audio.c revision 1.106 1 /* $NetBSD: audio.c,v 1.106 2021/08/07 16:19:09 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - - Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.106 2021/08/07 16:19:09 thorpej Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #include <sys/types.h>
151 #include <sys/param.h>
152 #include <sys/atomic.h>
153 #include <sys/audioio.h>
154 #include <sys/conf.h>
155 #include <sys/cpu.h>
156 #include <sys/device.h>
157 #include <sys/fcntl.h>
158 #include <sys/file.h>
159 #include <sys/filedesc.h>
160 #include <sys/intr.h>
161 #include <sys/ioctl.h>
162 #include <sys/kauth.h>
163 #include <sys/kernel.h>
164 #include <sys/kmem.h>
165 #include <sys/malloc.h>
166 #include <sys/mman.h>
167 #include <sys/module.h>
168 #include <sys/poll.h>
169 #include <sys/proc.h>
170 #include <sys/queue.h>
171 #include <sys/select.h>
172 #include <sys/signalvar.h>
173 #include <sys/stat.h>
174 #include <sys/sysctl.h>
175 #include <sys/systm.h>
176 #include <sys/syslog.h>
177 #include <sys/vnode.h>
178
179 #include <dev/audio/audio_if.h>
180 #include <dev/audio/audiovar.h>
181 #include <dev/audio/audiodef.h>
182 #include <dev/audio/linear.h>
183 #include <dev/audio/mulaw.h>
184
185 #include <machine/endian.h>
186
187 #include <uvm/uvm_extern.h>
188
189 #include "ioconf.h"
190
191 /*
192 * 0: No debug logs
193 * 1: action changes like open/close/set_format...
194 * 2: + normal operations like read/write/ioctl...
195 * 3: + TRACEs except interrupt
196 * 4: + TRACEs including interrupt
197 */
198 //#define AUDIO_DEBUG 1
199
200 #if defined(AUDIO_DEBUG)
201
202 int audiodebug = AUDIO_DEBUG;
203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
204 const char *, va_list);
205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
206 __printflike(3, 4);
207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
208 __printflike(3, 4);
209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
210 __printflike(3, 4);
211
212 /* XXX sloppy memory logger */
213 static void audio_mlog_init(void);
214 static void audio_mlog_free(void);
215 static void audio_mlog_softintr(void *);
216 extern void audio_mlog_flush(void);
217 extern void audio_mlog_printf(const char *, ...);
218
219 static int mlog_refs; /* reference counter */
220 static char *mlog_buf[2]; /* double buffer */
221 static int mlog_buflen; /* buffer length */
222 static int mlog_used; /* used length */
223 static int mlog_full; /* number of dropped lines by buffer full */
224 static int mlog_drop; /* number of dropped lines by busy */
225 static volatile uint32_t mlog_inuse; /* in-use */
226 static int mlog_wpage; /* active page */
227 static void *mlog_sih; /* softint handle */
228
229 static void
230 audio_mlog_init(void)
231 {
232 mlog_refs++;
233 if (mlog_refs > 1)
234 return;
235 mlog_buflen = 4096;
236 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
237 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
238 mlog_used = 0;
239 mlog_full = 0;
240 mlog_drop = 0;
241 mlog_inuse = 0;
242 mlog_wpage = 0;
243 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
244 if (mlog_sih == NULL)
245 printf("%s: softint_establish failed\n", __func__);
246 }
247
248 static void
249 audio_mlog_free(void)
250 {
251 mlog_refs--;
252 if (mlog_refs > 0)
253 return;
254
255 audio_mlog_flush();
256 if (mlog_sih)
257 softint_disestablish(mlog_sih);
258 kmem_free(mlog_buf[0], mlog_buflen);
259 kmem_free(mlog_buf[1], mlog_buflen);
260 }
261
262 /*
263 * Flush memory buffer.
264 * It must not be called from hardware interrupt context.
265 */
266 void
267 audio_mlog_flush(void)
268 {
269 if (mlog_refs == 0)
270 return;
271
272 /* Nothing to do if already in use ? */
273 if (atomic_swap_32(&mlog_inuse, 1) == 1)
274 return;
275
276 int rpage = mlog_wpage;
277 mlog_wpage ^= 1;
278 mlog_buf[mlog_wpage][0] = '\0';
279 mlog_used = 0;
280
281 atomic_swap_32(&mlog_inuse, 0);
282
283 if (mlog_buf[rpage][0] != '\0') {
284 printf("%s", mlog_buf[rpage]);
285 if (mlog_drop > 0)
286 printf("mlog_drop %d\n", mlog_drop);
287 if (mlog_full > 0)
288 printf("mlog_full %d\n", mlog_full);
289 }
290 mlog_full = 0;
291 mlog_drop = 0;
292 }
293
294 static void
295 audio_mlog_softintr(void *cookie)
296 {
297 audio_mlog_flush();
298 }
299
300 void
301 audio_mlog_printf(const char *fmt, ...)
302 {
303 int len;
304 va_list ap;
305
306 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
307 /* already inuse */
308 mlog_drop++;
309 return;
310 }
311
312 va_start(ap, fmt);
313 len = vsnprintf(
314 mlog_buf[mlog_wpage] + mlog_used,
315 mlog_buflen - mlog_used,
316 fmt, ap);
317 va_end(ap);
318
319 mlog_used += len;
320 if (mlog_buflen - mlog_used <= 1) {
321 mlog_full++;
322 }
323
324 atomic_swap_32(&mlog_inuse, 0);
325
326 if (mlog_sih)
327 softint_schedule(mlog_sih);
328 }
329
330 /* trace functions */
331 static void
332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
333 const char *fmt, va_list ap)
334 {
335 char buf[256];
336 int n;
337
338 n = 0;
339 buf[0] = '\0';
340 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
341 funcname, device_unit(sc->sc_dev), header);
342 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
343
344 if (cpu_intr_p()) {
345 audio_mlog_printf("%s\n", buf);
346 } else {
347 audio_mlog_flush();
348 printf("%s\n", buf);
349 }
350 }
351
352 static void
353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
354 {
355 va_list ap;
356
357 va_start(ap, fmt);
358 audio_vtrace(sc, funcname, "", fmt, ap);
359 va_end(ap);
360 }
361
362 static void
363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
364 {
365 char hdr[16];
366 va_list ap;
367
368 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
369 va_start(ap, fmt);
370 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
371 va_end(ap);
372 }
373
374 static void
375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
376 {
377 char hdr[32];
378 char phdr[16], rhdr[16];
379 va_list ap;
380
381 phdr[0] = '\0';
382 rhdr[0] = '\0';
383 if (file->ptrack)
384 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
385 if (file->rtrack)
386 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
387 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
388
389 va_start(ap, fmt);
390 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
391 va_end(ap);
392 }
393
394 #define DPRINTF(n, fmt...) do { \
395 if (audiodebug >= (n)) { \
396 audio_mlog_flush(); \
397 printf(fmt); \
398 } \
399 } while (0)
400 #define TRACE(n, fmt...) do { \
401 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
402 } while (0)
403 #define TRACET(n, t, fmt...) do { \
404 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
405 } while (0)
406 #define TRACEF(n, f, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
408 } while (0)
409
410 struct audio_track_debugbuf {
411 char usrbuf[32];
412 char codec[32];
413 char chvol[32];
414 char chmix[32];
415 char freq[32];
416 char outbuf[32];
417 };
418
419 static void
420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
421 {
422
423 memset(buf, 0, sizeof(*buf));
424
425 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
426 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
427 if (track->freq.filter)
428 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
429 track->freq.srcbuf.head,
430 track->freq.srcbuf.used,
431 track->freq.srcbuf.capacity);
432 if (track->chmix.filter)
433 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
434 track->chmix.srcbuf.used);
435 if (track->chvol.filter)
436 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
437 track->chvol.srcbuf.used);
438 if (track->codec.filter)
439 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
440 track->codec.srcbuf.used);
441 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
442 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
443 }
444 #else
445 #define DPRINTF(n, fmt...) do { } while (0)
446 #define TRACE(n, fmt, ...) do { } while (0)
447 #define TRACET(n, t, fmt, ...) do { } while (0)
448 #define TRACEF(n, f, fmt, ...) do { } while (0)
449 #endif
450
451 #define SPECIFIED(x) ((x) != ~0)
452 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
453
454 /*
455 * Default hardware blocksize in msec.
456 *
457 * We use 10 msec for most modern platforms. This period is good enough to
458 * play audio and video synchronizely.
459 * In contrast, for very old platforms, this is usually too short and too
460 * severe. Also such platforms usually can not play video confortably, so
461 * it's not so important to make the blocksize shorter. If the platform
462 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
463 * uses this instead.
464 *
465 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
466 * configuration file if you wish.
467 */
468 #if !defined(AUDIO_BLK_MS)
469 # if defined(__AUDIO_BLK_MS)
470 # define AUDIO_BLK_MS __AUDIO_BLK_MS
471 # else
472 # define AUDIO_BLK_MS (10)
473 # endif
474 #endif
475
476 /* Device timeout in msec */
477 #define AUDIO_TIMEOUT (3000)
478
479 /* #define AUDIO_PM_IDLE */
480 #ifdef AUDIO_PM_IDLE
481 int audio_idle_timeout = 30;
482 #endif
483
484 /* Number of elements of async mixer's pid */
485 #define AM_CAPACITY (4)
486
487 struct portname {
488 const char *name;
489 int mask;
490 };
491
492 static int audiomatch(device_t, cfdata_t, void *);
493 static void audioattach(device_t, device_t, void *);
494 static int audiodetach(device_t, int);
495 static int audioactivate(device_t, enum devact);
496 static void audiochilddet(device_t, device_t);
497 static int audiorescan(device_t, const char *, const int *);
498
499 static int audio_modcmd(modcmd_t, void *);
500
501 #ifdef AUDIO_PM_IDLE
502 static void audio_idle(void *);
503 static void audio_activity(device_t, devactive_t);
504 #endif
505
506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
507 static bool audio_resume(device_t dv, const pmf_qual_t *);
508 static void audio_volume_down(device_t);
509 static void audio_volume_up(device_t);
510 static void audio_volume_toggle(device_t);
511
512 static void audio_mixer_capture(struct audio_softc *);
513 static void audio_mixer_restore(struct audio_softc *);
514
515 static void audio_softintr_rd(void *);
516 static void audio_softintr_wr(void *);
517
518 static void audio_printf(struct audio_softc *, const char *, ...)
519 __printflike(2, 3);
520 static int audio_exlock_mutex_enter(struct audio_softc *);
521 static void audio_exlock_mutex_exit(struct audio_softc *);
522 static int audio_exlock_enter(struct audio_softc *);
523 static void audio_exlock_exit(struct audio_softc *);
524 static void audio_sc_acquire_foropen(struct audio_softc *, struct psref *);
525 static struct audio_softc *audio_sc_acquire_fromfile(audio_file_t *,
526 struct psref *);
527 static void audio_sc_release(struct audio_softc *, struct psref *);
528 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
529
530 static int audioclose(struct file *);
531 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
532 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
533 static int audioioctl(struct file *, u_long, void *);
534 static int audiopoll(struct file *, int);
535 static int audiokqfilter(struct file *, struct knote *);
536 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
537 struct uvm_object **, int *);
538 static int audiostat(struct file *, struct stat *);
539
540 static void filt_audiowrite_detach(struct knote *);
541 static int filt_audiowrite_event(struct knote *, long);
542 static void filt_audioread_detach(struct knote *);
543 static int filt_audioread_event(struct knote *, long);
544
545 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
546 audio_file_t **);
547 static int audio_close(struct audio_softc *, audio_file_t *);
548 static void audio_unlink(struct audio_softc *, audio_file_t *);
549 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
550 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
551 static void audio_file_clear(struct audio_softc *, audio_file_t *);
552 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
553 struct lwp *, audio_file_t *);
554 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
555 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
556 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
557 struct uvm_object **, int *, audio_file_t *);
558
559 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
560
561 static void audio_pintr(void *);
562 static void audio_rintr(void *);
563
564 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
565
566 static __inline int audio_track_readablebytes(const audio_track_t *);
567 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
568 const struct audio_info *);
569 static int audio_track_setinfo_check(audio_track_t *,
570 audio_format2_t *, const struct audio_prinfo *);
571 static void audio_track_setinfo_water(audio_track_t *,
572 const struct audio_info *);
573 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
574 struct audio_info *);
575 static int audio_hw_set_format(struct audio_softc *, int,
576 const audio_format2_t *, const audio_format2_t *,
577 audio_filter_reg_t *, audio_filter_reg_t *);
578 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
579 audio_file_t *);
580 static bool audio_can_playback(struct audio_softc *);
581 static bool audio_can_capture(struct audio_softc *);
582 static int audio_check_params(audio_format2_t *);
583 static int audio_mixers_init(struct audio_softc *sc, int,
584 const audio_format2_t *, const audio_format2_t *,
585 const audio_filter_reg_t *, const audio_filter_reg_t *);
586 static int audio_select_freq(const struct audio_format *);
587 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
588 static int audio_hw_validate_format(struct audio_softc *, int,
589 const audio_format2_t *);
590 static int audio_mixers_set_format(struct audio_softc *,
591 const struct audio_info *);
592 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
593 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
594 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
595 #if defined(AUDIO_DEBUG)
596 static int audio_sysctl_debug(SYSCTLFN_PROTO);
597 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
598 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
599 #endif
600
601 static void *audio_realloc(void *, size_t);
602 static int audio_realloc_usrbuf(audio_track_t *, int);
603 static void audio_free_usrbuf(audio_track_t *);
604
605 static audio_track_t *audio_track_create(struct audio_softc *,
606 audio_trackmixer_t *);
607 static void audio_track_destroy(audio_track_t *);
608 static audio_filter_t audio_track_get_codec(audio_track_t *,
609 const audio_format2_t *, const audio_format2_t *);
610 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
611 static void audio_track_play(audio_track_t *);
612 static int audio_track_drain(struct audio_softc *, audio_track_t *);
613 static void audio_track_record(audio_track_t *);
614 static void audio_track_clear(struct audio_softc *, audio_track_t *);
615
616 static int audio_mixer_init(struct audio_softc *, int,
617 const audio_format2_t *, const audio_filter_reg_t *);
618 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
619 static void audio_pmixer_start(struct audio_softc *, bool);
620 static void audio_pmixer_process(struct audio_softc *);
621 static void audio_pmixer_agc(audio_trackmixer_t *, int);
622 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
623 static void audio_pmixer_output(struct audio_softc *);
624 static int audio_pmixer_halt(struct audio_softc *);
625 static void audio_rmixer_start(struct audio_softc *);
626 static void audio_rmixer_process(struct audio_softc *);
627 static void audio_rmixer_input(struct audio_softc *);
628 static int audio_rmixer_halt(struct audio_softc *);
629
630 static void mixer_init(struct audio_softc *);
631 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
632 static int mixer_close(struct audio_softc *, audio_file_t *);
633 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
634 static void mixer_async_add(struct audio_softc *, pid_t);
635 static void mixer_async_remove(struct audio_softc *, pid_t);
636 static void mixer_signal(struct audio_softc *);
637
638 static int au_portof(struct audio_softc *, char *, int);
639
640 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
641 mixer_devinfo_t *, const struct portname *);
642 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
643 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
644 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
645 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
646 u_int *, u_char *);
647 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
648 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
649 static int au_set_monitor_gain(struct audio_softc *, int);
650 static int au_get_monitor_gain(struct audio_softc *);
651 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
652 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
653
654 static __inline struct audio_params
655 format2_to_params(const audio_format2_t *f2)
656 {
657 audio_params_t p;
658
659 /* validbits/precision <-> precision/stride */
660 p.sample_rate = f2->sample_rate;
661 p.channels = f2->channels;
662 p.encoding = f2->encoding;
663 p.validbits = f2->precision;
664 p.precision = f2->stride;
665 return p;
666 }
667
668 static __inline audio_format2_t
669 params_to_format2(const struct audio_params *p)
670 {
671 audio_format2_t f2;
672
673 /* precision/stride <-> validbits/precision */
674 f2.sample_rate = p->sample_rate;
675 f2.channels = p->channels;
676 f2.encoding = p->encoding;
677 f2.precision = p->validbits;
678 f2.stride = p->precision;
679 return f2;
680 }
681
682 /* Return true if this track is a playback track. */
683 static __inline bool
684 audio_track_is_playback(const audio_track_t *track)
685 {
686
687 return ((track->mode & AUMODE_PLAY) != 0);
688 }
689
690 /* Return true if this track is a recording track. */
691 static __inline bool
692 audio_track_is_record(const audio_track_t *track)
693 {
694
695 return ((track->mode & AUMODE_RECORD) != 0);
696 }
697
698 #if 0 /* XXX Not used yet */
699 /*
700 * Convert 0..255 volume used in userland to internal presentation 0..256.
701 */
702 static __inline u_int
703 audio_volume_to_inner(u_int v)
704 {
705
706 return v < 127 ? v : v + 1;
707 }
708
709 /*
710 * Convert 0..256 internal presentation to 0..255 volume used in userland.
711 */
712 static __inline u_int
713 audio_volume_to_outer(u_int v)
714 {
715
716 return v < 127 ? v : v - 1;
717 }
718 #endif /* 0 */
719
720 static dev_type_open(audioopen);
721 /* XXXMRG use more dev_type_xxx */
722
723 const struct cdevsw audio_cdevsw = {
724 .d_open = audioopen,
725 .d_close = noclose,
726 .d_read = noread,
727 .d_write = nowrite,
728 .d_ioctl = noioctl,
729 .d_stop = nostop,
730 .d_tty = notty,
731 .d_poll = nopoll,
732 .d_mmap = nommap,
733 .d_kqfilter = nokqfilter,
734 .d_discard = nodiscard,
735 .d_flag = D_OTHER | D_MPSAFE
736 };
737
738 const struct fileops audio_fileops = {
739 .fo_name = "audio",
740 .fo_read = audioread,
741 .fo_write = audiowrite,
742 .fo_ioctl = audioioctl,
743 .fo_fcntl = fnullop_fcntl,
744 .fo_stat = audiostat,
745 .fo_poll = audiopoll,
746 .fo_close = audioclose,
747 .fo_mmap = audiommap,
748 .fo_kqfilter = audiokqfilter,
749 .fo_restart = fnullop_restart
750 };
751
752 /* The default audio mode: 8 kHz mono mu-law */
753 static const struct audio_params audio_default = {
754 .sample_rate = 8000,
755 .encoding = AUDIO_ENCODING_ULAW,
756 .precision = 8,
757 .validbits = 8,
758 .channels = 1,
759 };
760
761 static const char *encoding_names[] = {
762 "none",
763 AudioEmulaw,
764 AudioEalaw,
765 "pcm16",
766 "pcm8",
767 AudioEadpcm,
768 AudioEslinear_le,
769 AudioEslinear_be,
770 AudioEulinear_le,
771 AudioEulinear_be,
772 AudioEslinear,
773 AudioEulinear,
774 AudioEmpeg_l1_stream,
775 AudioEmpeg_l1_packets,
776 AudioEmpeg_l1_system,
777 AudioEmpeg_l2_stream,
778 AudioEmpeg_l2_packets,
779 AudioEmpeg_l2_system,
780 AudioEac3,
781 };
782
783 /*
784 * Returns encoding name corresponding to AUDIO_ENCODING_*.
785 * Note that it may return a local buffer because it is mainly for debugging.
786 */
787 const char *
788 audio_encoding_name(int encoding)
789 {
790 static char buf[16];
791
792 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
793 return encoding_names[encoding];
794 } else {
795 snprintf(buf, sizeof(buf), "enc=%d", encoding);
796 return buf;
797 }
798 }
799
800 /*
801 * Supported encodings used by AUDIO_GETENC.
802 * index and flags are set by code.
803 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
804 */
805 static const audio_encoding_t audio_encodings[] = {
806 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
807 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
808 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
809 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
810 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
811 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
812 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
813 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
814 #if defined(AUDIO_SUPPORT_LINEAR24)
815 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
816 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
817 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
818 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
819 #endif
820 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
821 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
822 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
823 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
824 };
825
826 static const struct portname itable[] = {
827 { AudioNmicrophone, AUDIO_MICROPHONE },
828 { AudioNline, AUDIO_LINE_IN },
829 { AudioNcd, AUDIO_CD },
830 { 0, 0 }
831 };
832 static const struct portname otable[] = {
833 { AudioNspeaker, AUDIO_SPEAKER },
834 { AudioNheadphone, AUDIO_HEADPHONE },
835 { AudioNline, AUDIO_LINE_OUT },
836 { 0, 0 }
837 };
838
839 static struct psref_class *audio_psref_class __read_mostly;
840
841 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
842 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
843 audiochilddet, DVF_DETACH_SHUTDOWN);
844
845 static int
846 audiomatch(device_t parent, cfdata_t match, void *aux)
847 {
848 struct audio_attach_args *sa;
849
850 sa = aux;
851 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
852 __func__, sa->type, sa, sa->hwif);
853 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
854 }
855
856 static void
857 audioattach(device_t parent, device_t self, void *aux)
858 {
859 struct audio_softc *sc;
860 struct audio_attach_args *sa;
861 const struct audio_hw_if *hw_if;
862 audio_format2_t phwfmt;
863 audio_format2_t rhwfmt;
864 audio_filter_reg_t pfil;
865 audio_filter_reg_t rfil;
866 const struct sysctlnode *node;
867 void *hdlp;
868 bool has_playback;
869 bool has_capture;
870 bool has_indep;
871 bool has_fulldup;
872 int mode;
873 int error;
874
875 sc = device_private(self);
876 sc->sc_dev = self;
877 sa = (struct audio_attach_args *)aux;
878 hw_if = sa->hwif;
879 hdlp = sa->hdl;
880
881 if (hw_if == NULL) {
882 panic("audioattach: missing hw_if method");
883 }
884 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
885 aprint_error(": missing mandatory method\n");
886 return;
887 }
888
889 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
890 sc->sc_props = hw_if->get_props(hdlp);
891
892 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
893 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
894 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
895 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
896
897 #ifdef DIAGNOSTIC
898 if (hw_if->query_format == NULL ||
899 hw_if->set_format == NULL ||
900 hw_if->getdev == NULL ||
901 hw_if->set_port == NULL ||
902 hw_if->get_port == NULL ||
903 hw_if->query_devinfo == NULL) {
904 aprint_error(": missing mandatory method\n");
905 return;
906 }
907 if (has_playback) {
908 if ((hw_if->start_output == NULL &&
909 hw_if->trigger_output == NULL) ||
910 hw_if->halt_output == NULL) {
911 aprint_error(": missing playback method\n");
912 }
913 }
914 if (has_capture) {
915 if ((hw_if->start_input == NULL &&
916 hw_if->trigger_input == NULL) ||
917 hw_if->halt_input == NULL) {
918 aprint_error(": missing capture method\n");
919 }
920 }
921 #endif
922
923 sc->hw_if = hw_if;
924 sc->hw_hdl = hdlp;
925 sc->hw_dev = parent;
926
927 sc->sc_exlock = 1;
928 sc->sc_blk_ms = AUDIO_BLK_MS;
929 SLIST_INIT(&sc->sc_files);
930 cv_init(&sc->sc_exlockcv, "audiolk");
931 sc->sc_am_capacity = 0;
932 sc->sc_am_used = 0;
933 sc->sc_am = NULL;
934
935 /* MMAP is now supported by upper layer. */
936 sc->sc_props |= AUDIO_PROP_MMAP;
937
938 KASSERT(has_playback || has_capture);
939 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
940 if (!has_playback || !has_capture) {
941 KASSERT(!has_indep);
942 KASSERT(!has_fulldup);
943 }
944
945 mode = 0;
946 if (has_playback) {
947 aprint_normal(": playback");
948 mode |= AUMODE_PLAY;
949 }
950 if (has_capture) {
951 aprint_normal("%c capture", has_playback ? ',' : ':');
952 mode |= AUMODE_RECORD;
953 }
954 if (has_playback && has_capture) {
955 if (has_fulldup)
956 aprint_normal(", full duplex");
957 else
958 aprint_normal(", half duplex");
959
960 if (has_indep)
961 aprint_normal(", independent");
962 }
963
964 aprint_naive("\n");
965 aprint_normal("\n");
966
967 /* probe hw params */
968 memset(&phwfmt, 0, sizeof(phwfmt));
969 memset(&rhwfmt, 0, sizeof(rhwfmt));
970 memset(&pfil, 0, sizeof(pfil));
971 memset(&rfil, 0, sizeof(rfil));
972 if (has_indep) {
973 int perror, rerror;
974
975 /* On independent devices, probe separately. */
976 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
977 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
978 if (perror && rerror) {
979 aprint_error_dev(self,
980 "audio_hw_probe failed: perror=%d, rerror=%d\n",
981 perror, rerror);
982 goto bad;
983 }
984 if (perror) {
985 mode &= ~AUMODE_PLAY;
986 aprint_error_dev(self, "audio_hw_probe failed: "
987 "errno=%d, playback disabled\n", perror);
988 }
989 if (rerror) {
990 mode &= ~AUMODE_RECORD;
991 aprint_error_dev(self, "audio_hw_probe failed: "
992 "errno=%d, capture disabled\n", rerror);
993 }
994 } else {
995 /*
996 * On non independent devices or uni-directional devices,
997 * probe once (simultaneously).
998 */
999 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
1000 error = audio_hw_probe(sc, fmt, mode);
1001 if (error) {
1002 aprint_error_dev(self,
1003 "audio_hw_probe failed: errno=%d\n", error);
1004 goto bad;
1005 }
1006 if (has_playback && has_capture)
1007 rhwfmt = phwfmt;
1008 }
1009
1010 /* Init hardware. */
1011 /* hw_probe() also validates [pr]hwfmt. */
1012 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1013 if (error) {
1014 aprint_error_dev(self,
1015 "audio_hw_set_format failed: errno=%d\n", error);
1016 goto bad;
1017 }
1018
1019 /*
1020 * Init track mixers. If at least one direction is available on
1021 * attach time, we assume a success.
1022 */
1023 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1024 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1025 aprint_error_dev(self,
1026 "audio_mixers_init failed: errno=%d\n", error);
1027 goto bad;
1028 }
1029
1030 sc->sc_psz = pserialize_create();
1031 psref_target_init(&sc->sc_psref, audio_psref_class);
1032
1033 selinit(&sc->sc_wsel);
1034 selinit(&sc->sc_rsel);
1035
1036 /* Initial parameter of /dev/sound */
1037 sc->sc_sound_pparams = params_to_format2(&audio_default);
1038 sc->sc_sound_rparams = params_to_format2(&audio_default);
1039 sc->sc_sound_ppause = false;
1040 sc->sc_sound_rpause = false;
1041
1042 /* XXX TODO: consider about sc_ai */
1043
1044 mixer_init(sc);
1045 TRACE(2, "inputs ports=0x%x, input master=%d, "
1046 "output ports=0x%x, output master=%d",
1047 sc->sc_inports.allports, sc->sc_inports.master,
1048 sc->sc_outports.allports, sc->sc_outports.master);
1049
1050 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1051 0,
1052 CTLTYPE_NODE, device_xname(sc->sc_dev),
1053 SYSCTL_DESCR("audio test"),
1054 NULL, 0,
1055 NULL, 0,
1056 CTL_HW,
1057 CTL_CREATE, CTL_EOL);
1058
1059 if (node != NULL) {
1060 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1061 CTLFLAG_READWRITE,
1062 CTLTYPE_INT, "blk_ms",
1063 SYSCTL_DESCR("blocksize in msec"),
1064 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1065 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1066
1067 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1068 CTLFLAG_READWRITE,
1069 CTLTYPE_BOOL, "multiuser",
1070 SYSCTL_DESCR("allow multiple user access"),
1071 audio_sysctl_multiuser, 0, (void *)sc, 0,
1072 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1073
1074 #if defined(AUDIO_DEBUG)
1075 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1076 CTLFLAG_READWRITE,
1077 CTLTYPE_INT, "debug",
1078 SYSCTL_DESCR("debug level (0..4)"),
1079 audio_sysctl_debug, 0, (void *)sc, 0,
1080 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1081 #endif
1082 }
1083
1084 #ifdef AUDIO_PM_IDLE
1085 callout_init(&sc->sc_idle_counter, 0);
1086 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1087 #endif
1088
1089 if (!pmf_device_register(self, audio_suspend, audio_resume))
1090 aprint_error_dev(self, "couldn't establish power handler\n");
1091 #ifdef AUDIO_PM_IDLE
1092 if (!device_active_register(self, audio_activity))
1093 aprint_error_dev(self, "couldn't register activity handler\n");
1094 #endif
1095
1096 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1097 audio_volume_down, true))
1098 aprint_error_dev(self, "couldn't add volume down handler\n");
1099 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1100 audio_volume_up, true))
1101 aprint_error_dev(self, "couldn't add volume up handler\n");
1102 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1103 audio_volume_toggle, true))
1104 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1105
1106 #ifdef AUDIO_PM_IDLE
1107 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1108 #endif
1109
1110 #if defined(AUDIO_DEBUG)
1111 audio_mlog_init();
1112 #endif
1113
1114 audiorescan(self, NULL, NULL);
1115 sc->sc_exlock = 0;
1116 return;
1117
1118 bad:
1119 /* Clearing hw_if means that device is attached but disabled. */
1120 sc->hw_if = NULL;
1121 sc->sc_exlock = 0;
1122 aprint_error_dev(sc->sc_dev, "disabled\n");
1123 return;
1124 }
1125
1126 /*
1127 * Initialize hardware mixer.
1128 * This function is called from audioattach().
1129 */
1130 static void
1131 mixer_init(struct audio_softc *sc)
1132 {
1133 mixer_devinfo_t mi;
1134 int iclass, mclass, oclass, rclass;
1135 int record_master_found, record_source_found;
1136
1137 iclass = mclass = oclass = rclass = -1;
1138 sc->sc_inports.index = -1;
1139 sc->sc_inports.master = -1;
1140 sc->sc_inports.nports = 0;
1141 sc->sc_inports.isenum = false;
1142 sc->sc_inports.allports = 0;
1143 sc->sc_inports.isdual = false;
1144 sc->sc_inports.mixerout = -1;
1145 sc->sc_inports.cur_port = -1;
1146 sc->sc_outports.index = -1;
1147 sc->sc_outports.master = -1;
1148 sc->sc_outports.nports = 0;
1149 sc->sc_outports.isenum = false;
1150 sc->sc_outports.allports = 0;
1151 sc->sc_outports.isdual = false;
1152 sc->sc_outports.mixerout = -1;
1153 sc->sc_outports.cur_port = -1;
1154 sc->sc_monitor_port = -1;
1155 /*
1156 * Read through the underlying driver's list, picking out the class
1157 * names from the mixer descriptions. We'll need them to decode the
1158 * mixer descriptions on the next pass through the loop.
1159 */
1160 mutex_enter(sc->sc_lock);
1161 for(mi.index = 0; ; mi.index++) {
1162 if (audio_query_devinfo(sc, &mi) != 0)
1163 break;
1164 /*
1165 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1166 * All the other types describe an actual mixer.
1167 */
1168 if (mi.type == AUDIO_MIXER_CLASS) {
1169 if (strcmp(mi.label.name, AudioCinputs) == 0)
1170 iclass = mi.mixer_class;
1171 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1172 mclass = mi.mixer_class;
1173 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1174 oclass = mi.mixer_class;
1175 if (strcmp(mi.label.name, AudioCrecord) == 0)
1176 rclass = mi.mixer_class;
1177 }
1178 }
1179 mutex_exit(sc->sc_lock);
1180
1181 /* Allocate save area. Ensure non-zero allocation. */
1182 sc->sc_nmixer_states = mi.index;
1183 sc->sc_mixer_state = kmem_zalloc(sizeof(sc->sc_mixer_state[0]) *
1184 (sc->sc_nmixer_states + 1), KM_SLEEP);
1185
1186 /*
1187 * This is where we assign each control in the "audio" model, to the
1188 * underlying "mixer" control. We walk through the whole list once,
1189 * assigning likely candidates as we come across them.
1190 */
1191 record_master_found = 0;
1192 record_source_found = 0;
1193 mutex_enter(sc->sc_lock);
1194 for(mi.index = 0; ; mi.index++) {
1195 if (audio_query_devinfo(sc, &mi) != 0)
1196 break;
1197 KASSERT(mi.index < sc->sc_nmixer_states);
1198 if (mi.type == AUDIO_MIXER_CLASS)
1199 continue;
1200 if (mi.mixer_class == iclass) {
1201 /*
1202 * AudioCinputs is only a fallback, when we don't
1203 * find what we're looking for in AudioCrecord, so
1204 * check the flags before accepting one of these.
1205 */
1206 if (strcmp(mi.label.name, AudioNmaster) == 0
1207 && record_master_found == 0)
1208 sc->sc_inports.master = mi.index;
1209 if (strcmp(mi.label.name, AudioNsource) == 0
1210 && record_source_found == 0) {
1211 if (mi.type == AUDIO_MIXER_ENUM) {
1212 int i;
1213 for(i = 0; i < mi.un.e.num_mem; i++)
1214 if (strcmp(mi.un.e.member[i].label.name,
1215 AudioNmixerout) == 0)
1216 sc->sc_inports.mixerout =
1217 mi.un.e.member[i].ord;
1218 }
1219 au_setup_ports(sc, &sc->sc_inports, &mi,
1220 itable);
1221 }
1222 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1223 sc->sc_outports.master == -1)
1224 sc->sc_outports.master = mi.index;
1225 } else if (mi.mixer_class == mclass) {
1226 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1227 sc->sc_monitor_port = mi.index;
1228 } else if (mi.mixer_class == oclass) {
1229 if (strcmp(mi.label.name, AudioNmaster) == 0)
1230 sc->sc_outports.master = mi.index;
1231 if (strcmp(mi.label.name, AudioNselect) == 0)
1232 au_setup_ports(sc, &sc->sc_outports, &mi,
1233 otable);
1234 } else if (mi.mixer_class == rclass) {
1235 /*
1236 * These are the preferred mixers for the audio record
1237 * controls, so set the flags here, but don't check.
