audio.c revision 1.132 1 /* $NetBSD: audio.c,v 1.132 2022/04/23 11:30:57 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Terminology: "sample", "channel", "frame", "block", "track":
67 *
68 * channel frame
69 * | ........
70 * v : : \
71 * +------:------:------:- -+------+ : +------+-.. |
72 * #0(L) |sample|sample|sample| .. |sample| : |sample| |
73 * +------:------:------:- -+------+ : +------+-.. |
74 * #1(R) |sample|sample|sample| .. |sample| : |sample| |
75 * +------:------:------:- -+------+ : +------+-.. | track
76 * : : : : |
77 * +------:------:------:- -+------+ : +------+-.. |
78 * |sample|sample|sample| .. |sample| : |sample| |
79 * +------:------:------:- -+------+ : +------+-.. |
80 * : : /
81 * ........
82 *
83 * \--------------------------------/ \--------..
84 * block
85 *
86 * - A "frame" is the minimum unit in the time axis direction, and consists
87 * of samples for the number of channels.
88 * - A "block" is basic length of processing. The audio layer basically
89 * handles audio data stream block by block, asks underlying hardware to
90 * process them block by block, and then the hardware raises interrupt by
91 * each block.
92 * - A "track" is single completed audio stream.
93 *
94 * For example, the hardware block is assumed to be 10 msec, and your audio
95 * track consists of 2.1(=3) channels 44.1kHz 16bit PCM,
96 *
97 * "channel" = 3
98 * "sample" = 2 [bytes]
99 * "frame" = 2 [bytes/sample] * 3 [channels] = 6 [bytes]
100 * "block" = 44100 [Hz] * (10/1000) [seconds] * 6 [bytes/frame] = 2646 [bytes]
101 *
102 * The terminologies shown here are only for this MI audio layer. Note that
103 * different terminologies may be used in each manufacturer's datasheet, and
104 * each MD driver may follow it. For example, what we call a "block" is
105 * called a "frame" in sys/dev/pci/yds.c.
106 */
107
108 /*
109 * Locking: there are three locks per device.
110 *
111 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
112 * returned in the second parameter to hw_if->get_locks(). It is known
113 * as the "thread lock".
114 *
115 * It serializes access to state in all places except the
116 * driver's interrupt service routine. This lock is taken from process
117 * context (example: access to /dev/audio). It is also taken from soft
118 * interrupt handlers in this module, primarily to serialize delivery of
119 * wakeups. This lock may be used/provided by modules external to the
120 * audio subsystem, so take care not to introduce a lock order problem.
121 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
122 *
123 * - sc_intr_lock, provided by the underlying driver. This may be either a
124 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
125 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
126 * is known as the "interrupt lock".
127 *
128 * It provides atomic access to the device's hardware state, and to audio
129 * channel data that may be accessed by the hardware driver's ISR.
130 * In all places outside the ISR, sc_lock must be held before taking
131 * sc_intr_lock. This is to ensure that groups of hardware operations are
132 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
133 *
134 * - sc_exlock, private to this module. This is a variable protected by
135 * sc_lock. It is known as the "critical section".
136 * Some operations release sc_lock in order to allocate memory, to wait
137 * for in-flight I/O to complete, to copy to/from user context, etc.
138 * sc_exlock provides a critical section even under the circumstance.
139 * "+" in following list indicates the interfaces which necessary to be
140 * protected by sc_exlock.
141 *
142 * List of hardware interface methods, and which locks are held when each
143 * is called by this module:
144 *
145 * METHOD INTR THREAD NOTES
146 * ----------------------- ------- ------- -------------------------
147 * open x x +
148 * close x x +
149 * query_format - x
150 * set_format - x
151 * round_blocksize - x
152 * commit_settings - x
153 * init_output x x
154 * init_input x x
155 * start_output x x +
156 * start_input x x +
157 * halt_output x x +
158 * halt_input x x +
159 * speaker_ctl x x
160 * getdev - -
161 * set_port - x +
162 * get_port - x +
163 * query_devinfo - x
164 * allocm - - +
165 * freem - - +
166 * round_buffersize - x
167 * get_props - - Called at attach time
168 * trigger_output x x +
169 * trigger_input x x +
170 * dev_ioctl - x
171 * get_locks - - Called at attach time
172 *
173 * In addition, there is an additional lock.
174 *
175 * - track->lock. This is an atomic variable and is similar to the
176 * "interrupt lock". This is one for each track. If any thread context
177 * (and software interrupt context) and hardware interrupt context who
178 * want to access some variables on this track, they must acquire this
179 * lock before. It protects track's consistency between hardware
180 * interrupt context and others.
181 */
182
183 #include <sys/cdefs.h>
184 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.132 2022/04/23 11:30:57 isaki Exp $");
185
186 #ifdef _KERNEL_OPT
187 #include "audio.h"
188 #include "midi.h"
189 #endif
190
191 #if NAUDIO > 0
192
193 #include <sys/types.h>
194 #include <sys/param.h>
195 #include <sys/atomic.h>
196 #include <sys/audioio.h>
197 #include <sys/conf.h>
198 #include <sys/cpu.h>
199 #include <sys/device.h>
200 #include <sys/fcntl.h>
201 #include <sys/file.h>
202 #include <sys/filedesc.h>
203 #include <sys/intr.h>
204 #include <sys/ioctl.h>
205 #include <sys/kauth.h>
206 #include <sys/kernel.h>
207 #include <sys/kmem.h>
208 #include <sys/lock.h>
209 #include <sys/malloc.h>
210 #include <sys/mman.h>
211 #include <sys/module.h>
212 #include <sys/poll.h>
213 #include <sys/proc.h>
214 #include <sys/queue.h>
215 #include <sys/select.h>
216 #include <sys/signalvar.h>
217 #include <sys/stat.h>
218 #include <sys/sysctl.h>
219 #include <sys/systm.h>
220 #include <sys/syslog.h>
221 #include <sys/vnode.h>
222
223 #include <dev/audio/audio_if.h>
224 #include <dev/audio/audiovar.h>
225 #include <dev/audio/audiodef.h>
226 #include <dev/audio/linear.h>
227 #include <dev/audio/mulaw.h>
228
229 #include <machine/endian.h>
230
231 #include <uvm/uvm_extern.h>
232
233 #include "ioconf.h"
234
235 /*
236 * 0: No debug logs
237 * 1: action changes like open/close/set_format...
238 * 2: + normal operations like read/write/ioctl...
239 * 3: + TRACEs except interrupt
240 * 4: + TRACEs including interrupt
241 */
242 //#define AUDIO_DEBUG 1
243
244 #if defined(AUDIO_DEBUG)
245
246 int audiodebug = AUDIO_DEBUG;
247 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
248 const char *, va_list);
249 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
250 __printflike(3, 4);
251 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
252 __printflike(3, 4);
253 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
254 __printflike(3, 4);
255
256 /* XXX sloppy memory logger */
257 static void audio_mlog_init(void);
258 static void audio_mlog_free(void);
259 static void audio_mlog_softintr(void *);
260 extern void audio_mlog_flush(void);
261 extern void audio_mlog_printf(const char *, ...);
262
263 static int mlog_refs; /* reference counter */
264 static char *mlog_buf[2]; /* double buffer */
265 static int mlog_buflen; /* buffer length */
266 static int mlog_used; /* used length */
267 static int mlog_full; /* number of dropped lines by buffer full */
268 static int mlog_drop; /* number of dropped lines by busy */
269 static volatile uint32_t mlog_inuse; /* in-use */
270 static int mlog_wpage; /* active page */
271 static void *mlog_sih; /* softint handle */
272
273 static void
274 audio_mlog_init(void)
275 {
276 mlog_refs++;
277 if (mlog_refs > 1)
278 return;
279 mlog_buflen = 4096;
280 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
281 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
282 mlog_used = 0;
283 mlog_full = 0;
284 mlog_drop = 0;
285 mlog_inuse = 0;
286 mlog_wpage = 0;
287 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
288 if (mlog_sih == NULL)
289 printf("%s: softint_establish failed\n", __func__);
290 }
291
292 static void
293 audio_mlog_free(void)
294 {
295 mlog_refs--;
296 if (mlog_refs > 0)
297 return;
298
299 audio_mlog_flush();
300 if (mlog_sih)
301 softint_disestablish(mlog_sih);
302 kmem_free(mlog_buf[0], mlog_buflen);
303 kmem_free(mlog_buf[1], mlog_buflen);
304 }
305
306 /*
307 * Flush memory buffer.
308 * It must not be called from hardware interrupt context.
309 */
310 void
311 audio_mlog_flush(void)
312 {
313 if (mlog_refs == 0)
314 return;
315
316 /* Nothing to do if already in use ? */
317 if (atomic_swap_32(&mlog_inuse, 1) == 1)
318 return;
319 membar_acquire();
320
321 int rpage = mlog_wpage;
322 mlog_wpage ^= 1;
323 mlog_buf[mlog_wpage][0] = '\0';
324 mlog_used = 0;
325
326 atomic_store_release(&mlog_inuse, 0);
327
328 if (mlog_buf[rpage][0] != '\0') {
329 printf("%s", mlog_buf[rpage]);
330 if (mlog_drop > 0)
331 printf("mlog_drop %d\n", mlog_drop);
332 if (mlog_full > 0)
333 printf("mlog_full %d\n", mlog_full);
334 }
335 mlog_full = 0;
336 mlog_drop = 0;
337 }
338
339 static void
340 audio_mlog_softintr(void *cookie)
341 {
342 audio_mlog_flush();
343 }
344
345 void
346 audio_mlog_printf(const char *fmt, ...)
347 {
348 int len;
349 va_list ap;
350
351 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
352 /* already inuse */
353 mlog_drop++;
354 return;
355 }
356 membar_acquire();
357
358 va_start(ap, fmt);
359 len = vsnprintf(
360 mlog_buf[mlog_wpage] + mlog_used,
361 mlog_buflen - mlog_used,
362 fmt, ap);
363 va_end(ap);
364
365 mlog_used += len;
366 if (mlog_buflen - mlog_used <= 1) {
367 mlog_full++;
368 }
369
370 atomic_store_release(&mlog_inuse, 0);
371
372 if (mlog_sih)
373 softint_schedule(mlog_sih);
374 }
375
376 /* trace functions */
377 static void
378 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
379 const char *fmt, va_list ap)
380 {
381 char buf[256];
382 int n;
383
384 n = 0;
385 buf[0] = '\0';
386 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
387 funcname, device_unit(sc->sc_dev), header);
388 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
389
390 if (cpu_intr_p()) {
391 audio_mlog_printf("%s\n", buf);
392 } else {
393 audio_mlog_flush();
394 printf("%s\n", buf);
395 }
396 }
397
398 static void
399 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
400 {
401 va_list ap;
402
403 va_start(ap, fmt);
404 audio_vtrace(sc, funcname, "", fmt, ap);
405 va_end(ap);
406 }
407
408 static void
409 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
410 {
411 char hdr[16];
412 va_list ap;
413
414 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
415 va_start(ap, fmt);
416 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
417 va_end(ap);
418 }
419
420 static void
421 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
422 {
423 char hdr[32];
424 char phdr[16], rhdr[16];
425 va_list ap;
426
427 phdr[0] = '\0';
428 rhdr[0] = '\0';
429 if (file->ptrack)
430 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
431 if (file->rtrack)
432 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
433 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
434
435 va_start(ap, fmt);
436 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
437 va_end(ap);
438 }
439
440 #define DPRINTF(n, fmt...) do { \
441 if (audiodebug >= (n)) { \
442 audio_mlog_flush(); \
443 printf(fmt); \
444 } \
445 } while (0)
446 #define TRACE(n, fmt...) do { \
447 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
448 } while (0)
449 #define TRACET(n, t, fmt...) do { \
450 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
451 } while (0)
452 #define TRACEF(n, f, fmt...) do { \
453 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
454 } while (0)
455
456 struct audio_track_debugbuf {
457 char usrbuf[32];
458 char codec[32];
459 char chvol[32];
460 char chmix[32];
461 char freq[32];
462 char outbuf[32];
463 };
464
465 static void
466 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
467 {
468
469 memset(buf, 0, sizeof(*buf));
470
471 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
472 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
473 if (track->freq.filter)
474 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
475 track->freq.srcbuf.head,
476 track->freq.srcbuf.used,
477 track->freq.srcbuf.capacity);
478 if (track->chmix.filter)
479 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
480 track->chmix.srcbuf.used);
481 if (track->chvol.filter)
482 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
483 track->chvol.srcbuf.used);
484 if (track->codec.filter)
485 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
486 track->codec.srcbuf.used);
487 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
488 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
489 }
490 #else
491 #define DPRINTF(n, fmt...) do { } while (0)
492 #define TRACE(n, fmt, ...) do { } while (0)
493 #define TRACET(n, t, fmt, ...) do { } while (0)
494 #define TRACEF(n, f, fmt, ...) do { } while (0)
495 #endif
496
497 #define SPECIFIED(x) ((x) != ~0)
498 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
499
500 /*
501 * Default hardware blocksize in msec.
502 *
503 * We use 10 msec for most modern platforms. This period is good enough to
504 * play audio and video synchronizely.
505 * In contrast, for very old platforms, this is usually too short and too
506 * severe. Also such platforms usually can not play video confortably, so
507 * it's not so important to make the blocksize shorter. If the platform
508 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
509 * uses this instead.
510 *
511 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
512 * configuration file if you wish.
513 */
514 #if !defined(AUDIO_BLK_MS)
515 # if defined(__AUDIO_BLK_MS)
516 # define AUDIO_BLK_MS __AUDIO_BLK_MS
517 # else
518 # define AUDIO_BLK_MS (10)
519 # endif
520 #endif
521
522 /* Device timeout in msec */
523 #define AUDIO_TIMEOUT (3000)
524
525 /* #define AUDIO_PM_IDLE */
526 #ifdef AUDIO_PM_IDLE
527 int audio_idle_timeout = 30;
528 #endif
529
530 /* Number of elements of async mixer's pid */
531 #define AM_CAPACITY (4)
532
533 struct portname {
534 const char *name;
535 int mask;
536 };
537
538 static int audiomatch(device_t, cfdata_t, void *);
539 static void audioattach(device_t, device_t, void *);
540 static int audiodetach(device_t, int);
541 static int audioactivate(device_t, enum devact);
542 static void audiochilddet(device_t, device_t);
543 static int audiorescan(device_t, const char *, const int *);
544
545 static int audio_modcmd(modcmd_t, void *);
546
547 #ifdef AUDIO_PM_IDLE
548 static void audio_idle(void *);
549 static void audio_activity(device_t, devactive_t);
550 #endif
551
552 static bool audio_suspend(device_t dv, const pmf_qual_t *);
553 static bool audio_resume(device_t dv, const pmf_qual_t *);
554 static void audio_volume_down(device_t);
555 static void audio_volume_up(device_t);
556 static void audio_volume_toggle(device_t);
557
558 static void audio_mixer_capture(struct audio_softc *);
559 static void audio_mixer_restore(struct audio_softc *);
560
561 static void audio_softintr_rd(void *);
562 static void audio_softintr_wr(void *);
563
564 static void audio_printf(struct audio_softc *, const char *, ...)
565 __printflike(2, 3);
566 static int audio_exlock_mutex_enter(struct audio_softc *);
567 static void audio_exlock_mutex_exit(struct audio_softc *);
568 static int audio_exlock_enter(struct audio_softc *);
569 static void audio_exlock_exit(struct audio_softc *);
570 static struct audio_softc *audio_sc_acquire_fromfile(audio_file_t *,
571 struct psref *);
572 static void audio_sc_release(struct audio_softc *, struct psref *);
573 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
574
575 static int audioclose(struct file *);
576 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
577 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
578 static int audioioctl(struct file *, u_long, void *);
579 static int audiopoll(struct file *, int);
580 static int audiokqfilter(struct file *, struct knote *);
581 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
582 struct uvm_object **, int *);
583 static int audiostat(struct file *, struct stat *);
584
585 static void filt_audiowrite_detach(struct knote *);
586 static int filt_audiowrite_event(struct knote *, long);
587 static void filt_audioread_detach(struct knote *);
588 static int filt_audioread_event(struct knote *, long);
589
590 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
591 audio_file_t **);
592 static int audio_close(struct audio_softc *, audio_file_t *);
593 static void audio_unlink(struct audio_softc *, audio_file_t *);
594 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
595 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
596 static void audio_file_clear(struct audio_softc *, audio_file_t *);
597 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
598 struct lwp *, audio_file_t *);
599 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
600 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
601 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
602 struct uvm_object **, int *, audio_file_t *);
603
604 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
605
606 static void audio_pintr(void *);
607 static void audio_rintr(void *);
608
609 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
610
611 static int audio_track_inputblk_as_usrbyte(const audio_track_t *, int);
612 static int audio_track_readablebytes(const audio_track_t *);
613 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
614 const struct audio_info *);
615 static int audio_track_setinfo_check(audio_track_t *,
616 audio_format2_t *, const struct audio_prinfo *);
617 static void audio_track_setinfo_water(audio_track_t *,
618 const struct audio_info *);
619 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
620 struct audio_info *);
621 static int audio_hw_set_format(struct audio_softc *, int,
622 const audio_format2_t *, const audio_format2_t *,
623 audio_filter_reg_t *, audio_filter_reg_t *);
624 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
625 audio_file_t *);
626 static bool audio_can_playback(struct audio_softc *);
627 static bool audio_can_capture(struct audio_softc *);
628 static int audio_check_params(audio_format2_t *);
629 static int audio_mixers_init(struct audio_softc *sc, int,
630 const audio_format2_t *, const audio_format2_t *,
631 const audio_filter_reg_t *, const audio_filter_reg_t *);
632 static int audio_select_freq(const struct audio_format *);
633 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
634 static int audio_hw_validate_format(struct audio_softc *, int,
635 const audio_format2_t *);
636 static int audio_mixers_set_format(struct audio_softc *,
637 const struct audio_info *);
638 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
639 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
640 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
641 #if defined(AUDIO_DEBUG)
642 static int audio_sysctl_debug(SYSCTLFN_PROTO);
643 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
644 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
645 #endif
646
647 static void *audio_realloc(void *, size_t);
648 static int audio_realloc_usrbuf(audio_track_t *, int);
649 static void audio_free_usrbuf(audio_track_t *);
650
651 static audio_track_t *audio_track_create(struct audio_softc *,
652 audio_trackmixer_t *);
653 static void audio_track_destroy(audio_track_t *);
654 static audio_filter_t audio_track_get_codec(audio_track_t *,
655 const audio_format2_t *, const audio_format2_t *);
656 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
657 static void audio_track_play(audio_track_t *);
658 static int audio_track_drain(struct audio_softc *, audio_track_t *);
659 static void audio_track_record(audio_track_t *);
660 static void audio_track_clear(struct audio_softc *, audio_track_t *);
661
662 static int audio_mixer_init(struct audio_softc *, int,
663 const audio_format2_t *, const audio_filter_reg_t *);
664 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
665 static void audio_pmixer_start(struct audio_softc *, bool);
666 static void audio_pmixer_process(struct audio_softc *);
667 static void audio_pmixer_agc(audio_trackmixer_t *, int);
668 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
669 static void audio_pmixer_output(struct audio_softc *);
670 static int audio_pmixer_halt(struct audio_softc *);
671 static void audio_rmixer_start(struct audio_softc *);
672 static void audio_rmixer_process(struct audio_softc *);
673 static void audio_rmixer_input(struct audio_softc *);
674 static int audio_rmixer_halt(struct audio_softc *);
675
676 static void mixer_init(struct audio_softc *);
677 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
678 static int mixer_close(struct audio_softc *, audio_file_t *);
679 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
680 static void mixer_async_add(struct audio_softc *, pid_t);
681 static void mixer_async_remove(struct audio_softc *, pid_t);
682 static void mixer_signal(struct audio_softc *);
683
684 static int au_portof(struct audio_softc *, char *, int);
685
686 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
687 mixer_devinfo_t *, const struct portname *);
688 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
689 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
690 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
691 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
692 u_int *, u_char *);
693 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
694 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
695 static int au_set_monitor_gain(struct audio_softc *, int);
696 static int au_get_monitor_gain(struct audio_softc *);
697 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
698 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
699
700 static __inline struct audio_params
701 format2_to_params(const audio_format2_t *f2)
702 {
703 audio_params_t p;
704
705 /* validbits/precision <-> precision/stride */
706 p.sample_rate = f2->sample_rate;
707 p.channels = f2->channels;
708 p.encoding = f2->encoding;
709 p.validbits = f2->precision;
710 p.precision = f2->stride;
711 return p;
712 }
713
714 static __inline audio_format2_t
715 params_to_format2(const struct audio_params *p)
716 {
717 audio_format2_t f2;
718
719 /* precision/stride <-> validbits/precision */
720 f2.sample_rate = p->sample_rate;
721 f2.channels = p->channels;
722 f2.encoding = p->encoding;
723 f2.precision = p->validbits;
724 f2.stride = p->precision;
725 return f2;
726 }
727
728 /* Return true if this track is a playback track. */
729 static __inline bool
730 audio_track_is_playback(const audio_track_t *track)
731 {
732
733 return ((track->mode & AUMODE_PLAY) != 0);
734 }
735
736 #if 0
737 /* Return true if this track is a recording track. */
738 static __inline bool
739 audio_track_is_record(const audio_track_t *track)
740 {
741
742 return ((track->mode & AUMODE_RECORD) != 0);
743 }
744 #endif
745
746 #if 0 /* XXX Not used yet */
747 /*
748 * Convert 0..255 volume used in userland to internal presentation 0..256.
749 */
750 static __inline u_int
751 audio_volume_to_inner(u_int v)
752 {
753
754 return v < 127 ? v : v + 1;
755 }
756
757 /*
758 * Convert 0..256 internal presentation to 0..255 volume used in userland.
759 */
760 static __inline u_int
761 audio_volume_to_outer(u_int v)
762 {
763
764 return v < 127 ? v : v - 1;
765 }
766 #endif /* 0 */
767
768 static dev_type_open(audioopen);
769 /* XXXMRG use more dev_type_xxx */
770
771 static int
772 audiounit(dev_t dev)
773 {
774
775 return AUDIOUNIT(dev);
776 }
777
778 const struct cdevsw audio_cdevsw = {
779 .d_open = audioopen,
780 .d_close = noclose,
781 .d_read = noread,
782 .d_write = nowrite,
783 .d_ioctl = noioctl,
784 .d_stop = nostop,
785 .d_tty = notty,
786 .d_poll = nopoll,
787 .d_mmap = nommap,
788 .d_kqfilter = nokqfilter,
789 .d_discard = nodiscard,
790 .d_cfdriver = &audio_cd,
791 .d_devtounit = audiounit,
792 .d_flag = D_OTHER | D_MPSAFE
793 };
794
795 const struct fileops audio_fileops = {
796 .fo_name = "audio",
797 .fo_read = audioread,
798 .fo_write = audiowrite,
799 .fo_ioctl = audioioctl,
800 .fo_fcntl = fnullop_fcntl,
801 .fo_stat = audiostat,
802 .fo_poll = audiopoll,
803 .fo_close = audioclose,
804 .fo_mmap = audiommap,
805 .fo_kqfilter = audiokqfilter,
806 .fo_restart = fnullop_restart
807 };
808
809 /* The default audio mode: 8 kHz mono mu-law */
810 static const struct audio_params audio_default = {
811 .sample_rate = 8000,
812 .encoding = AUDIO_ENCODING_ULAW,
813 .precision = 8,
814 .validbits = 8,
815 .channels = 1,
816 };
817
818 static const char *encoding_names[] = {
819 "none",
820 AudioEmulaw,
821 AudioEalaw,
822 "pcm16",
823 "pcm8",
824 AudioEadpcm,
825 AudioEslinear_le,
826 AudioEslinear_be,
827 AudioEulinear_le,
828 AudioEulinear_be,
829 AudioEslinear,
830 AudioEulinear,
831 AudioEmpeg_l1_stream,
832 AudioEmpeg_l1_packets,
833 AudioEmpeg_l1_system,
834 AudioEmpeg_l2_stream,
835 AudioEmpeg_l2_packets,
836 AudioEmpeg_l2_system,
837 AudioEac3,
838 };
839
840 /*
841 * Returns encoding name corresponding to AUDIO_ENCODING_*.
842 * Note that it may return a local buffer because it is mainly for debugging.
843 */
844 const char *
845 audio_encoding_name(int encoding)
846 {
847 static char buf[16];
848
849 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
850 return encoding_names[encoding];
851 } else {
852 snprintf(buf, sizeof(buf), "enc=%d", encoding);
853 return buf;
854 }
855 }
856
857 /*
858 * Supported encodings used by AUDIO_GETENC.
859 * index and flags are set by code.
860 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
861 */
862 static const audio_encoding_t audio_encodings[] = {
863 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
864 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
865 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
866 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
867 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
868 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
869 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
870 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
871 #if defined(AUDIO_SUPPORT_LINEAR24)
872 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
873 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
874 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
875 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
876 #endif
877 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
878 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
879 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
880 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
881 };
882
883 static const struct portname itable[] = {
884 { AudioNmicrophone, AUDIO_MICROPHONE },
885 { AudioNline, AUDIO_LINE_IN },
886 { AudioNcd, AUDIO_CD },
887 { 0, 0 }
888 };
889 static const struct portname otable[] = {
890 { AudioNspeaker, AUDIO_SPEAKER },
891 { AudioNheadphone, AUDIO_HEADPHONE },
892 { AudioNline, AUDIO_LINE_OUT },
893 { 0, 0 }
894 };
895
896 static struct psref_class *audio_psref_class __read_mostly;
897
898 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
899 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
900 audiochilddet, DVF_DETACH_SHUTDOWN);
901
902 static int
903 audiomatch(device_t parent, cfdata_t match, void *aux)
904 {
905 struct audio_attach_args *sa;
906
907 sa = aux;
908 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
909 __func__, sa->type, sa, sa->hwif);
910 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
911 }
912
913 static void
914 audioattach(device_t parent, device_t self, void *aux)
915 {
916 struct audio_softc *sc;
917 struct audio_attach_args *sa;
918 const struct audio_hw_if *hw_if;
919 audio_format2_t phwfmt;
920 audio_format2_t rhwfmt;
921 audio_filter_reg_t pfil;
922 audio_filter_reg_t rfil;
923 const struct sysctlnode *node;
924 void *hdlp;
925 bool has_playback;
926 bool has_capture;
927 bool has_indep;
928 bool has_fulldup;
929 int mode;
930 int error;
931
932 sc = device_private(self);
933 sc->sc_dev = self;
934 sa = (struct audio_attach_args *)aux;
935 hw_if = sa->hwif;
936 hdlp = sa->hdl;
937
938 if (hw_if == NULL) {
939 panic("audioattach: missing hw_if method");
940 }
941 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
942 aprint_error(": missing mandatory method\n");
943 return;
944 }
945
946 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
947 sc->sc_props = hw_if->get_props(hdlp);
948
949 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
950 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
951 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
952 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
953
954 #ifdef DIAGNOSTIC
955 if (hw_if->query_format == NULL ||
956 hw_if->set_format == NULL ||
957 hw_if->getdev == NULL ||
958 hw_if->set_port == NULL ||
959 hw_if->get_port == NULL ||
960 hw_if->query_devinfo == NULL) {
961 aprint_error(": missing mandatory method\n");
962 return;
963 }
964 if (has_playback) {
965 if ((hw_if->start_output == NULL &&
966 hw_if->trigger_output == NULL) ||
967 hw_if->halt_output == NULL) {
968 aprint_error(": missing playback method\n");
969 }
970 }
971 if (has_capture) {
972 if ((hw_if->start_input == NULL &&
973 hw_if->trigger_input == NULL) ||
974 hw_if->halt_input == NULL) {
975 aprint_error(": missing capture method\n");
976 }
977 }
978 #endif
979
980 sc->hw_if = hw_if;
981 sc->hw_hdl = hdlp;
982 sc->hw_dev = parent;
983
984 sc->sc_exlock = 1;
985 sc->sc_blk_ms = AUDIO_BLK_MS;
986 SLIST_INIT(&sc->sc_files);
987 cv_init(&sc->sc_exlockcv, "audiolk");
988 sc->sc_am_capacity = 0;
989 sc->sc_am_used = 0;
990 sc->sc_am = NULL;
991
992 /* MMAP is now supported by upper layer. */
993 sc->sc_props |= AUDIO_PROP_MMAP;
994
995 KASSERT(has_playback || has_capture);
996 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
997 if (!has_playback || !has_capture) {
998 KASSERT(!has_indep);
999 KASSERT(!has_fulldup);
1000 }
1001
1002 mode = 0;
1003 if (has_playback) {
1004 aprint_normal(": playback");
1005 mode |= AUMODE_PLAY;
1006 }
1007 if (has_capture) {
1008 aprint_normal("%c capture", has_playback ? ',' : ':');
1009 mode |= AUMODE_RECORD;
1010 }
1011 if (has_playback && has_capture) {
1012 if (has_fulldup)
1013 aprint_normal(", full duplex");
1014 else
1015 aprint_normal(", half duplex");
1016
1017 if (has_indep)
1018 aprint_normal(", independent");
1019 }
1020
1021 aprint_naive("\n");
1022 aprint_normal("\n");
1023
1024 /* probe hw params */
1025 memset(&phwfmt, 0, sizeof(phwfmt));
1026 memset(&rhwfmt, 0, sizeof(rhwfmt));
1027 memset(&pfil, 0, sizeof(pfil));
1028 memset(&rfil, 0, sizeof(rfil));
1029 if (has_indep) {
1030 int perror, rerror;
1031
1032 /* On independent devices, probe separately. */
1033 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
1034 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
1035 if (perror && rerror) {
1036 aprint_error_dev(self,
1037 "audio_hw_probe failed: perror=%d, rerror=%d\n",
1038 perror, rerror);
1039 goto bad;
1040 }
1041 if (perror) {
1042 mode &= ~AUMODE_PLAY;
1043 aprint_error_dev(self, "audio_hw_probe failed: "
1044 "errno=%d, playback disabled\n", perror);
1045 }
1046 if (rerror) {
1047 mode &= ~AUMODE_RECORD;
1048 aprint_error_dev(self, "audio_hw_probe failed: "
1049 "errno=%d, capture disabled\n", rerror);
1050 }
1051 } else {
1052 /*
1053 * On non independent devices or uni-directional devices,
1054 * probe once (simultaneously).
1055 */
1056 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
1057 error = audio_hw_probe(sc, fmt, mode);
1058 if (error) {
1059 aprint_error_dev(self,
1060 "audio_hw_probe failed: errno=%d\n", error);
1061 goto bad;
1062 }
1063 if (has_playback && has_capture)
1064 rhwfmt = phwfmt;
1065 }
1066
1067 /* Init hardware. */
1068 /* hw_probe() also validates [pr]hwfmt. */
1069 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1070 if (error) {
1071 aprint_error_dev(self,
1072 "audio_hw_set_format failed: errno=%d\n", error);
1073 goto bad;
1074 }
1075
1076 /*
1077 * Init track mixers. If at least one direction is available on
1078 * attach time, we assume a success.
1079 */
1080 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1081 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1082 aprint_error_dev(self,
1083 "audio_mixers_init failed: errno=%d\n", error);
1084 goto bad;
1085 }
1086
1087 sc->sc_psz = pserialize_create();
1088 psref_target_init(&sc->sc_psref, audio_psref_class);
1089
1090 selinit(&sc->sc_wsel);
1091 selinit(&sc->sc_rsel);
1092
1093 /* Initial parameter of /dev/sound */
1094 sc->sc_sound_pparams = params_to_format2(&audio_default);
1095 sc->sc_sound_rparams = params_to_format2(&audio_default);
1096 sc->sc_sound_ppause = false;
1097 sc->sc_sound_rpause = false;
1098
1099 /* XXX TODO: consider about sc_ai */
1100
1101 mixer_init(sc);
1102 TRACE(2, "inputs ports=0x%x, input master=%d, "
1103 "output ports=0x%x, output master=%d",
1104 sc->sc_inports.allports, sc->sc_inports.master,
1105 sc->sc_outports.allports, sc->sc_outports.master);
1106
1107 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1108 0,
1109 CTLTYPE_NODE, device_xname(sc->sc_dev),
1110 SYSCTL_DESCR("audio test"),
1111 NULL, 0,
1112 NULL, 0,
1113 CTL_HW,
1114 CTL_CREATE, CTL_EOL);
1115
1116 if (node != NULL) {
1117 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1118 CTLFLAG_READWRITE,
1119 CTLTYPE_INT, "blk_ms",
1120 SYSCTL_DESCR("blocksize in msec"),
1121 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1122 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1123
1124 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1125 CTLFLAG_READWRITE,
1126 CTLTYPE_BOOL, "multiuser",
1127 SYSCTL_DESCR("allow multiple user access"),
1128 audio_sysctl_multiuser, 0, (void *)sc, 0,
1129 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1130
1131 #if defined(AUDIO_DEBUG)
1132 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1133 CTLFLAG_READWRITE,
1134 CTLTYPE_INT, "debug",
1135 SYSCTL_DESCR("debug level (0..4)"),
1136 audio_sysctl_debug, 0, (void *)sc, 0,
1137 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1138 #endif
1139 }
1140
1141 #ifdef AUDIO_PM_IDLE
1142 callout_init(&sc->sc_idle_counter, 0);
1143 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1144 #endif
1145
1146 if (!pmf_device_register(self, audio_suspend, audio_resume))
1147 aprint_error_dev(self, "couldn't establish power handler\n");
1148 #ifdef AUDIO_PM_IDLE
1149 if (!device_active_register(self, audio_activity))
1150 aprint_error_dev(self, "couldn't register activity handler\n");
1151 #endif
1152
1153 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1154 audio_volume_down, true))
1155 aprint_error_dev(self, "couldn't add volume down handler\n");
1156 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1157 audio_volume_up, true))
1158 aprint_error_dev(self, "couldn't add volume up handler\n");
1159 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1160 audio_volume_toggle, true))
1161 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1162
1163 #ifdef AUDIO_PM_IDLE
1164 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1165 #endif
1166
1167 #if defined(AUDIO_DEBUG)
1168 audio_mlog_init();
1169 #endif
1170
1171 audiorescan(self, NULL, NULL);
1172 sc->sc_exlock = 0;
1173 return;
1174
1175 bad:
1176 /* Clearing hw_if means that device is attached but disabled. */
1177 sc->hw_if = NULL;
1178 sc->sc_exlock = 0;
1179 aprint_error_dev(sc->sc_dev, "disabled\n");
1180 return;
1181 }
1182
1183 /*
1184 * Initialize hardware mixer.
1185 * This function is called from audioattach().
1186 */
1187 static void
1188 mixer_init(struct audio_softc *sc)
1189 {
1190 mixer_devinfo_t mi;
1191 int iclass, mclass, oclass, rclass;
1192 int record_master_found, record_source_found;
1193
1194 iclass = mclass = oclass = rclass = -1;
1195 sc->sc_inports.index = -1;
1196 sc->sc_inports.master = -1;
1197 sc->sc_inports.nports = 0;
1198 sc->sc_inports.isenum = false;
1199 sc->sc_inports.allports = 0;
1200 sc->sc_inports.isdual = false;
1201 sc->sc_inports.mixerout = -1;
1202 sc->sc_inports.cur_port = -1;
1203 sc->sc_outports.index = -1;
1204 sc->sc_outports.master = -1;
1205 sc->sc_outports.nports = 0;
1206 sc->sc_outports.isenum = false;
1207 sc->sc_outports.allports = 0;
1208 sc->sc_outports.isdual = false;
1209 sc->sc_outports.mixerout = -1;
1210 sc->sc_outports.cur_port = -1;
1211 sc->sc_monitor_port = -1;
1212 /*
1213 * Read through the underlying driver's list, picking out the class
1214 * names from the mixer descriptions. We'll need them to decode the
1215 * mixer descriptions on the next pass through the loop.
