audio.c revision 1.129 1 /* $NetBSD: audio.c,v 1.129 2022/04/23 06:17:59 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Terminology: "sample", "channel", "frame", "block", "track":
67 *
68 * channel frame
69 * | ........
70 * v : : \
71 * +------:------:------:- -+------+ : +------+-.. |
72 * #0(L) |sample|sample|sample| .. |sample| : |sample| |
73 * +------:------:------:- -+------+ : +------+-.. |
74 * #1(R) |sample|sample|sample| .. |sample| : |sample| |
75 * +------:------:------:- -+------+ : +------+-.. | track
76 * : : : : |
77 * +------:------:------:- -+------+ : +------+-.. |
78 * |sample|sample|sample| .. |sample| : |sample| |
79 * +------:------:------:- -+------+ : +------+-.. |
80 * : : /
81 * ........
82 *
83 * \--------------------------------/ \--------..
84 * block
85 *
86 * - A "frame" is the minimum unit in the time axis direction, and consists
87 * of samples for the number of channels.
88 * - A "block" is basic length of processing. The audio layer basically
89 * handles audio data stream block by block, asks underlying hardware to
90 * process them block by block, and then the hardware raises interrupt by
91 * each block.
92 * - A "track" is single completed audio stream.
93 *
94 * For example, the hardware block is assumed to be 10 msec, and your audio
95 * track consists of 2.1(=3) channels 44.1kHz 16bit PCM,
96 *
97 * "channel" = 3
98 * "sample" = 2 [bytes]
99 * "frame" = 2 [bytes/sample] * 3 [channels] = 6 [bytes]
100 * "block" = 44100 [Hz] * (10/1000) [seconds] * 6 [bytes/frame] = 2646 [bytes]
101 *
102 * The terminologies shown here are only for this MI audio layer. Note that
103 * different terminologies may be used in each manufacturer's datasheet, and
104 * each MD driver may follow it. For example, what we call a "block" is
105 * called a "frame" in sys/dev/pci/yds.c.
106 */
107
108 /*
109 * Locking: there are three locks per device.
110 *
111 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
112 * returned in the second parameter to hw_if->get_locks(). It is known
113 * as the "thread lock".
114 *
115 * It serializes access to state in all places except the
116 * driver's interrupt service routine. This lock is taken from process
117 * context (example: access to /dev/audio). It is also taken from soft
118 * interrupt handlers in this module, primarily to serialize delivery of
119 * wakeups. This lock may be used/provided by modules external to the
120 * audio subsystem, so take care not to introduce a lock order problem.
121 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
122 *
123 * - sc_intr_lock, provided by the underlying driver. This may be either a
124 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
125 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
126 * is known as the "interrupt lock".
127 *
128 * It provides atomic access to the device's hardware state, and to audio
129 * channel data that may be accessed by the hardware driver's ISR.
130 * In all places outside the ISR, sc_lock must be held before taking
131 * sc_intr_lock. This is to ensure that groups of hardware operations are
132 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
133 *
134 * - sc_exlock, private to this module. This is a variable protected by
135 * sc_lock. It is known as the "critical section".
136 * Some operations release sc_lock in order to allocate memory, to wait
137 * for in-flight I/O to complete, to copy to/from user context, etc.
138 * sc_exlock provides a critical section even under the circumstance.
139 * "+" in following list indicates the interfaces which necessary to be
140 * protected by sc_exlock.
141 *
142 * List of hardware interface methods, and which locks are held when each
143 * is called by this module:
144 *
145 * METHOD INTR THREAD NOTES
146 * ----------------------- ------- ------- -------------------------
147 * open x x +
148 * close x x +
149 * query_format - x
150 * set_format - x
151 * round_blocksize - x
152 * commit_settings - x
153 * init_output x x
154 * init_input x x
155 * start_output x x +
156 * start_input x x +
157 * halt_output x x +
158 * halt_input x x +
159 * speaker_ctl x x
160 * getdev - -
161 * set_port - x +
162 * get_port - x +
163 * query_devinfo - x
164 * allocm - - +
165 * freem - - +
166 * round_buffersize - x
167 * get_props - - Called at attach time
168 * trigger_output x x +
169 * trigger_input x x +
170 * dev_ioctl - x
171 * get_locks - - Called at attach time
172 *
173 * In addition, there is an additional lock.
174 *
175 * - track->lock. This is an atomic variable and is similar to the
176 * "interrupt lock". This is one for each track. If any thread context
177 * (and software interrupt context) and hardware interrupt context who
178 * want to access some variables on this track, they must acquire this
179 * lock before. It protects track's consistency between hardware
180 * interrupt context and others.
181 */
182
183 #include <sys/cdefs.h>
184 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.129 2022/04/23 06:17:59 isaki Exp $");
185
186 #ifdef _KERNEL_OPT
187 #include "audio.h"
188 #include "midi.h"
189 #endif
190
191 #if NAUDIO > 0
192
193 #include <sys/types.h>
194 #include <sys/param.h>
195 #include <sys/atomic.h>
196 #include <sys/audioio.h>
197 #include <sys/conf.h>
198 #include <sys/cpu.h>
199 #include <sys/device.h>
200 #include <sys/fcntl.h>
201 #include <sys/file.h>
202 #include <sys/filedesc.h>
203 #include <sys/intr.h>
204 #include <sys/ioctl.h>
205 #include <sys/kauth.h>
206 #include <sys/kernel.h>
207 #include <sys/kmem.h>
208 #include <sys/lock.h>
209 #include <sys/malloc.h>
210 #include <sys/mman.h>
211 #include <sys/module.h>
212 #include <sys/poll.h>
213 #include <sys/proc.h>
214 #include <sys/queue.h>
215 #include <sys/select.h>
216 #include <sys/signalvar.h>
217 #include <sys/stat.h>
218 #include <sys/sysctl.h>
219 #include <sys/systm.h>
220 #include <sys/syslog.h>
221 #include <sys/vnode.h>
222
223 #include <dev/audio/audio_if.h>
224 #include <dev/audio/audiovar.h>
225 #include <dev/audio/audiodef.h>
226 #include <dev/audio/linear.h>
227 #include <dev/audio/mulaw.h>
228
229 #include <machine/endian.h>
230
231 #include <uvm/uvm_extern.h>
232
233 #include "ioconf.h"
234
235 /*
236 * 0: No debug logs
237 * 1: action changes like open/close/set_format...
238 * 2: + normal operations like read/write/ioctl...
239 * 3: + TRACEs except interrupt
240 * 4: + TRACEs including interrupt
241 */
242 //#define AUDIO_DEBUG 1
243
244 #if defined(AUDIO_DEBUG)
245
246 int audiodebug = AUDIO_DEBUG;
247 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
248 const char *, va_list);
249 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
250 __printflike(3, 4);
251 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
252 __printflike(3, 4);
253 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
254 __printflike(3, 4);
255
256 /* XXX sloppy memory logger */
257 static void audio_mlog_init(void);
258 static void audio_mlog_free(void);
259 static void audio_mlog_softintr(void *);
260 extern void audio_mlog_flush(void);
261 extern void audio_mlog_printf(const char *, ...);
262
263 static int mlog_refs; /* reference counter */
264 static char *mlog_buf[2]; /* double buffer */
265 static int mlog_buflen; /* buffer length */
266 static int mlog_used; /* used length */
267 static int mlog_full; /* number of dropped lines by buffer full */
268 static int mlog_drop; /* number of dropped lines by busy */
269 static volatile uint32_t mlog_inuse; /* in-use */
270 static int mlog_wpage; /* active page */
271 static void *mlog_sih; /* softint handle */
272
273 static void
274 audio_mlog_init(void)
275 {
276 mlog_refs++;
277 if (mlog_refs > 1)
278 return;
279 mlog_buflen = 4096;
280 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
281 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
282 mlog_used = 0;
283 mlog_full = 0;
284 mlog_drop = 0;
285 mlog_inuse = 0;
286 mlog_wpage = 0;
287 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
288 if (mlog_sih == NULL)
289 printf("%s: softint_establish failed\n", __func__);
290 }
291
292 static void
293 audio_mlog_free(void)
294 {
295 mlog_refs--;
296 if (mlog_refs > 0)
297 return;
298
299 audio_mlog_flush();
300 if (mlog_sih)
301 softint_disestablish(mlog_sih);
302 kmem_free(mlog_buf[0], mlog_buflen);
303 kmem_free(mlog_buf[1], mlog_buflen);
304 }
305
306 /*
307 * Flush memory buffer.
308 * It must not be called from hardware interrupt context.
309 */
310 void
311 audio_mlog_flush(void)
312 {
313 if (mlog_refs == 0)
314 return;
315
316 /* Nothing to do if already in use ? */
317 if (atomic_swap_32(&mlog_inuse, 1) == 1)
318 return;
319 membar_acquire();
320
321 int rpage = mlog_wpage;
322 mlog_wpage ^= 1;
323 mlog_buf[mlog_wpage][0] = '\0';
324 mlog_used = 0;
325
326 atomic_store_release(&mlog_inuse, 0);
327
328 if (mlog_buf[rpage][0] != '\0') {
329 printf("%s", mlog_buf[rpage]);
330 if (mlog_drop > 0)
331 printf("mlog_drop %d\n", mlog_drop);
332 if (mlog_full > 0)
333 printf("mlog_full %d\n", mlog_full);
334 }
335 mlog_full = 0;
336 mlog_drop = 0;
337 }
338
339 static void
340 audio_mlog_softintr(void *cookie)
341 {
342 audio_mlog_flush();
343 }
344
345 void
346 audio_mlog_printf(const char *fmt, ...)
347 {
348 int len;
349 va_list ap;
350
351 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
352 /* already inuse */
353 mlog_drop++;
354 return;
355 }
356 membar_acquire();
357
358 va_start(ap, fmt);
359 len = vsnprintf(
360 mlog_buf[mlog_wpage] + mlog_used,
361 mlog_buflen - mlog_used,
362 fmt, ap);
363 va_end(ap);
364
365 mlog_used += len;
366 if (mlog_buflen - mlog_used <= 1) {
367 mlog_full++;
368 }
369
370 atomic_store_release(&mlog_inuse, 0);
371
372 if (mlog_sih)
373 softint_schedule(mlog_sih);
374 }
375
376 /* trace functions */
377 static void
378 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
379 const char *fmt, va_list ap)
380 {
381 char buf[256];
382 int n;
383
384 n = 0;
385 buf[0] = '\0';
386 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
387 funcname, device_unit(sc->sc_dev), header);
388 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
389
390 if (cpu_intr_p()) {
391 audio_mlog_printf("%s\n", buf);
392 } else {
393 audio_mlog_flush();
394 printf("%s\n", buf);
395 }
396 }
397
398 static void
399 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
400 {
401 va_list ap;
402
403 va_start(ap, fmt);
404 audio_vtrace(sc, funcname, "", fmt, ap);
405 va_end(ap);
406 }
407
408 static void
409 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
410 {
411 char hdr[16];
412 va_list ap;
413
414 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
415 va_start(ap, fmt);
416 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
417 va_end(ap);
418 }
419
420 static void
421 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
422 {
423 char hdr[32];
424 char phdr[16], rhdr[16];
425 va_list ap;
426
427 phdr[0] = '\0';
428 rhdr[0] = '\0';
429 if (file->ptrack)
430 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
431 if (file->rtrack)
432 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
433 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
434
435 va_start(ap, fmt);
436 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
437 va_end(ap);
438 }
439
440 #define DPRINTF(n, fmt...) do { \
441 if (audiodebug >= (n)) { \
442 audio_mlog_flush(); \
443 printf(fmt); \
444 } \
445 } while (0)
446 #define TRACE(n, fmt...) do { \
447 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
448 } while (0)
449 #define TRACET(n, t, fmt...) do { \
450 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
451 } while (0)
452 #define TRACEF(n, f, fmt...) do { \
453 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
454 } while (0)
455
456 struct audio_track_debugbuf {
457 char usrbuf[32];
458 char codec[32];
459 char chvol[32];
460 char chmix[32];
461 char freq[32];
462 char outbuf[32];
463 };
464
465 static void
466 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
467 {
468
469 memset(buf, 0, sizeof(*buf));
470
471 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
472 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
473 if (track->freq.filter)
474 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
475 track->freq.srcbuf.head,
476 track->freq.srcbuf.used,
477 track->freq.srcbuf.capacity);
478 if (track->chmix.filter)
479 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
480 track->chmix.srcbuf.used);
481 if (track->chvol.filter)
482 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
483 track->chvol.srcbuf.used);
484 if (track->codec.filter)
485 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
486 track->codec.srcbuf.used);
487 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
488 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
489 }
490 #else
491 #define DPRINTF(n, fmt...) do { } while (0)
492 #define TRACE(n, fmt, ...) do { } while (0)
493 #define TRACET(n, t, fmt, ...) do { } while (0)
494 #define TRACEF(n, f, fmt, ...) do { } while (0)
495 #endif
496
497 #define SPECIFIED(x) ((x) != ~0)
498 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
499
500 /*
501 * Default hardware blocksize in msec.
502 *
503 * We use 10 msec for most modern platforms. This period is good enough to
504 * play audio and video synchronizely.
505 * In contrast, for very old platforms, this is usually too short and too
506 * severe. Also such platforms usually can not play video confortably, so
507 * it's not so important to make the blocksize shorter. If the platform
508 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
509 * uses this instead.
510 *
511 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
512 * configuration file if you wish.
513 */
514 #if !defined(AUDIO_BLK_MS)
515 # if defined(__AUDIO_BLK_MS)
516 # define AUDIO_BLK_MS __AUDIO_BLK_MS
517 # else
518 # define AUDIO_BLK_MS (10)
519 # endif
520 #endif
521
522 /* Device timeout in msec */
523 #define AUDIO_TIMEOUT (3000)
524
525 /* #define AUDIO_PM_IDLE */
526 #ifdef AUDIO_PM_IDLE
527 int audio_idle_timeout = 30;
528 #endif
529
530 /* Number of elements of async mixer's pid */
531 #define AM_CAPACITY (4)
532
533 struct portname {
534 const char *name;
535 int mask;
536 };
537
538 static int audiomatch(device_t, cfdata_t, void *);
539 static void audioattach(device_t, device_t, void *);
540 static int audiodetach(device_t, int);
541 static int audioactivate(device_t, enum devact);
542 static void audiochilddet(device_t, device_t);
543 static int audiorescan(device_t, const char *, const int *);
544
545 static int audio_modcmd(modcmd_t, void *);
546
547 #ifdef AUDIO_PM_IDLE
548 static void audio_idle(void *);
549 static void audio_activity(device_t, devactive_t);
550 #endif
551
552 static bool audio_suspend(device_t dv, const pmf_qual_t *);
553 static bool audio_resume(device_t dv, const pmf_qual_t *);
554 static void audio_volume_down(device_t);
555 static void audio_volume_up(device_t);
556 static void audio_volume_toggle(device_t);
557
558 static void audio_mixer_capture(struct audio_softc *);
559 static void audio_mixer_restore(struct audio_softc *);
560
561 static void audio_softintr_rd(void *);
562 static void audio_softintr_wr(void *);
563
564 static void audio_printf(struct audio_softc *, const char *, ...)
565 __printflike(2, 3);
566 static int audio_exlock_mutex_enter(struct audio_softc *);
567 static void audio_exlock_mutex_exit(struct audio_softc *);
568 static int audio_exlock_enter(struct audio_softc *);
569 static void audio_exlock_exit(struct audio_softc *);
570 static struct audio_softc *audio_sc_acquire_fromfile(audio_file_t *,
571 struct psref *);
572 static void audio_sc_release(struct audio_softc *, struct psref *);
573 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
574
575 static int audioclose(struct file *);
576 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
577 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
578 static int audioioctl(struct file *, u_long, void *);
579 static int audiopoll(struct file *, int);
580 static int audiokqfilter(struct file *, struct knote *);
581 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
582 struct uvm_object **, int *);
583 static int audiostat(struct file *, struct stat *);
584
585 static void filt_audiowrite_detach(struct knote *);
586 static int filt_audiowrite_event(struct knote *, long);
587 static void filt_audioread_detach(struct knote *);
588 static int filt_audioread_event(struct knote *, long);
589
590 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
591 audio_file_t **);
592 static int audio_close(struct audio_softc *, audio_file_t *);
593 static void audio_unlink(struct audio_softc *, audio_file_t *);
594 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
595 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
596 static void audio_file_clear(struct audio_softc *, audio_file_t *);
597 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
598 struct lwp *, audio_file_t *);
599 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
600 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
601 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
602 struct uvm_object **, int *, audio_file_t *);
603
604 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
605
606 static void audio_pintr(void *);
607 static void audio_rintr(void *);
608
609 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
610
611 static int audio_track_inputblk_as_usrbyte(const audio_track_t *, int);
612 static int audio_track_readablebytes(const audio_track_t *);
613 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
614 const struct audio_info *);
615 static int audio_track_setinfo_check(audio_track_t *,
616 audio_format2_t *, const struct audio_prinfo *);
617 static void audio_track_setinfo_water(audio_track_t *,
618 const struct audio_info *);
619 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
620 struct audio_info *);
621 static int audio_hw_set_format(struct audio_softc *, int,
622 const audio_format2_t *, const audio_format2_t *,
623 audio_filter_reg_t *, audio_filter_reg_t *);
624 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
625 audio_file_t *);
626 static bool audio_can_playback(struct audio_softc *);
627 static bool audio_can_capture(struct audio_softc *);
628 static int audio_check_params(audio_format2_t *);
629 static int audio_mixers_init(struct audio_softc *sc, int,
630 const audio_format2_t *, const audio_format2_t *,
631 const audio_filter_reg_t *, const audio_filter_reg_t *);
632 static int audio_select_freq(const struct audio_format *);
633 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
634 static int audio_hw_validate_format(struct audio_softc *, int,
635 const audio_format2_t *);
636 static int audio_mixers_set_format(struct audio_softc *,
637 const struct audio_info *);
638 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
639 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
640 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
641 #if defined(AUDIO_DEBUG)
642 static int audio_sysctl_debug(SYSCTLFN_PROTO);
643 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
644 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
645 #endif
646
647 static void *audio_realloc(void *, size_t);
648 static int audio_realloc_usrbuf(audio_track_t *, int);
649 static void audio_free_usrbuf(audio_track_t *);
650
651 static audio_track_t *audio_track_create(struct audio_softc *,
652 audio_trackmixer_t *);
653 static void audio_track_destroy(audio_track_t *);
654 static audio_filter_t audio_track_get_codec(audio_track_t *,
655 const audio_format2_t *, const audio_format2_t *);
656 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
657 static void audio_track_play(audio_track_t *);
658 static int audio_track_drain(struct audio_softc *, audio_track_t *);
659 static void audio_track_record(audio_track_t *);
660 static void audio_track_clear(struct audio_softc *, audio_track_t *);
661
662 static int audio_mixer_init(struct audio_softc *, int,
663 const audio_format2_t *, const audio_filter_reg_t *);
664 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
665 static void audio_pmixer_start(struct audio_softc *, bool);
666 static void audio_pmixer_process(struct audio_softc *);
667 static void audio_pmixer_agc(audio_trackmixer_t *, int);
668 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
669 static void audio_pmixer_output(struct audio_softc *);
670 static int audio_pmixer_halt(struct audio_softc *);
671 static void audio_rmixer_start(struct audio_softc *);
672 static void audio_rmixer_process(struct audio_softc *);
673 static void audio_rmixer_input(struct audio_softc *);
674 static int audio_rmixer_halt(struct audio_softc *);
675
676 static void mixer_init(struct audio_softc *);
677 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
678 static int mixer_close(struct audio_softc *, audio_file_t *);
679 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
680 static void mixer_async_add(struct audio_softc *, pid_t);
681 static void mixer_async_remove(struct audio_softc *, pid_t);
682 static void mixer_signal(struct audio_softc *);
683
684 static int au_portof(struct audio_softc *, char *, int);
685
686 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
687 mixer_devinfo_t *, const struct portname *);
688 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
689 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
690 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
691 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
692 u_int *, u_char *);
693 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
694 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
695 static int au_set_monitor_gain(struct audio_softc *, int);
696 static int au_get_monitor_gain(struct audio_softc *);
697 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
698 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
699
700 static __inline struct audio_params
701 format2_to_params(const audio_format2_t *f2)
702 {
703 audio_params_t p;
704
705 /* validbits/precision <-> precision/stride */
706 p.sample_rate = f2->sample_rate;
707 p.channels = f2->channels;
708 p.encoding = f2->encoding;
709 p.validbits = f2->precision;
710 p.precision = f2->stride;
711 return p;
712 }
713
714 static __inline audio_format2_t
715 params_to_format2(const struct audio_params *p)
716 {
717 audio_format2_t f2;
718
719 /* precision/stride <-> validbits/precision */
720 f2.sample_rate = p->sample_rate;
721 f2.channels = p->channels;
722 f2.encoding = p->encoding;
723 f2.precision = p->validbits;
724 f2.stride = p->precision;
725 return f2;
726 }
727
728 /* Return true if this track is a playback track. */
729 static __inline bool
730 audio_track_is_playback(const audio_track_t *track)
731 {
732
733 return ((track->mode & AUMODE_PLAY) != 0);
734 }
735
736 #if 0
737 /* Return true if this track is a recording track. */
738 static __inline bool
739 audio_track_is_record(const audio_track_t *track)
740 {
741
742 return ((track->mode & AUMODE_RECORD) != 0);
743 }
744 #endif
745
746 #if 0 /* XXX Not used yet */
747 /*
748 * Convert 0..255 volume used in userland to internal presentation 0..256.
749 */
750 static __inline u_int
751 audio_volume_to_inner(u_int v)
752 {
753
754 return v < 127 ? v : v + 1;
755 }
756
757 /*
758 * Convert 0..256 internal presentation to 0..255 volume used in userland.
759 */
760 static __inline u_int
761 audio_volume_to_outer(u_int v)
762 {
763
764 return v < 127 ? v : v - 1;
765 }
766 #endif /* 0 */
767
768 static dev_type_open(audioopen);
769 /* XXXMRG use more dev_type_xxx */
770
771 static int
772 audiounit(dev_t dev)
773 {
774
775 return AUDIOUNIT(dev);
776 }
777
778 const struct cdevsw audio_cdevsw = {
779 .d_open = audioopen,
780 .d_close = noclose,
781 .d_read = noread,
782 .d_write = nowrite,
783 .d_ioctl = noioctl,
784 .d_stop = nostop,
785 .d_tty = notty,
786 .d_poll = nopoll,
787 .d_mmap = nommap,
788 .d_kqfilter = nokqfilter,
789 .d_discard = nodiscard,
790 .d_cfdriver = &audio_cd,
791 .d_devtounit = audiounit,
792 .d_flag = D_OTHER | D_MPSAFE
793 };
794
795 const struct fileops audio_fileops = {
796 .fo_name = "audio",
797 .fo_read = audioread,
798 .fo_write = audiowrite,
799 .fo_ioctl = audioioctl,
800 .fo_fcntl = fnullop_fcntl,
801 .fo_stat = audiostat,
802 .fo_poll = audiopoll,
803 .fo_close = audioclose,
804 .fo_mmap = audiommap,
805 .fo_kqfilter = audiokqfilter,
806 .fo_restart = fnullop_restart
807 };
808
809 /* The default audio mode: 8 kHz mono mu-law */
810 static const struct audio_params audio_default = {
811 .sample_rate = 8000,
812 .encoding = AUDIO_ENCODING_ULAW,
813 .precision = 8,
814 .validbits = 8,
815 .channels = 1,
816 };
817
818 static const char *encoding_names[] = {
819 "none",
820 AudioEmulaw,
821 AudioEalaw,
822 "pcm16",
823 "pcm8",
824 AudioEadpcm,
825 AudioEslinear_le,
826 AudioEslinear_be,
827 AudioEulinear_le,
828 AudioEulinear_be,
829 AudioEslinear,
830 AudioEulinear,
831 AudioEmpeg_l1_stream,
832 AudioEmpeg_l1_packets,
833 AudioEmpeg_l1_system,
834 AudioEmpeg_l2_stream,
835 AudioEmpeg_l2_packets,
836 AudioEmpeg_l2_system,
837 AudioEac3,
838 };
839
840 /*
841 * Returns encoding name corresponding to AUDIO_ENCODING_*.
842 * Note that it may return a local buffer because it is mainly for debugging.
843 */
844 const char *
845 audio_encoding_name(int encoding)
846 {
847 static char buf[16];
848
849 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
850 return encoding_names[encoding];
851 } else {
852 snprintf(buf, sizeof(buf), "enc=%d", encoding);
853 return buf;
854 }
855 }
856
857 /*
858 * Supported encodings used by AUDIO_GETENC.
859 * index and flags are set by code.
860 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
861 */
862 static const audio_encoding_t audio_encodings[] = {
863 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
864 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
865 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
866 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
867 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
868 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
869 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
870 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
871 #if defined(AUDIO_SUPPORT_LINEAR24)
872 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
873 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
874 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
875 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
876 #endif
877 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
878 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
879 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
880 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
881 };
882
883 static const struct portname itable[] = {
884 { AudioNmicrophone, AUDIO_MICROPHONE },
885 { AudioNline, AUDIO_LINE_IN },
886 { AudioNcd, AUDIO_CD },
887 { 0, 0 }
888 };
889 static const struct portname otable[] = {
890 { AudioNspeaker, AUDIO_SPEAKER },
891 { AudioNheadphone, AUDIO_HEADPHONE },
892 { AudioNline, AUDIO_LINE_OUT },
893 { 0, 0 }
894 };
895
896 static struct psref_class *audio_psref_class __read_mostly;
897
898 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
899 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
900 audiochilddet, DVF_DETACH_SHUTDOWN);
901
902 static int
903 audiomatch(device_t parent, cfdata_t match, void *aux)
904 {
905 struct audio_attach_args *sa;
906
907 sa = aux;
908 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
909 __func__, sa->type, sa, sa->hwif);
910 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
911 }
912
913 static void
914 audioattach(device_t parent, device_t self, void *aux)
915 {
916 struct audio_softc *sc;
917 struct audio_attach_args *sa;
918 const struct audio_hw_if *hw_if;
919 audio_format2_t phwfmt;
920 audio_format2_t rhwfmt;
921 audio_filter_reg_t pfil;
922 audio_filter_reg_t rfil;
923 const struct sysctlnode *node;
924 void *hdlp;
925 bool has_playback;
926 bool has_capture;
927 bool has_indep;
928 bool has_fulldup;
929 int mode;
930 int error;
931
932 sc = device_private(self);
933 sc->sc_dev = self;
934 sa = (struct audio_attach_args *)aux;
935 hw_if = sa->hwif;
936 hdlp = sa->hdl;
937
938 if (hw_if == NULL) {
939 panic("audioattach: missing hw_if method");
940 }
941 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
942 aprint_error(": missing mandatory method\n");
943 return;
944 }
945
946 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
947 sc->sc_props = hw_if->get_props(hdlp);
948
949 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
950 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
951 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
952 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
953
954 #ifdef DIAGNOSTIC
955 if (hw_if->query_format == NULL ||
956 hw_if->set_format == NULL ||
957 hw_if->getdev == NULL ||
958 hw_if->set_port == NULL ||
959 hw_if->get_port == NULL ||
960 hw_if->query_devinfo == NULL) {
961 aprint_error(": missing mandatory method\n");
962 return;
963 }
964 if (has_playback) {
965 if ((hw_if->start_output == NULL &&
966 hw_if->trigger_output == NULL) ||
967 hw_if->halt_output == NULL) {
968 aprint_error(": missing playback method\n");
969 }
970 }
971 if (has_capture) {
972 if ((hw_if->start_input == NULL &&
973 hw_if->trigger_input == NULL) ||
974 hw_if->halt_input == NULL) {
975 aprint_error(": missing capture method\n");
976 }
977 }
978 #endif
979
980 sc->hw_if = hw_if;
981 sc->hw_hdl = hdlp;
982 sc->hw_dev = parent;
983
984 sc->sc_exlock = 1;
985 sc->sc_blk_ms = AUDIO_BLK_MS;
986 SLIST_INIT(&sc->sc_files);
987 cv_init(&sc->sc_exlockcv, "audiolk");
988 sc->sc_am_capacity = 0;
989 sc->sc_am_used = 0;
990 sc->sc_am = NULL;
991
992 /* MMAP is now supported by upper layer. */
993 sc->sc_props |= AUDIO_PROP_MMAP;
994
995 KASSERT(has_playback || has_capture);
996 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
997 if (!has_playback || !has_capture) {
998 KASSERT(!has_indep);
999 KASSERT(!has_fulldup);
1000 }
1001
1002 mode = 0;
1003 if (has_playback) {
1004 aprint_normal(": playback");
1005 mode |= AUMODE_PLAY;
1006 }
1007 if (has_capture) {
1008 aprint_normal("%c capture", has_playback ? ',' : ':');
1009 mode |= AUMODE_RECORD;
1010 }
1011 if (has_playback && has_capture) {
1012 if (has_fulldup)
1013 aprint_normal(", full duplex");
1014 else
1015 aprint_normal(", half duplex");
1016
1017 if (has_indep)
1018 aprint_normal(", independent");
1019 }
1020
1021 aprint_naive("\n");
1022 aprint_normal("\n");
1023
1024 /* probe hw params */
1025 memset(&phwfmt, 0, sizeof(phwfmt));
1026 memset(&rhwfmt, 0, sizeof(rhwfmt));
1027 memset(&pfil, 0, sizeof(pfil));
1028 memset(&rfil, 0, sizeof(rfil));
1029 if (has_indep) {
1030 int perror, rerror;
1031
1032 /* On independent devices, probe separately. */
1033 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
1034 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
1035 if (perror && rerror) {
1036 aprint_error_dev(self,
1037 "audio_hw_probe failed: perror=%d, rerror=%d\n",
1038 perror, rerror);
1039 goto bad;
1040 }
1041 if (perror) {
1042 mode &= ~AUMODE_PLAY;
1043 aprint_error_dev(self, "audio_hw_probe failed: "
1044 "errno=%d, playback disabled\n", perror);
1045 }
1046 if (rerror) {
1047 mode &= ~AUMODE_RECORD;
1048 aprint_error_dev(self, "audio_hw_probe failed: "
1049 "errno=%d, capture disabled\n", rerror);
1050 }
1051 } else {
1052 /*
1053 * On non independent devices or uni-directional devices,
1054 * probe once (simultaneously).
1055 */
1056 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
1057 error = audio_hw_probe(sc, fmt, mode);
1058 if (error) {
1059 aprint_error_dev(self,
1060 "audio_hw_probe failed: errno=%d\n", error);
1061 goto bad;
1062 }
1063 if (has_playback && has_capture)
1064 rhwfmt = phwfmt;
1065 }
1066
1067 /* Init hardware. */
1068 /* hw_probe() also validates [pr]hwfmt. */
1069 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1070 if (error) {
1071 aprint_error_dev(self,
1072 "audio_hw_set_format failed: errno=%d\n", error);
1073 goto bad;
1074 }
1075
1076 /*
1077 * Init track mixers. If at least one direction is available on
1078 * attach time, we assume a success.
1079 */
1080 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1081 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1082 aprint_error_dev(self,
1083 "audio_mixers_init failed: errno=%d\n", error);
1084 goto bad;
1085 }
1086
1087 sc->sc_psz = pserialize_create();
1088 psref_target_init(&sc->sc_psref, audio_psref_class);
1089
1090 selinit(&sc->sc_wsel);
1091 selinit(&sc->sc_rsel);
1092
1093 /* Initial parameter of /dev/sound */
1094 sc->sc_sound_pparams = params_to_format2(&audio_default);
1095 sc->sc_sound_rparams = params_to_format2(&audio_default);
1096 sc->sc_sound_ppause = false;
1097 sc->sc_sound_rpause = false;
1098
1099 /* XXX TODO: consider about sc_ai */
1100
1101 mixer_init(sc);
1102 TRACE(2, "inputs ports=0x%x, input master=%d, "
1103 "output ports=0x%x, output master=%d",
1104 sc->sc_inports.allports, sc->sc_inports.master,
1105 sc->sc_outports.allports, sc->sc_outports.master);
1106
1107 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1108 0,
1109 CTLTYPE_NODE, device_xname(sc->sc_dev),
1110 SYSCTL_DESCR("audio test"),
1111 NULL, 0,
1112 NULL, 0,
1113 CTL_HW,
1114 CTL_CREATE, CTL_EOL);
1115
1116 if (node != NULL) {
1117 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1118 CTLFLAG_READWRITE,
1119 CTLTYPE_INT, "blk_ms",
1120 SYSCTL_DESCR("blocksize in msec"),
1121 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1122 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1123
1124 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1125 CTLFLAG_READWRITE,
1126 CTLTYPE_BOOL, "multiuser",
1127 SYSCTL_DESCR("allow multiple user access"),
1128 audio_sysctl_multiuser, 0, (void *)sc, 0,
1129 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1130
1131 #if defined(AUDIO_DEBUG)
1132 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1133 CTLFLAG_READWRITE,
1134 CTLTYPE_INT, "debug",
1135 SYSCTL_DESCR("debug level (0..4)"),
1136 audio_sysctl_debug, 0, (void *)sc, 0,
1137 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1138 #endif
1139 }
1140
1141 #ifdef AUDIO_PM_IDLE
1142 callout_init(&sc->sc_idle_counter, 0);
1143 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1144 #endif
1145
1146 if (!pmf_device_register(self, audio_suspend, audio_resume))
1147 aprint_error_dev(self, "couldn't establish power handler\n");
1148 #ifdef AUDIO_PM_IDLE
1149 if (!device_active_register(self, audio_activity))
1150 aprint_error_dev(self, "couldn't register activity handler\n");
1151 #endif
1152
1153 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1154 audio_volume_down, true))
1155 aprint_error_dev(self, "couldn't add volume down handler\n");
1156 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1157 audio_volume_up, true))
1158 aprint_error_dev(self, "couldn't add volume up handler\n");
1159 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1160 audio_volume_toggle, true))
1161 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1162
1163 #ifdef AUDIO_PM_IDLE
1164 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1165 #endif
1166
1167 #if defined(AUDIO_DEBUG)
1168 audio_mlog_init();
1169 #endif
1170
1171 audiorescan(self, NULL, NULL);
1172 sc->sc_exlock = 0;
1173 return;
1174
1175 bad:
1176 /* Clearing hw_if means that device is attached but disabled. */
1177 sc->hw_if = NULL;
1178 sc->sc_exlock = 0;
1179 aprint_error_dev(sc->sc_dev, "disabled\n");
1180 return;
1181 }
1182
1183 /*
1184 * Initialize hardware mixer.
1185 * This function is called from audioattach().
1186 */
1187 static void
1188 mixer_init(struct audio_softc *sc)
1189 {
1190 mixer_devinfo_t mi;
1191 int iclass, mclass, oclass, rclass;
1192 int record_master_found, record_source_found;
1193
1194 iclass = mclass = oclass = rclass = -1;
1195 sc->sc_inports.index = -1;
1196 sc->sc_inports.master = -1;
1197 sc->sc_inports.nports = 0;
1198 sc->sc_inports.isenum = false;
1199 sc->sc_inports.allports = 0;
1200 sc->sc_inports.isdual = false;
1201 sc->sc_inports.mixerout = -1;
1202 sc->sc_inports.cur_port = -1;
1203 sc->sc_outports.index = -1;
1204 sc->sc_outports.master = -1;
1205 sc->sc_outports.nports = 0;
1206 sc->sc_outports.isenum = false;
1207 sc->sc_outports.allports = 0;
1208 sc->sc_outports.isdual = false;
1209 sc->sc_outports.mixerout = -1;
1210 sc->sc_outports.cur_port = -1;
1211 sc->sc_monitor_port = -1;
1212 /*
1213 * Read through the underlying driver's list, picking out the class
1214 * names from the mixer descriptions. We'll need them to decode the
1215 * mixer descriptions on the next pass through the loop.