1238 */
1239 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1240 sc->sc_inports.master = mi.index;
1241 record_master_found = 1;
1242 }
1243 #if 1 /* Deprecated. Use AudioNmaster. */
1244 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1245 sc->sc_inports.master = mi.index;
1246 record_master_found = 1;
1247 }
1248 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1249 sc->sc_inports.master = mi.index;
1250 record_master_found = 1;
1251 }
1252 #endif
1253 if (strcmp(mi.label.name, AudioNsource) == 0) {
1254 if (mi.type == AUDIO_MIXER_ENUM) {
1255 int i;
1256 for(i = 0; i < mi.un.e.num_mem; i++)
1257 if (strcmp(mi.un.e.member[i].label.name,
1258 AudioNmixerout) == 0)
1259 sc->sc_inports.mixerout =
1260 mi.un.e.member[i].ord;
1261 }
1262 au_setup_ports(sc, &sc->sc_inports, &mi,
1263 itable);
1264 record_source_found = 1;
1265 }
1266 }
1267 }
1268 mutex_exit(sc->sc_lock);
1269 }
1270
1271 static int
1272 audioactivate(device_t self, enum devact act)
1273 {
1274 struct audio_softc *sc = device_private(self);
1275
1276 switch (act) {
1277 case DVACT_DEACTIVATE:
1278 mutex_enter(sc->sc_lock);
1279 sc->sc_dying = true;
1280 cv_broadcast(&sc->sc_exlockcv);
1281 mutex_exit(sc->sc_lock);
1282 return 0;
1283 default:
1284 return EOPNOTSUPP;
1285 }
1286 }
1287
1288 static int
1289 audiodetach(device_t self, int flags)
1290 {
1291 struct audio_softc *sc;
1292 struct audio_file *file;
1293 int error;
1294
1295 sc = device_private(self);
1296 TRACE(2, "flags=%d", flags);
1297
1298 /* device is not initialized */
1299 if (sc->hw_if == NULL)
1300 return 0;
1301
1302 /* Start draining existing accessors of the device. */
1303 error = config_detach_children(self, flags);
1304 if (error)
1305 return error;
1306
1307 /*
1308 * This waits currently running sysctls to finish if exists.
1309 * After this, no more new sysctls will come.
1310 */
1311 sysctl_teardown(&sc->sc_log);
1312
1313 mutex_enter(sc->sc_lock);
1314 sc->sc_dying = true;
1315 cv_broadcast(&sc->sc_exlockcv);
1316 if (sc->sc_pmixer)
1317 cv_broadcast(&sc->sc_pmixer->outcv);
1318 if (sc->sc_rmixer)
1319 cv_broadcast(&sc->sc_rmixer->outcv);
1320
1321 /* Prevent new users */
1322 SLIST_FOREACH(file, &sc->sc_files, entry) {
1323 atomic_store_relaxed(&file->dying, true);
1324 }
1325
1326 /*
1327 * Wait for existing users to drain.
1328 * - pserialize_perform waits for all pserialize_read sections on
1329 * all CPUs; after this, no more new psref_acquire can happen.
1330 * - psref_target_destroy waits for all extant acquired psrefs to
1331 * be psref_released.
1332 */
1333 pserialize_perform(sc->sc_psz);
1334 mutex_exit(sc->sc_lock);
1335 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1336
1337 /*
1338 * We are now guaranteed that there are no calls to audio fileops
1339 * that hold sc, and any new calls with files that were for sc will
1340 * fail. Thus, we now have exclusive access to the softc.
1341 */
1342 sc->sc_exlock = 1;
1343
1344 /*
1345 * Clean up all open instances.
1346 */
1347 mutex_enter(sc->sc_lock);
1348 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1349 mutex_enter(sc->sc_intr_lock);
1350 SLIST_REMOVE_HEAD(&sc->sc_files, entry);
1351 mutex_exit(sc->sc_intr_lock);
1352 if (file->ptrack || file->rtrack) {
1353 mutex_exit(sc->sc_lock);
1354 audio_unlink(sc, file);
1355 mutex_enter(sc->sc_lock);
1356 }
1357 }
1358 mutex_exit(sc->sc_lock);
1359
1360 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1361 audio_volume_down, true);
1362 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1363 audio_volume_up, true);
1364 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1365 audio_volume_toggle, true);
1366
1367 #ifdef AUDIO_PM_IDLE
1368 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1369
1370 device_active_deregister(self, audio_activity);
1371 #endif
1372
1373 pmf_device_deregister(self);
1374
1375 /* Free resources */
1376 if (sc->sc_pmixer) {
1377 audio_mixer_destroy(sc, sc->sc_pmixer);
1378 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1379 }
1380 if (sc->sc_rmixer) {
1381 audio_mixer_destroy(sc, sc->sc_rmixer);
1382 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1383 }
1384 if (sc->sc_am)
1385 kern_free(sc->sc_am);
1386
1387 seldestroy(&sc->sc_wsel);
1388 seldestroy(&sc->sc_rsel);
1389
1390 #ifdef AUDIO_PM_IDLE
1391 callout_destroy(&sc->sc_idle_counter);
1392 #endif
1393
1394 cv_destroy(&sc->sc_exlockcv);
1395
1396 #if defined(AUDIO_DEBUG)
1397 audio_mlog_free();
1398 #endif
1399
1400 return 0;
1401 }
1402
1403 static void
1404 audiochilddet(device_t self, device_t child)
1405 {
1406
1407 /* we hold no child references, so do nothing */
1408 }
1409
1410 static int
1411 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1412 {
1413
1414 if (config_probe(parent, cf, aux))
1415 config_attach(parent, cf, aux, NULL,
1416 CFARGS_NONE);
1417
1418 return 0;
1419 }
1420
1421 static int
1422 audiorescan(device_t self, const char *ifattr, const int *locators)
1423 {
1424 struct audio_softc *sc = device_private(self);
1425
1426 config_search(sc->sc_dev, NULL,
1427 CFARGS(.search = audiosearch));
1428
1429 return 0;
1430 }
1431
1432 /*
1433 * Called from hardware driver. This is where the MI audio driver gets
1434 * probed/attached to the hardware driver.
1435 */
1436 device_t
1437 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1438 {
1439 struct audio_attach_args arg;
1440
1441 #ifdef DIAGNOSTIC
1442 if (ahwp == NULL) {
1443 aprint_error("audio_attach_mi: NULL\n");
1444 return 0;
1445 }
1446 #endif
1447 arg.type = AUDIODEV_TYPE_AUDIO;
1448 arg.hwif = ahwp;
1449 arg.hdl = hdlp;
1450 return config_found(dev, &arg, audioprint,
1451 CFARGS(.iattr = "audiobus"));
1452 }
1453
1454 /*
1455 * audio_printf() outputs fmt... with the audio device name and MD device
1456 * name prefixed. If the message is considered to be related to the MD
1457 * driver, use this one instead of device_printf().
1458 */
1459 static void
1460 audio_printf(struct audio_softc *sc, const char *fmt, ...)
1461 {
1462 va_list ap;
1463
1464 printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
1465 va_start(ap, fmt);
1466 vprintf(fmt, ap);
1467 va_end(ap);
1468 }
1469
1470 /*
1471 * Enter critical section and also keep sc_lock.
1472 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1473 * Must be called without sc_lock held.
1474 */
1475 static int
1476 audio_exlock_mutex_enter(struct audio_softc *sc)
1477 {
1478 int error;
1479
1480 mutex_enter(sc->sc_lock);
1481 if (sc->sc_dying) {
1482 mutex_exit(sc->sc_lock);
1483 return EIO;
1484 }
1485
1486 while (__predict_false(sc->sc_exlock != 0)) {
1487 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1488 if (sc->sc_dying)
1489 error = EIO;
1490 if (error) {
1491 mutex_exit(sc->sc_lock);
1492 return error;
1493 }
1494 }
1495
1496 /* Acquire */
1497 sc->sc_exlock = 1;
1498 return 0;
1499 }
1500
1501 /*
1502 * Exit critical section and exit sc_lock.
1503 * Must be called with sc_lock held.
1504 */
1505 static void
1506 audio_exlock_mutex_exit(struct audio_softc *sc)
1507 {
1508
1509 KASSERT(mutex_owned(sc->sc_lock));
1510
1511 sc->sc_exlock = 0;
1512 cv_broadcast(&sc->sc_exlockcv);
1513 mutex_exit(sc->sc_lock);
1514 }
1515
1516 /*
1517 * Enter critical section.
1518 * If successful, it returns 0. Otherwise returns errno.
1519 * Must be called without sc_lock held.
1520 * This function returns without sc_lock held.
1521 */
1522 static int
1523 audio_exlock_enter(struct audio_softc *sc)
1524 {
1525 int error;
1526
1527 error = audio_exlock_mutex_enter(sc);
1528 if (error)
1529 return error;
1530 mutex_exit(sc->sc_lock);
1531 return 0;
1532 }
1533
1534 /*
1535 * Exit critical section.
1536 * Must be called without sc_lock held.
1537 */
1538 static void
1539 audio_exlock_exit(struct audio_softc *sc)
1540 {
1541
1542 mutex_enter(sc->sc_lock);
1543 audio_exlock_mutex_exit(sc);
1544 }
1545
1546 /*
1547 * Increment reference counter for this sc.
1548 * This is intended to be used for open.
1549 */
1550 void
1551 audio_sc_acquire_foropen(struct audio_softc *sc, struct psref *refp)
1552 {
1553 int s;
1554
1555 /* Block audiodetach while we acquire a reference */
1556 s = pserialize_read_enter();
1557
1558 /*
1559 * We don't examine sc_dying here. However, all open methods
1560 * call audio_exlock_enter() right after this, so we can examine
1561 * sc_dying in it.
1562 */
1563
1564 /* Acquire a reference */
1565 psref_acquire(refp, &sc->sc_psref, audio_psref_class);
1566
1567 /* Now sc won't go away until we drop the reference count */
1568 pserialize_read_exit(s);
1569 }
1570
1571 /*
1572 * Get sc from file, and increment reference counter for this sc.
1573 * This is intended to be used for methods other than open.
1574 * If successful, returns sc. Otherwise returns NULL.
1575 */
1576 struct audio_softc *
1577 audio_sc_acquire_fromfile(audio_file_t *file, struct psref *refp)
1578 {
1579 int s;
1580 bool dying;
1581
1582 /* Block audiodetach while we acquire a reference */
1583 s = pserialize_read_enter();
1584
1585 /* If close or audiodetach already ran, tough -- no more audio */
1586 dying = atomic_load_relaxed(&file->dying);
1587 if (dying) {
1588 pserialize_read_exit(s);
1589 return NULL;
1590 }
1591
1592 /* Acquire a reference */
1593 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1594
1595 /* Now sc won't go away until we drop the reference count */
1596 pserialize_read_exit(s);
1597
1598 return file->sc;
1599 }
1600
1601 /*
1602 * Decrement reference counter for this sc.
1603 */
1604 void
1605 audio_sc_release(struct audio_softc *sc, struct psref *refp)
1606 {
1607
1608 psref_release(refp, &sc->sc_psref, audio_psref_class);
1609 }
1610
1611 /*
1612 * Wait for I/O to complete, releasing sc_lock.
1613 * Must be called with sc_lock held.
1614 */
1615 static int
1616 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1617 {
1618 int error;
1619
1620 KASSERT(track);
1621 KASSERT(mutex_owned(sc->sc_lock));
1622
1623 /* Wait for pending I/O to complete. */
1624 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1625 mstohz(AUDIO_TIMEOUT));
1626 if (sc->sc_suspending) {
1627 /* If it's about to suspend, ignore timeout error. */
1628 if (error == EWOULDBLOCK) {
1629 TRACET(2, track, "timeout (suspending)");
1630 return 0;
1631 }
1632 }
1633 if (sc->sc_dying) {
1634 error = EIO;
1635 }
1636 if (error) {
1637 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1638 if (error == EWOULDBLOCK)
1639 audio_printf(sc, "device timeout\n");
1640 } else {
1641 TRACET(3, track, "wakeup");
1642 }
1643 return error;
1644 }
1645
1646 /*
1647 * Try to acquire track lock.
1648 * It doesn't block if the track lock is already aquired.
1649 * Returns true if the track lock was acquired, or false if the track
1650 * lock was already acquired.
1651 */
1652 static __inline bool
1653 audio_track_lock_tryenter(audio_track_t *track)
1654 {
1655 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1656 }
1657
1658 /*
1659 * Acquire track lock.
1660 */
1661 static __inline void
1662 audio_track_lock_enter(audio_track_t *track)
1663 {
1664 /* Don't sleep here. */
1665 while (audio_track_lock_tryenter(track) == false)
1666 ;
1667 }
1668
1669 /*
1670 * Release track lock.
1671 */
1672 static __inline void
1673 audio_track_lock_exit(audio_track_t *track)
1674 {
1675 atomic_swap_uint(&track->lock, 0);
1676 }
1677
1678
1679 static int
1680 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1681 {
1682 struct audio_softc *sc;
1683 struct psref sc_ref;
1684 int bound;
1685 int error;
1686
1687 /* Find the device */
1688 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1689 if (sc == NULL || sc->hw_if == NULL)
1690 return ENXIO;
1691
1692 bound = curlwp_bind();
1693 audio_sc_acquire_foropen(sc, &sc_ref);
1694
1695 error = audio_exlock_enter(sc);
1696 if (error)
1697 goto done;
1698
1699 device_active(sc->sc_dev, DVA_SYSTEM);
1700 switch (AUDIODEV(dev)) {
1701 case SOUND_DEVICE:
1702 case AUDIO_DEVICE:
1703 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1704 break;
1705 case AUDIOCTL_DEVICE:
1706 error = audioctl_open(dev, sc, flags, ifmt, l);
1707 break;
1708 case MIXER_DEVICE:
1709 error = mixer_open(dev, sc, flags, ifmt, l);
1710 break;
1711 default:
1712 error = ENXIO;
1713 break;
1714 }
1715 audio_exlock_exit(sc);
1716
1717 done:
1718 audio_sc_release(sc, &sc_ref);
1719 curlwp_bindx(bound);
1720 return error;
1721 }
1722
1723 static int
1724 audioclose(struct file *fp)
1725 {
1726 struct audio_softc *sc;
1727 struct psref sc_ref;
1728 audio_file_t *file;
1729 int bound;
1730 int error;
1731 dev_t dev;
1732
1733 KASSERT(fp->f_audioctx);
1734 file = fp->f_audioctx;
1735 dev = file->dev;
1736 error = 0;
1737
1738 /*
1739 * audioclose() must
1740 * - unplug track from the trackmixer (and unplug anything from softc),
1741 * if sc exists.
1742 * - free all memory objects, regardless of sc.
1743 */
1744
1745 bound = curlwp_bind();
1746 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1747 if (sc) {
1748 switch (AUDIODEV(dev)) {
1749 case SOUND_DEVICE:
1750 case AUDIO_DEVICE:
1751 error = audio_close(sc, file);
1752 break;
1753 case AUDIOCTL_DEVICE:
1754 mutex_enter(sc->sc_lock);
1755 mutex_enter(sc->sc_intr_lock);
1756 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1757 mutex_exit(sc->sc_intr_lock);
1758 mutex_exit(sc->sc_lock);
1759 error = 0;
1760 break;
1761 case MIXER_DEVICE:
1762 mutex_enter(sc->sc_lock);
1763 mutex_enter(sc->sc_intr_lock);
1764 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1765 mutex_exit(sc->sc_intr_lock);
1766 mutex_exit(sc->sc_lock);
1767 error = mixer_close(sc, file);
1768 break;
1769 default:
1770 error = ENXIO;
1771 break;
1772 }
1773
1774 audio_sc_release(sc, &sc_ref);
1775 }
1776 curlwp_bindx(bound);
1777
1778 /* Free memory objects anyway */
1779 TRACEF(2, file, "free memory");
1780 if (file->ptrack)
1781 audio_track_destroy(file->ptrack);
1782 if (file->rtrack)
1783 audio_track_destroy(file->rtrack);
1784 kmem_free(file, sizeof(*file));
1785 fp->f_audioctx = NULL;
1786
1787 return error;
1788 }
1789
1790 static int
1791 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1792 int ioflag)
1793 {
1794 struct audio_softc *sc;
1795 struct psref sc_ref;
1796 audio_file_t *file;
1797 int bound;
1798 int error;
1799 dev_t dev;
1800
1801 KASSERT(fp->f_audioctx);
1802 file = fp->f_audioctx;
1803 dev = file->dev;
1804
1805 bound = curlwp_bind();
1806 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1807 if (sc == NULL) {
1808 error = EIO;
1809 goto done;
1810 }
1811
1812 if (fp->f_flag & O_NONBLOCK)
1813 ioflag |= IO_NDELAY;
1814
1815 switch (AUDIODEV(dev)) {
1816 case SOUND_DEVICE:
1817 case AUDIO_DEVICE:
1818 error = audio_read(sc, uio, ioflag, file);
1819 break;
1820 case AUDIOCTL_DEVICE:
1821 case MIXER_DEVICE:
1822 error = ENODEV;
1823 break;
1824 default:
1825 error = ENXIO;
1826 break;
1827 }
1828
1829 audio_sc_release(sc, &sc_ref);
1830 done:
1831 curlwp_bindx(bound);
1832 return error;
1833 }
1834
1835 static int
1836 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1837 int ioflag)
1838 {
1839 struct audio_softc *sc;
1840 struct psref sc_ref;
1841 audio_file_t *file;
1842 int bound;
1843 int error;
1844 dev_t dev;
1845
1846 KASSERT(fp->f_audioctx);
1847 file = fp->f_audioctx;
1848 dev = file->dev;
1849
1850 bound = curlwp_bind();
1851 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1852 if (sc == NULL) {
1853 error = EIO;
1854 goto done;
1855 }
1856
1857 if (fp->f_flag & O_NONBLOCK)
1858 ioflag |= IO_NDELAY;
1859
1860 switch (AUDIODEV(dev)) {
1861 case SOUND_DEVICE:
1862 case AUDIO_DEVICE:
1863 error = audio_write(sc, uio, ioflag, file);
1864 break;
1865 case AUDIOCTL_DEVICE:
1866 case MIXER_DEVICE:
1867 error = ENODEV;
1868 break;
1869 default:
1870 error = ENXIO;
1871 break;
1872 }
1873
1874 audio_sc_release(sc, &sc_ref);
1875 done:
1876 curlwp_bindx(bound);
1877 return error;
1878 }
1879
1880 static int
1881 audioioctl(struct file *fp, u_long cmd, void *addr)
1882 {
1883 struct audio_softc *sc;
1884 struct psref sc_ref;
1885 audio_file_t *file;
1886 struct lwp *l = curlwp;
1887 int bound;
1888 int error;
1889 dev_t dev;
1890
1891 KASSERT(fp->f_audioctx);
1892 file = fp->f_audioctx;
1893 dev = file->dev;
1894
1895 bound = curlwp_bind();
1896 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1897 if (sc == NULL) {
1898 error = EIO;
1899 goto done;
1900 }
1901
1902 switch (AUDIODEV(dev)) {
1903 case SOUND_DEVICE:
1904 case AUDIO_DEVICE:
1905 case AUDIOCTL_DEVICE:
1906 mutex_enter(sc->sc_lock);
1907 device_active(sc->sc_dev, DVA_SYSTEM);
1908 mutex_exit(sc->sc_lock);
1909 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1910 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1911 else
1912 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1913 file);
1914 break;
1915 case MIXER_DEVICE:
1916 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1917 break;
1918 default:
1919 error = ENXIO;
1920 break;
1921 }
1922
1923 audio_sc_release(sc, &sc_ref);
1924 done:
1925 curlwp_bindx(bound);
1926 return error;
1927 }
1928
1929 static int
1930 audiostat(struct file *fp, struct stat *st)
1931 {
1932 struct audio_softc *sc;
1933 struct psref sc_ref;
1934 audio_file_t *file;
1935 int bound;
1936 int error;
1937
1938 KASSERT(fp->f_audioctx);
1939 file = fp->f_audioctx;
1940
1941 bound = curlwp_bind();
1942 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1943 if (sc == NULL) {
1944 error = EIO;
1945 goto done;
1946 }
1947
1948 error = 0;
1949 memset(st, 0, sizeof(*st));
1950
1951 st->st_dev = file->dev;
1952 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1953 st->st_gid = kauth_cred_getegid(fp->f_cred);
1954 st->st_mode = S_IFCHR;
1955
1956 audio_sc_release(sc, &sc_ref);
1957 done:
1958 curlwp_bindx(bound);
1959 return error;
1960 }
1961
1962 static int
1963 audiopoll(struct file *fp, int events)
1964 {
1965 struct audio_softc *sc;
1966 struct psref sc_ref;
1967 audio_file_t *file;
1968 struct lwp *l = curlwp;
1969 int bound;
1970 int revents;
1971 dev_t dev;
1972
1973 KASSERT(fp->f_audioctx);
1974 file = fp->f_audioctx;
1975 dev = file->dev;
1976
1977 bound = curlwp_bind();
1978 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1979 if (sc == NULL) {
1980 revents = POLLERR;
1981 goto done;
1982 }
1983
1984 switch (AUDIODEV(dev)) {
1985 case SOUND_DEVICE:
1986 case AUDIO_DEVICE:
1987 revents = audio_poll(sc, events, l, file);
1988 break;
1989 case AUDIOCTL_DEVICE:
1990 case MIXER_DEVICE:
1991 revents = 0;
1992 break;
1993 default:
1994 revents = POLLERR;
1995 break;
1996 }
1997
1998 audio_sc_release(sc, &sc_ref);
1999 done:
2000 curlwp_bindx(bound);
2001 return revents;
2002 }
2003
2004 static int
2005 audiokqfilter(struct file *fp, struct knote *kn)
2006 {
2007 struct audio_softc *sc;
2008 struct psref sc_ref;
2009 audio_file_t *file;
2010 dev_t dev;
2011 int bound;
2012 int error;
2013
2014 KASSERT(fp->f_audioctx);
2015 file = fp->f_audioctx;
2016 dev = file->dev;
2017
2018 bound = curlwp_bind();
2019 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2020 if (sc == NULL) {
2021 error = EIO;
2022 goto done;
2023 }
2024
2025 switch (AUDIODEV(dev)) {
2026 case SOUND_DEVICE:
2027 case AUDIO_DEVICE:
2028 error = audio_kqfilter(sc, file, kn);
2029 break;
2030 case AUDIOCTL_DEVICE:
2031 case MIXER_DEVICE:
2032 error = ENODEV;
2033 break;
2034 default:
2035 error = ENXIO;
2036 break;
2037 }
2038
2039 audio_sc_release(sc, &sc_ref);
2040 done:
2041 curlwp_bindx(bound);
2042 return error;
2043 }
2044
2045 static int
2046 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
2047 int *advicep, struct uvm_object **uobjp, int *maxprotp)
2048 {
2049 struct audio_softc *sc;
2050 struct psref sc_ref;
2051 audio_file_t *file;
2052 dev_t dev;
2053 int bound;
2054 int error;
2055
2056 KASSERT(fp->f_audioctx);
2057 file = fp->f_audioctx;
2058 dev = file->dev;
2059
2060 bound = curlwp_bind();
2061 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2062 if (sc == NULL) {
2063 error = EIO;
2064 goto done;
2065 }
2066
2067 mutex_enter(sc->sc_lock);
2068 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
2069 mutex_exit(sc->sc_lock);
2070
2071 switch (AUDIODEV(dev)) {
2072 case SOUND_DEVICE:
2073 case AUDIO_DEVICE:
2074 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
2075 uobjp, maxprotp, file);
2076 break;
2077 case AUDIOCTL_DEVICE:
2078 case MIXER_DEVICE:
2079 default:
2080 error = ENOTSUP;
2081 break;
2082 }
2083
2084 audio_sc_release(sc, &sc_ref);
2085 done:
2086 curlwp_bindx(bound);
2087 return error;
2088 }
2089
2090
2091 /* Exported interfaces for audiobell. */
2092
2093 /*
2094 * Open for audiobell.
2095 * It stores allocated file to *filep.
2096 * If successful returns 0, otherwise errno.
2097 */
2098 int
2099 audiobellopen(dev_t dev, audio_file_t **filep)
2100 {
2101 struct audio_softc *sc;
2102 struct psref sc_ref;
2103 int bound;
2104 int error;
2105
2106 /* Find the device */
2107 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
2108 if (sc == NULL || sc->hw_if == NULL)
2109 return ENXIO;
2110
2111 bound = curlwp_bind();
2112 audio_sc_acquire_foropen(sc, &sc_ref);
2113
2114 error = audio_exlock_enter(sc);
2115 if (error)
2116 goto done;
2117
2118 device_active(sc->sc_dev, DVA_SYSTEM);
2119 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
2120
2121 audio_exlock_exit(sc);
2122 done:
2123 audio_sc_release(sc, &sc_ref);
2124 curlwp_bindx(bound);
2125 return error;
2126 }
2127
2128 /* Close for audiobell */
2129 int
2130 audiobellclose(audio_file_t *file)
2131 {
2132 struct audio_softc *sc;
2133 struct psref sc_ref;
2134 int bound;
2135 int error;
2136
2137 error = 0;
2138 /*
2139 * audiobellclose() must
2140 * - unplug track from the trackmixer if sc exist.
2141 * - free all memory objects, regardless of sc.
2142 */
2143 bound = curlwp_bind();
2144 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2145 if (sc) {
2146 error = audio_close(sc, file);
2147 audio_sc_release(sc, &sc_ref);
2148 }
2149 curlwp_bindx(bound);
2150
2151 /* Free memory objects anyway */
2152 KASSERT(file->ptrack);
2153 audio_track_destroy(file->ptrack);
2154 KASSERT(file->rtrack == NULL);
2155 kmem_free(file, sizeof(*file));
2156 return error;
2157 }
2158
2159 /* Set sample rate for audiobell */
2160 int
2161 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2162 {
2163 struct audio_softc *sc;
2164 struct psref sc_ref;
2165 struct audio_info ai;
2166 int bound;
2167 int error;
2168
2169 bound = curlwp_bind();
2170 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2171 if (sc == NULL) {
2172 error = EIO;
2173 goto done1;
2174 }
2175
2176 AUDIO_INITINFO(&ai);
2177 ai.play.sample_rate = sample_rate;
2178
2179 error = audio_exlock_enter(sc);
2180 if (error)
2181 goto done2;
2182 error = audio_file_setinfo(sc, file, &ai);
2183 audio_exlock_exit(sc);
2184
2185 done2:
2186 audio_sc_release(sc, &sc_ref);
2187 done1:
2188 curlwp_bindx(bound);
2189 return error;
2190 }
2191
2192 /* Playback for audiobell */
2193 int
2194 audiobellwrite(audio_file_t *file, struct uio *uio)
2195 {
2196 struct audio_softc *sc;
2197 struct psref sc_ref;
2198 int bound;
2199 int error;
2200
2201 bound = curlwp_bind();
2202 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2203 if (sc == NULL) {
2204 error = EIO;
2205 goto done;
2206 }
2207
2208 error = audio_write(sc, uio, 0, file);
2209
2210 audio_sc_release(sc, &sc_ref);
2211 done:
2212 curlwp_bindx(bound);
2213 return error;
2214 }
2215
2216
2217 /*
2218 * Audio driver
2219 */
2220
2221 /*
2222 * Must be called with sc_exlock held and without sc_lock held.
2223 */
2224 int
2225 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2226 struct lwp *l, audio_file_t **bellfile)
2227 {
2228 struct audio_info ai;
2229 struct file *fp;
2230 audio_file_t *af;
2231 audio_ring_t *hwbuf;
2232 bool fullduplex;
2233 bool cred_held;
2234 bool hw_opened;
2235 bool rmixer_started;
2236 bool inserted;
2237 int fd;
2238 int error;
2239
2240 KASSERT(sc->sc_exlock);
2241
2242 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2243 (audiodebug >= 3) ? "start " : "",
2244 ISDEVSOUND(dev) ? "sound" : "audio",
2245 flags, sc->sc_popens, sc->sc_ropens);
2246
2247 fp = NULL;
2248 cred_held = false;
2249 hw_opened = false;
2250 rmixer_started = false;
2251 inserted = false;
2252
2253 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
2254 af->sc = sc;
2255 af->dev = dev;
2256 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2257 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2258 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2259 af->mode |= AUMODE_RECORD;
2260 if (af->mode == 0) {
2261 error = ENXIO;
2262 goto bad;
2263 }
2264
2265 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2266
2267 /*
2268 * On half duplex hardware,
2269 * 1. if mode is (PLAY | REC), let mode PLAY.
2270 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2271 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2272 */
2273 if (fullduplex == false) {
2274 if ((af->mode & AUMODE_PLAY)) {
2275 if (sc->sc_ropens != 0) {
2276 TRACE(1, "record track already exists");
2277 error = ENODEV;
2278 goto bad;
2279 }
2280 /* Play takes precedence */
2281 af->mode &= ~AUMODE_RECORD;
2282 }
2283 if ((af->mode & AUMODE_RECORD)) {
2284 if (sc->sc_popens != 0) {
2285 TRACE(1, "play track already exists");
2286 error = ENODEV;
2287 goto bad;
2288 }
2289 }
2290 }
2291
2292 /* Create tracks */
2293 if ((af->mode & AUMODE_PLAY))
2294 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2295 if ((af->mode & AUMODE_RECORD))
2296 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2297
2298 /* Set parameters */
2299 AUDIO_INITINFO(&ai);
2300 if (bellfile) {
2301 /* If audiobell, only sample_rate will be set later. */
2302 ai.play.sample_rate = audio_default.sample_rate;
2303 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2304 ai.play.channels = 1;
2305 ai.play.precision = 16;
2306 ai.play.pause = 0;
2307 } else if (ISDEVAUDIO(dev)) {
2308 /* If /dev/audio, initialize everytime. */
2309 ai.play.sample_rate = audio_default.sample_rate;
2310 ai.play.encoding = audio_default.encoding;
2311 ai.play.channels = audio_default.channels;
2312 ai.play.precision = audio_default.precision;
2313 ai.play.pause = 0;
2314 ai.record.sample_rate = audio_default.sample_rate;
2315 ai.record.encoding = audio_default.encoding;
2316 ai.record.channels = audio_default.channels;
2317 ai.record.precision = audio_default.precision;
2318 ai.record.pause = 0;
2319 } else {
2320 /* If /dev/sound, take over the previous parameters. */
2321 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2322 ai.play.encoding = sc->sc_sound_pparams.encoding;
2323 ai.play.channels = sc->sc_sound_pparams.channels;
2324 ai.play.precision = sc->sc_sound_pparams.precision;
2325 ai.play.pause = sc->sc_sound_ppause;
2326 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2327 ai.record.encoding = sc->sc_sound_rparams.encoding;
2328 ai.record.channels = sc->sc_sound_rparams.channels;
2329 ai.record.precision = sc->sc_sound_rparams.precision;
2330 ai.record.pause = sc->sc_sound_rpause;
2331 }
2332 error = audio_file_setinfo(sc, af, &ai);
2333 if (error)
2334 goto bad;
2335
2336 if (sc->sc_popens + sc->sc_ropens == 0) {
2337 /* First open */
2338
2339 sc->sc_cred = kauth_cred_get();
2340 kauth_cred_hold(sc->sc_cred);
2341 cred_held = true;
2342
2343 if (sc->hw_if->open) {
2344 int hwflags;
2345
2346 /*
2347 * Call hw_if->open() only at first open of
2348 * combination of playback and recording.
2349 * On full duplex hardware, the flags passed to
2350 * hw_if->open() is always (FREAD | FWRITE)
2351 * regardless of this open()'s flags.
2352 * see also dev/isa/aria.c
2353 * On half duplex hardware, the flags passed to
2354 * hw_if->open() is either FREAD or FWRITE.
2355 * see also arch/evbarm/mini2440/audio_mini2440.c
2356 */
2357 if (fullduplex) {
2358 hwflags = FREAD | FWRITE;
2359 } else {
2360 /* Construct hwflags from af->mode. */
2361 hwflags = 0;
2362 if ((af->mode & AUMODE_PLAY) != 0)
2363 hwflags |= FWRITE;
2364 if ((af->mode & AUMODE_RECORD) != 0)
2365 hwflags |= FREAD;
2366 }
2367
2368 mutex_enter(sc->sc_lock);
2369 mutex_enter(sc->sc_intr_lock);
2370 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2371 mutex_exit(sc->sc_intr_lock);
2372 mutex_exit(sc->sc_lock);
2373 if (error)
2374 goto bad;
2375 }
2376 /*
2377 * Regardless of whether we called hw_if->open (whether
2378 * hw_if->open exists) or not, we move to the Opened phase
2379 * here. Therefore from this point, we have to call
2380 * hw_if->close (if exists) whenever abort.
2381 * Note that both of hw_if->{open,close} are optional.
2382 */
2383 hw_opened = true;
2384
2385 /*
2386 * Set speaker mode when a half duplex.
2387 * XXX I'm not sure this is correct.
