audio.c revision 1.134 1 /* $NetBSD: audio.c,v 1.134 2022/07/06 01:12:45 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Terminology: "sample", "channel", "frame", "block", "track":
67 *
68 * channel frame
69 * | ........
70 * v : : \
71 * +------:------:------:- -+------+ : +------+-.. |
72 * #0(L) |sample|sample|sample| .. |sample| : |sample| |
73 * +------:------:------:- -+------+ : +------+-.. |
74 * #1(R) |sample|sample|sample| .. |sample| : |sample| |
75 * +------:------:------:- -+------+ : +------+-.. | track
76 * : : : : |
77 * +------:------:------:- -+------+ : +------+-.. |
78 * |sample|sample|sample| .. |sample| : |sample| |
79 * +------:------:------:- -+------+ : +------+-.. |
80 * : : /
81 * ........
82 *
83 * \--------------------------------/ \--------..
84 * block
85 *
86 * - A "frame" is the minimum unit in the time axis direction, and consists
87 * of samples for the number of channels.
88 * - A "block" is basic length of processing. The audio layer basically
89 * handles audio data stream block by block, asks underlying hardware to
90 * process them block by block, and then the hardware raises interrupt by
91 * each block.
92 * - A "track" is single completed audio stream.
93 *
94 * For example, the hardware block is assumed to be 10 msec, and your audio
95 * track consists of 2.1(=3) channels 44.1kHz 16bit PCM,
96 *
97 * "channel" = 3
98 * "sample" = 2 [bytes]
99 * "frame" = 2 [bytes/sample] * 3 [channels] = 6 [bytes]
100 * "block" = 44100 [Hz] * (10/1000) [seconds] * 6 [bytes/frame] = 2646 [bytes]
101 *
102 * The terminologies shown here are only for this MI audio layer. Note that
103 * different terminologies may be used in each manufacturer's datasheet, and
104 * each MD driver may follow it. For example, what we call a "block" is
105 * called a "frame" in sys/dev/pci/yds.c.
106 */
107
108 /*
109 * Locking: there are three locks per device.
110 *
111 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
112 * returned in the second parameter to hw_if->get_locks(). It is known
113 * as the "thread lock".
114 *
115 * It serializes access to state in all places except the
116 * driver's interrupt service routine. This lock is taken from process
117 * context (example: access to /dev/audio). It is also taken from soft
118 * interrupt handlers in this module, primarily to serialize delivery of
119 * wakeups. This lock may be used/provided by modules external to the
120 * audio subsystem, so take care not to introduce a lock order problem.
121 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
122 *
123 * - sc_intr_lock, provided by the underlying driver. This may be either a
124 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
125 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
126 * is known as the "interrupt lock".
127 *
128 * It provides atomic access to the device's hardware state, and to audio
129 * channel data that may be accessed by the hardware driver's ISR.
130 * In all places outside the ISR, sc_lock must be held before taking
131 * sc_intr_lock. This is to ensure that groups of hardware operations are
132 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
133 *
134 * - sc_exlock, private to this module. This is a variable protected by
135 * sc_lock. It is known as the "critical section".
136 * Some operations release sc_lock in order to allocate memory, to wait
137 * for in-flight I/O to complete, to copy to/from user context, etc.
138 * sc_exlock provides a critical section even under the circumstance.
139 * "+" in following list indicates the interfaces which necessary to be
140 * protected by sc_exlock.
141 *
142 * List of hardware interface methods, and which locks are held when each
143 * is called by this module:
144 *
145 * METHOD INTR THREAD NOTES
146 * ----------------------- ------- ------- -------------------------
147 * open x x +
148 * close x x +
149 * query_format - x
150 * set_format - x
151 * round_blocksize - x
152 * commit_settings - x
153 * init_output x x
154 * init_input x x
155 * start_output x x +
156 * start_input x x +
157 * halt_output x x +
158 * halt_input x x +
159 * speaker_ctl x x
160 * getdev - -
161 * set_port - x +
162 * get_port - x +
163 * query_devinfo - x
164 * allocm - - +
165 * freem - - +
166 * round_buffersize - x
167 * get_props - - Called at attach time
168 * trigger_output x x +
169 * trigger_input x x +
170 * dev_ioctl - x
171 * get_locks - - Called at attach time
172 *
173 * In addition, there is an additional lock.
174 *
175 * - track->lock. This is an atomic variable and is similar to the
176 * "interrupt lock". This is one for each track. If any thread context
177 * (and software interrupt context) and hardware interrupt context who
178 * want to access some variables on this track, they must acquire this
179 * lock before. It protects track's consistency between hardware
180 * interrupt context and others.
181 */
182
183 #include <sys/cdefs.h>
184 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.134 2022/07/06 01:12:45 riastradh Exp $");
185
186 #ifdef _KERNEL_OPT
187 #include "audio.h"
188 #include "midi.h"
189 #endif
190
191 #if NAUDIO > 0
192
193 #include <sys/types.h>
194 #include <sys/param.h>
195 #include <sys/atomic.h>
196 #include <sys/audioio.h>
197 #include <sys/conf.h>
198 #include <sys/cpu.h>
199 #include <sys/device.h>
200 #include <sys/fcntl.h>
201 #include <sys/file.h>
202 #include <sys/filedesc.h>
203 #include <sys/intr.h>
204 #include <sys/ioctl.h>
205 #include <sys/kauth.h>
206 #include <sys/kernel.h>
207 #include <sys/kmem.h>
208 #include <sys/lock.h>
209 #include <sys/malloc.h>
210 #include <sys/mman.h>
211 #include <sys/module.h>
212 #include <sys/poll.h>
213 #include <sys/proc.h>
214 #include <sys/queue.h>
215 #include <sys/select.h>
216 #include <sys/signalvar.h>
217 #include <sys/stat.h>
218 #include <sys/sysctl.h>
219 #include <sys/systm.h>
220 #include <sys/syslog.h>
221 #include <sys/vnode.h>
222
223 #include <dev/audio/audio_if.h>
224 #include <dev/audio/audiovar.h>
225 #include <dev/audio/audiodef.h>
226 #include <dev/audio/linear.h>
227 #include <dev/audio/mulaw.h>
228
229 #include <machine/endian.h>
230
231 #include <uvm/uvm_extern.h>
232
233 #include "ioconf.h"
234
235 /*
236 * 0: No debug logs
237 * 1: action changes like open/close/set_format...
238 * 2: + normal operations like read/write/ioctl...
239 * 3: + TRACEs except interrupt
240 * 4: + TRACEs including interrupt
241 */
242 //#define AUDIO_DEBUG 1
243
244 #if defined(AUDIO_DEBUG)
245
246 int audiodebug = AUDIO_DEBUG;
247 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
248 const char *, va_list);
249 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
250 __printflike(3, 4);
251 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
252 __printflike(3, 4);
253 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
254 __printflike(3, 4);
255
256 /* XXX sloppy memory logger */
257 static void audio_mlog_init(void);
258 static void audio_mlog_free(void);
259 static void audio_mlog_softintr(void *);
260 extern void audio_mlog_flush(void);
261 extern void audio_mlog_printf(const char *, ...);
262
263 static int mlog_refs; /* reference counter */
264 static char *mlog_buf[2]; /* double buffer */
265 static int mlog_buflen; /* buffer length */
266 static int mlog_used; /* used length */
267 static int mlog_full; /* number of dropped lines by buffer full */
268 static int mlog_drop; /* number of dropped lines by busy */
269 static volatile uint32_t mlog_inuse; /* in-use */
270 static int mlog_wpage; /* active page */
271 static void *mlog_sih; /* softint handle */
272
273 static void
274 audio_mlog_init(void)
275 {
276 mlog_refs++;
277 if (mlog_refs > 1)
278 return;
279 mlog_buflen = 4096;
280 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
281 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
282 mlog_used = 0;
283 mlog_full = 0;
284 mlog_drop = 0;
285 mlog_inuse = 0;
286 mlog_wpage = 0;
287 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
288 if (mlog_sih == NULL)
289 printf("%s: softint_establish failed\n", __func__);
290 }
291
292 static void
293 audio_mlog_free(void)
294 {
295 mlog_refs--;
296 if (mlog_refs > 0)
297 return;
298
299 audio_mlog_flush();
300 if (mlog_sih)
301 softint_disestablish(mlog_sih);
302 kmem_free(mlog_buf[0], mlog_buflen);
303 kmem_free(mlog_buf[1], mlog_buflen);
304 }
305
306 /*
307 * Flush memory buffer.
308 * It must not be called from hardware interrupt context.
309 */
310 void
311 audio_mlog_flush(void)
312 {
313 if (mlog_refs == 0)
314 return;
315
316 /* Nothing to do if already in use ? */
317 if (atomic_swap_32(&mlog_inuse, 1) == 1)
318 return;
319 membar_acquire();
320
321 int rpage = mlog_wpage;
322 mlog_wpage ^= 1;
323 mlog_buf[mlog_wpage][0] = '\0';
324 mlog_used = 0;
325
326 atomic_store_release(&mlog_inuse, 0);
327
328 if (mlog_buf[rpage][0] != '\0') {
329 printf("%s", mlog_buf[rpage]);
330 if (mlog_drop > 0)
331 printf("mlog_drop %d\n", mlog_drop);
332 if (mlog_full > 0)
333 printf("mlog_full %d\n", mlog_full);
334 }
335 mlog_full = 0;
336 mlog_drop = 0;
337 }
338
339 static void
340 audio_mlog_softintr(void *cookie)
341 {
342 audio_mlog_flush();
343 }
344
345 void
346 audio_mlog_printf(const char *fmt, ...)
347 {
348 int len;
349 va_list ap;
350
351 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
352 /* already inuse */
353 mlog_drop++;
354 return;
355 }
356 membar_acquire();
357
358 va_start(ap, fmt);
359 len = vsnprintf(
360 mlog_buf[mlog_wpage] + mlog_used,
361 mlog_buflen - mlog_used,
362 fmt, ap);
363 va_end(ap);
364
365 mlog_used += len;
366 if (mlog_buflen - mlog_used <= 1) {
367 mlog_full++;
368 }
369
370 atomic_store_release(&mlog_inuse, 0);
371
372 if (mlog_sih)
373 softint_schedule(mlog_sih);
374 }
375
376 /* trace functions */
377 static void
378 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
379 const char *fmt, va_list ap)
380 {
381 char buf[256];
382 int n;
383
384 n = 0;
385 buf[0] = '\0';
386 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
387 funcname, device_unit(sc->sc_dev), header);
388 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
389
390 if (cpu_intr_p()) {
391 audio_mlog_printf("%s\n", buf);
392 } else {
393 audio_mlog_flush();
394 printf("%s\n", buf);
395 }
396 }
397
398 static void
399 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
400 {
401 va_list ap;
402
403 va_start(ap, fmt);
404 audio_vtrace(sc, funcname, "", fmt, ap);
405 va_end(ap);
406 }
407
408 static void
409 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
410 {
411 char hdr[16];
412 va_list ap;
413
414 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
415 va_start(ap, fmt);
416 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
417 va_end(ap);
418 }
419
420 static void
421 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
422 {
423 char hdr[32];
424 char phdr[16], rhdr[16];
425 va_list ap;
426
427 phdr[0] = '\0';
428 rhdr[0] = '\0';
429 if (file->ptrack)
430 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
431 if (file->rtrack)
432 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
433 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
434
435 va_start(ap, fmt);
436 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
437 va_end(ap);
438 }
439
440 #define DPRINTF(n, fmt...) do { \
441 if (audiodebug >= (n)) { \
442 audio_mlog_flush(); \
443 printf(fmt); \
444 } \
445 } while (0)
446 #define TRACE(n, fmt...) do { \
447 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
448 } while (0)
449 #define TRACET(n, t, fmt...) do { \
450 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
451 } while (0)
452 #define TRACEF(n, f, fmt...) do { \
453 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
454 } while (0)
455
456 struct audio_track_debugbuf {
457 char usrbuf[32];
458 char codec[32];
459 char chvol[32];
460 char chmix[32];
461 char freq[32];
462 char outbuf[32];
463 };
464
465 static void
466 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
467 {
468
469 memset(buf, 0, sizeof(*buf));
470
471 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
472 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
473 if (track->freq.filter)
474 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
475 track->freq.srcbuf.head,
476 track->freq.srcbuf.used,
477 track->freq.srcbuf.capacity);
478 if (track->chmix.filter)
479 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
480 track->chmix.srcbuf.used);
481 if (track->chvol.filter)
482 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
483 track->chvol.srcbuf.used);
484 if (track->codec.filter)
485 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
486 track->codec.srcbuf.used);
487 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
488 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
489 }
490 #else
491 #define DPRINTF(n, fmt...) do { } while (0)
492 #define TRACE(n, fmt, ...) do { } while (0)
493 #define TRACET(n, t, fmt, ...) do { } while (0)
494 #define TRACEF(n, f, fmt, ...) do { } while (0)
495 #endif
496
497 #define SPECIFIED(x) ((x) != ~0)
498 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
499
500 /*
501 * Default hardware blocksize in msec.
502 *
503 * We use 10 msec for most modern platforms. This period is good enough to
504 * play audio and video synchronizely.
505 * In contrast, for very old platforms, this is usually too short and too
506 * severe. Also such platforms usually can not play video confortably, so
507 * it's not so important to make the blocksize shorter. If the platform
508 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
509 * uses this instead.
510 *
511 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
512 * configuration file if you wish.
513 */
514 #if !defined(AUDIO_BLK_MS)
515 # if defined(__AUDIO_BLK_MS)
516 # define AUDIO_BLK_MS __AUDIO_BLK_MS
517 # else
518 # define AUDIO_BLK_MS (10)
519 # endif
520 #endif
521
522 /* Device timeout in msec */
523 #define AUDIO_TIMEOUT (3000)
524
525 /* #define AUDIO_PM_IDLE */
526 #ifdef AUDIO_PM_IDLE
527 int audio_idle_timeout = 30;
528 #endif
529
530 /* Number of elements of async mixer's pid */
531 #define AM_CAPACITY (4)
532
533 struct portname {
534 const char *name;
535 int mask;
536 };
537
538 static int audiomatch(device_t, cfdata_t, void *);
539 static void audioattach(device_t, device_t, void *);
540 static int audiodetach(device_t, int);
541 static int audioactivate(device_t, enum devact);
542 static void audiochilddet(device_t, device_t);
543 static int audiorescan(device_t, const char *, const int *);
544
545 static int audio_modcmd(modcmd_t, void *);
546
547 #ifdef AUDIO_PM_IDLE
548 static void audio_idle(void *);
549 static void audio_activity(device_t, devactive_t);
550 #endif
551
552 static bool audio_suspend(device_t dv, const pmf_qual_t *);
553 static bool audio_resume(device_t dv, const pmf_qual_t *);
554 static void audio_volume_down(device_t);
555 static void audio_volume_up(device_t);
556 static void audio_volume_toggle(device_t);
557
558 static void audio_mixer_capture(struct audio_softc *);
559 static void audio_mixer_restore(struct audio_softc *);
560
561 static void audio_softintr_rd(void *);
562 static void audio_softintr_wr(void *);
563
564 static void audio_printf(struct audio_softc *, const char *, ...)
565 __printflike(2, 3);
566 static int audio_exlock_mutex_enter(struct audio_softc *);
567 static void audio_exlock_mutex_exit(struct audio_softc *);
568 static int audio_exlock_enter(struct audio_softc *);
569 static void audio_exlock_exit(struct audio_softc *);
570 static struct audio_softc *audio_sc_acquire_fromfile(audio_file_t *,
571 struct psref *);
572 static void audio_sc_release(struct audio_softc *, struct psref *);
573 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
574
575 static int audioclose(struct file *);
576 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
577 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
578 static int audioioctl(struct file *, u_long, void *);
579 static int audiopoll(struct file *, int);
580 static int audiokqfilter(struct file *, struct knote *);
581 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
582 struct uvm_object **, int *);
583 static int audiostat(struct file *, struct stat *);
584
585 static void filt_audiowrite_detach(struct knote *);
586 static int filt_audiowrite_event(struct knote *, long);
587 static void filt_audioread_detach(struct knote *);
588 static int filt_audioread_event(struct knote *, long);
589
590 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
591 audio_file_t **);
592 static int audio_close(struct audio_softc *, audio_file_t *);
593 static void audio_unlink(struct audio_softc *, audio_file_t *);
594 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
595 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
596 static void audio_file_clear(struct audio_softc *, audio_file_t *);
597 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
598 struct lwp *, audio_file_t *);
599 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
600 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
601 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
602 struct uvm_object **, int *, audio_file_t *);
603
604 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
605
606 static void audio_pintr(void *);
607 static void audio_rintr(void *);
608
609 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
610
611 static int audio_track_inputblk_as_usrbyte(const audio_track_t *, int);
612 static int audio_track_readablebytes(const audio_track_t *);
613 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
614 const struct audio_info *);
615 static int audio_track_setinfo_check(audio_track_t *,
616 audio_format2_t *, const struct audio_prinfo *);
617 static void audio_track_setinfo_water(audio_track_t *,
618 const struct audio_info *);
619 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
620 struct audio_info *);
621 static int audio_hw_set_format(struct audio_softc *, int,
622 const audio_format2_t *, const audio_format2_t *,
623 audio_filter_reg_t *, audio_filter_reg_t *);
624 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
625 audio_file_t *);
626 static bool audio_can_playback(struct audio_softc *);
627 static bool audio_can_capture(struct audio_softc *);
628 static int audio_check_params(audio_format2_t *);
629 static int audio_mixers_init(struct audio_softc *sc, int,
630 const audio_format2_t *, const audio_format2_t *,
631 const audio_filter_reg_t *, const audio_filter_reg_t *);
632 static int audio_select_freq(const struct audio_format *);
633 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
634 static int audio_hw_validate_format(struct audio_softc *, int,
635 const audio_format2_t *);
636 static int audio_mixers_set_format(struct audio_softc *,
637 const struct audio_info *);
638 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
639 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
640 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
641 #if defined(AUDIO_DEBUG)
642 static int audio_sysctl_debug(SYSCTLFN_PROTO);
643 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
644 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
645 #endif
646
647 static void *audio_realloc(void *, size_t);
648 static int audio_realloc_usrbuf(audio_track_t *, int);
649 static void audio_free_usrbuf(audio_track_t *);
650
651 static audio_track_t *audio_track_create(struct audio_softc *,
652 audio_trackmixer_t *);
653 static void audio_track_destroy(audio_track_t *);
654 static audio_filter_t audio_track_get_codec(audio_track_t *,
655 const audio_format2_t *, const audio_format2_t *);
656 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
657 static void audio_track_play(audio_track_t *);
658 static int audio_track_drain(struct audio_softc *, audio_track_t *);
659 static void audio_track_record(audio_track_t *);
660 static void audio_track_clear(struct audio_softc *, audio_track_t *);
661
662 static int audio_mixer_init(struct audio_softc *, int,
663 const audio_format2_t *, const audio_filter_reg_t *);
664 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
665 static void audio_pmixer_start(struct audio_softc *, bool);
666 static void audio_pmixer_process(struct audio_softc *);
667 static void audio_pmixer_agc(audio_trackmixer_t *, int);
668 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
669 static void audio_pmixer_output(struct audio_softc *);
670 static int audio_pmixer_halt(struct audio_softc *);
671 static void audio_rmixer_start(struct audio_softc *);
672 static void audio_rmixer_process(struct audio_softc *);
673 static void audio_rmixer_input(struct audio_softc *);
674 static int audio_rmixer_halt(struct audio_softc *);
675
676 static void mixer_init(struct audio_softc *);
677 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
678 static int mixer_close(struct audio_softc *, audio_file_t *);
679 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
680 static void mixer_async_add(struct audio_softc *, pid_t);
681 static void mixer_async_remove(struct audio_softc *, pid_t);
682 static void mixer_signal(struct audio_softc *);
683
684 static int au_portof(struct audio_softc *, char *, int);
685
686 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
687 mixer_devinfo_t *, const struct portname *);
688 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
689 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
690 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
691 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
692 u_int *, u_char *);
693 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
694 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
695 static int au_set_monitor_gain(struct audio_softc *, int);
696 static int au_get_monitor_gain(struct audio_softc *);
697 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
698 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
699
700 static __inline struct audio_params
701 format2_to_params(const audio_format2_t *f2)
702 {
703 audio_params_t p;
704
705 /* validbits/precision <-> precision/stride */
706 p.sample_rate = f2->sample_rate;
707 p.channels = f2->channels;
708 p.encoding = f2->encoding;
709 p.validbits = f2->precision;
710 p.precision = f2->stride;
711 return p;
712 }
713
714 static __inline audio_format2_t
715 params_to_format2(const struct audio_params *p)
716 {
717 audio_format2_t f2;
718
719 /* precision/stride <-> validbits/precision */
720 f2.sample_rate = p->sample_rate;
721 f2.channels = p->channels;
722 f2.encoding = p->encoding;
723 f2.precision = p->validbits;
724 f2.stride = p->precision;
725 return f2;
726 }
727
728 /* Return true if this track is a playback track. */
729 static __inline bool
730 audio_track_is_playback(const audio_track_t *track)
731 {
732
733 return ((track->mode & AUMODE_PLAY) != 0);
734 }
735
736 #if 0
737 /* Return true if this track is a recording track. */
738 static __inline bool
739 audio_track_is_record(const audio_track_t *track)
740 {
741
742 return ((track->mode & AUMODE_RECORD) != 0);
743 }
744 #endif
745
746 #if 0 /* XXX Not used yet */
747 /*
748 * Convert 0..255 volume used in userland to internal presentation 0..256.
749 */
750 static __inline u_int
751 audio_volume_to_inner(u_int v)
752 {
753
754 return v < 127 ? v : v + 1;
755 }
756
757 /*
758 * Convert 0..256 internal presentation to 0..255 volume used in userland.
759 */
760 static __inline u_int
761 audio_volume_to_outer(u_int v)
762 {
763
764 return v < 127 ? v : v - 1;
765 }
766 #endif /* 0 */
767
768 static dev_type_open(audioopen);
769 /* XXXMRG use more dev_type_xxx */
770
771 static int
772 audiounit(dev_t dev)
773 {
774
775 return AUDIOUNIT(dev);
776 }
777
778 const struct cdevsw audio_cdevsw = {
779 .d_open = audioopen,
780 .d_close = noclose,
781 .d_read = noread,
782 .d_write = nowrite,
783 .d_ioctl = noioctl,
784 .d_stop = nostop,
785 .d_tty = notty,
786 .d_poll = nopoll,
787 .d_mmap = nommap,
788 .d_kqfilter = nokqfilter,
789 .d_discard = nodiscard,
790 .d_cfdriver = &audio_cd,
791 .d_devtounit = audiounit,
792 .d_flag = D_OTHER | D_MPSAFE
793 };
794
795 const struct fileops audio_fileops = {
796 .fo_name = "audio",
797 .fo_read = audioread,
798 .fo_write = audiowrite,
799 .fo_ioctl = audioioctl,
800 .fo_fcntl = fnullop_fcntl,
801 .fo_stat = audiostat,
802 .fo_poll = audiopoll,
803 .fo_close = audioclose,
804 .fo_mmap = audiommap,
805 .fo_kqfilter = audiokqfilter,
806 .fo_restart = fnullop_restart
807 };
808
809 /* The default audio mode: 8 kHz mono mu-law */
810 static const struct audio_params audio_default = {
811 .sample_rate = 8000,
812 .encoding = AUDIO_ENCODING_ULAW,
813 .precision = 8,
814 .validbits = 8,
815 .channels = 1,
816 };
817
818 static const char *encoding_names[] = {
819 "none",
820 AudioEmulaw,
821 AudioEalaw,
822 "pcm16",
823 "pcm8",
824 AudioEadpcm,
825 AudioEslinear_le,
826 AudioEslinear_be,
827 AudioEulinear_le,
828 AudioEulinear_be,
829 AudioEslinear,
830 AudioEulinear,
831 AudioEmpeg_l1_stream,
832 AudioEmpeg_l1_packets,
833 AudioEmpeg_l1_system,
834 AudioEmpeg_l2_stream,
835 AudioEmpeg_l2_packets,
836 AudioEmpeg_l2_system,
837 AudioEac3,
838 };
839
840 /*
841 * Returns encoding name corresponding to AUDIO_ENCODING_*.
842 * Note that it may return a local buffer because it is mainly for debugging.
843 */
844 const char *
845 audio_encoding_name(int encoding)
846 {
847 static char buf[16];
848
849 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
850 return encoding_names[encoding];
851 } else {
852 snprintf(buf, sizeof(buf), "enc=%d", encoding);
853 return buf;
854 }
855 }
856
857 /*
858 * Supported encodings used by AUDIO_GETENC.
859 * index and flags are set by code.
860 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
861 */
862 static const audio_encoding_t audio_encodings[] = {
863 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
864 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
865 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
866 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
867 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
868 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
869 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
870 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
871 #if defined(AUDIO_SUPPORT_LINEAR24)
872 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
873 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
874 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
875 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
876 #endif
877 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
878 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
879 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
880 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
881 };
882
883 static const struct portname itable[] = {
884 { AudioNmicrophone, AUDIO_MICROPHONE },
885 { AudioNline, AUDIO_LINE_IN },
886 { AudioNcd, AUDIO_CD },
887 { 0, 0 }
888 };
889 static const struct portname otable[] = {
890 { AudioNspeaker, AUDIO_SPEAKER },
891 { AudioNheadphone, AUDIO_HEADPHONE },
892 { AudioNline, AUDIO_LINE_OUT },
893 { 0, 0 }
894 };
895
896 static struct psref_class *audio_psref_class __read_mostly;
897
898 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
899 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
900 audiochilddet, DVF_DETACH_SHUTDOWN);
901
902 static int
903 audiomatch(device_t parent, cfdata_t match, void *aux)
904 {
905 struct audio_attach_args *sa;
906
907 sa = aux;
908 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
909 __func__, sa->type, sa, sa->hwif);
910 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
911 }
912
913 static void
914 audioattach(device_t parent, device_t self, void *aux)
915 {
916 struct audio_softc *sc;
917 struct audio_attach_args *sa;
918 const struct audio_hw_if *hw_if;
919 audio_format2_t phwfmt;
920 audio_format2_t rhwfmt;
921 audio_filter_reg_t pfil;
922 audio_filter_reg_t rfil;
923 const struct sysctlnode *node;
924 void *hdlp;
925 bool has_playback;
926 bool has_capture;
927 bool has_indep;
928 bool has_fulldup;
929 int mode;
930 int error;
931
932 sc = device_private(self);
933 sc->sc_dev = self;
934 sa = (struct audio_attach_args *)aux;
935 hw_if = sa->hwif;
936 hdlp = sa->hdl;
937
938 if (hw_if == NULL) {
939 panic("audioattach: missing hw_if method");
940 }
941 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
942 aprint_error(": missing mandatory method\n");
943 return;
944 }
945
946 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
947 sc->sc_props = hw_if->get_props(hdlp);
948
949 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
950 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
951 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
952 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
953
954 #ifdef DIAGNOSTIC
955 if (hw_if->query_format == NULL ||
956 hw_if->set_format == NULL ||
957 hw_if->getdev == NULL ||
958 hw_if->set_port == NULL ||
959 hw_if->get_port == NULL ||
960 hw_if->query_devinfo == NULL) {
961 aprint_error(": missing mandatory method\n");
962 return;
963 }
964 if (has_playback) {
965 if ((hw_if->start_output == NULL &&
966 hw_if->trigger_output == NULL) ||
967 hw_if->halt_output == NULL) {
968 aprint_error(": missing playback method\n");
969 }
970 }
971 if (has_capture) {
972 if ((hw_if->start_input == NULL &&
973 hw_if->trigger_input == NULL) ||
974 hw_if->halt_input == NULL) {
975 aprint_error(": missing capture method\n");
976 }
977 }
978 #endif
979
980 sc->hw_if = hw_if;
981 sc->hw_hdl = hdlp;
982 sc->hw_dev = parent;
983
984 sc->sc_exlock = 1;
985 sc->sc_blk_ms = AUDIO_BLK_MS;
986 SLIST_INIT(&sc->sc_files);
987 cv_init(&sc->sc_exlockcv, "audiolk");
988 sc->sc_am_capacity = 0;
989 sc->sc_am_used = 0;
990 sc->sc_am = NULL;
991
992 /* MMAP is now supported by upper layer. */
993 sc->sc_props |= AUDIO_PROP_MMAP;
994
995 KASSERT(has_playback || has_capture);
996 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
997 if (!has_playback || !has_capture) {
998 KASSERT(!has_indep);
999 KASSERT(!has_fulldup);
1000 }
1001
1002 mode = 0;
1003 if (has_playback) {
1004 aprint_normal(": playback");
1005 mode |= AUMODE_PLAY;
1006 }
1007 if (has_capture) {
1008 aprint_normal("%c capture", has_playback ? ',' : ':');
1009 mode |= AUMODE_RECORD;
1010 }
1011 if (has_playback && has_capture) {
1012 if (has_fulldup)
1013 aprint_normal(", full duplex");
1014 else
1015 aprint_normal(", half duplex");
1016
1017 if (has_indep)
1018 aprint_normal(", independent");
1019 }
1020
1021 aprint_naive("\n");
1022 aprint_normal("\n");
1023
1024 /* probe hw params */
1025 memset(&phwfmt, 0, sizeof(phwfmt));
1026 memset(&rhwfmt, 0, sizeof(rhwfmt));
1027 memset(&pfil, 0, sizeof(pfil));
1028 memset(&rfil, 0, sizeof(rfil));
1029 if (has_indep) {
1030 int perror, rerror;
1031
1032 /* On independent devices, probe separately. */
1033 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
1034 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
1035 if (perror && rerror) {
1036 aprint_error_dev(self,
1037 "audio_hw_probe failed: perror=%d, rerror=%d\n",
1038 perror, rerror);
1039 goto bad;
1040 }
1041 if (perror) {
1042 mode &= ~AUMODE_PLAY;
1043 aprint_error_dev(self, "audio_hw_probe failed: "
1044 "errno=%d, playback disabled\n", perror);
1045 }
1046 if (rerror) {
1047 mode &= ~AUMODE_RECORD;
1048 aprint_error_dev(self, "audio_hw_probe failed: "
1049 "errno=%d, capture disabled\n", rerror);
1050 }
1051 } else {
1052 /*
1053 * On non independent devices or uni-directional devices,
1054 * probe once (simultaneously).
1055 */
1056 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
1057 error = audio_hw_probe(sc, fmt, mode);
1058 if (error) {
1059 aprint_error_dev(self,
1060 "audio_hw_probe failed: errno=%d\n", error);
1061 goto bad;
1062 }
1063 if (has_playback && has_capture)
1064 rhwfmt = phwfmt;
1065 }
1066
1067 /* Init hardware. */
1068 /* hw_probe() also validates [pr]hwfmt. */
1069 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1070 if (error) {
1071 aprint_error_dev(self,
1072 "audio_hw_set_format failed: errno=%d\n", error);
1073 goto bad;
1074 }
1075
1076 /*
1077 * Init track mixers. If at least one direction is available on
1078 * attach time, we assume a success.
1079 */
1080 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1081 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1082 aprint_error_dev(self,
1083 "audio_mixers_init failed: errno=%d\n", error);
1084 goto bad;
1085 }
1086
1087 sc->sc_psz = pserialize_create();
1088 psref_target_init(&sc->sc_psref, audio_psref_class);
1089
1090 selinit(&sc->sc_wsel);
1091 selinit(&sc->sc_rsel);
1092
1093 /* Initial parameter of /dev/sound */
1094 sc->sc_sound_pparams = params_to_format2(&audio_default);
1095 sc->sc_sound_rparams = params_to_format2(&audio_default);
1096 sc->sc_sound_ppause = false;
1097 sc->sc_sound_rpause = false;
1098
1099 /* XXX TODO: consider about sc_ai */
1100
1101 mixer_init(sc);
1102 TRACE(2, "inputs ports=0x%x, input master=%d, "
1103 "output ports=0x%x, output master=%d",
1104 sc->sc_inports.allports, sc->sc_inports.master,
1105 sc->sc_outports.allports, sc->sc_outports.master);
1106
1107 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1108 0,
1109 CTLTYPE_NODE, device_xname(sc->sc_dev),
1110 SYSCTL_DESCR("audio test"),
1111 NULL, 0,
1112 NULL, 0,
1113 CTL_HW,
1114 CTL_CREATE, CTL_EOL);
1115
1116 if (node != NULL) {
1117 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1118 CTLFLAG_READWRITE,
1119 CTLTYPE_INT, "blk_ms",
1120 SYSCTL_DESCR("blocksize in msec"),
1121 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1122 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1123
1124 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1125 CTLFLAG_READWRITE,
1126 CTLTYPE_BOOL, "multiuser",
1127 SYSCTL_DESCR("allow multiple user access"),
1128 audio_sysctl_multiuser, 0, (void *)sc, 0,
1129 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1130
1131 #if defined(AUDIO_DEBUG)
1132 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1133 CTLFLAG_READWRITE,
1134 CTLTYPE_INT, "debug",
1135 SYSCTL_DESCR("debug level (0..4)"),
1136 audio_sysctl_debug, 0, (void *)sc, 0,
1137 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1138 #endif
1139 }
1140
1141 #ifdef AUDIO_PM_IDLE
1142 callout_init(&sc->sc_idle_counter, 0);
1143 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1144 #endif
1145
1146 if (!pmf_device_register(self, audio_suspend, audio_resume))
1147 aprint_error_dev(self, "couldn't establish power handler\n");
1148 #ifdef AUDIO_PM_IDLE
1149 if (!device_active_register(self, audio_activity))
1150 aprint_error_dev(self, "couldn't register activity handler\n");
1151 #endif
1152
1153 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1154 audio_volume_down, true))
1155 aprint_error_dev(self, "couldn't add volume down handler\n");
1156 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1157 audio_volume_up, true))
1158 aprint_error_dev(self, "couldn't add volume up handler\n");
1159 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1160 audio_volume_toggle, true))
1161 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1162
1163 #ifdef AUDIO_PM_IDLE
1164 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1165 #endif
1166
1167 #if defined(AUDIO_DEBUG)
1168 audio_mlog_init();
1169 #endif
1170
1171 audiorescan(self, NULL, NULL);
1172 sc->sc_exlock = 0;
1173 return;
1174
1175 bad:
1176 /* Clearing hw_if means that device is attached but disabled. */
1177 sc->hw_if = NULL;
1178 sc->sc_exlock = 0;
1179 aprint_error_dev(sc->sc_dev, "disabled\n");
1180 return;
1181 }
1182
1183 /*
1184 * Initialize hardware mixer.
1185 * This function is called from audioattach().
1186 */
1187 static void
1188 mixer_init(struct audio_softc *sc)
1189 {
1190 mixer_devinfo_t mi;
1191 int iclass, mclass, oclass, rclass;
1192 int record_master_found, record_source_found;
1193
1194 iclass = mclass = oclass = rclass = -1;
1195 sc->sc_inports.index = -1;
1196 sc->sc_inports.master = -1;
1197 sc->sc_inports.nports = 0;
1198 sc->sc_inports.isenum = false;
1199 sc->sc_inports.allports = 0;
1200 sc->sc_inports.isdual = false;
1201 sc->sc_inports.mixerout = -1;
1202 sc->sc_inports.cur_port = -1;
1203 sc->sc_outports.index = -1;
1204 sc->sc_outports.master = -1;
1205 sc->sc_outports.nports = 0;
1206 sc->sc_outports.isenum = false;
1207 sc->sc_outports.allports = 0;
1208 sc->sc_outports.isdual = false;
1209 sc->sc_outports.mixerout = -1;
1210 sc->sc_outports.cur_port = -1;
1211 sc->sc_monitor_port = -1;
1212 /*
1213 * Read through the underlying driver's list, picking out the class
1214 * names from the mixer descriptions. We'll need them to decode the
1215 * mixer descriptions on the next pass through the loop.
