
6734 if (SPECIFIED(ai->mode))
6735 pchanges = 1;
6736 }
6737 if (rtrack) {
6738 rchanges = audio_track_setinfo_check(&rfmt, ri);
6739 if (rchanges == -1) {
6740 TRACET(1, rtrack, "check record.params failed");
6741 return EINVAL;
6742 }
6743 if (SPECIFIED(ai->mode))
6744 rchanges = 1;
6745 }
6746
6747 /*
6748 * Even when setting either one of playback and recording,
6749 * both track must be halted.
6750 */
6751 if (pchanges || rchanges) {
6752 audio_file_clear(sc, file);
6753 #if defined(AUDIO_DEBUG)
6754 char fmtbuf[64];
6755 if (pchanges) {
6756 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6757 DPRINTF(1, "audio track#%d play mode: %s\n",
6758 ptrack->id, fmtbuf);
6759 }
6760 if (rchanges) {
6761 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6762 DPRINTF(1, "audio track#%d rec mode: %s\n",
6763 rtrack->id, fmtbuf);
6764 }
6765 #endif
6766 }
6767
6768 /* Set mixer parameters */
6769 error = audio_hw_setinfo(sc, ai, &saved_ai);
6770 if (error)
6771 goto abort1;
6772
6773 /* Set to track and update sticky parameters */
6774 error = 0;
6775 file->mode = mode;
6776 if (ptrack) {
6777 if (SPECIFIED_CH(pi->pause)) {
6778 ptrack->is_pause = pi->pause;
6779 sc->sc_sound_ppause = pi->pause;
6780 }
6781 if (pchanges) {
6782 audio_track_lock_enter(ptrack);
6783 error = audio_track_set_format(ptrack, &pfmt);
6784 audio_track_lock_exit(ptrack);
6785 if (error) {
6786 TRACET(1, ptrack, "set play.params failed");
6787 goto abort2;
6788 }
6789 sc->sc_sound_pparams = pfmt;
6790 }
6791 /* Change water marks after initializing the buffers. */
6792 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat))
6793 audio_track_setinfo_water(ptrack, ai);
6794 }
6795 if (rtrack) {
6796 if (SPECIFIED_CH(ri->pause)) {
6797 rtrack->is_pause = ri->pause;
6798 sc->sc_sound_rpause = ri->pause;
6799 }
6800 if (rchanges) {
6801 audio_track_lock_enter(rtrack);
6802 error = audio_track_set_format(rtrack, &rfmt);
6803 audio_track_lock_exit(rtrack);
6804 if (error) {
6805 TRACET(1, rtrack, "set record.params failed");
6806 goto abort3;
6807 }
6808 sc->sc_sound_rparams = rfmt;
6809 }
6810 }
6811
6812 return 0;
6813
6814 /* Rollback */
6815 abort3:
6816 if (error != ENOMEM) {
6817 rtrack->is_pause = saved_ai.record.pause;
6818 audio_track_lock_enter(rtrack);
6819 audio_track_set_format(rtrack, &saved_rfmt);
6820 audio_track_lock_exit(rtrack);
6821 }
6822 abort2:
6823 if (ptrack && error != ENOMEM) {
6824 ptrack->is_pause = saved_ai.play.pause;
6825 audio_track_lock_enter(ptrack);
6826 audio_track_set_format(ptrack, &saved_pfmt);
6827 audio_track_lock_exit(ptrack);
6828 sc->sc_sound_pparams = saved_pfmt;
6829 sc->sc_sound_ppause = saved_ai.play.pause;
6830 }
6831 file->mode = saved_ai.mode;
6832 abort1:
6833 audio_hw_setinfo(sc, &saved_ai, NULL);
6834
6835 return error;
6836 }
6837
6838 /*
6839 * Write SPECIFIED() parameters within info back to fmt.
6840 * Return value of 1 indicates that fmt is modified.
6841 * Return value of 0 indicates that fmt is not modified.
6842 * Return value of -1 indicates that error EINVAL has occurred.
6843 */
6844 static int
6845 audio_track_setinfo_check(audio_format2_t *fmt, const struct audio_prinfo *info)
6846 {
6847 int changes;
6848
6849 changes = 0;
6850 if (SPECIFIED(info->sample_rate)) {
6851 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
6852 return -1;
6853 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
6854 return -1;
6855 fmt->sample_rate = info->sample_rate;
6856 changes = 1;
6857 }
6858 if (SPECIFIED(info->encoding)) {
6859 fmt->encoding = info->encoding;
6860 changes = 1;
6861 }
6862 if (SPECIFIED(info->precision)) {
6863 fmt->precision = info->precision;
6864 /* we don't have API to specify stride */
6865 fmt->stride = info->precision;
6866 changes = 1;
6867 }
6868 if (SPECIFIED(info->channels)) {
6869 fmt->channels = info->channels;
6870 changes = 1;
6871 }
6872
6873 if (changes) {
6874 if (audio_check_params(fmt) != 0) {
6875 #ifdef DIAGNOSTIC
6876 char fmtbuf[64];
6877 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), fmt);
6878 printf("%s failed: %s\n", __func__, fmtbuf);
6879 #endif
6880 return -1;
6881 }
6882 }
6883
6884 return changes;
6885 }
6886
6887 /*
6888 * Change water marks for playback track if specfied.
6889 */
6890 static void
6891 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
6892 {
6893 u_int blks;
6894 u_int maxblks;
6895 u_int blksize;
6896
6897 KASSERT(audio_track_is_playback(track));
6898
6899 blksize = track->usrbuf_blksize;
6900 maxblks = track->usrbuf.capacity / blksize;
6901
6902 if (SPECIFIED(ai->hiwat)) {
6903 blks = ai->hiwat;
6904 if (blks > maxblks)
6905 blks = maxblks;
6906 if (blks < 2)
6907 blks = 2;
6908 track->usrbuf_usedhigh = blks * blksize;
6909 }
6910 if (SPECIFIED(ai->lowat)) {
6911 blks = ai->lowat;
6912 if (blks > maxblks - 1)
6913 blks = maxblks - 1;
6914 track->usrbuf_usedlow = blks * blksize;
6915 }
6916 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6917 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
6918 track->usrbuf_usedlow = track->usrbuf_usedhigh -
6919 blksize;
6920 }
6921 }
6922 }
6923
6924 /*
6925 * Set hardware part of *ai.
6926 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
6927 * If oldai is specified, previous parameters are stored.
6928 * This function itself does not roll back if error occurred.
6929 * Must be called with sc_lock and sc_exlock held.
6930 */
6931 static int
6932 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
6933 struct audio_info *oldai)
6934 {
6935 const struct audio_prinfo *newpi;
6936 const struct audio_prinfo *newri;
6937 struct audio_prinfo *oldpi;
6938 struct audio_prinfo *oldri;
6939 u_int pgain;
6940 u_int rgain;
6941 u_char pbalance;
6942 u_char rbalance;
6943 int error;
6944
6945 KASSERT(mutex_owned(sc->sc_lock));
6946 KASSERT(sc->sc_exlock);
6947
6948 /* XXX shut up gcc */
6949 oldpi = NULL;
6950 oldri = NULL;
6951
6952 newpi = &newai->play;
6953 newri = &newai->record;
6954 if (oldai) {
6955 oldpi = &oldai->play;
6956 oldri = &oldai->record;
6957 }
6958 error = 0;
6959
6960 /*
6961 * It looks like unnecessary to halt HW mixers to set HW mixers.