2388 */
2389 if (1/*XXX*/) {
2390 if (sc->hw_if->speaker_ctl) {
2391 int on;
2392 if (af->ptrack) {
2393 on = 1;
2394 } else {
2395 on = 0;
2396 }
2397 mutex_enter(sc->sc_lock);
2398 mutex_enter(sc->sc_intr_lock);
2399 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2400 mutex_exit(sc->sc_intr_lock);
2401 mutex_exit(sc->sc_lock);
2402 if (error)
2403 goto bad;
2404 }
2405 }
2406 } else if (sc->sc_multiuser == false) {
2407 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2408 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2409 error = EPERM;
2410 goto bad;
2411 }
2412 }
2413
2414 /* Call init_output if this is the first playback open. */
2415 if (af->ptrack && sc->sc_popens == 0) {
2416 if (sc->hw_if->init_output) {
2417 hwbuf = &sc->sc_pmixer->hwbuf;
2418 mutex_enter(sc->sc_lock);
2419 mutex_enter(sc->sc_intr_lock);
2420 error = sc->hw_if->init_output(sc->hw_hdl,
2421 hwbuf->mem,
2422 hwbuf->capacity *
2423 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2424 mutex_exit(sc->sc_intr_lock);
2425 mutex_exit(sc->sc_lock);
2426 if (error)
2427 goto bad;
2428 }
2429 }
2430 /*
2431 * Call init_input and start rmixer, if this is the first recording
2432 * open. See pause consideration notes.
2433 */
2434 if (af->rtrack && sc->sc_ropens == 0) {
2435 if (sc->hw_if->init_input) {
2436 hwbuf = &sc->sc_rmixer->hwbuf;
2437 mutex_enter(sc->sc_lock);
2438 mutex_enter(sc->sc_intr_lock);
2439 error = sc->hw_if->init_input(sc->hw_hdl,
2440 hwbuf->mem,
2441 hwbuf->capacity *
2442 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2443 mutex_exit(sc->sc_intr_lock);
2444 mutex_exit(sc->sc_lock);
2445 if (error)
2446 goto bad;
2447 }
2448
2449 mutex_enter(sc->sc_lock);
2450 audio_rmixer_start(sc);
2451 mutex_exit(sc->sc_lock);
2452 rmixer_started = true;
2453 }
2454
2455 /*
2456 * This is the last sc_lock section in the function, so we have to
2457 * examine sc_dying again before starting the rest tasks. Because
2458 * audiodeatch() may have been invoked (and it would set sc_dying)
2459 * from the time audioopen() was executed until now. If it happens,
2460 * audiodetach() may already have set file->dying for all sc_files
2461 * that exist at that point, so that audioopen() must abort without
2462 * inserting af to sc_files, in order to keep consistency.
2463 */
2464 mutex_enter(sc->sc_lock);
2465 if (sc->sc_dying) {
2466 mutex_exit(sc->sc_lock);
2467 error = ENXIO;
2468 goto bad;
2469 }
2470
2471 /* Count up finally */
2472 if (af->ptrack)
2473 sc->sc_popens++;
2474 if (af->rtrack)
2475 sc->sc_ropens++;
2476 mutex_enter(sc->sc_intr_lock);
2477 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2478 mutex_exit(sc->sc_intr_lock);
2479 mutex_exit(sc->sc_lock);
2480 inserted = true;
2481
2482 if (bellfile) {
2483 *bellfile = af;
2484 } else {
2485 error = fd_allocfile(&fp, &fd);
2486 if (error)
2487 goto bad;
2488
2489 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2490 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2491 }
2492
2493 /* Be nothing else after fd_clone */
2494
2495 TRACEF(3, af, "done");
2496 return error;
2497
2498 bad:
2499 if (inserted) {
2500 mutex_enter(sc->sc_lock);
2501 mutex_enter(sc->sc_intr_lock);
2502 SLIST_REMOVE(&sc->sc_files, af, audio_file, entry);
2503 mutex_exit(sc->sc_intr_lock);
2504 if (af->ptrack)
2505 sc->sc_popens--;
2506 if (af->rtrack)
2507 sc->sc_ropens--;
2508 mutex_exit(sc->sc_lock);
2509 }
2510
2511 if (rmixer_started) {
2512 mutex_enter(sc->sc_lock);
2513 audio_rmixer_halt(sc);
2514 mutex_exit(sc->sc_lock);
2515 }
2516
2517 if (hw_opened) {
2518 if (sc->hw_if->close) {
2519 mutex_enter(sc->sc_lock);
2520 mutex_enter(sc->sc_intr_lock);
2521 sc->hw_if->close(sc->hw_hdl);
2522 mutex_exit(sc->sc_intr_lock);
2523 mutex_exit(sc->sc_lock);
2524 }
2525 }
2526 if (cred_held) {
2527 kauth_cred_free(sc->sc_cred);
2528 }
2529
2530 /*
2531 * Since track here is not yet linked to sc_files,
2532 * you can call track_destroy() without sc_intr_lock.
2533 */
2534 if (af->rtrack) {
2535 audio_track_destroy(af->rtrack);
2536 af->rtrack = NULL;
2537 }
2538 if (af->ptrack) {
2539 audio_track_destroy(af->ptrack);
2540 af->ptrack = NULL;
2541 }
2542
2543 kmem_free(af, sizeof(*af));
2544 return error;
2545 }
2546
2547 /*
2548 * Must be called without sc_lock nor sc_exlock held.
2549 */
2550 int
2551 audio_close(struct audio_softc *sc, audio_file_t *file)
2552 {
2553 int error;
2554
2555 /*
2556 * Drain first.
2557 * It must be done before unlinking(acquiring exlock).
2558 */
2559 if (file->ptrack) {
2560 mutex_enter(sc->sc_lock);
2561 audio_track_drain(sc, file->ptrack);
2562 mutex_exit(sc->sc_lock);
2563 }
2564
2565 mutex_enter(sc->sc_lock);
2566 mutex_enter(sc->sc_intr_lock);
2567 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2568 mutex_exit(sc->sc_intr_lock);
2569 mutex_exit(sc->sc_lock);
2570
2571 error = audio_exlock_enter(sc);
2572 if (error) {
2573 /*
2574 * If EIO, this sc is about to detach. In this case, even if
2575 * we don't do subsequent _unlink(), audiodetach() will do it.
2576 */
2577 if (error == EIO)
2578 return error;
2579
2580 /* XXX This should not happen but what should I do ? */
2581 panic("%s: can't acquire exlock: errno=%d", __func__, error);
2582 }
2583 audio_unlink(sc, file);
2584 audio_exlock_exit(sc);
2585
2586 return 0;
2587 }
2588
2589 /*
2590 * Unlink this file, but not freeing memory here.
2591 * Must be called with sc_exlock held and without sc_lock held.
2592 */
2593 static void
2594 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2595 {
2596 kauth_cred_t cred = NULL;
2597 int error;
2598
2599 mutex_enter(sc->sc_lock);
2600
2601 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2602 (audiodebug >= 3) ? "start " : "",
2603 (int)curproc->p_pid, (int)curlwp->l_lid,
2604 sc->sc_popens, sc->sc_ropens);
2605 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2606 "sc->sc_popens=%d, sc->sc_ropens=%d",
2607 sc->sc_popens, sc->sc_ropens);
2608
2609 device_active(sc->sc_dev, DVA_SYSTEM);
2610
2611 if (file->ptrack) {
2612 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2613 file->ptrack->dropframes);
2614
2615 KASSERT(sc->sc_popens > 0);
2616 sc->sc_popens--;
2617
2618 /* Call hw halt_output if this is the last playback track. */
2619 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2620 error = audio_pmixer_halt(sc);
2621 if (error) {
2622 audio_printf(sc,
2623 "halt_output failed: errno=%d (ignored)\n",
2624 error);
2625 }
2626 }
2627
2628 /* Restore mixing volume if all tracks are gone. */
2629 if (sc->sc_popens == 0) {
2630 /* intr_lock is not necessary, but just manners. */
2631 mutex_enter(sc->sc_intr_lock);
2632 sc->sc_pmixer->volume = 256;
2633 sc->sc_pmixer->voltimer = 0;
2634 mutex_exit(sc->sc_intr_lock);
2635 }
2636 }
2637 if (file->rtrack) {
2638 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2639 file->rtrack->dropframes);
2640
2641 KASSERT(sc->sc_ropens > 0);
2642 sc->sc_ropens--;
2643
2644 /* Call hw halt_input if this is the last recording track. */
2645 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2646 error = audio_rmixer_halt(sc);
2647 if (error) {
2648 audio_printf(sc,
2649 "halt_input failed: errno=%d (ignored)\n",
2650 error);
2651 }
2652 }
2653
2654 }
2655
2656 /* Call hw close if this is the last track. */
2657 if (sc->sc_popens + sc->sc_ropens == 0) {
2658 if (sc->hw_if->close) {
2659 TRACE(2, "hw_if close");
2660 mutex_enter(sc->sc_intr_lock);
2661 sc->hw_if->close(sc->hw_hdl);
2662 mutex_exit(sc->sc_intr_lock);
2663 }
2664 cred = sc->sc_cred;
2665 sc->sc_cred = NULL;
2666 }
2667
2668 mutex_exit(sc->sc_lock);
2669 if (cred)
2670 kauth_cred_free(cred);
2671
2672 TRACE(3, "done");
2673 }
2674
2675 /*
2676 * Must be called without sc_lock nor sc_exlock held.
2677 */
2678 int
2679 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2680 audio_file_t *file)
2681 {
2682 audio_track_t *track;
2683 audio_ring_t *usrbuf;
2684 audio_ring_t *input;
2685 int error;
2686
2687 /*
2688 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2689 * However read() system call itself can be called because it's
2690 * opened with O_RDWR. So in this case, deny this read().
2691 */
2692 track = file->rtrack;
2693 if (track == NULL) {
2694 return EBADF;
2695 }
2696
2697 /* I think it's better than EINVAL. */
2698 if (track->mmapped)
2699 return EPERM;
2700
2701 TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2702
2703 #ifdef AUDIO_PM_IDLE
2704 error = audio_exlock_mutex_enter(sc);
2705 if (error)
2706 return error;
2707
2708 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2709 device_active(&sc->sc_dev, DVA_SYSTEM);
2710
2711 /* In recording, unlike playback, read() never operates rmixer. */
2712
2713 audio_exlock_mutex_exit(sc);
2714 #endif
2715
2716 usrbuf = &track->usrbuf;
2717 input = track->input;
2718 error = 0;
2719
2720 while (uio->uio_resid > 0 && error == 0) {
2721 int bytes;
2722
2723 TRACET(3, track,
2724 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2725 uio->uio_resid,
2726 input->head, input->used, input->capacity,
2727 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2728
2729 /* Wait when buffers are empty. */
2730 mutex_enter(sc->sc_lock);
2731 for (;;) {
2732 bool empty;
2733 audio_track_lock_enter(track);
2734 empty = (input->used == 0 && usrbuf->used == 0);
2735 audio_track_lock_exit(track);
2736 if (!empty)
2737 break;
2738
2739 if ((ioflag & IO_NDELAY)) {
2740 mutex_exit(sc->sc_lock);
2741 return EWOULDBLOCK;
2742 }
2743
2744 TRACET(3, track, "sleep");
2745 error = audio_track_waitio(sc, track);
2746 if (error) {
2747 mutex_exit(sc->sc_lock);
2748 return error;
2749 }
2750 }
2751 mutex_exit(sc->sc_lock);
2752
2753 audio_track_lock_enter(track);
2754 audio_track_record(track);
2755
2756 /* uiomove from usrbuf as much as possible. */
2757 bytes = uimin(usrbuf->used, uio->uio_resid);
2758 while (bytes > 0) {
2759 int head = usrbuf->head;
2760 int len = uimin(bytes, usrbuf->capacity - head);
2761 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2762 uio);
2763 if (error) {
2764 audio_track_lock_exit(track);
2765 device_printf(sc->sc_dev,
2766 "%s: uiomove(%d) failed: errno=%d\n",
2767 __func__, len, error);
2768 goto abort;
2769 }
2770 auring_take(usrbuf, len);
2771 track->useriobytes += len;
2772 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2773 len,
2774 usrbuf->head, usrbuf->used, usrbuf->capacity);
2775 bytes -= len;
2776 }
2777
2778 audio_track_lock_exit(track);
2779 }
2780
2781 abort:
2782 return error;
2783 }
2784
2785
2786 /*
2787 * Clear file's playback and/or record track buffer immediately.
2788 */
2789 static void
2790 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2791 {
2792
2793 if (file->ptrack)
2794 audio_track_clear(sc, file->ptrack);
2795 if (file->rtrack)
2796 audio_track_clear(sc, file->rtrack);
2797 }
2798
2799 /*
2800 * Must be called without sc_lock nor sc_exlock held.
2801 */
2802 int
2803 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2804 audio_file_t *file)
2805 {
2806 audio_track_t *track;
2807 audio_ring_t *usrbuf;
2808 audio_ring_t *outbuf;
2809 int error;
2810
2811 track = file->ptrack;
2812 if (track == NULL)
2813 return EPERM;
2814
2815 /* I think it's better than EINVAL. */
2816 if (track->mmapped)
2817 return EPERM;
2818
2819 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2820 audiodebug >= 3 ? "begin " : "",
2821 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2822
2823 if (uio->uio_resid == 0) {
2824 track->eofcounter++;
2825 return 0;
2826 }
2827
2828 error = audio_exlock_mutex_enter(sc);
2829 if (error)
2830 return error;
2831
2832 #ifdef AUDIO_PM_IDLE
2833 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2834 device_active(&sc->sc_dev, DVA_SYSTEM);
2835 #endif
2836
2837 /*
2838 * The first write starts pmixer.
2839 */
2840 if (sc->sc_pbusy == false)
2841 audio_pmixer_start(sc, false);
2842 audio_exlock_mutex_exit(sc);
2843
2844 usrbuf = &track->usrbuf;
2845 outbuf = &track->outbuf;
2846 track->pstate = AUDIO_STATE_RUNNING;
2847 error = 0;
2848
2849 while (uio->uio_resid > 0 && error == 0) {
2850 int bytes;
2851
2852 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2853 uio->uio_resid,
2854 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2855
2856 /* Wait when buffers are full. */
2857 mutex_enter(sc->sc_lock);
2858 for (;;) {
2859 bool full;
2860 audio_track_lock_enter(track);
2861 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2862 outbuf->used >= outbuf->capacity);
2863 audio_track_lock_exit(track);
2864 if (!full)
2865 break;
2866
2867 if ((ioflag & IO_NDELAY)) {
2868 error = EWOULDBLOCK;
2869 mutex_exit(sc->sc_lock);
2870 goto abort;
2871 }
2872
2873 TRACET(3, track, "sleep usrbuf=%d/H%d",
2874 usrbuf->used, track->usrbuf_usedhigh);
2875 error = audio_track_waitio(sc, track);
2876 if (error) {
2877 mutex_exit(sc->sc_lock);
2878 goto abort;
2879 }
2880 }
2881 mutex_exit(sc->sc_lock);
2882
2883 audio_track_lock_enter(track);
2884
2885 /* uiomove to usrbuf as much as possible. */
2886 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2887 uio->uio_resid);
2888 while (bytes > 0) {
2889 int tail = auring_tail(usrbuf);
2890 int len = uimin(bytes, usrbuf->capacity - tail);
2891 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2892 uio);
2893 if (error) {
2894 audio_track_lock_exit(track);
2895 device_printf(sc->sc_dev,
2896 "%s: uiomove(%d) failed: errno=%d\n",
2897 __func__, len, error);
2898 goto abort;
2899 }
2900 auring_push(usrbuf, len);
2901 track->useriobytes += len;
2902 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2903 len,
2904 usrbuf->head, usrbuf->used, usrbuf->capacity);
2905 bytes -= len;
2906 }
2907
2908 /* Convert them as much as possible. */
2909 while (usrbuf->used >= track->usrbuf_blksize &&
2910 outbuf->used < outbuf->capacity) {
2911 audio_track_play(track);
2912 }
2913
2914 audio_track_lock_exit(track);
2915 }
2916
2917 abort:
2918 TRACET(3, track, "done error=%d", error);
2919 return error;
2920 }
2921
2922 /*
2923 * Must be called without sc_lock nor sc_exlock held.
2924 */
2925 int
2926 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2927 struct lwp *l, audio_file_t *file)
2928 {
2929 struct audio_offset *ao;
2930 struct audio_info ai;
2931 audio_track_t *track;
2932 audio_encoding_t *ae;
2933 audio_format_query_t *query;
2934 u_int stamp;
2935 u_int offs;
2936 int fd;
2937 int index;
2938 int error;
2939
2940 #if defined(AUDIO_DEBUG)
2941 const char *ioctlnames[] = {
2942 " AUDIO_GETINFO", /* 21 */
2943 " AUDIO_SETINFO", /* 22 */
2944 " AUDIO_DRAIN", /* 23 */
2945 " AUDIO_FLUSH", /* 24 */
2946 " AUDIO_WSEEK", /* 25 */
2947 " AUDIO_RERROR", /* 26 */
2948 " AUDIO_GETDEV", /* 27 */
2949 " AUDIO_GETENC", /* 28 */
2950 " AUDIO_GETFD", /* 29 */
2951 " AUDIO_SETFD", /* 30 */
2952 " AUDIO_PERROR", /* 31 */
2953 " AUDIO_GETIOFFS", /* 32 */
2954 " AUDIO_GETOOFFS", /* 33 */
2955 " AUDIO_GETPROPS", /* 34 */
2956 " AUDIO_GETBUFINFO", /* 35 */
2957 " AUDIO_SETCHAN", /* 36 */
2958 " AUDIO_GETCHAN", /* 37 */
2959 " AUDIO_QUERYFORMAT", /* 38 */
2960 " AUDIO_GETFORMAT", /* 39 */
2961 " AUDIO_SETFORMAT", /* 40 */
2962 };
2963 int nameidx = (cmd & 0xff);
2964 const char *ioctlname = "";
2965 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2966 ioctlname = ioctlnames[nameidx - 21];
2967 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2968 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2969 (int)curproc->p_pid, (int)l->l_lid);
2970 #endif
2971
2972 error = 0;
2973 switch (cmd) {
2974 case FIONBIO:
2975 /* All handled in the upper FS layer. */
2976 break;
2977
2978 case FIONREAD:
2979 /* Get the number of bytes that can be read. */
2980 if (file->rtrack) {
2981 *(int *)addr = audio_track_readablebytes(file->rtrack);
2982 } else {
2983 *(int *)addr = 0;
2984 }
2985 break;
2986
2987 case FIOASYNC:
2988 /* Set/Clear ASYNC I/O. */
2989 if (*(int *)addr) {
2990 file->async_audio = curproc->p_pid;
2991 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2992 } else {
2993 file->async_audio = 0;
2994 TRACEF(2, file, "FIOASYNC off");
2995 }
2996 break;
2997
2998 case AUDIO_FLUSH:
2999 /* XXX TODO: clear errors and restart? */
3000 audio_file_clear(sc, file);
3001 break;
3002
3003 case AUDIO_RERROR:
3004 /*
3005 * Number of read bytes dropped. We don't know where
3006 * or when they were dropped (including conversion stage).
3007 * Therefore, the number of accurate bytes or samples is
3008 * also unknown.
3009 */
3010 track = file->rtrack;
3011 if (track) {
3012 *(int *)addr = frametobyte(&track->usrbuf.fmt,
3013 track->dropframes);
3014 }
3015 break;
3016
3017 case AUDIO_PERROR:
3018 /*
3019 * Number of write bytes dropped. We don't know where
3020 * or when they were dropped (including conversion stage).
3021 * Therefore, the number of accurate bytes or samples is
3022 * also unknown.
3023 */
3024 track = file->ptrack;
3025 if (track) {
3026 *(int *)addr = frametobyte(&track->usrbuf.fmt,
3027 track->dropframes);
3028 }
3029 break;
3030
3031 case AUDIO_GETIOFFS:
3032 /* XXX TODO */
3033 ao = (struct audio_offset *)addr;
3034 ao->samples = 0;
3035 ao->deltablks = 0;
3036 ao->offset = 0;
3037 break;
3038
3039 case AUDIO_GETOOFFS:
3040 ao = (struct audio_offset *)addr;
3041 track = file->ptrack;
3042 if (track == NULL) {
3043 ao->samples = 0;
3044 ao->deltablks = 0;
3045 ao->offset = 0;
3046 break;
3047 }
3048 mutex_enter(sc->sc_lock);
3049 mutex_enter(sc->sc_intr_lock);
3050 /* figure out where next DMA will start */
3051 stamp = track->usrbuf_stamp;
3052 offs = track->usrbuf.head;
3053 mutex_exit(sc->sc_intr_lock);
3054 mutex_exit(sc->sc_lock);
3055
3056 ao->samples = stamp;
3057 ao->deltablks = (stamp / track->usrbuf_blksize) -
3058 (track->usrbuf_stamp_last / track->usrbuf_blksize);
3059 track->usrbuf_stamp_last = stamp;
3060 offs = rounddown(offs, track->usrbuf_blksize)
3061 + track->usrbuf_blksize;
3062 if (offs >= track->usrbuf.capacity)
3063 offs -= track->usrbuf.capacity;
3064 ao->offset = offs;
3065
3066 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
3067 ao->samples, ao->deltablks, ao->offset);
3068 break;
3069
3070 case AUDIO_WSEEK:
3071 /* XXX return value does not include outbuf one. */
3072 if (file->ptrack)
3073 *(u_long *)addr = file->ptrack->usrbuf.used;
3074 break;
3075
3076 case AUDIO_SETINFO:
3077 error = audio_exlock_enter(sc);
3078 if (error)
3079 break;
3080 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
3081 if (error) {
3082 audio_exlock_exit(sc);
3083 break;
3084 }
3085 /* XXX TODO: update last_ai if /dev/sound ? */
3086 if (ISDEVSOUND(dev))
3087 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
3088 audio_exlock_exit(sc);
3089 break;
3090
3091 case AUDIO_GETINFO:
3092 error = audio_exlock_enter(sc);
3093 if (error)
3094 break;
3095 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
3096 audio_exlock_exit(sc);
3097 break;
3098
3099 case AUDIO_GETBUFINFO:
3100 error = audio_exlock_enter(sc);
3101 if (error)
3102 break;
3103 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
3104 audio_exlock_exit(sc);
3105 break;
3106
3107 case AUDIO_DRAIN:
3108 if (file->ptrack) {
3109 mutex_enter(sc->sc_lock);
3110 error = audio_track_drain(sc, file->ptrack);
3111 mutex_exit(sc->sc_lock);
3112 }
3113 break;
3114
3115 case AUDIO_GETDEV:
3116 mutex_enter(sc->sc_lock);
3117 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
3118 mutex_exit(sc->sc_lock);
3119 break;
3120
3121 case AUDIO_GETENC:
3122 ae = (audio_encoding_t *)addr;
3123 index = ae->index;
3124 if (index < 0 || index >= __arraycount(audio_encodings)) {
3125 error = EINVAL;
3126 break;
3127 }
3128 *ae = audio_encodings[index];
3129 ae->index = index;
3130 /*
3131 * EMULATED always.
3132 * EMULATED flag at that time used to mean that it could
3133 * not be passed directly to the hardware as-is. But
3134 * currently, all formats including hardware native is not
3135 * passed directly to the hardware. So I set EMULATED
3136 * flag for all formats.
3137 */
3138 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
3139 break;
3140
3141 case AUDIO_GETFD:
3142 /*
3143 * Returns the current setting of full duplex mode.
3144 * If HW has full duplex mode and there are two mixers,
3145 * it is full duplex. Otherwise half duplex.
3146 */
3147 error = audio_exlock_enter(sc);
3148 if (error)
3149 break;
3150 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
3151 && (sc->sc_pmixer && sc->sc_rmixer);
3152 audio_exlock_exit(sc);
3153 *(int *)addr = fd;
3154 break;
3155
3156 case AUDIO_GETPROPS:
3157 *(int *)addr = sc->sc_props;
3158 break;
3159
3160 case AUDIO_QUERYFORMAT:
3161 query = (audio_format_query_t *)addr;
3162 mutex_enter(sc->sc_lock);
3163 error = sc->hw_if->query_format(sc->hw_hdl, query);
3164 mutex_exit(sc->sc_lock);
3165 /* Hide internal information */
3166 query->fmt.driver_data = NULL;
3167 break;
3168
3169 case AUDIO_GETFORMAT:
3170 error = audio_exlock_enter(sc);
3171 if (error)
3172 break;
3173 audio_mixers_get_format(sc, (struct audio_info *)addr);
3174 audio_exlock_exit(sc);
3175 break;
3176
3177 case AUDIO_SETFORMAT:
3178 error = audio_exlock_enter(sc);
3179 audio_mixers_get_format(sc, &ai);
3180 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3181 if (error) {
3182 /* Rollback */
3183 audio_mixers_set_format(sc, &ai);
3184 }
3185 audio_exlock_exit(sc);
3186 break;
3187
3188 case AUDIO_SETFD:
3189 case AUDIO_SETCHAN:
3190 case AUDIO_GETCHAN:
3191 /* Obsoleted */
3192 break;
3193
3194 default:
3195 if (sc->hw_if->dev_ioctl) {
3196 mutex_enter(sc->sc_lock);
3197 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3198 cmd, addr, flag, l);
3199 mutex_exit(sc->sc_lock);
3200 } else {
3201 TRACEF(2, file, "unknown ioctl");
3202 error = EINVAL;
3203 }
3204 break;
3205 }
3206 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
3207 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
3208 error);
3209 return error;
3210 }
3211
3212 /*
3213 * Returns the number of bytes that can be read on recording buffer.
3214 */
3215 static __inline int
3216 audio_track_readablebytes(const audio_track_t *track)
3217 {
3218 int bytes;
3219
3220 KASSERT(track);
3221 KASSERT(track->mode == AUMODE_RECORD);
3222
3223 /*
3224 * Although usrbuf is primarily readable data, recorded data
3225 * also stays in track->input until reading. So it is necessary
3226 * to add it. track->input is in frame, usrbuf is in byte.
3227 */
3228 bytes = track->usrbuf.used +
3229 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3230 return bytes;
3231 }
3232
3233 /*
3234 * Must be called without sc_lock nor sc_exlock held.
3235 */
3236 int
3237 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3238 audio_file_t *file)
3239 {
3240 audio_track_t *track;
3241 int revents;
3242 bool in_is_valid;
3243 bool out_is_valid;
3244
3245 #if defined(AUDIO_DEBUG)
3246 #define POLLEV_BITMAP "\177\020" \
3247 "b\10WRBAND\0" \
3248 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3249 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3250 char evbuf[64];
3251 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3252 TRACEF(2, file, "pid=%d.%d events=%s",
3253 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3254 #endif
3255
3256 revents = 0;
3257 in_is_valid = false;
3258 out_is_valid = false;
3259 if (events & (POLLIN | POLLRDNORM)) {
3260 track = file->rtrack;
3261 if (track) {
3262 int used;
3263 in_is_valid = true;
3264 used = audio_track_readablebytes(track);
3265 if (used > 0)
3266 revents |= events & (POLLIN | POLLRDNORM);
3267 }
3268 }
3269 if (events & (POLLOUT | POLLWRNORM)) {
3270 track = file->ptrack;
3271 if (track) {
3272 out_is_valid = true;
3273 if (track->usrbuf.used <= track->usrbuf_usedlow)
3274 revents |= events & (POLLOUT | POLLWRNORM);
3275 }
3276 }
3277
3278 if (revents == 0) {
3279 mutex_enter(sc->sc_lock);
3280 if (in_is_valid) {
3281 TRACEF(3, file, "selrecord rsel");
3282 selrecord(l, &sc->sc_rsel);
3283 }
3284 if (out_is_valid) {
3285 TRACEF(3, file, "selrecord wsel");
3286 selrecord(l, &sc->sc_wsel);
3287 }
3288 mutex_exit(sc->sc_lock);
3289 }
3290
3291 #if defined(AUDIO_DEBUG)
3292 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3293 TRACEF(2, file, "revents=%s", evbuf);
3294 #endif
3295 return revents;
3296 }
3297
3298 static const struct filterops audioread_filtops = {
3299 .f_isfd = 1,
3300 .f_attach = NULL,
3301 .f_detach = filt_audioread_detach,
3302 .f_event = filt_audioread_event,
3303 };
3304
3305 static void
3306 filt_audioread_detach(struct knote *kn)
3307 {
3308 struct audio_softc *sc;
3309 audio_file_t *file;
3310
3311 file = kn->kn_hook;
3312 sc = file->sc;
3313 TRACEF(3, file, "called");
3314
3315 mutex_enter(sc->sc_lock);
3316 selremove_knote(&sc->sc_rsel, kn);
3317 mutex_exit(sc->sc_lock);
3318 }
3319
3320 static int
3321 filt_audioread_event(struct knote *kn, long hint)
3322 {
3323 audio_file_t *file;
3324 audio_track_t *track;
3325
3326 file = kn->kn_hook;
3327 track = file->rtrack;
3328
3329 /*
3330 * kn_data must contain the number of bytes can be read.
3331 * The return value indicates whether the event occurs or not.
3332 */
3333
3334 if (track == NULL) {
3335 /* can not read with this descriptor. */
3336 kn->kn_data = 0;
3337 return 0;
3338 }
3339
3340 kn->kn_data = audio_track_readablebytes(track);
3341 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3342 return kn->kn_data > 0;
3343 }
3344
3345 static const struct filterops audiowrite_filtops = {
3346 .f_isfd = 1,
3347 .f_attach = NULL,
3348 .f_detach = filt_audiowrite_detach,
3349 .f_event = filt_audiowrite_event,
3350 };
3351
3352 static void
3353 filt_audiowrite_detach(struct knote *kn)
3354 {
3355 struct audio_softc *sc;
3356 audio_file_t *file;
3357
3358 file = kn->kn_hook;
3359 sc = file->sc;
3360 TRACEF(3, file, "called");
3361
3362 mutex_enter(sc->sc_lock);
3363 selremove_knote(&sc->sc_wsel, kn);
3364 mutex_exit(sc->sc_lock);
3365 }
3366
3367 static int
3368 filt_audiowrite_event(struct knote *kn, long hint)
3369 {
3370 audio_file_t *file;
3371 audio_track_t *track;
3372
3373 file = kn->kn_hook;
3374 track = file->ptrack;
3375
3376 /*
3377 * kn_data must contain the number of bytes can be write.
3378 * The return value indicates whether the event occurs or not.
3379 */
3380
3381 if (track == NULL) {
3382 /* can not write with this descriptor. */
3383 kn->kn_data = 0;
3384 return 0;
3385 }
3386
3387 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3388 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3389 return (track->usrbuf.used < track->usrbuf_usedlow);
3390 }
3391
3392 /*
3393 * Must be called without sc_lock nor sc_exlock held.
3394 */
3395 int
3396 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3397 {
3398 struct selinfo *sip;
3399
3400 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3401
3402 switch (kn->kn_filter) {
3403 case EVFILT_READ:
3404 sip = &sc->sc_rsel;
3405 kn->kn_fop = &audioread_filtops;
3406 break;
3407
3408 case EVFILT_WRITE:
3409 sip = &sc->sc_wsel;
3410 kn->kn_fop = &audiowrite_filtops;
3411 break;
3412
3413 default:
3414 return EINVAL;
3415 }
3416
3417 kn->kn_hook = file;
3418
3419 mutex_enter(sc->sc_lock);
3420 selrecord_knote(sip, kn);
3421 mutex_exit(sc->sc_lock);
3422
3423 return 0;
3424 }
3425
3426 /*
3427 * Must be called without sc_lock nor sc_exlock held.
3428 */
3429 int
3430 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3431 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3432 audio_file_t *file)
3433 {
3434 audio_track_t *track;
3435 vsize_t vsize;
3436 int error;
3437
3438 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3439
3440 if (*offp < 0)
3441 return EINVAL;
3442
3443 #if 0
3444 /* XXX
3445 * The idea here was to use the protection to determine if
3446 * we are mapping the read or write buffer, but it fails.
3447 * The VM system is broken in (at least) two ways.
3448 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3449 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3450 * has to be used for mmapping the play buffer.
3451 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3452 * audio_mmap will get called at some point with VM_PROT_READ
3453 * only.
3454 * So, alas, we always map the play buffer for now.
3455 */
3456 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3457 prot == VM_PROT_WRITE)
3458 track = file->ptrack;
3459 else if (prot == VM_PROT_READ)
3460 track = file->rtrack;
3461 else
3462 return EINVAL;
3463 #else
3464 track = file->ptrack;
3465 #endif
3466 if (track == NULL)
3467 return EACCES;
3468
3469 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3470 if (len > vsize)
3471 return EOVERFLOW;
3472 if (*offp > (uint)(vsize - len))
3473 return EOVERFLOW;
3474
3475 /* XXX TODO: what happens when mmap twice. */
3476 if (!track->mmapped) {
3477 track->mmapped = true;
3478
3479 if (!track->is_pause) {
3480 error = audio_exlock_mutex_enter(sc);
3481 if (error)
3482 return error;
3483 if (sc->sc_pbusy == false)
3484 audio_pmixer_start(sc, true);
3485 audio_exlock_mutex_exit(sc);
3486 }
3487 /* XXX mmapping record buffer is not supported */
3488 }
3489
3490 /* get ringbuffer */
3491 *uobjp = track->uobj;
3492
3493 /* Acquire a reference for the mmap. munmap will release. */
3494 uao_reference(*uobjp);
3495 *maxprotp = prot;
3496 *advicep = UVM_ADV_RANDOM;
3497 *flagsp = MAP_SHARED;
3498 return 0;
3499 }
3500
3501 /*
3502 * /dev/audioctl has to be able to open at any time without interference
3503 * with any /dev/audio or /dev/sound.
3504 * Must be called with sc_exlock held and without sc_lock held.