1216 */
1217 mutex_enter(sc->sc_lock);
1218 for(mi.index = 0; ; mi.index++) {
1219 if (audio_query_devinfo(sc, &mi) != 0)
1220 break;
1221 /*
1222 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1223 * All the other types describe an actual mixer.
1224 */
1225 if (mi.type == AUDIO_MIXER_CLASS) {
1226 if (strcmp(mi.label.name, AudioCinputs) == 0)
1227 iclass = mi.mixer_class;
1228 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1229 mclass = mi.mixer_class;
1230 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1231 oclass = mi.mixer_class;
1232 if (strcmp(mi.label.name, AudioCrecord) == 0)
1233 rclass = mi.mixer_class;
1234 }
1235 }
1236 mutex_exit(sc->sc_lock);
1237
1238 /* Allocate save area. Ensure non-zero allocation. */
1239 sc->sc_nmixer_states = mi.index;
1240 sc->sc_mixer_state = kmem_zalloc(sizeof(sc->sc_mixer_state[0]) *
1241 (sc->sc_nmixer_states + 1), KM_SLEEP);
1242
1243 /*
1244 * This is where we assign each control in the "audio" model, to the
1245 * underlying "mixer" control. We walk through the whole list once,
1246 * assigning likely candidates as we come across them.
1247 */
1248 record_master_found = 0;
1249 record_source_found = 0;
1250 mutex_enter(sc->sc_lock);
1251 for(mi.index = 0; ; mi.index++) {
1252 if (audio_query_devinfo(sc, &mi) != 0)
1253 break;
1254 KASSERT(mi.index < sc->sc_nmixer_states);
1255 if (mi.type == AUDIO_MIXER_CLASS)
1256 continue;
1257 if (mi.mixer_class == iclass) {
1258 /*
1259 * AudioCinputs is only a fallback, when we don't
1260 * find what we're looking for in AudioCrecord, so
1261 * check the flags before accepting one of these.
1262 */
1263 if (strcmp(mi.label.name, AudioNmaster) == 0
1264 && record_master_found == 0)
1265 sc->sc_inports.master = mi.index;
1266 if (strcmp(mi.label.name, AudioNsource) == 0
1267 && record_source_found == 0) {
1268 if (mi.type == AUDIO_MIXER_ENUM) {
1269 int i;
1270 for(i = 0; i < mi.un.e.num_mem; i++)
1271 if (strcmp(mi.un.e.member[i].label.name,
1272 AudioNmixerout) == 0)
1273 sc->sc_inports.mixerout =
1274 mi.un.e.member[i].ord;
1275 }
1276 au_setup_ports(sc, &sc->sc_inports, &mi,
1277 itable);
1278 }
1279 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1280 sc->sc_outports.master == -1)
1281 sc->sc_outports.master = mi.index;
1282 } else if (mi.mixer_class == mclass) {
1283 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1284 sc->sc_monitor_port = mi.index;
1285 } else if (mi.mixer_class == oclass) {
1286 if (strcmp(mi.label.name, AudioNmaster) == 0)
1287 sc->sc_outports.master = mi.index;
1288 if (strcmp(mi.label.name, AudioNselect) == 0)
1289 au_setup_ports(sc, &sc->sc_outports, &mi,
1290 otable);
1291 } else if (mi.mixer_class == rclass) {
1292 /*
1293 * These are the preferred mixers for the audio record
1294 * controls, so set the flags here, but don't check.
1295 */
1296 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1297 sc->sc_inports.master = mi.index;
1298 record_master_found = 1;
1299 }
1300 #if 1 /* Deprecated. Use AudioNmaster. */
1301 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1302 sc->sc_inports.master = mi.index;
1303 record_master_found = 1;
1304 }
1305 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1306 sc->sc_inports.master = mi.index;
1307 record_master_found = 1;
1308 }
1309 #endif
1310 if (strcmp(mi.label.name, AudioNsource) == 0) {
1311 if (mi.type == AUDIO_MIXER_ENUM) {
1312 int i;
1313 for(i = 0; i < mi.un.e.num_mem; i++)
1314 if (strcmp(mi.un.e.member[i].label.name,
1315 AudioNmixerout) == 0)
1316 sc->sc_inports.mixerout =
1317 mi.un.e.member[i].ord;
1318 }
1319 au_setup_ports(sc, &sc->sc_inports, &mi,
1320 itable);
1321 record_source_found = 1;
1322 }
1323 }
1324 }
1325 mutex_exit(sc->sc_lock);
1326 }
1327
1328 static int
1329 audioactivate(device_t self, enum devact act)
1330 {
1331 struct audio_softc *sc = device_private(self);
1332
1333 switch (act) {
1334 case DVACT_DEACTIVATE:
1335 mutex_enter(sc->sc_lock);
1336 sc->sc_dying = true;
1337 cv_broadcast(&sc->sc_exlockcv);
1338 mutex_exit(sc->sc_lock);
1339 return 0;
1340 default:
1341 return EOPNOTSUPP;
1342 }
1343 }
1344
1345 static int
1346 audiodetach(device_t self, int flags)
1347 {
1348 struct audio_softc *sc;
1349 struct audio_file *file;
1350 int maj, mn;
1351 int error;
1352
1353 sc = device_private(self);
1354 TRACE(2, "flags=%d", flags);
1355
1356 /* device is not initialized */
1357 if (sc->hw_if == NULL)
1358 return 0;
1359
1360 /* Start draining existing accessors of the device. */
1361 error = config_detach_children(self, flags);
1362 if (error)
1363 return error;
1364
1365 /*
1366 * Prevent new opens and wait for existing opens to complete.
1367 */
1368 maj = cdevsw_lookup_major(&audio_cdevsw);
1369 mn = device_unit(self);
1370 vdevgone(maj, mn|SOUND_DEVICE, mn|SOUND_DEVICE, VCHR);
1371 vdevgone(maj, mn|AUDIO_DEVICE, mn|AUDIO_DEVICE, VCHR);
1372 vdevgone(maj, mn|AUDIOCTL_DEVICE, mn|AUDIOCTL_DEVICE, VCHR);
1373 vdevgone(maj, mn|MIXER_DEVICE, mn|MIXER_DEVICE, VCHR);
1374
1375 /*
1376 * This waits currently running sysctls to finish if exists.
1377 * After this, no more new sysctls will come.
1378 */
1379 sysctl_teardown(&sc->sc_log);
1380
1381 mutex_enter(sc->sc_lock);
1382 sc->sc_dying = true;
1383 cv_broadcast(&sc->sc_exlockcv);
1384 if (sc->sc_pmixer)
1385 cv_broadcast(&sc->sc_pmixer->outcv);
1386 if (sc->sc_rmixer)
1387 cv_broadcast(&sc->sc_rmixer->outcv);
1388
1389 /* Prevent new users */
1390 SLIST_FOREACH(file, &sc->sc_files, entry) {
1391 atomic_store_relaxed(&file->dying, true);
1392 }
1393 mutex_exit(sc->sc_lock);
1394
1395 /*
1396 * Wait for existing users to drain.
1397 * - pserialize_perform waits for all pserialize_read sections on
1398 * all CPUs; after this, no more new psref_acquire can happen.
1399 * - psref_target_destroy waits for all extant acquired psrefs to
1400 * be psref_released.
1401 */
1402 pserialize_perform(sc->sc_psz);
1403 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1404
1405 /*
1406 * We are now guaranteed that there are no calls to audio fileops
1407 * that hold sc, and any new calls with files that were for sc will
1408 * fail. Thus, we now have exclusive access to the softc.
1409 */
1410 sc->sc_exlock = 1;
1411
1412 /*
1413 * Clean up all open instances.
1414 */
1415 mutex_enter(sc->sc_lock);
1416 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1417 mutex_enter(sc->sc_intr_lock);
1418 SLIST_REMOVE_HEAD(&sc->sc_files, entry);
1419 mutex_exit(sc->sc_intr_lock);
1420 if (file->ptrack || file->rtrack) {
1421 mutex_exit(sc->sc_lock);
1422 audio_unlink(sc, file);
1423 mutex_enter(sc->sc_lock);
1424 }
1425 }
1426 mutex_exit(sc->sc_lock);
1427
1428 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1429 audio_volume_down, true);
1430 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1431 audio_volume_up, true);
1432 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1433 audio_volume_toggle, true);
1434
1435 #ifdef AUDIO_PM_IDLE
1436 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1437
1438 device_active_deregister(self, audio_activity);
1439 #endif
1440
1441 pmf_device_deregister(self);
1442
1443 /* Free resources */
1444 if (sc->sc_pmixer) {
1445 audio_mixer_destroy(sc, sc->sc_pmixer);
1446 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1447 }
1448 if (sc->sc_rmixer) {
1449 audio_mixer_destroy(sc, sc->sc_rmixer);
1450 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1451 }
1452 if (sc->sc_am)
1453 kern_free(sc->sc_am);
1454
1455 seldestroy(&sc->sc_wsel);
1456 seldestroy(&sc->sc_rsel);
1457
1458 #ifdef AUDIO_PM_IDLE
1459 callout_destroy(&sc->sc_idle_counter);
1460 #endif
1461
1462 cv_destroy(&sc->sc_exlockcv);
1463
1464 #if defined(AUDIO_DEBUG)
1465 audio_mlog_free();
1466 #endif
1467
1468 return 0;
1469 }
1470
1471 static void
1472 audiochilddet(device_t self, device_t child)
1473 {
1474
1475 /* we hold no child references, so do nothing */
1476 }
1477
1478 static int
1479 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1480 {
1481
1482 if (config_probe(parent, cf, aux))
1483 config_attach(parent, cf, aux, NULL,
1484 CFARGS_NONE);
1485
1486 return 0;
1487 }
1488
1489 static int
1490 audiorescan(device_t self, const char *ifattr, const int *locators)
1491 {
1492 struct audio_softc *sc = device_private(self);
1493
1494 config_search(sc->sc_dev, NULL,
1495 CFARGS(.search = audiosearch));
1496
1497 return 0;
1498 }
1499
1500 /*
1501 * Called from hardware driver. This is where the MI audio driver gets
1502 * probed/attached to the hardware driver.
1503 */
1504 device_t
1505 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1506 {
1507 struct audio_attach_args arg;
1508
1509 #ifdef DIAGNOSTIC
1510 if (ahwp == NULL) {
1511 aprint_error("audio_attach_mi: NULL\n");
1512 return 0;
1513 }
1514 #endif
1515 arg.type = AUDIODEV_TYPE_AUDIO;
1516 arg.hwif = ahwp;
1517 arg.hdl = hdlp;
1518 return config_found(dev, &arg, audioprint,
1519 CFARGS(.iattr = "audiobus"));
1520 }
1521
1522 /*
1523 * audio_printf() outputs fmt... with the audio device name and MD device
1524 * name prefixed. If the message is considered to be related to the MD
1525 * driver, use this one instead of device_printf().
1526 */
1527 static void
1528 audio_printf(struct audio_softc *sc, const char *fmt, ...)
1529 {
1530 va_list ap;
1531
1532 printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
1533 va_start(ap, fmt);
1534 vprintf(fmt, ap);
1535 va_end(ap);
1536 }
1537
1538 /*
1539 * Enter critical section and also keep sc_lock.
1540 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1541 * Must be called without sc_lock held.
1542 */
1543 static int
1544 audio_exlock_mutex_enter(struct audio_softc *sc)
1545 {
1546 int error;
1547
1548 mutex_enter(sc->sc_lock);
1549 if (sc->sc_dying) {
1550 mutex_exit(sc->sc_lock);
1551 return EIO;
1552 }
1553
1554 while (__predict_false(sc->sc_exlock != 0)) {
1555 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1556 if (sc->sc_dying)
1557 error = EIO;
1558 if (error) {
1559 mutex_exit(sc->sc_lock);
1560 return error;
1561 }
1562 }
1563
1564 /* Acquire */
1565 sc->sc_exlock = 1;
1566 return 0;
1567 }
1568
1569 /*
1570 * Exit critical section and exit sc_lock.
1571 * Must be called with sc_lock held.
1572 */
1573 static void
1574 audio_exlock_mutex_exit(struct audio_softc *sc)
1575 {
1576
1577 KASSERT(mutex_owned(sc->sc_lock));
1578
1579 sc->sc_exlock = 0;
1580 cv_broadcast(&sc->sc_exlockcv);
1581 mutex_exit(sc->sc_lock);
1582 }
1583
1584 /*
1585 * Enter critical section.
1586 * If successful, it returns 0. Otherwise returns errno.
1587 * Must be called without sc_lock held.
1588 * This function returns without sc_lock held.
1589 */
1590 static int
1591 audio_exlock_enter(struct audio_softc *sc)
1592 {
1593 int error;
1594
1595 error = audio_exlock_mutex_enter(sc);
1596 if (error)
1597 return error;
1598 mutex_exit(sc->sc_lock);
1599 return 0;
1600 }
1601
1602 /*
1603 * Exit critical section.
1604 * Must be called without sc_lock held.
1605 */
1606 static void
1607 audio_exlock_exit(struct audio_softc *sc)
1608 {
1609
1610 mutex_enter(sc->sc_lock);
1611 audio_exlock_mutex_exit(sc);
1612 }
1613
1614 /*
1615 * Get sc from file, and increment reference counter for this sc.
1616 * This is intended to be used for methods other than open.
1617 * If successful, returns sc. Otherwise returns NULL.
1618 */
1619 struct audio_softc *
1620 audio_sc_acquire_fromfile(audio_file_t *file, struct psref *refp)
1621 {
1622 int s;
1623 bool dying;
1624
1625 /* Block audiodetach while we acquire a reference */
1626 s = pserialize_read_enter();
1627
1628 /* If close or audiodetach already ran, tough -- no more audio */
1629 dying = atomic_load_relaxed(&file->dying);
1630 if (dying) {
1631 pserialize_read_exit(s);
1632 return NULL;
1633 }
1634
1635 /* Acquire a reference */
1636 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1637
1638 /* Now sc won't go away until we drop the reference count */
1639 pserialize_read_exit(s);
1640
1641 return file->sc;
1642 }
1643
1644 /*
1645 * Decrement reference counter for this sc.
1646 */
1647 void
1648 audio_sc_release(struct audio_softc *sc, struct psref *refp)
1649 {
1650
1651 psref_release(refp, &sc->sc_psref, audio_psref_class);
1652 }
1653
1654 /*
1655 * Wait for I/O to complete, releasing sc_lock.
1656 * Must be called with sc_lock held.
1657 */
1658 static int
1659 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1660 {
1661 int error;
1662
1663 KASSERT(track);
1664 KASSERT(mutex_owned(sc->sc_lock));
1665
1666 /* Wait for pending I/O to complete. */
1667 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1668 mstohz(AUDIO_TIMEOUT));
1669 if (sc->sc_suspending) {
1670 /* If it's about to suspend, ignore timeout error. */
1671 if (error == EWOULDBLOCK) {
1672 TRACET(2, track, "timeout (suspending)");
1673 return 0;
1674 }
1675 }
1676 if (sc->sc_dying) {
1677 error = EIO;
1678 }
1679 if (error) {
1680 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1681 if (error == EWOULDBLOCK)
1682 audio_printf(sc, "device timeout\n");
1683 } else {
1684 TRACET(3, track, "wakeup");
1685 }
1686 return error;
1687 }
1688
1689 /*
1690 * Try to acquire track lock.
1691 * It doesn't block if the track lock is already acquired.
1692 * Returns true if the track lock was acquired, or false if the track
1693 * lock was already acquired.
1694 */
1695 static __inline bool
1696 audio_track_lock_tryenter(audio_track_t *track)
1697 {
1698
1699 if (atomic_swap_uint(&track->lock, 1) != 0)
1700 return false;
1701 membar_acquire();
1702 return true;
1703 }
1704
1705 /*
1706 * Acquire track lock.
1707 */
1708 static __inline void
1709 audio_track_lock_enter(audio_track_t *track)
1710 {
1711
1712 /* Don't sleep here. */
1713 while (audio_track_lock_tryenter(track) == false)
1714 SPINLOCK_BACKOFF_HOOK;
1715 }
1716
1717 /*
1718 * Release track lock.
1719 */
1720 static __inline void
1721 audio_track_lock_exit(audio_track_t *track)
1722 {
1723
1724 atomic_store_release(&track->lock, 0);
1725 }
1726
1727
1728 static int
1729 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1730 {
1731 struct audio_softc *sc;
1732 int error;
1733
1734 /*
1735 * Find the device. Because we wired the cdevsw to the audio
1736 * autoconf instance, the system ensures it will not go away
1737 * until after we return.
1738 */
1739 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1740 if (sc == NULL || sc->hw_if == NULL)
1741 return ENXIO;
1742
1743 error = audio_exlock_enter(sc);
1744 if (error)
1745 return error;
1746
1747 device_active(sc->sc_dev, DVA_SYSTEM);
1748 switch (AUDIODEV(dev)) {
1749 case SOUND_DEVICE:
1750 case AUDIO_DEVICE:
1751 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1752 break;
1753 case AUDIOCTL_DEVICE:
1754 error = audioctl_open(dev, sc, flags, ifmt, l);
1755 break;
1756 case MIXER_DEVICE:
1757 error = mixer_open(dev, sc, flags, ifmt, l);
1758 break;
1759 default:
1760 error = ENXIO;
1761 break;
1762 }
1763 audio_exlock_exit(sc);
1764
1765 return error;
1766 }
1767
1768 static int
1769 audioclose(struct file *fp)
1770 {
1771 struct audio_softc *sc;
1772 struct psref sc_ref;
1773 audio_file_t *file;
1774 int bound;
1775 int error;
1776 dev_t dev;
1777
1778 KASSERT(fp->f_audioctx);
1779 file = fp->f_audioctx;
1780 dev = file->dev;
1781 error = 0;
1782
1783 /*
1784 * audioclose() must
1785 * - unplug track from the trackmixer (and unplug anything from softc),
1786 * if sc exists.
1787 * - free all memory objects, regardless of sc.
1788 */
1789
1790 bound = curlwp_bind();
1791 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1792 if (sc) {
1793 switch (AUDIODEV(dev)) {
1794 case SOUND_DEVICE:
1795 case AUDIO_DEVICE:
1796 error = audio_close(sc, file);
1797 break;
1798 case AUDIOCTL_DEVICE:
1799 mutex_enter(sc->sc_lock);
1800 mutex_enter(sc->sc_intr_lock);
1801 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1802 mutex_exit(sc->sc_intr_lock);
1803 mutex_exit(sc->sc_lock);
1804 error = 0;
1805 break;
1806 case MIXER_DEVICE:
1807 mutex_enter(sc->sc_lock);
1808 mutex_enter(sc->sc_intr_lock);
1809 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1810 mutex_exit(sc->sc_intr_lock);
1811 mutex_exit(sc->sc_lock);
1812 error = mixer_close(sc, file);
1813 break;
1814 default:
1815 error = ENXIO;
1816 break;
1817 }
1818
1819 audio_sc_release(sc, &sc_ref);
1820 }
1821 curlwp_bindx(bound);
1822
1823 /* Free memory objects anyway */
1824 TRACEF(2, file, "free memory");
1825 if (file->ptrack)
1826 audio_track_destroy(file->ptrack);
1827 if (file->rtrack)
1828 audio_track_destroy(file->rtrack);
1829 kmem_free(file, sizeof(*file));
1830 fp->f_audioctx = NULL;
1831
1832 return error;
1833 }
1834
1835 static int
1836 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1837 int ioflag)
1838 {
1839 struct audio_softc *sc;
1840 struct psref sc_ref;
1841 audio_file_t *file;
1842 int bound;
1843 int error;
1844 dev_t dev;
1845
1846 KASSERT(fp->f_audioctx);
1847 file = fp->f_audioctx;
1848 dev = file->dev;
1849
1850 bound = curlwp_bind();
1851 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1852 if (sc == NULL) {
1853 error = EIO;
1854 goto done;
1855 }
1856
1857 if (fp->f_flag & O_NONBLOCK)
1858 ioflag |= IO_NDELAY;
1859
1860 switch (AUDIODEV(dev)) {
1861 case SOUND_DEVICE:
1862 case AUDIO_DEVICE:
1863 error = audio_read(sc, uio, ioflag, file);
1864 break;
1865 case AUDIOCTL_DEVICE:
1866 case MIXER_DEVICE:
1867 error = ENODEV;
1868 break;
1869 default:
1870 error = ENXIO;
1871 break;
1872 }
1873
1874 audio_sc_release(sc, &sc_ref);
1875 done:
1876 curlwp_bindx(bound);
1877 return error;
1878 }
1879
1880 static int
1881 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1882 int ioflag)
1883 {
1884 struct audio_softc *sc;
1885 struct psref sc_ref;
1886 audio_file_t *file;
1887 int bound;
1888 int error;
1889 dev_t dev;
1890
1891 KASSERT(fp->f_audioctx);
1892 file = fp->f_audioctx;
1893 dev = file->dev;
1894
1895 bound = curlwp_bind();
1896 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1897 if (sc == NULL) {
1898 error = EIO;
1899 goto done;
1900 }
1901
1902 if (fp->f_flag & O_NONBLOCK)
1903 ioflag |= IO_NDELAY;
1904
1905 switch (AUDIODEV(dev)) {
1906 case SOUND_DEVICE:
1907 case AUDIO_DEVICE:
1908 error = audio_write(sc, uio, ioflag, file);
1909 break;
1910 case AUDIOCTL_DEVICE:
1911 case MIXER_DEVICE:
1912 error = ENODEV;
1913 break;
1914 default:
1915 error = ENXIO;
1916 break;
1917 }
1918
1919 audio_sc_release(sc, &sc_ref);
1920 done:
1921 curlwp_bindx(bound);
1922 return error;
1923 }
1924
1925 static int
1926 audioioctl(struct file *fp, u_long cmd, void *addr)
1927 {
1928 struct audio_softc *sc;
1929 struct psref sc_ref;
1930 audio_file_t *file;
1931 struct lwp *l = curlwp;
1932 int bound;
1933 int error;
1934 dev_t dev;
1935
1936 KASSERT(fp->f_audioctx);
1937 file = fp->f_audioctx;
1938 dev = file->dev;
1939
1940 bound = curlwp_bind();
1941 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1942 if (sc == NULL) {
1943 error = EIO;
1944 goto done;
1945 }
1946
1947 switch (AUDIODEV(dev)) {
1948 case SOUND_DEVICE:
1949 case AUDIO_DEVICE:
1950 case AUDIOCTL_DEVICE:
1951 mutex_enter(sc->sc_lock);
1952 device_active(sc->sc_dev, DVA_SYSTEM);
1953 mutex_exit(sc->sc_lock);
1954 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1955 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1956 else
1957 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1958 file);
1959 break;
1960 case MIXER_DEVICE:
1961 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1962 break;
1963 default:
1964 error = ENXIO;
1965 break;
1966 }
1967
1968 audio_sc_release(sc, &sc_ref);
1969 done:
1970 curlwp_bindx(bound);
1971 return error;
1972 }
1973
1974 static int
1975 audiostat(struct file *fp, struct stat *st)
1976 {
1977 struct audio_softc *sc;
1978 struct psref sc_ref;
1979 audio_file_t *file;
1980 int bound;
1981 int error;
1982
1983 KASSERT(fp->f_audioctx);
1984 file = fp->f_audioctx;
1985
1986 bound = curlwp_bind();
1987 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1988 if (sc == NULL) {
1989 error = EIO;
1990 goto done;
1991 }
1992
1993 error = 0;
1994 memset(st, 0, sizeof(*st));
1995
1996 st->st_dev = file->dev;
1997 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1998 st->st_gid = kauth_cred_getegid(fp->f_cred);
1999 st->st_mode = S_IFCHR;
2000
2001 audio_sc_release(sc, &sc_ref);
2002 done:
2003 curlwp_bindx(bound);
2004 return error;
2005 }
2006
2007 static int
2008 audiopoll(struct file *fp, int events)
2009 {
2010 struct audio_softc *sc;
2011 struct psref sc_ref;
2012 audio_file_t *file;
2013 struct lwp *l = curlwp;
2014 int bound;
2015 int revents;
2016 dev_t dev;
2017
2018 KASSERT(fp->f_audioctx);
2019 file = fp->f_audioctx;
2020 dev = file->dev;
2021
2022 bound = curlwp_bind();
2023 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2024 if (sc == NULL) {
2025 revents = POLLERR;
2026 goto done;
2027 }
2028
2029 switch (AUDIODEV(dev)) {
2030 case SOUND_DEVICE:
2031 case AUDIO_DEVICE:
2032 revents = audio_poll(sc, events, l, file);
2033 break;
2034 case AUDIOCTL_DEVICE:
2035 case MIXER_DEVICE:
2036 revents = 0;
2037 break;
2038 default:
2039 revents = POLLERR;
2040 break;
2041 }
2042
2043 audio_sc_release(sc, &sc_ref);
2044 done:
2045 curlwp_bindx(bound);
2046 return revents;
2047 }
2048
2049 static int
2050 audiokqfilter(struct file *fp, struct knote *kn)
2051 {
2052 struct audio_softc *sc;
2053 struct psref sc_ref;
2054 audio_file_t *file;
2055 dev_t dev;
2056 int bound;
2057 int error;
2058
2059 KASSERT(fp->f_audioctx);
2060 file = fp->f_audioctx;
2061 dev = file->dev;
2062
2063 bound = curlwp_bind();
2064 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2065 if (sc == NULL) {
2066 error = EIO;
2067 goto done;
2068 }
2069
2070 switch (AUDIODEV(dev)) {
2071 case SOUND_DEVICE:
2072 case AUDIO_DEVICE:
2073 error = audio_kqfilter(sc, file, kn);
2074 break;
2075 case AUDIOCTL_DEVICE:
2076 case MIXER_DEVICE:
2077 error = ENODEV;
2078 break;
2079 default:
2080 error = ENXIO;
2081 break;
2082 }
2083
2084 audio_sc_release(sc, &sc_ref);
2085 done:
2086 curlwp_bindx(bound);
2087 return error;
2088 }
2089
2090 static int
2091 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
2092 int *advicep, struct uvm_object **uobjp, int *maxprotp)
2093 {
2094 struct audio_softc *sc;
2095 struct psref sc_ref;
2096 audio_file_t *file;
2097 dev_t dev;
2098 int bound;
2099 int error;
2100
2101 KASSERT(fp->f_audioctx);
2102 file = fp->f_audioctx;
2103 dev = file->dev;
2104
2105 bound = curlwp_bind();
2106 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2107 if (sc == NULL) {
2108 error = EIO;
2109 goto done;
2110 }
2111
2112 mutex_enter(sc->sc_lock);
2113 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
2114 mutex_exit(sc->sc_lock);
2115
2116 switch (AUDIODEV(dev)) {
2117 case SOUND_DEVICE:
2118 case AUDIO_DEVICE:
2119 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
2120 uobjp, maxprotp, file);
2121 break;
2122 case AUDIOCTL_DEVICE:
2123 case MIXER_DEVICE:
2124 default:
2125 error = ENOTSUP;
2126 break;
2127 }
2128
2129 audio_sc_release(sc, &sc_ref);
2130 done:
2131 curlwp_bindx(bound);
2132 return error;
2133 }
2134
2135
2136 /* Exported interfaces for audiobell. */
2137
2138 /*
2139 * Open for audiobell.
2140 * It stores allocated file to *filep.
2141 * If successful returns 0, otherwise errno.
2142 */
2143 int
2144 audiobellopen(dev_t dev, audio_file_t **filep)
2145 {
2146 device_t audiodev = NULL;
2147 struct audio_softc *sc;
2148 bool exlock = false;
2149 int error;
2150
2151 /*
2152 * Find the autoconf instance and make sure it doesn't go away
2153 * while we are opening it.
2154 */
2155 audiodev = device_lookup_acquire(&audio_cd, AUDIOUNIT(dev));
2156 if (audiodev == NULL) {
2157 error = ENXIO;
2158 goto out;
2159 }
2160
2161 /* If attach failed, it's hopeless -- give up. */
2162 sc = device_private(audiodev);
2163 if (sc->hw_if == NULL) {
2164 error = ENXIO;
2165 goto out;
2166 }
2167
2168 /* Take the exclusive configuration lock. */
2169 error = audio_exlock_enter(sc);
2170 if (error)
2171 goto out;
2172 exlock = true;
2173
2174 /* Open the audio device. */
2175 device_active(sc->sc_dev, DVA_SYSTEM);
2176 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
2177
2178 out: if (exlock)
2179 audio_exlock_exit(sc);
2180 if (audiodev)
2181 device_release(audiodev);
2182 return error;
2183 }
2184
2185 /* Close for audiobell */
2186 int
2187 audiobellclose(audio_file_t *file)
2188 {
2189 struct audio_softc *sc;
2190 struct psref sc_ref;
2191 int bound;
2192 int error;
2193
2194 error = 0;
2195 /*
2196 * audiobellclose() must
2197 * - unplug track from the trackmixer if sc exist.
2198 * - free all memory objects, regardless of sc.
2199 */
2200 bound = curlwp_bind();
2201 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2202 if (sc) {
2203 error = audio_close(sc, file);
2204 audio_sc_release(sc, &sc_ref);
2205 }
2206 curlwp_bindx(bound);
2207
2208 /* Free memory objects anyway */
2209 KASSERT(file->ptrack);
2210 audio_track_destroy(file->ptrack);
2211 KASSERT(file->rtrack == NULL);
2212 kmem_free(file, sizeof(*file));
2213 return error;
2214 }
2215
2216 /* Set sample rate for audiobell */
2217 int
2218 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2219 {
2220 struct audio_softc *sc;
2221 struct psref sc_ref;
2222 struct audio_info ai;
2223 int bound;
2224 int error;
2225
2226 bound = curlwp_bind();
2227 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2228 if (sc == NULL) {
2229 error = EIO;
2230 goto done1;
2231 }
2232
2233 AUDIO_INITINFO(&ai);
2234 ai.play.sample_rate = sample_rate;
2235
2236 error = audio_exlock_enter(sc);
2237 if (error)
2238 goto done2;
2239 error = audio_file_setinfo(sc, file, &ai);
2240 audio_exlock_exit(sc);
2241
2242 done2:
2243 audio_sc_release(sc, &sc_ref);
2244 done1:
2245 curlwp_bindx(bound);
2246 return error;
2247 }
2248
2249 /* Playback for audiobell */
2250 int
2251 audiobellwrite(audio_file_t *file, struct uio *uio)
2252 {
2253 struct audio_softc *sc;
2254 struct psref sc_ref;
2255 int bound;
2256 int error;
2257
2258 bound = curlwp_bind();
2259 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2260 if (sc == NULL) {
2261 error = EIO;
2262 goto done;
2263 }
2264
2265 error = audio_write(sc, uio, 0, file);
2266
2267 audio_sc_release(sc, &sc_ref);
2268 done:
2269 curlwp_bindx(bound);
2270 return error;
2271 }
2272
2273
2274 /*
2275 * Audio driver
2276 */
2277
2278 /*
2279 * Must be called with sc_exlock held and without sc_lock held.
2280 */
2281 int
2282 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2283 struct lwp *l, audio_file_t **bellfile)
2284 {
2285 struct audio_info ai;
2286 struct file *fp;
2287 audio_file_t *af;
2288 audio_ring_t *hwbuf;
2289 bool fullduplex;
2290 bool cred_held;
2291 bool hw_opened;
2292 bool rmixer_started;
2293 bool inserted;
2294 int fd;
2295 int error;
2296
2297 KASSERT(sc->sc_exlock);
2298
2299 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2300 (audiodebug >= 3) ? "start " : "",
2301 ISDEVSOUND(dev) ? "sound" : "audio",
2302 flags, sc->sc_popens, sc->sc_ropens);
2303
2304 fp = NULL;
2305 cred_held = false;
2306 hw_opened = false;
2307 rmixer_started = false;
2308 inserted = false;
2309
2310 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
2311 af->sc = sc;
2312 af->dev = dev;
2313 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2314 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2315 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2316 af->mode |= AUMODE_RECORD;
2317 if (af->mode == 0) {
2318 error = ENXIO;
2319 goto bad;
2320 }
2321
2322 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2323
2324 /*
2325 * On half duplex hardware,
2326 * 1. if mode is (PLAY | REC), let mode PLAY.
2327 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2328 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2329 */
2330 if (fullduplex == false) {
2331 if ((af->mode & AUMODE_PLAY)) {
2332 if (sc->sc_ropens != 0) {
2333 TRACE(1, "record track already exists");
2334 error = ENODEV;
2335 goto bad;
2336 }
2337 /* Play takes precedence */
2338 af->mode &= ~AUMODE_RECORD;
2339 }
2340 if ((af->mode & AUMODE_RECORD)) {
2341 if (sc->sc_popens != 0) {
2342 TRACE(1, "play track already exists");
2343 error = ENODEV;
2344 goto bad;
2345 }
2346 }
2347 }
2348
2349 /* Create tracks */
2350 if ((af->mode & AUMODE_PLAY))
2351 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2352 if ((af->mode & AUMODE_RECORD))
2353 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2354
2355 /* Set parameters */
2356 AUDIO_INITINFO(&ai);
2357 if (bellfile) {
2358 /* If audiobell, only sample_rate will be set later. */
2359 ai.play.sample_rate = audio_default.sample_rate;
2360 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2361 ai.play.channels = 1;
2362 ai.play.precision = 16;
2363 ai.play.pause = 0;
2364 } else if (ISDEVAUDIO(dev)) {
2365 /* If /dev/audio, initialize everytime. */
2366 ai.play.sample_rate = audio_default.sample_rate;
2367 ai.play.encoding = audio_default.encoding;
2368 ai.play.channels = audio_default.channels;
2369 ai.play.precision = audio_default.precision;
2370 ai.play.pause = 0;
2371 ai.record.sample_rate = audio_default.sample_rate;
2372 ai.record.encoding = audio_default.encoding;
2373 ai.record.channels = audio_default.channels;
2374 ai.record.precision = audio_default.precision;
2375 ai.record.pause = 0;
2376 } else {
2377 /* If /dev/sound, take over the previous parameters. */
2378 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2379 ai.play.encoding = sc->sc_sound_pparams.encoding;
2380 ai.play.channels = sc->sc_sound_pparams.channels;
2381 ai.play.precision = sc->sc_sound_pparams.precision;
2382 ai.play.pause = sc->sc_sound_ppause;
2383 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2384 ai.record.encoding = sc->sc_sound_rparams.encoding;
2385 ai.record.channels = sc->sc_sound_rparams.channels;
2386 ai.record.precision = sc->sc_sound_rparams.precision;
2387 ai.record.pause = sc->sc_sound_rpause;
2388 }
2389 error = audio_file_setinfo(sc, af, &ai);
2390 if (error)
2391 goto bad;
2392
2393 if (sc->sc_popens + sc->sc_ropens == 0) {
2394 /* First open */
2395
2396 sc->sc_cred = kauth_cred_get();
2397 kauth_cred_hold(sc->sc_cred);
2398 cred_held = true;
2399
2400 if (sc->hw_if->open) {
2401 int hwflags;
2402
2403 /*
2404 * Call hw_if->open() only at first open of
2405 * combination of playback and recording.