6962 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
6963 */
6964
6965 if (SPECIFIED(newpi->port)) {
6966 if (oldai)
6967 oldpi->port = au_get_port(sc, &sc->sc_outports);
6968 error = au_set_port(sc, &sc->sc_outports, newpi->port);
6969 if (error) {
6970 device_printf(sc->sc_dev,
6971 "setting play.port=%d failed with %d\n",
6972 newpi->port, error);
6973 goto abort;
6974 }
6975 }
6976 if (SPECIFIED(newri->port)) {
6977 if (oldai)
6978 oldri->port = au_get_port(sc, &sc->sc_inports);
6979 error = au_set_port(sc, &sc->sc_inports, newri->port);
6980 if (error) {
6981 device_printf(sc->sc_dev,
6982 "setting record.port=%d failed with %d\n",
6983 newri->port, error);
6984 goto abort;
6985 }
6986 }
6987
6988 /* Backup play.{gain,balance} */
6989 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
6990 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
6991 if (oldai) {
6992 oldpi->gain = pgain;
6993 oldpi->balance = pbalance;
6994 }
6995 }
6996 /* Backup record.{gain,balance} */
6997 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
6998 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
6999 if (oldai) {
7000 oldri->gain = rgain;
7001 oldri->balance = rbalance;
7002 }
7003 }
7004 if (SPECIFIED(newpi->gain)) {
7005 error = au_set_gain(sc, &sc->sc_outports,
7006 newpi->gain, pbalance);
7007 if (error) {
7008 device_printf(sc->sc_dev,
7009 "setting play.gain=%d failed with %d\n",
7010 newpi->gain, error);
7011 goto abort;
7012 }
7013 }
7014 if (SPECIFIED(newri->gain)) {
7015 error = au_set_gain(sc, &sc->sc_inports,
7016 newri->gain, rbalance);
7017 if (error) {
7018 device_printf(sc->sc_dev,
7019 "setting record.gain=%d failed with %d\n",
7020 newri->gain, error);
7021 goto abort;
7022 }
7023 }
7024 if (SPECIFIED_CH(newpi->balance)) {
7025 error = au_set_gain(sc, &sc->sc_outports,
7026 pgain, newpi->balance);
7027 if (error) {
7028 device_printf(sc->sc_dev,
7029 "setting play.balance=%d failed with %d\n",
7030 newpi->balance, error);
7031 goto abort;
7032 }
7033 }
7034 if (SPECIFIED_CH(newri->balance)) {
7035 error = au_set_gain(sc, &sc->sc_inports,
7036 rgain, newri->balance);
7037 if (error) {
7038 device_printf(sc->sc_dev,
7039 "setting record.balance=%d failed with %d\n",
7040 newri->balance, error);
7041 goto abort;
7042 }
7043 }
7044
7045 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7046 if (oldai)
7047 oldai->monitor_gain = au_get_monitor_gain(sc);
7048 error = au_set_monitor_gain(sc, newai->monitor_gain);
7049 if (error) {
7050 device_printf(sc->sc_dev,
7051 "setting monitor_gain=%d failed with %d\n",
7052 newai->monitor_gain, error);
7053 goto abort;
7054 }
7055 }
7056
7057 /* XXX TODO */
7058 /* sc->sc_ai = *ai; */
7059
7060 error = 0;
7061 abort:
7062 return error;
7063 }
7064
7065 /*
7066 * Setup the hardware with mixer format phwfmt, rhwfmt.
7067 * The arguments have following restrictions:
7068 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7069 * or both.
7070 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7071 * - On non-independent devices, phwfmt and rhwfmt must have the same
7072 * parameters.
7073 * - pfil and rfil must be zero-filled.
7074 * If successful,
7075 * - phwfmt, rhwfmt will be overwritten by hardware format.
7076 * - pfil, rfil will be filled with filter information specified by the
7077 * hardware driver.
7078 * and then returns 0. Otherwise returns errno.
7079 * Must be called with sc_lock held.
7080 */
7081 static int
7082 audio_hw_set_format(struct audio_softc *sc, int setmode,
7083 audio_format2_t *phwfmt, audio_format2_t *rhwfmt,
7084 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7085 {
7086 audio_params_t pp, rp;
7087 int error;
7088
7089 KASSERT(mutex_owned(sc->sc_lock));
7090 KASSERT(phwfmt != NULL);
7091 KASSERT(rhwfmt != NULL);
7092
7093 pp = format2_to_params(phwfmt);
7094 rp = format2_to_params(rhwfmt);
7095
7096 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7097 &pp, &rp, pfil, rfil);
7098 if (error) {
7099 device_printf(sc->sc_dev,
7100 "set_format failed with %d\n", error);
7101 return error;
7102 }
7103
7104 if (sc->hw_if->commit_settings) {
7105 error = sc->hw_if->commit_settings(sc->hw_hdl);
7106 if (error) {
7107 device_printf(sc->sc_dev,
7108 "commit_settings failed with %d\n", error);
7109 return error;
7110 }
7111 }
7112
7113 return 0;
7114 }
7115
7116 /*
7117 * Fill audio_info structure. If need_mixerinfo is true, it will also
7118 * fill the hardware mixer information.
7119 * Must be called with sc_lock held.
7120 * Must be called with sc_exlock held, in addition, if need_mixerinfo is
7121 * true.
7122 */
7123 static int
7124 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7125 audio_file_t *file)
7126 {
7127 struct audio_prinfo *ri, *pi;
7128 audio_track_t *track;
7129 audio_track_t *ptrack;
7130 audio_track_t *rtrack;
7131 int gain;
7132
7133 KASSERT(mutex_owned(sc->sc_lock));
7134
7135 ri = &ai->record;
7136 pi = &ai->play;
7137 ptrack = file->ptrack;
7138 rtrack = file->rtrack;
7139
7140 memset(ai, 0, sizeof(*ai));
7141
7142 if (ptrack) {
7143 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7144 pi->channels = ptrack->usrbuf.fmt.channels;
7145 pi->precision = ptrack->usrbuf.fmt.precision;
7146 pi->encoding = ptrack->usrbuf.fmt.encoding;
7147 } else {
7148 /* Set default parameters if the track is not available. */
7149 if (ISDEVAUDIO(file->dev)) {
7150 pi->sample_rate = audio_default.sample_rate;
7151 pi->channels = audio_default.channels;
7152 pi->precision = audio_default.precision;
7153 pi->encoding = audio_default.encoding;
7154 } else {
7155 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7156 pi->channels = sc->sc_sound_pparams.channels;
7157 pi->precision = sc->sc_sound_pparams.precision;
7158 pi->encoding = sc->sc_sound_pparams.encoding;
7159 }
7160 }
7161 if (rtrack) {
7162 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7163 ri->channels = rtrack->usrbuf.fmt.channels;
7164 ri->precision = rtrack->usrbuf.fmt.precision;
7165 ri->encoding = rtrack->usrbuf.fmt.encoding;
7166 } else {
7167 /* Set default parameters if the track is not available. */
7168 if (ISDEVAUDIO(file->dev)) {
7169 ri->sample_rate = audio_default.sample_rate;
7170 ri->channels = audio_default.channels;
7171 ri->precision = audio_default.precision;
7172 ri->encoding = audio_default.encoding;
7173 } else {
7174 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7175 ri->channels = sc->sc_sound_rparams.channels;
7176 ri->precision = sc->sc_sound_rparams.precision;
7177 ri->encoding = sc->sc_sound_rparams.encoding;
7178 }
7179 }
7180
7181 if (ptrack) {
7182 pi->seek = ptrack->usrbuf.used;
7183 pi->samples = ptrack->usrbuf_stamp;
7184 pi->eof = ptrack->eofcounter;
7185 pi->pause = ptrack->is_pause;
7186 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7187 pi->waiting = 0; /* open never hangs */
7188 pi->open = 1;
7189 pi->active = sc->sc_pbusy;
7190 pi->buffer_size = ptrack->usrbuf.capacity;
7191 }
7192 if (rtrack) {
7193 ri->seek = rtrack->usrbuf.used;
7194 ri->samples = rtrack->usrbuf_stamp;
7195 ri->eof = 0;
7196 ri->pause = rtrack->is_pause;
7197 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7198 ri->waiting = 0; /* open never hangs */
7199 ri->open = 1;
7200 ri->active = sc->sc_rbusy;
7201 ri->buffer_size = rtrack->usrbuf.capacity;
7202 }
7203
7204 /*
7205 * XXX There may be different number of channels between playback
7206 * and recording, so that blocksize also may be different.
