audio.c revision 1.127 1 /* $NetBSD: audio.c,v 1.127 2022/04/20 07:11:13 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Terminology: "sample", "channel", "frame", "block", "track":
67 *
68 * channel frame
69 * | ........
70 * v : : \
71 * +------:------:------:- -+------+ : +------+-.. |
72 * #0(L) |sample|sample|sample| .. |sample| : |sample| |
73 * +------:------:------:- -+------+ : +------+-.. |
74 * #1(R) |sample|sample|sample| .. |sample| : |sample| |
75 * +------:------:------:- -+------+ : +------+-.. | track
76 * : : : : |
77 * +------:------:------:- -+------+ : +------+-.. |
78 * |sample|sample|sample| .. |sample| : |sample| |
79 * +------:------:------:- -+------+ : +------+-.. |
80 * : : /
81 * ........
82 *
83 * \--------------------------------/ \--------..
84 * block
85 *
86 * - A "frame" is the minimum unit in the time axis direction, and consists
87 * of samples for the number of channels.
88 * - A "block" is basic length of processing. The audio layer basically
89 * handles audio data stream block by block, asks underlying hardware to
90 * process them block by block, and then the hardware raises interrupt by
91 * each block.
92 * - A "track" is single completed audio stream.
93 *
94 * For example, the hardware block is assumed to be 10 msec, and your audio
95 * track consists of 2.1(=3) channels 44.1kHz 16bit PCM,
96 *
97 * "channel" = 3
98 * "sample" = 2 [bytes]
99 * "frame" = 2 [bytes/sample] * 3 [channels] = 6 [bytes]
100 * "block" = 44100 [Hz] * (10/1000) [seconds] * 6 [bytes/frame] = 2646 [bytes]
101 *
102 * The terminologies shown here are only for this MI audio layer. Note that
103 * different terminologies may be used in each manufacturer's datasheet, and
104 * each MD driver may follow it. For example, what we call a "block" is
105 * called a "frame" in sys/dev/pci/yds.c.
106 */
107
108 /*
109 * Locking: there are three locks per device.
110 *
111 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
112 * returned in the second parameter to hw_if->get_locks(). It is known
113 * as the "thread lock".
114 *
115 * It serializes access to state in all places except the
116 * driver's interrupt service routine. This lock is taken from process
117 * context (example: access to /dev/audio). It is also taken from soft
118 * interrupt handlers in this module, primarily to serialize delivery of
119 * wakeups. This lock may be used/provided by modules external to the
120 * audio subsystem, so take care not to introduce a lock order problem.
121 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
122 *
123 * - sc_intr_lock, provided by the underlying driver. This may be either a
124 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
125 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
126 * is known as the "interrupt lock".
127 *
128 * It provides atomic access to the device's hardware state, and to audio
129 * channel data that may be accessed by the hardware driver's ISR.
130 * In all places outside the ISR, sc_lock must be held before taking
131 * sc_intr_lock. This is to ensure that groups of hardware operations are
132 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
133 *
134 * - sc_exlock, private to this module. This is a variable protected by
135 * sc_lock. It is known as the "critical section".
136 * Some operations release sc_lock in order to allocate memory, to wait
137 * for in-flight I/O to complete, to copy to/from user context, etc.
138 * sc_exlock provides a critical section even under the circumstance.
139 * "+" in following list indicates the interfaces which necessary to be
140 * protected by sc_exlock.
141 *
142 * List of hardware interface methods, and which locks are held when each
143 * is called by this module:
144 *
145 * METHOD INTR THREAD NOTES
146 * ----------------------- ------- ------- -------------------------
147 * open x x +
148 * close x x +
149 * query_format - x
150 * set_format - x
151 * round_blocksize - x
152 * commit_settings - x
153 * init_output x x
154 * init_input x x
155 * start_output x x +
156 * start_input x x +
157 * halt_output x x +
158 * halt_input x x +
159 * speaker_ctl x x
160 * getdev - -
161 * set_port - x +
162 * get_port - x +
163 * query_devinfo - x
164 * allocm - - +
165 * freem - - +
166 * round_buffersize - x
167 * get_props - - Called at attach time
168 * trigger_output x x +
169 * trigger_input x x +
170 * dev_ioctl - x
171 * get_locks - - Called at attach time
172 *
173 * In addition, there is an additional lock.
174 *
175 * - track->lock. This is an atomic variable and is similar to the
176 * "interrupt lock". This is one for each track. If any thread context
177 * (and software interrupt context) and hardware interrupt context who
178 * want to access some variables on this track, they must acquire this
179 * lock before. It protects track's consistency between hardware
180 * interrupt context and others.
181 */
182
183 #include <sys/cdefs.h>
184 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.127 2022/04/20 07:11:13 isaki Exp $");
185
186 #ifdef _KERNEL_OPT
187 #include "audio.h"
188 #include "midi.h"
189 #endif
190
191 #if NAUDIO > 0
192
193 #include <sys/types.h>
194 #include <sys/param.h>
195 #include <sys/atomic.h>
196 #include <sys/audioio.h>
197 #include <sys/conf.h>
198 #include <sys/cpu.h>
199 #include <sys/device.h>
200 #include <sys/fcntl.h>
201 #include <sys/file.h>
202 #include <sys/filedesc.h>
203 #include <sys/intr.h>
204 #include <sys/ioctl.h>
205 #include <sys/kauth.h>
206 #include <sys/kernel.h>
207 #include <sys/kmem.h>
208 #include <sys/lock.h>
209 #include <sys/malloc.h>
210 #include <sys/mman.h>
211 #include <sys/module.h>
212 #include <sys/poll.h>
213 #include <sys/proc.h>
214 #include <sys/queue.h>
215 #include <sys/select.h>
216 #include <sys/signalvar.h>
217 #include <sys/stat.h>
218 #include <sys/sysctl.h>
219 #include <sys/systm.h>
220 #include <sys/syslog.h>
221 #include <sys/vnode.h>
222
223 #include <dev/audio/audio_if.h>
224 #include <dev/audio/audiovar.h>
225 #include <dev/audio/audiodef.h>
226 #include <dev/audio/linear.h>
227 #include <dev/audio/mulaw.h>
228
229 #include <machine/endian.h>
230
231 #include <uvm/uvm_extern.h>
232
233 #include "ioconf.h"
234
235 /*
236 * 0: No debug logs
237 * 1: action changes like open/close/set_format...
238 * 2: + normal operations like read/write/ioctl...
239 * 3: + TRACEs except interrupt
240 * 4: + TRACEs including interrupt
241 */
242 //#define AUDIO_DEBUG 1
243
244 #if defined(AUDIO_DEBUG)
245
246 int audiodebug = AUDIO_DEBUG;
247 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
248 const char *, va_list);
249 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
250 __printflike(3, 4);
251 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
252 __printflike(3, 4);
253 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
254 __printflike(3, 4);
255
256 /* XXX sloppy memory logger */
257 static void audio_mlog_init(void);
258 static void audio_mlog_free(void);
259 static void audio_mlog_softintr(void *);
260 extern void audio_mlog_flush(void);
261 extern void audio_mlog_printf(const char *, ...);
262
263 static int mlog_refs; /* reference counter */
264 static char *mlog_buf[2]; /* double buffer */
265 static int mlog_buflen; /* buffer length */
266 static int mlog_used; /* used length */
267 static int mlog_full; /* number of dropped lines by buffer full */
268 static int mlog_drop; /* number of dropped lines by busy */
269 static volatile uint32_t mlog_inuse; /* in-use */
270 static int mlog_wpage; /* active page */
271 static void *mlog_sih; /* softint handle */
272
273 static void
274 audio_mlog_init(void)
275 {
276 mlog_refs++;
277 if (mlog_refs > 1)
278 return;
279 mlog_buflen = 4096;
280 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
281 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
282 mlog_used = 0;
283 mlog_full = 0;
284 mlog_drop = 0;
285 mlog_inuse = 0;
286 mlog_wpage = 0;
287 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
288 if (mlog_sih == NULL)
289 printf("%s: softint_establish failed\n", __func__);
290 }
291
292 static void
293 audio_mlog_free(void)
294 {
295 mlog_refs--;
296 if (mlog_refs > 0)
297 return;
298
299 audio_mlog_flush();
300 if (mlog_sih)
301 softint_disestablish(mlog_sih);
302 kmem_free(mlog_buf[0], mlog_buflen);
303 kmem_free(mlog_buf[1], mlog_buflen);
304 }
305
306 /*
307 * Flush memory buffer.
308 * It must not be called from hardware interrupt context.
309 */
310 void
311 audio_mlog_flush(void)
312 {
313 if (mlog_refs == 0)
314 return;
315
316 /* Nothing to do if already in use ? */
317 if (atomic_swap_32(&mlog_inuse, 1) == 1)
318 return;
319 membar_acquire();
320
321 int rpage = mlog_wpage;
322 mlog_wpage ^= 1;
323 mlog_buf[mlog_wpage][0] = '\0';
324 mlog_used = 0;
325
326 atomic_store_release(&mlog_inuse, 0);
327
328 if (mlog_buf[rpage][0] != '\0') {
329 printf("%s", mlog_buf[rpage]);
330 if (mlog_drop > 0)
331 printf("mlog_drop %d\n", mlog_drop);
332 if (mlog_full > 0)
333 printf("mlog_full %d\n", mlog_full);
334 }
335 mlog_full = 0;
336 mlog_drop = 0;
337 }
338
339 static void
340 audio_mlog_softintr(void *cookie)
341 {
342 audio_mlog_flush();
343 }
344
345 void
346 audio_mlog_printf(const char *fmt, ...)
347 {
348 int len;
349 va_list ap;
350
351 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
352 /* already inuse */
353 mlog_drop++;
354 return;
355 }
356 membar_acquire();
357
358 va_start(ap, fmt);
359 len = vsnprintf(
360 mlog_buf[mlog_wpage] + mlog_used,
361 mlog_buflen - mlog_used,
362 fmt, ap);
363 va_end(ap);
364
365 mlog_used += len;
366 if (mlog_buflen - mlog_used <= 1) {
367 mlog_full++;
368 }
369
370 atomic_store_release(&mlog_inuse, 0);
371
372 if (mlog_sih)
373 softint_schedule(mlog_sih);
374 }
375
376 /* trace functions */
377 static void
378 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
379 const char *fmt, va_list ap)
380 {
381 char buf[256];
382 int n;
383
384 n = 0;
385 buf[0] = '\0';
386 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
387 funcname, device_unit(sc->sc_dev), header);
388 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
389
390 if (cpu_intr_p()) {
391 audio_mlog_printf("%s\n", buf);
392 } else {
393 audio_mlog_flush();
394 printf("%s\n", buf);
395 }
396 }
397
398 static void
399 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
400 {
401 va_list ap;
402
403 va_start(ap, fmt);
404 audio_vtrace(sc, funcname, "", fmt, ap);
405 va_end(ap);
406 }
407
408 static void
409 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
410 {
411 char hdr[16];
412 va_list ap;
413
414 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
415 va_start(ap, fmt);
416 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
417 va_end(ap);
418 }
419
420 static void
421 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
422 {
423 char hdr[32];
424 char phdr[16], rhdr[16];
425 va_list ap;
426
427 phdr[0] = '\0';
428 rhdr[0] = '\0';
429 if (file->ptrack)
430 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
431 if (file->rtrack)
432 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
433 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
434
435 va_start(ap, fmt);
436 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
437 va_end(ap);
438 }
439
440 #define DPRINTF(n, fmt...) do { \
441 if (audiodebug >= (n)) { \
442 audio_mlog_flush(); \
443 printf(fmt); \
444 } \
445 } while (0)
446 #define TRACE(n, fmt...) do { \
447 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
448 } while (0)
449 #define TRACET(n, t, fmt...) do { \
450 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
451 } while (0)
452 #define TRACEF(n, f, fmt...) do { \
453 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
454 } while (0)
455
456 struct audio_track_debugbuf {
457 char usrbuf[32];
458 char codec[32];
459 char chvol[32];
460 char chmix[32];
461 char freq[32];
462 char outbuf[32];
463 };
464
465 static void
466 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
467 {
468
469 memset(buf, 0, sizeof(*buf));
470
471 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
472 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
473 if (track->freq.filter)
474 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
475 track->freq.srcbuf.head,
476 track->freq.srcbuf.used,
477 track->freq.srcbuf.capacity);
478 if (track->chmix.filter)
479 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
480 track->chmix.srcbuf.used);
481 if (track->chvol.filter)
482 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
483 track->chvol.srcbuf.used);
484 if (track->codec.filter)
485 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
486 track->codec.srcbuf.used);
487 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
488 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
489 }
490 #else
491 #define DPRINTF(n, fmt...) do { } while (0)
492 #define TRACE(n, fmt, ...) do { } while (0)
493 #define TRACET(n, t, fmt, ...) do { } while (0)
494 #define TRACEF(n, f, fmt, ...) do { } while (0)
495 #endif
496
497 #define SPECIFIED(x) ((x) != ~0)
498 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
499
500 /*
501 * Default hardware blocksize in msec.
502 *
503 * We use 10 msec for most modern platforms. This period is good enough to
504 * play audio and video synchronizely.
505 * In contrast, for very old platforms, this is usually too short and too
506 * severe. Also such platforms usually can not play video confortably, so
507 * it's not so important to make the blocksize shorter. If the platform
508 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
509 * uses this instead.
510 *
511 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
512 * configuration file if you wish.
513 */
514 #if !defined(AUDIO_BLK_MS)
515 # if defined(__AUDIO_BLK_MS)
516 # define AUDIO_BLK_MS __AUDIO_BLK_MS
517 # else
518 # define AUDIO_BLK_MS (10)
519 # endif
520 #endif
521
522 /* Device timeout in msec */
523 #define AUDIO_TIMEOUT (3000)
524
525 /* #define AUDIO_PM_IDLE */
526 #ifdef AUDIO_PM_IDLE
527 int audio_idle_timeout = 30;
528 #endif
529
530 /* Number of elements of async mixer's pid */
531 #define AM_CAPACITY (4)
532
533 struct portname {
534 const char *name;
535 int mask;
536 };
537
538 static int audiomatch(device_t, cfdata_t, void *);
539 static void audioattach(device_t, device_t, void *);
540 static int audiodetach(device_t, int);
541 static int audioactivate(device_t, enum devact);
542 static void audiochilddet(device_t, device_t);
543 static int audiorescan(device_t, const char *, const int *);
544
545 static int audio_modcmd(modcmd_t, void *);
546
547 #ifdef AUDIO_PM_IDLE
548 static void audio_idle(void *);
549 static void audio_activity(device_t, devactive_t);
550 #endif
551
552 static bool audio_suspend(device_t dv, const pmf_qual_t *);
553 static bool audio_resume(device_t dv, const pmf_qual_t *);
554 static void audio_volume_down(device_t);
555 static void audio_volume_up(device_t);
556 static void audio_volume_toggle(device_t);
557
558 static void audio_mixer_capture(struct audio_softc *);
559 static void audio_mixer_restore(struct audio_softc *);
560
561 static void audio_softintr_rd(void *);
562 static void audio_softintr_wr(void *);
563
564 static void audio_printf(struct audio_softc *, const char *, ...)
565 __printflike(2, 3);
566 static int audio_exlock_mutex_enter(struct audio_softc *);
567 static void audio_exlock_mutex_exit(struct audio_softc *);
568 static int audio_exlock_enter(struct audio_softc *);
569 static void audio_exlock_exit(struct audio_softc *);
570 static struct audio_softc *audio_sc_acquire_fromfile(audio_file_t *,
571 struct psref *);
572 static void audio_sc_release(struct audio_softc *, struct psref *);
573 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
574
575 static int audioclose(struct file *);
576 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
577 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
578 static int audioioctl(struct file *, u_long, void *);
579 static int audiopoll(struct file *, int);
580 static int audiokqfilter(struct file *, struct knote *);
581 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
582 struct uvm_object **, int *);
583 static int audiostat(struct file *, struct stat *);
584
585 static void filt_audiowrite_detach(struct knote *);
586 static int filt_audiowrite_event(struct knote *, long);
587 static void filt_audioread_detach(struct knote *);
588 static int filt_audioread_event(struct knote *, long);
589
590 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
591 audio_file_t **);
592 static int audio_close(struct audio_softc *, audio_file_t *);
593 static void audio_unlink(struct audio_softc *, audio_file_t *);
594 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
595 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
596 static void audio_file_clear(struct audio_softc *, audio_file_t *);
597 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
598 struct lwp *, audio_file_t *);
599 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
600 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
601 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
602 struct uvm_object **, int *, audio_file_t *);
603
604 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
605
606 static void audio_pintr(void *);
607 static void audio_rintr(void *);
608
609 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
610
611 static int audio_track_inputblk_as_usrbyte(const audio_track_t *, int);
612 static int audio_track_readablebytes(const audio_track_t *);
613 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
614 const struct audio_info *);
615 static int audio_track_setinfo_check(audio_track_t *,
616 audio_format2_t *, const struct audio_prinfo *);
617 static void audio_track_setinfo_water(audio_track_t *,
618 const struct audio_info *);
619 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
620 struct audio_info *);
621 static int audio_hw_set_format(struct audio_softc *, int,
622 const audio_format2_t *, const audio_format2_t *,
623 audio_filter_reg_t *, audio_filter_reg_t *);
624 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
625 audio_file_t *);
626 static bool audio_can_playback(struct audio_softc *);
627 static bool audio_can_capture(struct audio_softc *);
628 static int audio_check_params(audio_format2_t *);
629 static int audio_mixers_init(struct audio_softc *sc, int,
630 const audio_format2_t *, const audio_format2_t *,
631 const audio_filter_reg_t *, const audio_filter_reg_t *);
632 static int audio_select_freq(const struct audio_format *);
633 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
634 static int audio_hw_validate_format(struct audio_softc *, int,
635 const audio_format2_t *);
636 static int audio_mixers_set_format(struct audio_softc *,
637 const struct audio_info *);
638 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
639 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
640 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
641 #if defined(AUDIO_DEBUG)
642 static int audio_sysctl_debug(SYSCTLFN_PROTO);
643 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
644 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
645 #endif
646
647 static void *audio_realloc(void *, size_t);
648 static int audio_realloc_usrbuf(audio_track_t *, int);
649 static void audio_free_usrbuf(audio_track_t *);
650
651 static audio_track_t *audio_track_create(struct audio_softc *,
652 audio_trackmixer_t *);
653 static void audio_track_destroy(audio_track_t *);
654 static audio_filter_t audio_track_get_codec(audio_track_t *,
655 const audio_format2_t *, const audio_format2_t *);
656 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
657 static void audio_track_play(audio_track_t *);
658 static int audio_track_drain(struct audio_softc *, audio_track_t *);
659 static void audio_track_record(audio_track_t *);
660 static void audio_track_clear(struct audio_softc *, audio_track_t *);
661
662 static int audio_mixer_init(struct audio_softc *, int,
663 const audio_format2_t *, const audio_filter_reg_t *);
664 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
665 static void audio_pmixer_start(struct audio_softc *, bool);
666 static void audio_pmixer_process(struct audio_softc *);
667 static void audio_pmixer_agc(audio_trackmixer_t *, int);
668 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
669 static void audio_pmixer_output(struct audio_softc *);
670 static int audio_pmixer_halt(struct audio_softc *);
671 static void audio_rmixer_start(struct audio_softc *);
672 static void audio_rmixer_process(struct audio_softc *);
673 static void audio_rmixer_input(struct audio_softc *);
674 static int audio_rmixer_halt(struct audio_softc *);
675
676 static void mixer_init(struct audio_softc *);
677 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
678 static int mixer_close(struct audio_softc *, audio_file_t *);
679 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
680 static void mixer_async_add(struct audio_softc *, pid_t);
681 static void mixer_async_remove(struct audio_softc *, pid_t);
682 static void mixer_signal(struct audio_softc *);
683
684 static int au_portof(struct audio_softc *, char *, int);
685
686 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
687 mixer_devinfo_t *, const struct portname *);
688 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
689 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
690 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
691 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
692 u_int *, u_char *);
693 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
694 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
695 static int au_set_monitor_gain(struct audio_softc *, int);
696 static int au_get_monitor_gain(struct audio_softc *);
697 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
698 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
699
700 static __inline struct audio_params
701 format2_to_params(const audio_format2_t *f2)
702 {
703 audio_params_t p;
704
705 /* validbits/precision <-> precision/stride */
706 p.sample_rate = f2->sample_rate;
707 p.channels = f2->channels;
708 p.encoding = f2->encoding;
709 p.validbits = f2->precision;
710 p.precision = f2->stride;
711 return p;
712 }
713
714 static __inline audio_format2_t
715 params_to_format2(const struct audio_params *p)
716 {
717 audio_format2_t f2;
718
719 /* precision/stride <-> validbits/precision */
720 f2.sample_rate = p->sample_rate;
721 f2.channels = p->channels;
722 f2.encoding = p->encoding;
723 f2.precision = p->validbits;
724 f2.stride = p->precision;
725 return f2;
726 }
727
728 /* Return true if this track is a playback track. */
729 static __inline bool
730 audio_track_is_playback(const audio_track_t *track)
731 {
732
733 return ((track->mode & AUMODE_PLAY) != 0);
734 }
735
736 /* Return true if this track is a recording track. */
737 static __inline bool
738 audio_track_is_record(const audio_track_t *track)
739 {
740
741 return ((track->mode & AUMODE_RECORD) != 0);
742 }
743
744 #if 0 /* XXX Not used yet */
745 /*
746 * Convert 0..255 volume used in userland to internal presentation 0..256.
747 */
748 static __inline u_int
749 audio_volume_to_inner(u_int v)
750 {
751
752 return v < 127 ? v : v + 1;
753 }
754
755 /*
756 * Convert 0..256 internal presentation to 0..255 volume used in userland.
757 */
758 static __inline u_int
759 audio_volume_to_outer(u_int v)
760 {
761
762 return v < 127 ? v : v - 1;
763 }
764 #endif /* 0 */
765
766 static dev_type_open(audioopen);
767 /* XXXMRG use more dev_type_xxx */
768
769 static int
770 audiounit(dev_t dev)
771 {
772
773 return AUDIOUNIT(dev);
774 }
775
776 const struct cdevsw audio_cdevsw = {
777 .d_open = audioopen,
778 .d_close = noclose,
779 .d_read = noread,
780 .d_write = nowrite,
781 .d_ioctl = noioctl,
782 .d_stop = nostop,
783 .d_tty = notty,
784 .d_poll = nopoll,
785 .d_mmap = nommap,
786 .d_kqfilter = nokqfilter,
787 .d_discard = nodiscard,
788 .d_cfdriver = &audio_cd,
789 .d_devtounit = audiounit,
790 .d_flag = D_OTHER | D_MPSAFE
791 };
792
793 const struct fileops audio_fileops = {
794 .fo_name = "audio",
795 .fo_read = audioread,
796 .fo_write = audiowrite,
797 .fo_ioctl = audioioctl,
798 .fo_fcntl = fnullop_fcntl,
799 .fo_stat = audiostat,
800 .fo_poll = audiopoll,
801 .fo_close = audioclose,
802 .fo_mmap = audiommap,
803 .fo_kqfilter = audiokqfilter,
804 .fo_restart = fnullop_restart
805 };
806
807 /* The default audio mode: 8 kHz mono mu-law */
808 static const struct audio_params audio_default = {
809 .sample_rate = 8000,
810 .encoding = AUDIO_ENCODING_ULAW,
811 .precision = 8,
812 .validbits = 8,
813 .channels = 1,
814 };
815
816 static const char *encoding_names[] = {
817 "none",
818 AudioEmulaw,
819 AudioEalaw,
820 "pcm16",
821 "pcm8",
822 AudioEadpcm,
823 AudioEslinear_le,
824 AudioEslinear_be,
825 AudioEulinear_le,
826 AudioEulinear_be,
827 AudioEslinear,
828 AudioEulinear,
829 AudioEmpeg_l1_stream,
830 AudioEmpeg_l1_packets,
831 AudioEmpeg_l1_system,
832 AudioEmpeg_l2_stream,
833 AudioEmpeg_l2_packets,
834 AudioEmpeg_l2_system,
835 AudioEac3,
836 };
837
838 /*
839 * Returns encoding name corresponding to AUDIO_ENCODING_*.
840 * Note that it may return a local buffer because it is mainly for debugging.
841 */
842 const char *
843 audio_encoding_name(int encoding)
844 {
845 static char buf[16];
846
847 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
848 return encoding_names[encoding];
849 } else {
850 snprintf(buf, sizeof(buf), "enc=%d", encoding);
851 return buf;
852 }
853 }
854
855 /*
856 * Supported encodings used by AUDIO_GETENC.
857 * index and flags are set by code.
858 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
859 */
860 static const audio_encoding_t audio_encodings[] = {
861 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
862 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
863 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
864 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
865 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
866 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
867 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
868 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
869 #if defined(AUDIO_SUPPORT_LINEAR24)
870 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
871 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
872 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
873 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
874 #endif
875 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
876 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
877 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
878 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
879 };
880
881 static const struct portname itable[] = {
882 { AudioNmicrophone, AUDIO_MICROPHONE },
883 { AudioNline, AUDIO_LINE_IN },
884 { AudioNcd, AUDIO_CD },
885 { 0, 0 }
886 };
887 static const struct portname otable[] = {
888 { AudioNspeaker, AUDIO_SPEAKER },
889 { AudioNheadphone, AUDIO_HEADPHONE },
890 { AudioNline, AUDIO_LINE_OUT },
891 { 0, 0 }
892 };
893
894 static struct psref_class *audio_psref_class __read_mostly;
895
896 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
897 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
898 audiochilddet, DVF_DETACH_SHUTDOWN);
899
900 static int
901 audiomatch(device_t parent, cfdata_t match, void *aux)
902 {
903 struct audio_attach_args *sa;
904
905 sa = aux;
906 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
907 __func__, sa->type, sa, sa->hwif);
908 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
909 }
910
911 static void
912 audioattach(device_t parent, device_t self, void *aux)
913 {
914 struct audio_softc *sc;
915 struct audio_attach_args *sa;
916 const struct audio_hw_if *hw_if;
917 audio_format2_t phwfmt;
918 audio_format2_t rhwfmt;
919 audio_filter_reg_t pfil;
920 audio_filter_reg_t rfil;
921 const struct sysctlnode *node;
922 void *hdlp;
923 bool has_playback;
924 bool has_capture;
925 bool has_indep;
926 bool has_fulldup;
927 int mode;
928 int error;
929
930 sc = device_private(self);
931 sc->sc_dev = self;
932 sa = (struct audio_attach_args *)aux;
933 hw_if = sa->hwif;
934 hdlp = sa->hdl;
935
936 if (hw_if == NULL) {
937 panic("audioattach: missing hw_if method");
938 }
939 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
940 aprint_error(": missing mandatory method\n");
941 return;
942 }
943
944 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
945 sc->sc_props = hw_if->get_props(hdlp);
946
947 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
948 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
949 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
950 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
951
952 #ifdef DIAGNOSTIC
953 if (hw_if->query_format == NULL ||
954 hw_if->set_format == NULL ||
955 hw_if->getdev == NULL ||
956 hw_if->set_port == NULL ||
957 hw_if->get_port == NULL ||
958 hw_if->query_devinfo == NULL) {
959 aprint_error(": missing mandatory method\n");
960 return;
961 }
962 if (has_playback) {
963 if ((hw_if->start_output == NULL &&
964 hw_if->trigger_output == NULL) ||
965 hw_if->halt_output == NULL) {
966 aprint_error(": missing playback method\n");
967 }
968 }
969 if (has_capture) {
970 if ((hw_if->start_input == NULL &&
971 hw_if->trigger_input == NULL) ||
972 hw_if->halt_input == NULL) {
973 aprint_error(": missing capture method\n");
974 }
975 }
976 #endif
977
978 sc->hw_if = hw_if;
979 sc->hw_hdl = hdlp;
980 sc->hw_dev = parent;
981
982 sc->sc_exlock = 1;
983 sc->sc_blk_ms = AUDIO_BLK_MS;
984 SLIST_INIT(&sc->sc_files);
985 cv_init(&sc->sc_exlockcv, "audiolk");
986 sc->sc_am_capacity = 0;
987 sc->sc_am_used = 0;
988 sc->sc_am = NULL;
989
990 /* MMAP is now supported by upper layer. */
991 sc->sc_props |= AUDIO_PROP_MMAP;
992
993 KASSERT(has_playback || has_capture);
994 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
995 if (!has_playback || !has_capture) {
996 KASSERT(!has_indep);
997 KASSERT(!has_fulldup);
998 }
999
1000 mode = 0;
1001 if (has_playback) {
1002 aprint_normal(": playback");
1003 mode |= AUMODE_PLAY;
1004 }
1005 if (has_capture) {
1006 aprint_normal("%c capture", has_playback ? ',' : ':');
1007 mode |= AUMODE_RECORD;
1008 }
1009 if (has_playback && has_capture) {
1010 if (has_fulldup)
1011 aprint_normal(", full duplex");
1012 else
1013 aprint_normal(", half duplex");
1014
1015 if (has_indep)
1016 aprint_normal(", independent");
1017 }
1018
1019 aprint_naive("\n");
1020 aprint_normal("\n");
1021
1022 /* probe hw params */
1023 memset(&phwfmt, 0, sizeof(phwfmt));
1024 memset(&rhwfmt, 0, sizeof(rhwfmt));
1025 memset(&pfil, 0, sizeof(pfil));
1026 memset(&rfil, 0, sizeof(rfil));
1027 if (has_indep) {
1028 int perror, rerror;
1029
1030 /* On independent devices, probe separately. */
1031 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
1032 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
1033 if (perror && rerror) {
1034 aprint_error_dev(self,
1035 "audio_hw_probe failed: perror=%d, rerror=%d\n",
1036 perror, rerror);
1037 goto bad;
1038 }
1039 if (perror) {
1040 mode &= ~AUMODE_PLAY;
1041 aprint_error_dev(self, "audio_hw_probe failed: "
1042 "errno=%d, playback disabled\n", perror);
1043 }
1044 if (rerror) {
1045 mode &= ~AUMODE_RECORD;
1046 aprint_error_dev(self, "audio_hw_probe failed: "
1047 "errno=%d, capture disabled\n", rerror);
1048 }
1049 } else {
1050 /*
1051 * On non independent devices or uni-directional devices,
1052 * probe once (simultaneously).
1053 */
1054 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
1055 error = audio_hw_probe(sc, fmt, mode);
1056 if (error) {
1057 aprint_error_dev(self,
1058 "audio_hw_probe failed: errno=%d\n", error);
1059 goto bad;
1060 }
1061 if (has_playback && has_capture)
1062 rhwfmt = phwfmt;
1063 }
1064
1065 /* Init hardware. */
1066 /* hw_probe() also validates [pr]hwfmt. */
1067 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1068 if (error) {
1069 aprint_error_dev(self,
1070 "audio_hw_set_format failed: errno=%d\n", error);
1071 goto bad;
1072 }
1073
1074 /*
1075 * Init track mixers. If at least one direction is available on
1076 * attach time, we assume a success.
1077 */
1078 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1079 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1080 aprint_error_dev(self,
1081 "audio_mixers_init failed: errno=%d\n", error);
1082 goto bad;
1083 }
1084
1085 sc->sc_psz = pserialize_create();
1086 psref_target_init(&sc->sc_psref, audio_psref_class);
1087
1088 selinit(&sc->sc_wsel);
1089 selinit(&sc->sc_rsel);
1090
1091 /* Initial parameter of /dev/sound */
1092 sc->sc_sound_pparams = params_to_format2(&audio_default);
1093 sc->sc_sound_rparams = params_to_format2(&audio_default);
1094 sc->sc_sound_ppause = false;
1095 sc->sc_sound_rpause = false;
1096
1097 /* XXX TODO: consider about sc_ai */
1098
1099 mixer_init(sc);
1100 TRACE(2, "inputs ports=0x%x, input master=%d, "
1101 "output ports=0x%x, output master=%d",
1102 sc->sc_inports.allports, sc->sc_inports.master,
1103 sc->sc_outports.allports, sc->sc_outports.master);
1104
1105 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1106 0,
1107 CTLTYPE_NODE, device_xname(sc->sc_dev),
1108 SYSCTL_DESCR("audio test"),
1109 NULL, 0,
1110 NULL, 0,
1111 CTL_HW,
1112 CTL_CREATE, CTL_EOL);
1113
1114 if (node != NULL) {
1115 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1116 CTLFLAG_READWRITE,
1117 CTLTYPE_INT, "blk_ms",
1118 SYSCTL_DESCR("blocksize in msec"),
1119 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1120 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1121
1122 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1123 CTLFLAG_READWRITE,
1124 CTLTYPE_BOOL, "multiuser",
1125 SYSCTL_DESCR("allow multiple user access"),
1126 audio_sysctl_multiuser, 0, (void *)sc, 0,
1127 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1128
1129 #if defined(AUDIO_DEBUG)
1130 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1131 CTLFLAG_READWRITE,
1132 CTLTYPE_INT, "debug",
1133 SYSCTL_DESCR("debug level (0..4)"),
1134 audio_sysctl_debug, 0, (void *)sc, 0,
1135 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1136 #endif
1137 }
1138
1139 #ifdef AUDIO_PM_IDLE
1140 callout_init(&sc->sc_idle_counter, 0);
1141 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1142 #endif
1143
1144 if (!pmf_device_register(self, audio_suspend, audio_resume))
1145 aprint_error_dev(self, "couldn't establish power handler\n");
1146 #ifdef AUDIO_PM_IDLE
1147 if (!device_active_register(self, audio_activity))
1148 aprint_error_dev(self, "couldn't register activity handler\n");
1149 #endif
1150
1151 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1152 audio_volume_down, true))
1153 aprint_error_dev(self, "couldn't add volume down handler\n");
1154 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1155 audio_volume_up, true))
1156 aprint_error_dev(self, "couldn't add volume up handler\n");
1157 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1158 audio_volume_toggle, true))
1159 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1160
1161 #ifdef AUDIO_PM_IDLE
1162 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1163 #endif
1164
1165 #if defined(AUDIO_DEBUG)
1166 audio_mlog_init();
1167 #endif
1168
1169 audiorescan(self, NULL, NULL);
1170 sc->sc_exlock = 0;
1171 return;
1172
1173 bad:
1174 /* Clearing hw_if means that device is attached but disabled. */
1175 sc->hw_if = NULL;
1176 sc->sc_exlock = 0;
1177 aprint_error_dev(sc->sc_dev, "disabled\n");
1178 return;
1179 }
1180
1181 /*
1182 * Initialize hardware mixer.
1183 * This function is called from audioattach().
1184 */
1185 static void
1186 mixer_init(struct audio_softc *sc)
1187 {
1188 mixer_devinfo_t mi;
1189 int iclass, mclass, oclass, rclass;
1190 int record_master_found, record_source_found;
1191
1192 iclass = mclass = oclass = rclass = -1;
1193 sc->sc_inports.index = -1;
1194 sc->sc_inports.master = -1;
1195 sc->sc_inports.nports = 0;
1196 sc->sc_inports.isenum = false;
1197 sc->sc_inports.allports = 0;
1198 sc->sc_inports.isdual = false;
1199 sc->sc_inports.mixerout = -1;
1200 sc->sc_inports.cur_port = -1;
1201 sc->sc_outports.index = -1;
1202 sc->sc_outports.master = -1;
1203 sc->sc_outports.nports = 0;
1204 sc->sc_outports.isenum = false;
1205 sc->sc_outports.allports = 0;
1206 sc->sc_outports.isdual = false;
1207 sc->sc_outports.mixerout = -1;
1208 sc->sc_outports.cur_port = -1;
1209 sc->sc_monitor_port = -1;
1210 /*
1211 * Read through the underlying driver's list, picking out the class
1212 * names from the mixer descriptions. We'll need them to decode the
1213 * mixer descriptions on the next pass through the loop.