2406 * On full duplex hardware, the flags passed to
2407 * hw_if->open() is always (FREAD | FWRITE)
2408 * regardless of this open()'s flags.
2409 * see also dev/isa/aria.c
2410 * On half duplex hardware, the flags passed to
2411 * hw_if->open() is either FREAD or FWRITE.
2412 * see also arch/evbarm/mini2440/audio_mini2440.c
2413 */
2414 if (fullduplex) {
2415 hwflags = FREAD | FWRITE;
2416 } else {
2417 /* Construct hwflags from af->mode. */
2418 hwflags = 0;
2419 if ((af->mode & AUMODE_PLAY) != 0)
2420 hwflags |= FWRITE;
2421 if ((af->mode & AUMODE_RECORD) != 0)
2422 hwflags |= FREAD;
2423 }
2424
2425 mutex_enter(sc->sc_lock);
2426 mutex_enter(sc->sc_intr_lock);
2427 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2428 mutex_exit(sc->sc_intr_lock);
2429 mutex_exit(sc->sc_lock);
2430 if (error)
2431 goto bad;
2432 }
2433 /*
2434 * Regardless of whether we called hw_if->open (whether
2435 * hw_if->open exists) or not, we move to the Opened phase
2436 * here. Therefore from this point, we have to call
2437 * hw_if->close (if exists) whenever abort.
2438 * Note that both of hw_if->{open,close} are optional.
2439 */
2440 hw_opened = true;
2441
2442 /*
2443 * Set speaker mode when a half duplex.
2444 * XXX I'm not sure this is correct.
2445 */
2446 if (1/*XXX*/) {
2447 if (sc->hw_if->speaker_ctl) {
2448 int on;
2449 if (af->ptrack) {
2450 on = 1;
2451 } else {
2452 on = 0;
2453 }
2454 mutex_enter(sc->sc_lock);
2455 mutex_enter(sc->sc_intr_lock);
2456 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2457 mutex_exit(sc->sc_intr_lock);
2458 mutex_exit(sc->sc_lock);
2459 if (error)
2460 goto bad;
2461 }
2462 }
2463 } else if (sc->sc_multiuser == false) {
2464 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2465 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2466 error = EPERM;
2467 goto bad;
2468 }
2469 }
2470
2471 /* Call init_output if this is the first playback open. */
2472 if (af->ptrack && sc->sc_popens == 0) {
2473 if (sc->hw_if->init_output) {
2474 hwbuf = &sc->sc_pmixer->hwbuf;
2475 mutex_enter(sc->sc_lock);
2476 mutex_enter(sc->sc_intr_lock);
2477 error = sc->hw_if->init_output(sc->hw_hdl,
2478 hwbuf->mem,
2479 hwbuf->capacity *
2480 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2481 mutex_exit(sc->sc_intr_lock);
2482 mutex_exit(sc->sc_lock);
2483 if (error)
2484 goto bad;
2485 }
2486 }
2487 /*
2488 * Call init_input and start rmixer, if this is the first recording
2489 * open. See pause consideration notes.
2490 */
2491 if (af->rtrack && sc->sc_ropens == 0) {
2492 if (sc->hw_if->init_input) {
2493 hwbuf = &sc->sc_rmixer->hwbuf;
2494 mutex_enter(sc->sc_lock);
2495 mutex_enter(sc->sc_intr_lock);
2496 error = sc->hw_if->init_input(sc->hw_hdl,
2497 hwbuf->mem,
2498 hwbuf->capacity *
2499 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2500 mutex_exit(sc->sc_intr_lock);
2501 mutex_exit(sc->sc_lock);
2502 if (error)
2503 goto bad;
2504 }
2505
2506 mutex_enter(sc->sc_lock);
2507 audio_rmixer_start(sc);
2508 mutex_exit(sc->sc_lock);
2509 rmixer_started = true;
2510 }
2511
2512 /*
2513 * This is the last sc_lock section in the function, so we have to
2514 * examine sc_dying again before starting the rest tasks. Because
2515 * audiodeatch() may have been invoked (and it would set sc_dying)
2516 * from the time audioopen() was executed until now. If it happens,
2517 * audiodetach() may already have set file->dying for all sc_files
2518 * that exist at that point, so that audioopen() must abort without
2519 * inserting af to sc_files, in order to keep consistency.
2520 */
2521 mutex_enter(sc->sc_lock);
2522 if (sc->sc_dying) {
2523 mutex_exit(sc->sc_lock);
2524 error = ENXIO;
2525 goto bad;
2526 }
2527
2528 /* Count up finally */
2529 if (af->ptrack)
2530 sc->sc_popens++;
2531 if (af->rtrack)
2532 sc->sc_ropens++;
2533 mutex_enter(sc->sc_intr_lock);
2534 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2535 mutex_exit(sc->sc_intr_lock);
2536 mutex_exit(sc->sc_lock);
2537 inserted = true;
2538
2539 if (bellfile) {
2540 *bellfile = af;
2541 } else {
2542 error = fd_allocfile(&fp, &fd);
2543 if (error)
2544 goto bad;
2545
2546 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2547 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2548 }
2549
2550 /* Be nothing else after fd_clone */
2551
2552 TRACEF(3, af, "done");
2553 return error;
2554
2555 bad:
2556 if (inserted) {
2557 mutex_enter(sc->sc_lock);
2558 mutex_enter(sc->sc_intr_lock);
2559 SLIST_REMOVE(&sc->sc_files, af, audio_file, entry);
2560 mutex_exit(sc->sc_intr_lock);
2561 if (af->ptrack)
2562 sc->sc_popens--;
2563 if (af->rtrack)
2564 sc->sc_ropens--;
2565 mutex_exit(sc->sc_lock);
2566 }
2567
2568 if (rmixer_started) {
2569 mutex_enter(sc->sc_lock);
2570 audio_rmixer_halt(sc);
2571 mutex_exit(sc->sc_lock);
2572 }
2573
2574 if (hw_opened) {
2575 if (sc->hw_if->close) {
2576 mutex_enter(sc->sc_lock);
2577 mutex_enter(sc->sc_intr_lock);
2578 sc->hw_if->close(sc->hw_hdl);
2579 mutex_exit(sc->sc_intr_lock);
2580 mutex_exit(sc->sc_lock);
2581 }
2582 }
2583 if (cred_held) {
2584 kauth_cred_free(sc->sc_cred);
2585 }
2586
2587 /*
2588 * Since track here is not yet linked to sc_files,
2589 * you can call track_destroy() without sc_intr_lock.
2590 */
2591 if (af->rtrack) {
2592 audio_track_destroy(af->rtrack);
2593 af->rtrack = NULL;
2594 }
2595 if (af->ptrack) {
2596 audio_track_destroy(af->ptrack);
2597 af->ptrack = NULL;
2598 }
2599
2600 kmem_free(af, sizeof(*af));
2601 return error;
2602 }
2603
2604 /*
2605 * Must be called without sc_lock nor sc_exlock held.
2606 */
2607 int
2608 audio_close(struct audio_softc *sc, audio_file_t *file)
2609 {
2610 int error;
2611
2612 /*
2613 * Drain first.
2614 * It must be done before unlinking(acquiring exlock).
2615 */
2616 if (file->ptrack) {
2617 mutex_enter(sc->sc_lock);
2618 audio_track_drain(sc, file->ptrack);
2619 mutex_exit(sc->sc_lock);
2620 }
2621
2622 mutex_enter(sc->sc_lock);
2623 mutex_enter(sc->sc_intr_lock);
2624 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2625 mutex_exit(sc->sc_intr_lock);
2626 mutex_exit(sc->sc_lock);
2627
2628 error = audio_exlock_enter(sc);
2629 if (error) {
2630 /*
2631 * If EIO, this sc is about to detach. In this case, even if
2632 * we don't do subsequent _unlink(), audiodetach() will do it.
2633 */
2634 if (error == EIO)
2635 return error;
2636
2637 /* XXX This should not happen but what should I do ? */
2638 panic("%s: can't acquire exlock: errno=%d", __func__, error);
2639 }
2640 audio_unlink(sc, file);
2641 audio_exlock_exit(sc);
2642
2643 return 0;
2644 }
2645
2646 /*
2647 * Unlink this file, but not freeing memory here.
2648 * Must be called with sc_exlock held and without sc_lock held.
2649 */
2650 static void
2651 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2652 {
2653 kauth_cred_t cred = NULL;
2654 int error;
2655
2656 mutex_enter(sc->sc_lock);
2657
2658 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2659 (audiodebug >= 3) ? "start " : "",
2660 (int)curproc->p_pid, (int)curlwp->l_lid,
2661 sc->sc_popens, sc->sc_ropens);
2662 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2663 "sc->sc_popens=%d, sc->sc_ropens=%d",
2664 sc->sc_popens, sc->sc_ropens);
2665
2666 device_active(sc->sc_dev, DVA_SYSTEM);
2667
2668 if (file->ptrack) {
2669 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2670 file->ptrack->dropframes);
2671
2672 KASSERT(sc->sc_popens > 0);
2673 sc->sc_popens--;
2674
2675 /* Call hw halt_output if this is the last playback track. */
2676 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2677 error = audio_pmixer_halt(sc);
2678 if (error) {
2679 audio_printf(sc,
2680 "halt_output failed: errno=%d (ignored)\n",
2681 error);
2682 }
2683 }
2684
2685 /* Restore mixing volume if all tracks are gone. */
2686 if (sc->sc_popens == 0) {
2687 /* intr_lock is not necessary, but just manners. */
2688 mutex_enter(sc->sc_intr_lock);
2689 sc->sc_pmixer->volume = 256;
2690 sc->sc_pmixer->voltimer = 0;
2691 mutex_exit(sc->sc_intr_lock);
2692 }
2693 }
2694 if (file->rtrack) {
2695 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2696 file->rtrack->dropframes);
2697
2698 KASSERT(sc->sc_ropens > 0);
2699 sc->sc_ropens--;
2700
2701 /* Call hw halt_input if this is the last recording track. */
2702 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2703 error = audio_rmixer_halt(sc);
2704 if (error) {
2705 audio_printf(sc,
2706 "halt_input failed: errno=%d (ignored)\n",
2707 error);
2708 }
2709 }
2710
2711 }
2712
2713 /* Call hw close if this is the last track. */
2714 if (sc->sc_popens + sc->sc_ropens == 0) {
2715 if (sc->hw_if->close) {
2716 TRACE(2, "hw_if close");
2717 mutex_enter(sc->sc_intr_lock);
2718 sc->hw_if->close(sc->hw_hdl);
2719 mutex_exit(sc->sc_intr_lock);
2720 }
2721 cred = sc->sc_cred;
2722 sc->sc_cred = NULL;
2723 }
2724
2725 mutex_exit(sc->sc_lock);
2726 if (cred)
2727 kauth_cred_free(cred);
2728
2729 TRACE(3, "done");
2730 }
2731
2732 /*
2733 * Must be called without sc_lock nor sc_exlock held.
2734 */
2735 int
2736 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2737 audio_file_t *file)
2738 {
2739 audio_track_t *track;
2740 audio_ring_t *usrbuf;
2741 audio_ring_t *input;
2742 int error;
2743
2744 /*
2745 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2746 * However read() system call itself can be called because it's
2747 * opened with O_RDWR. So in this case, deny this read().
2748 */
2749 track = file->rtrack;
2750 if (track == NULL) {
2751 return EBADF;
2752 }
2753
2754 /* I think it's better than EINVAL. */
2755 if (track->mmapped)
2756 return EPERM;
2757
2758 TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2759
2760 #ifdef AUDIO_PM_IDLE
2761 error = audio_exlock_mutex_enter(sc);
2762 if (error)
2763 return error;
2764
2765 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2766 device_active(&sc->sc_dev, DVA_SYSTEM);
2767
2768 /* In recording, unlike playback, read() never operates rmixer. */
2769
2770 audio_exlock_mutex_exit(sc);
2771 #endif
2772
2773 usrbuf = &track->usrbuf;
2774 input = track->input;
2775 error = 0;
2776
2777 while (uio->uio_resid > 0 && error == 0) {
2778 int bytes;
2779
2780 TRACET(3, track,
2781 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/C%d",
2782 uio->uio_resid,
2783 input->head, input->used, input->capacity,
2784 usrbuf->head, usrbuf->used, usrbuf->capacity);
2785
2786 /* Wait when buffers are empty. */
2787 mutex_enter(sc->sc_lock);
2788 for (;;) {
2789 bool empty;
2790 audio_track_lock_enter(track);
2791 empty = (input->used == 0 && usrbuf->used == 0);
2792 audio_track_lock_exit(track);
2793 if (!empty)
2794 break;
2795
2796 if ((ioflag & IO_NDELAY)) {
2797 mutex_exit(sc->sc_lock);
2798 return EWOULDBLOCK;
2799 }
2800
2801 TRACET(3, track, "sleep");
2802 error = audio_track_waitio(sc, track);
2803 if (error) {
2804 mutex_exit(sc->sc_lock);
2805 return error;
2806 }
2807 }
2808 mutex_exit(sc->sc_lock);
2809
2810 audio_track_lock_enter(track);
2811 /* Convert one block if possible. */
2812 if (usrbuf->used == 0 && input->used > 0) {
2813 audio_track_record(track);
2814 }
2815
2816 /* uiomove from usrbuf as many bytes as possible. */
2817 bytes = uimin(usrbuf->used, uio->uio_resid);
2818 error = uiomove((uint8_t *)usrbuf->mem + usrbuf->head, bytes,
2819 uio);
2820 if (error) {
2821 audio_track_lock_exit(track);
2822 device_printf(sc->sc_dev,
2823 "%s: uiomove(%d) failed: errno=%d\n",
2824 __func__, bytes, error);
2825 goto abort;
2826 }
2827 auring_take(usrbuf, bytes);
2828 track->useriobytes += bytes;
2829 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2830 bytes,
2831 usrbuf->head, usrbuf->used, usrbuf->capacity);
2832
2833 audio_track_lock_exit(track);
2834 }
2835
2836 abort:
2837 return error;
2838 }
2839
2840
2841 /*
2842 * Clear file's playback and/or record track buffer immediately.
2843 */
2844 static void
2845 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2846 {
2847
2848 if (file->ptrack)
2849 audio_track_clear(sc, file->ptrack);
2850 if (file->rtrack)
2851 audio_track_clear(sc, file->rtrack);
2852 }
2853
2854 /*
2855 * Must be called without sc_lock nor sc_exlock held.
2856 */
2857 int
2858 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2859 audio_file_t *file)
2860 {
2861 audio_track_t *track;
2862 audio_ring_t *usrbuf;
2863 audio_ring_t *outbuf;
2864 int error;
2865
2866 track = file->ptrack;
2867 if (track == NULL)
2868 return EPERM;
2869
2870 /* I think it's better than EINVAL. */
2871 if (track->mmapped)
2872 return EPERM;
2873
2874 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2875 audiodebug >= 3 ? "begin " : "",
2876 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2877
2878 if (uio->uio_resid == 0) {
2879 track->eofcounter++;
2880 return 0;
2881 }
2882
2883 error = audio_exlock_mutex_enter(sc);
2884 if (error)
2885 return error;
2886
2887 #ifdef AUDIO_PM_IDLE
2888 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2889 device_active(&sc->sc_dev, DVA_SYSTEM);
2890 #endif
2891
2892 /*
2893 * The first write starts pmixer.
2894 */
2895 if (sc->sc_pbusy == false)
2896 audio_pmixer_start(sc, false);
2897 audio_exlock_mutex_exit(sc);
2898
2899 usrbuf = &track->usrbuf;
2900 outbuf = &track->outbuf;
2901 track->pstate = AUDIO_STATE_RUNNING;
2902 error = 0;
2903
2904 while (uio->uio_resid > 0 && error == 0) {
2905 int bytes;
2906
2907 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2908 uio->uio_resid,
2909 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2910
2911 /* Wait when buffers are full. */
2912 mutex_enter(sc->sc_lock);
2913 for (;;) {
2914 bool full;
2915 audio_track_lock_enter(track);
2916 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2917 outbuf->used >= outbuf->capacity);
2918 audio_track_lock_exit(track);
2919 if (!full)
2920 break;
2921
2922 if ((ioflag & IO_NDELAY)) {
2923 error = EWOULDBLOCK;
2924 mutex_exit(sc->sc_lock);
2925 goto abort;
2926 }
2927
2928 TRACET(3, track, "sleep usrbuf=%d/H%d",
2929 usrbuf->used, track->usrbuf_usedhigh);
2930 error = audio_track_waitio(sc, track);
2931 if (error) {
2932 mutex_exit(sc->sc_lock);
2933 goto abort;
2934 }
2935 }
2936 mutex_exit(sc->sc_lock);
2937
2938 audio_track_lock_enter(track);
2939
2940 /* uiomove to usrbuf as many bytes as possible. */
2941 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2942 uio->uio_resid);
2943 while (bytes > 0) {
2944 int tail = auring_tail(usrbuf);
2945 int len = uimin(bytes, usrbuf->capacity - tail);
2946 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2947 uio);
2948 if (error) {
2949 audio_track_lock_exit(track);
2950 device_printf(sc->sc_dev,
2951 "%s: uiomove(%d) failed: errno=%d\n",
2952 __func__, len, error);
2953 goto abort;
2954 }
2955 auring_push(usrbuf, len);
2956 track->useriobytes += len;
2957 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2958 len,
2959 usrbuf->head, usrbuf->used, usrbuf->capacity);
2960 bytes -= len;
2961 }
2962
2963 /* Convert them as many blocks as possible. */
2964 while (usrbuf->used >= track->usrbuf_blksize &&
2965 outbuf->used < outbuf->capacity) {
2966 audio_track_play(track);
2967 }
2968
2969 audio_track_lock_exit(track);
2970 }
2971
2972 abort:
2973 TRACET(3, track, "done error=%d", error);
2974 return error;
2975 }
2976
2977 /*
2978 * Must be called without sc_lock nor sc_exlock held.
2979 */
2980 int
2981 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2982 struct lwp *l, audio_file_t *file)
2983 {
2984 struct audio_offset *ao;
2985 struct audio_info ai;
2986 audio_track_t *track;
2987 audio_encoding_t *ae;
2988 audio_format_query_t *query;
2989 u_int stamp;
2990 u_int offset;
2991 int val;
2992 int index;
2993 int error;
2994
2995 #if defined(AUDIO_DEBUG)
2996 const char *ioctlnames[] = {
2997 "AUDIO_GETINFO", /* 21 */
2998 "AUDIO_SETINFO", /* 22 */
2999 "AUDIO_DRAIN", /* 23 */
3000 "AUDIO_FLUSH", /* 24 */
3001 "AUDIO_WSEEK", /* 25 */
3002 "AUDIO_RERROR", /* 26 */
3003 "AUDIO_GETDEV", /* 27 */
3004 "AUDIO_GETENC", /* 28 */
3005 "AUDIO_GETFD", /* 29 */
3006 "AUDIO_SETFD", /* 30 */
3007 "AUDIO_PERROR", /* 31 */
3008 "AUDIO_GETIOFFS", /* 32 */
3009 "AUDIO_GETOOFFS", /* 33 */
3010 "AUDIO_GETPROPS", /* 34 */
3011 "AUDIO_GETBUFINFO", /* 35 */
3012 "AUDIO_SETCHAN", /* 36 */
3013 "AUDIO_GETCHAN", /* 37 */
3014 "AUDIO_QUERYFORMAT", /* 38 */
3015 "AUDIO_GETFORMAT", /* 39 */
3016 "AUDIO_SETFORMAT", /* 40 */
3017 };
3018 char pre[64];
3019 int nameidx = (cmd & 0xff);
3020 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames)) {
3021 snprintf(pre, sizeof(pre), "pid=%d.%d %s",
3022 (int)curproc->p_pid, (int)l->l_lid,
3023 ioctlnames[nameidx - 21]);
3024 } else {
3025 snprintf(pre, sizeof(pre), "pid=%d.%d (%lu,'%c',%u)",
3026 (int)curproc->p_pid, (int)l->l_lid,
3027 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), nameidx);
3028 }
3029 #endif
3030
3031 error = 0;
3032 switch (cmd) {
3033 case FIONBIO:
3034 /* All handled in the upper FS layer. */
3035 break;
3036
3037 case FIONREAD:
3038 /* Get the number of bytes that can be read. */
3039 track = file->rtrack;
3040 if (track) {
3041 val = audio_track_readablebytes(track);
3042 *(int *)addr = val;
3043 TRACET(2, track, "pid=%d.%d FIONREAD bytes=%d",
3044 (int)curproc->p_pid, (int)l->l_lid, val);
3045 } else {
3046 TRACEF(2, file, "pid=%d.%d FIONREAD no track",
3047 (int)curproc->p_pid, (int)l->l_lid);
3048 }
3049 break;
3050
3051 case FIOASYNC:
3052 /* Set/Clear ASYNC I/O. */
3053 if (*(int *)addr) {
3054 file->async_audio = curproc->p_pid;
3055 } else {
3056 file->async_audio = 0;
3057 }
3058 TRACEF(2, file, "pid=%d.%d FIOASYNC %s",
3059 (int)curproc->p_pid, (int)l->l_lid,
3060 file->async_audio ? "on" : "off");
3061 break;
3062
3063 case AUDIO_FLUSH:
3064 /* XXX TODO: clear errors and restart? */
3065 TRACEF(2, file, "%s", pre);
3066 audio_file_clear(sc, file);
3067 break;
3068
3069 case AUDIO_PERROR:
3070 case AUDIO_RERROR:
3071 /*
3072 * Number of dropped bytes during playback/record. We don't
3073 * know where or when they were dropped (including conversion
3074 * stage). Therefore, the number of accurate bytes or samples
3075 * is also unknown.
3076 */
3077 track = (cmd == AUDIO_PERROR) ? file->ptrack : file->rtrack;
3078 if (track) {
3079 val = frametobyte(&track->usrbuf.fmt,
3080 track->dropframes);
3081 *(int *)addr = val;
3082 TRACET(2, track, "%s bytes=%d", pre, val);
3083 } else {
3084 TRACEF(2, file, "%s no track", pre);
3085 }
3086 break;
3087
3088 case AUDIO_GETIOFFS:
3089 /* XXX TODO */
3090 TRACEF(2, file, "%s", pre);
3091 ao = (struct audio_offset *)addr;
3092 ao->samples = 0;
3093 ao->deltablks = 0;
3094 ao->offset = 0;
3095 break;
3096
3097 case AUDIO_GETOOFFS:
3098 ao = (struct audio_offset *)addr;
3099 track = file->ptrack;
3100 if (track == NULL) {
3101 ao->samples = 0;
3102 ao->deltablks = 0;
3103 ao->offset = 0;
3104 TRACEF(2, file, "%s no ptrack", pre);
3105 break;
3106 }
3107 mutex_enter(sc->sc_lock);
3108 mutex_enter(sc->sc_intr_lock);
3109 /* figure out where next transfer will start */
3110 stamp = track->stamp;
3111 offset = track->usrbuf.head;
3112 mutex_exit(sc->sc_intr_lock);
3113 mutex_exit(sc->sc_lock);
3114
3115 /* samples will overflow soon but is as per spec. */
3116 ao->samples = stamp * track->usrbuf_blksize;
3117 ao->deltablks = stamp - track->last_stamp;
3118 ao->offset = offset;
3119 TRACET(2, track, "%s samples=%u deltablks=%u offset=%u",
3120 pre, ao->samples, ao->deltablks, ao->offset);
3121
3122 track->last_stamp = stamp;
3123 break;
3124
3125 case AUDIO_WSEEK:
3126 track = file->ptrack;
3127 if (track) {
3128 val = track->usrbuf.used;
3129 *(u_long *)addr = val;
3130 TRACET(2, track, "%s bytes=%d", pre, val);
3131 } else {
3132 TRACEF(2, file, "%s no ptrack", pre);
3133 }
3134 break;
3135
3136 case AUDIO_SETINFO:
3137 TRACEF(2, file, "%s", pre);
3138 error = audio_exlock_enter(sc);
3139 if (error)
3140 break;
3141 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
3142 if (error) {
3143 audio_exlock_exit(sc);
3144 break;
3145 }
3146 /* XXX TODO: update last_ai if /dev/sound ? */
3147 if (ISDEVSOUND(dev))
3148 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
3149 audio_exlock_exit(sc);
3150 break;
3151
3152 case AUDIO_GETINFO:
3153 TRACEF(2, file, "%s", pre);
3154 error = audio_exlock_enter(sc);
3155 if (error)
3156 break;
3157 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
3158 audio_exlock_exit(sc);
3159 break;
3160
3161 case AUDIO_GETBUFINFO:
3162 TRACEF(2, file, "%s", pre);
3163 error = audio_exlock_enter(sc);
3164 if (error)
3165 break;
3166 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
3167 audio_exlock_exit(sc);
3168 break;
3169
3170 case AUDIO_DRAIN:
3171 track = file->ptrack;
3172 if (track) {
3173 TRACET(2, track, "%s", pre);
3174 mutex_enter(sc->sc_lock);
3175 error = audio_track_drain(sc, track);
3176 mutex_exit(sc->sc_lock);
3177 } else {
3178 TRACEF(2, file, "%s no ptrack", pre);
3179 }
3180 break;
3181
3182 case AUDIO_GETDEV:
3183 TRACEF(2, file, "%s", pre);
3184 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
3185 break;
3186
3187 case AUDIO_GETENC:
3188 ae = (audio_encoding_t *)addr;
3189 index = ae->index;
3190 TRACEF(2, file, "%s index=%d", pre, index);
3191 if (index < 0 || index >= __arraycount(audio_encodings)) {
3192 error = EINVAL;
3193 break;
3194 }
3195 *ae = audio_encodings[index];
3196 ae->index = index;
3197 /*
3198 * EMULATED always.
3199 * EMULATED flag at that time used to mean that it could
3200 * not be passed directly to the hardware as-is. But
3201 * currently, all formats including hardware native is not
3202 * passed directly to the hardware. So I set EMULATED
3203 * flag for all formats.
3204 */
3205 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
3206 break;
3207
3208 case AUDIO_GETFD:
3209 /*
3210 * Returns the current setting of full duplex mode.
3211 * If HW has full duplex mode and there are two mixers,
3212 * it is full duplex. Otherwise half duplex.
3213 */
3214 error = audio_exlock_enter(sc);
3215 if (error)
3216 break;
3217 val = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
3218 && (sc->sc_pmixer && sc->sc_rmixer);
3219 audio_exlock_exit(sc);
3220 *(int *)addr = val;
3221 TRACEF(2, file, "%s fulldup=%d", pre, val);
3222 break;
3223
3224 case AUDIO_GETPROPS:
3225 val = sc->sc_props;
3226 *(int *)addr = val;
3227 #if defined(AUDIO_DEBUG)
3228 char pbuf[64];
3229 snprintb(pbuf, sizeof(pbuf), "\x10"
3230 "\6CAPTURE" "\5PLAY" "\3INDEP" "\2MMAP" "\1FULLDUP", val);
3231 TRACEF(2, file, "%s %s", pre, pbuf);
3232 #endif
3233 break;
3234
3235 case AUDIO_QUERYFORMAT:
3236 query = (audio_format_query_t *)addr;
3237 TRACEF(2, file, "%s index=%u", pre, query->index);
3238 mutex_enter(sc->sc_lock);
3239 error = sc->hw_if->query_format(sc->hw_hdl, query);
3240 mutex_exit(sc->sc_lock);
3241 /* Hide internal information */
3242 query->fmt.driver_data = NULL;
3243 break;
3244
3245 case AUDIO_GETFORMAT:
3246 TRACEF(2, file, "%s", pre);
3247 error = audio_exlock_enter(sc);
3248 if (error)
3249 break;
3250 audio_mixers_get_format(sc, (struct audio_info *)addr);
3251 audio_exlock_exit(sc);
3252 break;
3253
3254 case AUDIO_SETFORMAT:
3255 TRACEF(2, file, "%s", pre);
3256 error = audio_exlock_enter(sc);
3257 audio_mixers_get_format(sc, &ai);
3258 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3259 if (error) {
3260 /* Rollback */
3261 audio_mixers_set_format(sc, &ai);
3262 }
3263 audio_exlock_exit(sc);
3264 break;
3265
3266 case AUDIO_SETFD:
3267 case AUDIO_SETCHAN:
3268 case AUDIO_GETCHAN:
3269 /* Obsoleted */
3270 TRACEF(2, file, "%s", pre);
3271 break;
3272
3273 default:
3274 TRACEF(2, file, "%s", pre);
3275 if (sc->hw_if->dev_ioctl) {
3276 mutex_enter(sc->sc_lock);
3277 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3278 cmd, addr, flag, l);
3279 mutex_exit(sc->sc_lock);
3280 } else {
3281 error = EINVAL;
3282 }
3283 break;
3284 }
3285
3286 if (error)
3287 TRACEF(2, file, "%s error=%d", pre, error);
3288 return error;
3289 }
3290
3291 /*
3292 * Convert n [frames] of the input buffer to bytes in the usrbuf format.
3293 * n is in frames but should be a multiple of frame/block. Note that the
3294 * usrbuf's frame/block and the input buffer's frame/block may be different
3295 * (i.e., if frequencies are different).
3296 *
3297 * This function is for recording track only.
3298 */
3299 static int
3300 audio_track_inputblk_as_usrbyte(const audio_track_t *track, int n)
3301 {
3302 int input_fpb;
3303
3304 /*
3305 * In the input buffer on recording track, these are the same.
3306 * input_fpb = frame_per_block(track->mixer, &track->input->fmt);
3307 */
3308 input_fpb = track->mixer->frames_per_block;
3309
3310 return (n / input_fpb) * track->usrbuf_blksize;
3311 }
3312
3313 /*
3314 * Returns the number of bytes that can be read on recording buffer.
3315 */
3316 static int
3317 audio_track_readablebytes(const audio_track_t *track)
3318 {
3319 int bytes;
3320
3321 KASSERT(track);
3322 KASSERT(track->mode == AUMODE_RECORD);
3323
3324 /*
3325 * For recording, track->input is the main block-unit buffer and
3326 * track->usrbuf holds less than one block of byte data ("fragment").
3327 * Note that the input buffer is in frames and the usrbuf is in bytes.
3328 *
3329 * Actual total capacity of these two buffers is
3330 * input->capacity [frames] + usrbuf.capacity [bytes],
3331 * but only input->capacity is reported to userland as buffer_size.
3332 * So, even if the total used bytes exceed input->capacity, report it
3333 * as input->capacity for consistency.
3334 */
3335 bytes = audio_track_inputblk_as_usrbyte(track, track->input->used);
3336 if (track->input->used < track->input->capacity) {
3337 bytes += track->usrbuf.used;
3338 }
3339 return bytes;
3340 }
3341
3342 /*
3343 * Must be called without sc_lock nor sc_exlock held.
3344 */
3345 int
3346 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3347 audio_file_t *file)
3348 {
3349 audio_track_t *track;
3350 int revents;
3351 bool in_is_valid;
3352 bool out_is_valid;
3353
3354 #if defined(AUDIO_DEBUG)
3355 #define POLLEV_BITMAP "\177\020" \
3356 "b\10WRBAND\0" \
3357 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3358 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3359 char evbuf[64];
3360 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3361 TRACEF(2, file, "pid=%d.%d events=%s",
3362 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3363 #endif
3364
3365 revents = 0;
3366 in_is_valid = false;
3367 out_is_valid = false;
3368 if (events & (POLLIN | POLLRDNORM)) {
3369 track = file->rtrack;
3370 if (track) {
3371 int used;
3372 in_is_valid = true;
3373 used = audio_track_readablebytes(track);
3374 if (used > 0)
3375 revents |= events & (POLLIN | POLLRDNORM);
3376 }
3377 }
3378 if (events & (POLLOUT | POLLWRNORM)) {
3379 track = file->ptrack;
3380 if (track) {
3381 out_is_valid = true;
3382 if (track->usrbuf.used <= track->usrbuf_usedlow)
3383 revents |= events & (POLLOUT | POLLWRNORM);
3384 }
3385 }
3386
3387 if (revents == 0) {
3388 mutex_enter(sc->sc_lock);
3389 if (in_is_valid) {
3390 TRACEF(3, file, "selrecord rsel");
3391 selrecord(l, &sc->sc_rsel);
3392 }
3393 if (out_is_valid) {
3394 TRACEF(3, file, "selrecord wsel");
3395 selrecord(l, &sc->sc_wsel);
3396 }
3397 mutex_exit(sc->sc_lock);
3398 }
3399
3400 #if defined(AUDIO_DEBUG)
3401 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3402 TRACEF(2, file, "revents=%s", evbuf);
3403 #endif
3404 return revents;
3405 }
3406
3407 static const struct filterops audioread_filtops = {
3408 .f_flags = FILTEROP_ISFD,
3409 .f_attach = NULL,
3410 .f_detach = filt_audioread_detach,
3411 .f_event = filt_audioread_event,
3412 };
3413
3414 static void
3415 filt_audioread_detach(struct knote *kn)
3416 {
3417 struct audio_softc *sc;
3418 audio_file_t *file;
3419
3420 file = kn->kn_hook;
3421 sc = file->sc;
3422 TRACEF(3, file, "called");
3423
3424 mutex_enter(sc->sc_lock);
3425 selremove_knote(&sc->sc_rsel, kn);
3426 mutex_exit(sc->sc_lock);
3427 }
3428
3429 static int
3430 filt_audioread_event(struct knote *kn, long hint)
3431 {
3432 audio_file_t *file;
3433 audio_track_t *track;
3434
3435 file = kn->kn_hook;
3436 track = file->rtrack;
3437
3438 /*
3439 * kn_data must contain the number of bytes can be read.
3440 * The return value indicates whether the event occurs or not.
3441 */
3442
3443 if (track == NULL) {
3444 /* can not read with this descriptor. */
3445 kn->kn_data = 0;
3446 return 0;
3447 }
3448
3449 kn->kn_data = audio_track_readablebytes(track);
3450 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3451 return kn->kn_data > 0;
3452 }
3453
3454 static const struct filterops audiowrite_filtops = {
3455 .f_flags = FILTEROP_ISFD,
3456 .f_attach = NULL,
3457 .f_detach = filt_audiowrite_detach,
3458 .f_event = filt_audiowrite_event,
3459 };
3460
3461 static void
3462 filt_audiowrite_detach(struct knote *kn)
3463 {
3464 struct audio_softc *sc;
3465 audio_file_t *file;
3466
3467 file = kn->kn_hook;
3468 sc = file->sc;
3469 TRACEF(3, file, "called");
3470
3471 mutex_enter(sc->sc_lock);
3472 selremove_knote(&sc->sc_wsel, kn);
3473 mutex_exit(sc->sc_lock);
3474 }
3475
3476 static int
3477 filt_audiowrite_event(struct knote *kn, long hint)
3478 {
3479 audio_file_t *file;
3480 audio_track_t *track;
3481
3482 file = kn->kn_hook;
3483 track = file->ptrack;
3484
3485 /*
3486 * kn_data must contain the number of bytes can be write.
