audio.c revision 1.142 1 /* $NetBSD: audio.c,v 1.142 2023/04/23 08:38:53 mlelstv Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Terminology: "sample", "channel", "frame", "block", "track":
67 *
68 * channel frame
69 * | ........
70 * v : : \
71 * +------:------:------:- -+------+ : +------+-.. |
72 * #0(L) |sample|sample|sample| .. |sample| : |sample| |
73 * +------:------:------:- -+------+ : +------+-.. |
74 * #1(R) |sample|sample|sample| .. |sample| : |sample| |
75 * +------:------:------:- -+------+ : +------+-.. | track
76 * : : : : |
77 * +------:------:------:- -+------+ : +------+-.. |
78 * |sample|sample|sample| .. |sample| : |sample| |
79 * +------:------:------:- -+------+ : +------+-.. |
80 * : : /
81 * ........
82 *
83 * \--------------------------------/ \--------..
84 * block
85 *
86 * - A "frame" is the minimum unit in the time axis direction, and consists
87 * of samples for the number of channels.
88 * - A "block" is basic length of processing. The audio layer basically
89 * handles audio data stream block by block, asks underlying hardware to
90 * process them block by block, and then the hardware raises interrupt by
91 * each block.
92 * - A "track" is single completed audio stream.
93 *
94 * For example, the hardware block is assumed to be 10 msec, and your audio
95 * track consists of 2.1(=3) channels 44.1kHz 16bit PCM,
96 *
97 * "channel" = 3
98 * "sample" = 2 [bytes]
99 * "frame" = 2 [bytes/sample] * 3 [channels] = 6 [bytes]
100 * "block" = 44100 [Hz] * (10/1000) [seconds] * 6 [bytes/frame] = 2646 [bytes]
101 *
102 * The terminologies shown here are only for this MI audio layer. Note that
103 * different terminologies may be used in each manufacturer's datasheet, and
104 * each MD driver may follow it. For example, what we call a "block" is
105 * called a "frame" in sys/dev/pci/yds.c.
106 */
107
108 /*
109 * Locking: there are three locks per device.
110 *
111 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
112 * returned in the second parameter to hw_if->get_locks(). It is known
113 * as the "thread lock".
114 *
115 * It serializes access to state in all places except the
116 * driver's interrupt service routine. This lock is taken from process
117 * context (example: access to /dev/audio). It is also taken from soft
118 * interrupt handlers in this module, primarily to serialize delivery of
119 * wakeups. This lock may be used/provided by modules external to the
120 * audio subsystem, so take care not to introduce a lock order problem.
121 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
122 *
123 * - sc_intr_lock, provided by the underlying driver. This may be either a
124 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
125 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
126 * is known as the "interrupt lock".
127 *
128 * It provides atomic access to the device's hardware state, and to audio
129 * channel data that may be accessed by the hardware driver's ISR.
130 * In all places outside the ISR, sc_lock must be held before taking
131 * sc_intr_lock. This is to ensure that groups of hardware operations are
132 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
133 *
134 * - sc_exlock, private to this module. This is a variable protected by
135 * sc_lock. It is known as the "critical section".
136 * Some operations release sc_lock in order to allocate memory, to wait
137 * for in-flight I/O to complete, to copy to/from user context, etc.
138 * sc_exlock provides a critical section even under the circumstance.
139 * "+" in following list indicates the interfaces which necessary to be
140 * protected by sc_exlock.
141 *
142 * List of hardware interface methods, and which locks are held when each
143 * is called by this module:
144 *
145 * METHOD INTR THREAD NOTES
146 * ----------------------- ------- ------- -------------------------
147 * open x x +
148 * close x x +
149 * query_format - x
150 * set_format - x
151 * round_blocksize - x
152 * commit_settings - x
153 * init_output x x
154 * init_input x x
155 * start_output x x +
156 * start_input x x +
157 * halt_output x x +
158 * halt_input x x +
159 * speaker_ctl x x
160 * getdev - -
161 * set_port - x +
162 * get_port - x +
163 * query_devinfo - x
164 * allocm - - +
165 * freem - - +
166 * round_buffersize - x
167 * get_props - - Called at attach time
168 * trigger_output x x +
169 * trigger_input x x +
170 * dev_ioctl - x
171 * get_locks - - Called at attach time
172 *
173 * In addition, there is an additional lock.