1216 */
1217 mutex_enter(sc->sc_lock);
1218 for(mi.index = 0; ; mi.index++) {
1219 if (audio_query_devinfo(sc, &mi) != 0)
1220 break;
1221 /*
1222 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1223 * All the other types describe an actual mixer.
1224 */
1225 if (mi.type == AUDIO_MIXER_CLASS) {
1226 if (strcmp(mi.label.name, AudioCinputs) == 0)
1227 iclass = mi.mixer_class;
1228 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1229 mclass = mi.mixer_class;
1230 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1231 oclass = mi.mixer_class;
1232 if (strcmp(mi.label.name, AudioCrecord) == 0)
1233 rclass = mi.mixer_class;
1234 }
1235 }
1236 mutex_exit(sc->sc_lock);
1237
1238 /* Allocate save area. Ensure non-zero allocation. */
1239 sc->sc_nmixer_states = mi.index;
1240 sc->sc_mixer_state = kmem_zalloc(sizeof(sc->sc_mixer_state[0]) *
1241 (sc->sc_nmixer_states + 1), KM_SLEEP);
1242
1243 /*
1244 * This is where we assign each control in the "audio" model, to the
1245 * underlying "mixer" control. We walk through the whole list once,
1246 * assigning likely candidates as we come across them.
1247 */
1248 record_master_found = 0;
1249 record_source_found = 0;
1250 mutex_enter(sc->sc_lock);
1251 for(mi.index = 0; ; mi.index++) {
1252 if (audio_query_devinfo(sc, &mi) != 0)
1253 break;
1254 KASSERT(mi.index < sc->sc_nmixer_states);
1255 if (mi.type == AUDIO_MIXER_CLASS)
1256 continue;
1257 if (mi.mixer_class == iclass) {
1258 /*
1259 * AudioCinputs is only a fallback, when we don't
1260 * find what we're looking for in AudioCrecord, so
1261 * check the flags before accepting one of these.
1262 */
1263 if (strcmp(mi.label.name, AudioNmaster) == 0
1264 && record_master_found == 0)
1265 sc->sc_inports.master = mi.index;
1266 if (strcmp(mi.label.name, AudioNsource) == 0
1267 && record_source_found == 0) {
1268 if (mi.type == AUDIO_MIXER_ENUM) {
1269 int i;
1270 for(i = 0; i < mi.un.e.num_mem; i++)
1271 if (strcmp(mi.un.e.member[i].label.name,
1272 AudioNmixerout) == 0)
1273 sc->sc_inports.mixerout =
1274 mi.un.e.member[i].ord;
1275 }
1276 au_setup_ports(sc, &sc->sc_inports, &mi,
1277 itable);
1278 }
1279 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1280 sc->sc_outports.master == -1)
1281 sc->sc_outports.master = mi.index;
1282 } else if (mi.mixer_class == mclass) {
1283 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1284 sc->sc_monitor_port = mi.index;
1285 } else if (mi.mixer_class == oclass) {
1286 if (strcmp(mi.label.name, AudioNmaster) == 0)
1287 sc->sc_outports.master = mi.index;
1288 if (strcmp(mi.label.name, AudioNselect) == 0)
1289 au_setup_ports(sc, &sc->sc_outports, &mi,
1290 otable);
1291 } else if (mi.mixer_class == rclass) {
1292 /*
1293 * These are the preferred mixers for the audio record
1294 * controls, so set the flags here, but don't check.
1295 */
1296 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1297 sc->sc_inports.master = mi.index;
1298 record_master_found = 1;
1299 }
1300 #if 1 /* Deprecated. Use AudioNmaster. */
1301 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1302 sc->sc_inports.master = mi.index;
1303 record_master_found = 1;
1304 }
1305 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1306 sc->sc_inports.master = mi.index;
1307 record_master_found = 1;
1308 }
1309 #endif
1310 if (strcmp(mi.label.name, AudioNsource) == 0) {
1311 if (mi.type == AUDIO_MIXER_ENUM) {
1312 int i;
1313 for(i = 0; i < mi.un.e.num_mem; i++)
1314 if (strcmp(mi.un.e.member[i].label.name,
1315 AudioNmixerout) == 0)
1316 sc->sc_inports.mixerout =
1317 mi.un.e.member[i].ord;
1318 }
1319 au_setup_ports(sc, &sc->sc_inports, &mi,
1320 itable);
1321 record_source_found = 1;
1322 }
1323 }
1324 }
1325 mutex_exit(sc->sc_lock);
1326 }
1327
1328 static int
1329 audioactivate(device_t self, enum devact act)
1330 {
1331 struct audio_softc *sc = device_private(self);
1332
1333 switch (act) {
1334 case DVACT_DEACTIVATE:
1335 mutex_enter(sc->sc_lock);
1336 sc->sc_dying = true;
1337 cv_broadcast(&sc->sc_exlockcv);
1338 mutex_exit(sc->sc_lock);
1339 return 0;
1340 default:
1341 return EOPNOTSUPP;
1342 }
1343 }
1344
1345 static int
1346 audiodetach(device_t self, int flags)
1347 {
1348 struct audio_softc *sc;
1349 struct audio_file *file;
1350 int maj, mn;
1351 int error;
1352
1353 sc = device_private(self);
1354 TRACE(2, "flags=%d", flags);
1355
1356 /* device is not initialized */
1357 if (sc->hw_if == NULL)
1358 return 0;
1359
1360 /* Start draining existing accessors of the device. */
1361 error = config_detach_children(self, flags);
1362 if (error)
1363 return error;
1364
1365 /*
1366 * Prevent new opens and wait for existing opens to complete.
1367 */
1368 maj = cdevsw_lookup_major(&audio_cdevsw);
1369 mn = device_unit(self);
1370 vdevgone(maj, mn|SOUND_DEVICE, mn|SOUND_DEVICE, VCHR);
1371 vdevgone(maj, mn|AUDIO_DEVICE, mn|AUDIO_DEVICE, VCHR);
1372 vdevgone(maj, mn|AUDIOCTL_DEVICE, mn|AUDIOCTL_DEVICE, VCHR);
1373 vdevgone(maj, mn|MIXER_DEVICE, mn|MIXER_DEVICE, VCHR);
1374
1375 /*
1376 * This waits currently running sysctls to finish if exists.
1377 * After this, no more new sysctls will come.
1378 */
1379 sysctl_teardown(&sc->sc_log);
1380
1381 mutex_enter(sc->sc_lock);
1382 sc->sc_dying = true;
1383 cv_broadcast(&sc->sc_exlockcv);
1384 if (sc->sc_pmixer)
1385 cv_broadcast(&sc->sc_pmixer->outcv);
1386 if (sc->sc_rmixer)
1387 cv_broadcast(&sc->sc_rmixer->outcv);
1388
1389 /* Prevent new users */
1390 SLIST_FOREACH(file, &sc->sc_files, entry) {
1391 atomic_store_relaxed(&file->dying, true);
1392 }
1393 mutex_exit(sc->sc_lock);
1394
1395 /*
1396 * Wait for existing users to drain.
1397 * - pserialize_perform waits for all pserialize_read sections on
1398 * all CPUs; after this, no more new psref_acquire can happen.
1399 * - psref_target_destroy waits for all extant acquired psrefs to
1400 * be psref_released.
1401 */
1402 pserialize_perform(sc->sc_psz);
1403 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1404
1405 /*
1406 * We are now guaranteed that there are no calls to audio fileops
1407 * that hold sc, and any new calls with files that were for sc will
1408 * fail. Thus, we now have exclusive access to the softc.
1409 */
1410 sc->sc_exlock = 1;
1411
1412 /*
1413 * Clean up all open instances.
1414 */
1415 mutex_enter(sc->sc_lock);
1416 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1417 mutex_enter(sc->sc_intr_lock);
1418 SLIST_REMOVE_HEAD(&sc->sc_files, entry);
1419 mutex_exit(sc->sc_intr_lock);
1420 if (file->ptrack || file->rtrack) {
1421 mutex_exit(sc->sc_lock);
1422 audio_unlink(sc, file);
1423 mutex_enter(sc->sc_lock);
1424 }
1425 }
1426 mutex_exit(sc->sc_lock);
1427
1428 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1429 audio_volume_down, true);
1430 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1431 audio_volume_up, true);
1432 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1433 audio_volume_toggle, true);
1434
1435 #ifdef AUDIO_PM_IDLE
1436 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1437
1438 device_active_deregister(self, audio_activity);
1439 #endif
1440
1441 pmf_device_deregister(self);
1442
1443 /* Free resources */
1444 if (sc->sc_pmixer) {
1445 audio_mixer_destroy(sc, sc->sc_pmixer);
1446 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1447 }
1448 if (sc->sc_rmixer) {
1449 audio_mixer_destroy(sc, sc->sc_rmixer);
1450 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1451 }
1452 if (sc->sc_am)
1453 kern_free(sc->sc_am);
1454
1455 seldestroy(&sc->sc_wsel);
1456 seldestroy(&sc->sc_rsel);
1457
1458 #ifdef AUDIO_PM_IDLE
1459 callout_destroy(&sc->sc_idle_counter);
1460 #endif
1461
1462 cv_destroy(&sc->sc_exlockcv);
1463
1464 #if defined(AUDIO_DEBUG)
1465 audio_mlog_free();
1466 #endif
1467
1468 return 0;
1469 }
1470
1471 static void
1472 audiochilddet(device_t self, device_t child)
1473 {
1474
1475 /* we hold no child references, so do nothing */
1476 }
1477
1478 static int
1479 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1480 {
1481
1482 if (config_probe(parent, cf, aux))
1483 config_attach(parent, cf, aux, NULL,
1484 CFARGS_NONE);
1485
1486 return 0;
1487 }
1488
1489 static int
1490 audiorescan(device_t self, const char *ifattr, const int *locators)
1491 {
1492 struct audio_softc *sc = device_private(self);
1493
1494 config_search(sc->sc_dev, NULL,
1495 CFARGS(.search = audiosearch));
1496
1497 return 0;
1498 }
1499
1500 /*
1501 * Called from hardware driver. This is where the MI audio driver gets
1502 * probed/attached to the hardware driver.
1503 */
1504 device_t
1505 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1506 {
1507 struct audio_attach_args arg;
1508
1509 #ifdef DIAGNOSTIC
1510 if (ahwp == NULL) {
1511 aprint_error("audio_attach_mi: NULL\n");
1512 return 0;
1513 }
1514 #endif
1515 arg.type = AUDIODEV_TYPE_AUDIO;
1516 arg.hwif = ahwp;
1517 arg.hdl = hdlp;
1518 return config_found(dev, &arg, audioprint,
1519 CFARGS(.iattr = "audiobus"));
1520 }
1521
1522 /*
1523 * audio_printf() outputs fmt... with the audio device name and MD device
1524 * name prefixed. If the message is considered to be related to the MD
1525 * driver, use this one instead of device_printf().
1526 */
1527 static void
1528 audio_printf(struct audio_softc *sc, const char *fmt, ...)
1529 {
1530 va_list ap;
1531
1532 printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
1533 va_start(ap, fmt);
1534 vprintf(fmt, ap);
1535 va_end(ap);
1536 }
1537
1538 /*
1539 * Enter critical section and also keep sc_lock.
1540 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1541 * Must be called without sc_lock held.
1542 */
1543 static int
1544 audio_exlock_mutex_enter(struct audio_softc *sc)
1545 {
1546 int error;
1547
1548 mutex_enter(sc->sc_lock);
1549 if (sc->sc_dying) {
1550 mutex_exit(sc->sc_lock);
1551 return EIO;
1552 }
1553
1554 while (__predict_false(sc->sc_exlock != 0)) {
1555 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1556 if (sc->sc_dying)
1557 error = EIO;
1558 if (error) {
1559 mutex_exit(sc->sc_lock);
1560 return error;
1561 }
1562 }
1563
1564 /* Acquire */
1565 sc->sc_exlock = 1;
1566 return 0;
1567 }
1568
1569 /*
1570 * Exit critical section and exit sc_lock.
1571 * Must be called with sc_lock held.
1572 */
1573 static void
1574 audio_exlock_mutex_exit(struct audio_softc *sc)
1575 {
1576
1577 KASSERT(mutex_owned(sc->sc_lock));
1578
1579 sc->sc_exlock = 0;
1580 cv_broadcast(&sc->sc_exlockcv);
1581 mutex_exit(sc->sc_lock);
1582 }
1583
1584 /*
1585 * Enter critical section.
1586 * If successful, it returns 0. Otherwise returns errno.
1587 * Must be called without sc_lock held.
1588 * This function returns without sc_lock held.
1589 */
1590 static int
1591 audio_exlock_enter(struct audio_softc *sc)
1592 {
1593 int error;
1594
1595 error = audio_exlock_mutex_enter(sc);
1596 if (error)
1597 return error;
1598 mutex_exit(sc->sc_lock);
1599 return 0;
1600 }
1601
1602 /*
1603 * Exit critical section.
1604 * Must be called without sc_lock held.
1605 */
1606 static void
1607 audio_exlock_exit(struct audio_softc *sc)
1608 {
1609
1610 mutex_enter(sc->sc_lock);
1611 audio_exlock_mutex_exit(sc);
1612 }
1613
1614 /*
1615 * Get sc from file, and increment reference counter for this sc.
1616 * This is intended to be used for methods other than open.
1617 * If successful, returns sc. Otherwise returns NULL.
1618 */
1619 struct audio_softc *
1620 audio_sc_acquire_fromfile(audio_file_t *file, struct psref *refp)
1621 {
1622 int s;
1623 bool dying;
1624
1625 /* Block audiodetach while we acquire a reference */
1626 s = pserialize_read_enter();
1627
1628 /* If close or audiodetach already ran, tough -- no more audio */
1629 dying = atomic_load_relaxed(&file->dying);
1630 if (dying) {
1631 pserialize_read_exit(s);
1632 return NULL;
1633 }
1634
1635 /* Acquire a reference */
1636 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1637
1638 /* Now sc won't go away until we drop the reference count */
1639 pserialize_read_exit(s);
1640
1641 return file->sc;
1642 }
1643
1644 /*
1645 * Decrement reference counter for this sc.
1646 */
1647 void
1648 audio_sc_release(struct audio_softc *sc, struct psref *refp)
1649 {
1650
1651 psref_release(refp, &sc->sc_psref, audio_psref_class);
1652 }
1653
1654 /*
1655 * Wait for I/O to complete, releasing sc_lock.
1656 * Must be called with sc_lock held.
1657 */
1658 static int
1659 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1660 {
1661 int error;
1662
1663 KASSERT(track);
1664 KASSERT(mutex_owned(sc->sc_lock));
1665
1666 /* Wait for pending I/O to complete. */
1667 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1668 mstohz(AUDIO_TIMEOUT));
1669 if (sc->sc_suspending) {
1670 /* If it's about to suspend, ignore timeout error. */
1671 if (error == EWOULDBLOCK) {
1672 TRACET(2, track, "timeout (suspending)");
1673 return 0;
1674 }
1675 }
1676 if (sc->sc_dying) {
1677 error = EIO;
1678 }
1679 if (error) {
1680 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1681 if (error == EWOULDBLOCK)
1682 audio_printf(sc, "device timeout\n");
1683 } else {
1684 TRACET(3, track, "wakeup");
1685 }
1686 return error;
1687 }
1688
1689 /*
1690 * Try to acquire track lock.
1691 * It doesn't block if the track lock is already acquired.
1692 * Returns true if the track lock was acquired, or false if the track
1693 * lock was already acquired.
1694 */
1695 static __inline bool
1696 audio_track_lock_tryenter(audio_track_t *track)
1697 {
1698
1699 if (atomic_swap_uint(&track->lock, 1) != 0)
1700 return false;
1701 membar_acquire();
1702 return true;
1703 }
1704
1705 /*
1706 * Acquire track lock.
1707 */
1708 static __inline void
1709 audio_track_lock_enter(audio_track_t *track)
1710 {
1711
1712 /* Don't sleep here. */
1713 while (audio_track_lock_tryenter(track) == false)
1714 SPINLOCK_BACKOFF_HOOK;
1715 }
1716
1717 /*
1718 * Release track lock.
1719 */
1720 static __inline void
1721 audio_track_lock_exit(audio_track_t *track)
1722 {
1723
1724 atomic_store_release(&track->lock, 0);
1725 }
1726
1727
1728 static int
1729 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1730 {
1731 struct audio_softc *sc;
1732 int error;
1733
1734 /*
1735 * Find the device. Because we wired the cdevsw to the audio
1736 * autoconf instance, the system ensures it will not go away
1737 * until after we return.
1738 */
1739 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1740 if (sc == NULL || sc->hw_if == NULL)
1741 return ENXIO;
1742
1743 error = audio_exlock_enter(sc);
1744 if (error)
1745 return error;
1746
1747 device_active(sc->sc_dev, DVA_SYSTEM);
1748 switch (AUDIODEV(dev)) {
1749 case SOUND_DEVICE:
1750 case AUDIO_DEVICE:
1751 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1752 break;
1753 case AUDIOCTL_DEVICE:
1754 error = audioctl_open(dev, sc, flags, ifmt, l);
1755 break;
1756 case MIXER_DEVICE:
1757 error = mixer_open(dev, sc, flags, ifmt, l);
1758 break;
1759 default:
1760 error = ENXIO;
1761 break;
1762 }
1763 audio_exlock_exit(sc);
1764
1765 return error;
1766 }
1767
1768 static int
1769 audioclose(struct file *fp)
1770 {
1771 struct audio_softc *sc;
1772 struct psref sc_ref;
1773 audio_file_t *file;
1774 int bound;
1775 int error;
1776 dev_t dev;
1777
1778 KASSERT(fp->f_audioctx);
1779 file = fp->f_audioctx;
1780 dev = file->dev;
1781 error = 0;
1782
1783 /*
1784 * audioclose() must
1785 * - unplug track from the trackmixer (and unplug anything from softc),
1786 * if sc exists.
1787 * - free all memory objects, regardless of sc.
1788 */
1789
1790 bound = curlwp_bind();
1791 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1792 if (sc) {
1793 switch (AUDIODEV(dev)) {
1794 case SOUND_DEVICE:
1795 case AUDIO_DEVICE:
1796 error = audio_close(sc, file);
1797 break;
1798 case AUDIOCTL_DEVICE:
1799 mutex_enter(sc->sc_lock);
1800 mutex_enter(sc->sc_intr_lock);
1801 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1802 mutex_exit(sc->sc_intr_lock);
1803 mutex_exit(sc->sc_lock);
1804 error = 0;
1805 break;
1806 case MIXER_DEVICE:
1807 mutex_enter(sc->sc_lock);
1808 mutex_enter(sc->sc_intr_lock);
1809 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1810 mutex_exit(sc->sc_intr_lock);
1811 mutex_exit(sc->sc_lock);
1812 error = mixer_close(sc, file);
1813 break;
1814 default:
1815 error = ENXIO;
1816 break;
1817 }
1818
1819 audio_sc_release(sc, &sc_ref);
1820 }
1821 curlwp_bindx(bound);
1822
1823 /* Free memory objects anyway */
1824 TRACEF(2, file, "free memory");
1825 if (file->ptrack)
1826 audio_track_destroy(file->ptrack);
1827 if (file->rtrack)
1828 audio_track_destroy(file->rtrack);
1829 kmem_free(file, sizeof(*file));
1830 fp->f_audioctx = NULL;
1831
1832 return error;
1833 }
1834
1835 static int
1836 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1837 int ioflag)
1838 {
1839 struct audio_softc *sc;
1840 struct psref sc_ref;
1841 audio_file_t *file;
1842 int bound;
1843 int error;
1844 dev_t dev;
1845
1846 KASSERT(fp->f_audioctx);
1847 file = fp->f_audioctx;
1848 dev = file->dev;
1849
1850 bound = curlwp_bind();
1851 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1852 if (sc == NULL) {
1853 error = EIO;
1854 goto done;
1855 }
1856
1857 if (fp->f_flag & O_NONBLOCK)
1858 ioflag |= IO_NDELAY;
1859
1860 switch (AUDIODEV(dev)) {
1861 case SOUND_DEVICE:
1862 case AUDIO_DEVICE:
1863 error = audio_read(sc, uio, ioflag, file);
1864 break;
1865 case AUDIOCTL_DEVICE:
1866 case MIXER_DEVICE:
1867 error = ENODEV;
1868 break;
1869 default:
1870 error = ENXIO;
1871 break;
1872 }
1873
1874 audio_sc_release(sc, &sc_ref);
1875 done:
1876 curlwp_bindx(bound);
1877 return error;
1878 }
1879
1880 static int
1881 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1882 int ioflag)
1883 {
1884 struct audio_softc *sc;
1885 struct psref sc_ref;
1886 audio_file_t *file;
1887 int bound;
1888 int error;
1889 dev_t dev;
1890
1891 KASSERT(fp->f_audioctx);
1892 file = fp->f_audioctx;
1893 dev = file->dev;
1894
1895 bound = curlwp_bind();
1896 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1897 if (sc == NULL) {
1898 error = EIO;
1899 goto done;
1900 }
1901
1902 if (fp->f_flag & O_NONBLOCK)
1903 ioflag |= IO_NDELAY;
1904
1905 switch (AUDIODEV(dev)) {
1906 case SOUND_DEVICE:
1907 case AUDIO_DEVICE:
1908 error = audio_write(sc, uio, ioflag, file);
1909 break;
1910 case AUDIOCTL_DEVICE:
1911 case MIXER_DEVICE:
1912 error = ENODEV;
1913 break;
1914 default:
1915 error = ENXIO;
1916 break;
1917 }
1918
1919 audio_sc_release(sc, &sc_ref);
1920 done:
1921 curlwp_bindx(bound);
1922 return error;
1923 }
1924
1925 static int
1926 audioioctl(struct file *fp, u_long cmd, void *addr)
1927 {
1928 struct audio_softc *sc;
1929 struct psref sc_ref;
1930 audio_file_t *file;
1931 struct lwp *l = curlwp;
1932 int bound;
1933 int error;
1934 dev_t dev;
1935
1936 KASSERT(fp->f_audioctx);
1937 file = fp->f_audioctx;
1938 dev = file->dev;
1939
1940 bound = curlwp_bind();
1941 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1942 if (sc == NULL) {
1943 error = EIO;
1944 goto done;
1945 }
1946
1947 switch (AUDIODEV(dev)) {
1948 case SOUND_DEVICE:
1949 case AUDIO_DEVICE:
1950 case AUDIOCTL_DEVICE:
1951 mutex_enter(sc->sc_lock);
1952 device_active(sc->sc_dev, DVA_SYSTEM);
1953 mutex_exit(sc->sc_lock);
1954 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1955 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1956 else
1957 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1958 file);
1959 break;
1960 case MIXER_DEVICE:
1961 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1962 break;
1963 default:
1964 error = ENXIO;
1965 break;
1966 }
1967
1968 audio_sc_release(sc, &sc_ref);
1969 done:
1970 curlwp_bindx(bound);
1971 return error;
1972 }
1973
1974 static int
1975 audiostat(struct file *fp, struct stat *st)
1976 {
1977 struct audio_softc *sc;
1978 struct psref sc_ref;
1979 audio_file_t *file;
1980 int bound;
1981 int error;
1982
1983 KASSERT(fp->f_audioctx);
1984 file = fp->f_audioctx;
1985
1986 bound = curlwp_bind();
1987 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1988 if (sc == NULL) {
1989 error = EIO;
1990 goto done;
1991 }
1992
1993 error = 0;
1994 memset(st, 0, sizeof(*st));
1995
1996 st->st_dev = file->dev;
1997 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1998 st->st_gid = kauth_cred_getegid(fp->f_cred);
1999 st->st_mode = S_IFCHR;
2000
2001 audio_sc_release(sc, &sc_ref);
2002 done:
2003 curlwp_bindx(bound);
2004 return error;
2005 }
2006
2007 static int
2008 audiopoll(struct file *fp, int events)
2009 {
2010 struct audio_softc *sc;
2011 struct psref sc_ref;
2012 audio_file_t *file;
2013 struct lwp *l = curlwp;
2014 int bound;
2015 int revents;
2016 dev_t dev;
2017
2018 KASSERT(fp->f_audioctx);
2019 file = fp->f_audioctx;
2020 dev = file->dev;
2021
2022 bound = curlwp_bind();
2023 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2024 if (sc == NULL) {
2025 revents = POLLERR;
2026 goto done;
2027 }
2028
2029 switch (AUDIODEV(dev)) {
2030 case SOUND_DEVICE:
2031 case AUDIO_DEVICE:
2032 revents = audio_poll(sc, events, l, file);
2033 break;
2034 case AUDIOCTL_DEVICE:
2035 case MIXER_DEVICE:
2036 revents = 0;
2037 break;
2038 default:
2039 revents = POLLERR;
2040 break;
2041 }
2042
2043 audio_sc_release(sc, &sc_ref);
2044 done:
2045 curlwp_bindx(bound);
2046 return revents;
2047 }
2048
2049 static int
2050 audiokqfilter(struct file *fp, struct knote *kn)
2051 {
2052 struct audio_softc *sc;
2053 struct psref sc_ref;
2054 audio_file_t *file;
2055 dev_t dev;
2056 int bound;
2057 int error;
2058
2059 KASSERT(fp->f_audioctx);
2060 file = fp->f_audioctx;
2061 dev = file->dev;
2062
2063 bound = curlwp_bind();
2064 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2065 if (sc == NULL) {
2066 error = EIO;
2067 goto done;
2068 }
2069
2070 switch (AUDIODEV(dev)) {
2071 case SOUND_DEVICE:
2072 case AUDIO_DEVICE:
2073 error = audio_kqfilter(sc, file, kn);
2074 break;
2075 case AUDIOCTL_DEVICE:
2076 case MIXER_DEVICE:
2077 error = ENODEV;
2078 break;
2079 default:
2080 error = ENXIO;
2081 break;
2082 }
2083
2084 audio_sc_release(sc, &sc_ref);
2085 done:
2086 curlwp_bindx(bound);
2087 return error;
2088 }
2089
2090 static int
2091 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
2092 int *advicep, struct uvm_object **uobjp, int *maxprotp)
2093 {
2094 struct audio_softc *sc;
2095 struct psref sc_ref;
2096 audio_file_t *file;
2097 dev_t dev;
2098 int bound;
2099 int error;
2100
2101 KASSERT(fp->f_audioctx);
2102 file = fp->f_audioctx;
2103 dev = file->dev;
2104
2105 bound = curlwp_bind();
2106 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2107 if (sc == NULL) {
2108 error = EIO;
2109 goto done;
2110 }
2111
2112 mutex_enter(sc->sc_lock);
2113 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
2114 mutex_exit(sc->sc_lock);
2115
2116 switch (AUDIODEV(dev)) {
2117 case SOUND_DEVICE:
2118 case AUDIO_DEVICE:
2119 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
2120 uobjp, maxprotp, file);
2121 break;
2122 case AUDIOCTL_DEVICE:
2123 case MIXER_DEVICE:
2124 default:
2125 error = ENOTSUP;
2126 break;
2127 }
2128
2129 audio_sc_release(sc, &sc_ref);
2130 done:
2131 curlwp_bindx(bound);
2132 return error;
2133 }
2134
2135
2136 /* Exported interfaces for audiobell. */
2137
2138 /*
2139 * Open for audiobell.
2140 * It stores allocated file to *filep.
2141 * If successful returns 0, otherwise errno.
2142 */
2143 int
2144 audiobellopen(dev_t dev, audio_file_t **filep)
2145 {
2146 device_t audiodev = NULL;
2147 struct audio_softc *sc;
2148 bool exlock = false;
2149 int error;
2150
2151 /*
2152 * Find the autoconf instance and make sure it doesn't go away
2153 * while we are opening it.
2154 */
2155 audiodev = device_lookup_acquire(&audio_cd, AUDIOUNIT(dev));
2156 if (audiodev == NULL) {
2157 error = ENXIO;
2158 goto out;
2159 }
2160
2161 /* If attach failed, it's hopeless -- give up. */
2162 sc = device_private(audiodev);
2163 if (sc->hw_if == NULL) {
2164 error = ENXIO;
2165 goto out;
2166 }
2167
2168 /* Take the exclusive configuration lock. */
2169 error = audio_exlock_enter(sc);
2170 if (error)
2171 goto out;
2172 exlock = true;
2173
2174 /* Open the audio device. */
2175 device_active(sc->sc_dev, DVA_SYSTEM);
2176 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
2177
2178 out: if (exlock)
2179 audio_exlock_exit(sc);
2180 if (audiodev)
2181 device_release(audiodev);
2182 return error;
2183 }
2184
2185 /* Close for audiobell */
2186 int
2187 audiobellclose(audio_file_t *file)
2188 {
2189 struct audio_softc *sc;
2190 struct psref sc_ref;
2191 int bound;
2192 int error;
2193
2194 error = 0;
2195 /*
2196 * audiobellclose() must
2197 * - unplug track from the trackmixer if sc exist.
2198 * - free all memory objects, regardless of sc.
2199 */
2200 bound = curlwp_bind();
2201 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2202 if (sc) {
2203 error = audio_close(sc, file);
2204 audio_sc_release(sc, &sc_ref);
2205 }
2206 curlwp_bindx(bound);
2207
2208 /* Free memory objects anyway */
2209 KASSERT(file->ptrack);
2210 audio_track_destroy(file->ptrack);
2211 KASSERT(file->rtrack == NULL);
2212 kmem_free(file, sizeof(*file));
2213 return error;
2214 }
2215
2216 /* Set sample rate for audiobell */
2217 int
2218 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2219 {
2220 struct audio_softc *sc;
2221 struct psref sc_ref;
2222 struct audio_info ai;
2223 int bound;
2224 int error;
2225
2226 bound = curlwp_bind();
2227 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2228 if (sc == NULL) {
2229 error = EIO;
2230 goto done1;
2231 }
2232
2233 AUDIO_INITINFO(&ai);
2234 ai.play.sample_rate = sample_rate;
2235
2236 error = audio_exlock_enter(sc);
2237 if (error)
2238 goto done2;
2239 error = audio_file_setinfo(sc, file, &ai);
2240 audio_exlock_exit(sc);
2241
2242 done2:
2243 audio_sc_release(sc, &sc_ref);
2244 done1:
2245 curlwp_bindx(bound);
2246 return error;
2247 }
2248
2249 /* Playback for audiobell */
2250 int
2251 audiobellwrite(audio_file_t *file, struct uio *uio)
2252 {
2253 struct audio_softc *sc;
2254 struct psref sc_ref;
2255 int bound;
2256 int error;
2257
2258 bound = curlwp_bind();
2259 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2260 if (sc == NULL) {
2261 error = EIO;
2262 goto done;
2263 }
2264
2265 error = audio_write(sc, uio, 0, file);
2266
2267 audio_sc_release(sc, &sc_ref);
2268 done:
2269 curlwp_bindx(bound);
2270 return error;
2271 }
2272
2273
2274 /*
2275 * Audio driver
2276 */
2277
2278 /*
2279 * Must be called with sc_exlock held and without sc_lock held.
2280 */
2281 int
2282 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2283 struct lwp *l, audio_file_t **bellfile)
2284 {
2285 struct audio_info ai;
2286 struct file *fp;
2287 audio_file_t *af;
2288 audio_ring_t *hwbuf;
2289 bool fullduplex;
2290 bool cred_held;
2291 bool hw_opened;
2292 bool rmixer_started;
2293 bool inserted;
2294 int fd;
2295 int error;
2296
2297 KASSERT(sc->sc_exlock);
2298
2299 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2300 (audiodebug >= 3) ? "start " : "",
2301 ISDEVSOUND(dev) ? "sound" : "audio",
2302 flags, sc->sc_popens, sc->sc_ropens);
2303
2304 fp = NULL;
2305 cred_held = false;
2306 hw_opened = false;
2307 rmixer_started = false;
2308 inserted = false;
2309
2310 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
2311 af->sc = sc;
2312 af->dev = dev;
2313 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2314 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2315 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2316 af->mode |= AUMODE_RECORD;
2317 if (af->mode == 0) {
2318 error = ENXIO;
2319 goto bad;
2320 }
2321
2322 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2323
2324 /*
2325 * On half duplex hardware,
2326 * 1. if mode is (PLAY | REC), let mode PLAY.
2327 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2328 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2329 */
2330 if (fullduplex == false) {
2331 if ((af->mode & AUMODE_PLAY)) {
2332 if (sc->sc_ropens != 0) {
2333 TRACE(1, "record track already exists");
2334 error = ENODEV;
2335 goto bad;
2336 }
2337 /* Play takes precedence */
2338 af->mode &= ~AUMODE_RECORD;
2339 }
2340 if ((af->mode & AUMODE_RECORD)) {
2341 if (sc->sc_popens != 0) {
2342 TRACE(1, "play track already exists");
2343 error = ENODEV;
2344 goto bad;
2345 }
2346 }
2347 }
2348
2349 /* Create tracks */
2350 if ((af->mode & AUMODE_PLAY))
2351 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2352 if ((af->mode & AUMODE_RECORD))
2353 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2354
2355 /* Set parameters */
2356 AUDIO_INITINFO(&ai);
2357 if (bellfile) {
2358 /* If audiobell, only sample_rate will be set later. */
2359 ai.play.sample_rate = audio_default.sample_rate;
2360 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2361 ai.play.channels = 1;
2362 ai.play.precision = 16;
2363 ai.play.pause = 0;
2364 } else if (ISDEVAUDIO(dev)) {
2365 /* If /dev/audio, initialize everytime. */
2366 ai.play.sample_rate = audio_default.sample_rate;
2367 ai.play.encoding = audio_default.encoding;
2368 ai.play.channels = audio_default.channels;
2369 ai.play.precision = audio_default.precision;
2370 ai.play.pause = 0;
2371 ai.record.sample_rate = audio_default.sample_rate;
2372 ai.record.encoding = audio_default.encoding;
2373 ai.record.channels = audio_default.channels;
2374 ai.record.precision = audio_default.precision;
2375 ai.record.pause = 0;
2376 } else {
2377 /* If /dev/sound, take over the previous parameters. */
2378 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2379 ai.play.encoding = sc->sc_sound_pparams.encoding;
2380 ai.play.channels = sc->sc_sound_pparams.channels;
2381 ai.play.precision = sc->sc_sound_pparams.precision;
2382 ai.play.pause = sc->sc_sound_ppause;
2383 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2384 ai.record.encoding = sc->sc_sound_rparams.encoding;
2385 ai.record.channels = sc->sc_sound_rparams.channels;
2386 ai.record.precision = sc->sc_sound_rparams.precision;
2387 ai.record.pause = sc->sc_sound_rpause;
2388 }
2389 error = audio_file_setinfo(sc, af, &ai);
2390 if (error)
2391 goto bad;
2392
2393 if (sc->sc_popens + sc->sc_ropens == 0) {
2394 /* First open */
2395
2396 sc->sc_cred = kauth_cred_get();
2397 kauth_cred_hold(sc->sc_cred);
2398 cred_held = true;
2399
2400 if (sc->hw_if->open) {
2401 int hwflags;
2402
2403 /*
2404 * Call hw_if->open() only at first open of
2405 * combination of playback and recording.