3487 * The return value indicates whether the event occurs or not.
3488 */
3489
3490 if (track == NULL) {
3491 /* can not write with this descriptor. */
3492 kn->kn_data = 0;
3493 return 0;
3494 }
3495
3496 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3497 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3498 return (track->usrbuf.used < track->usrbuf_usedlow);
3499 }
3500
3501 /*
3502 * Must be called without sc_lock nor sc_exlock held.
3503 */
3504 int
3505 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3506 {
3507 struct selinfo *sip;
3508
3509 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3510
3511 switch (kn->kn_filter) {
3512 case EVFILT_READ:
3513 sip = &sc->sc_rsel;
3514 kn->kn_fop = &audioread_filtops;
3515 break;
3516
3517 case EVFILT_WRITE:
3518 sip = &sc->sc_wsel;
3519 kn->kn_fop = &audiowrite_filtops;
3520 break;
3521
3522 default:
3523 return EINVAL;
3524 }
3525
3526 kn->kn_hook = file;
3527
3528 mutex_enter(sc->sc_lock);
3529 selrecord_knote(sip, kn);
3530 mutex_exit(sc->sc_lock);
3531
3532 return 0;
3533 }
3534
3535 /*
3536 * Must be called without sc_lock nor sc_exlock held.
3537 */
3538 int
3539 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3540 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3541 audio_file_t *file)
3542 {
3543 audio_track_t *track;
3544 vsize_t vsize;
3545 int error;
3546
3547 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3548
3549 if (*offp < 0)
3550 return EINVAL;
3551
3552 #if 0
3553 /* XXX
3554 * The idea here was to use the protection to determine if
3555 * we are mapping the read or write buffer, but it fails.
3556 * The VM system is broken in (at least) two ways.
3557 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3558 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3559 * has to be used for mmapping the play buffer.
3560 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3561 * audio_mmap will get called at some point with VM_PROT_READ
3562 * only.
3563 * So, alas, we always map the play buffer for now.
3564 */
3565 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3566 prot == VM_PROT_WRITE)
3567 track = file->ptrack;
3568 else if (prot == VM_PROT_READ)
3569 track = file->rtrack;
3570 else
3571 return EINVAL;
3572 #else
3573 track = file->ptrack;
3574 #endif
3575 if (track == NULL)
3576 return EACCES;
3577
3578 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3579 if (len > vsize)
3580 return EOVERFLOW;
3581 if (*offp > (uint)(vsize - len))
3582 return EOVERFLOW;
3583
3584 /* XXX TODO: what happens when mmap twice. */
3585 if (!track->mmapped) {
3586 track->mmapped = true;
3587
3588 if (!track->is_pause) {
3589 error = audio_exlock_mutex_enter(sc);
3590 if (error)
3591 return error;
3592 if (sc->sc_pbusy == false)
3593 audio_pmixer_start(sc, true);
3594 audio_exlock_mutex_exit(sc);
3595 }
3596 /* XXX mmapping record buffer is not supported */
3597 }
3598
3599 /* get ringbuffer */
3600 *uobjp = track->uobj;
3601
3602 /* Acquire a reference for the mmap. munmap will release. */
3603 uao_reference(*uobjp);
3604 *maxprotp = prot;
3605 *advicep = UVM_ADV_RANDOM;
3606 *flagsp = MAP_SHARED;
3607 return 0;
3608 }
3609
3610 /*
3611 * /dev/audioctl has to be able to open at any time without interference
3612 * with any /dev/audio or /dev/sound.
3613 * Must be called with sc_exlock held and without sc_lock held.
3614 */
3615 static int
3616 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3617 struct lwp *l)
3618 {
3619 struct file *fp;
3620 audio_file_t *af;
3621 int fd;
3622 int error;
3623
3624 KASSERT(sc->sc_exlock);
3625
3626 TRACE(1, "called");
3627
3628 error = fd_allocfile(&fp, &fd);
3629 if (error)
3630 return error;
3631
3632 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
3633 af->sc = sc;
3634 af->dev = dev;
3635
3636 mutex_enter(sc->sc_lock);
3637 if (sc->sc_dying) {
3638 mutex_exit(sc->sc_lock);
3639 kmem_free(af, sizeof(*af));
3640 fd_abort(curproc, fp, fd);
3641 return ENXIO;
3642 }
3643 mutex_enter(sc->sc_intr_lock);
3644 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
3645 mutex_exit(sc->sc_intr_lock);
3646 mutex_exit(sc->sc_lock);
3647
3648 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3649 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3650
3651 return error;
3652 }
3653
3654 /*
3655 * Free 'mem' if available, and initialize the pointer.
3656 * For this reason, this is implemented as macro.
3657 */
3658 #define audio_free(mem) do { \
3659 if (mem != NULL) { \
3660 kern_free(mem); \
3661 mem = NULL; \
3662 } \
3663 } while (0)
3664
3665 /*
3666 * (Re)allocate 'memblock' with specified 'bytes'.
3667 * bytes must not be 0.
3668 * This function never returns NULL.
3669 */
3670 static void *
3671 audio_realloc(void *memblock, size_t bytes)
3672 {
3673
3674 KASSERT(bytes != 0);
3675 audio_free(memblock);
3676 return kern_malloc(bytes, M_WAITOK);
3677 }
3678
3679 /*
3680 * (Re)allocate usrbuf with 'newbufsize' bytes.
3681 * Use this function for usrbuf because only usrbuf can be mmapped.
3682 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3683 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3684 * and returns errno.
3685 * It must be called before updating usrbuf.capacity.
3686 */
3687 static int
3688 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3689 {
3690 struct audio_softc *sc;
3691 vaddr_t vstart;
3692 vsize_t oldvsize;
3693 vsize_t newvsize;
3694 int error;
3695
3696 KASSERT(newbufsize > 0);
3697 sc = track->mixer->sc;
3698
3699 /* Get a nonzero multiple of PAGE_SIZE */
3700 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3701
3702 if (track->usrbuf.mem != NULL) {
3703 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3704 PAGE_SIZE);
3705 if (oldvsize == newvsize) {
3706 track->usrbuf.capacity = newbufsize;
3707 return 0;
3708 }
3709 vstart = (vaddr_t)track->usrbuf.mem;
3710 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3711 /* uvm_unmap also detach uobj */
3712 track->uobj = NULL; /* paranoia */
3713 track->usrbuf.mem = NULL;
3714 }
3715
3716 /* Create a uvm anonymous object */
3717 track->uobj = uao_create(newvsize, 0);
3718
3719 /* Map it into the kernel virtual address space */
3720 vstart = 0;
3721 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3722 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3723 UVM_ADV_RANDOM, 0));
3724 if (error) {
3725 device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
3726 uao_detach(track->uobj); /* release reference */
3727 goto abort;
3728 }
3729
3730 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3731 false, 0);
3732 if (error) {
3733 device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
3734 error);
3735 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3736 /* uvm_unmap also detach uobj */
3737 goto abort;
3738 }
3739
3740 track->usrbuf.mem = (void *)vstart;
3741 track->usrbuf.capacity = newbufsize;
3742 memset(track->usrbuf.mem, 0, newvsize);
3743 return 0;
3744
3745 /* failure */
3746 abort:
3747 track->uobj = NULL; /* paranoia */
3748 track->usrbuf.mem = NULL;
3749 track->usrbuf.capacity = 0;
3750 return error;
3751 }
3752
3753 /*
3754 * Free usrbuf (if available).
3755 */
3756 static void
3757 audio_free_usrbuf(audio_track_t *track)
3758 {
3759 vaddr_t vstart;
3760 vsize_t vsize;
3761
3762 vstart = (vaddr_t)track->usrbuf.mem;
3763 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3764 if (track->usrbuf.mem != NULL) {
3765 /*
3766 * Unmap the kernel mapping. uvm_unmap releases the
3767 * reference to the uvm object, and this should be the
3768 * last virtual mapping of the uvm object, so no need
3769 * to explicitly release (`detach') the object.
3770 */
3771 uvm_unmap(kernel_map, vstart, vstart + vsize);
3772
3773 track->uobj = NULL;
3774 track->usrbuf.mem = NULL;
3775 track->usrbuf.capacity = 0;
3776 }
3777 }
3778
3779 /*
3780 * This filter changes the volume for each channel.
3781 * arg->context points track->ch_volume[].
3782 */
3783 static void
3784 audio_track_chvol(audio_filter_arg_t *arg)
3785 {
3786 int16_t *ch_volume;
3787 const aint_t *s;
3788 aint_t *d;
3789 u_int i;
3790 u_int ch;
3791 u_int channels;
3792
3793 DIAGNOSTIC_filter_arg(arg);
3794 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3795 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3796 arg->srcfmt->channels, arg->dstfmt->channels);
3797 KASSERT(arg->context != NULL);
3798 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3799 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3800
3801 s = arg->src;
3802 d = arg->dst;
3803 ch_volume = arg->context;
3804
3805 channels = arg->srcfmt->channels;
3806 for (i = 0; i < arg->count; i++) {
3807 for (ch = 0; ch < channels; ch++) {
3808 aint2_t val;
3809 val = *s++;
3810 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3811 *d++ = (aint_t)val;
3812 }
3813 }
3814 }
3815
3816 /*
3817 * This filter performs conversion from stereo (or more channels) to mono.
3818 */
3819 static void
3820 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3821 {
3822 const aint_t *s;
3823 aint_t *d;
3824 u_int i;
3825
3826 DIAGNOSTIC_filter_arg(arg);
3827
3828 s = arg->src;
3829 d = arg->dst;
3830
3831 for (i = 0; i < arg->count; i++) {
3832 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3833 s += arg->srcfmt->channels;
3834 }
3835 }
3836
3837 /*
3838 * This filter performs conversion from mono to stereo (or more channels).
3839 */
3840 static void
3841 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3842 {
3843 const aint_t *s;
3844 aint_t *d;
3845 u_int i;
3846 u_int ch;
3847 u_int dstchannels;
3848
3849 DIAGNOSTIC_filter_arg(arg);
3850
3851 s = arg->src;
3852 d = arg->dst;
3853 dstchannels = arg->dstfmt->channels;
3854
3855 for (i = 0; i < arg->count; i++) {
3856 d[0] = s[0];
3857 d[1] = s[0];
3858 s++;
3859 d += dstchannels;
3860 }
3861 if (dstchannels > 2) {
3862 d = arg->dst;
3863 for (i = 0; i < arg->count; i++) {
3864 for (ch = 2; ch < dstchannels; ch++) {
3865 d[ch] = 0;
3866 }
3867 d += dstchannels;
3868 }
3869 }
3870 }
3871
3872 /*
3873 * This filter shrinks M channels into N channels.
3874 * Extra channels are discarded.
3875 */
3876 static void
3877 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3878 {
3879 const aint_t *s;
3880 aint_t *d;
3881 u_int i;
3882 u_int ch;
3883
3884 DIAGNOSTIC_filter_arg(arg);
3885
3886 s = arg->src;
3887 d = arg->dst;
3888
3889 for (i = 0; i < arg->count; i++) {
3890 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3891 *d++ = s[ch];
3892 }
3893 s += arg->srcfmt->channels;
3894 }
3895 }
3896
3897 /*
3898 * This filter expands M channels into N channels.
3899 * Silence is inserted for missing channels.
3900 */
3901 static void
3902 audio_track_chmix_expand(audio_filter_arg_t *arg)
3903 {
3904 const aint_t *s;
3905 aint_t *d;
3906 u_int i;
3907 u_int ch;
3908 u_int srcchannels;
3909 u_int dstchannels;
3910
3911 DIAGNOSTIC_filter_arg(arg);
3912
3913 s = arg->src;
3914 d = arg->dst;
3915
3916 srcchannels = arg->srcfmt->channels;
3917 dstchannels = arg->dstfmt->channels;
3918 for (i = 0; i < arg->count; i++) {
3919 for (ch = 0; ch < srcchannels; ch++) {
3920 *d++ = *s++;
3921 }
3922 for (; ch < dstchannels; ch++) {
3923 *d++ = 0;
3924 }
3925 }
3926 }
3927
3928 /*
3929 * This filter performs frequency conversion (up sampling).
3930 * It uses linear interpolation.
3931 */
3932 static void
3933 audio_track_freq_up(audio_filter_arg_t *arg)
3934 {
3935 audio_track_t *track;
3936 audio_ring_t *src;
3937 audio_ring_t *dst;
3938 const aint_t *s;
3939 aint_t *d;
3940 aint_t prev[AUDIO_MAX_CHANNELS];
3941 aint_t curr[AUDIO_MAX_CHANNELS];
3942 aint_t grad[AUDIO_MAX_CHANNELS];
3943 u_int i;
3944 u_int t;
3945 u_int step;
3946 u_int channels;
3947 u_int ch;
3948 int srcused;
3949
3950 track = arg->context;
3951 KASSERT(track);
3952 src = &track->freq.srcbuf;
3953 dst = track->freq.dst;
3954 DIAGNOSTIC_ring(dst);
3955 DIAGNOSTIC_ring(src);
3956 KASSERT(src->used > 0);
3957 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3958 "src->fmt.channels=%d dst->fmt.channels=%d",
3959 src->fmt.channels, dst->fmt.channels);
3960 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3961 "src->head=%d track->mixer->frames_per_block=%d",
3962 src->head, track->mixer->frames_per_block);
3963
3964 s = arg->src;
3965 d = arg->dst;
3966
3967 /*
3968 * In order to facilitate interpolation for each block, slide (delay)
3969 * input by one sample. As a result, strictly speaking, the output
3970 * phase is delayed by 1/dstfreq. However, I believe there is no
3971 * observable impact.
3972 *
3973 * Example)
3974 * srcfreq:dstfreq = 1:3
3975 *
3976 * A - -
3977 * |
3978 * |
3979 * | B - -
3980 * +-----+-----> input timeframe
3981 * 0 1
3982 *
3983 * 0 1
3984 * +-----+-----> input timeframe
3985 * | A
3986 * | x x
3987 * | x x
3988 * x (B)
3989 * +-+-+-+-+-+-> output timeframe
3990 * 0 1 2 3 4 5
3991 */
3992
3993 /* Last samples in previous block */
3994 channels = src->fmt.channels;
3995 for (ch = 0; ch < channels; ch++) {
3996 prev[ch] = track->freq_prev[ch];
3997 curr[ch] = track->freq_curr[ch];
3998 grad[ch] = curr[ch] - prev[ch];
3999 }
4000
4001 step = track->freq_step;
4002 t = track->freq_current;
4003 //#define FREQ_DEBUG
4004 #if defined(FREQ_DEBUG)
4005 #define PRINTF(fmt...) printf(fmt)
4006 #else
4007 #define PRINTF(fmt...) do { } while (0)
4008 #endif
4009 srcused = src->used;
4010 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
4011 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
4012 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
4013 PRINTF(" t=%d\n", t);
4014
4015 for (i = 0; i < arg->count; i++) {
4016 PRINTF("i=%d t=%5d", i, t);
4017 if (t >= 65536) {
4018 for (ch = 0; ch < channels; ch++) {
4019 prev[ch] = curr[ch];
4020 curr[ch] = *s++;
4021 grad[ch] = curr[ch] - prev[ch];
4022 }
4023 PRINTF(" prev=%d s[%d]=%d",
4024 prev[0], src->used - srcused, curr[0]);
4025
4026 /* Update */
4027 t -= 65536;
4028 srcused--;
4029 if (srcused < 0) {
4030 PRINTF(" break\n");
4031 break;
4032 }
4033 }
4034
4035 for (ch = 0; ch < channels; ch++) {
4036 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
4037 #if defined(FREQ_DEBUG)
4038 if (ch == 0)
4039 printf(" t=%5d *d=%d", t, d[-1]);
4040 #endif
4041 }
4042 t += step;
4043
4044 PRINTF("\n");
4045 }
4046 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
4047
4048 auring_take(src, src->used);
4049 auring_push(dst, i);
4050
4051 /* Adjust */
4052 t += track->freq_leap;
4053
4054 track->freq_current = t;
4055 for (ch = 0; ch < channels; ch++) {
4056 track->freq_prev[ch] = prev[ch];
4057 track->freq_curr[ch] = curr[ch];
4058 }
4059 }
4060
4061 /*
4062 * This filter performs frequency conversion (down sampling).
4063 * It uses simple thinning.
4064 */
4065 static void
4066 audio_track_freq_down(audio_filter_arg_t *arg)
4067 {
4068 audio_track_t *track;
4069 audio_ring_t *src;
4070 audio_ring_t *dst;
4071 const aint_t *s0;
4072 aint_t *d;
4073 u_int i;
4074 u_int t;
4075 u_int step;
4076 u_int ch;
4077 u_int channels;
4078
4079 track = arg->context;
4080 KASSERT(track);
4081 src = &track->freq.srcbuf;
4082 dst = track->freq.dst;
4083
4084 DIAGNOSTIC_ring(dst);
4085 DIAGNOSTIC_ring(src);
4086 KASSERT(src->used > 0);
4087 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
4088 "src->fmt.channels=%d dst->fmt.channels=%d",
4089 src->fmt.channels, dst->fmt.channels);
4090 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
4091 "src->head=%d track->mixer->frames_per_block=%d",
4092 src->head, track->mixer->frames_per_block);
4093
4094 s0 = arg->src;
4095 d = arg->dst;
4096 t = track->freq_current;
4097 step = track->freq_step;
4098 channels = dst->fmt.channels;
4099 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
4100 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
4101 PRINTF(" t=%d\n", t);
4102
4103 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
4104 const aint_t *s;
4105 PRINTF("i=%4d t=%10d", i, t);
4106 s = s0 + (t / 65536) * channels;
4107 PRINTF(" s=%5ld", (s - s0) / channels);
4108 for (ch = 0; ch < channels; ch++) {
4109 if (ch == 0) PRINTF(" *s=%d", s[ch]);
4110 *d++ = s[ch];
4111 }
4112 PRINTF("\n");
4113 t += step;
4114 }
4115 t += track->freq_leap;
4116 PRINTF("end t=%d\n", t);
4117 auring_take(src, src->used);
4118 auring_push(dst, i);
4119 track->freq_current = t % 65536;
4120 }
4121
4122 /*
4123 * Creates track and returns it.
4124 * Must be called without sc_lock held.
4125 */
4126 audio_track_t *
4127 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
4128 {
4129 audio_track_t *track;
4130 static int newid = 0;
4131
4132 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
4133
4134 track->id = newid++;
4135 track->mixer = mixer;
4136 track->mode = mixer->mode;
4137
4138 /* Do TRACE after id is assigned. */
4139 TRACET(3, track, "for %s",
4140 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
4141
4142 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
4143 track->volume = 256;
4144 #endif
4145 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
4146 track->ch_volume[i] = 256;
4147 }
4148
4149 return track;
4150 }
4151
4152 /*
4153 * Release all resources of the track and track itself.
4154 * track must not be NULL. Don't specify the track within the file
4155 * structure linked from sc->sc_files.
4156 */
4157 static void
4158 audio_track_destroy(audio_track_t *track)
4159 {
4160
4161 KASSERT(track);
4162
4163 audio_free_usrbuf(track);
4164 audio_free(track->codec.srcbuf.mem);
4165 audio_free(track->chvol.srcbuf.mem);
4166 audio_free(track->chmix.srcbuf.mem);
4167 audio_free(track->freq.srcbuf.mem);
4168 audio_free(track->outbuf.mem);
4169
4170 kmem_free(track, sizeof(*track));
4171 }
4172
4173 /*
4174 * It returns encoding conversion filter according to src and dst format.
4175 * If it is not a convertible pair, it returns NULL. Either src or dst
4176 * must be internal format.
4177 */
4178 static audio_filter_t
4179 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
4180 const audio_format2_t *dst)
4181 {
4182
4183 if (audio_format2_is_internal(src)) {
4184 if (dst->encoding == AUDIO_ENCODING_ULAW) {
4185 return audio_internal_to_mulaw;
4186 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
4187 return audio_internal_to_alaw;
4188 } else if (audio_format2_is_linear(dst)) {
4189 switch (dst->stride) {
4190 case 8:
4191 return audio_internal_to_linear8;
4192 case 16:
4193 return audio_internal_to_linear16;
4194 #if defined(AUDIO_SUPPORT_LINEAR24)
4195 case 24:
4196 return audio_internal_to_linear24;
4197 #endif
4198 case 32:
4199 return audio_internal_to_linear32;
4200 default:
4201 TRACET(1, track, "unsupported %s stride %d",
4202 "dst", dst->stride);
4203 goto abort;
4204 }
4205 }
4206 } else if (audio_format2_is_internal(dst)) {
4207 if (src->encoding == AUDIO_ENCODING_ULAW) {
4208 return audio_mulaw_to_internal;
4209 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
4210 return audio_alaw_to_internal;
4211 } else if (audio_format2_is_linear(src)) {
4212 switch (src->stride) {
4213 case 8:
4214 return audio_linear8_to_internal;
4215 case 16:
4216 return audio_linear16_to_internal;
4217 #if defined(AUDIO_SUPPORT_LINEAR24)
4218 case 24:
4219 return audio_linear24_to_internal;
4220 #endif
4221 case 32:
4222 return audio_linear32_to_internal;
4223 default:
4224 TRACET(1, track, "unsupported %s stride %d",
4225 "src", src->stride);
4226 goto abort;
4227 }
4228 }
4229 }
4230
4231 TRACET(1, track, "unsupported encoding");
4232 abort:
4233 #if defined(AUDIO_DEBUG)
4234 if (audiodebug >= 2) {
4235 char buf[100];
4236 audio_format2_tostr(buf, sizeof(buf), src);
4237 TRACET(2, track, "src %s", buf);
4238 audio_format2_tostr(buf, sizeof(buf), dst);
4239 TRACET(2, track, "dst %s", buf);
4240 }
4241 #endif
4242 return NULL;
4243 }
4244
4245 /*
4246 * Initialize the codec stage of this track as necessary.
4247 * If successful, it initializes the codec stage as necessary, stores updated
4248 * last_dst in *last_dstp in any case, and returns 0.
4249 * Otherwise, it returns errno without modifying *last_dstp.
4250 */
4251 static int
4252 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
4253 {
4254 audio_ring_t *last_dst;
4255 audio_ring_t *srcbuf;
4256 audio_format2_t *srcfmt;
4257 audio_format2_t *dstfmt;
4258 audio_filter_arg_t *arg;
4259 u_int len;
4260 int error;
4261
4262 KASSERT(track);
4263
4264 last_dst = *last_dstp;
4265 dstfmt = &last_dst->fmt;
4266 srcfmt = &track->inputfmt;
4267 srcbuf = &track->codec.srcbuf;
4268 error = 0;
4269
4270 if (srcfmt->encoding != dstfmt->encoding
4271 || srcfmt->precision != dstfmt->precision
4272 || srcfmt->stride != dstfmt->stride) {
4273 track->codec.dst = last_dst;
4274
4275 srcbuf->fmt = *dstfmt;
4276 srcbuf->fmt.encoding = srcfmt->encoding;
4277 srcbuf->fmt.precision = srcfmt->precision;
4278 srcbuf->fmt.stride = srcfmt->stride;
4279
4280 track->codec.filter = audio_track_get_codec(track,
4281 &srcbuf->fmt, dstfmt);
4282 if (track->codec.filter == NULL) {
4283 error = EINVAL;
4284 goto abort;
4285 }
4286
4287 srcbuf->head = 0;
4288 srcbuf->used = 0;
4289 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4290 len = auring_bytelen(srcbuf);
4291 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4292
4293 arg = &track->codec.arg;
4294 arg->srcfmt = &srcbuf->fmt;
4295 arg->dstfmt = dstfmt;
4296 arg->context = NULL;
4297
4298 *last_dstp = srcbuf;
4299 return 0;
4300 }
4301
4302 abort:
4303 track->codec.filter = NULL;
4304 audio_free(srcbuf->mem);
4305 return error;
4306 }
4307
4308 /*
4309 * Initialize the chvol stage of this track as necessary.
4310 * If successful, it initializes the chvol stage as necessary, stores updated
4311 * last_dst in *last_dstp in any case, and returns 0.
4312 * Otherwise, it returns errno without modifying *last_dstp.
4313 */
4314 static int
4315 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4316 {
4317 audio_ring_t *last_dst;
4318 audio_ring_t *srcbuf;
4319 audio_format2_t *srcfmt;
4320 audio_format2_t *dstfmt;
4321 audio_filter_arg_t *arg;
4322 u_int len;
4323 int error;
4324
4325 KASSERT(track);
4326
4327 last_dst = *last_dstp;
4328 dstfmt = &last_dst->fmt;
4329 srcfmt = &track->inputfmt;
4330 srcbuf = &track->chvol.srcbuf;
4331 error = 0;
4332
4333 /* Check whether channel volume conversion is necessary. */
4334 bool use_chvol = false;
4335 for (int ch = 0; ch < srcfmt->channels; ch++) {
4336 if (track->ch_volume[ch] != 256) {
4337 use_chvol = true;
4338 break;
4339 }
4340 }
4341
4342 if (use_chvol == true) {
4343 track->chvol.dst = last_dst;
4344 track->chvol.filter = audio_track_chvol;
4345
4346 srcbuf->fmt = *dstfmt;
4347 /* no format conversion occurs */
4348
4349 srcbuf->head = 0;
4350 srcbuf->used = 0;
4351 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4352 len = auring_bytelen(srcbuf);
4353 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4354
4355 arg = &track->chvol.arg;
4356 arg->srcfmt = &srcbuf->fmt;
4357 arg->dstfmt = dstfmt;
4358 arg->context = track->ch_volume;
4359
4360 *last_dstp = srcbuf;
4361 return 0;
4362 }
4363
4364 track->chvol.filter = NULL;
4365 audio_free(srcbuf->mem);
4366 return error;
4367 }
4368
4369 /*
4370 * Initialize the chmix stage of this track as necessary.
4371 * If successful, it initializes the chmix stage as necessary, stores updated
4372 * last_dst in *last_dstp in any case, and returns 0.
4373 * Otherwise, it returns errno without modifying *last_dstp.
4374 */
4375 static int
4376 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4377 {
4378 audio_ring_t *last_dst;
4379 audio_ring_t *srcbuf;
4380 audio_format2_t *srcfmt;
4381 audio_format2_t *dstfmt;
4382 audio_filter_arg_t *arg;
4383 u_int srcch;
4384 u_int dstch;
4385 u_int len;
4386 int error;
4387
4388 KASSERT(track);
4389
4390 last_dst = *last_dstp;
4391 dstfmt = &last_dst->fmt;
4392 srcfmt = &track->inputfmt;
4393 srcbuf = &track->chmix.srcbuf;
4394 error = 0;
4395
4396 srcch = srcfmt->channels;
4397 dstch = dstfmt->channels;
4398 if (srcch != dstch) {
4399 track->chmix.dst = last_dst;
4400
4401 if (srcch >= 2 && dstch == 1) {
4402 track->chmix.filter = audio_track_chmix_mixLR;
4403 } else if (srcch == 1 && dstch >= 2) {
4404 track->chmix.filter = audio_track_chmix_dupLR;
4405 } else if (srcch > dstch) {
4406 track->chmix.filter = audio_track_chmix_shrink;
4407 } else {
4408 track->chmix.filter = audio_track_chmix_expand;
4409 }
4410
4411 srcbuf->fmt = *dstfmt;
4412 srcbuf->fmt.channels = srcch;
4413
4414 srcbuf->head = 0;
4415 srcbuf->used = 0;
4416 /* XXX The buffer size should be able to calculate. */
4417 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4418 len = auring_bytelen(srcbuf);
4419 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4420
4421 arg = &track->chmix.arg;
4422 arg->srcfmt = &srcbuf->fmt;
4423 arg->dstfmt = dstfmt;
4424 arg->context = NULL;
4425
4426 *last_dstp = srcbuf;
4427 return 0;
4428 }
4429
4430 track->chmix.filter = NULL;
4431 audio_free(srcbuf->mem);
4432 return error;
4433 }
4434
4435 /*
4436 * Initialize the freq stage of this track as necessary.
4437 * If successful, it initializes the freq stage as necessary, stores updated
4438 * last_dst in *last_dstp in any case, and returns 0.
4439 * Otherwise, it returns errno without modifying *last_dstp.
4440 */
4441 static int
4442 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4443 {
4444 audio_ring_t *last_dst;
4445 audio_ring_t *srcbuf;
4446 audio_format2_t *srcfmt;
4447 audio_format2_t *dstfmt;
4448 audio_filter_arg_t *arg;
4449 uint32_t srcfreq;
4450 uint32_t dstfreq;
4451 u_int dst_capacity;
4452 u_int mod;
4453 u_int len;
4454 int error;
4455
4456 KASSERT(track);
4457
4458 last_dst = *last_dstp;
4459 dstfmt = &last_dst->fmt;
4460 srcfmt = &track->inputfmt;
4461 srcbuf = &track->freq.srcbuf;
4462 error = 0;
4463
4464 srcfreq = srcfmt->sample_rate;
4465 dstfreq = dstfmt->sample_rate;
4466 if (srcfreq != dstfreq) {
4467 track->freq.dst = last_dst;
4468
4469 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4470 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4471
4472 /* freq_step is the ratio of src/dst when let dst 65536. */
4473 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4474
4475 dst_capacity = frame_per_block(track->mixer, dstfmt);
4476 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4477 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4478
4479 if (track->freq_step < 65536) {
4480 track->freq.filter = audio_track_freq_up;
4481 /* In order to carry at the first time. */
4482 track->freq_current = 65536;
4483 } else {
4484 track->freq.filter = audio_track_freq_down;
4485 track->freq_current = 0;
4486 }
4487
4488 srcbuf->fmt = *dstfmt;
4489 srcbuf->fmt.sample_rate = srcfreq;
4490
4491 srcbuf->head = 0;
4492 srcbuf->used = 0;
4493 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4494 len = auring_bytelen(srcbuf);
4495 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4496
4497 arg = &track->freq.arg;
4498 arg->srcfmt = &srcbuf->fmt;
4499 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4500 arg->context = track;
4501
4502 *last_dstp = srcbuf;
4503 return 0;
4504 }
4505
4506 track->freq.filter = NULL;
4507 audio_free(srcbuf->mem);
4508 return error;
4509 }
4510
4511 /*
4512 * There are two unit of buffers; A block buffer and a byte buffer. Both use
4513 * audio_ring_t. Internally, audio data is always handled in block unit.
4514 * Converting format, sythesizing tracks, transferring from/to the hardware,
4515 * and etc. Only one exception is usrbuf. To transfer with userland, usrbuf
4516 * is buffered in byte unit.
4517 * For playing back, write(2) writes arbitrary length of data to usrbuf.
4518 * When one block is filled, it is sent to the next stage (converting and/or
4519 * synthesizing).
4520 * For recording, the rmixer writes one block length of data to input buffer
4521 * (the bottom stage buffer) each time. read(2) (converts one block if usrbuf
4522 * is empty and then) reads arbitrary length of data from usrbuf.
4523 *
4524 * The following charts show the data flow and buffer types for playback and
4525 * recording track. In this example, both have two conversion stages, codec
4526 * and freq. Every [**] represents a buffer described below.
4527 *
4528 * On playback track:
4529 *
4530 * write(2)
4531 * |
4532 * | uiomove
4533 * v
4534 * usrbuf [BB|BB ... BB|BB] .. Byte ring buffer
4535 * |
4536 * | memcpy one block
4537 * v
4538 * codec.srcbuf [FF] .. 1 block (ring) buffer
4539 * .dst ----+
4540 * |
4541 * | convert
4542 * v
4543 * freq.srcbuf [FF] .. 1 block (ring) buffer
4544 * .dst ----+
4545 * |
4546 * | convert
4547 * v
4548 * outbuf [FF|FF|FF|FF] .. NBLKOUT blocks ring buffer
4549 * |
4550 * v
4551 * pmixer
4552 *
4553 * There are three different types of buffers:
4554 *
4555 * [BB|BB ... BB|BB] usrbuf. Is the buffer closest to userland. Mandatory.
4556 * This is a byte buffer and its length is basically less
4557 * than or equal to 64KB or at least AUMINNOBLK blocks.
4558 *
4559 * [FF] Interim conversion stage's srcbuf if necessary.
4560 * This is one block (ring) buffer counted in frames.
4561 *
4562 * [FF|FF|FF|FF] outbuf. Is the buffer closest to pmixer. Mandatory.
4563 * This is NBLKOUT blocks ring buffer counted in frames.
4564 *
4565 *
4566 * On recording track:
4567 *
4568 * read(2)
4569 * ^
4570 * | uiomove
4571 * |
4572 * usrbuf [BB] .. Byte (ring) buffer
4573 * ^
4574 * | memcpy one block
4575 * |
4576 * outbuf [FF] .. 1 block (ring) buffer
4577 * ^
4578 * | convert
4579 * |
4580 * codec.dst ----+
4581 * .srcbuf [FF] .. 1 block (ring) buffer
4582 * ^
4583 * | convert
4584 * |
4585 * freq.dst ----+
4586 * .srcbuf [FF|FF ... FF|FF] .. NBLKIN blocks ring buffer
4587 * ^
4588 * |
4589 * rmixer
4590 *
4591 * There are also three different types of buffers.
4592 *
4593 * [BB] usrbuf. Is the buffer closest to userland. Mandatory.
4594 * This is a byte buffer and its length is one block.
4595 * This buffer holds only "fragment".
4596 *
4597 * [FF] Interim conversion stage's srcbuf (or outbuf).
4598 * This is one block (ring) buffer counted in frames.
4599 *
4600 * [FF|FF ... FF|FF] The bottom conversion stage's srcbuf (or outbuf).
4601 * This is the buffer closest to rmixer, and mandatory.
4602 * This is NBLKIN blocks ring buffer counted in frames.
4603 * Also pointed by *input.
4604 */
4605
4606 /*
4607 * Set the userland format of this track.
4608 * usrfmt argument should have been previously verified by
4609 * audio_track_setinfo_check().
4610 * This function may release and reallocate all internal conversion buffers.
4611 * It returns 0 if successful. Otherwise it returns errno with clearing all
4612 * internal buffers.
4613 * It must be called without sc_intr_lock since uvm_* routines require non
4614 * intr_lock state.
4615 * It must be called with track lock held since it may release and reallocate
4616 * outbuf.
4617 */
4618 static int
4619 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4620 {
4621 struct audio_softc *sc;
4622 audio_ring_t *last_dst;
4623 int is_playback;
4624 u_int newbufsize;
4625 u_int oldblksize;
4626 u_int len;
4627 int error;
4628
4629 KASSERT(track);
4630 sc = track->mixer->sc;
4631
4632 is_playback = audio_track_is_playback(track);
4633
4634 /* usrbuf is the closest buffer to the userland. */
4635 track->usrbuf.fmt = *usrfmt;
4636
4637 /*
4638 * Usrbuf.
4639 * On the playback track, its capacity is less than or equal to 64KB
4640 * (for historical reason) and must be a multiple of a block
4641 * (constraint in this implementation). But at least AUMINNOBLK
4642 * blocks.
4643 * On the recording track, its capacity is one block.