7207 * But struct audio_info has an united blocksize...
7208 * Here, I use play info precedencely if ptrack is available,
7209 * otherwise record info.
7210 *
7211 * XXX hiwat/lowat is a playback-only parameter. What should I
7212 * return for a record-only descriptor?
7213 */
7214 track = ptrack ?: rtrack;
7215 if (track) {
7216 ai->blocksize = track->usrbuf_blksize;
7217 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7218 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7219 }
7220 ai->mode = file->mode;
7221
7222 if (need_mixerinfo) {
7223 KASSERT(sc->sc_exlock);
7224
7225 pi->port = au_get_port(sc, &sc->sc_outports);
7226 ri->port = au_get_port(sc, &sc->sc_inports);
7227
7228 pi->avail_ports = sc->sc_outports.allports;
7229 ri->avail_ports = sc->sc_inports.allports;
7230
7231 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7232 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7233
7234 if (sc->sc_monitor_port != -1) {
7235 gain = au_get_monitor_gain(sc);
7236 if (gain != -1)
7237 ai->monitor_gain = gain;
7238 }
7239 }
7240
7241 return 0;
7242 }
7243
7244 /*
7245 * Must be called with sc_lock held.
7246 */
7247 static int
7248 audio_get_props(struct audio_softc *sc)
7249 {
7250 const struct audio_hw_if *hw;
7251 int props;
7252
7253 KASSERT(mutex_owned(sc->sc_lock));
7254
7255 hw = sc->hw_if;
7256 props = hw->get_props(sc->hw_hdl);
7257
7258 /*
7259 * For historical reasons, if neither playback nor capture
7260 * properties are reported, assume both are supported.
7261 * XXX Ideally (all) hardware driver should be updated...
7262 */
7263 if ((props & (AUDIO_PROP_PLAYBACK|AUDIO_PROP_CAPTURE)) == 0)
7264 props |= (AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE);
7265
7266 /* MMAP is now supported by upper layer. */
7267 props |= AUDIO_PROP_MMAP;
7268
7269 return props;
7270 }
7271
7272 /*
7273 * Return true if playback is configured.
7274 * This function can be used after audioattach.
7275 */
7276 static bool
7277 audio_can_playback(struct audio_softc *sc)
7278 {
7279
7280 return (sc->sc_pmixer != NULL);
7281 }
7282
7283 /*
7284 * Return true if recording is configured.
7285 * This function can be used after audioattach.
7286 */
7287 static bool
7288 audio_can_capture(struct audio_softc *sc)
7289 {
7290
7291 return (sc->sc_rmixer != NULL);
7292 }
7293
7294 /*
7295 * Get the afp->index'th item from the valid one of format[].
7296 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7297 *
7298 * This is common routines for query_format.
7299 * If your hardware driver has struct audio_format[], the simplest case
7300 * you can write your query_format interface as follows:
7301 *
7302 * struct audio_format foo_format[] = { ... };
7303 *
7304 * int
7305 * foo_query_format(void *hdl, audio_format_query_t *afp)
7306 * {
7307 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7308 * }
7309 */
7310 int
7311 audio_query_format(const struct audio_format *format, int nformats,
7312 audio_format_query_t *afp)
7313 {
7314 const struct audio_format *f;
7315 int idx;
7316 int i;
7317
7318 idx = 0;
7319 for (i = 0; i < nformats; i++) {
7320 f = &format[i];
7321 if (!AUFMT_IS_VALID(f))
7322 continue;
7323 if (afp->index == idx) {
7324 afp->fmt = *f;
7325 return 0;
7326 }
7327 idx++;
7328 }
7329 return EINVAL;
7330 }
7331
7332 /*
7333 * This function is provided for the hardware driver's set_format() to
7334 * find index matches with 'param' from array of audio_format_t 'formats'.
7335 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7336 * It returns the matched index and never fails. Because param passed to
7337 * set_format() is selected from query_format().
7338 * This function will be an alternative to auconv_set_converter() to
7339 * find index.
7340 */
7341 int
7342 audio_indexof_format(const struct audio_format *formats, int nformats,
7343 int mode, const audio_params_t *param)
7344 {
7345 const struct audio_format *f;
7346 int index;
7347 int j;
7348
7349 for (index = 0; index < nformats; index++) {
7350 f = &formats[index];
7351
7352 if (!AUFMT_IS_VALID(f))
7353 continue;
7354 if ((f->mode & mode) == 0)
7355 continue;
7356 if (f->encoding != param->encoding)
7357 continue;
7358 if (f->validbits != param->precision)
7359 continue;
7360 if (f->channels != param->channels)
7361 continue;
7362
7363 if (f->frequency_type == 0) {
7364 if (param->sample_rate < f->frequency[0] ||
7365 param->sample_rate > f->frequency[1])
7366 continue;
7367 } else {
7368 for (j = 0; j < f->frequency_type; j++) {
7369 if (param->sample_rate == f->frequency[j])
7370 break;
7371 }
7372 if (j == f->frequency_type)
7373 continue;
7374 }
7375
7376 /* Then, matched */
7377 return index;
7378 }
7379
7380 /* Not matched. This should not be happened. */
7381 panic("%s: cannot find matched format\n", __func__);
7382 }
7383
7384 /*
7385 * Get or set software master volume: 0..256
7386 * XXX It's for debug.