1216 */
1217 mutex_enter(sc->sc_lock);
1218 for(mi.index = 0; ; mi.index++) {
1219 if (audio_query_devinfo(sc, &mi) != 0)
1220 break;
1221 /*
1222 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1223 * All the other types describe an actual mixer.
1224 */
1225 if (mi.type == AUDIO_MIXER_CLASS) {
1226 if (strcmp(mi.label.name, AudioCinputs) == 0)
1227 iclass = mi.mixer_class;
1228 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1229 mclass = mi.mixer_class;
1230 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1231 oclass = mi.mixer_class;
1232 if (strcmp(mi.label.name, AudioCrecord) == 0)
1233 rclass = mi.mixer_class;
1234 }
1235 }
1236 mutex_exit(sc->sc_lock);
1237
1238 /* Allocate save area. Ensure non-zero allocation. */
1239 sc->sc_nmixer_states = mi.index;
1240 sc->sc_mixer_state = kmem_zalloc(sizeof(sc->sc_mixer_state[0]) *
1241 (sc->sc_nmixer_states + 1), KM_SLEEP);
1242
1243 /*
1244 * This is where we assign each control in the "audio" model, to the
1245 * underlying "mixer" control. We walk through the whole list once,
1246 * assigning likely candidates as we come across them.
1247 */
1248 record_master_found = 0;
1249 record_source_found = 0;
1250 mutex_enter(sc->sc_lock);
1251 for(mi.index = 0; ; mi.index++) {
1252 if (audio_query_devinfo(sc, &mi) != 0)
1253 break;
1254 KASSERT(mi.index < sc->sc_nmixer_states);
1255 if (mi.type == AUDIO_MIXER_CLASS)
1256 continue;
1257 if (mi.mixer_class == iclass) {
1258 /*
1259 * AudioCinputs is only a fallback, when we don't
1260 * find what we're looking for in AudioCrecord, so
1261 * check the flags before accepting one of these.
1262 */
1263 if (strcmp(mi.label.name, AudioNmaster) == 0
1264 && record_master_found == 0)
1265 sc->sc_inports.master = mi.index;
1266 if (strcmp(mi.label.name, AudioNsource) == 0
1267 && record_source_found == 0) {
1268 if (mi.type == AUDIO_MIXER_ENUM) {
1269 int i;
1270 for(i = 0; i < mi.un.e.num_mem; i++)
1271 if (strcmp(mi.un.e.member[i].label.name,
1272 AudioNmixerout) == 0)
1273 sc->sc_inports.mixerout =
1274 mi.un.e.member[i].ord;
1275 }
1276 au_setup_ports(sc, &sc->sc_inports, &mi,
1277 itable);
1278 }
1279 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1280 sc->sc_outports.master == -1)
1281 sc->sc_outports.master = mi.index;
1282 } else if (mi.mixer_class == mclass) {
1283 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1284 sc->sc_monitor_port = mi.index;
1285 } else if (mi.mixer_class == oclass) {
1286 if (strcmp(mi.label.name, AudioNmaster) == 0)
1287 sc->sc_outports.master = mi.index;
1288 if (strcmp(mi.label.name, AudioNselect) == 0)
1289 au_setup_ports(sc, &sc->sc_outports, &mi,
1290 otable);
1291 } else if (mi.mixer_class == rclass) {
1292 /*
1293 * These are the preferred mixers for the audio record
1294 * controls, so set the flags here, but don't check.
1295 */
1296 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1297 sc->sc_inports.master = mi.index;
1298 record_master_found = 1;
1299 }
1300 #if 1 /* Deprecated. Use AudioNmaster. */
1301 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1302 sc->sc_inports.master = mi.index;
1303 record_master_found = 1;
1304 }
1305 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1306 sc->sc_inports.master = mi.index;
1307 record_master_found = 1;
1308 }
1309 #endif
1310 if (strcmp(mi.label.name, AudioNsource) == 0) {
1311 if (mi.type == AUDIO_MIXER_ENUM) {
1312 int i;
1313 for(i = 0; i < mi.un.e.num_mem; i++)
1314 if (strcmp(mi.un.e.member[i].label.name,
1315 AudioNmixerout) == 0)
1316 sc->sc_inports.mixerout =
1317 mi.un.e.member[i].ord;
1318 }
1319 au_setup_ports(sc, &sc->sc_inports, &mi,
1320 itable);
1321 record_source_found = 1;
1322 }
1323 }
1324 }
1325 mutex_exit(sc->sc_lock);
1326 }
1327
1328 static int
1329 audioactivate(device_t self, enum devact act)
1330 {
1331 struct audio_softc *sc = device_private(self);
1332
1333 switch (act) {
1334 case DVACT_DEACTIVATE:
1335 mutex_enter(sc->sc_lock);
1336 sc->sc_dying = true;
1337 cv_broadcast(&sc->sc_exlockcv);
1338 mutex_exit(sc->sc_lock);
1339 return 0;
1340 default:
1341 return EOPNOTSUPP;
1342 }
1343 }
1344
1345 static int
1346 audiodetach(device_t self, int flags)
1347 {
1348 struct audio_softc *sc;
1349 struct audio_file *file;
1350 int maj, mn;
1351 int error;
1352
1353 sc = device_private(self);
1354 TRACE(2, "flags=%d", flags);
1355
1356 /* device is not initialized */
1357 if (sc->hw_if == NULL)
1358 return 0;
1359
1360 /* Start draining existing accessors of the device. */
1361 error = config_detach_children(self, flags);
1362 if (error)
1363 return error;
1364
1365 /*
1366 * Prevent new opens and wait for existing opens to complete.
1367 */
1368 maj = cdevsw_lookup_major(&audio_cdevsw);
1369 mn = device_unit(self);
1370 vdevgone(maj, mn|SOUND_DEVICE, mn|SOUND_DEVICE, VCHR);
1371 vdevgone(maj, mn|AUDIO_DEVICE, mn|AUDIO_DEVICE, VCHR);
1372 vdevgone(maj, mn|AUDIOCTL_DEVICE, mn|AUDIOCTL_DEVICE, VCHR);
1373 vdevgone(maj, mn|MIXER_DEVICE, mn|MIXER_DEVICE, VCHR);
1374
1375 /*
1376 * This waits currently running sysctls to finish if exists.
1377 * After this, no more new sysctls will come.
1378 */
1379 sysctl_teardown(&sc->sc_log);
1380
1381 mutex_enter(sc->sc_lock);
1382 sc->sc_dying = true;
1383 cv_broadcast(&sc->sc_exlockcv);
1384 if (sc->sc_pmixer)
1385 cv_broadcast(&sc->sc_pmixer->outcv);
1386 if (sc->sc_rmixer)
1387 cv_broadcast(&sc->sc_rmixer->outcv);
1388
1389 /* Prevent new users */
1390 SLIST_FOREACH(file, &sc->sc_files, entry) {
1391 atomic_store_relaxed(&file->dying, true);
1392 }
1393 mutex_exit(sc->sc_lock);
1394
1395 /*
1396 * Wait for existing users to drain.
1397 * - pserialize_perform waits for all pserialize_read sections on
1398 * all CPUs; after this, no more new psref_acquire can happen.
1399 * - psref_target_destroy waits for all extant acquired psrefs to
1400 * be psref_released.
1401 */
1402 pserialize_perform(sc->sc_psz);
1403 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1404
1405 /*
1406 * We are now guaranteed that there are no calls to audio fileops
1407 * that hold sc, and any new calls with files that were for sc will
1408 * fail. Thus, we now have exclusive access to the softc.
1409 */
1410 sc->sc_exlock = 1;
1411
1412 /*
1413 * Clean up all open instances.
1414 */
1415 mutex_enter(sc->sc_lock);
1416 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1417 mutex_enter(sc->sc_intr_lock);
1418 SLIST_REMOVE_HEAD(&sc->sc_files, entry);
1419 mutex_exit(sc->sc_intr_lock);
1420 if (file->ptrack || file->rtrack) {
1421 mutex_exit(sc->sc_lock);
1422 audio_unlink(sc, file);
1423 mutex_enter(sc->sc_lock);
1424 }
1425 }
1426 mutex_exit(sc->sc_lock);
1427
1428 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1429 audio_volume_down, true);
1430 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1431 audio_volume_up, true);
1432 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1433 audio_volume_toggle, true);
1434
1435 #ifdef AUDIO_PM_IDLE
1436 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1437
1438 device_active_deregister(self, audio_activity);
1439 #endif
1440
1441 pmf_device_deregister(self);
1442
1443 /* Free resources */
1444 if (sc->sc_pmixer) {
1445 audio_mixer_destroy(sc, sc->sc_pmixer);
1446 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1447 }
1448 if (sc->sc_rmixer) {
1449 audio_mixer_destroy(sc, sc->sc_rmixer);
1450 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1451 }
1452 if (sc->sc_am)
1453 kern_free(sc->sc_am);
1454
1455 seldestroy(&sc->sc_wsel);
1456 seldestroy(&sc->sc_rsel);
1457
1458 #ifdef AUDIO_PM_IDLE
1459 callout_destroy(&sc->sc_idle_counter);
1460 #endif
1461
1462 cv_destroy(&sc->sc_exlockcv);
1463
1464 #if defined(AUDIO_DEBUG)
1465 audio_mlog_free();
1466 #endif
1467
1468 return 0;
1469 }
1470
1471 static void
1472 audiochilddet(device_t self, device_t child)
1473 {
1474
1475 /* we hold no child references, so do nothing */
1476 }
1477
1478 static int
1479 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1480 {
1481
1482 if (config_probe(parent, cf, aux))
1483 config_attach(parent, cf, aux, NULL,
1484 CFARGS_NONE);
1485
1486 return 0;
1487 }
1488
1489 static int
1490 audiorescan(device_t self, const char *ifattr, const int *locators)
1491 {
1492 struct audio_softc *sc = device_private(self);
1493
1494 config_search(sc->sc_dev, NULL,
1495 CFARGS(.search = audiosearch));
1496
1497 return 0;
1498 }
1499
1500 /*
1501 * Called from hardware driver. This is where the MI audio driver gets
1502 * probed/attached to the hardware driver.
1503 */
1504 device_t
1505 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1506 {
1507 struct audio_attach_args arg;
1508
1509 #ifdef DIAGNOSTIC
1510 if (ahwp == NULL) {
1511 aprint_error("audio_attach_mi: NULL\n");
1512 return 0;
1513 }
1514 #endif
1515 arg.type = AUDIODEV_TYPE_AUDIO;
1516 arg.hwif = ahwp;
1517 arg.hdl = hdlp;
1518 return config_found(dev, &arg, audioprint,
1519 CFARGS(.iattr = "audiobus"));
1520 }
1521
1522 /*
1523 * audio_printf() outputs fmt... with the audio device name and MD device
1524 * name prefixed. If the message is considered to be related to the MD
1525 * driver, use this one instead of device_printf().
1526 */
1527 static void
1528 audio_printf(struct audio_softc *sc, const char *fmt, ...)
1529 {
1530 va_list ap;
1531
1532 printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
1533 va_start(ap, fmt);
1534 vprintf(fmt, ap);
1535 va_end(ap);
1536 }
1537
1538 /*
1539 * Enter critical section and also keep sc_lock.
1540 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1541 * Must be called without sc_lock held.
1542 */
1543 static int
1544 audio_exlock_mutex_enter(struct audio_softc *sc)
1545 {
1546 int error;
1547
1548 mutex_enter(sc->sc_lock);
1549 if (sc->sc_dying) {
1550 mutex_exit(sc->sc_lock);
1551 return EIO;
1552 }
1553
1554 while (__predict_false(sc->sc_exlock != 0)) {
1555 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1556 if (sc->sc_dying)
1557 error = EIO;
1558 if (error) {
1559 mutex_exit(sc->sc_lock);
1560 return error;
1561 }
1562 }
1563
1564 /* Acquire */
1565 sc->sc_exlock = 1;
1566 return 0;
1567 }
1568
1569 /*
1570 * Exit critical section and exit sc_lock.
1571 * Must be called with sc_lock held.
1572 */
1573 static void
1574 audio_exlock_mutex_exit(struct audio_softc *sc)
1575 {
1576
1577 KASSERT(mutex_owned(sc->sc_lock));
1578
1579 sc->sc_exlock = 0;
1580 cv_broadcast(&sc->sc_exlockcv);
1581 mutex_exit(sc->sc_lock);
1582 }
1583
1584 /*
1585 * Enter critical section.
1586 * If successful, it returns 0. Otherwise returns errno.
1587 * Must be called without sc_lock held.
1588 * This function returns without sc_lock held.
1589 */
1590 static int
1591 audio_exlock_enter(struct audio_softc *sc)
1592 {
1593 int error;
1594
1595 error = audio_exlock_mutex_enter(sc);
1596 if (error)
1597 return error;
1598 mutex_exit(sc->sc_lock);
1599 return 0;
1600 }
1601
1602 /*
1603 * Exit critical section.
1604 * Must be called without sc_lock held.
1605 */
1606 static void
1607 audio_exlock_exit(struct audio_softc *sc)
1608 {
1609
1610 mutex_enter(sc->sc_lock);
1611 audio_exlock_mutex_exit(sc);
1612 }
1613
1614 /*
1615 * Get sc from file, and increment reference counter for this sc.
1616 * This is intended to be used for methods other than open.
1617 * If successful, returns sc. Otherwise returns NULL.
1618 */
1619 struct audio_softc *
1620 audio_sc_acquire_fromfile(audio_file_t *file, struct psref *refp)
1621 {
1622 int s;
1623 bool dying;
1624
1625 /* Block audiodetach while we acquire a reference */
1626 s = pserialize_read_enter();
1627
1628 /* If close or audiodetach already ran, tough -- no more audio */
1629 dying = atomic_load_relaxed(&file->dying);
1630 if (dying) {
1631 pserialize_read_exit(s);
1632 return NULL;
1633 }
1634
1635 /* Acquire a reference */
1636 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1637
1638 /* Now sc won't go away until we drop the reference count */
1639 pserialize_read_exit(s);
1640
1641 return file->sc;
1642 }
1643
1644 /*
1645 * Decrement reference counter for this sc.
1646 */
1647 void
1648 audio_sc_release(struct audio_softc *sc, struct psref *refp)
1649 {
1650
1651 psref_release(refp, &sc->sc_psref, audio_psref_class);
1652 }
1653
1654 /*
1655 * Wait for I/O to complete, releasing sc_lock.
1656 * Must be called with sc_lock held.
1657 */
1658 static int
1659 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1660 {
1661 int error;
1662
1663 KASSERT(track);
1664 KASSERT(mutex_owned(sc->sc_lock));
1665
1666 /* Wait for pending I/O to complete. */
1667 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1668 mstohz(AUDIO_TIMEOUT));
1669 if (sc->sc_suspending) {
1670 /* If it's about to suspend, ignore timeout error. */
1671 if (error == EWOULDBLOCK) {
1672 TRACET(2, track, "timeout (suspending)");
1673 return 0;
1674 }
1675 }
1676 if (sc->sc_dying) {
1677 error = EIO;
1678 }
1679 if (error) {
1680 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1681 if (error == EWOULDBLOCK)
1682 audio_printf(sc, "device timeout\n");
1683 } else {
1684 TRACET(3, track, "wakeup");
1685 }
1686 return error;
1687 }
1688
1689 /*
1690 * Try to acquire track lock.
1691 * It doesn't block if the track lock is already acquired.
1692 * Returns true if the track lock was acquired, or false if the track
1693 * lock was already acquired.
1694 */
1695 static __inline bool
1696 audio_track_lock_tryenter(audio_track_t *track)
1697 {
1698
1699 if (atomic_swap_uint(&track->lock, 1) != 0)
1700 return false;
1701 membar_acquire();
1702 return true;
1703 }
1704
1705 /*
1706 * Acquire track lock.
1707 */
1708 static __inline void
1709 audio_track_lock_enter(audio_track_t *track)
1710 {
1711
1712 /* Don't sleep here. */
1713 while (audio_track_lock_tryenter(track) == false)
1714 SPINLOCK_BACKOFF_HOOK;
1715 }
1716
1717 /*
1718 * Release track lock.
1719 */
1720 static __inline void
1721 audio_track_lock_exit(audio_track_t *track)
1722 {
1723
1724 atomic_store_release(&track->lock, 0);
1725 }
1726
1727
1728 static int
1729 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1730 {
1731 struct audio_softc *sc;
1732 int error;
1733
1734 /*
1735 * Find the device. Because we wired the cdevsw to the audio
1736 * autoconf instance, the system ensures it will not go away
1737 * until after we return.
1738 */
1739 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1740 if (sc == NULL || sc->hw_if == NULL)
1741 return ENXIO;
1742
1743 error = audio_exlock_enter(sc);
1744 if (error)
1745 return error;
1746
1747 device_active(sc->sc_dev, DVA_SYSTEM);
1748 switch (AUDIODEV(dev)) {
1749 case SOUND_DEVICE:
1750 case AUDIO_DEVICE:
1751 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1752 break;
1753 case AUDIOCTL_DEVICE:
1754 error = audioctl_open(dev, sc, flags, ifmt, l);
1755 break;
1756 case MIXER_DEVICE:
1757 error = mixer_open(dev, sc, flags, ifmt, l);
1758 break;
1759 default:
1760 error = ENXIO;
1761 break;
1762 }
1763 audio_exlock_exit(sc);
1764
1765 return error;
1766 }
1767
1768 static int
1769 audioclose(struct file *fp)
1770 {
1771 struct audio_softc *sc;
1772 struct psref sc_ref;
1773 audio_file_t *file;
1774 int bound;
1775 int error;
1776 dev_t dev;
1777
1778 KASSERT(fp->f_audioctx);
1779 file = fp->f_audioctx;
1780 dev = file->dev;
1781 error = 0;
1782
1783 /*
1784 * audioclose() must
1785 * - unplug track from the trackmixer (and unplug anything from softc),
1786 * if sc exists.
1787 * - free all memory objects, regardless of sc.
1788 */
1789
1790 bound = curlwp_bind();
1791 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1792 if (sc) {
1793 switch (AUDIODEV(dev)) {
1794 case SOUND_DEVICE:
1795 case AUDIO_DEVICE:
1796 error = audio_close(sc, file);
1797 break;
1798 case AUDIOCTL_DEVICE:
1799 mutex_enter(sc->sc_lock);
1800 mutex_enter(sc->sc_intr_lock);
1801 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1802 mutex_exit(sc->sc_intr_lock);
1803 mutex_exit(sc->sc_lock);
1804 error = 0;
1805 break;
1806 case MIXER_DEVICE:
1807 mutex_enter(sc->sc_lock);
1808 mutex_enter(sc->sc_intr_lock);
1809 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1810 mutex_exit(sc->sc_intr_lock);
1811 mutex_exit(sc->sc_lock);
1812 error = mixer_close(sc, file);
1813 break;
1814 default:
1815 error = ENXIO;
1816 break;
1817 }
1818
1819 audio_sc_release(sc, &sc_ref);
1820 }
1821 curlwp_bindx(bound);
1822
1823 /* Free memory objects anyway */
1824 TRACEF(2, file, "free memory");
1825 if (file->ptrack)
1826 audio_track_destroy(file->ptrack);
1827 if (file->rtrack)
1828 audio_track_destroy(file->rtrack);
1829 kmem_free(file, sizeof(*file));
1830 fp->f_audioctx = NULL;
1831
1832 return error;
1833 }
1834
1835 static int
1836 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1837 int ioflag)
1838 {
1839 struct audio_softc *sc;
1840 struct psref sc_ref;
1841 audio_file_t *file;
1842 int bound;
1843 int error;
1844 dev_t dev;
1845
1846 KASSERT(fp->f_audioctx);
1847 file = fp->f_audioctx;
1848 dev = file->dev;
1849
1850 bound = curlwp_bind();
1851 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1852 if (sc == NULL) {
1853 error = EIO;
1854 goto done;
1855 }
1856
1857 if (fp->f_flag & O_NONBLOCK)
1858 ioflag |= IO_NDELAY;
1859
1860 switch (AUDIODEV(dev)) {
1861 case SOUND_DEVICE:
1862 case AUDIO_DEVICE:
1863 error = audio_read(sc, uio, ioflag, file);
1864 break;
1865 case AUDIOCTL_DEVICE:
1866 case MIXER_DEVICE:
1867 error = ENODEV;
1868 break;
1869 default:
1870 error = ENXIO;
1871 break;
1872 }
1873
1874 audio_sc_release(sc, &sc_ref);
1875 done:
1876 curlwp_bindx(bound);
1877 return error;
1878 }
1879
1880 static int
1881 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1882 int ioflag)
1883 {
1884 struct audio_softc *sc;
1885 struct psref sc_ref;
1886 audio_file_t *file;
1887 int bound;
1888 int error;
1889 dev_t dev;
1890
1891 KASSERT(fp->f_audioctx);
1892 file = fp->f_audioctx;
1893 dev = file->dev;
1894
1895 bound = curlwp_bind();
1896 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1897 if (sc == NULL) {
1898 error = EIO;
1899 goto done;
1900 }
1901
1902 if (fp->f_flag & O_NONBLOCK)
1903 ioflag |= IO_NDELAY;
1904
1905 switch (AUDIODEV(dev)) {
1906 case SOUND_DEVICE:
1907 case AUDIO_DEVICE:
1908 error = audio_write(sc, uio, ioflag, file);
1909 break;
1910 case AUDIOCTL_DEVICE:
1911 case MIXER_DEVICE:
1912 error = ENODEV;
1913 break;
1914 default:
1915 error = ENXIO;
1916 break;
1917 }
1918
1919 audio_sc_release(sc, &sc_ref);
1920 done:
1921 curlwp_bindx(bound);
1922 return error;
1923 }
1924
1925 static int
1926 audioioctl(struct file *fp, u_long cmd, void *addr)
1927 {
1928 struct audio_softc *sc;
1929 struct psref sc_ref;
1930 audio_file_t *file;
1931 struct lwp *l = curlwp;
1932 int bound;
1933 int error;
1934 dev_t dev;
1935
1936 KASSERT(fp->f_audioctx);
1937 file = fp->f_audioctx;
1938 dev = file->dev;
1939
1940 bound = curlwp_bind();
1941 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1942 if (sc == NULL) {
1943 error = EIO;
1944 goto done;
1945 }
1946
1947 switch (AUDIODEV(dev)) {
1948 case SOUND_DEVICE:
1949 case AUDIO_DEVICE:
1950 case AUDIOCTL_DEVICE:
1951 mutex_enter(sc->sc_lock);
1952 device_active(sc->sc_dev, DVA_SYSTEM);
1953 mutex_exit(sc->sc_lock);
1954 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1955 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1956 else
1957 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1958 file);
1959 break;
1960 case MIXER_DEVICE:
1961 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1962 break;
1963 default:
1964 error = ENXIO;
1965 break;
1966 }
1967
1968 audio_sc_release(sc, &sc_ref);
1969 done:
1970 curlwp_bindx(bound);
1971 return error;
1972 }
1973
1974 static int
1975 audiostat(struct file *fp, struct stat *st)
1976 {
1977 struct audio_softc *sc;
1978 struct psref sc_ref;
1979 audio_file_t *file;
1980 int bound;
1981 int error;
1982
1983 KASSERT(fp->f_audioctx);
1984 file = fp->f_audioctx;
1985
1986 bound = curlwp_bind();
1987 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1988 if (sc == NULL) {
1989 error = EIO;
1990 goto done;
1991 }
1992
1993 error = 0;
1994 memset(st, 0, sizeof(*st));
1995
1996 st->st_dev = file->dev;
1997 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1998 st->st_gid = kauth_cred_getegid(fp->f_cred);
1999 st->st_mode = S_IFCHR;
2000
2001 audio_sc_release(sc, &sc_ref);
2002 done:
2003 curlwp_bindx(bound);
2004 return error;
2005 }
2006
2007 static int
2008 audiopoll(struct file *fp, int events)
2009 {
2010 struct audio_softc *sc;
2011 struct psref sc_ref;
2012 audio_file_t *file;
2013 struct lwp *l = curlwp;
2014 int bound;
2015 int revents;
2016 dev_t dev;
2017
2018 KASSERT(fp->f_audioctx);
2019 file = fp->f_audioctx;
2020 dev = file->dev;
2021
2022 bound = curlwp_bind();
2023 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2024 if (sc == NULL) {
2025 revents = POLLERR;
2026 goto done;
2027 }
2028
2029 switch (AUDIODEV(dev)) {
2030 case SOUND_DEVICE:
2031 case AUDIO_DEVICE:
2032 revents = audio_poll(sc, events, l, file);
2033 break;
2034 case AUDIOCTL_DEVICE:
2035 case MIXER_DEVICE:
2036 revents = 0;
2037 break;
2038 default:
2039 revents = POLLERR;
2040 break;
2041 }
2042
2043 audio_sc_release(sc, &sc_ref);
2044 done:
2045 curlwp_bindx(bound);
2046 return revents;
2047 }
2048
2049 static int
2050 audiokqfilter(struct file *fp, struct knote *kn)
2051 {
2052 struct audio_softc *sc;
2053 struct psref sc_ref;
2054 audio_file_t *file;
2055 dev_t dev;
2056 int bound;
2057 int error;
2058
2059 KASSERT(fp->f_audioctx);
2060 file = fp->f_audioctx;
2061 dev = file->dev;
2062
2063 bound = curlwp_bind();
2064 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2065 if (sc == NULL) {
2066 error = EIO;
2067 goto done;
2068 }
2069
2070 switch (AUDIODEV(dev)) {
2071 case SOUND_DEVICE:
2072 case AUDIO_DEVICE:
2073 error = audio_kqfilter(sc, file, kn);
2074 break;
2075 case AUDIOCTL_DEVICE:
2076 case MIXER_DEVICE:
2077 error = ENODEV;
2078 break;
2079 default:
2080 error = ENXIO;
2081 break;
2082 }
2083
2084 audio_sc_release(sc, &sc_ref);
2085 done:
2086 curlwp_bindx(bound);
2087 return error;
2088 }
2089
2090 static int
2091 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
2092 int *advicep, struct uvm_object **uobjp, int *maxprotp)
2093 {
2094 struct audio_softc *sc;
2095 struct psref sc_ref;
2096 audio_file_t *file;
2097 dev_t dev;
2098 int bound;
2099 int error;
2100
2101 KASSERT(len > 0);
2102
2103 KASSERT(fp->f_audioctx);
2104 file = fp->f_audioctx;
2105 dev = file->dev;
2106
2107 bound = curlwp_bind();
2108 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2109 if (sc == NULL) {
2110 error = EIO;
2111 goto done;
2112 }
2113
2114 mutex_enter(sc->sc_lock);
2115 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
2116 mutex_exit(sc->sc_lock);
2117
2118 switch (AUDIODEV(dev)) {
2119 case SOUND_DEVICE:
2120 case AUDIO_DEVICE:
2121 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
2122 uobjp, maxprotp, file);
2123 break;
2124 case AUDIOCTL_DEVICE:
2125 case MIXER_DEVICE:
2126 default:
2127 error = ENOTSUP;
2128 break;
2129 }
2130
2131 audio_sc_release(sc, &sc_ref);
2132 done:
2133 curlwp_bindx(bound);
2134 return error;
2135 }
2136
2137
2138 /* Exported interfaces for audiobell. */
2139
2140 /*
2141 * Open for audiobell.
2142 * It stores allocated file to *filep.
2143 * If successful returns 0, otherwise errno.
2144 */
2145 int
2146 audiobellopen(dev_t dev, audio_file_t **filep)
2147 {
2148 device_t audiodev = NULL;
2149 struct audio_softc *sc;
2150 bool exlock = false;
2151 int error;
2152
2153 /*
2154 * Find the autoconf instance and make sure it doesn't go away
2155 * while we are opening it.
2156 */
2157 audiodev = device_lookup_acquire(&audio_cd, AUDIOUNIT(dev));
2158 if (audiodev == NULL) {
2159 error = ENXIO;
2160 goto out;
2161 }
2162
2163 /* If attach failed, it's hopeless -- give up. */
2164 sc = device_private(audiodev);
2165 if (sc->hw_if == NULL) {
2166 error = ENXIO;
2167 goto out;
2168 }
2169
2170 /* Take the exclusive configuration lock. */
2171 error = audio_exlock_enter(sc);
2172 if (error)
2173 goto out;
2174 exlock = true;
2175
2176 /* Open the audio device. */
2177 device_active(sc->sc_dev, DVA_SYSTEM);
2178 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
2179
2180 out: if (exlock)
2181 audio_exlock_exit(sc);
2182 if (audiodev)
2183 device_release(audiodev);
2184 return error;
2185 }
2186
2187 /* Close for audiobell */
2188 int
2189 audiobellclose(audio_file_t *file)
2190 {
2191 struct audio_softc *sc;
2192 struct psref sc_ref;
2193 int bound;
2194 int error;
2195
2196 error = 0;
2197 /*
2198 * audiobellclose() must
2199 * - unplug track from the trackmixer if sc exist.
2200 * - free all memory objects, regardless of sc.
2201 */
2202 bound = curlwp_bind();
2203 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2204 if (sc) {
2205 error = audio_close(sc, file);
2206 audio_sc_release(sc, &sc_ref);
2207 }
2208 curlwp_bindx(bound);
2209
2210 /* Free memory objects anyway */
2211 KASSERT(file->ptrack);
2212 audio_track_destroy(file->ptrack);
2213 KASSERT(file->rtrack == NULL);
2214 kmem_free(file, sizeof(*file));
2215 return error;
2216 }
2217
2218 /* Set sample rate for audiobell */
2219 int
2220 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2221 {
2222 struct audio_softc *sc;
2223 struct psref sc_ref;
2224 struct audio_info ai;
2225 int bound;
2226 int error;
2227
2228 bound = curlwp_bind();
2229 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2230 if (sc == NULL) {
2231 error = EIO;
2232 goto done1;
2233 }
2234
2235 AUDIO_INITINFO(&ai);
2236 ai.play.sample_rate = sample_rate;
2237
2238 error = audio_exlock_enter(sc);
2239 if (error)
2240 goto done2;
2241 error = audio_file_setinfo(sc, file, &ai);
2242 audio_exlock_exit(sc);
2243
2244 done2:
2245 audio_sc_release(sc, &sc_ref);
2246 done1:
2247 curlwp_bindx(bound);
2248 return error;
2249 }
2250
2251 /* Playback for audiobell */
2252 int
2253 audiobellwrite(audio_file_t *file, struct uio *uio)
2254 {
2255 struct audio_softc *sc;
2256 struct psref sc_ref;
2257 int bound;
2258 int error;
2259
2260 bound = curlwp_bind();
2261 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2262 if (sc == NULL) {
2263 error = EIO;
2264 goto done;
2265 }
2266
2267 error = audio_write(sc, uio, 0, file);
2268
2269 audio_sc_release(sc, &sc_ref);
2270 done:
2271 curlwp_bindx(bound);
2272 return error;
2273 }
2274
2275
2276 /*
2277 * Audio driver
2278 */
2279
2280 /*
2281 * Must be called with sc_exlock held and without sc_lock held.
2282 */
2283 int
2284 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2285 struct lwp *l, audio_file_t **bellfile)
2286 {
2287 struct audio_info ai;
2288 struct file *fp;
2289 audio_file_t *af;
2290 audio_ring_t *hwbuf;
2291 bool fullduplex;
2292 bool cred_held;
2293 bool hw_opened;
2294 bool rmixer_started;
2295 bool inserted;
2296 int fd;
2297 int error;
2298
2299 KASSERT(sc->sc_exlock);
2300
2301 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2302 (audiodebug >= 3) ? "start " : "",
2303 ISDEVSOUND(dev) ? "sound" : "audio",
2304 flags, sc->sc_popens, sc->sc_ropens);
2305
2306 fp = NULL;
2307 cred_held = false;
2308 hw_opened = false;
2309 rmixer_started = false;
2310 inserted = false;
2311
2312 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
2313 af->sc = sc;
2314 af->dev = dev;
2315 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2316 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2317 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2318 af->mode |= AUMODE_RECORD;
2319 if (af->mode == 0) {
2320 error = ENXIO;
2321 goto bad;
2322 }
2323
2324 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2325
2326 /*
2327 * On half duplex hardware,
2328 * 1. if mode is (PLAY | REC), let mode PLAY.
2329 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2330 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2331 */
2332 if (fullduplex == false) {
2333 if ((af->mode & AUMODE_PLAY)) {
2334 if (sc->sc_ropens != 0) {
2335 TRACE(1, "record track already exists");
2336 error = ENODEV;
2337 goto bad;
2338 }
2339 /* Play takes precedence */
2340 af->mode &= ~AUMODE_RECORD;
2341 }
2342 if ((af->mode & AUMODE_RECORD)) {
2343 if (sc->sc_popens != 0) {
2344 TRACE(1, "play track already exists");
2345 error = ENODEV;
2346 goto bad;
2347 }
2348 }
2349 }
2350
2351 /* Create tracks */
2352 if ((af->mode & AUMODE_PLAY))
2353 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2354 if ((af->mode & AUMODE_RECORD))
2355 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2356
2357 /* Set parameters */
2358 AUDIO_INITINFO(&ai);
2359 if (bellfile) {
2360 /* If audiobell, only sample_rate will be set later. */
2361 ai.play.sample_rate = audio_default.sample_rate;
2362 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2363 ai.play.channels = 1;
2364 ai.play.precision = 16;
2365 ai.play.pause = 0;
2366 } else if (ISDEVAUDIO(dev)) {
2367 /* If /dev/audio, initialize everytime. */
2368 ai.play.sample_rate = audio_default.sample_rate;
2369 ai.play.encoding = audio_default.encoding;
2370 ai.play.channels = audio_default.channels;
2371 ai.play.precision = audio_default.precision;
2372 ai.play.pause = 0;
2373 ai.record.sample_rate = audio_default.sample_rate;
2374 ai.record.encoding = audio_default.encoding;
2375 ai.record.channels = audio_default.channels;
2376 ai.record.precision = audio_default.precision;
2377 ai.record.pause = 0;
2378 } else {
2379 /* If /dev/sound, take over the previous parameters. */
2380 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2381 ai.play.encoding = sc->sc_sound_pparams.encoding;
2382 ai.play.channels = sc->sc_sound_pparams.channels;
2383 ai.play.precision = sc->sc_sound_pparams.precision;
2384 ai.play.pause = sc->sc_sound_ppause;
2385 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2386 ai.record.encoding = sc->sc_sound_rparams.encoding;
2387 ai.record.channels = sc->sc_sound_rparams.channels;
2388 ai.record.precision = sc->sc_sound_rparams.precision;
2389 ai.record.pause = sc->sc_sound_rpause;
2390 }
2391 error = audio_file_setinfo(sc, af, &ai);
2392 if (error)
2393 goto bad;
2394
2395 if (sc->sc_popens + sc->sc_ropens == 0) {
2396 /* First open */
2397
2398 sc->sc_cred = kauth_cred_get();
2399 kauth_cred_hold(sc->sc_cred);
2400 cred_held = true;
2401
2402 if (sc->hw_if->open) {
2403 int hwflags;
2404
2405 /*
2406 * Call hw_if->open() only at first open of
2407 * combination of playback and recording.