4644 */
4645 /*
4646 * For references, one block size (in 40msec) is:
4647 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4648 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4649 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4650 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4651 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4652 *
4653 * For example,
4654 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4655 * newbufsize = rounddown(65536 / 7056) = 63504
4656 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4657 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4658 *
4659 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4660 * newbufsize = rounddown(65536 / 7680) = 61440
4661 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4662 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4663 */
4664 oldblksize = track->usrbuf_blksize;
4665 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4666 frame_per_block(track->mixer, &track->usrbuf.fmt));
4667 track->usrbuf.head = 0;
4668 track->usrbuf.used = 0;
4669 if (is_playback) {
4670 if (track->usrbuf_blksize * AUMINNOBLK > 65536)
4671 newbufsize = track->usrbuf_blksize * AUMINNOBLK;
4672 else
4673 newbufsize = rounddown(65536, track->usrbuf_blksize);
4674 } else {
4675 newbufsize = track->usrbuf_blksize;
4676 }
4677 if (track->usrbuf_blksize != oldblksize) {
4678 error = audio_realloc_usrbuf(track, newbufsize);
4679 if (error) {
4680 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4681 newbufsize);
4682 goto error;
4683 }
4684 }
4685
4686 /* Recalc water mark. */
4687 if (is_playback) {
4688 /* Set high at 100%, low at 75%. */
4689 track->usrbuf_usedhigh = track->usrbuf.capacity;
4690 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4691 } else {
4692 /* Set high at 100%, low at 0%. (But not used) */
4693 track->usrbuf_usedhigh = track->usrbuf.capacity;
4694 track->usrbuf_usedlow = 0;
4695 }
4696
4697 /* Stage buffer */
4698 last_dst = &track->outbuf;
4699 if (is_playback) {
4700 /* On playback, initialize from the mixer side in order. */
4701 track->inputfmt = *usrfmt;
4702 track->outbuf.fmt = track->mixer->track_fmt;
4703
4704 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4705 goto error;
4706 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4707 goto error;
4708 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4709 goto error;
4710 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4711 goto error;
4712 } else {
4713 /* On recording, initialize from userland side in order. */
4714 track->inputfmt = track->mixer->track_fmt;
4715 track->outbuf.fmt = *usrfmt;
4716
4717 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4718 goto error;
4719 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4720 goto error;
4721 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4722 goto error;
4723 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4724 goto error;
4725 }
4726 #if 0
4727 /* debug */
4728 if (track->freq.filter) {
4729 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4730 audio_print_format2("freq dst", &track->freq.dst->fmt);
4731 }
4732 if (track->chmix.filter) {
4733 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4734 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4735 }
4736 if (track->chvol.filter) {
4737 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4738 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4739 }
4740 if (track->codec.filter) {
4741 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4742 audio_print_format2("codec dst", &track->codec.dst->fmt);
4743 }
4744 #endif
4745
4746 /* Stage input buffer */
4747 track->input = last_dst;
4748
4749 /*
4750 * Output buffer.
4751 * On the playback track, its capacity is NBLKOUT blocks.
4752 * On the recording track, its capacity is 1 block.
4753 */
4754 track->outbuf.head = 0;
4755 track->outbuf.used = 0;
4756 track->outbuf.capacity = frame_per_block(track->mixer,
4757 &track->outbuf.fmt);
4758 if (is_playback)
4759 track->outbuf.capacity *= NBLKOUT;
4760 len = auring_bytelen(&track->outbuf);
4761 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4762 if (track->outbuf.mem == NULL) {
4763 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4764 error = ENOMEM;
4765 goto error;
4766 }
4767
4768 /*
4769 * On the recording track, expand the input stage buffer, which is
4770 * the closest buffer to rmixer, to NBLKOUT blocks.
4771 * Note that input buffer may point to outbuf.
4772 */
4773 if (!is_playback) {
4774 int input_fpb;
4775
4776 input_fpb = frame_per_block(track->mixer, &track->input->fmt);
4777 track->input->capacity = input_fpb * NBLKIN;
4778 len = auring_bytelen(track->input);
4779 track->input->mem = audio_realloc(track->input->mem, len);
4780 }
4781
4782 #if defined(AUDIO_DEBUG)
4783 if (audiodebug >= 3) {
4784 struct audio_track_debugbuf m;
4785
4786 memset(&m, 0, sizeof(m));
4787 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4788 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4789 if (track->freq.filter)
4790 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4791 track->freq.srcbuf.capacity *
4792 frametobyte(&track->freq.srcbuf.fmt, 1));
4793 if (track->chmix.filter)
4794 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4795 track->chmix.srcbuf.capacity *
4796 frametobyte(&track->chmix.srcbuf.fmt, 1));
4797 if (track->chvol.filter)
4798 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4799 track->chvol.srcbuf.capacity *
4800 frametobyte(&track->chvol.srcbuf.fmt, 1));
4801 if (track->codec.filter)
4802 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4803 track->codec.srcbuf.capacity *
4804 frametobyte(&track->codec.srcbuf.fmt, 1));
4805 snprintf(m.usrbuf, sizeof(m.usrbuf),
4806 " usr=%d", track->usrbuf.capacity);
4807
4808 if (is_playback) {
4809 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4810 m.outbuf, m.freq, m.chmix,
4811 m.chvol, m.codec, m.usrbuf);
4812 } else {
4813 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4814 m.freq, m.chmix, m.chvol,
4815 m.codec, m.outbuf, m.usrbuf);
4816 }
4817 }
4818 #endif
4819 return 0;
4820
4821 error:
4822 audio_free_usrbuf(track);
4823 audio_free(track->codec.srcbuf.mem);
4824 audio_free(track->chvol.srcbuf.mem);
4825 audio_free(track->chmix.srcbuf.mem);
4826 audio_free(track->freq.srcbuf.mem);
4827 audio_free(track->outbuf.mem);
4828 return error;
4829 }
4830
4831 /*
4832 * Fill silence frames (as the internal format) up to 1 block
4833 * if the ring is not empty and less than 1 block.
4834 * It returns the number of appended frames.
4835 */
4836 static int
4837 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4838 {
4839 int fpb;
4840 int n;
4841
4842 KASSERT(track);
4843 KASSERT(audio_format2_is_internal(&ring->fmt));
4844
4845 /* XXX is n correct? */
4846 /* XXX memset uses frametobyte()? */
4847
4848 if (ring->used == 0)
4849 return 0;
4850
4851 fpb = frame_per_block(track->mixer, &ring->fmt);
4852 if (ring->used >= fpb)
4853 return 0;
4854
4855 n = (ring->capacity - ring->used) % fpb;
4856
4857 KASSERTMSG(auring_get_contig_free(ring) >= n,
4858 "auring_get_contig_free(ring)=%d n=%d",
4859 auring_get_contig_free(ring), n);
4860
4861 memset(auring_tailptr_aint(ring), 0,
4862 n * ring->fmt.channels * sizeof(aint_t));
4863 auring_push(ring, n);
4864 return n;
4865 }
4866
4867 /*
4868 * Execute the conversion stage.
4869 * It prepares arg from this stage and executes stage->filter.
4870 * It must be called only if stage->filter is not NULL.
4871 *
4872 * For stages other than frequency conversion, the function increments
4873 * src and dst counters here. For frequency conversion stage, on the
4874 * other hand, the function does not touch src and dst counters and
4875 * filter side has to increment them.
4876 */
4877 static void
4878 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4879 {
4880 audio_filter_arg_t *arg;
4881 int srccount;
4882 int dstcount;
4883 int count;
4884
4885 KASSERT(track);
4886 KASSERT(stage->filter);
4887
4888 srccount = auring_get_contig_used(&stage->srcbuf);
4889 dstcount = auring_get_contig_free(stage->dst);
4890
4891 if (isfreq) {
4892 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4893 count = uimin(dstcount, track->mixer->frames_per_block);
4894 } else {
4895 count = uimin(srccount, dstcount);
4896 }
4897
4898 if (count > 0) {
4899 arg = &stage->arg;
4900 arg->src = auring_headptr(&stage->srcbuf);
4901 arg->dst = auring_tailptr(stage->dst);
4902 arg->count = count;
4903
4904 stage->filter(arg);
4905
4906 if (!isfreq) {
4907 auring_take(&stage->srcbuf, count);
4908 auring_push(stage->dst, count);
4909 }
4910 }
4911 }
4912
4913 /*
4914 * Produce output buffer for playback from user input buffer.
4915 * It must be called only if usrbuf is not empty and outbuf is
4916 * available at least one free block.
4917 */
4918 static void
4919 audio_track_play(audio_track_t *track)
4920 {
4921 audio_ring_t *usrbuf;
4922 audio_ring_t *input;
4923 int count;
4924 int framesize;
4925 int bytes;
4926
4927 KASSERT(track);
4928 KASSERT(track->lock);
4929 TRACET(4, track, "start pstate=%d", track->pstate);
4930
4931 /* At this point usrbuf must not be empty. */
4932 KASSERT(track->usrbuf.used > 0);
4933 /* Also, outbuf must be available at least one block. */
4934 count = auring_get_contig_free(&track->outbuf);
4935 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4936 "count=%d fpb=%d",
4937 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4938
4939 /* XXX TODO: is this necessary for now? */
4940 int track_count_0 = track->outbuf.used;
4941
4942 usrbuf = &track->usrbuf;
4943 input = track->input;
4944
4945 /*
4946 * framesize is always 1 byte or more since all formats supported as
4947 * usrfmt(=input) have 8bit or more stride.
4948 */
4949 framesize = frametobyte(&input->fmt, 1);
4950 KASSERT(framesize >= 1);
4951
4952 /* The next stage of usrbuf (=input) must be available. */
4953 KASSERT(auring_get_contig_free(input) > 0);
4954
4955 /*
4956 * Copy usrbuf up to 1block to input buffer.
4957 * count is the number of frames to copy from usrbuf.
4958 * bytes is the number of bytes to copy from usrbuf. However it is
4959 * not copied less than one frame.
4960 */
4961 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4962 bytes = count * framesize;
4963
4964 if (usrbuf->head + bytes < usrbuf->capacity) {
4965 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4966 (uint8_t *)usrbuf->mem + usrbuf->head,
4967 bytes);
4968 auring_push(input, count);
4969 auring_take(usrbuf, bytes);
4970 } else {
4971 int bytes1;
4972 int bytes2;
4973
4974 bytes1 = auring_get_contig_used(usrbuf);
4975 KASSERTMSG(bytes1 % framesize == 0,
4976 "bytes1=%d framesize=%d", bytes1, framesize);
4977 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4978 (uint8_t *)usrbuf->mem + usrbuf->head,
4979 bytes1);
4980 auring_push(input, bytes1 / framesize);
4981 auring_take(usrbuf, bytes1);
4982
4983 bytes2 = bytes - bytes1;
4984 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4985 (uint8_t *)usrbuf->mem + usrbuf->head,
4986 bytes2);
4987 auring_push(input, bytes2 / framesize);
4988 auring_take(usrbuf, bytes2);
4989 }
4990
4991 /* Encoding conversion */
4992 if (track->codec.filter)
4993 audio_apply_stage(track, &track->codec, false);
4994
4995 /* Channel volume */
4996 if (track->chvol.filter)
4997 audio_apply_stage(track, &track->chvol, false);
4998
4999 /* Channel mix */
5000 if (track->chmix.filter)
5001 audio_apply_stage(track, &track->chmix, false);
5002
5003 /* Frequency conversion */
5004 /*
5005 * Since the frequency conversion needs correction for each block,
5006 * it rounds up to 1 block.
5007 */
5008 if (track->freq.filter) {
5009 int n;
5010 n = audio_append_silence(track, &track->freq.srcbuf);
5011 if (n > 0) {
5012 TRACET(4, track,
5013 "freq.srcbuf add silence %d -> %d/%d/%d",
5014 n,
5015 track->freq.srcbuf.head,
5016 track->freq.srcbuf.used,
5017 track->freq.srcbuf.capacity);
5018 }
5019 if (track->freq.srcbuf.used > 0) {
5020 audio_apply_stage(track, &track->freq, true);
5021 }
5022 }
5023
5024 if (bytes < track->usrbuf_blksize) {
5025 /*
5026 * Clear all conversion buffer pointer if the conversion was
5027 * not exactly one block. These conversion stage buffers are
5028 * certainly circular buffers because of symmetry with the
5029 * previous and next stage buffer. However, since they are
5030 * treated as simple contiguous buffers in operation, so head
5031 * always should point 0. This may happen during drain-age.
5032 */
5033 TRACET(4, track, "reset stage");
5034 if (track->codec.filter) {
5035 KASSERT(track->codec.srcbuf.used == 0);
5036 track->codec.srcbuf.head = 0;
5037 }
5038 if (track->chvol.filter) {
5039 KASSERT(track->chvol.srcbuf.used == 0);
5040 track->chvol.srcbuf.head = 0;
5041 }
5042 if (track->chmix.filter) {
5043 KASSERT(track->chmix.srcbuf.used == 0);
5044 track->chmix.srcbuf.head = 0;
5045 }
5046 if (track->freq.filter) {
5047 KASSERT(track->freq.srcbuf.used == 0);
5048 track->freq.srcbuf.head = 0;
5049 }
5050 }
5051
5052 if (track->input == &track->outbuf) {
5053 track->outputcounter = track->inputcounter;
5054 } else {
5055 track->outputcounter += track->outbuf.used - track_count_0;
5056 }
5057
5058 track->stamp++;
5059
5060 #if defined(AUDIO_DEBUG)
5061 if (audiodebug >= 3) {
5062 struct audio_track_debugbuf m;
5063 audio_track_bufstat(track, &m);
5064 TRACET(0, track, "end%s%s%s%s%s%s",
5065 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
5066 }
5067 #endif
5068 }
5069
5070 /*
5071 * Produce user output buffer for recording from input buffer.
5072 */
5073 static void
5074 audio_track_record(audio_track_t *track)
5075 {
5076 audio_ring_t *outbuf;
5077 audio_ring_t *usrbuf;
5078 int count;
5079 int bytes;
5080 int framesize;
5081
5082 KASSERT(track);
5083 KASSERT(track->lock);
5084
5085 if (auring_get_contig_used(track->input) == 0) {
5086 TRACET(4, track, "input->used == 0");
5087 return;
5088 }
5089
5090 /* Frequency conversion */
5091 if (track->freq.filter) {
5092 if (track->freq.srcbuf.used > 0) {
5093 audio_apply_stage(track, &track->freq, true);
5094 /* XXX should input of freq be from beginning of buf? */
5095 }
5096 }
5097
5098 /* Channel mix */
5099 if (track->chmix.filter)
5100 audio_apply_stage(track, &track->chmix, false);
5101
5102 /* Channel volume */
5103 if (track->chvol.filter)
5104 audio_apply_stage(track, &track->chvol, false);
5105
5106 /* Encoding conversion */
5107 if (track->codec.filter)
5108 audio_apply_stage(track, &track->codec, false);
5109
5110 /* Copy outbuf to usrbuf */
5111 outbuf = &track->outbuf;
5112 usrbuf = &track->usrbuf;
5113 /* usrbuf should be empty. */
5114 KASSERT(usrbuf->used == 0);
5115 /*
5116 * framesize is always 1 byte or more since all formats supported
5117 * as usrfmt(=output) have 8bit or more stride.
5118 */
5119 framesize = frametobyte(&outbuf->fmt, 1);
5120 KASSERT(framesize >= 1);
5121 /*
5122 * count is the number of frames to copy to usrbuf.
5123 * bytes is the number of bytes to copy to usrbuf.
5124 */
5125 count = outbuf->used;
5126 count = uimin(count, track->usrbuf_blksize / framesize);
5127 bytes = count * framesize;
5128 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
5129 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5130 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5131 bytes);
5132 auring_push(usrbuf, bytes);
5133 auring_take(outbuf, count);
5134 } else {
5135 int bytes1;
5136 int bytes2;
5137
5138 bytes1 = auring_get_contig_free(usrbuf);
5139 KASSERTMSG(bytes1 % framesize == 0,
5140 "bytes1=%d framesize=%d", bytes1, framesize);
5141 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5142 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5143 bytes1);
5144 auring_push(usrbuf, bytes1);
5145 auring_take(outbuf, bytes1 / framesize);
5146
5147 bytes2 = bytes - bytes1;
5148 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5149 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5150 bytes2);
5151 auring_push(usrbuf, bytes2);
5152 auring_take(outbuf, bytes2 / framesize);
5153 }
5154
5155 /* XXX TODO: any counters here? */
5156
5157 #if defined(AUDIO_DEBUG)
5158 if (audiodebug >= 3) {
5159 struct audio_track_debugbuf m;
5160 audio_track_bufstat(track, &m);
5161 TRACET(0, track, "end%s%s%s%s%s%s",
5162 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
5163 }
5164 #endif
5165 }
5166
5167 /*
5168 * Calculate blktime [msec] from mixer(.hwbuf.fmt).
5169 * Must be called with sc_exlock held.
5170 */
5171 static u_int
5172 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
5173 {
5174 audio_format2_t *fmt;
5175 u_int blktime;
5176 u_int frames_per_block;
5177
5178 KASSERT(sc->sc_exlock);
5179
5180 fmt = &mixer->hwbuf.fmt;
5181 blktime = sc->sc_blk_ms;
5182
5183 /*
5184 * If stride is not multiples of 8, special treatment is necessary.
5185 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
5186 */
5187 if (fmt->stride == 4) {
5188 frames_per_block = fmt->sample_rate * blktime / 1000;
5189 if ((frames_per_block & 1) != 0)
5190 blktime *= 2;
5191 }
5192 #ifdef DIAGNOSTIC
5193 else if (fmt->stride % NBBY != 0) {
5194 panic("unsupported HW stride %d", fmt->stride);
5195 }
5196 #endif
5197
5198 return blktime;
5199 }
5200
5201 /*
5202 * Initialize the mixer corresponding to the mode.
5203 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
5204 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
5205 * This function returns 0 on successful. Otherwise returns errno.
5206 * Must be called with sc_exlock held and without sc_lock held.
5207 */
5208 static int
5209 audio_mixer_init(struct audio_softc *sc, int mode,
5210 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
5211 {
5212 char codecbuf[64];
5213 char blkdmsbuf[8];
5214 audio_trackmixer_t *mixer;
5215 void (*softint_handler)(void *);
5216 int len;
5217 int blksize;
5218 int capacity;
5219 size_t bufsize;
5220 int hwblks;
5221 int blkms;
5222 int blkdms;
5223 int error;
5224
5225 KASSERT(hwfmt != NULL);
5226 KASSERT(reg != NULL);
5227 KASSERT(sc->sc_exlock);
5228
5229 error = 0;
5230 if (mode == AUMODE_PLAY)
5231 mixer = sc->sc_pmixer;
5232 else
5233 mixer = sc->sc_rmixer;
5234
5235 mixer->sc = sc;
5236 mixer->mode = mode;
5237
5238 mixer->hwbuf.fmt = *hwfmt;
5239 mixer->volume = 256;
5240 mixer->blktime_d = 1000;
5241 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
5242 sc->sc_blk_ms = mixer->blktime_n;
5243 hwblks = NBLKHW;
5244
5245 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
5246 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5247 if (sc->hw_if->round_blocksize) {
5248 int rounded;
5249 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
5250 mutex_enter(sc->sc_lock);
5251 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
5252 mode, &p);
5253 mutex_exit(sc->sc_lock);
5254 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
5255 if (rounded != blksize) {
5256 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
5257 mixer->hwbuf.fmt.channels) != 0) {
5258 audio_printf(sc,
5259 "round_blocksize returned blocksize "
5260 "indivisible by framesize: "
5261 "blksize=%d rounded=%d "
5262 "stride=%ubit channels=%u\n",
5263 blksize, rounded,
5264 mixer->hwbuf.fmt.stride,
5265 mixer->hwbuf.fmt.channels);
5266 return EINVAL;
5267 }
5268 /* Recalculation */
5269 blksize = rounded;
5270 mixer->frames_per_block = blksize * NBBY /
5271 (mixer->hwbuf.fmt.stride *
5272 mixer->hwbuf.fmt.channels);
5273 }
5274 }
5275 mixer->blktime_n = mixer->frames_per_block;
5276 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
5277
5278 capacity = mixer->frames_per_block * hwblks;
5279 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
5280 if (sc->hw_if->round_buffersize) {
5281 size_t rounded;
5282 mutex_enter(sc->sc_lock);
5283 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
5284 bufsize);
5285 mutex_exit(sc->sc_lock);
5286 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
5287 if (rounded < bufsize) {
5288 /* buffersize needs NBLKHW blocks at least. */
5289 audio_printf(sc,
5290 "round_buffersize returned too small buffersize: "
5291 "buffersize=%zd blksize=%d\n",
5292 rounded, blksize);
5293 return EINVAL;
5294 }
5295 if (rounded % blksize != 0) {
5296 /* buffersize/blksize constraint mismatch? */
5297 audio_printf(sc,
5298 "round_buffersize returned buffersize indivisible "
5299 "by blksize: buffersize=%zu blksize=%d\n",
5300 rounded, blksize);
5301 return EINVAL;
5302 }
5303 if (rounded != bufsize) {
5304 /* Recalculation */
5305 bufsize = rounded;
5306 hwblks = bufsize / blksize;
5307 capacity = mixer->frames_per_block * hwblks;
5308 }
5309 }
5310 TRACE(1, "buffersize for %s = %zu",
5311 (mode == AUMODE_PLAY) ? "playback" : "recording",
5312 bufsize);
5313 mixer->hwbuf.capacity = capacity;
5314
5315 if (sc->hw_if->allocm) {
5316 /* sc_lock is not necessary for allocm */
5317 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
5318 if (mixer->hwbuf.mem == NULL) {
5319 audio_printf(sc, "allocm(%zu) failed\n", bufsize);
5320 return ENOMEM;
5321 }
5322 } else {
5323 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
5324 }
5325
5326 /* From here, audio_mixer_destroy is necessary to exit. */
5327 if (mode == AUMODE_PLAY) {
5328 cv_init(&mixer->outcv, "audiowr");
5329 } else {
5330 cv_init(&mixer->outcv, "audiord");
5331 }
5332
5333 if (mode == AUMODE_PLAY) {
5334 softint_handler = audio_softintr_wr;
5335 } else {
5336 softint_handler = audio_softintr_rd;
5337 }
5338 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
5339 softint_handler, sc);
5340 if (mixer->sih == NULL) {
5341 device_printf(sc->sc_dev, "softint_establish failed\n");
5342 goto abort;
5343 }
5344
5345 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
5346 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
5347 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
5348 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
5349 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
5350
5351 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
5352 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
5353 mixer->swap_endian = true;
5354 TRACE(1, "swap_endian");
5355 }
5356
5357 if (mode == AUMODE_PLAY) {
5358 /* Mixing buffer */
5359 mixer->mixfmt = mixer->track_fmt;
5360 mixer->mixfmt.precision *= 2;
5361 mixer->mixfmt.stride *= 2;
5362 /* XXX TODO: use some macros? */
5363 len = mixer->frames_per_block * mixer->mixfmt.channels *
5364 mixer->mixfmt.stride / NBBY;
5365 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5366 } else {
5367 /* No mixing buffer for recording */
5368 }
5369
5370 if (reg->codec) {
5371 mixer->codec = reg->codec;
5372 mixer->codecarg.context = reg->context;
5373 if (mode == AUMODE_PLAY) {
5374 mixer->codecarg.srcfmt = &mixer->track_fmt;
5375 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5376 } else {
5377 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5378 mixer->codecarg.dstfmt = &mixer->track_fmt;
5379 }
5380 mixer->codecbuf.fmt = mixer->track_fmt;
5381 mixer->codecbuf.capacity = mixer->frames_per_block;
5382 len = auring_bytelen(&mixer->codecbuf);
5383 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5384 if (mixer->codecbuf.mem == NULL) {
5385 device_printf(sc->sc_dev,
5386 "malloc codecbuf(%d) failed\n", len);
5387 error = ENOMEM;
5388 goto abort;
5389 }
5390 }
5391
5392 /* Succeeded so display it. */
5393 codecbuf[0] = '\0';
5394 if (mixer->codec || mixer->swap_endian) {
5395 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5396 (mode == AUMODE_PLAY) ? "->" : "<-",
5397 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5398 mixer->hwbuf.fmt.precision);
5399 }
5400 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5401 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5402 blkdmsbuf[0] = '\0';
5403 if (blkdms != 0) {
5404 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5405 }
5406 aprint_normal_dev(sc->sc_dev,
5407 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5408 audio_encoding_name(mixer->track_fmt.encoding),
5409 mixer->track_fmt.precision,
5410 codecbuf,
5411 mixer->track_fmt.channels,
5412 mixer->track_fmt.sample_rate,
5413 blksize,
5414 blkms, blkdmsbuf,
5415 (mode == AUMODE_PLAY) ? "playback" : "recording");
5416
5417 return 0;
5418
5419 abort:
5420 audio_mixer_destroy(sc, mixer);
5421 return error;
5422 }
5423
5424 /*
5425 * Releases all resources of 'mixer'.
5426 * Note that it does not release the memory area of 'mixer' itself.
5427 * Must be called with sc_exlock held and without sc_lock held.
5428 */
5429 static void
5430 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5431 {
5432 int bufsize;
5433
5434 KASSERT(sc->sc_exlock == 1);
5435
5436 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5437
5438 if (mixer->hwbuf.mem != NULL) {
5439 if (sc->hw_if->freem) {
5440 /* sc_lock is not necessary for freem */
5441 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5442 } else {
5443 kmem_free(mixer->hwbuf.mem, bufsize);
5444 }
5445 mixer->hwbuf.mem = NULL;
5446 }
5447
5448 audio_free(mixer->codecbuf.mem);
5449 audio_free(mixer->mixsample);
5450
5451 cv_destroy(&mixer->outcv);
5452
5453 if (mixer->sih) {
5454 softint_disestablish(mixer->sih);
5455 mixer->sih = NULL;
5456 }
5457 }
5458
5459 /*
5460 * Starts playback mixer.
5461 * Must be called only if sc_pbusy is false.
5462 * Must be called with sc_lock && sc_exlock held.
5463 * Must not be called from the interrupt context.
5464 */
5465 static void
5466 audio_pmixer_start(struct audio_softc *sc, bool force)
5467 {
5468 audio_trackmixer_t *mixer;
5469 int minimum;
5470
5471 KASSERT(mutex_owned(sc->sc_lock));
5472 KASSERT(sc->sc_exlock);
5473 KASSERT(sc->sc_pbusy == false);
5474
5475 mutex_enter(sc->sc_intr_lock);
5476
5477 mixer = sc->sc_pmixer;
5478 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5479 (audiodebug >= 3) ? "begin " : "",
5480 (int)mixer->mixseq, (int)mixer->hwseq,
5481 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5482 force ? " force" : "");
5483
5484 /* Need two blocks to start normally. */
5485 minimum = (force) ? 1 : 2;
5486 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5487 audio_pmixer_process(sc);
5488 }
5489
5490 /* Start output */
5491 audio_pmixer_output(sc);
5492 sc->sc_pbusy = true;
5493
5494 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5495 (int)mixer->mixseq, (int)mixer->hwseq,
5496 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5497
5498 mutex_exit(sc->sc_intr_lock);
5499 }
5500
5501 /*
5502 * When playing back with MD filter:
5503 *
5504 * track track ...
5505 * v v
5506 * + mix (with aint2_t)
5507 * | master volume (with aint2_t)
5508 * v
5509 * mixsample [::::] wide-int 1 block (ring) buffer
5510 * |
5511 * | convert aint2_t -> aint_t
5512 * v
5513 * codecbuf [....] 1 block (ring) buffer
5514 * |
5515 * | convert to hw format
5516 * v
5517 * hwbuf [............] NBLKHW blocks ring buffer
5518 *
5519 * When playing back without MD filter:
5520 *
5521 * mixsample [::::] wide-int 1 block (ring) buffer
5522 * |
5523 * | convert aint2_t -> aint_t
5524 * | (with byte swap if necessary)
5525 * v
5526 * hwbuf [............] NBLKHW blocks ring buffer
5527 *
5528 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5529 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5530 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5531 */
5532
5533 /*
5534 * Performs track mixing and converts it to hwbuf.
5535 * Note that this function doesn't transfer hwbuf to hardware.
5536 * Must be called with sc_intr_lock held.
5537 */
5538 static void
5539 audio_pmixer_process(struct audio_softc *sc)
5540 {
5541 audio_trackmixer_t *mixer;
5542 audio_file_t *f;
5543 int frame_count;
5544 int sample_count;
5545 int mixed;
5546 int i;
5547 aint2_t *m;
5548 aint_t *h;
5549
5550 mixer = sc->sc_pmixer;
5551
5552 frame_count = mixer->frames_per_block;
5553 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5554 "auring_get_contig_free()=%d frame_count=%d",
5555 auring_get_contig_free(&mixer->hwbuf), frame_count);
5556 sample_count = frame_count * mixer->mixfmt.channels;
5557
5558 mixer->mixseq++;
5559
5560 /* Mix all tracks */
5561 mixed = 0;
5562 SLIST_FOREACH(f, &sc->sc_files, entry) {
5563 audio_track_t *track = f->ptrack;
5564
5565 if (track == NULL)
5566 continue;
5567
5568 if (track->is_pause) {
5569 TRACET(4, track, "skip; paused");
5570 continue;
5571 }
5572
5573 /* Skip if the track is used by process context. */
5574 if (audio_track_lock_tryenter(track) == false) {
5575 TRACET(4, track, "skip; in use");
5576 continue;
5577 }
5578
5579 /* Emulate mmap'ped track */
5580 if (track->mmapped) {
5581 auring_push(&track->usrbuf, track->usrbuf_blksize);
5582 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5583 track->usrbuf.head,
5584 track->usrbuf.used,
5585 track->usrbuf.capacity);
5586 }
5587
5588 if (track->outbuf.used < mixer->frames_per_block &&
5589 track->usrbuf.used > 0) {
5590 TRACET(4, track, "process");
5591 audio_track_play(track);
5592 }
5593
5594 if (track->outbuf.used > 0) {
5595 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5596 } else {
5597 TRACET(4, track, "skip; empty");
5598 }
5599
5600 audio_track_lock_exit(track);
5601 }
5602
5603 if (mixed == 0) {
5604 /* Silence */
5605 memset(mixer->mixsample, 0,
5606 frametobyte(&mixer->mixfmt, frame_count));
5607 } else {
5608 if (mixed > 1) {
5609 /* If there are multiple tracks, do auto gain control */
5610 audio_pmixer_agc(mixer, sample_count);
5611 }
5612
5613 /* Apply master volume */
5614 if (mixer->volume < 256) {
5615 m = mixer->mixsample;
5616 for (i = 0; i < sample_count; i++) {
5617 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5618 m++;
5619 }
5620
5621 /*
5622 * Recover the volume gradually at the pace of
5623 * several times per second. If it's too fast, you
5624 * can recognize that the volume changes up and down
5625 * quickly and it's not so comfortable.
5626 */
5627 mixer->voltimer += mixer->blktime_n;
5628 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5629 mixer->volume++;
5630 mixer->voltimer = 0;
5631 #if defined(AUDIO_DEBUG_AGC)
5632 TRACE(1, "volume recover: %d", mixer->volume);
5633 #endif
5634 }
5635 }
5636 }
5637
5638 /*
5639 * The rest is the hardware part.
5640 */
5641
5642 if (mixer->codec) {
5643 h = auring_tailptr_aint(&mixer->codecbuf);
5644 } else {
5645 h = auring_tailptr_aint(&mixer->hwbuf);
5646 }
5647
5648 m = mixer->mixsample;
5649 if (mixer->swap_endian) {
5650 for (i = 0; i < sample_count; i++) {
5651 *h++ = bswap16(*m++);
5652 }
5653 } else {
5654 for (i = 0; i < sample_count; i++) {
5655 *h++ = *m++;
5656 }
5657 }
5658
5659 /* Hardware driver's codec */
5660 if (mixer->codec) {
5661 auring_push(&mixer->codecbuf, frame_count);
5662 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5663 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5664 mixer->codecarg.count = frame_count;
5665 mixer->codec(&mixer->codecarg);
5666 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5667 }
5668
5669 auring_push(&mixer->hwbuf, frame_count);
5670
5671 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5672 (int)mixer->mixseq,
5673 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5674 (mixed == 0) ? " silent" : "");
5675 }
5676
5677 /*
5678 * Do auto gain control.
5679 * Must be called sc_intr_lock held.
5680 */
5681 static void
5682 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5683 {
5684 struct audio_softc *sc __unused;
5685 aint2_t val;
5686 aint2_t maxval;
5687 aint2_t minval;
5688 aint2_t over_plus;
5689 aint2_t over_minus;
5690 aint2_t *m;
5691 int newvol;
5692 int i;
5693
5694 sc = mixer->sc;
5695
5696 /* Overflow detection */
5697 maxval = AINT_T_MAX;
5698 minval = AINT_T_MIN;
5699 m = mixer->mixsample;
5700 for (i = 0; i < sample_count; i++) {
5701 val = *m++;
5702 if (val > maxval)
5703 maxval = val;
5704 else if (val < minval)
5705 minval = val;
5706 }
5707
5708 /* Absolute value of overflowed amount */
5709 over_plus = maxval - AINT_T_MAX;
5710 over_minus = AINT_T_MIN - minval;
5711
5712 if (over_plus > 0 || over_minus > 0) {
5713 if (over_plus > over_minus) {
5714 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5715 } else {
5716 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5717 }
5718
5719 /*
5720 * Change the volume only if new one is smaller.
5721 * Reset the timer even if the volume isn't changed.
5722 */
5723 if (newvol <= mixer->volume) {
5724 mixer->volume = newvol;
5725 mixer->voltimer = 0;
5726 #if defined(AUDIO_DEBUG_AGC)
5727 TRACE(1, "auto volume adjust: %d", mixer->volume);
5728 #endif
5729 }
5730 }
5731 }
5732
5733 /*
5734 * Mix one track.
5735 * 'mixed' specifies the number of tracks mixed so far.
5736 * It returns the number of tracks mixed. In other words, it returns
5737 * mixed + 1 if this track is mixed.
5738 */
5739 static int
5740 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5741 int mixed)
5742 {
5743 int count;
5744 int sample_count;
5745 int remain;
5746 int i;
5747 const aint_t *s;
5748 aint2_t *d;
5749
5750 /* XXX TODO: Is this necessary for now? */
5751 if (mixer->mixseq < track->seq)
5752 return mixed;
5753
5754 count = auring_get_contig_used(&track->outbuf);
5755 count = uimin(count, mixer->frames_per_block);
5756
5757 s = auring_headptr_aint(&track->outbuf);
5758 d = mixer->mixsample;
5759
5760 /*
5761 * Apply track volume with double-sized integer and perform
5762 * additive synthesis.
5763 *
5764 * XXX If you limit the track volume to 1.0 or less (<= 256),
5765 * it would be better to do this in the track conversion stage
5766 * rather than here. However, if you accept the volume to
5767 * be greater than 1.0 (> 256), it's better to do it here.
5768 * Because the operation here is done by double-sized integer.