3505 */
3506 static int
3507 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3508 struct lwp *l)
3509 {
3510 struct file *fp;
3511 audio_file_t *af;
3512 int fd;
3513 int error;
3514
3515 KASSERT(sc->sc_exlock);
3516
3517 TRACE(1, "called");
3518
3519 error = fd_allocfile(&fp, &fd);
3520 if (error)
3521 return error;
3522
3523 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
3524 af->sc = sc;
3525 af->dev = dev;
3526
3527 mutex_enter(sc->sc_lock);
3528 if (sc->sc_dying) {
3529 mutex_exit(sc->sc_lock);
3530 kmem_free(af, sizeof(*af));
3531 fd_abort(curproc, fp, fd);
3532 return ENXIO;
3533 }
3534 mutex_enter(sc->sc_intr_lock);
3535 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
3536 mutex_exit(sc->sc_intr_lock);
3537 mutex_exit(sc->sc_lock);
3538
3539 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3540 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3541
3542 return error;
3543 }
3544
3545 /*
3546 * Free 'mem' if available, and initialize the pointer.
3547 * For this reason, this is implemented as macro.
3548 */
3549 #define audio_free(mem) do { \
3550 if (mem != NULL) { \
3551 kern_free(mem); \
3552 mem = NULL; \
3553 } \
3554 } while (0)
3555
3556 /*
3557 * (Re)allocate 'memblock' with specified 'bytes'.
3558 * bytes must not be 0.
3559 * This function never returns NULL.
3560 */
3561 static void *
3562 audio_realloc(void *memblock, size_t bytes)
3563 {
3564
3565 KASSERT(bytes != 0);
3566 audio_free(memblock);
3567 return kern_malloc(bytes, M_WAITOK);
3568 }
3569
3570 /*
3571 * (Re)allocate usrbuf with 'newbufsize' bytes.
3572 * Use this function for usrbuf because only usrbuf can be mmapped.
3573 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3574 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3575 * and returns errno.
3576 * It must be called before updating usrbuf.capacity.
3577 */
3578 static int
3579 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3580 {
3581 struct audio_softc *sc;
3582 vaddr_t vstart;
3583 vsize_t oldvsize;
3584 vsize_t newvsize;
3585 int error;
3586
3587 KASSERT(newbufsize > 0);
3588 sc = track->mixer->sc;
3589
3590 /* Get a nonzero multiple of PAGE_SIZE */
3591 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3592
3593 if (track->usrbuf.mem != NULL) {
3594 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3595 PAGE_SIZE);
3596 if (oldvsize == newvsize) {
3597 track->usrbuf.capacity = newbufsize;
3598 return 0;
3599 }
3600 vstart = (vaddr_t)track->usrbuf.mem;
3601 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3602 /* uvm_unmap also detach uobj */
3603 track->uobj = NULL; /* paranoia */
3604 track->usrbuf.mem = NULL;
3605 }
3606
3607 /* Create a uvm anonymous object */
3608 track->uobj = uao_create(newvsize, 0);
3609
3610 /* Map it into the kernel virtual address space */
3611 vstart = 0;
3612 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3613 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3614 UVM_ADV_RANDOM, 0));
3615 if (error) {
3616 device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
3617 uao_detach(track->uobj); /* release reference */
3618 goto abort;
3619 }
3620
3621 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3622 false, 0);
3623 if (error) {
3624 device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
3625 error);
3626 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3627 /* uvm_unmap also detach uobj */
3628 goto abort;
3629 }
3630
3631 track->usrbuf.mem = (void *)vstart;
3632 track->usrbuf.capacity = newbufsize;
3633 memset(track->usrbuf.mem, 0, newvsize);
3634 return 0;
3635
3636 /* failure */
3637 abort:
3638 track->uobj = NULL; /* paranoia */
3639 track->usrbuf.mem = NULL;
3640 track->usrbuf.capacity = 0;
3641 return error;
3642 }
3643
3644 /*
3645 * Free usrbuf (if available).
3646 */
3647 static void
3648 audio_free_usrbuf(audio_track_t *track)
3649 {
3650 vaddr_t vstart;
3651 vsize_t vsize;
3652
3653 vstart = (vaddr_t)track->usrbuf.mem;
3654 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3655 if (track->usrbuf.mem != NULL) {
3656 /*
3657 * Unmap the kernel mapping. uvm_unmap releases the
3658 * reference to the uvm object, and this should be the
3659 * last virtual mapping of the uvm object, so no need
3660 * to explicitly release (`detach') the object.
3661 */
3662 uvm_unmap(kernel_map, vstart, vstart + vsize);
3663
3664 track->uobj = NULL;
3665 track->usrbuf.mem = NULL;
3666 track->usrbuf.capacity = 0;
3667 }
3668 }
3669
3670 /*
3671 * This filter changes the volume for each channel.
3672 * arg->context points track->ch_volume[].
3673 */
3674 static void
3675 audio_track_chvol(audio_filter_arg_t *arg)
3676 {
3677 int16_t *ch_volume;
3678 const aint_t *s;
3679 aint_t *d;
3680 u_int i;
3681 u_int ch;
3682 u_int channels;
3683
3684 DIAGNOSTIC_filter_arg(arg);
3685 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3686 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3687 arg->srcfmt->channels, arg->dstfmt->channels);
3688 KASSERT(arg->context != NULL);
3689 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3690 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3691
3692 s = arg->src;
3693 d = arg->dst;
3694 ch_volume = arg->context;
3695
3696 channels = arg->srcfmt->channels;
3697 for (i = 0; i < arg->count; i++) {
3698 for (ch = 0; ch < channels; ch++) {
3699 aint2_t val;
3700 val = *s++;
3701 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3702 *d++ = (aint_t)val;
3703 }
3704 }
3705 }
3706
3707 /*
3708 * This filter performs conversion from stereo (or more channels) to mono.
3709 */
3710 static void
3711 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3712 {
3713 const aint_t *s;
3714 aint_t *d;
3715 u_int i;
3716
3717 DIAGNOSTIC_filter_arg(arg);
3718
3719 s = arg->src;
3720 d = arg->dst;
3721
3722 for (i = 0; i < arg->count; i++) {
3723 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3724 s += arg->srcfmt->channels;
3725 }
3726 }
3727
3728 /*
3729 * This filter performs conversion from mono to stereo (or more channels).
3730 */
3731 static void
3732 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3733 {
3734 const aint_t *s;
3735 aint_t *d;
3736 u_int i;
3737 u_int ch;
3738 u_int dstchannels;
3739
3740 DIAGNOSTIC_filter_arg(arg);
3741
3742 s = arg->src;
3743 d = arg->dst;
3744 dstchannels = arg->dstfmt->channels;
3745
3746 for (i = 0; i < arg->count; i++) {
3747 d[0] = s[0];
3748 d[1] = s[0];
3749 s++;
3750 d += dstchannels;
3751 }
3752 if (dstchannels > 2) {
3753 d = arg->dst;
3754 for (i = 0; i < arg->count; i++) {
3755 for (ch = 2; ch < dstchannels; ch++) {
3756 d[ch] = 0;
3757 }
3758 d += dstchannels;
3759 }
3760 }
3761 }
3762
3763 /*
3764 * This filter shrinks M channels into N channels.
3765 * Extra channels are discarded.
3766 */
3767 static void
3768 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3769 {
3770 const aint_t *s;
3771 aint_t *d;
3772 u_int i;
3773 u_int ch;
3774
3775 DIAGNOSTIC_filter_arg(arg);
3776
3777 s = arg->src;
3778 d = arg->dst;
3779
3780 for (i = 0; i < arg->count; i++) {
3781 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3782 *d++ = s[ch];
3783 }
3784 s += arg->srcfmt->channels;
3785 }
3786 }
3787
3788 /*
3789 * This filter expands M channels into N channels.
3790 * Silence is inserted for missing channels.
3791 */
3792 static void
3793 audio_track_chmix_expand(audio_filter_arg_t *arg)
3794 {
3795 const aint_t *s;
3796 aint_t *d;
3797 u_int i;
3798 u_int ch;
3799 u_int srcchannels;
3800 u_int dstchannels;
3801
3802 DIAGNOSTIC_filter_arg(arg);
3803
3804 s = arg->src;
3805 d = arg->dst;
3806
3807 srcchannels = arg->srcfmt->channels;
3808 dstchannels = arg->dstfmt->channels;
3809 for (i = 0; i < arg->count; i++) {
3810 for (ch = 0; ch < srcchannels; ch++) {
3811 *d++ = *s++;
3812 }
3813 for (; ch < dstchannels; ch++) {
3814 *d++ = 0;
3815 }
3816 }
3817 }
3818
3819 /*
3820 * This filter performs frequency conversion (up sampling).
3821 * It uses linear interpolation.
3822 */
3823 static void
3824 audio_track_freq_up(audio_filter_arg_t *arg)
3825 {
3826 audio_track_t *track;
3827 audio_ring_t *src;
3828 audio_ring_t *dst;
3829 const aint_t *s;
3830 aint_t *d;
3831 aint_t prev[AUDIO_MAX_CHANNELS];
3832 aint_t curr[AUDIO_MAX_CHANNELS];
3833 aint_t grad[AUDIO_MAX_CHANNELS];
3834 u_int i;
3835 u_int t;
3836 u_int step;
3837 u_int channels;
3838 u_int ch;
3839 int srcused;
3840
3841 track = arg->context;
3842 KASSERT(track);
3843 src = &track->freq.srcbuf;
3844 dst = track->freq.dst;
3845 DIAGNOSTIC_ring(dst);
3846 DIAGNOSTIC_ring(src);
3847 KASSERT(src->used > 0);
3848 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3849 "src->fmt.channels=%d dst->fmt.channels=%d",
3850 src->fmt.channels, dst->fmt.channels);
3851 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3852 "src->head=%d track->mixer->frames_per_block=%d",
3853 src->head, track->mixer->frames_per_block);
3854
3855 s = arg->src;
3856 d = arg->dst;
3857
3858 /*
3859 * In order to faciliate interpolation for each block, slide (delay)
3860 * input by one sample. As a result, strictly speaking, the output
3861 * phase is delayed by 1/dstfreq. However, I believe there is no
3862 * observable impact.
3863 *
3864 * Example)
3865 * srcfreq:dstfreq = 1:3
3866 *
3867 * A - -
3868 * |
3869 * |
3870 * | B - -
3871 * +-----+-----> input timeframe
3872 * 0 1
3873 *
3874 * 0 1
3875 * +-----+-----> input timeframe
3876 * | A
3877 * | x x
3878 * | x x
3879 * x (B)
3880 * +-+-+-+-+-+-> output timeframe
3881 * 0 1 2 3 4 5
3882 */
3883
3884 /* Last samples in previous block */
3885 channels = src->fmt.channels;
3886 for (ch = 0; ch < channels; ch++) {
3887 prev[ch] = track->freq_prev[ch];
3888 curr[ch] = track->freq_curr[ch];
3889 grad[ch] = curr[ch] - prev[ch];
3890 }
3891
3892 step = track->freq_step;
3893 t = track->freq_current;
3894 //#define FREQ_DEBUG
3895 #if defined(FREQ_DEBUG)
3896 #define PRINTF(fmt...) printf(fmt)
3897 #else
3898 #define PRINTF(fmt...) do { } while (0)
3899 #endif
3900 srcused = src->used;
3901 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3902 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3903 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3904 PRINTF(" t=%d\n", t);
3905
3906 for (i = 0; i < arg->count; i++) {
3907 PRINTF("i=%d t=%5d", i, t);
3908 if (t >= 65536) {
3909 for (ch = 0; ch < channels; ch++) {
3910 prev[ch] = curr[ch];
3911 curr[ch] = *s++;
3912 grad[ch] = curr[ch] - prev[ch];
3913 }
3914 PRINTF(" prev=%d s[%d]=%d",
3915 prev[0], src->used - srcused, curr[0]);
3916
3917 /* Update */
3918 t -= 65536;
3919 srcused--;
3920 if (srcused < 0) {
3921 PRINTF(" break\n");
3922 break;
3923 }
3924 }
3925
3926 for (ch = 0; ch < channels; ch++) {
3927 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3928 #if defined(FREQ_DEBUG)
3929 if (ch == 0)
3930 printf(" t=%5d *d=%d", t, d[-1]);
3931 #endif
3932 }
3933 t += step;
3934
3935 PRINTF("\n");
3936 }
3937 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3938
3939 auring_take(src, src->used);
3940 auring_push(dst, i);
3941
3942 /* Adjust */
3943 t += track->freq_leap;
3944
3945 track->freq_current = t;
3946 for (ch = 0; ch < channels; ch++) {
3947 track->freq_prev[ch] = prev[ch];
3948 track->freq_curr[ch] = curr[ch];
3949 }
3950 }
3951
3952 /*
3953 * This filter performs frequency conversion (down sampling).
3954 * It uses simple thinning.
3955 */
3956 static void
3957 audio_track_freq_down(audio_filter_arg_t *arg)
3958 {
3959 audio_track_t *track;
3960 audio_ring_t *src;
3961 audio_ring_t *dst;
3962 const aint_t *s0;
3963 aint_t *d;
3964 u_int i;
3965 u_int t;
3966 u_int step;
3967 u_int ch;
3968 u_int channels;
3969
3970 track = arg->context;
3971 KASSERT(track);
3972 src = &track->freq.srcbuf;
3973 dst = track->freq.dst;
3974
3975 DIAGNOSTIC_ring(dst);
3976 DIAGNOSTIC_ring(src);
3977 KASSERT(src->used > 0);
3978 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3979 "src->fmt.channels=%d dst->fmt.channels=%d",
3980 src->fmt.channels, dst->fmt.channels);
3981 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3982 "src->head=%d track->mixer->frames_per_block=%d",
3983 src->head, track->mixer->frames_per_block);
3984
3985 s0 = arg->src;
3986 d = arg->dst;
3987 t = track->freq_current;
3988 step = track->freq_step;
3989 channels = dst->fmt.channels;
3990 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3991 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3992 PRINTF(" t=%d\n", t);
3993
3994 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3995 const aint_t *s;
3996 PRINTF("i=%4d t=%10d", i, t);
3997 s = s0 + (t / 65536) * channels;
3998 PRINTF(" s=%5ld", (s - s0) / channels);
3999 for (ch = 0; ch < channels; ch++) {
4000 if (ch == 0) PRINTF(" *s=%d", s[ch]);
4001 *d++ = s[ch];
4002 }
4003 PRINTF("\n");
4004 t += step;
4005 }
4006 t += track->freq_leap;
4007 PRINTF("end t=%d\n", t);
4008 auring_take(src, src->used);
4009 auring_push(dst, i);
4010 track->freq_current = t % 65536;
4011 }
4012
4013 /*
4014 * Creates track and returns it.
4015 * Must be called without sc_lock held.
4016 */
4017 audio_track_t *
4018 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
4019 {
4020 audio_track_t *track;
4021 static int newid = 0;
4022
4023 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
4024
4025 track->id = newid++;
4026 track->mixer = mixer;
4027 track->mode = mixer->mode;
4028
4029 /* Do TRACE after id is assigned. */
4030 TRACET(3, track, "for %s",
4031 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
4032
4033 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
4034 track->volume = 256;
4035 #endif
4036 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
4037 track->ch_volume[i] = 256;
4038 }
4039
4040 return track;
4041 }
4042
4043 /*
4044 * Release all resources of the track and track itself.
4045 * track must not be NULL. Don't specify the track within the file
4046 * structure linked from sc->sc_files.
4047 */
4048 static void
4049 audio_track_destroy(audio_track_t *track)
4050 {
4051
4052 KASSERT(track);
4053
4054 audio_free_usrbuf(track);
4055 audio_free(track->codec.srcbuf.mem);
4056 audio_free(track->chvol.srcbuf.mem);
4057 audio_free(track->chmix.srcbuf.mem);
4058 audio_free(track->freq.srcbuf.mem);
4059 audio_free(track->outbuf.mem);
4060
4061 kmem_free(track, sizeof(*track));
4062 }
4063
4064 /*
4065 * It returns encoding conversion filter according to src and dst format.
4066 * If it is not a convertible pair, it returns NULL. Either src or dst
4067 * must be internal format.
4068 */
4069 static audio_filter_t
4070 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
4071 const audio_format2_t *dst)
4072 {
4073
4074 if (audio_format2_is_internal(src)) {
4075 if (dst->encoding == AUDIO_ENCODING_ULAW) {
4076 return audio_internal_to_mulaw;
4077 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
4078 return audio_internal_to_alaw;
4079 } else if (audio_format2_is_linear(dst)) {
4080 switch (dst->stride) {
4081 case 8:
4082 return audio_internal_to_linear8;
4083 case 16:
4084 return audio_internal_to_linear16;
4085 #if defined(AUDIO_SUPPORT_LINEAR24)
4086 case 24:
4087 return audio_internal_to_linear24;
4088 #endif
4089 case 32:
4090 return audio_internal_to_linear32;
4091 default:
4092 TRACET(1, track, "unsupported %s stride %d",
4093 "dst", dst->stride);
4094 goto abort;
4095 }
4096 }
4097 } else if (audio_format2_is_internal(dst)) {
4098 if (src->encoding == AUDIO_ENCODING_ULAW) {
4099 return audio_mulaw_to_internal;
4100 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
4101 return audio_alaw_to_internal;
4102 } else if (audio_format2_is_linear(src)) {
4103 switch (src->stride) {
4104 case 8:
4105 return audio_linear8_to_internal;
4106 case 16:
4107 return audio_linear16_to_internal;
4108 #if defined(AUDIO_SUPPORT_LINEAR24)
4109 case 24:
4110 return audio_linear24_to_internal;
4111 #endif
4112 case 32:
4113 return audio_linear32_to_internal;
4114 default:
4115 TRACET(1, track, "unsupported %s stride %d",
4116 "src", src->stride);
4117 goto abort;
4118 }
4119 }
4120 }
4121
4122 TRACET(1, track, "unsupported encoding");
4123 abort:
4124 #if defined(AUDIO_DEBUG)
4125 if (audiodebug >= 2) {
4126 char buf[100];
4127 audio_format2_tostr(buf, sizeof(buf), src);
4128 TRACET(2, track, "src %s", buf);
4129 audio_format2_tostr(buf, sizeof(buf), dst);
4130 TRACET(2, track, "dst %s", buf);
4131 }
4132 #endif
4133 return NULL;
4134 }
4135
4136 /*
4137 * Initialize the codec stage of this track as necessary.
4138 * If successful, it initializes the codec stage as necessary, stores updated
4139 * last_dst in *last_dstp in any case, and returns 0.
4140 * Otherwise, it returns errno without modifying *last_dstp.
4141 */
4142 static int
4143 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
4144 {
4145 audio_ring_t *last_dst;
4146 audio_ring_t *srcbuf;
4147 audio_format2_t *srcfmt;
4148 audio_format2_t *dstfmt;
4149 audio_filter_arg_t *arg;
4150 u_int len;
4151 int error;
4152
4153 KASSERT(track);
4154
4155 last_dst = *last_dstp;
4156 dstfmt = &last_dst->fmt;
4157 srcfmt = &track->inputfmt;
4158 srcbuf = &track->codec.srcbuf;
4159 error = 0;
4160
4161 if (srcfmt->encoding != dstfmt->encoding
4162 || srcfmt->precision != dstfmt->precision
4163 || srcfmt->stride != dstfmt->stride) {
4164 track->codec.dst = last_dst;
4165
4166 srcbuf->fmt = *dstfmt;
4167 srcbuf->fmt.encoding = srcfmt->encoding;
4168 srcbuf->fmt.precision = srcfmt->precision;
4169 srcbuf->fmt.stride = srcfmt->stride;
4170
4171 track->codec.filter = audio_track_get_codec(track,
4172 &srcbuf->fmt, dstfmt);
4173 if (track->codec.filter == NULL) {
4174 error = EINVAL;
4175 goto abort;
4176 }
4177
4178 srcbuf->head = 0;
4179 srcbuf->used = 0;
4180 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4181 len = auring_bytelen(srcbuf);
4182 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4183
4184 arg = &track->codec.arg;
4185 arg->srcfmt = &srcbuf->fmt;
4186 arg->dstfmt = dstfmt;
4187 arg->context = NULL;
4188
4189 *last_dstp = srcbuf;
4190 return 0;
4191 }
4192
4193 abort:
4194 track->codec.filter = NULL;
4195 audio_free(srcbuf->mem);
4196 return error;
4197 }
4198
4199 /*
4200 * Initialize the chvol stage of this track as necessary.
4201 * If successful, it initializes the chvol stage as necessary, stores updated
4202 * last_dst in *last_dstp in any case, and returns 0.
4203 * Otherwise, it returns errno without modifying *last_dstp.
4204 */
4205 static int
4206 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4207 {
4208 audio_ring_t *last_dst;
4209 audio_ring_t *srcbuf;
4210 audio_format2_t *srcfmt;
4211 audio_format2_t *dstfmt;
4212 audio_filter_arg_t *arg;
4213 u_int len;
4214 int error;
4215
4216 KASSERT(track);
4217
4218 last_dst = *last_dstp;
4219 dstfmt = &last_dst->fmt;
4220 srcfmt = &track->inputfmt;
4221 srcbuf = &track->chvol.srcbuf;
4222 error = 0;
4223
4224 /* Check whether channel volume conversion is necessary. */
4225 bool use_chvol = false;
4226 for (int ch = 0; ch < srcfmt->channels; ch++) {
4227 if (track->ch_volume[ch] != 256) {
4228 use_chvol = true;
4229 break;
4230 }
4231 }
4232
4233 if (use_chvol == true) {
4234 track->chvol.dst = last_dst;
4235 track->chvol.filter = audio_track_chvol;
4236
4237 srcbuf->fmt = *dstfmt;
4238 /* no format conversion occurs */
4239
4240 srcbuf->head = 0;
4241 srcbuf->used = 0;
4242 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4243 len = auring_bytelen(srcbuf);
4244 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4245
4246 arg = &track->chvol.arg;
4247 arg->srcfmt = &srcbuf->fmt;
4248 arg->dstfmt = dstfmt;
4249 arg->context = track->ch_volume;
4250
4251 *last_dstp = srcbuf;
4252 return 0;
4253 }
4254
4255 track->chvol.filter = NULL;
4256 audio_free(srcbuf->mem);
4257 return error;
4258 }
4259
4260 /*
4261 * Initialize the chmix stage of this track as necessary.
4262 * If successful, it initializes the chmix stage as necessary, stores updated
4263 * last_dst in *last_dstp in any case, and returns 0.
4264 * Otherwise, it returns errno without modifying *last_dstp.
4265 */
4266 static int
4267 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4268 {
4269 audio_ring_t *last_dst;
4270 audio_ring_t *srcbuf;
4271 audio_format2_t *srcfmt;
4272 audio_format2_t *dstfmt;
4273 audio_filter_arg_t *arg;
4274 u_int srcch;
4275 u_int dstch;
4276 u_int len;
4277 int error;
4278
4279 KASSERT(track);
4280
4281 last_dst = *last_dstp;
4282 dstfmt = &last_dst->fmt;
4283 srcfmt = &track->inputfmt;
4284 srcbuf = &track->chmix.srcbuf;
4285 error = 0;
4286
4287 srcch = srcfmt->channels;
4288 dstch = dstfmt->channels;
4289 if (srcch != dstch) {
4290 track->chmix.dst = last_dst;
4291
4292 if (srcch >= 2 && dstch == 1) {
4293 track->chmix.filter = audio_track_chmix_mixLR;
4294 } else if (srcch == 1 && dstch >= 2) {
4295 track->chmix.filter = audio_track_chmix_dupLR;
4296 } else if (srcch > dstch) {
4297 track->chmix.filter = audio_track_chmix_shrink;
4298 } else {
4299 track->chmix.filter = audio_track_chmix_expand;
4300 }
4301
4302 srcbuf->fmt = *dstfmt;
4303 srcbuf->fmt.channels = srcch;
4304
4305 srcbuf->head = 0;
4306 srcbuf->used = 0;
4307 /* XXX The buffer size should be able to calculate. */
4308 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4309 len = auring_bytelen(srcbuf);
4310 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4311
4312 arg = &track->chmix.arg;
4313 arg->srcfmt = &srcbuf->fmt;
4314 arg->dstfmt = dstfmt;
4315 arg->context = NULL;
4316
4317 *last_dstp = srcbuf;
4318 return 0;
4319 }
4320
4321 track->chmix.filter = NULL;
4322 audio_free(srcbuf->mem);
4323 return error;
4324 }
4325
4326 /*
4327 * Initialize the freq stage of this track as necessary.
4328 * If successful, it initializes the freq stage as necessary, stores updated
4329 * last_dst in *last_dstp in any case, and returns 0.
4330 * Otherwise, it returns errno without modifying *last_dstp.
4331 */
4332 static int
4333 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4334 {
4335 audio_ring_t *last_dst;
4336 audio_ring_t *srcbuf;
4337 audio_format2_t *srcfmt;
4338 audio_format2_t *dstfmt;
4339 audio_filter_arg_t *arg;
4340 uint32_t srcfreq;
4341 uint32_t dstfreq;
4342 u_int dst_capacity;
4343 u_int mod;
4344 u_int len;
4345 int error;
4346
4347 KASSERT(track);
4348
4349 last_dst = *last_dstp;
4350 dstfmt = &last_dst->fmt;
4351 srcfmt = &track->inputfmt;
4352 srcbuf = &track->freq.srcbuf;
4353 error = 0;
4354
4355 srcfreq = srcfmt->sample_rate;
4356 dstfreq = dstfmt->sample_rate;
4357 if (srcfreq != dstfreq) {
4358 track->freq.dst = last_dst;
4359
4360 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4361 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4362
4363 /* freq_step is the ratio of src/dst when let dst 65536. */
4364 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4365
4366 dst_capacity = frame_per_block(track->mixer, dstfmt);
4367 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4368 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4369
4370 if (track->freq_step < 65536) {
4371 track->freq.filter = audio_track_freq_up;
4372 /* In order to carry at the first time. */
4373 track->freq_current = 65536;
4374 } else {
4375 track->freq.filter = audio_track_freq_down;
4376 track->freq_current = 0;
4377 }
4378
4379 srcbuf->fmt = *dstfmt;
4380 srcbuf->fmt.sample_rate = srcfreq;
4381
4382 srcbuf->head = 0;
4383 srcbuf->used = 0;
4384 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4385 len = auring_bytelen(srcbuf);
4386 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4387
4388 arg = &track->freq.arg;
4389 arg->srcfmt = &srcbuf->fmt;
4390 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4391 arg->context = track;
4392
4393 *last_dstp = srcbuf;
4394 return 0;
4395 }
4396
4397 track->freq.filter = NULL;
4398 audio_free(srcbuf->mem);
4399 return error;
4400 }
4401
4402 /*
4403 * When playing back: (e.g. if codec and freq stage are valid)
4404 *
4405 * write
4406 * | uiomove
4407 * v
4408 * usrbuf [...............] byte ring buffer (mmap-able)
4409 * | memcpy
4410 * v
4411 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4412 * .dst ----+
4413 * | convert
4414 * v
4415 * freq.srcbuf [....] 1 block (ring) buffer
4416 * .dst ----+
4417 * | convert
4418 * v
4419 * outbuf [...............] NBLKOUT blocks ring buffer
4420 *
4421 *
4422 * When recording:
4423 *
4424 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4425 * .dst ----+
4426 * | convert
4427 * v
4428 * codec.srcbuf[.....] 1 block (ring) buffer
4429 * .dst ----+
4430 * | convert
4431 * v
4432 * outbuf [.....] 1 block (ring) buffer
4433 * | memcpy
4434 * v
4435 * usrbuf [...............] byte ring buffer (mmap-able *)
4436 * | uiomove
4437 * v
4438 * read
4439 *
4440 * *: usrbuf for recording is also mmap-able due to symmetry with
4441 * playback buffer, but for now mmap will never happen for recording.
4442 */
4443
4444 /*
4445 * Set the userland format of this track.
4446 * usrfmt argument should have been previously verified by
4447 * audio_track_setinfo_check().
4448 * This function may release and reallocate all internal conversion buffers.
4449 * It returns 0 if successful. Otherwise it returns errno with clearing all
4450 * internal buffers.
4451 * It must be called without sc_intr_lock since uvm_* routines require non
4452 * intr_lock state.
4453 * It must be called with track lock held since it may release and reallocate
4454 * outbuf.
4455 */
4456 static int
4457 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4458 {
4459 struct audio_softc *sc;
4460 u_int newbufsize;
4461 u_int oldblksize;
4462 u_int len;
4463 int error;
4464
4465 KASSERT(track);
4466 sc = track->mixer->sc;
4467
4468 /* usrbuf is the closest buffer to the userland. */
4469 track->usrbuf.fmt = *usrfmt;
4470
4471 /*
4472 * For references, one block size (in 40msec) is:
4473 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4474 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4475 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4476 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4477 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4478 *
4479 * For example,
4480 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4481 * newbufsize = rounddown(65536 / 7056) = 63504
4482 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4483 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4484 *
4485 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4486 * newbufsize = rounddown(65536 / 7680) = 61440
4487 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4488 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4489 */
4490 oldblksize = track->usrbuf_blksize;
4491 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4492 frame_per_block(track->mixer, &track->usrbuf.fmt));
4493 track->usrbuf.head = 0;
4494 track->usrbuf.used = 0;
4495 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4496 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4497 error = audio_realloc_usrbuf(track, newbufsize);
4498 if (error) {
4499 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4500 newbufsize);
4501 goto error;
4502 }
4503
4504 /* Recalc water mark. */
4505 if (track->usrbuf_blksize != oldblksize) {
4506 if (audio_track_is_playback(track)) {
4507 /* Set high at 100%, low at 75%. */
4508 track->usrbuf_usedhigh = track->usrbuf.capacity;
4509 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4510 } else {
4511 /* Set high at 100% minus 1block(?), low at 0% */
4512 track->usrbuf_usedhigh = track->usrbuf.capacity -
4513 track->usrbuf_blksize;
4514 track->usrbuf_usedlow = 0;
4515 }
4516 }
4517
4518 /* Stage buffer */
4519 audio_ring_t *last_dst = &track->outbuf;
4520 if (audio_track_is_playback(track)) {
4521 /* On playback, initialize from the mixer side in order. */
4522 track->inputfmt = *usrfmt;
4523 track->outbuf.fmt = track->mixer->track_fmt;
4524
4525 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4526 goto error;
4527 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4528 goto error;
4529 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4530 goto error;
4531 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4532 goto error;
4533 } else {
4534 /* On recording, initialize from userland side in order. */
4535 track->inputfmt = track->mixer->track_fmt;
4536 track->outbuf.fmt = *usrfmt;
4537
4538 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4539 goto error;
4540 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4541 goto error;
4542 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4543 goto error;
4544 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4545 goto error;
4546 }
4547 #if 0
4548 /* debug */
4549 if (track->freq.filter) {
4550 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4551 audio_print_format2("freq dst", &track->freq.dst->fmt);
4552 }
4553 if (track->chmix.filter) {
4554 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4555 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4556 }
4557 if (track->chvol.filter) {
4558 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4559 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4560 }
4561 if (track->codec.filter) {
4562 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4563 audio_print_format2("codec dst", &track->codec.dst->fmt);
4564 }
4565 #endif
4566
4567 /* Stage input buffer */
4568 track->input = last_dst;
4569
4570 /*
4571 * On the recording track, make the first stage a ring buffer.
4572 * XXX is there a better way?
4573 */
4574 if (audio_track_is_record(track)) {
4575 track->input->capacity = NBLKOUT *
4576 frame_per_block(track->mixer, &track->input->fmt);
4577 len = auring_bytelen(track->input);
4578 track->input->mem = audio_realloc(track->input->mem, len);
4579 }
4580
4581 /*
4582 * Output buffer.
4583 * On the playback track, its capacity is NBLKOUT blocks.
4584 * On the recording track, its capacity is 1 block.
4585 */
4586 track->outbuf.head = 0;
4587 track->outbuf.used = 0;
4588 track->outbuf.capacity = frame_per_block(track->mixer,
4589 &track->outbuf.fmt);
4590 if (audio_track_is_playback(track))
4591 track->outbuf.capacity *= NBLKOUT;
4592 len = auring_bytelen(&track->outbuf);
4593 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4594 if (track->outbuf.mem == NULL) {
4595 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4596 error = ENOMEM;
4597 goto error;
4598 }
4599
4600 #if defined(AUDIO_DEBUG)
4601 if (audiodebug >= 3) {
4602 struct audio_track_debugbuf m;
4603
4604 memset(&m, 0, sizeof(m));
4605 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4606 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4607 if (track->freq.filter)
4608 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4609 track->freq.srcbuf.capacity *
4610 frametobyte(&track->freq.srcbuf.fmt, 1));
4611 if (track->chmix.filter)
4612 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4613 track->chmix.srcbuf.capacity *
4614 frametobyte(&track->chmix.srcbuf.fmt, 1));
4615 if (track->chvol.filter)
4616 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4617 track->chvol.srcbuf.capacity *
4618 frametobyte(&track->chvol.srcbuf.fmt, 1));
4619 if (track->codec.filter)
4620 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4621 track->codec.srcbuf.capacity *
4622 frametobyte(&track->codec.srcbuf.fmt, 1));
4623 snprintf(m.usrbuf, sizeof(m.usrbuf),
4624 " usr=%d", track->usrbuf.capacity);
4625
4626 if (audio_track_is_playback(track)) {
4627 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4628 m.outbuf, m.freq, m.chmix,
4629 m.chvol, m.codec, m.usrbuf);
4630 } else {
4631 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4632 m.freq, m.chmix, m.chvol,
4633 m.codec, m.outbuf, m.usrbuf);
4634 }
4635 }
4636 #endif
4637 return 0;
4638
4639 error:
4640 audio_free_usrbuf(track);
4641 audio_free(track->codec.srcbuf.mem);
4642 audio_free(track->chvol.srcbuf.mem);
4643 audio_free(track->chmix.srcbuf.mem);
4644 audio_free(track->freq.srcbuf.mem);
4645 audio_free(track->outbuf.mem);
4646 return error;
4647 }
4648
4649 /*
4650 * Fill silence frames (as the internal format) up to 1 block
4651 * if the ring is not empty and less than 1 block.