7387 */
7388 static int
7389 audio_sysctl_volume(SYSCTLFN_ARGS)
7390 {
7391 struct sysctlnode node;
7392 struct audio_softc *sc;
7393 int t, error;
7394
7395 node = *rnode;
7396 sc = node.sysctl_data;
7397
7398 if (sc->sc_pmixer)
7399 t = sc->sc_pmixer->volume;
7400 else
7401 t = -1;
7402 node.sysctl_data = &t;
7403 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7404 if (error || newp == NULL)
7405 return error;
7406
7407 if (sc->sc_pmixer == NULL)
7408 return EINVAL;
7409 if (t < 0)
7410 return EINVAL;
7411
7412 sc->sc_pmixer->volume = t;
7413 return 0;
7414 }
7415
7416 /*
7417 * Get or set hardware blocksize in msec.
7418 * XXX It's for debug.
7419 */
7420 static int
7421 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7422 {
7423 struct sysctlnode node;
7424 struct audio_softc *sc;
7425 audio_format2_t phwfmt;
7426 audio_format2_t rhwfmt;
7427 audio_filter_reg_t pfil;
7428 audio_filter_reg_t rfil;
7429 int t;
7430 int old_blk_ms;
7431 int mode;
7432 int error;
7433
7434 node = *rnode;
7435 sc = node.sysctl_data;
7436
7437 mutex_enter(sc->sc_lock);
7438
7439 old_blk_ms = sc->sc_blk_ms;
7440 t = old_blk_ms;
7441 node.sysctl_data = &t;
7442 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7443 if (error || newp == NULL)
7444 goto abort;
7445
7446 if (t < 0) {
7447 error = EINVAL;
7448 goto abort;
7449 }
7450
7451 if (sc->sc_popens + sc->sc_ropens > 0) {
7452 error = EBUSY;
7453 goto abort;
7454 }
7455 sc->sc_blk_ms = t;
7456 mode = 0;
7457 if (sc->sc_pmixer) {
7458 mode |= AUMODE_PLAY;
7459 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7460 }
7461 if (sc->sc_rmixer) {
7462 mode |= AUMODE_RECORD;
7463 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7464 }
7465
7466 /* re-init hardware */
7467 memset(&pfil, 0, sizeof(pfil));
7468 memset(&rfil, 0, sizeof(rfil));
7469 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7470 if (error) {
7471 goto abort;
7472 }
7473
7474 /* re-init track mixer */
7475 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7476 if (error) {
7477 /* Rollback */
7478 sc->sc_blk_ms = old_blk_ms;
7479 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7480 goto abort;
7481 }
7482 error = 0;
7483 abort:
7484 mutex_exit(sc->sc_lock);
7485 return error;
7486 }
7487
7488 #if defined(AUDIO_DEBUG)
7489 /*
7490 * Get or set debug verbose level. (0..4)
7491 * XXX It's for debug.
7492 * XXX It is not separated per device.
7493 */
7494 static int
7495 audio_sysctl_debug(SYSCTLFN_ARGS)
7496 {
7497 struct sysctlnode node;
7498 int t;
7499 int error;
7500
7501 node = *rnode;
7502 t = audiodebug;
7503 node.sysctl_data = &t;
7504 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7505 if (error || newp == NULL)
7506 return error;
7507
7508 if (t < 0 || t > 4)
7509 return EINVAL;
7510 audiodebug = t;
7511 printf("audio: audiodebug = %d\n", audiodebug);
7512 return 0;
7513 }
7514 #endif /* AUDIO_DEBUG */
7515
7516 #ifdef AUDIO_PM_IDLE
7517 static void
7518 audio_idle(void *arg)
7519 {
7520 device_t dv = arg;
7521 struct audio_softc *sc = device_private(dv);
7522
7523 #ifdef PNP_DEBUG
7524 extern int pnp_debug_idle;
7525 if (pnp_debug_idle)
7526 printf("%s: idle handler called\n", device_xname(dv));
7527 #endif
7528
7529 sc->sc_idle = true;
7530
7531 /* XXX joerg Make pmf_device_suspend handle children? */
7532 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7533 return;
7534
7535 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7536 pmf_device_resume(dv, PMF_Q_SELF);
7537 }
7538
7539 static void
7540 audio_activity(device_t dv, devactive_t type)
7541 {
7542 struct audio_softc *sc = device_private(dv);
7543
7544 if (type != DVA_SYSTEM)
7545 return;
7546
7547 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7548
7549 sc->sc_idle = false;
7550 if (!device_is_active(dv)) {
7551 /* XXX joerg How to deal with a failing resume... */
7552 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7553 pmf_device_resume(dv, PMF_Q_SELF);
7554 }
7555 }
7556 #endif
7557
7558 static bool
7559 audio_suspend(device_t dv, const pmf_qual_t *qual)
7560 {
7561 struct audio_softc *sc = device_private(dv);
7562 int error;
7563
7564 error = audio_enter_exclusive(sc);
7565 if (error)
7566 return error;
7567 audio_mixer_capture(sc);
7568
7569 /* Halts mixers but don't clear busy flag for resume */
7570 if (sc->sc_pbusy) {
7571 audio_pmixer_halt(sc);
7572 sc->sc_pbusy = true;
7573 }
7574 if (sc->sc_rbusy) {
7575 audio_rmixer_halt(sc);
7576 sc->sc_rbusy = true;
7577 }
7578
7579 #ifdef AUDIO_PM_IDLE
7580 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7581 #endif
7582 audio_exit_exclusive(sc);
7583
7584 return true;
7585 }
7586
7587 static bool
7588 audio_resume(device_t dv, const pmf_qual_t *qual)
7589 {
7590 struct audio_softc *sc = device_private(dv);
7591 struct audio_info ai;
7592 int error;
7593
7594 error = audio_enter_exclusive(sc);
7595 if (error)
7596 return error;
7597
7598 audio_mixer_restore(sc);
7599 /* XXX ? */
7600 AUDIO_INITINFO(&ai);
7601 audio_hw_setinfo(sc, &ai, NULL);
7602
7603 if (sc->sc_pbusy)
7604 audio_pmixer_start(sc, true);
7605 if (sc->sc_rbusy)
7606 audio_rmixer_start(sc);
7607
7608 audio_exit_exclusive(sc);
7609
7610 return true;
7611 }
7612
7613 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
7614 static void
7615 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7616 {
7617 int n;
7618
7619 n = 0;
7620 n += snprintf(buf + n, bufsize - n, "%s",
7621 audio_encoding_name(fmt->encoding));
7622 if (fmt->precision == fmt->stride) {
7623 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7624 } else {
7625 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7626 fmt->precision, fmt->stride);
7627 }
7628
7629 snprintf(buf + n, bufsize - n, " %uch %uHz",
7630 fmt->channels, fmt->sample_rate);
7631 }
7632 #endif
7633
7634 #if defined(AUDIO_DEBUG)
7635 static void
7636 audio_print_format2(const char *s, const audio_format2_t *fmt)
7637 {
7638 char fmtstr[64];
7639
7640 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7641 printf("%s %s\n", s, fmtstr);
7642 }
7643 #endif
7644
7645 #ifdef DIAGNOSTIC
7646 void
7647 audio_diagnostic_format2(const char *func, const audio_format2_t *fmt)
7648 {
7649
7650 KASSERTMSG(fmt, "%s: fmt == NULL", func);
7651
7652 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7653 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7654 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7655 "%s: stride(%d) is invalid", func, fmt->stride);