5769 */
5770 sample_count = count * mixer->mixfmt.channels;
5771 if (mixed == 0) {
5772 /* If this is the first track, assignment can be used. */
5773 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5774 if (track->volume != 256) {
5775 for (i = 0; i < sample_count; i++) {
5776 aint2_t v;
5777 v = *s++;
5778 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5779 }
5780 } else
5781 #endif
5782 {
5783 for (i = 0; i < sample_count; i++) {
5784 *d++ = ((aint2_t)*s++);
5785 }
5786 }
5787 /* Fill silence if the first track is not filled. */
5788 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5789 *d++ = 0;
5790 } else {
5791 /* If this is the second or later, add it. */
5792 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5793 if (track->volume != 256) {
5794 for (i = 0; i < sample_count; i++) {
5795 aint2_t v;
5796 v = *s++;
5797 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5798 }
5799 } else
5800 #endif
5801 {
5802 for (i = 0; i < sample_count; i++) {
5803 *d++ += ((aint2_t)*s++);
5804 }
5805 }
5806 }
5807
5808 auring_take(&track->outbuf, count);
5809 /*
5810 * The counters have to align block even if outbuf is less than
5811 * one block. XXX Is this still necessary?
5812 */
5813 remain = mixer->frames_per_block - count;
5814 if (__predict_false(remain != 0)) {
5815 auring_push(&track->outbuf, remain);
5816 auring_take(&track->outbuf, remain);
5817 }
5818
5819 /*
5820 * Update track sequence.
5821 * mixseq has previous value yet at this point.
5822 */
5823 track->seq = mixer->mixseq + 1;
5824
5825 return mixed + 1;
5826 }
5827
5828 /*
5829 * Output one block from hwbuf to HW.
5830 * Must be called with sc_intr_lock held.
5831 */
5832 static void
5833 audio_pmixer_output(struct audio_softc *sc)
5834 {
5835 audio_trackmixer_t *mixer;
5836 audio_params_t params;
5837 void *start;
5838 void *end;
5839 int blksize;
5840 int error;
5841
5842 mixer = sc->sc_pmixer;
5843 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5844 sc->sc_pbusy,
5845 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5846 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5847 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5848 mixer->hwbuf.used, mixer->frames_per_block);
5849
5850 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5851
5852 if (sc->hw_if->trigger_output) {
5853 /* trigger (at once) */
5854 if (!sc->sc_pbusy) {
5855 start = mixer->hwbuf.mem;
5856 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5857 params = format2_to_params(&mixer->hwbuf.fmt);
5858
5859 error = sc->hw_if->trigger_output(sc->hw_hdl,
5860 start, end, blksize, audio_pintr, sc, ¶ms);
5861 if (error) {
5862 audio_printf(sc,
5863 "trigger_output failed: errno=%d\n",
5864 error);
5865 return;
5866 }
5867 }
5868 } else {
5869 /* start (everytime) */
5870 start = auring_headptr(&mixer->hwbuf);
5871
5872 error = sc->hw_if->start_output(sc->hw_hdl,
5873 start, blksize, audio_pintr, sc);
5874 if (error) {
5875 audio_printf(sc,
5876 "start_output failed: errno=%d\n", error);
5877 return;
5878 }
5879 }
5880 }
5881
5882 /*
5883 * This is an interrupt handler for playback.
5884 * It is called with sc_intr_lock held.
5885 *
5886 * It is usually called from hardware interrupt. However, note that
5887 * for some drivers (e.g. uaudio) it is called from software interrupt.
5888 */
5889 static void
5890 audio_pintr(void *arg)
5891 {
5892 struct audio_softc *sc;
5893 audio_trackmixer_t *mixer;
5894
5895 sc = arg;
5896 KASSERT(mutex_owned(sc->sc_intr_lock));
5897
5898 if (sc->sc_dying)
5899 return;
5900 if (sc->sc_pbusy == false) {
5901 #if defined(DIAGNOSTIC)
5902 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5903 device_xname(sc->hw_dev));
5904 #endif
5905 return;
5906 }
5907
5908 mixer = sc->sc_pmixer;
5909 mixer->hw_complete_counter += mixer->frames_per_block;
5910 mixer->hwseq++;
5911
5912 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5913
5914 TRACE(4,
5915 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5916 mixer->hwseq, mixer->hw_complete_counter,
5917 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5918
5919 #if defined(AUDIO_HW_SINGLE_BUFFER)
5920 /*
5921 * Create a new block here and output it immediately.
5922 * It makes a latency lower but needs machine power.
5923 */
5924 audio_pmixer_process(sc);
5925 audio_pmixer_output(sc);
5926 #else
5927 /*
5928 * It is called when block N output is done.
5929 * Output immediately block N+1 created by the last interrupt.
5930 * And then create block N+2 for the next interrupt.
5931 * This method makes playback robust even on slower machines.
5932 * Instead the latency is increased by one block.
5933 */
5934
5935 /* At first, output ready block. */
5936 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5937 audio_pmixer_output(sc);
5938 }
5939
5940 bool later = false;
5941
5942 if (mixer->hwbuf.used < mixer->frames_per_block) {
5943 later = true;
5944 }
5945
5946 /* Then, process next block. */
5947 audio_pmixer_process(sc);
5948
5949 if (later) {
5950 audio_pmixer_output(sc);
5951 }
5952 #endif
5953
5954 /*
5955 * When this interrupt is the real hardware interrupt, disabling
5956 * preemption here is not necessary. But some drivers (e.g. uaudio)
5957 * emulate it by software interrupt, so kpreempt_disable is necessary.
5958 */
5959 kpreempt_disable();
5960 softint_schedule(mixer->sih);
5961 kpreempt_enable();
5962 }
5963
5964 /*
5965 * Starts record mixer.
5966 * Must be called only if sc_rbusy is false.
5967 * Must be called with sc_lock && sc_exlock held.
5968 * Must not be called from the interrupt context.
5969 */
5970 static void
5971 audio_rmixer_start(struct audio_softc *sc)
5972 {
5973
5974 KASSERT(mutex_owned(sc->sc_lock));
5975 KASSERT(sc->sc_exlock);
5976 KASSERT(sc->sc_rbusy == false);
5977
5978 mutex_enter(sc->sc_intr_lock);
5979
5980 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5981 audio_rmixer_input(sc);
5982 sc->sc_rbusy = true;
5983 TRACE(3, "end");
5984
5985 mutex_exit(sc->sc_intr_lock);
5986 }
5987
5988 /*
5989 * When recording with MD filter:
5990 *
5991 * hwbuf [............] NBLKHW blocks ring buffer
5992 * |
5993 * | convert from hw format
5994 * v
5995 * codecbuf [....] 1 block (ring) buffer
5996 * | |
5997 * v v
5998 * track track ...
5999 *
6000 * When recording without MD filter:
6001 *
6002 * hwbuf [............] NBLKHW blocks ring buffer
6003 * | |
6004 * v v
6005 * track track ...
6006 *
6007 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
6008 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
6009 */
6010
6011 /*
6012 * Distribute a recorded block to all recording tracks.
6013 */
6014 static void
6015 audio_rmixer_process(struct audio_softc *sc)
6016 {
6017 audio_trackmixer_t *mixer;
6018 audio_ring_t *mixersrc;
6019 audio_file_t *f;
6020 aint_t *p;
6021 int count;
6022 int bytes;
6023 int i;
6024
6025 mixer = sc->sc_rmixer;
6026
6027 /*
6028 * count is the number of frames to be retrieved this time.
6029 * count should be one block.
6030 */
6031 count = auring_get_contig_used(&mixer->hwbuf);
6032 count = uimin(count, mixer->frames_per_block);
6033 if (count <= 0) {
6034 TRACE(4, "count %d: too short", count);
6035 return;
6036 }
6037 bytes = frametobyte(&mixer->track_fmt, count);
6038
6039 /* Hardware driver's codec */
6040 if (mixer->codec) {
6041 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
6042 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
6043 mixer->codecarg.count = count;
6044 mixer->codec(&mixer->codecarg);
6045 auring_take(&mixer->hwbuf, mixer->codecarg.count);
6046 auring_push(&mixer->codecbuf, mixer->codecarg.count);
6047 mixersrc = &mixer->codecbuf;
6048 } else {
6049 mixersrc = &mixer->hwbuf;
6050 }
6051
6052 if (mixer->swap_endian) {
6053 /* inplace conversion */
6054 p = auring_headptr_aint(mixersrc);
6055 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
6056 *p = bswap16(*p);
6057 }
6058 }
6059
6060 /* Distribute to all tracks. */
6061 SLIST_FOREACH(f, &sc->sc_files, entry) {
6062 audio_track_t *track = f->rtrack;
6063 audio_ring_t *input;
6064
6065 if (track == NULL)
6066 continue;
6067
6068 if (track->is_pause) {
6069 TRACET(4, track, "skip; paused");
6070 continue;
6071 }
6072
6073 if (audio_track_lock_tryenter(track) == false) {
6074 TRACET(4, track, "skip; in use");
6075 continue;
6076 }
6077
6078 /*
6079 * If the track buffer has less than one block of free space,
6080 * make one block free.
6081 */
6082 input = track->input;
6083 if (input->capacity - input->used < mixer->frames_per_block) {
6084 int drops = mixer->frames_per_block -
6085 (input->capacity - input->used);
6086 track->dropframes += drops;
6087 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
6088 drops,
6089 input->head, input->used, input->capacity);
6090 auring_take(input, drops);
6091 }
6092
6093 KASSERTMSG(auring_tail(input) % mixer->frames_per_block == 0,
6094 "inputtail=%d mixer->frames_per_block=%d",
6095 auring_tail(input), mixer->frames_per_block);
6096 memcpy(auring_tailptr_aint(input),
6097 auring_headptr_aint(mixersrc),
6098 bytes);
6099 auring_push(input, count);
6100
6101 /* XXX sequence counter? */
6102
6103 audio_track_lock_exit(track);
6104 }
6105
6106 auring_take(mixersrc, count);
6107 }
6108
6109 /*
6110 * Input one block from HW to hwbuf.
6111 * Must be called with sc_intr_lock held.
6112 */
6113 static void
6114 audio_rmixer_input(struct audio_softc *sc)
6115 {
6116 audio_trackmixer_t *mixer;
6117 audio_params_t params;
6118 void *start;
6119 void *end;
6120 int blksize;
6121 int error;
6122
6123 mixer = sc->sc_rmixer;
6124 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
6125
6126 if (sc->hw_if->trigger_input) {
6127 /* trigger (at once) */
6128 if (!sc->sc_rbusy) {
6129 start = mixer->hwbuf.mem;
6130 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
6131 params = format2_to_params(&mixer->hwbuf.fmt);
6132
6133 error = sc->hw_if->trigger_input(sc->hw_hdl,
6134 start, end, blksize, audio_rintr, sc, ¶ms);
6135 if (error) {
6136 audio_printf(sc,
6137 "trigger_input failed: errno=%d\n",
6138 error);
6139 return;
6140 }
6141 }
6142 } else {
6143 /* start (everytime) */
6144 start = auring_tailptr(&mixer->hwbuf);
6145
6146 error = sc->hw_if->start_input(sc->hw_hdl,
6147 start, blksize, audio_rintr, sc);
6148 if (error) {
6149 audio_printf(sc,
6150 "start_input failed: errno=%d\n", error);
6151 return;
6152 }
6153 }
6154 }
6155
6156 /*
6157 * This is an interrupt handler for recording.
6158 * It is called with sc_intr_lock.
6159 *
6160 * It is usually called from hardware interrupt. However, note that
6161 * for some drivers (e.g. uaudio) it is called from software interrupt.
6162 */
6163 static void
6164 audio_rintr(void *arg)
6165 {
6166 struct audio_softc *sc;
6167 audio_trackmixer_t *mixer;
6168
6169 sc = arg;
6170 KASSERT(mutex_owned(sc->sc_intr_lock));
6171
6172 if (sc->sc_dying)
6173 return;
6174 if (sc->sc_rbusy == false) {
6175 #if defined(DIAGNOSTIC)
6176 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
6177 device_xname(sc->hw_dev));
6178 #endif
6179 return;
6180 }
6181
6182 mixer = sc->sc_rmixer;
6183 mixer->hw_complete_counter += mixer->frames_per_block;
6184 mixer->hwseq++;
6185
6186 auring_push(&mixer->hwbuf, mixer->frames_per_block);
6187
6188 TRACE(4,
6189 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
6190 mixer->hwseq, mixer->hw_complete_counter,
6191 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
6192
6193 /* Distrubute recorded block */
6194 audio_rmixer_process(sc);
6195
6196 /* Request next block */
6197 audio_rmixer_input(sc);
6198
6199 /*
6200 * When this interrupt is the real hardware interrupt, disabling
6201 * preemption here is not necessary. But some drivers (e.g. uaudio)
6202 * emulate it by software interrupt, so kpreempt_disable is necessary.
6203 */
6204 kpreempt_disable();
6205 softint_schedule(mixer->sih);
6206 kpreempt_enable();
6207 }
6208
6209 /*
6210 * Halts playback mixer.
6211 * This function also clears related parameters, so call this function
6212 * instead of calling halt_output directly.
6213 * Must be called only if sc_pbusy is true.
6214 * Must be called with sc_lock && sc_exlock held.
6215 */
6216 static int
6217 audio_pmixer_halt(struct audio_softc *sc)
6218 {
6219 int error;
6220
6221 TRACE(2, "called");
6222 KASSERT(mutex_owned(sc->sc_lock));
6223 KASSERT(sc->sc_exlock);
6224
6225 mutex_enter(sc->sc_intr_lock);
6226 error = sc->hw_if->halt_output(sc->hw_hdl);
6227
6228 /* Halts anyway even if some error has occurred. */
6229 sc->sc_pbusy = false;
6230 sc->sc_pmixer->hwbuf.head = 0;
6231 sc->sc_pmixer->hwbuf.used = 0;
6232 sc->sc_pmixer->mixseq = 0;
6233 sc->sc_pmixer->hwseq = 0;
6234 mutex_exit(sc->sc_intr_lock);
6235
6236 return error;
6237 }
6238
6239 /*
6240 * Halts recording mixer.
6241 * This function also clears related parameters, so call this function
6242 * instead of calling halt_input directly.
6243 * Must be called only if sc_rbusy is true.
6244 * Must be called with sc_lock && sc_exlock held.
6245 */
6246 static int
6247 audio_rmixer_halt(struct audio_softc *sc)
6248 {
6249 int error;
6250
6251 TRACE(2, "called");
6252 KASSERT(mutex_owned(sc->sc_lock));
6253 KASSERT(sc->sc_exlock);
6254
6255 mutex_enter(sc->sc_intr_lock);
6256 error = sc->hw_if->halt_input(sc->hw_hdl);
6257
6258 /* Halts anyway even if some error has occurred. */
6259 sc->sc_rbusy = false;
6260 sc->sc_rmixer->hwbuf.head = 0;
6261 sc->sc_rmixer->hwbuf.used = 0;
6262 sc->sc_rmixer->mixseq = 0;
6263 sc->sc_rmixer->hwseq = 0;
6264 mutex_exit(sc->sc_intr_lock);
6265
6266 return error;
6267 }
6268
6269 /*
6270 * Flush this track.
6271 * Halts all operations, clears all buffers, reset error counters.
6272 * XXX I'm not sure...
6273 */
6274 static void
6275 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
6276 {
6277
6278 KASSERT(track);
6279 TRACET(3, track, "clear");
6280
6281 audio_track_lock_enter(track);
6282
6283 /* Clear all internal parameters. */
6284 track->usrbuf.used = 0;
6285 track->usrbuf.head = 0;
6286 if (track->codec.filter) {
6287 track->codec.srcbuf.used = 0;
6288 track->codec.srcbuf.head = 0;
6289 }
6290 if (track->chvol.filter) {
6291 track->chvol.srcbuf.used = 0;
6292 track->chvol.srcbuf.head = 0;
6293 }
6294 if (track->chmix.filter) {
6295 track->chmix.srcbuf.used = 0;
6296 track->chmix.srcbuf.head = 0;
6297 }
6298 if (track->freq.filter) {
6299 track->freq.srcbuf.used = 0;
6300 track->freq.srcbuf.head = 0;
6301 if (track->freq_step < 65536)
6302 track->freq_current = 65536;
6303 else
6304 track->freq_current = 0;
6305 memset(track->freq_prev, 0, sizeof(track->freq_prev));
6306 memset(track->freq_curr, 0, sizeof(track->freq_curr));
6307 }
6308 /* Clear buffer, then operation halts naturally. */
6309 track->outbuf.used = 0;
6310
6311 /* Clear counters. */
6312 track->stamp = 0;
6313 track->last_stamp = 0;
6314 track->dropframes = 0;
6315
6316 audio_track_lock_exit(track);
6317 }
6318
6319 /*
6320 * Drain the track.
6321 * track must be present and for playback.
6322 * If successful, it returns 0. Otherwise returns errno.
6323 * Must be called with sc_lock held.
6324 */
6325 static int
6326 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
6327 {
6328 audio_trackmixer_t *mixer;
6329 int done;
6330 int error;
6331
6332 KASSERT(track);
6333 TRACET(3, track, "start");
6334 mixer = track->mixer;
6335 KASSERT(mutex_owned(sc->sc_lock));
6336
6337 /* Ignore them if pause. */
6338 if (track->is_pause) {
6339 TRACET(3, track, "pause -> clear");
6340 track->pstate = AUDIO_STATE_CLEAR;
6341 }
6342 /* Terminate early here if there is no data in the track. */
6343 if (track->pstate == AUDIO_STATE_CLEAR) {
6344 TRACET(3, track, "no need to drain");
6345 return 0;
6346 }
6347 track->pstate = AUDIO_STATE_DRAINING;
6348
6349 for (;;) {
6350 /* I want to display it before condition evaluation. */
6351 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
6352 (int)curproc->p_pid, (int)curlwp->l_lid,
6353 (int)track->seq, (int)mixer->hwseq,
6354 track->outbuf.head, track->outbuf.used,
6355 track->outbuf.capacity);
6356
6357 /* Condition to terminate */
6358 audio_track_lock_enter(track);
6359 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
6360 track->outbuf.used == 0 &&
6361 track->seq <= mixer->hwseq);
6362 audio_track_lock_exit(track);
6363 if (done)
6364 break;
6365
6366 TRACET(3, track, "sleep");
6367 error = audio_track_waitio(sc, track);
6368 if (error)
6369 return error;
6370
6371 /* XXX call audio_track_play here ? */
6372 }
6373
6374 track->pstate = AUDIO_STATE_CLEAR;
6375 TRACET(3, track, "done trk_inp=%d trk_out=%d",
6376 (int)track->inputcounter, (int)track->outputcounter);
6377 return 0;
6378 }
6379
6380 /*
6381 * Send signal to process.
6382 * This is intended to be called only from audio_softintr_{rd,wr}.
6383 * Must be called without sc_intr_lock held.
6384 */
6385 static inline void
6386 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6387 {
6388 proc_t *p;
6389
6390 KASSERT(pid != 0);
6391
6392 /*
6393 * psignal() must be called without spin lock held.
6394 */
6395
6396 mutex_enter(&proc_lock);
6397 p = proc_find(pid);
6398 if (p)
6399 psignal(p, signum);
6400 mutex_exit(&proc_lock);
6401 }
6402
6403 /*
6404 * This is software interrupt handler for record.
6405 * It is called from recording hardware interrupt everytime.
6406 * It does:
6407 * - Deliver SIGIO for all async processes.
6408 * - Notify to audio_read() that data has arrived.
6409 * - selnotify() for select/poll-ing processes.
6410 */
6411 /*
6412 * XXX If a process issues FIOASYNC between hardware interrupt and
6413 * software interrupt, (stray) SIGIO will be sent to the process
6414 * despite the fact that it has not receive recorded data yet.
6415 */
6416 static void
6417 audio_softintr_rd(void *cookie)
6418 {
6419 struct audio_softc *sc = cookie;
6420 audio_file_t *f;
6421 pid_t pid;
6422
6423 mutex_enter(sc->sc_lock);
6424
6425 SLIST_FOREACH(f, &sc->sc_files, entry) {
6426 audio_track_t *track = f->rtrack;
6427
6428 if (track == NULL)
6429 continue;
6430
6431 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6432 track->input->head,
6433 track->input->used,
6434 track->input->capacity);
6435
6436 pid = f->async_audio;
6437 if (pid != 0) {
6438 TRACEF(4, f, "sending SIGIO %d", pid);
6439 audio_psignal(sc, pid, SIGIO);
6440 }
6441 }
6442
6443 /* Notify that data has arrived. */
6444 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6445 cv_broadcast(&sc->sc_rmixer->outcv);
6446
6447 mutex_exit(sc->sc_lock);
6448 }
6449
6450 /*
6451 * This is software interrupt handler for playback.
6452 * It is called from playback hardware interrupt everytime.
6453 * It does:
6454 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6455 * - Notify to audio_write() that outbuf block available.
6456 * - selnotify() for select/poll-ing processes if there are any writable
6457 * (used < lowat) processes. Checking each descriptor will be done by
6458 * filt_audiowrite_event().
6459 */
6460 static void
6461 audio_softintr_wr(void *cookie)
6462 {
6463 struct audio_softc *sc = cookie;
6464 audio_file_t *f;
6465 bool found;
6466 pid_t pid;
6467
6468 TRACE(4, "called");
6469 found = false;
6470
6471 mutex_enter(sc->sc_lock);
6472
6473 SLIST_FOREACH(f, &sc->sc_files, entry) {
6474 audio_track_t *track = f->ptrack;
6475
6476 if (track == NULL)
6477 continue;
6478
6479 TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6480 (int)track->seq,
6481 track->outbuf.head,
6482 track->outbuf.used,
6483 track->outbuf.capacity);
6484
6485 /*
6486 * Send a signal if the process is async mode and
6487 * used is lower than lowat.
6488 */
6489 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6490 !track->is_pause) {
6491 /* For selnotify */
6492 found = true;
6493 /* For SIGIO */
6494 pid = f->async_audio;
6495 if (pid != 0) {
6496 TRACEF(4, f, "sending SIGIO %d", pid);
6497 audio_psignal(sc, pid, SIGIO);
6498 }
6499 }
6500 }
6501
6502 /*
6503 * Notify for select/poll when someone become writable.
6504 * It needs sc_lock (and not sc_intr_lock).
6505 */
6506 if (found) {
6507 TRACE(4, "selnotify");
6508 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6509 }
6510
6511 /* Notify to audio_write() that outbuf available. */
6512 cv_broadcast(&sc->sc_pmixer->outcv);
6513
6514 mutex_exit(sc->sc_lock);
6515 }
6516
6517 /*
6518 * Check (and convert) the format *p came from userland.
6519 * If successful, it writes back the converted format to *p if necessary and
6520 * returns 0. Otherwise returns errno (*p may be changed even in this case).
6521 */
6522 static int
6523 audio_check_params(audio_format2_t *p)
6524 {
6525
6526 /*
6527 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6528 *
6529 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6530 * So, it's always signed, as in SunOS.
6531 *
6532 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6533 * So, it's always unsigned, as in SunOS.
6534 */
6535 if (p->encoding == AUDIO_ENCODING_PCM16) {
6536 p->encoding = AUDIO_ENCODING_SLINEAR;
6537 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6538 if (p->precision == 8)
6539 p->encoding = AUDIO_ENCODING_ULINEAR;
6540 else
6541 return EINVAL;
6542 }
6543
6544 /*
6545 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6546 * suffix.
6547 */
6548 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6549 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6550 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6551 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6552
6553 switch (p->encoding) {
6554 case AUDIO_ENCODING_ULAW:
6555 case AUDIO_ENCODING_ALAW:
6556 if (p->precision != 8)
6557 return EINVAL;
6558 break;
6559 case AUDIO_ENCODING_ADPCM:
6560 if (p->precision != 4 && p->precision != 8)
6561 return EINVAL;
6562 break;
6563 case AUDIO_ENCODING_SLINEAR_LE:
6564 case AUDIO_ENCODING_SLINEAR_BE:
6565 case AUDIO_ENCODING_ULINEAR_LE:
6566 case AUDIO_ENCODING_ULINEAR_BE:
6567 if (p->precision != 8 && p->precision != 16 &&
6568 p->precision != 24 && p->precision != 32)
6569 return EINVAL;
6570
6571 /* 8bit format does not have endianness. */
6572 if (p->precision == 8) {
6573 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6574 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6575 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6576 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6577 }
6578
6579 if (p->precision > p->stride)
6580 return EINVAL;
6581 break;
6582 case AUDIO_ENCODING_MPEG_L1_STREAM:
6583 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6584 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6585 case AUDIO_ENCODING_MPEG_L2_STREAM:
6586 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6587 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6588 case AUDIO_ENCODING_AC3:
6589 break;
6590 default:
6591 return EINVAL;
6592 }
6593
6594 /* sanity check # of channels*/
6595 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6596 return EINVAL;
6597
6598 return 0;
6599 }
6600
6601 /*
6602 * Initialize playback and record mixers.
6603 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6604 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6605 * the filter registration information. These four must not be NULL.
6606 * If successful returns 0. Otherwise returns errno.
6607 * Must be called with sc_exlock held and without sc_lock held.
6608 * Must not be called if there are any tracks.
6609 * Caller should check that the initialization succeed by whether
6610 * sc_[pr]mixer is not NULL.
6611 */
6612 static int
6613 audio_mixers_init(struct audio_softc *sc, int mode,
6614 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6615 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6616 {
6617 int error;
6618
6619 KASSERT(phwfmt != NULL);
6620 KASSERT(rhwfmt != NULL);
6621 KASSERT(pfil != NULL);
6622 KASSERT(rfil != NULL);
6623 KASSERT(sc->sc_exlock);
6624
6625 if ((mode & AUMODE_PLAY)) {
6626 if (sc->sc_pmixer == NULL) {
6627 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6628 KM_SLEEP);
6629 } else {
6630 /* destroy() doesn't free memory. */
6631 audio_mixer_destroy(sc, sc->sc_pmixer);
6632 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6633 }
6634 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6635 if (error) {
6636 /* audio_mixer_init already displayed error code */
6637 audio_printf(sc, "configuring playback mode failed\n");
6638 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6639 sc->sc_pmixer = NULL;
6640 return error;
6641 }
6642 }
6643 if ((mode & AUMODE_RECORD)) {
6644 if (sc->sc_rmixer == NULL) {
6645 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6646 KM_SLEEP);
6647 } else {
6648 /* destroy() doesn't free memory. */
6649 audio_mixer_destroy(sc, sc->sc_rmixer);
6650 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6651 }
6652 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6653 if (error) {
6654 /* audio_mixer_init already displayed error code */
6655 audio_printf(sc, "configuring record mode failed\n");
6656 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6657 sc->sc_rmixer = NULL;
6658 return error;
6659 }
6660 }
6661
6662 return 0;
6663 }
6664
6665 /*
6666 * Select a frequency.
6667 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6668 * XXX Better algorithm?
6669 */
6670 static int
6671 audio_select_freq(const struct audio_format *fmt)
6672 {
6673 int freq;
6674 int high;
6675 int low;
6676 int j;
6677
6678 if (fmt->frequency_type == 0) {
6679 low = fmt->frequency[0];
6680 high = fmt->frequency[1];
6681 freq = 48000;
6682 if (low <= freq && freq <= high) {
6683 return freq;
6684 }
6685 freq = 44100;
6686 if (low <= freq && freq <= high) {
6687 return freq;
6688 }
6689 return high;
6690 } else {
6691 for (j = 0; j < fmt->frequency_type; j++) {
6692 if (fmt->frequency[j] == 48000) {
6693 return fmt->frequency[j];
6694 }
6695 }
6696 high = 0;
6697 for (j = 0; j < fmt->frequency_type; j++) {
6698 if (fmt->frequency[j] == 44100) {
6699 return fmt->frequency[j];
6700 }
6701 if (fmt->frequency[j] > high) {
6702 high = fmt->frequency[j];
6703 }
6704 }
6705 return high;
6706 }
6707 }
6708
6709 /*
6710 * Choose the most preferred hardware format.
6711 * If successful, it will store the chosen format into *cand and return 0.
6712 * Otherwise, return errno.
6713 * Must be called without sc_lock held.
6714 */
6715 static int
6716 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6717 {
6718 audio_format_query_t query;
6719 int cand_score;
6720 int score;
6721 int i;
6722 int error;
6723
6724 /*
6725 * Score each formats and choose the highest one.
6726 *
6727 * +---- priority(0-3)
6728 * |+--- encoding/precision
6729 * ||+-- channels
6730 * score = 0x000000PEC
6731 */
6732
6733 cand_score = 0;
6734 for (i = 0; ; i++) {
6735 memset(&query, 0, sizeof(query));
6736 query.index = i;
6737
6738 mutex_enter(sc->sc_lock);
6739 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6740 mutex_exit(sc->sc_lock);
6741 if (error == EINVAL)
6742 break;
6743 if (error)
6744 return error;
6745
6746 #if defined(AUDIO_DEBUG)
6747 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6748 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6749 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6750 query.fmt.priority,
6751 audio_encoding_name(query.fmt.encoding),
6752 query.fmt.validbits,
6753 query.fmt.precision,
6754 query.fmt.channels);
6755 if (query.fmt.frequency_type == 0) {
6756 DPRINTF(1, "{%d-%d",
6757 query.fmt.frequency[0], query.fmt.frequency[1]);
6758 } else {
6759 int j;
6760 for (j = 0; j < query.fmt.frequency_type; j++) {
6761 DPRINTF(1, "%c%d",
6762 (j == 0) ? '{' : ',',
6763 query.fmt.frequency[j]);
6764 }
6765 }
6766 DPRINTF(1, "}\n");
6767 #endif
6768
6769 if ((query.fmt.mode & mode) == 0) {
6770 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6771 mode);
6772 continue;
6773 }
6774
6775 if (query.fmt.priority < 0) {
6776 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6777 continue;
6778 }
6779
6780 /* Score */
6781 score = (query.fmt.priority & 3) * 0x100;
6782 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6783 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6784 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6785 score += 0x20;
6786 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6787 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6788 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6789 score += 0x10;
6790 }
6791
6792 /* Do not prefer surround formats */
6793 if (query.fmt.channels <= 2)
6794 score += query.fmt.channels;
6795
6796 if (score < cand_score) {
6797 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6798 score, cand_score);
6799 continue;
6800 }
6801
6802 /* Update candidate */
6803 cand_score = score;
6804 cand->encoding = query.fmt.encoding;
6805 cand->precision = query.fmt.validbits;
6806 cand->stride = query.fmt.precision;
6807 cand->channels = query.fmt.channels;
6808 cand->sample_rate = audio_select_freq(&query.fmt);
6809 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6810 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6811 cand_score, query.fmt.priority,
6812 audio_encoding_name(query.fmt.encoding),
6813 cand->precision, cand->stride,
6814 cand->channels, cand->sample_rate);
6815 }
6816
6817 if (cand_score == 0) {
6818 DPRINTF(1, "%s no fmt\n", __func__);
6819 return ENXIO;
6820 }
6821 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6822 audio_encoding_name(cand->encoding),
6823 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6824 return 0;
6825 }
6826
6827 /*
6828 * Validate fmt with query_format.
6829 * If fmt is included in the result of query_format, returns 0.
6830 * Otherwise returns EINVAL.
6831 * Must be called without sc_lock held.
6832 */
6833 static int
6834 audio_hw_validate_format(struct audio_softc *sc, int mode,
6835 const audio_format2_t *fmt)
6836 {
6837 audio_format_query_t query;
6838 struct audio_format *q;
6839 int index;
6840 int error;
6841 int j;
6842
6843 for (index = 0; ; index++) {
6844 query.index = index;
6845 mutex_enter(sc->sc_lock);
6846 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6847 mutex_exit(sc->sc_lock);
6848 if (error == EINVAL)
6849 break;
6850 if (error)
6851 return error;
6852
6853 q = &query.fmt;
6854 /*
6855 * Note that fmt is audio_format2_t (precision/stride) but
6856 * q is audio_format_t (validbits/precision).
6857 */
6858 if ((q->mode & mode) == 0) {
6859 continue;
6860 }
6861 if (fmt->encoding != q->encoding) {
6862 continue;
6863 }
6864 if (fmt->precision != q->validbits) {
6865 continue;
6866 }
6867 if (fmt->stride != q->precision) {
6868 continue;
6869 }
6870 if (fmt->channels != q->channels) {
6871 continue;
6872 }
6873 if (q->frequency_type == 0) {
6874 if (fmt->sample_rate < q->frequency[0] ||
6875 fmt->sample_rate > q->frequency[1]) {
6876 continue;
6877 }
6878 } else {
6879 for (j = 0; j < q->frequency_type; j++) {
6880 if (fmt->sample_rate == q->frequency[j])
6881 break;
6882 }
6883 if (j == query.fmt.frequency_type) {
6884 continue;
6885 }
6886 }
6887
6888 /* Matched. */
6889 return 0;
6890 }
6891
6892 return EINVAL;
6893 }
6894
6895 /*
6896 * Set track mixer's format depending on ai->mode.
6897 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6898 * with ai.play.*.
6899 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6900 * with ai.record.*.
6901 * All other fields in ai are ignored.
6902 * If successful returns 0. Otherwise returns errno.
6903 * This function does not roll back even if it fails.
6904 * Must be called with sc_exlock held and without sc_lock held.
6905 */
6906 static int
6907 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6908 {
6909 audio_format2_t phwfmt;
6910 audio_format2_t rhwfmt;
6911 audio_filter_reg_t pfil;
6912 audio_filter_reg_t rfil;
6913 int mode;
6914 int error;
6915
6916 KASSERT(sc->sc_exlock);
6917
6918 /*
6919 * Even when setting either one of playback and recording,
6920 * both must be halted.
6921 */
6922 if (sc->sc_popens + sc->sc_ropens > 0)
6923 return EBUSY;
6924
6925 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6926 return ENOTTY;
6927
6928 mode = ai->mode;
6929 if ((mode & AUMODE_PLAY)) {
6930 phwfmt.encoding = ai->play.encoding;
6931 phwfmt.precision = ai->play.precision;
6932 phwfmt.stride = ai->play.precision;
6933 phwfmt.channels = ai->play.channels;
6934 phwfmt.sample_rate = ai->play.sample_rate;
6935 }
6936 if ((mode & AUMODE_RECORD)) {
6937 rhwfmt.encoding = ai->record.encoding;
6938 rhwfmt.precision = ai->record.precision;
6939 rhwfmt.stride = ai->record.precision;
6940 rhwfmt.channels = ai->record.channels;
6941 rhwfmt.sample_rate = ai->record.sample_rate;
6942 }
6943
6944 /* On non-independent devices, use the same format for both. */
6945 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6946 if (mode == AUMODE_RECORD) {
6947 phwfmt = rhwfmt;
6948 } else {
6949 rhwfmt = phwfmt;
6950 }
6951 mode = AUMODE_PLAY | AUMODE_RECORD;
6952 }
6953
6954 /* Then, unset the direction not exist on the hardware. */
6955 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6956 mode &= ~AUMODE_PLAY;
6957 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6958 mode &= ~AUMODE_RECORD;
6959
6960 /* debug */
6961 if ((mode & AUMODE_PLAY)) {
6962 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6963 audio_encoding_name(phwfmt.encoding),
6964 phwfmt.precision,
6965 phwfmt.stride,
6966 phwfmt.channels,
6967 phwfmt.sample_rate);
6968 }
6969 if ((mode & AUMODE_RECORD)) {
6970 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6971 audio_encoding_name(rhwfmt.encoding),
6972 rhwfmt.precision,
6973 rhwfmt.stride,
6974 rhwfmt.channels,
6975 rhwfmt.sample_rate);
6976 }
6977
6978 /* Check the format */
6979 if ((mode & AUMODE_PLAY)) {
6980 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6981 TRACE(1, "invalid format");
6982 return EINVAL;
6983 }
6984 }
6985 if ((mode & AUMODE_RECORD)) {
6986 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6987 TRACE(1, "invalid format");
6988 return EINVAL;
6989 }
6990 }
6991
6992 /* Configure the mixers. */
6993 memset(&pfil, 0, sizeof(pfil));
6994 memset(&rfil, 0, sizeof(rfil));
6995 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6996 if (error)
6997 return error;
6998
6999 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7000 if (error)
7001 return error;
7002
7003 /*
7004 * Reinitialize the sticky parameters for /dev/sound.