174 *
175 * - track->lock. This is an atomic variable and is similar to the
176 * "interrupt lock". This is one for each track. If any thread context
177 * (and software interrupt context) and hardware interrupt context who
178 * want to access some variables on this track, they must acquire this
179 * lock before. It protects track's consistency between hardware
180 * interrupt context and others.
181 */
182
183 #include <sys/cdefs.h>
184 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.142 2023/04/23 08:38:53 mlelstv Exp $");
185
186 #ifdef _KERNEL_OPT
187 #include "audio.h"
188 #include "midi.h"
189 #endif
190
191 #if NAUDIO > 0
192
193 #include <sys/types.h>
194 #include <sys/param.h>
195 #include <sys/atomic.h>
196 #include <sys/audioio.h>
197 #include <sys/conf.h>
198 #include <sys/cpu.h>
199 #include <sys/device.h>
200 #include <sys/fcntl.h>
201 #include <sys/file.h>
202 #include <sys/filedesc.h>
203 #include <sys/intr.h>
204 #include <sys/ioctl.h>
205 #include <sys/kauth.h>
206 #include <sys/kernel.h>
207 #include <sys/kmem.h>
208 #include <sys/lock.h>
209 #include <sys/malloc.h>
210 #include <sys/mman.h>
211 #include <sys/module.h>
212 #include <sys/poll.h>
213 #include <sys/proc.h>
214 #include <sys/queue.h>
215 #include <sys/select.h>
216 #include <sys/signalvar.h>
217 #include <sys/stat.h>
218 #include <sys/sysctl.h>
219 #include <sys/systm.h>
220 #include <sys/syslog.h>
221 #include <sys/vnode.h>
222
223 #include <dev/audio/audio_if.h>
224 #include <dev/audio/audiovar.h>
225 #include <dev/audio/audiodef.h>
226 #include <dev/audio/linear.h>
227 #include <dev/audio/mulaw.h>
228
229 #include <machine/endian.h>
230
231 #include <uvm/uvm_extern.h>
232
233 #include "ioconf.h"
234
235 /*
236 * 0: No debug logs
237 * 1: action changes like open/close/set_format/mmap...
238 * 2: + normal operations like read/write/ioctl...
239 * 3: + TRACEs except interrupt
240 * 4: + TRACEs including interrupt
241 */
242 //#define AUDIO_DEBUG 1
243
244 #if defined(AUDIO_DEBUG)
245
246 int audiodebug = AUDIO_DEBUG;
247 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
248 const char *, va_list);
249 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
250 __printflike(3, 4);
251 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
252 __printflike(3, 4);
253 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
254 __printflike(3, 4);
255
256 /* XXX sloppy memory logger */
257 static void audio_mlog_init(void);
258 static void audio_mlog_free(void);
259 static void audio_mlog_softintr(void *);
260 extern void audio_mlog_flush(void);
261 extern void audio_mlog_printf(const char *, ...);
262
263 static int mlog_refs; /* reference counter */
264 static char *mlog_buf[2]; /* double buffer */
265 static int mlog_buflen; /* buffer length */
266 static int mlog_used; /* used length */
267 static int mlog_full; /* number of dropped lines by buffer full */
268 static int mlog_drop; /* number of dropped lines by busy */
269 static volatile uint32_t mlog_inuse; /* in-use */
270 static int mlog_wpage; /* active page */
271 static void *mlog_sih; /* softint handle */
272
273 static void
274 audio_mlog_init(void)
275 {
276 mlog_refs++;
277 if (mlog_refs > 1)
278 return;
279 mlog_buflen = 4096;
280 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
281 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
282 mlog_used = 0;
283 mlog_full = 0;
284 mlog_drop = 0;
285 mlog_inuse = 0;
286 mlog_wpage = 0;
287 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
288 if (mlog_sih == NULL)
289 printf("%s: softint_establish failed\n", __func__);
290 }
291
292 static void
293 audio_mlog_free(void)
294 {
295 mlog_refs--;
296 if (mlog_refs > 0)
297 return;
298
299 audio_mlog_flush();
300 if (mlog_sih)
301 softint_disestablish(mlog_sih);
302 kmem_free(mlog_buf[0], mlog_buflen);
303 kmem_free(mlog_buf[1], mlog_buflen);
304 }
305
306 /*
307 * Flush memory buffer.