2408 * On full duplex hardware, the flags passed to
2409 * hw_if->open() is always (FREAD | FWRITE)
2410 * regardless of this open()'s flags.
2411 * see also dev/isa/aria.c
2412 * On half duplex hardware, the flags passed to
2413 * hw_if->open() is either FREAD or FWRITE.
2414 * see also arch/evbarm/mini2440/audio_mini2440.c
2415 */
2416 if (fullduplex) {
2417 hwflags = FREAD | FWRITE;
2418 } else {
2419 /* Construct hwflags from af->mode. */
2420 hwflags = 0;
2421 if ((af->mode & AUMODE_PLAY) != 0)
2422 hwflags |= FWRITE;
2423 if ((af->mode & AUMODE_RECORD) != 0)
2424 hwflags |= FREAD;
2425 }
2426
2427 mutex_enter(sc->sc_lock);
2428 mutex_enter(sc->sc_intr_lock);
2429 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2430 mutex_exit(sc->sc_intr_lock);
2431 mutex_exit(sc->sc_lock);
2432 if (error)
2433 goto bad;
2434 }
2435 /*
2436 * Regardless of whether we called hw_if->open (whether
2437 * hw_if->open exists) or not, we move to the Opened phase
2438 * here. Therefore from this point, we have to call
2439 * hw_if->close (if exists) whenever abort.
2440 * Note that both of hw_if->{open,close} are optional.
2441 */
2442 hw_opened = true;
2443
2444 /*
2445 * Set speaker mode when a half duplex.
2446 * XXX I'm not sure this is correct.
2447 */
2448 if (1/*XXX*/) {
2449 if (sc->hw_if->speaker_ctl) {
2450 int on;
2451 if (af->ptrack) {
2452 on = 1;
2453 } else {
2454 on = 0;
2455 }
2456 mutex_enter(sc->sc_lock);
2457 mutex_enter(sc->sc_intr_lock);
2458 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2459 mutex_exit(sc->sc_intr_lock);
2460 mutex_exit(sc->sc_lock);
2461 if (error)
2462 goto bad;
2463 }
2464 }
2465 } else if (sc->sc_multiuser == false) {
2466 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2467 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2468 error = EPERM;
2469 goto bad;
2470 }
2471 }
2472
2473 /* Call init_output if this is the first playback open. */
2474 if (af->ptrack && sc->sc_popens == 0) {
2475 if (sc->hw_if->init_output) {
2476 hwbuf = &sc->sc_pmixer->hwbuf;
2477 mutex_enter(sc->sc_lock);
2478 mutex_enter(sc->sc_intr_lock);
2479 error = sc->hw_if->init_output(sc->hw_hdl,
2480 hwbuf->mem,
2481 hwbuf->capacity *
2482 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2483 mutex_exit(sc->sc_intr_lock);
2484 mutex_exit(sc->sc_lock);
2485 if (error)
2486 goto bad;
2487 }
2488 }
2489 /*
2490 * Call init_input and start rmixer, if this is the first recording
2491 * open. See pause consideration notes.
2492 */
2493 if (af->rtrack && sc->sc_ropens == 0) {
2494 if (sc->hw_if->init_input) {
2495 hwbuf = &sc->sc_rmixer->hwbuf;
2496 mutex_enter(sc->sc_lock);
2497 mutex_enter(sc->sc_intr_lock);
2498 error = sc->hw_if->init_input(sc->hw_hdl,
2499 hwbuf->mem,
2500 hwbuf->capacity *
2501 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2502 mutex_exit(sc->sc_intr_lock);
2503 mutex_exit(sc->sc_lock);
2504 if (error)
2505 goto bad;
2506 }
2507
2508 mutex_enter(sc->sc_lock);
2509 audio_rmixer_start(sc);
2510 mutex_exit(sc->sc_lock);
2511 rmixer_started = true;
2512 }
2513
2514 /*
2515 * This is the last sc_lock section in the function, so we have to
2516 * examine sc_dying again before starting the rest tasks. Because
2517 * audiodeatch() may have been invoked (and it would set sc_dying)
2518 * from the time audioopen() was executed until now. If it happens,
2519 * audiodetach() may already have set file->dying for all sc_files
2520 * that exist at that point, so that audioopen() must abort without
2521 * inserting af to sc_files, in order to keep consistency.
2522 */
2523 mutex_enter(sc->sc_lock);
2524 if (sc->sc_dying) {
2525 mutex_exit(sc->sc_lock);
2526 error = ENXIO;
2527 goto bad;
2528 }
2529
2530 /* Count up finally */
2531 if (af->ptrack)
2532 sc->sc_popens++;
2533 if (af->rtrack)
2534 sc->sc_ropens++;
2535 mutex_enter(sc->sc_intr_lock);
2536 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2537 mutex_exit(sc->sc_intr_lock);
2538 mutex_exit(sc->sc_lock);
2539 inserted = true;
2540
2541 if (bellfile) {
2542 *bellfile = af;
2543 } else {
2544 error = fd_allocfile(&fp, &fd);
2545 if (error)
2546 goto bad;
2547
2548 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2549 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2550 }
2551
2552 /* Be nothing else after fd_clone */
2553
2554 TRACEF(3, af, "done");
2555 return error;
2556
2557 bad:
2558 if (inserted) {
2559 mutex_enter(sc->sc_lock);
2560 mutex_enter(sc->sc_intr_lock);
2561 SLIST_REMOVE(&sc->sc_files, af, audio_file, entry);
2562 mutex_exit(sc->sc_intr_lock);
2563 if (af->ptrack)
2564 sc->sc_popens--;
2565 if (af->rtrack)
2566 sc->sc_ropens--;
2567 mutex_exit(sc->sc_lock);
2568 }
2569
2570 if (rmixer_started) {
2571 mutex_enter(sc->sc_lock);
2572 audio_rmixer_halt(sc);
2573 mutex_exit(sc->sc_lock);
2574 }
2575
2576 if (hw_opened) {
2577 if (sc->hw_if->close) {
2578 mutex_enter(sc->sc_lock);
2579 mutex_enter(sc->sc_intr_lock);
2580 sc->hw_if->close(sc->hw_hdl);
2581 mutex_exit(sc->sc_intr_lock);
2582 mutex_exit(sc->sc_lock);
2583 }
2584 }
2585 if (cred_held) {
2586 kauth_cred_free(sc->sc_cred);
2587 }
2588
2589 /*
2590 * Since track here is not yet linked to sc_files,
2591 * you can call track_destroy() without sc_intr_lock.
2592 */
2593 if (af->rtrack) {
2594 audio_track_destroy(af->rtrack);
2595 af->rtrack = NULL;
2596 }
2597 if (af->ptrack) {
2598 audio_track_destroy(af->ptrack);
2599 af->ptrack = NULL;
2600 }
2601
2602 kmem_free(af, sizeof(*af));
2603 return error;
2604 }
2605
2606 /*
2607 * Must be called without sc_lock nor sc_exlock held.
2608 */
2609 int
2610 audio_close(struct audio_softc *sc, audio_file_t *file)
2611 {
2612 int error;
2613
2614 /*
2615 * Drain first.
2616 * It must be done before unlinking(acquiring exlock).
2617 */
2618 if (file->ptrack) {
2619 mutex_enter(sc->sc_lock);
2620 audio_track_drain(sc, file->ptrack);
2621 mutex_exit(sc->sc_lock);
2622 }
2623
2624 mutex_enter(sc->sc_lock);
2625 mutex_enter(sc->sc_intr_lock);
2626 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2627 mutex_exit(sc->sc_intr_lock);
2628 mutex_exit(sc->sc_lock);
2629
2630 error = audio_exlock_enter(sc);
2631 if (error) {
2632 /*
2633 * If EIO, this sc is about to detach. In this case, even if
2634 * we don't do subsequent _unlink(), audiodetach() will do it.
2635 */
2636 if (error == EIO)
2637 return error;
2638
2639 /* XXX This should not happen but what should I do ? */
2640 panic("%s: can't acquire exlock: errno=%d", __func__, error);
2641 }
2642 audio_unlink(sc, file);
2643 audio_exlock_exit(sc);
2644
2645 return 0;
2646 }
2647
2648 /*
2649 * Unlink this file, but not freeing memory here.
2650 * Must be called with sc_exlock held and without sc_lock held.
2651 */
2652 static void
2653 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2654 {
2655 kauth_cred_t cred = NULL;
2656 int error;
2657
2658 mutex_enter(sc->sc_lock);
2659
2660 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2661 (audiodebug >= 3) ? "start " : "",
2662 (int)curproc->p_pid, (int)curlwp->l_lid,
2663 sc->sc_popens, sc->sc_ropens);
2664 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2665 "sc->sc_popens=%d, sc->sc_ropens=%d",
2666 sc->sc_popens, sc->sc_ropens);
2667
2668 device_active(sc->sc_dev, DVA_SYSTEM);
2669
2670 if (file->ptrack) {
2671 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2672 file->ptrack->dropframes);
2673
2674 KASSERT(sc->sc_popens > 0);
2675 sc->sc_popens--;
2676
2677 /* Call hw halt_output if this is the last playback track. */
2678 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2679 error = audio_pmixer_halt(sc);
2680 if (error) {
2681 audio_printf(sc,
2682 "halt_output failed: errno=%d (ignored)\n",
2683 error);
2684 }
2685 }
2686
2687 /* Restore mixing volume if all tracks are gone. */
2688 if (sc->sc_popens == 0) {
2689 /* intr_lock is not necessary, but just manners. */
2690 mutex_enter(sc->sc_intr_lock);
2691 sc->sc_pmixer->volume = 256;
2692 sc->sc_pmixer->voltimer = 0;
2693 mutex_exit(sc->sc_intr_lock);
2694 }
2695 }
2696 if (file->rtrack) {
2697 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2698 file->rtrack->dropframes);
2699
2700 KASSERT(sc->sc_ropens > 0);
2701 sc->sc_ropens--;
2702
2703 /* Call hw halt_input if this is the last recording track. */
2704 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2705 error = audio_rmixer_halt(sc);
2706 if (error) {
2707 audio_printf(sc,
2708 "halt_input failed: errno=%d (ignored)\n",
2709 error);
2710 }
2711 }
2712
2713 }
2714
2715 /* Call hw close if this is the last track. */
2716 if (sc->sc_popens + sc->sc_ropens == 0) {
2717 if (sc->hw_if->close) {
2718 TRACE(2, "hw_if close");
2719 mutex_enter(sc->sc_intr_lock);
2720 sc->hw_if->close(sc->hw_hdl);
2721 mutex_exit(sc->sc_intr_lock);
2722 }
2723 cred = sc->sc_cred;
2724 sc->sc_cred = NULL;
2725 }
2726
2727 mutex_exit(sc->sc_lock);
2728 if (cred)
2729 kauth_cred_free(cred);
2730
2731 TRACE(3, "done");
2732 }
2733
2734 /*
2735 * Must be called without sc_lock nor sc_exlock held.
2736 */
2737 int
2738 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2739 audio_file_t *file)
2740 {
2741 audio_track_t *track;
2742 audio_ring_t *usrbuf;
2743 audio_ring_t *input;
2744 int error;
2745
2746 /*
2747 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2748 * However read() system call itself can be called because it's
2749 * opened with O_RDWR. So in this case, deny this read().
2750 */
2751 track = file->rtrack;
2752 if (track == NULL) {
2753 return EBADF;
2754 }
2755
2756 /* I think it's better than EINVAL. */
2757 if (track->mmapped)
2758 return EPERM;
2759
2760 TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2761
2762 #ifdef AUDIO_PM_IDLE
2763 error = audio_exlock_mutex_enter(sc);
2764 if (error)
2765 return error;
2766
2767 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2768 device_active(&sc->sc_dev, DVA_SYSTEM);
2769
2770 /* In recording, unlike playback, read() never operates rmixer. */
2771
2772 audio_exlock_mutex_exit(sc);
2773 #endif
2774
2775 usrbuf = &track->usrbuf;
2776 input = track->input;
2777 error = 0;
2778
2779 while (uio->uio_resid > 0 && error == 0) {
2780 int bytes;
2781
2782 TRACET(3, track,
2783 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/C%d",
2784 uio->uio_resid,
2785 input->head, input->used, input->capacity,
2786 usrbuf->head, usrbuf->used, usrbuf->capacity);
2787
2788 /* Wait when buffers are empty. */
2789 mutex_enter(sc->sc_lock);
2790 for (;;) {
2791 bool empty;
2792 audio_track_lock_enter(track);
2793 empty = (input->used == 0 && usrbuf->used == 0);
2794 audio_track_lock_exit(track);
2795 if (!empty)
2796 break;
2797
2798 if ((ioflag & IO_NDELAY)) {
2799 mutex_exit(sc->sc_lock);
2800 return EWOULDBLOCK;
2801 }
2802
2803 TRACET(3, track, "sleep");
2804 error = audio_track_waitio(sc, track);
2805 if (error) {
2806 mutex_exit(sc->sc_lock);
2807 return error;
2808 }
2809 }
2810 mutex_exit(sc->sc_lock);
2811
2812 audio_track_lock_enter(track);
2813 /* Convert one block if possible. */
2814 if (usrbuf->used == 0 && input->used > 0) {
2815 audio_track_record(track);
2816 }
2817
2818 /* uiomove from usrbuf as many bytes as possible. */
2819 bytes = uimin(usrbuf->used, uio->uio_resid);
2820 error = uiomove((uint8_t *)usrbuf->mem + usrbuf->head, bytes,
2821 uio);
2822 if (error) {
2823 audio_track_lock_exit(track);
2824 device_printf(sc->sc_dev,
2825 "%s: uiomove(%d) failed: errno=%d\n",
2826 __func__, bytes, error);
2827 goto abort;
2828 }
2829 auring_take(usrbuf, bytes);
2830 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2831 bytes,
2832 usrbuf->head, usrbuf->used, usrbuf->capacity);
2833
2834 audio_track_lock_exit(track);
2835 }
2836
2837 abort:
2838 return error;
2839 }
2840
2841
2842 /*
2843 * Clear file's playback and/or record track buffer immediately.
2844 */
2845 static void
2846 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2847 {
2848
2849 if (file->ptrack)
2850 audio_track_clear(sc, file->ptrack);
2851 if (file->rtrack)
2852 audio_track_clear(sc, file->rtrack);
2853 }
2854
2855 /*
2856 * Must be called without sc_lock nor sc_exlock held.
2857 */
2858 int
2859 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2860 audio_file_t *file)
2861 {
2862 audio_track_t *track;
2863 audio_ring_t *usrbuf;
2864 audio_ring_t *outbuf;
2865 int error;
2866
2867 track = file->ptrack;
2868 if (track == NULL)
2869 return EPERM;
2870
2871 /* I think it's better than EINVAL. */
2872 if (track->mmapped)
2873 return EPERM;
2874
2875 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2876 audiodebug >= 3 ? "begin " : "",
2877 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2878
2879 if (uio->uio_resid == 0) {
2880 track->eofcounter++;
2881 return 0;
2882 }
2883
2884 error = audio_exlock_mutex_enter(sc);
2885 if (error)
2886 return error;
2887
2888 #ifdef AUDIO_PM_IDLE
2889 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2890 device_active(&sc->sc_dev, DVA_SYSTEM);
2891 #endif
2892
2893 /*
2894 * The first write starts pmixer.
2895 */
2896 if (sc->sc_pbusy == false)
2897 audio_pmixer_start(sc, false);
2898 audio_exlock_mutex_exit(sc);
2899
2900 usrbuf = &track->usrbuf;
2901 outbuf = &track->outbuf;
2902 track->pstate = AUDIO_STATE_RUNNING;
2903 error = 0;
2904
2905 while (uio->uio_resid > 0 && error == 0) {
2906 int bytes;
2907
2908 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2909 uio->uio_resid,
2910 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2911
2912 /* Wait when buffers are full. */
2913 mutex_enter(sc->sc_lock);
2914 for (;;) {
2915 bool full;
2916 audio_track_lock_enter(track);
2917 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2918 outbuf->used >= outbuf->capacity);
2919 audio_track_lock_exit(track);
2920 if (!full)
2921 break;
2922
2923 if ((ioflag & IO_NDELAY)) {
2924 error = EWOULDBLOCK;
2925 mutex_exit(sc->sc_lock);
2926 goto abort;
2927 }
2928
2929 TRACET(3, track, "sleep usrbuf=%d/H%d",
2930 usrbuf->used, track->usrbuf_usedhigh);
2931 error = audio_track_waitio(sc, track);
2932 if (error) {
2933 mutex_exit(sc->sc_lock);
2934 goto abort;
2935 }
2936 }
2937 mutex_exit(sc->sc_lock);
2938
2939 audio_track_lock_enter(track);
2940
2941 /* uiomove to usrbuf as many bytes as possible. */
2942 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2943 uio->uio_resid);
2944 while (bytes > 0) {
2945 int tail = auring_tail(usrbuf);
2946 int len = uimin(bytes, usrbuf->capacity - tail);
2947 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2948 uio);
2949 if (error) {
2950 audio_track_lock_exit(track);
2951 device_printf(sc->sc_dev,
2952 "%s: uiomove(%d) failed: errno=%d\n",
2953 __func__, len, error);
2954 goto abort;
2955 }
2956 auring_push(usrbuf, len);
2957 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2958 len,
2959 usrbuf->head, usrbuf->used, usrbuf->capacity);
2960 bytes -= len;
2961 }
2962
2963 /* Convert them as many blocks as possible. */
2964 while (usrbuf->used >= track->usrbuf_blksize &&
2965 outbuf->used < outbuf->capacity) {
2966 audio_track_play(track);
2967 }
2968
2969 audio_track_lock_exit(track);
2970 }
2971
2972 abort:
2973 TRACET(3, track, "done error=%d", error);
2974 return error;
2975 }
2976
2977 /*
2978 * Must be called without sc_lock nor sc_exlock held.
2979 */
2980 int
2981 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2982 struct lwp *l, audio_file_t *file)
2983 {
2984 struct audio_offset *ao;
2985 struct audio_info ai;
2986 audio_track_t *track;
2987 audio_encoding_t *ae;
2988 audio_format_query_t *query;
2989 u_int stamp;
2990 u_int offset;
2991 int val;
2992 int index;
2993 int error;
2994
2995 #if defined(AUDIO_DEBUG)
2996 const char *ioctlnames[] = {
2997 "AUDIO_GETINFO", /* 21 */
2998 "AUDIO_SETINFO", /* 22 */
2999 "AUDIO_DRAIN", /* 23 */
3000 "AUDIO_FLUSH", /* 24 */
3001 "AUDIO_WSEEK", /* 25 */
3002 "AUDIO_RERROR", /* 26 */
3003 "AUDIO_GETDEV", /* 27 */
3004 "AUDIO_GETENC", /* 28 */
3005 "AUDIO_GETFD", /* 29 */
3006 "AUDIO_SETFD", /* 30 */
3007 "AUDIO_PERROR", /* 31 */
3008 "AUDIO_GETIOFFS", /* 32 */
3009 "AUDIO_GETOOFFS", /* 33 */
3010 "AUDIO_GETPROPS", /* 34 */
3011 "AUDIO_GETBUFINFO", /* 35 */
3012 "AUDIO_SETCHAN", /* 36 */
3013 "AUDIO_GETCHAN", /* 37 */
3014 "AUDIO_QUERYFORMAT", /* 38 */
3015 "AUDIO_GETFORMAT", /* 39 */
3016 "AUDIO_SETFORMAT", /* 40 */
3017 };
3018 char pre[64];
3019 int nameidx = (cmd & 0xff);
3020 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames)) {
3021 snprintf(pre, sizeof(pre), "pid=%d.%d %s",
3022 (int)curproc->p_pid, (int)l->l_lid,
3023 ioctlnames[nameidx - 21]);
3024 } else {
3025 snprintf(pre, sizeof(pre), "pid=%d.%d (%lu,'%c',%u)",
3026 (int)curproc->p_pid, (int)l->l_lid,
3027 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), nameidx);
3028 }
3029 #endif
3030
3031 error = 0;
3032 switch (cmd) {
3033 case FIONBIO:
3034 /* All handled in the upper FS layer. */
3035 break;
3036
3037 case FIONREAD:
3038 /* Get the number of bytes that can be read. */
3039 track = file->rtrack;
3040 if (track) {
3041 val = audio_track_readablebytes(track);
3042 *(int *)addr = val;
3043 TRACET(2, track, "pid=%d.%d FIONREAD bytes=%d",
3044 (int)curproc->p_pid, (int)l->l_lid, val);
3045 } else {
3046 TRACEF(2, file, "pid=%d.%d FIONREAD no track",
3047 (int)curproc->p_pid, (int)l->l_lid);
3048 }
3049 break;
3050
3051 case FIOASYNC:
3052 /* Set/Clear ASYNC I/O. */
3053 if (*(int *)addr) {
3054 file->async_audio = curproc->p_pid;
3055 } else {
3056 file->async_audio = 0;
3057 }
3058 TRACEF(2, file, "pid=%d.%d FIOASYNC %s",
3059 (int)curproc->p_pid, (int)l->l_lid,
3060 file->async_audio ? "on" : "off");
3061 break;
3062
3063 case AUDIO_FLUSH:
3064 /* XXX TODO: clear errors and restart? */
3065 TRACEF(2, file, "%s", pre);
3066 audio_file_clear(sc, file);
3067 break;
3068
3069 case AUDIO_PERROR:
3070 case AUDIO_RERROR:
3071 /*
3072 * Number of dropped bytes during playback/record. We don't
3073 * know where or when they were dropped (including conversion
3074 * stage). Therefore, the number of accurate bytes or samples
3075 * is also unknown.
3076 */
3077 track = (cmd == AUDIO_PERROR) ? file->ptrack : file->rtrack;
3078 if (track) {
3079 val = frametobyte(&track->usrbuf.fmt,
3080 track->dropframes);
3081 *(int *)addr = val;
3082 TRACET(2, track, "%s bytes=%d", pre, val);
3083 } else {
3084 TRACEF(2, file, "%s no track", pre);
3085 }
3086 break;
3087
3088 case AUDIO_GETIOFFS:
3089 ao = (struct audio_offset *)addr;
3090 track = file->rtrack;
3091 if (track == NULL) {
3092 ao->samples = 0;
3093 ao->deltablks = 0;
3094 ao->offset = 0;
3095 TRACEF(2, file, "%s no rtrack", pre);
3096 break;
3097 }
3098 mutex_enter(sc->sc_lock);
3099 mutex_enter(sc->sc_intr_lock);
3100 /* figure out where next transfer will start */
3101 stamp = track->stamp;
3102 offset = auring_tail(track->input);
3103 mutex_exit(sc->sc_intr_lock);
3104 mutex_exit(sc->sc_lock);
3105
3106 /* samples will overflow soon but is as per spec. */
3107 ao->samples = stamp * track->usrbuf_blksize;
3108 ao->deltablks = stamp - track->last_stamp;
3109 ao->offset = audio_track_inputblk_as_usrbyte(track, offset);
3110 TRACET(2, track, "%s samples=%u deltablks=%u offset=%u",
3111 pre, ao->samples, ao->deltablks, ao->offset);
3112
3113 track->last_stamp = stamp;
3114 break;
3115
3116 case AUDIO_GETOOFFS:
3117 ao = (struct audio_offset *)addr;
3118 track = file->ptrack;
3119 if (track == NULL) {
3120 ao->samples = 0;
3121 ao->deltablks = 0;
3122 ao->offset = 0;
3123 TRACEF(2, file, "%s no ptrack", pre);
3124 break;
3125 }
3126 mutex_enter(sc->sc_lock);
3127 mutex_enter(sc->sc_intr_lock);
3128 /* figure out where next transfer will start */
3129 stamp = track->stamp;
3130 offset = track->usrbuf.head;
3131 mutex_exit(sc->sc_intr_lock);
3132 mutex_exit(sc->sc_lock);
3133
3134 /* samples will overflow soon but is as per spec. */
3135 ao->samples = stamp * track->usrbuf_blksize;
3136 ao->deltablks = stamp - track->last_stamp;
3137 ao->offset = offset;
3138 TRACET(2, track, "%s samples=%u deltablks=%u offset=%u",
3139 pre, ao->samples, ao->deltablks, ao->offset);
3140
3141 track->last_stamp = stamp;
3142 break;
3143
3144 case AUDIO_WSEEK:
3145 track = file->ptrack;
3146 if (track) {
3147 val = track->usrbuf.used;
3148 *(u_long *)addr = val;
3149 TRACET(2, track, "%s bytes=%d", pre, val);
3150 } else {
3151 TRACEF(2, file, "%s no ptrack", pre);
3152 }
3153 break;
3154
3155 case AUDIO_SETINFO:
3156 TRACEF(2, file, "%s", pre);
3157 error = audio_exlock_enter(sc);
3158 if (error)
3159 break;
3160 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
3161 if (error) {
3162 audio_exlock_exit(sc);
3163 break;
3164 }
3165 if (ISDEVSOUND(dev))
3166 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
3167 audio_exlock_exit(sc);
3168 break;
3169
3170 case AUDIO_GETINFO:
3171 TRACEF(2, file, "%s", pre);
3172 error = audio_exlock_enter(sc);
3173 if (error)
3174 break;
3175 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
3176 audio_exlock_exit(sc);
3177 break;
3178
3179 case AUDIO_GETBUFINFO:
3180 TRACEF(2, file, "%s", pre);
3181 error = audio_exlock_enter(sc);
3182 if (error)
3183 break;
3184 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
3185 audio_exlock_exit(sc);
3186 break;
3187
3188 case AUDIO_DRAIN:
3189 track = file->ptrack;
3190 if (track) {
3191 TRACET(2, track, "%s", pre);
3192 mutex_enter(sc->sc_lock);
3193 error = audio_track_drain(sc, track);
3194 mutex_exit(sc->sc_lock);
3195 } else {
3196 TRACEF(2, file, "%s no ptrack", pre);
3197 }
3198 break;
3199
3200 case AUDIO_GETDEV:
3201 TRACEF(2, file, "%s", pre);
3202 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
3203 break;
3204
3205 case AUDIO_GETENC:
3206 ae = (audio_encoding_t *)addr;
3207 index = ae->index;
3208 TRACEF(2, file, "%s index=%d", pre, index);
3209 if (index < 0 || index >= __arraycount(audio_encodings)) {
3210 error = EINVAL;
3211 break;
3212 }
3213 *ae = audio_encodings[index];
3214 ae->index = index;
3215 /*
3216 * EMULATED always.
3217 * EMULATED flag at that time used to mean that it could
3218 * not be passed directly to the hardware as-is. But
3219 * currently, all formats including hardware native is not
3220 * passed directly to the hardware. So I set EMULATED
3221 * flag for all formats.
3222 */
3223 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
3224 break;
3225
3226 case AUDIO_GETFD:
3227 /*
3228 * Returns the current setting of full duplex mode.
3229 * If HW has full duplex mode and there are two mixers,
3230 * it is full duplex. Otherwise half duplex.
3231 */
3232 error = audio_exlock_enter(sc);
3233 if (error)
3234 break;
3235 val = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
3236 && (sc->sc_pmixer && sc->sc_rmixer);
3237 audio_exlock_exit(sc);
3238 *(int *)addr = val;
3239 TRACEF(2, file, "%s fulldup=%d", pre, val);
3240 break;
3241
3242 case AUDIO_GETPROPS:
3243 val = sc->sc_props;
3244 *(int *)addr = val;
3245 #if defined(AUDIO_DEBUG)
3246 char pbuf[64];
3247 snprintb(pbuf, sizeof(pbuf), "\x10"
3248 "\6CAPTURE" "\5PLAY" "\3INDEP" "\2MMAP" "\1FULLDUP", val);
3249 TRACEF(2, file, "%s %s", pre, pbuf);
3250 #endif
3251 break;
3252
3253 case AUDIO_QUERYFORMAT:
3254 query = (audio_format_query_t *)addr;
3255 TRACEF(2, file, "%s index=%u", pre, query->index);
3256 mutex_enter(sc->sc_lock);
3257 error = sc->hw_if->query_format(sc->hw_hdl, query);
3258 mutex_exit(sc->sc_lock);
3259 /* Hide internal information */
3260 query->fmt.driver_data = NULL;
3261 break;
3262
3263 case AUDIO_GETFORMAT:
3264 TRACEF(2, file, "%s", pre);
3265 error = audio_exlock_enter(sc);
3266 if (error)
3267 break;
3268 audio_mixers_get_format(sc, (struct audio_info *)addr);
3269 audio_exlock_exit(sc);
3270 break;
3271
3272 case AUDIO_SETFORMAT:
3273 TRACEF(2, file, "%s", pre);
3274 error = audio_exlock_enter(sc);
3275 audio_mixers_get_format(sc, &ai);
3276 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3277 if (error) {
3278 /* Rollback */
3279 audio_mixers_set_format(sc, &ai);
3280 }
3281 audio_exlock_exit(sc);
3282 break;
3283
3284 case AUDIO_SETFD:
3285 case AUDIO_SETCHAN:
3286 case AUDIO_GETCHAN:
3287 /* Obsoleted */
3288 TRACEF(2, file, "%s", pre);
3289 break;
3290
3291 default:
3292 TRACEF(2, file, "%s", pre);
3293 if (sc->hw_if->dev_ioctl) {
3294 mutex_enter(sc->sc_lock);
3295 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3296 cmd, addr, flag, l);
3297 mutex_exit(sc->sc_lock);
3298 } else {
3299 error = EINVAL;
3300 }
3301 break;
3302 }
3303
3304 if (error)
3305 TRACEF(2, file, "%s error=%d", pre, error);
3306 return error;
3307 }
3308
3309 /*
3310 * Convert n [frames] of the input buffer to bytes in the usrbuf format.
3311 * n is in frames but should be a multiple of frame/block. Note that the
3312 * usrbuf's frame/block and the input buffer's frame/block may be different
3313 * (i.e., if frequencies are different).
3314 *
3315 * This function is for recording track only.
3316 */
3317 static int
3318 audio_track_inputblk_as_usrbyte(const audio_track_t *track, int n)
3319 {
3320 int input_fpb;
3321
3322 /*
3323 * In the input buffer on recording track, these are the same.
3324 * input_fpb = frame_per_block(track->mixer, &track->input->fmt);
3325 */
3326 input_fpb = track->mixer->frames_per_block;
3327
3328 return (n / input_fpb) * track->usrbuf_blksize;
3329 }
3330
3331 /*
3332 * Returns the number of bytes that can be read on recording buffer.
3333 */
3334 static int
3335 audio_track_readablebytes(const audio_track_t *track)
3336 {
3337 int bytes;
3338
3339 KASSERT(track);
3340 KASSERT(track->mode == AUMODE_RECORD);
3341
3342 /*
3343 * For recording, track->input is the main block-unit buffer and
3344 * track->usrbuf holds less than one block of byte data ("fragment").
3345 * Note that the input buffer is in frames and the usrbuf is in bytes.
3346 *
3347 * Actual total capacity of these two buffers is
3348 * input->capacity [frames] + usrbuf.capacity [bytes],
3349 * but only input->capacity is reported to userland as buffer_size.
3350 * So, even if the total used bytes exceed input->capacity, report it
3351 * as input->capacity for consistency.
3352 */
3353 bytes = audio_track_inputblk_as_usrbyte(track, track->input->used);
3354 if (track->input->used < track->input->capacity) {
3355 bytes += track->usrbuf.used;
3356 }
3357 return bytes;
3358 }
3359
3360 /*
3361 * Must be called without sc_lock nor sc_exlock held.
3362 */
3363 int
3364 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3365 audio_file_t *file)
3366 {
3367 audio_track_t *track;
3368 int revents;
3369 bool in_is_valid;
3370 bool out_is_valid;
3371
3372 #if defined(AUDIO_DEBUG)
3373 #define POLLEV_BITMAP "\177\020" \
3374 "b\10WRBAND\0" \
3375 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3376 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3377 char evbuf[64];
3378 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3379 TRACEF(2, file, "pid=%d.%d events=%s",
3380 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3381 #endif
3382
3383 revents = 0;
3384 in_is_valid = false;
3385 out_is_valid = false;
3386 if (events & (POLLIN | POLLRDNORM)) {
3387 track = file->rtrack;
3388 if (track) {
3389 int used;
3390 in_is_valid = true;
3391 used = audio_track_readablebytes(track);
3392 if (used > 0)
3393 revents |= events & (POLLIN | POLLRDNORM);
3394 }
3395 }
3396 if (events & (POLLOUT | POLLWRNORM)) {
3397 track = file->ptrack;
3398 if (track) {
3399 out_is_valid = true;
3400 if (track->usrbuf.used <= track->usrbuf_usedlow)
3401 revents |= events & (POLLOUT | POLLWRNORM);
3402 }
3403 }
3404
3405 if (revents == 0) {
3406 mutex_enter(sc->sc_lock);
3407 if (in_is_valid) {
3408 TRACEF(3, file, "selrecord rsel");
3409 selrecord(l, &sc->sc_rsel);
3410 }
3411 if (out_is_valid) {
3412 TRACEF(3, file, "selrecord wsel");
3413 selrecord(l, &sc->sc_wsel);
3414 }
3415 mutex_exit(sc->sc_lock);
3416 }
3417
3418 #if defined(AUDIO_DEBUG)
3419 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3420 TRACEF(2, file, "revents=%s", evbuf);
3421 #endif
3422 return revents;
3423 }
3424
3425 static const struct filterops audioread_filtops = {
3426 .f_flags = FILTEROP_ISFD,
3427 .f_attach = NULL,
3428 .f_detach = filt_audioread_detach,
3429 .f_event = filt_audioread_event,
3430 };
3431
3432 static void
3433 filt_audioread_detach(struct knote *kn)
3434 {
3435 struct audio_softc *sc;
3436 audio_file_t *file;
3437
3438 file = kn->kn_hook;
3439 sc = file->sc;
3440 TRACEF(3, file, "called");
3441
3442 mutex_enter(sc->sc_lock);
3443 selremove_knote(&sc->sc_rsel, kn);
3444 mutex_exit(sc->sc_lock);
3445 }
3446
3447 static int
3448 filt_audioread_event(struct knote *kn, long hint)
3449 {
3450 audio_file_t *file;
3451 audio_track_t *track;
3452
3453 file = kn->kn_hook;
3454 track = file->rtrack;
3455
3456 /*
3457 * kn_data must contain the number of bytes can be read.
3458 * The return value indicates whether the event occurs or not.