7005 * If the number of the hardware channels becomes less than the number
7006 * of channels that sticky parameters remember, subsequent /dev/sound
7007 * open will fail. To prevent this, reinitialize the sticky
7008 * parameters whenever the hardware format is changed.
7009 */
7010 sc->sc_sound_pparams = params_to_format2(&audio_default);
7011 sc->sc_sound_rparams = params_to_format2(&audio_default);
7012 sc->sc_sound_ppause = false;
7013 sc->sc_sound_rpause = false;
7014
7015 return 0;
7016 }
7017
7018 /*
7019 * Store current mixers format into *ai.
7020 * Must be called with sc_exlock held.
7021 */
7022 static void
7023 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
7024 {
7025
7026 KASSERT(sc->sc_exlock);
7027
7028 /*
7029 * There is no stride information in audio_info but it doesn't matter.
7030 * trackmixer always treats stride and precision as the same.
7031 */
7032 AUDIO_INITINFO(ai);
7033 ai->mode = 0;
7034 if (sc->sc_pmixer) {
7035 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
7036 ai->play.encoding = fmt->encoding;
7037 ai->play.precision = fmt->precision;
7038 ai->play.channels = fmt->channels;
7039 ai->play.sample_rate = fmt->sample_rate;
7040 ai->mode |= AUMODE_PLAY;
7041 }
7042 if (sc->sc_rmixer) {
7043 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
7044 ai->record.encoding = fmt->encoding;
7045 ai->record.precision = fmt->precision;
7046 ai->record.channels = fmt->channels;
7047 ai->record.sample_rate = fmt->sample_rate;
7048 ai->mode |= AUMODE_RECORD;
7049 }
7050 }
7051
7052 /*
7053 * audio_info details:
7054 *
7055 * ai.{play,record}.sample_rate (R/W)
7056 * ai.{play,record}.encoding (R/W)
7057 * ai.{play,record}.precision (R/W)
7058 * ai.{play,record}.channels (R/W)
7059 * These specify the playback or recording format.
7060 * Ignore members within an inactive track.
7061 *
7062 * ai.mode (R/W)
7063 * It specifies the playback or recording mode, AUMODE_*.
7064 * Currently, a mode change operation by ai.mode after opening is
7065 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
7066 * However, it's possible to get or to set for backward compatibility.
7067 *
7068 * ai.{hiwat,lowat} (R/W)
7069 * These specify the high water mark and low water mark for playback
7070 * track. The unit is block.
7071 *
7072 * ai.{play,record}.gain (R/W)
7073 * It specifies the HW mixer volume in 0-255.
7074 * It is historical reason that the gain is connected to HW mixer.
7075 *
7076 * ai.{play,record}.balance (R/W)
7077 * It specifies the left-right balance of HW mixer in 0-64.
7078 * 32 means the center.
7079 * It is historical reason that the balance is connected to HW mixer.
7080 *
7081 * ai.{play,record}.port (R/W)
7082 * It specifies the input/output port of HW mixer.
7083 *
7084 * ai.monitor_gain (R/W)
7085 * It specifies the recording monitor gain(?) of HW mixer.
7086 *
7087 * ai.{play,record}.pause (R/W)
7088 * Non-zero means the track is paused.
7089 *
7090 * ai.play.seek (R/-)
7091 * It indicates the number of bytes written but not processed.
7092 * ai.record.seek (R/-)
7093 * It indicates the number of bytes to be able to read.
7094 *
7095 * ai.{play,record}.avail_ports (R/-)
7096 * Mixer info.
7097 *
7098 * ai.{play,record}.buffer_size (R/-)
7099 * It indicates the buffer size in bytes. Internally it means usrbuf.
7100 *
7101 * ai.{play,record}.samples (R/-)
7102 * It indicates the total number of bytes played or recorded.
7103 *
7104 * ai.{play,record}.eof (R/-)
7105 * It indicates the number of times reached EOF(?).
7106 *
7107 * ai.{play,record}.error (R/-)
7108 * Non-zero indicates overflow/underflow has occurred.
7109 *
7110 * ai.{play,record}.waiting (R/-)
7111 * Non-zero indicates that other process waits to open.
7112 * It will never happen anymore.
7113 *
7114 * ai.{play,record}.open (R/-)
7115 * Non-zero indicates the direction is opened by this process(?).
7116 * XXX Is this better to indicate that "the device is opened by
7117 * at least one process"?
7118 *
7119 * ai.{play,record}.active (R/-)
7120 * Non-zero indicates that I/O is currently active.
7121 *
7122 * ai.blocksize (R/-)
7123 * It indicates the block size in bytes.
7124 * XXX The blocksize of playback and recording may be different.
7125 */
7126
7127 /*
7128 * Pause consideration:
7129 *
7130 * Pausing/unpausing never affect [pr]mixer. This single rule makes
7131 * operation simple. Note that playback and recording are asymmetric.
7132 *
7133 * For playback,
7134 * 1. Any playback open doesn't start pmixer regardless of initial pause
7135 * state of this track.
7136 * 2. The first write access among playback tracks only starts pmixer
7137 * regardless of this track's pause state.
7138 * 3. Even a pause of the last playback track doesn't stop pmixer.
7139 * 4. The last close of all playback tracks only stops pmixer.
7140 *
7141 * For recording,
7142 * 1. The first recording open only starts rmixer regardless of initial
7143 * pause state of this track.
7144 * 2. Even a pause of the last track doesn't stop rmixer.
7145 * 3. The last close of all recording tracks only stops rmixer.
7146 */
7147
7148 /*
7149 * Set both track's parameters within a file depending on ai.
7150 * Update sc_sound_[pr]* if set.
7151 * Must be called with sc_exlock held and without sc_lock held.
7152 */
7153 static int
7154 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
7155 const struct audio_info *ai)
7156 {
7157 const struct audio_prinfo *pi;
7158 const struct audio_prinfo *ri;
7159 audio_track_t *ptrack;
7160 audio_track_t *rtrack;
7161 audio_format2_t pfmt;
7162 audio_format2_t rfmt;
7163 int pchanges;
7164 int rchanges;
7165 int mode;
7166 struct audio_info saved_ai;
7167 audio_format2_t saved_pfmt;
7168 audio_format2_t saved_rfmt;
7169 int error;
7170
7171 KASSERT(sc->sc_exlock);
7172
7173 pi = &ai->play;
7174 ri = &ai->record;
7175 pchanges = 0;
7176 rchanges = 0;
7177
7178 ptrack = file->ptrack;
7179 rtrack = file->rtrack;
7180
7181 #if defined(AUDIO_DEBUG)
7182 if (audiodebug >= 2) {
7183 char buf[256];
7184 char p[64];
7185 int buflen;
7186 int plen;
7187 #define SPRINTF(var, fmt...) do { \
7188 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
7189 } while (0)
7190
7191 buflen = 0;
7192 plen = 0;
7193 if (SPECIFIED(pi->encoding))
7194 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
7195 if (SPECIFIED(pi->precision))
7196 SPRINTF(p, "/%dbit", pi->precision);
7197 if (SPECIFIED(pi->channels))
7198 SPRINTF(p, "/%dch", pi->channels);
7199 if (SPECIFIED(pi->sample_rate))
7200 SPRINTF(p, "/%dHz", pi->sample_rate);
7201 if (plen > 0)
7202 SPRINTF(buf, ",play.param=%s", p + 1);
7203
7204 plen = 0;
7205 if (SPECIFIED(ri->encoding))
7206 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
7207 if (SPECIFIED(ri->precision))
7208 SPRINTF(p, "/%dbit", ri->precision);
7209 if (SPECIFIED(ri->channels))
7210 SPRINTF(p, "/%dch", ri->channels);
7211 if (SPECIFIED(ri->sample_rate))
7212 SPRINTF(p, "/%dHz", ri->sample_rate);
7213 if (plen > 0)
7214 SPRINTF(buf, ",record.param=%s", p + 1);
7215
7216 if (SPECIFIED(ai->mode))
7217 SPRINTF(buf, ",mode=%d", ai->mode);
7218 if (SPECIFIED(ai->hiwat))
7219 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
7220 if (SPECIFIED(ai->lowat))
7221 SPRINTF(buf, ",lowat=%d", ai->lowat);
7222 if (SPECIFIED(ai->play.gain))
7223 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
7224 if (SPECIFIED(ai->record.gain))
7225 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
7226 if (SPECIFIED_CH(ai->play.balance))
7227 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
7228 if (SPECIFIED_CH(ai->record.balance))
7229 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
7230 if (SPECIFIED(ai->play.port))
7231 SPRINTF(buf, ",play.port=%d", ai->play.port);
7232 if (SPECIFIED(ai->record.port))
7233 SPRINTF(buf, ",record.port=%d", ai->record.port);
7234 if (SPECIFIED(ai->monitor_gain))
7235 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
7236 if (SPECIFIED_CH(ai->play.pause))
7237 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
7238 if (SPECIFIED_CH(ai->record.pause))
7239 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
7240
7241 if (buflen > 0)
7242 TRACE(2, "specified %s", buf + 1);
7243 }
7244 #endif
7245
7246 AUDIO_INITINFO(&saved_ai);
7247 /* XXX shut up gcc */
7248 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
7249 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
7250
7251 /*
7252 * Set default value and save current parameters.
7253 * For backward compatibility, use sticky parameters for nonexistent
7254 * track.
7255 */
7256 if (ptrack) {
7257 pfmt = ptrack->usrbuf.fmt;
7258 saved_pfmt = ptrack->usrbuf.fmt;
7259 saved_ai.play.pause = ptrack->is_pause;
7260 } else {
7261 pfmt = sc->sc_sound_pparams;
7262 }
7263 if (rtrack) {
7264 rfmt = rtrack->usrbuf.fmt;
7265 saved_rfmt = rtrack->usrbuf.fmt;
7266 saved_ai.record.pause = rtrack->is_pause;
7267 } else {
7268 rfmt = sc->sc_sound_rparams;
7269 }
7270 saved_ai.mode = file->mode;
7271
7272 /*
7273 * Overwrite if specified.
7274 */
7275 mode = file->mode;
7276 if (SPECIFIED(ai->mode)) {
7277 /*
7278 * Setting ai->mode no longer does anything because it's
7279 * prohibited to change playback/recording mode after open
7280 * and AUMODE_PLAY_ALL is obsoleted. However, it still
7281 * keeps the state of AUMODE_PLAY_ALL itself for backward
7282 * compatibility.
7283 * In the internal, only file->mode has the state of
7284 * AUMODE_PLAY_ALL flag and track->mode in both track does
7285 * not have.
7286 */
7287 if ((file->mode & AUMODE_PLAY)) {
7288 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
7289 | (ai->mode & AUMODE_PLAY_ALL);
7290 }
7291 }
7292
7293 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
7294 if (pchanges == -1) {
7295 #if defined(AUDIO_DEBUG)
7296 TRACEF(1, file, "check play.params failed: "
7297 "%s %ubit %uch %uHz",
7298 audio_encoding_name(pi->encoding),
7299 pi->precision,
7300 pi->channels,
7301 pi->sample_rate);
7302 #endif
7303 return EINVAL;
7304 }
7305
7306 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
7307 if (rchanges == -1) {
7308 #if defined(AUDIO_DEBUG)
7309 TRACEF(1, file, "check record.params failed: "
7310 "%s %ubit %uch %uHz",
7311 audio_encoding_name(ri->encoding),
7312 ri->precision,
7313 ri->channels,
7314 ri->sample_rate);
7315 #endif
7316 return EINVAL;
7317 }
7318
7319 if (SPECIFIED(ai->mode)) {
7320 pchanges = 1;
7321 rchanges = 1;
7322 }
7323
7324 /*
7325 * Even when setting either one of playback and recording,
7326 * both track must be halted.
7327 */
7328 if (pchanges || rchanges) {
7329 audio_file_clear(sc, file);
7330 #if defined(AUDIO_DEBUG)
7331 char nbuf[16];
7332 char fmtbuf[64];
7333 if (pchanges) {
7334 if (ptrack) {
7335 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
7336 } else {
7337 snprintf(nbuf, sizeof(nbuf), "-");
7338 }
7339 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
7340 DPRINTF(1, "audio track#%s play mode: %s\n",
7341 nbuf, fmtbuf);
7342 }
7343 if (rchanges) {
7344 if (rtrack) {
7345 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
7346 } else {
7347 snprintf(nbuf, sizeof(nbuf), "-");
7348 }
7349 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
7350 DPRINTF(1, "audio track#%s rec mode: %s\n",
7351 nbuf, fmtbuf);
7352 }
7353 #endif
7354 }
7355
7356 /* Set mixer parameters */
7357 mutex_enter(sc->sc_lock);
7358 error = audio_hw_setinfo(sc, ai, &saved_ai);
7359 mutex_exit(sc->sc_lock);
7360 if (error)
7361 goto abort1;
7362
7363 /*
7364 * Set to track and update sticky parameters.
7365 */
7366 error = 0;
7367 file->mode = mode;
7368
7369 if (SPECIFIED_CH(pi->pause)) {
7370 if (ptrack)
7371 ptrack->is_pause = pi->pause;
7372 sc->sc_sound_ppause = pi->pause;
7373 }
7374 if (pchanges) {
7375 if (ptrack) {
7376 audio_track_lock_enter(ptrack);
7377 error = audio_track_set_format(ptrack, &pfmt);
7378 audio_track_lock_exit(ptrack);
7379 if (error) {
7380 TRACET(1, ptrack, "set play.params failed");
7381 goto abort2;
7382 }
7383 }
7384 sc->sc_sound_pparams = pfmt;
7385 }
7386 /* Change water marks after initializing the buffers. */
7387 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7388 if (ptrack)
7389 audio_track_setinfo_water(ptrack, ai);
7390 }
7391
7392 if (SPECIFIED_CH(ri->pause)) {
7393 if (rtrack)
7394 rtrack->is_pause = ri->pause;
7395 sc->sc_sound_rpause = ri->pause;
7396 }
7397 if (rchanges) {
7398 if (rtrack) {
7399 audio_track_lock_enter(rtrack);
7400 error = audio_track_set_format(rtrack, &rfmt);
7401 audio_track_lock_exit(rtrack);
7402 if (error) {
7403 TRACET(1, rtrack, "set record.params failed");
7404 goto abort3;
7405 }
7406 }
7407 sc->sc_sound_rparams = rfmt;
7408 }
7409
7410 return 0;
7411
7412 /* Rollback */
7413 abort3:
7414 if (error != ENOMEM) {
7415 rtrack->is_pause = saved_ai.record.pause;
7416 audio_track_lock_enter(rtrack);
7417 audio_track_set_format(rtrack, &saved_rfmt);
7418 audio_track_lock_exit(rtrack);
7419 }
7420 sc->sc_sound_rpause = saved_ai.record.pause;
7421 sc->sc_sound_rparams = saved_rfmt;
7422 abort2:
7423 if (ptrack && error != ENOMEM) {
7424 ptrack->is_pause = saved_ai.play.pause;
7425 audio_track_lock_enter(ptrack);
7426 audio_track_set_format(ptrack, &saved_pfmt);
7427 audio_track_lock_exit(ptrack);
7428 }
7429 sc->sc_sound_ppause = saved_ai.play.pause;
7430 sc->sc_sound_pparams = saved_pfmt;
7431 file->mode = saved_ai.mode;
7432 abort1:
7433 mutex_enter(sc->sc_lock);
7434 audio_hw_setinfo(sc, &saved_ai, NULL);
7435 mutex_exit(sc->sc_lock);
7436
7437 return error;
7438 }
7439
7440 /*
7441 * Write SPECIFIED() parameters within info back to fmt.
7442 * Note that track can be NULL here.
7443 * Return value of 1 indicates that fmt is modified.
7444 * Return value of 0 indicates that fmt is not modified.
7445 * Return value of -1 indicates that error EINVAL has occurred.
7446 */
7447 static int
7448 audio_track_setinfo_check(audio_track_t *track,
7449 audio_format2_t *fmt, const struct audio_prinfo *info)
7450 {
7451 const audio_format2_t *hwfmt;
7452 int changes;
7453
7454 changes = 0;
7455 if (SPECIFIED(info->sample_rate)) {
7456 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7457 return -1;
7458 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7459 return -1;
7460 fmt->sample_rate = info->sample_rate;
7461 changes = 1;
7462 }
7463 if (SPECIFIED(info->encoding)) {
7464 fmt->encoding = info->encoding;
7465 changes = 1;
7466 }
7467 if (SPECIFIED(info->precision)) {
7468 fmt->precision = info->precision;
7469 /* we don't have API to specify stride */
7470 fmt->stride = info->precision;
7471 changes = 1;
7472 }
7473 if (SPECIFIED(info->channels)) {
7474 /*
7475 * We can convert between monaural and stereo each other.
7476 * We can reduce than the number of channels that the hardware
7477 * supports.
7478 */
7479 if (info->channels > 2) {
7480 if (track) {
7481 hwfmt = &track->mixer->hwbuf.fmt;
7482 if (info->channels > hwfmt->channels)
7483 return -1;
7484 } else {
7485 /*
7486 * This should never happen.
7487 * If track == NULL, channels should be <= 2.
7488 */
7489 return -1;
7490 }
7491 }
7492 fmt->channels = info->channels;
7493 changes = 1;
7494 }
7495
7496 if (changes) {
7497 if (audio_check_params(fmt) != 0)
7498 return -1;
7499 }
7500
7501 return changes;
7502 }
7503
7504 /*
7505 * Change water marks for playback track if specified.
7506 */
7507 static void
7508 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7509 {
7510 u_int blks;
7511 u_int maxblks;
7512 u_int blksize;
7513
7514 KASSERT(audio_track_is_playback(track));
7515
7516 blksize = track->usrbuf_blksize;
7517 maxblks = track->usrbuf.capacity / blksize;
7518
7519 if (SPECIFIED(ai->hiwat)) {
7520 blks = ai->hiwat;
7521 if (blks > maxblks)
7522 blks = maxblks;
7523 if (blks < 2)
7524 blks = 2;
7525 track->usrbuf_usedhigh = blks * blksize;
7526 }
7527 if (SPECIFIED(ai->lowat)) {
7528 blks = ai->lowat;
7529 if (blks > maxblks - 1)
7530 blks = maxblks - 1;
7531 track->usrbuf_usedlow = blks * blksize;
7532 }
7533 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7534 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7535 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7536 blksize;
7537 }
7538 }
7539 }
7540
7541 /*
7542 * Set hardware part of *newai.
7543 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7544 * If oldai is specified, previous parameters are stored.
7545 * This function itself does not roll back if error occurred.
7546 * Must be called with sc_lock && sc_exlock held.
7547 */
7548 static int
7549 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7550 struct audio_info *oldai)
7551 {
7552 const struct audio_prinfo *newpi;
7553 const struct audio_prinfo *newri;
7554 struct audio_prinfo *oldpi;
7555 struct audio_prinfo *oldri;
7556 u_int pgain;
7557 u_int rgain;
7558 u_char pbalance;
7559 u_char rbalance;
7560 int error;
7561
7562 KASSERT(mutex_owned(sc->sc_lock));
7563 KASSERT(sc->sc_exlock);
7564
7565 /* XXX shut up gcc */
7566 oldpi = NULL;
7567 oldri = NULL;
7568
7569 newpi = &newai->play;
7570 newri = &newai->record;
7571 if (oldai) {
7572 oldpi = &oldai->play;
7573 oldri = &oldai->record;
7574 }
7575 error = 0;
7576
7577 /*
7578 * It looks like unnecessary to halt HW mixers to set HW mixers.
7579 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7580 */
7581
7582 if (SPECIFIED(newpi->port)) {
7583 if (oldai)
7584 oldpi->port = au_get_port(sc, &sc->sc_outports);
7585 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7586 if (error) {
7587 audio_printf(sc,
7588 "setting play.port=%d failed: errno=%d\n",
7589 newpi->port, error);
7590 goto abort;
7591 }
7592 }
7593 if (SPECIFIED(newri->port)) {
7594 if (oldai)
7595 oldri->port = au_get_port(sc, &sc->sc_inports);
7596 error = au_set_port(sc, &sc->sc_inports, newri->port);
7597 if (error) {
7598 audio_printf(sc,
7599 "setting record.port=%d failed: errno=%d\n",
7600 newri->port, error);
7601 goto abort;
7602 }
7603 }
7604
7605 /* play.{gain,balance} */
7606 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7607 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7608 if (oldai) {
7609 oldpi->gain = pgain;
7610 oldpi->balance = pbalance;
7611 }
7612
7613 if (SPECIFIED(newpi->gain))
7614 pgain = newpi->gain;
7615 if (SPECIFIED_CH(newpi->balance))
7616 pbalance = newpi->balance;
7617 error = au_set_gain(sc, &sc->sc_outports, pgain, pbalance);
7618 if (error) {
7619 audio_printf(sc,
7620 "setting play.gain=%d/balance=%d failed: "
7621 "errno=%d\n",
7622 pgain, pbalance, error);
7623 goto abort;
7624 }
7625 }
7626
7627 /* record.{gain,balance} */
7628 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7629 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7630 if (oldai) {
7631 oldri->gain = rgain;
7632 oldri->balance = rbalance;
7633 }
7634
7635 if (SPECIFIED(newri->gain))
7636 rgain = newri->gain;
7637 if (SPECIFIED_CH(newri->balance))
7638 rbalance = newri->balance;
7639 error = au_set_gain(sc, &sc->sc_inports, rgain, rbalance);
7640 if (error) {
7641 audio_printf(sc,
7642 "setting record.gain=%d/balance=%d failed: "
7643 "errno=%d\n",
7644 rgain, rbalance, error);
7645 goto abort;
7646 }
7647 }
7648
7649 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7650 if (oldai)
7651 oldai->monitor_gain = au_get_monitor_gain(sc);
7652 error = au_set_monitor_gain(sc, newai->monitor_gain);
7653 if (error) {
7654 audio_printf(sc,
7655 "setting monitor_gain=%d failed: errno=%d\n",
7656 newai->monitor_gain, error);
7657 goto abort;
7658 }
7659 }
7660
7661 /* XXX TODO */
7662 /* sc->sc_ai = *ai; */
7663
7664 error = 0;
7665 abort:
7666 return error;
7667 }
7668
7669 /*
7670 * Setup the hardware with mixer format phwfmt, rhwfmt.
7671 * The arguments have following restrictions:
7672 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7673 * or both.
7674 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7675 * - On non-independent devices, phwfmt and rhwfmt must have the same
7676 * parameters.
7677 * - pfil and rfil must be zero-filled.
7678 * If successful,
7679 * - pfil, rfil will be filled with filter information specified by the
7680 * hardware driver if necessary.
7681 * and then returns 0. Otherwise returns errno.
7682 * Must be called without sc_lock held.
7683 */
7684 static int
7685 audio_hw_set_format(struct audio_softc *sc, int setmode,
7686 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7687 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7688 {
7689 audio_params_t pp, rp;
7690 int error;
7691
7692 KASSERT(phwfmt != NULL);
7693 KASSERT(rhwfmt != NULL);
7694
7695 pp = format2_to_params(phwfmt);
7696 rp = format2_to_params(rhwfmt);
7697
7698 mutex_enter(sc->sc_lock);
7699 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7700 &pp, &rp, pfil, rfil);
7701 if (error) {
7702 mutex_exit(sc->sc_lock);
7703 audio_printf(sc, "set_format failed: errno=%d\n", error);
7704 return error;
7705 }
7706
7707 if (sc->hw_if->commit_settings) {
7708 error = sc->hw_if->commit_settings(sc->hw_hdl);
7709 if (error) {
7710 mutex_exit(sc->sc_lock);
7711 audio_printf(sc,
7712 "commit_settings failed: errno=%d\n", error);
7713 return error;
7714 }
7715 }
7716 mutex_exit(sc->sc_lock);
7717
7718 return 0;
7719 }
7720
7721 /*
7722 * Fill audio_info structure. If need_mixerinfo is true, it will also
7723 * fill the hardware mixer information.
7724 * Must be called with sc_exlock held and without sc_lock held.
7725 */
7726 static int
7727 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7728 audio_file_t *file)
7729 {
7730 struct audio_prinfo *ri, *pi;
7731 audio_track_t *track;
7732 audio_track_t *ptrack;
7733 audio_track_t *rtrack;
7734 int gain;
7735
7736 KASSERT(sc->sc_exlock);
7737
7738 ri = &ai->record;
7739 pi = &ai->play;
7740 ptrack = file->ptrack;
7741 rtrack = file->rtrack;
7742
7743 memset(ai, 0, sizeof(*ai));
7744
7745 if (ptrack) {
7746 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7747 pi->channels = ptrack->usrbuf.fmt.channels;
7748 pi->precision = ptrack->usrbuf.fmt.precision;
7749 pi->encoding = ptrack->usrbuf.fmt.encoding;
7750 pi->pause = ptrack->is_pause;
7751 } else {
7752 /* Use sticky parameters if the track is not available. */
7753 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7754 pi->channels = sc->sc_sound_pparams.channels;
7755 pi->precision = sc->sc_sound_pparams.precision;
7756 pi->encoding = sc->sc_sound_pparams.encoding;
7757 pi->pause = sc->sc_sound_ppause;
7758 }
7759 if (rtrack) {
7760 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7761 ri->channels = rtrack->usrbuf.fmt.channels;
7762 ri->precision = rtrack->usrbuf.fmt.precision;
7763 ri->encoding = rtrack->usrbuf.fmt.encoding;
7764 ri->pause = rtrack->is_pause;
7765 } else {
7766 /* Use sticky parameters if the track is not available. */
7767 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7768 ri->channels = sc->sc_sound_rparams.channels;
7769 ri->precision = sc->sc_sound_rparams.precision;
7770 ri->encoding = sc->sc_sound_rparams.encoding;
7771 ri->pause = sc->sc_sound_rpause;
7772 }
7773
7774 if (ptrack) {
7775 pi->seek = ptrack->usrbuf.used;
7776 pi->samples = ptrack->stamp * ptrack->usrbuf_blksize;
7777 pi->eof = ptrack->eofcounter;
7778 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7779 pi->open = 1;
7780 pi->buffer_size = ptrack->usrbuf.capacity;
7781 }
7782 pi->waiting = 0; /* open never hangs */
7783 pi->active = sc->sc_pbusy;
7784
7785 if (rtrack) {
7786 ri->seek = audio_track_readablebytes(rtrack);
7787 ri->samples = rtrack->stamp * rtrack->usrbuf_blksize;
7788 ri->eof = 0;
7789 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7790 ri->open = 1;
7791 ri->buffer_size = audio_track_inputblk_as_usrbyte(rtrack,
7792 rtrack->input->capacity);
7793 }
7794 ri->waiting = 0; /* open never hangs */
7795 ri->active = sc->sc_rbusy;
7796
7797 /*
7798 * XXX There may be different number of channels between playback
7799 * and recording, so that blocksize also may be different.
7800 * But struct audio_info has an united blocksize...
7801 * Here, I use play info precedencely if ptrack is available,
7802 * otherwise record info.
7803 *
7804 * XXX hiwat/lowat is a playback-only parameter. What should I
7805 * return for a record-only descriptor?
7806 */
7807 track = ptrack ? ptrack : rtrack;
7808 if (track) {
7809 ai->blocksize = track->usrbuf_blksize;
7810 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7811 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7812 }
7813 ai->mode = file->mode;
7814
7815 /*
7816 * For backward compatibility, we have to pad these five fields
7817 * a fake non-zero value even if there are no tracks.
7818 */
7819 if (ptrack == NULL)
7820 pi->buffer_size = 65536;
7821 if (rtrack == NULL)
7822 ri->buffer_size = 65536;
7823 if (ptrack == NULL && rtrack == NULL) {
7824 ai->blocksize = 2048;
7825 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7826 ai->lowat = ai->hiwat * 3 / 4;
7827 }
7828
7829 if (need_mixerinfo) {
7830 mutex_enter(sc->sc_lock);
7831
7832 pi->port = au_get_port(sc, &sc->sc_outports);
7833 ri->port = au_get_port(sc, &sc->sc_inports);
7834
7835 pi->avail_ports = sc->sc_outports.allports;
7836 ri->avail_ports = sc->sc_inports.allports;
7837
7838 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7839 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7840
7841 if (sc->sc_monitor_port != -1) {
7842 gain = au_get_monitor_gain(sc);
7843 if (gain != -1)
7844 ai->monitor_gain = gain;
7845 }
7846 mutex_exit(sc->sc_lock);
7847 }
7848
7849 return 0;
7850 }
7851
7852 /*
7853 * Return true if playback is configured.
7854 * This function can be used after audioattach.
7855 */
7856 static bool
7857 audio_can_playback(struct audio_softc *sc)
7858 {
7859
7860 return (sc->sc_pmixer != NULL);
7861 }
7862
7863 /*
7864 * Return true if recording is configured.
7865 * This function can be used after audioattach.
7866 */
7867 static bool
7868 audio_can_capture(struct audio_softc *sc)
7869 {
7870
7871 return (sc->sc_rmixer != NULL);
7872 }
7873
7874 /*
7875 * Get the afp->index'th item from the valid one of format[].
7876 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7877 *
7878 * This is common routines for query_format.
7879 * If your hardware driver has struct audio_format[], the simplest case
7880 * you can write your query_format interface as follows:
7881 *
7882 * struct audio_format foo_format[] = { ... };
7883 *
7884 * int
7885 * foo_query_format(void *hdl, audio_format_query_t *afp)
7886 * {
7887 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7888 * }
7889 */
7890 int
7891 audio_query_format(const struct audio_format *format, int nformats,
7892 audio_format_query_t *afp)
7893 {
7894 const struct audio_format *f;
7895 int idx;
7896 int i;
7897
7898 idx = 0;
7899 for (i = 0; i < nformats; i++) {
7900 f = &format[i];
7901 if (!AUFMT_IS_VALID(f))
7902 continue;
7903 if (afp->index == idx) {
7904 afp->fmt = *f;
7905 return 0;
7906 }
7907 idx++;
7908 }
7909 return EINVAL;
7910 }
7911
7912 /*
7913 * This function is provided for the hardware driver's set_format() to
7914 * find index matches with 'param' from array of audio_format_t 'formats'.
7915 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7916 * It returns the matched index and never fails. Because param passed to
7917 * set_format() is selected from query_format().
7918 * This function will be an alternative to auconv_set_converter() to
7919 * find index.
7920 */
7921 int
7922 audio_indexof_format(const struct audio_format *formats, int nformats,
7923 int mode, const audio_params_t *param)
7924 {
7925 const struct audio_format *f;
7926 int index;
7927 int j;
7928
7929 for (index = 0; index < nformats; index++) {
7930 f = &formats[index];
7931
7932 if (!AUFMT_IS_VALID(f))
7933 continue;
7934 if ((f->mode & mode) == 0)
7935 continue;
7936 if (f->encoding != param->encoding)
7937 continue;
7938 if (f->validbits != param->precision)
7939 continue;
7940 if (f->channels != param->channels)
7941 continue;
7942
7943 if (f->frequency_type == 0) {
7944 if (param->sample_rate < f->frequency[0] ||
7945 param->sample_rate > f->frequency[1])
7946 continue;
7947 } else {
7948 for (j = 0; j < f->frequency_type; j++) {
7949 if (param->sample_rate == f->frequency[j])
7950 break;
7951 }
7952 if (j == f->frequency_type)
7953 continue;
7954 }
7955
7956 /* Then, matched */
7957 return index;
7958 }
7959
7960 /* Not matched. This should not be happened. */
7961 panic("%s: cannot find matched format\n", __func__);
7962 }
7963
7964 /*
7965 * Get or set hardware blocksize in msec.
7966 * XXX It's for debug.
7967 */
7968 static int
7969 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7970 {
7971 struct sysctlnode node;
7972 struct audio_softc *sc;
7973 audio_format2_t phwfmt;
7974 audio_format2_t rhwfmt;
7975 audio_filter_reg_t pfil;
7976 audio_filter_reg_t rfil;
7977 int t;
7978 int old_blk_ms;
7979 int mode;
7980 int error;
7981
7982 node = *rnode;
7983 sc = node.sysctl_data;
7984
7985 error = audio_exlock_enter(sc);
7986 if (error)
7987 return error;
7988
7989 old_blk_ms = sc->sc_blk_ms;
7990 t = old_blk_ms;
7991 node.sysctl_data = &t;
7992 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7993 if (error || newp == NULL)
7994 goto abort;
7995
7996 if (t < 0) {
7997 error = EINVAL;
7998 goto abort;
7999 }
8000
8001 if (sc->sc_popens + sc->sc_ropens > 0) {
8002 error = EBUSY;
8003 goto abort;
8004 }
8005 sc->sc_blk_ms = t;
8006 mode = 0;
8007 if (sc->sc_pmixer) {
8008 mode |= AUMODE_PLAY;
8009 phwfmt = sc->sc_pmixer->hwbuf.fmt;
8010 }
8011 if (sc->sc_rmixer) {
8012 mode |= AUMODE_RECORD;
8013 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
8014 }
8015
8016 /* re-init hardware */
8017 memset(&pfil, 0, sizeof(pfil));
8018 memset(&rfil, 0, sizeof(rfil));
8019 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8020 if (error) {
8021 goto abort;
8022 }
8023
8024 /* re-init track mixer */
8025 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8026 if (error) {
8027 /* Rollback */
8028 sc->sc_blk_ms = old_blk_ms;
8029 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8030 goto abort;
8031 }
8032 error = 0;
8033 abort:
8034 audio_exlock_exit(sc);
8035 return error;
8036 }
8037
8038 /*
8039 * Get or set multiuser mode.
8040 */
8041 static int
8042 audio_sysctl_multiuser(SYSCTLFN_ARGS)
8043 {
8044 struct sysctlnode node;
8045 struct audio_softc *sc;
8046 bool t;
8047 int error;
8048
8049 node = *rnode;
8050 sc = node.sysctl_data;
8051
8052 error = audio_exlock_enter(sc);
8053 if (error)
8054 return error;
8055
8056 t = sc->sc_multiuser;
8057 node.sysctl_data = &t;
8058 error = sysctl_lookup(SYSCTLFN_CALL(&node));
8059 if (error || newp == NULL)
8060 goto abort;
8061
8062 sc->sc_multiuser = t;
8063 error = 0;
8064 abort:
8065 audio_exlock_exit(sc);
8066 return error;
8067 }
8068
8069 #if defined(AUDIO_DEBUG)
8070 /*
8071 * Get or set debug verbose level. (0..4)
8072 * XXX It's for debug.
8073 * XXX It is not separated per device.