2406 * On full duplex hardware, the flags passed to
2407 * hw_if->open() is always (FREAD | FWRITE)
2408 * regardless of this open()'s flags.
2409 * see also dev/isa/aria.c
2410 * On half duplex hardware, the flags passed to
2411 * hw_if->open() is either FREAD or FWRITE.
2412 * see also arch/evbarm/mini2440/audio_mini2440.c
2413 */
2414 if (fullduplex) {
2415 hwflags = FREAD | FWRITE;
2416 } else {
2417 /* Construct hwflags from af->mode. */
2418 hwflags = 0;
2419 if ((af->mode & AUMODE_PLAY) != 0)
2420 hwflags |= FWRITE;
2421 if ((af->mode & AUMODE_RECORD) != 0)
2422 hwflags |= FREAD;
2423 }
2424
2425 mutex_enter(sc->sc_lock);
2426 mutex_enter(sc->sc_intr_lock);
2427 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2428 mutex_exit(sc->sc_intr_lock);
2429 mutex_exit(sc->sc_lock);
2430 if (error)
2431 goto bad;
2432 }
2433 /*
2434 * Regardless of whether we called hw_if->open (whether
2435 * hw_if->open exists) or not, we move to the Opened phase
2436 * here. Therefore from this point, we have to call
2437 * hw_if->close (if exists) whenever abort.
2438 * Note that both of hw_if->{open,close} are optional.
2439 */
2440 hw_opened = true;
2441
2442 /*
2443 * Set speaker mode when a half duplex.
2444 * XXX I'm not sure this is correct.
2445 */
2446 if (1/*XXX*/) {
2447 if (sc->hw_if->speaker_ctl) {
2448 int on;
2449 if (af->ptrack) {
2450 on = 1;
2451 } else {
2452 on = 0;
2453 }
2454 mutex_enter(sc->sc_lock);
2455 mutex_enter(sc->sc_intr_lock);
2456 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2457 mutex_exit(sc->sc_intr_lock);
2458 mutex_exit(sc->sc_lock);
2459 if (error)
2460 goto bad;
2461 }
2462 }
2463 } else if (sc->sc_multiuser == false) {
2464 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2465 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2466 error = EPERM;
2467 goto bad;
2468 }
2469 }
2470
2471 /* Call init_output if this is the first playback open. */
2472 if (af->ptrack && sc->sc_popens == 0) {
2473 if (sc->hw_if->init_output) {
2474 hwbuf = &sc->sc_pmixer->hwbuf;
2475 mutex_enter(sc->sc_lock);
2476 mutex_enter(sc->sc_intr_lock);
2477 error = sc->hw_if->init_output(sc->hw_hdl,
2478 hwbuf->mem,
2479 hwbuf->capacity *
2480 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2481 mutex_exit(sc->sc_intr_lock);
2482 mutex_exit(sc->sc_lock);
2483 if (error)
2484 goto bad;
2485 }
2486 }
2487 /*
2488 * Call init_input and start rmixer, if this is the first recording
2489 * open. See pause consideration notes.
2490 */
2491 if (af->rtrack && sc->sc_ropens == 0) {
2492 if (sc->hw_if->init_input) {
2493 hwbuf = &sc->sc_rmixer->hwbuf;
2494 mutex_enter(sc->sc_lock);
2495 mutex_enter(sc->sc_intr_lock);
2496 error = sc->hw_if->init_input(sc->hw_hdl,
2497 hwbuf->mem,
2498 hwbuf->capacity *
2499 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2500 mutex_exit(sc->sc_intr_lock);
2501 mutex_exit(sc->sc_lock);
2502 if (error)
2503 goto bad;
2504 }
2505
2506 mutex_enter(sc->sc_lock);
2507 audio_rmixer_start(sc);
2508 mutex_exit(sc->sc_lock);
2509 rmixer_started = true;
2510 }
2511
2512 /*
2513 * This is the last sc_lock section in the function, so we have to
2514 * examine sc_dying again before starting the rest tasks. Because
2515 * audiodeatch() may have been invoked (and it would set sc_dying)
2516 * from the time audioopen() was executed until now. If it happens,
2517 * audiodetach() may already have set file->dying for all sc_files
2518 * that exist at that point, so that audioopen() must abort without
2519 * inserting af to sc_files, in order to keep consistency.
2520 */
2521 mutex_enter(sc->sc_lock);
2522 if (sc->sc_dying) {
2523 mutex_exit(sc->sc_lock);
2524 error = ENXIO;
2525 goto bad;
2526 }
2527
2528 /* Count up finally */
2529 if (af->ptrack)
2530 sc->sc_popens++;
2531 if (af->rtrack)
2532 sc->sc_ropens++;
2533 mutex_enter(sc->sc_intr_lock);
2534 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2535 mutex_exit(sc->sc_intr_lock);
2536 mutex_exit(sc->sc_lock);
2537 inserted = true;
2538
2539 if (bellfile) {
2540 *bellfile = af;
2541 } else {
2542 error = fd_allocfile(&fp, &fd);
2543 if (error)
2544 goto bad;
2545
2546 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2547 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2548 }
2549
2550 /* Be nothing else after fd_clone */
2551
2552 TRACEF(3, af, "done");
2553 return error;
2554
2555 bad:
2556 if (inserted) {
2557 mutex_enter(sc->sc_lock);
2558 mutex_enter(sc->sc_intr_lock);
2559 SLIST_REMOVE(&sc->sc_files, af, audio_file, entry);
2560 mutex_exit(sc->sc_intr_lock);
2561 if (af->ptrack)
2562 sc->sc_popens--;
2563 if (af->rtrack)
2564 sc->sc_ropens--;
2565 mutex_exit(sc->sc_lock);
2566 }
2567
2568 if (rmixer_started) {
2569 mutex_enter(sc->sc_lock);
2570 audio_rmixer_halt(sc);
2571 mutex_exit(sc->sc_lock);
2572 }
2573
2574 if (hw_opened) {
2575 if (sc->hw_if->close) {
2576 mutex_enter(sc->sc_lock);
2577 mutex_enter(sc->sc_intr_lock);
2578 sc->hw_if->close(sc->hw_hdl);
2579 mutex_exit(sc->sc_intr_lock);
2580 mutex_exit(sc->sc_lock);
2581 }
2582 }
2583 if (cred_held) {
2584 kauth_cred_free(sc->sc_cred);
2585 }
2586
2587 /*
2588 * Since track here is not yet linked to sc_files,
2589 * you can call track_destroy() without sc_intr_lock.
2590 */
2591 if (af->rtrack) {
2592 audio_track_destroy(af->rtrack);
2593 af->rtrack = NULL;
2594 }
2595 if (af->ptrack) {
2596 audio_track_destroy(af->ptrack);
2597 af->ptrack = NULL;
2598 }
2599
2600 kmem_free(af, sizeof(*af));
2601 return error;
2602 }
2603
2604 /*
2605 * Must be called without sc_lock nor sc_exlock held.
2606 */
2607 int
2608 audio_close(struct audio_softc *sc, audio_file_t *file)
2609 {
2610 int error;
2611
2612 /*
2613 * Drain first.
2614 * It must be done before unlinking(acquiring exlock).
2615 */
2616 if (file->ptrack) {
2617 mutex_enter(sc->sc_lock);
2618 audio_track_drain(sc, file->ptrack);
2619 mutex_exit(sc->sc_lock);
2620 }
2621
2622 mutex_enter(sc->sc_lock);
2623 mutex_enter(sc->sc_intr_lock);
2624 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2625 mutex_exit(sc->sc_intr_lock);
2626 mutex_exit(sc->sc_lock);
2627
2628 error = audio_exlock_enter(sc);
2629 if (error) {
2630 /*
2631 * If EIO, this sc is about to detach. In this case, even if
2632 * we don't do subsequent _unlink(), audiodetach() will do it.
2633 */
2634 if (error == EIO)
2635 return error;
2636
2637 /* XXX This should not happen but what should I do ? */
2638 panic("%s: can't acquire exlock: errno=%d", __func__, error);
2639 }
2640 audio_unlink(sc, file);
2641 audio_exlock_exit(sc);
2642
2643 return 0;
2644 }
2645
2646 /*
2647 * Unlink this file, but not freeing memory here.
2648 * Must be called with sc_exlock held and without sc_lock held.
2649 */
2650 static void
2651 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2652 {
2653 kauth_cred_t cred = NULL;
2654 int error;
2655
2656 mutex_enter(sc->sc_lock);
2657
2658 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2659 (audiodebug >= 3) ? "start " : "",
2660 (int)curproc->p_pid, (int)curlwp->l_lid,
2661 sc->sc_popens, sc->sc_ropens);
2662 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2663 "sc->sc_popens=%d, sc->sc_ropens=%d",
2664 sc->sc_popens, sc->sc_ropens);
2665
2666 device_active(sc->sc_dev, DVA_SYSTEM);
2667
2668 if (file->ptrack) {
2669 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2670 file->ptrack->dropframes);
2671
2672 KASSERT(sc->sc_popens > 0);
2673 sc->sc_popens--;
2674
2675 /* Call hw halt_output if this is the last playback track. */
2676 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2677 error = audio_pmixer_halt(sc);
2678 if (error) {
2679 audio_printf(sc,
2680 "halt_output failed: errno=%d (ignored)\n",
2681 error);
2682 }
2683 }
2684
2685 /* Restore mixing volume if all tracks are gone. */
2686 if (sc->sc_popens == 0) {
2687 /* intr_lock is not necessary, but just manners. */
2688 mutex_enter(sc->sc_intr_lock);
2689 sc->sc_pmixer->volume = 256;
2690 sc->sc_pmixer->voltimer = 0;
2691 mutex_exit(sc->sc_intr_lock);
2692 }
2693 }
2694 if (file->rtrack) {
2695 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2696 file->rtrack->dropframes);
2697
2698 KASSERT(sc->sc_ropens > 0);
2699 sc->sc_ropens--;
2700
2701 /* Call hw halt_input if this is the last recording track. */
2702 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2703 error = audio_rmixer_halt(sc);
2704 if (error) {
2705 audio_printf(sc,
2706 "halt_input failed: errno=%d (ignored)\n",
2707 error);
2708 }
2709 }
2710
2711 }
2712
2713 /* Call hw close if this is the last track. */
2714 if (sc->sc_popens + sc->sc_ropens == 0) {
2715 if (sc->hw_if->close) {
2716 TRACE(2, "hw_if close");
2717 mutex_enter(sc->sc_intr_lock);
2718 sc->hw_if->close(sc->hw_hdl);
2719 mutex_exit(sc->sc_intr_lock);
2720 }
2721 cred = sc->sc_cred;
2722 sc->sc_cred = NULL;
2723 }
2724
2725 mutex_exit(sc->sc_lock);
2726 if (cred)
2727 kauth_cred_free(cred);
2728
2729 TRACE(3, "done");
2730 }
2731
2732 /*
2733 * Must be called without sc_lock nor sc_exlock held.
2734 */
2735 int
2736 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2737 audio_file_t *file)
2738 {
2739 audio_track_t *track;
2740 audio_ring_t *usrbuf;
2741 audio_ring_t *input;
2742 int error;
2743
2744 /*
2745 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2746 * However read() system call itself can be called because it's
2747 * opened with O_RDWR. So in this case, deny this read().
2748 */
2749 track = file->rtrack;
2750 if (track == NULL) {
2751 return EBADF;
2752 }
2753
2754 /* I think it's better than EINVAL. */
2755 if (track->mmapped)
2756 return EPERM;
2757
2758 TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2759
2760 #ifdef AUDIO_PM_IDLE
2761 error = audio_exlock_mutex_enter(sc);
2762 if (error)
2763 return error;
2764
2765 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2766 device_active(&sc->sc_dev, DVA_SYSTEM);
2767
2768 /* In recording, unlike playback, read() never operates rmixer. */
2769
2770 audio_exlock_mutex_exit(sc);
2771 #endif
2772
2773 usrbuf = &track->usrbuf;
2774 input = track->input;
2775 error = 0;
2776
2777 while (uio->uio_resid > 0 && error == 0) {
2778 int bytes;
2779
2780 TRACET(3, track,
2781 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/C%d",
2782 uio->uio_resid,
2783 input->head, input->used, input->capacity,
2784 usrbuf->head, usrbuf->used, usrbuf->capacity);
2785
2786 /* Wait when buffers are empty. */
2787 mutex_enter(sc->sc_lock);
2788 for (;;) {
2789 bool empty;
2790 audio_track_lock_enter(track);
2791 empty = (input->used == 0 && usrbuf->used == 0);
2792 audio_track_lock_exit(track);
2793 if (!empty)
2794 break;
2795
2796 if ((ioflag & IO_NDELAY)) {
2797 mutex_exit(sc->sc_lock);
2798 return EWOULDBLOCK;
2799 }
2800
2801 TRACET(3, track, "sleep");
2802 error = audio_track_waitio(sc, track);
2803 if (error) {
2804 mutex_exit(sc->sc_lock);
2805 return error;
2806 }
2807 }
2808 mutex_exit(sc->sc_lock);
2809
2810 audio_track_lock_enter(track);
2811 /* Convert one block if possible. */
2812 if (usrbuf->used == 0 && input->used > 0) {
2813 audio_track_record(track);
2814 }
2815
2816 /* uiomove from usrbuf as many bytes as possible. */
2817 bytes = uimin(usrbuf->used, uio->uio_resid);
2818 error = uiomove((uint8_t *)usrbuf->mem + usrbuf->head, bytes,
2819 uio);
2820 if (error) {
2821 audio_track_lock_exit(track);
2822 device_printf(sc->sc_dev,
2823 "%s: uiomove(%d) failed: errno=%d\n",
2824 __func__, bytes, error);
2825 goto abort;
2826 }
2827 auring_take(usrbuf, bytes);
2828 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2829 bytes,
2830 usrbuf->head, usrbuf->used, usrbuf->capacity);
2831
2832 audio_track_lock_exit(track);
2833 }
2834
2835 abort:
2836 return error;
2837 }
2838
2839
2840 /*
2841 * Clear file's playback and/or record track buffer immediately.
2842 */
2843 static void
2844 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2845 {
2846
2847 if (file->ptrack)
2848 audio_track_clear(sc, file->ptrack);
2849 if (file->rtrack)
2850 audio_track_clear(sc, file->rtrack);
2851 }
2852
2853 /*
2854 * Must be called without sc_lock nor sc_exlock held.
2855 */
2856 int
2857 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2858 audio_file_t *file)
2859 {
2860 audio_track_t *track;
2861 audio_ring_t *usrbuf;
2862 audio_ring_t *outbuf;
2863 int error;
2864
2865 track = file->ptrack;
2866 if (track == NULL)
2867 return EPERM;
2868
2869 /* I think it's better than EINVAL. */
2870 if (track->mmapped)
2871 return EPERM;
2872
2873 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2874 audiodebug >= 3 ? "begin " : "",
2875 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2876
2877 if (uio->uio_resid == 0) {
2878 track->eofcounter++;
2879 return 0;
2880 }
2881
2882 error = audio_exlock_mutex_enter(sc);
2883 if (error)
2884 return error;
2885
2886 #ifdef AUDIO_PM_IDLE
2887 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2888 device_active(&sc->sc_dev, DVA_SYSTEM);
2889 #endif
2890
2891 /*
2892 * The first write starts pmixer.
2893 */
2894 if (sc->sc_pbusy == false)
2895 audio_pmixer_start(sc, false);
2896 audio_exlock_mutex_exit(sc);
2897
2898 usrbuf = &track->usrbuf;
2899 outbuf = &track->outbuf;
2900 track->pstate = AUDIO_STATE_RUNNING;
2901 error = 0;
2902
2903 while (uio->uio_resid > 0 && error == 0) {
2904 int bytes;
2905
2906 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2907 uio->uio_resid,
2908 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2909
2910 /* Wait when buffers are full. */
2911 mutex_enter(sc->sc_lock);
2912 for (;;) {
2913 bool full;
2914 audio_track_lock_enter(track);
2915 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2916 outbuf->used >= outbuf->capacity);
2917 audio_track_lock_exit(track);
2918 if (!full)
2919 break;
2920
2921 if ((ioflag & IO_NDELAY)) {
2922 error = EWOULDBLOCK;
2923 mutex_exit(sc->sc_lock);
2924 goto abort;
2925 }
2926
2927 TRACET(3, track, "sleep usrbuf=%d/H%d",
2928 usrbuf->used, track->usrbuf_usedhigh);
2929 error = audio_track_waitio(sc, track);
2930 if (error) {
2931 mutex_exit(sc->sc_lock);
2932 goto abort;
2933 }
2934 }
2935 mutex_exit(sc->sc_lock);
2936
2937 audio_track_lock_enter(track);
2938
2939 /* uiomove to usrbuf as many bytes as possible. */
2940 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2941 uio->uio_resid);
2942 while (bytes > 0) {
2943 int tail = auring_tail(usrbuf);
2944 int len = uimin(bytes, usrbuf->capacity - tail);
2945 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2946 uio);
2947 if (error) {
2948 audio_track_lock_exit(track);
2949 device_printf(sc->sc_dev,
2950 "%s: uiomove(%d) failed: errno=%d\n",
2951 __func__, len, error);
2952 goto abort;
2953 }
2954 auring_push(usrbuf, len);
2955 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2956 len,
2957 usrbuf->head, usrbuf->used, usrbuf->capacity);
2958 bytes -= len;
2959 }
2960
2961 /* Convert them as many blocks as possible. */
2962 while (usrbuf->used >= track->usrbuf_blksize &&
2963 outbuf->used < outbuf->capacity) {
2964 audio_track_play(track);
2965 }
2966
2967 audio_track_lock_exit(track);
2968 }
2969
2970 abort:
2971 TRACET(3, track, "done error=%d", error);
2972 return error;
2973 }
2974
2975 /*
2976 * Must be called without sc_lock nor sc_exlock held.
2977 */
2978 int
2979 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2980 struct lwp *l, audio_file_t *file)
2981 {
2982 struct audio_offset *ao;
2983 struct audio_info ai;
2984 audio_track_t *track;
2985 audio_encoding_t *ae;
2986 audio_format_query_t *query;
2987 u_int stamp;
2988 u_int offset;
2989 int val;
2990 int index;
2991 int error;
2992
2993 #if defined(AUDIO_DEBUG)
2994 const char *ioctlnames[] = {
2995 "AUDIO_GETINFO", /* 21 */
2996 "AUDIO_SETINFO", /* 22 */
2997 "AUDIO_DRAIN", /* 23 */
2998 "AUDIO_FLUSH", /* 24 */
2999 "AUDIO_WSEEK", /* 25 */
3000 "AUDIO_RERROR", /* 26 */
3001 "AUDIO_GETDEV", /* 27 */
3002 "AUDIO_GETENC", /* 28 */
3003 "AUDIO_GETFD", /* 29 */
3004 "AUDIO_SETFD", /* 30 */
3005 "AUDIO_PERROR", /* 31 */
3006 "AUDIO_GETIOFFS", /* 32 */
3007 "AUDIO_GETOOFFS", /* 33 */
3008 "AUDIO_GETPROPS", /* 34 */
3009 "AUDIO_GETBUFINFO", /* 35 */
3010 "AUDIO_SETCHAN", /* 36 */
3011 "AUDIO_GETCHAN", /* 37 */
3012 "AUDIO_QUERYFORMAT", /* 38 */
3013 "AUDIO_GETFORMAT", /* 39 */
3014 "AUDIO_SETFORMAT", /* 40 */
3015 };
3016 char pre[64];
3017 int nameidx = (cmd & 0xff);
3018 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames)) {
3019 snprintf(pre, sizeof(pre), "pid=%d.%d %s",
3020 (int)curproc->p_pid, (int)l->l_lid,
3021 ioctlnames[nameidx - 21]);
3022 } else {
3023 snprintf(pre, sizeof(pre), "pid=%d.%d (%lu,'%c',%u)",
3024 (int)curproc->p_pid, (int)l->l_lid,
3025 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), nameidx);
3026 }
3027 #endif
3028
3029 error = 0;
3030 switch (cmd) {
3031 case FIONBIO:
3032 /* All handled in the upper FS layer. */
3033 break;
3034
3035 case FIONREAD:
3036 /* Get the number of bytes that can be read. */
3037 track = file->rtrack;
3038 if (track) {
3039 val = audio_track_readablebytes(track);
3040 *(int *)addr = val;
3041 TRACET(2, track, "pid=%d.%d FIONREAD bytes=%d",
3042 (int)curproc->p_pid, (int)l->l_lid, val);
3043 } else {
3044 TRACEF(2, file, "pid=%d.%d FIONREAD no track",
3045 (int)curproc->p_pid, (int)l->l_lid);
3046 }
3047 break;
3048
3049 case FIOASYNC:
3050 /* Set/Clear ASYNC I/O. */
3051 if (*(int *)addr) {
3052 file->async_audio = curproc->p_pid;
3053 } else {
3054 file->async_audio = 0;
3055 }
3056 TRACEF(2, file, "pid=%d.%d FIOASYNC %s",
3057 (int)curproc->p_pid, (int)l->l_lid,
3058 file->async_audio ? "on" : "off");
3059 break;
3060
3061 case AUDIO_FLUSH:
3062 /* XXX TODO: clear errors and restart? */
3063 TRACEF(2, file, "%s", pre);
3064 audio_file_clear(sc, file);
3065 break;
3066
3067 case AUDIO_PERROR:
3068 case AUDIO_RERROR:
3069 /*
3070 * Number of dropped bytes during playback/record. We don't
3071 * know where or when they were dropped (including conversion
3072 * stage). Therefore, the number of accurate bytes or samples
3073 * is also unknown.
3074 */
3075 track = (cmd == AUDIO_PERROR) ? file->ptrack : file->rtrack;
3076 if (track) {
3077 val = frametobyte(&track->usrbuf.fmt,
3078 track->dropframes);
3079 *(int *)addr = val;
3080 TRACET(2, track, "%s bytes=%d", pre, val);
3081 } else {
3082 TRACEF(2, file, "%s no track", pre);
3083 }
3084 break;
3085
3086 case AUDIO_GETIOFFS:
3087 ao = (struct audio_offset *)addr;
3088 track = file->rtrack;
3089 if (track == NULL) {
3090 ao->samples = 0;
3091 ao->deltablks = 0;
3092 ao->offset = 0;
3093 TRACEF(2, file, "%s no rtrack", pre);
3094 break;
3095 }
3096 mutex_enter(sc->sc_lock);
3097 mutex_enter(sc->sc_intr_lock);
3098 /* figure out where next transfer will start */
3099 stamp = track->stamp;
3100 offset = auring_tail(track->input);
3101 mutex_exit(sc->sc_intr_lock);
3102 mutex_exit(sc->sc_lock);
3103
3104 /* samples will overflow soon but is as per spec. */
3105 ao->samples = stamp * track->usrbuf_blksize;
3106 ao->deltablks = stamp - track->last_stamp;
3107 ao->offset = audio_track_inputblk_as_usrbyte(track, offset);
3108 TRACET(2, track, "%s samples=%u deltablks=%u offset=%u",
3109 pre, ao->samples, ao->deltablks, ao->offset);
3110
3111 track->last_stamp = stamp;
3112 break;
3113
3114 case AUDIO_GETOOFFS:
3115 ao = (struct audio_offset *)addr;
3116 track = file->ptrack;
3117 if (track == NULL) {
3118 ao->samples = 0;
3119 ao->deltablks = 0;
3120 ao->offset = 0;
3121 TRACEF(2, file, "%s no ptrack", pre);
3122 break;
3123 }
3124 mutex_enter(sc->sc_lock);
3125 mutex_enter(sc->sc_intr_lock);
3126 /* figure out where next transfer will start */
3127 stamp = track->stamp;
3128 offset = track->usrbuf.head;
3129 mutex_exit(sc->sc_intr_lock);
3130 mutex_exit(sc->sc_lock);
3131
3132 /* samples will overflow soon but is as per spec. */
3133 ao->samples = stamp * track->usrbuf_blksize;
3134 ao->deltablks = stamp - track->last_stamp;
3135 ao->offset = offset;
3136 TRACET(2, track, "%s samples=%u deltablks=%u offset=%u",
3137 pre, ao->samples, ao->deltablks, ao->offset);
3138
3139 track->last_stamp = stamp;
3140 break;
3141
3142 case AUDIO_WSEEK:
3143 track = file->ptrack;
3144 if (track) {
3145 val = track->usrbuf.used;
3146 *(u_long *)addr = val;
3147 TRACET(2, track, "%s bytes=%d", pre, val);
3148 } else {
3149 TRACEF(2, file, "%s no ptrack", pre);
3150 }
3151 break;
3152
3153 case AUDIO_SETINFO:
3154 TRACEF(2, file, "%s", pre);
3155 error = audio_exlock_enter(sc);
3156 if (error)
3157 break;
3158 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
3159 if (error) {
3160 audio_exlock_exit(sc);
3161 break;
3162 }
3163 /* XXX TODO: update last_ai if /dev/sound ? */
3164 if (ISDEVSOUND(dev))
3165 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
3166 audio_exlock_exit(sc);
3167 break;
3168
3169 case AUDIO_GETINFO:
3170 TRACEF(2, file, "%s", pre);
3171 error = audio_exlock_enter(sc);
3172 if (error)
3173 break;
3174 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
3175 audio_exlock_exit(sc);
3176 break;
3177
3178 case AUDIO_GETBUFINFO:
3179 TRACEF(2, file, "%s", pre);
3180 error = audio_exlock_enter(sc);
3181 if (error)
3182 break;
3183 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
3184 audio_exlock_exit(sc);
3185 break;
3186
3187 case AUDIO_DRAIN:
3188 track = file->ptrack;
3189 if (track) {
3190 TRACET(2, track, "%s", pre);
3191 mutex_enter(sc->sc_lock);
3192 error = audio_track_drain(sc, track);
3193 mutex_exit(sc->sc_lock);
3194 } else {
3195 TRACEF(2, file, "%s no ptrack", pre);
3196 }
3197 break;
3198
3199 case AUDIO_GETDEV:
3200 TRACEF(2, file, "%s", pre);
3201 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
3202 break;
3203
3204 case AUDIO_GETENC:
3205 ae = (audio_encoding_t *)addr;
3206 index = ae->index;
3207 TRACEF(2, file, "%s index=%d", pre, index);
3208 if (index < 0 || index >= __arraycount(audio_encodings)) {
3209 error = EINVAL;
3210 break;
3211 }
3212 *ae = audio_encodings[index];
3213 ae->index = index;
3214 /*
3215 * EMULATED always.
3216 * EMULATED flag at that time used to mean that it could
3217 * not be passed directly to the hardware as-is. But
3218 * currently, all formats including hardware native is not
3219 * passed directly to the hardware. So I set EMULATED
3220 * flag for all formats.
3221 */
3222 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
3223 break;
3224
3225 case AUDIO_GETFD:
3226 /*
3227 * Returns the current setting of full duplex mode.
3228 * If HW has full duplex mode and there are two mixers,
3229 * it is full duplex. Otherwise half duplex.
3230 */
3231 error = audio_exlock_enter(sc);
3232 if (error)
3233 break;
3234 val = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
3235 && (sc->sc_pmixer && sc->sc_rmixer);
3236 audio_exlock_exit(sc);
3237 *(int *)addr = val;
3238 TRACEF(2, file, "%s fulldup=%d", pre, val);
3239 break;
3240
3241 case AUDIO_GETPROPS:
3242 val = sc->sc_props;
3243 *(int *)addr = val;
3244 #if defined(AUDIO_DEBUG)
3245 char pbuf[64];
3246 snprintb(pbuf, sizeof(pbuf), "\x10"
3247 "\6CAPTURE" "\5PLAY" "\3INDEP" "\2MMAP" "\1FULLDUP", val);
3248 TRACEF(2, file, "%s %s", pre, pbuf);
3249 #endif
3250 break;
3251
3252 case AUDIO_QUERYFORMAT:
3253 query = (audio_format_query_t *)addr;
3254 TRACEF(2, file, "%s index=%u", pre, query->index);
3255 mutex_enter(sc->sc_lock);
3256 error = sc->hw_if->query_format(sc->hw_hdl, query);
3257 mutex_exit(sc->sc_lock);
3258 /* Hide internal information */
3259 query->fmt.driver_data = NULL;
3260 break;
3261
3262 case AUDIO_GETFORMAT:
3263 TRACEF(2, file, "%s", pre);
3264 error = audio_exlock_enter(sc);
3265 if (error)
3266 break;
3267 audio_mixers_get_format(sc, (struct audio_info *)addr);
3268 audio_exlock_exit(sc);
3269 break;
3270
3271 case AUDIO_SETFORMAT:
3272 TRACEF(2, file, "%s", pre);
3273 error = audio_exlock_enter(sc);
3274 audio_mixers_get_format(sc, &ai);
3275 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3276 if (error) {
3277 /* Rollback */
3278 audio_mixers_set_format(sc, &ai);
3279 }
3280 audio_exlock_exit(sc);
3281 break;
3282
3283 case AUDIO_SETFD:
3284 case AUDIO_SETCHAN:
3285 case AUDIO_GETCHAN:
3286 /* Obsoleted */
3287 TRACEF(2, file, "%s", pre);
3288 break;
3289
3290 default:
3291 TRACEF(2, file, "%s", pre);
3292 if (sc->hw_if->dev_ioctl) {
3293 mutex_enter(sc->sc_lock);
3294 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3295 cmd, addr, flag, l);
3296 mutex_exit(sc->sc_lock);
3297 } else {
3298 error = EINVAL;
3299 }
3300 break;
3301 }
3302
3303 if (error)
3304 TRACEF(2, file, "%s error=%d", pre, error);
3305 return error;
3306 }
3307
3308 /*
3309 * Convert n [frames] of the input buffer to bytes in the usrbuf format.
3310 * n is in frames but should be a multiple of frame/block. Note that the
3311 * usrbuf's frame/block and the input buffer's frame/block may be different
3312 * (i.e., if frequencies are different).
3313 *
3314 * This function is for recording track only.
3315 */
3316 static int
3317 audio_track_inputblk_as_usrbyte(const audio_track_t *track, int n)
3318 {
3319 int input_fpb;
3320
3321 /*
3322 * In the input buffer on recording track, these are the same.
3323 * input_fpb = frame_per_block(track->mixer, &track->input->fmt);
3324 */
3325 input_fpb = track->mixer->frames_per_block;
3326
3327 return (n / input_fpb) * track->usrbuf_blksize;
3328 }
3329
3330 /*
3331 * Returns the number of bytes that can be read on recording buffer.
3332 */
3333 static int
3334 audio_track_readablebytes(const audio_track_t *track)
3335 {
3336 int bytes;
3337
3338 KASSERT(track);
3339 KASSERT(track->mode == AUMODE_RECORD);
3340
3341 /*
3342 * For recording, track->input is the main block-unit buffer and
3343 * track->usrbuf holds less than one block of byte data ("fragment").
3344 * Note that the input buffer is in frames and the usrbuf is in bytes.
3345 *
3346 * Actual total capacity of these two buffers is
3347 * input->capacity [frames] + usrbuf.capacity [bytes],
3348 * but only input->capacity is reported to userland as buffer_size.
3349 * So, even if the total used bytes exceed input->capacity, report it
3350 * as input->capacity for consistency.
3351 */
3352 bytes = audio_track_inputblk_as_usrbyte(track, track->input->used);
3353 if (track->input->used < track->input->capacity) {
3354 bytes += track->usrbuf.used;
3355 }
3356 return bytes;
3357 }
3358
3359 /*
3360 * Must be called without sc_lock nor sc_exlock held.
3361 */
3362 int
3363 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3364 audio_file_t *file)
3365 {
3366 audio_track_t *track;
3367 int revents;
3368 bool in_is_valid;
3369 bool out_is_valid;
3370
3371 #if defined(AUDIO_DEBUG)
3372 #define POLLEV_BITMAP "\177\020" \
3373 "b\10WRBAND\0" \
3374 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3375 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3376 char evbuf[64];
3377 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3378 TRACEF(2, file, "pid=%d.%d events=%s",
3379 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3380 #endif
3381
3382 revents = 0;
3383 in_is_valid = false;
3384 out_is_valid = false;
3385 if (events & (POLLIN | POLLRDNORM)) {
3386 track = file->rtrack;
3387 if (track) {
3388 int used;
3389 in_is_valid = true;
3390 used = audio_track_readablebytes(track);
3391 if (used > 0)
3392 revents |= events & (POLLIN | POLLRDNORM);
3393 }
3394 }
3395 if (events & (POLLOUT | POLLWRNORM)) {
3396 track = file->ptrack;
3397 if (track) {
3398 out_is_valid = true;
3399 if (track->usrbuf.used <= track->usrbuf_usedlow)
3400 revents |= events & (POLLOUT | POLLWRNORM);
3401 }
3402 }
3403
3404 if (revents == 0) {
3405 mutex_enter(sc->sc_lock);
3406 if (in_is_valid) {
3407 TRACEF(3, file, "selrecord rsel");
3408 selrecord(l, &sc->sc_rsel);
3409 }
3410 if (out_is_valid) {
3411 TRACEF(3, file, "selrecord wsel");
3412 selrecord(l, &sc->sc_wsel);
3413 }
3414 mutex_exit(sc->sc_lock);
3415 }
3416
3417 #if defined(AUDIO_DEBUG)
3418 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3419 TRACEF(2, file, "revents=%s", evbuf);
3420 #endif
3421 return revents;
3422 }
3423
3424 static const struct filterops audioread_filtops = {
3425 .f_flags = FILTEROP_ISFD,
3426 .f_attach = NULL,
3427 .f_detach = filt_audioread_detach,
3428 .f_event = filt_audioread_event,
3429 };
3430
3431 static void
3432 filt_audioread_detach(struct knote *kn)
3433 {
3434 struct audio_softc *sc;
3435 audio_file_t *file;
3436
3437 file = kn->kn_hook;
3438 sc = file->sc;
3439 TRACEF(3, file, "called");
3440
3441 mutex_enter(sc->sc_lock);
3442 selremove_knote(&sc->sc_rsel, kn);
3443 mutex_exit(sc->sc_lock);
3444 }
3445
3446 static int
3447 filt_audioread_event(struct knote *kn, long hint)
3448 {
3449 audio_file_t *file;
3450 audio_track_t *track;
3451
3452 file = kn->kn_hook;
3453 track = file->rtrack;
3454
3455 /*
3456 * kn_data must contain the number of bytes can be read.
3457 * The return value indicates whether the event occurs or not.