1214 */
1215 mutex_enter(sc->sc_lock);
1216 for(mi.index = 0; ; mi.index++) {
1217 if (audio_query_devinfo(sc, &mi) != 0)
1218 break;
1219 /*
1220 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1221 * All the other types describe an actual mixer.
1222 */
1223 if (mi.type == AUDIO_MIXER_CLASS) {
1224 if (strcmp(mi.label.name, AudioCinputs) == 0)
1225 iclass = mi.mixer_class;
1226 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1227 mclass = mi.mixer_class;
1228 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1229 oclass = mi.mixer_class;
1230 if (strcmp(mi.label.name, AudioCrecord) == 0)
1231 rclass = mi.mixer_class;
1232 }
1233 }
1234 mutex_exit(sc->sc_lock);
1235
1236 /* Allocate save area. Ensure non-zero allocation. */
1237 sc->sc_nmixer_states = mi.index;
1238 sc->sc_mixer_state = kmem_zalloc(sizeof(sc->sc_mixer_state[0]) *
1239 (sc->sc_nmixer_states + 1), KM_SLEEP);
1240
1241 /*
1242 * This is where we assign each control in the "audio" model, to the
1243 * underlying "mixer" control. We walk through the whole list once,
1244 * assigning likely candidates as we come across them.
1245 */
1246 record_master_found = 0;
1247 record_source_found = 0;
1248 mutex_enter(sc->sc_lock);
1249 for(mi.index = 0; ; mi.index++) {
1250 if (audio_query_devinfo(sc, &mi) != 0)
1251 break;
1252 KASSERT(mi.index < sc->sc_nmixer_states);
1253 if (mi.type == AUDIO_MIXER_CLASS)
1254 continue;
1255 if (mi.mixer_class == iclass) {
1256 /*
1257 * AudioCinputs is only a fallback, when we don't
1258 * find what we're looking for in AudioCrecord, so
1259 * check the flags before accepting one of these.
1260 */
1261 if (strcmp(mi.label.name, AudioNmaster) == 0
1262 && record_master_found == 0)
1263 sc->sc_inports.master = mi.index;
1264 if (strcmp(mi.label.name, AudioNsource) == 0
1265 && record_source_found == 0) {
1266 if (mi.type == AUDIO_MIXER_ENUM) {
1267 int i;
1268 for(i = 0; i < mi.un.e.num_mem; i++)
1269 if (strcmp(mi.un.e.member[i].label.name,
1270 AudioNmixerout) == 0)
1271 sc->sc_inports.mixerout =
1272 mi.un.e.member[i].ord;
1273 }
1274 au_setup_ports(sc, &sc->sc_inports, &mi,
1275 itable);
1276 }
1277 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1278 sc->sc_outports.master == -1)
1279 sc->sc_outports.master = mi.index;
1280 } else if (mi.mixer_class == mclass) {
1281 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1282 sc->sc_monitor_port = mi.index;
1283 } else if (mi.mixer_class == oclass) {
1284 if (strcmp(mi.label.name, AudioNmaster) == 0)
1285 sc->sc_outports.master = mi.index;
1286 if (strcmp(mi.label.name, AudioNselect) == 0)
1287 au_setup_ports(sc, &sc->sc_outports, &mi,
1288 otable);
1289 } else if (mi.mixer_class == rclass) {
1290 /*
1291 * These are the preferred mixers for the audio record
1292 * controls, so set the flags here, but don't check.
1293 */
1294 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1295 sc->sc_inports.master = mi.index;
1296 record_master_found = 1;
1297 }
1298 #if 1 /* Deprecated. Use AudioNmaster. */
1299 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1300 sc->sc_inports.master = mi.index;
1301 record_master_found = 1;
1302 }
1303 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1304 sc->sc_inports.master = mi.index;
1305 record_master_found = 1;
1306 }
1307 #endif
1308 if (strcmp(mi.label.name, AudioNsource) == 0) {
1309 if (mi.type == AUDIO_MIXER_ENUM) {
1310 int i;
1311 for(i = 0; i < mi.un.e.num_mem; i++)
1312 if (strcmp(mi.un.e.member[i].label.name,
1313 AudioNmixerout) == 0)
1314 sc->sc_inports.mixerout =
1315 mi.un.e.member[i].ord;
1316 }
1317 au_setup_ports(sc, &sc->sc_inports, &mi,
1318 itable);
1319 record_source_found = 1;
1320 }
1321 }
1322 }
1323 mutex_exit(sc->sc_lock);
1324 }
1325
1326 static int
1327 audioactivate(device_t self, enum devact act)
1328 {
1329 struct audio_softc *sc = device_private(self);
1330
1331 switch (act) {
1332 case DVACT_DEACTIVATE:
1333 mutex_enter(sc->sc_lock);
1334 sc->sc_dying = true;
1335 cv_broadcast(&sc->sc_exlockcv);
1336 mutex_exit(sc->sc_lock);
1337 return 0;
1338 default:
1339 return EOPNOTSUPP;
1340 }
1341 }
1342
1343 static int
1344 audiodetach(device_t self, int flags)
1345 {
1346 struct audio_softc *sc;
1347 struct audio_file *file;
1348 int maj, mn;
1349 int error;
1350
1351 sc = device_private(self);
1352 TRACE(2, "flags=%d", flags);
1353
1354 /* device is not initialized */
1355 if (sc->hw_if == NULL)
1356 return 0;
1357
1358 /* Start draining existing accessors of the device. */
1359 error = config_detach_children(self, flags);
1360 if (error)
1361 return error;
1362
1363 /*
1364 * Prevent new opens and wait for existing opens to complete.
1365 */
1366 maj = cdevsw_lookup_major(&audio_cdevsw);
1367 mn = device_unit(self);
1368 vdevgone(maj, mn|SOUND_DEVICE, mn|SOUND_DEVICE, VCHR);
1369 vdevgone(maj, mn|AUDIO_DEVICE, mn|AUDIO_DEVICE, VCHR);
1370 vdevgone(maj, mn|AUDIOCTL_DEVICE, mn|AUDIOCTL_DEVICE, VCHR);
1371 vdevgone(maj, mn|MIXER_DEVICE, mn|MIXER_DEVICE, VCHR);
1372
1373 /*
1374 * This waits currently running sysctls to finish if exists.
1375 * After this, no more new sysctls will come.
1376 */
1377 sysctl_teardown(&sc->sc_log);
1378
1379 mutex_enter(sc->sc_lock);
1380 sc->sc_dying = true;
1381 cv_broadcast(&sc->sc_exlockcv);
1382 if (sc->sc_pmixer)
1383 cv_broadcast(&sc->sc_pmixer->outcv);
1384 if (sc->sc_rmixer)
1385 cv_broadcast(&sc->sc_rmixer->outcv);
1386
1387 /* Prevent new users */
1388 SLIST_FOREACH(file, &sc->sc_files, entry) {
1389 atomic_store_relaxed(&file->dying, true);
1390 }
1391 mutex_exit(sc->sc_lock);
1392
1393 /*
1394 * Wait for existing users to drain.
1395 * - pserialize_perform waits for all pserialize_read sections on
1396 * all CPUs; after this, no more new psref_acquire can happen.
1397 * - psref_target_destroy waits for all extant acquired psrefs to
1398 * be psref_released.
1399 */
1400 pserialize_perform(sc->sc_psz);
1401 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1402
1403 /*
1404 * We are now guaranteed that there are no calls to audio fileops
1405 * that hold sc, and any new calls with files that were for sc will
1406 * fail. Thus, we now have exclusive access to the softc.
1407 */
1408 sc->sc_exlock = 1;
1409
1410 /*
1411 * Clean up all open instances.
1412 */
1413 mutex_enter(sc->sc_lock);
1414 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1415 mutex_enter(sc->sc_intr_lock);
1416 SLIST_REMOVE_HEAD(&sc->sc_files, entry);
1417 mutex_exit(sc->sc_intr_lock);
1418 if (file->ptrack || file->rtrack) {
1419 mutex_exit(sc->sc_lock);
1420 audio_unlink(sc, file);
1421 mutex_enter(sc->sc_lock);
1422 }
1423 }
1424 mutex_exit(sc->sc_lock);
1425
1426 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1427 audio_volume_down, true);
1428 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1429 audio_volume_up, true);
1430 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1431 audio_volume_toggle, true);
1432
1433 #ifdef AUDIO_PM_IDLE
1434 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1435
1436 device_active_deregister(self, audio_activity);
1437 #endif
1438
1439 pmf_device_deregister(self);
1440
1441 /* Free resources */
1442 if (sc->sc_pmixer) {
1443 audio_mixer_destroy(sc, sc->sc_pmixer);
1444 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1445 }
1446 if (sc->sc_rmixer) {
1447 audio_mixer_destroy(sc, sc->sc_rmixer);
1448 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1449 }
1450 if (sc->sc_am)
1451 kern_free(sc->sc_am);
1452
1453 seldestroy(&sc->sc_wsel);
1454 seldestroy(&sc->sc_rsel);
1455
1456 #ifdef AUDIO_PM_IDLE
1457 callout_destroy(&sc->sc_idle_counter);
1458 #endif
1459
1460 cv_destroy(&sc->sc_exlockcv);
1461
1462 #if defined(AUDIO_DEBUG)
1463 audio_mlog_free();
1464 #endif
1465
1466 return 0;
1467 }
1468
1469 static void
1470 audiochilddet(device_t self, device_t child)
1471 {
1472
1473 /* we hold no child references, so do nothing */
1474 }
1475
1476 static int
1477 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1478 {
1479
1480 if (config_probe(parent, cf, aux))
1481 config_attach(parent, cf, aux, NULL,
1482 CFARGS_NONE);
1483
1484 return 0;
1485 }
1486
1487 static int
1488 audiorescan(device_t self, const char *ifattr, const int *locators)
1489 {
1490 struct audio_softc *sc = device_private(self);
1491
1492 config_search(sc->sc_dev, NULL,
1493 CFARGS(.search = audiosearch));
1494
1495 return 0;
1496 }
1497
1498 /*
1499 * Called from hardware driver. This is where the MI audio driver gets
1500 * probed/attached to the hardware driver.
1501 */
1502 device_t
1503 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1504 {
1505 struct audio_attach_args arg;
1506
1507 #ifdef DIAGNOSTIC
1508 if (ahwp == NULL) {
1509 aprint_error("audio_attach_mi: NULL\n");
1510 return 0;
1511 }
1512 #endif
1513 arg.type = AUDIODEV_TYPE_AUDIO;
1514 arg.hwif = ahwp;
1515 arg.hdl = hdlp;
1516 return config_found(dev, &arg, audioprint,
1517 CFARGS(.iattr = "audiobus"));
1518 }
1519
1520 /*
1521 * audio_printf() outputs fmt... with the audio device name and MD device
1522 * name prefixed. If the message is considered to be related to the MD
1523 * driver, use this one instead of device_printf().
1524 */
1525 static void
1526 audio_printf(struct audio_softc *sc, const char *fmt, ...)
1527 {
1528 va_list ap;
1529
1530 printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
1531 va_start(ap, fmt);
1532 vprintf(fmt, ap);
1533 va_end(ap);
1534 }
1535
1536 /*
1537 * Enter critical section and also keep sc_lock.
1538 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1539 * Must be called without sc_lock held.
1540 */
1541 static int
1542 audio_exlock_mutex_enter(struct audio_softc *sc)
1543 {
1544 int error;
1545
1546 mutex_enter(sc->sc_lock);
1547 if (sc->sc_dying) {
1548 mutex_exit(sc->sc_lock);
1549 return EIO;
1550 }
1551
1552 while (__predict_false(sc->sc_exlock != 0)) {
1553 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1554 if (sc->sc_dying)
1555 error = EIO;
1556 if (error) {
1557 mutex_exit(sc->sc_lock);
1558 return error;
1559 }
1560 }
1561
1562 /* Acquire */
1563 sc->sc_exlock = 1;
1564 return 0;
1565 }
1566
1567 /*
1568 * Exit critical section and exit sc_lock.
1569 * Must be called with sc_lock held.
1570 */
1571 static void
1572 audio_exlock_mutex_exit(struct audio_softc *sc)
1573 {
1574
1575 KASSERT(mutex_owned(sc->sc_lock));
1576
1577 sc->sc_exlock = 0;
1578 cv_broadcast(&sc->sc_exlockcv);
1579 mutex_exit(sc->sc_lock);
1580 }
1581
1582 /*
1583 * Enter critical section.
1584 * If successful, it returns 0. Otherwise returns errno.
1585 * Must be called without sc_lock held.
1586 * This function returns without sc_lock held.
1587 */
1588 static int
1589 audio_exlock_enter(struct audio_softc *sc)
1590 {
1591 int error;
1592
1593 error = audio_exlock_mutex_enter(sc);
1594 if (error)
1595 return error;
1596 mutex_exit(sc->sc_lock);
1597 return 0;
1598 }
1599
1600 /*
1601 * Exit critical section.
1602 * Must be called without sc_lock held.
1603 */
1604 static void
1605 audio_exlock_exit(struct audio_softc *sc)
1606 {
1607
1608 mutex_enter(sc->sc_lock);
1609 audio_exlock_mutex_exit(sc);
1610 }
1611
1612 /*
1613 * Get sc from file, and increment reference counter for this sc.
1614 * This is intended to be used for methods other than open.
1615 * If successful, returns sc. Otherwise returns NULL.
1616 */
1617 struct audio_softc *
1618 audio_sc_acquire_fromfile(audio_file_t *file, struct psref *refp)
1619 {
1620 int s;
1621 bool dying;
1622
1623 /* Block audiodetach while we acquire a reference */
1624 s = pserialize_read_enter();
1625
1626 /* If close or audiodetach already ran, tough -- no more audio */
1627 dying = atomic_load_relaxed(&file->dying);
1628 if (dying) {
1629 pserialize_read_exit(s);
1630 return NULL;
1631 }
1632
1633 /* Acquire a reference */
1634 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1635
1636 /* Now sc won't go away until we drop the reference count */
1637 pserialize_read_exit(s);
1638
1639 return file->sc;
1640 }
1641
1642 /*
1643 * Decrement reference counter for this sc.
1644 */
1645 void
1646 audio_sc_release(struct audio_softc *sc, struct psref *refp)
1647 {
1648
1649 psref_release(refp, &sc->sc_psref, audio_psref_class);
1650 }
1651
1652 /*
1653 * Wait for I/O to complete, releasing sc_lock.
1654 * Must be called with sc_lock held.
1655 */
1656 static int
1657 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1658 {
1659 int error;
1660
1661 KASSERT(track);
1662 KASSERT(mutex_owned(sc->sc_lock));
1663
1664 /* Wait for pending I/O to complete. */
1665 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1666 mstohz(AUDIO_TIMEOUT));
1667 if (sc->sc_suspending) {
1668 /* If it's about to suspend, ignore timeout error. */
1669 if (error == EWOULDBLOCK) {
1670 TRACET(2, track, "timeout (suspending)");
1671 return 0;
1672 }
1673 }
1674 if (sc->sc_dying) {
1675 error = EIO;
1676 }
1677 if (error) {
1678 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1679 if (error == EWOULDBLOCK)
1680 audio_printf(sc, "device timeout\n");
1681 } else {
1682 TRACET(3, track, "wakeup");
1683 }
1684 return error;
1685 }
1686
1687 /*
1688 * Try to acquire track lock.
1689 * It doesn't block if the track lock is already acquired.
1690 * Returns true if the track lock was acquired, or false if the track
1691 * lock was already acquired.
1692 */
1693 static __inline bool
1694 audio_track_lock_tryenter(audio_track_t *track)
1695 {
1696
1697 if (atomic_swap_uint(&track->lock, 1) != 0)
1698 return false;
1699 membar_acquire();
1700 return true;
1701 }
1702
1703 /*
1704 * Acquire track lock.
1705 */
1706 static __inline void
1707 audio_track_lock_enter(audio_track_t *track)
1708 {
1709
1710 /* Don't sleep here. */
1711 while (audio_track_lock_tryenter(track) == false)
1712 SPINLOCK_BACKOFF_HOOK;
1713 }
1714
1715 /*
1716 * Release track lock.
1717 */
1718 static __inline void
1719 audio_track_lock_exit(audio_track_t *track)
1720 {
1721
1722 atomic_store_release(&track->lock, 0);
1723 }
1724
1725
1726 static int
1727 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1728 {
1729 struct audio_softc *sc;
1730 int error;
1731
1732 /*
1733 * Find the device. Because we wired the cdevsw to the audio
1734 * autoconf instance, the system ensures it will not go away
1735 * until after we return.
1736 */
1737 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1738 if (sc == NULL || sc->hw_if == NULL)
1739 return ENXIO;
1740
1741 error = audio_exlock_enter(sc);
1742 if (error)
1743 return error;
1744
1745 device_active(sc->sc_dev, DVA_SYSTEM);
1746 switch (AUDIODEV(dev)) {
1747 case SOUND_DEVICE:
1748 case AUDIO_DEVICE:
1749 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1750 break;
1751 case AUDIOCTL_DEVICE:
1752 error = audioctl_open(dev, sc, flags, ifmt, l);
1753 break;
1754 case MIXER_DEVICE:
1755 error = mixer_open(dev, sc, flags, ifmt, l);
1756 break;
1757 default:
1758 error = ENXIO;
1759 break;
1760 }
1761 audio_exlock_exit(sc);
1762
1763 return error;
1764 }
1765
1766 static int
1767 audioclose(struct file *fp)
1768 {
1769 struct audio_softc *sc;
1770 struct psref sc_ref;
1771 audio_file_t *file;
1772 int bound;
1773 int error;
1774 dev_t dev;
1775
1776 KASSERT(fp->f_audioctx);
1777 file = fp->f_audioctx;
1778 dev = file->dev;
1779 error = 0;
1780
1781 /*
1782 * audioclose() must
1783 * - unplug track from the trackmixer (and unplug anything from softc),
1784 * if sc exists.
1785 * - free all memory objects, regardless of sc.
1786 */
1787
1788 bound = curlwp_bind();
1789 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1790 if (sc) {
1791 switch (AUDIODEV(dev)) {
1792 case SOUND_DEVICE:
1793 case AUDIO_DEVICE:
1794 error = audio_close(sc, file);
1795 break;
1796 case AUDIOCTL_DEVICE:
1797 mutex_enter(sc->sc_lock);
1798 mutex_enter(sc->sc_intr_lock);
1799 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1800 mutex_exit(sc->sc_intr_lock);
1801 mutex_exit(sc->sc_lock);
1802 error = 0;
1803 break;
1804 case MIXER_DEVICE:
1805 mutex_enter(sc->sc_lock);
1806 mutex_enter(sc->sc_intr_lock);
1807 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1808 mutex_exit(sc->sc_intr_lock);
1809 mutex_exit(sc->sc_lock);
1810 error = mixer_close(sc, file);
1811 break;
1812 default:
1813 error = ENXIO;
1814 break;
1815 }
1816
1817 audio_sc_release(sc, &sc_ref);
1818 }
1819 curlwp_bindx(bound);
1820
1821 /* Free memory objects anyway */
1822 TRACEF(2, file, "free memory");
1823 if (file->ptrack)
1824 audio_track_destroy(file->ptrack);
1825 if (file->rtrack)
1826 audio_track_destroy(file->rtrack);
1827 kmem_free(file, sizeof(*file));
1828 fp->f_audioctx = NULL;
1829
1830 return error;
1831 }
1832
1833 static int
1834 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1835 int ioflag)
1836 {
1837 struct audio_softc *sc;
1838 struct psref sc_ref;
1839 audio_file_t *file;
1840 int bound;
1841 int error;
1842 dev_t dev;
1843
1844 KASSERT(fp->f_audioctx);
1845 file = fp->f_audioctx;
1846 dev = file->dev;
1847
1848 bound = curlwp_bind();
1849 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1850 if (sc == NULL) {
1851 error = EIO;
1852 goto done;
1853 }
1854
1855 if (fp->f_flag & O_NONBLOCK)
1856 ioflag |= IO_NDELAY;
1857
1858 switch (AUDIODEV(dev)) {
1859 case SOUND_DEVICE:
1860 case AUDIO_DEVICE:
1861 error = audio_read(sc, uio, ioflag, file);
1862 break;
1863 case AUDIOCTL_DEVICE:
1864 case MIXER_DEVICE:
1865 error = ENODEV;
1866 break;
1867 default:
1868 error = ENXIO;
1869 break;
1870 }
1871
1872 audio_sc_release(sc, &sc_ref);
1873 done:
1874 curlwp_bindx(bound);
1875 return error;
1876 }
1877
1878 static int
1879 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1880 int ioflag)
1881 {
1882 struct audio_softc *sc;
1883 struct psref sc_ref;
1884 audio_file_t *file;
1885 int bound;
1886 int error;
1887 dev_t dev;
1888
1889 KASSERT(fp->f_audioctx);
1890 file = fp->f_audioctx;
1891 dev = file->dev;
1892
1893 bound = curlwp_bind();
1894 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1895 if (sc == NULL) {
1896 error = EIO;
1897 goto done;
1898 }
1899
1900 if (fp->f_flag & O_NONBLOCK)
1901 ioflag |= IO_NDELAY;
1902
1903 switch (AUDIODEV(dev)) {
1904 case SOUND_DEVICE:
1905 case AUDIO_DEVICE:
1906 error = audio_write(sc, uio, ioflag, file);
1907 break;
1908 case AUDIOCTL_DEVICE:
1909 case MIXER_DEVICE:
1910 error = ENODEV;
1911 break;
1912 default:
1913 error = ENXIO;
1914 break;
1915 }
1916
1917 audio_sc_release(sc, &sc_ref);
1918 done:
1919 curlwp_bindx(bound);
1920 return error;
1921 }
1922
1923 static int
1924 audioioctl(struct file *fp, u_long cmd, void *addr)
1925 {
1926 struct audio_softc *sc;
1927 struct psref sc_ref;
1928 audio_file_t *file;
1929 struct lwp *l = curlwp;
1930 int bound;
1931 int error;
1932 dev_t dev;
1933
1934 KASSERT(fp->f_audioctx);
1935 file = fp->f_audioctx;
1936 dev = file->dev;
1937
1938 bound = curlwp_bind();
1939 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1940 if (sc == NULL) {
1941 error = EIO;
1942 goto done;
1943 }
1944
1945 switch (AUDIODEV(dev)) {
1946 case SOUND_DEVICE:
1947 case AUDIO_DEVICE:
1948 case AUDIOCTL_DEVICE:
1949 mutex_enter(sc->sc_lock);
1950 device_active(sc->sc_dev, DVA_SYSTEM);
1951 mutex_exit(sc->sc_lock);
1952 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1953 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1954 else
1955 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1956 file);
1957 break;
1958 case MIXER_DEVICE:
1959 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1960 break;
1961 default:
1962 error = ENXIO;
1963 break;
1964 }
1965
1966 audio_sc_release(sc, &sc_ref);
1967 done:
1968 curlwp_bindx(bound);
1969 return error;
1970 }
1971
1972 static int
1973 audiostat(struct file *fp, struct stat *st)
1974 {
1975 struct audio_softc *sc;
1976 struct psref sc_ref;
1977 audio_file_t *file;
1978 int bound;
1979 int error;
1980
1981 KASSERT(fp->f_audioctx);
1982 file = fp->f_audioctx;
1983
1984 bound = curlwp_bind();
1985 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1986 if (sc == NULL) {
1987 error = EIO;
1988 goto done;
1989 }
1990
1991 error = 0;
1992 memset(st, 0, sizeof(*st));
1993
1994 st->st_dev = file->dev;
1995 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1996 st->st_gid = kauth_cred_getegid(fp->f_cred);
1997 st->st_mode = S_IFCHR;
1998
1999 audio_sc_release(sc, &sc_ref);
2000 done:
2001 curlwp_bindx(bound);
2002 return error;
2003 }
2004
2005 static int
2006 audiopoll(struct file *fp, int events)
2007 {
2008 struct audio_softc *sc;
2009 struct psref sc_ref;
2010 audio_file_t *file;
2011 struct lwp *l = curlwp;
2012 int bound;
2013 int revents;
2014 dev_t dev;
2015
2016 KASSERT(fp->f_audioctx);
2017 file = fp->f_audioctx;
2018 dev = file->dev;
2019
2020 bound = curlwp_bind();
2021 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2022 if (sc == NULL) {
2023 revents = POLLERR;
2024 goto done;
2025 }
2026
2027 switch (AUDIODEV(dev)) {
2028 case SOUND_DEVICE:
2029 case AUDIO_DEVICE:
2030 revents = audio_poll(sc, events, l, file);
2031 break;
2032 case AUDIOCTL_DEVICE:
2033 case MIXER_DEVICE:
2034 revents = 0;
2035 break;
2036 default:
2037 revents = POLLERR;
2038 break;
2039 }
2040
2041 audio_sc_release(sc, &sc_ref);
2042 done:
2043 curlwp_bindx(bound);
2044 return revents;
2045 }
2046
2047 static int
2048 audiokqfilter(struct file *fp, struct knote *kn)
2049 {
2050 struct audio_softc *sc;
2051 struct psref sc_ref;
2052 audio_file_t *file;
2053 dev_t dev;
2054 int bound;
2055 int error;
2056
2057 KASSERT(fp->f_audioctx);
2058 file = fp->f_audioctx;
2059 dev = file->dev;
2060
2061 bound = curlwp_bind();
2062 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2063 if (sc == NULL) {
2064 error = EIO;
2065 goto done;
2066 }
2067
2068 switch (AUDIODEV(dev)) {
2069 case SOUND_DEVICE:
2070 case AUDIO_DEVICE:
2071 error = audio_kqfilter(sc, file, kn);
2072 break;
2073 case AUDIOCTL_DEVICE:
2074 case MIXER_DEVICE:
2075 error = ENODEV;
2076 break;
2077 default:
2078 error = ENXIO;
2079 break;
2080 }
2081
2082 audio_sc_release(sc, &sc_ref);
2083 done:
2084 curlwp_bindx(bound);
2085 return error;
2086 }
2087
2088 static int
2089 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
2090 int *advicep, struct uvm_object **uobjp, int *maxprotp)
2091 {
2092 struct audio_softc *sc;
2093 struct psref sc_ref;
2094 audio_file_t *file;
2095 dev_t dev;
2096 int bound;
2097 int error;
2098
2099 KASSERT(fp->f_audioctx);
2100 file = fp->f_audioctx;
2101 dev = file->dev;
2102
2103 bound = curlwp_bind();
2104 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2105 if (sc == NULL) {
2106 error = EIO;
2107 goto done;
2108 }
2109
2110 mutex_enter(sc->sc_lock);
2111 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
2112 mutex_exit(sc->sc_lock);
2113
2114 switch (AUDIODEV(dev)) {
2115 case SOUND_DEVICE:
2116 case AUDIO_DEVICE:
2117 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
2118 uobjp, maxprotp, file);
2119 break;
2120 case AUDIOCTL_DEVICE:
2121 case MIXER_DEVICE:
2122 default:
2123 error = ENOTSUP;
2124 break;
2125 }
2126
2127 audio_sc_release(sc, &sc_ref);
2128 done:
2129 curlwp_bindx(bound);
2130 return error;
2131 }
2132
2133
2134 /* Exported interfaces for audiobell. */
2135
2136 /*
2137 * Open for audiobell.
2138 * It stores allocated file to *filep.
2139 * If successful returns 0, otherwise errno.
2140 */
2141 int
2142 audiobellopen(dev_t dev, audio_file_t **filep)
2143 {
2144 device_t audiodev = NULL;
2145 struct audio_softc *sc;
2146 bool exlock = false;
2147 int error;
2148
2149 /*
2150 * Find the autoconf instance and make sure it doesn't go away
2151 * while we are opening it.
2152 */
2153 audiodev = device_lookup_acquire(&audio_cd, AUDIOUNIT(dev));
2154 if (audiodev == NULL) {
2155 error = ENXIO;
2156 goto out;
2157 }
2158
2159 /* If attach failed, it's hopeless -- give up. */
2160 sc = device_private(audiodev);
2161 if (sc->hw_if == NULL) {
2162 error = ENXIO;
2163 goto out;
2164 }
2165
2166 /* Take the exclusive configuration lock. */
2167 error = audio_exlock_enter(sc);
2168 if (error)
2169 goto out;
2170 exlock = true;
2171
2172 /* Open the audio device. */
2173 device_active(sc->sc_dev, DVA_SYSTEM);
2174 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
2175
2176 out: if (exlock)
2177 audio_exlock_exit(sc);
2178 if (audiodev)
2179 device_release(audiodev);
2180 return error;
2181 }
2182
2183 /* Close for audiobell */
2184 int
2185 audiobellclose(audio_file_t *file)
2186 {
2187 struct audio_softc *sc;
2188 struct psref sc_ref;
2189 int bound;
2190 int error;
2191
2192 error = 0;
2193 /*
2194 * audiobellclose() must
2195 * - unplug track from the trackmixer if sc exist.
2196 * - free all memory objects, regardless of sc.
2197 */
2198 bound = curlwp_bind();
2199 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2200 if (sc) {
2201 error = audio_close(sc, file);
2202 audio_sc_release(sc, &sc_ref);
2203 }
2204 curlwp_bindx(bound);
2205
2206 /* Free memory objects anyway */
2207 KASSERT(file->ptrack);
2208 audio_track_destroy(file->ptrack);
2209 KASSERT(file->rtrack == NULL);
2210 kmem_free(file, sizeof(*file));
2211 return error;
2212 }
2213
2214 /* Set sample rate for audiobell */
2215 int
2216 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2217 {
2218 struct audio_softc *sc;
2219 struct psref sc_ref;
2220 struct audio_info ai;
2221 int bound;
2222 int error;
2223
2224 bound = curlwp_bind();
2225 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2226 if (sc == NULL) {
2227 error = EIO;
2228 goto done1;
2229 }
2230
2231 AUDIO_INITINFO(&ai);
2232 ai.play.sample_rate = sample_rate;
2233
2234 error = audio_exlock_enter(sc);
2235 if (error)
2236 goto done2;
2237 error = audio_file_setinfo(sc, file, &ai);
2238 audio_exlock_exit(sc);
2239
2240 done2:
2241 audio_sc_release(sc, &sc_ref);
2242 done1:
2243 curlwp_bindx(bound);
2244 return error;
2245 }
2246
2247 /* Playback for audiobell */
2248 int
2249 audiobellwrite(audio_file_t *file, struct uio *uio)
2250 {
2251 struct audio_softc *sc;
2252 struct psref sc_ref;
2253 int bound;
2254 int error;
2255
2256 bound = curlwp_bind();
2257 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2258 if (sc == NULL) {
2259 error = EIO;
2260 goto done;
2261 }
2262
2263 error = audio_write(sc, uio, 0, file);
2264
2265 audio_sc_release(sc, &sc_ref);
2266 done:
2267 curlwp_bindx(bound);
2268 return error;
2269 }
2270
2271
2272 /*
2273 * Audio driver
2274 */
2275
2276 /*
2277 * Must be called with sc_exlock held and without sc_lock held.
2278 */
2279 int
2280 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2281 struct lwp *l, audio_file_t **bellfile)
2282 {
2283 struct audio_info ai;
2284 struct file *fp;
2285 audio_file_t *af;
2286 audio_ring_t *hwbuf;
2287 bool fullduplex;
2288 bool cred_held;
2289 bool hw_opened;
2290 bool rmixer_started;
2291 bool inserted;
2292 int fd;
2293 int error;
2294
2295 KASSERT(sc->sc_exlock);
2296
2297 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2298 (audiodebug >= 3) ? "start " : "",
2299 ISDEVSOUND(dev) ? "sound" : "audio",
2300 flags, sc->sc_popens, sc->sc_ropens);
2301
2302 fp = NULL;
2303 cred_held = false;
2304 hw_opened = false;
2305 rmixer_started = false;
2306 inserted = false;
2307
2308 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
2309 af->sc = sc;
2310 af->dev = dev;
2311 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2312 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2313 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2314 af->mode |= AUMODE_RECORD;
2315 if (af->mode == 0) {
2316 error = ENXIO;
2317 goto bad;
2318 }
2319
2320 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2321
2322 /*
2323 * On half duplex hardware,
2324 * 1. if mode is (PLAY | REC), let mode PLAY.
2325 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2326 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2327 */
2328 if (fullduplex == false) {
2329 if ((af->mode & AUMODE_PLAY)) {
2330 if (sc->sc_ropens != 0) {
2331 TRACE(1, "record track already exists");
2332 error = ENODEV;
2333 goto bad;
2334 }
2335 /* Play takes precedence */
2336 af->mode &= ~AUMODE_RECORD;
2337 }
2338 if ((af->mode & AUMODE_RECORD)) {
2339 if (sc->sc_popens != 0) {
2340 TRACE(1, "play track already exists");
2341 error = ENODEV;
2342 goto bad;
2343 }
2344 }
2345 }
2346
2347 /* Create tracks */
2348 if ((af->mode & AUMODE_PLAY))
2349 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2350 if ((af->mode & AUMODE_RECORD))
2351 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2352
2353 /* Set parameters */
2354 AUDIO_INITINFO(&ai);
2355 if (bellfile) {
2356 /* If audiobell, only sample_rate will be set later. */
2357 ai.play.sample_rate = audio_default.sample_rate;
2358 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2359 ai.play.channels = 1;
2360 ai.play.precision = 16;
2361 ai.play.pause = 0;
2362 } else if (ISDEVAUDIO(dev)) {
2363 /* If /dev/audio, initialize everytime. */
2364 ai.play.sample_rate = audio_default.sample_rate;
2365 ai.play.encoding = audio_default.encoding;
2366 ai.play.channels = audio_default.channels;
2367 ai.play.precision = audio_default.precision;
2368 ai.play.pause = 0;
2369 ai.record.sample_rate = audio_default.sample_rate;
2370 ai.record.encoding = audio_default.encoding;
2371 ai.record.channels = audio_default.channels;
2372 ai.record.precision = audio_default.precision;
2373 ai.record.pause = 0;
2374 } else {
2375 /* If /dev/sound, take over the previous parameters. */
2376 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2377 ai.play.encoding = sc->sc_sound_pparams.encoding;
2378 ai.play.channels = sc->sc_sound_pparams.channels;
2379 ai.play.precision = sc->sc_sound_pparams.precision;
2380 ai.play.pause = sc->sc_sound_ppause;
2381 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2382 ai.record.encoding = sc->sc_sound_rparams.encoding;
2383 ai.record.channels = sc->sc_sound_rparams.channels;
2384 ai.record.precision = sc->sc_sound_rparams.precision;
2385 ai.record.pause = sc->sc_sound_rpause;
2386 }
2387 error = audio_file_setinfo(sc, af, &ai);
2388 if (error)
2389 goto bad;
2390
2391 if (sc->sc_popens + sc->sc_ropens == 0) {
2392 /* First open */
2393
2394 sc->sc_cred = kauth_cred_get();
2395 kauth_cred_hold(sc->sc_cred);
2396 cred_held = true;
2397
2398 if (sc->hw_if->open) {
2399 int hwflags;
2400
2401 /*
2402 * Call hw_if->open() only at first open of
2403 * combination of playback and recording.