4652 * It returns the number of appended frames.
4653 */
4654 static int
4655 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4656 {
4657 int fpb;
4658 int n;
4659
4660 KASSERT(track);
4661 KASSERT(audio_format2_is_internal(&ring->fmt));
4662
4663 /* XXX is n correct? */
4664 /* XXX memset uses frametobyte()? */
4665
4666 if (ring->used == 0)
4667 return 0;
4668
4669 fpb = frame_per_block(track->mixer, &ring->fmt);
4670 if (ring->used >= fpb)
4671 return 0;
4672
4673 n = (ring->capacity - ring->used) % fpb;
4674
4675 KASSERTMSG(auring_get_contig_free(ring) >= n,
4676 "auring_get_contig_free(ring)=%d n=%d",
4677 auring_get_contig_free(ring), n);
4678
4679 memset(auring_tailptr_aint(ring), 0,
4680 n * ring->fmt.channels * sizeof(aint_t));
4681 auring_push(ring, n);
4682 return n;
4683 }
4684
4685 /*
4686 * Execute the conversion stage.
4687 * It prepares arg from this stage and executes stage->filter.
4688 * It must be called only if stage->filter is not NULL.
4689 *
4690 * For stages other than frequency conversion, the function increments
4691 * src and dst counters here. For frequency conversion stage, on the
4692 * other hand, the function does not touch src and dst counters and
4693 * filter side has to increment them.
4694 */
4695 static void
4696 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4697 {
4698 audio_filter_arg_t *arg;
4699 int srccount;
4700 int dstcount;
4701 int count;
4702
4703 KASSERT(track);
4704 KASSERT(stage->filter);
4705
4706 srccount = auring_get_contig_used(&stage->srcbuf);
4707 dstcount = auring_get_contig_free(stage->dst);
4708
4709 if (isfreq) {
4710 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4711 count = uimin(dstcount, track->mixer->frames_per_block);
4712 } else {
4713 count = uimin(srccount, dstcount);
4714 }
4715
4716 if (count > 0) {
4717 arg = &stage->arg;
4718 arg->src = auring_headptr(&stage->srcbuf);
4719 arg->dst = auring_tailptr(stage->dst);
4720 arg->count = count;
4721
4722 stage->filter(arg);
4723
4724 if (!isfreq) {
4725 auring_take(&stage->srcbuf, count);
4726 auring_push(stage->dst, count);
4727 }
4728 }
4729 }
4730
4731 /*
4732 * Produce output buffer for playback from user input buffer.
4733 * It must be called only if usrbuf is not empty and outbuf is
4734 * available at least one free block.
4735 */
4736 static void
4737 audio_track_play(audio_track_t *track)
4738 {
4739 audio_ring_t *usrbuf;
4740 audio_ring_t *input;
4741 int count;
4742 int framesize;
4743 int bytes;
4744
4745 KASSERT(track);
4746 KASSERT(track->lock);
4747 TRACET(4, track, "start pstate=%d", track->pstate);
4748
4749 /* At this point usrbuf must not be empty. */
4750 KASSERT(track->usrbuf.used > 0);
4751 /* Also, outbuf must be available at least one block. */
4752 count = auring_get_contig_free(&track->outbuf);
4753 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4754 "count=%d fpb=%d",
4755 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4756
4757 /* XXX TODO: is this necessary for now? */
4758 int track_count_0 = track->outbuf.used;
4759
4760 usrbuf = &track->usrbuf;
4761 input = track->input;
4762
4763 /*
4764 * framesize is always 1 byte or more since all formats supported as
4765 * usrfmt(=input) have 8bit or more stride.
4766 */
4767 framesize = frametobyte(&input->fmt, 1);
4768 KASSERT(framesize >= 1);
4769
4770 /* The next stage of usrbuf (=input) must be available. */
4771 KASSERT(auring_get_contig_free(input) > 0);
4772
4773 /*
4774 * Copy usrbuf up to 1block to input buffer.
4775 * count is the number of frames to copy from usrbuf.
4776 * bytes is the number of bytes to copy from usrbuf. However it is
4777 * not copied less than one frame.
4778 */
4779 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4780 bytes = count * framesize;
4781
4782 track->usrbuf_stamp += bytes;
4783
4784 if (usrbuf->head + bytes < usrbuf->capacity) {
4785 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4786 (uint8_t *)usrbuf->mem + usrbuf->head,
4787 bytes);
4788 auring_push(input, count);
4789 auring_take(usrbuf, bytes);
4790 } else {
4791 int bytes1;
4792 int bytes2;
4793
4794 bytes1 = auring_get_contig_used(usrbuf);
4795 KASSERTMSG(bytes1 % framesize == 0,
4796 "bytes1=%d framesize=%d", bytes1, framesize);
4797 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4798 (uint8_t *)usrbuf->mem + usrbuf->head,
4799 bytes1);
4800 auring_push(input, bytes1 / framesize);
4801 auring_take(usrbuf, bytes1);
4802
4803 bytes2 = bytes - bytes1;
4804 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4805 (uint8_t *)usrbuf->mem + usrbuf->head,
4806 bytes2);
4807 auring_push(input, bytes2 / framesize);
4808 auring_take(usrbuf, bytes2);
4809 }
4810
4811 /* Encoding conversion */
4812 if (track->codec.filter)
4813 audio_apply_stage(track, &track->codec, false);
4814
4815 /* Channel volume */
4816 if (track->chvol.filter)
4817 audio_apply_stage(track, &track->chvol, false);
4818
4819 /* Channel mix */
4820 if (track->chmix.filter)
4821 audio_apply_stage(track, &track->chmix, false);
4822
4823 /* Frequency conversion */
4824 /*
4825 * Since the frequency conversion needs correction for each block,
4826 * it rounds up to 1 block.
4827 */
4828 if (track->freq.filter) {
4829 int n;
4830 n = audio_append_silence(track, &track->freq.srcbuf);
4831 if (n > 0) {
4832 TRACET(4, track,
4833 "freq.srcbuf add silence %d -> %d/%d/%d",
4834 n,
4835 track->freq.srcbuf.head,
4836 track->freq.srcbuf.used,
4837 track->freq.srcbuf.capacity);
4838 }
4839 if (track->freq.srcbuf.used > 0) {
4840 audio_apply_stage(track, &track->freq, true);
4841 }
4842 }
4843
4844 if (bytes < track->usrbuf_blksize) {
4845 /*
4846 * Clear all conversion buffer pointer if the conversion was
4847 * not exactly one block. These conversion stage buffers are
4848 * certainly circular buffers because of symmetry with the
4849 * previous and next stage buffer. However, since they are
4850 * treated as simple contiguous buffers in operation, so head
4851 * always should point 0. This may happen during drain-age.
4852 */
4853 TRACET(4, track, "reset stage");
4854 if (track->codec.filter) {
4855 KASSERT(track->codec.srcbuf.used == 0);
4856 track->codec.srcbuf.head = 0;
4857 }
4858 if (track->chvol.filter) {
4859 KASSERT(track->chvol.srcbuf.used == 0);
4860 track->chvol.srcbuf.head = 0;
4861 }
4862 if (track->chmix.filter) {
4863 KASSERT(track->chmix.srcbuf.used == 0);
4864 track->chmix.srcbuf.head = 0;
4865 }
4866 if (track->freq.filter) {
4867 KASSERT(track->freq.srcbuf.used == 0);
4868 track->freq.srcbuf.head = 0;
4869 }
4870 }
4871
4872 if (track->input == &track->outbuf) {
4873 track->outputcounter = track->inputcounter;
4874 } else {
4875 track->outputcounter += track->outbuf.used - track_count_0;
4876 }
4877
4878 #if defined(AUDIO_DEBUG)
4879 if (audiodebug >= 3) {
4880 struct audio_track_debugbuf m;
4881 audio_track_bufstat(track, &m);
4882 TRACET(0, track, "end%s%s%s%s%s%s",
4883 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4884 }
4885 #endif
4886 }
4887
4888 /*
4889 * Produce user output buffer for recording from input buffer.
4890 */
4891 static void
4892 audio_track_record(audio_track_t *track)
4893 {
4894 audio_ring_t *outbuf;
4895 audio_ring_t *usrbuf;
4896 int count;
4897 int bytes;
4898 int framesize;
4899
4900 KASSERT(track);
4901 KASSERT(track->lock);
4902
4903 /* Number of frames to process */
4904 count = auring_get_contig_used(track->input);
4905 count = uimin(count, track->mixer->frames_per_block);
4906 if (count == 0) {
4907 TRACET(4, track, "count == 0");
4908 return;
4909 }
4910
4911 /* Frequency conversion */
4912 if (track->freq.filter) {
4913 if (track->freq.srcbuf.used > 0) {
4914 audio_apply_stage(track, &track->freq, true);
4915 /* XXX should input of freq be from beginning of buf? */
4916 }
4917 }
4918
4919 /* Channel mix */
4920 if (track->chmix.filter)
4921 audio_apply_stage(track, &track->chmix, false);
4922
4923 /* Channel volume */
4924 if (track->chvol.filter)
4925 audio_apply_stage(track, &track->chvol, false);
4926
4927 /* Encoding conversion */
4928 if (track->codec.filter)
4929 audio_apply_stage(track, &track->codec, false);
4930
4931 /* Copy outbuf to usrbuf */
4932 outbuf = &track->outbuf;
4933 usrbuf = &track->usrbuf;
4934 /*
4935 * framesize is always 1 byte or more since all formats supported
4936 * as usrfmt(=output) have 8bit or more stride.
4937 */
4938 framesize = frametobyte(&outbuf->fmt, 1);
4939 KASSERT(framesize >= 1);
4940 /*
4941 * count is the number of frames to copy to usrbuf.
4942 * bytes is the number of bytes to copy to usrbuf.
4943 */
4944 count = outbuf->used;
4945 count = uimin(count,
4946 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4947 bytes = count * framesize;
4948 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4949 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4950 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4951 bytes);
4952 auring_push(usrbuf, bytes);
4953 auring_take(outbuf, count);
4954 } else {
4955 int bytes1;
4956 int bytes2;
4957
4958 bytes1 = auring_get_contig_free(usrbuf);
4959 KASSERTMSG(bytes1 % framesize == 0,
4960 "bytes1=%d framesize=%d", bytes1, framesize);
4961 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4962 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4963 bytes1);
4964 auring_push(usrbuf, bytes1);
4965 auring_take(outbuf, bytes1 / framesize);
4966
4967 bytes2 = bytes - bytes1;
4968 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4969 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4970 bytes2);
4971 auring_push(usrbuf, bytes2);
4972 auring_take(outbuf, bytes2 / framesize);
4973 }
4974
4975 /* XXX TODO: any counters here? */
4976
4977 #if defined(AUDIO_DEBUG)
4978 if (audiodebug >= 3) {
4979 struct audio_track_debugbuf m;
4980 audio_track_bufstat(track, &m);
4981 TRACET(0, track, "end%s%s%s%s%s%s",
4982 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4983 }
4984 #endif
4985 }
4986
4987 /*
4988 * Calculate blktime [msec] from mixer(.hwbuf.fmt).
4989 * Must be called with sc_exlock held.
4990 */
4991 static u_int
4992 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4993 {
4994 audio_format2_t *fmt;
4995 u_int blktime;
4996 u_int frames_per_block;
4997
4998 KASSERT(sc->sc_exlock);
4999
5000 fmt = &mixer->hwbuf.fmt;
5001 blktime = sc->sc_blk_ms;
5002
5003 /*
5004 * If stride is not multiples of 8, special treatment is necessary.
5005 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
5006 */
5007 if (fmt->stride == 4) {
5008 frames_per_block = fmt->sample_rate * blktime / 1000;
5009 if ((frames_per_block & 1) != 0)
5010 blktime *= 2;
5011 }
5012 #ifdef DIAGNOSTIC
5013 else if (fmt->stride % NBBY != 0) {
5014 panic("unsupported HW stride %d", fmt->stride);
5015 }
5016 #endif
5017
5018 return blktime;
5019 }
5020
5021 /*
5022 * Initialize the mixer corresponding to the mode.
5023 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
5024 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
5025 * This function returns 0 on successful. Otherwise returns errno.
5026 * Must be called with sc_exlock held and without sc_lock held.
5027 */
5028 static int
5029 audio_mixer_init(struct audio_softc *sc, int mode,
5030 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
5031 {
5032 char codecbuf[64];
5033 char blkdmsbuf[8];
5034 audio_trackmixer_t *mixer;
5035 void (*softint_handler)(void *);
5036 int len;
5037 int blksize;
5038 int capacity;
5039 size_t bufsize;
5040 int hwblks;
5041 int blkms;
5042 int blkdms;
5043 int error;
5044
5045 KASSERT(hwfmt != NULL);
5046 KASSERT(reg != NULL);
5047 KASSERT(sc->sc_exlock);
5048
5049 error = 0;
5050 if (mode == AUMODE_PLAY)
5051 mixer = sc->sc_pmixer;
5052 else
5053 mixer = sc->sc_rmixer;
5054
5055 mixer->sc = sc;
5056 mixer->mode = mode;
5057
5058 mixer->hwbuf.fmt = *hwfmt;
5059 mixer->volume = 256;
5060 mixer->blktime_d = 1000;
5061 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
5062 sc->sc_blk_ms = mixer->blktime_n;
5063 hwblks = NBLKHW;
5064
5065 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
5066 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5067 if (sc->hw_if->round_blocksize) {
5068 int rounded;
5069 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
5070 mutex_enter(sc->sc_lock);
5071 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
5072 mode, &p);
5073 mutex_exit(sc->sc_lock);
5074 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
5075 if (rounded != blksize) {
5076 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
5077 mixer->hwbuf.fmt.channels) != 0) {
5078 audio_printf(sc,
5079 "round_blocksize returned blocksize "
5080 "indivisible by framesize: "
5081 "blksize=%d rounded=%d "
5082 "stride=%ubit channels=%u\n",
5083 blksize, rounded,
5084 mixer->hwbuf.fmt.stride,
5085 mixer->hwbuf.fmt.channels);
5086 return EINVAL;
5087 }
5088 /* Recalculation */
5089 blksize = rounded;
5090 mixer->frames_per_block = blksize * NBBY /
5091 (mixer->hwbuf.fmt.stride *
5092 mixer->hwbuf.fmt.channels);
5093 }
5094 }
5095 mixer->blktime_n = mixer->frames_per_block;
5096 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
5097
5098 capacity = mixer->frames_per_block * hwblks;
5099 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
5100 if (sc->hw_if->round_buffersize) {
5101 size_t rounded;
5102 mutex_enter(sc->sc_lock);
5103 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
5104 bufsize);
5105 mutex_exit(sc->sc_lock);
5106 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
5107 if (rounded < bufsize) {
5108 /* buffersize needs NBLKHW blocks at least. */
5109 audio_printf(sc,
5110 "round_buffersize returned too small buffersize: "
5111 "buffersize=%zd blksize=%d\n",
5112 rounded, blksize);
5113 return EINVAL;
5114 }
5115 if (rounded % blksize != 0) {
5116 /* buffersize/blksize constraint mismatch? */
5117 audio_printf(sc,
5118 "round_buffersize returned buffersize indivisible "
5119 "by blksize: buffersize=%zu blksize=%d\n",
5120 rounded, blksize);
5121 return EINVAL;
5122 }
5123 if (rounded != bufsize) {
5124 /* Recalculation */
5125 bufsize = rounded;
5126 hwblks = bufsize / blksize;
5127 capacity = mixer->frames_per_block * hwblks;
5128 }
5129 }
5130 TRACE(1, "buffersize for %s = %zu",
5131 (mode == AUMODE_PLAY) ? "playback" : "recording",
5132 bufsize);
5133 mixer->hwbuf.capacity = capacity;
5134
5135 if (sc->hw_if->allocm) {
5136 /* sc_lock is not necessary for allocm */
5137 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
5138 if (mixer->hwbuf.mem == NULL) {
5139 audio_printf(sc, "allocm(%zu) failed\n", bufsize);
5140 return ENOMEM;
5141 }
5142 } else {
5143 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
5144 }
5145
5146 /* From here, audio_mixer_destroy is necessary to exit. */
5147 if (mode == AUMODE_PLAY) {
5148 cv_init(&mixer->outcv, "audiowr");
5149 } else {
5150 cv_init(&mixer->outcv, "audiord");
5151 }
5152
5153 if (mode == AUMODE_PLAY) {
5154 softint_handler = audio_softintr_wr;
5155 } else {
5156 softint_handler = audio_softintr_rd;
5157 }
5158 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
5159 softint_handler, sc);
5160 if (mixer->sih == NULL) {
5161 device_printf(sc->sc_dev, "softint_establish failed\n");
5162 goto abort;
5163 }
5164
5165 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
5166 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
5167 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
5168 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
5169 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
5170
5171 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
5172 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
5173 mixer->swap_endian = true;
5174 TRACE(1, "swap_endian");
5175 }
5176
5177 if (mode == AUMODE_PLAY) {
5178 /* Mixing buffer */
5179 mixer->mixfmt = mixer->track_fmt;
5180 mixer->mixfmt.precision *= 2;
5181 mixer->mixfmt.stride *= 2;
5182 /* XXX TODO: use some macros? */
5183 len = mixer->frames_per_block * mixer->mixfmt.channels *
5184 mixer->mixfmt.stride / NBBY;
5185 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5186 } else {
5187 /* No mixing buffer for recording */
5188 }
5189
5190 if (reg->codec) {
5191 mixer->codec = reg->codec;
5192 mixer->codecarg.context = reg->context;
5193 if (mode == AUMODE_PLAY) {
5194 mixer->codecarg.srcfmt = &mixer->track_fmt;
5195 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5196 } else {
5197 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5198 mixer->codecarg.dstfmt = &mixer->track_fmt;
5199 }
5200 mixer->codecbuf.fmt = mixer->track_fmt;
5201 mixer->codecbuf.capacity = mixer->frames_per_block;
5202 len = auring_bytelen(&mixer->codecbuf);
5203 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5204 if (mixer->codecbuf.mem == NULL) {
5205 device_printf(sc->sc_dev,
5206 "malloc codecbuf(%d) failed\n", len);
5207 error = ENOMEM;
5208 goto abort;
5209 }
5210 }
5211
5212 /* Succeeded so display it. */
5213 codecbuf[0] = '\0';
5214 if (mixer->codec || mixer->swap_endian) {
5215 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5216 (mode == AUMODE_PLAY) ? "->" : "<-",
5217 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5218 mixer->hwbuf.fmt.precision);
5219 }
5220 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5221 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5222 blkdmsbuf[0] = '\0';
5223 if (blkdms != 0) {
5224 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5225 }
5226 aprint_normal_dev(sc->sc_dev,
5227 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5228 audio_encoding_name(mixer->track_fmt.encoding),
5229 mixer->track_fmt.precision,
5230 codecbuf,
5231 mixer->track_fmt.channels,
5232 mixer->track_fmt.sample_rate,
5233 blksize,
5234 blkms, blkdmsbuf,
5235 (mode == AUMODE_PLAY) ? "playback" : "recording");
5236
5237 return 0;
5238
5239 abort:
5240 audio_mixer_destroy(sc, mixer);
5241 return error;
5242 }
5243
5244 /*
5245 * Releases all resources of 'mixer'.
5246 * Note that it does not release the memory area of 'mixer' itself.
5247 * Must be called with sc_exlock held and without sc_lock held.
5248 */
5249 static void
5250 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5251 {
5252 int bufsize;
5253
5254 KASSERT(sc->sc_exlock == 1);
5255
5256 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5257
5258 if (mixer->hwbuf.mem != NULL) {
5259 if (sc->hw_if->freem) {
5260 /* sc_lock is not necessary for freem */
5261 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5262 } else {
5263 kmem_free(mixer->hwbuf.mem, bufsize);
5264 }
5265 mixer->hwbuf.mem = NULL;
5266 }
5267
5268 audio_free(mixer->codecbuf.mem);
5269 audio_free(mixer->mixsample);
5270
5271 cv_destroy(&mixer->outcv);
5272
5273 if (mixer->sih) {
5274 softint_disestablish(mixer->sih);
5275 mixer->sih = NULL;
5276 }
5277 }
5278
5279 /*
5280 * Starts playback mixer.
5281 * Must be called only if sc_pbusy is false.
5282 * Must be called with sc_lock && sc_exlock held.
5283 * Must not be called from the interrupt context.
5284 */
5285 static void
5286 audio_pmixer_start(struct audio_softc *sc, bool force)
5287 {
5288 audio_trackmixer_t *mixer;
5289 int minimum;
5290
5291 KASSERT(mutex_owned(sc->sc_lock));
5292 KASSERT(sc->sc_exlock);
5293 KASSERT(sc->sc_pbusy == false);
5294
5295 mutex_enter(sc->sc_intr_lock);
5296
5297 mixer = sc->sc_pmixer;
5298 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5299 (audiodebug >= 3) ? "begin " : "",
5300 (int)mixer->mixseq, (int)mixer->hwseq,
5301 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5302 force ? " force" : "");
5303
5304 /* Need two blocks to start normally. */
5305 minimum = (force) ? 1 : 2;
5306 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5307 audio_pmixer_process(sc);
5308 }
5309
5310 /* Start output */
5311 audio_pmixer_output(sc);
5312 sc->sc_pbusy = true;
5313
5314 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5315 (int)mixer->mixseq, (int)mixer->hwseq,
5316 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5317
5318 mutex_exit(sc->sc_intr_lock);
5319 }
5320
5321 /*
5322 * When playing back with MD filter:
5323 *
5324 * track track ...
5325 * v v
5326 * + mix (with aint2_t)
5327 * | master volume (with aint2_t)
5328 * v
5329 * mixsample [::::] wide-int 1 block (ring) buffer
5330 * |
5331 * | convert aint2_t -> aint_t
5332 * v
5333 * codecbuf [....] 1 block (ring) buffer
5334 * |
5335 * | convert to hw format
5336 * v
5337 * hwbuf [............] NBLKHW blocks ring buffer
5338 *
5339 * When playing back without MD filter:
5340 *
5341 * mixsample [::::] wide-int 1 block (ring) buffer
5342 * |
5343 * | convert aint2_t -> aint_t
5344 * | (with byte swap if necessary)
5345 * v
5346 * hwbuf [............] NBLKHW blocks ring buffer
5347 *
5348 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5349 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5350 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5351 */
5352
5353 /*
5354 * Performs track mixing and converts it to hwbuf.
5355 * Note that this function doesn't transfer hwbuf to hardware.
5356 * Must be called with sc_intr_lock held.
5357 */
5358 static void
5359 audio_pmixer_process(struct audio_softc *sc)
5360 {
5361 audio_trackmixer_t *mixer;
5362 audio_file_t *f;
5363 int frame_count;
5364 int sample_count;
5365 int mixed;
5366 int i;
5367 aint2_t *m;
5368 aint_t *h;
5369
5370 mixer = sc->sc_pmixer;
5371
5372 frame_count = mixer->frames_per_block;
5373 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5374 "auring_get_contig_free()=%d frame_count=%d",
5375 auring_get_contig_free(&mixer->hwbuf), frame_count);
5376 sample_count = frame_count * mixer->mixfmt.channels;
5377
5378 mixer->mixseq++;
5379
5380 /* Mix all tracks */
5381 mixed = 0;
5382 SLIST_FOREACH(f, &sc->sc_files, entry) {
5383 audio_track_t *track = f->ptrack;
5384
5385 if (track == NULL)
5386 continue;
5387
5388 if (track->is_pause) {
5389 TRACET(4, track, "skip; paused");
5390 continue;
5391 }
5392
5393 /* Skip if the track is used by process context. */
5394 if (audio_track_lock_tryenter(track) == false) {
5395 TRACET(4, track, "skip; in use");
5396 continue;
5397 }
5398
5399 /* Emulate mmap'ped track */
5400 if (track->mmapped) {
5401 auring_push(&track->usrbuf, track->usrbuf_blksize);
5402 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5403 track->usrbuf.head,
5404 track->usrbuf.used,
5405 track->usrbuf.capacity);
5406 }
5407
5408 if (track->outbuf.used < mixer->frames_per_block &&
5409 track->usrbuf.used > 0) {
5410 TRACET(4, track, "process");
5411 audio_track_play(track);
5412 }
5413
5414 if (track->outbuf.used > 0) {
5415 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5416 } else {
5417 TRACET(4, track, "skip; empty");
5418 }
5419
5420 audio_track_lock_exit(track);
5421 }
5422
5423 if (mixed == 0) {
5424 /* Silence */
5425 memset(mixer->mixsample, 0,
5426 frametobyte(&mixer->mixfmt, frame_count));
5427 } else {
5428 if (mixed > 1) {
5429 /* If there are multiple tracks, do auto gain control */
5430 audio_pmixer_agc(mixer, sample_count);
5431 }
5432
5433 /* Apply master volume */
5434 if (mixer->volume < 256) {
5435 m = mixer->mixsample;
5436 for (i = 0; i < sample_count; i++) {
5437 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5438 m++;
5439 }
5440
5441 /*
5442 * Recover the volume gradually at the pace of
5443 * several times per second. If it's too fast, you
5444 * can recognize that the volume changes up and down
5445 * quickly and it's not so comfortable.
5446 */
5447 mixer->voltimer += mixer->blktime_n;
5448 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5449 mixer->volume++;
5450 mixer->voltimer = 0;
5451 #if defined(AUDIO_DEBUG_AGC)
5452 TRACE(1, "volume recover: %d", mixer->volume);
5453 #endif
5454 }
5455 }
5456 }
5457
5458 /*
5459 * The rest is the hardware part.
5460 */
5461
5462 if (mixer->codec) {
5463 h = auring_tailptr_aint(&mixer->codecbuf);
5464 } else {
5465 h = auring_tailptr_aint(&mixer->hwbuf);
5466 }
5467
5468 m = mixer->mixsample;
5469 if (mixer->swap_endian) {
5470 for (i = 0; i < sample_count; i++) {
5471 *h++ = bswap16(*m++);
5472 }
5473 } else {
5474 for (i = 0; i < sample_count; i++) {
5475 *h++ = *m++;
5476 }
5477 }
5478
5479 /* Hardware driver's codec */
5480 if (mixer->codec) {
5481 auring_push(&mixer->codecbuf, frame_count);
5482 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5483 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5484 mixer->codecarg.count = frame_count;
5485 mixer->codec(&mixer->codecarg);
5486 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5487 }
5488
5489 auring_push(&mixer->hwbuf, frame_count);
5490
5491 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5492 (int)mixer->mixseq,
5493 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5494 (mixed == 0) ? " silent" : "");
5495 }
5496
5497 /*
5498 * Do auto gain control.
5499 * Must be called sc_intr_lock held.
5500 */
5501 static void
5502 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5503 {
5504 struct audio_softc *sc __unused;
5505 aint2_t val;
5506 aint2_t maxval;
5507 aint2_t minval;
5508 aint2_t over_plus;
5509 aint2_t over_minus;
5510 aint2_t *m;
5511 int newvol;
5512 int i;
5513
5514 sc = mixer->sc;
5515
5516 /* Overflow detection */
5517 maxval = AINT_T_MAX;
5518 minval = AINT_T_MIN;
5519 m = mixer->mixsample;
5520 for (i = 0; i < sample_count; i++) {
5521 val = *m++;
5522 if (val > maxval)
5523 maxval = val;
5524 else if (val < minval)
5525 minval = val;
5526 }
5527
5528 /* Absolute value of overflowed amount */
5529 over_plus = maxval - AINT_T_MAX;
5530 over_minus = AINT_T_MIN - minval;
5531
5532 if (over_plus > 0 || over_minus > 0) {
5533 if (over_plus > over_minus) {
5534 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5535 } else {
5536 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5537 }
5538
5539 /*
5540 * Change the volume only if new one is smaller.
5541 * Reset the timer even if the volume isn't changed.
5542 */
5543 if (newvol <= mixer->volume) {
5544 mixer->volume = newvol;
5545 mixer->voltimer = 0;
5546 #if defined(AUDIO_DEBUG_AGC)
5547 TRACE(1, "auto volume adjust: %d", mixer->volume);
5548 #endif
5549 }
5550 }
5551 }
5552
5553 /*
5554 * Mix one track.
5555 * 'mixed' specifies the number of tracks mixed so far.
5556 * It returns the number of tracks mixed. In other words, it returns
5557 * mixed + 1 if this track is mixed.
5558 */
5559 static int
5560 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5561 int mixed)
5562 {
5563 int count;
5564 int sample_count;
5565 int remain;
5566 int i;
5567 const aint_t *s;
5568 aint2_t *d;
5569
5570 /* XXX TODO: Is this necessary for now? */
5571 if (mixer->mixseq < track->seq)
5572 return mixed;
5573
5574 count = auring_get_contig_used(&track->outbuf);
5575 count = uimin(count, mixer->frames_per_block);
5576
5577 s = auring_headptr_aint(&track->outbuf);
5578 d = mixer->mixsample;
5579
5580 /*
5581 * Apply track volume with double-sized integer and perform
5582 * additive synthesis.
5583 *
5584 * XXX If you limit the track volume to 1.0 or less (<= 256),
5585 * it would be better to do this in the track conversion stage
5586 * rather than here. However, if you accept the volume to
5587 * be greater than 1.0 (> 256), it's better to do it here.
5588 * Because the operation here is done by double-sized integer.
5589 */
5590 sample_count = count * mixer->mixfmt.channels;
5591 if (mixed == 0) {
5592 /* If this is the first track, assignment can be used. */
5593 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5594 if (track->volume != 256) {
5595 for (i = 0; i < sample_count; i++) {
5596 aint2_t v;
5597 v = *s++;
5598 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5599 }
5600 } else
5601 #endif
5602 {
5603 for (i = 0; i < sample_count; i++) {
5604 *d++ = ((aint2_t)*s++);
5605 }
5606 }
5607 /* Fill silence if the first track is not filled. */
5608 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5609 *d++ = 0;
5610 } else {
5611 /* If this is the second or later, add it. */
5612 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5613 if (track->volume != 256) {
5614 for (i = 0; i < sample_count; i++) {
5615 aint2_t v;
5616 v = *s++;
5617 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5618 }
5619 } else
5620 #endif
5621 {
5622 for (i = 0; i < sample_count; i++) {
5623 *d++ += ((aint2_t)*s++);
5624 }
5625 }
5626 }
5627
5628 auring_take(&track->outbuf, count);
5629 /*
5630 * The counters have to align block even if outbuf is less than
5631 * one block. XXX Is this still necessary?
5632 */
5633 remain = mixer->frames_per_block - count;
5634 if (__predict_false(remain != 0)) {
5635 auring_push(&track->outbuf, remain);
5636 auring_take(&track->outbuf, remain);
5637 }
5638
5639 /*
5640 * Update track sequence.
5641 * mixseq has previous value yet at this point.
5642 */
5643 track->seq = mixer->mixseq + 1;
5644
5645 return mixed + 1;
5646 }
5647
5648 /*
5649 * Output one block from hwbuf to HW.
5650 * Must be called with sc_intr_lock held.
5651 */
5652 static void
5653 audio_pmixer_output(struct audio_softc *sc)
5654 {
5655 audio_trackmixer_t *mixer;
5656 audio_params_t params;
5657 void *start;
5658 void *end;
5659 int blksize;
5660 int error;
5661
5662 mixer = sc->sc_pmixer;
5663 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5664 sc->sc_pbusy,
5665 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5666 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5667 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5668 mixer->hwbuf.used, mixer->frames_per_block);
5669
5670 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5671
5672 if (sc->hw_if->trigger_output) {
5673 /* trigger (at once) */
5674 if (!sc->sc_pbusy) {
5675 start = mixer->hwbuf.mem;
5676 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5677 params = format2_to_params(&mixer->hwbuf.fmt);
5678
5679 error = sc->hw_if->trigger_output(sc->hw_hdl,
5680 start, end, blksize, audio_pintr, sc, ¶ms);
5681 if (error) {
5682 audio_printf(sc,
5683 "trigger_output failed: errno=%d\n",
5684 error);
5685 return;
5686 }
5687 }
5688 } else {
5689 /* start (everytime) */
5690 start = auring_headptr(&mixer->hwbuf);
5691
5692 error = sc->hw_if->start_output(sc->hw_hdl,
5693 start, blksize, audio_pintr, sc);
5694 if (error) {
5695 audio_printf(sc,
5696 "start_output failed: errno=%d\n", error);
5697 return;
5698 }
5699 }
5700 }
5701
5702 /*
5703 * This is an interrupt handler for playback.
5704 * It is called with sc_intr_lock held.
5705 *
5706 * It is usually called from hardware interrupt. However, note that
5707 * for some drivers (e.g. uaudio) it is called from software interrupt.
5708 */
5709 static void
5710 audio_pintr(void *arg)
5711 {
5712 struct audio_softc *sc;
5713 audio_trackmixer_t *mixer;
5714
5715 sc = arg;
5716 KASSERT(mutex_owned(sc->sc_intr_lock));
5717
5718 if (sc->sc_dying)
5719 return;
5720 if (sc->sc_pbusy == false) {
5721 #if defined(DIAGNOSTIC)
5722 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5723 device_xname(sc->hw_dev));
5724 #endif
5725 return;
5726 }
5727
5728 mixer = sc->sc_pmixer;
5729 mixer->hw_complete_counter += mixer->frames_per_block;
5730 mixer->hwseq++;
5731
5732 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5733
5734 TRACE(4,
5735 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5736 mixer->hwseq, mixer->hw_complete_counter,
5737 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5738
5739 #if defined(AUDIO_HW_SINGLE_BUFFER)
5740 /*
5741 * Create a new block here and output it immediately.