7656 } else {
7657 KASSERTMSG(fmt->stride % NBBY == 0,
7658 "%s: stride(%d) is invalid", func, fmt->stride);
7659 }
7660 KASSERTMSG(fmt->precision <= fmt->stride,
7661 "%s: precision(%d) <= stride(%d)",
7662 func, fmt->precision, fmt->stride);
7663 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7664 "%s: channels(%d) is out of range",
7665 func, fmt->channels);
7666
7667 /* XXX No check for encodings? */
7668 }
7669
7670 void
7671 audio_diagnostic_filter_arg(const char *func, const audio_filter_arg_t *arg)
7672 {
7673
7674 KASSERT(arg != NULL);
7675 KASSERT(arg->src != NULL);
7676 KASSERT(arg->dst != NULL);
7677 DIAGNOSTIC_format2(arg->srcfmt);
7678 DIAGNOSTIC_format2(arg->dstfmt);
7679 KASSERTMSG(arg->count > 0,
7680 "%s: count(%d) is out of range", func, arg->count);
7681 }
7682
7683 void
7684 audio_diagnostic_ring(const char *func, const audio_ring_t *ring)
7685 {
7686
7687 KASSERTMSG(ring, "%s: ring == NULL", func);
7688 DIAGNOSTIC_format2(&ring->fmt);
7689 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7690 "%s: capacity(%d) is out of range", func, ring->capacity);
7691 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7692 "%s: used(%d) is out of range (capacity:%d)",
7693 func, ring->used, ring->capacity);
7694 if (ring->capacity == 0) {
7695 KASSERTMSG(ring->mem == NULL,
7696 "%s: capacity == 0 but mem != NULL", func);
7697 } else {
7698 KASSERTMSG(ring->mem != NULL,
7699 "%s: capacity != 0 but mem == NULL", func);
7700 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7701 "%s: head(%d) is out of range (capacity:%d)",
7702 func, ring->head, ring->capacity);
7703 }
7704 }
7705 #endif /* DIAGNOSTIC */
7706
7707
7708 /*
7709 * Mixer driver
7710 */
7711 int
7712 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7713 struct lwp *l)
7714 {
7715 struct file *fp;
7716 audio_file_t *af;
7717 int error, fd;
7718
7719 KASSERT(mutex_owned(sc->sc_lock));
7720
7721 TRACE(1, "flags=0x%x", flags);
7722
7723 error = fd_allocfile(&fp, &fd);
7724 if (error)
7725 return error;
7726
7727 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7728 af->sc = sc;
7729 af->dev = dev;
7730
7731 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7732 KASSERT(error == EMOVEFD);
7733
7734 return error;
7735 }
7736
7737 /*
7738 * Remove a process from those to be signalled on mixer activity.
7739 * Must be called with sc_lock held.
7740 */
7741 static void
7742 mixer_remove(struct audio_softc *sc)
7743 {
7744 struct mixer_asyncs **pm, *m;
7745 pid_t pid;
7746
7747 KASSERT(mutex_owned(sc->sc_lock));
7748
7749 pid = curproc->p_pid;
7750 for (pm = &sc->sc_async_mixer; *pm; pm = &(*pm)->next) {
7751 if ((*pm)->pid == pid) {
7752 m = *pm;
7753 *pm = m->next;
7754 kmem_free(m, sizeof(*m));
7755 return;
7756 }
7757 }
7758 }
7759
7760 /*
7761 * Signal all processes waiting for the mixer.
7762 * Must be called with sc_lock held.
7763 */
7764 static void
7765 mixer_signal(struct audio_softc *sc)
7766 {
7767 struct mixer_asyncs *m;
7768 proc_t *p;
7769
7770 for (m = sc->sc_async_mixer; m; m = m->next) {
7771 mutex_enter(proc_lock);
7772 if ((p = proc_find(m->pid)) != NULL)
7773 psignal(p, SIGIO);
7774 mutex_exit(proc_lock);
7775 }
7776 }
7777
7778 /*
7779 * Close a mixer device
7780 */
7781 int
7782 mixer_close(struct audio_softc *sc, audio_file_t *file)
7783 {
7784
7785 mutex_enter(sc->sc_lock);
7786 TRACE(1, "");
7787 mixer_remove(sc);
7788 mutex_exit(sc->sc_lock);
7789
7790 return 0;
7791 }
7792
7793 int
7794 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
7795 struct lwp *l)
7796 {
7797 struct mixer_asyncs *ma;
7798 mixer_devinfo_t *mi;
7799 mixer_ctrl_t *mc;
7800 int error;
7801
7802 KASSERT(!mutex_owned(sc->sc_lock));
7803
7804 TRACE(2, "(%lu,'%c',%lu)",
7805 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
7806 error = EINVAL;
7807
7808 /* we can return cached values if we are sleeping */
7809 if (cmd != AUDIO_MIXER_READ) {
7810 mutex_enter(sc->sc_lock);
7811 device_active(sc->sc_dev, DVA_SYSTEM);
7812 mutex_exit(sc->sc_lock);
7813 }
7814
7815 switch (cmd) {
7816 case FIOASYNC:
7817 if (*(int *)addr) {
7818 ma = kmem_alloc(sizeof(struct mixer_asyncs), KM_SLEEP);
7819 } else {
7820 ma = NULL;
7821 }
7822 mixer_remove(sc); /* remove old entry */
7823 if (ma != NULL) {
7824 ma->next = sc->sc_async_mixer;
7825 ma->pid = curproc->p_pid;
7826 sc->sc_async_mixer = ma;
7827 }
7828 error = 0;
7829 break;
7830
7831 case AUDIO_GETDEV:
7832 TRACE(2, "AUDIO_GETDEV");
7833 error = audio_enter_exclusive(sc);
7834 if (error)
7835 break;
7836 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
7837 audio_exit_exclusive(sc);
7838 break;
7839
7840 case AUDIO_MIXER_DEVINFO:
7841 TRACE(2, "AUDIO_MIXER_DEVINFO");
7842 mi = (mixer_devinfo_t *)addr;
7843
7844 mi->un.v.delta = 0; /* default */
7845 mutex_enter(sc->sc_lock);
7846 error = audio_query_devinfo(sc, mi);
7847 mutex_exit(sc->sc_lock);
7848 break;
7849
7850 case AUDIO_MIXER_READ:
7851 TRACE(2, "AUDIO_MIXER_READ");
7852 mc = (mixer_ctrl_t *)addr;
7853
7854 error = audio_enter_exclusive(sc);
7855 if (error)
7856 break;
7857 if (device_is_active(sc->hw_dev))
7858 error = audio_get_port(sc, mc);
7859 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
7860 error = ENXIO;
7861 else {
7862 int dev = mc->dev;
7863 memcpy(mc, &sc->sc_mixer_state[dev],
7864 sizeof(mixer_ctrl_t));
7865 error = 0;
7866 }
7867 audio_exit_exclusive(sc);
7868 break;
7869
7870 case AUDIO_MIXER_WRITE:
7871 TRACE(2, "AUDIO_MIXER_WRITE");
7872 error = audio_enter_exclusive(sc);
7873 if (error)
7874 break;
7875 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
7876 if (error) {
7877 audio_exit_exclusive(sc);
7878 break;
7879 }
7880
7881 if (sc->hw_if->commit_settings) {
7882 error = sc->hw_if->commit_settings(sc->hw_hdl);
7883 if (error) {
7884 audio_exit_exclusive(sc);
7885 break;
7886 }
7887 }
7888 mixer_signal(sc);
7889 audio_exit_exclusive(sc);
7890 break;
7891
7892 default:
7893 if (sc->hw_if->dev_ioctl) {
7894 error = audio_enter_exclusive(sc);
7895 if (error)
7896 break;
7897 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
7898 cmd, addr, flag, l);
7899 audio_exit_exclusive(sc);
7900 } else
7901 error = EINVAL;
7902 break;
7903 }
7904 TRACE(2, "(%lu,'%c',%lu) result %d",
7905 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
7906 return error;
7907 }
7908
7909 /*
7910 * Must be called with sc_lock held.