2404 * On full duplex hardware, the flags passed to
2405 * hw_if->open() is always (FREAD | FWRITE)
2406 * regardless of this open()'s flags.
2407 * see also dev/isa/aria.c
2408 * On half duplex hardware, the flags passed to
2409 * hw_if->open() is either FREAD or FWRITE.
2410 * see also arch/evbarm/mini2440/audio_mini2440.c
2411 */
2412 if (fullduplex) {
2413 hwflags = FREAD | FWRITE;
2414 } else {
2415 /* Construct hwflags from af->mode. */
2416 hwflags = 0;
2417 if ((af->mode & AUMODE_PLAY) != 0)
2418 hwflags |= FWRITE;
2419 if ((af->mode & AUMODE_RECORD) != 0)
2420 hwflags |= FREAD;
2421 }
2422
2423 mutex_enter(sc->sc_lock);
2424 mutex_enter(sc->sc_intr_lock);
2425 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2426 mutex_exit(sc->sc_intr_lock);
2427 mutex_exit(sc->sc_lock);
2428 if (error)
2429 goto bad;
2430 }
2431 /*
2432 * Regardless of whether we called hw_if->open (whether
2433 * hw_if->open exists) or not, we move to the Opened phase
2434 * here. Therefore from this point, we have to call
2435 * hw_if->close (if exists) whenever abort.
2436 * Note that both of hw_if->{open,close} are optional.
2437 */
2438 hw_opened = true;
2439
2440 /*
2441 * Set speaker mode when a half duplex.
2442 * XXX I'm not sure this is correct.
2443 */
2444 if (1/*XXX*/) {
2445 if (sc->hw_if->speaker_ctl) {
2446 int on;
2447 if (af->ptrack) {
2448 on = 1;
2449 } else {
2450 on = 0;
2451 }
2452 mutex_enter(sc->sc_lock);
2453 mutex_enter(sc->sc_intr_lock);
2454 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2455 mutex_exit(sc->sc_intr_lock);
2456 mutex_exit(sc->sc_lock);
2457 if (error)
2458 goto bad;
2459 }
2460 }
2461 } else if (sc->sc_multiuser == false) {
2462 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2463 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2464 error = EPERM;
2465 goto bad;
2466 }
2467 }
2468
2469 /* Call init_output if this is the first playback open. */
2470 if (af->ptrack && sc->sc_popens == 0) {
2471 if (sc->hw_if->init_output) {
2472 hwbuf = &sc->sc_pmixer->hwbuf;
2473 mutex_enter(sc->sc_lock);
2474 mutex_enter(sc->sc_intr_lock);
2475 error = sc->hw_if->init_output(sc->hw_hdl,
2476 hwbuf->mem,
2477 hwbuf->capacity *
2478 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2479 mutex_exit(sc->sc_intr_lock);
2480 mutex_exit(sc->sc_lock);
2481 if (error)
2482 goto bad;
2483 }
2484 }
2485 /*
2486 * Call init_input and start rmixer, if this is the first recording
2487 * open. See pause consideration notes.
2488 */
2489 if (af->rtrack && sc->sc_ropens == 0) {
2490 if (sc->hw_if->init_input) {
2491 hwbuf = &sc->sc_rmixer->hwbuf;
2492 mutex_enter(sc->sc_lock);
2493 mutex_enter(sc->sc_intr_lock);
2494 error = sc->hw_if->init_input(sc->hw_hdl,
2495 hwbuf->mem,
2496 hwbuf->capacity *
2497 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2498 mutex_exit(sc->sc_intr_lock);
2499 mutex_exit(sc->sc_lock);
2500 if (error)
2501 goto bad;
2502 }
2503
2504 mutex_enter(sc->sc_lock);
2505 audio_rmixer_start(sc);
2506 mutex_exit(sc->sc_lock);
2507 rmixer_started = true;
2508 }
2509
2510 /*
2511 * This is the last sc_lock section in the function, so we have to
2512 * examine sc_dying again before starting the rest tasks. Because
2513 * audiodeatch() may have been invoked (and it would set sc_dying)
2514 * from the time audioopen() was executed until now. If it happens,
2515 * audiodetach() may already have set file->dying for all sc_files
2516 * that exist at that point, so that audioopen() must abort without
2517 * inserting af to sc_files, in order to keep consistency.
2518 */
2519 mutex_enter(sc->sc_lock);
2520 if (sc->sc_dying) {
2521 mutex_exit(sc->sc_lock);
2522 error = ENXIO;
2523 goto bad;
2524 }
2525
2526 /* Count up finally */
2527 if (af->ptrack)
2528 sc->sc_popens++;
2529 if (af->rtrack)
2530 sc->sc_ropens++;
2531 mutex_enter(sc->sc_intr_lock);
2532 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2533 mutex_exit(sc->sc_intr_lock);
2534 mutex_exit(sc->sc_lock);
2535 inserted = true;
2536
2537 if (bellfile) {
2538 *bellfile = af;
2539 } else {
2540 error = fd_allocfile(&fp, &fd);
2541 if (error)
2542 goto bad;
2543
2544 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2545 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2546 }
2547
2548 /* Be nothing else after fd_clone */
2549
2550 TRACEF(3, af, "done");
2551 return error;
2552
2553 bad:
2554 if (inserted) {
2555 mutex_enter(sc->sc_lock);
2556 mutex_enter(sc->sc_intr_lock);
2557 SLIST_REMOVE(&sc->sc_files, af, audio_file, entry);
2558 mutex_exit(sc->sc_intr_lock);
2559 if (af->ptrack)
2560 sc->sc_popens--;
2561 if (af->rtrack)
2562 sc->sc_ropens--;
2563 mutex_exit(sc->sc_lock);
2564 }
2565
2566 if (rmixer_started) {
2567 mutex_enter(sc->sc_lock);
2568 audio_rmixer_halt(sc);
2569 mutex_exit(sc->sc_lock);
2570 }
2571
2572 if (hw_opened) {
2573 if (sc->hw_if->close) {
2574 mutex_enter(sc->sc_lock);
2575 mutex_enter(sc->sc_intr_lock);
2576 sc->hw_if->close(sc->hw_hdl);
2577 mutex_exit(sc->sc_intr_lock);
2578 mutex_exit(sc->sc_lock);
2579 }
2580 }
2581 if (cred_held) {
2582 kauth_cred_free(sc->sc_cred);
2583 }
2584
2585 /*
2586 * Since track here is not yet linked to sc_files,
2587 * you can call track_destroy() without sc_intr_lock.
2588 */
2589 if (af->rtrack) {
2590 audio_track_destroy(af->rtrack);
2591 af->rtrack = NULL;
2592 }
2593 if (af->ptrack) {
2594 audio_track_destroy(af->ptrack);
2595 af->ptrack = NULL;
2596 }
2597
2598 kmem_free(af, sizeof(*af));
2599 return error;
2600 }
2601
2602 /*
2603 * Must be called without sc_lock nor sc_exlock held.
2604 */
2605 int
2606 audio_close(struct audio_softc *sc, audio_file_t *file)
2607 {
2608 int error;
2609
2610 /*
2611 * Drain first.
2612 * It must be done before unlinking(acquiring exlock).
2613 */
2614 if (file->ptrack) {
2615 mutex_enter(sc->sc_lock);
2616 audio_track_drain(sc, file->ptrack);
2617 mutex_exit(sc->sc_lock);
2618 }
2619
2620 mutex_enter(sc->sc_lock);
2621 mutex_enter(sc->sc_intr_lock);
2622 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2623 mutex_exit(sc->sc_intr_lock);
2624 mutex_exit(sc->sc_lock);
2625
2626 error = audio_exlock_enter(sc);
2627 if (error) {
2628 /*
2629 * If EIO, this sc is about to detach. In this case, even if
2630 * we don't do subsequent _unlink(), audiodetach() will do it.
2631 */
2632 if (error == EIO)
2633 return error;
2634
2635 /* XXX This should not happen but what should I do ? */
2636 panic("%s: can't acquire exlock: errno=%d", __func__, error);
2637 }
2638 audio_unlink(sc, file);
2639 audio_exlock_exit(sc);
2640
2641 return 0;
2642 }
2643
2644 /*
2645 * Unlink this file, but not freeing memory here.
2646 * Must be called with sc_exlock held and without sc_lock held.
2647 */
2648 static void
2649 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2650 {
2651 kauth_cred_t cred = NULL;
2652 int error;
2653
2654 mutex_enter(sc->sc_lock);
2655
2656 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2657 (audiodebug >= 3) ? "start " : "",
2658 (int)curproc->p_pid, (int)curlwp->l_lid,
2659 sc->sc_popens, sc->sc_ropens);
2660 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2661 "sc->sc_popens=%d, sc->sc_ropens=%d",
2662 sc->sc_popens, sc->sc_ropens);
2663
2664 device_active(sc->sc_dev, DVA_SYSTEM);
2665
2666 if (file->ptrack) {
2667 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2668 file->ptrack->dropframes);
2669
2670 KASSERT(sc->sc_popens > 0);
2671 sc->sc_popens--;
2672
2673 /* Call hw halt_output if this is the last playback track. */
2674 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2675 error = audio_pmixer_halt(sc);
2676 if (error) {
2677 audio_printf(sc,
2678 "halt_output failed: errno=%d (ignored)\n",
2679 error);
2680 }
2681 }
2682
2683 /* Restore mixing volume if all tracks are gone. */
2684 if (sc->sc_popens == 0) {
2685 /* intr_lock is not necessary, but just manners. */
2686 mutex_enter(sc->sc_intr_lock);
2687 sc->sc_pmixer->volume = 256;
2688 sc->sc_pmixer->voltimer = 0;
2689 mutex_exit(sc->sc_intr_lock);
2690 }
2691 }
2692 if (file->rtrack) {
2693 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2694 file->rtrack->dropframes);
2695
2696 KASSERT(sc->sc_ropens > 0);
2697 sc->sc_ropens--;
2698
2699 /* Call hw halt_input if this is the last recording track. */
2700 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2701 error = audio_rmixer_halt(sc);
2702 if (error) {
2703 audio_printf(sc,
2704 "halt_input failed: errno=%d (ignored)\n",
2705 error);
2706 }
2707 }
2708
2709 }
2710
2711 /* Call hw close if this is the last track. */
2712 if (sc->sc_popens + sc->sc_ropens == 0) {
2713 if (sc->hw_if->close) {
2714 TRACE(2, "hw_if close");
2715 mutex_enter(sc->sc_intr_lock);
2716 sc->hw_if->close(sc->hw_hdl);
2717 mutex_exit(sc->sc_intr_lock);
2718 }
2719 cred = sc->sc_cred;
2720 sc->sc_cred = NULL;
2721 }
2722
2723 mutex_exit(sc->sc_lock);
2724 if (cred)
2725 kauth_cred_free(cred);
2726
2727 TRACE(3, "done");
2728 }
2729
2730 /*
2731 * Must be called without sc_lock nor sc_exlock held.
2732 */
2733 int
2734 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2735 audio_file_t *file)
2736 {
2737 audio_track_t *track;
2738 audio_ring_t *usrbuf;
2739 audio_ring_t *input;
2740 int error;
2741
2742 /*
2743 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2744 * However read() system call itself can be called because it's
2745 * opened with O_RDWR. So in this case, deny this read().
2746 */
2747 track = file->rtrack;
2748 if (track == NULL) {
2749 return EBADF;
2750 }
2751
2752 /* I think it's better than EINVAL. */
2753 if (track->mmapped)
2754 return EPERM;
2755
2756 TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2757
2758 #ifdef AUDIO_PM_IDLE
2759 error = audio_exlock_mutex_enter(sc);
2760 if (error)
2761 return error;
2762
2763 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2764 device_active(&sc->sc_dev, DVA_SYSTEM);
2765
2766 /* In recording, unlike playback, read() never operates rmixer. */
2767
2768 audio_exlock_mutex_exit(sc);
2769 #endif
2770
2771 usrbuf = &track->usrbuf;
2772 input = track->input;
2773 error = 0;
2774
2775 while (uio->uio_resid > 0 && error == 0) {
2776 int bytes;
2777
2778 TRACET(3, track,
2779 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/C%d",
2780 uio->uio_resid,
2781 input->head, input->used, input->capacity,
2782 usrbuf->head, usrbuf->used, usrbuf->capacity);
2783
2784 /* Wait when buffers are empty. */
2785 mutex_enter(sc->sc_lock);
2786 for (;;) {
2787 bool empty;
2788 audio_track_lock_enter(track);
2789 empty = (input->used == 0 && usrbuf->used == 0);
2790 audio_track_lock_exit(track);
2791 if (!empty)
2792 break;
2793
2794 if ((ioflag & IO_NDELAY)) {
2795 mutex_exit(sc->sc_lock);
2796 return EWOULDBLOCK;
2797 }
2798
2799 TRACET(3, track, "sleep");
2800 error = audio_track_waitio(sc, track);
2801 if (error) {
2802 mutex_exit(sc->sc_lock);
2803 return error;
2804 }
2805 }
2806 mutex_exit(sc->sc_lock);
2807
2808 audio_track_lock_enter(track);
2809 /* Convert one block if possible. */
2810 if (usrbuf->used == 0 && input->used > 0) {
2811 audio_track_record(track);
2812 }
2813
2814 /* uiomove from usrbuf as many bytes as possible. */
2815 bytes = uimin(usrbuf->used, uio->uio_resid);
2816 error = uiomove((uint8_t *)usrbuf->mem + usrbuf->head, bytes,
2817 uio);
2818 if (error) {
2819 audio_track_lock_exit(track);
2820 device_printf(sc->sc_dev,
2821 "%s: uiomove(%d) failed: errno=%d\n",
2822 __func__, bytes, error);
2823 goto abort;
2824 }
2825 auring_take(usrbuf, bytes);
2826 track->useriobytes += bytes;
2827 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2828 bytes,
2829 usrbuf->head, usrbuf->used, usrbuf->capacity);
2830
2831 audio_track_lock_exit(track);
2832 }
2833
2834 abort:
2835 return error;
2836 }
2837
2838
2839 /*
2840 * Clear file's playback and/or record track buffer immediately.
2841 */
2842 static void
2843 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2844 {
2845
2846 if (file->ptrack)
2847 audio_track_clear(sc, file->ptrack);
2848 if (file->rtrack)
2849 audio_track_clear(sc, file->rtrack);
2850 }
2851
2852 /*
2853 * Must be called without sc_lock nor sc_exlock held.
2854 */
2855 int
2856 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2857 audio_file_t *file)
2858 {
2859 audio_track_t *track;
2860 audio_ring_t *usrbuf;
2861 audio_ring_t *outbuf;
2862 int error;
2863
2864 track = file->ptrack;
2865 if (track == NULL)
2866 return EPERM;
2867
2868 /* I think it's better than EINVAL. */
2869 if (track->mmapped)
2870 return EPERM;
2871
2872 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2873 audiodebug >= 3 ? "begin " : "",
2874 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2875
2876 if (uio->uio_resid == 0) {
2877 track->eofcounter++;
2878 return 0;
2879 }
2880
2881 error = audio_exlock_mutex_enter(sc);
2882 if (error)
2883 return error;
2884
2885 #ifdef AUDIO_PM_IDLE
2886 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2887 device_active(&sc->sc_dev, DVA_SYSTEM);
2888 #endif
2889
2890 /*
2891 * The first write starts pmixer.
2892 */
2893 if (sc->sc_pbusy == false)
2894 audio_pmixer_start(sc, false);
2895 audio_exlock_mutex_exit(sc);
2896
2897 usrbuf = &track->usrbuf;
2898 outbuf = &track->outbuf;
2899 track->pstate = AUDIO_STATE_RUNNING;
2900 error = 0;
2901
2902 while (uio->uio_resid > 0 && error == 0) {
2903 int bytes;
2904
2905 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2906 uio->uio_resid,
2907 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2908
2909 /* Wait when buffers are full. */
2910 mutex_enter(sc->sc_lock);
2911 for (;;) {
2912 bool full;
2913 audio_track_lock_enter(track);
2914 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2915 outbuf->used >= outbuf->capacity);
2916 audio_track_lock_exit(track);
2917 if (!full)
2918 break;
2919
2920 if ((ioflag & IO_NDELAY)) {
2921 error = EWOULDBLOCK;
2922 mutex_exit(sc->sc_lock);
2923 goto abort;
2924 }
2925
2926 TRACET(3, track, "sleep usrbuf=%d/H%d",
2927 usrbuf->used, track->usrbuf_usedhigh);
2928 error = audio_track_waitio(sc, track);
2929 if (error) {
2930 mutex_exit(sc->sc_lock);
2931 goto abort;
2932 }
2933 }
2934 mutex_exit(sc->sc_lock);
2935
2936 audio_track_lock_enter(track);
2937
2938 /* uiomove to usrbuf as many bytes as possible. */
2939 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2940 uio->uio_resid);
2941 while (bytes > 0) {
2942 int tail = auring_tail(usrbuf);
2943 int len = uimin(bytes, usrbuf->capacity - tail);
2944 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2945 uio);
2946 if (error) {
2947 audio_track_lock_exit(track);
2948 device_printf(sc->sc_dev,
2949 "%s: uiomove(%d) failed: errno=%d\n",
2950 __func__, len, error);
2951 goto abort;
2952 }
2953 auring_push(usrbuf, len);
2954 track->useriobytes += len;
2955 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2956 len,
2957 usrbuf->head, usrbuf->used, usrbuf->capacity);
2958 bytes -= len;
2959 }
2960
2961 /* Convert them as many blocks as possible. */
2962 while (usrbuf->used >= track->usrbuf_blksize &&
2963 outbuf->used < outbuf->capacity) {
2964 audio_track_play(track);
2965 }
2966
2967 audio_track_lock_exit(track);
2968 }
2969
2970 abort:
2971 TRACET(3, track, "done error=%d", error);
2972 return error;
2973 }
2974
2975 /*
2976 * Must be called without sc_lock nor sc_exlock held.
2977 */
2978 int
2979 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2980 struct lwp *l, audio_file_t *file)
2981 {
2982 struct audio_offset *ao;
2983 struct audio_info ai;
2984 audio_track_t *track;
2985 audio_encoding_t *ae;
2986 audio_format_query_t *query;
2987 u_int stamp;
2988 u_int offset;
2989 int val;
2990 int index;
2991 int error;
2992
2993 #if defined(AUDIO_DEBUG)
2994 const char *ioctlnames[] = {
2995 "AUDIO_GETINFO", /* 21 */
2996 "AUDIO_SETINFO", /* 22 */
2997 "AUDIO_DRAIN", /* 23 */
2998 "AUDIO_FLUSH", /* 24 */
2999 "AUDIO_WSEEK", /* 25 */
3000 "AUDIO_RERROR", /* 26 */
3001 "AUDIO_GETDEV", /* 27 */
3002 "AUDIO_GETENC", /* 28 */
3003 "AUDIO_GETFD", /* 29 */
3004 "AUDIO_SETFD", /* 30 */
3005 "AUDIO_PERROR", /* 31 */
3006 "AUDIO_GETIOFFS", /* 32 */
3007 "AUDIO_GETOOFFS", /* 33 */
3008 "AUDIO_GETPROPS", /* 34 */
3009 "AUDIO_GETBUFINFO", /* 35 */
3010 "AUDIO_SETCHAN", /* 36 */
3011 "AUDIO_GETCHAN", /* 37 */
3012 "AUDIO_QUERYFORMAT", /* 38 */
3013 "AUDIO_GETFORMAT", /* 39 */
3014 "AUDIO_SETFORMAT", /* 40 */
3015 };
3016 char pre[64];
3017 int nameidx = (cmd & 0xff);
3018 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames)) {
3019 snprintf(pre, sizeof(pre), "pid=%d.%d %s",
3020 (int)curproc->p_pid, (int)l->l_lid,
3021 ioctlnames[nameidx - 21]);
3022 } else {
3023 snprintf(pre, sizeof(pre), "pid=%d.%d (%lu,'%c',%u)",
3024 (int)curproc->p_pid, (int)l->l_lid,
3025 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), nameidx);
3026 }
3027 #endif
3028
3029 error = 0;
3030 switch (cmd) {
3031 case FIONBIO:
3032 /* All handled in the upper FS layer. */
3033 break;
3034
3035 case FIONREAD:
3036 /* Get the number of bytes that can be read. */
3037 track = file->rtrack;
3038 if (track) {
3039 val = audio_track_readablebytes(track);
3040 *(int *)addr = val;
3041 TRACET(2, track, "pid=%d.%d FIONREAD bytes=%d",
3042 (int)curproc->p_pid, (int)l->l_lid, val);
3043 } else {
3044 TRACEF(2, file, "pid=%d.%d FIONREAD no track",
3045 (int)curproc->p_pid, (int)l->l_lid);
3046 }
3047 break;
3048
3049 case FIOASYNC:
3050 /* Set/Clear ASYNC I/O. */
3051 if (*(int *)addr) {
3052 file->async_audio = curproc->p_pid;
3053 } else {
3054 file->async_audio = 0;
3055 }
3056 TRACEF(2, file, "pid=%d.%d FIOASYNC %s",
3057 (int)curproc->p_pid, (int)l->l_lid,
3058 file->async_audio ? "on" : "off");
3059 break;
3060
3061 case AUDIO_FLUSH:
3062 /* XXX TODO: clear errors and restart? */
3063 TRACEF(2, file, "%s", pre);
3064 audio_file_clear(sc, file);
3065 break;
3066
3067 case AUDIO_PERROR:
3068 case AUDIO_RERROR:
3069 /*
3070 * Number of dropped bytes during playback/record. We don't
3071 * know where or when they were dropped (including conversion
3072 * stage). Therefore, the number of accurate bytes or samples
3073 * is also unknown.
3074 */
3075 track = (cmd == AUDIO_PERROR) ? file->ptrack : file->rtrack;
3076 if (track) {
3077 val = frametobyte(&track->usrbuf.fmt,
3078 track->dropframes);
3079 *(int *)addr = val;
3080 TRACET(2, track, "%s bytes=%d", pre, val);
3081 } else {
3082 TRACEF(2, file, "%s no track", pre);
3083 }
3084 break;
3085
3086 case AUDIO_GETIOFFS:
3087 /* XXX TODO */
3088 TRACEF(2, file, "%s", pre);
3089 ao = (struct audio_offset *)addr;
3090 ao->samples = 0;
3091 ao->deltablks = 0;
3092 ao->offset = 0;
3093 break;
3094
3095 case AUDIO_GETOOFFS:
3096 ao = (struct audio_offset *)addr;
3097 track = file->ptrack;
3098 if (track == NULL) {
3099 ao->samples = 0;
3100 ao->deltablks = 0;
3101 ao->offset = 0;
3102 TRACEF(2, file, "%s no ptrack", pre);
3103 break;
3104 }
3105 mutex_enter(sc->sc_lock);
3106 mutex_enter(sc->sc_intr_lock);
3107 /* figure out where next transfer will start */
3108 stamp = track->stamp;
3109 offset = track->usrbuf.head;
3110 mutex_exit(sc->sc_intr_lock);
3111 mutex_exit(sc->sc_lock);
3112
3113 /* samples will overflow soon but is as per spec. */
3114 ao->samples = stamp * track->usrbuf_blksize;
3115 ao->deltablks = stamp - track->last_stamp;
3116 ao->offset = offset;
3117 TRACET(2, track, "%s samples=%u deltablks=%u offset=%u",
3118 pre, ao->samples, ao->deltablks, ao->offset);
3119
3120 track->last_stamp = stamp;
3121 break;
3122
3123 case AUDIO_WSEEK:
3124 track = file->ptrack;
3125 if (track) {
3126 val = track->usrbuf.used;
3127 *(u_long *)addr = val;
3128 TRACET(2, track, "%s bytes=%d", pre, val);
3129 } else {
3130 TRACEF(2, file, "%s no ptrack", pre);
3131 }
3132 break;
3133
3134 case AUDIO_SETINFO:
3135 TRACEF(2, file, "%s", pre);
3136 error = audio_exlock_enter(sc);
3137 if (error)
3138 break;
3139 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
3140 if (error) {
3141 audio_exlock_exit(sc);
3142 break;
3143 }
3144 /* XXX TODO: update last_ai if /dev/sound ? */
3145 if (ISDEVSOUND(dev))
3146 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
3147 audio_exlock_exit(sc);
3148 break;
3149
3150 case AUDIO_GETINFO:
3151 TRACEF(2, file, "%s", pre);
3152 error = audio_exlock_enter(sc);
3153 if (error)
3154 break;
3155 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
3156 audio_exlock_exit(sc);
3157 break;
3158
3159 case AUDIO_GETBUFINFO:
3160 TRACEF(2, file, "%s", pre);
3161 error = audio_exlock_enter(sc);
3162 if (error)
3163 break;
3164 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
3165 audio_exlock_exit(sc);
3166 break;
3167
3168 case AUDIO_DRAIN:
3169 track = file->ptrack;
3170 if (track) {
3171 TRACET(2, track, "%s", pre);
3172 mutex_enter(sc->sc_lock);
3173 error = audio_track_drain(sc, track);
3174 mutex_exit(sc->sc_lock);
3175 } else {
3176 TRACEF(2, file, "%s no ptrack", pre);
3177 }
3178 break;
3179
3180 case AUDIO_GETDEV:
3181 TRACEF(2, file, "%s", pre);
3182 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
3183 break;
3184
3185 case AUDIO_GETENC:
3186 ae = (audio_encoding_t *)addr;
3187 index = ae->index;
3188 TRACEF(2, file, "%s index=%d", pre, index);
3189 if (index < 0 || index >= __arraycount(audio_encodings)) {
3190 error = EINVAL;
3191 break;
3192 }
3193 *ae = audio_encodings[index];
3194 ae->index = index;
3195 /*
3196 * EMULATED always.
3197 * EMULATED flag at that time used to mean that it could
3198 * not be passed directly to the hardware as-is. But
3199 * currently, all formats including hardware native is not
3200 * passed directly to the hardware. So I set EMULATED
3201 * flag for all formats.
3202 */
3203 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
3204 break;
3205
3206 case AUDIO_GETFD:
3207 /*
3208 * Returns the current setting of full duplex mode.
3209 * If HW has full duplex mode and there are two mixers,
3210 * it is full duplex. Otherwise half duplex.
3211 */
3212 error = audio_exlock_enter(sc);
3213 if (error)
3214 break;
3215 val = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
3216 && (sc->sc_pmixer && sc->sc_rmixer);
3217 audio_exlock_exit(sc);
3218 *(int *)addr = val;
3219 TRACEF(2, file, "%s fulldup=%d", pre, val);
3220 break;
3221
3222 case AUDIO_GETPROPS:
3223 val = sc->sc_props;
3224 *(int *)addr = val;
3225 #if defined(AUDIO_DEBUG)
3226 char pbuf[64];
3227 snprintb(pbuf, sizeof(pbuf), "\x10"
3228 "\6CAPTURE" "\5PLAY" "\3INDEP" "\2MMAP" "\1FULLDUP", val);
3229 TRACEF(2, file, "%s %s", pre, pbuf);
3230 #endif
3231 break;
3232
3233 case AUDIO_QUERYFORMAT:
3234 query = (audio_format_query_t *)addr;
3235 TRACEF(2, file, "%s index=%u", pre, query->index);
3236 mutex_enter(sc->sc_lock);
3237 error = sc->hw_if->query_format(sc->hw_hdl, query);
3238 mutex_exit(sc->sc_lock);
3239 /* Hide internal information */
3240 query->fmt.driver_data = NULL;
3241 break;
3242
3243 case AUDIO_GETFORMAT:
3244 TRACEF(2, file, "%s", pre);
3245 error = audio_exlock_enter(sc);
3246 if (error)
3247 break;
3248 audio_mixers_get_format(sc, (struct audio_info *)addr);
3249 audio_exlock_exit(sc);
3250 break;
3251
3252 case AUDIO_SETFORMAT:
3253 TRACEF(2, file, "%s", pre);
3254 error = audio_exlock_enter(sc);
3255 audio_mixers_get_format(sc, &ai);
3256 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3257 if (error) {
3258 /* Rollback */
3259 audio_mixers_set_format(sc, &ai);
3260 }
3261 audio_exlock_exit(sc);
3262 break;
3263
3264 case AUDIO_SETFD:
3265 case AUDIO_SETCHAN:
3266 case AUDIO_GETCHAN:
3267 /* Obsoleted */
3268 TRACEF(2, file, "%s", pre);
3269 break;
3270
3271 default:
3272 TRACEF(2, file, "%s", pre);
3273 if (sc->hw_if->dev_ioctl) {
3274 mutex_enter(sc->sc_lock);
3275 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3276 cmd, addr, flag, l);
3277 mutex_exit(sc->sc_lock);
3278 } else {
3279 error = EINVAL;
3280 }
3281 break;
3282 }
3283
3284 if (error)
3285 TRACEF(2, file, "%s error=%d", pre, error);
3286 return error;
3287 }
3288
3289 /*
3290 * Convert n [frames] of the input buffer to bytes in the usrbuf format.
3291 * n is in frames but should be a multiple of frame/block. Note that the
3292 * usrbuf's frame/block and the input buffer's frame/block may be different
3293 * (i.e., if frequencies are different).
3294 *
3295 * This function is for recording track only.
3296 */
3297 static int
3298 audio_track_inputblk_as_usrbyte(const audio_track_t *track, int n)
3299 {
3300 int input_fpb;
3301
3302 /*
3303 * In the input buffer on recording track, these are the same.
3304 * input_fpb = frame_per_block(track->mixer, &track->input->fmt);
3305 */
3306 input_fpb = track->mixer->frames_per_block;
3307
3308 return (n / input_fpb) * track->usrbuf_blksize;
3309 }
3310
3311 /*
3312 * Returns the number of bytes that can be read on recording buffer.
3313 */
3314 static int
3315 audio_track_readablebytes(const audio_track_t *track)
3316 {
3317 int bytes;
3318
3319 KASSERT(track);
3320 KASSERT(track->mode == AUMODE_RECORD);
3321
3322 /*
3323 * For recording, track->input is the main block-unit buffer and
3324 * track->usrbuf holds less than one block of byte data ("fragment").
3325 * Note that the input buffer is in frames and the usrbuf is in bytes.
3326 *
3327 * Actual total capacity of these two buffers is
3328 * input->capacity [frames] + usrbuf.capacity [bytes],
3329 * but only input->capacity is reported to userland as buffer_size.
3330 * So, even if the total used bytes exceed input->capacity, report it
3331 * as input->capacity for consistency.
3332 */
3333 bytes = audio_track_inputblk_as_usrbyte(track, track->input->used);
3334 if (track->input->used < track->input->capacity) {
3335 bytes += track->usrbuf.used;
3336 }
3337 return bytes;
3338 }
3339
3340 /*
3341 * Must be called without sc_lock nor sc_exlock held.
3342 */
3343 int
3344 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3345 audio_file_t *file)
3346 {
3347 audio_track_t *track;
3348 int revents;
3349 bool in_is_valid;
3350 bool out_is_valid;
3351
3352 #if defined(AUDIO_DEBUG)
3353 #define POLLEV_BITMAP "\177\020" \
3354 "b\10WRBAND\0" \
3355 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3356 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3357 char evbuf[64];
3358 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3359 TRACEF(2, file, "pid=%d.%d events=%s",
3360 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3361 #endif
3362
3363 revents = 0;
3364 in_is_valid = false;
3365 out_is_valid = false;
3366 if (events & (POLLIN | POLLRDNORM)) {
3367 track = file->rtrack;
3368 if (track) {
3369 int used;
3370 in_is_valid = true;
3371 used = audio_track_readablebytes(track);
3372 if (used > 0)
3373 revents |= events & (POLLIN | POLLRDNORM);
3374 }
3375 }
3376 if (events & (POLLOUT | POLLWRNORM)) {
3377 track = file->ptrack;
3378 if (track) {
3379 out_is_valid = true;
3380 if (track->usrbuf.used <= track->usrbuf_usedlow)
3381 revents |= events & (POLLOUT | POLLWRNORM);
3382 }
3383 }
3384
3385 if (revents == 0) {
3386 mutex_enter(sc->sc_lock);
3387 if (in_is_valid) {
3388 TRACEF(3, file, "selrecord rsel");
3389 selrecord(l, &sc->sc_rsel);
3390 }
3391 if (out_is_valid) {
3392 TRACEF(3, file, "selrecord wsel");
3393 selrecord(l, &sc->sc_wsel);
3394 }
3395 mutex_exit(sc->sc_lock);
3396 }
3397
3398 #if defined(AUDIO_DEBUG)
3399 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3400 TRACEF(2, file, "revents=%s", evbuf);
3401 #endif
3402 return revents;
3403 }
3404
3405 static const struct filterops audioread_filtops = {
3406 .f_flags = FILTEROP_ISFD,
3407 .f_attach = NULL,
3408 .f_detach = filt_audioread_detach,
3409 .f_event = filt_audioread_event,
3410 };
3411
3412 static void
3413 filt_audioread_detach(struct knote *kn)
3414 {
3415 struct audio_softc *sc;
3416 audio_file_t *file;
3417
3418 file = kn->kn_hook;
3419 sc = file->sc;
3420 TRACEF(3, file, "called");
3421
3422 mutex_enter(sc->sc_lock);
3423 selremove_knote(&sc->sc_rsel, kn);
3424 mutex_exit(sc->sc_lock);
3425 }
3426
3427 static int
3428 filt_audioread_event(struct knote *kn, long hint)
3429 {
3430 audio_file_t *file;
3431 audio_track_t *track;
3432
3433 file = kn->kn_hook;
3434 track = file->rtrack;
3435
3436 /*
3437 * kn_data must contain the number of bytes can be read.
3438 * The return value indicates whether the event occurs or not.
3439 */
3440
3441 if (track == NULL) {
3442 /* can not read with this descriptor. */
3443 kn->kn_data = 0;
3444 return 0;
3445 }
3446
3447 kn->kn_data = audio_track_readablebytes(track);
3448 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3449 return kn->kn_data > 0;
3450 }
3451
3452 static const struct filterops audiowrite_filtops = {
3453 .f_flags = FILTEROP_ISFD,
3454 .f_attach = NULL,
3455 .f_detach = filt_audiowrite_detach,
3456 .f_event = filt_audiowrite_event,
3457 };
3458
3459 static void
3460 filt_audiowrite_detach(struct knote *kn)
3461 {
3462 struct audio_softc *sc;
3463 audio_file_t *file;
3464
3465 file = kn->kn_hook;
3466 sc = file->sc;
3467 TRACEF(3, file, "called");
3468
3469 mutex_enter(sc->sc_lock);
3470 selremove_knote(&sc->sc_wsel, kn);
3471 mutex_exit(sc->sc_lock);
3472 }
3473
3474 static int
3475 filt_audiowrite_event(struct knote *kn, long hint)
3476 {
3477 audio_file_t *file;
3478 audio_track_t *track;
3479
3480 file = kn->kn_hook;
3481 track = file->ptrack;
3482
3483 /*
3484 * kn_data must contain the number of bytes can be write.