3458 */
3459
3460 if (track == NULL) {
3461 /* can not read with this descriptor. */
3462 kn->kn_data = 0;
3463 return 0;
3464 }
3465
3466 kn->kn_data = audio_track_readablebytes(track);
3467 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3468 return kn->kn_data > 0;
3469 }
3470
3471 static const struct filterops audiowrite_filtops = {
3472 .f_flags = FILTEROP_ISFD,
3473 .f_attach = NULL,
3474 .f_detach = filt_audiowrite_detach,
3475 .f_event = filt_audiowrite_event,
3476 };
3477
3478 static void
3479 filt_audiowrite_detach(struct knote *kn)
3480 {
3481 struct audio_softc *sc;
3482 audio_file_t *file;
3483
3484 file = kn->kn_hook;
3485 sc = file->sc;
3486 TRACEF(3, file, "called");
3487
3488 mutex_enter(sc->sc_lock);
3489 selremove_knote(&sc->sc_wsel, kn);
3490 mutex_exit(sc->sc_lock);
3491 }
3492
3493 static int
3494 filt_audiowrite_event(struct knote *kn, long hint)
3495 {
3496 audio_file_t *file;
3497 audio_track_t *track;
3498
3499 file = kn->kn_hook;
3500 track = file->ptrack;
3501
3502 /*
3503 * kn_data must contain the number of bytes can be write.
3504 * The return value indicates whether the event occurs or not.
3505 */
3506
3507 if (track == NULL) {
3508 /* can not write with this descriptor. */
3509 kn->kn_data = 0;
3510 return 0;
3511 }
3512
3513 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3514 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3515 return (track->usrbuf.used < track->usrbuf_usedlow);
3516 }
3517
3518 /*
3519 * Must be called without sc_lock nor sc_exlock held.
3520 */
3521 int
3522 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3523 {
3524 struct selinfo *sip;
3525
3526 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3527
3528 switch (kn->kn_filter) {
3529 case EVFILT_READ:
3530 sip = &sc->sc_rsel;
3531 kn->kn_fop = &audioread_filtops;
3532 break;
3533
3534 case EVFILT_WRITE:
3535 sip = &sc->sc_wsel;
3536 kn->kn_fop = &audiowrite_filtops;
3537 break;
3538
3539 default:
3540 return EINVAL;
3541 }
3542
3543 kn->kn_hook = file;
3544
3545 mutex_enter(sc->sc_lock);
3546 selrecord_knote(sip, kn);
3547 mutex_exit(sc->sc_lock);
3548
3549 return 0;
3550 }
3551
3552 /*
3553 * Must be called without sc_lock nor sc_exlock held.
3554 */
3555 int
3556 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3557 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3558 audio_file_t *file)
3559 {
3560 audio_track_t *track;
3561 vsize_t vsize;
3562 int error;
3563
3564 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3565
3566 if (*offp < 0)
3567 return EINVAL;
3568
3569 #if 0
3570 /* XXX
3571 * The idea here was to use the protection to determine if
3572 * we are mapping the read or write buffer, but it fails.
3573 * The VM system is broken in (at least) two ways.
3574 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3575 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3576 * has to be used for mmapping the play buffer.
3577 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3578 * audio_mmap will get called at some point with VM_PROT_READ
3579 * only.
3580 * So, alas, we always map the play buffer for now.
3581 */
3582 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3583 prot == VM_PROT_WRITE)
3584 track = file->ptrack;
3585 else if (prot == VM_PROT_READ)
3586 track = file->rtrack;
3587 else
3588 return EINVAL;
3589 #else
3590 track = file->ptrack;
3591 #endif
3592 if (track == NULL)
3593 return EACCES;
3594
3595 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3596 if (len > vsize)
3597 return EOVERFLOW;
3598 if (*offp > (uint)(vsize - len))
3599 return EOVERFLOW;
3600
3601 /* XXX TODO: what happens when mmap twice. */
3602 if (!track->mmapped) {
3603 track->mmapped = true;
3604
3605 if (!track->is_pause) {
3606 error = audio_exlock_mutex_enter(sc);
3607 if (error)
3608 return error;
3609 if (sc->sc_pbusy == false)
3610 audio_pmixer_start(sc, true);
3611 audio_exlock_mutex_exit(sc);
3612 }
3613 /* XXX mmapping record buffer is not supported */
3614 }
3615
3616 /* get ringbuffer */
3617 *uobjp = track->uobj;
3618
3619 /* Acquire a reference for the mmap. munmap will release. */
3620 uao_reference(*uobjp);
3621 *maxprotp = prot;
3622 *advicep = UVM_ADV_RANDOM;
3623 *flagsp = MAP_SHARED;
3624 return 0;
3625 }
3626
3627 /*
3628 * /dev/audioctl has to be able to open at any time without interference
3629 * with any /dev/audio or /dev/sound.
3630 * Must be called with sc_exlock held and without sc_lock held.
3631 */
3632 static int
3633 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3634 struct lwp *l)
3635 {
3636 struct file *fp;
3637 audio_file_t *af;
3638 int fd;
3639 int error;
3640
3641 KASSERT(sc->sc_exlock);
3642
3643 TRACE(1, "called");
3644
3645 error = fd_allocfile(&fp, &fd);
3646 if (error)
3647 return error;
3648
3649 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
3650 af->sc = sc;
3651 af->dev = dev;
3652
3653 mutex_enter(sc->sc_lock);
3654 if (sc->sc_dying) {
3655 mutex_exit(sc->sc_lock);
3656 kmem_free(af, sizeof(*af));
3657 fd_abort(curproc, fp, fd);
3658 return ENXIO;
3659 }
3660 mutex_enter(sc->sc_intr_lock);
3661 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
3662 mutex_exit(sc->sc_intr_lock);
3663 mutex_exit(sc->sc_lock);
3664
3665 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3666 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3667
3668 return error;
3669 }
3670
3671 /*
3672 * Free 'mem' if available, and initialize the pointer.
3673 * For this reason, this is implemented as macro.
3674 */
3675 #define audio_free(mem) do { \
3676 if (mem != NULL) { \
3677 kern_free(mem); \
3678 mem = NULL; \
3679 } \
3680 } while (0)
3681
3682 /*
3683 * (Re)allocate 'memblock' with specified 'bytes'.
3684 * bytes must not be 0.
3685 * This function never returns NULL.
3686 */
3687 static void *
3688 audio_realloc(void *memblock, size_t bytes)
3689 {
3690
3691 KASSERT(bytes != 0);
3692 if (memblock)
3693 kern_free(memblock);
3694 return kern_malloc(bytes, M_WAITOK);
3695 }
3696
3697 /*
3698 * (Re)allocate usrbuf with 'newbufsize' bytes.
3699 * Use this function for usrbuf because only usrbuf can be mmapped.
3700 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3701 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3702 * and returns errno.
3703 * It must be called before updating usrbuf.capacity.
3704 */
3705 static int
3706 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3707 {
3708 struct audio_softc *sc;
3709 vaddr_t vstart;
3710 vsize_t oldvsize;
3711 vsize_t newvsize;
3712 int error;
3713
3714 KASSERT(newbufsize > 0);
3715 sc = track->mixer->sc;
3716
3717 /* Get a nonzero multiple of PAGE_SIZE */
3718 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3719
3720 if (track->usrbuf.mem != NULL) {
3721 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3722 PAGE_SIZE);
3723 if (oldvsize == newvsize) {
3724 track->usrbuf.capacity = newbufsize;
3725 return 0;
3726 }
3727 vstart = (vaddr_t)track->usrbuf.mem;
3728 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3729 /* uvm_unmap also detach uobj */
3730 track->uobj = NULL; /* paranoia */
3731 track->usrbuf.mem = NULL;
3732 }
3733
3734 /* Create a uvm anonymous object */
3735 track->uobj = uao_create(newvsize, 0);
3736
3737 /* Map it into the kernel virtual address space */
3738 vstart = 0;
3739 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3740 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3741 UVM_ADV_RANDOM, 0));
3742 if (error) {
3743 device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
3744 uao_detach(track->uobj); /* release reference */
3745 goto abort;
3746 }
3747
3748 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3749 false, 0);
3750 if (error) {
3751 device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
3752 error);
3753 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3754 /* uvm_unmap also detach uobj */
3755 goto abort;
3756 }
3757
3758 track->usrbuf.mem = (void *)vstart;
3759 track->usrbuf.capacity = newbufsize;
3760 memset(track->usrbuf.mem, 0, newvsize);
3761 return 0;
3762
3763 /* failure */
3764 abort:
3765 track->uobj = NULL; /* paranoia */
3766 track->usrbuf.mem = NULL;
3767 track->usrbuf.capacity = 0;
3768 return error;
3769 }
3770
3771 /*
3772 * Free usrbuf (if available).
3773 */
3774 static void
3775 audio_free_usrbuf(audio_track_t *track)
3776 {
3777 vaddr_t vstart;
3778 vsize_t vsize;
3779
3780 vstart = (vaddr_t)track->usrbuf.mem;
3781 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3782 if (track->usrbuf.mem != NULL) {
3783 /*
3784 * Unmap the kernel mapping. uvm_unmap releases the
3785 * reference to the uvm object, and this should be the
3786 * last virtual mapping of the uvm object, so no need
3787 * to explicitly release (`detach') the object.
3788 */
3789 uvm_unmap(kernel_map, vstart, vstart + vsize);
3790
3791 track->uobj = NULL;
3792 track->usrbuf.mem = NULL;
3793 track->usrbuf.capacity = 0;
3794 }
3795 }
3796
3797 /*
3798 * This filter changes the volume for each channel.
3799 * arg->context points track->ch_volume[].
3800 */
3801 static void
3802 audio_track_chvol(audio_filter_arg_t *arg)
3803 {
3804 int16_t *ch_volume;
3805 const aint_t *s;
3806 aint_t *d;
3807 u_int i;
3808 u_int ch;
3809 u_int channels;
3810
3811 DIAGNOSTIC_filter_arg(arg);
3812 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3813 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3814 arg->srcfmt->channels, arg->dstfmt->channels);
3815 KASSERT(arg->context != NULL);
3816 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3817 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3818
3819 s = arg->src;
3820 d = arg->dst;
3821 ch_volume = arg->context;
3822
3823 channels = arg->srcfmt->channels;
3824 for (i = 0; i < arg->count; i++) {
3825 for (ch = 0; ch < channels; ch++) {
3826 aint2_t val;
3827 val = *s++;
3828 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3829 *d++ = (aint_t)val;
3830 }
3831 }
3832 }
3833
3834 /*
3835 * This filter performs conversion from stereo (or more channels) to mono.
3836 */
3837 static void
3838 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3839 {
3840 const aint_t *s;
3841 aint_t *d;
3842 u_int i;
3843
3844 DIAGNOSTIC_filter_arg(arg);
3845
3846 s = arg->src;
3847 d = arg->dst;
3848
3849 for (i = 0; i < arg->count; i++) {
3850 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3851 s += arg->srcfmt->channels;
3852 }
3853 }
3854
3855 /*
3856 * This filter performs conversion from mono to stereo (or more channels).
3857 */
3858 static void
3859 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3860 {
3861 const aint_t *s;
3862 aint_t *d;
3863 u_int i;
3864 u_int ch;
3865 u_int dstchannels;
3866
3867 DIAGNOSTIC_filter_arg(arg);
3868
3869 s = arg->src;
3870 d = arg->dst;
3871 dstchannels = arg->dstfmt->channels;
3872
3873 for (i = 0; i < arg->count; i++) {
3874 d[0] = s[0];
3875 d[1] = s[0];
3876 s++;
3877 d += dstchannels;
3878 }
3879 if (dstchannels > 2) {
3880 d = arg->dst;
3881 for (i = 0; i < arg->count; i++) {
3882 for (ch = 2; ch < dstchannels; ch++) {
3883 d[ch] = 0;
3884 }
3885 d += dstchannels;
3886 }
3887 }
3888 }
3889
3890 /*
3891 * This filter shrinks M channels into N channels.
3892 * Extra channels are discarded.
3893 */
3894 static void
3895 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3896 {
3897 const aint_t *s;
3898 aint_t *d;
3899 u_int i;
3900 u_int ch;
3901
3902 DIAGNOSTIC_filter_arg(arg);
3903
3904 s = arg->src;
3905 d = arg->dst;
3906
3907 for (i = 0; i < arg->count; i++) {
3908 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3909 *d++ = s[ch];
3910 }
3911 s += arg->srcfmt->channels;
3912 }
3913 }
3914
3915 /*
3916 * This filter expands M channels into N channels.
3917 * Silence is inserted for missing channels.
3918 */
3919 static void
3920 audio_track_chmix_expand(audio_filter_arg_t *arg)
3921 {
3922 const aint_t *s;
3923 aint_t *d;
3924 u_int i;
3925 u_int ch;
3926 u_int srcchannels;
3927 u_int dstchannels;
3928
3929 DIAGNOSTIC_filter_arg(arg);
3930
3931 s = arg->src;
3932 d = arg->dst;
3933
3934 srcchannels = arg->srcfmt->channels;
3935 dstchannels = arg->dstfmt->channels;
3936 for (i = 0; i < arg->count; i++) {
3937 for (ch = 0; ch < srcchannels; ch++) {
3938 *d++ = *s++;
3939 }
3940 for (; ch < dstchannels; ch++) {
3941 *d++ = 0;
3942 }
3943 }
3944 }
3945
3946 /*
3947 * This filter performs frequency conversion (up sampling).
3948 * It uses linear interpolation.
3949 */
3950 static void
3951 audio_track_freq_up(audio_filter_arg_t *arg)
3952 {
3953 audio_track_t *track;
3954 audio_ring_t *src;
3955 audio_ring_t *dst;
3956 const aint_t *s;
3957 aint_t *d;
3958 aint_t prev[AUDIO_MAX_CHANNELS];
3959 aint_t curr[AUDIO_MAX_CHANNELS];
3960 aint_t grad[AUDIO_MAX_CHANNELS];
3961 u_int i;
3962 u_int t;
3963 u_int step;
3964 u_int channels;
3965 u_int ch;
3966 int srcused;
3967
3968 track = arg->context;
3969 KASSERT(track);
3970 src = &track->freq.srcbuf;
3971 dst = track->freq.dst;
3972 DIAGNOSTIC_ring(dst);
3973 DIAGNOSTIC_ring(src);
3974 KASSERT(src->used > 0);
3975 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3976 "src->fmt.channels=%d dst->fmt.channels=%d",
3977 src->fmt.channels, dst->fmt.channels);
3978 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3979 "src->head=%d track->mixer->frames_per_block=%d",
3980 src->head, track->mixer->frames_per_block);
3981
3982 s = arg->src;
3983 d = arg->dst;
3984
3985 /*
3986 * In order to facilitate interpolation for each block, slide (delay)
3987 * input by one sample. As a result, strictly speaking, the output
3988 * phase is delayed by 1/dstfreq. However, I believe there is no
3989 * observable impact.
3990 *
3991 * Example)
3992 * srcfreq:dstfreq = 1:3
3993 *
3994 * A - -
3995 * |
3996 * |
3997 * | B - -
3998 * +-----+-----> input timeframe
3999 * 0 1
4000 *
4001 * 0 1
4002 * +-----+-----> input timeframe
4003 * | A
4004 * | x x
4005 * | x x
4006 * x (B)
4007 * +-+-+-+-+-+-> output timeframe
4008 * 0 1 2 3 4 5
4009 */
4010
4011 /* Last samples in previous block */
4012 channels = src->fmt.channels;
4013 for (ch = 0; ch < channels; ch++) {
4014 prev[ch] = track->freq_prev[ch];
4015 curr[ch] = track->freq_curr[ch];
4016 grad[ch] = curr[ch] - prev[ch];
4017 }
4018
4019 step = track->freq_step;
4020 t = track->freq_current;
4021 //#define FREQ_DEBUG
4022 #if defined(FREQ_DEBUG)
4023 #define PRINTF(fmt...) printf(fmt)
4024 #else
4025 #define PRINTF(fmt...) do { } while (0)
4026 #endif
4027 srcused = src->used;
4028 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
4029 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
4030 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
4031 PRINTF(" t=%d\n", t);
4032
4033 for (i = 0; i < arg->count; i++) {
4034 PRINTF("i=%d t=%5d", i, t);
4035 if (t >= 65536) {
4036 for (ch = 0; ch < channels; ch++) {
4037 prev[ch] = curr[ch];
4038 curr[ch] = *s++;
4039 grad[ch] = curr[ch] - prev[ch];
4040 }
4041 PRINTF(" prev=%d s[%d]=%d",
4042 prev[0], src->used - srcused, curr[0]);
4043
4044 /* Update */
4045 t -= 65536;
4046 srcused--;
4047 if (srcused < 0) {
4048 PRINTF(" break\n");
4049 break;
4050 }
4051 }
4052
4053 for (ch = 0; ch < channels; ch++) {
4054 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
4055 #if defined(FREQ_DEBUG)
4056 if (ch == 0)
4057 printf(" t=%5d *d=%d", t, d[-1]);
4058 #endif
4059 }
4060 t += step;
4061
4062 PRINTF("\n");
4063 }
4064 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
4065
4066 auring_take(src, src->used);
4067 auring_push(dst, i);
4068
4069 /* Adjust */
4070 t += track->freq_leap;
4071
4072 track->freq_current = t;
4073 for (ch = 0; ch < channels; ch++) {
4074 track->freq_prev[ch] = prev[ch];
4075 track->freq_curr[ch] = curr[ch];
4076 }
4077 }
4078
4079 /*
4080 * This filter performs frequency conversion (down sampling).
4081 * It uses simple thinning.
4082 */
4083 static void
4084 audio_track_freq_down(audio_filter_arg_t *arg)
4085 {
4086 audio_track_t *track;
4087 audio_ring_t *src;
4088 audio_ring_t *dst;
4089 const aint_t *s0;
4090 aint_t *d;
4091 u_int i;
4092 u_int t;
4093 u_int step;
4094 u_int ch;
4095 u_int channels;
4096
4097 track = arg->context;
4098 KASSERT(track);
4099 src = &track->freq.srcbuf;
4100 dst = track->freq.dst;
4101
4102 DIAGNOSTIC_ring(dst);
4103 DIAGNOSTIC_ring(src);
4104 KASSERT(src->used > 0);
4105 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
4106 "src->fmt.channels=%d dst->fmt.channels=%d",
4107 src->fmt.channels, dst->fmt.channels);
4108 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
4109 "src->head=%d track->mixer->frames_per_block=%d",
4110 src->head, track->mixer->frames_per_block);
4111
4112 s0 = arg->src;
4113 d = arg->dst;
4114 t = track->freq_current;
4115 step = track->freq_step;
4116 channels = dst->fmt.channels;
4117 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
4118 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
4119 PRINTF(" t=%d\n", t);
4120
4121 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
4122 const aint_t *s;
4123 PRINTF("i=%4d t=%10d", i, t);
4124 s = s0 + (t / 65536) * channels;
4125 PRINTF(" s=%5ld", (s - s0) / channels);
4126 for (ch = 0; ch < channels; ch++) {
4127 if (ch == 0) PRINTF(" *s=%d", s[ch]);
4128 *d++ = s[ch];
4129 }
4130 PRINTF("\n");
4131 t += step;
4132 }
4133 t += track->freq_leap;
4134 PRINTF("end t=%d\n", t);
4135 auring_take(src, src->used);
4136 auring_push(dst, i);
4137 track->freq_current = t % 65536;
4138 }
4139
4140 /*
4141 * Creates track and returns it.
4142 * Must be called without sc_lock held.
4143 */
4144 audio_track_t *
4145 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
4146 {
4147 audio_track_t *track;
4148 static int newid = 0;
4149
4150 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
4151
4152 track->id = newid++;
4153 track->mixer = mixer;
4154 track->mode = mixer->mode;
4155
4156 /* Do TRACE after id is assigned. */
4157 TRACET(3, track, "for %s",
4158 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
4159
4160 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
4161 track->volume = 256;
4162 #endif
4163 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
4164 track->ch_volume[i] = 256;
4165 }
4166
4167 return track;
4168 }
4169
4170 /*
4171 * Release all resources of the track and track itself.
4172 * track must not be NULL. Don't specify the track within the file
4173 * structure linked from sc->sc_files.
4174 */
4175 static void
4176 audio_track_destroy(audio_track_t *track)
4177 {
4178
4179 KASSERT(track);
4180
4181 audio_free_usrbuf(track);
4182 audio_free(track->codec.srcbuf.mem);
4183 audio_free(track->chvol.srcbuf.mem);
4184 audio_free(track->chmix.srcbuf.mem);
4185 audio_free(track->freq.srcbuf.mem);
4186 audio_free(track->outbuf.mem);
4187
4188 kmem_free(track, sizeof(*track));
4189 }
4190
4191 /*
4192 * It returns encoding conversion filter according to src and dst format.
4193 * If it is not a convertible pair, it returns NULL. Either src or dst
4194 * must be internal format.
4195 */
4196 static audio_filter_t
4197 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
4198 const audio_format2_t *dst)
4199 {
4200
4201 if (audio_format2_is_internal(src)) {
4202 if (dst->encoding == AUDIO_ENCODING_ULAW) {
4203 return audio_internal_to_mulaw;
4204 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
4205 return audio_internal_to_alaw;
4206 } else if (audio_format2_is_linear(dst)) {
4207 switch (dst->stride) {
4208 case 8:
4209 return audio_internal_to_linear8;
4210 case 16:
4211 return audio_internal_to_linear16;
4212 #if defined(AUDIO_SUPPORT_LINEAR24)
4213 case 24:
4214 return audio_internal_to_linear24;
4215 #endif
4216 case 32:
4217 return audio_internal_to_linear32;
4218 default:
4219 TRACET(1, track, "unsupported %s stride %d",
4220 "dst", dst->stride);
4221 goto abort;
4222 }
4223 }
4224 } else if (audio_format2_is_internal(dst)) {
4225 if (src->encoding == AUDIO_ENCODING_ULAW) {
4226 return audio_mulaw_to_internal;
4227 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
4228 return audio_alaw_to_internal;
4229 } else if (audio_format2_is_linear(src)) {
4230 switch (src->stride) {
4231 case 8:
4232 return audio_linear8_to_internal;
4233 case 16:
4234 return audio_linear16_to_internal;
4235 #if defined(AUDIO_SUPPORT_LINEAR24)
4236 case 24:
4237 return audio_linear24_to_internal;
4238 #endif
4239 case 32:
4240 return audio_linear32_to_internal;
4241 default:
4242 TRACET(1, track, "unsupported %s stride %d",
4243 "src", src->stride);
4244 goto abort;
4245 }
4246 }
4247 }
4248
4249 TRACET(1, track, "unsupported encoding");
4250 abort:
4251 #if defined(AUDIO_DEBUG)
4252 if (audiodebug >= 2) {
4253 char buf[100];
4254 audio_format2_tostr(buf, sizeof(buf), src);
4255 TRACET(2, track, "src %s", buf);
4256 audio_format2_tostr(buf, sizeof(buf), dst);
4257 TRACET(2, track, "dst %s", buf);
4258 }
4259 #endif
4260 return NULL;
4261 }
4262
4263 /*
4264 * Initialize the codec stage of this track as necessary.
4265 * If successful, it initializes the codec stage as necessary, stores updated
4266 * last_dst in *last_dstp in any case, and returns 0.
4267 * Otherwise, it returns errno without modifying *last_dstp.
4268 */
4269 static int
4270 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
4271 {
4272 audio_ring_t *last_dst;
4273 audio_ring_t *srcbuf;
4274 audio_format2_t *srcfmt;
4275 audio_format2_t *dstfmt;
4276 audio_filter_arg_t *arg;
4277 u_int len;
4278 int error;
4279
4280 KASSERT(track);
4281
4282 last_dst = *last_dstp;
4283 dstfmt = &last_dst->fmt;
4284 srcfmt = &track->inputfmt;
4285 srcbuf = &track->codec.srcbuf;
4286 error = 0;
4287
4288 if (srcfmt->encoding != dstfmt->encoding
4289 || srcfmt->precision != dstfmt->precision
4290 || srcfmt->stride != dstfmt->stride) {
4291 track->codec.dst = last_dst;
4292
4293 srcbuf->fmt = *dstfmt;
4294 srcbuf->fmt.encoding = srcfmt->encoding;
4295 srcbuf->fmt.precision = srcfmt->precision;
4296 srcbuf->fmt.stride = srcfmt->stride;
4297
4298 track->codec.filter = audio_track_get_codec(track,
4299 &srcbuf->fmt, dstfmt);
4300 if (track->codec.filter == NULL) {
4301 error = EINVAL;
4302 goto abort;
4303 }
4304
4305 srcbuf->head = 0;
4306 srcbuf->used = 0;
4307 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4308 len = auring_bytelen(srcbuf);
4309 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4310
4311 arg = &track->codec.arg;
4312 arg->srcfmt = &srcbuf->fmt;
4313 arg->dstfmt = dstfmt;
4314 arg->context = NULL;
4315
4316 *last_dstp = srcbuf;
4317 return 0;
4318 }
4319
4320 abort:
4321 track->codec.filter = NULL;
4322 audio_free(srcbuf->mem);
4323 return error;
4324 }
4325
4326 /*
4327 * Initialize the chvol stage of this track as necessary.
4328 * If successful, it initializes the chvol stage as necessary, stores updated
4329 * last_dst in *last_dstp in any case, and returns 0.
4330 * Otherwise, it returns errno without modifying *last_dstp.
4331 */
4332 static int
4333 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4334 {
4335 audio_ring_t *last_dst;
4336 audio_ring_t *srcbuf;
4337 audio_format2_t *srcfmt;
4338 audio_format2_t *dstfmt;
4339 audio_filter_arg_t *arg;
4340 u_int len;
4341 int error;
4342
4343 KASSERT(track);
4344
4345 last_dst = *last_dstp;
4346 dstfmt = &last_dst->fmt;
4347 srcfmt = &track->inputfmt;
4348 srcbuf = &track->chvol.srcbuf;
4349 error = 0;
4350
4351 /* Check whether channel volume conversion is necessary. */
4352 bool use_chvol = false;
4353 for (int ch = 0; ch < srcfmt->channels; ch++) {
4354 if (track->ch_volume[ch] != 256) {
4355 use_chvol = true;
4356 break;
4357 }
4358 }
4359
4360 if (use_chvol == true) {
4361 track->chvol.dst = last_dst;
4362 track->chvol.filter = audio_track_chvol;
4363
4364 srcbuf->fmt = *dstfmt;
4365 /* no format conversion occurs */
4366
4367 srcbuf->head = 0;
4368 srcbuf->used = 0;
4369 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4370 len = auring_bytelen(srcbuf);
4371 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4372
4373 arg = &track->chvol.arg;
4374 arg->srcfmt = &srcbuf->fmt;
4375 arg->dstfmt = dstfmt;
4376 arg->context = track->ch_volume;
4377
4378 *last_dstp = srcbuf;
4379 return 0;
4380 }
4381
4382 track->chvol.filter = NULL;
4383 audio_free(srcbuf->mem);
4384 return error;
4385 }
4386
4387 /*
4388 * Initialize the chmix stage of this track as necessary.
4389 * If successful, it initializes the chmix stage as necessary, stores updated
4390 * last_dst in *last_dstp in any case, and returns 0.
4391 * Otherwise, it returns errno without modifying *last_dstp.
4392 */
4393 static int
4394 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4395 {
4396 audio_ring_t *last_dst;
4397 audio_ring_t *srcbuf;
4398 audio_format2_t *srcfmt;
4399 audio_format2_t *dstfmt;
4400 audio_filter_arg_t *arg;
4401 u_int srcch;
4402 u_int dstch;
4403 u_int len;
4404 int error;
4405
4406 KASSERT(track);
4407
4408 last_dst = *last_dstp;
4409 dstfmt = &last_dst->fmt;
4410 srcfmt = &track->inputfmt;
4411 srcbuf = &track->chmix.srcbuf;
4412 error = 0;
4413
4414 srcch = srcfmt->channels;
4415 dstch = dstfmt->channels;
4416 if (srcch != dstch) {
4417 track->chmix.dst = last_dst;
4418
4419 if (srcch >= 2 && dstch == 1) {
4420 track->chmix.filter = audio_track_chmix_mixLR;
4421 } else if (srcch == 1 && dstch >= 2) {
4422 track->chmix.filter = audio_track_chmix_dupLR;
4423 } else if (srcch > dstch) {
4424 track->chmix.filter = audio_track_chmix_shrink;
4425 } else {
4426 track->chmix.filter = audio_track_chmix_expand;
4427 }
4428
4429 srcbuf->fmt = *dstfmt;
4430 srcbuf->fmt.channels = srcch;
4431
4432 srcbuf->head = 0;
4433 srcbuf->used = 0;
4434 /* XXX The buffer size should be able to calculate. */
4435 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4436 len = auring_bytelen(srcbuf);
4437 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4438
4439 arg = &track->chmix.arg;
4440 arg->srcfmt = &srcbuf->fmt;
4441 arg->dstfmt = dstfmt;
4442 arg->context = NULL;
4443
4444 *last_dstp = srcbuf;
4445 return 0;
4446 }
4447
4448 track->chmix.filter = NULL;
4449 audio_free(srcbuf->mem);
4450 return error;
4451 }
4452
4453 /*
4454 * Initialize the freq stage of this track as necessary.
4455 * If successful, it initializes the freq stage as necessary, stores updated
4456 * last_dst in *last_dstp in any case, and returns 0.
4457 * Otherwise, it returns errno without modifying *last_dstp.
4458 */
4459 static int
4460 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4461 {
4462 audio_ring_t *last_dst;
4463 audio_ring_t *srcbuf;
4464 audio_format2_t *srcfmt;
4465 audio_format2_t *dstfmt;
4466 audio_filter_arg_t *arg;
4467 uint32_t srcfreq;
4468 uint32_t dstfreq;
4469 u_int dst_capacity;
4470 u_int mod;
4471 u_int len;
4472 int error;
4473
4474 KASSERT(track);
4475
4476 last_dst = *last_dstp;
4477 dstfmt = &last_dst->fmt;
4478 srcfmt = &track->inputfmt;
4479 srcbuf = &track->freq.srcbuf;
4480 error = 0;
4481
4482 srcfreq = srcfmt->sample_rate;
4483 dstfreq = dstfmt->sample_rate;
4484 if (srcfreq != dstfreq) {
4485 track->freq.dst = last_dst;
4486
4487 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4488 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4489
4490 /* freq_step is the ratio of src/dst when let dst 65536. */
4491 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4492
4493 dst_capacity = frame_per_block(track->mixer, dstfmt);
4494 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4495 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4496
4497 if (track->freq_step < 65536) {
4498 track->freq.filter = audio_track_freq_up;
4499 /* In order to carry at the first time. */
4500 track->freq_current = 65536;
4501 } else {
4502 track->freq.filter = audio_track_freq_down;
4503 track->freq_current = 0;
4504 }
4505
4506 srcbuf->fmt = *dstfmt;
4507 srcbuf->fmt.sample_rate = srcfreq;
4508
4509 srcbuf->head = 0;
4510 srcbuf->used = 0;
4511 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4512 len = auring_bytelen(srcbuf);
4513 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4514
4515 arg = &track->freq.arg;
4516 arg->srcfmt = &srcbuf->fmt;
4517 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4518 arg->context = track;
4519
4520 *last_dstp = srcbuf;
4521 return 0;
4522 }
4523
4524 track->freq.filter = NULL;
4525 audio_free(srcbuf->mem);
4526 return error;
4527 }
4528
4529 /*
4530 * There are two unit of buffers; A block buffer and a byte buffer. Both use
4531 * audio_ring_t. Internally, audio data is always handled in block unit.
4532 * Converting format, sythesizing tracks, transferring from/to the hardware,
4533 * and etc. Only one exception is usrbuf. To transfer with userland, usrbuf
4534 * is buffered in byte unit.
4535 * For playing back, write(2) writes arbitrary length of data to usrbuf.
4536 * When one block is filled, it is sent to the next stage (converting and/or
4537 * synthesizing).
4538 * For recording, the rmixer writes one block length of data to input buffer
4539 * (the bottom stage buffer) each time. read(2) (converts one block if usrbuf
4540 * is empty and then) reads arbitrary length of data from usrbuf.
4541 *
4542 * The following charts show the data flow and buffer types for playback and
4543 * recording track. In this example, both have two conversion stages, codec
4544 * and freq. Every [**] represents a buffer described below.
4545 *
4546 * On playback track:
4547 *
4548 * write(2)
4549 * |
4550 * | uiomove
4551 * v
4552 * usrbuf [BB|BB ... BB|BB] .. Byte ring buffer
4553 * |
4554 * | memcpy one block
4555 * v
4556 * codec.srcbuf [FF] .. 1 block (ring) buffer
4557 * .dst ----+
4558 * |
4559 * | convert
4560 * v
4561 * freq.srcbuf [FF] .. 1 block (ring) buffer
4562 * .dst ----+
4563 * |
4564 * | convert
4565 * v
4566 * outbuf [FF|FF|FF|FF] .. NBLKOUT blocks ring buffer
4567 * |
4568 * v
4569 * pmixer
4570 *
4571 * There are three different types of buffers:
4572 *
4573 * [BB|BB ... BB|BB] usrbuf. Is the buffer closest to userland. Mandatory.
4574 * This is a byte buffer and its length is basically less
4575 * than or equal to 64KB or at least AUMINNOBLK blocks.
4576 *
4577 * [FF] Interim conversion stage's srcbuf if necessary.
4578 * This is one block (ring) buffer counted in frames.
4579 *
4580 * [FF|FF|FF|FF] outbuf. Is the buffer closest to pmixer. Mandatory.
4581 * This is NBLKOUT blocks ring buffer counted in frames.
4582 *
4583 *
4584 * On recording track:
4585 *
4586 * read(2)
4587 * ^
4588 * | uiomove
4589 * |
4590 * usrbuf [BB] .. Byte (ring) buffer
4591 * ^
4592 * | memcpy one block
4593 * |
4594 * outbuf [FF] .. 1 block (ring) buffer
4595 * ^
4596 * | convert
4597 * |
4598 * codec.dst ----+
4599 * .srcbuf [FF] .. 1 block (ring) buffer
4600 * ^
4601 * | convert
4602 * |
4603 * freq.dst ----+
4604 * .srcbuf [FF|FF ... FF|FF] .. NBLKIN blocks ring buffer
4605 * ^
4606 * |
4607 * rmixer
4608 *
4609 * There are also three different types of buffers.
4610 *
4611 * [BB] usrbuf. Is the buffer closest to userland. Mandatory.
4612 * This is a byte buffer and its length is one block.
4613 * This buffer holds only "fragment".
4614 *
4615 * [FF] Interim conversion stage's srcbuf (or outbuf).
4616 * This is one block (ring) buffer counted in frames.
4617 *
4618 * [FF|FF ... FF|FF] The bottom conversion stage's srcbuf (or outbuf).
4619 * This is the buffer closest to rmixer, and mandatory.
4620 * This is NBLKIN blocks ring buffer counted in frames.
4621 * Also pointed by *input.
4622 */
4623
4624 /*
4625 * Set the userland format of this track.
4626 * usrfmt argument should have been previously verified by
4627 * audio_track_setinfo_check().
4628 * This function may release and reallocate all internal conversion buffers.
4629 * It returns 0 if successful. Otherwise it returns errno with clearing all
4630 * internal buffers.
4631 * It must be called without sc_intr_lock since uvm_* routines require non
4632 * intr_lock state.
4633 * It must be called with track lock held since it may release and reallocate
4634 * outbuf.