3459 */
3460
3461 if (track == NULL) {
3462 /* can not read with this descriptor. */
3463 kn->kn_data = 0;
3464 return 0;
3465 }
3466
3467 kn->kn_data = audio_track_readablebytes(track);
3468 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3469 return kn->kn_data > 0;
3470 }
3471
3472 static const struct filterops audiowrite_filtops = {
3473 .f_flags = FILTEROP_ISFD,
3474 .f_attach = NULL,
3475 .f_detach = filt_audiowrite_detach,
3476 .f_event = filt_audiowrite_event,
3477 };
3478
3479 static void
3480 filt_audiowrite_detach(struct knote *kn)
3481 {
3482 struct audio_softc *sc;
3483 audio_file_t *file;
3484
3485 file = kn->kn_hook;
3486 sc = file->sc;
3487 TRACEF(3, file, "called");
3488
3489 mutex_enter(sc->sc_lock);
3490 selremove_knote(&sc->sc_wsel, kn);
3491 mutex_exit(sc->sc_lock);
3492 }
3493
3494 static int
3495 filt_audiowrite_event(struct knote *kn, long hint)
3496 {
3497 audio_file_t *file;
3498 audio_track_t *track;
3499
3500 file = kn->kn_hook;
3501 track = file->ptrack;
3502
3503 /*
3504 * kn_data must contain the number of bytes can be write.
3505 * The return value indicates whether the event occurs or not.
3506 */
3507
3508 if (track == NULL) {
3509 /* can not write with this descriptor. */
3510 kn->kn_data = 0;
3511 return 0;
3512 }
3513
3514 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3515 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3516 return (track->usrbuf.used < track->usrbuf_usedlow);
3517 }
3518
3519 /*
3520 * Must be called without sc_lock nor sc_exlock held.
3521 */
3522 int
3523 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3524 {
3525 struct selinfo *sip;
3526
3527 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3528
3529 switch (kn->kn_filter) {
3530 case EVFILT_READ:
3531 sip = &sc->sc_rsel;
3532 kn->kn_fop = &audioread_filtops;
3533 break;
3534
3535 case EVFILT_WRITE:
3536 sip = &sc->sc_wsel;
3537 kn->kn_fop = &audiowrite_filtops;
3538 break;
3539
3540 default:
3541 return EINVAL;
3542 }
3543
3544 kn->kn_hook = file;
3545
3546 mutex_enter(sc->sc_lock);
3547 selrecord_knote(sip, kn);
3548 mutex_exit(sc->sc_lock);
3549
3550 return 0;
3551 }
3552
3553 /*
3554 * Must be called without sc_lock nor sc_exlock held.
3555 */
3556 int
3557 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3558 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3559 audio_file_t *file)
3560 {
3561 audio_track_t *track;
3562 vsize_t vsize;
3563 int error;
3564
3565 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3566
3567 KASSERT(len > 0);
3568
3569 if (*offp < 0)
3570 return EINVAL;
3571
3572 #if 0
3573 /* XXX
3574 * The idea here was to use the protection to determine if
3575 * we are mapping the read or write buffer, but it fails.
3576 * The VM system is broken in (at least) two ways.
3577 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3578 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3579 * has to be used for mmapping the play buffer.
3580 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3581 * audio_mmap will get called at some point with VM_PROT_READ
3582 * only.
3583 * So, alas, we always map the play buffer for now.
3584 */
3585 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3586 prot == VM_PROT_WRITE)
3587 track = file->ptrack;
3588 else if (prot == VM_PROT_READ)
3589 track = file->rtrack;
3590 else
3591 return EINVAL;
3592 #else
3593 track = file->ptrack;
3594 #endif
3595 if (track == NULL)
3596 return EACCES;
3597
3598 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3599 if (len > vsize)
3600 return EOVERFLOW;
3601 if (*offp > (uint)(vsize - len))
3602 return EOVERFLOW;
3603
3604 /* XXX TODO: what happens when mmap twice. */
3605 if (!track->mmapped) {
3606 track->mmapped = true;
3607
3608 if (!track->is_pause) {
3609 error = audio_exlock_mutex_enter(sc);
3610 if (error)
3611 return error;
3612 if (sc->sc_pbusy == false)
3613 audio_pmixer_start(sc, true);
3614 audio_exlock_mutex_exit(sc);
3615 }
3616 /* XXX mmapping record buffer is not supported */
3617 }
3618
3619 /* get ringbuffer */
3620 *uobjp = track->uobj;
3621
3622 /* Acquire a reference for the mmap. munmap will release. */
3623 uao_reference(*uobjp);
3624 *maxprotp = prot;
3625 *advicep = UVM_ADV_RANDOM;
3626 *flagsp = MAP_SHARED;
3627 return 0;
3628 }
3629
3630 /*
3631 * /dev/audioctl has to be able to open at any time without interference
3632 * with any /dev/audio or /dev/sound.
3633 * Must be called with sc_exlock held and without sc_lock held.
3634 */
3635 static int
3636 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3637 struct lwp *l)
3638 {
3639 struct file *fp;
3640 audio_file_t *af;
3641 int fd;
3642 int error;
3643
3644 KASSERT(sc->sc_exlock);
3645
3646 TRACE(1, "called");
3647
3648 error = fd_allocfile(&fp, &fd);
3649 if (error)
3650 return error;
3651
3652 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
3653 af->sc = sc;
3654 af->dev = dev;
3655
3656 mutex_enter(sc->sc_lock);
3657 if (sc->sc_dying) {
3658 mutex_exit(sc->sc_lock);
3659 kmem_free(af, sizeof(*af));
3660 fd_abort(curproc, fp, fd);
3661 return ENXIO;
3662 }
3663 mutex_enter(sc->sc_intr_lock);
3664 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
3665 mutex_exit(sc->sc_intr_lock);
3666 mutex_exit(sc->sc_lock);
3667
3668 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3669 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3670
3671 return error;
3672 }
3673
3674 /*
3675 * Free 'mem' if available, and initialize the pointer.
3676 * For this reason, this is implemented as macro.
3677 */
3678 #define audio_free(mem) do { \
3679 if (mem != NULL) { \
3680 kern_free(mem); \
3681 mem = NULL; \
3682 } \
3683 } while (0)
3684
3685 /*
3686 * (Re)allocate 'memblock' with specified 'bytes'.
3687 * bytes must not be 0.
3688 * This function never returns NULL.
3689 */
3690 static void *
3691 audio_realloc(void *memblock, size_t bytes)
3692 {
3693
3694 KASSERT(bytes != 0);
3695 if (memblock)
3696 kern_free(memblock);
3697 return kern_malloc(bytes, M_WAITOK);
3698 }
3699
3700 /*
3701 * (Re)allocate usrbuf with 'newbufsize' bytes.
3702 * Use this function for usrbuf because only usrbuf can be mmapped.
3703 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3704 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3705 * and returns errno.
3706 * It must be called before updating usrbuf.capacity.
3707 */
3708 static int
3709 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3710 {
3711 struct audio_softc *sc;
3712 vaddr_t vstart;
3713 vsize_t oldvsize;
3714 vsize_t newvsize;
3715 int error;
3716
3717 KASSERT(newbufsize > 0);
3718 sc = track->mixer->sc;
3719
3720 /* Get a nonzero multiple of PAGE_SIZE */
3721 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3722
3723 if (track->usrbuf.mem != NULL) {
3724 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3725 PAGE_SIZE);
3726 if (oldvsize == newvsize) {
3727 track->usrbuf.capacity = newbufsize;
3728 return 0;
3729 }
3730 vstart = (vaddr_t)track->usrbuf.mem;
3731 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3732 /* uvm_unmap also detach uobj */
3733 track->uobj = NULL; /* paranoia */
3734 track->usrbuf.mem = NULL;
3735 }
3736
3737 /* Create a uvm anonymous object */
3738 track->uobj = uao_create(newvsize, 0);
3739
3740 /* Map it into the kernel virtual address space */
3741 vstart = 0;
3742 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3743 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3744 UVM_ADV_RANDOM, 0));
3745 if (error) {
3746 device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
3747 uao_detach(track->uobj); /* release reference */
3748 goto abort;
3749 }
3750
3751 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3752 false, 0);
3753 if (error) {
3754 device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
3755 error);
3756 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3757 /* uvm_unmap also detach uobj */
3758 goto abort;
3759 }
3760
3761 track->usrbuf.mem = (void *)vstart;
3762 track->usrbuf.capacity = newbufsize;
3763 memset(track->usrbuf.mem, 0, newvsize);
3764 return 0;
3765
3766 /* failure */
3767 abort:
3768 track->uobj = NULL; /* paranoia */
3769 track->usrbuf.mem = NULL;
3770 track->usrbuf.capacity = 0;
3771 return error;
3772 }
3773
3774 /*
3775 * Free usrbuf (if available).
3776 */
3777 static void
3778 audio_free_usrbuf(audio_track_t *track)
3779 {
3780 vaddr_t vstart;
3781 vsize_t vsize;
3782
3783 vstart = (vaddr_t)track->usrbuf.mem;
3784 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3785 if (track->usrbuf.mem != NULL) {
3786 /*
3787 * Unmap the kernel mapping. uvm_unmap releases the
3788 * reference to the uvm object, and this should be the
3789 * last virtual mapping of the uvm object, so no need
3790 * to explicitly release (`detach') the object.
3791 */
3792 uvm_unmap(kernel_map, vstart, vstart + vsize);
3793
3794 track->uobj = NULL;
3795 track->usrbuf.mem = NULL;
3796 track->usrbuf.capacity = 0;
3797 }
3798 }
3799
3800 /*
3801 * This filter changes the volume for each channel.
3802 * arg->context points track->ch_volume[].
3803 */
3804 static void
3805 audio_track_chvol(audio_filter_arg_t *arg)
3806 {
3807 int16_t *ch_volume;
3808 const aint_t *s;
3809 aint_t *d;
3810 u_int i;
3811 u_int ch;
3812 u_int channels;
3813
3814 DIAGNOSTIC_filter_arg(arg);
3815 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3816 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3817 arg->srcfmt->channels, arg->dstfmt->channels);
3818 KASSERT(arg->context != NULL);
3819 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3820 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3821
3822 s = arg->src;
3823 d = arg->dst;
3824 ch_volume = arg->context;
3825
3826 channels = arg->srcfmt->channels;
3827 for (i = 0; i < arg->count; i++) {
3828 for (ch = 0; ch < channels; ch++) {
3829 aint2_t val;
3830 val = *s++;
3831 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3832 *d++ = (aint_t)val;
3833 }
3834 }
3835 }
3836
3837 /*
3838 * This filter performs conversion from stereo (or more channels) to mono.
3839 */
3840 static void
3841 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3842 {
3843 const aint_t *s;
3844 aint_t *d;
3845 u_int i;
3846
3847 DIAGNOSTIC_filter_arg(arg);
3848
3849 s = arg->src;
3850 d = arg->dst;
3851
3852 for (i = 0; i < arg->count; i++) {
3853 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3854 s += arg->srcfmt->channels;
3855 }
3856 }
3857
3858 /*
3859 * This filter performs conversion from mono to stereo (or more channels).
3860 */
3861 static void
3862 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3863 {
3864 const aint_t *s;
3865 aint_t *d;
3866 u_int i;
3867 u_int ch;
3868 u_int dstchannels;
3869
3870 DIAGNOSTIC_filter_arg(arg);
3871
3872 s = arg->src;
3873 d = arg->dst;
3874 dstchannels = arg->dstfmt->channels;
3875
3876 for (i = 0; i < arg->count; i++) {
3877 d[0] = s[0];
3878 d[1] = s[0];
3879 s++;
3880 d += dstchannels;
3881 }
3882 if (dstchannels > 2) {
3883 d = arg->dst;
3884 for (i = 0; i < arg->count; i++) {
3885 for (ch = 2; ch < dstchannels; ch++) {
3886 d[ch] = 0;
3887 }
3888 d += dstchannels;
3889 }
3890 }
3891 }
3892
3893 /*
3894 * This filter shrinks M channels into N channels.
3895 * Extra channels are discarded.
3896 */
3897 static void
3898 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3899 {
3900 const aint_t *s;
3901 aint_t *d;
3902 u_int i;
3903 u_int ch;
3904
3905 DIAGNOSTIC_filter_arg(arg);
3906
3907 s = arg->src;
3908 d = arg->dst;
3909
3910 for (i = 0; i < arg->count; i++) {
3911 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3912 *d++ = s[ch];
3913 }
3914 s += arg->srcfmt->channels;
3915 }
3916 }
3917
3918 /*
3919 * This filter expands M channels into N channels.
3920 * Silence is inserted for missing channels.
3921 */
3922 static void
3923 audio_track_chmix_expand(audio_filter_arg_t *arg)
3924 {
3925 const aint_t *s;
3926 aint_t *d;
3927 u_int i;
3928 u_int ch;
3929 u_int srcchannels;
3930 u_int dstchannels;
3931
3932 DIAGNOSTIC_filter_arg(arg);
3933
3934 s = arg->src;
3935 d = arg->dst;
3936
3937 srcchannels = arg->srcfmt->channels;
3938 dstchannels = arg->dstfmt->channels;
3939 for (i = 0; i < arg->count; i++) {
3940 for (ch = 0; ch < srcchannels; ch++) {
3941 *d++ = *s++;
3942 }
3943 for (; ch < dstchannels; ch++) {
3944 *d++ = 0;
3945 }
3946 }
3947 }
3948
3949 /*
3950 * This filter performs frequency conversion (up sampling).
3951 * It uses linear interpolation.
3952 */
3953 static void
3954 audio_track_freq_up(audio_filter_arg_t *arg)
3955 {
3956 audio_track_t *track;
3957 audio_ring_t *src;
3958 audio_ring_t *dst;
3959 const aint_t *s;
3960 aint_t *d;
3961 aint_t prev[AUDIO_MAX_CHANNELS];
3962 aint_t curr[AUDIO_MAX_CHANNELS];
3963 aint_t grad[AUDIO_MAX_CHANNELS];
3964 u_int i;
3965 u_int t;
3966 u_int step;
3967 u_int channels;
3968 u_int ch;
3969 int srcused;
3970
3971 track = arg->context;
3972 KASSERT(track);
3973 src = &track->freq.srcbuf;
3974 dst = track->freq.dst;
3975 DIAGNOSTIC_ring(dst);
3976 DIAGNOSTIC_ring(src);
3977 KASSERT(src->used > 0);
3978 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3979 "src->fmt.channels=%d dst->fmt.channels=%d",
3980 src->fmt.channels, dst->fmt.channels);
3981 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3982 "src->head=%d track->mixer->frames_per_block=%d",
3983 src->head, track->mixer->frames_per_block);
3984
3985 s = arg->src;
3986 d = arg->dst;
3987
3988 /*
3989 * In order to facilitate interpolation for each block, slide (delay)
3990 * input by one sample. As a result, strictly speaking, the output
3991 * phase is delayed by 1/dstfreq. However, I believe there is no
3992 * observable impact.
3993 *
3994 * Example)
3995 * srcfreq:dstfreq = 1:3
3996 *
3997 * A - -
3998 * |
3999 * |
4000 * | B - -
4001 * +-----+-----> input timeframe
4002 * 0 1
4003 *
4004 * 0 1
4005 * +-----+-----> input timeframe
4006 * | A
4007 * | x x
4008 * | x x
4009 * x (B)
4010 * +-+-+-+-+-+-> output timeframe
4011 * 0 1 2 3 4 5
4012 */
4013
4014 /* Last samples in previous block */
4015 channels = src->fmt.channels;
4016 for (ch = 0; ch < channels; ch++) {
4017 prev[ch] = track->freq_prev[ch];
4018 curr[ch] = track->freq_curr[ch];
4019 grad[ch] = curr[ch] - prev[ch];
4020 }
4021
4022 step = track->freq_step;
4023 t = track->freq_current;
4024 //#define FREQ_DEBUG
4025 #if defined(FREQ_DEBUG)
4026 #define PRINTF(fmt...) printf(fmt)
4027 #else
4028 #define PRINTF(fmt...) do { } while (0)
4029 #endif
4030 srcused = src->used;
4031 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
4032 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
4033 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
4034 PRINTF(" t=%d\n", t);
4035
4036 for (i = 0; i < arg->count; i++) {
4037 PRINTF("i=%d t=%5d", i, t);
4038 if (t >= 65536) {
4039 for (ch = 0; ch < channels; ch++) {
4040 prev[ch] = curr[ch];
4041 curr[ch] = *s++;
4042 grad[ch] = curr[ch] - prev[ch];
4043 }
4044 PRINTF(" prev=%d s[%d]=%d",
4045 prev[0], src->used - srcused, curr[0]);
4046
4047 /* Update */
4048 t -= 65536;
4049 srcused--;
4050 if (srcused < 0) {
4051 PRINTF(" break\n");
4052 break;
4053 }
4054 }
4055
4056 for (ch = 0; ch < channels; ch++) {
4057 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
4058 #if defined(FREQ_DEBUG)
4059 if (ch == 0)
4060 printf(" t=%5d *d=%d", t, d[-1]);
4061 #endif
4062 }
4063 t += step;
4064
4065 PRINTF("\n");
4066 }
4067 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
4068
4069 auring_take(src, src->used);
4070 auring_push(dst, i);
4071
4072 /* Adjust */
4073 t += track->freq_leap;
4074
4075 track->freq_current = t;
4076 for (ch = 0; ch < channels; ch++) {
4077 track->freq_prev[ch] = prev[ch];
4078 track->freq_curr[ch] = curr[ch];
4079 }
4080 }
4081
4082 /*
4083 * This filter performs frequency conversion (down sampling).
4084 * It uses simple thinning.
4085 */
4086 static void
4087 audio_track_freq_down(audio_filter_arg_t *arg)
4088 {
4089 audio_track_t *track;
4090 audio_ring_t *src;
4091 audio_ring_t *dst;
4092 const aint_t *s0;
4093 aint_t *d;
4094 u_int i;
4095 u_int t;
4096 u_int step;
4097 u_int ch;
4098 u_int channels;
4099
4100 track = arg->context;
4101 KASSERT(track);
4102 src = &track->freq.srcbuf;
4103 dst = track->freq.dst;
4104
4105 DIAGNOSTIC_ring(dst);
4106 DIAGNOSTIC_ring(src);
4107 KASSERT(src->used > 0);
4108 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
4109 "src->fmt.channels=%d dst->fmt.channels=%d",
4110 src->fmt.channels, dst->fmt.channels);
4111 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
4112 "src->head=%d track->mixer->frames_per_block=%d",
4113 src->head, track->mixer->frames_per_block);
4114
4115 s0 = arg->src;
4116 d = arg->dst;
4117 t = track->freq_current;
4118 step = track->freq_step;
4119 channels = dst->fmt.channels;
4120 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
4121 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
4122 PRINTF(" t=%d\n", t);
4123
4124 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
4125 const aint_t *s;
4126 PRINTF("i=%4d t=%10d", i, t);
4127 s = s0 + (t / 65536) * channels;
4128 PRINTF(" s=%5ld", (s - s0) / channels);
4129 for (ch = 0; ch < channels; ch++) {
4130 if (ch == 0) PRINTF(" *s=%d", s[ch]);
4131 *d++ = s[ch];
4132 }
4133 PRINTF("\n");
4134 t += step;
4135 }
4136 t += track->freq_leap;
4137 PRINTF("end t=%d\n", t);
4138 auring_take(src, src->used);
4139 auring_push(dst, i);
4140 track->freq_current = t % 65536;
4141 }
4142
4143 /*
4144 * Creates track and returns it.
4145 * Must be called without sc_lock held.
4146 */
4147 audio_track_t *
4148 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
4149 {
4150 audio_track_t *track;
4151 static int newid = 0;
4152
4153 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
4154
4155 track->id = newid++;
4156 track->mixer = mixer;
4157 track->mode = mixer->mode;
4158
4159 /* Do TRACE after id is assigned. */
4160 TRACET(3, track, "for %s",
4161 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
4162
4163 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
4164 track->volume = 256;
4165 #endif
4166 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
4167 track->ch_volume[i] = 256;
4168 }
4169
4170 return track;
4171 }
4172
4173 /*
4174 * Release all resources of the track and track itself.
4175 * track must not be NULL. Don't specify the track within the file
4176 * structure linked from sc->sc_files.
4177 */
4178 static void
4179 audio_track_destroy(audio_track_t *track)
4180 {
4181
4182 KASSERT(track);
4183
4184 audio_free_usrbuf(track);
4185 audio_free(track->codec.srcbuf.mem);
4186 audio_free(track->chvol.srcbuf.mem);
4187 audio_free(track->chmix.srcbuf.mem);
4188 audio_free(track->freq.srcbuf.mem);
4189 audio_free(track->outbuf.mem);
4190
4191 kmem_free(track, sizeof(*track));
4192 }
4193
4194 /*
4195 * It returns encoding conversion filter according to src and dst format.
4196 * If it is not a convertible pair, it returns NULL. Either src or dst
4197 * must be internal format.
4198 */
4199 static audio_filter_t
4200 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
4201 const audio_format2_t *dst)
4202 {
4203
4204 if (audio_format2_is_internal(src)) {
4205 if (dst->encoding == AUDIO_ENCODING_ULAW) {
4206 return audio_internal_to_mulaw;
4207 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
4208 return audio_internal_to_alaw;
4209 } else if (audio_format2_is_linear(dst)) {
4210 switch (dst->stride) {
4211 case 8:
4212 return audio_internal_to_linear8;
4213 case 16:
4214 return audio_internal_to_linear16;
4215 #if defined(AUDIO_SUPPORT_LINEAR24)
4216 case 24:
4217 return audio_internal_to_linear24;
4218 #endif
4219 case 32:
4220 return audio_internal_to_linear32;
4221 default:
4222 TRACET(1, track, "unsupported %s stride %d",
4223 "dst", dst->stride);
4224 goto abort;
4225 }
4226 }
4227 } else if (audio_format2_is_internal(dst)) {
4228 if (src->encoding == AUDIO_ENCODING_ULAW) {
4229 return audio_mulaw_to_internal;
4230 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
4231 return audio_alaw_to_internal;
4232 } else if (audio_format2_is_linear(src)) {
4233 switch (src->stride) {
4234 case 8:
4235 return audio_linear8_to_internal;
4236 case 16:
4237 return audio_linear16_to_internal;
4238 #if defined(AUDIO_SUPPORT_LINEAR24)
4239 case 24:
4240 return audio_linear24_to_internal;
4241 #endif
4242 case 32:
4243 return audio_linear32_to_internal;
4244 default:
4245 TRACET(1, track, "unsupported %s stride %d",
4246 "src", src->stride);
4247 goto abort;
4248 }
4249 }
4250 }
4251
4252 TRACET(1, track, "unsupported encoding");
4253 abort:
4254 #if defined(AUDIO_DEBUG)
4255 if (audiodebug >= 2) {
4256 char buf[100];
4257 audio_format2_tostr(buf, sizeof(buf), src);
4258 TRACET(2, track, "src %s", buf);
4259 audio_format2_tostr(buf, sizeof(buf), dst);
4260 TRACET(2, track, "dst %s", buf);
4261 }
4262 #endif
4263 return NULL;
4264 }
4265
4266 /*
4267 * Initialize the codec stage of this track as necessary.
4268 * If successful, it initializes the codec stage as necessary, stores updated
4269 * last_dst in *last_dstp in any case, and returns 0.
4270 * Otherwise, it returns errno without modifying *last_dstp.
4271 */
4272 static int
4273 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
4274 {
4275 audio_ring_t *last_dst;
4276 audio_ring_t *srcbuf;
4277 audio_format2_t *srcfmt;
4278 audio_format2_t *dstfmt;
4279 audio_filter_arg_t *arg;
4280 u_int len;
4281 int error;
4282
4283 KASSERT(track);
4284
4285 last_dst = *last_dstp;
4286 dstfmt = &last_dst->fmt;
4287 srcfmt = &track->inputfmt;
4288 srcbuf = &track->codec.srcbuf;
4289 error = 0;
4290
4291 if (srcfmt->encoding != dstfmt->encoding
4292 || srcfmt->precision != dstfmt->precision
4293 || srcfmt->stride != dstfmt->stride) {
4294 track->codec.dst = last_dst;
4295
4296 srcbuf->fmt = *dstfmt;
4297 srcbuf->fmt.encoding = srcfmt->encoding;
4298 srcbuf->fmt.precision = srcfmt->precision;
4299 srcbuf->fmt.stride = srcfmt->stride;
4300
4301 track->codec.filter = audio_track_get_codec(track,
4302 &srcbuf->fmt, dstfmt);
4303 if (track->codec.filter == NULL) {
4304 error = EINVAL;
4305 goto abort;
4306 }
4307
4308 srcbuf->head = 0;
4309 srcbuf->used = 0;
4310 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4311 len = auring_bytelen(srcbuf);
4312 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4313
4314 arg = &track->codec.arg;
4315 arg->srcfmt = &srcbuf->fmt;
4316 arg->dstfmt = dstfmt;
4317 arg->context = NULL;
4318
4319 *last_dstp = srcbuf;
4320 return 0;
4321 }
4322
4323 abort:
4324 track->codec.filter = NULL;
4325 audio_free(srcbuf->mem);
4326 return error;
4327 }
4328
4329 /*
4330 * Initialize the chvol stage of this track as necessary.
4331 * If successful, it initializes the chvol stage as necessary, stores updated
4332 * last_dst in *last_dstp in any case, and returns 0.
4333 * Otherwise, it returns errno without modifying *last_dstp.
4334 */
4335 static int
4336 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4337 {
4338 audio_ring_t *last_dst;
4339 audio_ring_t *srcbuf;
4340 audio_format2_t *srcfmt;
4341 audio_format2_t *dstfmt;
4342 audio_filter_arg_t *arg;
4343 u_int len;
4344 int error;
4345
4346 KASSERT(track);
4347
4348 last_dst = *last_dstp;
4349 dstfmt = &last_dst->fmt;
4350 srcfmt = &track->inputfmt;
4351 srcbuf = &track->chvol.srcbuf;
4352 error = 0;
4353
4354 /* Check whether channel volume conversion is necessary. */
4355 bool use_chvol = false;
4356 for (int ch = 0; ch < srcfmt->channels; ch++) {
4357 if (track->ch_volume[ch] != 256) {
4358 use_chvol = true;
4359 break;
4360 }
4361 }
4362
4363 if (use_chvol == true) {
4364 track->chvol.dst = last_dst;
4365 track->chvol.filter = audio_track_chvol;
4366
4367 srcbuf->fmt = *dstfmt;
4368 /* no format conversion occurs */
4369
4370 srcbuf->head = 0;
4371 srcbuf->used = 0;
4372 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4373 len = auring_bytelen(srcbuf);
4374 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4375
4376 arg = &track->chvol.arg;
4377 arg->srcfmt = &srcbuf->fmt;
4378 arg->dstfmt = dstfmt;
4379 arg->context = track->ch_volume;
4380
4381 *last_dstp = srcbuf;
4382 return 0;
4383 }
4384
4385 track->chvol.filter = NULL;
4386 audio_free(srcbuf->mem);
4387 return error;
4388 }
4389
4390 /*
4391 * Initialize the chmix stage of this track as necessary.
4392 * If successful, it initializes the chmix stage as necessary, stores updated
4393 * last_dst in *last_dstp in any case, and returns 0.
4394 * Otherwise, it returns errno without modifying *last_dstp.
4395 */
4396 static int
4397 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4398 {
4399 audio_ring_t *last_dst;
4400 audio_ring_t *srcbuf;
4401 audio_format2_t *srcfmt;
4402 audio_format2_t *dstfmt;
4403 audio_filter_arg_t *arg;
4404 u_int srcch;
4405 u_int dstch;
4406 u_int len;
4407 int error;
4408
4409 KASSERT(track);
4410
4411 last_dst = *last_dstp;
4412 dstfmt = &last_dst->fmt;
4413 srcfmt = &track->inputfmt;
4414 srcbuf = &track->chmix.srcbuf;
4415 error = 0;
4416
4417 srcch = srcfmt->channels;
4418 dstch = dstfmt->channels;
4419 if (srcch != dstch) {
4420 track->chmix.dst = last_dst;
4421
4422 if (srcch >= 2 && dstch == 1) {
4423 track->chmix.filter = audio_track_chmix_mixLR;
4424 } else if (srcch == 1 && dstch >= 2) {
4425 track->chmix.filter = audio_track_chmix_dupLR;
4426 } else if (srcch > dstch) {
4427 track->chmix.filter = audio_track_chmix_shrink;
4428 } else {
4429 track->chmix.filter = audio_track_chmix_expand;
4430 }
4431
4432 srcbuf->fmt = *dstfmt;
4433 srcbuf->fmt.channels = srcch;
4434
4435 srcbuf->head = 0;
4436 srcbuf->used = 0;
4437 /* XXX The buffer size should be able to calculate. */
4438 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4439 len = auring_bytelen(srcbuf);
4440 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4441
4442 arg = &track->chmix.arg;
4443 arg->srcfmt = &srcbuf->fmt;
4444 arg->dstfmt = dstfmt;
4445 arg->context = NULL;
4446
4447 *last_dstp = srcbuf;
4448 return 0;
4449 }
4450
4451 track->chmix.filter = NULL;
4452 audio_free(srcbuf->mem);
4453 return error;
4454 }
4455
4456 /*
4457 * Initialize the freq stage of this track as necessary.
4458 * If successful, it initializes the freq stage as necessary, stores updated
4459 * last_dst in *last_dstp in any case, and returns 0.
4460 * Otherwise, it returns errno without modifying *last_dstp.
4461 */
4462 static int
4463 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4464 {
4465 audio_ring_t *last_dst;
4466 audio_ring_t *srcbuf;
4467 audio_format2_t *srcfmt;
4468 audio_format2_t *dstfmt;
4469 audio_filter_arg_t *arg;
4470 uint32_t srcfreq;
4471 uint32_t dstfreq;
4472 u_int dst_capacity;
4473 u_int mod;
4474 u_int len;
4475 int error;
4476
4477 KASSERT(track);
4478
4479 last_dst = *last_dstp;
4480 dstfmt = &last_dst->fmt;
4481 srcfmt = &track->inputfmt;
4482 srcbuf = &track->freq.srcbuf;
4483 error = 0;
4484
4485 srcfreq = srcfmt->sample_rate;
4486 dstfreq = dstfmt->sample_rate;
4487 if (srcfreq != dstfreq) {
4488 track->freq.dst = last_dst;
4489
4490 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4491 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4492
4493 /* freq_step is the ratio of src/dst when let dst 65536. */
4494 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4495
4496 dst_capacity = frame_per_block(track->mixer, dstfmt);
4497 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4498 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4499
4500 if (track->freq_step < 65536) {
4501 track->freq.filter = audio_track_freq_up;
4502 /* In order to carry at the first time. */
4503 track->freq_current = 65536;
4504 } else {
4505 track->freq.filter = audio_track_freq_down;
4506 track->freq_current = 0;
4507 }
4508
4509 srcbuf->fmt = *dstfmt;
4510 srcbuf->fmt.sample_rate = srcfreq;
4511
4512 srcbuf->head = 0;
4513 srcbuf->used = 0;
4514 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4515 len = auring_bytelen(srcbuf);
4516 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4517
4518 arg = &track->freq.arg;
4519 arg->srcfmt = &srcbuf->fmt;
4520 arg->dstfmt = dstfmt;
4521 arg->context = track;
4522
4523 *last_dstp = srcbuf;
4524 return 0;
4525 }
4526
4527 track->freq.filter = NULL;
4528 audio_free(srcbuf->mem);
4529 return error;
4530 }
4531
4532 /*
4533 * There are two unit of buffers; A block buffer and a byte buffer. Both use
4534 * audio_ring_t. Internally, audio data is always handled in block unit.
4535 * Converting format, sythesizing tracks, transferring from/to the hardware,
4536 * and etc. Only one exception is usrbuf. To transfer with userland, usrbuf
4537 * is buffered in byte unit.
4538 * For playing back, write(2) writes arbitrary length of data to usrbuf.
4539 * When one block is filled, it is sent to the next stage (converting and/or
4540 * synthesizing).
4541 * For recording, the rmixer writes one block length of data to input buffer
4542 * (the bottom stage buffer) each time. read(2) (converts one block if usrbuf
4543 * is empty and then) reads arbitrary length of data from usrbuf.
4544 *
4545 * The following charts show the data flow and buffer types for playback and
4546 * recording track. In this example, both have two conversion stages, codec
4547 * and freq. Every [**] represents a buffer described below.
4548 *
4549 * On playback track:
4550 *
4551 * write(2)
4552 * |
4553 * | uiomove
4554 * v
4555 * usrbuf [BB|BB ... BB|BB] .. Byte ring buffer
4556 * |
4557 * | memcpy one block
4558 * v
4559 * codec.srcbuf [FF] .. 1 block (ring) buffer
4560 * .dst ----+
4561 * |
4562 * | convert
4563 * v
4564 * freq.srcbuf [FF] .. 1 block (ring) buffer
4565 * .dst ----+
4566 * |
4567 * | convert
4568 * v
4569 * outbuf [FF|FF|FF|FF] .. NBLKOUT blocks ring buffer
4570 * |
4571 * v
4572 * pmixer
4573 *
4574 * There are three different types of buffers:
4575 *
4576 * [BB|BB ... BB|BB] usrbuf. Is the buffer closest to userland. Mandatory.
4577 * This is a byte buffer and its length is basically less
4578 * than or equal to 64KB or at least AUMINNOBLK blocks.
4579 *
4580 * [FF] Interim conversion stage's srcbuf if necessary.
4581 * This is one block (ring) buffer counted in frames.
4582 *
4583 * [FF|FF|FF|FF] outbuf. Is the buffer closest to pmixer. Mandatory.
4584 * This is NBLKOUT blocks ring buffer counted in frames.
4585 *
4586 *
4587 * On recording track:
4588 *
4589 * read(2)
4590 * ^
4591 * | uiomove
4592 * |
4593 * usrbuf [BB] .. Byte (ring) buffer
4594 * ^
4595 * | memcpy one block
4596 * |
4597 * outbuf [FF] .. 1 block (ring) buffer
4598 * ^
4599 * | convert
4600 * |
4601 * codec.dst ----+
4602 * .srcbuf [FF] .. 1 block (ring) buffer
4603 * ^
4604 * | convert
4605 * |
4606 * freq.dst ----+
4607 * .srcbuf [FF|FF ... FF|FF] .. NBLKIN blocks ring buffer
4608 * ^
4609 * |
4610 * rmixer
4611 *
4612 * There are also three different types of buffers.
4613 *
4614 * [BB] usrbuf. Is the buffer closest to userland. Mandatory.
4615 * This is a byte buffer and its length is one block.
4616 * This buffer holds only "fragment".
4617 *
4618 * [FF] Interim conversion stage's srcbuf (or outbuf).
4619 * This is one block (ring) buffer counted in frames.
4620 *
4621 * [FF|FF ... FF|FF] The bottom conversion stage's srcbuf (or outbuf).
4622 * This is the buffer closest to rmixer, and mandatory.
4623 * This is NBLKIN blocks ring buffer counted in frames.
4624 * Also pointed by *input.
4625 */
4626
4627 /*
4628 * Set the userland format of this track.
4629 * usrfmt argument should have been previously verified by
4630 * audio_track_setinfo_check().
4631 * This function may release and reallocate all internal conversion buffers.
4632 * It returns 0 if successful. Otherwise it returns errno with clearing all
4633 * internal buffers.
4634 * It must be called without sc_intr_lock since uvm_* routines require non
4635 * intr_lock state.
4636 * It must be called with track lock held since it may release and reallocate
4637 * outbuf.