3485 * The return value indicates whether the event occurs or not.
3486 */
3487
3488 if (track == NULL) {
3489 /* can not write with this descriptor. */
3490 kn->kn_data = 0;
3491 return 0;
3492 }
3493
3494 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3495 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3496 return (track->usrbuf.used < track->usrbuf_usedlow);
3497 }
3498
3499 /*
3500 * Must be called without sc_lock nor sc_exlock held.
3501 */
3502 int
3503 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3504 {
3505 struct selinfo *sip;
3506
3507 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3508
3509 switch (kn->kn_filter) {
3510 case EVFILT_READ:
3511 sip = &sc->sc_rsel;
3512 kn->kn_fop = &audioread_filtops;
3513 break;
3514
3515 case EVFILT_WRITE:
3516 sip = &sc->sc_wsel;
3517 kn->kn_fop = &audiowrite_filtops;
3518 break;
3519
3520 default:
3521 return EINVAL;
3522 }
3523
3524 kn->kn_hook = file;
3525
3526 mutex_enter(sc->sc_lock);
3527 selrecord_knote(sip, kn);
3528 mutex_exit(sc->sc_lock);
3529
3530 return 0;
3531 }
3532
3533 /*
3534 * Must be called without sc_lock nor sc_exlock held.
3535 */
3536 int
3537 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3538 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3539 audio_file_t *file)
3540 {
3541 audio_track_t *track;
3542 vsize_t vsize;
3543 int error;
3544
3545 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3546
3547 if (*offp < 0)
3548 return EINVAL;
3549
3550 #if 0
3551 /* XXX
3552 * The idea here was to use the protection to determine if
3553 * we are mapping the read or write buffer, but it fails.
3554 * The VM system is broken in (at least) two ways.
3555 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3556 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3557 * has to be used for mmapping the play buffer.
3558 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3559 * audio_mmap will get called at some point with VM_PROT_READ
3560 * only.
3561 * So, alas, we always map the play buffer for now.
3562 */
3563 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3564 prot == VM_PROT_WRITE)
3565 track = file->ptrack;
3566 else if (prot == VM_PROT_READ)
3567 track = file->rtrack;
3568 else
3569 return EINVAL;
3570 #else
3571 track = file->ptrack;
3572 #endif
3573 if (track == NULL)
3574 return EACCES;
3575
3576 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3577 if (len > vsize)
3578 return EOVERFLOW;
3579 if (*offp > (uint)(vsize - len))
3580 return EOVERFLOW;
3581
3582 /* XXX TODO: what happens when mmap twice. */
3583 if (!track->mmapped) {
3584 track->mmapped = true;
3585
3586 if (!track->is_pause) {
3587 error = audio_exlock_mutex_enter(sc);
3588 if (error)
3589 return error;
3590 if (sc->sc_pbusy == false)
3591 audio_pmixer_start(sc, true);
3592 audio_exlock_mutex_exit(sc);
3593 }
3594 /* XXX mmapping record buffer is not supported */
3595 }
3596
3597 /* get ringbuffer */
3598 *uobjp = track->uobj;
3599
3600 /* Acquire a reference for the mmap. munmap will release. */
3601 uao_reference(*uobjp);
3602 *maxprotp = prot;
3603 *advicep = UVM_ADV_RANDOM;
3604 *flagsp = MAP_SHARED;
3605 return 0;
3606 }
3607
3608 /*
3609 * /dev/audioctl has to be able to open at any time without interference
3610 * with any /dev/audio or /dev/sound.
3611 * Must be called with sc_exlock held and without sc_lock held.
3612 */
3613 static int
3614 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3615 struct lwp *l)
3616 {
3617 struct file *fp;
3618 audio_file_t *af;
3619 int fd;
3620 int error;
3621
3622 KASSERT(sc->sc_exlock);
3623
3624 TRACE(1, "called");
3625
3626 error = fd_allocfile(&fp, &fd);
3627 if (error)
3628 return error;
3629
3630 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
3631 af->sc = sc;
3632 af->dev = dev;
3633
3634 mutex_enter(sc->sc_lock);
3635 if (sc->sc_dying) {
3636 mutex_exit(sc->sc_lock);
3637 kmem_free(af, sizeof(*af));
3638 fd_abort(curproc, fp, fd);
3639 return ENXIO;
3640 }
3641 mutex_enter(sc->sc_intr_lock);
3642 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
3643 mutex_exit(sc->sc_intr_lock);
3644 mutex_exit(sc->sc_lock);
3645
3646 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3647 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3648
3649 return error;
3650 }
3651
3652 /*
3653 * Free 'mem' if available, and initialize the pointer.
3654 * For this reason, this is implemented as macro.
3655 */
3656 #define audio_free(mem) do { \
3657 if (mem != NULL) { \
3658 kern_free(mem); \
3659 mem = NULL; \
3660 } \
3661 } while (0)
3662
3663 /*
3664 * (Re)allocate 'memblock' with specified 'bytes'.
3665 * bytes must not be 0.
3666 * This function never returns NULL.
3667 */
3668 static void *
3669 audio_realloc(void *memblock, size_t bytes)
3670 {
3671
3672 KASSERT(bytes != 0);
3673 audio_free(memblock);
3674 return kern_malloc(bytes, M_WAITOK);
3675 }
3676
3677 /*
3678 * (Re)allocate usrbuf with 'newbufsize' bytes.
3679 * Use this function for usrbuf because only usrbuf can be mmapped.
3680 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3681 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3682 * and returns errno.
3683 * It must be called before updating usrbuf.capacity.
3684 */
3685 static int
3686 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3687 {
3688 struct audio_softc *sc;
3689 vaddr_t vstart;
3690 vsize_t oldvsize;
3691 vsize_t newvsize;
3692 int error;
3693
3694 KASSERT(newbufsize > 0);
3695 sc = track->mixer->sc;
3696
3697 /* Get a nonzero multiple of PAGE_SIZE */
3698 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3699
3700 if (track->usrbuf.mem != NULL) {
3701 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3702 PAGE_SIZE);
3703 if (oldvsize == newvsize) {
3704 track->usrbuf.capacity = newbufsize;
3705 return 0;
3706 }
3707 vstart = (vaddr_t)track->usrbuf.mem;
3708 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3709 /* uvm_unmap also detach uobj */
3710 track->uobj = NULL; /* paranoia */
3711 track->usrbuf.mem = NULL;
3712 }
3713
3714 /* Create a uvm anonymous object */
3715 track->uobj = uao_create(newvsize, 0);
3716
3717 /* Map it into the kernel virtual address space */
3718 vstart = 0;
3719 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3720 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3721 UVM_ADV_RANDOM, 0));
3722 if (error) {
3723 device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
3724 uao_detach(track->uobj); /* release reference */
3725 goto abort;
3726 }
3727
3728 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3729 false, 0);
3730 if (error) {
3731 device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
3732 error);
3733 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3734 /* uvm_unmap also detach uobj */
3735 goto abort;
3736 }
3737
3738 track->usrbuf.mem = (void *)vstart;
3739 track->usrbuf.capacity = newbufsize;
3740 memset(track->usrbuf.mem, 0, newvsize);
3741 return 0;
3742
3743 /* failure */
3744 abort:
3745 track->uobj = NULL; /* paranoia */
3746 track->usrbuf.mem = NULL;
3747 track->usrbuf.capacity = 0;
3748 return error;
3749 }
3750
3751 /*
3752 * Free usrbuf (if available).
3753 */
3754 static void
3755 audio_free_usrbuf(audio_track_t *track)
3756 {
3757 vaddr_t vstart;
3758 vsize_t vsize;
3759
3760 vstart = (vaddr_t)track->usrbuf.mem;
3761 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3762 if (track->usrbuf.mem != NULL) {
3763 /*
3764 * Unmap the kernel mapping. uvm_unmap releases the
3765 * reference to the uvm object, and this should be the
3766 * last virtual mapping of the uvm object, so no need
3767 * to explicitly release (`detach') the object.
3768 */
3769 uvm_unmap(kernel_map, vstart, vstart + vsize);
3770
3771 track->uobj = NULL;
3772 track->usrbuf.mem = NULL;
3773 track->usrbuf.capacity = 0;
3774 }
3775 }
3776
3777 /*
3778 * This filter changes the volume for each channel.
3779 * arg->context points track->ch_volume[].
3780 */
3781 static void
3782 audio_track_chvol(audio_filter_arg_t *arg)
3783 {
3784 int16_t *ch_volume;
3785 const aint_t *s;
3786 aint_t *d;
3787 u_int i;
3788 u_int ch;
3789 u_int channels;
3790
3791 DIAGNOSTIC_filter_arg(arg);
3792 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3793 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3794 arg->srcfmt->channels, arg->dstfmt->channels);
3795 KASSERT(arg->context != NULL);
3796 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3797 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3798
3799 s = arg->src;
3800 d = arg->dst;
3801 ch_volume = arg->context;
3802
3803 channels = arg->srcfmt->channels;
3804 for (i = 0; i < arg->count; i++) {
3805 for (ch = 0; ch < channels; ch++) {
3806 aint2_t val;
3807 val = *s++;
3808 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3809 *d++ = (aint_t)val;
3810 }
3811 }
3812 }
3813
3814 /*
3815 * This filter performs conversion from stereo (or more channels) to mono.
3816 */
3817 static void
3818 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3819 {
3820 const aint_t *s;
3821 aint_t *d;
3822 u_int i;
3823
3824 DIAGNOSTIC_filter_arg(arg);
3825
3826 s = arg->src;
3827 d = arg->dst;
3828
3829 for (i = 0; i < arg->count; i++) {
3830 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3831 s += arg->srcfmt->channels;
3832 }
3833 }
3834
3835 /*
3836 * This filter performs conversion from mono to stereo (or more channels).
3837 */
3838 static void
3839 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3840 {
3841 const aint_t *s;
3842 aint_t *d;
3843 u_int i;
3844 u_int ch;
3845 u_int dstchannels;
3846
3847 DIAGNOSTIC_filter_arg(arg);
3848
3849 s = arg->src;
3850 d = arg->dst;
3851 dstchannels = arg->dstfmt->channels;
3852
3853 for (i = 0; i < arg->count; i++) {
3854 d[0] = s[0];
3855 d[1] = s[0];
3856 s++;
3857 d += dstchannels;
3858 }
3859 if (dstchannels > 2) {
3860 d = arg->dst;
3861 for (i = 0; i < arg->count; i++) {
3862 for (ch = 2; ch < dstchannels; ch++) {
3863 d[ch] = 0;
3864 }
3865 d += dstchannels;
3866 }
3867 }
3868 }
3869
3870 /*
3871 * This filter shrinks M channels into N channels.
3872 * Extra channels are discarded.
3873 */
3874 static void
3875 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3876 {
3877 const aint_t *s;
3878 aint_t *d;
3879 u_int i;
3880 u_int ch;
3881
3882 DIAGNOSTIC_filter_arg(arg);
3883
3884 s = arg->src;
3885 d = arg->dst;
3886
3887 for (i = 0; i < arg->count; i++) {
3888 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3889 *d++ = s[ch];
3890 }
3891 s += arg->srcfmt->channels;
3892 }
3893 }
3894
3895 /*
3896 * This filter expands M channels into N channels.
3897 * Silence is inserted for missing channels.
3898 */
3899 static void
3900 audio_track_chmix_expand(audio_filter_arg_t *arg)
3901 {
3902 const aint_t *s;
3903 aint_t *d;
3904 u_int i;
3905 u_int ch;
3906 u_int srcchannels;
3907 u_int dstchannels;
3908
3909 DIAGNOSTIC_filter_arg(arg);
3910
3911 s = arg->src;
3912 d = arg->dst;
3913
3914 srcchannels = arg->srcfmt->channels;
3915 dstchannels = arg->dstfmt->channels;
3916 for (i = 0; i < arg->count; i++) {
3917 for (ch = 0; ch < srcchannels; ch++) {
3918 *d++ = *s++;
3919 }
3920 for (; ch < dstchannels; ch++) {
3921 *d++ = 0;
3922 }
3923 }
3924 }
3925
3926 /*
3927 * This filter performs frequency conversion (up sampling).
3928 * It uses linear interpolation.
3929 */
3930 static void
3931 audio_track_freq_up(audio_filter_arg_t *arg)
3932 {
3933 audio_track_t *track;
3934 audio_ring_t *src;
3935 audio_ring_t *dst;
3936 const aint_t *s;
3937 aint_t *d;
3938 aint_t prev[AUDIO_MAX_CHANNELS];
3939 aint_t curr[AUDIO_MAX_CHANNELS];
3940 aint_t grad[AUDIO_MAX_CHANNELS];
3941 u_int i;
3942 u_int t;
3943 u_int step;
3944 u_int channels;
3945 u_int ch;
3946 int srcused;
3947
3948 track = arg->context;
3949 KASSERT(track);
3950 src = &track->freq.srcbuf;
3951 dst = track->freq.dst;
3952 DIAGNOSTIC_ring(dst);
3953 DIAGNOSTIC_ring(src);
3954 KASSERT(src->used > 0);
3955 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3956 "src->fmt.channels=%d dst->fmt.channels=%d",
3957 src->fmt.channels, dst->fmt.channels);
3958 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3959 "src->head=%d track->mixer->frames_per_block=%d",
3960 src->head, track->mixer->frames_per_block);
3961
3962 s = arg->src;
3963 d = arg->dst;
3964
3965 /*
3966 * In order to facilitate interpolation for each block, slide (delay)
3967 * input by one sample. As a result, strictly speaking, the output
3968 * phase is delayed by 1/dstfreq. However, I believe there is no
3969 * observable impact.
3970 *
3971 * Example)
3972 * srcfreq:dstfreq = 1:3
3973 *
3974 * A - -
3975 * |
3976 * |
3977 * | B - -
3978 * +-----+-----> input timeframe
3979 * 0 1
3980 *
3981 * 0 1
3982 * +-----+-----> input timeframe
3983 * | A
3984 * | x x
3985 * | x x
3986 * x (B)
3987 * +-+-+-+-+-+-> output timeframe
3988 * 0 1 2 3 4 5
3989 */
3990
3991 /* Last samples in previous block */
3992 channels = src->fmt.channels;
3993 for (ch = 0; ch < channels; ch++) {
3994 prev[ch] = track->freq_prev[ch];
3995 curr[ch] = track->freq_curr[ch];
3996 grad[ch] = curr[ch] - prev[ch];
3997 }
3998
3999 step = track->freq_step;
4000 t = track->freq_current;
4001 //#define FREQ_DEBUG
4002 #if defined(FREQ_DEBUG)
4003 #define PRINTF(fmt...) printf(fmt)
4004 #else
4005 #define PRINTF(fmt...) do { } while (0)
4006 #endif
4007 srcused = src->used;
4008 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
4009 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
4010 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
4011 PRINTF(" t=%d\n", t);
4012
4013 for (i = 0; i < arg->count; i++) {
4014 PRINTF("i=%d t=%5d", i, t);
4015 if (t >= 65536) {
4016 for (ch = 0; ch < channels; ch++) {
4017 prev[ch] = curr[ch];
4018 curr[ch] = *s++;
4019 grad[ch] = curr[ch] - prev[ch];
4020 }
4021 PRINTF(" prev=%d s[%d]=%d",
4022 prev[0], src->used - srcused, curr[0]);
4023
4024 /* Update */
4025 t -= 65536;
4026 srcused--;
4027 if (srcused < 0) {
4028 PRINTF(" break\n");
4029 break;
4030 }
4031 }
4032
4033 for (ch = 0; ch < channels; ch++) {
4034 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
4035 #if defined(FREQ_DEBUG)
4036 if (ch == 0)
4037 printf(" t=%5d *d=%d", t, d[-1]);
4038 #endif
4039 }
4040 t += step;
4041
4042 PRINTF("\n");
4043 }
4044 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
4045
4046 auring_take(src, src->used);
4047 auring_push(dst, i);
4048
4049 /* Adjust */
4050 t += track->freq_leap;
4051
4052 track->freq_current = t;
4053 for (ch = 0; ch < channels; ch++) {
4054 track->freq_prev[ch] = prev[ch];
4055 track->freq_curr[ch] = curr[ch];
4056 }
4057 }
4058
4059 /*
4060 * This filter performs frequency conversion (down sampling).
4061 * It uses simple thinning.
4062 */
4063 static void
4064 audio_track_freq_down(audio_filter_arg_t *arg)
4065 {
4066 audio_track_t *track;
4067 audio_ring_t *src;
4068 audio_ring_t *dst;
4069 const aint_t *s0;
4070 aint_t *d;
4071 u_int i;
4072 u_int t;
4073 u_int step;
4074 u_int ch;
4075 u_int channels;
4076
4077 track = arg->context;
4078 KASSERT(track);
4079 src = &track->freq.srcbuf;
4080 dst = track->freq.dst;
4081
4082 DIAGNOSTIC_ring(dst);
4083 DIAGNOSTIC_ring(src);
4084 KASSERT(src->used > 0);
4085 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
4086 "src->fmt.channels=%d dst->fmt.channels=%d",
4087 src->fmt.channels, dst->fmt.channels);
4088 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
4089 "src->head=%d track->mixer->frames_per_block=%d",
4090 src->head, track->mixer->frames_per_block);
4091
4092 s0 = arg->src;
4093 d = arg->dst;
4094 t = track->freq_current;
4095 step = track->freq_step;
4096 channels = dst->fmt.channels;
4097 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
4098 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
4099 PRINTF(" t=%d\n", t);
4100
4101 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
4102 const aint_t *s;
4103 PRINTF("i=%4d t=%10d", i, t);
4104 s = s0 + (t / 65536) * channels;
4105 PRINTF(" s=%5ld", (s - s0) / channels);
4106 for (ch = 0; ch < channels; ch++) {
4107 if (ch == 0) PRINTF(" *s=%d", s[ch]);
4108 *d++ = s[ch];
4109 }
4110 PRINTF("\n");
4111 t += step;
4112 }
4113 t += track->freq_leap;
4114 PRINTF("end t=%d\n", t);
4115 auring_take(src, src->used);
4116 auring_push(dst, i);
4117 track->freq_current = t % 65536;
4118 }
4119
4120 /*
4121 * Creates track and returns it.
4122 * Must be called without sc_lock held.
4123 */
4124 audio_track_t *
4125 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
4126 {
4127 audio_track_t *track;
4128 static int newid = 0;
4129
4130 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
4131
4132 track->id = newid++;
4133 track->mixer = mixer;
4134 track->mode = mixer->mode;
4135
4136 /* Do TRACE after id is assigned. */
4137 TRACET(3, track, "for %s",
4138 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
4139
4140 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
4141 track->volume = 256;
4142 #endif
4143 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
4144 track->ch_volume[i] = 256;
4145 }
4146
4147 return track;
4148 }
4149
4150 /*
4151 * Release all resources of the track and track itself.
4152 * track must not be NULL. Don't specify the track within the file
4153 * structure linked from sc->sc_files.
4154 */
4155 static void
4156 audio_track_destroy(audio_track_t *track)
4157 {
4158
4159 KASSERT(track);
4160
4161 audio_free_usrbuf(track);
4162 audio_free(track->codec.srcbuf.mem);
4163 audio_free(track->chvol.srcbuf.mem);
4164 audio_free(track->chmix.srcbuf.mem);
4165 audio_free(track->freq.srcbuf.mem);
4166 audio_free(track->outbuf.mem);
4167
4168 kmem_free(track, sizeof(*track));
4169 }
4170
4171 /*
4172 * It returns encoding conversion filter according to src and dst format.
4173 * If it is not a convertible pair, it returns NULL. Either src or dst
4174 * must be internal format.
4175 */
4176 static audio_filter_t
4177 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
4178 const audio_format2_t *dst)
4179 {
4180
4181 if (audio_format2_is_internal(src)) {
4182 if (dst->encoding == AUDIO_ENCODING_ULAW) {
4183 return audio_internal_to_mulaw;
4184 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
4185 return audio_internal_to_alaw;
4186 } else if (audio_format2_is_linear(dst)) {
4187 switch (dst->stride) {
4188 case 8:
4189 return audio_internal_to_linear8;
4190 case 16:
4191 return audio_internal_to_linear16;
4192 #if defined(AUDIO_SUPPORT_LINEAR24)
4193 case 24:
4194 return audio_internal_to_linear24;
4195 #endif
4196 case 32:
4197 return audio_internal_to_linear32;
4198 default:
4199 TRACET(1, track, "unsupported %s stride %d",
4200 "dst", dst->stride);
4201 goto abort;
4202 }
4203 }
4204 } else if (audio_format2_is_internal(dst)) {
4205 if (src->encoding == AUDIO_ENCODING_ULAW) {
4206 return audio_mulaw_to_internal;
4207 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
4208 return audio_alaw_to_internal;
4209 } else if (audio_format2_is_linear(src)) {
4210 switch (src->stride) {
4211 case 8:
4212 return audio_linear8_to_internal;
4213 case 16:
4214 return audio_linear16_to_internal;
4215 #if defined(AUDIO_SUPPORT_LINEAR24)
4216 case 24:
4217 return audio_linear24_to_internal;
4218 #endif
4219 case 32:
4220 return audio_linear32_to_internal;
4221 default:
4222 TRACET(1, track, "unsupported %s stride %d",
4223 "src", src->stride);
4224 goto abort;
4225 }
4226 }
4227 }
4228
4229 TRACET(1, track, "unsupported encoding");
4230 abort:
4231 #if defined(AUDIO_DEBUG)
4232 if (audiodebug >= 2) {
4233 char buf[100];
4234 audio_format2_tostr(buf, sizeof(buf), src);
4235 TRACET(2, track, "src %s", buf);
4236 audio_format2_tostr(buf, sizeof(buf), dst);
4237 TRACET(2, track, "dst %s", buf);
4238 }
4239 #endif
4240 return NULL;
4241 }
4242
4243 /*
4244 * Initialize the codec stage of this track as necessary.
4245 * If successful, it initializes the codec stage as necessary, stores updated
4246 * last_dst in *last_dstp in any case, and returns 0.
4247 * Otherwise, it returns errno without modifying *last_dstp.
4248 */
4249 static int
4250 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
4251 {
4252 audio_ring_t *last_dst;
4253 audio_ring_t *srcbuf;
4254 audio_format2_t *srcfmt;
4255 audio_format2_t *dstfmt;
4256 audio_filter_arg_t *arg;
4257 u_int len;
4258 int error;
4259
4260 KASSERT(track);
4261
4262 last_dst = *last_dstp;
4263 dstfmt = &last_dst->fmt;
4264 srcfmt = &track->inputfmt;
4265 srcbuf = &track->codec.srcbuf;
4266 error = 0;
4267
4268 if (srcfmt->encoding != dstfmt->encoding
4269 || srcfmt->precision != dstfmt->precision
4270 || srcfmt->stride != dstfmt->stride) {
4271 track->codec.dst = last_dst;
4272
4273 srcbuf->fmt = *dstfmt;
4274 srcbuf->fmt.encoding = srcfmt->encoding;
4275 srcbuf->fmt.precision = srcfmt->precision;
4276 srcbuf->fmt.stride = srcfmt->stride;
4277
4278 track->codec.filter = audio_track_get_codec(track,
4279 &srcbuf->fmt, dstfmt);
4280 if (track->codec.filter == NULL) {
4281 error = EINVAL;
4282 goto abort;
4283 }
4284
4285 srcbuf->head = 0;
4286 srcbuf->used = 0;
4287 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4288 len = auring_bytelen(srcbuf);
4289 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4290
4291 arg = &track->codec.arg;
4292 arg->srcfmt = &srcbuf->fmt;
4293 arg->dstfmt = dstfmt;
4294 arg->context = NULL;
4295
4296 *last_dstp = srcbuf;
4297 return 0;
4298 }
4299
4300 abort:
4301 track->codec.filter = NULL;
4302 audio_free(srcbuf->mem);
4303 return error;
4304 }
4305
4306 /*
4307 * Initialize the chvol stage of this track as necessary.
4308 * If successful, it initializes the chvol stage as necessary, stores updated
4309 * last_dst in *last_dstp in any case, and returns 0.
4310 * Otherwise, it returns errno without modifying *last_dstp.
4311 */
4312 static int
4313 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4314 {
4315 audio_ring_t *last_dst;
4316 audio_ring_t *srcbuf;
4317 audio_format2_t *srcfmt;
4318 audio_format2_t *dstfmt;
4319 audio_filter_arg_t *arg;
4320 u_int len;
4321 int error;
4322
4323 KASSERT(track);
4324
4325 last_dst = *last_dstp;
4326 dstfmt = &last_dst->fmt;
4327 srcfmt = &track->inputfmt;
4328 srcbuf = &track->chvol.srcbuf;
4329 error = 0;
4330
4331 /* Check whether channel volume conversion is necessary. */
4332 bool use_chvol = false;
4333 for (int ch = 0; ch < srcfmt->channels; ch++) {
4334 if (track->ch_volume[ch] != 256) {
4335 use_chvol = true;
4336 break;
4337 }
4338 }
4339
4340 if (use_chvol == true) {
4341 track->chvol.dst = last_dst;
4342 track->chvol.filter = audio_track_chvol;
4343
4344 srcbuf->fmt = *dstfmt;
4345 /* no format conversion occurs */
4346
4347 srcbuf->head = 0;
4348 srcbuf->used = 0;
4349 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4350 len = auring_bytelen(srcbuf);
4351 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4352
4353 arg = &track->chvol.arg;
4354 arg->srcfmt = &srcbuf->fmt;
4355 arg->dstfmt = dstfmt;
4356 arg->context = track->ch_volume;
4357
4358 *last_dstp = srcbuf;
4359 return 0;
4360 }
4361
4362 track->chvol.filter = NULL;
4363 audio_free(srcbuf->mem);
4364 return error;
4365 }
4366
4367 /*
4368 * Initialize the chmix stage of this track as necessary.
4369 * If successful, it initializes the chmix stage as necessary, stores updated
4370 * last_dst in *last_dstp in any case, and returns 0.
4371 * Otherwise, it returns errno without modifying *last_dstp.
4372 */
4373 static int
4374 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4375 {
4376 audio_ring_t *last_dst;
4377 audio_ring_t *srcbuf;
4378 audio_format2_t *srcfmt;
4379 audio_format2_t *dstfmt;
4380 audio_filter_arg_t *arg;
4381 u_int srcch;
4382 u_int dstch;
4383 u_int len;
4384 int error;
4385
4386 KASSERT(track);
4387
4388 last_dst = *last_dstp;
4389 dstfmt = &last_dst->fmt;
4390 srcfmt = &track->inputfmt;
4391 srcbuf = &track->chmix.srcbuf;
4392 error = 0;
4393
4394 srcch = srcfmt->channels;
4395 dstch = dstfmt->channels;
4396 if (srcch != dstch) {
4397 track->chmix.dst = last_dst;
4398
4399 if (srcch >= 2 && dstch == 1) {
4400 track->chmix.filter = audio_track_chmix_mixLR;
4401 } else if (srcch == 1 && dstch >= 2) {
4402 track->chmix.filter = audio_track_chmix_dupLR;
4403 } else if (srcch > dstch) {
4404 track->chmix.filter = audio_track_chmix_shrink;
4405 } else {
4406 track->chmix.filter = audio_track_chmix_expand;
4407 }
4408
4409 srcbuf->fmt = *dstfmt;
4410 srcbuf->fmt.channels = srcch;
4411
4412 srcbuf->head = 0;
4413 srcbuf->used = 0;
4414 /* XXX The buffer size should be able to calculate. */
4415 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4416 len = auring_bytelen(srcbuf);
4417 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4418
4419 arg = &track->chmix.arg;
4420 arg->srcfmt = &srcbuf->fmt;
4421 arg->dstfmt = dstfmt;
4422 arg->context = NULL;
4423
4424 *last_dstp = srcbuf;
4425 return 0;
4426 }
4427
4428 track->chmix.filter = NULL;
4429 audio_free(srcbuf->mem);
4430 return error;
4431 }
4432
4433 /*
4434 * Initialize the freq stage of this track as necessary.
4435 * If successful, it initializes the freq stage as necessary, stores updated
4436 * last_dst in *last_dstp in any case, and returns 0.
4437 * Otherwise, it returns errno without modifying *last_dstp.
4438 */
4439 static int
4440 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4441 {
4442 audio_ring_t *last_dst;
4443 audio_ring_t *srcbuf;
4444 audio_format2_t *srcfmt;
4445 audio_format2_t *dstfmt;
4446 audio_filter_arg_t *arg;
4447 uint32_t srcfreq;
4448 uint32_t dstfreq;
4449 u_int dst_capacity;
4450 u_int mod;
4451 u_int len;
4452 int error;
4453
4454 KASSERT(track);
4455
4456 last_dst = *last_dstp;
4457 dstfmt = &last_dst->fmt;
4458 srcfmt = &track->inputfmt;
4459 srcbuf = &track->freq.srcbuf;
4460 error = 0;
4461
4462 srcfreq = srcfmt->sample_rate;
4463 dstfreq = dstfmt->sample_rate;
4464 if (srcfreq != dstfreq) {
4465 track->freq.dst = last_dst;
4466
4467 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4468 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4469
4470 /* freq_step is the ratio of src/dst when let dst 65536. */
4471 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4472
4473 dst_capacity = frame_per_block(track->mixer, dstfmt);
4474 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4475 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4476
4477 if (track->freq_step < 65536) {
4478 track->freq.filter = audio_track_freq_up;
4479 /* In order to carry at the first time. */
4480 track->freq_current = 65536;
4481 } else {
4482 track->freq.filter = audio_track_freq_down;
4483 track->freq_current = 0;
4484 }
4485
4486 srcbuf->fmt = *dstfmt;
4487 srcbuf->fmt.sample_rate = srcfreq;
4488
4489 srcbuf->head = 0;
4490 srcbuf->used = 0;
4491 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4492 len = auring_bytelen(srcbuf);
4493 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4494
4495 arg = &track->freq.arg;
4496 arg->srcfmt = &srcbuf->fmt;
4497 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4498 arg->context = track;
4499
4500 *last_dstp = srcbuf;
4501 return 0;
4502 }
4503
4504 track->freq.filter = NULL;
4505 audio_free(srcbuf->mem);
4506 return error;
4507 }
4508
4509 /*
4510 * There are two unit of buffers; A block buffer and a byte buffer. Both use
4511 * audio_ring_t. Internally, audio data is always handled in block unit.
4512 * Converting format, sythesizing tracks, transferring from/to the hardware,
4513 * and etc. Only one exception is usrbuf. To transfer with userland, usrbuf
4514 * is buffered in byte unit.
4515 * For playing back, write(2) writes arbitrary length of data to usrbuf.
4516 * When one block is filled, it is sent to the next stage (converting and/or
4517 * synthesizing).
4518 * For recording, the rmixer writes one block length of data to input buffer
4519 * (the bottom stage buffer) each time. read(2) (converts one block if usrbuf
4520 * is empty and then) reads arbitrary length of data from usrbuf.
4521 *
4522 * The following charts show the data flow and buffer types for playback and
4523 * recording track. In this example, both have two conversion stages, codec
4524 * and freq. Every [**] represents a buffer described below.
4525 *
4526 * On playback track:
4527 *
4528 * write(2)
4529 * |
4530 * | uiomove
4531 * v
4532 * usrbuf [BB|BB ... BB|BB] .. Byte ring buffer
4533 * |
4534 * | memcpy one block
4535 * v
4536 * codec.srcbuf [FF] .. 1 block (ring) buffer
4537 * .dst ----+
4538 * |
4539 * | convert
4540 * v
4541 * freq.srcbuf [FF] .. 1 block (ring) buffer
4542 * .dst ----+
4543 * |
4544 * | convert
4545 * v
4546 * outbuf [FF|FF|FF|FF] .. NBLKOUT blocks ring buffer
4547 * |
4548 * v
4549 * pmixer
4550 *
4551 * There are three different types of buffers:
4552 *
4553 * [BB|BB ... BB|BB] usrbuf. Is the buffer closest to userland. Mandatory.
4554 * This is a byte buffer and its length is basically less
4555 * than or equal to 64KB or at least AUMINNOBLK blocks.
4556 *
4557 * [FF] Interim conversion stage's srcbuf if necessary.
4558 * This is one block (ring) buffer counted in frames.
4559 *
4560 * [FF|FF|FF|FF] outbuf. Is the buffer closest to pmixer. Mandatory.
4561 * This is NBLKOUT blocks ring buffer counted in frames.
4562 *
4563 *
4564 * On recording track:
4565 *
4566 * read(2)
4567 * ^
4568 * | uiomove
4569 * |
4570 * usrbuf [BB] .. Byte (ring) buffer
4571 * ^
4572 * | memcpy one block
4573 * |
4574 * outbuf [FF] .. 1 block (ring) buffer
4575 * ^
4576 * | convert
4577 * |
4578 * codec.dst ----+
4579 * .srcbuf [FF] .. 1 block (ring) buffer
4580 * ^
4581 * | convert
4582 * |
4583 * freq.dst ----+
4584 * .srcbuf [FF|FF ... FF|FF] .. NBLKIN blocks ring buffer
4585 * ^
4586 * |
4587 * rmixer
4588 *
4589 * There are also three different types of buffers.
4590 *
4591 * [BB] usrbuf. Is the buffer closest to userland. Mandatory.
4592 * This is a byte buffer and its length is one block.
4593 * This buffer holds only "fragment".
4594 *
4595 * [FF] Interim conversion stage's srcbuf (or outbuf).
4596 * This is one block (ring) buffer counted in frames.
4597 *
4598 * [FF|FF ... FF|FF] The bottom conversion stage's srcbuf (or outbuf).
4599 * This is the buffer closest to rmixer, and mandatory.
4600 * This is NBLKIN blocks ring buffer counted in frames.
4601 * Also pointed by *input.
4602 */
4603
4604 /*
4605 * Set the userland format of this track.
4606 * usrfmt argument should have been previously verified by
4607 * audio_track_setinfo_check().
4608 * This function may release and reallocate all internal conversion buffers.
4609 * It returns 0 if successful. Otherwise it returns errno with clearing all
4610 * internal buffers.
4611 * It must be called without sc_intr_lock since uvm_* routines require non
4612 * intr_lock state.
4613 * It must be called with track lock held since it may release and reallocate
4614 * outbuf.
4615 */
4616 static int
4617 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4618 {
4619 struct audio_softc *sc;
4620 audio_ring_t *last_dst;
4621 int is_playback;
4622 u_int newbufsize;
4623 u_int oldblksize;
4624 u_int len;
4625 int error;
4626
4627 KASSERT(track);
4628 sc = track->mixer->sc;
4629
4630 is_playback = audio_track_is_playback(track);
4631
4632 /* usrbuf is the closest buffer to the userland. */
4633 track->usrbuf.fmt = *usrfmt;
4634
4635 /*
4636 * Usrbuf.
4637 * On the playback track, its capacity is less than or equal to 64KB
4638 * (for historical reason) and must be a multiple of a block
4639 * (constraint in this implementation). But at least AUMINNOBLK
4640 * blocks.
4641 * On the recording track, its capacity is one block.