4635 */
4636 static int
4637 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4638 {
4639 struct audio_softc *sc;
4640 audio_ring_t *last_dst;
4641 int is_playback;
4642 u_int newbufsize;
4643 u_int oldblksize;
4644 u_int len;
4645 int error;
4646
4647 KASSERT(track);
4648 sc = track->mixer->sc;
4649
4650 is_playback = audio_track_is_playback(track);
4651
4652 /* usrbuf is the closest buffer to the userland. */
4653 track->usrbuf.fmt = *usrfmt;
4654
4655 /*
4656 * Usrbuf.
4657 * On the playback track, its capacity is less than or equal to 64KB
4658 * (for historical reason) and must be a multiple of a block
4659 * (constraint in this implementation). But at least AUMINNOBLK
4660 * blocks.
4661 * On the recording track, its capacity is one block.
4662 */
4663 /*
4664 * For references, one block size (in 40msec) is:
4665 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4666 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4667 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4668 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4669 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4670 *
4671 * For example,
4672 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4673 * newbufsize = rounddown(65536 / 7056) = 63504
4674 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4675 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4676 *
4677 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4678 * newbufsize = rounddown(65536 / 7680) = 61440
4679 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4680 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4681 */
4682 oldblksize = track->usrbuf_blksize;
4683 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4684 frame_per_block(track->mixer, &track->usrbuf.fmt));
4685 track->usrbuf.head = 0;
4686 track->usrbuf.used = 0;
4687 if (is_playback) {
4688 if (track->usrbuf_blksize * AUMINNOBLK > 65536)
4689 newbufsize = track->usrbuf_blksize * AUMINNOBLK;
4690 else
4691 newbufsize = rounddown(65536, track->usrbuf_blksize);
4692 } else {
4693 newbufsize = track->usrbuf_blksize;
4694 }
4695 if (track->usrbuf_blksize != oldblksize) {
4696 error = audio_realloc_usrbuf(track, newbufsize);
4697 if (error) {
4698 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4699 newbufsize);
4700 goto error;
4701 }
4702 }
4703
4704 /* Recalc water mark. */
4705 if (is_playback) {
4706 /* Set high at 100%, low at 75%. */
4707 track->usrbuf_usedhigh = track->usrbuf.capacity;
4708 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4709 } else {
4710 /* Set high at 100%, low at 0%. (But not used) */
4711 track->usrbuf_usedhigh = track->usrbuf.capacity;
4712 track->usrbuf_usedlow = 0;
4713 }
4714
4715 /* Stage buffer */
4716 last_dst = &track->outbuf;
4717 if (is_playback) {
4718 /* On playback, initialize from the mixer side in order. */
4719 track->inputfmt = *usrfmt;
4720 track->outbuf.fmt = track->mixer->track_fmt;
4721
4722 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4723 goto error;
4724 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4725 goto error;
4726 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4727 goto error;
4728 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4729 goto error;
4730 } else {
4731 /* On recording, initialize from userland side in order. */
4732 track->inputfmt = track->mixer->track_fmt;
4733 track->outbuf.fmt = *usrfmt;
4734
4735 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4736 goto error;
4737 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4738 goto error;
4739 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4740 goto error;
4741 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4742 goto error;
4743 }
4744 #if 0
4745 /* debug */
4746 if (track->freq.filter) {
4747 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4748 audio_print_format2("freq dst", &track->freq.dst->fmt);
4749 }
4750 if (track->chmix.filter) {
4751 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4752 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4753 }
4754 if (track->chvol.filter) {
4755 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4756 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4757 }
4758 if (track->codec.filter) {
4759 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4760 audio_print_format2("codec dst", &track->codec.dst->fmt);
4761 }
4762 #endif
4763
4764 /* Stage input buffer */
4765 track->input = last_dst;
4766
4767 /*
4768 * Output buffer.
4769 * On the playback track, its capacity is NBLKOUT blocks.
4770 * On the recording track, its capacity is 1 block.
4771 */
4772 track->outbuf.head = 0;
4773 track->outbuf.used = 0;
4774 track->outbuf.capacity = frame_per_block(track->mixer,
4775 &track->outbuf.fmt);
4776 if (is_playback)
4777 track->outbuf.capacity *= NBLKOUT;
4778 len = auring_bytelen(&track->outbuf);
4779 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4780
4781 /*
4782 * On the recording track, expand the input stage buffer, which is
4783 * the closest buffer to rmixer, to NBLKOUT blocks.
4784 * Note that input buffer may point to outbuf.
4785 */
4786 if (!is_playback) {
4787 int input_fpb;
4788
4789 input_fpb = frame_per_block(track->mixer, &track->input->fmt);
4790 track->input->capacity = input_fpb * NBLKIN;
4791 len = auring_bytelen(track->input);
4792 track->input->mem = audio_realloc(track->input->mem, len);
4793 }
4794
4795 #if defined(AUDIO_DEBUG)
4796 if (audiodebug >= 3) {
4797 struct audio_track_debugbuf m;
4798
4799 memset(&m, 0, sizeof(m));
4800 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4801 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4802 if (track->freq.filter)
4803 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4804 track->freq.srcbuf.capacity *
4805 frametobyte(&track->freq.srcbuf.fmt, 1));
4806 if (track->chmix.filter)
4807 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4808 track->chmix.srcbuf.capacity *
4809 frametobyte(&track->chmix.srcbuf.fmt, 1));
4810 if (track->chvol.filter)
4811 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4812 track->chvol.srcbuf.capacity *
4813 frametobyte(&track->chvol.srcbuf.fmt, 1));
4814 if (track->codec.filter)
4815 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4816 track->codec.srcbuf.capacity *
4817 frametobyte(&track->codec.srcbuf.fmt, 1));
4818 snprintf(m.usrbuf, sizeof(m.usrbuf),
4819 " usr=%d", track->usrbuf.capacity);
4820
4821 if (is_playback) {
4822 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4823 m.outbuf, m.freq, m.chmix,
4824 m.chvol, m.codec, m.usrbuf);
4825 } else {
4826 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4827 m.freq, m.chmix, m.chvol,
4828 m.codec, m.outbuf, m.usrbuf);
4829 }
4830 }
4831 #endif
4832 return 0;
4833
4834 error:
4835 audio_free_usrbuf(track);
4836 audio_free(track->codec.srcbuf.mem);
4837 audio_free(track->chvol.srcbuf.mem);
4838 audio_free(track->chmix.srcbuf.mem);
4839 audio_free(track->freq.srcbuf.mem);
4840 audio_free(track->outbuf.mem);
4841 return error;
4842 }
4843
4844 /*
4845 * Fill silence frames (as the internal format) up to 1 block
4846 * if the ring is not empty and less than 1 block.
4847 * It returns the number of appended frames.
4848 */
4849 static int
4850 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4851 {
4852 int fpb;
4853 int n;
4854
4855 KASSERT(track);
4856 KASSERT(audio_format2_is_internal(&ring->fmt));
4857
4858 /* XXX is n correct? */
4859 /* XXX memset uses frametobyte()? */
4860
4861 if (ring->used == 0)
4862 return 0;
4863
4864 fpb = frame_per_block(track->mixer, &ring->fmt);
4865 if (ring->used >= fpb)
4866 return 0;
4867
4868 n = (ring->capacity - ring->used) % fpb;
4869
4870 KASSERTMSG(auring_get_contig_free(ring) >= n,
4871 "auring_get_contig_free(ring)=%d n=%d",
4872 auring_get_contig_free(ring), n);
4873
4874 memset(auring_tailptr_aint(ring), 0,
4875 n * ring->fmt.channels * sizeof(aint_t));
4876 auring_push(ring, n);
4877 return n;
4878 }
4879
4880 /*
4881 * Execute the conversion stage.
4882 * It prepares arg from this stage and executes stage->filter.
4883 * It must be called only if stage->filter is not NULL.
4884 *
4885 * For stages other than frequency conversion, the function increments
4886 * src and dst counters here. For frequency conversion stage, on the
4887 * other hand, the function does not touch src and dst counters and
4888 * filter side has to increment them.
4889 */
4890 static void
4891 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4892 {
4893 audio_filter_arg_t *arg;
4894 int srccount;
4895 int dstcount;
4896 int count;
4897
4898 KASSERT(track);
4899 KASSERT(stage->filter);
4900
4901 srccount = auring_get_contig_used(&stage->srcbuf);
4902 dstcount = auring_get_contig_free(stage->dst);
4903
4904 if (isfreq) {
4905 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4906 count = uimin(dstcount, track->mixer->frames_per_block);
4907 } else {
4908 count = uimin(srccount, dstcount);
4909 }
4910
4911 if (count > 0) {
4912 arg = &stage->arg;
4913 arg->src = auring_headptr(&stage->srcbuf);
4914 arg->dst = auring_tailptr(stage->dst);
4915 arg->count = count;
4916
4917 stage->filter(arg);
4918
4919 if (!isfreq) {
4920 auring_take(&stage->srcbuf, count);
4921 auring_push(stage->dst, count);
4922 }
4923 }
4924 }
4925
4926 /*
4927 * Produce output buffer for playback from user input buffer.
4928 * It must be called only if usrbuf is not empty and outbuf is
4929 * available at least one free block.
4930 */
4931 static void
4932 audio_track_play(audio_track_t *track)
4933 {
4934 audio_ring_t *usrbuf;
4935 audio_ring_t *input;
4936 int count;
4937 int framesize;
4938 int bytes;
4939
4940 KASSERT(track);
4941 KASSERT(track->lock);
4942 TRACET(4, track, "start pstate=%d", track->pstate);
4943
4944 /* At this point usrbuf must not be empty. */
4945 KASSERT(track->usrbuf.used > 0);
4946 /* Also, outbuf must be available at least one block. */
4947 count = auring_get_contig_free(&track->outbuf);
4948 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4949 "count=%d fpb=%d",
4950 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4951
4952 usrbuf = &track->usrbuf;
4953 input = track->input;
4954
4955 /*
4956 * framesize is always 1 byte or more since all formats supported as
4957 * usrfmt(=input) have 8bit or more stride.
4958 */
4959 framesize = frametobyte(&input->fmt, 1);
4960 KASSERT(framesize >= 1);
4961
4962 /* The next stage of usrbuf (=input) must be available. */
4963 KASSERT(auring_get_contig_free(input) > 0);
4964
4965 /*
4966 * Copy usrbuf up to 1block to input buffer.
4967 * count is the number of frames to copy from usrbuf.
4968 * bytes is the number of bytes to copy from usrbuf. However it is
4969 * not copied less than one frame.
4970 */
4971 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4972 bytes = count * framesize;
4973
4974 if (usrbuf->head + bytes < usrbuf->capacity) {
4975 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4976 (uint8_t *)usrbuf->mem + usrbuf->head,
4977 bytes);
4978 auring_push(input, count);
4979 auring_take(usrbuf, bytes);
4980 } else {
4981 int bytes1;
4982 int bytes2;
4983
4984 bytes1 = auring_get_contig_used(usrbuf);
4985 KASSERTMSG(bytes1 % framesize == 0,
4986 "bytes1=%d framesize=%d", bytes1, framesize);
4987 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4988 (uint8_t *)usrbuf->mem + usrbuf->head,
4989 bytes1);
4990 auring_push(input, bytes1 / framesize);
4991 auring_take(usrbuf, bytes1);
4992
4993 bytes2 = bytes - bytes1;
4994 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4995 (uint8_t *)usrbuf->mem + usrbuf->head,
4996 bytes2);
4997 auring_push(input, bytes2 / framesize);
4998 auring_take(usrbuf, bytes2);
4999 }
5000
5001 /* Encoding conversion */
5002 if (track->codec.filter)
5003 audio_apply_stage(track, &track->codec, false);
5004
5005 /* Channel volume */
5006 if (track->chvol.filter)
5007 audio_apply_stage(track, &track->chvol, false);
5008
5009 /* Channel mix */
5010 if (track->chmix.filter)
5011 audio_apply_stage(track, &track->chmix, false);
5012
5013 /* Frequency conversion */
5014 /*
5015 * Since the frequency conversion needs correction for each block,
5016 * it rounds up to 1 block.
5017 */
5018 if (track->freq.filter) {
5019 int n;
5020 n = audio_append_silence(track, &track->freq.srcbuf);
5021 if (n > 0) {
5022 TRACET(4, track,
5023 "freq.srcbuf add silence %d -> %d/%d/%d",
5024 n,
5025 track->freq.srcbuf.head,
5026 track->freq.srcbuf.used,
5027 track->freq.srcbuf.capacity);
5028 }
5029 if (track->freq.srcbuf.used > 0) {
5030 audio_apply_stage(track, &track->freq, true);
5031 }
5032 }
5033
5034 if (bytes < track->usrbuf_blksize) {
5035 /*
5036 * Clear all conversion buffer pointer if the conversion was
5037 * not exactly one block. These conversion stage buffers are
5038 * certainly circular buffers because of symmetry with the
5039 * previous and next stage buffer. However, since they are
5040 * treated as simple contiguous buffers in operation, so head
5041 * always should point 0. This may happen during drain-age.
5042 */
5043 TRACET(4, track, "reset stage");
5044 if (track->codec.filter) {
5045 KASSERT(track->codec.srcbuf.used == 0);
5046 track->codec.srcbuf.head = 0;
5047 }
5048 if (track->chvol.filter) {
5049 KASSERT(track->chvol.srcbuf.used == 0);
5050 track->chvol.srcbuf.head = 0;
5051 }
5052 if (track->chmix.filter) {
5053 KASSERT(track->chmix.srcbuf.used == 0);
5054 track->chmix.srcbuf.head = 0;
5055 }
5056 if (track->freq.filter) {
5057 KASSERT(track->freq.srcbuf.used == 0);
5058 track->freq.srcbuf.head = 0;
5059 }
5060 }
5061
5062 track->stamp++;
5063
5064 #if defined(AUDIO_DEBUG)
5065 if (audiodebug >= 3) {
5066 struct audio_track_debugbuf m;
5067 audio_track_bufstat(track, &m);
5068 TRACET(0, track, "end%s%s%s%s%s%s",
5069 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
5070 }
5071 #endif
5072 }
5073
5074 /*
5075 * Produce user output buffer for recording from input buffer.
5076 */
5077 static void
5078 audio_track_record(audio_track_t *track)
5079 {
5080 audio_ring_t *outbuf;
5081 audio_ring_t *usrbuf;
5082 int count;
5083 int bytes;
5084 int framesize;
5085
5086 KASSERT(track);
5087 KASSERT(track->lock);
5088
5089 if (auring_get_contig_used(track->input) == 0) {
5090 TRACET(4, track, "input->used == 0");
5091 return;
5092 }
5093
5094 /* Frequency conversion */
5095 if (track->freq.filter) {
5096 if (track->freq.srcbuf.used > 0) {
5097 audio_apply_stage(track, &track->freq, true);
5098 /* XXX should input of freq be from beginning of buf? */
5099 }
5100 }
5101
5102 /* Channel mix */
5103 if (track->chmix.filter)
5104 audio_apply_stage(track, &track->chmix, false);
5105
5106 /* Channel volume */
5107 if (track->chvol.filter)
5108 audio_apply_stage(track, &track->chvol, false);
5109
5110 /* Encoding conversion */
5111 if (track->codec.filter)
5112 audio_apply_stage(track, &track->codec, false);
5113
5114 /* Copy outbuf to usrbuf */
5115 outbuf = &track->outbuf;
5116 usrbuf = &track->usrbuf;
5117 /* usrbuf should be empty. */
5118 KASSERT(usrbuf->used == 0);
5119 /*
5120 * framesize is always 1 byte or more since all formats supported
5121 * as usrfmt(=output) have 8bit or more stride.
5122 */
5123 framesize = frametobyte(&outbuf->fmt, 1);
5124 KASSERT(framesize >= 1);
5125 /*
5126 * count is the number of frames to copy to usrbuf.
5127 * bytes is the number of bytes to copy to usrbuf.
5128 */
5129 count = outbuf->used;
5130 count = uimin(count, track->usrbuf_blksize / framesize);
5131 bytes = count * framesize;
5132 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
5133 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5134 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5135 bytes);
5136 auring_push(usrbuf, bytes);
5137 auring_take(outbuf, count);
5138 } else {
5139 int bytes1;
5140 int bytes2;
5141
5142 bytes1 = auring_get_contig_free(usrbuf);
5143 KASSERTMSG(bytes1 % framesize == 0,
5144 "bytes1=%d framesize=%d", bytes1, framesize);
5145 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5146 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5147 bytes1);
5148 auring_push(usrbuf, bytes1);
5149 auring_take(outbuf, bytes1 / framesize);
5150
5151 bytes2 = bytes - bytes1;
5152 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5153 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5154 bytes2);
5155 auring_push(usrbuf, bytes2);
5156 auring_take(outbuf, bytes2 / framesize);
5157 }
5158
5159 #if defined(AUDIO_DEBUG)
5160 if (audiodebug >= 3) {
5161 struct audio_track_debugbuf m;
5162 audio_track_bufstat(track, &m);
5163 TRACET(0, track, "end%s%s%s%s%s%s",
5164 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
5165 }
5166 #endif
5167 }
5168
5169 /*
5170 * Calculate blktime [msec] from mixer(.hwbuf.fmt).
5171 * Must be called with sc_exlock held.
5172 */
5173 static u_int
5174 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
5175 {
5176 audio_format2_t *fmt;
5177 u_int blktime;
5178 u_int frames_per_block;
5179
5180 KASSERT(sc->sc_exlock);
5181
5182 fmt = &mixer->hwbuf.fmt;
5183 blktime = sc->sc_blk_ms;
5184
5185 /*
5186 * If stride is not multiples of 8, special treatment is necessary.
5187 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
5188 */
5189 if (fmt->stride == 4) {
5190 frames_per_block = fmt->sample_rate * blktime / 1000;
5191 if ((frames_per_block & 1) != 0)
5192 blktime *= 2;
5193 }
5194 #ifdef DIAGNOSTIC
5195 else if (fmt->stride % NBBY != 0) {
5196 panic("unsupported HW stride %d", fmt->stride);
5197 }
5198 #endif
5199
5200 return blktime;
5201 }
5202
5203 /*
5204 * Initialize the mixer corresponding to the mode.
5205 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
5206 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
5207 * This function returns 0 on successful. Otherwise returns errno.
5208 * Must be called with sc_exlock held and without sc_lock held.
5209 */
5210 static int
5211 audio_mixer_init(struct audio_softc *sc, int mode,
5212 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
5213 {
5214 char codecbuf[64];
5215 char blkdmsbuf[8];
5216 audio_trackmixer_t *mixer;
5217 void (*softint_handler)(void *);
5218 int len;
5219 int blksize;
5220 int capacity;
5221 size_t bufsize;
5222 int hwblks;
5223 int blkms;
5224 int blkdms;
5225 int error;
5226
5227 KASSERT(hwfmt != NULL);
5228 KASSERT(reg != NULL);
5229 KASSERT(sc->sc_exlock);
5230
5231 error = 0;
5232 if (mode == AUMODE_PLAY)
5233 mixer = sc->sc_pmixer;
5234 else
5235 mixer = sc->sc_rmixer;
5236
5237 mixer->sc = sc;
5238 mixer->mode = mode;
5239
5240 mixer->hwbuf.fmt = *hwfmt;
5241 mixer->volume = 256;
5242 mixer->blktime_d = 1000;
5243 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
5244 sc->sc_blk_ms = mixer->blktime_n;
5245 hwblks = NBLKHW;
5246
5247 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
5248 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5249 if (sc->hw_if->round_blocksize) {
5250 int rounded;
5251 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
5252 mutex_enter(sc->sc_lock);
5253 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
5254 mode, &p);
5255 mutex_exit(sc->sc_lock);
5256 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
5257 if (rounded != blksize) {
5258 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
5259 mixer->hwbuf.fmt.channels) != 0) {
5260 audio_printf(sc,
5261 "round_blocksize returned blocksize "
5262 "indivisible by framesize: "
5263 "blksize=%d rounded=%d "
5264 "stride=%ubit channels=%u\n",
5265 blksize, rounded,
5266 mixer->hwbuf.fmt.stride,
5267 mixer->hwbuf.fmt.channels);
5268 return EINVAL;
5269 }
5270 /* Recalculation */
5271 blksize = rounded;
5272 mixer->frames_per_block = blksize * NBBY /
5273 (mixer->hwbuf.fmt.stride *
5274 mixer->hwbuf.fmt.channels);
5275 }
5276 }
5277 mixer->blktime_n = mixer->frames_per_block;
5278 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
5279
5280 capacity = mixer->frames_per_block * hwblks;
5281 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
5282 if (sc->hw_if->round_buffersize) {
5283 size_t rounded;
5284 mutex_enter(sc->sc_lock);
5285 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
5286 bufsize);
5287 mutex_exit(sc->sc_lock);
5288 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
5289 if (rounded < bufsize) {
5290 /* buffersize needs NBLKHW blocks at least. */
5291 audio_printf(sc,
5292 "round_buffersize returned too small buffersize: "
5293 "buffersize=%zd blksize=%d\n",
5294 rounded, blksize);
5295 return EINVAL;
5296 }
5297 if (rounded % blksize != 0) {
5298 /* buffersize/blksize constraint mismatch? */
5299 audio_printf(sc,
5300 "round_buffersize returned buffersize indivisible "
5301 "by blksize: buffersize=%zu blksize=%d\n",
5302 rounded, blksize);
5303 return EINVAL;
5304 }
5305 if (rounded != bufsize) {
5306 /* Recalculation */
5307 bufsize = rounded;
5308 hwblks = bufsize / blksize;
5309 capacity = mixer->frames_per_block * hwblks;
5310 }
5311 }
5312 TRACE(1, "buffersize for %s = %zu",
5313 (mode == AUMODE_PLAY) ? "playback" : "recording",
5314 bufsize);
5315 mixer->hwbuf.capacity = capacity;
5316
5317 if (sc->hw_if->allocm) {
5318 /* sc_lock is not necessary for allocm */
5319 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
5320 if (mixer->hwbuf.mem == NULL) {
5321 audio_printf(sc, "allocm(%zu) failed\n", bufsize);
5322 return ENOMEM;
5323 }
5324 } else {
5325 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
5326 }
5327
5328 /* From here, audio_mixer_destroy is necessary to exit. */
5329 if (mode == AUMODE_PLAY) {
5330 cv_init(&mixer->outcv, "audiowr");
5331 } else {
5332 cv_init(&mixer->outcv, "audiord");
5333 }
5334
5335 if (mode == AUMODE_PLAY) {
5336 softint_handler = audio_softintr_wr;
5337 } else {
5338 softint_handler = audio_softintr_rd;
5339 }
5340 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
5341 softint_handler, sc);
5342 if (mixer->sih == NULL) {
5343 device_printf(sc->sc_dev, "softint_establish failed\n");
5344 goto abort;
5345 }
5346
5347 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
5348 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
5349 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
5350 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
5351 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
5352
5353 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
5354 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
5355 mixer->swap_endian = true;
5356 TRACE(1, "swap_endian");
5357 }
5358
5359 if (mode == AUMODE_PLAY) {
5360 /* Mixing buffer */
5361 mixer->mixfmt = mixer->track_fmt;
5362 mixer->mixfmt.precision *= 2;
5363 mixer->mixfmt.stride *= 2;
5364 /* XXX TODO: use some macros? */
5365 len = mixer->frames_per_block * mixer->mixfmt.channels *
5366 mixer->mixfmt.stride / NBBY;
5367 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5368 } else {
5369 /* No mixing buffer for recording */
5370 }
5371
5372 if (reg->codec) {
5373 mixer->codec = reg->codec;
5374 mixer->codecarg.context = reg->context;
5375 if (mode == AUMODE_PLAY) {
5376 mixer->codecarg.srcfmt = &mixer->track_fmt;
5377 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5378 } else {
5379 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5380 mixer->codecarg.dstfmt = &mixer->track_fmt;
5381 }
5382 mixer->codecbuf.fmt = mixer->track_fmt;
5383 mixer->codecbuf.capacity = mixer->frames_per_block;
5384 len = auring_bytelen(&mixer->codecbuf);
5385 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5386 }
5387
5388 /* Succeeded so display it. */
5389 codecbuf[0] = '\0';
5390 if (mixer->codec || mixer->swap_endian) {
5391 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5392 (mode == AUMODE_PLAY) ? "->" : "<-",
5393 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5394 mixer->hwbuf.fmt.precision);
5395 }
5396 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5397 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5398 blkdmsbuf[0] = '\0';
5399 if (blkdms != 0) {
5400 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5401 }
5402 aprint_normal_dev(sc->sc_dev,
5403 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5404 audio_encoding_name(mixer->track_fmt.encoding),
5405 mixer->track_fmt.precision,
5406 codecbuf,
5407 mixer->track_fmt.channels,
5408 mixer->track_fmt.sample_rate,
5409 blksize,
5410 blkms, blkdmsbuf,
5411 (mode == AUMODE_PLAY) ? "playback" : "recording");
5412
5413 return 0;
5414
5415 abort:
5416 audio_mixer_destroy(sc, mixer);
5417 return error;
5418 }
5419
5420 /*
5421 * Releases all resources of 'mixer'.
5422 * Note that it does not release the memory area of 'mixer' itself.
5423 * Must be called with sc_exlock held and without sc_lock held.
5424 */
5425 static void
5426 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5427 {
5428 int bufsize;
5429
5430 KASSERT(sc->sc_exlock == 1);
5431
5432 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5433
5434 if (mixer->hwbuf.mem != NULL) {
5435 if (sc->hw_if->freem) {
5436 /* sc_lock is not necessary for freem */
5437 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5438 } else {
5439 kmem_free(mixer->hwbuf.mem, bufsize);
5440 }
5441 mixer->hwbuf.mem = NULL;
5442 }
5443
5444 audio_free(mixer->codecbuf.mem);
5445 audio_free(mixer->mixsample);
5446
5447 cv_destroy(&mixer->outcv);
5448
5449 if (mixer->sih) {
5450 softint_disestablish(mixer->sih);
5451 mixer->sih = NULL;
5452 }
5453 }
5454
5455 /*
5456 * Starts playback mixer.
5457 * Must be called only if sc_pbusy is false.
5458 * Must be called with sc_lock && sc_exlock held.
5459 * Must not be called from the interrupt context.
5460 */
5461 static void
5462 audio_pmixer_start(struct audio_softc *sc, bool force)
5463 {
5464 audio_trackmixer_t *mixer;
5465 int minimum;
5466
5467 KASSERT(mutex_owned(sc->sc_lock));
5468 KASSERT(sc->sc_exlock);
5469 KASSERT(sc->sc_pbusy == false);
5470
5471 mutex_enter(sc->sc_intr_lock);
5472
5473 mixer = sc->sc_pmixer;
5474 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5475 (audiodebug >= 3) ? "begin " : "",
5476 (int)mixer->mixseq, (int)mixer->hwseq,
5477 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5478 force ? " force" : "");
5479
5480 /* Need two blocks to start normally. */
5481 minimum = (force) ? 1 : 2;
5482 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5483 audio_pmixer_process(sc);
5484 }
5485
5486 /* Start output */
5487 audio_pmixer_output(sc);
5488 sc->sc_pbusy = true;
5489
5490 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5491 (int)mixer->mixseq, (int)mixer->hwseq,
5492 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5493
5494 mutex_exit(sc->sc_intr_lock);
5495 }
5496
5497 /*
5498 * When playing back with MD filter:
5499 *
5500 * track track ...
5501 * v v
5502 * + mix (with aint2_t)
5503 * | master volume (with aint2_t)
5504 * v
5505 * mixsample [::::] wide-int 1 block (ring) buffer
5506 * |
5507 * | convert aint2_t -> aint_t
5508 * v
5509 * codecbuf [....] 1 block (ring) buffer
5510 * |
5511 * | convert to hw format
5512 * v
5513 * hwbuf [............] NBLKHW blocks ring buffer
5514 *
5515 * When playing back without MD filter:
5516 *
5517 * mixsample [::::] wide-int 1 block (ring) buffer
5518 * |
5519 * | convert aint2_t -> aint_t
5520 * | (with byte swap if necessary)
5521 * v
5522 * hwbuf [............] NBLKHW blocks ring buffer
5523 *
5524 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5525 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5526 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5527 */
5528
5529 /*
5530 * Performs track mixing and converts it to hwbuf.
5531 * Note that this function doesn't transfer hwbuf to hardware.
5532 * Must be called with sc_intr_lock held.
5533 */
5534 static void
5535 audio_pmixer_process(struct audio_softc *sc)
5536 {
5537 audio_trackmixer_t *mixer;
5538 audio_file_t *f;
5539 int frame_count;
5540 int sample_count;
5541 int mixed;
5542 int i;
5543 aint2_t *m;
5544 aint_t *h;
5545
5546 mixer = sc->sc_pmixer;
5547
5548 frame_count = mixer->frames_per_block;
5549 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5550 "auring_get_contig_free()=%d frame_count=%d",
5551 auring_get_contig_free(&mixer->hwbuf), frame_count);
5552 sample_count = frame_count * mixer->mixfmt.channels;
5553
5554 mixer->mixseq++;
5555
5556 /* Mix all tracks */
5557 mixed = 0;
5558 SLIST_FOREACH(f, &sc->sc_files, entry) {
5559 audio_track_t *track = f->ptrack;
5560
5561 if (track == NULL)
5562 continue;
5563
5564 if (track->is_pause) {
5565 TRACET(4, track, "skip; paused");
5566 continue;
5567 }
5568
5569 /* Skip if the track is used by process context. */
5570 if (audio_track_lock_tryenter(track) == false) {
5571 TRACET(4, track, "skip; in use");
5572 continue;
5573 }
5574
5575 /* Emulate mmap'ped track */
5576 if (track->mmapped) {
5577 auring_push(&track->usrbuf, track->usrbuf_blksize);
5578 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5579 track->usrbuf.head,
5580 track->usrbuf.used,
5581 track->usrbuf.capacity);
5582 }
5583
5584 if (track->outbuf.used < mixer->frames_per_block &&
5585 track->usrbuf.used > 0) {
5586 TRACET(4, track, "process");
5587 audio_track_play(track);
5588 }
5589
5590 if (track->outbuf.used > 0) {
5591 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5592 } else {
5593 TRACET(4, track, "skip; empty");
5594 }
5595
5596 audio_track_lock_exit(track);
5597 }
5598
5599 if (mixed == 0) {
5600 /* Silence */
5601 memset(mixer->mixsample, 0,
5602 frametobyte(&mixer->mixfmt, frame_count));
5603 } else {
5604 if (mixed > 1) {
5605 /* If there are multiple tracks, do auto gain control */
5606 audio_pmixer_agc(mixer, sample_count);
5607 }
5608
5609 /* Apply master volume */
5610 if (mixer->volume < 256) {
5611 m = mixer->mixsample;
5612 for (i = 0; i < sample_count; i++) {
5613 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5614 m++;
5615 }
5616
5617 /*
5618 * Recover the volume gradually at the pace of
5619 * several times per second. If it's too fast, you
5620 * can recognize that the volume changes up and down
5621 * quickly and it's not so comfortable.
5622 */
5623 mixer->voltimer += mixer->blktime_n;
5624 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5625 mixer->volume++;
5626 mixer->voltimer = 0;
5627 #if defined(AUDIO_DEBUG_AGC)
5628 TRACE(1, "volume recover: %d", mixer->volume);
5629 #endif
5630 }
5631 }
5632 }
5633
5634 /*
5635 * The rest is the hardware part.
5636 */
5637
5638 if (mixer->codec) {
5639 h = auring_tailptr_aint(&mixer->codecbuf);
5640 } else {
5641 h = auring_tailptr_aint(&mixer->hwbuf);
5642 }
5643
5644 m = mixer->mixsample;
5645 if (mixer->swap_endian) {
5646 for (i = 0; i < sample_count; i++) {
5647 *h++ = bswap16(*m++);
5648 }
5649 } else {
5650 for (i = 0; i < sample_count; i++) {
5651 *h++ = *m++;
5652 }
5653 }
5654
5655 /* Hardware driver's codec */
5656 if (mixer->codec) {
5657 auring_push(&mixer->codecbuf, frame_count);
5658 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5659 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5660 mixer->codecarg.count = frame_count;
5661 mixer->codec(&mixer->codecarg);
5662 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5663 }
5664
5665 auring_push(&mixer->hwbuf, frame_count);
5666
5667 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5668 (int)mixer->mixseq,
5669 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5670 (mixed == 0) ? " silent" : "");
5671 }
5672
5673 /*
5674 * Do auto gain control.
5675 * Must be called sc_intr_lock held.
5676 */
5677 static void
5678 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5679 {
5680 struct audio_softc *sc __unused;
5681 aint2_t val;
5682 aint2_t maxval;
5683 aint2_t minval;
5684 aint2_t over_plus;
5685 aint2_t over_minus;
5686 aint2_t *m;
5687 int newvol;
5688 int i;
5689
5690 sc = mixer->sc;
5691
5692 /* Overflow detection */
5693 maxval = AINT_T_MAX;
5694 minval = AINT_T_MIN;
5695 m = mixer->mixsample;
5696 for (i = 0; i < sample_count; i++) {
5697 val = *m++;
5698 if (val > maxval)
5699 maxval = val;
5700 else if (val < minval)
5701 minval = val;
5702 }
5703
5704 /* Absolute value of overflowed amount */
5705 over_plus = maxval - AINT_T_MAX;
5706 over_minus = AINT_T_MIN - minval;
5707
5708 if (over_plus > 0 || over_minus > 0) {
5709 if (over_plus > over_minus) {
5710 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5711 } else {
5712 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5713 }
5714
5715 /*
5716 * Change the volume only if new one is smaller.
5717 * Reset the timer even if the volume isn't changed.
5718 */
5719 if (newvol <= mixer->volume) {
5720 mixer->volume = newvol;
5721 mixer->voltimer = 0;
5722 #if defined(AUDIO_DEBUG_AGC)
5723 TRACE(1, "auto volume adjust: %d", mixer->volume);
5724 #endif
5725 }
5726 }
5727 }
5728
5729 /*
5730 * Mix one track.
5731 * 'mixed' specifies the number of tracks mixed so far.
5732 * It returns the number of tracks mixed. In other words, it returns
5733 * mixed + 1 if this track is mixed.
5734 */
5735 static int
5736 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5737 int mixed)
5738 {
5739 int count;
5740 int sample_count;
5741 int remain;
5742 int i;
5743 const aint_t *s;
5744 aint2_t *d;
5745
5746 /* XXX TODO: Is this necessary for now? */
5747 if (mixer->mixseq < track->seq)
5748 return mixed;
5749
5750 count = auring_get_contig_used(&track->outbuf);
5751 count = uimin(count, mixer->frames_per_block);
5752
5753 s = auring_headptr_aint(&track->outbuf);
5754 d = mixer->mixsample;
5755
5756 /*
5757 * Apply track volume with double-sized integer and perform
5758 * additive synthesis.
5759 *
5760 * XXX If you limit the track volume to 1.0 or less (<= 256),
5761 * it would be better to do this in the track conversion stage
5762 * rather than here. However, if you accept the volume to
5763 * be greater than 1.0 (> 256), it's better to do it here.
5764 * Because the operation here is done by double-sized integer.