308 * It must not be called from hardware interrupt context.
309 */
310 void
311 audio_mlog_flush(void)
312 {
313 if (mlog_refs == 0)
314 return;
315
316 /* Nothing to do if already in use ? */
317 if (atomic_swap_32(&mlog_inuse, 1) == 1)
318 return;
319 membar_acquire();
320
321 int rpage = mlog_wpage;
322 mlog_wpage ^= 1;
323 mlog_buf[mlog_wpage][0] = '\0';
324 mlog_used = 0;
325
326 atomic_store_release(&mlog_inuse, 0);
327
328 if (mlog_buf[rpage][0] != '\0') {
329 printf("%s", mlog_buf[rpage]);
330 if (mlog_drop > 0)
331 printf("mlog_drop %d\n", mlog_drop);
332 if (mlog_full > 0)
333 printf("mlog_full %d\n", mlog_full);
334 }
335 mlog_full = 0;
336 mlog_drop = 0;
337 }
338
339 static void
340 audio_mlog_softintr(void *cookie)
341 {
342 audio_mlog_flush();
343 }
344
345 void
346 audio_mlog_printf(const char *fmt, ...)
347 {
348 int len;
349 va_list ap;
350
351 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
352 /* already inuse */
353 mlog_drop++;
354 return;
355 }
356 membar_acquire();
357
358 va_start(ap, fmt);
359 len = vsnprintf(
360 mlog_buf[mlog_wpage] + mlog_used,
361 mlog_buflen - mlog_used,
362 fmt, ap);
363 va_end(ap);
364
365 mlog_used += len;
366 if (mlog_buflen - mlog_used <= 1) {
367 mlog_full++;
368 }
369
370 atomic_store_release(&mlog_inuse, 0);
371
372 if (mlog_sih)
373 softint_schedule(mlog_sih);
374 }
375
376 /* trace functions */
377 static void
378 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
379 const char *fmt, va_list ap)
380 {
381 char buf[256];
382 int n;
383
384 n = 0;
385 buf[0] = '\0';
386 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
387 funcname, device_unit(sc->sc_dev), header);
388 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
389
390 if (cpu_intr_p()) {
391 audio_mlog_printf("%s\n", buf);
392 } else {
393 audio_mlog_flush();
394 printf("%s\n", buf);
395 }
396 }
397
398 static void
399 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
400 {
401 va_list ap;
402
403 va_start(ap, fmt);
404 audio_vtrace(sc, funcname, "", fmt, ap);
405 va_end(ap);
406 }
407
408 static void
409 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
410 {
411 char hdr[16];
412 va_list ap;
413
414 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
415 va_start(ap, fmt);
416 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
417 va_end(ap);
418 }
419
420 static void
421 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
422 {
423 char hdr[32];
424 char phdr[16], rhdr[16];
425 va_list ap;
426
427 phdr[0] = '\0';
428 rhdr[0] = '\0';
429 if (file->ptrack)
430 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
431 if (file->rtrack)
432 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
433 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
434
435 va_start(ap, fmt);
436 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
437 va_end(ap);
438 }
439
440 #define DPRINTF(n, fmt...) do { \
441 if (audiodebug >= (n)) { \
442 audio_mlog_flush(); \
443 printf(fmt); \
444 } \
445 } while (0)
446 #define TRACE(n, fmt...) do { \
447 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
448 } while (0)
449 #define TRACET(n, t, fmt...) do { \
450 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
451 } while (0)
452 #define TRACEF(n, f, fmt...) do { \
453 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
454 } while (0)
455
456 struct audio_track_debugbuf {
457 char usrbuf[32];
458 char codec[32];
459 char chvol[32];
460 char chmix[32];
461 char freq[32];