4642 */
4643 /*
4644 * For references, one block size (in 40msec) is:
4645 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4646 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4647 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4648 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4649 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4650 *
4651 * For example,
4652 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4653 * newbufsize = rounddown(65536 / 7056) = 63504
4654 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4655 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4656 *
4657 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4658 * newbufsize = rounddown(65536 / 7680) = 61440
4659 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4660 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4661 */
4662 oldblksize = track->usrbuf_blksize;
4663 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4664 frame_per_block(track->mixer, &track->usrbuf.fmt));
4665 track->usrbuf.head = 0;
4666 track->usrbuf.used = 0;
4667 if (is_playback) {
4668 if (track->usrbuf_blksize * AUMINNOBLK > 65536)
4669 newbufsize = track->usrbuf_blksize * AUMINNOBLK;
4670 else
4671 newbufsize = rounddown(65536, track->usrbuf_blksize);
4672 } else {
4673 newbufsize = track->usrbuf_blksize;
4674 }
4675 if (track->usrbuf_blksize != oldblksize) {
4676 error = audio_realloc_usrbuf(track, newbufsize);
4677 if (error) {
4678 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4679 newbufsize);
4680 goto error;
4681 }
4682 }
4683
4684 /* Recalc water mark. */
4685 if (is_playback) {
4686 /* Set high at 100%, low at 75%. */
4687 track->usrbuf_usedhigh = track->usrbuf.capacity;
4688 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4689 } else {
4690 /* Set high at 100%, low at 0%. (But not used) */
4691 track->usrbuf_usedhigh = track->usrbuf.capacity;
4692 track->usrbuf_usedlow = 0;
4693 }
4694
4695 /* Stage buffer */
4696 last_dst = &track->outbuf;
4697 if (is_playback) {
4698 /* On playback, initialize from the mixer side in order. */
4699 track->inputfmt = *usrfmt;
4700 track->outbuf.fmt = track->mixer->track_fmt;
4701
4702 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4703 goto error;
4704 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4705 goto error;
4706 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4707 goto error;
4708 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4709 goto error;
4710 } else {
4711 /* On recording, initialize from userland side in order. */
4712 track->inputfmt = track->mixer->track_fmt;
4713 track->outbuf.fmt = *usrfmt;
4714
4715 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4716 goto error;
4717 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4718 goto error;
4719 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4720 goto error;
4721 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4722 goto error;
4723 }
4724 #if 0
4725 /* debug */
4726 if (track->freq.filter) {
4727 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4728 audio_print_format2("freq dst", &track->freq.dst->fmt);
4729 }
4730 if (track->chmix.filter) {
4731 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4732 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4733 }
4734 if (track->chvol.filter) {
4735 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4736 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4737 }
4738 if (track->codec.filter) {
4739 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4740 audio_print_format2("codec dst", &track->codec.dst->fmt);
4741 }
4742 #endif
4743
4744 /* Stage input buffer */
4745 track->input = last_dst;
4746
4747 /*
4748 * Output buffer.
4749 * On the playback track, its capacity is NBLKOUT blocks.
4750 * On the recording track, its capacity is 1 block.
4751 */
4752 track->outbuf.head = 0;
4753 track->outbuf.used = 0;
4754 track->outbuf.capacity = frame_per_block(track->mixer,
4755 &track->outbuf.fmt);
4756 if (is_playback)
4757 track->outbuf.capacity *= NBLKOUT;
4758 len = auring_bytelen(&track->outbuf);
4759 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4760 if (track->outbuf.mem == NULL) {
4761 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4762 error = ENOMEM;
4763 goto error;
4764 }
4765
4766 /*
4767 * On the recording track, expand the input stage buffer, which is
4768 * the closest buffer to rmixer, to NBLKOUT blocks.
4769 * Note that input buffer may point to outbuf.
4770 */
4771 if (!is_playback) {
4772 int input_fpb;
4773
4774 input_fpb = frame_per_block(track->mixer, &track->input->fmt);
4775 track->input->capacity = input_fpb * NBLKIN;
4776 len = auring_bytelen(track->input);
4777 track->input->mem = audio_realloc(track->input->mem, len);
4778 }
4779
4780 #if defined(AUDIO_DEBUG)
4781 if (audiodebug >= 3) {
4782 struct audio_track_debugbuf m;
4783
4784 memset(&m, 0, sizeof(m));
4785 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4786 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4787 if (track->freq.filter)
4788 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4789 track->freq.srcbuf.capacity *
4790 frametobyte(&track->freq.srcbuf.fmt, 1));
4791 if (track->chmix.filter)
4792 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4793 track->chmix.srcbuf.capacity *
4794 frametobyte(&track->chmix.srcbuf.fmt, 1));
4795 if (track->chvol.filter)
4796 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4797 track->chvol.srcbuf.capacity *
4798 frametobyte(&track->chvol.srcbuf.fmt, 1));
4799 if (track->codec.filter)
4800 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4801 track->codec.srcbuf.capacity *
4802 frametobyte(&track->codec.srcbuf.fmt, 1));
4803 snprintf(m.usrbuf, sizeof(m.usrbuf),
4804 " usr=%d", track->usrbuf.capacity);
4805
4806 if (is_playback) {
4807 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4808 m.outbuf, m.freq, m.chmix,
4809 m.chvol, m.codec, m.usrbuf);
4810 } else {
4811 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4812 m.freq, m.chmix, m.chvol,
4813 m.codec, m.outbuf, m.usrbuf);
4814 }
4815 }
4816 #endif
4817 return 0;
4818
4819 error:
4820 audio_free_usrbuf(track);
4821 audio_free(track->codec.srcbuf.mem);
4822 audio_free(track->chvol.srcbuf.mem);
4823 audio_free(track->chmix.srcbuf.mem);
4824 audio_free(track->freq.srcbuf.mem);
4825 audio_free(track->outbuf.mem);
4826 return error;
4827 }
4828
4829 /*
4830 * Fill silence frames (as the internal format) up to 1 block
4831 * if the ring is not empty and less than 1 block.
4832 * It returns the number of appended frames.
4833 */
4834 static int
4835 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4836 {
4837 int fpb;
4838 int n;
4839
4840 KASSERT(track);
4841 KASSERT(audio_format2_is_internal(&ring->fmt));
4842
4843 /* XXX is n correct? */
4844 /* XXX memset uses frametobyte()? */
4845
4846 if (ring->used == 0)
4847 return 0;
4848
4849 fpb = frame_per_block(track->mixer, &ring->fmt);
4850 if (ring->used >= fpb)
4851 return 0;
4852
4853 n = (ring->capacity - ring->used) % fpb;
4854
4855 KASSERTMSG(auring_get_contig_free(ring) >= n,
4856 "auring_get_contig_free(ring)=%d n=%d",
4857 auring_get_contig_free(ring), n);
4858
4859 memset(auring_tailptr_aint(ring), 0,
4860 n * ring->fmt.channels * sizeof(aint_t));
4861 auring_push(ring, n);
4862 return n;
4863 }
4864
4865 /*
4866 * Execute the conversion stage.
4867 * It prepares arg from this stage and executes stage->filter.
4868 * It must be called only if stage->filter is not NULL.
4869 *
4870 * For stages other than frequency conversion, the function increments
4871 * src and dst counters here. For frequency conversion stage, on the
4872 * other hand, the function does not touch src and dst counters and
4873 * filter side has to increment them.
4874 */
4875 static void
4876 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4877 {
4878 audio_filter_arg_t *arg;
4879 int srccount;
4880 int dstcount;
4881 int count;
4882
4883 KASSERT(track);
4884 KASSERT(stage->filter);
4885
4886 srccount = auring_get_contig_used(&stage->srcbuf);
4887 dstcount = auring_get_contig_free(stage->dst);
4888
4889 if (isfreq) {
4890 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4891 count = uimin(dstcount, track->mixer->frames_per_block);
4892 } else {
4893 count = uimin(srccount, dstcount);
4894 }
4895
4896 if (count > 0) {
4897 arg = &stage->arg;
4898 arg->src = auring_headptr(&stage->srcbuf);
4899 arg->dst = auring_tailptr(stage->dst);
4900 arg->count = count;
4901
4902 stage->filter(arg);
4903
4904 if (!isfreq) {
4905 auring_take(&stage->srcbuf, count);
4906 auring_push(stage->dst, count);
4907 }
4908 }
4909 }
4910
4911 /*
4912 * Produce output buffer for playback from user input buffer.
4913 * It must be called only if usrbuf is not empty and outbuf is
4914 * available at least one free block.
4915 */
4916 static void
4917 audio_track_play(audio_track_t *track)
4918 {
4919 audio_ring_t *usrbuf;
4920 audio_ring_t *input;
4921 int count;
4922 int framesize;
4923 int bytes;
4924
4925 KASSERT(track);
4926 KASSERT(track->lock);
4927 TRACET(4, track, "start pstate=%d", track->pstate);
4928
4929 /* At this point usrbuf must not be empty. */
4930 KASSERT(track->usrbuf.used > 0);
4931 /* Also, outbuf must be available at least one block. */
4932 count = auring_get_contig_free(&track->outbuf);
4933 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4934 "count=%d fpb=%d",
4935 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4936
4937 /* XXX TODO: is this necessary for now? */
4938 int track_count_0 = track->outbuf.used;
4939
4940 usrbuf = &track->usrbuf;
4941 input = track->input;
4942
4943 /*
4944 * framesize is always 1 byte or more since all formats supported as
4945 * usrfmt(=input) have 8bit or more stride.
4946 */
4947 framesize = frametobyte(&input->fmt, 1);
4948 KASSERT(framesize >= 1);
4949
4950 /* The next stage of usrbuf (=input) must be available. */
4951 KASSERT(auring_get_contig_free(input) > 0);
4952
4953 /*
4954 * Copy usrbuf up to 1block to input buffer.
4955 * count is the number of frames to copy from usrbuf.
4956 * bytes is the number of bytes to copy from usrbuf. However it is
4957 * not copied less than one frame.
4958 */
4959 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4960 bytes = count * framesize;
4961
4962 if (usrbuf->head + bytes < usrbuf->capacity) {
4963 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4964 (uint8_t *)usrbuf->mem + usrbuf->head,
4965 bytes);
4966 auring_push(input, count);
4967 auring_take(usrbuf, bytes);
4968 } else {
4969 int bytes1;
4970 int bytes2;
4971
4972 bytes1 = auring_get_contig_used(usrbuf);
4973 KASSERTMSG(bytes1 % framesize == 0,
4974 "bytes1=%d framesize=%d", bytes1, framesize);
4975 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4976 (uint8_t *)usrbuf->mem + usrbuf->head,
4977 bytes1);
4978 auring_push(input, bytes1 / framesize);
4979 auring_take(usrbuf, bytes1);
4980
4981 bytes2 = bytes - bytes1;
4982 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4983 (uint8_t *)usrbuf->mem + usrbuf->head,
4984 bytes2);
4985 auring_push(input, bytes2 / framesize);
4986 auring_take(usrbuf, bytes2);
4987 }
4988
4989 /* Encoding conversion */
4990 if (track->codec.filter)
4991 audio_apply_stage(track, &track->codec, false);
4992
4993 /* Channel volume */
4994 if (track->chvol.filter)
4995 audio_apply_stage(track, &track->chvol, false);
4996
4997 /* Channel mix */
4998 if (track->chmix.filter)
4999 audio_apply_stage(track, &track->chmix, false);
5000
5001 /* Frequency conversion */
5002 /*
5003 * Since the frequency conversion needs correction for each block,
5004 * it rounds up to 1 block.
5005 */
5006 if (track->freq.filter) {
5007 int n;
5008 n = audio_append_silence(track, &track->freq.srcbuf);
5009 if (n > 0) {
5010 TRACET(4, track,
5011 "freq.srcbuf add silence %d -> %d/%d/%d",
5012 n,
5013 track->freq.srcbuf.head,
5014 track->freq.srcbuf.used,
5015 track->freq.srcbuf.capacity);
5016 }
5017 if (track->freq.srcbuf.used > 0) {
5018 audio_apply_stage(track, &track->freq, true);
5019 }
5020 }
5021
5022 if (bytes < track->usrbuf_blksize) {
5023 /*
5024 * Clear all conversion buffer pointer if the conversion was
5025 * not exactly one block. These conversion stage buffers are
5026 * certainly circular buffers because of symmetry with the
5027 * previous and next stage buffer. However, since they are
5028 * treated as simple contiguous buffers in operation, so head
5029 * always should point 0. This may happen during drain-age.
5030 */
5031 TRACET(4, track, "reset stage");
5032 if (track->codec.filter) {
5033 KASSERT(track->codec.srcbuf.used == 0);
5034 track->codec.srcbuf.head = 0;
5035 }
5036 if (track->chvol.filter) {
5037 KASSERT(track->chvol.srcbuf.used == 0);
5038 track->chvol.srcbuf.head = 0;
5039 }
5040 if (track->chmix.filter) {
5041 KASSERT(track->chmix.srcbuf.used == 0);
5042 track->chmix.srcbuf.head = 0;
5043 }
5044 if (track->freq.filter) {
5045 KASSERT(track->freq.srcbuf.used == 0);
5046 track->freq.srcbuf.head = 0;
5047 }
5048 }
5049
5050 if (track->input == &track->outbuf) {
5051 track->outputcounter = track->inputcounter;
5052 } else {
5053 track->outputcounter += track->outbuf.used - track_count_0;
5054 }
5055
5056 track->stamp++;
5057
5058 #if defined(AUDIO_DEBUG)
5059 if (audiodebug >= 3) {
5060 struct audio_track_debugbuf m;
5061 audio_track_bufstat(track, &m);
5062 TRACET(0, track, "end%s%s%s%s%s%s",
5063 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
5064 }
5065 #endif
5066 }
5067
5068 /*
5069 * Produce user output buffer for recording from input buffer.
5070 */
5071 static void
5072 audio_track_record(audio_track_t *track)
5073 {
5074 audio_ring_t *outbuf;
5075 audio_ring_t *usrbuf;
5076 int count;
5077 int bytes;
5078 int framesize;
5079
5080 KASSERT(track);
5081 KASSERT(track->lock);
5082
5083 if (auring_get_contig_used(track->input) == 0) {
5084 TRACET(4, track, "input->used == 0");
5085 return;
5086 }
5087
5088 /* Frequency conversion */
5089 if (track->freq.filter) {
5090 if (track->freq.srcbuf.used > 0) {
5091 audio_apply_stage(track, &track->freq, true);
5092 /* XXX should input of freq be from beginning of buf? */
5093 }
5094 }
5095
5096 /* Channel mix */
5097 if (track->chmix.filter)
5098 audio_apply_stage(track, &track->chmix, false);
5099
5100 /* Channel volume */
5101 if (track->chvol.filter)
5102 audio_apply_stage(track, &track->chvol, false);
5103
5104 /* Encoding conversion */
5105 if (track->codec.filter)
5106 audio_apply_stage(track, &track->codec, false);
5107
5108 /* Copy outbuf to usrbuf */
5109 outbuf = &track->outbuf;
5110 usrbuf = &track->usrbuf;
5111 /* usrbuf should be empty. */
5112 KASSERT(usrbuf->used == 0);
5113 /*
5114 * framesize is always 1 byte or more since all formats supported
5115 * as usrfmt(=output) have 8bit or more stride.
5116 */
5117 framesize = frametobyte(&outbuf->fmt, 1);
5118 KASSERT(framesize >= 1);
5119 /*
5120 * count is the number of frames to copy to usrbuf.
5121 * bytes is the number of bytes to copy to usrbuf.
5122 */
5123 count = outbuf->used;
5124 count = uimin(count, track->usrbuf_blksize / framesize);
5125 bytes = count * framesize;
5126 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
5127 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5128 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5129 bytes);
5130 auring_push(usrbuf, bytes);
5131 auring_take(outbuf, count);
5132 } else {
5133 int bytes1;
5134 int bytes2;
5135
5136 bytes1 = auring_get_contig_free(usrbuf);
5137 KASSERTMSG(bytes1 % framesize == 0,
5138 "bytes1=%d framesize=%d", bytes1, framesize);
5139 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5140 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5141 bytes1);
5142 auring_push(usrbuf, bytes1);
5143 auring_take(outbuf, bytes1 / framesize);
5144
5145 bytes2 = bytes - bytes1;
5146 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5147 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5148 bytes2);
5149 auring_push(usrbuf, bytes2);
5150 auring_take(outbuf, bytes2 / framesize);
5151 }
5152
5153 /* XXX TODO: any counters here? */
5154
5155 #if defined(AUDIO_DEBUG)
5156 if (audiodebug >= 3) {
5157 struct audio_track_debugbuf m;
5158 audio_track_bufstat(track, &m);
5159 TRACET(0, track, "end%s%s%s%s%s%s",
5160 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
5161 }
5162 #endif
5163 }
5164
5165 /*
5166 * Calculate blktime [msec] from mixer(.hwbuf.fmt).
5167 * Must be called with sc_exlock held.
5168 */
5169 static u_int
5170 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
5171 {
5172 audio_format2_t *fmt;
5173 u_int blktime;
5174 u_int frames_per_block;
5175
5176 KASSERT(sc->sc_exlock);
5177
5178 fmt = &mixer->hwbuf.fmt;
5179 blktime = sc->sc_blk_ms;
5180
5181 /*
5182 * If stride is not multiples of 8, special treatment is necessary.
5183 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
5184 */
5185 if (fmt->stride == 4) {
5186 frames_per_block = fmt->sample_rate * blktime / 1000;
5187 if ((frames_per_block & 1) != 0)
5188 blktime *= 2;
5189 }
5190 #ifdef DIAGNOSTIC
5191 else if (fmt->stride % NBBY != 0) {
5192 panic("unsupported HW stride %d", fmt->stride);
5193 }
5194 #endif
5195
5196 return blktime;
5197 }
5198
5199 /*
5200 * Initialize the mixer corresponding to the mode.
5201 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
5202 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
5203 * This function returns 0 on successful. Otherwise returns errno.
5204 * Must be called with sc_exlock held and without sc_lock held.
5205 */
5206 static int
5207 audio_mixer_init(struct audio_softc *sc, int mode,
5208 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
5209 {
5210 char codecbuf[64];
5211 char blkdmsbuf[8];
5212 audio_trackmixer_t *mixer;
5213 void (*softint_handler)(void *);
5214 int len;
5215 int blksize;
5216 int capacity;
5217 size_t bufsize;
5218 int hwblks;
5219 int blkms;
5220 int blkdms;
5221 int error;
5222
5223 KASSERT(hwfmt != NULL);
5224 KASSERT(reg != NULL);
5225 KASSERT(sc->sc_exlock);
5226
5227 error = 0;
5228 if (mode == AUMODE_PLAY)
5229 mixer = sc->sc_pmixer;
5230 else
5231 mixer = sc->sc_rmixer;
5232
5233 mixer->sc = sc;
5234 mixer->mode = mode;
5235
5236 mixer->hwbuf.fmt = *hwfmt;
5237 mixer->volume = 256;
5238 mixer->blktime_d = 1000;
5239 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
5240 sc->sc_blk_ms = mixer->blktime_n;
5241 hwblks = NBLKHW;
5242
5243 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
5244 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5245 if (sc->hw_if->round_blocksize) {
5246 int rounded;
5247 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
5248 mutex_enter(sc->sc_lock);
5249 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
5250 mode, &p);
5251 mutex_exit(sc->sc_lock);
5252 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
5253 if (rounded != blksize) {
5254 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
5255 mixer->hwbuf.fmt.channels) != 0) {
5256 audio_printf(sc,
5257 "round_blocksize returned blocksize "
5258 "indivisible by framesize: "
5259 "blksize=%d rounded=%d "
5260 "stride=%ubit channels=%u\n",
5261 blksize, rounded,
5262 mixer->hwbuf.fmt.stride,
5263 mixer->hwbuf.fmt.channels);
5264 return EINVAL;
5265 }
5266 /* Recalculation */
5267 blksize = rounded;
5268 mixer->frames_per_block = blksize * NBBY /
5269 (mixer->hwbuf.fmt.stride *
5270 mixer->hwbuf.fmt.channels);
5271 }
5272 }
5273 mixer->blktime_n = mixer->frames_per_block;
5274 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
5275
5276 capacity = mixer->frames_per_block * hwblks;
5277 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
5278 if (sc->hw_if->round_buffersize) {
5279 size_t rounded;
5280 mutex_enter(sc->sc_lock);
5281 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
5282 bufsize);
5283 mutex_exit(sc->sc_lock);
5284 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
5285 if (rounded < bufsize) {
5286 /* buffersize needs NBLKHW blocks at least. */
5287 audio_printf(sc,
5288 "round_buffersize returned too small buffersize: "
5289 "buffersize=%zd blksize=%d\n",
5290 rounded, blksize);
5291 return EINVAL;
5292 }
5293 if (rounded % blksize != 0) {
5294 /* buffersize/blksize constraint mismatch? */
5295 audio_printf(sc,
5296 "round_buffersize returned buffersize indivisible "
5297 "by blksize: buffersize=%zu blksize=%d\n",
5298 rounded, blksize);
5299 return EINVAL;
5300 }
5301 if (rounded != bufsize) {
5302 /* Recalculation */
5303 bufsize = rounded;
5304 hwblks = bufsize / blksize;
5305 capacity = mixer->frames_per_block * hwblks;
5306 }
5307 }
5308 TRACE(1, "buffersize for %s = %zu",
5309 (mode == AUMODE_PLAY) ? "playback" : "recording",
5310 bufsize);
5311 mixer->hwbuf.capacity = capacity;
5312
5313 if (sc->hw_if->allocm) {
5314 /* sc_lock is not necessary for allocm */
5315 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
5316 if (mixer->hwbuf.mem == NULL) {
5317 audio_printf(sc, "allocm(%zu) failed\n", bufsize);
5318 return ENOMEM;
5319 }
5320 } else {
5321 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
5322 }
5323
5324 /* From here, audio_mixer_destroy is necessary to exit. */
5325 if (mode == AUMODE_PLAY) {
5326 cv_init(&mixer->outcv, "audiowr");
5327 } else {
5328 cv_init(&mixer->outcv, "audiord");
5329 }
5330
5331 if (mode == AUMODE_PLAY) {
5332 softint_handler = audio_softintr_wr;
5333 } else {
5334 softint_handler = audio_softintr_rd;
5335 }
5336 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
5337 softint_handler, sc);
5338 if (mixer->sih == NULL) {
5339 device_printf(sc->sc_dev, "softint_establish failed\n");
5340 goto abort;
5341 }
5342
5343 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
5344 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
5345 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
5346 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
5347 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
5348
5349 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
5350 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
5351 mixer->swap_endian = true;
5352 TRACE(1, "swap_endian");
5353 }
5354
5355 if (mode == AUMODE_PLAY) {
5356 /* Mixing buffer */
5357 mixer->mixfmt = mixer->track_fmt;
5358 mixer->mixfmt.precision *= 2;
5359 mixer->mixfmt.stride *= 2;
5360 /* XXX TODO: use some macros? */
5361 len = mixer->frames_per_block * mixer->mixfmt.channels *
5362 mixer->mixfmt.stride / NBBY;
5363 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5364 } else {
5365 /* No mixing buffer for recording */
5366 }
5367
5368 if (reg->codec) {
5369 mixer->codec = reg->codec;
5370 mixer->codecarg.context = reg->context;
5371 if (mode == AUMODE_PLAY) {
5372 mixer->codecarg.srcfmt = &mixer->track_fmt;
5373 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5374 } else {
5375 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5376 mixer->codecarg.dstfmt = &mixer->track_fmt;
5377 }
5378 mixer->codecbuf.fmt = mixer->track_fmt;
5379 mixer->codecbuf.capacity = mixer->frames_per_block;
5380 len = auring_bytelen(&mixer->codecbuf);
5381 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5382 if (mixer->codecbuf.mem == NULL) {
5383 device_printf(sc->sc_dev,
5384 "malloc codecbuf(%d) failed\n", len);
5385 error = ENOMEM;
5386 goto abort;
5387 }
5388 }
5389
5390 /* Succeeded so display it. */
5391 codecbuf[0] = '\0';
5392 if (mixer->codec || mixer->swap_endian) {
5393 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5394 (mode == AUMODE_PLAY) ? "->" : "<-",
5395 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5396 mixer->hwbuf.fmt.precision);
5397 }
5398 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5399 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5400 blkdmsbuf[0] = '\0';
5401 if (blkdms != 0) {
5402 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5403 }
5404 aprint_normal_dev(sc->sc_dev,
5405 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5406 audio_encoding_name(mixer->track_fmt.encoding),
5407 mixer->track_fmt.precision,
5408 codecbuf,
5409 mixer->track_fmt.channels,
5410 mixer->track_fmt.sample_rate,
5411 blksize,
5412 blkms, blkdmsbuf,
5413 (mode == AUMODE_PLAY) ? "playback" : "recording");
5414
5415 return 0;
5416
5417 abort:
5418 audio_mixer_destroy(sc, mixer);
5419 return error;
5420 }
5421
5422 /*
5423 * Releases all resources of 'mixer'.
5424 * Note that it does not release the memory area of 'mixer' itself.
5425 * Must be called with sc_exlock held and without sc_lock held.
5426 */
5427 static void
5428 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5429 {
5430 int bufsize;
5431
5432 KASSERT(sc->sc_exlock == 1);
5433
5434 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5435
5436 if (mixer->hwbuf.mem != NULL) {
5437 if (sc->hw_if->freem) {
5438 /* sc_lock is not necessary for freem */
5439 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5440 } else {
5441 kmem_free(mixer->hwbuf.mem, bufsize);
5442 }
5443 mixer->hwbuf.mem = NULL;
5444 }
5445
5446 audio_free(mixer->codecbuf.mem);
5447 audio_free(mixer->mixsample);
5448
5449 cv_destroy(&mixer->outcv);
5450
5451 if (mixer->sih) {
5452 softint_disestablish(mixer->sih);
5453 mixer->sih = NULL;
5454 }
5455 }
5456
5457 /*
5458 * Starts playback mixer.
5459 * Must be called only if sc_pbusy is false.
5460 * Must be called with sc_lock && sc_exlock held.
5461 * Must not be called from the interrupt context.
5462 */
5463 static void
5464 audio_pmixer_start(struct audio_softc *sc, bool force)
5465 {
5466 audio_trackmixer_t *mixer;
5467 int minimum;
5468
5469 KASSERT(mutex_owned(sc->sc_lock));
5470 KASSERT(sc->sc_exlock);
5471 KASSERT(sc->sc_pbusy == false);
5472
5473 mutex_enter(sc->sc_intr_lock);
5474
5475 mixer = sc->sc_pmixer;
5476 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5477 (audiodebug >= 3) ? "begin " : "",
5478 (int)mixer->mixseq, (int)mixer->hwseq,
5479 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5480 force ? " force" : "");
5481
5482 /* Need two blocks to start normally. */
5483 minimum = (force) ? 1 : 2;
5484 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5485 audio_pmixer_process(sc);
5486 }
5487
5488 /* Start output */
5489 audio_pmixer_output(sc);
5490 sc->sc_pbusy = true;
5491
5492 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5493 (int)mixer->mixseq, (int)mixer->hwseq,
5494 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5495
5496 mutex_exit(sc->sc_intr_lock);
5497 }
5498
5499 /*
5500 * When playing back with MD filter:
5501 *
5502 * track track ...
5503 * v v
5504 * + mix (with aint2_t)
5505 * | master volume (with aint2_t)
5506 * v
5507 * mixsample [::::] wide-int 1 block (ring) buffer
5508 * |
5509 * | convert aint2_t -> aint_t
5510 * v
5511 * codecbuf [....] 1 block (ring) buffer
5512 * |
5513 * | convert to hw format
5514 * v
5515 * hwbuf [............] NBLKHW blocks ring buffer
5516 *
5517 * When playing back without MD filter:
5518 *
5519 * mixsample [::::] wide-int 1 block (ring) buffer
5520 * |
5521 * | convert aint2_t -> aint_t
5522 * | (with byte swap if necessary)
5523 * v
5524 * hwbuf [............] NBLKHW blocks ring buffer
5525 *
5526 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5527 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5528 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5529 */
5530
5531 /*
5532 * Performs track mixing and converts it to hwbuf.
5533 * Note that this function doesn't transfer hwbuf to hardware.
5534 * Must be called with sc_intr_lock held.
5535 */
5536 static void
5537 audio_pmixer_process(struct audio_softc *sc)
5538 {
5539 audio_trackmixer_t *mixer;
5540 audio_file_t *f;
5541 int frame_count;
5542 int sample_count;
5543 int mixed;
5544 int i;
5545 aint2_t *m;
5546 aint_t *h;
5547
5548 mixer = sc->sc_pmixer;
5549
5550 frame_count = mixer->frames_per_block;
5551 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5552 "auring_get_contig_free()=%d frame_count=%d",
5553 auring_get_contig_free(&mixer->hwbuf), frame_count);
5554 sample_count = frame_count * mixer->mixfmt.channels;
5555
5556 mixer->mixseq++;
5557
5558 /* Mix all tracks */
5559 mixed = 0;
5560 SLIST_FOREACH(f, &sc->sc_files, entry) {
5561 audio_track_t *track = f->ptrack;
5562
5563 if (track == NULL)
5564 continue;
5565
5566 if (track->is_pause) {
5567 TRACET(4, track, "skip; paused");
5568 continue;
5569 }
5570
5571 /* Skip if the track is used by process context. */
5572 if (audio_track_lock_tryenter(track) == false) {
5573 TRACET(4, track, "skip; in use");
5574 continue;
5575 }
5576
5577 /* Emulate mmap'ped track */
5578 if (track->mmapped) {
5579 auring_push(&track->usrbuf, track->usrbuf_blksize);
5580 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5581 track->usrbuf.head,
5582 track->usrbuf.used,
5583 track->usrbuf.capacity);
5584 }
5585
5586 if (track->outbuf.used < mixer->frames_per_block &&
5587 track->usrbuf.used > 0) {
5588 TRACET(4, track, "process");
5589 audio_track_play(track);
5590 }
5591
5592 if (track->outbuf.used > 0) {
5593 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5594 } else {
5595 TRACET(4, track, "skip; empty");
5596 }
5597
5598 audio_track_lock_exit(track);
5599 }
5600
5601 if (mixed == 0) {
5602 /* Silence */
5603 memset(mixer->mixsample, 0,
5604 frametobyte(&mixer->mixfmt, frame_count));
5605 } else {
5606 if (mixed > 1) {
5607 /* If there are multiple tracks, do auto gain control */
5608 audio_pmixer_agc(mixer, sample_count);
5609 }
5610
5611 /* Apply master volume */
5612 if (mixer->volume < 256) {
5613 m = mixer->mixsample;
5614 for (i = 0; i < sample_count; i++) {
5615 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5616 m++;
5617 }
5618
5619 /*
5620 * Recover the volume gradually at the pace of
5621 * several times per second. If it's too fast, you
5622 * can recognize that the volume changes up and down
5623 * quickly and it's not so comfortable.
5624 */
5625 mixer->voltimer += mixer->blktime_n;
5626 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5627 mixer->volume++;
5628 mixer->voltimer = 0;
5629 #if defined(AUDIO_DEBUG_AGC)
5630 TRACE(1, "volume recover: %d", mixer->volume);
5631 #endif
5632 }
5633 }
5634 }
5635
5636 /*
5637 * The rest is the hardware part.
5638 */
5639
5640 if (mixer->codec) {
5641 h = auring_tailptr_aint(&mixer->codecbuf);
5642 } else {
5643 h = auring_tailptr_aint(&mixer->hwbuf);
5644 }
5645
5646 m = mixer->mixsample;
5647 if (mixer->swap_endian) {
5648 for (i = 0; i < sample_count; i++) {
5649 *h++ = bswap16(*m++);
5650 }
5651 } else {
5652 for (i = 0; i < sample_count; i++) {
5653 *h++ = *m++;
5654 }
5655 }
5656
5657 /* Hardware driver's codec */
5658 if (mixer->codec) {
5659 auring_push(&mixer->codecbuf, frame_count);
5660 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5661 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5662 mixer->codecarg.count = frame_count;
5663 mixer->codec(&mixer->codecarg);
5664 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5665 }
5666
5667 auring_push(&mixer->hwbuf, frame_count);
5668
5669 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5670 (int)mixer->mixseq,
5671 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5672 (mixed == 0) ? " silent" : "");
5673 }
5674
5675 /*
5676 * Do auto gain control.
5677 * Must be called sc_intr_lock held.
5678 */
5679 static void
5680 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5681 {
5682 struct audio_softc *sc __unused;
5683 aint2_t val;
5684 aint2_t maxval;
5685 aint2_t minval;
5686 aint2_t over_plus;
5687 aint2_t over_minus;
5688 aint2_t *m;
5689 int newvol;
5690 int i;
5691
5692 sc = mixer->sc;
5693
5694 /* Overflow detection */
5695 maxval = AINT_T_MAX;
5696 minval = AINT_T_MIN;
5697 m = mixer->mixsample;
5698 for (i = 0; i < sample_count; i++) {
5699 val = *m++;
5700 if (val > maxval)
5701 maxval = val;
5702 else if (val < minval)
5703 minval = val;
5704 }
5705
5706 /* Absolute value of overflowed amount */
5707 over_plus = maxval - AINT_T_MAX;
5708 over_minus = AINT_T_MIN - minval;
5709
5710 if (over_plus > 0 || over_minus > 0) {
5711 if (over_plus > over_minus) {
5712 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5713 } else {
5714 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5715 }
5716
5717 /*
5718 * Change the volume only if new one is smaller.
5719 * Reset the timer even if the volume isn't changed.
5720 */
5721 if (newvol <= mixer->volume) {
5722 mixer->volume = newvol;
5723 mixer->voltimer = 0;
5724 #if defined(AUDIO_DEBUG_AGC)
5725 TRACE(1, "auto volume adjust: %d", mixer->volume);
5726 #endif
5727 }
5728 }
5729 }
5730
5731 /*
5732 * Mix one track.
5733 * 'mixed' specifies the number of tracks mixed so far.
5734 * It returns the number of tracks mixed. In other words, it returns
5735 * mixed + 1 if this track is mixed.
5736 */
5737 static int
5738 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5739 int mixed)
5740 {
5741 int count;
5742 int sample_count;
5743 int remain;
5744 int i;
5745 const aint_t *s;
5746 aint2_t *d;
5747
5748 /* XXX TODO: Is this necessary for now? */
5749 if (mixer->mixseq < track->seq)
5750 return mixed;
5751
5752 count = auring_get_contig_used(&track->outbuf);
5753 count = uimin(count, mixer->frames_per_block);
5754
5755 s = auring_headptr_aint(&track->outbuf);
5756 d = mixer->mixsample;
5757
5758 /*
5759 * Apply track volume with double-sized integer and perform
5760 * additive synthesis.
5761 *
5762 * XXX If you limit the track volume to 1.0 or less (<= 256),
5763 * it would be better to do this in the track conversion stage
5764 * rather than here. However, if you accept the volume to
5765 * be greater than 1.0 (> 256), it's better to do it here.
5766 * Because the operation here is done by double-sized integer.