4638 */
4639 static int
4640 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4641 {
4642 struct audio_softc *sc;
4643 audio_ring_t *last_dst;
4644 int is_playback;
4645 u_int newbufsize;
4646 u_int oldblksize;
4647 u_int len;
4648 int error;
4649
4650 KASSERT(track);
4651 sc = track->mixer->sc;
4652
4653 is_playback = audio_track_is_playback(track);
4654
4655 /* usrbuf is the closest buffer to the userland. */
4656 track->usrbuf.fmt = *usrfmt;
4657
4658 /*
4659 * Usrbuf.
4660 * On the playback track, its capacity is less than or equal to 64KB
4661 * (for historical reason) and must be a multiple of a block
4662 * (constraint in this implementation). But at least AUMINNOBLK
4663 * blocks.
4664 * On the recording track, its capacity is one block.
4665 */
4666 /*
4667 * For references, one block size (in 40msec) is:
4668 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4669 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4670 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4671 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4672 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4673 *
4674 * For example,
4675 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4676 * newbufsize = rounddown(65536 / 7056) = 63504
4677 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4678 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4679 *
4680 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4681 * newbufsize = rounddown(65536 / 7680) = 61440
4682 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4683 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4684 */
4685 oldblksize = track->usrbuf_blksize;
4686 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4687 frame_per_block(track->mixer, &track->usrbuf.fmt));
4688 track->usrbuf.head = 0;
4689 track->usrbuf.used = 0;
4690 if (is_playback) {
4691 if (track->usrbuf_blksize * AUMINNOBLK > 65536)
4692 newbufsize = track->usrbuf_blksize * AUMINNOBLK;
4693 else
4694 newbufsize = rounddown(65536, track->usrbuf_blksize);
4695 } else {
4696 newbufsize = track->usrbuf_blksize;
4697 }
4698 if (track->usrbuf_blksize != oldblksize) {
4699 error = audio_realloc_usrbuf(track, newbufsize);
4700 if (error) {
4701 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4702 newbufsize);
4703 goto error;
4704 }
4705 }
4706
4707 /* Recalc water mark. */
4708 if (is_playback) {
4709 /* Set high at 100%, low at 75%. */
4710 track->usrbuf_usedhigh = track->usrbuf.capacity;
4711 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4712 } else {
4713 /* Set high at 100%, low at 0%. (But not used) */
4714 track->usrbuf_usedhigh = track->usrbuf.capacity;
4715 track->usrbuf_usedlow = 0;
4716 }
4717
4718 /* Stage buffer */
4719 last_dst = &track->outbuf;
4720 if (is_playback) {
4721 /* On playback, initialize from the mixer side in order. */
4722 track->inputfmt = *usrfmt;
4723 track->outbuf.fmt = track->mixer->track_fmt;
4724
4725 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4726 goto error;
4727 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4728 goto error;
4729 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4730 goto error;
4731 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4732 goto error;
4733 } else {
4734 /* On recording, initialize from userland side in order. */
4735 track->inputfmt = track->mixer->track_fmt;
4736 track->outbuf.fmt = *usrfmt;
4737
4738 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4739 goto error;
4740 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4741 goto error;
4742 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4743 goto error;
4744 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4745 goto error;
4746 }
4747 #if 0
4748 /* debug */
4749 if (track->freq.filter) {
4750 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4751 audio_print_format2("freq dst", &track->freq.dst->fmt);
4752 }
4753 if (track->chmix.filter) {
4754 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4755 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4756 }
4757 if (track->chvol.filter) {
4758 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4759 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4760 }
4761 if (track->codec.filter) {
4762 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4763 audio_print_format2("codec dst", &track->codec.dst->fmt);
4764 }
4765 #endif
4766
4767 /* Stage input buffer */
4768 track->input = last_dst;
4769
4770 /*
4771 * Output buffer.
4772 * On the playback track, its capacity is NBLKOUT blocks.
4773 * On the recording track, its capacity is 1 block.
4774 */
4775 track->outbuf.head = 0;
4776 track->outbuf.used = 0;
4777 track->outbuf.capacity = frame_per_block(track->mixer,
4778 &track->outbuf.fmt);
4779 if (is_playback)
4780 track->outbuf.capacity *= NBLKOUT;
4781 len = auring_bytelen(&track->outbuf);
4782 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4783
4784 /*
4785 * On the recording track, expand the input stage buffer, which is
4786 * the closest buffer to rmixer, to NBLKIN blocks.
4787 * Note that input buffer may point to outbuf.
4788 */
4789 if (!is_playback) {
4790 int input_fpb;
4791
4792 input_fpb = frame_per_block(track->mixer, &track->input->fmt);
4793 track->input->capacity = input_fpb * NBLKIN;
4794 len = auring_bytelen(track->input);
4795 track->input->mem = audio_realloc(track->input->mem, len);
4796 }
4797
4798 #if defined(AUDIO_DEBUG)
4799 if (audiodebug >= 3) {
4800 struct audio_track_debugbuf m;
4801
4802 memset(&m, 0, sizeof(m));
4803 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4804 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4805 if (track->freq.filter)
4806 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4807 track->freq.srcbuf.capacity *
4808 frametobyte(&track->freq.srcbuf.fmt, 1));
4809 if (track->chmix.filter)
4810 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4811 track->chmix.srcbuf.capacity *
4812 frametobyte(&track->chmix.srcbuf.fmt, 1));
4813 if (track->chvol.filter)
4814 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4815 track->chvol.srcbuf.capacity *
4816 frametobyte(&track->chvol.srcbuf.fmt, 1));
4817 if (track->codec.filter)
4818 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4819 track->codec.srcbuf.capacity *
4820 frametobyte(&track->codec.srcbuf.fmt, 1));
4821 snprintf(m.usrbuf, sizeof(m.usrbuf),
4822 " usr=%d", track->usrbuf.capacity);
4823
4824 if (is_playback) {
4825 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4826 m.outbuf, m.freq, m.chmix,
4827 m.chvol, m.codec, m.usrbuf);
4828 } else {
4829 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4830 m.freq, m.chmix, m.chvol,
4831 m.codec, m.outbuf, m.usrbuf);
4832 }
4833 }
4834 #endif
4835 return 0;
4836
4837 error:
4838 audio_free_usrbuf(track);
4839 audio_free(track->codec.srcbuf.mem);
4840 audio_free(track->chvol.srcbuf.mem);
4841 audio_free(track->chmix.srcbuf.mem);
4842 audio_free(track->freq.srcbuf.mem);
4843 audio_free(track->outbuf.mem);
4844 return error;
4845 }
4846
4847 /*
4848 * Fill silence frames (as the internal format) up to 1 block
4849 * if the ring is not empty and less than 1 block.
4850 * It returns the number of appended frames.
4851 */
4852 static int
4853 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4854 {
4855 int fpb;
4856 int n;
4857
4858 KASSERT(track);
4859 KASSERT(audio_format2_is_internal(&ring->fmt));
4860
4861 /* XXX is n correct? */
4862 /* XXX memset uses frametobyte()? */
4863
4864 if (ring->used == 0)
4865 return 0;
4866
4867 fpb = frame_per_block(track->mixer, &ring->fmt);
4868 if (ring->used >= fpb)
4869 return 0;
4870
4871 n = (ring->capacity - ring->used) % fpb;
4872
4873 KASSERTMSG(auring_get_contig_free(ring) >= n,
4874 "auring_get_contig_free(ring)=%d n=%d",
4875 auring_get_contig_free(ring), n);
4876
4877 memset(auring_tailptr_aint(ring), 0,
4878 n * ring->fmt.channels * sizeof(aint_t));
4879 auring_push(ring, n);
4880 return n;
4881 }
4882
4883 /*
4884 * Execute the conversion stage.
4885 * It prepares arg from this stage and executes stage->filter.
4886 * It must be called only if stage->filter is not NULL.
4887 *
4888 * For stages other than frequency conversion, the function increments
4889 * src and dst counters here. For frequency conversion stage, on the
4890 * other hand, the function does not touch src and dst counters and
4891 * filter side has to increment them.
4892 */
4893 static void
4894 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4895 {
4896 audio_filter_arg_t *arg;
4897 int srccount;
4898 int dstcount;
4899 int count;
4900
4901 KASSERT(track);
4902 KASSERT(stage->filter);
4903
4904 srccount = auring_get_contig_used(&stage->srcbuf);
4905 dstcount = auring_get_contig_free(stage->dst);
4906
4907 if (isfreq) {
4908 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4909 count = uimin(dstcount, track->mixer->frames_per_block);
4910 } else {
4911 count = uimin(srccount, dstcount);
4912 }
4913
4914 if (count > 0) {
4915 arg = &stage->arg;
4916 arg->src = auring_headptr(&stage->srcbuf);
4917 arg->dst = auring_tailptr(stage->dst);
4918 arg->count = count;
4919
4920 stage->filter(arg);
4921
4922 if (!isfreq) {
4923 auring_take(&stage->srcbuf, count);
4924 auring_push(stage->dst, count);
4925 }
4926 }
4927 }
4928
4929 /*
4930 * Produce output buffer for playback from user input buffer.
4931 * It must be called only if usrbuf is not empty and outbuf is
4932 * available at least one free block.
4933 */
4934 static void
4935 audio_track_play(audio_track_t *track)
4936 {
4937 audio_ring_t *usrbuf;
4938 audio_ring_t *input;
4939 int count;
4940 int framesize;
4941 int bytes;
4942
4943 KASSERT(track);
4944 KASSERT(track->lock);
4945 TRACET(4, track, "start pstate=%d", track->pstate);
4946
4947 /* At this point usrbuf must not be empty. */
4948 KASSERT(track->usrbuf.used > 0);
4949 /* Also, outbuf must be available at least one block. */
4950 count = auring_get_contig_free(&track->outbuf);
4951 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4952 "count=%d fpb=%d",
4953 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4954
4955 usrbuf = &track->usrbuf;
4956 input = track->input;
4957
4958 /*
4959 * framesize is always 1 byte or more since all formats supported as
4960 * usrfmt(=input) have 8bit or more stride.
4961 */
4962 framesize = frametobyte(&input->fmt, 1);
4963 KASSERT(framesize >= 1);
4964
4965 /* The next stage of usrbuf (=input) must be available. */
4966 KASSERT(auring_get_contig_free(input) > 0);
4967
4968 /*
4969 * Copy usrbuf up to 1block to input buffer.
4970 * count is the number of frames to copy from usrbuf.
4971 * bytes is the number of bytes to copy from usrbuf. However it is
4972 * not copied less than one frame.
4973 */
4974 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4975 bytes = count * framesize;
4976
4977 if (usrbuf->head + bytes < usrbuf->capacity) {
4978 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4979 (uint8_t *)usrbuf->mem + usrbuf->head,
4980 bytes);
4981 auring_push(input, count);
4982 auring_take(usrbuf, bytes);
4983 } else {
4984 int bytes1;
4985 int bytes2;
4986
4987 bytes1 = auring_get_contig_used(usrbuf);
4988 KASSERTMSG(bytes1 % framesize == 0,
4989 "bytes1=%d framesize=%d", bytes1, framesize);
4990 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4991 (uint8_t *)usrbuf->mem + usrbuf->head,
4992 bytes1);
4993 auring_push(input, bytes1 / framesize);
4994 auring_take(usrbuf, bytes1);
4995
4996 bytes2 = bytes - bytes1;
4997 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4998 (uint8_t *)usrbuf->mem + usrbuf->head,
4999 bytes2);
5000 auring_push(input, bytes2 / framesize);
5001 auring_take(usrbuf, bytes2);
5002 }
5003
5004 /* Encoding conversion */
5005 if (track->codec.filter)
5006 audio_apply_stage(track, &track->codec, false);
5007
5008 /* Channel volume */
5009 if (track->chvol.filter)
5010 audio_apply_stage(track, &track->chvol, false);
5011
5012 /* Channel mix */
5013 if (track->chmix.filter)
5014 audio_apply_stage(track, &track->chmix, false);
5015
5016 /* Frequency conversion */
5017 /*
5018 * Since the frequency conversion needs correction for each block,
5019 * it rounds up to 1 block.
5020 */
5021 if (track->freq.filter) {
5022 int n;
5023 n = audio_append_silence(track, &track->freq.srcbuf);
5024 if (n > 0) {
5025 TRACET(4, track,
5026 "freq.srcbuf add silence %d -> %d/%d/%d",
5027 n,
5028 track->freq.srcbuf.head,
5029 track->freq.srcbuf.used,
5030 track->freq.srcbuf.capacity);
5031 }
5032 if (track->freq.srcbuf.used > 0) {
5033 audio_apply_stage(track, &track->freq, true);
5034 }
5035 }
5036
5037 if (bytes < track->usrbuf_blksize) {
5038 /*
5039 * Clear all conversion buffer pointer if the conversion was
5040 * not exactly one block. These conversion stage buffers are
5041 * certainly circular buffers because of symmetry with the
5042 * previous and next stage buffer. However, since they are
5043 * treated as simple contiguous buffers in operation, so head
5044 * always should point 0. This may happen during drain-age.
5045 */
5046 TRACET(4, track, "reset stage");
5047 if (track->codec.filter) {
5048 KASSERT(track->codec.srcbuf.used == 0);
5049 track->codec.srcbuf.head = 0;
5050 }
5051 if (track->chvol.filter) {
5052 KASSERT(track->chvol.srcbuf.used == 0);
5053 track->chvol.srcbuf.head = 0;
5054 }
5055 if (track->chmix.filter) {
5056 KASSERT(track->chmix.srcbuf.used == 0);
5057 track->chmix.srcbuf.head = 0;
5058 }
5059 if (track->freq.filter) {
5060 KASSERT(track->freq.srcbuf.used == 0);
5061 track->freq.srcbuf.head = 0;
5062 }
5063 }
5064
5065 track->stamp++;
5066
5067 #if defined(AUDIO_DEBUG)
5068 if (audiodebug >= 3) {
5069 struct audio_track_debugbuf m;
5070 audio_track_bufstat(track, &m);
5071 TRACET(0, track, "end%s%s%s%s%s%s",
5072 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
5073 }
5074 #endif
5075 }
5076
5077 /*
5078 * Produce user output buffer for recording from input buffer.
5079 */
5080 static void
5081 audio_track_record(audio_track_t *track)
5082 {
5083 audio_ring_t *outbuf;
5084 audio_ring_t *usrbuf;
5085 int count;
5086 int bytes;
5087 int framesize;
5088
5089 KASSERT(track);
5090 KASSERT(track->lock);
5091
5092 if (auring_get_contig_used(track->input) == 0) {
5093 TRACET(4, track, "input->used == 0");
5094 return;
5095 }
5096
5097 /* Frequency conversion */
5098 if (track->freq.filter) {
5099 if (track->freq.srcbuf.used > 0) {
5100 audio_apply_stage(track, &track->freq, true);
5101 /* XXX should input of freq be from beginning of buf? */
5102 }
5103 }
5104
5105 /* Channel mix */
5106 if (track->chmix.filter)
5107 audio_apply_stage(track, &track->chmix, false);
5108
5109 /* Channel volume */
5110 if (track->chvol.filter)
5111 audio_apply_stage(track, &track->chvol, false);
5112
5113 /* Encoding conversion */
5114 if (track->codec.filter)
5115 audio_apply_stage(track, &track->codec, false);
5116
5117 /* Copy outbuf to usrbuf */
5118 outbuf = &track->outbuf;
5119 usrbuf = &track->usrbuf;
5120 /* usrbuf should be empty. */
5121 KASSERT(usrbuf->used == 0);
5122 /*
5123 * framesize is always 1 byte or more since all formats supported
5124 * as usrfmt(=output) have 8bit or more stride.
5125 */
5126 framesize = frametobyte(&outbuf->fmt, 1);
5127 KASSERT(framesize >= 1);
5128 /*
5129 * count is the number of frames to copy to usrbuf.
5130 * bytes is the number of bytes to copy to usrbuf.
5131 */
5132 count = outbuf->used;
5133 count = uimin(count, track->usrbuf_blksize / framesize);
5134 bytes = count * framesize;
5135 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
5136 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5137 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5138 bytes);
5139 auring_push(usrbuf, bytes);
5140 auring_take(outbuf, count);
5141 } else {
5142 int bytes1;
5143 int bytes2;
5144
5145 bytes1 = auring_get_contig_free(usrbuf);
5146 KASSERTMSG(bytes1 % framesize == 0,
5147 "bytes1=%d framesize=%d", bytes1, framesize);
5148 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5149 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5150 bytes1);
5151 auring_push(usrbuf, bytes1);
5152 auring_take(outbuf, bytes1 / framesize);
5153
5154 bytes2 = bytes - bytes1;
5155 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5156 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5157 bytes2);
5158 auring_push(usrbuf, bytes2);
5159 auring_take(outbuf, bytes2 / framesize);
5160 }
5161
5162 #if defined(AUDIO_DEBUG)
5163 if (audiodebug >= 3) {
5164 struct audio_track_debugbuf m;
5165 audio_track_bufstat(track, &m);
5166 TRACET(0, track, "end%s%s%s%s%s%s",
5167 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
5168 }
5169 #endif
5170 }
5171
5172 /*
5173 * Calculate blktime [msec] from mixer(.hwbuf.fmt).
5174 * Must be called with sc_exlock held.
5175 */
5176 static u_int
5177 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
5178 {
5179 audio_format2_t *fmt;
5180 u_int blktime;
5181 u_int frames_per_block;
5182
5183 KASSERT(sc->sc_exlock);
5184
5185 fmt = &mixer->hwbuf.fmt;
5186 blktime = sc->sc_blk_ms;
5187
5188 /*
5189 * If stride is not multiples of 8, special treatment is necessary.
5190 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
5191 */
5192 if (fmt->stride == 4) {
5193 frames_per_block = fmt->sample_rate * blktime / 1000;
5194 if ((frames_per_block & 1) != 0)
5195 blktime *= 2;
5196 }
5197 #ifdef DIAGNOSTIC
5198 else if (fmt->stride % NBBY != 0) {
5199 panic("unsupported HW stride %d", fmt->stride);
5200 }
5201 #endif
5202
5203 return blktime;
5204 }
5205
5206 /*
5207 * Initialize the mixer corresponding to the mode.
5208 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
5209 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
5210 * This function returns 0 on successful. Otherwise returns errno.
5211 * Must be called with sc_exlock held and without sc_lock held.
5212 */
5213 static int
5214 audio_mixer_init(struct audio_softc *sc, int mode,
5215 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
5216 {
5217 char codecbuf[64];
5218 char blkdmsbuf[8];
5219 audio_trackmixer_t *mixer;
5220 void (*softint_handler)(void *);
5221 int len;
5222 int blksize;
5223 int capacity;
5224 size_t bufsize;
5225 int hwblks;
5226 int blkms;
5227 int blkdms;
5228 int error;
5229
5230 KASSERT(hwfmt != NULL);
5231 KASSERT(reg != NULL);
5232 KASSERT(sc->sc_exlock);
5233
5234 error = 0;
5235 if (mode == AUMODE_PLAY)
5236 mixer = sc->sc_pmixer;
5237 else
5238 mixer = sc->sc_rmixer;
5239
5240 mixer->sc = sc;
5241 mixer->mode = mode;
5242
5243 mixer->hwbuf.fmt = *hwfmt;
5244 mixer->volume = 256;
5245 mixer->blktime_d = 1000;
5246 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
5247 sc->sc_blk_ms = mixer->blktime_n;
5248 hwblks = NBLKHW;
5249
5250 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
5251 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5252 if (sc->hw_if->round_blocksize) {
5253 int rounded;
5254 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
5255 mutex_enter(sc->sc_lock);
5256 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
5257 mode, &p);
5258 mutex_exit(sc->sc_lock);
5259 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
5260 if (rounded != blksize) {
5261 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
5262 mixer->hwbuf.fmt.channels) != 0) {
5263 audio_printf(sc,
5264 "round_blocksize returned blocksize "
5265 "indivisible by framesize: "
5266 "blksize=%d rounded=%d "
5267 "stride=%ubit channels=%u\n",
5268 blksize, rounded,
5269 mixer->hwbuf.fmt.stride,
5270 mixer->hwbuf.fmt.channels);
5271 return EINVAL;
5272 }
5273 /* Recalculation */
5274 blksize = rounded;
5275 mixer->frames_per_block = blksize * NBBY /
5276 (mixer->hwbuf.fmt.stride *
5277 mixer->hwbuf.fmt.channels);
5278 }
5279 }
5280 mixer->blktime_n = mixer->frames_per_block;
5281 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
5282
5283 capacity = mixer->frames_per_block * hwblks;
5284 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
5285 if (sc->hw_if->round_buffersize) {
5286 size_t rounded;
5287 mutex_enter(sc->sc_lock);
5288 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
5289 bufsize);
5290 mutex_exit(sc->sc_lock);
5291 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
5292 if (rounded < bufsize) {
5293 /* buffersize needs NBLKHW blocks at least. */
5294 audio_printf(sc,
5295 "round_buffersize returned too small buffersize: "
5296 "buffersize=%zd blksize=%d\n",
5297 rounded, blksize);
5298 return EINVAL;
5299 }
5300 if (rounded % blksize != 0) {
5301 /* buffersize/blksize constraint mismatch? */
5302 audio_printf(sc,
5303 "round_buffersize returned buffersize indivisible "
5304 "by blksize: buffersize=%zu blksize=%d\n",
5305 rounded, blksize);
5306 return EINVAL;
5307 }
5308 if (rounded != bufsize) {
5309 /* Recalculation */
5310 bufsize = rounded;
5311 hwblks = bufsize / blksize;
5312 capacity = mixer->frames_per_block * hwblks;
5313 }
5314 }
5315 TRACE(1, "buffersize for %s = %zu",
5316 (mode == AUMODE_PLAY) ? "playback" : "recording",
5317 bufsize);
5318 mixer->hwbuf.capacity = capacity;
5319
5320 if (sc->hw_if->allocm) {
5321 /* sc_lock is not necessary for allocm */
5322 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
5323 if (mixer->hwbuf.mem == NULL) {
5324 audio_printf(sc, "allocm(%zu) failed\n", bufsize);
5325 return ENOMEM;
5326 }
5327 } else {
5328 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
5329 }
5330
5331 /* From here, audio_mixer_destroy is necessary to exit. */
5332 if (mode == AUMODE_PLAY) {
5333 cv_init(&mixer->outcv, "audiowr");
5334 } else {
5335 cv_init(&mixer->outcv, "audiord");
5336 }
5337
5338 if (mode == AUMODE_PLAY) {
5339 softint_handler = audio_softintr_wr;
5340 } else {
5341 softint_handler = audio_softintr_rd;
5342 }
5343 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
5344 softint_handler, sc);
5345 if (mixer->sih == NULL) {
5346 device_printf(sc->sc_dev, "softint_establish failed\n");
5347 goto abort;
5348 }
5349
5350 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
5351 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
5352 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
5353 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
5354 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
5355
5356 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
5357 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
5358 mixer->swap_endian = true;
5359 TRACE(1, "swap_endian");
5360 }
5361
5362 if (mode == AUMODE_PLAY) {
5363 /* Mixing buffer */
5364 mixer->mixfmt = mixer->track_fmt;
5365 mixer->mixfmt.precision *= 2;
5366 mixer->mixfmt.stride *= 2;
5367 /* XXX TODO: use some macros? */
5368 len = mixer->frames_per_block * mixer->mixfmt.channels *
5369 mixer->mixfmt.stride / NBBY;
5370 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5371 } else {
5372 /* No mixing buffer for recording */
5373 }
5374
5375 if (reg->codec) {
5376 mixer->codec = reg->codec;
5377 mixer->codecarg.context = reg->context;
5378 if (mode == AUMODE_PLAY) {
5379 mixer->codecarg.srcfmt = &mixer->track_fmt;
5380 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5381 } else {
5382 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5383 mixer->codecarg.dstfmt = &mixer->track_fmt;
5384 }
5385 mixer->codecbuf.fmt = mixer->track_fmt;
5386 mixer->codecbuf.capacity = mixer->frames_per_block;
5387 len = auring_bytelen(&mixer->codecbuf);
5388 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5389 }
5390
5391 /* Succeeded so display it. */
5392 codecbuf[0] = '\0';
5393 if (mixer->codec || mixer->swap_endian) {
5394 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5395 (mode == AUMODE_PLAY) ? "->" : "<-",
5396 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5397 mixer->hwbuf.fmt.precision);
5398 }
5399 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5400 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5401 blkdmsbuf[0] = '\0';
5402 if (blkdms != 0) {
5403 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5404 }
5405 aprint_normal_dev(sc->sc_dev,
5406 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5407 audio_encoding_name(mixer->track_fmt.encoding),
5408 mixer->track_fmt.precision,
5409 codecbuf,
5410 mixer->track_fmt.channels,
5411 mixer->track_fmt.sample_rate,
5412 blksize,
5413 blkms, blkdmsbuf,
5414 (mode == AUMODE_PLAY) ? "playback" : "recording");
5415
5416 return 0;
5417
5418 abort:
5419 audio_mixer_destroy(sc, mixer);
5420 return error;
5421 }
5422
5423 /*
5424 * Releases all resources of 'mixer'.
5425 * Note that it does not release the memory area of 'mixer' itself.
5426 * Must be called with sc_exlock held and without sc_lock held.
5427 */
5428 static void
5429 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5430 {
5431 int bufsize;
5432
5433 KASSERT(sc->sc_exlock == 1);
5434
5435 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5436
5437 if (mixer->hwbuf.mem != NULL) {
5438 if (sc->hw_if->freem) {
5439 /* sc_lock is not necessary for freem */
5440 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5441 } else {
5442 kmem_free(mixer->hwbuf.mem, bufsize);
5443 }
5444 mixer->hwbuf.mem = NULL;
5445 }
5446
5447 audio_free(mixer->codecbuf.mem);
5448 audio_free(mixer->mixsample);
5449
5450 cv_destroy(&mixer->outcv);
5451
5452 if (mixer->sih) {
5453 softint_disestablish(mixer->sih);
5454 mixer->sih = NULL;
5455 }
5456 }
5457
5458 /*
5459 * Starts playback mixer.
5460 * Must be called only if sc_pbusy is false.
5461 * Must be called with sc_lock && sc_exlock held.
5462 * Must not be called from the interrupt context.
5463 */
5464 static void
5465 audio_pmixer_start(struct audio_softc *sc, bool force)
5466 {
5467 audio_trackmixer_t *mixer;
5468 int minimum;
5469
5470 KASSERT(mutex_owned(sc->sc_lock));
5471 KASSERT(sc->sc_exlock);
5472 KASSERT(sc->sc_pbusy == false);
5473
5474 mutex_enter(sc->sc_intr_lock);
5475
5476 mixer = sc->sc_pmixer;
5477 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5478 (audiodebug >= 3) ? "begin " : "",
5479 (int)mixer->mixseq, (int)mixer->hwseq,
5480 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5481 force ? " force" : "");
5482
5483 /* Need two blocks to start normally. */
5484 minimum = (force) ? 1 : 2;
5485 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5486 audio_pmixer_process(sc);
5487 }
5488
5489 /* Start output */
5490 audio_pmixer_output(sc);
5491 sc->sc_pbusy = true;
5492
5493 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5494 (int)mixer->mixseq, (int)mixer->hwseq,
5495 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5496
5497 mutex_exit(sc->sc_intr_lock);
5498 }
5499
5500 /*
5501 * When playing back with MD filter:
5502 *
5503 * track track ...
5504 * v v
5505 * + mix (with aint2_t)
5506 * | master volume (with aint2_t)
5507 * v
5508 * mixsample [::::] wide-int 1 block (ring) buffer
5509 * |
5510 * | convert aint2_t -> aint_t
5511 * v
5512 * codecbuf [....] 1 block (ring) buffer
5513 * |
5514 * | convert to hw format
5515 * v
5516 * hwbuf [............] NBLKHW blocks ring buffer
5517 *
5518 * When playing back without MD filter:
5519 *
5520 * mixsample [::::] wide-int 1 block (ring) buffer
5521 * |
5522 * | convert aint2_t -> aint_t
5523 * | (with byte swap if necessary)
5524 * v
5525 * hwbuf [............] NBLKHW blocks ring buffer
5526 *
5527 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5528 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5529 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5530 */
5531
5532 /*
5533 * Performs track mixing and converts it to hwbuf.
5534 * Note that this function doesn't transfer hwbuf to hardware.
5535 * Must be called with sc_intr_lock held.
5536 */
5537 static void
5538 audio_pmixer_process(struct audio_softc *sc)
5539 {
5540 audio_trackmixer_t *mixer;
5541 audio_file_t *f;
5542 int frame_count;
5543 int sample_count;
5544 int mixed;
5545 int i;
5546 aint2_t *m;
5547 aint_t *h;
5548
5549 mixer = sc->sc_pmixer;
5550
5551 frame_count = mixer->frames_per_block;
5552 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5553 "auring_get_contig_free()=%d frame_count=%d",
5554 auring_get_contig_free(&mixer->hwbuf), frame_count);
5555 sample_count = frame_count * mixer->mixfmt.channels;
5556
5557 mixer->mixseq++;
5558
5559 /* Mix all tracks */
5560 mixed = 0;
5561 SLIST_FOREACH(f, &sc->sc_files, entry) {
5562 audio_track_t *track = f->ptrack;
5563
5564 if (track == NULL)
5565 continue;
5566
5567 if (track->is_pause) {
5568 TRACET(4, track, "skip; paused");
5569 continue;
5570 }
5571
5572 /* Skip if the track is used by process context. */
5573 if (audio_track_lock_tryenter(track) == false) {
5574 TRACET(4, track, "skip; in use");
5575 continue;
5576 }
5577
5578 /* Emulate mmap'ped track */
5579 if (track->mmapped) {
5580 auring_push(&track->usrbuf, track->usrbuf_blksize);
5581 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5582 track->usrbuf.head,
5583 track->usrbuf.used,
5584 track->usrbuf.capacity);
5585 }
5586
5587 if (track->outbuf.used < mixer->frames_per_block &&
5588 track->usrbuf.used > 0) {
5589 TRACET(4, track, "process");
5590 audio_track_play(track);
5591 }
5592
5593 if (track->outbuf.used > 0) {
5594 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5595 } else {
5596 TRACET(4, track, "skip; empty");
5597 }
5598
5599 audio_track_lock_exit(track);
5600 }
5601
5602 if (mixed == 0) {
5603 /* Silence */
5604 memset(mixer->mixsample, 0,
5605 frametobyte(&mixer->mixfmt, frame_count));
5606 } else {
5607 if (mixed > 1) {
5608 /* If there are multiple tracks, do auto gain control */
5609 audio_pmixer_agc(mixer, sample_count);
5610 }
5611
5612 /* Apply master volume */
5613 if (mixer->volume < 256) {
5614 m = mixer->mixsample;
5615 for (i = 0; i < sample_count; i++) {
5616 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5617 m++;
5618 }
5619
5620 /*
5621 * Recover the volume gradually at the pace of
5622 * several times per second. If it's too fast, you
5623 * can recognize that the volume changes up and down
5624 * quickly and it's not so comfortable.
5625 */
5626 mixer->voltimer += mixer->blktime_n;
5627 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5628 mixer->volume++;
5629 mixer->voltimer = 0;
5630 #if defined(AUDIO_DEBUG_AGC)
5631 TRACE(1, "volume recover: %d", mixer->volume);
5632 #endif
5633 }
5634 }
5635 }
5636
5637 /*
5638 * The rest is the hardware part.
5639 */
5640
5641 if (mixer->codec) {
5642 h = auring_tailptr_aint(&mixer->codecbuf);
5643 } else {
5644 h = auring_tailptr_aint(&mixer->hwbuf);
5645 }
5646
5647 m = mixer->mixsample;
5648 if (mixer->swap_endian) {
5649 for (i = 0; i < sample_count; i++) {
5650 *h++ = bswap16(*m++);
5651 }
5652 } else {
5653 for (i = 0; i < sample_count; i++) {
5654 *h++ = *m++;
5655 }
5656 }
5657
5658 /* Hardware driver's codec */
5659 if (mixer->codec) {
5660 auring_push(&mixer->codecbuf, frame_count);
5661 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5662 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5663 mixer->codecarg.count = frame_count;
5664 mixer->codec(&mixer->codecarg);
5665 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5666 }
5667
5668 auring_push(&mixer->hwbuf, frame_count);
5669
5670 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5671 (int)mixer->mixseq,
5672 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5673 (mixed == 0) ? " silent" : "");
5674 }
5675
5676 /*
5677 * Do auto gain control.
5678 * Must be called sc_intr_lock held.
5679 */
5680 static void
5681 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5682 {
5683 struct audio_softc *sc __unused;
5684 aint2_t val;
5685 aint2_t maxval;
5686 aint2_t minval;
5687 aint2_t over_plus;
5688 aint2_t over_minus;
5689 aint2_t *m;
5690 int newvol;
5691 int i;
5692
5693 sc = mixer->sc;
5694
5695 /* Overflow detection */
5696 maxval = AINT_T_MAX;
5697 minval = AINT_T_MIN;
5698 m = mixer->mixsample;
5699 for (i = 0; i < sample_count; i++) {
5700 val = *m++;
5701 if (val > maxval)
5702 maxval = val;
5703 else if (val < minval)
5704 minval = val;
5705 }
5706
5707 /* Absolute value of overflowed amount */
5708 over_plus = maxval - AINT_T_MAX;
5709 over_minus = AINT_T_MIN - minval;
5710
5711 if (over_plus > 0 || over_minus > 0) {
5712 if (over_plus > over_minus) {
5713 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5714 } else {
5715 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5716 }
5717
5718 /*
5719 * Change the volume only if new one is smaller.
5720 * Reset the timer even if the volume isn't changed.
5721 */
5722 if (newvol <= mixer->volume) {
5723 mixer->volume = newvol;
5724 mixer->voltimer = 0;
5725 #if defined(AUDIO_DEBUG_AGC)
5726 TRACE(1, "auto volume adjust: %d", mixer->volume);
5727 #endif
5728 }
5729 }
5730 }
5731
5732 /*
5733 * Mix one track.
5734 * 'mixed' specifies the number of tracks mixed so far.
5735 * It returns the number of tracks mixed. In other words, it returns
5736 * mixed + 1 if this track is mixed.
5737 */
5738 static int
5739 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5740 int mixed)
5741 {
5742 int count;
5743 int sample_count;
5744 int remain;
5745 int i;
5746 const aint_t *s;
5747 aint2_t *d;
5748
5749 /* XXX TODO: Is this necessary for now? */
5750 if (mixer->mixseq < track->seq)
5751 return mixed;
5752
5753 count = auring_get_contig_used(&track->outbuf);
5754 count = uimin(count, mixer->frames_per_block);
5755
5756 s = auring_headptr_aint(&track->outbuf);
5757 d = mixer->mixsample;
5758
5759 /*
5760 * Apply track volume with double-sized integer and perform
5761 * additive synthesis.
5762 *
5763 * XXX If you limit the track volume to 1.0 or less (<= 256),
5764 * it would be better to do this in the track conversion stage
5765 * rather than here. However, if you accept the volume to
5766 * be greater than 1.0 (> 256), it's better to do it here.
5767 * Because the operation here is done by double-sized integer.