7911 */
7912 int
7913 au_portof(struct audio_softc *sc, char *name, int class)
7914 {
7915 mixer_devinfo_t mi;
7916
7917 KASSERT(mutex_owned(sc->sc_lock));
7918
7919 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
7920 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
7921 return mi.index;
7922 }
7923 return -1;
7924 }
7925
7926 /*
7927 * Must be called with sc_lock held.
7928 */
7929 void
7930 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
7931 mixer_devinfo_t *mi, const struct portname *tbl)
7932 {
7933 int i, j;
7934
7935 KASSERT(mutex_owned(sc->sc_lock));
7936
7937 ports->index = mi->index;
7938 if (mi->type == AUDIO_MIXER_ENUM) {
7939 ports->isenum = true;
7940 for(i = 0; tbl[i].name; i++)
7941 for(j = 0; j < mi->un.e.num_mem; j++)
7942 if (strcmp(mi->un.e.member[j].label.name,
7943 tbl[i].name) == 0) {
7944 ports->allports |= tbl[i].mask;
7945 ports->aumask[ports->nports] = tbl[i].mask;
7946 ports->misel[ports->nports] =
7947 mi->un.e.member[j].ord;
7948 ports->miport[ports->nports] =
7949 au_portof(sc, mi->un.e.member[j].label.name,
7950 mi->mixer_class);
7951 if (ports->mixerout != -1 &&
7952 ports->miport[ports->nports] != -1)
7953 ports->isdual = true;
7954 ++ports->nports;
7955 }
7956 } else if (mi->type == AUDIO_MIXER_SET) {
7957 for(i = 0; tbl[i].name; i++)
7958 for(j = 0; j < mi->un.s.num_mem; j++)
7959 if (strcmp(mi->un.s.member[j].label.name,
7960 tbl[i].name) == 0) {
7961 ports->allports |= tbl[i].mask;
7962 ports->aumask[ports->nports] = tbl[i].mask;
7963 ports->misel[ports->nports] =
7964 mi->un.s.member[j].mask;
7965 ports->miport[ports->nports] =
7966 au_portof(sc, mi->un.s.member[j].label.name,
7967 mi->mixer_class);
7968 ++ports->nports;
7969 }
7970 }
7971 }
7972
7973 /*
7974 * Must be called with sc_lock && sc_exlock held.
7975 */
7976 int
7977 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
7978 {
7979
7980 KASSERT(mutex_owned(sc->sc_lock));
7981 KASSERT(sc->sc_exlock);
7982
7983 ct->type = AUDIO_MIXER_VALUE;
7984 ct->un.value.num_channels = 2;
7985 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
7986 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
7987 if (audio_set_port(sc, ct) == 0)
7988 return 0;
7989 ct->un.value.num_channels = 1;
7990 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
7991 return audio_set_port(sc, ct);
7992 }
7993
7994 /*
7995 * Must be called with sc_lock && sc_exlock held.
7996 */
7997 int
7998 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
7999 {
8000 int error;
8001
8002 KASSERT(mutex_owned(sc->sc_lock));
8003 KASSERT(sc->sc_exlock);
8004
8005 ct->un.value.num_channels = 2;
8006 if (audio_get_port(sc, ct) == 0) {
8007 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8008 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8009 } else {
8010 ct->un.value.num_channels = 1;
8011 error = audio_get_port(sc, ct);
8012 if (error)
8013 return error;
8014 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8015 }
8016 return 0;
8017 }
8018
8019 /*
8020 * Must be called with sc_lock && sc_exlock held.
8021 */
8022 int
8023 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8024 int gain, int balance)
8025 {
8026 mixer_ctrl_t ct;
8027 int i, error;
8028 int l, r;
8029 u_int mask;
8030 int nset;
8031
8032 KASSERT(mutex_owned(sc->sc_lock));
8033 KASSERT(sc->sc_exlock);
8034
8035 if (balance == AUDIO_MID_BALANCE) {
8036 l = r = gain;
8037 } else if (balance < AUDIO_MID_BALANCE) {
8038 l = gain;
8039 r = (balance * gain) / AUDIO_MID_BALANCE;
8040 } else {
8041 r = gain;
8042 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8043 / AUDIO_MID_BALANCE;
8044 }
8045 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8046
8047 if (ports->index == -1) {
8048 usemaster:
8049 if (ports->master == -1)
8050 return 0; /* just ignore it silently */
8051 ct.dev = ports->master;
8052 error = au_set_lr_value(sc, &ct, l, r);
8053 } else {
8054 ct.dev = ports->index;
8055 if (ports->isenum) {
8056 ct.type = AUDIO_MIXER_ENUM;
8057 error = audio_get_port(sc, &ct);
8058 if (error)
8059 return error;
8060 if (ports->isdual) {
8061 if (ports->cur_port == -1)
8062 ct.dev = ports->master;
8063 else
8064 ct.dev = ports->miport[ports->cur_port];
8065 error = au_set_lr_value(sc, &ct, l, r);
8066 } else {
8067 for(i = 0; i < ports->nports; i++)
8068 if (ports->misel[i] == ct.un.ord) {
8069 ct.dev = ports->miport[i];
8070 if (ct.dev == -1 ||
8071 au_set_lr_value(sc, &ct, l, r))
8072 goto usemaster;
8073 else
8074 break;
8075 }
8076 }
8077 } else {
8078 ct.type = AUDIO_MIXER_SET;
8079 error = audio_get_port(sc, &ct);
8080 if (error)
8081 return error;
8082 mask = ct.un.mask;
8083 nset = 0;
8084 for(i = 0; i < ports->nports; i++) {
8085 if (ports->misel[i] & mask) {
8086 ct.dev = ports->miport[i];
8087 if (ct.dev != -1 &&
8088 au_set_lr_value(sc, &ct, l, r) == 0)
8089 nset++;
8090 }
8091 }
8092 if (nset == 0)
8093 goto usemaster;
8094 }
8095 }
8096 if (!error)
8097 mixer_signal(sc);
8098 return error;
8099 }
8100
8101 /*
8102 * Must be called with sc_lock && sc_exlock held.