5767 */
5768 sample_count = count * mixer->mixfmt.channels;
5769 if (mixed == 0) {
5770 /* If this is the first track, assignment can be used. */
5771 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5772 if (track->volume != 256) {
5773 for (i = 0; i < sample_count; i++) {
5774 aint2_t v;
5775 v = *s++;
5776 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5777 }
5778 } else
5779 #endif
5780 {
5781 for (i = 0; i < sample_count; i++) {
5782 *d++ = ((aint2_t)*s++);
5783 }
5784 }
5785 /* Fill silence if the first track is not filled. */
5786 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5787 *d++ = 0;
5788 } else {
5789 /* If this is the second or later, add it. */
5790 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5791 if (track->volume != 256) {
5792 for (i = 0; i < sample_count; i++) {
5793 aint2_t v;
5794 v = *s++;
5795 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5796 }
5797 } else
5798 #endif
5799 {
5800 for (i = 0; i < sample_count; i++) {
5801 *d++ += ((aint2_t)*s++);
5802 }
5803 }
5804 }
5805
5806 auring_take(&track->outbuf, count);
5807 /*
5808 * The counters have to align block even if outbuf is less than
5809 * one block. XXX Is this still necessary?
5810 */
5811 remain = mixer->frames_per_block - count;
5812 if (__predict_false(remain != 0)) {
5813 auring_push(&track->outbuf, remain);
5814 auring_take(&track->outbuf, remain);
5815 }
5816
5817 /*
5818 * Update track sequence.
5819 * mixseq has previous value yet at this point.
5820 */
5821 track->seq = mixer->mixseq + 1;
5822
5823 return mixed + 1;
5824 }
5825
5826 /*
5827 * Output one block from hwbuf to HW.
5828 * Must be called with sc_intr_lock held.
5829 */
5830 static void
5831 audio_pmixer_output(struct audio_softc *sc)
5832 {
5833 audio_trackmixer_t *mixer;
5834 audio_params_t params;
5835 void *start;
5836 void *end;
5837 int blksize;
5838 int error;
5839
5840 mixer = sc->sc_pmixer;
5841 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5842 sc->sc_pbusy,
5843 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5844 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5845 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5846 mixer->hwbuf.used, mixer->frames_per_block);
5847
5848 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5849
5850 if (sc->hw_if->trigger_output) {
5851 /* trigger (at once) */
5852 if (!sc->sc_pbusy) {
5853 start = mixer->hwbuf.mem;
5854 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5855 params = format2_to_params(&mixer->hwbuf.fmt);
5856
5857 error = sc->hw_if->trigger_output(sc->hw_hdl,
5858 start, end, blksize, audio_pintr, sc, ¶ms);
5859 if (error) {
5860 audio_printf(sc,
5861 "trigger_output failed: errno=%d\n",
5862 error);
5863 return;
5864 }
5865 }
5866 } else {
5867 /* start (everytime) */
5868 start = auring_headptr(&mixer->hwbuf);
5869
5870 error = sc->hw_if->start_output(sc->hw_hdl,
5871 start, blksize, audio_pintr, sc);
5872 if (error) {
5873 audio_printf(sc,
5874 "start_output failed: errno=%d\n", error);
5875 return;
5876 }
5877 }
5878 }
5879
5880 /*
5881 * This is an interrupt handler for playback.
5882 * It is called with sc_intr_lock held.
5883 *
5884 * It is usually called from hardware interrupt. However, note that
5885 * for some drivers (e.g. uaudio) it is called from software interrupt.
5886 */
5887 static void
5888 audio_pintr(void *arg)
5889 {
5890 struct audio_softc *sc;
5891 audio_trackmixer_t *mixer;
5892
5893 sc = arg;
5894 KASSERT(mutex_owned(sc->sc_intr_lock));
5895
5896 if (sc->sc_dying)
5897 return;
5898 if (sc->sc_pbusy == false) {
5899 #if defined(DIAGNOSTIC)
5900 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5901 device_xname(sc->hw_dev));
5902 #endif
5903 return;
5904 }
5905
5906 mixer = sc->sc_pmixer;
5907 mixer->hw_complete_counter += mixer->frames_per_block;
5908 mixer->hwseq++;
5909
5910 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5911
5912 TRACE(4,
5913 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5914 mixer->hwseq, mixer->hw_complete_counter,
5915 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5916
5917 #if defined(AUDIO_HW_SINGLE_BUFFER)
5918 /*
5919 * Create a new block here and output it immediately.
5920 * It makes a latency lower but needs machine power.
5921 */
5922 audio_pmixer_process(sc);
5923 audio_pmixer_output(sc);
5924 #else
5925 /*
5926 * It is called when block N output is done.
5927 * Output immediately block N+1 created by the last interrupt.
5928 * And then create block N+2 for the next interrupt.
5929 * This method makes playback robust even on slower machines.
5930 * Instead the latency is increased by one block.
5931 */
5932
5933 /* At first, output ready block. */
5934 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5935 audio_pmixer_output(sc);
5936 }
5937
5938 bool later = false;
5939
5940 if (mixer->hwbuf.used < mixer->frames_per_block) {
5941 later = true;
5942 }
5943
5944 /* Then, process next block. */
5945 audio_pmixer_process(sc);
5946
5947 if (later) {
5948 audio_pmixer_output(sc);
5949 }
5950 #endif
5951
5952 /*
5953 * When this interrupt is the real hardware interrupt, disabling
5954 * preemption here is not necessary. But some drivers (e.g. uaudio)
5955 * emulate it by software interrupt, so kpreempt_disable is necessary.
5956 */
5957 kpreempt_disable();
5958 softint_schedule(mixer->sih);
5959 kpreempt_enable();
5960 }
5961
5962 /*
5963 * Starts record mixer.
5964 * Must be called only if sc_rbusy is false.
5965 * Must be called with sc_lock && sc_exlock held.
5966 * Must not be called from the interrupt context.
5967 */
5968 static void
5969 audio_rmixer_start(struct audio_softc *sc)
5970 {
5971
5972 KASSERT(mutex_owned(sc->sc_lock));
5973 KASSERT(sc->sc_exlock);
5974 KASSERT(sc->sc_rbusy == false);
5975
5976 mutex_enter(sc->sc_intr_lock);
5977
5978 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5979 audio_rmixer_input(sc);
5980 sc->sc_rbusy = true;
5981 TRACE(3, "end");
5982
5983 mutex_exit(sc->sc_intr_lock);
5984 }
5985
5986 /*
5987 * When recording with MD filter:
5988 *
5989 * hwbuf [............] NBLKHW blocks ring buffer
5990 * |
5991 * | convert from hw format
5992 * v
5993 * codecbuf [....] 1 block (ring) buffer
5994 * | |
5995 * v v
5996 * track track ...
5997 *
5998 * When recording without MD filter:
5999 *
6000 * hwbuf [............] NBLKHW blocks ring buffer
6001 * | |
6002 * v v
6003 * track track ...
6004 *
6005 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
6006 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
6007 */
6008
6009 /*
6010 * Distribute a recorded block to all recording tracks.
6011 */
6012 static void
6013 audio_rmixer_process(struct audio_softc *sc)
6014 {
6015 audio_trackmixer_t *mixer;
6016 audio_ring_t *mixersrc;
6017 audio_file_t *f;
6018 aint_t *p;
6019 int count;
6020 int bytes;
6021 int i;
6022
6023 mixer = sc->sc_rmixer;
6024
6025 /*
6026 * count is the number of frames to be retrieved this time.
6027 * count should be one block.
6028 */
6029 count = auring_get_contig_used(&mixer->hwbuf);
6030 count = uimin(count, mixer->frames_per_block);
6031 if (count <= 0) {
6032 TRACE(4, "count %d: too short", count);
6033 return;
6034 }
6035 bytes = frametobyte(&mixer->track_fmt, count);
6036
6037 /* Hardware driver's codec */
6038 if (mixer->codec) {
6039 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
6040 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
6041 mixer->codecarg.count = count;
6042 mixer->codec(&mixer->codecarg);
6043 auring_take(&mixer->hwbuf, mixer->codecarg.count);
6044 auring_push(&mixer->codecbuf, mixer->codecarg.count);
6045 mixersrc = &mixer->codecbuf;
6046 } else {
6047 mixersrc = &mixer->hwbuf;
6048 }
6049
6050 if (mixer->swap_endian) {
6051 /* inplace conversion */
6052 p = auring_headptr_aint(mixersrc);
6053 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
6054 *p = bswap16(*p);
6055 }
6056 }
6057
6058 /* Distribute to all tracks. */
6059 SLIST_FOREACH(f, &sc->sc_files, entry) {
6060 audio_track_t *track = f->rtrack;
6061 audio_ring_t *input;
6062
6063 if (track == NULL)
6064 continue;
6065
6066 if (track->is_pause) {
6067 TRACET(4, track, "skip; paused");
6068 continue;
6069 }
6070
6071 if (audio_track_lock_tryenter(track) == false) {
6072 TRACET(4, track, "skip; in use");
6073 continue;
6074 }
6075
6076 /*
6077 * If the track buffer has less than one block of free space,
6078 * make one block free.
6079 */
6080 input = track->input;
6081 if (input->capacity - input->used < mixer->frames_per_block) {
6082 int drops = mixer->frames_per_block -
6083 (input->capacity - input->used);
6084 track->dropframes += drops;
6085 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
6086 drops,
6087 input->head, input->used, input->capacity);
6088 auring_take(input, drops);
6089 }
6090
6091 KASSERTMSG(auring_tail(input) % mixer->frames_per_block == 0,
6092 "inputtail=%d mixer->frames_per_block=%d",
6093 auring_tail(input), mixer->frames_per_block);
6094 memcpy(auring_tailptr_aint(input),
6095 auring_headptr_aint(mixersrc),
6096 bytes);
6097 auring_push(input, count);
6098
6099 /* XXX sequence counter? */
6100
6101 audio_track_lock_exit(track);
6102 }
6103
6104 auring_take(mixersrc, count);
6105 }
6106
6107 /*
6108 * Input one block from HW to hwbuf.
6109 * Must be called with sc_intr_lock held.
6110 */
6111 static void
6112 audio_rmixer_input(struct audio_softc *sc)
6113 {
6114 audio_trackmixer_t *mixer;
6115 audio_params_t params;
6116 void *start;
6117 void *end;
6118 int blksize;
6119 int error;
6120
6121 mixer = sc->sc_rmixer;
6122 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
6123
6124 if (sc->hw_if->trigger_input) {
6125 /* trigger (at once) */
6126 if (!sc->sc_rbusy) {
6127 start = mixer->hwbuf.mem;
6128 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
6129 params = format2_to_params(&mixer->hwbuf.fmt);
6130
6131 error = sc->hw_if->trigger_input(sc->hw_hdl,
6132 start, end, blksize, audio_rintr, sc, ¶ms);
6133 if (error) {
6134 audio_printf(sc,
6135 "trigger_input failed: errno=%d\n",
6136 error);
6137 return;
6138 }
6139 }
6140 } else {
6141 /* start (everytime) */
6142 start = auring_tailptr(&mixer->hwbuf);
6143
6144 error = sc->hw_if->start_input(sc->hw_hdl,
6145 start, blksize, audio_rintr, sc);
6146 if (error) {
6147 audio_printf(sc,
6148 "start_input failed: errno=%d\n", error);
6149 return;
6150 }
6151 }
6152 }
6153
6154 /*
6155 * This is an interrupt handler for recording.
6156 * It is called with sc_intr_lock.
6157 *
6158 * It is usually called from hardware interrupt. However, note that
6159 * for some drivers (e.g. uaudio) it is called from software interrupt.
6160 */
6161 static void
6162 audio_rintr(void *arg)
6163 {
6164 struct audio_softc *sc;
6165 audio_trackmixer_t *mixer;
6166
6167 sc = arg;
6168 KASSERT(mutex_owned(sc->sc_intr_lock));
6169
6170 if (sc->sc_dying)
6171 return;
6172 if (sc->sc_rbusy == false) {
6173 #if defined(DIAGNOSTIC)
6174 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
6175 device_xname(sc->hw_dev));
6176 #endif
6177 return;
6178 }
6179
6180 mixer = sc->sc_rmixer;
6181 mixer->hw_complete_counter += mixer->frames_per_block;
6182 mixer->hwseq++;
6183
6184 auring_push(&mixer->hwbuf, mixer->frames_per_block);
6185
6186 TRACE(4,
6187 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
6188 mixer->hwseq, mixer->hw_complete_counter,
6189 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
6190
6191 /* Distrubute recorded block */
6192 audio_rmixer_process(sc);
6193
6194 /* Request next block */
6195 audio_rmixer_input(sc);
6196
6197 /*
6198 * When this interrupt is the real hardware interrupt, disabling
6199 * preemption here is not necessary. But some drivers (e.g. uaudio)
6200 * emulate it by software interrupt, so kpreempt_disable is necessary.
6201 */
6202 kpreempt_disable();
6203 softint_schedule(mixer->sih);
6204 kpreempt_enable();
6205 }
6206
6207 /*
6208 * Halts playback mixer.
6209 * This function also clears related parameters, so call this function
6210 * instead of calling halt_output directly.
6211 * Must be called only if sc_pbusy is true.
6212 * Must be called with sc_lock && sc_exlock held.
6213 */
6214 static int
6215 audio_pmixer_halt(struct audio_softc *sc)
6216 {
6217 int error;
6218
6219 TRACE(2, "called");
6220 KASSERT(mutex_owned(sc->sc_lock));
6221 KASSERT(sc->sc_exlock);
6222
6223 mutex_enter(sc->sc_intr_lock);
6224 error = sc->hw_if->halt_output(sc->hw_hdl);
6225
6226 /* Halts anyway even if some error has occurred. */
6227 sc->sc_pbusy = false;
6228 sc->sc_pmixer->hwbuf.head = 0;
6229 sc->sc_pmixer->hwbuf.used = 0;
6230 sc->sc_pmixer->mixseq = 0;
6231 sc->sc_pmixer->hwseq = 0;
6232 mutex_exit(sc->sc_intr_lock);
6233
6234 return error;
6235 }
6236
6237 /*
6238 * Halts recording mixer.
6239 * This function also clears related parameters, so call this function
6240 * instead of calling halt_input directly.
6241 * Must be called only if sc_rbusy is true.
6242 * Must be called with sc_lock && sc_exlock held.
6243 */
6244 static int
6245 audio_rmixer_halt(struct audio_softc *sc)
6246 {
6247 int error;
6248
6249 TRACE(2, "called");
6250 KASSERT(mutex_owned(sc->sc_lock));
6251 KASSERT(sc->sc_exlock);
6252
6253 mutex_enter(sc->sc_intr_lock);
6254 error = sc->hw_if->halt_input(sc->hw_hdl);
6255
6256 /* Halts anyway even if some error has occurred. */
6257 sc->sc_rbusy = false;
6258 sc->sc_rmixer->hwbuf.head = 0;
6259 sc->sc_rmixer->hwbuf.used = 0;
6260 sc->sc_rmixer->mixseq = 0;
6261 sc->sc_rmixer->hwseq = 0;
6262 mutex_exit(sc->sc_intr_lock);
6263
6264 return error;
6265 }
6266
6267 /*
6268 * Flush this track.
6269 * Halts all operations, clears all buffers, reset error counters.
6270 * XXX I'm not sure...
6271 */
6272 static void
6273 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
6274 {
6275
6276 KASSERT(track);
6277 TRACET(3, track, "clear");
6278
6279 audio_track_lock_enter(track);
6280
6281 track->usrbuf.used = 0;
6282 /* Clear all internal parameters. */
6283 if (track->codec.filter) {
6284 track->codec.srcbuf.used = 0;
6285 track->codec.srcbuf.head = 0;
6286 }
6287 if (track->chvol.filter) {
6288 track->chvol.srcbuf.used = 0;
6289 track->chvol.srcbuf.head = 0;
6290 }
6291 if (track->chmix.filter) {
6292 track->chmix.srcbuf.used = 0;
6293 track->chmix.srcbuf.head = 0;
6294 }
6295 if (track->freq.filter) {
6296 track->freq.srcbuf.used = 0;
6297 track->freq.srcbuf.head = 0;
6298 if (track->freq_step < 65536)
6299 track->freq_current = 65536;
6300 else
6301 track->freq_current = 0;
6302 memset(track->freq_prev, 0, sizeof(track->freq_prev));
6303 memset(track->freq_curr, 0, sizeof(track->freq_curr));
6304 }
6305 /* Clear buffer, then operation halts naturally. */
6306 track->outbuf.used = 0;
6307
6308 /* Clear counters. */
6309 track->stamp = 0;
6310 track->last_stamp = 0;
6311 track->dropframes = 0;
6312
6313 audio_track_lock_exit(track);
6314 }
6315
6316 /*
6317 * Drain the track.
6318 * track must be present and for playback.
6319 * If successful, it returns 0. Otherwise returns errno.
6320 * Must be called with sc_lock held.
6321 */
6322 static int
6323 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
6324 {
6325 audio_trackmixer_t *mixer;
6326 int done;
6327 int error;
6328
6329 KASSERT(track);
6330 TRACET(3, track, "start");
6331 mixer = track->mixer;
6332 KASSERT(mutex_owned(sc->sc_lock));
6333
6334 /* Ignore them if pause. */
6335 if (track->is_pause) {
6336 TRACET(3, track, "pause -> clear");
6337 track->pstate = AUDIO_STATE_CLEAR;
6338 }
6339 /* Terminate early here if there is no data in the track. */
6340 if (track->pstate == AUDIO_STATE_CLEAR) {
6341 TRACET(3, track, "no need to drain");
6342 return 0;
6343 }
6344 track->pstate = AUDIO_STATE_DRAINING;
6345
6346 for (;;) {
6347 /* I want to display it before condition evaluation. */
6348 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
6349 (int)curproc->p_pid, (int)curlwp->l_lid,
6350 (int)track->seq, (int)mixer->hwseq,
6351 track->outbuf.head, track->outbuf.used,
6352 track->outbuf.capacity);
6353
6354 /* Condition to terminate */
6355 audio_track_lock_enter(track);
6356 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
6357 track->outbuf.used == 0 &&
6358 track->seq <= mixer->hwseq);
6359 audio_track_lock_exit(track);
6360 if (done)
6361 break;
6362
6363 TRACET(3, track, "sleep");
6364 error = audio_track_waitio(sc, track);
6365 if (error)
6366 return error;
6367
6368 /* XXX call audio_track_play here ? */
6369 }
6370
6371 track->pstate = AUDIO_STATE_CLEAR;
6372 TRACET(3, track, "done trk_inp=%d trk_out=%d",
6373 (int)track->inputcounter, (int)track->outputcounter);
6374 return 0;
6375 }
6376
6377 /*
6378 * Send signal to process.
6379 * This is intended to be called only from audio_softintr_{rd,wr}.
6380 * Must be called without sc_intr_lock held.
6381 */
6382 static inline void
6383 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6384 {
6385 proc_t *p;
6386
6387 KASSERT(pid != 0);
6388
6389 /*
6390 * psignal() must be called without spin lock held.
6391 */
6392
6393 mutex_enter(&proc_lock);
6394 p = proc_find(pid);
6395 if (p)
6396 psignal(p, signum);
6397 mutex_exit(&proc_lock);
6398 }
6399
6400 /*
6401 * This is software interrupt handler for record.
6402 * It is called from recording hardware interrupt everytime.
6403 * It does:
6404 * - Deliver SIGIO for all async processes.
6405 * - Notify to audio_read() that data has arrived.
6406 * - selnotify() for select/poll-ing processes.
6407 */
6408 /*
6409 * XXX If a process issues FIOASYNC between hardware interrupt and
6410 * software interrupt, (stray) SIGIO will be sent to the process
6411 * despite the fact that it has not receive recorded data yet.
6412 */
6413 static void
6414 audio_softintr_rd(void *cookie)
6415 {
6416 struct audio_softc *sc = cookie;
6417 audio_file_t *f;
6418 pid_t pid;
6419
6420 mutex_enter(sc->sc_lock);
6421
6422 SLIST_FOREACH(f, &sc->sc_files, entry) {
6423 audio_track_t *track = f->rtrack;
6424
6425 if (track == NULL)
6426 continue;
6427
6428 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6429 track->input->head,
6430 track->input->used,
6431 track->input->capacity);
6432
6433 pid = f->async_audio;
6434 if (pid != 0) {
6435 TRACEF(4, f, "sending SIGIO %d", pid);
6436 audio_psignal(sc, pid, SIGIO);
6437 }
6438 }
6439
6440 /* Notify that data has arrived. */
6441 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6442 cv_broadcast(&sc->sc_rmixer->outcv);
6443
6444 mutex_exit(sc->sc_lock);
6445 }
6446
6447 /*
6448 * This is software interrupt handler for playback.
6449 * It is called from playback hardware interrupt everytime.
6450 * It does:
6451 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6452 * - Notify to audio_write() that outbuf block available.
6453 * - selnotify() for select/poll-ing processes if there are any writable
6454 * (used < lowat) processes. Checking each descriptor will be done by
6455 * filt_audiowrite_event().
6456 */
6457 static void
6458 audio_softintr_wr(void *cookie)
6459 {
6460 struct audio_softc *sc = cookie;
6461 audio_file_t *f;
6462 bool found;
6463 pid_t pid;
6464
6465 TRACE(4, "called");
6466 found = false;
6467
6468 mutex_enter(sc->sc_lock);
6469
6470 SLIST_FOREACH(f, &sc->sc_files, entry) {
6471 audio_track_t *track = f->ptrack;
6472
6473 if (track == NULL)
6474 continue;
6475
6476 TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6477 (int)track->seq,
6478 track->outbuf.head,
6479 track->outbuf.used,
6480 track->outbuf.capacity);
6481
6482 /*
6483 * Send a signal if the process is async mode and
6484 * used is lower than lowat.
6485 */
6486 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6487 !track->is_pause) {
6488 /* For selnotify */
6489 found = true;
6490 /* For SIGIO */
6491 pid = f->async_audio;
6492 if (pid != 0) {
6493 TRACEF(4, f, "sending SIGIO %d", pid);
6494 audio_psignal(sc, pid, SIGIO);
6495 }
6496 }
6497 }
6498
6499 /*
6500 * Notify for select/poll when someone become writable.
6501 * It needs sc_lock (and not sc_intr_lock).
6502 */
6503 if (found) {
6504 TRACE(4, "selnotify");
6505 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6506 }
6507
6508 /* Notify to audio_write() that outbuf available. */
6509 cv_broadcast(&sc->sc_pmixer->outcv);
6510
6511 mutex_exit(sc->sc_lock);
6512 }
6513
6514 /*
6515 * Check (and convert) the format *p came from userland.
6516 * If successful, it writes back the converted format to *p if necessary and
6517 * returns 0. Otherwise returns errno (*p may be changed even in this case).
6518 */
6519 static int
6520 audio_check_params(audio_format2_t *p)
6521 {
6522
6523 /*
6524 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6525 *
6526 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6527 * So, it's always signed, as in SunOS.
6528 *
6529 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6530 * So, it's always unsigned, as in SunOS.
6531 */
6532 if (p->encoding == AUDIO_ENCODING_PCM16) {
6533 p->encoding = AUDIO_ENCODING_SLINEAR;
6534 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6535 if (p->precision == 8)
6536 p->encoding = AUDIO_ENCODING_ULINEAR;
6537 else
6538 return EINVAL;
6539 }
6540
6541 /*
6542 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6543 * suffix.
6544 */
6545 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6546 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6547 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6548 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6549
6550 switch (p->encoding) {
6551 case AUDIO_ENCODING_ULAW:
6552 case AUDIO_ENCODING_ALAW:
6553 if (p->precision != 8)
6554 return EINVAL;
6555 break;
6556 case AUDIO_ENCODING_ADPCM:
6557 if (p->precision != 4 && p->precision != 8)
6558 return EINVAL;
6559 break;
6560 case AUDIO_ENCODING_SLINEAR_LE:
6561 case AUDIO_ENCODING_SLINEAR_BE:
6562 case AUDIO_ENCODING_ULINEAR_LE:
6563 case AUDIO_ENCODING_ULINEAR_BE:
6564 if (p->precision != 8 && p->precision != 16 &&
6565 p->precision != 24 && p->precision != 32)
6566 return EINVAL;
6567
6568 /* 8bit format does not have endianness. */
6569 if (p->precision == 8) {
6570 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6571 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6572 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6573 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6574 }
6575
6576 if (p->precision > p->stride)
6577 return EINVAL;
6578 break;
6579 case AUDIO_ENCODING_MPEG_L1_STREAM:
6580 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6581 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6582 case AUDIO_ENCODING_MPEG_L2_STREAM:
6583 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6584 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6585 case AUDIO_ENCODING_AC3:
6586 break;
6587 default:
6588 return EINVAL;
6589 }
6590
6591 /* sanity check # of channels*/
6592 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6593 return EINVAL;
6594
6595 return 0;
6596 }
6597
6598 /*
6599 * Initialize playback and record mixers.
6600 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6601 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6602 * the filter registration information. These four must not be NULL.
6603 * If successful returns 0. Otherwise returns errno.
6604 * Must be called with sc_exlock held and without sc_lock held.
6605 * Must not be called if there are any tracks.
6606 * Caller should check that the initialization succeed by whether
6607 * sc_[pr]mixer is not NULL.
6608 */
6609 static int
6610 audio_mixers_init(struct audio_softc *sc, int mode,
6611 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6612 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6613 {
6614 int error;
6615
6616 KASSERT(phwfmt != NULL);
6617 KASSERT(rhwfmt != NULL);
6618 KASSERT(pfil != NULL);
6619 KASSERT(rfil != NULL);
6620 KASSERT(sc->sc_exlock);
6621
6622 if ((mode & AUMODE_PLAY)) {
6623 if (sc->sc_pmixer == NULL) {
6624 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6625 KM_SLEEP);
6626 } else {
6627 /* destroy() doesn't free memory. */
6628 audio_mixer_destroy(sc, sc->sc_pmixer);
6629 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6630 }
6631 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6632 if (error) {
6633 /* audio_mixer_init already displayed error code */
6634 audio_printf(sc, "configuring playback mode failed\n");
6635 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6636 sc->sc_pmixer = NULL;
6637 return error;
6638 }
6639 }
6640 if ((mode & AUMODE_RECORD)) {
6641 if (sc->sc_rmixer == NULL) {
6642 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6643 KM_SLEEP);
6644 } else {
6645 /* destroy() doesn't free memory. */
6646 audio_mixer_destroy(sc, sc->sc_rmixer);
6647 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6648 }
6649 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6650 if (error) {
6651 /* audio_mixer_init already displayed error code */
6652 audio_printf(sc, "configuring record mode failed\n");
6653 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6654 sc->sc_rmixer = NULL;
6655 return error;
6656 }
6657 }
6658
6659 return 0;
6660 }
6661
6662 /*
6663 * Select a frequency.
6664 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6665 * XXX Better algorithm?
6666 */
6667 static int
6668 audio_select_freq(const struct audio_format *fmt)
6669 {
6670 int freq;
6671 int high;
6672 int low;
6673 int j;
6674
6675 if (fmt->frequency_type == 0) {
6676 low = fmt->frequency[0];
6677 high = fmt->frequency[1];
6678 freq = 48000;
6679 if (low <= freq && freq <= high) {
6680 return freq;
6681 }
6682 freq = 44100;
6683 if (low <= freq && freq <= high) {
6684 return freq;
6685 }
6686 return high;
6687 } else {
6688 for (j = 0; j < fmt->frequency_type; j++) {
6689 if (fmt->frequency[j] == 48000) {
6690 return fmt->frequency[j];
6691 }
6692 }
6693 high = 0;
6694 for (j = 0; j < fmt->frequency_type; j++) {
6695 if (fmt->frequency[j] == 44100) {
6696 return fmt->frequency[j];
6697 }
6698 if (fmt->frequency[j] > high) {
6699 high = fmt->frequency[j];
6700 }
6701 }
6702 return high;
6703 }
6704 }
6705
6706 /*
6707 * Choose the most preferred hardware format.
6708 * If successful, it will store the chosen format into *cand and return 0.
6709 * Otherwise, return errno.
6710 * Must be called without sc_lock held.
6711 */
6712 static int
6713 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6714 {
6715 audio_format_query_t query;
6716 int cand_score;
6717 int score;
6718 int i;
6719 int error;
6720
6721 /*
6722 * Score each formats and choose the highest one.
6723 *
6724 * +---- priority(0-3)
6725 * |+--- encoding/precision
6726 * ||+-- channels
6727 * score = 0x000000PEC
6728 */
6729
6730 cand_score = 0;
6731 for (i = 0; ; i++) {
6732 memset(&query, 0, sizeof(query));
6733 query.index = i;
6734
6735 mutex_enter(sc->sc_lock);
6736 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6737 mutex_exit(sc->sc_lock);
6738 if (error == EINVAL)
6739 break;
6740 if (error)
6741 return error;
6742
6743 #if defined(AUDIO_DEBUG)
6744 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6745 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6746 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6747 query.fmt.priority,
6748 audio_encoding_name(query.fmt.encoding),
6749 query.fmt.validbits,
6750 query.fmt.precision,
6751 query.fmt.channels);
6752 if (query.fmt.frequency_type == 0) {
6753 DPRINTF(1, "{%d-%d",
6754 query.fmt.frequency[0], query.fmt.frequency[1]);
6755 } else {
6756 int j;
6757 for (j = 0; j < query.fmt.frequency_type; j++) {
6758 DPRINTF(1, "%c%d",
6759 (j == 0) ? '{' : ',',
6760 query.fmt.frequency[j]);
6761 }
6762 }
6763 DPRINTF(1, "}\n");
6764 #endif
6765
6766 if ((query.fmt.mode & mode) == 0) {
6767 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6768 mode);
6769 continue;
6770 }
6771
6772 if (query.fmt.priority < 0) {
6773 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6774 continue;
6775 }
6776
6777 /* Score */
6778 score = (query.fmt.priority & 3) * 0x100;
6779 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6780 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6781 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6782 score += 0x20;
6783 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6784 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6785 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6786 score += 0x10;
6787 }
6788
6789 /* Do not prefer surround formats */
6790 if (query.fmt.channels <= 2)
6791 score += query.fmt.channels;
6792
6793 if (score < cand_score) {
6794 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6795 score, cand_score);
6796 continue;
6797 }
6798
6799 /* Update candidate */
6800 cand_score = score;
6801 cand->encoding = query.fmt.encoding;
6802 cand->precision = query.fmt.validbits;
6803 cand->stride = query.fmt.precision;
6804 cand->channels = query.fmt.channels;
6805 cand->sample_rate = audio_select_freq(&query.fmt);
6806 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6807 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6808 cand_score, query.fmt.priority,
6809 audio_encoding_name(query.fmt.encoding),
6810 cand->precision, cand->stride,
6811 cand->channels, cand->sample_rate);
6812 }
6813
6814 if (cand_score == 0) {
6815 DPRINTF(1, "%s no fmt\n", __func__);
6816 return ENXIO;
6817 }
6818 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6819 audio_encoding_name(cand->encoding),
6820 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6821 return 0;
6822 }
6823
6824 /*
6825 * Validate fmt with query_format.
6826 * If fmt is included in the result of query_format, returns 0.
6827 * Otherwise returns EINVAL.
6828 * Must be called without sc_lock held.
6829 */
6830 static int
6831 audio_hw_validate_format(struct audio_softc *sc, int mode,
6832 const audio_format2_t *fmt)
6833 {
6834 audio_format_query_t query;
6835 struct audio_format *q;
6836 int index;
6837 int error;
6838 int j;
6839
6840 for (index = 0; ; index++) {
6841 query.index = index;
6842 mutex_enter(sc->sc_lock);
6843 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6844 mutex_exit(sc->sc_lock);
6845 if (error == EINVAL)
6846 break;
6847 if (error)
6848 return error;
6849
6850 q = &query.fmt;
6851 /*
6852 * Note that fmt is audio_format2_t (precision/stride) but
6853 * q is audio_format_t (validbits/precision).
6854 */
6855 if ((q->mode & mode) == 0) {
6856 continue;
6857 }
6858 if (fmt->encoding != q->encoding) {
6859 continue;
6860 }
6861 if (fmt->precision != q->validbits) {
6862 continue;
6863 }
6864 if (fmt->stride != q->precision) {
6865 continue;
6866 }
6867 if (fmt->channels != q->channels) {
6868 continue;
6869 }
6870 if (q->frequency_type == 0) {
6871 if (fmt->sample_rate < q->frequency[0] ||
6872 fmt->sample_rate > q->frequency[1]) {
6873 continue;
6874 }
6875 } else {
6876 for (j = 0; j < q->frequency_type; j++) {
6877 if (fmt->sample_rate == q->frequency[j])
6878 break;
6879 }
6880 if (j == query.fmt.frequency_type) {
6881 continue;
6882 }
6883 }
6884
6885 /* Matched. */
6886 return 0;
6887 }
6888
6889 return EINVAL;
6890 }
6891
6892 /*
6893 * Set track mixer's format depending on ai->mode.
6894 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6895 * with ai.play.*.
6896 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6897 * with ai.record.*.
6898 * All other fields in ai are ignored.
6899 * If successful returns 0. Otherwise returns errno.
6900 * This function does not roll back even if it fails.
6901 * Must be called with sc_exlock held and without sc_lock held.
6902 */
6903 static int
6904 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6905 {
6906 audio_format2_t phwfmt;
6907 audio_format2_t rhwfmt;
6908 audio_filter_reg_t pfil;
6909 audio_filter_reg_t rfil;
6910 int mode;
6911 int error;
6912
6913 KASSERT(sc->sc_exlock);
6914
6915 /*
6916 * Even when setting either one of playback and recording,
6917 * both must be halted.
6918 */
6919 if (sc->sc_popens + sc->sc_ropens > 0)
6920 return EBUSY;
6921
6922 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6923 return ENOTTY;
6924
6925 mode = ai->mode;
6926 if ((mode & AUMODE_PLAY)) {
6927 phwfmt.encoding = ai->play.encoding;
6928 phwfmt.precision = ai->play.precision;
6929 phwfmt.stride = ai->play.precision;
6930 phwfmt.channels = ai->play.channels;
6931 phwfmt.sample_rate = ai->play.sample_rate;
6932 }
6933 if ((mode & AUMODE_RECORD)) {
6934 rhwfmt.encoding = ai->record.encoding;
6935 rhwfmt.precision = ai->record.precision;
6936 rhwfmt.stride = ai->record.precision;
6937 rhwfmt.channels = ai->record.channels;
6938 rhwfmt.sample_rate = ai->record.sample_rate;
6939 }
6940
6941 /* On non-independent devices, use the same format for both. */
6942 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6943 if (mode == AUMODE_RECORD) {
6944 phwfmt = rhwfmt;
6945 } else {
6946 rhwfmt = phwfmt;
6947 }
6948 mode = AUMODE_PLAY | AUMODE_RECORD;
6949 }
6950
6951 /* Then, unset the direction not exist on the hardware. */
6952 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6953 mode &= ~AUMODE_PLAY;
6954 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6955 mode &= ~AUMODE_RECORD;
6956
6957 /* debug */
6958 if ((mode & AUMODE_PLAY)) {
6959 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6960 audio_encoding_name(phwfmt.encoding),
6961 phwfmt.precision,
6962 phwfmt.stride,
6963 phwfmt.channels,
6964 phwfmt.sample_rate);
6965 }
6966 if ((mode & AUMODE_RECORD)) {
6967 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6968 audio_encoding_name(rhwfmt.encoding),
6969 rhwfmt.precision,
6970 rhwfmt.stride,
6971 rhwfmt.channels,
6972 rhwfmt.sample_rate);
6973 }
6974
6975 /* Check the format */
6976 if ((mode & AUMODE_PLAY)) {
6977 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6978 TRACE(1, "invalid format");
6979 return EINVAL;
6980 }
6981 }
6982 if ((mode & AUMODE_RECORD)) {
6983 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6984 TRACE(1, "invalid format");
6985 return EINVAL;
6986 }
6987 }
6988
6989 /* Configure the mixers. */
6990 memset(&pfil, 0, sizeof(pfil));
6991 memset(&rfil, 0, sizeof(rfil));
6992 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6993 if (error)
6994 return error;
6995
6996 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6997 if (error)
6998 return error;
6999
7000 /*
7001 * Reinitialize the sticky parameters for /dev/sound.