5768 */
5769 sample_count = count * mixer->mixfmt.channels;
5770 if (mixed == 0) {
5771 /* If this is the first track, assignment can be used. */
5772 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5773 if (track->volume != 256) {
5774 for (i = 0; i < sample_count; i++) {
5775 aint2_t v;
5776 v = *s++;
5777 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5778 }
5779 } else
5780 #endif
5781 {
5782 for (i = 0; i < sample_count; i++) {
5783 *d++ = ((aint2_t)*s++);
5784 }
5785 }
5786 /* Fill silence if the first track is not filled. */
5787 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5788 *d++ = 0;
5789 } else {
5790 /* If this is the second or later, add it. */
5791 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5792 if (track->volume != 256) {
5793 for (i = 0; i < sample_count; i++) {
5794 aint2_t v;
5795 v = *s++;
5796 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5797 }
5798 } else
5799 #endif
5800 {
5801 for (i = 0; i < sample_count; i++) {
5802 *d++ += ((aint2_t)*s++);
5803 }
5804 }
5805 }
5806
5807 auring_take(&track->outbuf, count);
5808 /*
5809 * The counters have to align block even if outbuf is less than
5810 * one block. XXX Is this still necessary?
5811 */
5812 remain = mixer->frames_per_block - count;
5813 if (__predict_false(remain != 0)) {
5814 auring_push(&track->outbuf, remain);
5815 auring_take(&track->outbuf, remain);
5816 }
5817
5818 /*
5819 * Update track sequence.
5820 * mixseq has previous value yet at this point.
5821 */
5822 track->seq = mixer->mixseq + 1;
5823
5824 return mixed + 1;
5825 }
5826
5827 /*
5828 * Output one block from hwbuf to HW.
5829 * Must be called with sc_intr_lock held.
5830 */
5831 static void
5832 audio_pmixer_output(struct audio_softc *sc)
5833 {
5834 audio_trackmixer_t *mixer;
5835 audio_params_t params;
5836 void *start;
5837 void *end;
5838 int blksize;
5839 int error;
5840
5841 mixer = sc->sc_pmixer;
5842 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5843 sc->sc_pbusy,
5844 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5845 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5846 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5847 mixer->hwbuf.used, mixer->frames_per_block);
5848
5849 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5850
5851 if (sc->hw_if->trigger_output) {
5852 /* trigger (at once) */
5853 if (!sc->sc_pbusy) {
5854 start = mixer->hwbuf.mem;
5855 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5856 params = format2_to_params(&mixer->hwbuf.fmt);
5857
5858 error = sc->hw_if->trigger_output(sc->hw_hdl,
5859 start, end, blksize, audio_pintr, sc, ¶ms);
5860 if (error) {
5861 audio_printf(sc,
5862 "trigger_output failed: errno=%d\n",
5863 error);
5864 return;
5865 }
5866 }
5867 } else {
5868 /* start (everytime) */
5869 start = auring_headptr(&mixer->hwbuf);
5870
5871 error = sc->hw_if->start_output(sc->hw_hdl,
5872 start, blksize, audio_pintr, sc);
5873 if (error) {
5874 audio_printf(sc,
5875 "start_output failed: errno=%d\n", error);
5876 return;
5877 }
5878 }
5879 }
5880
5881 /*
5882 * This is an interrupt handler for playback.
5883 * It is called with sc_intr_lock held.
5884 *
5885 * It is usually called from hardware interrupt. However, note that
5886 * for some drivers (e.g. uaudio) it is called from software interrupt.
5887 */
5888 static void
5889 audio_pintr(void *arg)
5890 {
5891 struct audio_softc *sc;
5892 audio_trackmixer_t *mixer;
5893
5894 sc = arg;
5895 KASSERT(mutex_owned(sc->sc_intr_lock));
5896
5897 if (sc->sc_dying)
5898 return;
5899 if (sc->sc_pbusy == false) {
5900 #if defined(DIAGNOSTIC)
5901 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5902 device_xname(sc->hw_dev));
5903 #endif
5904 return;
5905 }
5906
5907 mixer = sc->sc_pmixer;
5908 mixer->hw_complete_counter += mixer->frames_per_block;
5909 mixer->hwseq++;
5910
5911 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5912
5913 TRACE(4,
5914 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5915 mixer->hwseq, mixer->hw_complete_counter,
5916 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5917
5918 #if defined(AUDIO_HW_SINGLE_BUFFER)
5919 /*
5920 * Create a new block here and output it immediately.
5921 * It makes a latency lower but needs machine power.
5922 */
5923 audio_pmixer_process(sc);
5924 audio_pmixer_output(sc);
5925 #else
5926 /*
5927 * It is called when block N output is done.
5928 * Output immediately block N+1 created by the last interrupt.
5929 * And then create block N+2 for the next interrupt.
5930 * This method makes playback robust even on slower machines.
5931 * Instead the latency is increased by one block.
5932 */
5933
5934 /* At first, output ready block. */
5935 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5936 audio_pmixer_output(sc);
5937 }
5938
5939 bool later = false;
5940
5941 if (mixer->hwbuf.used < mixer->frames_per_block) {
5942 later = true;
5943 }
5944
5945 /* Then, process next block. */
5946 audio_pmixer_process(sc);
5947
5948 if (later) {
5949 audio_pmixer_output(sc);
5950 }
5951 #endif
5952
5953 /*
5954 * When this interrupt is the real hardware interrupt, disabling
5955 * preemption here is not necessary. But some drivers (e.g. uaudio)
5956 * emulate it by software interrupt, so kpreempt_disable is necessary.
5957 */
5958 kpreempt_disable();
5959 softint_schedule(mixer->sih);
5960 kpreempt_enable();
5961 }
5962
5963 /*
5964 * Starts record mixer.
5965 * Must be called only if sc_rbusy is false.
5966 * Must be called with sc_lock && sc_exlock held.
5967 * Must not be called from the interrupt context.
5968 */
5969 static void
5970 audio_rmixer_start(struct audio_softc *sc)
5971 {
5972
5973 KASSERT(mutex_owned(sc->sc_lock));
5974 KASSERT(sc->sc_exlock);
5975 KASSERT(sc->sc_rbusy == false);
5976
5977 mutex_enter(sc->sc_intr_lock);
5978
5979 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5980 audio_rmixer_input(sc);
5981 sc->sc_rbusy = true;
5982 TRACE(3, "end");
5983
5984 mutex_exit(sc->sc_intr_lock);
5985 }
5986
5987 /*
5988 * When recording with MD filter:
5989 *
5990 * hwbuf [............] NBLKHW blocks ring buffer
5991 * |
5992 * | convert from hw format
5993 * v
5994 * codecbuf [....] 1 block (ring) buffer
5995 * | |
5996 * v v
5997 * track track ...
5998 *
5999 * When recording without MD filter:
6000 *
6001 * hwbuf [............] NBLKHW blocks ring buffer
6002 * | |
6003 * v v
6004 * track track ...
6005 *
6006 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
6007 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
6008 */
6009
6010 /*
6011 * Distribute a recorded block to all recording tracks.
6012 */
6013 static void
6014 audio_rmixer_process(struct audio_softc *sc)
6015 {
6016 audio_trackmixer_t *mixer;
6017 audio_ring_t *mixersrc;
6018 audio_file_t *f;
6019 aint_t *p;
6020 int count;
6021 int bytes;
6022 int i;
6023
6024 mixer = sc->sc_rmixer;
6025
6026 /*
6027 * count is the number of frames to be retrieved this time.
6028 * count should be one block.
6029 */
6030 count = auring_get_contig_used(&mixer->hwbuf);
6031 count = uimin(count, mixer->frames_per_block);
6032 if (count <= 0) {
6033 TRACE(4, "count %d: too short", count);
6034 return;
6035 }
6036 bytes = frametobyte(&mixer->track_fmt, count);
6037
6038 /* Hardware driver's codec */
6039 if (mixer->codec) {
6040 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
6041 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
6042 mixer->codecarg.count = count;
6043 mixer->codec(&mixer->codecarg);
6044 auring_take(&mixer->hwbuf, mixer->codecarg.count);
6045 auring_push(&mixer->codecbuf, mixer->codecarg.count);
6046 mixersrc = &mixer->codecbuf;
6047 } else {
6048 mixersrc = &mixer->hwbuf;
6049 }
6050
6051 if (mixer->swap_endian) {
6052 /* inplace conversion */
6053 p = auring_headptr_aint(mixersrc);
6054 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
6055 *p = bswap16(*p);
6056 }
6057 }
6058
6059 /* Distribute to all tracks. */
6060 SLIST_FOREACH(f, &sc->sc_files, entry) {
6061 audio_track_t *track = f->rtrack;
6062 audio_ring_t *input;
6063
6064 if (track == NULL)
6065 continue;
6066
6067 if (track->is_pause) {
6068 TRACET(4, track, "skip; paused");
6069 continue;
6070 }
6071
6072 if (audio_track_lock_tryenter(track) == false) {
6073 TRACET(4, track, "skip; in use");
6074 continue;
6075 }
6076
6077 /*
6078 * If the track buffer has less than one block of free space,
6079 * make one block free.
6080 */
6081 input = track->input;
6082 if (input->capacity - input->used < mixer->frames_per_block) {
6083 int drops = mixer->frames_per_block -
6084 (input->capacity - input->used);
6085 track->dropframes += drops;
6086 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
6087 drops,
6088 input->head, input->used, input->capacity);
6089 auring_take(input, drops);
6090 }
6091
6092 KASSERTMSG(auring_tail(input) % mixer->frames_per_block == 0,
6093 "inputtail=%d mixer->frames_per_block=%d",
6094 auring_tail(input), mixer->frames_per_block);
6095 memcpy(auring_tailptr_aint(input),
6096 auring_headptr_aint(mixersrc),
6097 bytes);
6098 auring_push(input, count);
6099
6100 track->stamp++;
6101
6102 audio_track_lock_exit(track);
6103 }
6104
6105 auring_take(mixersrc, count);
6106 }
6107
6108 /*
6109 * Input one block from HW to hwbuf.
6110 * Must be called with sc_intr_lock held.
6111 */
6112 static void
6113 audio_rmixer_input(struct audio_softc *sc)
6114 {
6115 audio_trackmixer_t *mixer;
6116 audio_params_t params;
6117 void *start;
6118 void *end;
6119 int blksize;
6120 int error;
6121
6122 mixer = sc->sc_rmixer;
6123 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
6124
6125 if (sc->hw_if->trigger_input) {
6126 /* trigger (at once) */
6127 if (!sc->sc_rbusy) {
6128 start = mixer->hwbuf.mem;
6129 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
6130 params = format2_to_params(&mixer->hwbuf.fmt);
6131
6132 error = sc->hw_if->trigger_input(sc->hw_hdl,
6133 start, end, blksize, audio_rintr, sc, ¶ms);
6134 if (error) {
6135 audio_printf(sc,
6136 "trigger_input failed: errno=%d\n",
6137 error);
6138 return;
6139 }
6140 }
6141 } else {
6142 /* start (everytime) */
6143 start = auring_tailptr(&mixer->hwbuf);
6144
6145 error = sc->hw_if->start_input(sc->hw_hdl,
6146 start, blksize, audio_rintr, sc);
6147 if (error) {
6148 audio_printf(sc,
6149 "start_input failed: errno=%d\n", error);
6150 return;
6151 }
6152 }
6153 }
6154
6155 /*
6156 * This is an interrupt handler for recording.
6157 * It is called with sc_intr_lock.
6158 *
6159 * It is usually called from hardware interrupt. However, note that
6160 * for some drivers (e.g. uaudio) it is called from software interrupt.
6161 */
6162 static void
6163 audio_rintr(void *arg)
6164 {
6165 struct audio_softc *sc;
6166 audio_trackmixer_t *mixer;
6167
6168 sc = arg;
6169 KASSERT(mutex_owned(sc->sc_intr_lock));
6170
6171 if (sc->sc_dying)
6172 return;
6173 if (sc->sc_rbusy == false) {
6174 #if defined(DIAGNOSTIC)
6175 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
6176 device_xname(sc->hw_dev));
6177 #endif
6178 return;
6179 }
6180
6181 mixer = sc->sc_rmixer;
6182 mixer->hw_complete_counter += mixer->frames_per_block;
6183 mixer->hwseq++;
6184
6185 auring_push(&mixer->hwbuf, mixer->frames_per_block);
6186
6187 TRACE(4,
6188 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
6189 mixer->hwseq, mixer->hw_complete_counter,
6190 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
6191
6192 /* Distrubute recorded block */
6193 audio_rmixer_process(sc);
6194
6195 /* Request next block */
6196 audio_rmixer_input(sc);
6197
6198 /*
6199 * When this interrupt is the real hardware interrupt, disabling
6200 * preemption here is not necessary. But some drivers (e.g. uaudio)
6201 * emulate it by software interrupt, so kpreempt_disable is necessary.
6202 */
6203 kpreempt_disable();
6204 softint_schedule(mixer->sih);
6205 kpreempt_enable();
6206 }
6207
6208 /*
6209 * Halts playback mixer.
6210 * This function also clears related parameters, so call this function
6211 * instead of calling halt_output directly.
6212 * Must be called only if sc_pbusy is true.
6213 * Must be called with sc_lock && sc_exlock held.
6214 */
6215 static int
6216 audio_pmixer_halt(struct audio_softc *sc)
6217 {
6218 int error;
6219
6220 TRACE(2, "called");
6221 KASSERT(mutex_owned(sc->sc_lock));
6222 KASSERT(sc->sc_exlock);
6223
6224 mutex_enter(sc->sc_intr_lock);
6225 error = sc->hw_if->halt_output(sc->hw_hdl);
6226
6227 /* Halts anyway even if some error has occurred. */
6228 sc->sc_pbusy = false;
6229 sc->sc_pmixer->hwbuf.head = 0;
6230 sc->sc_pmixer->hwbuf.used = 0;
6231 sc->sc_pmixer->mixseq = 0;
6232 sc->sc_pmixer->hwseq = 0;
6233 mutex_exit(sc->sc_intr_lock);
6234
6235 return error;
6236 }
6237
6238 /*
6239 * Halts recording mixer.
6240 * This function also clears related parameters, so call this function
6241 * instead of calling halt_input directly.
6242 * Must be called only if sc_rbusy is true.
6243 * Must be called with sc_lock && sc_exlock held.
6244 */
6245 static int
6246 audio_rmixer_halt(struct audio_softc *sc)
6247 {
6248 int error;
6249
6250 TRACE(2, "called");
6251 KASSERT(mutex_owned(sc->sc_lock));
6252 KASSERT(sc->sc_exlock);
6253
6254 mutex_enter(sc->sc_intr_lock);
6255 error = sc->hw_if->halt_input(sc->hw_hdl);
6256
6257 /* Halts anyway even if some error has occurred. */
6258 sc->sc_rbusy = false;
6259 sc->sc_rmixer->hwbuf.head = 0;
6260 sc->sc_rmixer->hwbuf.used = 0;
6261 sc->sc_rmixer->mixseq = 0;
6262 sc->sc_rmixer->hwseq = 0;
6263 mutex_exit(sc->sc_intr_lock);
6264
6265 return error;
6266 }
6267
6268 /*
6269 * Flush this track.
6270 * Halts all operations, clears all buffers, reset error counters.
6271 * XXX I'm not sure...
6272 */
6273 static void
6274 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
6275 {
6276
6277 KASSERT(track);
6278 TRACET(3, track, "clear");
6279
6280 audio_track_lock_enter(track);
6281
6282 /* Clear all internal parameters. */
6283 track->usrbuf.used = 0;
6284 track->usrbuf.head = 0;
6285 if (track->codec.filter) {
6286 track->codec.srcbuf.used = 0;
6287 track->codec.srcbuf.head = 0;
6288 }
6289 if (track->chvol.filter) {
6290 track->chvol.srcbuf.used = 0;
6291 track->chvol.srcbuf.head = 0;
6292 }
6293 if (track->chmix.filter) {
6294 track->chmix.srcbuf.used = 0;
6295 track->chmix.srcbuf.head = 0;
6296 }
6297 if (track->freq.filter) {
6298 track->freq.srcbuf.used = 0;
6299 track->freq.srcbuf.head = 0;
6300 if (track->freq_step < 65536)
6301 track->freq_current = 65536;
6302 else
6303 track->freq_current = 0;
6304 memset(track->freq_prev, 0, sizeof(track->freq_prev));
6305 memset(track->freq_curr, 0, sizeof(track->freq_curr));
6306 }
6307 /* Clear buffer, then operation halts naturally. */
6308 track->outbuf.used = 0;
6309
6310 /* Clear counters. */
6311 track->stamp = 0;
6312 track->last_stamp = 0;
6313 track->dropframes = 0;
6314
6315 audio_track_lock_exit(track);
6316 }
6317
6318 /*
6319 * Drain the track.
6320 * track must be present and for playback.
6321 * If successful, it returns 0. Otherwise returns errno.
6322 * Must be called with sc_lock held.
6323 */
6324 static int
6325 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
6326 {
6327 audio_trackmixer_t *mixer;
6328 int done;
6329 int error;
6330
6331 KASSERT(track);
6332 TRACET(3, track, "start");
6333 mixer = track->mixer;
6334 KASSERT(mutex_owned(sc->sc_lock));
6335
6336 /* Ignore them if pause. */
6337 if (track->is_pause) {
6338 TRACET(3, track, "pause -> clear");
6339 track->pstate = AUDIO_STATE_CLEAR;
6340 }
6341 /* Terminate early here if there is no data in the track. */
6342 if (track->pstate == AUDIO_STATE_CLEAR) {
6343 TRACET(3, track, "no need to drain");
6344 return 0;
6345 }
6346 track->pstate = AUDIO_STATE_DRAINING;
6347
6348 for (;;) {
6349 /* I want to display it before condition evaluation. */
6350 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
6351 (int)curproc->p_pid, (int)curlwp->l_lid,
6352 (int)track->seq, (int)mixer->hwseq,
6353 track->outbuf.head, track->outbuf.used,
6354 track->outbuf.capacity);
6355
6356 /* Condition to terminate */
6357 audio_track_lock_enter(track);
6358 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
6359 track->outbuf.used == 0 &&
6360 track->seq <= mixer->hwseq);
6361 audio_track_lock_exit(track);
6362 if (done)
6363 break;
6364
6365 TRACET(3, track, "sleep");
6366 error = audio_track_waitio(sc, track);
6367 if (error)
6368 return error;
6369
6370 /* XXX call audio_track_play here ? */
6371 }
6372
6373 track->pstate = AUDIO_STATE_CLEAR;
6374 TRACET(3, track, "done");
6375 return 0;
6376 }
6377
6378 /*
6379 * Send signal to process.
6380 * This is intended to be called only from audio_softintr_{rd,wr}.
6381 * Must be called without sc_intr_lock held.
6382 */
6383 static inline void
6384 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6385 {
6386 proc_t *p;
6387
6388 KASSERT(pid != 0);
6389
6390 /*
6391 * psignal() must be called without spin lock held.
6392 */
6393
6394 mutex_enter(&proc_lock);
6395 p = proc_find(pid);
6396 if (p)
6397 psignal(p, signum);
6398 mutex_exit(&proc_lock);
6399 }
6400
6401 /*
6402 * This is software interrupt handler for record.
6403 * It is called from recording hardware interrupt everytime.
6404 * It does:
6405 * - Deliver SIGIO for all async processes.
6406 * - Notify to audio_read() that data has arrived.
6407 * - selnotify() for select/poll-ing processes.
6408 */
6409 /*
6410 * XXX If a process issues FIOASYNC between hardware interrupt and
6411 * software interrupt, (stray) SIGIO will be sent to the process
6412 * despite the fact that it has not receive recorded data yet.
6413 */
6414 static void
6415 audio_softintr_rd(void *cookie)
6416 {
6417 struct audio_softc *sc = cookie;
6418 audio_file_t *f;
6419 pid_t pid;
6420
6421 mutex_enter(sc->sc_lock);
6422
6423 SLIST_FOREACH(f, &sc->sc_files, entry) {
6424 audio_track_t *track = f->rtrack;
6425
6426 if (track == NULL)
6427 continue;
6428
6429 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6430 track->input->head,
6431 track->input->used,
6432 track->input->capacity);
6433
6434 pid = f->async_audio;
6435 if (pid != 0) {
6436 TRACEF(4, f, "sending SIGIO %d", pid);
6437 audio_psignal(sc, pid, SIGIO);
6438 }
6439 }
6440
6441 /* Notify that data has arrived. */
6442 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6443 cv_broadcast(&sc->sc_rmixer->outcv);
6444
6445 mutex_exit(sc->sc_lock);
6446 }
6447
6448 /*
6449 * This is software interrupt handler for playback.
6450 * It is called from playback hardware interrupt everytime.
6451 * It does:
6452 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6453 * - Notify to audio_write() that outbuf block available.
6454 * - selnotify() for select/poll-ing processes if there are any writable
6455 * (used < lowat) processes. Checking each descriptor will be done by
6456 * filt_audiowrite_event().
6457 */
6458 static void
6459 audio_softintr_wr(void *cookie)
6460 {
6461 struct audio_softc *sc = cookie;
6462 audio_file_t *f;
6463 bool found;
6464 pid_t pid;
6465
6466 TRACE(4, "called");
6467 found = false;
6468
6469 mutex_enter(sc->sc_lock);
6470
6471 SLIST_FOREACH(f, &sc->sc_files, entry) {
6472 audio_track_t *track = f->ptrack;
6473
6474 if (track == NULL)
6475 continue;
6476
6477 TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6478 (int)track->seq,
6479 track->outbuf.head,
6480 track->outbuf.used,
6481 track->outbuf.capacity);
6482
6483 /*
6484 * Send a signal if the process is async mode and
6485 * used is lower than lowat.
6486 */
6487 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6488 !track->is_pause) {
6489 /* For selnotify */
6490 found = true;
6491 /* For SIGIO */
6492 pid = f->async_audio;
6493 if (pid != 0) {
6494 TRACEF(4, f, "sending SIGIO %d", pid);
6495 audio_psignal(sc, pid, SIGIO);
6496 }
6497 }
6498 }
6499
6500 /*
6501 * Notify for select/poll when someone become writable.
6502 * It needs sc_lock (and not sc_intr_lock).
6503 */
6504 if (found) {
6505 TRACE(4, "selnotify");
6506 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6507 }
6508
6509 /* Notify to audio_write() that outbuf available. */
6510 cv_broadcast(&sc->sc_pmixer->outcv);
6511
6512 mutex_exit(sc->sc_lock);
6513 }
6514
6515 /*
6516 * Check (and convert) the format *p came from userland.
6517 * If successful, it writes back the converted format to *p if necessary and
6518 * returns 0. Otherwise returns errno (*p may be changed even in this case).
6519 */
6520 static int
6521 audio_check_params(audio_format2_t *p)
6522 {
6523
6524 /*
6525 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6526 *
6527 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6528 * So, it's always signed, as in SunOS.
6529 *
6530 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6531 * So, it's always unsigned, as in SunOS.
6532 */
6533 if (p->encoding == AUDIO_ENCODING_PCM16) {
6534 p->encoding = AUDIO_ENCODING_SLINEAR;
6535 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6536 if (p->precision == 8)
6537 p->encoding = AUDIO_ENCODING_ULINEAR;
6538 else
6539 return EINVAL;
6540 }
6541
6542 /*
6543 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6544 * suffix.
6545 */
6546 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6547 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6548 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6549 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6550
6551 switch (p->encoding) {
6552 case AUDIO_ENCODING_ULAW:
6553 case AUDIO_ENCODING_ALAW:
6554 if (p->precision != 8)
6555 return EINVAL;
6556 break;
6557 case AUDIO_ENCODING_ADPCM:
6558 if (p->precision != 4 && p->precision != 8)
6559 return EINVAL;
6560 break;
6561 case AUDIO_ENCODING_SLINEAR_LE:
6562 case AUDIO_ENCODING_SLINEAR_BE:
6563 case AUDIO_ENCODING_ULINEAR_LE:
6564 case AUDIO_ENCODING_ULINEAR_BE:
6565 if (p->precision != 8 && p->precision != 16 &&
6566 p->precision != 24 && p->precision != 32)
6567 return EINVAL;
6568
6569 /* 8bit format does not have endianness. */
6570 if (p->precision == 8) {
6571 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6572 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6573 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6574 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6575 }
6576
6577 if (p->precision > p->stride)
6578 return EINVAL;
6579 break;
6580 case AUDIO_ENCODING_MPEG_L1_STREAM:
6581 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6582 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6583 case AUDIO_ENCODING_MPEG_L2_STREAM:
6584 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6585 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6586 case AUDIO_ENCODING_AC3:
6587 break;
6588 default:
6589 return EINVAL;
6590 }
6591
6592 /* sanity check # of channels*/
6593 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6594 return EINVAL;
6595
6596 return 0;
6597 }
6598
6599 /*
6600 * Initialize playback and record mixers.
6601 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6602 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6603 * the filter registration information. These four must not be NULL.
6604 * If successful returns 0. Otherwise returns errno.
6605 * Must be called with sc_exlock held and without sc_lock held.
6606 * Must not be called if there are any tracks.
6607 * Caller should check that the initialization succeed by whether
6608 * sc_[pr]mixer is not NULL.
6609 */
6610 static int
6611 audio_mixers_init(struct audio_softc *sc, int mode,
6612 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6613 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6614 {
6615 int error;
6616
6617 KASSERT(phwfmt != NULL);
6618 KASSERT(rhwfmt != NULL);
6619 KASSERT(pfil != NULL);
6620 KASSERT(rfil != NULL);
6621 KASSERT(sc->sc_exlock);
6622
6623 if ((mode & AUMODE_PLAY)) {
6624 if (sc->sc_pmixer == NULL) {
6625 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6626 KM_SLEEP);
6627 } else {
6628 /* destroy() doesn't free memory. */
6629 audio_mixer_destroy(sc, sc->sc_pmixer);
6630 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6631 }
6632 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6633 if (error) {
6634 /* audio_mixer_init already displayed error code */
6635 audio_printf(sc, "configuring playback mode failed\n");
6636 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6637 sc->sc_pmixer = NULL;
6638 return error;
6639 }
6640 }
6641 if ((mode & AUMODE_RECORD)) {
6642 if (sc->sc_rmixer == NULL) {
6643 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6644 KM_SLEEP);
6645 } else {
6646 /* destroy() doesn't free memory. */
6647 audio_mixer_destroy(sc, sc->sc_rmixer);
6648 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6649 }
6650 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6651 if (error) {
6652 /* audio_mixer_init already displayed error code */
6653 audio_printf(sc, "configuring record mode failed\n");
6654 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6655 sc->sc_rmixer = NULL;
6656 return error;
6657 }
6658 }
6659
6660 return 0;
6661 }
6662
6663 /*
6664 * Select a frequency.
6665 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6666 * XXX Better algorithm?
6667 */
6668 static int
6669 audio_select_freq(const struct audio_format *fmt)
6670 {
6671 int freq;
6672 int high;
6673 int low;
6674 int j;
6675
6676 if (fmt->frequency_type == 0) {
6677 low = fmt->frequency[0];
6678 high = fmt->frequency[1];
6679 freq = 48000;
6680 if (low <= freq && freq <= high) {
6681 return freq;
6682 }
6683 freq = 44100;
6684 if (low <= freq && freq <= high) {
6685 return freq;
6686 }
6687 return high;
6688 } else {
6689 for (j = 0; j < fmt->frequency_type; j++) {
6690 if (fmt->frequency[j] == 48000) {
6691 return fmt->frequency[j];
6692 }
6693 }
6694 high = 0;
6695 for (j = 0; j < fmt->frequency_type; j++) {
6696 if (fmt->frequency[j] == 44100) {
6697 return fmt->frequency[j];
6698 }
6699 if (fmt->frequency[j] > high) {
6700 high = fmt->frequency[j];
6701 }
6702 }
6703 return high;
6704 }
6705 }
6706
6707 /*
6708 * Choose the most preferred hardware format.
6709 * If successful, it will store the chosen format into *cand and return 0.
6710 * Otherwise, return errno.
6711 * Must be called without sc_lock held.
6712 */
6713 static int
6714 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6715 {
6716 audio_format_query_t query;
6717 int cand_score;
6718 int score;
6719 int i;
6720 int error;
6721
6722 /*
6723 * Score each formats and choose the highest one.
6724 *
6725 * +---- priority(0-3)
6726 * |+--- encoding/precision
6727 * ||+-- channels
6728 * score = 0x000000PEC
6729 */
6730
6731 cand_score = 0;
6732 for (i = 0; ; i++) {
6733 memset(&query, 0, sizeof(query));
6734 query.index = i;
6735
6736 mutex_enter(sc->sc_lock);
6737 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6738 mutex_exit(sc->sc_lock);
6739 if (error == EINVAL)
6740 break;
6741 if (error)
6742 return error;
6743
6744 #if defined(AUDIO_DEBUG)
6745 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6746 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6747 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6748 query.fmt.priority,
6749 audio_encoding_name(query.fmt.encoding),
6750 query.fmt.validbits,
6751 query.fmt.precision,
6752 query.fmt.channels);
6753 if (query.fmt.frequency_type == 0) {
6754 DPRINTF(1, "{%d-%d",
6755 query.fmt.frequency[0], query.fmt.frequency[1]);
6756 } else {
6757 int j;
6758 for (j = 0; j < query.fmt.frequency_type; j++) {
6759 DPRINTF(1, "%c%d",
6760 (j == 0) ? '{' : ',',
6761 query.fmt.frequency[j]);
6762 }
6763 }
6764 DPRINTF(1, "}\n");
6765 #endif
6766
6767 if ((query.fmt.mode & mode) == 0) {
6768 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6769 mode);
6770 continue;
6771 }
6772
6773 if (query.fmt.priority < 0) {
6774 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6775 continue;
6776 }
6777
6778 /* Score */
6779 score = (query.fmt.priority & 3) * 0x100;
6780 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6781 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6782 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6783 score += 0x20;
6784 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6785 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6786 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6787 score += 0x10;
6788 }
6789
6790 /* Do not prefer surround formats */
6791 if (query.fmt.channels <= 2)
6792 score += query.fmt.channels;
6793
6794 if (score < cand_score) {
6795 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6796 score, cand_score);
6797 continue;
6798 }
6799
6800 /* Update candidate */
6801 cand_score = score;
6802 cand->encoding = query.fmt.encoding;
6803 cand->precision = query.fmt.validbits;
6804 cand->stride = query.fmt.precision;
6805 cand->channels = query.fmt.channels;
6806 cand->sample_rate = audio_select_freq(&query.fmt);
6807 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6808 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6809 cand_score, query.fmt.priority,
6810 audio_encoding_name(query.fmt.encoding),
6811 cand->precision, cand->stride,
6812 cand->channels, cand->sample_rate);
6813 }
6814
6815 if (cand_score == 0) {
6816 DPRINTF(1, "%s no fmt\n", __func__);
6817 return ENXIO;
6818 }
6819 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6820 audio_encoding_name(cand->encoding),
6821 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6822 return 0;
6823 }
6824
6825 /*
6826 * Validate fmt with query_format.
6827 * If fmt is included in the result of query_format, returns 0.
6828 * Otherwise returns EINVAL.
6829 * Must be called without sc_lock held.
6830 */
6831 static int
6832 audio_hw_validate_format(struct audio_softc *sc, int mode,
6833 const audio_format2_t *fmt)
6834 {
6835 audio_format_query_t query;
6836 struct audio_format *q;
6837 int index;
6838 int error;
6839 int j;
6840
6841 for (index = 0; ; index++) {
6842 query.index = index;
6843 mutex_enter(sc->sc_lock);
6844 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6845 mutex_exit(sc->sc_lock);
6846 if (error == EINVAL)
6847 break;
6848 if (error)
6849 return error;
6850
6851 q = &query.fmt;
6852 /*
6853 * Note that fmt is audio_format2_t (precision/stride) but
6854 * q is audio_format_t (validbits/precision).
6855 */
6856 if ((q->mode & mode) == 0) {
6857 continue;
6858 }
6859 if (fmt->encoding != q->encoding) {
6860 continue;
6861 }
6862 if (fmt->precision != q->validbits) {
6863 continue;
6864 }
6865 if (fmt->stride != q->precision) {
6866 continue;
6867 }
6868 if (fmt->channels != q->channels) {
6869 continue;
6870 }
6871 if (q->frequency_type == 0) {
6872 if (fmt->sample_rate < q->frequency[0] ||
6873 fmt->sample_rate > q->frequency[1]) {
6874 continue;
6875 }
6876 } else {
6877 for (j = 0; j < q->frequency_type; j++) {
6878 if (fmt->sample_rate == q->frequency[j])
6879 break;
6880 }
6881 if (j == query.fmt.frequency_type) {
6882 continue;
6883 }
6884 }
6885
6886 /* Matched. */
6887 return 0;
6888 }
6889
6890 return EINVAL;
6891 }
6892
6893 /*
6894 * Set track mixer's format depending on ai->mode.
6895 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6896 * with ai.play.*.
6897 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6898 * with ai.record.*.
6899 * All other fields in ai are ignored.
6900 * If successful returns 0. Otherwise returns errno.
6901 * This function does not roll back even if it fails.
6902 * Must be called with sc_exlock held and without sc_lock held.
6903 */
6904 static int
6905 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6906 {
6907 audio_format2_t phwfmt;
6908 audio_format2_t rhwfmt;
6909 audio_filter_reg_t pfil;
6910 audio_filter_reg_t rfil;
6911 int mode;
6912 int error;
6913
6914 KASSERT(sc->sc_exlock);
6915
6916 /*
6917 * Even when setting either one of playback and recording,
6918 * both must be halted.
6919 */
6920 if (sc->sc_popens + sc->sc_ropens > 0)
6921 return EBUSY;
6922
6923 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6924 return ENOTTY;
6925
6926 mode = ai->mode;
6927 if ((mode & AUMODE_PLAY)) {
6928 phwfmt.encoding = ai->play.encoding;
6929 phwfmt.precision = ai->play.precision;
6930 phwfmt.stride = ai->play.precision;
6931 phwfmt.channels = ai->play.channels;
6932 phwfmt.sample_rate = ai->play.sample_rate;
6933 }
6934 if ((mode & AUMODE_RECORD)) {
6935 rhwfmt.encoding = ai->record.encoding;
6936 rhwfmt.precision = ai->record.precision;
6937 rhwfmt.stride = ai->record.precision;
6938 rhwfmt.channels = ai->record.channels;
6939 rhwfmt.sample_rate = ai->record.sample_rate;
6940 }
6941
6942 /* On non-independent devices, use the same format for both. */
6943 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6944 if (mode == AUMODE_RECORD) {
6945 phwfmt = rhwfmt;
6946 } else {
6947 rhwfmt = phwfmt;
6948 }
6949 mode = AUMODE_PLAY | AUMODE_RECORD;
6950 }
6951
6952 /* Then, unset the direction not exist on the hardware. */
6953 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6954 mode &= ~AUMODE_PLAY;
6955 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6956 mode &= ~AUMODE_RECORD;
6957
6958 /* debug */
6959 if ((mode & AUMODE_PLAY)) {
6960 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6961 audio_encoding_name(phwfmt.encoding),
6962 phwfmt.precision,
6963 phwfmt.stride,
6964 phwfmt.channels,
6965 phwfmt.sample_rate);
6966 }
6967 if ((mode & AUMODE_RECORD)) {
6968 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6969 audio_encoding_name(rhwfmt.encoding),
6970 rhwfmt.precision,
6971 rhwfmt.stride,
6972 rhwfmt.channels,
6973 rhwfmt.sample_rate);
6974 }
6975
6976 /* Check the format */
6977 if ((mode & AUMODE_PLAY)) {
6978 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6979 TRACE(1, "invalid format");
6980 return EINVAL;
6981 }
6982 }
6983 if ((mode & AUMODE_RECORD)) {
6984 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6985 TRACE(1, "invalid format");
6986 return EINVAL;
6987 }
6988 }
6989
6990 /* Configure the mixers. */
6991 memset(&pfil, 0, sizeof(pfil));
6992 memset(&rfil, 0, sizeof(rfil));
6993 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6994 if (error)
6995 return error;
6996
6997 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6998 if (error)
6999 return error;
7000
7001 /*
7002 * Reinitialize the sticky parameters for /dev/sound.