462 char outbuf[32];
463 };
464
465 static void
466 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
467 {
468
469 memset(buf, 0, sizeof(*buf));
470
471 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
472 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
473 if (track->freq.filter)
474 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
475 track->freq.srcbuf.head,
476 track->freq.srcbuf.used,
477 track->freq.srcbuf.capacity);
478 if (track->chmix.filter)
479 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
480 track->chmix.srcbuf.used);
481 if (track->chvol.filter)
482 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
483 track->chvol.srcbuf.used);
484 if (track->codec.filter)
485 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
486 track->codec.srcbuf.used);
487 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
488 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
489 }
490 #else
491 #define DPRINTF(n, fmt...) do { } while (0)
492 #define TRACE(n, fmt, ...) do { } while (0)
493 #define TRACET(n, t, fmt, ...) do { } while (0)
494 #define TRACEF(n, f, fmt, ...) do { } while (0)
495 #endif
496
497 #define SPECIFIED(x) ((x) != ~0)
498 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
499
500 /*
501 * Default hardware blocksize in msec.
502 *
503 * We use 10 msec for most modern platforms. This period is good enough to
504 * play audio and video synchronizely.
505 * In contrast, for very old platforms, this is usually too short and too
506 * severe. Also such platforms usually can not play video confortably, so
507 * it's not so important to make the blocksize shorter. If the platform
508 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
509 * uses this instead.
510 *
511 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
512 * configuration file if you wish.
513 */
514 #if !defined(AUDIO_BLK_MS)
515 # if defined(__AUDIO_BLK_MS)
516 # define AUDIO_BLK_MS __AUDIO_BLK_MS
517 # else
518 # define AUDIO_BLK_MS (10)
519 # endif
520 #endif
521
522 /* Device timeout in msec */
523 #define AUDIO_TIMEOUT (3000)
524
525 /* #define AUDIO_PM_IDLE */
526 #ifdef AUDIO_PM_IDLE
527 int audio_idle_timeout = 30;
528 #endif
529
530 /* Number of elements of async mixer's pid */
531 #define AM_CAPACITY (4)
532
533 struct portname {
534 const char *name;
535 int mask;
536 };
537
538 static int audiomatch(device_t, cfdata_t, void *);
539 static void audioattach(device_t, device_t, void *);
540 static int audiodetach(device_t, int);
541 static int audioactivate(device_t, enum devact);
542 static void audiochilddet(device_t, device_t);
543 static int audiorescan(device_t, const char *, const int *);
544
545 static int audio_modcmd(modcmd_t, void *);
546
547 #ifdef AUDIO_PM_IDLE
548 static void audio_idle(void *);
549 static void audio_activity(device_t, devactive_t);
550 #endif
551
552 static bool audio_suspend(device_t dv, const pmf_qual_t *);
553 static bool audio_resume(device_t dv, const pmf_qual_t *);
554 static void audio_volume_down(device_t);
555 static void audio_volume_up(device_t);
556 static void audio_volume_toggle(device_t);
557
558 static void audio_mixer_capture(struct audio_softc *);
559 static void audio_mixer_restore(struct audio_softc *);
560
561 static void audio_softintr_rd(void *);
562 static void audio_softintr_wr(void *);
563
564 static int audio_properties(struct audio_softc *);
565 static void audio_printf(struct audio_softc *, const char *, ...)