5765 */
5766 sample_count = count * mixer->mixfmt.channels;
5767 if (mixed == 0) {
5768 /* If this is the first track, assignment can be used. */
5769 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5770 if (track->volume != 256) {
5771 for (i = 0; i < sample_count; i++) {
5772 aint2_t v;
5773 v = *s++;
5774 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5775 }
5776 } else
5777 #endif
5778 {
5779 for (i = 0; i < sample_count; i++) {
5780 *d++ = ((aint2_t)*s++);
5781 }
5782 }
5783 /* Fill silence if the first track is not filled. */
5784 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5785 *d++ = 0;
5786 } else {
5787 /* If this is the second or later, add it. */
5788 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5789 if (track->volume != 256) {
5790 for (i = 0; i < sample_count; i++) {
5791 aint2_t v;
5792 v = *s++;
5793 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5794 }
5795 } else
5796 #endif
5797 {
5798 for (i = 0; i < sample_count; i++) {
5799 *d++ += ((aint2_t)*s++);
5800 }
5801 }
5802 }
5803
5804 auring_take(&track->outbuf, count);
5805 /*
5806 * The counters have to align block even if outbuf is less than
5807 * one block. XXX Is this still necessary?
5808 */
5809 remain = mixer->frames_per_block - count;
5810 if (__predict_false(remain != 0)) {
5811 auring_push(&track->outbuf, remain);
5812 auring_take(&track->outbuf, remain);
5813 }
5814
5815 /*
5816 * Update track sequence.
5817 * mixseq has previous value yet at this point.
5818 */
5819 track->seq = mixer->mixseq + 1;
5820
5821 return mixed + 1;
5822 }
5823
5824 /*
5825 * Output one block from hwbuf to HW.
5826 * Must be called with sc_intr_lock held.
5827 */
5828 static void
5829 audio_pmixer_output(struct audio_softc *sc)
5830 {
5831 audio_trackmixer_t *mixer;
5832 audio_params_t params;
5833 void *start;
5834 void *end;
5835 int blksize;
5836 int error;
5837
5838 mixer = sc->sc_pmixer;
5839 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5840 sc->sc_pbusy,
5841 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5842 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5843 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5844 mixer->hwbuf.used, mixer->frames_per_block);
5845
5846 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5847
5848 if (sc->hw_if->trigger_output) {
5849 /* trigger (at once) */
5850 if (!sc->sc_pbusy) {
5851 start = mixer->hwbuf.mem;
5852 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5853 params = format2_to_params(&mixer->hwbuf.fmt);
5854
5855 error = sc->hw_if->trigger_output(sc->hw_hdl,
5856 start, end, blksize, audio_pintr, sc, ¶ms);
5857 if (error) {
5858 audio_printf(sc,
5859 "trigger_output failed: errno=%d\n",
5860 error);
5861 return;
5862 }
5863 }
5864 } else {
5865 /* start (everytime) */
5866 start = auring_headptr(&mixer->hwbuf);
5867
5868 error = sc->hw_if->start_output(sc->hw_hdl,
5869 start, blksize, audio_pintr, sc);
5870 if (error) {
5871 audio_printf(sc,
5872 "start_output failed: errno=%d\n", error);
5873 return;
5874 }
5875 }
5876 }
5877
5878 /*
5879 * This is an interrupt handler for playback.
5880 * It is called with sc_intr_lock held.
5881 *
5882 * It is usually called from hardware interrupt. However, note that
5883 * for some drivers (e.g. uaudio) it is called from software interrupt.
5884 */
5885 static void
5886 audio_pintr(void *arg)
5887 {
5888 struct audio_softc *sc;
5889 audio_trackmixer_t *mixer;
5890
5891 sc = arg;
5892 KASSERT(mutex_owned(sc->sc_intr_lock));
5893
5894 if (sc->sc_dying)
5895 return;
5896 if (sc->sc_pbusy == false) {
5897 #if defined(DIAGNOSTIC)
5898 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5899 device_xname(sc->hw_dev));
5900 #endif
5901 return;
5902 }
5903
5904 mixer = sc->sc_pmixer;
5905 mixer->hw_complete_counter += mixer->frames_per_block;
5906 mixer->hwseq++;
5907
5908 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5909
5910 TRACE(4,
5911 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5912 mixer->hwseq, mixer->hw_complete_counter,
5913 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5914
5915 #if defined(AUDIO_HW_SINGLE_BUFFER)
5916 /*
5917 * Create a new block here and output it immediately.
5918 * It makes a latency lower but needs machine power.
5919 */
5920 audio_pmixer_process(sc);
5921 audio_pmixer_output(sc);
5922 #else
5923 /*
5924 * It is called when block N output is done.
5925 * Output immediately block N+1 created by the last interrupt.
5926 * And then create block N+2 for the next interrupt.
5927 * This method makes playback robust even on slower machines.
5928 * Instead the latency is increased by one block.
5929 */
5930
5931 /* At first, output ready block. */
5932 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5933 audio_pmixer_output(sc);
5934 }
5935
5936 bool later = false;
5937
5938 if (mixer->hwbuf.used < mixer->frames_per_block) {
5939 later = true;
5940 }
5941
5942 /* Then, process next block. */
5943 audio_pmixer_process(sc);
5944
5945 if (later) {
5946 audio_pmixer_output(sc);
5947 }
5948 #endif
5949
5950 /*
5951 * When this interrupt is the real hardware interrupt, disabling
5952 * preemption here is not necessary. But some drivers (e.g. uaudio)
5953 * emulate it by software interrupt, so kpreempt_disable is necessary.
5954 */
5955 kpreempt_disable();
5956 softint_schedule(mixer->sih);
5957 kpreempt_enable();
5958 }
5959
5960 /*
5961 * Starts record mixer.
5962 * Must be called only if sc_rbusy is false.
5963 * Must be called with sc_lock && sc_exlock held.
5964 * Must not be called from the interrupt context.
5965 */
5966 static void
5967 audio_rmixer_start(struct audio_softc *sc)
5968 {
5969
5970 KASSERT(mutex_owned(sc->sc_lock));
5971 KASSERT(sc->sc_exlock);
5972 KASSERT(sc->sc_rbusy == false);
5973
5974 mutex_enter(sc->sc_intr_lock);
5975
5976 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5977 audio_rmixer_input(sc);
5978 sc->sc_rbusy = true;
5979 TRACE(3, "end");
5980
5981 mutex_exit(sc->sc_intr_lock);
5982 }
5983
5984 /*
5985 * When recording with MD filter:
5986 *
5987 * hwbuf [............] NBLKHW blocks ring buffer
5988 * |
5989 * | convert from hw format
5990 * v
5991 * codecbuf [....] 1 block (ring) buffer
5992 * | |
5993 * v v
5994 * track track ...
5995 *
5996 * When recording without MD filter:
5997 *
5998 * hwbuf [............] NBLKHW blocks ring buffer
5999 * | |
6000 * v v
6001 * track track ...
6002 *
6003 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
6004 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
6005 */
6006
6007 /*
6008 * Distribute a recorded block to all recording tracks.
6009 */
6010 static void
6011 audio_rmixer_process(struct audio_softc *sc)
6012 {
6013 audio_trackmixer_t *mixer;
6014 audio_ring_t *mixersrc;
6015 audio_file_t *f;
6016 aint_t *p;
6017 int count;
6018 int bytes;
6019 int i;
6020
6021 mixer = sc->sc_rmixer;
6022
6023 /*
6024 * count is the number of frames to be retrieved this time.
6025 * count should be one block.
6026 */
6027 count = auring_get_contig_used(&mixer->hwbuf);
6028 count = uimin(count, mixer->frames_per_block);
6029 if (count <= 0) {
6030 TRACE(4, "count %d: too short", count);
6031 return;
6032 }
6033 bytes = frametobyte(&mixer->track_fmt, count);
6034
6035 /* Hardware driver's codec */
6036 if (mixer->codec) {
6037 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
6038 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
6039 mixer->codecarg.count = count;
6040 mixer->codec(&mixer->codecarg);
6041 auring_take(&mixer->hwbuf, mixer->codecarg.count);
6042 auring_push(&mixer->codecbuf, mixer->codecarg.count);
6043 mixersrc = &mixer->codecbuf;
6044 } else {
6045 mixersrc = &mixer->hwbuf;
6046 }
6047
6048 if (mixer->swap_endian) {
6049 /* inplace conversion */
6050 p = auring_headptr_aint(mixersrc);
6051 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
6052 *p = bswap16(*p);
6053 }
6054 }
6055
6056 /* Distribute to all tracks. */
6057 SLIST_FOREACH(f, &sc->sc_files, entry) {
6058 audio_track_t *track = f->rtrack;
6059 audio_ring_t *input;
6060
6061 if (track == NULL)
6062 continue;
6063
6064 if (track->is_pause) {
6065 TRACET(4, track, "skip; paused");
6066 continue;
6067 }
6068
6069 if (audio_track_lock_tryenter(track) == false) {
6070 TRACET(4, track, "skip; in use");
6071 continue;
6072 }
6073
6074 /*
6075 * If the track buffer has less than one block of free space,
6076 * make one block free.
6077 */
6078 input = track->input;
6079 if (input->capacity - input->used < mixer->frames_per_block) {
6080 int drops = mixer->frames_per_block -
6081 (input->capacity - input->used);
6082 track->dropframes += drops;
6083 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
6084 drops,
6085 input->head, input->used, input->capacity);
6086 auring_take(input, drops);
6087 }
6088
6089 KASSERTMSG(auring_tail(input) % mixer->frames_per_block == 0,
6090 "inputtail=%d mixer->frames_per_block=%d",
6091 auring_tail(input), mixer->frames_per_block);
6092 memcpy(auring_tailptr_aint(input),
6093 auring_headptr_aint(mixersrc),
6094 bytes);
6095 auring_push(input, count);
6096
6097 track->stamp++;
6098
6099 audio_track_lock_exit(track);
6100 }
6101
6102 auring_take(mixersrc, count);
6103 }
6104
6105 /*
6106 * Input one block from HW to hwbuf.
6107 * Must be called with sc_intr_lock held.
6108 */
6109 static void
6110 audio_rmixer_input(struct audio_softc *sc)
6111 {
6112 audio_trackmixer_t *mixer;
6113 audio_params_t params;
6114 void *start;
6115 void *end;
6116 int blksize;
6117 int error;
6118
6119 mixer = sc->sc_rmixer;
6120 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
6121
6122 if (sc->hw_if->trigger_input) {
6123 /* trigger (at once) */
6124 if (!sc->sc_rbusy) {
6125 start = mixer->hwbuf.mem;
6126 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
6127 params = format2_to_params(&mixer->hwbuf.fmt);
6128
6129 error = sc->hw_if->trigger_input(sc->hw_hdl,
6130 start, end, blksize, audio_rintr, sc, ¶ms);
6131 if (error) {
6132 audio_printf(sc,
6133 "trigger_input failed: errno=%d\n",
6134 error);
6135 return;
6136 }
6137 }
6138 } else {
6139 /* start (everytime) */
6140 start = auring_tailptr(&mixer->hwbuf);
6141
6142 error = sc->hw_if->start_input(sc->hw_hdl,
6143 start, blksize, audio_rintr, sc);
6144 if (error) {
6145 audio_printf(sc,
6146 "start_input failed: errno=%d\n", error);
6147 return;
6148 }
6149 }
6150 }
6151
6152 /*
6153 * This is an interrupt handler for recording.
6154 * It is called with sc_intr_lock.
6155 *
6156 * It is usually called from hardware interrupt. However, note that
6157 * for some drivers (e.g. uaudio) it is called from software interrupt.
6158 */
6159 static void
6160 audio_rintr(void *arg)
6161 {
6162 struct audio_softc *sc;
6163 audio_trackmixer_t *mixer;
6164
6165 sc = arg;
6166 KASSERT(mutex_owned(sc->sc_intr_lock));
6167
6168 if (sc->sc_dying)
6169 return;
6170 if (sc->sc_rbusy == false) {
6171 #if defined(DIAGNOSTIC)
6172 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
6173 device_xname(sc->hw_dev));
6174 #endif
6175 return;
6176 }
6177
6178 mixer = sc->sc_rmixer;
6179 mixer->hw_complete_counter += mixer->frames_per_block;
6180 mixer->hwseq++;
6181
6182 auring_push(&mixer->hwbuf, mixer->frames_per_block);
6183
6184 TRACE(4,
6185 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
6186 mixer->hwseq, mixer->hw_complete_counter,
6187 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
6188
6189 /* Distrubute recorded block */
6190 audio_rmixer_process(sc);
6191
6192 /* Request next block */
6193 audio_rmixer_input(sc);
6194
6195 /*
6196 * When this interrupt is the real hardware interrupt, disabling
6197 * preemption here is not necessary. But some drivers (e.g. uaudio)
6198 * emulate it by software interrupt, so kpreempt_disable is necessary.
6199 */
6200 kpreempt_disable();
6201 softint_schedule(mixer->sih);
6202 kpreempt_enable();
6203 }
6204
6205 /*
6206 * Halts playback mixer.
6207 * This function also clears related parameters, so call this function
6208 * instead of calling halt_output directly.
6209 * Must be called only if sc_pbusy is true.
6210 * Must be called with sc_lock && sc_exlock held.
6211 */
6212 static int
6213 audio_pmixer_halt(struct audio_softc *sc)
6214 {
6215 int error;
6216
6217 TRACE(2, "called");
6218 KASSERT(mutex_owned(sc->sc_lock));
6219 KASSERT(sc->sc_exlock);
6220
6221 mutex_enter(sc->sc_intr_lock);
6222 error = sc->hw_if->halt_output(sc->hw_hdl);
6223
6224 /* Halts anyway even if some error has occurred. */
6225 sc->sc_pbusy = false;
6226 sc->sc_pmixer->hwbuf.head = 0;
6227 sc->sc_pmixer->hwbuf.used = 0;
6228 sc->sc_pmixer->mixseq = 0;
6229 sc->sc_pmixer->hwseq = 0;
6230 mutex_exit(sc->sc_intr_lock);
6231
6232 return error;
6233 }
6234
6235 /*
6236 * Halts recording mixer.
6237 * This function also clears related parameters, so call this function
6238 * instead of calling halt_input directly.
6239 * Must be called only if sc_rbusy is true.
6240 * Must be called with sc_lock && sc_exlock held.
6241 */
6242 static int
6243 audio_rmixer_halt(struct audio_softc *sc)
6244 {
6245 int error;
6246
6247 TRACE(2, "called");
6248 KASSERT(mutex_owned(sc->sc_lock));
6249 KASSERT(sc->sc_exlock);
6250
6251 mutex_enter(sc->sc_intr_lock);
6252 error = sc->hw_if->halt_input(sc->hw_hdl);
6253
6254 /* Halts anyway even if some error has occurred. */
6255 sc->sc_rbusy = false;
6256 sc->sc_rmixer->hwbuf.head = 0;
6257 sc->sc_rmixer->hwbuf.used = 0;
6258 sc->sc_rmixer->mixseq = 0;
6259 sc->sc_rmixer->hwseq = 0;
6260 mutex_exit(sc->sc_intr_lock);
6261
6262 return error;
6263 }
6264
6265 /*
6266 * Flush this track.
6267 * Halts all operations, clears all buffers, reset error counters.
6268 * XXX I'm not sure...
6269 */
6270 static void
6271 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
6272 {
6273
6274 KASSERT(track);
6275 TRACET(3, track, "clear");
6276
6277 audio_track_lock_enter(track);
6278
6279 /* Clear all internal parameters. */
6280 track->usrbuf.used = 0;
6281 track->usrbuf.head = 0;
6282 if (track->codec.filter) {
6283 track->codec.srcbuf.used = 0;
6284 track->codec.srcbuf.head = 0;
6285 }
6286 if (track->chvol.filter) {
6287 track->chvol.srcbuf.used = 0;
6288 track->chvol.srcbuf.head = 0;
6289 }
6290 if (track->chmix.filter) {
6291 track->chmix.srcbuf.used = 0;
6292 track->chmix.srcbuf.head = 0;
6293 }
6294 if (track->freq.filter) {
6295 track->freq.srcbuf.used = 0;
6296 track->freq.srcbuf.head = 0;
6297 if (track->freq_step < 65536)
6298 track->freq_current = 65536;
6299 else
6300 track->freq_current = 0;
6301 memset(track->freq_prev, 0, sizeof(track->freq_prev));
6302 memset(track->freq_curr, 0, sizeof(track->freq_curr));
6303 }
6304 /* Clear buffer, then operation halts naturally. */
6305 track->outbuf.used = 0;
6306
6307 /* Clear counters. */
6308 track->stamp = 0;
6309 track->last_stamp = 0;
6310 track->dropframes = 0;
6311
6312 audio_track_lock_exit(track);
6313 }
6314
6315 /*
6316 * Drain the track.
6317 * track must be present and for playback.
6318 * If successful, it returns 0. Otherwise returns errno.
6319 * Must be called with sc_lock held.
6320 */
6321 static int
6322 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
6323 {
6324 audio_trackmixer_t *mixer;
6325 int done;
6326 int error;
6327
6328 KASSERT(track);
6329 TRACET(3, track, "start");
6330 mixer = track->mixer;
6331 KASSERT(mutex_owned(sc->sc_lock));
6332
6333 /* Ignore them if pause. */
6334 if (track->is_pause) {
6335 TRACET(3, track, "pause -> clear");
6336 track->pstate = AUDIO_STATE_CLEAR;
6337 }
6338 /* Terminate early here if there is no data in the track. */
6339 if (track->pstate == AUDIO_STATE_CLEAR) {
6340 TRACET(3, track, "no need to drain");
6341 return 0;
6342 }
6343 track->pstate = AUDIO_STATE_DRAINING;
6344
6345 for (;;) {
6346 /* I want to display it before condition evaluation. */
6347 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
6348 (int)curproc->p_pid, (int)curlwp->l_lid,
6349 (int)track->seq, (int)mixer->hwseq,
6350 track->outbuf.head, track->outbuf.used,
6351 track->outbuf.capacity);
6352
6353 /* Condition to terminate */
6354 audio_track_lock_enter(track);
6355 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
6356 track->outbuf.used == 0 &&
6357 track->seq <= mixer->hwseq);
6358 audio_track_lock_exit(track);
6359 if (done)
6360 break;
6361
6362 TRACET(3, track, "sleep");
6363 error = audio_track_waitio(sc, track);
6364 if (error)
6365 return error;
6366
6367 /* XXX call audio_track_play here ? */
6368 }
6369
6370 track->pstate = AUDIO_STATE_CLEAR;
6371 TRACET(3, track, "done");
6372 return 0;
6373 }
6374
6375 /*
6376 * Send signal to process.
6377 * This is intended to be called only from audio_softintr_{rd,wr}.
6378 * Must be called without sc_intr_lock held.
6379 */
6380 static inline void
6381 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6382 {
6383 proc_t *p;
6384
6385 KASSERT(pid != 0);
6386
6387 /*
6388 * psignal() must be called without spin lock held.
6389 */
6390
6391 mutex_enter(&proc_lock);
6392 p = proc_find(pid);
6393 if (p)
6394 psignal(p, signum);
6395 mutex_exit(&proc_lock);
6396 }
6397
6398 /*
6399 * This is software interrupt handler for record.
6400 * It is called from recording hardware interrupt everytime.
6401 * It does:
6402 * - Deliver SIGIO for all async processes.
6403 * - Notify to audio_read() that data has arrived.
6404 * - selnotify() for select/poll-ing processes.
6405 */
6406 /*
6407 * XXX If a process issues FIOASYNC between hardware interrupt and
6408 * software interrupt, (stray) SIGIO will be sent to the process
6409 * despite the fact that it has not receive recorded data yet.
6410 */
6411 static void
6412 audio_softintr_rd(void *cookie)
6413 {
6414 struct audio_softc *sc = cookie;
6415 audio_file_t *f;
6416 pid_t pid;
6417
6418 mutex_enter(sc->sc_lock);
6419
6420 SLIST_FOREACH(f, &sc->sc_files, entry) {
6421 audio_track_t *track = f->rtrack;
6422
6423 if (track == NULL)
6424 continue;
6425
6426 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6427 track->input->head,
6428 track->input->used,
6429 track->input->capacity);
6430
6431 pid = f->async_audio;
6432 if (pid != 0) {
6433 TRACEF(4, f, "sending SIGIO %d", pid);
6434 audio_psignal(sc, pid, SIGIO);
6435 }
6436 }
6437
6438 /* Notify that data has arrived. */
6439 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6440 cv_broadcast(&sc->sc_rmixer->outcv);
6441
6442 mutex_exit(sc->sc_lock);
6443 }
6444
6445 /*
6446 * This is software interrupt handler for playback.
6447 * It is called from playback hardware interrupt everytime.
6448 * It does:
6449 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6450 * - Notify to audio_write() that outbuf block available.
6451 * - selnotify() for select/poll-ing processes if there are any writable
6452 * (used < lowat) processes. Checking each descriptor will be done by
6453 * filt_audiowrite_event().
6454 */
6455 static void
6456 audio_softintr_wr(void *cookie)
6457 {
6458 struct audio_softc *sc = cookie;
6459 audio_file_t *f;
6460 bool found;
6461 pid_t pid;
6462
6463 TRACE(4, "called");
6464 found = false;
6465
6466 mutex_enter(sc->sc_lock);
6467
6468 SLIST_FOREACH(f, &sc->sc_files, entry) {
6469 audio_track_t *track = f->ptrack;
6470
6471 if (track == NULL)
6472 continue;
6473
6474 TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6475 (int)track->seq,
6476 track->outbuf.head,
6477 track->outbuf.used,
6478 track->outbuf.capacity);
6479
6480 /*
6481 * Send a signal if the process is async mode and
6482 * used is lower than lowat.
6483 */
6484 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6485 !track->is_pause) {
6486 /* For selnotify */
6487 found = true;
6488 /* For SIGIO */
6489 pid = f->async_audio;
6490 if (pid != 0) {
6491 TRACEF(4, f, "sending SIGIO %d", pid);
6492 audio_psignal(sc, pid, SIGIO);
6493 }
6494 }
6495 }
6496
6497 /*
6498 * Notify for select/poll when someone become writable.
6499 * It needs sc_lock (and not sc_intr_lock).
6500 */
6501 if (found) {
6502 TRACE(4, "selnotify");
6503 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6504 }
6505
6506 /* Notify to audio_write() that outbuf available. */
6507 cv_broadcast(&sc->sc_pmixer->outcv);
6508
6509 mutex_exit(sc->sc_lock);
6510 }
6511
6512 /*
6513 * Check (and convert) the format *p came from userland.
6514 * If successful, it writes back the converted format to *p if necessary and
6515 * returns 0. Otherwise returns errno (*p may be changed even in this case).
6516 */
6517 static int
6518 audio_check_params(audio_format2_t *p)
6519 {
6520
6521 /*
6522 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6523 *
6524 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6525 * So, it's always signed, as in SunOS.
6526 *
6527 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6528 * So, it's always unsigned, as in SunOS.
6529 */
6530 if (p->encoding == AUDIO_ENCODING_PCM16) {
6531 p->encoding = AUDIO_ENCODING_SLINEAR;
6532 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6533 if (p->precision == 8)
6534 p->encoding = AUDIO_ENCODING_ULINEAR;
6535 else
6536 return EINVAL;
6537 }
6538
6539 /*
6540 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6541 * suffix.
6542 */
6543 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6544 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6545 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6546 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6547
6548 switch (p->encoding) {
6549 case AUDIO_ENCODING_ULAW:
6550 case AUDIO_ENCODING_ALAW:
6551 if (p->precision != 8)
6552 return EINVAL;
6553 break;
6554 case AUDIO_ENCODING_ADPCM:
6555 if (p->precision != 4 && p->precision != 8)
6556 return EINVAL;
6557 break;
6558 case AUDIO_ENCODING_SLINEAR_LE:
6559 case AUDIO_ENCODING_SLINEAR_BE:
6560 case AUDIO_ENCODING_ULINEAR_LE:
6561 case AUDIO_ENCODING_ULINEAR_BE:
6562 if (p->precision != 8 && p->precision != 16 &&
6563 p->precision != 24 && p->precision != 32)
6564 return EINVAL;
6565
6566 /* 8bit format does not have endianness. */
6567 if (p->precision == 8) {
6568 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6569 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6570 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6571 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6572 }
6573
6574 if (p->precision > p->stride)
6575 return EINVAL;
6576 break;
6577 case AUDIO_ENCODING_MPEG_L1_STREAM:
6578 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6579 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6580 case AUDIO_ENCODING_MPEG_L2_STREAM:
6581 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6582 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6583 case AUDIO_ENCODING_AC3:
6584 break;
6585 default:
6586 return EINVAL;
6587 }
6588
6589 /* sanity check # of channels*/
6590 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6591 return EINVAL;
6592
6593 return 0;
6594 }
6595
6596 /*
6597 * Initialize playback and record mixers.
6598 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6599 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6600 * the filter registration information. These four must not be NULL.
6601 * If successful returns 0. Otherwise returns errno.
6602 * Must be called with sc_exlock held and without sc_lock held.
6603 * Must not be called if there are any tracks.
6604 * Caller should check that the initialization succeed by whether
6605 * sc_[pr]mixer is not NULL.
6606 */
6607 static int
6608 audio_mixers_init(struct audio_softc *sc, int mode,
6609 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6610 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6611 {
6612 int error;
6613
6614 KASSERT(phwfmt != NULL);
6615 KASSERT(rhwfmt != NULL);
6616 KASSERT(pfil != NULL);
6617 KASSERT(rfil != NULL);
6618 KASSERT(sc->sc_exlock);
6619
6620 if ((mode & AUMODE_PLAY)) {
6621 if (sc->sc_pmixer == NULL) {
6622 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6623 KM_SLEEP);
6624 } else {
6625 /* destroy() doesn't free memory. */
6626 audio_mixer_destroy(sc, sc->sc_pmixer);
6627 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6628 }
6629 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6630 if (error) {
6631 /* audio_mixer_init already displayed error code */
6632 audio_printf(sc, "configuring playback mode failed\n");
6633 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6634 sc->sc_pmixer = NULL;
6635 return error;
6636 }
6637 }
6638 if ((mode & AUMODE_RECORD)) {
6639 if (sc->sc_rmixer == NULL) {
6640 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6641 KM_SLEEP);
6642 } else {
6643 /* destroy() doesn't free memory. */
6644 audio_mixer_destroy(sc, sc->sc_rmixer);
6645 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6646 }
6647 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6648 if (error) {
6649 /* audio_mixer_init already displayed error code */
6650 audio_printf(sc, "configuring record mode failed\n");
6651 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6652 sc->sc_rmixer = NULL;
6653 return error;
6654 }
6655 }
6656
6657 return 0;
6658 }
6659
6660 /*
6661 * Select a frequency.
6662 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6663 * XXX Better algorithm?
6664 */
6665 static int
6666 audio_select_freq(const struct audio_format *fmt)
6667 {
6668 int freq;
6669 int high;
6670 int low;
6671 int j;
6672
6673 if (fmt->frequency_type == 0) {
6674 low = fmt->frequency[0];
6675 high = fmt->frequency[1];
6676 freq = 48000;
6677 if (low <= freq && freq <= high) {
6678 return freq;
6679 }
6680 freq = 44100;
6681 if (low <= freq && freq <= high) {
6682 return freq;
6683 }
6684 return high;
6685 } else {
6686 for (j = 0; j < fmt->frequency_type; j++) {
6687 if (fmt->frequency[j] == 48000) {
6688 return fmt->frequency[j];
6689 }
6690 }
6691 high = 0;
6692 for (j = 0; j < fmt->frequency_type; j++) {
6693 if (fmt->frequency[j] == 44100) {
6694 return fmt->frequency[j];
6695 }
6696 if (fmt->frequency[j] > high) {
6697 high = fmt->frequency[j];
6698 }
6699 }
6700 return high;
6701 }
6702 }
6703
6704 /*
6705 * Choose the most preferred hardware format.
6706 * If successful, it will store the chosen format into *cand and return 0.
6707 * Otherwise, return errno.
6708 * Must be called without sc_lock held.
6709 */
6710 static int
6711 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6712 {
6713 audio_format_query_t query;
6714 int cand_score;
6715 int score;
6716 int i;
6717 int error;
6718
6719 /*
6720 * Score each formats and choose the highest one.
6721 *
6722 * +---- priority(0-3)
6723 * |+--- encoding/precision
6724 * ||+-- channels
6725 * score = 0x000000PEC
6726 */
6727
6728 cand_score = 0;
6729 for (i = 0; ; i++) {
6730 memset(&query, 0, sizeof(query));
6731 query.index = i;
6732
6733 mutex_enter(sc->sc_lock);
6734 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6735 mutex_exit(sc->sc_lock);
6736 if (error == EINVAL)
6737 break;
6738 if (error)
6739 return error;
6740
6741 #if defined(AUDIO_DEBUG)
6742 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6743 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6744 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6745 query.fmt.priority,
6746 audio_encoding_name(query.fmt.encoding),
6747 query.fmt.validbits,
6748 query.fmt.precision,
6749 query.fmt.channels);
6750 if (query.fmt.frequency_type == 0) {
6751 DPRINTF(1, "{%d-%d",
6752 query.fmt.frequency[0], query.fmt.frequency[1]);
6753 } else {
6754 int j;
6755 for (j = 0; j < query.fmt.frequency_type; j++) {
6756 DPRINTF(1, "%c%d",
6757 (j == 0) ? '{' : ',',
6758 query.fmt.frequency[j]);
6759 }
6760 }
6761 DPRINTF(1, "}\n");
6762 #endif
6763
6764 if ((query.fmt.mode & mode) == 0) {
6765 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6766 mode);
6767 continue;
6768 }
6769
6770 if (query.fmt.priority < 0) {
6771 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6772 continue;
6773 }
6774
6775 /* Score */
6776 score = (query.fmt.priority & 3) * 0x100;
6777 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6778 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6779 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6780 score += 0x20;
6781 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6782 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6783 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6784 score += 0x10;
6785 }
6786
6787 /* Do not prefer surround formats */
6788 if (query.fmt.channels <= 2)
6789 score += query.fmt.channels;
6790
6791 if (score < cand_score) {
6792 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6793 score, cand_score);
6794 continue;
6795 }
6796
6797 /* Update candidate */
6798 cand_score = score;
6799 cand->encoding = query.fmt.encoding;
6800 cand->precision = query.fmt.validbits;
6801 cand->stride = query.fmt.precision;
6802 cand->channels = query.fmt.channels;
6803 cand->sample_rate = audio_select_freq(&query.fmt);
6804 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6805 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6806 cand_score, query.fmt.priority,
6807 audio_encoding_name(query.fmt.encoding),
6808 cand->precision, cand->stride,
6809 cand->channels, cand->sample_rate);
6810 }
6811
6812 if (cand_score == 0) {
6813 DPRINTF(1, "%s no fmt\n", __func__);
6814 return ENXIO;
6815 }
6816 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6817 audio_encoding_name(cand->encoding),
6818 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6819 return 0;
6820 }
6821
6822 /*
6823 * Validate fmt with query_format.
6824 * If fmt is included in the result of query_format, returns 0.
6825 * Otherwise returns EINVAL.
6826 * Must be called without sc_lock held.
6827 */
6828 static int
6829 audio_hw_validate_format(struct audio_softc *sc, int mode,
6830 const audio_format2_t *fmt)
6831 {
6832 audio_format_query_t query;
6833 struct audio_format *q;
6834 int index;
6835 int error;
6836 int j;
6837
6838 for (index = 0; ; index++) {
6839 query.index = index;
6840 mutex_enter(sc->sc_lock);
6841 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6842 mutex_exit(sc->sc_lock);
6843 if (error == EINVAL)
6844 break;
6845 if (error)
6846 return error;
6847
6848 q = &query.fmt;
6849 /*
6850 * Note that fmt is audio_format2_t (precision/stride) but
6851 * q is audio_format_t (validbits/precision).
6852 */
6853 if ((q->mode & mode) == 0) {
6854 continue;
6855 }
6856 if (fmt->encoding != q->encoding) {
6857 continue;
6858 }
6859 if (fmt->precision != q->validbits) {
6860 continue;
6861 }
6862 if (fmt->stride != q->precision) {
6863 continue;
6864 }
6865 if (fmt->channels != q->channels) {
6866 continue;
6867 }
6868 if (q->frequency_type == 0) {
6869 if (fmt->sample_rate < q->frequency[0] ||
6870 fmt->sample_rate > q->frequency[1]) {
6871 continue;
6872 }
6873 } else {
6874 for (j = 0; j < q->frequency_type; j++) {
6875 if (fmt->sample_rate == q->frequency[j])
6876 break;
6877 }
6878 if (j == query.fmt.frequency_type) {
6879 continue;
6880 }
6881 }
6882
6883 /* Matched. */
6884 return 0;
6885 }
6886
6887 return EINVAL;
6888 }
6889
6890 /*
6891 * Set track mixer's format depending on ai->mode.
6892 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6893 * with ai.play.*.
6894 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6895 * with ai.record.*.
6896 * All other fields in ai are ignored.
6897 * If successful returns 0. Otherwise returns errno.
6898 * This function does not roll back even if it fails.
6899 * Must be called with sc_exlock held and without sc_lock held.
6900 */
6901 static int
6902 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6903 {
6904 audio_format2_t phwfmt;
6905 audio_format2_t rhwfmt;
6906 audio_filter_reg_t pfil;
6907 audio_filter_reg_t rfil;
6908 int mode;
6909 int error;
6910
6911 KASSERT(sc->sc_exlock);
6912
6913 /*
6914 * Even when setting either one of playback and recording,
6915 * both must be halted.
6916 */
6917 if (sc->sc_popens + sc->sc_ropens > 0)
6918 return EBUSY;
6919
6920 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6921 return ENOTTY;
6922
6923 mode = ai->mode;
6924 if ((mode & AUMODE_PLAY)) {
6925 phwfmt.encoding = ai->play.encoding;
6926 phwfmt.precision = ai->play.precision;
6927 phwfmt.stride = ai->play.precision;
6928 phwfmt.channels = ai->play.channels;
6929 phwfmt.sample_rate = ai->play.sample_rate;
6930 }
6931 if ((mode & AUMODE_RECORD)) {
6932 rhwfmt.encoding = ai->record.encoding;
6933 rhwfmt.precision = ai->record.precision;
6934 rhwfmt.stride = ai->record.precision;
6935 rhwfmt.channels = ai->record.channels;
6936 rhwfmt.sample_rate = ai->record.sample_rate;
6937 }
6938
6939 /* On non-independent devices, use the same format for both. */
6940 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6941 if (mode == AUMODE_RECORD) {
6942 phwfmt = rhwfmt;
6943 } else {
6944 rhwfmt = phwfmt;
6945 }
6946 mode = AUMODE_PLAY | AUMODE_RECORD;
6947 }
6948
6949 /* Then, unset the direction not exist on the hardware. */
6950 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6951 mode &= ~AUMODE_PLAY;
6952 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6953 mode &= ~AUMODE_RECORD;
6954
6955 /* debug */
6956 if ((mode & AUMODE_PLAY)) {
6957 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6958 audio_encoding_name(phwfmt.encoding),
6959 phwfmt.precision,
6960 phwfmt.stride,
6961 phwfmt.channels,
6962 phwfmt.sample_rate);
6963 }
6964 if ((mode & AUMODE_RECORD)) {
6965 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6966 audio_encoding_name(rhwfmt.encoding),
6967 rhwfmt.precision,
6968 rhwfmt.stride,
6969 rhwfmt.channels,
6970 rhwfmt.sample_rate);
6971 }
6972
6973 /* Check the format */
6974 if ((mode & AUMODE_PLAY)) {
6975 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6976 TRACE(1, "invalid format");
6977 return EINVAL;
6978 }
6979 }
6980 if ((mode & AUMODE_RECORD)) {
6981 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6982 TRACE(1, "invalid format");
6983 return EINVAL;
6984 }
6985 }
6986
6987 /* Configure the mixers. */
6988 memset(&pfil, 0, sizeof(pfil));
6989 memset(&rfil, 0, sizeof(rfil));
6990 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6991 if (error)
6992 return error;
6993
6994 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6995 if (error)
6996 return error;
6997
6998 /*
6999 * Reinitialize the sticky parameters for /dev/sound.