7003 * If the number of the hardware channels becomes less than the number
7004 * of channels that sticky parameters remember, subsequent /dev/sound
7005 * open will fail. To prevent this, reinitialize the sticky
7006 * parameters whenever the hardware format is changed.
7007 */
7008 sc->sc_sound_pparams = params_to_format2(&audio_default);
7009 sc->sc_sound_rparams = params_to_format2(&audio_default);
7010 sc->sc_sound_ppause = false;
7011 sc->sc_sound_rpause = false;
7012
7013 return 0;
7014 }
7015
7016 /*
7017 * Store current mixers format into *ai.
7018 * Must be called with sc_exlock held.
7019 */
7020 static void
7021 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
7022 {
7023
7024 KASSERT(sc->sc_exlock);
7025
7026 /*
7027 * There is no stride information in audio_info but it doesn't matter.
7028 * trackmixer always treats stride and precision as the same.
7029 */
7030 AUDIO_INITINFO(ai);
7031 ai->mode = 0;
7032 if (sc->sc_pmixer) {
7033 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
7034 ai->play.encoding = fmt->encoding;
7035 ai->play.precision = fmt->precision;
7036 ai->play.channels = fmt->channels;
7037 ai->play.sample_rate = fmt->sample_rate;
7038 ai->mode |= AUMODE_PLAY;
7039 }
7040 if (sc->sc_rmixer) {
7041 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
7042 ai->record.encoding = fmt->encoding;
7043 ai->record.precision = fmt->precision;
7044 ai->record.channels = fmt->channels;
7045 ai->record.sample_rate = fmt->sample_rate;
7046 ai->mode |= AUMODE_RECORD;
7047 }
7048 }
7049
7050 /*
7051 * audio_info details:
7052 *
7053 * ai.{play,record}.sample_rate (R/W)
7054 * ai.{play,record}.encoding (R/W)
7055 * ai.{play,record}.precision (R/W)
7056 * ai.{play,record}.channels (R/W)
7057 * These specify the playback or recording format.
7058 * Ignore members within an inactive track.
7059 *
7060 * ai.mode (R/W)
7061 * It specifies the playback or recording mode, AUMODE_*.
7062 * Currently, a mode change operation by ai.mode after opening is
7063 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
7064 * However, it's possible to get or to set for backward compatibility.
7065 *
7066 * ai.{hiwat,lowat} (R/W)
7067 * These specify the high water mark and low water mark for playback
7068 * track. The unit is block.
7069 *
7070 * ai.{play,record}.gain (R/W)
7071 * It specifies the HW mixer volume in 0-255.
7072 * It is historical reason that the gain is connected to HW mixer.
7073 *
7074 * ai.{play,record}.balance (R/W)
7075 * It specifies the left-right balance of HW mixer in 0-64.
7076 * 32 means the center.
7077 * It is historical reason that the balance is connected to HW mixer.
7078 *
7079 * ai.{play,record}.port (R/W)
7080 * It specifies the input/output port of HW mixer.
7081 *
7082 * ai.monitor_gain (R/W)
7083 * It specifies the recording monitor gain(?) of HW mixer.
7084 *
7085 * ai.{play,record}.pause (R/W)
7086 * Non-zero means the track is paused.
7087 *
7088 * ai.play.seek (R/-)
7089 * It indicates the number of bytes written but not processed.
7090 * ai.record.seek (R/-)
7091 * It indicates the number of bytes to be able to read.
7092 *
7093 * ai.{play,record}.avail_ports (R/-)
7094 * Mixer info.
7095 *
7096 * ai.{play,record}.buffer_size (R/-)
7097 * It indicates the buffer size in bytes. Internally it means usrbuf.
7098 *
7099 * ai.{play,record}.samples (R/-)
7100 * It indicates the total number of bytes played or recorded.
7101 *
7102 * ai.{play,record}.eof (R/-)
7103 * It indicates the number of times reached EOF(?).
7104 *
7105 * ai.{play,record}.error (R/-)
7106 * Non-zero indicates overflow/underflow has occurred.
7107 *
7108 * ai.{play,record}.waiting (R/-)
7109 * Non-zero indicates that other process waits to open.
7110 * It will never happen anymore.
7111 *
7112 * ai.{play,record}.open (R/-)
7113 * Non-zero indicates the direction is opened by this process(?).
7114 * XXX Is this better to indicate that "the device is opened by
7115 * at least one process"?
7116 *
7117 * ai.{play,record}.active (R/-)
7118 * Non-zero indicates that I/O is currently active.
7119 *
7120 * ai.blocksize (R/-)
7121 * It indicates the block size in bytes.
7122 * XXX The blocksize of playback and recording may be different.
7123 */
7124
7125 /*
7126 * Pause consideration:
7127 *
7128 * Pausing/unpausing never affect [pr]mixer. This single rule makes
7129 * operation simple. Note that playback and recording are asymmetric.
7130 *
7131 * For playback,
7132 * 1. Any playback open doesn't start pmixer regardless of initial pause
7133 * state of this track.
7134 * 2. The first write access among playback tracks only starts pmixer
7135 * regardless of this track's pause state.
7136 * 3. Even a pause of the last playback track doesn't stop pmixer.
7137 * 4. The last close of all playback tracks only stops pmixer.
7138 *
7139 * For recording,
7140 * 1. The first recording open only starts rmixer regardless of initial
7141 * pause state of this track.
7142 * 2. Even a pause of the last track doesn't stop rmixer.
7143 * 3. The last close of all recording tracks only stops rmixer.
7144 */
7145
7146 /*
7147 * Set both track's parameters within a file depending on ai.
7148 * Update sc_sound_[pr]* if set.
7149 * Must be called with sc_exlock held and without sc_lock held.
7150 */
7151 static int
7152 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
7153 const struct audio_info *ai)
7154 {
7155 const struct audio_prinfo *pi;
7156 const struct audio_prinfo *ri;
7157 audio_track_t *ptrack;
7158 audio_track_t *rtrack;
7159 audio_format2_t pfmt;
7160 audio_format2_t rfmt;
7161 int pchanges;
7162 int rchanges;
7163 int mode;
7164 struct audio_info saved_ai;
7165 audio_format2_t saved_pfmt;
7166 audio_format2_t saved_rfmt;
7167 int error;
7168
7169 KASSERT(sc->sc_exlock);
7170
7171 pi = &ai->play;
7172 ri = &ai->record;
7173 pchanges = 0;
7174 rchanges = 0;
7175
7176 ptrack = file->ptrack;
7177 rtrack = file->rtrack;
7178
7179 #if defined(AUDIO_DEBUG)
7180 if (audiodebug >= 2) {
7181 char buf[256];
7182 char p[64];
7183 int buflen;
7184 int plen;
7185 #define SPRINTF(var, fmt...) do { \
7186 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
7187 } while (0)
7188
7189 buflen = 0;
7190 plen = 0;
7191 if (SPECIFIED(pi->encoding))
7192 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
7193 if (SPECIFIED(pi->precision))
7194 SPRINTF(p, "/%dbit", pi->precision);
7195 if (SPECIFIED(pi->channels))
7196 SPRINTF(p, "/%dch", pi->channels);
7197 if (SPECIFIED(pi->sample_rate))
7198 SPRINTF(p, "/%dHz", pi->sample_rate);
7199 if (plen > 0)
7200 SPRINTF(buf, ",play.param=%s", p + 1);
7201
7202 plen = 0;
7203 if (SPECIFIED(ri->encoding))
7204 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
7205 if (SPECIFIED(ri->precision))
7206 SPRINTF(p, "/%dbit", ri->precision);
7207 if (SPECIFIED(ri->channels))
7208 SPRINTF(p, "/%dch", ri->channels);
7209 if (SPECIFIED(ri->sample_rate))
7210 SPRINTF(p, "/%dHz", ri->sample_rate);
7211 if (plen > 0)
7212 SPRINTF(buf, ",record.param=%s", p + 1);
7213
7214 if (SPECIFIED(ai->mode))
7215 SPRINTF(buf, ",mode=%d", ai->mode);
7216 if (SPECIFIED(ai->hiwat))
7217 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
7218 if (SPECIFIED(ai->lowat))
7219 SPRINTF(buf, ",lowat=%d", ai->lowat);
7220 if (SPECIFIED(ai->play.gain))
7221 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
7222 if (SPECIFIED(ai->record.gain))
7223 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
7224 if (SPECIFIED_CH(ai->play.balance))
7225 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
7226 if (SPECIFIED_CH(ai->record.balance))
7227 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
7228 if (SPECIFIED(ai->play.port))
7229 SPRINTF(buf, ",play.port=%d", ai->play.port);
7230 if (SPECIFIED(ai->record.port))
7231 SPRINTF(buf, ",record.port=%d", ai->record.port);
7232 if (SPECIFIED(ai->monitor_gain))
7233 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
7234 if (SPECIFIED_CH(ai->play.pause))
7235 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
7236 if (SPECIFIED_CH(ai->record.pause))
7237 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
7238
7239 if (buflen > 0)
7240 TRACE(2, "specified %s", buf + 1);
7241 }
7242 #endif
7243
7244 AUDIO_INITINFO(&saved_ai);
7245 /* XXX shut up gcc */
7246 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
7247 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
7248
7249 /*
7250 * Set default value and save current parameters.
7251 * For backward compatibility, use sticky parameters for nonexistent
7252 * track.
7253 */
7254 if (ptrack) {
7255 pfmt = ptrack->usrbuf.fmt;
7256 saved_pfmt = ptrack->usrbuf.fmt;
7257 saved_ai.play.pause = ptrack->is_pause;
7258 } else {
7259 pfmt = sc->sc_sound_pparams;
7260 }
7261 if (rtrack) {
7262 rfmt = rtrack->usrbuf.fmt;
7263 saved_rfmt = rtrack->usrbuf.fmt;
7264 saved_ai.record.pause = rtrack->is_pause;
7265 } else {
7266 rfmt = sc->sc_sound_rparams;
7267 }
7268 saved_ai.mode = file->mode;
7269
7270 /*
7271 * Overwrite if specified.
7272 */
7273 mode = file->mode;
7274 if (SPECIFIED(ai->mode)) {
7275 /*
7276 * Setting ai->mode no longer does anything because it's
7277 * prohibited to change playback/recording mode after open
7278 * and AUMODE_PLAY_ALL is obsoleted. However, it still
7279 * keeps the state of AUMODE_PLAY_ALL itself for backward
7280 * compatibility.
7281 * In the internal, only file->mode has the state of
7282 * AUMODE_PLAY_ALL flag and track->mode in both track does
7283 * not have.
7284 */
7285 if ((file->mode & AUMODE_PLAY)) {
7286 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
7287 | (ai->mode & AUMODE_PLAY_ALL);
7288 }
7289 }
7290
7291 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
7292 if (pchanges == -1) {
7293 #if defined(AUDIO_DEBUG)
7294 TRACEF(1, file, "check play.params failed: "
7295 "%s %ubit %uch %uHz",
7296 audio_encoding_name(pi->encoding),
7297 pi->precision,
7298 pi->channels,
7299 pi->sample_rate);
7300 #endif
7301 return EINVAL;
7302 }
7303
7304 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
7305 if (rchanges == -1) {
7306 #if defined(AUDIO_DEBUG)
7307 TRACEF(1, file, "check record.params failed: "
7308 "%s %ubit %uch %uHz",
7309 audio_encoding_name(ri->encoding),
7310 ri->precision,
7311 ri->channels,
7312 ri->sample_rate);
7313 #endif
7314 return EINVAL;
7315 }
7316
7317 if (SPECIFIED(ai->mode)) {
7318 pchanges = 1;
7319 rchanges = 1;
7320 }
7321
7322 /*
7323 * Even when setting either one of playback and recording,
7324 * both track must be halted.
7325 */
7326 if (pchanges || rchanges) {
7327 audio_file_clear(sc, file);
7328 #if defined(AUDIO_DEBUG)
7329 char nbuf[16];
7330 char fmtbuf[64];
7331 if (pchanges) {
7332 if (ptrack) {
7333 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
7334 } else {
7335 snprintf(nbuf, sizeof(nbuf), "-");
7336 }
7337 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
7338 DPRINTF(1, "audio track#%s play mode: %s\n",
7339 nbuf, fmtbuf);
7340 }
7341 if (rchanges) {
7342 if (rtrack) {
7343 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
7344 } else {
7345 snprintf(nbuf, sizeof(nbuf), "-");
7346 }
7347 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
7348 DPRINTF(1, "audio track#%s rec mode: %s\n",
7349 nbuf, fmtbuf);
7350 }
7351 #endif
7352 }
7353
7354 /* Set mixer parameters */
7355 mutex_enter(sc->sc_lock);
7356 error = audio_hw_setinfo(sc, ai, &saved_ai);
7357 mutex_exit(sc->sc_lock);
7358 if (error)
7359 goto abort1;
7360
7361 /*
7362 * Set to track and update sticky parameters.
7363 */
7364 error = 0;
7365 file->mode = mode;
7366
7367 if (SPECIFIED_CH(pi->pause)) {
7368 if (ptrack)
7369 ptrack->is_pause = pi->pause;
7370 sc->sc_sound_ppause = pi->pause;
7371 }
7372 if (pchanges) {
7373 if (ptrack) {
7374 audio_track_lock_enter(ptrack);
7375 error = audio_track_set_format(ptrack, &pfmt);
7376 audio_track_lock_exit(ptrack);
7377 if (error) {
7378 TRACET(1, ptrack, "set play.params failed");
7379 goto abort2;
7380 }
7381 }
7382 sc->sc_sound_pparams = pfmt;
7383 }
7384 /* Change water marks after initializing the buffers. */
7385 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7386 if (ptrack)
7387 audio_track_setinfo_water(ptrack, ai);
7388 }
7389
7390 if (SPECIFIED_CH(ri->pause)) {
7391 if (rtrack)
7392 rtrack->is_pause = ri->pause;
7393 sc->sc_sound_rpause = ri->pause;
7394 }
7395 if (rchanges) {
7396 if (rtrack) {
7397 audio_track_lock_enter(rtrack);
7398 error = audio_track_set_format(rtrack, &rfmt);
7399 audio_track_lock_exit(rtrack);
7400 if (error) {
7401 TRACET(1, rtrack, "set record.params failed");
7402 goto abort3;
7403 }
7404 }
7405 sc->sc_sound_rparams = rfmt;
7406 }
7407
7408 return 0;
7409
7410 /* Rollback */
7411 abort3:
7412 if (error != ENOMEM) {
7413 rtrack->is_pause = saved_ai.record.pause;
7414 audio_track_lock_enter(rtrack);
7415 audio_track_set_format(rtrack, &saved_rfmt);
7416 audio_track_lock_exit(rtrack);
7417 }
7418 sc->sc_sound_rpause = saved_ai.record.pause;
7419 sc->sc_sound_rparams = saved_rfmt;
7420 abort2:
7421 if (ptrack && error != ENOMEM) {
7422 ptrack->is_pause = saved_ai.play.pause;
7423 audio_track_lock_enter(ptrack);
7424 audio_track_set_format(ptrack, &saved_pfmt);
7425 audio_track_lock_exit(ptrack);
7426 }
7427 sc->sc_sound_ppause = saved_ai.play.pause;
7428 sc->sc_sound_pparams = saved_pfmt;
7429 file->mode = saved_ai.mode;
7430 abort1:
7431 mutex_enter(sc->sc_lock);
7432 audio_hw_setinfo(sc, &saved_ai, NULL);
7433 mutex_exit(sc->sc_lock);
7434
7435 return error;
7436 }
7437
7438 /*
7439 * Write SPECIFIED() parameters within info back to fmt.
7440 * Note that track can be NULL here.
7441 * Return value of 1 indicates that fmt is modified.
7442 * Return value of 0 indicates that fmt is not modified.
7443 * Return value of -1 indicates that error EINVAL has occurred.
7444 */
7445 static int
7446 audio_track_setinfo_check(audio_track_t *track,
7447 audio_format2_t *fmt, const struct audio_prinfo *info)
7448 {
7449 const audio_format2_t *hwfmt;
7450 int changes;
7451
7452 changes = 0;
7453 if (SPECIFIED(info->sample_rate)) {
7454 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7455 return -1;
7456 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7457 return -1;
7458 fmt->sample_rate = info->sample_rate;
7459 changes = 1;
7460 }
7461 if (SPECIFIED(info->encoding)) {
7462 fmt->encoding = info->encoding;
7463 changes = 1;
7464 }
7465 if (SPECIFIED(info->precision)) {
7466 fmt->precision = info->precision;
7467 /* we don't have API to specify stride */
7468 fmt->stride = info->precision;
7469 changes = 1;
7470 }
7471 if (SPECIFIED(info->channels)) {
7472 /*
7473 * We can convert between monaural and stereo each other.
7474 * We can reduce than the number of channels that the hardware
7475 * supports.
7476 */
7477 if (info->channels > 2) {
7478 if (track) {
7479 hwfmt = &track->mixer->hwbuf.fmt;
7480 if (info->channels > hwfmt->channels)
7481 return -1;
7482 } else {
7483 /*
7484 * This should never happen.
7485 * If track == NULL, channels should be <= 2.
7486 */
7487 return -1;
7488 }
7489 }
7490 fmt->channels = info->channels;
7491 changes = 1;
7492 }
7493
7494 if (changes) {
7495 if (audio_check_params(fmt) != 0)
7496 return -1;
7497 }
7498
7499 return changes;
7500 }
7501
7502 /*
7503 * Change water marks for playback track if specified.
7504 */
7505 static void
7506 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7507 {
7508 u_int blks;
7509 u_int maxblks;
7510 u_int blksize;
7511
7512 KASSERT(audio_track_is_playback(track));
7513
7514 blksize = track->usrbuf_blksize;
7515 maxblks = track->usrbuf.capacity / blksize;
7516
7517 if (SPECIFIED(ai->hiwat)) {
7518 blks = ai->hiwat;
7519 if (blks > maxblks)
7520 blks = maxblks;
7521 if (blks < 2)
7522 blks = 2;
7523 track->usrbuf_usedhigh = blks * blksize;
7524 }
7525 if (SPECIFIED(ai->lowat)) {
7526 blks = ai->lowat;
7527 if (blks > maxblks - 1)
7528 blks = maxblks - 1;
7529 track->usrbuf_usedlow = blks * blksize;
7530 }
7531 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7532 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7533 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7534 blksize;
7535 }
7536 }
7537 }
7538
7539 /*
7540 * Set hardware part of *newai.
7541 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7542 * If oldai is specified, previous parameters are stored.
7543 * This function itself does not roll back if error occurred.
7544 * Must be called with sc_lock && sc_exlock held.
7545 */
7546 static int
7547 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7548 struct audio_info *oldai)
7549 {
7550 const struct audio_prinfo *newpi;
7551 const struct audio_prinfo *newri;
7552 struct audio_prinfo *oldpi;
7553 struct audio_prinfo *oldri;
7554 u_int pgain;
7555 u_int rgain;
7556 u_char pbalance;
7557 u_char rbalance;
7558 int error;
7559
7560 KASSERT(mutex_owned(sc->sc_lock));
7561 KASSERT(sc->sc_exlock);
7562
7563 /* XXX shut up gcc */
7564 oldpi = NULL;
7565 oldri = NULL;
7566
7567 newpi = &newai->play;
7568 newri = &newai->record;
7569 if (oldai) {
7570 oldpi = &oldai->play;
7571 oldri = &oldai->record;
7572 }
7573 error = 0;
7574
7575 /*
7576 * It looks like unnecessary to halt HW mixers to set HW mixers.
7577 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7578 */
7579
7580 if (SPECIFIED(newpi->port)) {
7581 if (oldai)
7582 oldpi->port = au_get_port(sc, &sc->sc_outports);
7583 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7584 if (error) {
7585 audio_printf(sc,
7586 "setting play.port=%d failed: errno=%d\n",
7587 newpi->port, error);
7588 goto abort;
7589 }
7590 }
7591 if (SPECIFIED(newri->port)) {
7592 if (oldai)
7593 oldri->port = au_get_port(sc, &sc->sc_inports);
7594 error = au_set_port(sc, &sc->sc_inports, newri->port);
7595 if (error) {
7596 audio_printf(sc,
7597 "setting record.port=%d failed: errno=%d\n",
7598 newri->port, error);
7599 goto abort;
7600 }
7601 }
7602
7603 /* play.{gain,balance} */
7604 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7605 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7606 if (oldai) {
7607 oldpi->gain = pgain;
7608 oldpi->balance = pbalance;
7609 }
7610
7611 if (SPECIFIED(newpi->gain))
7612 pgain = newpi->gain;
7613 if (SPECIFIED_CH(newpi->balance))
7614 pbalance = newpi->balance;
7615 error = au_set_gain(sc, &sc->sc_outports, pgain, pbalance);
7616 if (error) {
7617 audio_printf(sc,
7618 "setting play.gain=%d/balance=%d failed: "
7619 "errno=%d\n",
7620 pgain, pbalance, error);
7621 goto abort;
7622 }
7623 }
7624
7625 /* record.{gain,balance} */
7626 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7627 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7628 if (oldai) {
7629 oldri->gain = rgain;
7630 oldri->balance = rbalance;
7631 }
7632
7633 if (SPECIFIED(newri->gain))
7634 rgain = newri->gain;
7635 if (SPECIFIED_CH(newri->balance))
7636 rbalance = newri->balance;
7637 error = au_set_gain(sc, &sc->sc_inports, rgain, rbalance);
7638 if (error) {
7639 audio_printf(sc,
7640 "setting record.gain=%d/balance=%d failed: "
7641 "errno=%d\n",
7642 rgain, rbalance, error);
7643 goto abort;
7644 }
7645 }
7646
7647 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7648 if (oldai)
7649 oldai->monitor_gain = au_get_monitor_gain(sc);
7650 error = au_set_monitor_gain(sc, newai->monitor_gain);
7651 if (error) {
7652 audio_printf(sc,
7653 "setting monitor_gain=%d failed: errno=%d\n",
7654 newai->monitor_gain, error);
7655 goto abort;
7656 }
7657 }
7658
7659 /* XXX TODO */
7660 /* sc->sc_ai = *ai; */
7661
7662 error = 0;
7663 abort:
7664 return error;
7665 }
7666
7667 /*
7668 * Setup the hardware with mixer format phwfmt, rhwfmt.
7669 * The arguments have following restrictions:
7670 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7671 * or both.
7672 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7673 * - On non-independent devices, phwfmt and rhwfmt must have the same
7674 * parameters.
7675 * - pfil and rfil must be zero-filled.
7676 * If successful,
7677 * - pfil, rfil will be filled with filter information specified by the
7678 * hardware driver if necessary.
7679 * and then returns 0. Otherwise returns errno.
7680 * Must be called without sc_lock held.
7681 */
7682 static int
7683 audio_hw_set_format(struct audio_softc *sc, int setmode,
7684 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7685 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7686 {
7687 audio_params_t pp, rp;
7688 int error;
7689
7690 KASSERT(phwfmt != NULL);
7691 KASSERT(rhwfmt != NULL);
7692
7693 pp = format2_to_params(phwfmt);
7694 rp = format2_to_params(rhwfmt);
7695
7696 mutex_enter(sc->sc_lock);
7697 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7698 &pp, &rp, pfil, rfil);
7699 if (error) {
7700 mutex_exit(sc->sc_lock);
7701 audio_printf(sc, "set_format failed: errno=%d\n", error);
7702 return error;
7703 }
7704
7705 if (sc->hw_if->commit_settings) {
7706 error = sc->hw_if->commit_settings(sc->hw_hdl);
7707 if (error) {
7708 mutex_exit(sc->sc_lock);
7709 audio_printf(sc,
7710 "commit_settings failed: errno=%d\n", error);
7711 return error;
7712 }
7713 }
7714 mutex_exit(sc->sc_lock);
7715
7716 return 0;
7717 }
7718
7719 /*
7720 * Fill audio_info structure. If need_mixerinfo is true, it will also
7721 * fill the hardware mixer information.
7722 * Must be called with sc_exlock held and without sc_lock held.
7723 */
7724 static int
7725 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7726 audio_file_t *file)
7727 {
7728 struct audio_prinfo *ri, *pi;
7729 audio_track_t *track;
7730 audio_track_t *ptrack;
7731 audio_track_t *rtrack;
7732 int gain;
7733
7734 KASSERT(sc->sc_exlock);
7735
7736 ri = &ai->record;
7737 pi = &ai->play;
7738 ptrack = file->ptrack;
7739 rtrack = file->rtrack;
7740
7741 memset(ai, 0, sizeof(*ai));
7742
7743 if (ptrack) {
7744 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7745 pi->channels = ptrack->usrbuf.fmt.channels;
7746 pi->precision = ptrack->usrbuf.fmt.precision;
7747 pi->encoding = ptrack->usrbuf.fmt.encoding;
7748 pi->pause = ptrack->is_pause;
7749 } else {
7750 /* Use sticky parameters if the track is not available. */
7751 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7752 pi->channels = sc->sc_sound_pparams.channels;
7753 pi->precision = sc->sc_sound_pparams.precision;
7754 pi->encoding = sc->sc_sound_pparams.encoding;
7755 pi->pause = sc->sc_sound_ppause;
7756 }
7757 if (rtrack) {
7758 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7759 ri->channels = rtrack->usrbuf.fmt.channels;
7760 ri->precision = rtrack->usrbuf.fmt.precision;
7761 ri->encoding = rtrack->usrbuf.fmt.encoding;
7762 ri->pause = rtrack->is_pause;
7763 } else {
7764 /* Use sticky parameters if the track is not available. */
7765 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7766 ri->channels = sc->sc_sound_rparams.channels;
7767 ri->precision = sc->sc_sound_rparams.precision;
7768 ri->encoding = sc->sc_sound_rparams.encoding;
7769 ri->pause = sc->sc_sound_rpause;
7770 }
7771
7772 if (ptrack) {
7773 pi->seek = ptrack->usrbuf.used;
7774 pi->samples = ptrack->stamp * ptrack->usrbuf_blksize;
7775 pi->eof = ptrack->eofcounter;
7776 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7777 pi->open = 1;
7778 pi->buffer_size = ptrack->usrbuf.capacity;
7779 }
7780 pi->waiting = 0; /* open never hangs */
7781 pi->active = sc->sc_pbusy;
7782
7783 if (rtrack) {
7784 ri->seek = audio_track_readablebytes(rtrack);
7785 ri->samples = rtrack->stamp * rtrack->usrbuf_blksize;
7786 ri->eof = 0;
7787 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7788 ri->open = 1;
7789 ri->buffer_size = audio_track_inputblk_as_usrbyte(rtrack,
7790 rtrack->input->capacity);
7791 }
7792 ri->waiting = 0; /* open never hangs */
7793 ri->active = sc->sc_rbusy;
7794
7795 /*
7796 * XXX There may be different number of channels between playback
7797 * and recording, so that blocksize also may be different.
7798 * But struct audio_info has an united blocksize...
7799 * Here, I use play info precedencely if ptrack is available,
7800 * otherwise record info.
7801 *
7802 * XXX hiwat/lowat is a playback-only parameter. What should I
7803 * return for a record-only descriptor?
7804 */
7805 track = ptrack ? ptrack : rtrack;
7806 if (track) {
7807 ai->blocksize = track->usrbuf_blksize;
7808 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7809 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7810 }
7811 ai->mode = file->mode;
7812
7813 /*
7814 * For backward compatibility, we have to pad these five fields
7815 * a fake non-zero value even if there are no tracks.
7816 */
7817 if (ptrack == NULL)
7818 pi->buffer_size = 65536;
7819 if (rtrack == NULL)
7820 ri->buffer_size = 65536;
7821 if (ptrack == NULL && rtrack == NULL) {
7822 ai->blocksize = 2048;
7823 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7824 ai->lowat = ai->hiwat * 3 / 4;
7825 }
7826
7827 if (need_mixerinfo) {
7828 mutex_enter(sc->sc_lock);
7829
7830 pi->port = au_get_port(sc, &sc->sc_outports);
7831 ri->port = au_get_port(sc, &sc->sc_inports);
7832
7833 pi->avail_ports = sc->sc_outports.allports;
7834 ri->avail_ports = sc->sc_inports.allports;
7835
7836 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7837 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7838
7839 if (sc->sc_monitor_port != -1) {
7840 gain = au_get_monitor_gain(sc);
7841 if (gain != -1)
7842 ai->monitor_gain = gain;
7843 }
7844 mutex_exit(sc->sc_lock);
7845 }
7846
7847 return 0;
7848 }
7849
7850 /*
7851 * Return true if playback is configured.
7852 * This function can be used after audioattach.
7853 */
7854 static bool
7855 audio_can_playback(struct audio_softc *sc)
7856 {
7857
7858 return (sc->sc_pmixer != NULL);
7859 }
7860
7861 /*
7862 * Return true if recording is configured.
7863 * This function can be used after audioattach.
7864 */
7865 static bool
7866 audio_can_capture(struct audio_softc *sc)
7867 {
7868
7869 return (sc->sc_rmixer != NULL);
7870 }
7871
7872 /*
7873 * Get the afp->index'th item from the valid one of format[].
7874 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7875 *
7876 * This is common routines for query_format.
7877 * If your hardware driver has struct audio_format[], the simplest case
7878 * you can write your query_format interface as follows:
7879 *
7880 * struct audio_format foo_format[] = { ... };
7881 *
7882 * int
7883 * foo_query_format(void *hdl, audio_format_query_t *afp)
7884 * {
7885 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7886 * }
7887 */
7888 int
7889 audio_query_format(const struct audio_format *format, int nformats,
7890 audio_format_query_t *afp)
7891 {
7892 const struct audio_format *f;
7893 int idx;
7894 int i;
7895
7896 idx = 0;
7897 for (i = 0; i < nformats; i++) {
7898 f = &format[i];
7899 if (!AUFMT_IS_VALID(f))
7900 continue;
7901 if (afp->index == idx) {
7902 afp->fmt = *f;
7903 return 0;
7904 }
7905 idx++;
7906 }
7907 return EINVAL;
7908 }
7909
7910 /*
7911 * This function is provided for the hardware driver's set_format() to
7912 * find index matches with 'param' from array of audio_format_t 'formats'.
7913 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7914 * It returns the matched index and never fails. Because param passed to
7915 * set_format() is selected from query_format().
7916 * This function will be an alternative to auconv_set_converter() to
7917 * find index.
7918 */
7919 int
7920 audio_indexof_format(const struct audio_format *formats, int nformats,
7921 int mode, const audio_params_t *param)
7922 {
7923 const struct audio_format *f;
7924 int index;
7925 int j;
7926
7927 for (index = 0; index < nformats; index++) {
7928 f = &formats[index];
7929
7930 if (!AUFMT_IS_VALID(f))
7931 continue;
7932 if ((f->mode & mode) == 0)
7933 continue;
7934 if (f->encoding != param->encoding)
7935 continue;
7936 if (f->validbits != param->precision)
7937 continue;
7938 if (f->channels != param->channels)
7939 continue;
7940
7941 if (f->frequency_type == 0) {
7942 if (param->sample_rate < f->frequency[0] ||
7943 param->sample_rate > f->frequency[1])
7944 continue;
7945 } else {
7946 for (j = 0; j < f->frequency_type; j++) {
7947 if (param->sample_rate == f->frequency[j])
7948 break;
7949 }
7950 if (j == f->frequency_type)
7951 continue;
7952 }
7953
7954 /* Then, matched */
7955 return index;
7956 }
7957
7958 /* Not matched. This should not be happened. */
7959 panic("%s: cannot find matched format\n", __func__);
7960 }
7961
7962 /*
7963 * Get or set hardware blocksize in msec.
7964 * XXX It's for debug.
7965 */
7966 static int
7967 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7968 {
7969 struct sysctlnode node;
7970 struct audio_softc *sc;
7971 audio_format2_t phwfmt;
7972 audio_format2_t rhwfmt;
7973 audio_filter_reg_t pfil;
7974 audio_filter_reg_t rfil;
7975 int t;
7976 int old_blk_ms;
7977 int mode;
7978 int error;
7979
7980 node = *rnode;
7981 sc = node.sysctl_data;
7982
7983 error = audio_exlock_enter(sc);
7984 if (error)
7985 return error;
7986
7987 old_blk_ms = sc->sc_blk_ms;
7988 t = old_blk_ms;
7989 node.sysctl_data = &t;
7990 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7991 if (error || newp == NULL)
7992 goto abort;
7993
7994 if (t < 0) {
7995 error = EINVAL;
7996 goto abort;
7997 }
7998
7999 if (sc->sc_popens + sc->sc_ropens > 0) {
8000 error = EBUSY;
8001 goto abort;
8002 }
8003 sc->sc_blk_ms = t;
8004 mode = 0;
8005 if (sc->sc_pmixer) {
8006 mode |= AUMODE_PLAY;
8007 phwfmt = sc->sc_pmixer->hwbuf.fmt;
8008 }
8009 if (sc->sc_rmixer) {
8010 mode |= AUMODE_RECORD;
8011 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
8012 }
8013
8014 /* re-init hardware */
8015 memset(&pfil, 0, sizeof(pfil));
8016 memset(&rfil, 0, sizeof(rfil));
8017 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8018 if (error) {
8019 goto abort;
8020 }
8021
8022 /* re-init track mixer */
8023 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8024 if (error) {
8025 /* Rollback */
8026 sc->sc_blk_ms = old_blk_ms;
8027 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8028 goto abort;
8029 }
8030 error = 0;
8031 abort:
8032 audio_exlock_exit(sc);
8033 return error;
8034 }
8035
8036 /*
8037 * Get or set multiuser mode.
8038 */
8039 static int
8040 audio_sysctl_multiuser(SYSCTLFN_ARGS)
8041 {
8042 struct sysctlnode node;
8043 struct audio_softc *sc;
8044 bool t;
8045 int error;
8046
8047 node = *rnode;
8048 sc = node.sysctl_data;
8049
8050 error = audio_exlock_enter(sc);
8051 if (error)
8052 return error;
8053
8054 t = sc->sc_multiuser;
8055 node.sysctl_data = &t;
8056 error = sysctl_lookup(SYSCTLFN_CALL(&node));
8057 if (error || newp == NULL)
8058 goto abort;
8059
8060 sc->sc_multiuser = t;
8061 error = 0;
8062 abort:
8063 audio_exlock_exit(sc);
8064 return error;
8065 }
8066
8067 #if defined(AUDIO_DEBUG)
8068 /*
8069 * Get or set debug verbose level. (0..4)
8070 * XXX It's for debug.
8071 * XXX It is not separated per device.