5742 * It makes a latency lower but needs machine power.
5743 */
5744 audio_pmixer_process(sc);
5745 audio_pmixer_output(sc);
5746 #else
5747 /*
5748 * It is called when block N output is done.
5749 * Output immediately block N+1 created by the last interrupt.
5750 * And then create block N+2 for the next interrupt.
5751 * This method makes playback robust even on slower machines.
5752 * Instead the latency is increased by one block.
5753 */
5754
5755 /* At first, output ready block. */
5756 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5757 audio_pmixer_output(sc);
5758 }
5759
5760 bool later = false;
5761
5762 if (mixer->hwbuf.used < mixer->frames_per_block) {
5763 later = true;
5764 }
5765
5766 /* Then, process next block. */
5767 audio_pmixer_process(sc);
5768
5769 if (later) {
5770 audio_pmixer_output(sc);
5771 }
5772 #endif
5773
5774 /*
5775 * When this interrupt is the real hardware interrupt, disabling
5776 * preemption here is not necessary. But some drivers (e.g. uaudio)
5777 * emulate it by software interrupt, so kpreempt_disable is necessary.
5778 */
5779 kpreempt_disable();
5780 softint_schedule(mixer->sih);
5781 kpreempt_enable();
5782 }
5783
5784 /*
5785 * Starts record mixer.
5786 * Must be called only if sc_rbusy is false.
5787 * Must be called with sc_lock && sc_exlock held.
5788 * Must not be called from the interrupt context.
5789 */
5790 static void
5791 audio_rmixer_start(struct audio_softc *sc)
5792 {
5793
5794 KASSERT(mutex_owned(sc->sc_lock));
5795 KASSERT(sc->sc_exlock);
5796 KASSERT(sc->sc_rbusy == false);
5797
5798 mutex_enter(sc->sc_intr_lock);
5799
5800 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5801 audio_rmixer_input(sc);
5802 sc->sc_rbusy = true;
5803 TRACE(3, "end");
5804
5805 mutex_exit(sc->sc_intr_lock);
5806 }
5807
5808 /*
5809 * When recording with MD filter:
5810 *
5811 * hwbuf [............] NBLKHW blocks ring buffer
5812 * |
5813 * | convert from hw format
5814 * v
5815 * codecbuf [....] 1 block (ring) buffer
5816 * | |
5817 * v v
5818 * track track ...
5819 *
5820 * When recording without MD filter:
5821 *
5822 * hwbuf [............] NBLKHW blocks ring buffer
5823 * | |
5824 * v v
5825 * track track ...
5826 *
5827 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5828 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5829 */
5830
5831 /*
5832 * Distribute a recorded block to all recording tracks.
5833 */
5834 static void
5835 audio_rmixer_process(struct audio_softc *sc)
5836 {
5837 audio_trackmixer_t *mixer;
5838 audio_ring_t *mixersrc;
5839 audio_file_t *f;
5840 aint_t *p;
5841 int count;
5842 int bytes;
5843 int i;
5844
5845 mixer = sc->sc_rmixer;
5846
5847 /*
5848 * count is the number of frames to be retrieved this time.
5849 * count should be one block.
5850 */
5851 count = auring_get_contig_used(&mixer->hwbuf);
5852 count = uimin(count, mixer->frames_per_block);
5853 if (count <= 0) {
5854 TRACE(4, "count %d: too short", count);
5855 return;
5856 }
5857 bytes = frametobyte(&mixer->track_fmt, count);
5858
5859 /* Hardware driver's codec */
5860 if (mixer->codec) {
5861 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5862 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5863 mixer->codecarg.count = count;
5864 mixer->codec(&mixer->codecarg);
5865 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5866 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5867 mixersrc = &mixer->codecbuf;
5868 } else {
5869 mixersrc = &mixer->hwbuf;
5870 }
5871
5872 if (mixer->swap_endian) {
5873 /* inplace conversion */
5874 p = auring_headptr_aint(mixersrc);
5875 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5876 *p = bswap16(*p);
5877 }
5878 }
5879
5880 /* Distribute to all tracks. */
5881 SLIST_FOREACH(f, &sc->sc_files, entry) {
5882 audio_track_t *track = f->rtrack;
5883 audio_ring_t *input;
5884
5885 if (track == NULL)
5886 continue;
5887
5888 if (track->is_pause) {
5889 TRACET(4, track, "skip; paused");
5890 continue;
5891 }
5892
5893 if (audio_track_lock_tryenter(track) == false) {
5894 TRACET(4, track, "skip; in use");
5895 continue;
5896 }
5897
5898 /* If the track buffer is full, discard the oldest one? */
5899 input = track->input;
5900 if (input->capacity - input->used < mixer->frames_per_block) {
5901 int drops = mixer->frames_per_block -
5902 (input->capacity - input->used);
5903 track->dropframes += drops;
5904 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5905 drops,
5906 input->head, input->used, input->capacity);
5907 auring_take(input, drops);
5908 }
5909 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5910 "input->used=%d mixer->frames_per_block=%d",
5911 input->used, mixer->frames_per_block);
5912
5913 memcpy(auring_tailptr_aint(input),
5914 auring_headptr_aint(mixersrc),
5915 bytes);
5916 auring_push(input, count);
5917
5918 /* XXX sequence counter? */
5919
5920 audio_track_lock_exit(track);
5921 }
5922
5923 auring_take(mixersrc, count);
5924 }
5925
5926 /*
5927 * Input one block from HW to hwbuf.
5928 * Must be called with sc_intr_lock held.
5929 */
5930 static void
5931 audio_rmixer_input(struct audio_softc *sc)
5932 {
5933 audio_trackmixer_t *mixer;
5934 audio_params_t params;
5935 void *start;
5936 void *end;
5937 int blksize;
5938 int error;
5939
5940 mixer = sc->sc_rmixer;
5941 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5942
5943 if (sc->hw_if->trigger_input) {
5944 /* trigger (at once) */
5945 if (!sc->sc_rbusy) {
5946 start = mixer->hwbuf.mem;
5947 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5948 params = format2_to_params(&mixer->hwbuf.fmt);
5949
5950 error = sc->hw_if->trigger_input(sc->hw_hdl,
5951 start, end, blksize, audio_rintr, sc, ¶ms);
5952 if (error) {
5953 audio_printf(sc,
5954 "trigger_input failed: errno=%d\n",
5955 error);
5956 return;
5957 }
5958 }
5959 } else {
5960 /* start (everytime) */
5961 start = auring_tailptr(&mixer->hwbuf);
5962
5963 error = sc->hw_if->start_input(sc->hw_hdl,
5964 start, blksize, audio_rintr, sc);
5965 if (error) {
5966 audio_printf(sc,
5967 "start_input failed: errno=%d\n", error);
5968 return;
5969 }
5970 }
5971 }
5972
5973 /*
5974 * This is an interrupt handler for recording.
5975 * It is called with sc_intr_lock.
5976 *
5977 * It is usually called from hardware interrupt. However, note that
5978 * for some drivers (e.g. uaudio) it is called from software interrupt.
5979 */
5980 static void
5981 audio_rintr(void *arg)
5982 {
5983 struct audio_softc *sc;
5984 audio_trackmixer_t *mixer;
5985
5986 sc = arg;
5987 KASSERT(mutex_owned(sc->sc_intr_lock));
5988
5989 if (sc->sc_dying)
5990 return;
5991 if (sc->sc_rbusy == false) {
5992 #if defined(DIAGNOSTIC)
5993 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5994 device_xname(sc->hw_dev));
5995 #endif
5996 return;
5997 }
5998
5999 mixer = sc->sc_rmixer;
6000 mixer->hw_complete_counter += mixer->frames_per_block;
6001 mixer->hwseq++;
6002
6003 auring_push(&mixer->hwbuf, mixer->frames_per_block);
6004
6005 TRACE(4,
6006 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
6007 mixer->hwseq, mixer->hw_complete_counter,
6008 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
6009
6010 /* Distrubute recorded block */
6011 audio_rmixer_process(sc);
6012
6013 /* Request next block */
6014 audio_rmixer_input(sc);
6015
6016 /*
6017 * When this interrupt is the real hardware interrupt, disabling
6018 * preemption here is not necessary. But some drivers (e.g. uaudio)
6019 * emulate it by software interrupt, so kpreempt_disable is necessary.
6020 */
6021 kpreempt_disable();
6022 softint_schedule(mixer->sih);
6023 kpreempt_enable();
6024 }
6025
6026 /*
6027 * Halts playback mixer.
6028 * This function also clears related parameters, so call this function
6029 * instead of calling halt_output directly.
6030 * Must be called only if sc_pbusy is true.
6031 * Must be called with sc_lock && sc_exlock held.
6032 */
6033 static int
6034 audio_pmixer_halt(struct audio_softc *sc)
6035 {
6036 int error;
6037
6038 TRACE(2, "called");
6039 KASSERT(mutex_owned(sc->sc_lock));
6040 KASSERT(sc->sc_exlock);
6041
6042 mutex_enter(sc->sc_intr_lock);
6043 error = sc->hw_if->halt_output(sc->hw_hdl);
6044
6045 /* Halts anyway even if some error has occurred. */
6046 sc->sc_pbusy = false;
6047 sc->sc_pmixer->hwbuf.head = 0;
6048 sc->sc_pmixer->hwbuf.used = 0;
6049 sc->sc_pmixer->mixseq = 0;
6050 sc->sc_pmixer->hwseq = 0;
6051 mutex_exit(sc->sc_intr_lock);
6052
6053 return error;
6054 }
6055
6056 /*
6057 * Halts recording mixer.
6058 * This function also clears related parameters, so call this function
6059 * instead of calling halt_input directly.
6060 * Must be called only if sc_rbusy is true.
6061 * Must be called with sc_lock && sc_exlock held.
6062 */
6063 static int
6064 audio_rmixer_halt(struct audio_softc *sc)
6065 {
6066 int error;
6067
6068 TRACE(2, "called");
6069 KASSERT(mutex_owned(sc->sc_lock));
6070 KASSERT(sc->sc_exlock);
6071
6072 mutex_enter(sc->sc_intr_lock);
6073 error = sc->hw_if->halt_input(sc->hw_hdl);
6074
6075 /* Halts anyway even if some error has occurred. */
6076 sc->sc_rbusy = false;
6077 sc->sc_rmixer->hwbuf.head = 0;
6078 sc->sc_rmixer->hwbuf.used = 0;
6079 sc->sc_rmixer->mixseq = 0;
6080 sc->sc_rmixer->hwseq = 0;
6081 mutex_exit(sc->sc_intr_lock);
6082
6083 return error;
6084 }
6085
6086 /*
6087 * Flush this track.
6088 * Halts all operations, clears all buffers, reset error counters.
6089 * XXX I'm not sure...
6090 */
6091 static void
6092 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
6093 {
6094
6095 KASSERT(track);
6096 TRACET(3, track, "clear");
6097
6098 audio_track_lock_enter(track);
6099
6100 track->usrbuf.used = 0;
6101 /* Clear all internal parameters. */
6102 if (track->codec.filter) {
6103 track->codec.srcbuf.used = 0;
6104 track->codec.srcbuf.head = 0;
6105 }
6106 if (track->chvol.filter) {
6107 track->chvol.srcbuf.used = 0;
6108 track->chvol.srcbuf.head = 0;
6109 }
6110 if (track->chmix.filter) {
6111 track->chmix.srcbuf.used = 0;
6112 track->chmix.srcbuf.head = 0;
6113 }
6114 if (track->freq.filter) {
6115 track->freq.srcbuf.used = 0;
6116 track->freq.srcbuf.head = 0;
6117 if (track->freq_step < 65536)
6118 track->freq_current = 65536;
6119 else
6120 track->freq_current = 0;
6121 memset(track->freq_prev, 0, sizeof(track->freq_prev));
6122 memset(track->freq_curr, 0, sizeof(track->freq_curr));
6123 }
6124 /* Clear buffer, then operation halts naturally. */
6125 track->outbuf.used = 0;
6126
6127 /* Clear counters. */
6128 track->dropframes = 0;
6129
6130 audio_track_lock_exit(track);
6131 }
6132
6133 /*
6134 * Drain the track.
6135 * track must be present and for playback.
6136 * If successful, it returns 0. Otherwise returns errno.
6137 * Must be called with sc_lock held.
6138 */
6139 static int
6140 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
6141 {
6142 audio_trackmixer_t *mixer;
6143 int done;
6144 int error;
6145
6146 KASSERT(track);
6147 TRACET(3, track, "start");
6148 mixer = track->mixer;
6149 KASSERT(mutex_owned(sc->sc_lock));
6150
6151 /* Ignore them if pause. */
6152 if (track->is_pause) {
6153 TRACET(3, track, "pause -> clear");
6154 track->pstate = AUDIO_STATE_CLEAR;
6155 }
6156 /* Terminate early here if there is no data in the track. */
6157 if (track->pstate == AUDIO_STATE_CLEAR) {
6158 TRACET(3, track, "no need to drain");
6159 return 0;
6160 }
6161 track->pstate = AUDIO_STATE_DRAINING;
6162
6163 for (;;) {
6164 /* I want to display it before condition evaluation. */
6165 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
6166 (int)curproc->p_pid, (int)curlwp->l_lid,
6167 (int)track->seq, (int)mixer->hwseq,
6168 track->outbuf.head, track->outbuf.used,
6169 track->outbuf.capacity);
6170
6171 /* Condition to terminate */
6172 audio_track_lock_enter(track);
6173 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
6174 track->outbuf.used == 0 &&
6175 track->seq <= mixer->hwseq);
6176 audio_track_lock_exit(track);
6177 if (done)
6178 break;
6179
6180 TRACET(3, track, "sleep");
6181 error = audio_track_waitio(sc, track);
6182 if (error)
6183 return error;
6184
6185 /* XXX call audio_track_play here ? */
6186 }
6187
6188 track->pstate = AUDIO_STATE_CLEAR;
6189 TRACET(3, track, "done trk_inp=%d trk_out=%d",
6190 (int)track->inputcounter, (int)track->outputcounter);
6191 return 0;
6192 }
6193
6194 /*
6195 * Send signal to process.
6196 * This is intended to be called only from audio_softintr_{rd,wr}.
6197 * Must be called without sc_intr_lock held.
6198 */
6199 static inline void
6200 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6201 {
6202 proc_t *p;
6203
6204 KASSERT(pid != 0);
6205
6206 /*
6207 * psignal() must be called without spin lock held.
6208 */
6209
6210 mutex_enter(&proc_lock);
6211 p = proc_find(pid);
6212 if (p)
6213 psignal(p, signum);
6214 mutex_exit(&proc_lock);
6215 }
6216
6217 /*
6218 * This is software interrupt handler for record.
6219 * It is called from recording hardware interrupt everytime.
6220 * It does:
6221 * - Deliver SIGIO for all async processes.
6222 * - Notify to audio_read() that data has arrived.
6223 * - selnotify() for select/poll-ing processes.
6224 */
6225 /*
6226 * XXX If a process issues FIOASYNC between hardware interrupt and
6227 * software interrupt, (stray) SIGIO will be sent to the process
6228 * despite the fact that it has not receive recorded data yet.
6229 */
6230 static void
6231 audio_softintr_rd(void *cookie)
6232 {
6233 struct audio_softc *sc = cookie;
6234 audio_file_t *f;
6235 pid_t pid;
6236
6237 mutex_enter(sc->sc_lock);
6238
6239 SLIST_FOREACH(f, &sc->sc_files, entry) {
6240 audio_track_t *track = f->rtrack;
6241
6242 if (track == NULL)
6243 continue;
6244
6245 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6246 track->input->head,
6247 track->input->used,
6248 track->input->capacity);
6249
6250 pid = f->async_audio;
6251 if (pid != 0) {
6252 TRACEF(4, f, "sending SIGIO %d", pid);
6253 audio_psignal(sc, pid, SIGIO);
6254 }
6255 }
6256
6257 /* Notify that data has arrived. */
6258 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6259 cv_broadcast(&sc->sc_rmixer->outcv);
6260
6261 mutex_exit(sc->sc_lock);
6262 }
6263
6264 /*
6265 * This is software interrupt handler for playback.
6266 * It is called from playback hardware interrupt everytime.
6267 * It does:
6268 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6269 * - Notify to audio_write() that outbuf block available.
6270 * - selnotify() for select/poll-ing processes if there are any writable
6271 * (used < lowat) processes. Checking each descriptor will be done by
6272 * filt_audiowrite_event().
6273 */
6274 static void
6275 audio_softintr_wr(void *cookie)
6276 {
6277 struct audio_softc *sc = cookie;
6278 audio_file_t *f;
6279 bool found;
6280 pid_t pid;
6281
6282 TRACE(4, "called");
6283 found = false;
6284
6285 mutex_enter(sc->sc_lock);
6286
6287 SLIST_FOREACH(f, &sc->sc_files, entry) {
6288 audio_track_t *track = f->ptrack;
6289
6290 if (track == NULL)
6291 continue;
6292
6293 TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6294 (int)track->seq,
6295 track->outbuf.head,
6296 track->outbuf.used,
6297 track->outbuf.capacity);
6298
6299 /*
6300 * Send a signal if the process is async mode and
6301 * used is lower than lowat.
6302 */
6303 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6304 !track->is_pause) {
6305 /* For selnotify */
6306 found = true;
6307 /* For SIGIO */
6308 pid = f->async_audio;
6309 if (pid != 0) {
6310 TRACEF(4, f, "sending SIGIO %d", pid);
6311 audio_psignal(sc, pid, SIGIO);
6312 }
6313 }
6314 }
6315
6316 /*
6317 * Notify for select/poll when someone become writable.
6318 * It needs sc_lock (and not sc_intr_lock).
6319 */
6320 if (found) {
6321 TRACE(4, "selnotify");
6322 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6323 }
6324
6325 /* Notify to audio_write() that outbuf available. */
6326 cv_broadcast(&sc->sc_pmixer->outcv);
6327
6328 mutex_exit(sc->sc_lock);
6329 }
6330
6331 /*
6332 * Check (and convert) the format *p came from userland.
6333 * If successful, it writes back the converted format to *p if necessary and
6334 * returns 0. Otherwise returns errno (*p may be changed even in this case).
6335 */
6336 static int
6337 audio_check_params(audio_format2_t *p)
6338 {
6339
6340 /*
6341 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6342 *
6343 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6344 * So, it's always signed, as in SunOS.
6345 *
6346 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6347 * So, it's always unsigned, as in SunOS.
6348 */
6349 if (p->encoding == AUDIO_ENCODING_PCM16) {
6350 p->encoding = AUDIO_ENCODING_SLINEAR;
6351 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6352 if (p->precision == 8)
6353 p->encoding = AUDIO_ENCODING_ULINEAR;
6354 else
6355 return EINVAL;
6356 }
6357
6358 /*
6359 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6360 * suffix.
6361 */
6362 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6363 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6364 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6365 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6366
6367 switch (p->encoding) {
6368 case AUDIO_ENCODING_ULAW:
6369 case AUDIO_ENCODING_ALAW:
6370 if (p->precision != 8)
6371 return EINVAL;
6372 break;
6373 case AUDIO_ENCODING_ADPCM:
6374 if (p->precision != 4 && p->precision != 8)
6375 return EINVAL;
6376 break;
6377 case AUDIO_ENCODING_SLINEAR_LE:
6378 case AUDIO_ENCODING_SLINEAR_BE:
6379 case AUDIO_ENCODING_ULINEAR_LE:
6380 case AUDIO_ENCODING_ULINEAR_BE:
6381 if (p->precision != 8 && p->precision != 16 &&
6382 p->precision != 24 && p->precision != 32)
6383 return EINVAL;
6384
6385 /* 8bit format does not have endianness. */
6386 if (p->precision == 8) {
6387 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6388 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6389 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6390 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6391 }
6392
6393 if (p->precision > p->stride)
6394 return EINVAL;
6395 break;
6396 case AUDIO_ENCODING_MPEG_L1_STREAM:
6397 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6398 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6399 case AUDIO_ENCODING_MPEG_L2_STREAM:
6400 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6401 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6402 case AUDIO_ENCODING_AC3:
6403 break;
6404 default:
6405 return EINVAL;
6406 }
6407
6408 /* sanity check # of channels*/
6409 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6410 return EINVAL;
6411
6412 return 0;
6413 }
6414
6415 /*
6416 * Initialize playback and record mixers.
6417 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6418 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6419 * the filter registration information. These four must not be NULL.
6420 * If successful returns 0. Otherwise returns errno.
6421 * Must be called with sc_exlock held and without sc_lock held.
6422 * Must not be called if there are any tracks.
6423 * Caller should check that the initialization succeed by whether
6424 * sc_[pr]mixer is not NULL.
6425 */
6426 static int
6427 audio_mixers_init(struct audio_softc *sc, int mode,
6428 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6429 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6430 {
6431 int error;
6432
6433 KASSERT(phwfmt != NULL);
6434 KASSERT(rhwfmt != NULL);
6435 KASSERT(pfil != NULL);
6436 KASSERT(rfil != NULL);
6437 KASSERT(sc->sc_exlock);
6438
6439 if ((mode & AUMODE_PLAY)) {
6440 if (sc->sc_pmixer == NULL) {
6441 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6442 KM_SLEEP);
6443 } else {
6444 /* destroy() doesn't free memory. */
6445 audio_mixer_destroy(sc, sc->sc_pmixer);
6446 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6447 }
6448 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6449 if (error) {
6450 /* audio_mixer_init already displayed error code */
6451 audio_printf(sc, "configuring playback mode failed\n");
6452 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6453 sc->sc_pmixer = NULL;
6454 return error;
6455 }
6456 }
6457 if ((mode & AUMODE_RECORD)) {
6458 if (sc->sc_rmixer == NULL) {
6459 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6460 KM_SLEEP);
6461 } else {
6462 /* destroy() doesn't free memory. */
6463 audio_mixer_destroy(sc, sc->sc_rmixer);
6464 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6465 }
6466 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6467 if (error) {
6468 /* audio_mixer_init already displayed error code */
6469 audio_printf(sc, "configuring record mode failed\n");
6470 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6471 sc->sc_rmixer = NULL;
6472 return error;
6473 }
6474 }
6475
6476 return 0;
6477 }
6478
6479 /*
6480 * Select a frequency.
6481 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6482 * XXX Better algorithm?
6483 */
6484 static int
6485 audio_select_freq(const struct audio_format *fmt)
6486 {
6487 int freq;
6488 int high;
6489 int low;
6490 int j;
6491
6492 if (fmt->frequency_type == 0) {
6493 low = fmt->frequency[0];
6494 high = fmt->frequency[1];
6495 freq = 48000;
6496 if (low <= freq && freq <= high) {
6497 return freq;
6498 }
6499 freq = 44100;
6500 if (low <= freq && freq <= high) {
6501 return freq;
6502 }
6503 return high;
6504 } else {
6505 for (j = 0; j < fmt->frequency_type; j++) {
6506 if (fmt->frequency[j] == 48000) {
6507 return fmt->frequency[j];
6508 }
6509 }
6510 high = 0;
6511 for (j = 0; j < fmt->frequency_type; j++) {
6512 if (fmt->frequency[j] == 44100) {
6513 return fmt->frequency[j];
6514 }
6515 if (fmt->frequency[j] > high) {
6516 high = fmt->frequency[j];
6517 }
6518 }
6519 return high;
6520 }
6521 }
6522
6523 /*
6524 * Choose the most preferred hardware format.
6525 * If successful, it will store the chosen format into *cand and return 0.
6526 * Otherwise, return errno.
6527 * Must be called without sc_lock held.
6528 */
6529 static int
6530 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6531 {
6532 audio_format_query_t query;
6533 int cand_score;
6534 int score;
6535 int i;
6536 int error;
6537
6538 /*
6539 * Score each formats and choose the highest one.
6540 *
6541 * +---- priority(0-3)
6542 * |+--- encoding/precision
6543 * ||+-- channels
6544 * score = 0x000000PEC
6545 */
6546
6547 cand_score = 0;
6548 for (i = 0; ; i++) {
6549 memset(&query, 0, sizeof(query));
6550 query.index = i;
6551
6552 mutex_enter(sc->sc_lock);
6553 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6554 mutex_exit(sc->sc_lock);
6555 if (error == EINVAL)
6556 break;
6557 if (error)
6558 return error;
6559
6560 #if defined(AUDIO_DEBUG)
6561 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6562 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6563 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6564 query.fmt.priority,
6565 audio_encoding_name(query.fmt.encoding),
6566 query.fmt.validbits,
6567 query.fmt.precision,
6568 query.fmt.channels);
6569 if (query.fmt.frequency_type == 0) {
6570 DPRINTF(1, "{%d-%d",
6571 query.fmt.frequency[0], query.fmt.frequency[1]);
6572 } else {
6573 int j;
6574 for (j = 0; j < query.fmt.frequency_type; j++) {
6575 DPRINTF(1, "%c%d",
6576 (j == 0) ? '{' : ',',
6577 query.fmt.frequency[j]);
6578 }
6579 }
6580 DPRINTF(1, "}\n");
6581 #endif
6582
6583 if ((query.fmt.mode & mode) == 0) {
6584 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6585 mode);
6586 continue;
6587 }
6588
6589 if (query.fmt.priority < 0) {
6590 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6591 continue;
6592 }
6593
6594 /* Score */
6595 score = (query.fmt.priority & 3) * 0x100;
6596 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6597 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6598 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6599 score += 0x20;
6600 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6601 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6602 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6603 score += 0x10;
6604 }
6605
6606 /* Do not prefer surround formats */
6607 if (query.fmt.channels <= 2)
6608 score += query.fmt.channels;
6609
6610 if (score < cand_score) {
6611 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6612 score, cand_score);
6613 continue;
6614 }
6615
6616 /* Update candidate */
6617 cand_score = score;
6618 cand->encoding = query.fmt.encoding;
6619 cand->precision = query.fmt.validbits;
6620 cand->stride = query.fmt.precision;
6621 cand->channels = query.fmt.channels;
6622 cand->sample_rate = audio_select_freq(&query.fmt);
6623 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6624 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6625 cand_score, query.fmt.priority,
6626 audio_encoding_name(query.fmt.encoding),
6627 cand->precision, cand->stride,
6628 cand->channels, cand->sample_rate);
6629 }
6630
6631 if (cand_score == 0) {
6632 DPRINTF(1, "%s no fmt\n", __func__);
6633 return ENXIO;
6634 }
6635 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6636 audio_encoding_name(cand->encoding),
6637 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6638 return 0;
6639 }
6640
6641 /*
6642 * Validate fmt with query_format.
6643 * If fmt is included in the result of query_format, returns 0.
6644 * Otherwise returns EINVAL.
6645 * Must be called without sc_lock held.
6646 */
6647 static int
6648 audio_hw_validate_format(struct audio_softc *sc, int mode,
6649 const audio_format2_t *fmt)
6650 {
6651 audio_format_query_t query;
6652 struct audio_format *q;
6653 int index;
6654 int error;
6655 int j;
6656
6657 for (index = 0; ; index++) {
6658 query.index = index;
6659 mutex_enter(sc->sc_lock);
6660 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6661 mutex_exit(sc->sc_lock);
6662 if (error == EINVAL)
6663 break;
6664 if (error)
6665 return error;
6666
6667 q = &query.fmt;
6668 /*
6669 * Note that fmt is audio_format2_t (precision/stride) but
6670 * q is audio_format_t (validbits/precision).
6671 */
6672 if ((q->mode & mode) == 0) {
6673 continue;
6674 }
6675 if (fmt->encoding != q->encoding) {
6676 continue;
6677 }
6678 if (fmt->precision != q->validbits) {
6679 continue;
6680 }
6681 if (fmt->stride != q->precision) {
6682 continue;
6683 }
6684 if (fmt->channels != q->channels) {
6685 continue;
6686 }
6687 if (q->frequency_type == 0) {
6688 if (fmt->sample_rate < q->frequency[0] ||
6689 fmt->sample_rate > q->frequency[1]) {
6690 continue;
6691 }
6692 } else {
6693 for (j = 0; j < q->frequency_type; j++) {
6694 if (fmt->sample_rate == q->frequency[j])
6695 break;
6696 }
6697 if (j == query.fmt.frequency_type) {
6698 continue;
6699 }
6700 }
6701
6702 /* Matched. */
6703 return 0;
6704 }
6705
6706 return EINVAL;
6707 }
6708
6709 /*
6710 * Set track mixer's format depending on ai->mode.
6711 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6712 * with ai.play.*.
6713 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6714 * with ai.record.*.
6715 * All other fields in ai are ignored.
6716 * If successful returns 0. Otherwise returns errno.
6717 * This function does not roll back even if it fails.
6718 * Must be called with sc_exlock held and without sc_lock held.
6719 */
6720 static int
6721 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6722 {
6723 audio_format2_t phwfmt;
6724 audio_format2_t rhwfmt;
6725 audio_filter_reg_t pfil;
6726 audio_filter_reg_t rfil;
6727 int mode;
6728 int error;
6729
6730 KASSERT(sc->sc_exlock);
6731
6732 /*
6733 * Even when setting either one of playback and recording,
6734 * both must be halted.
6735 */
6736 if (sc->sc_popens + sc->sc_ropens > 0)
6737 return EBUSY;
6738
6739 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6740 return ENOTTY;
6741
6742 mode = ai->mode;
6743 if ((mode & AUMODE_PLAY)) {
6744 phwfmt.encoding = ai->play.encoding;
6745 phwfmt.precision = ai->play.precision;
6746 phwfmt.stride = ai->play.precision;
6747 phwfmt.channels = ai->play.channels;
6748 phwfmt.sample_rate = ai->play.sample_rate;
6749 }
6750 if ((mode & AUMODE_RECORD)) {
6751 rhwfmt.encoding = ai->record.encoding;
6752 rhwfmt.precision = ai->record.precision;
6753 rhwfmt.stride = ai->record.precision;
6754 rhwfmt.channels = ai->record.channels;
6755 rhwfmt.sample_rate = ai->record.sample_rate;
6756 }
6757
6758 /* On non-independent devices, use the same format for both. */
6759 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6760 if (mode == AUMODE_RECORD) {
6761 phwfmt = rhwfmt;
6762 } else {
6763 rhwfmt = phwfmt;
6764 }
6765 mode = AUMODE_PLAY | AUMODE_RECORD;
6766 }
6767
6768 /* Then, unset the direction not exist on the hardware. */
6769 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6770 mode &= ~AUMODE_PLAY;
6771 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6772 mode &= ~AUMODE_RECORD;
6773
6774 /* debug */
6775 if ((mode & AUMODE_PLAY)) {
6776 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6777 audio_encoding_name(phwfmt.encoding),
6778 phwfmt.precision,
6779 phwfmt.stride,
6780 phwfmt.channels,
6781 phwfmt.sample_rate);
6782 }
6783 if ((mode & AUMODE_RECORD)) {
6784 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6785 audio_encoding_name(rhwfmt.encoding),
6786 rhwfmt.precision,
6787 rhwfmt.stride,
6788 rhwfmt.channels,
6789 rhwfmt.sample_rate);
6790 }
6791
6792 /* Check the format */
6793 if ((mode & AUMODE_PLAY)) {
6794 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6795 TRACE(1, "invalid format");
6796 return EINVAL;
6797 }
6798 }
6799 if ((mode & AUMODE_RECORD)) {
6800 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6801 TRACE(1, "invalid format");
6802 return EINVAL;
6803 }
6804 }
6805
6806 /* Configure the mixers. */
6807 memset(&pfil, 0, sizeof(pfil));
6808 memset(&rfil, 0, sizeof(rfil));
6809 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6810 if (error)
6811 return error;
6812
6813 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6814 if (error)
6815 return error;
6816
6817 /*
6818 * Reinitialize the sticky parameters for /dev/sound.
6819 * If the number of the hardware channels becomes less than the number
6820 * of channels that sticky parameters remember, subsequent /dev/sound
6821 * open will fail. To prevent this, reinitialize the sticky
6822 * parameters whenever the hardware format is changed.
6823 */
6824 sc->sc_sound_pparams = params_to_format2(&audio_default);
6825 sc->sc_sound_rparams = params_to_format2(&audio_default);
6826 sc->sc_sound_ppause = false;
6827 sc->sc_sound_rpause = false;
6828
6829 return 0;
6830 }
6831
6832 /*
6833 * Store current mixers format into *ai.
6834 * Must be called with sc_exlock held.
6835 */
6836 static void
6837 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6838 {
6839
6840 KASSERT(sc->sc_exlock);
6841
6842 /*
6843 * There is no stride information in audio_info but it doesn't matter.
6844 * trackmixer always treats stride and precision as the same.
6845 */
6846 AUDIO_INITINFO(ai);
6847 ai->mode = 0;
6848 if (sc->sc_pmixer) {
6849 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6850 ai->play.encoding = fmt->encoding;
6851 ai->play.precision = fmt->precision;
6852 ai->play.channels = fmt->channels;
6853 ai->play.sample_rate = fmt->sample_rate;
6854 ai->mode |= AUMODE_PLAY;
6855 }
6856 if (sc->sc_rmixer) {
6857 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6858 ai->record.encoding = fmt->encoding;
6859 ai->record.precision = fmt->precision;
6860 ai->record.channels = fmt->channels;
6861 ai->record.sample_rate = fmt->sample_rate;
6862 ai->mode |= AUMODE_RECORD;
6863 }
6864 }
6865
6866 /*
6867 * audio_info details:
6868 *
6869 * ai.{play,record}.sample_rate (R/W)
6870 * ai.{play,record}.encoding (R/W)
6871 * ai.{play,record}.precision (R/W)
6872 * ai.{play,record}.channels (R/W)
6873 * These specify the playback or recording format.