8103 */
8104 void
8105 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8106 u_int *pgain, u_char *pbalance)
8107 {
8108 mixer_ctrl_t ct;
8109 int i, l, r, n;
8110 int lgain, rgain;
8111
8112 KASSERT(mutex_owned(sc->sc_lock));
8113 KASSERT(sc->sc_exlock);
8114
8115 lgain = AUDIO_MAX_GAIN / 2;
8116 rgain = AUDIO_MAX_GAIN / 2;
8117 if (ports->index == -1) {
8118 usemaster:
8119 if (ports->master == -1)
8120 goto bad;
8121 ct.dev = ports->master;
8122 ct.type = AUDIO_MIXER_VALUE;
8123 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8124 goto bad;
8125 } else {
8126 ct.dev = ports->index;
8127 if (ports->isenum) {
8128 ct.type = AUDIO_MIXER_ENUM;
8129 if (audio_get_port(sc, &ct))
8130 goto bad;
8131 ct.type = AUDIO_MIXER_VALUE;
8132 if (ports->isdual) {
8133 if (ports->cur_port == -1)
8134 ct.dev = ports->master;
8135 else
8136 ct.dev = ports->miport[ports->cur_port];
8137 au_get_lr_value(sc, &ct, &lgain, &rgain);
8138 } else {
8139 for(i = 0; i < ports->nports; i++)
8140 if (ports->misel[i] == ct.un.ord) {
8141 ct.dev = ports->miport[i];
8142 if (ct.dev == -1 ||
8143 au_get_lr_value(sc, &ct,
8144 &lgain, &rgain))
8145 goto usemaster;
8146 else
8147 break;
8148 }
8149 }
8150 } else {
8151 ct.type = AUDIO_MIXER_SET;
8152 if (audio_get_port(sc, &ct))
8153 goto bad;
8154 ct.type = AUDIO_MIXER_VALUE;
8155 lgain = rgain = n = 0;
8156 for(i = 0; i < ports->nports; i++) {
8157 if (ports->misel[i] & ct.un.mask) {
8158 ct.dev = ports->miport[i];
8159 if (ct.dev == -1 ||
8160 au_get_lr_value(sc, &ct, &l, &r))
8161 goto usemaster;
8162 else {
8163 lgain += l;
8164 rgain += r;
8165 n++;
8166 }
8167 }
8168 }
8169 if (n != 0) {
8170 lgain /= n;
8171 rgain /= n;
8172 }
8173 }
8174 }
8175 bad:
8176 if (lgain == rgain) { /* handles lgain==rgain==0 */
8177 *pgain = lgain;
8178 *pbalance = AUDIO_MID_BALANCE;
8179 } else if (lgain < rgain) {
8180 *pgain = rgain;
8181 /* balance should be > AUDIO_MID_BALANCE */
8182 *pbalance = AUDIO_RIGHT_BALANCE -
8183 (AUDIO_MID_BALANCE * lgain) / rgain;
8184 } else /* lgain > rgain */ {
8185 *pgain = lgain;
8186 /* balance should be < AUDIO_MID_BALANCE */
8187 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8188 }
8189 }
8190
8191 /*
8192 * Must be called with sc_lock && sc_exlock held.
8193 */
8194 int
8195 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8196 {
8197 mixer_ctrl_t ct;
8198 int i, error, use_mixerout;
8199
8200 KASSERT(mutex_owned(sc->sc_lock));
8201 KASSERT(sc->sc_exlock);
8202
8203 use_mixerout = 1;
8204 if (port == 0) {
8205 if (ports->allports == 0)
8206 return 0; /* Allow this special case. */
8207 else if (ports->isdual) {
8208 if (ports->cur_port == -1) {
8209 return 0;
8210 } else {
8211 port = ports->aumask[ports->cur_port];
8212 ports->cur_port = -1;
8213 use_mixerout = 0;
8214 }
8215 }
8216 }
8217 if (ports->index == -1)
8218 return EINVAL;
8219 ct.dev = ports->index;
8220 if (ports->isenum) {
8221 if (port & (port-1))
8222 return EINVAL; /* Only one port allowed */
8223 ct.type = AUDIO_MIXER_ENUM;
8224 error = EINVAL;
8225 for(i = 0; i < ports->nports; i++)
8226 if (ports->aumask[i] == port) {
8227 if (ports->isdual && use_mixerout) {
8228 ct.un.ord = ports->mixerout;
8229 ports->cur_port = i;
8230 } else {
8231 ct.un.ord = ports->misel[i];
8232 }
8233 error = audio_set_port(sc, &ct);
8234 break;
8235 }
8236 } else {
8237 ct.type = AUDIO_MIXER_SET;
8238 ct.un.mask = 0;
8239 for(i = 0; i < ports->nports; i++)
8240 if (ports->aumask[i] & port)
8241 ct.un.mask |= ports->misel[i];
8242 if (port != 0 && ct.un.mask == 0)
8243 error = EINVAL;
8244 else
8245 error = audio_set_port(sc, &ct);
8246 }
8247 if (!error)
8248 mixer_signal(sc);
8249 return error;
8250 }
8251
8252 /*
8253 * Must be called with sc_lock && sc_exlock held.
8254 */
8255 int
8256 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8257 {
8258 mixer_ctrl_t ct;
8259 int i, aumask;
8260
8261 KASSERT(mutex_owned(sc->sc_lock));
8262 KASSERT(sc->sc_exlock);
8263
8264 if (ports->index == -1)
8265 return 0;
8266 ct.dev = ports->index;
8267 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8268 if (audio_get_port(sc, &ct))
8269 return 0;
8270 aumask = 0;
8271 if (ports->isenum) {
8272 if (ports->isdual && ports->cur_port != -1) {
8273 if (ports->mixerout == ct.un.ord)
8274 aumask = ports->aumask[ports->cur_port];
8275 else
8276 ports->cur_port = -1;
8277 }
8278 if (aumask == 0)
8279 for(i = 0; i < ports->nports; i++)
8280 if (ports->misel[i] == ct.un.ord)
8281 aumask = ports->aumask[i];
8282 } else {
8283 for(i = 0; i < ports->nports; i++)
8284 if (ct.un.mask & ports->misel[i])
8285 aumask |= ports->aumask[i];
8286 }
8287 return aumask;
8288 }
8289
8290 /*
8291 * It returns 0 if success, otherwise errno.
8292 * Must be called only if sc->sc_monitor_port != -1.
8293 * Must be called with sc_lock && sc_exlock held.
8294 */
8295 static int
8296 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8297 {
8298 mixer_ctrl_t ct;
8299
8300 KASSERT(mutex_owned(sc->sc_lock));
8301 KASSERT(sc->sc_exlock);
8302
8303 ct.dev = sc->sc_monitor_port;
8304 ct.type = AUDIO_MIXER_VALUE;
8305 ct.un.value.num_channels = 1;
8306 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8307 return audio_set_port(sc, &ct);
8308 }
8309
8310 /*
8311 * It returns monitor gain if success, otherwise -1.
8312 * Must be called only if sc->sc_monitor_port != -1.
8313 * Must be called with sc_lock && sc_exlock held.
8314 */
8315 static int
8316 au_get_monitor_gain(struct audio_softc *sc)
8317 {
8318 mixer_ctrl_t ct;
8319
8320 KASSERT(mutex_owned(sc->sc_lock));
8321 KASSERT(sc->sc_exlock);
8322
8323 ct.dev = sc->sc_monitor_port;
8324 ct.type = AUDIO_MIXER_VALUE;
8325 ct.un.value.num_channels = 1;
8326 if (audio_get_port(sc, &ct))
8327 return -1;
8328 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8329 }
8330
8331 /*
8332 * Must be called with sc_lock && sc_exlock held.