7002 * If the number of the hardware channels becomes less than the number
7003 * of channels that sticky parameters remember, subsequent /dev/sound
7004 * open will fail. To prevent this, reinitialize the sticky
7005 * parameters whenever the hardware format is changed.
7006 */
7007 sc->sc_sound_pparams = params_to_format2(&audio_default);
7008 sc->sc_sound_rparams = params_to_format2(&audio_default);
7009 sc->sc_sound_ppause = false;
7010 sc->sc_sound_rpause = false;
7011
7012 return 0;
7013 }
7014
7015 /*
7016 * Store current mixers format into *ai.
7017 * Must be called with sc_exlock held.
7018 */
7019 static void
7020 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
7021 {
7022
7023 KASSERT(sc->sc_exlock);
7024
7025 /*
7026 * There is no stride information in audio_info but it doesn't matter.
7027 * trackmixer always treats stride and precision as the same.
7028 */
7029 AUDIO_INITINFO(ai);
7030 ai->mode = 0;
7031 if (sc->sc_pmixer) {
7032 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
7033 ai->play.encoding = fmt->encoding;
7034 ai->play.precision = fmt->precision;
7035 ai->play.channels = fmt->channels;
7036 ai->play.sample_rate = fmt->sample_rate;
7037 ai->mode |= AUMODE_PLAY;
7038 }
7039 if (sc->sc_rmixer) {
7040 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
7041 ai->record.encoding = fmt->encoding;
7042 ai->record.precision = fmt->precision;
7043 ai->record.channels = fmt->channels;
7044 ai->record.sample_rate = fmt->sample_rate;
7045 ai->mode |= AUMODE_RECORD;
7046 }
7047 }
7048
7049 /*
7050 * audio_info details:
7051 *
7052 * ai.{play,record}.sample_rate (R/W)
7053 * ai.{play,record}.encoding (R/W)
7054 * ai.{play,record}.precision (R/W)
7055 * ai.{play,record}.channels (R/W)
7056 * These specify the playback or recording format.
7057 * Ignore members within an inactive track.
7058 *
7059 * ai.mode (R/W)
7060 * It specifies the playback or recording mode, AUMODE_*.
7061 * Currently, a mode change operation by ai.mode after opening is
7062 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
7063 * However, it's possible to get or to set for backward compatibility.
7064 *
7065 * ai.{hiwat,lowat} (R/W)
7066 * These specify the high water mark and low water mark for playback
7067 * track. The unit is block.
7068 *
7069 * ai.{play,record}.gain (R/W)
7070 * It specifies the HW mixer volume in 0-255.
7071 * It is historical reason that the gain is connected to HW mixer.
7072 *
7073 * ai.{play,record}.balance (R/W)
7074 * It specifies the left-right balance of HW mixer in 0-64.
7075 * 32 means the center.
7076 * It is historical reason that the balance is connected to HW mixer.
7077 *
7078 * ai.{play,record}.port (R/W)
7079 * It specifies the input/output port of HW mixer.
7080 *
7081 * ai.monitor_gain (R/W)
7082 * It specifies the recording monitor gain(?) of HW mixer.
7083 *
7084 * ai.{play,record}.pause (R/W)
7085 * Non-zero means the track is paused.
7086 *
7087 * ai.play.seek (R/-)
7088 * It indicates the number of bytes written but not processed.
7089 * ai.record.seek (R/-)
7090 * It indicates the number of bytes to be able to read.
7091 *
7092 * ai.{play,record}.avail_ports (R/-)
7093 * Mixer info.
7094 *
7095 * ai.{play,record}.buffer_size (R/-)
7096 * It indicates the buffer size in bytes. Internally it means usrbuf.
7097 *
7098 * ai.{play,record}.samples (R/-)
7099 * It indicates the total number of bytes played or recorded.
7100 *
7101 * ai.{play,record}.eof (R/-)
7102 * It indicates the number of times reached EOF(?).
7103 *
7104 * ai.{play,record}.error (R/-)
7105 * Non-zero indicates overflow/underflow has occurred.
7106 *
7107 * ai.{play,record}.waiting (R/-)
7108 * Non-zero indicates that other process waits to open.
7109 * It will never happen anymore.
7110 *
7111 * ai.{play,record}.open (R/-)
7112 * Non-zero indicates the direction is opened by this process(?).
7113 * XXX Is this better to indicate that "the device is opened by
7114 * at least one process"?
7115 *
7116 * ai.{play,record}.active (R/-)
7117 * Non-zero indicates that I/O is currently active.
7118 *
7119 * ai.blocksize (R/-)
7120 * It indicates the block size in bytes.
7121 * XXX The blocksize of playback and recording may be different.
7122 */
7123
7124 /*
7125 * Pause consideration:
7126 *
7127 * Pausing/unpausing never affect [pr]mixer. This single rule makes
7128 * operation simple. Note that playback and recording are asymmetric.
7129 *
7130 * For playback,
7131 * 1. Any playback open doesn't start pmixer regardless of initial pause
7132 * state of this track.
7133 * 2. The first write access among playback tracks only starts pmixer
7134 * regardless of this track's pause state.
7135 * 3. Even a pause of the last playback track doesn't stop pmixer.
7136 * 4. The last close of all playback tracks only stops pmixer.
7137 *
7138 * For recording,
7139 * 1. The first recording open only starts rmixer regardless of initial
7140 * pause state of this track.
7141 * 2. Even a pause of the last track doesn't stop rmixer.
7142 * 3. The last close of all recording tracks only stops rmixer.
7143 */
7144
7145 /*
7146 * Set both track's parameters within a file depending on ai.
7147 * Update sc_sound_[pr]* if set.
7148 * Must be called with sc_exlock held and without sc_lock held.
7149 */
7150 static int
7151 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
7152 const struct audio_info *ai)
7153 {
7154 const struct audio_prinfo *pi;
7155 const struct audio_prinfo *ri;
7156 audio_track_t *ptrack;
7157 audio_track_t *rtrack;
7158 audio_format2_t pfmt;
7159 audio_format2_t rfmt;
7160 int pchanges;
7161 int rchanges;
7162 int mode;
7163 struct audio_info saved_ai;
7164 audio_format2_t saved_pfmt;
7165 audio_format2_t saved_rfmt;
7166 int error;
7167
7168 KASSERT(sc->sc_exlock);
7169
7170 pi = &ai->play;
7171 ri = &ai->record;
7172 pchanges = 0;
7173 rchanges = 0;
7174
7175 ptrack = file->ptrack;
7176 rtrack = file->rtrack;
7177
7178 #if defined(AUDIO_DEBUG)
7179 if (audiodebug >= 2) {
7180 char buf[256];
7181 char p[64];
7182 int buflen;
7183 int plen;
7184 #define SPRINTF(var, fmt...) do { \
7185 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
7186 } while (0)
7187
7188 buflen = 0;
7189 plen = 0;
7190 if (SPECIFIED(pi->encoding))
7191 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
7192 if (SPECIFIED(pi->precision))
7193 SPRINTF(p, "/%dbit", pi->precision);
7194 if (SPECIFIED(pi->channels))
7195 SPRINTF(p, "/%dch", pi->channels);
7196 if (SPECIFIED(pi->sample_rate))
7197 SPRINTF(p, "/%dHz", pi->sample_rate);
7198 if (plen > 0)
7199 SPRINTF(buf, ",play.param=%s", p + 1);
7200
7201 plen = 0;
7202 if (SPECIFIED(ri->encoding))
7203 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
7204 if (SPECIFIED(ri->precision))
7205 SPRINTF(p, "/%dbit", ri->precision);
7206 if (SPECIFIED(ri->channels))
7207 SPRINTF(p, "/%dch", ri->channels);
7208 if (SPECIFIED(ri->sample_rate))
7209 SPRINTF(p, "/%dHz", ri->sample_rate);
7210 if (plen > 0)
7211 SPRINTF(buf, ",record.param=%s", p + 1);
7212
7213 if (SPECIFIED(ai->mode))
7214 SPRINTF(buf, ",mode=%d", ai->mode);
7215 if (SPECIFIED(ai->hiwat))
7216 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
7217 if (SPECIFIED(ai->lowat))
7218 SPRINTF(buf, ",lowat=%d", ai->lowat);
7219 if (SPECIFIED(ai->play.gain))
7220 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
7221 if (SPECIFIED(ai->record.gain))
7222 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
7223 if (SPECIFIED_CH(ai->play.balance))
7224 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
7225 if (SPECIFIED_CH(ai->record.balance))
7226 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
7227 if (SPECIFIED(ai->play.port))
7228 SPRINTF(buf, ",play.port=%d", ai->play.port);
7229 if (SPECIFIED(ai->record.port))
7230 SPRINTF(buf, ",record.port=%d", ai->record.port);
7231 if (SPECIFIED(ai->monitor_gain))
7232 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
7233 if (SPECIFIED_CH(ai->play.pause))
7234 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
7235 if (SPECIFIED_CH(ai->record.pause))
7236 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
7237
7238 if (buflen > 0)
7239 TRACE(2, "specified %s", buf + 1);
7240 }
7241 #endif
7242
7243 AUDIO_INITINFO(&saved_ai);
7244 /* XXX shut up gcc */
7245 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
7246 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
7247
7248 /*
7249 * Set default value and save current parameters.
7250 * For backward compatibility, use sticky parameters for nonexistent
7251 * track.
7252 */
7253 if (ptrack) {
7254 pfmt = ptrack->usrbuf.fmt;
7255 saved_pfmt = ptrack->usrbuf.fmt;
7256 saved_ai.play.pause = ptrack->is_pause;
7257 } else {
7258 pfmt = sc->sc_sound_pparams;
7259 }
7260 if (rtrack) {
7261 rfmt = rtrack->usrbuf.fmt;
7262 saved_rfmt = rtrack->usrbuf.fmt;
7263 saved_ai.record.pause = rtrack->is_pause;
7264 } else {
7265 rfmt = sc->sc_sound_rparams;
7266 }
7267 saved_ai.mode = file->mode;
7268
7269 /*
7270 * Overwrite if specified.
7271 */
7272 mode = file->mode;
7273 if (SPECIFIED(ai->mode)) {
7274 /*
7275 * Setting ai->mode no longer does anything because it's
7276 * prohibited to change playback/recording mode after open
7277 * and AUMODE_PLAY_ALL is obsoleted. However, it still
7278 * keeps the state of AUMODE_PLAY_ALL itself for backward
7279 * compatibility.
7280 * In the internal, only file->mode has the state of
7281 * AUMODE_PLAY_ALL flag and track->mode in both track does
7282 * not have.
7283 */
7284 if ((file->mode & AUMODE_PLAY)) {
7285 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
7286 | (ai->mode & AUMODE_PLAY_ALL);
7287 }
7288 }
7289
7290 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
7291 if (pchanges == -1) {
7292 #if defined(AUDIO_DEBUG)
7293 TRACEF(1, file, "check play.params failed: "
7294 "%s %ubit %uch %uHz",
7295 audio_encoding_name(pi->encoding),
7296 pi->precision,
7297 pi->channels,
7298 pi->sample_rate);
7299 #endif
7300 return EINVAL;
7301 }
7302
7303 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
7304 if (rchanges == -1) {
7305 #if defined(AUDIO_DEBUG)
7306 TRACEF(1, file, "check record.params failed: "
7307 "%s %ubit %uch %uHz",
7308 audio_encoding_name(ri->encoding),
7309 ri->precision,
7310 ri->channels,
7311 ri->sample_rate);
7312 #endif
7313 return EINVAL;
7314 }
7315
7316 if (SPECIFIED(ai->mode)) {
7317 pchanges = 1;
7318 rchanges = 1;
7319 }
7320
7321 /*
7322 * Even when setting either one of playback and recording,
7323 * both track must be halted.
7324 */
7325 if (pchanges || rchanges) {
7326 audio_file_clear(sc, file);
7327 #if defined(AUDIO_DEBUG)
7328 char nbuf[16];
7329 char fmtbuf[64];
7330 if (pchanges) {
7331 if (ptrack) {
7332 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
7333 } else {
7334 snprintf(nbuf, sizeof(nbuf), "-");
7335 }
7336 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
7337 DPRINTF(1, "audio track#%s play mode: %s\n",
7338 nbuf, fmtbuf);
7339 }
7340 if (rchanges) {
7341 if (rtrack) {
7342 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
7343 } else {
7344 snprintf(nbuf, sizeof(nbuf), "-");
7345 }
7346 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
7347 DPRINTF(1, "audio track#%s rec mode: %s\n",
7348 nbuf, fmtbuf);
7349 }
7350 #endif
7351 }
7352
7353 /* Set mixer parameters */
7354 mutex_enter(sc->sc_lock);
7355 error = audio_hw_setinfo(sc, ai, &saved_ai);
7356 mutex_exit(sc->sc_lock);
7357 if (error)
7358 goto abort1;
7359
7360 /*
7361 * Set to track and update sticky parameters.
7362 */
7363 error = 0;
7364 file->mode = mode;
7365
7366 if (SPECIFIED_CH(pi->pause)) {
7367 if (ptrack)
7368 ptrack->is_pause = pi->pause;
7369 sc->sc_sound_ppause = pi->pause;
7370 }
7371 if (pchanges) {
7372 if (ptrack) {
7373 audio_track_lock_enter(ptrack);
7374 error = audio_track_set_format(ptrack, &pfmt);
7375 audio_track_lock_exit(ptrack);
7376 if (error) {
7377 TRACET(1, ptrack, "set play.params failed");
7378 goto abort2;
7379 }
7380 }
7381 sc->sc_sound_pparams = pfmt;
7382 }
7383 /* Change water marks after initializing the buffers. */
7384 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7385 if (ptrack)
7386 audio_track_setinfo_water(ptrack, ai);
7387 }
7388
7389 if (SPECIFIED_CH(ri->pause)) {
7390 if (rtrack)
7391 rtrack->is_pause = ri->pause;
7392 sc->sc_sound_rpause = ri->pause;
7393 }
7394 if (rchanges) {
7395 if (rtrack) {
7396 audio_track_lock_enter(rtrack);
7397 error = audio_track_set_format(rtrack, &rfmt);
7398 audio_track_lock_exit(rtrack);
7399 if (error) {
7400 TRACET(1, rtrack, "set record.params failed");
7401 goto abort3;
7402 }
7403 }
7404 sc->sc_sound_rparams = rfmt;
7405 }
7406
7407 return 0;
7408
7409 /* Rollback */
7410 abort3:
7411 if (error != ENOMEM) {
7412 rtrack->is_pause = saved_ai.record.pause;
7413 audio_track_lock_enter(rtrack);
7414 audio_track_set_format(rtrack, &saved_rfmt);
7415 audio_track_lock_exit(rtrack);
7416 }
7417 sc->sc_sound_rpause = saved_ai.record.pause;
7418 sc->sc_sound_rparams = saved_rfmt;
7419 abort2:
7420 if (ptrack && error != ENOMEM) {
7421 ptrack->is_pause = saved_ai.play.pause;
7422 audio_track_lock_enter(ptrack);
7423 audio_track_set_format(ptrack, &saved_pfmt);
7424 audio_track_lock_exit(ptrack);
7425 }
7426 sc->sc_sound_ppause = saved_ai.play.pause;
7427 sc->sc_sound_pparams = saved_pfmt;
7428 file->mode = saved_ai.mode;
7429 abort1:
7430 mutex_enter(sc->sc_lock);
7431 audio_hw_setinfo(sc, &saved_ai, NULL);
7432 mutex_exit(sc->sc_lock);
7433
7434 return error;
7435 }
7436
7437 /*
7438 * Write SPECIFIED() parameters within info back to fmt.
7439 * Note that track can be NULL here.
7440 * Return value of 1 indicates that fmt is modified.
7441 * Return value of 0 indicates that fmt is not modified.
7442 * Return value of -1 indicates that error EINVAL has occurred.
7443 */
7444 static int
7445 audio_track_setinfo_check(audio_track_t *track,
7446 audio_format2_t *fmt, const struct audio_prinfo *info)
7447 {
7448 const audio_format2_t *hwfmt;
7449 int changes;
7450
7451 changes = 0;
7452 if (SPECIFIED(info->sample_rate)) {
7453 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7454 return -1;
7455 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7456 return -1;
7457 fmt->sample_rate = info->sample_rate;
7458 changes = 1;
7459 }
7460 if (SPECIFIED(info->encoding)) {
7461 fmt->encoding = info->encoding;
7462 changes = 1;
7463 }
7464 if (SPECIFIED(info->precision)) {
7465 fmt->precision = info->precision;
7466 /* we don't have API to specify stride */
7467 fmt->stride = info->precision;
7468 changes = 1;
7469 }
7470 if (SPECIFIED(info->channels)) {
7471 /*
7472 * We can convert between monaural and stereo each other.
7473 * We can reduce than the number of channels that the hardware
7474 * supports.
7475 */
7476 if (info->channels > 2) {
7477 if (track) {
7478 hwfmt = &track->mixer->hwbuf.fmt;
7479 if (info->channels > hwfmt->channels)
7480 return -1;
7481 } else {
7482 /*
7483 * This should never happen.
7484 * If track == NULL, channels should be <= 2.
7485 */
7486 return -1;
7487 }
7488 }
7489 fmt->channels = info->channels;
7490 changes = 1;
7491 }
7492
7493 if (changes) {
7494 if (audio_check_params(fmt) != 0)
7495 return -1;
7496 }
7497
7498 return changes;
7499 }
7500
7501 /*
7502 * Change water marks for playback track if specified.
7503 */
7504 static void
7505 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7506 {
7507 u_int blks;
7508 u_int maxblks;
7509 u_int blksize;
7510
7511 KASSERT(audio_track_is_playback(track));
7512
7513 blksize = track->usrbuf_blksize;
7514 maxblks = track->usrbuf.capacity / blksize;
7515
7516 if (SPECIFIED(ai->hiwat)) {
7517 blks = ai->hiwat;
7518 if (blks > maxblks)
7519 blks = maxblks;
7520 if (blks < 2)
7521 blks = 2;
7522 track->usrbuf_usedhigh = blks * blksize;
7523 }
7524 if (SPECIFIED(ai->lowat)) {
7525 blks = ai->lowat;
7526 if (blks > maxblks - 1)
7527 blks = maxblks - 1;
7528 track->usrbuf_usedlow = blks * blksize;
7529 }
7530 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7531 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7532 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7533 blksize;
7534 }
7535 }
7536 }
7537
7538 /*
7539 * Set hardware part of *newai.
7540 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7541 * If oldai is specified, previous parameters are stored.
7542 * This function itself does not roll back if error occurred.
7543 * Must be called with sc_lock && sc_exlock held.
7544 */
7545 static int
7546 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7547 struct audio_info *oldai)
7548 {
7549 const struct audio_prinfo *newpi;
7550 const struct audio_prinfo *newri;
7551 struct audio_prinfo *oldpi;
7552 struct audio_prinfo *oldri;
7553 u_int pgain;
7554 u_int rgain;
7555 u_char pbalance;
7556 u_char rbalance;
7557 int error;
7558
7559 KASSERT(mutex_owned(sc->sc_lock));
7560 KASSERT(sc->sc_exlock);
7561
7562 /* XXX shut up gcc */
7563 oldpi = NULL;
7564 oldri = NULL;
7565
7566 newpi = &newai->play;
7567 newri = &newai->record;
7568 if (oldai) {
7569 oldpi = &oldai->play;
7570 oldri = &oldai->record;
7571 }
7572 error = 0;
7573
7574 /*
7575 * It looks like unnecessary to halt HW mixers to set HW mixers.
7576 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7577 */
7578
7579 if (SPECIFIED(newpi->port)) {
7580 if (oldai)
7581 oldpi->port = au_get_port(sc, &sc->sc_outports);
7582 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7583 if (error) {
7584 audio_printf(sc,
7585 "setting play.port=%d failed: errno=%d\n",
7586 newpi->port, error);
7587 goto abort;
7588 }
7589 }
7590 if (SPECIFIED(newri->port)) {
7591 if (oldai)
7592 oldri->port = au_get_port(sc, &sc->sc_inports);
7593 error = au_set_port(sc, &sc->sc_inports, newri->port);
7594 if (error) {
7595 audio_printf(sc,
7596 "setting record.port=%d failed: errno=%d\n",
7597 newri->port, error);
7598 goto abort;
7599 }
7600 }
7601
7602 /* play.{gain,balance} */
7603 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7604 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7605 if (oldai) {
7606 oldpi->gain = pgain;
7607 oldpi->balance = pbalance;
7608 }
7609
7610 if (SPECIFIED(newpi->gain))
7611 pgain = newpi->gain;
7612 if (SPECIFIED_CH(newpi->balance))
7613 pbalance = newpi->balance;
7614 error = au_set_gain(sc, &sc->sc_outports, pgain, pbalance);
7615 if (error) {
7616 audio_printf(sc,
7617 "setting play.gain=%d/balance=%d failed: "
7618 "errno=%d\n",
7619 pgain, pbalance, error);
7620 goto abort;
7621 }
7622 }
7623
7624 /* record.{gain,balance} */
7625 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7626 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7627 if (oldai) {
7628 oldri->gain = rgain;
7629 oldri->balance = rbalance;
7630 }
7631
7632 if (SPECIFIED(newri->gain))
7633 rgain = newri->gain;
7634 if (SPECIFIED_CH(newri->balance))
7635 rbalance = newri->balance;
7636 error = au_set_gain(sc, &sc->sc_inports, rgain, rbalance);
7637 if (error) {
7638 audio_printf(sc,
7639 "setting record.gain=%d/balance=%d failed: "
7640 "errno=%d\n",
7641 rgain, rbalance, error);
7642 goto abort;
7643 }
7644 }
7645
7646 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7647 if (oldai)
7648 oldai->monitor_gain = au_get_monitor_gain(sc);
7649 error = au_set_monitor_gain(sc, newai->monitor_gain);
7650 if (error) {
7651 audio_printf(sc,
7652 "setting monitor_gain=%d failed: errno=%d\n",
7653 newai->monitor_gain, error);
7654 goto abort;
7655 }
7656 }
7657
7658 /* XXX TODO */
7659 /* sc->sc_ai = *ai; */
7660
7661 error = 0;
7662 abort:
7663 return error;
7664 }
7665
7666 /*
7667 * Setup the hardware with mixer format phwfmt, rhwfmt.
7668 * The arguments have following restrictions:
7669 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7670 * or both.
7671 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7672 * - On non-independent devices, phwfmt and rhwfmt must have the same
7673 * parameters.
7674 * - pfil and rfil must be zero-filled.
7675 * If successful,
7676 * - pfil, rfil will be filled with filter information specified by the
7677 * hardware driver if necessary.
7678 * and then returns 0. Otherwise returns errno.
7679 * Must be called without sc_lock held.
7680 */
7681 static int
7682 audio_hw_set_format(struct audio_softc *sc, int setmode,
7683 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7684 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7685 {
7686 audio_params_t pp, rp;
7687 int error;
7688
7689 KASSERT(phwfmt != NULL);
7690 KASSERT(rhwfmt != NULL);
7691
7692 pp = format2_to_params(phwfmt);
7693 rp = format2_to_params(rhwfmt);
7694
7695 mutex_enter(sc->sc_lock);
7696 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7697 &pp, &rp, pfil, rfil);
7698 if (error) {
7699 mutex_exit(sc->sc_lock);
7700 audio_printf(sc, "set_format failed: errno=%d\n", error);
7701 return error;
7702 }
7703
7704 if (sc->hw_if->commit_settings) {
7705 error = sc->hw_if->commit_settings(sc->hw_hdl);
7706 if (error) {
7707 mutex_exit(sc->sc_lock);
7708 audio_printf(sc,
7709 "commit_settings failed: errno=%d\n", error);
7710 return error;
7711 }
7712 }
7713 mutex_exit(sc->sc_lock);
7714
7715 return 0;
7716 }
7717
7718 /*
7719 * Fill audio_info structure. If need_mixerinfo is true, it will also
7720 * fill the hardware mixer information.
7721 * Must be called with sc_exlock held and without sc_lock held.
7722 */
7723 static int
7724 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7725 audio_file_t *file)
7726 {
7727 struct audio_prinfo *ri, *pi;
7728 audio_track_t *track;
7729 audio_track_t *ptrack;
7730 audio_track_t *rtrack;
7731 int gain;
7732
7733 KASSERT(sc->sc_exlock);
7734
7735 ri = &ai->record;
7736 pi = &ai->play;
7737 ptrack = file->ptrack;
7738 rtrack = file->rtrack;
7739
7740 memset(ai, 0, sizeof(*ai));
7741
7742 if (ptrack) {
7743 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7744 pi->channels = ptrack->usrbuf.fmt.channels;
7745 pi->precision = ptrack->usrbuf.fmt.precision;
7746 pi->encoding = ptrack->usrbuf.fmt.encoding;
7747 pi->pause = ptrack->is_pause;
7748 } else {
7749 /* Use sticky parameters if the track is not available. */
7750 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7751 pi->channels = sc->sc_sound_pparams.channels;
7752 pi->precision = sc->sc_sound_pparams.precision;
7753 pi->encoding = sc->sc_sound_pparams.encoding;
7754 pi->pause = sc->sc_sound_ppause;
7755 }
7756 if (rtrack) {
7757 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7758 ri->channels = rtrack->usrbuf.fmt.channels;
7759 ri->precision = rtrack->usrbuf.fmt.precision;
7760 ri->encoding = rtrack->usrbuf.fmt.encoding;
7761 ri->pause = rtrack->is_pause;
7762 } else {
7763 /* Use sticky parameters if the track is not available. */
7764 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7765 ri->channels = sc->sc_sound_rparams.channels;
7766 ri->precision = sc->sc_sound_rparams.precision;
7767 ri->encoding = sc->sc_sound_rparams.encoding;
7768 ri->pause = sc->sc_sound_rpause;
7769 }
7770
7771 if (ptrack) {
7772 pi->seek = ptrack->usrbuf.used;
7773 pi->samples = ptrack->stamp * ptrack->usrbuf_blksize;
7774 pi->eof = ptrack->eofcounter;
7775 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7776 pi->open = 1;
7777 pi->buffer_size = ptrack->usrbuf.capacity;
7778 }
7779 pi->waiting = 0; /* open never hangs */
7780 pi->active = sc->sc_pbusy;
7781
7782 if (rtrack) {
7783 ri->seek = audio_track_readablebytes(rtrack);
7784 ri->samples = rtrack->stamp * rtrack->usrbuf_blksize;
7785 ri->eof = 0;
7786 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7787 ri->open = 1;
7788 ri->buffer_size = audio_track_inputblk_as_usrbyte(rtrack,
7789 rtrack->input->capacity);
7790 }
7791 ri->waiting = 0; /* open never hangs */
7792 ri->active = sc->sc_rbusy;
7793
7794 /*
7795 * XXX There may be different number of channels between playback
7796 * and recording, so that blocksize also may be different.
7797 * But struct audio_info has an united blocksize...
7798 * Here, I use play info precedencely if ptrack is available,
7799 * otherwise record info.
7800 *
7801 * XXX hiwat/lowat is a playback-only parameter. What should I
7802 * return for a record-only descriptor?
7803 */
7804 track = ptrack ? ptrack : rtrack;
7805 if (track) {
7806 ai->blocksize = track->usrbuf_blksize;
7807 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7808 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7809 }
7810 ai->mode = file->mode;
7811
7812 /*
7813 * For backward compatibility, we have to pad these five fields
7814 * a fake non-zero value even if there are no tracks.
7815 */
7816 if (ptrack == NULL)
7817 pi->buffer_size = 65536;
7818 if (rtrack == NULL)
7819 ri->buffer_size = 65536;
7820 if (ptrack == NULL && rtrack == NULL) {
7821 ai->blocksize = 2048;
7822 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7823 ai->lowat = ai->hiwat * 3 / 4;
7824 }
7825
7826 if (need_mixerinfo) {
7827 mutex_enter(sc->sc_lock);
7828
7829 pi->port = au_get_port(sc, &sc->sc_outports);
7830 ri->port = au_get_port(sc, &sc->sc_inports);
7831
7832 pi->avail_ports = sc->sc_outports.allports;
7833 ri->avail_ports = sc->sc_inports.allports;
7834
7835 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7836 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7837
7838 if (sc->sc_monitor_port != -1) {
7839 gain = au_get_monitor_gain(sc);
7840 if (gain != -1)
7841 ai->monitor_gain = gain;
7842 }
7843 mutex_exit(sc->sc_lock);
7844 }
7845
7846 return 0;
7847 }
7848
7849 /*
7850 * Return true if playback is configured.
7851 * This function can be used after audioattach.
7852 */
7853 static bool
7854 audio_can_playback(struct audio_softc *sc)
7855 {
7856
7857 return (sc->sc_pmixer != NULL);
7858 }
7859
7860 /*
7861 * Return true if recording is configured.
7862 * This function can be used after audioattach.
7863 */
7864 static bool
7865 audio_can_capture(struct audio_softc *sc)
7866 {
7867
7868 return (sc->sc_rmixer != NULL);
7869 }
7870
7871 /*
7872 * Get the afp->index'th item from the valid one of format[].
7873 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7874 *
7875 * This is common routines for query_format.
7876 * If your hardware driver has struct audio_format[], the simplest case
7877 * you can write your query_format interface as follows:
7878 *
7879 * struct audio_format foo_format[] = { ... };
7880 *
7881 * int
7882 * foo_query_format(void *hdl, audio_format_query_t *afp)
7883 * {
7884 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7885 * }
7886 */
7887 int
7888 audio_query_format(const struct audio_format *format, int nformats,
7889 audio_format_query_t *afp)
7890 {
7891 const struct audio_format *f;
7892 int idx;
7893 int i;
7894
7895 idx = 0;
7896 for (i = 0; i < nformats; i++) {
7897 f = &format[i];
7898 if (!AUFMT_IS_VALID(f))
7899 continue;
7900 if (afp->index == idx) {
7901 afp->fmt = *f;
7902 return 0;
7903 }
7904 idx++;
7905 }
7906 return EINVAL;
7907 }
7908
7909 /*
7910 * This function is provided for the hardware driver's set_format() to
7911 * find index matches with 'param' from array of audio_format_t 'formats'.
7912 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7913 * It returns the matched index and never fails. Because param passed to
7914 * set_format() is selected from query_format().
7915 * This function will be an alternative to auconv_set_converter() to
7916 * find index.
7917 */
7918 int
7919 audio_indexof_format(const struct audio_format *formats, int nformats,
7920 int mode, const audio_params_t *param)
7921 {
7922 const struct audio_format *f;
7923 int index;
7924 int j;
7925
7926 for (index = 0; index < nformats; index++) {
7927 f = &formats[index];
7928
7929 if (!AUFMT_IS_VALID(f))
7930 continue;
7931 if ((f->mode & mode) == 0)
7932 continue;
7933 if (f->encoding != param->encoding)
7934 continue;
7935 if (f->validbits != param->precision)
7936 continue;
7937 if (f->channels != param->channels)
7938 continue;
7939
7940 if (f->frequency_type == 0) {
7941 if (param->sample_rate < f->frequency[0] ||
7942 param->sample_rate > f->frequency[1])
7943 continue;
7944 } else {
7945 for (j = 0; j < f->frequency_type; j++) {
7946 if (param->sample_rate == f->frequency[j])
7947 break;
7948 }
7949 if (j == f->frequency_type)
7950 continue;
7951 }
7952
7953 /* Then, matched */
7954 return index;
7955 }
7956
7957 /* Not matched. This should not be happened. */
7958 panic("%s: cannot find matched format\n", __func__);
7959 }
7960
7961 /*
7962 * Get or set hardware blocksize in msec.
7963 * XXX It's for debug.
7964 */
7965 static int
7966 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7967 {
7968 struct sysctlnode node;
7969 struct audio_softc *sc;
7970 audio_format2_t phwfmt;
7971 audio_format2_t rhwfmt;
7972 audio_filter_reg_t pfil;
7973 audio_filter_reg_t rfil;
7974 int t;
7975 int old_blk_ms;
7976 int mode;
7977 int error;
7978
7979 node = *rnode;
7980 sc = node.sysctl_data;
7981
7982 error = audio_exlock_enter(sc);
7983 if (error)
7984 return error;
7985
7986 old_blk_ms = sc->sc_blk_ms;
7987 t = old_blk_ms;
7988 node.sysctl_data = &t;
7989 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7990 if (error || newp == NULL)
7991 goto abort;
7992
7993 if (t < 0) {
7994 error = EINVAL;
7995 goto abort;
7996 }
7997
7998 if (sc->sc_popens + sc->sc_ropens > 0) {
7999 error = EBUSY;
8000 goto abort;
8001 }
8002 sc->sc_blk_ms = t;
8003 mode = 0;
8004 if (sc->sc_pmixer) {
8005 mode |= AUMODE_PLAY;
8006 phwfmt = sc->sc_pmixer->hwbuf.fmt;
8007 }
8008 if (sc->sc_rmixer) {
8009 mode |= AUMODE_RECORD;
8010 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
8011 }
8012
8013 /* re-init hardware */
8014 memset(&pfil, 0, sizeof(pfil));
8015 memset(&rfil, 0, sizeof(rfil));
8016 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8017 if (error) {
8018 goto abort;
8019 }
8020
8021 /* re-init track mixer */
8022 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8023 if (error) {
8024 /* Rollback */
8025 sc->sc_blk_ms = old_blk_ms;
8026 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8027 goto abort;
8028 }
8029 error = 0;
8030 abort:
8031 audio_exlock_exit(sc);
8032 return error;
8033 }
8034
8035 /*
8036 * Get or set multiuser mode.
8037 */
8038 static int
8039 audio_sysctl_multiuser(SYSCTLFN_ARGS)
8040 {
8041 struct sysctlnode node;
8042 struct audio_softc *sc;
8043 bool t;
8044 int error;
8045
8046 node = *rnode;
8047 sc = node.sysctl_data;
8048
8049 error = audio_exlock_enter(sc);
8050 if (error)
8051 return error;
8052
8053 t = sc->sc_multiuser;
8054 node.sysctl_data = &t;
8055 error = sysctl_lookup(SYSCTLFN_CALL(&node));
8056 if (error || newp == NULL)
8057 goto abort;
8058
8059 sc->sc_multiuser = t;
8060 error = 0;
8061 abort:
8062 audio_exlock_exit(sc);
8063 return error;
8064 }
8065
8066 #if defined(AUDIO_DEBUG)
8067 /*
8068 * Get or set debug verbose level. (0..4)
8069 * XXX It's for debug.
8070 * XXX It is not separated per device.