8072 */
8073 static int
8074 audio_sysctl_debug(SYSCTLFN_ARGS)
8075 {
8076 struct sysctlnode node;
8077 int t;
8078 int error;
8079
8080 node = *rnode;
8081 t = audiodebug;
8082 node.sysctl_data = &t;
8083 error = sysctl_lookup(SYSCTLFN_CALL(&node));
8084 if (error || newp == NULL)
8085 return error;
8086
8087 if (t < 0 || t > 4)
8088 return EINVAL;
8089 audiodebug = t;
8090 printf("audio: audiodebug = %d\n", audiodebug);
8091 return 0;
8092 }
8093 #endif /* AUDIO_DEBUG */
8094
8095 #ifdef AUDIO_PM_IDLE
8096 static void
8097 audio_idle(void *arg)
8098 {
8099 device_t dv = arg;
8100 struct audio_softc *sc = device_private(dv);
8101
8102 #ifdef PNP_DEBUG
8103 extern int pnp_debug_idle;
8104 if (pnp_debug_idle)
8105 printf("%s: idle handler called\n", device_xname(dv));
8106 #endif
8107
8108 sc->sc_idle = true;
8109
8110 /* XXX joerg Make pmf_device_suspend handle children? */
8111 if (!pmf_device_suspend(dv, PMF_Q_SELF))
8112 return;
8113
8114 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
8115 pmf_device_resume(dv, PMF_Q_SELF);
8116 }
8117
8118 static void
8119 audio_activity(device_t dv, devactive_t type)
8120 {
8121 struct audio_softc *sc = device_private(dv);
8122
8123 if (type != DVA_SYSTEM)
8124 return;
8125
8126 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
8127
8128 sc->sc_idle = false;
8129 if (!device_is_active(dv)) {
8130 /* XXX joerg How to deal with a failing resume... */
8131 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
8132 pmf_device_resume(dv, PMF_Q_SELF);
8133 }
8134 }
8135 #endif
8136
8137 static bool
8138 audio_suspend(device_t dv, const pmf_qual_t *qual)
8139 {
8140 struct audio_softc *sc = device_private(dv);
8141 int error;
8142
8143 error = audio_exlock_mutex_enter(sc);
8144 if (error)
8145 return error;
8146 sc->sc_suspending = true;
8147 audio_mixer_capture(sc);
8148
8149 if (sc->sc_pbusy) {
8150 audio_pmixer_halt(sc);
8151 /* Reuse this as need-to-restart flag while suspending */
8152 sc->sc_pbusy = true;
8153 }
8154 if (sc->sc_rbusy) {
8155 audio_rmixer_halt(sc);
8156 /* Reuse this as need-to-restart flag while suspending */
8157 sc->sc_rbusy = true;
8158 }
8159
8160 #ifdef AUDIO_PM_IDLE
8161 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
8162 #endif
8163 audio_exlock_mutex_exit(sc);
8164
8165 return true;
8166 }
8167
8168 static bool
8169 audio_resume(device_t dv, const pmf_qual_t *qual)
8170 {
8171 struct audio_softc *sc = device_private(dv);
8172 struct audio_info ai;
8173 int error;
8174
8175 error = audio_exlock_mutex_enter(sc);
8176 if (error)
8177 return error;
8178
8179 sc->sc_suspending = false;
8180 audio_mixer_restore(sc);
8181 /* XXX ? */
8182 AUDIO_INITINFO(&ai);
8183 audio_hw_setinfo(sc, &ai, NULL);
8184
8185 /*
8186 * During from suspend to resume here, sc_[pr]busy is used as
8187 * need-to-restart flag temporarily. After this point,
8188 * sc_[pr]busy is returned to its original usage (busy flag).
8189 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
8190 */
8191 if (sc->sc_pbusy) {
8192 /* pmixer_start() requires pbusy is false */
8193 sc->sc_pbusy = false;
8194 audio_pmixer_start(sc, true);
8195 }
8196 if (sc->sc_rbusy) {
8197 /* rmixer_start() requires rbusy is false */
8198 sc->sc_rbusy = false;
8199 audio_rmixer_start(sc);
8200 }
8201
8202 audio_exlock_mutex_exit(sc);
8203
8204 return true;
8205 }
8206
8207 #if defined(AUDIO_DEBUG)
8208 static void
8209 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
8210 {
8211 int n;
8212
8213 n = 0;
8214 n += snprintf(buf + n, bufsize - n, "%s",
8215 audio_encoding_name(fmt->encoding));
8216 if (fmt->precision == fmt->stride) {
8217 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
8218 } else {
8219 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
8220 fmt->precision, fmt->stride);
8221 }
8222
8223 snprintf(buf + n, bufsize - n, " %uch %uHz",
8224 fmt->channels, fmt->sample_rate);
8225 }
8226 #endif
8227
8228 #if defined(AUDIO_DEBUG)
8229 static void
8230 audio_print_format2(const char *s, const audio_format2_t *fmt)
8231 {
8232 char fmtstr[64];
8233
8234 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
8235 printf("%s %s\n", s, fmtstr);
8236 }
8237 #endif
8238
8239 #ifdef DIAGNOSTIC
8240 void
8241 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
8242 {
8243
8244 KASSERTMSG(fmt, "called from %s", where);
8245
8246 /* XXX MSM6258 vs(4) only has 4bit stride format. */
8247 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
8248 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
8249 "called from %s: fmt->stride=%d", where, fmt->stride);
8250 } else {
8251 KASSERTMSG(fmt->stride % NBBY == 0,
8252 "called from %s: fmt->stride=%d", where, fmt->stride);
8253 }
8254 KASSERTMSG(fmt->precision <= fmt->stride,
8255 "called from %s: fmt->precision=%d fmt->stride=%d",
8256 where, fmt->precision, fmt->stride);
8257 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
8258 "called from %s: fmt->channels=%d", where, fmt->channels);
8259
8260 /* XXX No check for encodings? */
8261 }
8262
8263 void
8264 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
8265 {
8266
8267 KASSERT(arg != NULL);
8268 KASSERT(arg->src != NULL);
8269 KASSERT(arg->dst != NULL);
8270 audio_diagnostic_format2(where, arg->srcfmt);
8271 audio_diagnostic_format2(where, arg->dstfmt);
8272 KASSERT(arg->count > 0);
8273 }
8274
8275 void
8276 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
8277 {
8278
8279 KASSERTMSG(ring, "called from %s", where);
8280 audio_diagnostic_format2(where, &ring->fmt);
8281 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
8282 "called from %s: ring->capacity=%d", where, ring->capacity);
8283 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
8284 "called from %s: ring->used=%d ring->capacity=%d",
8285 where, ring->used, ring->capacity);
8286 if (ring->capacity == 0) {
8287 KASSERTMSG(ring->mem == NULL,
8288 "called from %s: capacity == 0 but mem != NULL", where);
8289 } else {
8290 KASSERTMSG(ring->mem != NULL,
8291 "called from %s: capacity != 0 but mem == NULL", where);
8292 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
8293 "called from %s: ring->head=%d ring->capacity=%d",
8294 where, ring->head, ring->capacity);
8295 }
8296 }
8297 #endif /* DIAGNOSTIC */
8298
8299
8300 /*
8301 * Mixer driver
8302 */
8303
8304 /*
8305 * Must be called without sc_lock held.
8306 */
8307 int
8308 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
8309 struct lwp *l)
8310 {
8311 struct file *fp;
8312 audio_file_t *af;
8313 int error, fd;
8314
8315 TRACE(1, "flags=0x%x", flags);
8316
8317 error = fd_allocfile(&fp, &fd);
8318 if (error)
8319 return error;
8320
8321 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
8322 af->sc = sc;
8323 af->dev = dev;
8324
8325 mutex_enter(sc->sc_lock);
8326 if (sc->sc_dying) {
8327 mutex_exit(sc->sc_lock);
8328 kmem_free(af, sizeof(*af));
8329 fd_abort(curproc, fp, fd);
8330 return ENXIO;
8331 }
8332 mutex_enter(sc->sc_intr_lock);
8333 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
8334 mutex_exit(sc->sc_intr_lock);
8335 mutex_exit(sc->sc_lock);
8336
8337 error = fd_clone(fp, fd, flags, &audio_fileops, af);
8338 KASSERT(error == EMOVEFD);
8339
8340 return error;
8341 }
8342
8343 /*
8344 * Add a process to those to be signalled on mixer activity.
8345 * If the process has already been added, do nothing.
8346 * Must be called with sc_exlock held and without sc_lock held.
8347 */
8348 static void
8349 mixer_async_add(struct audio_softc *sc, pid_t pid)
8350 {
8351 int i;
8352
8353 KASSERT(sc->sc_exlock);
8354
8355 /* If already exists, returns without doing anything. */
8356 for (i = 0; i < sc->sc_am_used; i++) {
8357 if (sc->sc_am[i] == pid)
8358 return;
8359 }
8360
8361 /* Extend array if necessary. */
8362 if (sc->sc_am_used >= sc->sc_am_capacity) {
8363 sc->sc_am_capacity += AM_CAPACITY;
8364 sc->sc_am = kern_realloc(sc->sc_am,
8365 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8366 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8367 }
8368
8369 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8370 sc->sc_am[sc->sc_am_used++] = pid;
8371 }
8372
8373 /*
8374 * Remove a process from those to be signalled on mixer activity.
8375 * If the process has not been added, do nothing.
8376 * Must be called with sc_exlock held and without sc_lock held.
8377 */
8378 static void
8379 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8380 {
8381 int i;
8382
8383 KASSERT(sc->sc_exlock);
8384
8385 for (i = 0; i < sc->sc_am_used; i++) {
8386 if (sc->sc_am[i] == pid) {
8387 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8388 TRACE(2, "am[%d](%d) removed, used=%d",
8389 i, (int)pid, sc->sc_am_used);
8390
8391 /* Empty array if no longer necessary. */
8392 if (sc->sc_am_used == 0) {
8393 kern_free(sc->sc_am);
8394 sc->sc_am = NULL;
8395 sc->sc_am_capacity = 0;
8396 TRACE(2, "released");
8397 }
8398 return;
8399 }
8400 }
8401 }
8402
8403 /*
8404 * Signal all processes waiting for the mixer.
8405 * Must be called with sc_exlock held.
8406 */
8407 static void
8408 mixer_signal(struct audio_softc *sc)
8409 {
8410 proc_t *p;
8411 int i;
8412
8413 KASSERT(sc->sc_exlock);
8414
8415 for (i = 0; i < sc->sc_am_used; i++) {
8416 mutex_enter(&proc_lock);
8417 p = proc_find(sc->sc_am[i]);
8418 if (p)
8419 psignal(p, SIGIO);
8420 mutex_exit(&proc_lock);
8421 }
8422 }
8423
8424 /*
8425 * Close a mixer device
8426 */
8427 int
8428 mixer_close(struct audio_softc *sc, audio_file_t *file)
8429 {
8430 int error;
8431
8432 error = audio_exlock_enter(sc);
8433 if (error)
8434 return error;
8435 TRACE(1, "called");
8436 mixer_async_remove(sc, curproc->p_pid);
8437 audio_exlock_exit(sc);
8438
8439 return 0;
8440 }
8441
8442 /*
8443 * Must be called without sc_lock nor sc_exlock held.
8444 */
8445 int
8446 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8447 struct lwp *l)
8448 {
8449 mixer_devinfo_t *mi;
8450 mixer_ctrl_t *mc;
8451 int val;
8452 int error;
8453
8454 #if defined(AUDIO_DEBUG)
8455 char pre[64];
8456 snprintf(pre, sizeof(pre), "pid=%d.%d",
8457 (int)curproc->p_pid, (int)l->l_lid);
8458 #endif
8459 error = EINVAL;
8460
8461 /* we can return cached values if we are sleeping */
8462 if (cmd != AUDIO_MIXER_READ) {
8463 mutex_enter(sc->sc_lock);
8464 device_active(sc->sc_dev, DVA_SYSTEM);
8465 mutex_exit(sc->sc_lock);
8466 }
8467
8468 switch (cmd) {
8469 case FIOASYNC:
8470 val = *(int *)addr;
8471 TRACE(2, "%s FIOASYNC %s", pre, val ? "on" : "off");
8472 error = audio_exlock_enter(sc);
8473 if (error)
8474 break;
8475 if (val) {
8476 mixer_async_add(sc, curproc->p_pid);
8477 } else {
8478 mixer_async_remove(sc, curproc->p_pid);
8479 }
8480 audio_exlock_exit(sc);
8481 break;
8482
8483 case AUDIO_GETDEV:
8484 TRACE(2, "%s AUDIO_GETDEV", pre);
8485 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8486 break;
8487
8488 case AUDIO_MIXER_DEVINFO:
8489 TRACE(2, "%s AUDIO_MIXER_DEVINFO", pre);
8490 mi = (mixer_devinfo_t *)addr;
8491
8492 mi->un.v.delta = 0; /* default */
8493 mutex_enter(sc->sc_lock);
8494 error = audio_query_devinfo(sc, mi);
8495 mutex_exit(sc->sc_lock);
8496 break;
8497
8498 case AUDIO_MIXER_READ:
8499 TRACE(2, "%s AUDIO_MIXER_READ", pre);
8500 mc = (mixer_ctrl_t *)addr;
8501
8502 error = audio_exlock_mutex_enter(sc);
8503 if (error)
8504 break;
8505 if (device_is_active(sc->hw_dev))
8506 error = audio_get_port(sc, mc);
8507 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8508 error = ENXIO;
8509 else {
8510 int dev = mc->dev;
8511 memcpy(mc, &sc->sc_mixer_state[dev],
8512 sizeof(mixer_ctrl_t));
8513 error = 0;
8514 }
8515 audio_exlock_mutex_exit(sc);
8516 break;
8517
8518 case AUDIO_MIXER_WRITE:
8519 TRACE(2, "%s AUDIO_MIXER_WRITE", pre);
8520 error = audio_exlock_mutex_enter(sc);
8521 if (error)
8522 break;
8523 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8524 if (error) {
8525 audio_exlock_mutex_exit(sc);
8526 break;
8527 }
8528
8529 if (sc->hw_if->commit_settings) {
8530 error = sc->hw_if->commit_settings(sc->hw_hdl);
8531 if (error) {
8532 audio_exlock_mutex_exit(sc);
8533 break;
8534 }
8535 }
8536 mutex_exit(sc->sc_lock);
8537 mixer_signal(sc);
8538 audio_exlock_exit(sc);
8539 break;
8540
8541 default:
8542 TRACE(2, "(%lu,'%c',%lu)",
8543 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8544 if (sc->hw_if->dev_ioctl) {
8545 mutex_enter(sc->sc_lock);
8546 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8547 cmd, addr, flag, l);
8548 mutex_exit(sc->sc_lock);
8549 } else
8550 error = EINVAL;
8551 break;
8552 }
8553
8554 if (error)
8555 TRACE(2, "error=%d", error);
8556 return error;
8557 }
8558
8559 /*
8560 * Must be called with sc_lock held.
8561 */
8562 int
8563 au_portof(struct audio_softc *sc, char *name, int class)
8564 {
8565 mixer_devinfo_t mi;
8566
8567 KASSERT(mutex_owned(sc->sc_lock));
8568
8569 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8570 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8571 return mi.index;
8572 }
8573 return -1;
8574 }
8575
8576 /*
8577 * Must be called with sc_lock held.
8578 */
8579 void
8580 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8581 mixer_devinfo_t *mi, const struct portname *tbl)
8582 {
8583 int i, j;
8584
8585 KASSERT(mutex_owned(sc->sc_lock));
8586
8587 ports->index = mi->index;
8588 if (mi->type == AUDIO_MIXER_ENUM) {
8589 ports->isenum = true;
8590 for(i = 0; tbl[i].name; i++)
8591 for(j = 0; j < mi->un.e.num_mem; j++)
8592 if (strcmp(mi->un.e.member[j].label.name,
8593 tbl[i].name) == 0) {
8594 ports->allports |= tbl[i].mask;
8595 ports->aumask[ports->nports] = tbl[i].mask;
8596 ports->misel[ports->nports] =
8597 mi->un.e.member[j].ord;
8598 ports->miport[ports->nports] =
8599 au_portof(sc, mi->un.e.member[j].label.name,
8600 mi->mixer_class);
8601 if (ports->mixerout != -1 &&
8602 ports->miport[ports->nports] != -1)
8603 ports->isdual = true;
8604 ++ports->nports;
8605 }
8606 } else if (mi->type == AUDIO_MIXER_SET) {
8607 for(i = 0; tbl[i].name; i++)
8608 for(j = 0; j < mi->un.s.num_mem; j++)
8609 if (strcmp(mi->un.s.member[j].label.name,
8610 tbl[i].name) == 0) {
8611 ports->allports |= tbl[i].mask;
8612 ports->aumask[ports->nports] = tbl[i].mask;
8613 ports->misel[ports->nports] =
8614 mi->un.s.member[j].mask;
8615 ports->miport[ports->nports] =
8616 au_portof(sc, mi->un.s.member[j].label.name,
8617 mi->mixer_class);
8618 ++ports->nports;
8619 }
8620 }
8621 }
8622
8623 /*
8624 * Must be called with sc_lock && sc_exlock held.
8625 */
8626 int
8627 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8628 {
8629
8630 KASSERT(mutex_owned(sc->sc_lock));
8631 KASSERT(sc->sc_exlock);
8632
8633 ct->type = AUDIO_MIXER_VALUE;
8634 ct->un.value.num_channels = 2;
8635 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8636 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8637 if (audio_set_port(sc, ct) == 0)
8638 return 0;
8639 ct->un.value.num_channels = 1;
8640 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8641 return audio_set_port(sc, ct);
8642 }
8643
8644 /*
8645 * Must be called with sc_lock && sc_exlock held.
8646 */
8647 int
8648 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8649 {
8650 int error;
8651
8652 KASSERT(mutex_owned(sc->sc_lock));
8653 KASSERT(sc->sc_exlock);
8654
8655 ct->un.value.num_channels = 2;
8656 if (audio_get_port(sc, ct) == 0) {
8657 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8658 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8659 } else {
8660 ct->un.value.num_channels = 1;
8661 error = audio_get_port(sc, ct);
8662 if (error)
8663 return error;
8664 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8665 }
8666 return 0;
8667 }
8668
8669 /*
8670 * Must be called with sc_lock && sc_exlock held.
8671 */
8672 int
8673 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8674 int gain, int balance)
8675 {
8676 mixer_ctrl_t ct;
8677 int i, error;
8678 int l, r;
8679 u_int mask;
8680 int nset;
8681
8682 KASSERT(mutex_owned(sc->sc_lock));
8683 KASSERT(sc->sc_exlock);
8684
8685 if (balance == AUDIO_MID_BALANCE) {
8686 l = r = gain;
8687 } else if (balance < AUDIO_MID_BALANCE) {
8688 l = gain;
8689 r = (balance * gain) / AUDIO_MID_BALANCE;
8690 } else {
8691 r = gain;
8692 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8693 / AUDIO_MID_BALANCE;
8694 }
8695 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8696
8697 if (ports->index == -1) {
8698 usemaster:
8699 if (ports->master == -1)
8700 return 0; /* just ignore it silently */
8701 ct.dev = ports->master;
8702 error = au_set_lr_value(sc, &ct, l, r);
8703 } else {
8704 ct.dev = ports->index;
8705 if (ports->isenum) {
8706 ct.type = AUDIO_MIXER_ENUM;
8707 error = audio_get_port(sc, &ct);
8708 if (error)
8709 return error;
8710 if (ports->isdual) {
8711 if (ports->cur_port == -1)
8712 ct.dev = ports->master;
8713 else
8714 ct.dev = ports->miport[ports->cur_port];
8715 error = au_set_lr_value(sc, &ct, l, r);
8716 } else {
8717 for(i = 0; i < ports->nports; i++)
8718 if (ports->misel[i] == ct.un.ord) {
8719 ct.dev = ports->miport[i];
8720 if (ct.dev == -1 ||
8721 au_set_lr_value(sc, &ct, l, r))
8722 goto usemaster;
8723 else
8724 break;
8725 }
8726 }
8727 } else {
8728 ct.type = AUDIO_MIXER_SET;
8729 error = audio_get_port(sc, &ct);
8730 if (error)
8731 return error;
8732 mask = ct.un.mask;
8733 nset = 0;
8734 for(i = 0; i < ports->nports; i++) {
8735 if (ports->misel[i] & mask) {
8736 ct.dev = ports->miport[i];
8737 if (ct.dev != -1 &&
8738 au_set_lr_value(sc, &ct, l, r) == 0)
8739 nset++;
8740 }
8741 }
8742 if (nset == 0)
8743 goto usemaster;
8744 }
8745 }
8746 if (!error)
8747 mixer_signal(sc);
8748 return error;
8749 }
8750
8751 /*
8752 * Must be called with sc_lock && sc_exlock held.
8753 */
8754 void
8755 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8756 u_int *pgain, u_char *pbalance)
8757 {
8758 mixer_ctrl_t ct;
8759 int i, l, r, n;
8760 int lgain, rgain;
8761
8762 KASSERT(mutex_owned(sc->sc_lock));
8763 KASSERT(sc->sc_exlock);
8764
8765 lgain = AUDIO_MAX_GAIN / 2;
8766 rgain = AUDIO_MAX_GAIN / 2;
8767 if (ports->index == -1) {
8768 usemaster:
8769 if (ports->master == -1)
8770 goto bad;
8771 ct.dev = ports->master;
8772 ct.type = AUDIO_MIXER_VALUE;
8773 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8774 goto bad;
8775 } else {
8776 ct.dev = ports->index;
8777 if (ports->isenum) {
8778 ct.type = AUDIO_MIXER_ENUM;
8779 if (audio_get_port(sc, &ct))
8780 goto bad;
8781 ct.type = AUDIO_MIXER_VALUE;
8782 if (ports->isdual) {
8783 if (ports->cur_port == -1)
8784 ct.dev = ports->master;
8785 else
8786 ct.dev = ports->miport[ports->cur_port];
8787 au_get_lr_value(sc, &ct, &lgain, &rgain);
8788 } else {
8789 for(i = 0; i < ports->nports; i++)
8790 if (ports->misel[i] == ct.un.ord) {
8791 ct.dev = ports->miport[i];
8792 if (ct.dev == -1 ||
8793 au_get_lr_value(sc, &ct,
8794 &lgain, &rgain))
8795 goto usemaster;
8796 else
8797 break;
8798 }
8799 }
8800 } else {
8801 ct.type = AUDIO_MIXER_SET;
8802 if (audio_get_port(sc, &ct))
8803 goto bad;
8804 ct.type = AUDIO_MIXER_VALUE;
8805 lgain = rgain = n = 0;
8806 for(i = 0; i < ports->nports; i++) {
8807 if (ports->misel[i] & ct.un.mask) {
8808 ct.dev = ports->miport[i];
8809 if (ct.dev == -1 ||
8810 au_get_lr_value(sc, &ct, &l, &r))
8811 goto usemaster;
8812 else {
8813 lgain += l;
8814 rgain += r;
8815 n++;
8816 }
8817 }
8818 }
8819 if (n != 0) {
8820 lgain /= n;
8821 rgain /= n;
8822 }
8823 }
8824 }
8825 bad:
8826 if (lgain == rgain) { /* handles lgain==rgain==0 */
8827 *pgain = lgain;
8828 *pbalance = AUDIO_MID_BALANCE;
8829 } else if (lgain < rgain) {
8830 *pgain = rgain;
8831 /* balance should be > AUDIO_MID_BALANCE */
8832 *pbalance = AUDIO_RIGHT_BALANCE -
8833 (AUDIO_MID_BALANCE * lgain) / rgain;
8834 } else /* lgain > rgain */ {
8835 *pgain = lgain;
8836 /* balance should be < AUDIO_MID_BALANCE */
8837 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8838 }
8839 }
8840
8841 /*
8842 * Must be called with sc_lock && sc_exlock held.
8843 */
8844 int
8845 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8846 {
8847 mixer_ctrl_t ct;
8848 int i, error, use_mixerout;
8849
8850 KASSERT(mutex_owned(sc->sc_lock));
8851 KASSERT(sc->sc_exlock);
8852
8853 use_mixerout = 1;
8854 if (port == 0) {
8855 if (ports->allports == 0)
8856 return 0; /* Allow this special case. */
8857 else if (ports->isdual) {
8858 if (ports->cur_port == -1) {
8859 return 0;
8860 } else {
8861 port = ports->aumask[ports->cur_port];
8862 ports->cur_port = -1;
8863 use_mixerout = 0;
8864 }
8865 }
8866 }
8867 if (ports->index == -1)
8868 return EINVAL;
8869 ct.dev = ports->index;
8870 if (ports->isenum) {
8871 if (port & (port-1))
8872 return EINVAL; /* Only one port allowed */
8873 ct.type = AUDIO_MIXER_ENUM;
8874 error = EINVAL;
8875 for(i = 0; i < ports->nports; i++)
8876 if (ports->aumask[i] == port) {
8877 if (ports->isdual && use_mixerout) {
8878 ct.un.ord = ports->mixerout;
8879 ports->cur_port = i;
8880 } else {
8881 ct.un.ord = ports->misel[i];
8882 }
8883 error = audio_set_port(sc, &ct);
8884 break;
8885 }
8886 } else {
8887 ct.type = AUDIO_MIXER_SET;
8888 ct.un.mask = 0;
8889 for(i = 0; i < ports->nports; i++)
8890 if (ports->aumask[i] & port)
8891 ct.un.mask |= ports->misel[i];
8892 if (port != 0 && ct.un.mask == 0)
8893 error = EINVAL;
8894 else
8895 error = audio_set_port(sc, &ct);
8896 }
8897 if (!error)
8898 mixer_signal(sc);
8899 return error;
8900 }
8901
8902 /*
8903 * Must be called with sc_lock && sc_exlock held.
8904 */
8905 int
8906 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8907 {
8908 mixer_ctrl_t ct;
8909 int i, aumask;
8910
8911 KASSERT(mutex_owned(sc->sc_lock));
8912 KASSERT(sc->sc_exlock);
8913
8914 if (ports->index == -1)
8915 return 0;
8916 ct.dev = ports->index;
8917 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8918 if (audio_get_port(sc, &ct))
8919 return 0;
8920 aumask = 0;
8921 if (ports->isenum) {
8922 if (ports->isdual && ports->cur_port != -1) {
8923 if (ports->mixerout == ct.un.ord)
8924 aumask = ports->aumask[ports->cur_port];
8925 else
8926 ports->cur_port = -1;
8927 }
8928 if (aumask == 0)
8929 for(i = 0; i < ports->nports; i++)
8930 if (ports->misel[i] == ct.un.ord)
8931 aumask = ports->aumask[i];
8932 } else {
8933 for(i = 0; i < ports->nports; i++)
8934 if (ct.un.mask & ports->misel[i])
8935 aumask |= ports->aumask[i];
8936 }
8937 return aumask;
8938 }
8939
8940 /*
8941 * It returns 0 if success, otherwise errno.
8942 * Must be called only if sc->sc_monitor_port != -1.
8943 * Must be called with sc_lock && sc_exlock held.
8944 */
8945 static int
8946 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8947 {
8948 mixer_ctrl_t ct;
8949
8950 KASSERT(mutex_owned(sc->sc_lock));
8951 KASSERT(sc->sc_exlock);
8952
8953 ct.dev = sc->sc_monitor_port;
8954 ct.type = AUDIO_MIXER_VALUE;
8955 ct.un.value.num_channels = 1;
8956 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8957 return audio_set_port(sc, &ct);
8958 }
8959
8960 /*
8961 * It returns monitor gain if success, otherwise -1.
8962 * Must be called only if sc->sc_monitor_port != -1.
8963 * Must be called with sc_lock && sc_exlock held.
8964 */
8965 static int
8966 au_get_monitor_gain(struct audio_softc *sc)
8967 {
8968 mixer_ctrl_t ct;
8969
8970 KASSERT(mutex_owned(sc->sc_lock));
8971 KASSERT(sc->sc_exlock);
8972
8973 ct.dev = sc->sc_monitor_port;
8974 ct.type = AUDIO_MIXER_VALUE;
8975 ct.un.value.num_channels = 1;
8976 if (audio_get_port(sc, &ct))
8977 return -1;
8978 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8979 }
8980
8981 /*
8982 * Must be called with sc_lock && sc_exlock held.
8983 */
8984 static int
8985 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8986 {
8987
8988 KASSERT(mutex_owned(sc->sc_lock));
8989 KASSERT(sc->sc_exlock);
8990
8991 return sc->hw_if->set_port(sc->hw_hdl, mc);
8992 }
8993
8994 /*
8995 * Must be called with sc_lock && sc_exlock held.
8996 */
8997 static int
8998 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8999 {
9000
9001 KASSERT(mutex_owned(sc->sc_lock));
9002 KASSERT(sc->sc_exlock);
9003
9004 return sc->hw_if->get_port(sc->hw_hdl, mc);
9005 }
9006
9007 /*
9008 * Must be called with sc_lock && sc_exlock held.
9009 */
9010 static void
9011 audio_mixer_capture(struct audio_softc *sc)
9012 {
9013 mixer_devinfo_t mi;
9014 mixer_ctrl_t *mc;
9015
9016 KASSERT(mutex_owned(sc->sc_lock));
9017 KASSERT(sc->sc_exlock);
9018
9019 for (mi.index = 0;; mi.index++) {
9020 if (audio_query_devinfo(sc, &mi) != 0)
9021 break;
9022 KASSERT(mi.index < sc->sc_nmixer_states);
9023 if (mi.type == AUDIO_MIXER_CLASS)
9024 continue;
9025 mc = &sc->sc_mixer_state[mi.index];
9026 mc->dev = mi.index;
9027 mc->type = mi.type;
9028 mc->un.value.num_channels = mi.un.v.num_channels;
9029 (void)audio_get_port(sc, mc);
9030 }
9031
9032 return;
9033 }
9034
9035 /*
9036 * Must be called with sc_lock && sc_exlock held.
9037 */
9038 static void
9039 audio_mixer_restore(struct audio_softc *sc)
9040 {
9041 mixer_devinfo_t mi;
9042 mixer_ctrl_t *mc;
9043
9044 KASSERT(mutex_owned(sc->sc_lock));
9045 KASSERT(sc->sc_exlock);
9046
9047 for (mi.index = 0; ; mi.index++) {
9048 if (audio_query_devinfo(sc, &mi) != 0)
9049 break;
9050 if (mi.type == AUDIO_MIXER_CLASS)
9051 continue;
9052 mc = &sc->sc_mixer_state[mi.index];
9053 (void)audio_set_port(sc, mc);
9054 }
9055 if (sc->hw_if->commit_settings)
9056 sc->hw_if->commit_settings(sc->hw_hdl);
9057
9058 return;
9059 }
9060
9061 static void
9062 audio_volume_down(device_t dv)
9063 {
9064 struct audio_softc *sc = device_private(dv);
9065 mixer_devinfo_t mi;
9066 int newgain;
9067 u_int gain;
9068 u_char balance;
9069
9070 if (audio_exlock_mutex_enter(sc) != 0)
9071 return;
9072 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
9073 mi.index = sc->sc_outports.master;
9074 mi.un.v.delta = 0;
9075 if (audio_query_devinfo(sc, &mi) == 0) {
9076 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9077 newgain = gain - mi.un.v.delta;
9078 if (newgain < AUDIO_MIN_GAIN)
9079 newgain = AUDIO_MIN_GAIN;
9080 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9081 }
9082 }
9083 audio_exlock_mutex_exit(sc);
9084 }
9085
9086 static void
9087 audio_volume_up(device_t dv)
9088 {
9089 struct audio_softc *sc = device_private(dv);
9090 mixer_devinfo_t mi;
9091 u_int gain, newgain;
9092 u_char balance;
9093
9094 if (audio_exlock_mutex_enter(sc) != 0)
9095 return;
9096 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
9097 mi.index = sc->sc_outports.master;
9098 mi.un.v.delta = 0;
9099 if (audio_query_devinfo(sc, &mi) == 0) {
9100 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9101 newgain = gain + mi.un.v.delta;
9102 if (newgain > AUDIO_MAX_GAIN)
9103 newgain = AUDIO_MAX_GAIN;
9104 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9105 }
9106 }
9107 audio_exlock_mutex_exit(sc);
9108 }
9109
9110 static void
9111 audio_volume_toggle(device_t dv)
9112 {
9113 struct audio_softc *sc = device_private(dv);
9114 u_int gain, newgain;
9115 u_char balance;
9116
9117 if (audio_exlock_mutex_enter(sc) != 0)
9118 return;
9119 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9120 if (gain != 0) {
9121 sc->sc_lastgain = gain;
9122 newgain = 0;
9123 } else
9124 newgain = sc->sc_lastgain;
9125 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9126 audio_exlock_mutex_exit(sc);
9127 }
9128
9129 /*
9130 * Must be called with sc_lock held.
9131 */
9132 static int
9133 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
9134 {
9135
9136 KASSERT(mutex_owned(sc->sc_lock));
9137
9138 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
9139 }
9140
9141 #endif /* NAUDIO > 0 */
9142
9143 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
9144 #include <sys/param.h>
9145 #include <sys/systm.h>
9146 #include <sys/device.h>
9147 #include <sys/audioio.h>
9148 #include <dev/audio/audio_if.h>
9149 #endif
9150
9151 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
9152 int
9153 audioprint(void *aux, const char *pnp)
9154 {
9155 struct audio_attach_args *arg;
9156 const char *type;
9157
9158 if (pnp != NULL) {
9159 arg = aux;
9160 switch (arg->type) {
9161 case AUDIODEV_TYPE_AUDIO:
9162 type = "audio";
9163 break;
9164 case AUDIODEV_TYPE_MIDI:
9165 type = "midi";
9166 break;
9167 case AUDIODEV_TYPE_OPL:
9168 type = "opl";
9169 break;
9170 case AUDIODEV_TYPE_MPU:
9171 type = "mpu";
9172 break;
9173 case AUDIODEV_TYPE_AUX:
9174 type = "aux";
9175 break;
9176 default:
9177 panic("audioprint: unknown type %d", arg->type);
9178 }
9179 aprint_normal("%s at %s", type, pnp);
9180 }
9181 return UNCONF;
9182 }
9183
9184 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
9185
9186 #ifdef _MODULE
9187
9188 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
9189
9190 #include "ioconf.c"
9191
9192 #endif
9193
9194 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
9195
9196 static int
9197 audio_modcmd(modcmd_t cmd, void *arg)
9198 {
9199 int error = 0;
9200
9201 switch (cmd) {
9202 case MODULE_CMD_INIT:
9203 /* XXX interrupt level? */
9204 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
9205 #ifdef _MODULE
9206 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
9207 &audio_cdevsw, &audio_cmajor);
9208 if (error)
9209 break;
9210
9211 error = config_init_component(cfdriver_ioconf_audio,
9212 cfattach_ioconf_audio, cfdata_ioconf_audio);
9213 if (error) {
9214 devsw_detach(NULL, &audio_cdevsw);
9215 }
9216 #endif
9217 break;
9218 case MODULE_CMD_FINI:
9219 #ifdef _MODULE
9220 error = config_fini_component(cfdriver_ioconf_audio,
9221 cfattach_ioconf_audio, cfdata_ioconf_audio);
9222 if (error == 0)
9223 devsw_detach(NULL, &audio_cdevsw);
9224 #endif
9225 if (error == 0)
9226 psref_class_destroy(audio_psref_class);
9227 break;
9228 default:
9229 error = ENOTTY;
9230 break;
9231 }
9232
9233 return error;
9234 }
9235