566 __printflike(2, 3);
567 static int audio_exlock_mutex_enter(struct audio_softc *);
568 static void audio_exlock_mutex_exit(struct audio_softc *);
569 static int audio_exlock_enter(struct audio_softc *);
570 static void audio_exlock_exit(struct audio_softc *);
571 static struct audio_softc *audio_sc_acquire_fromfile(audio_file_t *,
572 struct psref *);
573 static void audio_sc_release(struct audio_softc *, struct psref *);
574 static int audio_track_waitio(struct audio_softc *, audio_track_t *,
575 const char *mess);
576
577 static int audioclose(struct file *);
578 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
579 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
580 static int audioioctl(struct file *, u_long, void *);
581 static int audiopoll(struct file *, int);
582 static int audiokqfilter(struct file *, struct knote *);
583 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
584 struct uvm_object **, int *);
585 static int audiostat(struct file *, struct stat *);
586
587 static void filt_audiowrite_detach(struct knote *);
588 static int filt_audiowrite_event(struct knote *, long);
589 static void filt_audioread_detach(struct knote *);
590 static int filt_audioread_event(struct knote *, long);
591
592 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
593 audio_file_t **);
594 static int audio_close(struct audio_softc *, audio_file_t *);
595 static void audio_unlink(struct audio_softc *, audio_file_t *);
596 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
597 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
598 static void audio_file_clear(struct audio_softc *, audio_file_t *);
599 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
600 struct lwp *, audio_file_t *);
601 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
602 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
603 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
604 struct uvm_object **, int *, audio_file_t *);
605
606 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
607
608 static void audio_pintr(void *);
609 static void audio_rintr(void *);
610
611 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
612
613 static int audio_track_inputblk_as_usrbyte(const audio_track_t *, int);
614 static int audio_track_readablebytes(const audio_track_t *);
615 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
616 const struct audio_info *);
617 static int audio_track_setinfo_check(audio_track_t *,
618 audio_format2_t *, const struct audio_prinfo *);
619 static void audio_track_setinfo_water(audio_track_t *,
620 const struct audio_info *);
621 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
622 struct audio_info *);
623 static int audio_hw_set_format(struct audio_softc *, int,
624 const audio_format2_t *, const audio_format2_t *,
625 audio_filter_reg_t *, audio_filter_reg_t *);
626 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
627 audio_file_t *);
628 static bool audio_can_playback(struct audio_softc *);
629 static bool audio_can_capture(struct audio_softc *);
630 static int audio_check_params(audio_format2_t *);
631 static int audio_mixers_init(struct audio_softc *sc, int,
632 const audio_format2_t *, const audio_format2_t *,
633 const audio_filter_reg_t *, const audio_filter_reg_t *);
634 static int audio_select_freq(const struct audio_format *);
635 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
636 static int audio_hw_validate_format(struct audio_softc *, int,
637 const audio_format2_t *);
638 static int audio_mixers_set_format(struct audio_softc *,
639 const struct audio_info *);
640 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
641 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
642 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
643 #if defined(AUDIO_DEBUG)
644 static int audio_sysctl_debug(SYSCTLFN_PROTO);
645 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
646 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
647 #endif
648
649 static void *audio_realloc(void *, size_t);
650 static void audio_free_usrbuf(audio_track_t *);
651
652 static audio_track_t *audio_track_create(struct audio_softc *,
653 audio_trackmixer_t *);
654 static void audio_track_destroy(audio_track_t *);
655 static audio_filter_t audio_track_get_codec(audio_track_t *,
656 const audio_format2_t *, const audio_format2_t *);
657 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