7000 * If the number of the hardware channels becomes less than the number
7001 * of channels that sticky parameters remember, subsequent /dev/sound
7002 * open will fail. To prevent this, reinitialize the sticky
7003 * parameters whenever the hardware format is changed.
7004 */
7005 sc->sc_sound_pparams = params_to_format2(&audio_default);
7006 sc->sc_sound_rparams = params_to_format2(&audio_default);
7007 sc->sc_sound_ppause = false;
7008 sc->sc_sound_rpause = false;
7009
7010 return 0;
7011 }
7012
7013 /*
7014 * Store current mixers format into *ai.
7015 * Must be called with sc_exlock held.
7016 */
7017 static void
7018 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
7019 {
7020
7021 KASSERT(sc->sc_exlock);
7022
7023 /*
7024 * There is no stride information in audio_info but it doesn't matter.
7025 * trackmixer always treats stride and precision as the same.
7026 */
7027 AUDIO_INITINFO(ai);
7028 ai->mode = 0;
7029 if (sc->sc_pmixer) {
7030 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
7031 ai->play.encoding = fmt->encoding;
7032 ai->play.precision = fmt->precision;
7033 ai->play.channels = fmt->channels;
7034 ai->play.sample_rate = fmt->sample_rate;
7035 ai->mode |= AUMODE_PLAY;
7036 }
7037 if (sc->sc_rmixer) {
7038 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
7039 ai->record.encoding = fmt->encoding;
7040 ai->record.precision = fmt->precision;
7041 ai->record.channels = fmt->channels;
7042 ai->record.sample_rate = fmt->sample_rate;
7043 ai->mode |= AUMODE_RECORD;
7044 }
7045 }
7046
7047 /*
7048 * audio_info details:
7049 *
7050 * ai.{play,record}.sample_rate (R/W)
7051 * ai.{play,record}.encoding (R/W)
7052 * ai.{play,record}.precision (R/W)
7053 * ai.{play,record}.channels (R/W)
7054 * These specify the playback or recording format.
7055 * Ignore members within an inactive track.
7056 *
7057 * ai.mode (R/W)
7058 * It specifies the playback or recording mode, AUMODE_*.
7059 * Currently, a mode change operation by ai.mode after opening is
7060 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
7061 * However, it's possible to get or to set for backward compatibility.
7062 *
7063 * ai.{hiwat,lowat} (R/W)
7064 * These specify the high water mark and low water mark for playback
7065 * track. The unit is block.
7066 *
7067 * ai.{play,record}.gain (R/W)
7068 * It specifies the HW mixer volume in 0-255.
7069 * It is historical reason that the gain is connected to HW mixer.
7070 *
7071 * ai.{play,record}.balance (R/W)
7072 * It specifies the left-right balance of HW mixer in 0-64.
7073 * 32 means the center.
7074 * It is historical reason that the balance is connected to HW mixer.
7075 *
7076 * ai.{play,record}.port (R/W)
7077 * It specifies the input/output port of HW mixer.
7078 *
7079 * ai.monitor_gain (R/W)
7080 * It specifies the recording monitor gain(?) of HW mixer.
7081 *
7082 * ai.{play,record}.pause (R/W)
7083 * Non-zero means the track is paused.
7084 *
7085 * ai.play.seek (R/-)
7086 * It indicates the number of bytes written but not processed.
7087 * ai.record.seek (R/-)
7088 * It indicates the number of bytes to be able to read.
7089 *
7090 * ai.{play,record}.avail_ports (R/-)
7091 * Mixer info.
7092 *
7093 * ai.{play,record}.buffer_size (R/-)
7094 * It indicates the buffer size in bytes. Internally it means usrbuf.
7095 *
7096 * ai.{play,record}.samples (R/-)
7097 * It indicates the total number of bytes played or recorded.
7098 *
7099 * ai.{play,record}.eof (R/-)
7100 * It indicates the number of times reached EOF(?).
7101 *
7102 * ai.{play,record}.error (R/-)
7103 * Non-zero indicates overflow/underflow has occurred.
7104 *
7105 * ai.{play,record}.waiting (R/-)
7106 * Non-zero indicates that other process waits to open.
7107 * It will never happen anymore.
7108 *
7109 * ai.{play,record}.open (R/-)
7110 * Non-zero indicates the direction is opened by this process(?).
7111 * XXX Is this better to indicate that "the device is opened by
7112 * at least one process"?
7113 *
7114 * ai.{play,record}.active (R/-)
7115 * Non-zero indicates that I/O is currently active.
7116 *
7117 * ai.blocksize (R/-)
7118 * It indicates the block size in bytes.
7119 * XXX The blocksize of playback and recording may be different.
7120 */
7121
7122 /*
7123 * Pause consideration:
7124 *
7125 * Pausing/unpausing never affect [pr]mixer. This single rule makes
7126 * operation simple. Note that playback and recording are asymmetric.
7127 *
7128 * For playback,
7129 * 1. Any playback open doesn't start pmixer regardless of initial pause
7130 * state of this track.
7131 * 2. The first write access among playback tracks only starts pmixer
7132 * regardless of this track's pause state.
7133 * 3. Even a pause of the last playback track doesn't stop pmixer.
7134 * 4. The last close of all playback tracks only stops pmixer.
7135 *
7136 * For recording,
7137 * 1. The first recording open only starts rmixer regardless of initial
7138 * pause state of this track.
7139 * 2. Even a pause of the last track doesn't stop rmixer.
7140 * 3. The last close of all recording tracks only stops rmixer.
7141 */
7142
7143 /*
7144 * Set both track's parameters within a file depending on ai.
7145 * Update sc_sound_[pr]* if set.
7146 * Must be called with sc_exlock held and without sc_lock held.
7147 */
7148 static int
7149 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
7150 const struct audio_info *ai)
7151 {
7152 const struct audio_prinfo *pi;
7153 const struct audio_prinfo *ri;
7154 audio_track_t *ptrack;
7155 audio_track_t *rtrack;
7156 audio_format2_t pfmt;
7157 audio_format2_t rfmt;
7158 int pchanges;
7159 int rchanges;
7160 int mode;
7161 struct audio_info saved_ai;
7162 audio_format2_t saved_pfmt;
7163 audio_format2_t saved_rfmt;
7164 int error;
7165
7166 KASSERT(sc->sc_exlock);
7167
7168 pi = &ai->play;
7169 ri = &ai->record;
7170 pchanges = 0;
7171 rchanges = 0;
7172
7173 ptrack = file->ptrack;
7174 rtrack = file->rtrack;
7175
7176 #if defined(AUDIO_DEBUG)
7177 if (audiodebug >= 2) {
7178 char buf[256];
7179 char p[64];
7180 int buflen;
7181 int plen;
7182 #define SPRINTF(var, fmt...) do { \
7183 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
7184 } while (0)
7185
7186 buflen = 0;
7187 plen = 0;
7188 if (SPECIFIED(pi->encoding))
7189 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
7190 if (SPECIFIED(pi->precision))
7191 SPRINTF(p, "/%dbit", pi->precision);
7192 if (SPECIFIED(pi->channels))
7193 SPRINTF(p, "/%dch", pi->channels);
7194 if (SPECIFIED(pi->sample_rate))
7195 SPRINTF(p, "/%dHz", pi->sample_rate);
7196 if (plen > 0)
7197 SPRINTF(buf, ",play.param=%s", p + 1);
7198
7199 plen = 0;
7200 if (SPECIFIED(ri->encoding))
7201 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
7202 if (SPECIFIED(ri->precision))
7203 SPRINTF(p, "/%dbit", ri->precision);
7204 if (SPECIFIED(ri->channels))
7205 SPRINTF(p, "/%dch", ri->channels);
7206 if (SPECIFIED(ri->sample_rate))
7207 SPRINTF(p, "/%dHz", ri->sample_rate);
7208 if (plen > 0)
7209 SPRINTF(buf, ",record.param=%s", p + 1);
7210
7211 if (SPECIFIED(ai->mode))
7212 SPRINTF(buf, ",mode=%d", ai->mode);
7213 if (SPECIFIED(ai->hiwat))
7214 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
7215 if (SPECIFIED(ai->lowat))
7216 SPRINTF(buf, ",lowat=%d", ai->lowat);
7217 if (SPECIFIED(ai->play.gain))
7218 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
7219 if (SPECIFIED(ai->record.gain))
7220 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
7221 if (SPECIFIED_CH(ai->play.balance))
7222 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
7223 if (SPECIFIED_CH(ai->record.balance))
7224 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
7225 if (SPECIFIED(ai->play.port))
7226 SPRINTF(buf, ",play.port=%d", ai->play.port);
7227 if (SPECIFIED(ai->record.port))
7228 SPRINTF(buf, ",record.port=%d", ai->record.port);
7229 if (SPECIFIED(ai->monitor_gain))
7230 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
7231 if (SPECIFIED_CH(ai->play.pause))
7232 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
7233 if (SPECIFIED_CH(ai->record.pause))
7234 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
7235
7236 if (buflen > 0)
7237 TRACE(2, "specified %s", buf + 1);
7238 }
7239 #endif
7240
7241 AUDIO_INITINFO(&saved_ai);
7242 /* XXX shut up gcc */
7243 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
7244 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
7245
7246 /*
7247 * Set default value and save current parameters.
7248 * For backward compatibility, use sticky parameters for nonexistent
7249 * track.
7250 */
7251 if (ptrack) {
7252 pfmt = ptrack->usrbuf.fmt;
7253 saved_pfmt = ptrack->usrbuf.fmt;
7254 saved_ai.play.pause = ptrack->is_pause;
7255 } else {
7256 pfmt = sc->sc_sound_pparams;
7257 }
7258 if (rtrack) {
7259 rfmt = rtrack->usrbuf.fmt;
7260 saved_rfmt = rtrack->usrbuf.fmt;
7261 saved_ai.record.pause = rtrack->is_pause;
7262 } else {
7263 rfmt = sc->sc_sound_rparams;
7264 }
7265 saved_ai.mode = file->mode;
7266
7267 /*
7268 * Overwrite if specified.
7269 */
7270 mode = file->mode;
7271 if (SPECIFIED(ai->mode)) {
7272 /*
7273 * Setting ai->mode no longer does anything because it's
7274 * prohibited to change playback/recording mode after open
7275 * and AUMODE_PLAY_ALL is obsoleted. However, it still
7276 * keeps the state of AUMODE_PLAY_ALL itself for backward
7277 * compatibility.
7278 * In the internal, only file->mode has the state of
7279 * AUMODE_PLAY_ALL flag and track->mode in both track does
7280 * not have.
7281 */
7282 if ((file->mode & AUMODE_PLAY)) {
7283 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
7284 | (ai->mode & AUMODE_PLAY_ALL);
7285 }
7286 }
7287
7288 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
7289 if (pchanges == -1) {
7290 #if defined(AUDIO_DEBUG)
7291 TRACEF(1, file, "check play.params failed: "
7292 "%s %ubit %uch %uHz",
7293 audio_encoding_name(pi->encoding),
7294 pi->precision,
7295 pi->channels,
7296 pi->sample_rate);
7297 #endif
7298 return EINVAL;
7299 }
7300
7301 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
7302 if (rchanges == -1) {
7303 #if defined(AUDIO_DEBUG)
7304 TRACEF(1, file, "check record.params failed: "
7305 "%s %ubit %uch %uHz",
7306 audio_encoding_name(ri->encoding),
7307 ri->precision,
7308 ri->channels,
7309 ri->sample_rate);
7310 #endif
7311 return EINVAL;
7312 }
7313
7314 if (SPECIFIED(ai->mode)) {
7315 pchanges = 1;
7316 rchanges = 1;
7317 }
7318
7319 /*
7320 * Even when setting either one of playback and recording,
7321 * both track must be halted.
7322 */
7323 if (pchanges || rchanges) {
7324 audio_file_clear(sc, file);
7325 #if defined(AUDIO_DEBUG)
7326 char nbuf[16];
7327 char fmtbuf[64];
7328 if (pchanges) {
7329 if (ptrack) {
7330 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
7331 } else {
7332 snprintf(nbuf, sizeof(nbuf), "-");
7333 }
7334 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
7335 DPRINTF(1, "audio track#%s play mode: %s\n",
7336 nbuf, fmtbuf);
7337 }
7338 if (rchanges) {
7339 if (rtrack) {
7340 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
7341 } else {
7342 snprintf(nbuf, sizeof(nbuf), "-");
7343 }
7344 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
7345 DPRINTF(1, "audio track#%s rec mode: %s\n",
7346 nbuf, fmtbuf);
7347 }
7348 #endif
7349 }
7350
7351 /* Set mixer parameters */
7352 mutex_enter(sc->sc_lock);
7353 error = audio_hw_setinfo(sc, ai, &saved_ai);
7354 mutex_exit(sc->sc_lock);
7355 if (error)
7356 goto abort1;
7357
7358 /*
7359 * Set to track and update sticky parameters.
7360 */
7361 error = 0;
7362 file->mode = mode;
7363
7364 if (SPECIFIED_CH(pi->pause)) {
7365 if (ptrack)
7366 ptrack->is_pause = pi->pause;
7367 sc->sc_sound_ppause = pi->pause;
7368 }
7369 if (pchanges) {
7370 if (ptrack) {
7371 audio_track_lock_enter(ptrack);
7372 error = audio_track_set_format(ptrack, &pfmt);
7373 audio_track_lock_exit(ptrack);
7374 if (error) {
7375 TRACET(1, ptrack, "set play.params failed");
7376 goto abort2;
7377 }
7378 }
7379 sc->sc_sound_pparams = pfmt;
7380 }
7381 /* Change water marks after initializing the buffers. */
7382 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7383 if (ptrack)
7384 audio_track_setinfo_water(ptrack, ai);
7385 }
7386
7387 if (SPECIFIED_CH(ri->pause)) {
7388 if (rtrack)
7389 rtrack->is_pause = ri->pause;
7390 sc->sc_sound_rpause = ri->pause;
7391 }
7392 if (rchanges) {
7393 if (rtrack) {
7394 audio_track_lock_enter(rtrack);
7395 error = audio_track_set_format(rtrack, &rfmt);
7396 audio_track_lock_exit(rtrack);
7397 if (error) {
7398 TRACET(1, rtrack, "set record.params failed");
7399 goto abort3;
7400 }
7401 }
7402 sc->sc_sound_rparams = rfmt;
7403 }
7404
7405 return 0;
7406
7407 /* Rollback */
7408 abort3:
7409 if (error != ENOMEM) {
7410 rtrack->is_pause = saved_ai.record.pause;
7411 audio_track_lock_enter(rtrack);
7412 audio_track_set_format(rtrack, &saved_rfmt);
7413 audio_track_lock_exit(rtrack);
7414 }
7415 sc->sc_sound_rpause = saved_ai.record.pause;
7416 sc->sc_sound_rparams = saved_rfmt;
7417 abort2:
7418 if (ptrack && error != ENOMEM) {
7419 ptrack->is_pause = saved_ai.play.pause;
7420 audio_track_lock_enter(ptrack);
7421 audio_track_set_format(ptrack, &saved_pfmt);
7422 audio_track_lock_exit(ptrack);
7423 }
7424 sc->sc_sound_ppause = saved_ai.play.pause;
7425 sc->sc_sound_pparams = saved_pfmt;
7426 file->mode = saved_ai.mode;
7427 abort1:
7428 mutex_enter(sc->sc_lock);
7429 audio_hw_setinfo(sc, &saved_ai, NULL);
7430 mutex_exit(sc->sc_lock);
7431
7432 return error;
7433 }
7434
7435 /*
7436 * Write SPECIFIED() parameters within info back to fmt.
7437 * Note that track can be NULL here.
7438 * Return value of 1 indicates that fmt is modified.
7439 * Return value of 0 indicates that fmt is not modified.
7440 * Return value of -1 indicates that error EINVAL has occurred.
7441 */
7442 static int
7443 audio_track_setinfo_check(audio_track_t *track,
7444 audio_format2_t *fmt, const struct audio_prinfo *info)
7445 {
7446 const audio_format2_t *hwfmt;
7447 int changes;
7448
7449 changes = 0;
7450 if (SPECIFIED(info->sample_rate)) {
7451 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7452 return -1;
7453 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7454 return -1;
7455 fmt->sample_rate = info->sample_rate;
7456 changes = 1;
7457 }
7458 if (SPECIFIED(info->encoding)) {
7459 fmt->encoding = info->encoding;
7460 changes = 1;
7461 }
7462 if (SPECIFIED(info->precision)) {
7463 fmt->precision = info->precision;
7464 /* we don't have API to specify stride */
7465 fmt->stride = info->precision;
7466 changes = 1;
7467 }
7468 if (SPECIFIED(info->channels)) {
7469 /*
7470 * We can convert between monaural and stereo each other.
7471 * We can reduce than the number of channels that the hardware
7472 * supports.
7473 */
7474 if (info->channels > 2) {
7475 if (track) {
7476 hwfmt = &track->mixer->hwbuf.fmt;
7477 if (info->channels > hwfmt->channels)
7478 return -1;
7479 } else {
7480 /*
7481 * This should never happen.
7482 * If track == NULL, channels should be <= 2.
7483 */
7484 return -1;
7485 }
7486 }
7487 fmt->channels = info->channels;
7488 changes = 1;
7489 }
7490
7491 if (changes) {
7492 if (audio_check_params(fmt) != 0)
7493 return -1;
7494 }
7495
7496 return changes;
7497 }
7498
7499 /*
7500 * Change water marks for playback track if specified.
7501 */
7502 static void
7503 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7504 {
7505 u_int blks;
7506 u_int maxblks;
7507 u_int blksize;
7508
7509 KASSERT(audio_track_is_playback(track));
7510
7511 blksize = track->usrbuf_blksize;
7512 maxblks = track->usrbuf.capacity / blksize;
7513
7514 if (SPECIFIED(ai->hiwat)) {
7515 blks = ai->hiwat;
7516 if (blks > maxblks)
7517 blks = maxblks;
7518 if (blks < 2)
7519 blks = 2;
7520 track->usrbuf_usedhigh = blks * blksize;
7521 }
7522 if (SPECIFIED(ai->lowat)) {
7523 blks = ai->lowat;
7524 if (blks > maxblks - 1)
7525 blks = maxblks - 1;
7526 track->usrbuf_usedlow = blks * blksize;
7527 }
7528 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7529 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7530 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7531 blksize;
7532 }
7533 }
7534 }
7535
7536 /*
7537 * Set hardware part of *newai.
7538 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7539 * If oldai is specified, previous parameters are stored.
7540 * This function itself does not roll back if error occurred.
7541 * Must be called with sc_lock && sc_exlock held.
7542 */
7543 static int
7544 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7545 struct audio_info *oldai)
7546 {
7547 const struct audio_prinfo *newpi;
7548 const struct audio_prinfo *newri;
7549 struct audio_prinfo *oldpi;
7550 struct audio_prinfo *oldri;
7551 u_int pgain;
7552 u_int rgain;
7553 u_char pbalance;
7554 u_char rbalance;
7555 int error;
7556
7557 KASSERT(mutex_owned(sc->sc_lock));
7558 KASSERT(sc->sc_exlock);
7559
7560 /* XXX shut up gcc */
7561 oldpi = NULL;
7562 oldri = NULL;
7563
7564 newpi = &newai->play;
7565 newri = &newai->record;
7566 if (oldai) {
7567 oldpi = &oldai->play;
7568 oldri = &oldai->record;
7569 }
7570 error = 0;
7571
7572 /*
7573 * It looks like unnecessary to halt HW mixers to set HW mixers.
7574 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7575 */
7576
7577 if (SPECIFIED(newpi->port)) {
7578 if (oldai)
7579 oldpi->port = au_get_port(sc, &sc->sc_outports);
7580 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7581 if (error) {
7582 audio_printf(sc,
7583 "setting play.port=%d failed: errno=%d\n",
7584 newpi->port, error);
7585 goto abort;
7586 }
7587 }
7588 if (SPECIFIED(newri->port)) {
7589 if (oldai)
7590 oldri->port = au_get_port(sc, &sc->sc_inports);
7591 error = au_set_port(sc, &sc->sc_inports, newri->port);
7592 if (error) {
7593 audio_printf(sc,
7594 "setting record.port=%d failed: errno=%d\n",
7595 newri->port, error);
7596 goto abort;
7597 }
7598 }
7599
7600 /* play.{gain,balance} */
7601 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7602 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7603 if (oldai) {
7604 oldpi->gain = pgain;
7605 oldpi->balance = pbalance;
7606 }
7607
7608 if (SPECIFIED(newpi->gain))
7609 pgain = newpi->gain;
7610 if (SPECIFIED_CH(newpi->balance))
7611 pbalance = newpi->balance;
7612 error = au_set_gain(sc, &sc->sc_outports, pgain, pbalance);
7613 if (error) {
7614 audio_printf(sc,
7615 "setting play.gain=%d/balance=%d failed: "
7616 "errno=%d\n",
7617 pgain, pbalance, error);
7618 goto abort;
7619 }
7620 }
7621
7622 /* record.{gain,balance} */
7623 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7624 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7625 if (oldai) {
7626 oldri->gain = rgain;
7627 oldri->balance = rbalance;
7628 }
7629
7630 if (SPECIFIED(newri->gain))
7631 rgain = newri->gain;
7632 if (SPECIFIED_CH(newri->balance))
7633 rbalance = newri->balance;
7634 error = au_set_gain(sc, &sc->sc_inports, rgain, rbalance);
7635 if (error) {
7636 audio_printf(sc,
7637 "setting record.gain=%d/balance=%d failed: "
7638 "errno=%d\n",
7639 rgain, rbalance, error);
7640 goto abort;
7641 }
7642 }
7643
7644 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7645 if (oldai)
7646 oldai->monitor_gain = au_get_monitor_gain(sc);
7647 error = au_set_monitor_gain(sc, newai->monitor_gain);
7648 if (error) {
7649 audio_printf(sc,
7650 "setting monitor_gain=%d failed: errno=%d\n",
7651 newai->monitor_gain, error);
7652 goto abort;
7653 }
7654 }
7655
7656 /* XXX TODO */
7657 /* sc->sc_ai = *ai; */
7658
7659 error = 0;
7660 abort:
7661 return error;
7662 }
7663
7664 /*
7665 * Setup the hardware with mixer format phwfmt, rhwfmt.
7666 * The arguments have following restrictions:
7667 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7668 * or both.
7669 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7670 * - On non-independent devices, phwfmt and rhwfmt must have the same
7671 * parameters.
7672 * - pfil and rfil must be zero-filled.
7673 * If successful,
7674 * - pfil, rfil will be filled with filter information specified by the
7675 * hardware driver if necessary.
7676 * and then returns 0. Otherwise returns errno.
7677 * Must be called without sc_lock held.
7678 */
7679 static int
7680 audio_hw_set_format(struct audio_softc *sc, int setmode,
7681 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7682 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7683 {
7684 audio_params_t pp, rp;
7685 int error;
7686
7687 KASSERT(phwfmt != NULL);
7688 KASSERT(rhwfmt != NULL);
7689
7690 pp = format2_to_params(phwfmt);
7691 rp = format2_to_params(rhwfmt);
7692
7693 mutex_enter(sc->sc_lock);
7694 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7695 &pp, &rp, pfil, rfil);
7696 if (error) {
7697 mutex_exit(sc->sc_lock);
7698 audio_printf(sc, "set_format failed: errno=%d\n", error);
7699 return error;
7700 }
7701
7702 if (sc->hw_if->commit_settings) {
7703 error = sc->hw_if->commit_settings(sc->hw_hdl);
7704 if (error) {
7705 mutex_exit(sc->sc_lock);
7706 audio_printf(sc,
7707 "commit_settings failed: errno=%d\n", error);
7708 return error;
7709 }
7710 }
7711 mutex_exit(sc->sc_lock);
7712
7713 return 0;
7714 }
7715
7716 /*
7717 * Fill audio_info structure. If need_mixerinfo is true, it will also
7718 * fill the hardware mixer information.
7719 * Must be called with sc_exlock held and without sc_lock held.
7720 */
7721 static int
7722 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7723 audio_file_t *file)
7724 {
7725 struct audio_prinfo *ri, *pi;
7726 audio_track_t *track;
7727 audio_track_t *ptrack;
7728 audio_track_t *rtrack;
7729 int gain;
7730
7731 KASSERT(sc->sc_exlock);
7732
7733 ri = &ai->record;
7734 pi = &ai->play;
7735 ptrack = file->ptrack;
7736 rtrack = file->rtrack;
7737
7738 memset(ai, 0, sizeof(*ai));
7739
7740 if (ptrack) {
7741 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7742 pi->channels = ptrack->usrbuf.fmt.channels;
7743 pi->precision = ptrack->usrbuf.fmt.precision;
7744 pi->encoding = ptrack->usrbuf.fmt.encoding;
7745 pi->pause = ptrack->is_pause;
7746 } else {
7747 /* Use sticky parameters if the track is not available. */
7748 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7749 pi->channels = sc->sc_sound_pparams.channels;
7750 pi->precision = sc->sc_sound_pparams.precision;
7751 pi->encoding = sc->sc_sound_pparams.encoding;
7752 pi->pause = sc->sc_sound_ppause;
7753 }
7754 if (rtrack) {
7755 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7756 ri->channels = rtrack->usrbuf.fmt.channels;
7757 ri->precision = rtrack->usrbuf.fmt.precision;
7758 ri->encoding = rtrack->usrbuf.fmt.encoding;
7759 ri->pause = rtrack->is_pause;
7760 } else {
7761 /* Use sticky parameters if the track is not available. */
7762 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7763 ri->channels = sc->sc_sound_rparams.channels;
7764 ri->precision = sc->sc_sound_rparams.precision;
7765 ri->encoding = sc->sc_sound_rparams.encoding;
7766 ri->pause = sc->sc_sound_rpause;
7767 }
7768
7769 if (ptrack) {
7770 pi->seek = ptrack->usrbuf.used;
7771 pi->samples = ptrack->stamp * ptrack->usrbuf_blksize;
7772 pi->eof = ptrack->eofcounter;
7773 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7774 pi->open = 1;
7775 pi->buffer_size = ptrack->usrbuf.capacity;
7776 }
7777 pi->waiting = 0; /* open never hangs */
7778 pi->active = sc->sc_pbusy;
7779
7780 if (rtrack) {
7781 ri->seek = audio_track_readablebytes(rtrack);
7782 ri->samples = rtrack->stamp * rtrack->usrbuf_blksize;
7783 ri->eof = 0;
7784 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7785 ri->open = 1;
7786 ri->buffer_size = audio_track_inputblk_as_usrbyte(rtrack,
7787 rtrack->input->capacity);
7788 }
7789 ri->waiting = 0; /* open never hangs */
7790 ri->active = sc->sc_rbusy;
7791
7792 /*
7793 * XXX There may be different number of channels between playback
7794 * and recording, so that blocksize also may be different.
7795 * But struct audio_info has an united blocksize...
7796 * Here, I use play info precedencely if ptrack is available,
7797 * otherwise record info.
7798 *
7799 * XXX hiwat/lowat is a playback-only parameter. What should I
7800 * return for a record-only descriptor?
7801 */
7802 track = ptrack ? ptrack : rtrack;
7803 if (track) {
7804 ai->blocksize = track->usrbuf_blksize;
7805 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7806 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7807 }
7808 ai->mode = file->mode;
7809
7810 /*
7811 * For backward compatibility, we have to pad these five fields
7812 * a fake non-zero value even if there are no tracks.
7813 */
7814 if (ptrack == NULL)
7815 pi->buffer_size = 65536;
7816 if (rtrack == NULL)
7817 ri->buffer_size = 65536;
7818 if (ptrack == NULL && rtrack == NULL) {
7819 ai->blocksize = 2048;
7820 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7821 ai->lowat = ai->hiwat * 3 / 4;
7822 }
7823
7824 if (need_mixerinfo) {
7825 mutex_enter(sc->sc_lock);
7826
7827 pi->port = au_get_port(sc, &sc->sc_outports);
7828 ri->port = au_get_port(sc, &sc->sc_inports);
7829
7830 pi->avail_ports = sc->sc_outports.allports;
7831 ri->avail_ports = sc->sc_inports.allports;
7832
7833 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7834 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7835
7836 if (sc->sc_monitor_port != -1) {
7837 gain = au_get_monitor_gain(sc);
7838 if (gain != -1)
7839 ai->monitor_gain = gain;
7840 }
7841 mutex_exit(sc->sc_lock);
7842 }
7843
7844 return 0;
7845 }
7846
7847 /*
7848 * Return true if playback is configured.
7849 * This function can be used after audioattach.
7850 */
7851 static bool
7852 audio_can_playback(struct audio_softc *sc)
7853 {
7854
7855 return (sc->sc_pmixer != NULL);
7856 }
7857
7858 /*
7859 * Return true if recording is configured.
7860 * This function can be used after audioattach.
7861 */
7862 static bool
7863 audio_can_capture(struct audio_softc *sc)
7864 {
7865
7866 return (sc->sc_rmixer != NULL);
7867 }
7868
7869 /*
7870 * Get the afp->index'th item from the valid one of format[].
7871 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7872 *
7873 * This is common routines for query_format.
7874 * If your hardware driver has struct audio_format[], the simplest case
7875 * you can write your query_format interface as follows:
7876 *
7877 * struct audio_format foo_format[] = { ... };
7878 *
7879 * int
7880 * foo_query_format(void *hdl, audio_format_query_t *afp)
7881 * {
7882 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7883 * }
7884 */
7885 int
7886 audio_query_format(const struct audio_format *format, int nformats,
7887 audio_format_query_t *afp)
7888 {
7889 const struct audio_format *f;
7890 int idx;
7891 int i;
7892
7893 idx = 0;
7894 for (i = 0; i < nformats; i++) {
7895 f = &format[i];
7896 if (!AUFMT_IS_VALID(f))
7897 continue;
7898 if (afp->index == idx) {
7899 afp->fmt = *f;
7900 return 0;
7901 }
7902 idx++;
7903 }
7904 return EINVAL;
7905 }
7906
7907 /*
7908 * This function is provided for the hardware driver's set_format() to
7909 * find index matches with 'param' from array of audio_format_t 'formats'.
7910 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7911 * It returns the matched index and never fails. Because param passed to
7912 * set_format() is selected from query_format().
7913 * This function will be an alternative to auconv_set_converter() to
7914 * find index.
7915 */
7916 int
7917 audio_indexof_format(const struct audio_format *formats, int nformats,
7918 int mode, const audio_params_t *param)
7919 {
7920 const struct audio_format *f;
7921 int index;
7922 int j;
7923
7924 for (index = 0; index < nformats; index++) {
7925 f = &formats[index];
7926
7927 if (!AUFMT_IS_VALID(f))
7928 continue;
7929 if ((f->mode & mode) == 0)
7930 continue;
7931 if (f->encoding != param->encoding)
7932 continue;
7933 if (f->validbits != param->precision)
7934 continue;
7935 if (f->channels != param->channels)
7936 continue;
7937
7938 if (f->frequency_type == 0) {
7939 if (param->sample_rate < f->frequency[0] ||
7940 param->sample_rate > f->frequency[1])
7941 continue;
7942 } else {
7943 for (j = 0; j < f->frequency_type; j++) {
7944 if (param->sample_rate == f->frequency[j])
7945 break;
7946 }
7947 if (j == f->frequency_type)
7948 continue;
7949 }
7950
7951 /* Then, matched */
7952 return index;
7953 }
7954
7955 /* Not matched. This should not be happened. */
7956 panic("%s: cannot find matched format\n", __func__);
7957 }
7958
7959 /*
7960 * Get or set hardware blocksize in msec.
7961 * XXX It's for debug.
7962 */
7963 static int
7964 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7965 {
7966 struct sysctlnode node;
7967 struct audio_softc *sc;
7968 audio_format2_t phwfmt;
7969 audio_format2_t rhwfmt;
7970 audio_filter_reg_t pfil;
7971 audio_filter_reg_t rfil;
7972 int t;
7973 int old_blk_ms;
7974 int mode;
7975 int error;
7976
7977 node = *rnode;
7978 sc = node.sysctl_data;
7979
7980 error = audio_exlock_enter(sc);
7981 if (error)
7982 return error;
7983
7984 old_blk_ms = sc->sc_blk_ms;
7985 t = old_blk_ms;
7986 node.sysctl_data = &t;
7987 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7988 if (error || newp == NULL)
7989 goto abort;
7990
7991 if (t < 0) {
7992 error = EINVAL;
7993 goto abort;
7994 }
7995
7996 if (sc->sc_popens + sc->sc_ropens > 0) {
7997 error = EBUSY;
7998 goto abort;
7999 }
8000 sc->sc_blk_ms = t;
8001 mode = 0;
8002 if (sc->sc_pmixer) {
8003 mode |= AUMODE_PLAY;
8004 phwfmt = sc->sc_pmixer->hwbuf.fmt;
8005 }
8006 if (sc->sc_rmixer) {
8007 mode |= AUMODE_RECORD;
8008 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
8009 }
8010
8011 /* re-init hardware */
8012 memset(&pfil, 0, sizeof(pfil));
8013 memset(&rfil, 0, sizeof(rfil));
8014 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8015 if (error) {
8016 goto abort;
8017 }
8018
8019 /* re-init track mixer */
8020 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8021 if (error) {
8022 /* Rollback */
8023 sc->sc_blk_ms = old_blk_ms;
8024 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8025 goto abort;
8026 }
8027 error = 0;
8028 abort:
8029 audio_exlock_exit(sc);
8030 return error;
8031 }
8032
8033 /*
8034 * Get or set multiuser mode.
8035 */
8036 static int
8037 audio_sysctl_multiuser(SYSCTLFN_ARGS)
8038 {
8039 struct sysctlnode node;
8040 struct audio_softc *sc;
8041 bool t;
8042 int error;
8043
8044 node = *rnode;
8045 sc = node.sysctl_data;
8046
8047 error = audio_exlock_enter(sc);
8048 if (error)
8049 return error;
8050
8051 t = sc->sc_multiuser;
8052 node.sysctl_data = &t;
8053 error = sysctl_lookup(SYSCTLFN_CALL(&node));
8054 if (error || newp == NULL)
8055 goto abort;
8056
8057 sc->sc_multiuser = t;
8058 error = 0;
8059 abort:
8060 audio_exlock_exit(sc);
8061 return error;
8062 }
8063
8064 #if defined(AUDIO_DEBUG)
8065 /*
8066 * Get or set debug verbose level. (0..4)
8067 * XXX It's for debug.
8068 * XXX It is not separated per device.