8333 */
8334 static int
8335 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8336 {
8337
8338 KASSERT(mutex_owned(sc->sc_lock));
8339 KASSERT(sc->sc_exlock);
8340
8341 return sc->hw_if->set_port(sc->hw_hdl, mc);
8342 }
8343
8344 /*
8345 * Must be called with sc_lock && sc_exlock held.
8346 */
8347 static int
8348 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8349 {
8350
8351 KASSERT(mutex_owned(sc->sc_lock));
8352 KASSERT(sc->sc_exlock);
8353
8354 return sc->hw_if->get_port(sc->hw_hdl, mc);
8355 }
8356
8357 /*
8358 * Must be called with sc_lock && sc_exlock held.
8359 */
8360 static void
8361 audio_mixer_capture(struct audio_softc *sc)
8362 {
8363 mixer_devinfo_t mi;
8364 mixer_ctrl_t *mc;
8365
8366 KASSERT(mutex_owned(sc->sc_lock));
8367 KASSERT(sc->sc_exlock);
8368
8369 for (mi.index = 0;; mi.index++) {
8370 if (audio_query_devinfo(sc, &mi) != 0)
8371 break;
8372 KASSERT(mi.index < sc->sc_nmixer_states);
8373 if (mi.type == AUDIO_MIXER_CLASS)
8374 continue;
8375 mc = &sc->sc_mixer_state[mi.index];
8376 mc->dev = mi.index;
8377 mc->type = mi.type;
8378 mc->un.value.num_channels = mi.un.v.num_channels;
8379 (void)audio_get_port(sc, mc);
8380 }
8381
8382 return;
8383 }
8384
8385 /*
8386 * Must be called with sc_lock && sc_exlock held.
8387 */
8388 static void
8389 audio_mixer_restore(struct audio_softc *sc)
8390 {
8391 mixer_devinfo_t mi;
8392 mixer_ctrl_t *mc;
8393
8394 KASSERT(mutex_owned(sc->sc_lock));
8395 KASSERT(sc->sc_exlock);
8396
8397 for (mi.index = 0; ; mi.index++) {
8398 if (audio_query_devinfo(sc, &mi) != 0)
8399 break;
8400 if (mi.type == AUDIO_MIXER_CLASS)
8401 continue;
8402 mc = &sc->sc_mixer_state[mi.index];
8403 (void)audio_set_port(sc, mc);
8404 }
8405 if (sc->hw_if->commit_settings)
8406 sc->hw_if->commit_settings(sc->hw_hdl);
8407
8408 return;
8409 }
8410
8411 static void
8412 audio_volume_down(device_t dv)
8413 {
8414 struct audio_softc *sc = device_private(dv);
8415 mixer_devinfo_t mi;
8416 int newgain;
8417 u_int gain;
8418 u_char balance;
8419
8420 if (audio_enter_exclusive(sc) != 0)
8421 return;
8422 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8423 mi.index = sc->sc_outports.master;
8424 mi.un.v.delta = 0;
8425 if (audio_query_devinfo(sc, &mi) == 0) {
8426 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8427 newgain = gain - mi.un.v.delta;
8428 if (newgain < AUDIO_MIN_GAIN)
8429 newgain = AUDIO_MIN_GAIN;
8430 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8431 }
8432 }
8433 audio_exit_exclusive(sc);
8434 }
8435
8436 static void
8437 audio_volume_up(device_t dv)
8438 {
8439 struct audio_softc *sc = device_private(dv);
8440 mixer_devinfo_t mi;
8441 u_int gain, newgain;
8442 u_char balance;
8443
8444 if (audio_enter_exclusive(sc) != 0)
8445 return;
8446 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8447 mi.index = sc->sc_outports.master;
8448 mi.un.v.delta = 0;
8449 if (audio_query_devinfo(sc, &mi) == 0) {
8450 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8451 newgain = gain + mi.un.v.delta;
8452 if (newgain > AUDIO_MAX_GAIN)
8453 newgain = AUDIO_MAX_GAIN;
8454 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8455 }
8456 }
8457 audio_exit_exclusive(sc);
8458 }
8459
8460 static void
8461 audio_volume_toggle(device_t dv)
8462 {
8463 struct audio_softc *sc = device_private(dv);
8464 u_int gain, newgain;
8465 u_char balance;
8466
8467 if (audio_enter_exclusive(sc) != 0)
8468 return;
8469 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8470 if (gain != 0) {
8471 sc->sc_lastgain = gain;
8472 newgain = 0;
8473 } else
8474 newgain = sc->sc_lastgain;
8475 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8476 audio_exit_exclusive(sc);
8477 }
8478
8479 static int
8480 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8481 {
8482
8483 KASSERT(mutex_owned(sc->sc_lock));
8484
8485 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8486 }
8487
8488 #endif /* NAUDIO > 0 */
8489
8490 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8491 #include <sys/param.h>
8492 #include <sys/systm.h>
8493 #include <sys/device.h>
8494 #include <sys/audioio.h>
8495 #include <dev/audio_if.h>
8496 #endif
8497
8498 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8499 int
8500 audioprint(void *aux, const char *pnp)
8501 {
8502 struct audio_attach_args *arg;
8503 const char *type;
8504
8505 if (pnp != NULL) {
8506 arg = aux;
8507 switch (arg->type) {
8508 case AUDIODEV_TYPE_AUDIO:
8509 type = "audio";
8510 break;
8511 case AUDIODEV_TYPE_MIDI:
8512 type = "midi";
8513 break;
8514 case AUDIODEV_TYPE_OPL:
8515 type = "opl";
8516 break;
8517 case AUDIODEV_TYPE_MPU:
8518 type = "mpu";
8519 break;
8520 default:
8521 panic("audioprint: unknown type %d", arg->type);
8522 }
8523 aprint_normal("%s at %s", type, pnp);
8524 }
8525 return UNCONF;
8526 }
8527
8528 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8529
8530 #ifdef _MODULE
8531
8532 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8533
8534 #include "ioconf.c"
8535
8536 #endif
8537
8538 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8539
8540 static int
8541 audio_modcmd(modcmd_t cmd, void *arg)
8542 {
8543 int error = 0;
8544
8545 #ifdef _MODULE
8546 switch (cmd) {
8547 case MODULE_CMD_INIT:
8548 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8549 &audio_cdevsw, &audio_cmajor);
8550 if (error)
8551 break;
8552
8553 error = config_init_component(cfdriver_ioconf_audio,
8554 cfattach_ioconf_audio, cfdata_ioconf_audio);
8555 if (error) {
8556 devsw_detach(NULL, &audio_cdevsw);
8557 }
8558 break;
8559 case MODULE_CMD_FINI:
8560 devsw_detach(NULL, &audio_cdevsw);
8561 error = config_fini_component(cfdriver_ioconf_audio,
8562 cfattach_ioconf_audio, cfdata_ioconf_audio);
8563 if (error)
8564 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8565 &audio_cdevsw, &audio_cmajor);
8566 break;
8567 default:
8568 error = ENOTTY;
8569 break;
8570 }
8571 #endif
8572
8573 return error;
8574 }
8575