6874 * Ignore members within an inactive track.
6875 *
6876 * ai.mode (R/W)
6877 * It specifies the playback or recording mode, AUMODE_*.
6878 * Currently, a mode change operation by ai.mode after opening is
6879 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6880 * However, it's possible to get or to set for backward compatibility.
6881 *
6882 * ai.{hiwat,lowat} (R/W)
6883 * These specify the high water mark and low water mark for playback
6884 * track. The unit is block.
6885 *
6886 * ai.{play,record}.gain (R/W)
6887 * It specifies the HW mixer volume in 0-255.
6888 * It is historical reason that the gain is connected to HW mixer.
6889 *
6890 * ai.{play,record}.balance (R/W)
6891 * It specifies the left-right balance of HW mixer in 0-64.
6892 * 32 means the center.
6893 * It is historical reason that the balance is connected to HW mixer.
6894 *
6895 * ai.{play,record}.port (R/W)
6896 * It specifies the input/output port of HW mixer.
6897 *
6898 * ai.monitor_gain (R/W)
6899 * It specifies the recording monitor gain(?) of HW mixer.
6900 *
6901 * ai.{play,record}.pause (R/W)
6902 * Non-zero means the track is paused.
6903 *
6904 * ai.play.seek (R/-)
6905 * It indicates the number of bytes written but not processed.
6906 * ai.record.seek (R/-)
6907 * It indicates the number of bytes to be able to read.
6908 *
6909 * ai.{play,record}.avail_ports (R/-)
6910 * Mixer info.
6911 *
6912 * ai.{play,record}.buffer_size (R/-)
6913 * It indicates the buffer size in bytes. Internally it means usrbuf.
6914 *
6915 * ai.{play,record}.samples (R/-)
6916 * It indicates the total number of bytes played or recorded.
6917 *
6918 * ai.{play,record}.eof (R/-)
6919 * It indicates the number of times reached EOF(?).
6920 *
6921 * ai.{play,record}.error (R/-)
6922 * Non-zero indicates overflow/underflow has occured.
6923 *
6924 * ai.{play,record}.waiting (R/-)
6925 * Non-zero indicates that other process waits to open.
6926 * It will never happen anymore.
6927 *
6928 * ai.{play,record}.open (R/-)
6929 * Non-zero indicates the direction is opened by this process(?).
6930 * XXX Is this better to indicate that "the device is opened by
6931 * at least one process"?
6932 *
6933 * ai.{play,record}.active (R/-)
6934 * Non-zero indicates that I/O is currently active.
6935 *
6936 * ai.blocksize (R/-)
6937 * It indicates the block size in bytes.
6938 * XXX The blocksize of playback and recording may be different.
6939 */
6940
6941 /*
6942 * Pause consideration:
6943 *
6944 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6945 * operation simple. Note that playback and recording are asymmetric.
6946 *
6947 * For playback,
6948 * 1. Any playback open doesn't start pmixer regardless of initial pause
6949 * state of this track.
6950 * 2. The first write access among playback tracks only starts pmixer
6951 * regardless of this track's pause state.
6952 * 3. Even a pause of the last playback track doesn't stop pmixer.
6953 * 4. The last close of all playback tracks only stops pmixer.
6954 *
6955 * For recording,
6956 * 1. The first recording open only starts rmixer regardless of initial
6957 * pause state of this track.
6958 * 2. Even a pause of the last track doesn't stop rmixer.
6959 * 3. The last close of all recording tracks only stops rmixer.
6960 */
6961
6962 /*
6963 * Set both track's parameters within a file depending on ai.
6964 * Update sc_sound_[pr]* if set.
6965 * Must be called with sc_exlock held and without sc_lock held.
6966 */
6967 static int
6968 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6969 const struct audio_info *ai)
6970 {
6971 const struct audio_prinfo *pi;
6972 const struct audio_prinfo *ri;
6973 audio_track_t *ptrack;
6974 audio_track_t *rtrack;
6975 audio_format2_t pfmt;
6976 audio_format2_t rfmt;
6977 int pchanges;
6978 int rchanges;
6979 int mode;
6980 struct audio_info saved_ai;
6981 audio_format2_t saved_pfmt;
6982 audio_format2_t saved_rfmt;
6983 int error;
6984
6985 KASSERT(sc->sc_exlock);
6986
6987 pi = &ai->play;
6988 ri = &ai->record;
6989 pchanges = 0;
6990 rchanges = 0;
6991
6992 ptrack = file->ptrack;
6993 rtrack = file->rtrack;
6994
6995 #if defined(AUDIO_DEBUG)
6996 if (audiodebug >= 2) {
6997 char buf[256];
6998 char p[64];
6999 int buflen;
7000 int plen;
7001 #define SPRINTF(var, fmt...) do { \
7002 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
7003 } while (0)
7004
7005 buflen = 0;
7006 plen = 0;
7007 if (SPECIFIED(pi->encoding))
7008 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
7009 if (SPECIFIED(pi->precision))
7010 SPRINTF(p, "/%dbit", pi->precision);
7011 if (SPECIFIED(pi->channels))
7012 SPRINTF(p, "/%dch", pi->channels);
7013 if (SPECIFIED(pi->sample_rate))
7014 SPRINTF(p, "/%dHz", pi->sample_rate);
7015 if (plen > 0)
7016 SPRINTF(buf, ",play.param=%s", p + 1);
7017
7018 plen = 0;
7019 if (SPECIFIED(ri->encoding))
7020 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
7021 if (SPECIFIED(ri->precision))
7022 SPRINTF(p, "/%dbit", ri->precision);
7023 if (SPECIFIED(ri->channels))
7024 SPRINTF(p, "/%dch", ri->channels);
7025 if (SPECIFIED(ri->sample_rate))
7026 SPRINTF(p, "/%dHz", ri->sample_rate);
7027 if (plen > 0)
7028 SPRINTF(buf, ",record.param=%s", p + 1);
7029
7030 if (SPECIFIED(ai->mode))
7031 SPRINTF(buf, ",mode=%d", ai->mode);
7032 if (SPECIFIED(ai->hiwat))
7033 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
7034 if (SPECIFIED(ai->lowat))
7035 SPRINTF(buf, ",lowat=%d", ai->lowat);
7036 if (SPECIFIED(ai->play.gain))
7037 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
7038 if (SPECIFIED(ai->record.gain))
7039 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
7040 if (SPECIFIED_CH(ai->play.balance))
7041 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
7042 if (SPECIFIED_CH(ai->record.balance))
7043 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
7044 if (SPECIFIED(ai->play.port))
7045 SPRINTF(buf, ",play.port=%d", ai->play.port);
7046 if (SPECIFIED(ai->record.port))
7047 SPRINTF(buf, ",record.port=%d", ai->record.port);
7048 if (SPECIFIED(ai->monitor_gain))
7049 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
7050 if (SPECIFIED_CH(ai->play.pause))
7051 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
7052 if (SPECIFIED_CH(ai->record.pause))
7053 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
7054
7055 if (buflen > 0)
7056 TRACE(2, "specified %s", buf + 1);
7057 }
7058 #endif
7059
7060 AUDIO_INITINFO(&saved_ai);
7061 /* XXX shut up gcc */
7062 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
7063 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
7064
7065 /*
7066 * Set default value and save current parameters.
7067 * For backward compatibility, use sticky parameters for nonexistent
7068 * track.
7069 */
7070 if (ptrack) {
7071 pfmt = ptrack->usrbuf.fmt;
7072 saved_pfmt = ptrack->usrbuf.fmt;
7073 saved_ai.play.pause = ptrack->is_pause;
7074 } else {
7075 pfmt = sc->sc_sound_pparams;
7076 }
7077 if (rtrack) {
7078 rfmt = rtrack->usrbuf.fmt;
7079 saved_rfmt = rtrack->usrbuf.fmt;
7080 saved_ai.record.pause = rtrack->is_pause;
7081 } else {
7082 rfmt = sc->sc_sound_rparams;
7083 }
7084 saved_ai.mode = file->mode;
7085
7086 /*
7087 * Overwrite if specified.
7088 */
7089 mode = file->mode;
7090 if (SPECIFIED(ai->mode)) {
7091 /*
7092 * Setting ai->mode no longer does anything because it's
7093 * prohibited to change playback/recording mode after open
7094 * and AUMODE_PLAY_ALL is obsoleted. However, it still
7095 * keeps the state of AUMODE_PLAY_ALL itself for backward
7096 * compatibility.
7097 * In the internal, only file->mode has the state of
7098 * AUMODE_PLAY_ALL flag and track->mode in both track does
7099 * not have.
7100 */
7101 if ((file->mode & AUMODE_PLAY)) {
7102 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
7103 | (ai->mode & AUMODE_PLAY_ALL);
7104 }
7105 }
7106
7107 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
7108 if (pchanges == -1) {
7109 #if defined(AUDIO_DEBUG)
7110 TRACEF(1, file, "check play.params failed: "
7111 "%s %ubit %uch %uHz",
7112 audio_encoding_name(pi->encoding),
7113 pi->precision,
7114 pi->channels,
7115 pi->sample_rate);
7116 #endif
7117 return EINVAL;
7118 }
7119
7120 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
7121 if (rchanges == -1) {
7122 #if defined(AUDIO_DEBUG)
7123 TRACEF(1, file, "check record.params failed: "
7124 "%s %ubit %uch %uHz",
7125 audio_encoding_name(ri->encoding),
7126 ri->precision,
7127 ri->channels,
7128 ri->sample_rate);
7129 #endif
7130 return EINVAL;
7131 }
7132
7133 if (SPECIFIED(ai->mode)) {
7134 pchanges = 1;
7135 rchanges = 1;
7136 }
7137
7138 /*
7139 * Even when setting either one of playback and recording,
7140 * both track must be halted.
7141 */
7142 if (pchanges || rchanges) {
7143 audio_file_clear(sc, file);
7144 #if defined(AUDIO_DEBUG)
7145 char nbuf[16];
7146 char fmtbuf[64];
7147 if (pchanges) {
7148 if (ptrack) {
7149 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
7150 } else {
7151 snprintf(nbuf, sizeof(nbuf), "-");
7152 }
7153 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
7154 DPRINTF(1, "audio track#%s play mode: %s\n",
7155 nbuf, fmtbuf);
7156 }
7157 if (rchanges) {
7158 if (rtrack) {
7159 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
7160 } else {
7161 snprintf(nbuf, sizeof(nbuf), "-");
7162 }
7163 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
7164 DPRINTF(1, "audio track#%s rec mode: %s\n",
7165 nbuf, fmtbuf);
7166 }
7167 #endif
7168 }
7169
7170 /* Set mixer parameters */
7171 mutex_enter(sc->sc_lock);
7172 error = audio_hw_setinfo(sc, ai, &saved_ai);
7173 mutex_exit(sc->sc_lock);
7174 if (error)
7175 goto abort1;
7176
7177 /*
7178 * Set to track and update sticky parameters.
7179 */
7180 error = 0;
7181 file->mode = mode;
7182
7183 if (SPECIFIED_CH(pi->pause)) {
7184 if (ptrack)
7185 ptrack->is_pause = pi->pause;
7186 sc->sc_sound_ppause = pi->pause;
7187 }
7188 if (pchanges) {
7189 if (ptrack) {
7190 audio_track_lock_enter(ptrack);
7191 error = audio_track_set_format(ptrack, &pfmt);
7192 audio_track_lock_exit(ptrack);
7193 if (error) {
7194 TRACET(1, ptrack, "set play.params failed");
7195 goto abort2;
7196 }
7197 }
7198 sc->sc_sound_pparams = pfmt;
7199 }
7200 /* Change water marks after initializing the buffers. */
7201 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7202 if (ptrack)
7203 audio_track_setinfo_water(ptrack, ai);
7204 }
7205
7206 if (SPECIFIED_CH(ri->pause)) {
7207 if (rtrack)
7208 rtrack->is_pause = ri->pause;
7209 sc->sc_sound_rpause = ri->pause;
7210 }
7211 if (rchanges) {
7212 if (rtrack) {
7213 audio_track_lock_enter(rtrack);
7214 error = audio_track_set_format(rtrack, &rfmt);
7215 audio_track_lock_exit(rtrack);
7216 if (error) {
7217 TRACET(1, rtrack, "set record.params failed");
7218 goto abort3;
7219 }
7220 }
7221 sc->sc_sound_rparams = rfmt;
7222 }
7223
7224 return 0;
7225
7226 /* Rollback */
7227 abort3:
7228 if (error != ENOMEM) {
7229 rtrack->is_pause = saved_ai.record.pause;
7230 audio_track_lock_enter(rtrack);
7231 audio_track_set_format(rtrack, &saved_rfmt);
7232 audio_track_lock_exit(rtrack);
7233 }
7234 sc->sc_sound_rpause = saved_ai.record.pause;
7235 sc->sc_sound_rparams = saved_rfmt;
7236 abort2:
7237 if (ptrack && error != ENOMEM) {
7238 ptrack->is_pause = saved_ai.play.pause;
7239 audio_track_lock_enter(ptrack);
7240 audio_track_set_format(ptrack, &saved_pfmt);
7241 audio_track_lock_exit(ptrack);
7242 }
7243 sc->sc_sound_ppause = saved_ai.play.pause;
7244 sc->sc_sound_pparams = saved_pfmt;
7245 file->mode = saved_ai.mode;
7246 abort1:
7247 mutex_enter(sc->sc_lock);
7248 audio_hw_setinfo(sc, &saved_ai, NULL);
7249 mutex_exit(sc->sc_lock);
7250
7251 return error;
7252 }
7253
7254 /*
7255 * Write SPECIFIED() parameters within info back to fmt.
7256 * Note that track can be NULL here.
7257 * Return value of 1 indicates that fmt is modified.
7258 * Return value of 0 indicates that fmt is not modified.
7259 * Return value of -1 indicates that error EINVAL has occurred.
7260 */
7261 static int
7262 audio_track_setinfo_check(audio_track_t *track,
7263 audio_format2_t *fmt, const struct audio_prinfo *info)
7264 {
7265 const audio_format2_t *hwfmt;
7266 int changes;
7267
7268 changes = 0;
7269 if (SPECIFIED(info->sample_rate)) {
7270 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7271 return -1;
7272 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7273 return -1;
7274 fmt->sample_rate = info->sample_rate;
7275 changes = 1;
7276 }
7277 if (SPECIFIED(info->encoding)) {
7278 fmt->encoding = info->encoding;
7279 changes = 1;
7280 }
7281 if (SPECIFIED(info->precision)) {
7282 fmt->precision = info->precision;
7283 /* we don't have API to specify stride */
7284 fmt->stride = info->precision;
7285 changes = 1;
7286 }
7287 if (SPECIFIED(info->channels)) {
7288 /*
7289 * We can convert between monaural and stereo each other.
7290 * We can reduce than the number of channels that the hardware
7291 * supports.
7292 */
7293 if (info->channels > 2) {
7294 if (track) {
7295 hwfmt = &track->mixer->hwbuf.fmt;
7296 if (info->channels > hwfmt->channels)
7297 return -1;
7298 } else {
7299 /*
7300 * This should never happen.
7301 * If track == NULL, channels should be <= 2.
7302 */
7303 return -1;
7304 }
7305 }
7306 fmt->channels = info->channels;
7307 changes = 1;
7308 }
7309
7310 if (changes) {
7311 if (audio_check_params(fmt) != 0)
7312 return -1;
7313 }
7314
7315 return changes;
7316 }
7317
7318 /*
7319 * Change water marks for playback track if specfied.
7320 */
7321 static void
7322 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7323 {
7324 u_int blks;
7325 u_int maxblks;
7326 u_int blksize;
7327
7328 KASSERT(audio_track_is_playback(track));
7329
7330 blksize = track->usrbuf_blksize;
7331 maxblks = track->usrbuf.capacity / blksize;
7332
7333 if (SPECIFIED(ai->hiwat)) {
7334 blks = ai->hiwat;
7335 if (blks > maxblks)
7336 blks = maxblks;
7337 if (blks < 2)
7338 blks = 2;
7339 track->usrbuf_usedhigh = blks * blksize;
7340 }
7341 if (SPECIFIED(ai->lowat)) {
7342 blks = ai->lowat;
7343 if (blks > maxblks - 1)
7344 blks = maxblks - 1;
7345 track->usrbuf_usedlow = blks * blksize;
7346 }
7347 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7348 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7349 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7350 blksize;
7351 }
7352 }
7353 }
7354
7355 /*
7356 * Set hardware part of *newai.
7357 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7358 * If oldai is specified, previous parameters are stored.
7359 * This function itself does not roll back if error occurred.
7360 * Must be called with sc_lock && sc_exlock held.
7361 */
7362 static int
7363 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7364 struct audio_info *oldai)
7365 {
7366 const struct audio_prinfo *newpi;
7367 const struct audio_prinfo *newri;
7368 struct audio_prinfo *oldpi;
7369 struct audio_prinfo *oldri;
7370 u_int pgain;
7371 u_int rgain;
7372 u_char pbalance;
7373 u_char rbalance;
7374 int error;
7375
7376 KASSERT(mutex_owned(sc->sc_lock));
7377 KASSERT(sc->sc_exlock);
7378
7379 /* XXX shut up gcc */
7380 oldpi = NULL;
7381 oldri = NULL;
7382
7383 newpi = &newai->play;
7384 newri = &newai->record;
7385 if (oldai) {
7386 oldpi = &oldai->play;
7387 oldri = &oldai->record;
7388 }
7389 error = 0;
7390
7391 /*
7392 * It looks like unnecessary to halt HW mixers to set HW mixers.
7393 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7394 */
7395
7396 if (SPECIFIED(newpi->port)) {
7397 if (oldai)
7398 oldpi->port = au_get_port(sc, &sc->sc_outports);
7399 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7400 if (error) {
7401 audio_printf(sc,
7402 "setting play.port=%d failed: errno=%d\n",
7403 newpi->port, error);
7404 goto abort;
7405 }
7406 }
7407 if (SPECIFIED(newri->port)) {
7408 if (oldai)
7409 oldri->port = au_get_port(sc, &sc->sc_inports);
7410 error = au_set_port(sc, &sc->sc_inports, newri->port);
7411 if (error) {
7412 audio_printf(sc,
7413 "setting record.port=%d failed: errno=%d\n",
7414 newri->port, error);
7415 goto abort;
7416 }
7417 }
7418
7419 /* play.{gain,balance} */
7420 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7421 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7422 if (oldai) {
7423 oldpi->gain = pgain;
7424 oldpi->balance = pbalance;
7425 }
7426
7427 if (SPECIFIED(newpi->gain))
7428 pgain = newpi->gain;
7429 if (SPECIFIED_CH(newpi->balance))
7430 pbalance = newpi->balance;
7431 error = au_set_gain(sc, &sc->sc_outports, pgain, pbalance);
7432 if (error) {
7433 audio_printf(sc,
7434 "setting play.gain=%d/balance=%d failed: "
7435 "errno=%d\n",
7436 pgain, pbalance, error);
7437 goto abort;
7438 }
7439 }
7440
7441 /* record.{gain,balance} */
7442 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7443 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7444 if (oldai) {
7445 oldri->gain = rgain;
7446 oldri->balance = rbalance;
7447 }
7448
7449 if (SPECIFIED(newri->gain))
7450 rgain = newri->gain;
7451 if (SPECIFIED_CH(newri->balance))
7452 rbalance = newri->balance;
7453 error = au_set_gain(sc, &sc->sc_inports, rgain, rbalance);
7454 if (error) {
7455 audio_printf(sc,
7456 "setting record.gain=%d/balance=%d failed: "
7457 "errno=%d\n",
7458 rgain, rbalance, error);
7459 goto abort;
7460 }
7461 }
7462
7463 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7464 if (oldai)
7465 oldai->monitor_gain = au_get_monitor_gain(sc);
7466 error = au_set_monitor_gain(sc, newai->monitor_gain);
7467 if (error) {
7468 audio_printf(sc,
7469 "setting monitor_gain=%d failed: errno=%d\n",
7470 newai->monitor_gain, error);
7471 goto abort;
7472 }
7473 }
7474
7475 /* XXX TODO */
7476 /* sc->sc_ai = *ai; */
7477
7478 error = 0;
7479 abort:
7480 return error;
7481 }
7482
7483 /*
7484 * Setup the hardware with mixer format phwfmt, rhwfmt.
7485 * The arguments have following restrictions:
7486 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7487 * or both.
7488 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7489 * - On non-independent devices, phwfmt and rhwfmt must have the same
7490 * parameters.
7491 * - pfil and rfil must be zero-filled.
7492 * If successful,
7493 * - pfil, rfil will be filled with filter information specified by the
7494 * hardware driver if necessary.
7495 * and then returns 0. Otherwise returns errno.
7496 * Must be called without sc_lock held.
7497 */
7498 static int
7499 audio_hw_set_format(struct audio_softc *sc, int setmode,
7500 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7501 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7502 {
7503 audio_params_t pp, rp;
7504 int error;
7505
7506 KASSERT(phwfmt != NULL);
7507 KASSERT(rhwfmt != NULL);
7508
7509 pp = format2_to_params(phwfmt);
7510 rp = format2_to_params(rhwfmt);
7511
7512 mutex_enter(sc->sc_lock);
7513 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7514 &pp, &rp, pfil, rfil);
7515 if (error) {
7516 mutex_exit(sc->sc_lock);
7517 audio_printf(sc, "set_format failed: errno=%d\n", error);
7518 return error;
7519 }
7520
7521 if (sc->hw_if->commit_settings) {
7522 error = sc->hw_if->commit_settings(sc->hw_hdl);
7523 if (error) {
7524 mutex_exit(sc->sc_lock);
7525 audio_printf(sc,
7526 "commit_settings failed: errno=%d\n", error);
7527 return error;
7528 }
7529 }
7530 mutex_exit(sc->sc_lock);
7531
7532 return 0;
7533 }
7534
7535 /*
7536 * Fill audio_info structure. If need_mixerinfo is true, it will also
7537 * fill the hardware mixer information.
7538 * Must be called with sc_exlock held and without sc_lock held.
7539 */
7540 static int
7541 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7542 audio_file_t *file)
7543 {
7544 struct audio_prinfo *ri, *pi;
7545 audio_track_t *track;
7546 audio_track_t *ptrack;
7547 audio_track_t *rtrack;
7548 int gain;
7549
7550 KASSERT(sc->sc_exlock);
7551
7552 ri = &ai->record;
7553 pi = &ai->play;
7554 ptrack = file->ptrack;
7555 rtrack = file->rtrack;
7556
7557 memset(ai, 0, sizeof(*ai));
7558
7559 if (ptrack) {
7560 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7561 pi->channels = ptrack->usrbuf.fmt.channels;
7562 pi->precision = ptrack->usrbuf.fmt.precision;
7563 pi->encoding = ptrack->usrbuf.fmt.encoding;
7564 pi->pause = ptrack->is_pause;
7565 } else {
7566 /* Use sticky parameters if the track is not available. */
7567 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7568 pi->channels = sc->sc_sound_pparams.channels;
7569 pi->precision = sc->sc_sound_pparams.precision;
7570 pi->encoding = sc->sc_sound_pparams.encoding;
7571 pi->pause = sc->sc_sound_ppause;
7572 }
7573 if (rtrack) {
7574 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7575 ri->channels = rtrack->usrbuf.fmt.channels;
7576 ri->precision = rtrack->usrbuf.fmt.precision;
7577 ri->encoding = rtrack->usrbuf.fmt.encoding;
7578 ri->pause = rtrack->is_pause;
7579 } else {
7580 /* Use sticky parameters if the track is not available. */
7581 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7582 ri->channels = sc->sc_sound_rparams.channels;
7583 ri->precision = sc->sc_sound_rparams.precision;
7584 ri->encoding = sc->sc_sound_rparams.encoding;
7585 ri->pause = sc->sc_sound_rpause;
7586 }
7587
7588 if (ptrack) {
7589 pi->seek = ptrack->usrbuf.used;
7590 pi->samples = ptrack->usrbuf_stamp;
7591 pi->eof = ptrack->eofcounter;
7592 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7593 pi->open = 1;
7594 pi->buffer_size = ptrack->usrbuf.capacity;
7595 }
7596 pi->waiting = 0; /* open never hangs */
7597 pi->active = sc->sc_pbusy;
7598
7599 if (rtrack) {
7600 ri->seek = rtrack->usrbuf.used;
7601 ri->samples = rtrack->usrbuf_stamp;
7602 ri->eof = 0;
7603 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7604 ri->open = 1;
7605 ri->buffer_size = rtrack->usrbuf.capacity;
7606 }
7607 ri->waiting = 0; /* open never hangs */
7608 ri->active = sc->sc_rbusy;
7609
7610 /*
7611 * XXX There may be different number of channels between playback
7612 * and recording, so that blocksize also may be different.
7613 * But struct audio_info has an united blocksize...
7614 * Here, I use play info precedencely if ptrack is available,
7615 * otherwise record info.
7616 *
7617 * XXX hiwat/lowat is a playback-only parameter. What should I
7618 * return for a record-only descriptor?
7619 */
7620 track = ptrack ? ptrack : rtrack;
7621 if (track) {
7622 ai->blocksize = track->usrbuf_blksize;
7623 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7624 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7625 }
7626 ai->mode = file->mode;
7627
7628 /*
7629 * For backward compatibility, we have to pad these five fields
7630 * a fake non-zero value even if there are no tracks.
7631 */
7632 if (ptrack == NULL)
7633 pi->buffer_size = 65536;
7634 if (rtrack == NULL)
7635 ri->buffer_size = 65536;
7636 if (ptrack == NULL && rtrack == NULL) {
7637 ai->blocksize = 2048;
7638 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7639 ai->lowat = ai->hiwat * 3 / 4;
7640 }
7641
7642 if (need_mixerinfo) {
7643 mutex_enter(sc->sc_lock);
7644
7645 pi->port = au_get_port(sc, &sc->sc_outports);
7646 ri->port = au_get_port(sc, &sc->sc_inports);
7647
7648 pi->avail_ports = sc->sc_outports.allports;
7649 ri->avail_ports = sc->sc_inports.allports;
7650
7651 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7652 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7653
7654 if (sc->sc_monitor_port != -1) {
7655 gain = au_get_monitor_gain(sc);
7656 if (gain != -1)
7657 ai->monitor_gain = gain;
7658 }
7659 mutex_exit(sc->sc_lock);
7660 }
7661
7662 return 0;
7663 }
7664
7665 /*
7666 * Return true if playback is configured.
7667 * This function can be used after audioattach.
7668 */
7669 static bool
7670 audio_can_playback(struct audio_softc *sc)
7671 {
7672
7673 return (sc->sc_pmixer != NULL);
7674 }
7675
7676 /*
7677 * Return true if recording is configured.
7678 * This function can be used after audioattach.
7679 */
7680 static bool
7681 audio_can_capture(struct audio_softc *sc)
7682 {
7683
7684 return (sc->sc_rmixer != NULL);
7685 }
7686
7687 /*
7688 * Get the afp->index'th item from the valid one of format[].
7689 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7690 *
7691 * This is common routines for query_format.
7692 * If your hardware driver has struct audio_format[], the simplest case
7693 * you can write your query_format interface as follows:
7694 *
7695 * struct audio_format foo_format[] = { ... };
7696 *
7697 * int
7698 * foo_query_format(void *hdl, audio_format_query_t *afp)
7699 * {
7700 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7701 * }
7702 */
7703 int
7704 audio_query_format(const struct audio_format *format, int nformats,
7705 audio_format_query_t *afp)
7706 {
7707 const struct audio_format *f;
7708 int idx;
7709 int i;
7710
7711 idx = 0;
7712 for (i = 0; i < nformats; i++) {
7713 f = &format[i];
7714 if (!AUFMT_IS_VALID(f))
7715 continue;
7716 if (afp->index == idx) {
7717 afp->fmt = *f;
7718 return 0;
7719 }
7720 idx++;
7721 }
7722 return EINVAL;
7723 }
7724
7725 /*
7726 * This function is provided for the hardware driver's set_format() to
7727 * find index matches with 'param' from array of audio_format_t 'formats'.
7728 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7729 * It returns the matched index and never fails. Because param passed to
7730 * set_format() is selected from query_format().
7731 * This function will be an alternative to auconv_set_converter() to
7732 * find index.
7733 */
7734 int
7735 audio_indexof_format(const struct audio_format *formats, int nformats,
7736 int mode, const audio_params_t *param)
7737 {
7738 const struct audio_format *f;
7739 int index;
7740 int j;
7741
7742 for (index = 0; index < nformats; index++) {
7743 f = &formats[index];
7744
7745 if (!AUFMT_IS_VALID(f))
7746 continue;
7747 if ((f->mode & mode) == 0)
7748 continue;
7749 if (f->encoding != param->encoding)
7750 continue;
7751 if (f->validbits != param->precision)
7752 continue;
7753 if (f->channels != param->channels)
7754 continue;
7755
7756 if (f->frequency_type == 0) {
7757 if (param->sample_rate < f->frequency[0] ||
7758 param->sample_rate > f->frequency[1])
7759 continue;
7760 } else {
7761 for (j = 0; j < f->frequency_type; j++) {
7762 if (param->sample_rate == f->frequency[j])
7763 break;
7764 }
7765 if (j == f->frequency_type)
7766 continue;
7767 }
7768
7769 /* Then, matched */
7770 return index;
7771 }
7772
7773 /* Not matched. This should not be happened. */
7774 panic("%s: cannot find matched format\n", __func__);
7775 }
7776
7777 /*
7778 * Get or set hardware blocksize in msec.
7779 * XXX It's for debug.
7780 */
7781 static int
7782 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7783 {
7784 struct sysctlnode node;
7785 struct audio_softc *sc;
7786 audio_format2_t phwfmt;
7787 audio_format2_t rhwfmt;
7788 audio_filter_reg_t pfil;
7789 audio_filter_reg_t rfil;
7790 int t;
7791 int old_blk_ms;
7792 int mode;
7793 int error;
7794
7795 node = *rnode;
7796 sc = node.sysctl_data;
7797
7798 error = audio_exlock_enter(sc);
7799 if (error)
7800 return error;
7801
7802 old_blk_ms = sc->sc_blk_ms;
7803 t = old_blk_ms;
7804 node.sysctl_data = &t;
7805 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7806 if (error || newp == NULL)
7807 goto abort;
7808
7809 if (t < 0) {
7810 error = EINVAL;
7811 goto abort;
7812 }
7813
7814 if (sc->sc_popens + sc->sc_ropens > 0) {
7815 error = EBUSY;
7816 goto abort;
7817 }
7818 sc->sc_blk_ms = t;
7819 mode = 0;
7820 if (sc->sc_pmixer) {
7821 mode |= AUMODE_PLAY;
7822 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7823 }
7824 if (sc->sc_rmixer) {
7825 mode |= AUMODE_RECORD;
7826 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7827 }
7828
7829 /* re-init hardware */
7830 memset(&pfil, 0, sizeof(pfil));
7831 memset(&rfil, 0, sizeof(rfil));
7832 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7833 if (error) {
7834 goto abort;
7835 }
7836
7837 /* re-init track mixer */
7838 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7839 if (error) {
7840 /* Rollback */
7841 sc->sc_blk_ms = old_blk_ms;
7842 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7843 goto abort;
7844 }
7845 error = 0;
7846 abort:
7847 audio_exlock_exit(sc);
7848 return error;
7849 }
7850
7851 /*
7852 * Get or set multiuser mode.
7853 */
7854 static int
7855 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7856 {
7857 struct sysctlnode node;
7858 struct audio_softc *sc;
7859 bool t;
7860 int error;
7861
7862 node = *rnode;
7863 sc = node.sysctl_data;
7864
7865 error = audio_exlock_enter(sc);
7866 if (error)
7867 return error;
7868
7869 t = sc->sc_multiuser;
7870 node.sysctl_data = &t;
7871 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7872 if (error || newp == NULL)
7873 goto abort;
7874
7875 sc->sc_multiuser = t;
7876 error = 0;
7877 abort:
7878 audio_exlock_exit(sc);
7879 return error;
7880 }
7881
7882 #if defined(AUDIO_DEBUG)
7883 /*
7884 * Get or set debug verbose level. (0..4)
7885 * XXX It's for debug.
7886 * XXX It is not separated per device.