8074 */
8075 static int
8076 audio_sysctl_debug(SYSCTLFN_ARGS)
8077 {
8078 struct sysctlnode node;
8079 int t;
8080 int error;
8081
8082 node = *rnode;
8083 t = audiodebug;
8084 node.sysctl_data = &t;
8085 error = sysctl_lookup(SYSCTLFN_CALL(&node));
8086 if (error || newp == NULL)
8087 return error;
8088
8089 if (t < 0 || t > 4)
8090 return EINVAL;
8091 audiodebug = t;
8092 printf("audio: audiodebug = %d\n", audiodebug);
8093 return 0;
8094 }
8095 #endif /* AUDIO_DEBUG */
8096
8097 #ifdef AUDIO_PM_IDLE
8098 static void
8099 audio_idle(void *arg)
8100 {
8101 device_t dv = arg;
8102 struct audio_softc *sc = device_private(dv);
8103
8104 #ifdef PNP_DEBUG
8105 extern int pnp_debug_idle;
8106 if (pnp_debug_idle)
8107 printf("%s: idle handler called\n", device_xname(dv));
8108 #endif
8109
8110 sc->sc_idle = true;
8111
8112 /* XXX joerg Make pmf_device_suspend handle children? */
8113 if (!pmf_device_suspend(dv, PMF_Q_SELF))
8114 return;
8115
8116 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
8117 pmf_device_resume(dv, PMF_Q_SELF);
8118 }
8119
8120 static void
8121 audio_activity(device_t dv, devactive_t type)
8122 {
8123 struct audio_softc *sc = device_private(dv);
8124
8125 if (type != DVA_SYSTEM)
8126 return;
8127
8128 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
8129
8130 sc->sc_idle = false;
8131 if (!device_is_active(dv)) {
8132 /* XXX joerg How to deal with a failing resume... */
8133 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
8134 pmf_device_resume(dv, PMF_Q_SELF);
8135 }
8136 }
8137 #endif
8138
8139 static bool
8140 audio_suspend(device_t dv, const pmf_qual_t *qual)
8141 {
8142 struct audio_softc *sc = device_private(dv);
8143 int error;
8144
8145 error = audio_exlock_mutex_enter(sc);
8146 if (error)
8147 return error;
8148 sc->sc_suspending = true;
8149 audio_mixer_capture(sc);
8150
8151 if (sc->sc_pbusy) {
8152 audio_pmixer_halt(sc);
8153 /* Reuse this as need-to-restart flag while suspending */
8154 sc->sc_pbusy = true;
8155 }
8156 if (sc->sc_rbusy) {
8157 audio_rmixer_halt(sc);
8158 /* Reuse this as need-to-restart flag while suspending */
8159 sc->sc_rbusy = true;
8160 }
8161
8162 #ifdef AUDIO_PM_IDLE
8163 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
8164 #endif
8165 audio_exlock_mutex_exit(sc);
8166
8167 return true;
8168 }
8169
8170 static bool
8171 audio_resume(device_t dv, const pmf_qual_t *qual)
8172 {
8173 struct audio_softc *sc = device_private(dv);
8174 struct audio_info ai;
8175 int error;
8176
8177 error = audio_exlock_mutex_enter(sc);
8178 if (error)
8179 return error;
8180
8181 sc->sc_suspending = false;
8182 audio_mixer_restore(sc);
8183 /* XXX ? */
8184 AUDIO_INITINFO(&ai);
8185 audio_hw_setinfo(sc, &ai, NULL);
8186
8187 /*
8188 * During from suspend to resume here, sc_[pr]busy is used as
8189 * need-to-restart flag temporarily. After this point,
8190 * sc_[pr]busy is returned to its original usage (busy flag).
8191 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
8192 */
8193 if (sc->sc_pbusy) {
8194 /* pmixer_start() requires pbusy is false */
8195 sc->sc_pbusy = false;
8196 audio_pmixer_start(sc, true);
8197 }
8198 if (sc->sc_rbusy) {
8199 /* rmixer_start() requires rbusy is false */
8200 sc->sc_rbusy = false;
8201 audio_rmixer_start(sc);
8202 }
8203
8204 audio_exlock_mutex_exit(sc);
8205
8206 return true;
8207 }
8208
8209 #if defined(AUDIO_DEBUG)
8210 static void
8211 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
8212 {
8213 int n;
8214
8215 n = 0;
8216 n += snprintf(buf + n, bufsize - n, "%s",
8217 audio_encoding_name(fmt->encoding));
8218 if (fmt->precision == fmt->stride) {
8219 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
8220 } else {
8221 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
8222 fmt->precision, fmt->stride);
8223 }
8224
8225 snprintf(buf + n, bufsize - n, " %uch %uHz",
8226 fmt->channels, fmt->sample_rate);
8227 }
8228 #endif
8229
8230 #if defined(AUDIO_DEBUG)
8231 static void
8232 audio_print_format2(const char *s, const audio_format2_t *fmt)
8233 {
8234 char fmtstr[64];
8235
8236 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
8237 printf("%s %s\n", s, fmtstr);
8238 }
8239 #endif
8240
8241 #ifdef DIAGNOSTIC
8242 void
8243 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
8244 {
8245
8246 KASSERTMSG(fmt, "called from %s", where);
8247
8248 /* XXX MSM6258 vs(4) only has 4bit stride format. */
8249 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
8250 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
8251 "called from %s: fmt->stride=%d", where, fmt->stride);
8252 } else {
8253 KASSERTMSG(fmt->stride % NBBY == 0,
8254 "called from %s: fmt->stride=%d", where, fmt->stride);
8255 }
8256 KASSERTMSG(fmt->precision <= fmt->stride,
8257 "called from %s: fmt->precision=%d fmt->stride=%d",
8258 where, fmt->precision, fmt->stride);
8259 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
8260 "called from %s: fmt->channels=%d", where, fmt->channels);
8261
8262 /* XXX No check for encodings? */
8263 }
8264
8265 void
8266 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
8267 {
8268
8269 KASSERT(arg != NULL);
8270 KASSERT(arg->src != NULL);
8271 KASSERT(arg->dst != NULL);
8272 audio_diagnostic_format2(where, arg->srcfmt);
8273 audio_diagnostic_format2(where, arg->dstfmt);
8274 KASSERT(arg->count > 0);
8275 }
8276
8277 void
8278 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
8279 {
8280
8281 KASSERTMSG(ring, "called from %s", where);
8282 audio_diagnostic_format2(where, &ring->fmt);
8283 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
8284 "called from %s: ring->capacity=%d", where, ring->capacity);
8285 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
8286 "called from %s: ring->used=%d ring->capacity=%d",
8287 where, ring->used, ring->capacity);
8288 if (ring->capacity == 0) {
8289 KASSERTMSG(ring->mem == NULL,
8290 "called from %s: capacity == 0 but mem != NULL", where);
8291 } else {
8292 KASSERTMSG(ring->mem != NULL,
8293 "called from %s: capacity != 0 but mem == NULL", where);
8294 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
8295 "called from %s: ring->head=%d ring->capacity=%d",
8296 where, ring->head, ring->capacity);
8297 }
8298 }
8299 #endif /* DIAGNOSTIC */
8300
8301
8302 /*
8303 * Mixer driver
8304 */
8305
8306 /*
8307 * Must be called without sc_lock held.
8308 */
8309 int
8310 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
8311 struct lwp *l)
8312 {
8313 struct file *fp;
8314 audio_file_t *af;
8315 int error, fd;
8316
8317 TRACE(1, "flags=0x%x", flags);
8318
8319 error = fd_allocfile(&fp, &fd);
8320 if (error)
8321 return error;
8322
8323 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
8324 af->sc = sc;
8325 af->dev = dev;
8326
8327 mutex_enter(sc->sc_lock);
8328 if (sc->sc_dying) {
8329 mutex_exit(sc->sc_lock);
8330 kmem_free(af, sizeof(*af));
8331 fd_abort(curproc, fp, fd);
8332 return ENXIO;
8333 }
8334 mutex_enter(sc->sc_intr_lock);
8335 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
8336 mutex_exit(sc->sc_intr_lock);
8337 mutex_exit(sc->sc_lock);
8338
8339 error = fd_clone(fp, fd, flags, &audio_fileops, af);
8340 KASSERT(error == EMOVEFD);
8341
8342 return error;
8343 }
8344
8345 /*
8346 * Add a process to those to be signalled on mixer activity.
8347 * If the process has already been added, do nothing.
8348 * Must be called with sc_exlock held and without sc_lock held.
8349 */
8350 static void
8351 mixer_async_add(struct audio_softc *sc, pid_t pid)
8352 {
8353 int i;
8354
8355 KASSERT(sc->sc_exlock);
8356
8357 /* If already exists, returns without doing anything. */
8358 for (i = 0; i < sc->sc_am_used; i++) {
8359 if (sc->sc_am[i] == pid)
8360 return;
8361 }
8362
8363 /* Extend array if necessary. */
8364 if (sc->sc_am_used >= sc->sc_am_capacity) {
8365 sc->sc_am_capacity += AM_CAPACITY;
8366 sc->sc_am = kern_realloc(sc->sc_am,
8367 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8368 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8369 }
8370
8371 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8372 sc->sc_am[sc->sc_am_used++] = pid;
8373 }
8374
8375 /*
8376 * Remove a process from those to be signalled on mixer activity.
8377 * If the process has not been added, do nothing.
8378 * Must be called with sc_exlock held and without sc_lock held.
8379 */
8380 static void
8381 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8382 {
8383 int i;
8384
8385 KASSERT(sc->sc_exlock);
8386
8387 for (i = 0; i < sc->sc_am_used; i++) {
8388 if (sc->sc_am[i] == pid) {
8389 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8390 TRACE(2, "am[%d](%d) removed, used=%d",
8391 i, (int)pid, sc->sc_am_used);
8392
8393 /* Empty array if no longer necessary. */
8394 if (sc->sc_am_used == 0) {
8395 kern_free(sc->sc_am);
8396 sc->sc_am = NULL;
8397 sc->sc_am_capacity = 0;
8398 TRACE(2, "released");
8399 }
8400 return;
8401 }
8402 }
8403 }
8404
8405 /*
8406 * Signal all processes waiting for the mixer.
8407 * Must be called with sc_exlock held.
8408 */
8409 static void
8410 mixer_signal(struct audio_softc *sc)
8411 {
8412 proc_t *p;
8413 int i;
8414
8415 KASSERT(sc->sc_exlock);
8416
8417 for (i = 0; i < sc->sc_am_used; i++) {
8418 mutex_enter(&proc_lock);
8419 p = proc_find(sc->sc_am[i]);
8420 if (p)
8421 psignal(p, SIGIO);
8422 mutex_exit(&proc_lock);
8423 }
8424 }
8425
8426 /*
8427 * Close a mixer device
8428 */
8429 int
8430 mixer_close(struct audio_softc *sc, audio_file_t *file)
8431 {
8432 int error;
8433
8434 error = audio_exlock_enter(sc);
8435 if (error)
8436 return error;
8437 TRACE(1, "called");
8438 mixer_async_remove(sc, curproc->p_pid);
8439 audio_exlock_exit(sc);
8440
8441 return 0;
8442 }
8443
8444 /*
8445 * Must be called without sc_lock nor sc_exlock held.
8446 */
8447 int
8448 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8449 struct lwp *l)
8450 {
8451 mixer_devinfo_t *mi;
8452 mixer_ctrl_t *mc;
8453 int val;
8454 int error;
8455
8456 #if defined(AUDIO_DEBUG)
8457 char pre[64];
8458 snprintf(pre, sizeof(pre), "pid=%d.%d",
8459 (int)curproc->p_pid, (int)l->l_lid);
8460 #endif
8461 error = EINVAL;
8462
8463 /* we can return cached values if we are sleeping */
8464 if (cmd != AUDIO_MIXER_READ) {
8465 mutex_enter(sc->sc_lock);
8466 device_active(sc->sc_dev, DVA_SYSTEM);
8467 mutex_exit(sc->sc_lock);
8468 }
8469
8470 switch (cmd) {
8471 case FIOASYNC:
8472 val = *(int *)addr;
8473 TRACE(2, "%s FIOASYNC %s", pre, val ? "on" : "off");
8474 error = audio_exlock_enter(sc);
8475 if (error)
8476 break;
8477 if (val) {
8478 mixer_async_add(sc, curproc->p_pid);
8479 } else {
8480 mixer_async_remove(sc, curproc->p_pid);
8481 }
8482 audio_exlock_exit(sc);
8483 break;
8484
8485 case AUDIO_GETDEV:
8486 TRACE(2, "%s AUDIO_GETDEV", pre);
8487 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8488 break;
8489
8490 case AUDIO_MIXER_DEVINFO:
8491 TRACE(2, "%s AUDIO_MIXER_DEVINFO", pre);
8492 mi = (mixer_devinfo_t *)addr;
8493
8494 mi->un.v.delta = 0; /* default */
8495 mutex_enter(sc->sc_lock);
8496 error = audio_query_devinfo(sc, mi);
8497 mutex_exit(sc->sc_lock);
8498 break;
8499
8500 case AUDIO_MIXER_READ:
8501 TRACE(2, "%s AUDIO_MIXER_READ", pre);
8502 mc = (mixer_ctrl_t *)addr;
8503
8504 error = audio_exlock_mutex_enter(sc);
8505 if (error)
8506 break;
8507 if (device_is_active(sc->hw_dev))
8508 error = audio_get_port(sc, mc);
8509 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8510 error = ENXIO;
8511 else {
8512 int dev = mc->dev;
8513 memcpy(mc, &sc->sc_mixer_state[dev],
8514 sizeof(mixer_ctrl_t));
8515 error = 0;
8516 }
8517 audio_exlock_mutex_exit(sc);
8518 break;
8519
8520 case AUDIO_MIXER_WRITE:
8521 TRACE(2, "%s AUDIO_MIXER_WRITE", pre);
8522 error = audio_exlock_mutex_enter(sc);
8523 if (error)
8524 break;
8525 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8526 if (error) {
8527 audio_exlock_mutex_exit(sc);
8528 break;
8529 }
8530
8531 if (sc->hw_if->commit_settings) {
8532 error = sc->hw_if->commit_settings(sc->hw_hdl);
8533 if (error) {
8534 audio_exlock_mutex_exit(sc);
8535 break;
8536 }
8537 }
8538 mutex_exit(sc->sc_lock);
8539 mixer_signal(sc);
8540 audio_exlock_exit(sc);
8541 break;
8542
8543 default:
8544 TRACE(2, "(%lu,'%c',%lu)",
8545 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8546 if (sc->hw_if->dev_ioctl) {
8547 mutex_enter(sc->sc_lock);
8548 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8549 cmd, addr, flag, l);
8550 mutex_exit(sc->sc_lock);
8551 } else
8552 error = EINVAL;
8553 break;
8554 }
8555
8556 if (error)
8557 TRACE(2, "error=%d", error);
8558 return error;
8559 }
8560
8561 /*
8562 * Must be called with sc_lock held.
8563 */
8564 int
8565 au_portof(struct audio_softc *sc, char *name, int class)
8566 {
8567 mixer_devinfo_t mi;
8568
8569 KASSERT(mutex_owned(sc->sc_lock));
8570
8571 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8572 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8573 return mi.index;
8574 }
8575 return -1;
8576 }
8577
8578 /*
8579 * Must be called with sc_lock held.
8580 */
8581 void
8582 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8583 mixer_devinfo_t *mi, const struct portname *tbl)
8584 {
8585 int i, j;
8586
8587 KASSERT(mutex_owned(sc->sc_lock));
8588
8589 ports->index = mi->index;
8590 if (mi->type == AUDIO_MIXER_ENUM) {
8591 ports->isenum = true;
8592 for(i = 0; tbl[i].name; i++)
8593 for(j = 0; j < mi->un.e.num_mem; j++)
8594 if (strcmp(mi->un.e.member[j].label.name,
8595 tbl[i].name) == 0) {
8596 ports->allports |= tbl[i].mask;
8597 ports->aumask[ports->nports] = tbl[i].mask;
8598 ports->misel[ports->nports] =
8599 mi->un.e.member[j].ord;
8600 ports->miport[ports->nports] =
8601 au_portof(sc, mi->un.e.member[j].label.name,
8602 mi->mixer_class);
8603 if (ports->mixerout != -1 &&
8604 ports->miport[ports->nports] != -1)
8605 ports->isdual = true;
8606 ++ports->nports;
8607 }
8608 } else if (mi->type == AUDIO_MIXER_SET) {
8609 for(i = 0; tbl[i].name; i++)
8610 for(j = 0; j < mi->un.s.num_mem; j++)
8611 if (strcmp(mi->un.s.member[j].label.name,
8612 tbl[i].name) == 0) {
8613 ports->allports |= tbl[i].mask;
8614 ports->aumask[ports->nports] = tbl[i].mask;
8615 ports->misel[ports->nports] =
8616 mi->un.s.member[j].mask;
8617 ports->miport[ports->nports] =
8618 au_portof(sc, mi->un.s.member[j].label.name,
8619 mi->mixer_class);
8620 ++ports->nports;
8621 }
8622 }
8623 }
8624
8625 /*
8626 * Must be called with sc_lock && sc_exlock held.
8627 */
8628 int
8629 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8630 {
8631
8632 KASSERT(mutex_owned(sc->sc_lock));
8633 KASSERT(sc->sc_exlock);
8634
8635 ct->type = AUDIO_MIXER_VALUE;
8636 ct->un.value.num_channels = 2;
8637 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8638 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8639 if (audio_set_port(sc, ct) == 0)
8640 return 0;
8641 ct->un.value.num_channels = 1;
8642 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8643 return audio_set_port(sc, ct);
8644 }
8645
8646 /*
8647 * Must be called with sc_lock && sc_exlock held.
8648 */
8649 int
8650 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8651 {
8652 int error;
8653
8654 KASSERT(mutex_owned(sc->sc_lock));
8655 KASSERT(sc->sc_exlock);
8656
8657 ct->un.value.num_channels = 2;
8658 if (audio_get_port(sc, ct) == 0) {
8659 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8660 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8661 } else {
8662 ct->un.value.num_channels = 1;
8663 error = audio_get_port(sc, ct);
8664 if (error)
8665 return error;
8666 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8667 }
8668 return 0;
8669 }
8670
8671 /*
8672 * Must be called with sc_lock && sc_exlock held.
8673 */
8674 int
8675 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8676 int gain, int balance)
8677 {
8678 mixer_ctrl_t ct;
8679 int i, error;
8680 int l, r;
8681 u_int mask;
8682 int nset;
8683
8684 KASSERT(mutex_owned(sc->sc_lock));
8685 KASSERT(sc->sc_exlock);
8686
8687 if (balance == AUDIO_MID_BALANCE) {
8688 l = r = gain;
8689 } else if (balance < AUDIO_MID_BALANCE) {
8690 l = gain;
8691 r = (balance * gain) / AUDIO_MID_BALANCE;
8692 } else {
8693 r = gain;
8694 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8695 / AUDIO_MID_BALANCE;
8696 }
8697 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8698
8699 if (ports->index == -1) {
8700 usemaster:
8701 if (ports->master == -1)
8702 return 0; /* just ignore it silently */
8703 ct.dev = ports->master;
8704 error = au_set_lr_value(sc, &ct, l, r);
8705 } else {
8706 ct.dev = ports->index;
8707 if (ports->isenum) {
8708 ct.type = AUDIO_MIXER_ENUM;
8709 error = audio_get_port(sc, &ct);
8710 if (error)
8711 return error;
8712 if (ports->isdual) {
8713 if (ports->cur_port == -1)
8714 ct.dev = ports->master;
8715 else
8716 ct.dev = ports->miport[ports->cur_port];
8717 error = au_set_lr_value(sc, &ct, l, r);
8718 } else {
8719 for(i = 0; i < ports->nports; i++)
8720 if (ports->misel[i] == ct.un.ord) {
8721 ct.dev = ports->miport[i];
8722 if (ct.dev == -1 ||
8723 au_set_lr_value(sc, &ct, l, r))
8724 goto usemaster;
8725 else
8726 break;
8727 }
8728 }
8729 } else {
8730 ct.type = AUDIO_MIXER_SET;
8731 error = audio_get_port(sc, &ct);
8732 if (error)
8733 return error;
8734 mask = ct.un.mask;
8735 nset = 0;
8736 for(i = 0; i < ports->nports; i++) {
8737 if (ports->misel[i] & mask) {
8738 ct.dev = ports->miport[i];
8739 if (ct.dev != -1 &&
8740 au_set_lr_value(sc, &ct, l, r) == 0)
8741 nset++;
8742 }
8743 }
8744 if (nset == 0)
8745 goto usemaster;
8746 }
8747 }
8748 if (!error)
8749 mixer_signal(sc);
8750 return error;
8751 }
8752
8753 /*
8754 * Must be called with sc_lock && sc_exlock held.
8755 */
8756 void
8757 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8758 u_int *pgain, u_char *pbalance)
8759 {
8760 mixer_ctrl_t ct;
8761 int i, l, r, n;
8762 int lgain, rgain;
8763
8764 KASSERT(mutex_owned(sc->sc_lock));
8765 KASSERT(sc->sc_exlock);
8766
8767 lgain = AUDIO_MAX_GAIN / 2;
8768 rgain = AUDIO_MAX_GAIN / 2;
8769 if (ports->index == -1) {
8770 usemaster:
8771 if (ports->master == -1)
8772 goto bad;
8773 ct.dev = ports->master;
8774 ct.type = AUDIO_MIXER_VALUE;
8775 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8776 goto bad;
8777 } else {
8778 ct.dev = ports->index;
8779 if (ports->isenum) {
8780 ct.type = AUDIO_MIXER_ENUM;
8781 if (audio_get_port(sc, &ct))
8782 goto bad;
8783 ct.type = AUDIO_MIXER_VALUE;
8784 if (ports->isdual) {
8785 if (ports->cur_port == -1)
8786 ct.dev = ports->master;
8787 else
8788 ct.dev = ports->miport[ports->cur_port];
8789 au_get_lr_value(sc, &ct, &lgain, &rgain);
8790 } else {
8791 for(i = 0; i < ports->nports; i++)
8792 if (ports->misel[i] == ct.un.ord) {
8793 ct.dev = ports->miport[i];
8794 if (ct.dev == -1 ||
8795 au_get_lr_value(sc, &ct,
8796 &lgain, &rgain))
8797 goto usemaster;
8798 else
8799 break;
8800 }
8801 }
8802 } else {
8803 ct.type = AUDIO_MIXER_SET;
8804 if (audio_get_port(sc, &ct))
8805 goto bad;
8806 ct.type = AUDIO_MIXER_VALUE;
8807 lgain = rgain = n = 0;
8808 for(i = 0; i < ports->nports; i++) {
8809 if (ports->misel[i] & ct.un.mask) {
8810 ct.dev = ports->miport[i];
8811 if (ct.dev == -1 ||
8812 au_get_lr_value(sc, &ct, &l, &r))
8813 goto usemaster;
8814 else {
8815 lgain += l;
8816 rgain += r;
8817 n++;
8818 }
8819 }
8820 }
8821 if (n != 0) {
8822 lgain /= n;
8823 rgain /= n;
8824 }
8825 }
8826 }
8827 bad:
8828 if (lgain == rgain) { /* handles lgain==rgain==0 */
8829 *pgain = lgain;
8830 *pbalance = AUDIO_MID_BALANCE;
8831 } else if (lgain < rgain) {
8832 *pgain = rgain;
8833 /* balance should be > AUDIO_MID_BALANCE */
8834 *pbalance = AUDIO_RIGHT_BALANCE -
8835 (AUDIO_MID_BALANCE * lgain) / rgain;
8836 } else /* lgain > rgain */ {
8837 *pgain = lgain;
8838 /* balance should be < AUDIO_MID_BALANCE */
8839 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8840 }
8841 }
8842
8843 /*
8844 * Must be called with sc_lock && sc_exlock held.
8845 */
8846 int
8847 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8848 {
8849 mixer_ctrl_t ct;
8850 int i, error, use_mixerout;
8851
8852 KASSERT(mutex_owned(sc->sc_lock));
8853 KASSERT(sc->sc_exlock);
8854
8855 use_mixerout = 1;
8856 if (port == 0) {
8857 if (ports->allports == 0)
8858 return 0; /* Allow this special case. */
8859 else if (ports->isdual) {
8860 if (ports->cur_port == -1) {
8861 return 0;
8862 } else {
8863 port = ports->aumask[ports->cur_port];
8864 ports->cur_port = -1;
8865 use_mixerout = 0;
8866 }
8867 }
8868 }
8869 if (ports->index == -1)
8870 return EINVAL;
8871 ct.dev = ports->index;
8872 if (ports->isenum) {
8873 if (port & (port-1))
8874 return EINVAL; /* Only one port allowed */
8875 ct.type = AUDIO_MIXER_ENUM;
8876 error = EINVAL;
8877 for(i = 0; i < ports->nports; i++)
8878 if (ports->aumask[i] == port) {
8879 if (ports->isdual && use_mixerout) {
8880 ct.un.ord = ports->mixerout;
8881 ports->cur_port = i;
8882 } else {
8883 ct.un.ord = ports->misel[i];
8884 }
8885 error = audio_set_port(sc, &ct);
8886 break;
8887 }
8888 } else {
8889 ct.type = AUDIO_MIXER_SET;
8890 ct.un.mask = 0;
8891 for(i = 0; i < ports->nports; i++)
8892 if (ports->aumask[i] & port)
8893 ct.un.mask |= ports->misel[i];
8894 if (port != 0 && ct.un.mask == 0)
8895 error = EINVAL;
8896 else
8897 error = audio_set_port(sc, &ct);
8898 }
8899 if (!error)
8900 mixer_signal(sc);
8901 return error;
8902 }
8903
8904 /*
8905 * Must be called with sc_lock && sc_exlock held.
8906 */
8907 int
8908 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8909 {
8910 mixer_ctrl_t ct;
8911 int i, aumask;
8912
8913 KASSERT(mutex_owned(sc->sc_lock));
8914 KASSERT(sc->sc_exlock);
8915
8916 if (ports->index == -1)
8917 return 0;
8918 ct.dev = ports->index;
8919 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8920 if (audio_get_port(sc, &ct))
8921 return 0;
8922 aumask = 0;
8923 if (ports->isenum) {
8924 if (ports->isdual && ports->cur_port != -1) {
8925 if (ports->mixerout == ct.un.ord)
8926 aumask = ports->aumask[ports->cur_port];
8927 else
8928 ports->cur_port = -1;
8929 }
8930 if (aumask == 0)
8931 for(i = 0; i < ports->nports; i++)
8932 if (ports->misel[i] == ct.un.ord)
8933 aumask = ports->aumask[i];
8934 } else {
8935 for(i = 0; i < ports->nports; i++)
8936 if (ct.un.mask & ports->misel[i])
8937 aumask |= ports->aumask[i];
8938 }
8939 return aumask;
8940 }
8941
8942 /*
8943 * It returns 0 if success, otherwise errno.
8944 * Must be called only if sc->sc_monitor_port != -1.
8945 * Must be called with sc_lock && sc_exlock held.
8946 */
8947 static int
8948 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8949 {
8950 mixer_ctrl_t ct;
8951
8952 KASSERT(mutex_owned(sc->sc_lock));
8953 KASSERT(sc->sc_exlock);
8954
8955 ct.dev = sc->sc_monitor_port;
8956 ct.type = AUDIO_MIXER_VALUE;
8957 ct.un.value.num_channels = 1;
8958 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8959 return audio_set_port(sc, &ct);
8960 }
8961
8962 /*
8963 * It returns monitor gain if success, otherwise -1.
8964 * Must be called only if sc->sc_monitor_port != -1.
8965 * Must be called with sc_lock && sc_exlock held.
8966 */
8967 static int
8968 au_get_monitor_gain(struct audio_softc *sc)
8969 {
8970 mixer_ctrl_t ct;
8971
8972 KASSERT(mutex_owned(sc->sc_lock));
8973 KASSERT(sc->sc_exlock);
8974
8975 ct.dev = sc->sc_monitor_port;
8976 ct.type = AUDIO_MIXER_VALUE;
8977 ct.un.value.num_channels = 1;
8978 if (audio_get_port(sc, &ct))
8979 return -1;
8980 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8981 }
8982
8983 /*
8984 * Must be called with sc_lock && sc_exlock held.
8985 */
8986 static int
8987 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8988 {
8989
8990 KASSERT(mutex_owned(sc->sc_lock));
8991 KASSERT(sc->sc_exlock);
8992
8993 return sc->hw_if->set_port(sc->hw_hdl, mc);
8994 }
8995
8996 /*
8997 * Must be called with sc_lock && sc_exlock held.
8998 */
8999 static int
9000 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
9001 {
9002
9003 KASSERT(mutex_owned(sc->sc_lock));
9004 KASSERT(sc->sc_exlock);
9005
9006 return sc->hw_if->get_port(sc->hw_hdl, mc);
9007 }
9008
9009 /*
9010 * Must be called with sc_lock && sc_exlock held.
9011 */
9012 static void
9013 audio_mixer_capture(struct audio_softc *sc)
9014 {
9015 mixer_devinfo_t mi;
9016 mixer_ctrl_t *mc;
9017
9018 KASSERT(mutex_owned(sc->sc_lock));
9019 KASSERT(sc->sc_exlock);
9020
9021 for (mi.index = 0;; mi.index++) {
9022 if (audio_query_devinfo(sc, &mi) != 0)
9023 break;
9024 KASSERT(mi.index < sc->sc_nmixer_states);
9025 if (mi.type == AUDIO_MIXER_CLASS)
9026 continue;
9027 mc = &sc->sc_mixer_state[mi.index];
9028 mc->dev = mi.index;
9029 mc->type = mi.type;
9030 mc->un.value.num_channels = mi.un.v.num_channels;
9031 (void)audio_get_port(sc, mc);
9032 }
9033
9034 return;
9035 }
9036
9037 /*
9038 * Must be called with sc_lock && sc_exlock held.
9039 */
9040 static void
9041 audio_mixer_restore(struct audio_softc *sc)
9042 {
9043 mixer_devinfo_t mi;
9044 mixer_ctrl_t *mc;
9045
9046 KASSERT(mutex_owned(sc->sc_lock));
9047 KASSERT(sc->sc_exlock);
9048
9049 for (mi.index = 0; ; mi.index++) {
9050 if (audio_query_devinfo(sc, &mi) != 0)
9051 break;
9052 if (mi.type == AUDIO_MIXER_CLASS)
9053 continue;
9054 mc = &sc->sc_mixer_state[mi.index];
9055 (void)audio_set_port(sc, mc);
9056 }
9057 if (sc->hw_if->commit_settings)
9058 sc->hw_if->commit_settings(sc->hw_hdl);
9059
9060 return;
9061 }
9062
9063 static void
9064 audio_volume_down(device_t dv)
9065 {
9066 struct audio_softc *sc = device_private(dv);
9067 mixer_devinfo_t mi;
9068 int newgain;
9069 u_int gain;
9070 u_char balance;
9071
9072 if (audio_exlock_mutex_enter(sc) != 0)
9073 return;
9074 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
9075 mi.index = sc->sc_outports.master;
9076 mi.un.v.delta = 0;
9077 if (audio_query_devinfo(sc, &mi) == 0) {
9078 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9079 newgain = gain - mi.un.v.delta;
9080 if (newgain < AUDIO_MIN_GAIN)
9081 newgain = AUDIO_MIN_GAIN;
9082 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9083 }
9084 }
9085 audio_exlock_mutex_exit(sc);
9086 }
9087
9088 static void
9089 audio_volume_up(device_t dv)
9090 {
9091 struct audio_softc *sc = device_private(dv);
9092 mixer_devinfo_t mi;
9093 u_int gain, newgain;
9094 u_char balance;
9095
9096 if (audio_exlock_mutex_enter(sc) != 0)
9097 return;
9098 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
9099 mi.index = sc->sc_outports.master;
9100 mi.un.v.delta = 0;
9101 if (audio_query_devinfo(sc, &mi) == 0) {
9102 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9103 newgain = gain + mi.un.v.delta;
9104 if (newgain > AUDIO_MAX_GAIN)
9105 newgain = AUDIO_MAX_GAIN;
9106 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9107 }
9108 }
9109 audio_exlock_mutex_exit(sc);
9110 }
9111
9112 static void
9113 audio_volume_toggle(device_t dv)
9114 {
9115 struct audio_softc *sc = device_private(dv);
9116 u_int gain, newgain;
9117 u_char balance;
9118
9119 if (audio_exlock_mutex_enter(sc) != 0)
9120 return;
9121 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9122 if (gain != 0) {
9123 sc->sc_lastgain = gain;
9124 newgain = 0;
9125 } else
9126 newgain = sc->sc_lastgain;
9127 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9128 audio_exlock_mutex_exit(sc);
9129 }
9130
9131 /*
9132 * Must be called with sc_lock held.
9133 */
9134 static int
9135 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
9136 {
9137
9138 KASSERT(mutex_owned(sc->sc_lock));
9139
9140 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
9141 }
9142
9143 #endif /* NAUDIO > 0 */
9144
9145 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
9146 #include <sys/param.h>
9147 #include <sys/systm.h>
9148 #include <sys/device.h>
9149 #include <sys/audioio.h>
9150 #include <dev/audio/audio_if.h>
9151 #endif
9152
9153 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
9154 int
9155 audioprint(void *aux, const char *pnp)
9156 {
9157 struct audio_attach_args *arg;
9158 const char *type;
9159
9160 if (pnp != NULL) {
9161 arg = aux;
9162 switch (arg->type) {
9163 case AUDIODEV_TYPE_AUDIO:
9164 type = "audio";
9165 break;
9166 case AUDIODEV_TYPE_MIDI:
9167 type = "midi";
9168 break;
9169 case AUDIODEV_TYPE_OPL:
9170 type = "opl";
9171 break;
9172 case AUDIODEV_TYPE_MPU:
9173 type = "mpu";
9174 break;
9175 case AUDIODEV_TYPE_AUX:
9176 type = "aux";
9177 break;
9178 default:
9179 panic("audioprint: unknown type %d", arg->type);
9180 }
9181 aprint_normal("%s at %s", type, pnp);
9182 }
9183 return UNCONF;
9184 }
9185
9186 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
9187
9188 #ifdef _MODULE
9189
9190 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
9191
9192 #include "ioconf.c"
9193
9194 #endif
9195
9196 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
9197
9198 static int
9199 audio_modcmd(modcmd_t cmd, void *arg)
9200 {
9201 int error = 0;
9202
9203 switch (cmd) {
9204 case MODULE_CMD_INIT:
9205 /* XXX interrupt level? */
9206 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
9207 #ifdef _MODULE
9208 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
9209 &audio_cdevsw, &audio_cmajor);
9210 if (error)
9211 break;
9212
9213 error = config_init_component(cfdriver_ioconf_audio,
9214 cfattach_ioconf_audio, cfdata_ioconf_audio);
9215 if (error) {
9216 devsw_detach(NULL, &audio_cdevsw);
9217 }
9218 #endif
9219 break;
9220 case MODULE_CMD_FINI:
9221 #ifdef _MODULE
9222 error = config_fini_component(cfdriver_ioconf_audio,
9223 cfattach_ioconf_audio, cfdata_ioconf_audio);
9224 if (error == 0)
9225 devsw_detach(NULL, &audio_cdevsw);
9226 #endif
9227 if (error == 0)
9228 psref_class_destroy(audio_psref_class);
9229 break;
9230 default:
9231 error = ENOTTY;
9232 break;
9233 }
9234
9235 return error;
9236 }
9237