8071 */
8072 static int
8073 audio_sysctl_debug(SYSCTLFN_ARGS)
8074 {
8075 struct sysctlnode node;
8076 int t;
8077 int error;
8078
8079 node = *rnode;
8080 t = audiodebug;
8081 node.sysctl_data = &t;
8082 error = sysctl_lookup(SYSCTLFN_CALL(&node));
8083 if (error || newp == NULL)
8084 return error;
8085
8086 if (t < 0 || t > 4)
8087 return EINVAL;
8088 audiodebug = t;
8089 printf("audio: audiodebug = %d\n", audiodebug);
8090 return 0;
8091 }
8092 #endif /* AUDIO_DEBUG */
8093
8094 #ifdef AUDIO_PM_IDLE
8095 static void
8096 audio_idle(void *arg)
8097 {
8098 device_t dv = arg;
8099 struct audio_softc *sc = device_private(dv);
8100
8101 #ifdef PNP_DEBUG
8102 extern int pnp_debug_idle;
8103 if (pnp_debug_idle)
8104 printf("%s: idle handler called\n", device_xname(dv));
8105 #endif
8106
8107 sc->sc_idle = true;
8108
8109 /* XXX joerg Make pmf_device_suspend handle children? */
8110 if (!pmf_device_suspend(dv, PMF_Q_SELF))
8111 return;
8112
8113 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
8114 pmf_device_resume(dv, PMF_Q_SELF);
8115 }
8116
8117 static void
8118 audio_activity(device_t dv, devactive_t type)
8119 {
8120 struct audio_softc *sc = device_private(dv);
8121
8122 if (type != DVA_SYSTEM)
8123 return;
8124
8125 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
8126
8127 sc->sc_idle = false;
8128 if (!device_is_active(dv)) {
8129 /* XXX joerg How to deal with a failing resume... */
8130 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
8131 pmf_device_resume(dv, PMF_Q_SELF);
8132 }
8133 }
8134 #endif
8135
8136 static bool
8137 audio_suspend(device_t dv, const pmf_qual_t *qual)
8138 {
8139 struct audio_softc *sc = device_private(dv);
8140 int error;
8141
8142 error = audio_exlock_mutex_enter(sc);
8143 if (error)
8144 return error;
8145 sc->sc_suspending = true;
8146 audio_mixer_capture(sc);
8147
8148 if (sc->sc_pbusy) {
8149 audio_pmixer_halt(sc);
8150 /* Reuse this as need-to-restart flag while suspending */
8151 sc->sc_pbusy = true;
8152 }
8153 if (sc->sc_rbusy) {
8154 audio_rmixer_halt(sc);
8155 /* Reuse this as need-to-restart flag while suspending */
8156 sc->sc_rbusy = true;
8157 }
8158
8159 #ifdef AUDIO_PM_IDLE
8160 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
8161 #endif
8162 audio_exlock_mutex_exit(sc);
8163
8164 return true;
8165 }
8166
8167 static bool
8168 audio_resume(device_t dv, const pmf_qual_t *qual)
8169 {
8170 struct audio_softc *sc = device_private(dv);
8171 struct audio_info ai;
8172 int error;
8173
8174 error = audio_exlock_mutex_enter(sc);
8175 if (error)
8176 return error;
8177
8178 sc->sc_suspending = false;
8179 audio_mixer_restore(sc);
8180 /* XXX ? */
8181 AUDIO_INITINFO(&ai);
8182 audio_hw_setinfo(sc, &ai, NULL);
8183
8184 /*
8185 * During from suspend to resume here, sc_[pr]busy is used as
8186 * need-to-restart flag temporarily. After this point,
8187 * sc_[pr]busy is returned to its original usage (busy flag).
8188 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
8189 */
8190 if (sc->sc_pbusy) {
8191 /* pmixer_start() requires pbusy is false */
8192 sc->sc_pbusy = false;
8193 audio_pmixer_start(sc, true);
8194 }
8195 if (sc->sc_rbusy) {
8196 /* rmixer_start() requires rbusy is false */
8197 sc->sc_rbusy = false;
8198 audio_rmixer_start(sc);
8199 }
8200
8201 audio_exlock_mutex_exit(sc);
8202
8203 return true;
8204 }
8205
8206 #if defined(AUDIO_DEBUG)
8207 static void
8208 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
8209 {
8210 int n;
8211
8212 n = 0;
8213 n += snprintf(buf + n, bufsize - n, "%s",
8214 audio_encoding_name(fmt->encoding));
8215 if (fmt->precision == fmt->stride) {
8216 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
8217 } else {
8218 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
8219 fmt->precision, fmt->stride);
8220 }
8221
8222 snprintf(buf + n, bufsize - n, " %uch %uHz",
8223 fmt->channels, fmt->sample_rate);
8224 }
8225 #endif
8226
8227 #if defined(AUDIO_DEBUG)
8228 static void
8229 audio_print_format2(const char *s, const audio_format2_t *fmt)
8230 {
8231 char fmtstr[64];
8232
8233 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
8234 printf("%s %s\n", s, fmtstr);
8235 }
8236 #endif
8237
8238 #ifdef DIAGNOSTIC
8239 void
8240 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
8241 {
8242
8243 KASSERTMSG(fmt, "called from %s", where);
8244
8245 /* XXX MSM6258 vs(4) only has 4bit stride format. */
8246 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
8247 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
8248 "called from %s: fmt->stride=%d", where, fmt->stride);
8249 } else {
8250 KASSERTMSG(fmt->stride % NBBY == 0,
8251 "called from %s: fmt->stride=%d", where, fmt->stride);
8252 }
8253 KASSERTMSG(fmt->precision <= fmt->stride,
8254 "called from %s: fmt->precision=%d fmt->stride=%d",
8255 where, fmt->precision, fmt->stride);
8256 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
8257 "called from %s: fmt->channels=%d", where, fmt->channels);
8258
8259 /* XXX No check for encodings? */
8260 }
8261
8262 void
8263 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
8264 {
8265
8266 KASSERT(arg != NULL);
8267 KASSERT(arg->src != NULL);
8268 KASSERT(arg->dst != NULL);
8269 audio_diagnostic_format2(where, arg->srcfmt);
8270 audio_diagnostic_format2(where, arg->dstfmt);
8271 KASSERT(arg->count > 0);
8272 }
8273
8274 void
8275 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
8276 {
8277
8278 KASSERTMSG(ring, "called from %s", where);
8279 audio_diagnostic_format2(where, &ring->fmt);
8280 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
8281 "called from %s: ring->capacity=%d", where, ring->capacity);
8282 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
8283 "called from %s: ring->used=%d ring->capacity=%d",
8284 where, ring->used, ring->capacity);
8285 if (ring->capacity == 0) {
8286 KASSERTMSG(ring->mem == NULL,
8287 "called from %s: capacity == 0 but mem != NULL", where);
8288 } else {
8289 KASSERTMSG(ring->mem != NULL,
8290 "called from %s: capacity != 0 but mem == NULL", where);
8291 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
8292 "called from %s: ring->head=%d ring->capacity=%d",
8293 where, ring->head, ring->capacity);
8294 }
8295 }
8296 #endif /* DIAGNOSTIC */
8297
8298
8299 /*
8300 * Mixer driver
8301 */
8302
8303 /*
8304 * Must be called without sc_lock held.
8305 */
8306 int
8307 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
8308 struct lwp *l)
8309 {
8310 struct file *fp;
8311 audio_file_t *af;
8312 int error, fd;
8313
8314 TRACE(1, "flags=0x%x", flags);
8315
8316 error = fd_allocfile(&fp, &fd);
8317 if (error)
8318 return error;
8319
8320 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
8321 af->sc = sc;
8322 af->dev = dev;
8323
8324 mutex_enter(sc->sc_lock);
8325 if (sc->sc_dying) {
8326 mutex_exit(sc->sc_lock);
8327 kmem_free(af, sizeof(*af));
8328 fd_abort(curproc, fp, fd);
8329 return ENXIO;
8330 }
8331 mutex_enter(sc->sc_intr_lock);
8332 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
8333 mutex_exit(sc->sc_intr_lock);
8334 mutex_exit(sc->sc_lock);
8335
8336 error = fd_clone(fp, fd, flags, &audio_fileops, af);
8337 KASSERT(error == EMOVEFD);
8338
8339 return error;
8340 }
8341
8342 /*
8343 * Add a process to those to be signalled on mixer activity.
8344 * If the process has already been added, do nothing.
8345 * Must be called with sc_exlock held and without sc_lock held.
8346 */
8347 static void
8348 mixer_async_add(struct audio_softc *sc, pid_t pid)
8349 {
8350 int i;
8351
8352 KASSERT(sc->sc_exlock);
8353
8354 /* If already exists, returns without doing anything. */
8355 for (i = 0; i < sc->sc_am_used; i++) {
8356 if (sc->sc_am[i] == pid)
8357 return;
8358 }
8359
8360 /* Extend array if necessary. */
8361 if (sc->sc_am_used >= sc->sc_am_capacity) {
8362 sc->sc_am_capacity += AM_CAPACITY;
8363 sc->sc_am = kern_realloc(sc->sc_am,
8364 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8365 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8366 }
8367
8368 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8369 sc->sc_am[sc->sc_am_used++] = pid;
8370 }
8371
8372 /*
8373 * Remove a process from those to be signalled on mixer activity.
8374 * If the process has not been added, do nothing.
8375 * Must be called with sc_exlock held and without sc_lock held.
8376 */
8377 static void
8378 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8379 {
8380 int i;
8381
8382 KASSERT(sc->sc_exlock);
8383
8384 for (i = 0; i < sc->sc_am_used; i++) {
8385 if (sc->sc_am[i] == pid) {
8386 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8387 TRACE(2, "am[%d](%d) removed, used=%d",
8388 i, (int)pid, sc->sc_am_used);
8389
8390 /* Empty array if no longer necessary. */
8391 if (sc->sc_am_used == 0) {
8392 kern_free(sc->sc_am);
8393 sc->sc_am = NULL;
8394 sc->sc_am_capacity = 0;
8395 TRACE(2, "released");
8396 }
8397 return;
8398 }
8399 }
8400 }
8401
8402 /*
8403 * Signal all processes waiting for the mixer.
8404 * Must be called with sc_exlock held.
8405 */
8406 static void
8407 mixer_signal(struct audio_softc *sc)
8408 {
8409 proc_t *p;
8410 int i;
8411
8412 KASSERT(sc->sc_exlock);
8413
8414 for (i = 0; i < sc->sc_am_used; i++) {
8415 mutex_enter(&proc_lock);
8416 p = proc_find(sc->sc_am[i]);
8417 if (p)
8418 psignal(p, SIGIO);
8419 mutex_exit(&proc_lock);
8420 }
8421 }
8422
8423 /*
8424 * Close a mixer device
8425 */
8426 int
8427 mixer_close(struct audio_softc *sc, audio_file_t *file)
8428 {
8429 int error;
8430
8431 error = audio_exlock_enter(sc);
8432 if (error)
8433 return error;
8434 TRACE(1, "called");
8435 mixer_async_remove(sc, curproc->p_pid);
8436 audio_exlock_exit(sc);
8437
8438 return 0;
8439 }
8440
8441 /*
8442 * Must be called without sc_lock nor sc_exlock held.
8443 */
8444 int
8445 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8446 struct lwp *l)
8447 {
8448 mixer_devinfo_t *mi;
8449 mixer_ctrl_t *mc;
8450 int val;
8451 int error;
8452
8453 #if defined(AUDIO_DEBUG)
8454 char pre[64];
8455 snprintf(pre, sizeof(pre), "pid=%d.%d",
8456 (int)curproc->p_pid, (int)l->l_lid);
8457 #endif
8458 error = EINVAL;
8459
8460 /* we can return cached values if we are sleeping */
8461 if (cmd != AUDIO_MIXER_READ) {
8462 mutex_enter(sc->sc_lock);
8463 device_active(sc->sc_dev, DVA_SYSTEM);
8464 mutex_exit(sc->sc_lock);
8465 }
8466
8467 switch (cmd) {
8468 case FIOASYNC:
8469 val = *(int *)addr;
8470 TRACE(2, "%s FIOASYNC %s", pre, val ? "on" : "off");
8471 error = audio_exlock_enter(sc);
8472 if (error)
8473 break;
8474 if (val) {
8475 mixer_async_add(sc, curproc->p_pid);
8476 } else {
8477 mixer_async_remove(sc, curproc->p_pid);
8478 }
8479 audio_exlock_exit(sc);
8480 break;
8481
8482 case AUDIO_GETDEV:
8483 TRACE(2, "%s AUDIO_GETDEV", pre);
8484 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8485 break;
8486
8487 case AUDIO_MIXER_DEVINFO:
8488 TRACE(2, "%s AUDIO_MIXER_DEVINFO", pre);
8489 mi = (mixer_devinfo_t *)addr;
8490
8491 mi->un.v.delta = 0; /* default */
8492 mutex_enter(sc->sc_lock);
8493 error = audio_query_devinfo(sc, mi);
8494 mutex_exit(sc->sc_lock);
8495 break;
8496
8497 case AUDIO_MIXER_READ:
8498 TRACE(2, "%s AUDIO_MIXER_READ", pre);
8499 mc = (mixer_ctrl_t *)addr;
8500
8501 error = audio_exlock_mutex_enter(sc);
8502 if (error)
8503 break;
8504 if (device_is_active(sc->hw_dev))
8505 error = audio_get_port(sc, mc);
8506 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8507 error = ENXIO;
8508 else {
8509 int dev = mc->dev;
8510 memcpy(mc, &sc->sc_mixer_state[dev],
8511 sizeof(mixer_ctrl_t));
8512 error = 0;
8513 }
8514 audio_exlock_mutex_exit(sc);
8515 break;
8516
8517 case AUDIO_MIXER_WRITE:
8518 TRACE(2, "%s AUDIO_MIXER_WRITE", pre);
8519 error = audio_exlock_mutex_enter(sc);
8520 if (error)
8521 break;
8522 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8523 if (error) {
8524 audio_exlock_mutex_exit(sc);
8525 break;
8526 }
8527
8528 if (sc->hw_if->commit_settings) {
8529 error = sc->hw_if->commit_settings(sc->hw_hdl);
8530 if (error) {
8531 audio_exlock_mutex_exit(sc);
8532 break;
8533 }
8534 }
8535 mutex_exit(sc->sc_lock);
8536 mixer_signal(sc);
8537 audio_exlock_exit(sc);
8538 break;
8539
8540 default:
8541 TRACE(2, "(%lu,'%c',%lu)",
8542 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8543 if (sc->hw_if->dev_ioctl) {
8544 mutex_enter(sc->sc_lock);
8545 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8546 cmd, addr, flag, l);
8547 mutex_exit(sc->sc_lock);
8548 } else
8549 error = EINVAL;
8550 break;
8551 }
8552
8553 if (error)
8554 TRACE(2, "error=%d", error);
8555 return error;
8556 }
8557
8558 /*
8559 * Must be called with sc_lock held.
8560 */
8561 int
8562 au_portof(struct audio_softc *sc, char *name, int class)
8563 {
8564 mixer_devinfo_t mi;
8565
8566 KASSERT(mutex_owned(sc->sc_lock));
8567
8568 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8569 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8570 return mi.index;
8571 }
8572 return -1;
8573 }
8574
8575 /*
8576 * Must be called with sc_lock held.
8577 */
8578 void
8579 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8580 mixer_devinfo_t *mi, const struct portname *tbl)
8581 {
8582 int i, j;
8583
8584 KASSERT(mutex_owned(sc->sc_lock));
8585
8586 ports->index = mi->index;
8587 if (mi->type == AUDIO_MIXER_ENUM) {
8588 ports->isenum = true;
8589 for(i = 0; tbl[i].name; i++)
8590 for(j = 0; j < mi->un.e.num_mem; j++)
8591 if (strcmp(mi->un.e.member[j].label.name,
8592 tbl[i].name) == 0) {
8593 ports->allports |= tbl[i].mask;
8594 ports->aumask[ports->nports] = tbl[i].mask;
8595 ports->misel[ports->nports] =
8596 mi->un.e.member[j].ord;
8597 ports->miport[ports->nports] =
8598 au_portof(sc, mi->un.e.member[j].label.name,
8599 mi->mixer_class);
8600 if (ports->mixerout != -1 &&
8601 ports->miport[ports->nports] != -1)
8602 ports->isdual = true;
8603 ++ports->nports;
8604 }
8605 } else if (mi->type == AUDIO_MIXER_SET) {
8606 for(i = 0; tbl[i].name; i++)
8607 for(j = 0; j < mi->un.s.num_mem; j++)
8608 if (strcmp(mi->un.s.member[j].label.name,
8609 tbl[i].name) == 0) {
8610 ports->allports |= tbl[i].mask;
8611 ports->aumask[ports->nports] = tbl[i].mask;
8612 ports->misel[ports->nports] =
8613 mi->un.s.member[j].mask;
8614 ports->miport[ports->nports] =
8615 au_portof(sc, mi->un.s.member[j].label.name,
8616 mi->mixer_class);
8617 ++ports->nports;
8618 }
8619 }
8620 }
8621
8622 /*
8623 * Must be called with sc_lock && sc_exlock held.
8624 */
8625 int
8626 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8627 {
8628
8629 KASSERT(mutex_owned(sc->sc_lock));
8630 KASSERT(sc->sc_exlock);
8631
8632 ct->type = AUDIO_MIXER_VALUE;
8633 ct->un.value.num_channels = 2;
8634 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8635 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8636 if (audio_set_port(sc, ct) == 0)
8637 return 0;
8638 ct->un.value.num_channels = 1;
8639 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8640 return audio_set_port(sc, ct);
8641 }
8642
8643 /*
8644 * Must be called with sc_lock && sc_exlock held.
8645 */
8646 int
8647 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8648 {
8649 int error;
8650
8651 KASSERT(mutex_owned(sc->sc_lock));
8652 KASSERT(sc->sc_exlock);
8653
8654 ct->un.value.num_channels = 2;
8655 if (audio_get_port(sc, ct) == 0) {
8656 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8657 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8658 } else {
8659 ct->un.value.num_channels = 1;
8660 error = audio_get_port(sc, ct);
8661 if (error)
8662 return error;
8663 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8664 }
8665 return 0;
8666 }
8667
8668 /*
8669 * Must be called with sc_lock && sc_exlock held.
8670 */
8671 int
8672 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8673 int gain, int balance)
8674 {
8675 mixer_ctrl_t ct;
8676 int i, error;
8677 int l, r;
8678 u_int mask;
8679 int nset;
8680
8681 KASSERT(mutex_owned(sc->sc_lock));
8682 KASSERT(sc->sc_exlock);
8683
8684 if (balance == AUDIO_MID_BALANCE) {
8685 l = r = gain;
8686 } else if (balance < AUDIO_MID_BALANCE) {
8687 l = gain;
8688 r = (balance * gain) / AUDIO_MID_BALANCE;
8689 } else {
8690 r = gain;
8691 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8692 / AUDIO_MID_BALANCE;
8693 }
8694 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8695
8696 if (ports->index == -1) {
8697 usemaster:
8698 if (ports->master == -1)
8699 return 0; /* just ignore it silently */
8700 ct.dev = ports->master;
8701 error = au_set_lr_value(sc, &ct, l, r);
8702 } else {
8703 ct.dev = ports->index;
8704 if (ports->isenum) {
8705 ct.type = AUDIO_MIXER_ENUM;
8706 error = audio_get_port(sc, &ct);
8707 if (error)
8708 return error;
8709 if (ports->isdual) {
8710 if (ports->cur_port == -1)
8711 ct.dev = ports->master;
8712 else
8713 ct.dev = ports->miport[ports->cur_port];
8714 error = au_set_lr_value(sc, &ct, l, r);
8715 } else {
8716 for(i = 0; i < ports->nports; i++)
8717 if (ports->misel[i] == ct.un.ord) {
8718 ct.dev = ports->miport[i];
8719 if (ct.dev == -1 ||
8720 au_set_lr_value(sc, &ct, l, r))
8721 goto usemaster;
8722 else
8723 break;
8724 }
8725 }
8726 } else {
8727 ct.type = AUDIO_MIXER_SET;
8728 error = audio_get_port(sc, &ct);
8729 if (error)
8730 return error;
8731 mask = ct.un.mask;
8732 nset = 0;
8733 for(i = 0; i < ports->nports; i++) {
8734 if (ports->misel[i] & mask) {
8735 ct.dev = ports->miport[i];
8736 if (ct.dev != -1 &&
8737 au_set_lr_value(sc, &ct, l, r) == 0)
8738 nset++;
8739 }
8740 }
8741 if (nset == 0)
8742 goto usemaster;
8743 }
8744 }
8745 if (!error)
8746 mixer_signal(sc);
8747 return error;
8748 }
8749
8750 /*
8751 * Must be called with sc_lock && sc_exlock held.
8752 */
8753 void
8754 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8755 u_int *pgain, u_char *pbalance)
8756 {
8757 mixer_ctrl_t ct;
8758 int i, l, r, n;
8759 int lgain, rgain;
8760
8761 KASSERT(mutex_owned(sc->sc_lock));
8762 KASSERT(sc->sc_exlock);
8763
8764 lgain = AUDIO_MAX_GAIN / 2;
8765 rgain = AUDIO_MAX_GAIN / 2;
8766 if (ports->index == -1) {
8767 usemaster:
8768 if (ports->master == -1)
8769 goto bad;
8770 ct.dev = ports->master;
8771 ct.type = AUDIO_MIXER_VALUE;
8772 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8773 goto bad;
8774 } else {
8775 ct.dev = ports->index;
8776 if (ports->isenum) {
8777 ct.type = AUDIO_MIXER_ENUM;
8778 if (audio_get_port(sc, &ct))
8779 goto bad;
8780 ct.type = AUDIO_MIXER_VALUE;
8781 if (ports->isdual) {
8782 if (ports->cur_port == -1)
8783 ct.dev = ports->master;
8784 else
8785 ct.dev = ports->miport[ports->cur_port];
8786 au_get_lr_value(sc, &ct, &lgain, &rgain);
8787 } else {
8788 for(i = 0; i < ports->nports; i++)
8789 if (ports->misel[i] == ct.un.ord) {
8790 ct.dev = ports->miport[i];
8791 if (ct.dev == -1 ||
8792 au_get_lr_value(sc, &ct,
8793 &lgain, &rgain))
8794 goto usemaster;
8795 else
8796 break;
8797 }
8798 }
8799 } else {
8800 ct.type = AUDIO_MIXER_SET;
8801 if (audio_get_port(sc, &ct))
8802 goto bad;
8803 ct.type = AUDIO_MIXER_VALUE;
8804 lgain = rgain = n = 0;
8805 for(i = 0; i < ports->nports; i++) {
8806 if (ports->misel[i] & ct.un.mask) {
8807 ct.dev = ports->miport[i];
8808 if (ct.dev == -1 ||
8809 au_get_lr_value(sc, &ct, &l, &r))
8810 goto usemaster;
8811 else {
8812 lgain += l;
8813 rgain += r;
8814 n++;
8815 }
8816 }
8817 }
8818 if (n != 0) {
8819 lgain /= n;
8820 rgain /= n;
8821 }
8822 }
8823 }
8824 bad:
8825 if (lgain == rgain) { /* handles lgain==rgain==0 */
8826 *pgain = lgain;
8827 *pbalance = AUDIO_MID_BALANCE;
8828 } else if (lgain < rgain) {
8829 *pgain = rgain;
8830 /* balance should be > AUDIO_MID_BALANCE */
8831 *pbalance = AUDIO_RIGHT_BALANCE -
8832 (AUDIO_MID_BALANCE * lgain) / rgain;
8833 } else /* lgain > rgain */ {
8834 *pgain = lgain;
8835 /* balance should be < AUDIO_MID_BALANCE */
8836 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8837 }
8838 }
8839
8840 /*
8841 * Must be called with sc_lock && sc_exlock held.
8842 */
8843 int
8844 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8845 {
8846 mixer_ctrl_t ct;
8847 int i, error, use_mixerout;
8848
8849 KASSERT(mutex_owned(sc->sc_lock));
8850 KASSERT(sc->sc_exlock);
8851
8852 use_mixerout = 1;
8853 if (port == 0) {
8854 if (ports->allports == 0)
8855 return 0; /* Allow this special case. */
8856 else if (ports->isdual) {
8857 if (ports->cur_port == -1) {
8858 return 0;
8859 } else {
8860 port = ports->aumask[ports->cur_port];
8861 ports->cur_port = -1;
8862 use_mixerout = 0;
8863 }
8864 }
8865 }
8866 if (ports->index == -1)
8867 return EINVAL;
8868 ct.dev = ports->index;
8869 if (ports->isenum) {
8870 if (port & (port-1))
8871 return EINVAL; /* Only one port allowed */
8872 ct.type = AUDIO_MIXER_ENUM;
8873 error = EINVAL;
8874 for(i = 0; i < ports->nports; i++)
8875 if (ports->aumask[i] == port) {
8876 if (ports->isdual && use_mixerout) {
8877 ct.un.ord = ports->mixerout;
8878 ports->cur_port = i;
8879 } else {
8880 ct.un.ord = ports->misel[i];
8881 }
8882 error = audio_set_port(sc, &ct);
8883 break;
8884 }
8885 } else {
8886 ct.type = AUDIO_MIXER_SET;
8887 ct.un.mask = 0;
8888 for(i = 0; i < ports->nports; i++)
8889 if (ports->aumask[i] & port)
8890 ct.un.mask |= ports->misel[i];
8891 if (port != 0 && ct.un.mask == 0)
8892 error = EINVAL;
8893 else
8894 error = audio_set_port(sc, &ct);
8895 }
8896 if (!error)
8897 mixer_signal(sc);
8898 return error;
8899 }
8900
8901 /*
8902 * Must be called with sc_lock && sc_exlock held.
8903 */
8904 int
8905 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8906 {
8907 mixer_ctrl_t ct;
8908 int i, aumask;
8909
8910 KASSERT(mutex_owned(sc->sc_lock));
8911 KASSERT(sc->sc_exlock);
8912
8913 if (ports->index == -1)
8914 return 0;
8915 ct.dev = ports->index;
8916 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8917 if (audio_get_port(sc, &ct))
8918 return 0;
8919 aumask = 0;
8920 if (ports->isenum) {
8921 if (ports->isdual && ports->cur_port != -1) {
8922 if (ports->mixerout == ct.un.ord)
8923 aumask = ports->aumask[ports->cur_port];
8924 else
8925 ports->cur_port = -1;
8926 }
8927 if (aumask == 0)
8928 for(i = 0; i < ports->nports; i++)
8929 if (ports->misel[i] == ct.un.ord)
8930 aumask = ports->aumask[i];
8931 } else {
8932 for(i = 0; i < ports->nports; i++)
8933 if (ct.un.mask & ports->misel[i])
8934 aumask |= ports->aumask[i];
8935 }
8936 return aumask;
8937 }
8938
8939 /*
8940 * It returns 0 if success, otherwise errno.
8941 * Must be called only if sc->sc_monitor_port != -1.
8942 * Must be called with sc_lock && sc_exlock held.
8943 */
8944 static int
8945 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8946 {
8947 mixer_ctrl_t ct;
8948
8949 KASSERT(mutex_owned(sc->sc_lock));
8950 KASSERT(sc->sc_exlock);
8951
8952 ct.dev = sc->sc_monitor_port;
8953 ct.type = AUDIO_MIXER_VALUE;
8954 ct.un.value.num_channels = 1;
8955 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8956 return audio_set_port(sc, &ct);
8957 }
8958
8959 /*
8960 * It returns monitor gain if success, otherwise -1.
8961 * Must be called only if sc->sc_monitor_port != -1.
8962 * Must be called with sc_lock && sc_exlock held.
8963 */
8964 static int
8965 au_get_monitor_gain(struct audio_softc *sc)
8966 {
8967 mixer_ctrl_t ct;
8968
8969 KASSERT(mutex_owned(sc->sc_lock));
8970 KASSERT(sc->sc_exlock);
8971
8972 ct.dev = sc->sc_monitor_port;
8973 ct.type = AUDIO_MIXER_VALUE;
8974 ct.un.value.num_channels = 1;
8975 if (audio_get_port(sc, &ct))
8976 return -1;
8977 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8978 }
8979
8980 /*
8981 * Must be called with sc_lock && sc_exlock held.
8982 */
8983 static int
8984 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8985 {
8986
8987 KASSERT(mutex_owned(sc->sc_lock));
8988 KASSERT(sc->sc_exlock);
8989
8990 return sc->hw_if->set_port(sc->hw_hdl, mc);
8991 }
8992
8993 /*
8994 * Must be called with sc_lock && sc_exlock held.
8995 */
8996 static int
8997 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8998 {
8999
9000 KASSERT(mutex_owned(sc->sc_lock));
9001 KASSERT(sc->sc_exlock);
9002
9003 return sc->hw_if->get_port(sc->hw_hdl, mc);
9004 }
9005
9006 /*
9007 * Must be called with sc_lock && sc_exlock held.
9008 */
9009 static void
9010 audio_mixer_capture(struct audio_softc *sc)
9011 {
9012 mixer_devinfo_t mi;
9013 mixer_ctrl_t *mc;
9014
9015 KASSERT(mutex_owned(sc->sc_lock));
9016 KASSERT(sc->sc_exlock);
9017
9018 for (mi.index = 0;; mi.index++) {
9019 if (audio_query_devinfo(sc, &mi) != 0)
9020 break;
9021 KASSERT(mi.index < sc->sc_nmixer_states);
9022 if (mi.type == AUDIO_MIXER_CLASS)
9023 continue;
9024 mc = &sc->sc_mixer_state[mi.index];
9025 mc->dev = mi.index;
9026 mc->type = mi.type;
9027 mc->un.value.num_channels = mi.un.v.num_channels;
9028 (void)audio_get_port(sc, mc);
9029 }
9030
9031 return;
9032 }
9033
9034 /*
9035 * Must be called with sc_lock && sc_exlock held.
9036 */
9037 static void
9038 audio_mixer_restore(struct audio_softc *sc)
9039 {
9040 mixer_devinfo_t mi;
9041 mixer_ctrl_t *mc;
9042
9043 KASSERT(mutex_owned(sc->sc_lock));
9044 KASSERT(sc->sc_exlock);
9045
9046 for (mi.index = 0; ; mi.index++) {
9047 if (audio_query_devinfo(sc, &mi) != 0)
9048 break;
9049 if (mi.type == AUDIO_MIXER_CLASS)
9050 continue;
9051 mc = &sc->sc_mixer_state[mi.index];
9052 (void)audio_set_port(sc, mc);
9053 }
9054 if (sc->hw_if->commit_settings)
9055 sc->hw_if->commit_settings(sc->hw_hdl);
9056
9057 return;
9058 }
9059
9060 static void
9061 audio_volume_down(device_t dv)
9062 {
9063 struct audio_softc *sc = device_private(dv);
9064 mixer_devinfo_t mi;
9065 int newgain;
9066 u_int gain;
9067 u_char balance;
9068
9069 if (audio_exlock_mutex_enter(sc) != 0)
9070 return;
9071 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
9072 mi.index = sc->sc_outports.master;
9073 mi.un.v.delta = 0;
9074 if (audio_query_devinfo(sc, &mi) == 0) {
9075 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9076 newgain = gain - mi.un.v.delta;
9077 if (newgain < AUDIO_MIN_GAIN)
9078 newgain = AUDIO_MIN_GAIN;
9079 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9080 }
9081 }
9082 audio_exlock_mutex_exit(sc);
9083 }
9084
9085 static void
9086 audio_volume_up(device_t dv)
9087 {
9088 struct audio_softc *sc = device_private(dv);
9089 mixer_devinfo_t mi;
9090 u_int gain, newgain;
9091 u_char balance;
9092
9093 if (audio_exlock_mutex_enter(sc) != 0)
9094 return;
9095 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
9096 mi.index = sc->sc_outports.master;
9097 mi.un.v.delta = 0;
9098 if (audio_query_devinfo(sc, &mi) == 0) {
9099 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9100 newgain = gain + mi.un.v.delta;
9101 if (newgain > AUDIO_MAX_GAIN)
9102 newgain = AUDIO_MAX_GAIN;
9103 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9104 }
9105 }
9106 audio_exlock_mutex_exit(sc);
9107 }
9108
9109 static void
9110 audio_volume_toggle(device_t dv)
9111 {
9112 struct audio_softc *sc = device_private(dv);
9113 u_int gain, newgain;
9114 u_char balance;
9115
9116 if (audio_exlock_mutex_enter(sc) != 0)
9117 return;
9118 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9119 if (gain != 0) {
9120 sc->sc_lastgain = gain;
9121 newgain = 0;
9122 } else
9123 newgain = sc->sc_lastgain;
9124 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9125 audio_exlock_mutex_exit(sc);
9126 }
9127
9128 /*
9129 * Must be called with sc_lock held.
9130 */
9131 static int
9132 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
9133 {
9134
9135 KASSERT(mutex_owned(sc->sc_lock));
9136
9137 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
9138 }
9139
9140 #endif /* NAUDIO > 0 */
9141
9142 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
9143 #include <sys/param.h>
9144 #include <sys/systm.h>
9145 #include <sys/device.h>
9146 #include <sys/audioio.h>
9147 #include <dev/audio/audio_if.h>
9148 #endif
9149
9150 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
9151 int
9152 audioprint(void *aux, const char *pnp)
9153 {
9154 struct audio_attach_args *arg;
9155 const char *type;
9156
9157 if (pnp != NULL) {
9158 arg = aux;
9159 switch (arg->type) {
9160 case AUDIODEV_TYPE_AUDIO:
9161 type = "audio";
9162 break;
9163 case AUDIODEV_TYPE_MIDI:
9164 type = "midi";
9165 break;
9166 case AUDIODEV_TYPE_OPL:
9167 type = "opl";
9168 break;
9169 case AUDIODEV_TYPE_MPU:
9170 type = "mpu";
9171 break;
9172 case AUDIODEV_TYPE_AUX:
9173 type = "aux";
9174 break;
9175 default:
9176 panic("audioprint: unknown type %d", arg->type);
9177 }
9178 aprint_normal("%s at %s", type, pnp);
9179 }
9180 return UNCONF;
9181 }
9182
9183 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
9184
9185 #ifdef _MODULE
9186
9187 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
9188
9189 #include "ioconf.c"
9190
9191 #endif
9192
9193 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
9194
9195 static int
9196 audio_modcmd(modcmd_t cmd, void *arg)
9197 {
9198 int error = 0;
9199
9200 switch (cmd) {
9201 case MODULE_CMD_INIT:
9202 /* XXX interrupt level? */
9203 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
9204 #ifdef _MODULE
9205 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
9206 &audio_cdevsw, &audio_cmajor);
9207 if (error)
9208 break;
9209
9210 error = config_init_component(cfdriver_ioconf_audio,
9211 cfattach_ioconf_audio, cfdata_ioconf_audio);
9212 if (error) {
9213 devsw_detach(NULL, &audio_cdevsw);
9214 }
9215 #endif
9216 break;
9217 case MODULE_CMD_FINI:
9218 #ifdef _MODULE
9219 error = config_fini_component(cfdriver_ioconf_audio,
9220 cfattach_ioconf_audio, cfdata_ioconf_audio);
9221 if (error == 0)
9222 devsw_detach(NULL, &audio_cdevsw);
9223 #endif
9224 if (error == 0)
9225 psref_class_destroy(audio_psref_class);
9226 break;
9227 default:
9228 error = ENOTTY;
9229 break;
9230 }
9231
9232 return error;
9233 }
9234