8069 */
8070 static int
8071 audio_sysctl_debug(SYSCTLFN_ARGS)
8072 {
8073 struct sysctlnode node;
8074 int t;
8075 int error;
8076
8077 node = *rnode;
8078 t = audiodebug;
8079 node.sysctl_data = &t;
8080 error = sysctl_lookup(SYSCTLFN_CALL(&node));
8081 if (error || newp == NULL)
8082 return error;
8083
8084 if (t < 0 || t > 4)
8085 return EINVAL;
8086 audiodebug = t;
8087 printf("audio: audiodebug = %d\n", audiodebug);
8088 return 0;
8089 }
8090 #endif /* AUDIO_DEBUG */
8091
8092 #ifdef AUDIO_PM_IDLE
8093 static void
8094 audio_idle(void *arg)
8095 {
8096 device_t dv = arg;
8097 struct audio_softc *sc = device_private(dv);
8098
8099 #ifdef PNP_DEBUG
8100 extern int pnp_debug_idle;
8101 if (pnp_debug_idle)
8102 printf("%s: idle handler called\n", device_xname(dv));
8103 #endif
8104
8105 sc->sc_idle = true;
8106
8107 /* XXX joerg Make pmf_device_suspend handle children? */
8108 if (!pmf_device_suspend(dv, PMF_Q_SELF))
8109 return;
8110
8111 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
8112 pmf_device_resume(dv, PMF_Q_SELF);
8113 }
8114
8115 static void
8116 audio_activity(device_t dv, devactive_t type)
8117 {
8118 struct audio_softc *sc = device_private(dv);
8119
8120 if (type != DVA_SYSTEM)
8121 return;
8122
8123 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
8124
8125 sc->sc_idle = false;
8126 if (!device_is_active(dv)) {
8127 /* XXX joerg How to deal with a failing resume... */
8128 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
8129 pmf_device_resume(dv, PMF_Q_SELF);
8130 }
8131 }
8132 #endif
8133
8134 static bool
8135 audio_suspend(device_t dv, const pmf_qual_t *qual)
8136 {
8137 struct audio_softc *sc = device_private(dv);
8138 int error;
8139
8140 error = audio_exlock_mutex_enter(sc);
8141 if (error)
8142 return error;
8143 sc->sc_suspending = true;
8144 audio_mixer_capture(sc);
8145
8146 if (sc->sc_pbusy) {
8147 audio_pmixer_halt(sc);
8148 /* Reuse this as need-to-restart flag while suspending */
8149 sc->sc_pbusy = true;
8150 }
8151 if (sc->sc_rbusy) {
8152 audio_rmixer_halt(sc);
8153 /* Reuse this as need-to-restart flag while suspending */
8154 sc->sc_rbusy = true;
8155 }
8156
8157 #ifdef AUDIO_PM_IDLE
8158 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
8159 #endif
8160 audio_exlock_mutex_exit(sc);
8161
8162 return true;
8163 }
8164
8165 static bool
8166 audio_resume(device_t dv, const pmf_qual_t *qual)
8167 {
8168 struct audio_softc *sc = device_private(dv);
8169 struct audio_info ai;
8170 int error;
8171
8172 error = audio_exlock_mutex_enter(sc);
8173 if (error)
8174 return error;
8175
8176 sc->sc_suspending = false;
8177 audio_mixer_restore(sc);
8178 /* XXX ? */
8179 AUDIO_INITINFO(&ai);
8180 audio_hw_setinfo(sc, &ai, NULL);
8181
8182 /*
8183 * During from suspend to resume here, sc_[pr]busy is used as
8184 * need-to-restart flag temporarily. After this point,
8185 * sc_[pr]busy is returned to its original usage (busy flag).
8186 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
8187 */
8188 if (sc->sc_pbusy) {
8189 /* pmixer_start() requires pbusy is false */
8190 sc->sc_pbusy = false;
8191 audio_pmixer_start(sc, true);
8192 }
8193 if (sc->sc_rbusy) {
8194 /* rmixer_start() requires rbusy is false */
8195 sc->sc_rbusy = false;
8196 audio_rmixer_start(sc);
8197 }
8198
8199 audio_exlock_mutex_exit(sc);
8200
8201 return true;
8202 }
8203
8204 #if defined(AUDIO_DEBUG)
8205 static void
8206 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
8207 {
8208 int n;
8209
8210 n = 0;
8211 n += snprintf(buf + n, bufsize - n, "%s",
8212 audio_encoding_name(fmt->encoding));
8213 if (fmt->precision == fmt->stride) {
8214 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
8215 } else {
8216 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
8217 fmt->precision, fmt->stride);
8218 }
8219
8220 snprintf(buf + n, bufsize - n, " %uch %uHz",
8221 fmt->channels, fmt->sample_rate);
8222 }
8223 #endif
8224
8225 #if defined(AUDIO_DEBUG)
8226 static void
8227 audio_print_format2(const char *s, const audio_format2_t *fmt)
8228 {
8229 char fmtstr[64];
8230
8231 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
8232 printf("%s %s\n", s, fmtstr);
8233 }
8234 #endif
8235
8236 #ifdef DIAGNOSTIC
8237 void
8238 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
8239 {
8240
8241 KASSERTMSG(fmt, "called from %s", where);
8242
8243 /* XXX MSM6258 vs(4) only has 4bit stride format. */
8244 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
8245 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
8246 "called from %s: fmt->stride=%d", where, fmt->stride);
8247 } else {
8248 KASSERTMSG(fmt->stride % NBBY == 0,
8249 "called from %s: fmt->stride=%d", where, fmt->stride);
8250 }
8251 KASSERTMSG(fmt->precision <= fmt->stride,
8252 "called from %s: fmt->precision=%d fmt->stride=%d",
8253 where, fmt->precision, fmt->stride);
8254 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
8255 "called from %s: fmt->channels=%d", where, fmt->channels);
8256
8257 /* XXX No check for encodings? */
8258 }
8259
8260 void
8261 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
8262 {
8263
8264 KASSERT(arg != NULL);
8265 KASSERT(arg->src != NULL);
8266 KASSERT(arg->dst != NULL);
8267 audio_diagnostic_format2(where, arg->srcfmt);
8268 audio_diagnostic_format2(where, arg->dstfmt);
8269 KASSERT(arg->count > 0);
8270 }
8271
8272 void
8273 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
8274 {
8275
8276 KASSERTMSG(ring, "called from %s", where);
8277 audio_diagnostic_format2(where, &ring->fmt);
8278 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
8279 "called from %s: ring->capacity=%d", where, ring->capacity);
8280 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
8281 "called from %s: ring->used=%d ring->capacity=%d",
8282 where, ring->used, ring->capacity);
8283 if (ring->capacity == 0) {
8284 KASSERTMSG(ring->mem == NULL,
8285 "called from %s: capacity == 0 but mem != NULL", where);
8286 } else {
8287 KASSERTMSG(ring->mem != NULL,
8288 "called from %s: capacity != 0 but mem == NULL", where);
8289 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
8290 "called from %s: ring->head=%d ring->capacity=%d",
8291 where, ring->head, ring->capacity);
8292 }
8293 }
8294 #endif /* DIAGNOSTIC */
8295
8296
8297 /*
8298 * Mixer driver
8299 */
8300
8301 /*
8302 * Must be called without sc_lock held.
8303 */
8304 int
8305 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
8306 struct lwp *l)
8307 {
8308 struct file *fp;
8309 audio_file_t *af;
8310 int error, fd;
8311
8312 TRACE(1, "flags=0x%x", flags);
8313
8314 error = fd_allocfile(&fp, &fd);
8315 if (error)
8316 return error;
8317
8318 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
8319 af->sc = sc;
8320 af->dev = dev;
8321
8322 mutex_enter(sc->sc_lock);
8323 if (sc->sc_dying) {
8324 mutex_exit(sc->sc_lock);
8325 kmem_free(af, sizeof(*af));
8326 fd_abort(curproc, fp, fd);
8327 return ENXIO;
8328 }
8329 mutex_enter(sc->sc_intr_lock);
8330 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
8331 mutex_exit(sc->sc_intr_lock);
8332 mutex_exit(sc->sc_lock);
8333
8334 error = fd_clone(fp, fd, flags, &audio_fileops, af);
8335 KASSERT(error == EMOVEFD);
8336
8337 return error;
8338 }
8339
8340 /*
8341 * Add a process to those to be signalled on mixer activity.
8342 * If the process has already been added, do nothing.
8343 * Must be called with sc_exlock held and without sc_lock held.
8344 */
8345 static void
8346 mixer_async_add(struct audio_softc *sc, pid_t pid)
8347 {
8348 int i;
8349
8350 KASSERT(sc->sc_exlock);
8351
8352 /* If already exists, returns without doing anything. */
8353 for (i = 0; i < sc->sc_am_used; i++) {
8354 if (sc->sc_am[i] == pid)
8355 return;
8356 }
8357
8358 /* Extend array if necessary. */
8359 if (sc->sc_am_used >= sc->sc_am_capacity) {
8360 sc->sc_am_capacity += AM_CAPACITY;
8361 sc->sc_am = kern_realloc(sc->sc_am,
8362 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8363 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8364 }
8365
8366 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8367 sc->sc_am[sc->sc_am_used++] = pid;
8368 }
8369
8370 /*
8371 * Remove a process from those to be signalled on mixer activity.
8372 * If the process has not been added, do nothing.
8373 * Must be called with sc_exlock held and without sc_lock held.
8374 */
8375 static void
8376 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8377 {
8378 int i;
8379
8380 KASSERT(sc->sc_exlock);
8381
8382 for (i = 0; i < sc->sc_am_used; i++) {
8383 if (sc->sc_am[i] == pid) {
8384 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8385 TRACE(2, "am[%d](%d) removed, used=%d",
8386 i, (int)pid, sc->sc_am_used);
8387
8388 /* Empty array if no longer necessary. */
8389 if (sc->sc_am_used == 0) {
8390 kern_free(sc->sc_am);
8391 sc->sc_am = NULL;
8392 sc->sc_am_capacity = 0;
8393 TRACE(2, "released");
8394 }
8395 return;
8396 }
8397 }
8398 }
8399
8400 /*
8401 * Signal all processes waiting for the mixer.
8402 * Must be called with sc_exlock held.
8403 */
8404 static void
8405 mixer_signal(struct audio_softc *sc)
8406 {
8407 proc_t *p;
8408 int i;
8409
8410 KASSERT(sc->sc_exlock);
8411
8412 for (i = 0; i < sc->sc_am_used; i++) {
8413 mutex_enter(&proc_lock);
8414 p = proc_find(sc->sc_am[i]);
8415 if (p)
8416 psignal(p, SIGIO);
8417 mutex_exit(&proc_lock);
8418 }
8419 }
8420
8421 /*
8422 * Close a mixer device
8423 */
8424 int
8425 mixer_close(struct audio_softc *sc, audio_file_t *file)
8426 {
8427 int error;
8428
8429 error = audio_exlock_enter(sc);
8430 if (error)
8431 return error;
8432 TRACE(1, "called");
8433 mixer_async_remove(sc, curproc->p_pid);
8434 audio_exlock_exit(sc);
8435
8436 return 0;
8437 }
8438
8439 /*
8440 * Must be called without sc_lock nor sc_exlock held.
8441 */
8442 int
8443 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8444 struct lwp *l)
8445 {
8446 mixer_devinfo_t *mi;
8447 mixer_ctrl_t *mc;
8448 int val;
8449 int error;
8450
8451 #if defined(AUDIO_DEBUG)
8452 char pre[64];
8453 snprintf(pre, sizeof(pre), "pid=%d.%d",
8454 (int)curproc->p_pid, (int)l->l_lid);
8455 #endif
8456 error = EINVAL;
8457
8458 /* we can return cached values if we are sleeping */
8459 if (cmd != AUDIO_MIXER_READ) {
8460 mutex_enter(sc->sc_lock);
8461 device_active(sc->sc_dev, DVA_SYSTEM);
8462 mutex_exit(sc->sc_lock);
8463 }
8464
8465 switch (cmd) {
8466 case FIOASYNC:
8467 val = *(int *)addr;
8468 TRACE(2, "%s FIOASYNC %s", pre, val ? "on" : "off");
8469 error = audio_exlock_enter(sc);
8470 if (error)
8471 break;
8472 if (val) {
8473 mixer_async_add(sc, curproc->p_pid);
8474 } else {
8475 mixer_async_remove(sc, curproc->p_pid);
8476 }
8477 audio_exlock_exit(sc);
8478 break;
8479
8480 case AUDIO_GETDEV:
8481 TRACE(2, "%s AUDIO_GETDEV", pre);
8482 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8483 break;
8484
8485 case AUDIO_MIXER_DEVINFO:
8486 TRACE(2, "%s AUDIO_MIXER_DEVINFO", pre);
8487 mi = (mixer_devinfo_t *)addr;
8488
8489 mi->un.v.delta = 0; /* default */
8490 mutex_enter(sc->sc_lock);
8491 error = audio_query_devinfo(sc, mi);
8492 mutex_exit(sc->sc_lock);
8493 break;
8494
8495 case AUDIO_MIXER_READ:
8496 TRACE(2, "%s AUDIO_MIXER_READ", pre);
8497 mc = (mixer_ctrl_t *)addr;
8498
8499 error = audio_exlock_mutex_enter(sc);
8500 if (error)
8501 break;
8502 if (device_is_active(sc->hw_dev))
8503 error = audio_get_port(sc, mc);
8504 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8505 error = ENXIO;
8506 else {
8507 int dev = mc->dev;
8508 memcpy(mc, &sc->sc_mixer_state[dev],
8509 sizeof(mixer_ctrl_t));
8510 error = 0;
8511 }
8512 audio_exlock_mutex_exit(sc);
8513 break;
8514
8515 case AUDIO_MIXER_WRITE:
8516 TRACE(2, "%s AUDIO_MIXER_WRITE", pre);
8517 error = audio_exlock_mutex_enter(sc);
8518 if (error)
8519 break;
8520 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8521 if (error) {
8522 audio_exlock_mutex_exit(sc);
8523 break;
8524 }
8525
8526 if (sc->hw_if->commit_settings) {
8527 error = sc->hw_if->commit_settings(sc->hw_hdl);
8528 if (error) {
8529 audio_exlock_mutex_exit(sc);
8530 break;
8531 }
8532 }
8533 mutex_exit(sc->sc_lock);
8534 mixer_signal(sc);
8535 audio_exlock_exit(sc);
8536 break;
8537
8538 default:
8539 TRACE(2, "(%lu,'%c',%lu)",
8540 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8541 if (sc->hw_if->dev_ioctl) {
8542 mutex_enter(sc->sc_lock);
8543 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8544 cmd, addr, flag, l);
8545 mutex_exit(sc->sc_lock);
8546 } else
8547 error = EINVAL;
8548 break;
8549 }
8550
8551 if (error)
8552 TRACE(2, "error=%d", error);
8553 return error;
8554 }
8555
8556 /*
8557 * Must be called with sc_lock held.
8558 */
8559 int
8560 au_portof(struct audio_softc *sc, char *name, int class)
8561 {
8562 mixer_devinfo_t mi;
8563
8564 KASSERT(mutex_owned(sc->sc_lock));
8565
8566 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8567 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8568 return mi.index;
8569 }
8570 return -1;
8571 }
8572
8573 /*
8574 * Must be called with sc_lock held.
8575 */
8576 void
8577 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8578 mixer_devinfo_t *mi, const struct portname *tbl)
8579 {
8580 int i, j;
8581
8582 KASSERT(mutex_owned(sc->sc_lock));
8583
8584 ports->index = mi->index;
8585 if (mi->type == AUDIO_MIXER_ENUM) {
8586 ports->isenum = true;
8587 for(i = 0; tbl[i].name; i++)
8588 for(j = 0; j < mi->un.e.num_mem; j++)
8589 if (strcmp(mi->un.e.member[j].label.name,
8590 tbl[i].name) == 0) {
8591 ports->allports |= tbl[i].mask;
8592 ports->aumask[ports->nports] = tbl[i].mask;
8593 ports->misel[ports->nports] =
8594 mi->un.e.member[j].ord;
8595 ports->miport[ports->nports] =
8596 au_portof(sc, mi->un.e.member[j].label.name,
8597 mi->mixer_class);
8598 if (ports->mixerout != -1 &&
8599 ports->miport[ports->nports] != -1)
8600 ports->isdual = true;
8601 ++ports->nports;
8602 }
8603 } else if (mi->type == AUDIO_MIXER_SET) {
8604 for(i = 0; tbl[i].name; i++)
8605 for(j = 0; j < mi->un.s.num_mem; j++)
8606 if (strcmp(mi->un.s.member[j].label.name,
8607 tbl[i].name) == 0) {
8608 ports->allports |= tbl[i].mask;
8609 ports->aumask[ports->nports] = tbl[i].mask;
8610 ports->misel[ports->nports] =
8611 mi->un.s.member[j].mask;
8612 ports->miport[ports->nports] =
8613 au_portof(sc, mi->un.s.member[j].label.name,
8614 mi->mixer_class);
8615 ++ports->nports;
8616 }
8617 }
8618 }
8619
8620 /*
8621 * Must be called with sc_lock && sc_exlock held.
8622 */
8623 int
8624 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8625 {
8626
8627 KASSERT(mutex_owned(sc->sc_lock));
8628 KASSERT(sc->sc_exlock);
8629
8630 ct->type = AUDIO_MIXER_VALUE;
8631 ct->un.value.num_channels = 2;
8632 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8633 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8634 if (audio_set_port(sc, ct) == 0)
8635 return 0;
8636 ct->un.value.num_channels = 1;
8637 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8638 return audio_set_port(sc, ct);
8639 }
8640
8641 /*
8642 * Must be called with sc_lock && sc_exlock held.
8643 */
8644 int
8645 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8646 {
8647 int error;
8648
8649 KASSERT(mutex_owned(sc->sc_lock));
8650 KASSERT(sc->sc_exlock);
8651
8652 ct->un.value.num_channels = 2;
8653 if (audio_get_port(sc, ct) == 0) {
8654 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8655 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8656 } else {
8657 ct->un.value.num_channels = 1;
8658 error = audio_get_port(sc, ct);
8659 if (error)
8660 return error;
8661 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8662 }
8663 return 0;
8664 }
8665
8666 /*
8667 * Must be called with sc_lock && sc_exlock held.
8668 */
8669 int
8670 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8671 int gain, int balance)
8672 {
8673 mixer_ctrl_t ct;
8674 int i, error;
8675 int l, r;
8676 u_int mask;
8677 int nset;
8678
8679 KASSERT(mutex_owned(sc->sc_lock));
8680 KASSERT(sc->sc_exlock);
8681
8682 if (balance == AUDIO_MID_BALANCE) {
8683 l = r = gain;
8684 } else if (balance < AUDIO_MID_BALANCE) {
8685 l = gain;
8686 r = (balance * gain) / AUDIO_MID_BALANCE;
8687 } else {
8688 r = gain;
8689 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8690 / AUDIO_MID_BALANCE;
8691 }
8692 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8693
8694 if (ports->index == -1) {
8695 usemaster:
8696 if (ports->master == -1)
8697 return 0; /* just ignore it silently */
8698 ct.dev = ports->master;
8699 error = au_set_lr_value(sc, &ct, l, r);
8700 } else {
8701 ct.dev = ports->index;
8702 if (ports->isenum) {
8703 ct.type = AUDIO_MIXER_ENUM;
8704 error = audio_get_port(sc, &ct);
8705 if (error)
8706 return error;
8707 if (ports->isdual) {
8708 if (ports->cur_port == -1)
8709 ct.dev = ports->master;
8710 else
8711 ct.dev = ports->miport[ports->cur_port];
8712 error = au_set_lr_value(sc, &ct, l, r);
8713 } else {
8714 for(i = 0; i < ports->nports; i++)
8715 if (ports->misel[i] == ct.un.ord) {
8716 ct.dev = ports->miport[i];
8717 if (ct.dev == -1 ||
8718 au_set_lr_value(sc, &ct, l, r))
8719 goto usemaster;
8720 else
8721 break;
8722 }
8723 }
8724 } else {
8725 ct.type = AUDIO_MIXER_SET;
8726 error = audio_get_port(sc, &ct);
8727 if (error)
8728 return error;
8729 mask = ct.un.mask;
8730 nset = 0;
8731 for(i = 0; i < ports->nports; i++) {
8732 if (ports->misel[i] & mask) {
8733 ct.dev = ports->miport[i];
8734 if (ct.dev != -1 &&
8735 au_set_lr_value(sc, &ct, l, r) == 0)
8736 nset++;
8737 }
8738 }
8739 if (nset == 0)
8740 goto usemaster;
8741 }
8742 }
8743 if (!error)
8744 mixer_signal(sc);
8745 return error;
8746 }
8747
8748 /*
8749 * Must be called with sc_lock && sc_exlock held.
8750 */
8751 void
8752 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8753 u_int *pgain, u_char *pbalance)
8754 {
8755 mixer_ctrl_t ct;
8756 int i, l, r, n;
8757 int lgain, rgain;
8758
8759 KASSERT(mutex_owned(sc->sc_lock));
8760 KASSERT(sc->sc_exlock);
8761
8762 lgain = AUDIO_MAX_GAIN / 2;
8763 rgain = AUDIO_MAX_GAIN / 2;
8764 if (ports->index == -1) {
8765 usemaster:
8766 if (ports->master == -1)
8767 goto bad;
8768 ct.dev = ports->master;
8769 ct.type = AUDIO_MIXER_VALUE;
8770 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8771 goto bad;
8772 } else {
8773 ct.dev = ports->index;
8774 if (ports->isenum) {
8775 ct.type = AUDIO_MIXER_ENUM;
8776 if (audio_get_port(sc, &ct))
8777 goto bad;
8778 ct.type = AUDIO_MIXER_VALUE;
8779 if (ports->isdual) {
8780 if (ports->cur_port == -1)
8781 ct.dev = ports->master;
8782 else
8783 ct.dev = ports->miport[ports->cur_port];
8784 au_get_lr_value(sc, &ct, &lgain, &rgain);
8785 } else {
8786 for(i = 0; i < ports->nports; i++)
8787 if (ports->misel[i] == ct.un.ord) {
8788 ct.dev = ports->miport[i];
8789 if (ct.dev == -1 ||
8790 au_get_lr_value(sc, &ct,
8791 &lgain, &rgain))
8792 goto usemaster;
8793 else
8794 break;
8795 }
8796 }
8797 } else {
8798 ct.type = AUDIO_MIXER_SET;
8799 if (audio_get_port(sc, &ct))
8800 goto bad;
8801 ct.type = AUDIO_MIXER_VALUE;
8802 lgain = rgain = n = 0;
8803 for(i = 0; i < ports->nports; i++) {
8804 if (ports->misel[i] & ct.un.mask) {
8805 ct.dev = ports->miport[i];
8806 if (ct.dev == -1 ||
8807 au_get_lr_value(sc, &ct, &l, &r))
8808 goto usemaster;
8809 else {
8810 lgain += l;
8811 rgain += r;
8812 n++;
8813 }
8814 }
8815 }
8816 if (n != 0) {
8817 lgain /= n;
8818 rgain /= n;
8819 }
8820 }
8821 }
8822 bad:
8823 if (lgain == rgain) { /* handles lgain==rgain==0 */
8824 *pgain = lgain;
8825 *pbalance = AUDIO_MID_BALANCE;
8826 } else if (lgain < rgain) {
8827 *pgain = rgain;
8828 /* balance should be > AUDIO_MID_BALANCE */
8829 *pbalance = AUDIO_RIGHT_BALANCE -
8830 (AUDIO_MID_BALANCE * lgain) / rgain;
8831 } else /* lgain > rgain */ {
8832 *pgain = lgain;
8833 /* balance should be < AUDIO_MID_BALANCE */
8834 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8835 }
8836 }
8837
8838 /*
8839 * Must be called with sc_lock && sc_exlock held.
8840 */
8841 int
8842 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8843 {
8844 mixer_ctrl_t ct;
8845 int i, error, use_mixerout;
8846
8847 KASSERT(mutex_owned(sc->sc_lock));
8848 KASSERT(sc->sc_exlock);
8849
8850 use_mixerout = 1;
8851 if (port == 0) {
8852 if (ports->allports == 0)
8853 return 0; /* Allow this special case. */
8854 else if (ports->isdual) {
8855 if (ports->cur_port == -1) {
8856 return 0;
8857 } else {
8858 port = ports->aumask[ports->cur_port];
8859 ports->cur_port = -1;
8860 use_mixerout = 0;
8861 }
8862 }
8863 }
8864 if (ports->index == -1)
8865 return EINVAL;
8866 ct.dev = ports->index;
8867 if (ports->isenum) {
8868 if (port & (port-1))
8869 return EINVAL; /* Only one port allowed */
8870 ct.type = AUDIO_MIXER_ENUM;
8871 error = EINVAL;
8872 for(i = 0; i < ports->nports; i++)
8873 if (ports->aumask[i] == port) {
8874 if (ports->isdual && use_mixerout) {
8875 ct.un.ord = ports->mixerout;
8876 ports->cur_port = i;
8877 } else {
8878 ct.un.ord = ports->misel[i];
8879 }
8880 error = audio_set_port(sc, &ct);
8881 break;
8882 }
8883 } else {
8884 ct.type = AUDIO_MIXER_SET;
8885 ct.un.mask = 0;
8886 for(i = 0; i < ports->nports; i++)
8887 if (ports->aumask[i] & port)
8888 ct.un.mask |= ports->misel[i];
8889 if (port != 0 && ct.un.mask == 0)
8890 error = EINVAL;
8891 else
8892 error = audio_set_port(sc, &ct);
8893 }
8894 if (!error)
8895 mixer_signal(sc);
8896 return error;
8897 }
8898
8899 /*
8900 * Must be called with sc_lock && sc_exlock held.
8901 */
8902 int
8903 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8904 {
8905 mixer_ctrl_t ct;
8906 int i, aumask;
8907
8908 KASSERT(mutex_owned(sc->sc_lock));
8909 KASSERT(sc->sc_exlock);
8910
8911 if (ports->index == -1)
8912 return 0;
8913 ct.dev = ports->index;
8914 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8915 if (audio_get_port(sc, &ct))
8916 return 0;
8917 aumask = 0;
8918 if (ports->isenum) {
8919 if (ports->isdual && ports->cur_port != -1) {
8920 if (ports->mixerout == ct.un.ord)
8921 aumask = ports->aumask[ports->cur_port];
8922 else
8923 ports->cur_port = -1;
8924 }
8925 if (aumask == 0)
8926 for(i = 0; i < ports->nports; i++)
8927 if (ports->misel[i] == ct.un.ord)
8928 aumask = ports->aumask[i];
8929 } else {
8930 for(i = 0; i < ports->nports; i++)
8931 if (ct.un.mask & ports->misel[i])
8932 aumask |= ports->aumask[i];
8933 }
8934 return aumask;
8935 }
8936
8937 /*
8938 * It returns 0 if success, otherwise errno.
8939 * Must be called only if sc->sc_monitor_port != -1.
8940 * Must be called with sc_lock && sc_exlock held.
8941 */
8942 static int
8943 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8944 {
8945 mixer_ctrl_t ct;
8946
8947 KASSERT(mutex_owned(sc->sc_lock));
8948 KASSERT(sc->sc_exlock);
8949
8950 ct.dev = sc->sc_monitor_port;
8951 ct.type = AUDIO_MIXER_VALUE;
8952 ct.un.value.num_channels = 1;
8953 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8954 return audio_set_port(sc, &ct);
8955 }
8956
8957 /*
8958 * It returns monitor gain if success, otherwise -1.
8959 * Must be called only if sc->sc_monitor_port != -1.
8960 * Must be called with sc_lock && sc_exlock held.
8961 */
8962 static int
8963 au_get_monitor_gain(struct audio_softc *sc)
8964 {
8965 mixer_ctrl_t ct;
8966
8967 KASSERT(mutex_owned(sc->sc_lock));
8968 KASSERT(sc->sc_exlock);
8969
8970 ct.dev = sc->sc_monitor_port;
8971 ct.type = AUDIO_MIXER_VALUE;
8972 ct.un.value.num_channels = 1;
8973 if (audio_get_port(sc, &ct))
8974 return -1;
8975 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8976 }
8977
8978 /*
8979 * Must be called with sc_lock && sc_exlock held.
8980 */
8981 static int
8982 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8983 {
8984
8985 KASSERT(mutex_owned(sc->sc_lock));
8986 KASSERT(sc->sc_exlock);
8987
8988 return sc->hw_if->set_port(sc->hw_hdl, mc);
8989 }
8990
8991 /*
8992 * Must be called with sc_lock && sc_exlock held.
8993 */
8994 static int
8995 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8996 {
8997
8998 KASSERT(mutex_owned(sc->sc_lock));
8999 KASSERT(sc->sc_exlock);
9000
9001 return sc->hw_if->get_port(sc->hw_hdl, mc);
9002 }
9003
9004 /*
9005 * Must be called with sc_lock && sc_exlock held.
9006 */
9007 static void
9008 audio_mixer_capture(struct audio_softc *sc)
9009 {
9010 mixer_devinfo_t mi;
9011 mixer_ctrl_t *mc;
9012
9013 KASSERT(mutex_owned(sc->sc_lock));
9014 KASSERT(sc->sc_exlock);
9015
9016 for (mi.index = 0;; mi.index++) {
9017 if (audio_query_devinfo(sc, &mi) != 0)
9018 break;
9019 KASSERT(mi.index < sc->sc_nmixer_states);
9020 if (mi.type == AUDIO_MIXER_CLASS)
9021 continue;
9022 mc = &sc->sc_mixer_state[mi.index];
9023 mc->dev = mi.index;
9024 mc->type = mi.type;
9025 mc->un.value.num_channels = mi.un.v.num_channels;
9026 (void)audio_get_port(sc, mc);
9027 }
9028
9029 return;
9030 }
9031
9032 /*
9033 * Must be called with sc_lock && sc_exlock held.
9034 */
9035 static void
9036 audio_mixer_restore(struct audio_softc *sc)
9037 {
9038 mixer_devinfo_t mi;
9039 mixer_ctrl_t *mc;
9040
9041 KASSERT(mutex_owned(sc->sc_lock));
9042 KASSERT(sc->sc_exlock);
9043
9044 for (mi.index = 0; ; mi.index++) {
9045 if (audio_query_devinfo(sc, &mi) != 0)
9046 break;
9047 if (mi.type == AUDIO_MIXER_CLASS)
9048 continue;
9049 mc = &sc->sc_mixer_state[mi.index];
9050 (void)audio_set_port(sc, mc);
9051 }
9052 if (sc->hw_if->commit_settings)
9053 sc->hw_if->commit_settings(sc->hw_hdl);
9054
9055 return;
9056 }
9057
9058 static void
9059 audio_volume_down(device_t dv)
9060 {
9061 struct audio_softc *sc = device_private(dv);
9062 mixer_devinfo_t mi;
9063 int newgain;
9064 u_int gain;
9065 u_char balance;
9066
9067 if (audio_exlock_mutex_enter(sc) != 0)
9068 return;
9069 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
9070 mi.index = sc->sc_outports.master;
9071 mi.un.v.delta = 0;
9072 if (audio_query_devinfo(sc, &mi) == 0) {
9073 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9074 newgain = gain - mi.un.v.delta;
9075 if (newgain < AUDIO_MIN_GAIN)
9076 newgain = AUDIO_MIN_GAIN;
9077 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9078 }
9079 }
9080 audio_exlock_mutex_exit(sc);
9081 }
9082
9083 static void
9084 audio_volume_up(device_t dv)
9085 {
9086 struct audio_softc *sc = device_private(dv);
9087 mixer_devinfo_t mi;
9088 u_int gain, newgain;
9089 u_char balance;
9090
9091 if (audio_exlock_mutex_enter(sc) != 0)
9092 return;
9093 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
9094 mi.index = sc->sc_outports.master;
9095 mi.un.v.delta = 0;
9096 if (audio_query_devinfo(sc, &mi) == 0) {
9097 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9098 newgain = gain + mi.un.v.delta;
9099 if (newgain > AUDIO_MAX_GAIN)
9100 newgain = AUDIO_MAX_GAIN;
9101 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9102 }
9103 }
9104 audio_exlock_mutex_exit(sc);
9105 }
9106
9107 static void
9108 audio_volume_toggle(device_t dv)
9109 {
9110 struct audio_softc *sc = device_private(dv);
9111 u_int gain, newgain;
9112 u_char balance;
9113
9114 if (audio_exlock_mutex_enter(sc) != 0)
9115 return;
9116 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9117 if (gain != 0) {
9118 sc->sc_lastgain = gain;
9119 newgain = 0;
9120 } else
9121 newgain = sc->sc_lastgain;
9122 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9123 audio_exlock_mutex_exit(sc);
9124 }
9125
9126 /*
9127 * Must be called with sc_lock held.
9128 */
9129 static int
9130 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
9131 {
9132
9133 KASSERT(mutex_owned(sc->sc_lock));
9134
9135 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
9136 }
9137
9138 #endif /* NAUDIO > 0 */
9139
9140 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
9141 #include <sys/param.h>
9142 #include <sys/systm.h>
9143 #include <sys/device.h>
9144 #include <sys/audioio.h>
9145 #include <dev/audio/audio_if.h>
9146 #endif
9147
9148 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
9149 int
9150 audioprint(void *aux, const char *pnp)
9151 {
9152 struct audio_attach_args *arg;
9153 const char *type;
9154
9155 if (pnp != NULL) {
9156 arg = aux;
9157 switch (arg->type) {
9158 case AUDIODEV_TYPE_AUDIO:
9159 type = "audio";
9160 break;
9161 case AUDIODEV_TYPE_MIDI:
9162 type = "midi";
9163 break;
9164 case AUDIODEV_TYPE_OPL:
9165 type = "opl";
9166 break;
9167 case AUDIODEV_TYPE_MPU:
9168 type = "mpu";
9169 break;
9170 case AUDIODEV_TYPE_AUX:
9171 type = "aux";
9172 break;
9173 default:
9174 panic("audioprint: unknown type %d", arg->type);
9175 }
9176 aprint_normal("%s at %s", type, pnp);
9177 }
9178 return UNCONF;
9179 }
9180
9181 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
9182
9183 #ifdef _MODULE
9184
9185 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
9186
9187 #include "ioconf.c"
9188
9189 #endif
9190
9191 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
9192
9193 static int
9194 audio_modcmd(modcmd_t cmd, void *arg)
9195 {
9196 int error = 0;
9197
9198 switch (cmd) {
9199 case MODULE_CMD_INIT:
9200 /* XXX interrupt level? */
9201 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
9202 #ifdef _MODULE
9203 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
9204 &audio_cdevsw, &audio_cmajor);
9205 if (error)
9206 break;
9207
9208 error = config_init_component(cfdriver_ioconf_audio,
9209 cfattach_ioconf_audio, cfdata_ioconf_audio);
9210 if (error) {
9211 devsw_detach(NULL, &audio_cdevsw);
9212 }
9213 #endif
9214 break;
9215 case MODULE_CMD_FINI:
9216 #ifdef _MODULE
9217 error = config_fini_component(cfdriver_ioconf_audio,
9218 cfattach_ioconf_audio, cfdata_ioconf_audio);
9219 if (error == 0)
9220 devsw_detach(NULL, &audio_cdevsw);
9221 #endif
9222 if (error == 0)
9223 psref_class_destroy(audio_psref_class);
9224 break;
9225 default:
9226 error = ENOTTY;
9227 break;
9228 }
9229
9230 return error;
9231 }
9232