7887 */
7888 static int
7889 audio_sysctl_debug(SYSCTLFN_ARGS)
7890 {
7891 struct sysctlnode node;
7892 int t;
7893 int error;
7894
7895 node = *rnode;
7896 t = audiodebug;
7897 node.sysctl_data = &t;
7898 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7899 if (error || newp == NULL)
7900 return error;
7901
7902 if (t < 0 || t > 4)
7903 return EINVAL;
7904 audiodebug = t;
7905 printf("audio: audiodebug = %d\n", audiodebug);
7906 return 0;
7907 }
7908 #endif /* AUDIO_DEBUG */
7909
7910 #ifdef AUDIO_PM_IDLE
7911 static void
7912 audio_idle(void *arg)
7913 {
7914 device_t dv = arg;
7915 struct audio_softc *sc = device_private(dv);
7916
7917 #ifdef PNP_DEBUG
7918 extern int pnp_debug_idle;
7919 if (pnp_debug_idle)
7920 printf("%s: idle handler called\n", device_xname(dv));
7921 #endif
7922
7923 sc->sc_idle = true;
7924
7925 /* XXX joerg Make pmf_device_suspend handle children? */
7926 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7927 return;
7928
7929 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7930 pmf_device_resume(dv, PMF_Q_SELF);
7931 }
7932
7933 static void
7934 audio_activity(device_t dv, devactive_t type)
7935 {
7936 struct audio_softc *sc = device_private(dv);
7937
7938 if (type != DVA_SYSTEM)
7939 return;
7940
7941 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7942
7943 sc->sc_idle = false;
7944 if (!device_is_active(dv)) {
7945 /* XXX joerg How to deal with a failing resume... */
7946 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7947 pmf_device_resume(dv, PMF_Q_SELF);
7948 }
7949 }
7950 #endif
7951
7952 static bool
7953 audio_suspend(device_t dv, const pmf_qual_t *qual)
7954 {
7955 struct audio_softc *sc = device_private(dv);
7956 int error;
7957
7958 error = audio_exlock_mutex_enter(sc);
7959 if (error)
7960 return error;
7961 sc->sc_suspending = true;
7962 audio_mixer_capture(sc);
7963
7964 if (sc->sc_pbusy) {
7965 audio_pmixer_halt(sc);
7966 /* Reuse this as need-to-restart flag while suspending */
7967 sc->sc_pbusy = true;
7968 }
7969 if (sc->sc_rbusy) {
7970 audio_rmixer_halt(sc);
7971 /* Reuse this as need-to-restart flag while suspending */
7972 sc->sc_rbusy = true;
7973 }
7974
7975 #ifdef AUDIO_PM_IDLE
7976 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7977 #endif
7978 audio_exlock_mutex_exit(sc);
7979
7980 return true;
7981 }
7982
7983 static bool
7984 audio_resume(device_t dv, const pmf_qual_t *qual)
7985 {
7986 struct audio_softc *sc = device_private(dv);
7987 struct audio_info ai;
7988 int error;
7989
7990 error = audio_exlock_mutex_enter(sc);
7991 if (error)
7992 return error;
7993
7994 sc->sc_suspending = false;
7995 audio_mixer_restore(sc);
7996 /* XXX ? */
7997 AUDIO_INITINFO(&ai);
7998 audio_hw_setinfo(sc, &ai, NULL);
7999
8000 /*
8001 * During from suspend to resume here, sc_[pr]busy is used as
8002 * need-to-restart flag temporarily. After this point,
8003 * sc_[pr]busy is returned to its original usage (busy flag).
8004 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
8005 */
8006 if (sc->sc_pbusy) {
8007 /* pmixer_start() requires pbusy is false */
8008 sc->sc_pbusy = false;
8009 audio_pmixer_start(sc, true);
8010 }
8011 if (sc->sc_rbusy) {
8012 /* rmixer_start() requires rbusy is false */
8013 sc->sc_rbusy = false;
8014 audio_rmixer_start(sc);
8015 }
8016
8017 audio_exlock_mutex_exit(sc);
8018
8019 return true;
8020 }
8021
8022 #if defined(AUDIO_DEBUG)
8023 static void
8024 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
8025 {
8026 int n;
8027
8028 n = 0;
8029 n += snprintf(buf + n, bufsize - n, "%s",
8030 audio_encoding_name(fmt->encoding));
8031 if (fmt->precision == fmt->stride) {
8032 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
8033 } else {
8034 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
8035 fmt->precision, fmt->stride);
8036 }
8037
8038 snprintf(buf + n, bufsize - n, " %uch %uHz",
8039 fmt->channels, fmt->sample_rate);
8040 }
8041 #endif
8042
8043 #if defined(AUDIO_DEBUG)
8044 static void
8045 audio_print_format2(const char *s, const audio_format2_t *fmt)
8046 {
8047 char fmtstr[64];
8048
8049 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
8050 printf("%s %s\n", s, fmtstr);
8051 }
8052 #endif
8053
8054 #ifdef DIAGNOSTIC
8055 void
8056 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
8057 {
8058
8059 KASSERTMSG(fmt, "called from %s", where);
8060
8061 /* XXX MSM6258 vs(4) only has 4bit stride format. */
8062 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
8063 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
8064 "called from %s: fmt->stride=%d", where, fmt->stride);
8065 } else {
8066 KASSERTMSG(fmt->stride % NBBY == 0,
8067 "called from %s: fmt->stride=%d", where, fmt->stride);
8068 }
8069 KASSERTMSG(fmt->precision <= fmt->stride,
8070 "called from %s: fmt->precision=%d fmt->stride=%d",
8071 where, fmt->precision, fmt->stride);
8072 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
8073 "called from %s: fmt->channels=%d", where, fmt->channels);
8074
8075 /* XXX No check for encodings? */
8076 }
8077
8078 void
8079 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
8080 {
8081
8082 KASSERT(arg != NULL);
8083 KASSERT(arg->src != NULL);
8084 KASSERT(arg->dst != NULL);
8085 audio_diagnostic_format2(where, arg->srcfmt);
8086 audio_diagnostic_format2(where, arg->dstfmt);
8087 KASSERT(arg->count > 0);
8088 }
8089
8090 void
8091 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
8092 {
8093
8094 KASSERTMSG(ring, "called from %s", where);
8095 audio_diagnostic_format2(where, &ring->fmt);
8096 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
8097 "called from %s: ring->capacity=%d", where, ring->capacity);
8098 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
8099 "called from %s: ring->used=%d ring->capacity=%d",
8100 where, ring->used, ring->capacity);
8101 if (ring->capacity == 0) {
8102 KASSERTMSG(ring->mem == NULL,
8103 "called from %s: capacity == 0 but mem != NULL", where);
8104 } else {
8105 KASSERTMSG(ring->mem != NULL,
8106 "called from %s: capacity != 0 but mem == NULL", where);
8107 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
8108 "called from %s: ring->head=%d ring->capacity=%d",
8109 where, ring->head, ring->capacity);
8110 }
8111 }
8112 #endif /* DIAGNOSTIC */
8113
8114
8115 /*
8116 * Mixer driver
8117 */
8118
8119 /*
8120 * Must be called without sc_lock held.
8121 */
8122 int
8123 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
8124 struct lwp *l)
8125 {
8126 struct file *fp;
8127 audio_file_t *af;
8128 int error, fd;
8129
8130 TRACE(1, "flags=0x%x", flags);
8131
8132 error = fd_allocfile(&fp, &fd);
8133 if (error)
8134 return error;
8135
8136 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
8137 af->sc = sc;
8138 af->dev = dev;
8139
8140 mutex_enter(sc->sc_lock);
8141 if (sc->sc_dying) {
8142 mutex_exit(sc->sc_lock);
8143 kmem_free(af, sizeof(*af));
8144 fd_abort(curproc, fp, fd);
8145 return ENXIO;
8146 }
8147 mutex_enter(sc->sc_intr_lock);
8148 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
8149 mutex_exit(sc->sc_intr_lock);
8150 mutex_exit(sc->sc_lock);
8151
8152 error = fd_clone(fp, fd, flags, &audio_fileops, af);
8153 KASSERT(error == EMOVEFD);
8154
8155 return error;
8156 }
8157
8158 /*
8159 * Add a process to those to be signalled on mixer activity.
8160 * If the process has already been added, do nothing.
8161 * Must be called with sc_exlock held and without sc_lock held.
8162 */
8163 static void
8164 mixer_async_add(struct audio_softc *sc, pid_t pid)
8165 {
8166 int i;
8167
8168 KASSERT(sc->sc_exlock);
8169
8170 /* If already exists, returns without doing anything. */
8171 for (i = 0; i < sc->sc_am_used; i++) {
8172 if (sc->sc_am[i] == pid)
8173 return;
8174 }
8175
8176 /* Extend array if necessary. */
8177 if (sc->sc_am_used >= sc->sc_am_capacity) {
8178 sc->sc_am_capacity += AM_CAPACITY;
8179 sc->sc_am = kern_realloc(sc->sc_am,
8180 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8181 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8182 }
8183
8184 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8185 sc->sc_am[sc->sc_am_used++] = pid;
8186 }
8187
8188 /*
8189 * Remove a process from those to be signalled on mixer activity.
8190 * If the process has not been added, do nothing.
8191 * Must be called with sc_exlock held and without sc_lock held.
8192 */
8193 static void
8194 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8195 {
8196 int i;
8197
8198 KASSERT(sc->sc_exlock);
8199
8200 for (i = 0; i < sc->sc_am_used; i++) {
8201 if (sc->sc_am[i] == pid) {
8202 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8203 TRACE(2, "am[%d](%d) removed, used=%d",
8204 i, (int)pid, sc->sc_am_used);
8205
8206 /* Empty array if no longer necessary. */
8207 if (sc->sc_am_used == 0) {
8208 kern_free(sc->sc_am);
8209 sc->sc_am = NULL;
8210 sc->sc_am_capacity = 0;
8211 TRACE(2, "released");
8212 }
8213 return;
8214 }
8215 }
8216 }
8217
8218 /*
8219 * Signal all processes waiting for the mixer.
8220 * Must be called with sc_exlock held.
8221 */
8222 static void
8223 mixer_signal(struct audio_softc *sc)
8224 {
8225 proc_t *p;
8226 int i;
8227
8228 KASSERT(sc->sc_exlock);
8229
8230 for (i = 0; i < sc->sc_am_used; i++) {
8231 mutex_enter(&proc_lock);
8232 p = proc_find(sc->sc_am[i]);
8233 if (p)
8234 psignal(p, SIGIO);
8235 mutex_exit(&proc_lock);
8236 }
8237 }
8238
8239 /*
8240 * Close a mixer device
8241 */
8242 int
8243 mixer_close(struct audio_softc *sc, audio_file_t *file)
8244 {
8245 int error;
8246
8247 error = audio_exlock_enter(sc);
8248 if (error)
8249 return error;
8250 TRACE(1, "called");
8251 mixer_async_remove(sc, curproc->p_pid);
8252 audio_exlock_exit(sc);
8253
8254 return 0;
8255 }
8256
8257 /*
8258 * Must be called without sc_lock nor sc_exlock held.
8259 */
8260 int
8261 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8262 struct lwp *l)
8263 {
8264 mixer_devinfo_t *mi;
8265 mixer_ctrl_t *mc;
8266 int error;
8267
8268 TRACE(2, "(%lu,'%c',%lu)",
8269 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8270 error = EINVAL;
8271
8272 /* we can return cached values if we are sleeping */
8273 if (cmd != AUDIO_MIXER_READ) {
8274 mutex_enter(sc->sc_lock);
8275 device_active(sc->sc_dev, DVA_SYSTEM);
8276 mutex_exit(sc->sc_lock);
8277 }
8278
8279 switch (cmd) {
8280 case FIOASYNC:
8281 error = audio_exlock_enter(sc);
8282 if (error)
8283 break;
8284 if (*(int *)addr) {
8285 mixer_async_add(sc, curproc->p_pid);
8286 } else {
8287 mixer_async_remove(sc, curproc->p_pid);
8288 }
8289 audio_exlock_exit(sc);
8290 break;
8291
8292 case AUDIO_GETDEV:
8293 TRACE(2, "AUDIO_GETDEV");
8294 mutex_enter(sc->sc_lock);
8295 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8296 mutex_exit(sc->sc_lock);
8297 break;
8298
8299 case AUDIO_MIXER_DEVINFO:
8300 TRACE(2, "AUDIO_MIXER_DEVINFO");
8301 mi = (mixer_devinfo_t *)addr;
8302
8303 mi->un.v.delta = 0; /* default */
8304 mutex_enter(sc->sc_lock);
8305 error = audio_query_devinfo(sc, mi);
8306 mutex_exit(sc->sc_lock);
8307 break;
8308
8309 case AUDIO_MIXER_READ:
8310 TRACE(2, "AUDIO_MIXER_READ");
8311 mc = (mixer_ctrl_t *)addr;
8312
8313 error = audio_exlock_mutex_enter(sc);
8314 if (error)
8315 break;
8316 if (device_is_active(sc->hw_dev))
8317 error = audio_get_port(sc, mc);
8318 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8319 error = ENXIO;
8320 else {
8321 int dev = mc->dev;
8322 memcpy(mc, &sc->sc_mixer_state[dev],
8323 sizeof(mixer_ctrl_t));
8324 error = 0;
8325 }
8326 audio_exlock_mutex_exit(sc);
8327 break;
8328
8329 case AUDIO_MIXER_WRITE:
8330 TRACE(2, "AUDIO_MIXER_WRITE");
8331 error = audio_exlock_mutex_enter(sc);
8332 if (error)
8333 break;
8334 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8335 if (error) {
8336 audio_exlock_mutex_exit(sc);
8337 break;
8338 }
8339
8340 if (sc->hw_if->commit_settings) {
8341 error = sc->hw_if->commit_settings(sc->hw_hdl);
8342 if (error) {
8343 audio_exlock_mutex_exit(sc);
8344 break;
8345 }
8346 }
8347 mutex_exit(sc->sc_lock);
8348 mixer_signal(sc);
8349 audio_exlock_exit(sc);
8350 break;
8351
8352 default:
8353 if (sc->hw_if->dev_ioctl) {
8354 mutex_enter(sc->sc_lock);
8355 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8356 cmd, addr, flag, l);
8357 mutex_exit(sc->sc_lock);
8358 } else
8359 error = EINVAL;
8360 break;
8361 }
8362 TRACE(2, "(%lu,'%c',%lu) result %d",
8363 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8364 return error;
8365 }
8366
8367 /*
8368 * Must be called with sc_lock held.
8369 */
8370 int
8371 au_portof(struct audio_softc *sc, char *name, int class)
8372 {
8373 mixer_devinfo_t mi;
8374
8375 KASSERT(mutex_owned(sc->sc_lock));
8376
8377 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8378 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8379 return mi.index;
8380 }
8381 return -1;
8382 }
8383
8384 /*
8385 * Must be called with sc_lock held.
8386 */
8387 void
8388 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8389 mixer_devinfo_t *mi, const struct portname *tbl)
8390 {
8391 int i, j;
8392
8393 KASSERT(mutex_owned(sc->sc_lock));
8394
8395 ports->index = mi->index;
8396 if (mi->type == AUDIO_MIXER_ENUM) {
8397 ports->isenum = true;
8398 for(i = 0; tbl[i].name; i++)
8399 for(j = 0; j < mi->un.e.num_mem; j++)
8400 if (strcmp(mi->un.e.member[j].label.name,
8401 tbl[i].name) == 0) {
8402 ports->allports |= tbl[i].mask;
8403 ports->aumask[ports->nports] = tbl[i].mask;
8404 ports->misel[ports->nports] =
8405 mi->un.e.member[j].ord;
8406 ports->miport[ports->nports] =
8407 au_portof(sc, mi->un.e.member[j].label.name,
8408 mi->mixer_class);
8409 if (ports->mixerout != -1 &&
8410 ports->miport[ports->nports] != -1)
8411 ports->isdual = true;
8412 ++ports->nports;
8413 }
8414 } else if (mi->type == AUDIO_MIXER_SET) {
8415 for(i = 0; tbl[i].name; i++)
8416 for(j = 0; j < mi->un.s.num_mem; j++)
8417 if (strcmp(mi->un.s.member[j].label.name,
8418 tbl[i].name) == 0) {
8419 ports->allports |= tbl[i].mask;
8420 ports->aumask[ports->nports] = tbl[i].mask;
8421 ports->misel[ports->nports] =
8422 mi->un.s.member[j].mask;
8423 ports->miport[ports->nports] =
8424 au_portof(sc, mi->un.s.member[j].label.name,
8425 mi->mixer_class);
8426 ++ports->nports;
8427 }
8428 }
8429 }
8430
8431 /*
8432 * Must be called with sc_lock && sc_exlock held.
8433 */
8434 int
8435 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8436 {
8437
8438 KASSERT(mutex_owned(sc->sc_lock));
8439 KASSERT(sc->sc_exlock);
8440
8441 ct->type = AUDIO_MIXER_VALUE;
8442 ct->un.value.num_channels = 2;
8443 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8444 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8445 if (audio_set_port(sc, ct) == 0)
8446 return 0;
8447 ct->un.value.num_channels = 1;
8448 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8449 return audio_set_port(sc, ct);
8450 }
8451
8452 /*
8453 * Must be called with sc_lock && sc_exlock held.
8454 */
8455 int
8456 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8457 {
8458 int error;
8459
8460 KASSERT(mutex_owned(sc->sc_lock));
8461 KASSERT(sc->sc_exlock);
8462
8463 ct->un.value.num_channels = 2;
8464 if (audio_get_port(sc, ct) == 0) {
8465 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8466 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8467 } else {
8468 ct->un.value.num_channels = 1;
8469 error = audio_get_port(sc, ct);
8470 if (error)
8471 return error;
8472 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8473 }
8474 return 0;
8475 }
8476
8477 /*
8478 * Must be called with sc_lock && sc_exlock held.
8479 */
8480 int
8481 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8482 int gain, int balance)
8483 {
8484 mixer_ctrl_t ct;
8485 int i, error;
8486 int l, r;
8487 u_int mask;
8488 int nset;
8489
8490 KASSERT(mutex_owned(sc->sc_lock));
8491 KASSERT(sc->sc_exlock);
8492
8493 if (balance == AUDIO_MID_BALANCE) {
8494 l = r = gain;
8495 } else if (balance < AUDIO_MID_BALANCE) {
8496 l = gain;
8497 r = (balance * gain) / AUDIO_MID_BALANCE;
8498 } else {
8499 r = gain;
8500 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8501 / AUDIO_MID_BALANCE;
8502 }
8503 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8504
8505 if (ports->index == -1) {
8506 usemaster:
8507 if (ports->master == -1)
8508 return 0; /* just ignore it silently */
8509 ct.dev = ports->master;
8510 error = au_set_lr_value(sc, &ct, l, r);
8511 } else {
8512 ct.dev = ports->index;
8513 if (ports->isenum) {
8514 ct.type = AUDIO_MIXER_ENUM;
8515 error = audio_get_port(sc, &ct);
8516 if (error)
8517 return error;
8518 if (ports->isdual) {
8519 if (ports->cur_port == -1)
8520 ct.dev = ports->master;
8521 else
8522 ct.dev = ports->miport[ports->cur_port];
8523 error = au_set_lr_value(sc, &ct, l, r);
8524 } else {
8525 for(i = 0; i < ports->nports; i++)
8526 if (ports->misel[i] == ct.un.ord) {
8527 ct.dev = ports->miport[i];
8528 if (ct.dev == -1 ||
8529 au_set_lr_value(sc, &ct, l, r))
8530 goto usemaster;
8531 else
8532 break;
8533 }
8534 }
8535 } else {
8536 ct.type = AUDIO_MIXER_SET;
8537 error = audio_get_port(sc, &ct);
8538 if (error)
8539 return error;
8540 mask = ct.un.mask;
8541 nset = 0;
8542 for(i = 0; i < ports->nports; i++) {
8543 if (ports->misel[i] & mask) {
8544 ct.dev = ports->miport[i];
8545 if (ct.dev != -1 &&
8546 au_set_lr_value(sc, &ct, l, r) == 0)
8547 nset++;
8548 }
8549 }
8550 if (nset == 0)
8551 goto usemaster;
8552 }
8553 }
8554 if (!error)
8555 mixer_signal(sc);
8556 return error;
8557 }
8558
8559 /*
8560 * Must be called with sc_lock && sc_exlock held.
8561 */
8562 void
8563 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8564 u_int *pgain, u_char *pbalance)
8565 {
8566 mixer_ctrl_t ct;
8567 int i, l, r, n;
8568 int lgain, rgain;
8569
8570 KASSERT(mutex_owned(sc->sc_lock));
8571 KASSERT(sc->sc_exlock);
8572
8573 lgain = AUDIO_MAX_GAIN / 2;
8574 rgain = AUDIO_MAX_GAIN / 2;
8575 if (ports->index == -1) {
8576 usemaster:
8577 if (ports->master == -1)
8578 goto bad;
8579 ct.dev = ports->master;
8580 ct.type = AUDIO_MIXER_VALUE;
8581 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8582 goto bad;
8583 } else {
8584 ct.dev = ports->index;
8585 if (ports->isenum) {
8586 ct.type = AUDIO_MIXER_ENUM;
8587 if (audio_get_port(sc, &ct))
8588 goto bad;
8589 ct.type = AUDIO_MIXER_VALUE;
8590 if (ports->isdual) {
8591 if (ports->cur_port == -1)
8592 ct.dev = ports->master;
8593 else
8594 ct.dev = ports->miport[ports->cur_port];
8595 au_get_lr_value(sc, &ct, &lgain, &rgain);
8596 } else {
8597 for(i = 0; i < ports->nports; i++)
8598 if (ports->misel[i] == ct.un.ord) {
8599 ct.dev = ports->miport[i];
8600 if (ct.dev == -1 ||
8601 au_get_lr_value(sc, &ct,
8602 &lgain, &rgain))
8603 goto usemaster;
8604 else
8605 break;
8606 }
8607 }
8608 } else {
8609 ct.type = AUDIO_MIXER_SET;
8610 if (audio_get_port(sc, &ct))
8611 goto bad;
8612 ct.type = AUDIO_MIXER_VALUE;
8613 lgain = rgain = n = 0;
8614 for(i = 0; i < ports->nports; i++) {
8615 if (ports->misel[i] & ct.un.mask) {
8616 ct.dev = ports->miport[i];
8617 if (ct.dev == -1 ||
8618 au_get_lr_value(sc, &ct, &l, &r))
8619 goto usemaster;
8620 else {
8621 lgain += l;
8622 rgain += r;
8623 n++;
8624 }
8625 }
8626 }
8627 if (n != 0) {
8628 lgain /= n;
8629 rgain /= n;
8630 }
8631 }
8632 }
8633 bad:
8634 if (lgain == rgain) { /* handles lgain==rgain==0 */
8635 *pgain = lgain;
8636 *pbalance = AUDIO_MID_BALANCE;
8637 } else if (lgain < rgain) {
8638 *pgain = rgain;
8639 /* balance should be > AUDIO_MID_BALANCE */
8640 *pbalance = AUDIO_RIGHT_BALANCE -
8641 (AUDIO_MID_BALANCE * lgain) / rgain;
8642 } else /* lgain > rgain */ {
8643 *pgain = lgain;
8644 /* balance should be < AUDIO_MID_BALANCE */
8645 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8646 }
8647 }
8648
8649 /*
8650 * Must be called with sc_lock && sc_exlock held.
8651 */
8652 int
8653 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8654 {
8655 mixer_ctrl_t ct;
8656 int i, error, use_mixerout;
8657
8658 KASSERT(mutex_owned(sc->sc_lock));
8659 KASSERT(sc->sc_exlock);
8660
8661 use_mixerout = 1;
8662 if (port == 0) {
8663 if (ports->allports == 0)
8664 return 0; /* Allow this special case. */
8665 else if (ports->isdual) {
8666 if (ports->cur_port == -1) {
8667 return 0;
8668 } else {
8669 port = ports->aumask[ports->cur_port];
8670 ports->cur_port = -1;
8671 use_mixerout = 0;
8672 }
8673 }
8674 }
8675 if (ports->index == -1)
8676 return EINVAL;
8677 ct.dev = ports->index;
8678 if (ports->isenum) {
8679 if (port & (port-1))
8680 return EINVAL; /* Only one port allowed */
8681 ct.type = AUDIO_MIXER_ENUM;
8682 error = EINVAL;
8683 for(i = 0; i < ports->nports; i++)
8684 if (ports->aumask[i] == port) {
8685 if (ports->isdual && use_mixerout) {
8686 ct.un.ord = ports->mixerout;
8687 ports->cur_port = i;
8688 } else {
8689 ct.un.ord = ports->misel[i];
8690 }
8691 error = audio_set_port(sc, &ct);
8692 break;
8693 }
8694 } else {
8695 ct.type = AUDIO_MIXER_SET;
8696 ct.un.mask = 0;
8697 for(i = 0; i < ports->nports; i++)
8698 if (ports->aumask[i] & port)
8699 ct.un.mask |= ports->misel[i];
8700 if (port != 0 && ct.un.mask == 0)
8701 error = EINVAL;
8702 else
8703 error = audio_set_port(sc, &ct);
8704 }
8705 if (!error)
8706 mixer_signal(sc);
8707 return error;
8708 }
8709
8710 /*
8711 * Must be called with sc_lock && sc_exlock held.
8712 */
8713 int
8714 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8715 {
8716 mixer_ctrl_t ct;
8717 int i, aumask;
8718
8719 KASSERT(mutex_owned(sc->sc_lock));
8720 KASSERT(sc->sc_exlock);
8721
8722 if (ports->index == -1)
8723 return 0;
8724 ct.dev = ports->index;
8725 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8726 if (audio_get_port(sc, &ct))
8727 return 0;
8728 aumask = 0;
8729 if (ports->isenum) {
8730 if (ports->isdual && ports->cur_port != -1) {
8731 if (ports->mixerout == ct.un.ord)
8732 aumask = ports->aumask[ports->cur_port];
8733 else
8734 ports->cur_port = -1;
8735 }
8736 if (aumask == 0)
8737 for(i = 0; i < ports->nports; i++)
8738 if (ports->misel[i] == ct.un.ord)
8739 aumask = ports->aumask[i];
8740 } else {
8741 for(i = 0; i < ports->nports; i++)
8742 if (ct.un.mask & ports->misel[i])
8743 aumask |= ports->aumask[i];
8744 }
8745 return aumask;
8746 }
8747
8748 /*
8749 * It returns 0 if success, otherwise errno.
8750 * Must be called only if sc->sc_monitor_port != -1.
8751 * Must be called with sc_lock && sc_exlock held.
8752 */
8753 static int
8754 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8755 {
8756 mixer_ctrl_t ct;
8757
8758 KASSERT(mutex_owned(sc->sc_lock));
8759 KASSERT(sc->sc_exlock);
8760
8761 ct.dev = sc->sc_monitor_port;
8762 ct.type = AUDIO_MIXER_VALUE;
8763 ct.un.value.num_channels = 1;
8764 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8765 return audio_set_port(sc, &ct);
8766 }
8767
8768 /*
8769 * It returns monitor gain if success, otherwise -1.
8770 * Must be called only if sc->sc_monitor_port != -1.
8771 * Must be called with sc_lock && sc_exlock held.
8772 */
8773 static int
8774 au_get_monitor_gain(struct audio_softc *sc)
8775 {
8776 mixer_ctrl_t ct;
8777
8778 KASSERT(mutex_owned(sc->sc_lock));
8779 KASSERT(sc->sc_exlock);
8780
8781 ct.dev = sc->sc_monitor_port;
8782 ct.type = AUDIO_MIXER_VALUE;
8783 ct.un.value.num_channels = 1;
8784 if (audio_get_port(sc, &ct))
8785 return -1;
8786 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8787 }
8788
8789 /*
8790 * Must be called with sc_lock && sc_exlock held.
8791 */
8792 static int
8793 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8794 {
8795
8796 KASSERT(mutex_owned(sc->sc_lock));
8797 KASSERT(sc->sc_exlock);
8798
8799 return sc->hw_if->set_port(sc->hw_hdl, mc);
8800 }
8801
8802 /*
8803 * Must be called with sc_lock && sc_exlock held.
8804 */
8805 static int
8806 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8807 {
8808
8809 KASSERT(mutex_owned(sc->sc_lock));
8810 KASSERT(sc->sc_exlock);
8811
8812 return sc->hw_if->get_port(sc->hw_hdl, mc);
8813 }
8814
8815 /*
8816 * Must be called with sc_lock && sc_exlock held.
8817 */
8818 static void
8819 audio_mixer_capture(struct audio_softc *sc)
8820 {
8821 mixer_devinfo_t mi;
8822 mixer_ctrl_t *mc;
8823
8824 KASSERT(mutex_owned(sc->sc_lock));
8825 KASSERT(sc->sc_exlock);
8826
8827 for (mi.index = 0;; mi.index++) {
8828 if (audio_query_devinfo(sc, &mi) != 0)
8829 break;
8830 KASSERT(mi.index < sc->sc_nmixer_states);
8831 if (mi.type == AUDIO_MIXER_CLASS)
8832 continue;
8833 mc = &sc->sc_mixer_state[mi.index];
8834 mc->dev = mi.index;
8835 mc->type = mi.type;
8836 mc->un.value.num_channels = mi.un.v.num_channels;
8837 (void)audio_get_port(sc, mc);
8838 }
8839
8840 return;
8841 }
8842
8843 /*
8844 * Must be called with sc_lock && sc_exlock held.
8845 */
8846 static void
8847 audio_mixer_restore(struct audio_softc *sc)
8848 {
8849 mixer_devinfo_t mi;
8850 mixer_ctrl_t *mc;
8851
8852 KASSERT(mutex_owned(sc->sc_lock));
8853 KASSERT(sc->sc_exlock);
8854
8855 for (mi.index = 0; ; mi.index++) {
8856 if (audio_query_devinfo(sc, &mi) != 0)
8857 break;
8858 if (mi.type == AUDIO_MIXER_CLASS)
8859 continue;
8860 mc = &sc->sc_mixer_state[mi.index];
8861 (void)audio_set_port(sc, mc);
8862 }
8863 if (sc->hw_if->commit_settings)
8864 sc->hw_if->commit_settings(sc->hw_hdl);
8865
8866 return;
8867 }
8868
8869 static void
8870 audio_volume_down(device_t dv)
8871 {
8872 struct audio_softc *sc = device_private(dv);
8873 mixer_devinfo_t mi;
8874 int newgain;
8875 u_int gain;
8876 u_char balance;
8877
8878 if (audio_exlock_mutex_enter(sc) != 0)
8879 return;
8880 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8881 mi.index = sc->sc_outports.master;
8882 mi.un.v.delta = 0;
8883 if (audio_query_devinfo(sc, &mi) == 0) {
8884 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8885 newgain = gain - mi.un.v.delta;
8886 if (newgain < AUDIO_MIN_GAIN)
8887 newgain = AUDIO_MIN_GAIN;
8888 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8889 }
8890 }
8891 audio_exlock_mutex_exit(sc);
8892 }
8893
8894 static void
8895 audio_volume_up(device_t dv)
8896 {
8897 struct audio_softc *sc = device_private(dv);
8898 mixer_devinfo_t mi;
8899 u_int gain, newgain;
8900 u_char balance;
8901
8902 if (audio_exlock_mutex_enter(sc) != 0)
8903 return;
8904 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8905 mi.index = sc->sc_outports.master;
8906 mi.un.v.delta = 0;
8907 if (audio_query_devinfo(sc, &mi) == 0) {
8908 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8909 newgain = gain + mi.un.v.delta;
8910 if (newgain > AUDIO_MAX_GAIN)
8911 newgain = AUDIO_MAX_GAIN;
8912 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8913 }
8914 }
8915 audio_exlock_mutex_exit(sc);
8916 }
8917
8918 static void
8919 audio_volume_toggle(device_t dv)
8920 {
8921 struct audio_softc *sc = device_private(dv);
8922 u_int gain, newgain;
8923 u_char balance;
8924
8925 if (audio_exlock_mutex_enter(sc) != 0)
8926 return;
8927 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8928 if (gain != 0) {
8929 sc->sc_lastgain = gain;
8930 newgain = 0;
8931 } else
8932 newgain = sc->sc_lastgain;
8933 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8934 audio_exlock_mutex_exit(sc);
8935 }
8936
8937 /*
8938 * Must be called with sc_lock held.
8939 */
8940 static int
8941 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8942 {
8943
8944 KASSERT(mutex_owned(sc->sc_lock));
8945
8946 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8947 }
8948
8949 #endif /* NAUDIO > 0 */
8950
8951 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8952 #include <sys/param.h>
8953 #include <sys/systm.h>
8954 #include <sys/device.h>
8955 #include <sys/audioio.h>
8956 #include <dev/audio/audio_if.h>
8957 #endif
8958
8959 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8960 int
8961 audioprint(void *aux, const char *pnp)
8962 {
8963 struct audio_attach_args *arg;
8964 const char *type;
8965
8966 if (pnp != NULL) {
8967 arg = aux;
8968 switch (arg->type) {
8969 case AUDIODEV_TYPE_AUDIO:
8970 type = "audio";
8971 break;
8972 case AUDIODEV_TYPE_MIDI:
8973 type = "midi";
8974 break;
8975 case AUDIODEV_TYPE_OPL:
8976 type = "opl";
8977 break;
8978 case AUDIODEV_TYPE_MPU:
8979 type = "mpu";
8980 break;
8981 case AUDIODEV_TYPE_AUX:
8982 type = "aux";
8983 break;
8984 default:
8985 panic("audioprint: unknown type %d", arg->type);
8986 }
8987 aprint_normal("%s at %s", type, pnp);
8988 }
8989 return UNCONF;
8990 }
8991
8992 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8993
8994 #ifdef _MODULE
8995
8996 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8997
8998 #include "ioconf.c"
8999
9000 #endif
9001
9002 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
9003
9004 static int
9005 audio_modcmd(modcmd_t cmd, void *arg)
9006 {
9007 int error = 0;
9008
9009 switch (cmd) {
9010 case MODULE_CMD_INIT:
9011 /* XXX interrupt level? */
9012 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
9013 #ifdef _MODULE
9014 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
9015 &audio_cdevsw, &audio_cmajor);
9016 if (error)
9017 break;
9018
9019 error = config_init_component(cfdriver_ioconf_audio,
9020 cfattach_ioconf_audio, cfdata_ioconf_audio);
9021 if (error) {
9022 devsw_detach(NULL, &audio_cdevsw);
9023 }
9024 #endif
9025 break;
9026 case MODULE_CMD_FINI:
9027 #ifdef _MODULE
9028 devsw_detach(NULL, &audio_cdevsw);
9029 error = config_fini_component(cfdriver_ioconf_audio,
9030 cfattach_ioconf_audio, cfdata_ioconf_audio);
9031 if (error)
9032 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
9033 &audio_cdevsw, &audio_cmajor);
9034 #endif
9035 psref_class_destroy(audio_psref_class);
9036 break;
9037 default:
9038 error = ENOTTY;
9039 break;
9040 }
9041
9042 return error;
9043 }
9044