658 static void audio_track_play(audio_track_t *);
659 static int audio_track_drain(struct audio_softc *, audio_track_t *);
660 static void audio_track_record(audio_track_t *);
661 static void audio_track_clear(struct audio_softc *, audio_track_t *);
662
663 static int audio_mixer_init(struct audio_softc *, int,
664 const audio_format2_t *, const audio_filter_reg_t *);
665 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
666 static void audio_pmixer_start(struct audio_softc *, bool);
667 static void audio_pmixer_process(struct audio_softc *);
668 static void audio_pmixer_agc(audio_trackmixer_t *, int);
669 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
670 static void audio_pmixer_output(struct audio_softc *);
671 static int audio_pmixer_halt(struct audio_softc *);
672 static void audio_rmixer_start(struct audio_softc *);
673 static void audio_rmixer_process(struct audio_softc *);
674 static void audio_rmixer_input(struct audio_softc *);
675 static int audio_rmixer_halt(struct audio_softc *);
676
677 static void mixer_init(struct audio_softc *);
678 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
679 static int mixer_close(struct audio_softc *, audio_file_t *);
680 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
681 static void mixer_async_add(struct audio_softc *, pid_t);
682 static void mixer_async_remove(struct audio_softc *, pid_t);
683 static void mixer_signal(struct audio_softc *);
684
685 static int au_portof(struct audio_softc *, char *, int);
686
687 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
688 mixer_devinfo_t *, const struct portname *);
689 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
690 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
691 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
692 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
693 u_int *, u_char *);
694 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
695 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
696 static int au_set_monitor_gain(struct audio_softc *, int);
697 static int au_get_monitor_gain(struct audio_softc *);
698 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
699 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
700
701 void audio_mixsample_to_linear(audio_filter_arg_t *);
702
703 static __inline struct audio_params
704 format2_to_params(const audio_format2_t *f2)
705 {
706 audio_params_t p;
707
708 /* validbits/precision <-> precision/stride */
709 p.sample_rate = f2->sample_rate;
710 p.channels = f2->channels;
711 p.encoding = f2->encoding;
712 p.validbits = f2->precision;
713 p.precision = f2->stride;
714 return p;
715 }
716
717 static __inline audio_format2_t
718 params_to_format2(const struct audio_params *p)
719 {
720 audio_format2_t f2;
721
722 /* precision/stride <-> validbits/precision */
723 f2.sample_rate = p->sample_rate;
724 f2.channels = p->channels;
725 f2.encoding = p->encoding;
726 f2.precision = p->validbits;
727 f2.stride = p->precision;
728 return f2;
729 }
730
731 /* Return true if this track is a playback track. */
732 static __inline bool
733 audio_track_is_playback(const audio_track_t *track)
734 {
735
736 return ((track->mode & AUMODE_PLAY) != 0);
737 }
738
739 #if 0
740 /* Return true if this track is a recording track. */
741 static __inline bool
742 audio_track_is_record(const audio_track_t *track)
743 {
744
745 return ((track->mode & AUMODE_RECORD) != 0);
746 }
747 #endif
748
749 #if 0 /* XXX Not used yet */
750 /*
751 * Convert 0..255 volume used in userland to internal presentation 0..256.
752 */
753 static __inline u_int
754 audio_volume_to_inner(u_int v)
755 {
756
757 return v < 127 ? v : v + 1;
758 }
759
760 /*
761 * Convert 0..256 internal presentation to 0..255 volume used in userland.
762 */
763 static __inline u_int
764 audio_volume_to_outer(u_int v)
765 {
766
767 return v < 127 ? v : v - 1;
768 }
769 #endif /* 0 */
770
771 static dev_type_open(audioopen);
772 /* XXXMRG use more dev_type_xxx */
773
774 static int
775 audiounit(dev_t dev)
776 {
777
778 return AUDIOUNIT(dev);
779 }
780
781 const struct cdevsw audio_cdevsw = {
782 .d_open = audioopen,
783 .d_close = noclose,
784 .d_read = noread,
785 .d_write = nowrite,
786 .d_ioctl = noioctl,
787 .d_stop = nostop,
788 .d_tty = notty,
789 .d_poll = nopoll,
790 .d_mmap = nommap,
791 .d_kqfilter = nokqfilter,
792 .d_discard = nodiscard,
793 .d_cfdriver = &audio_cd,
794 .d_devtounit = audiounit,
795 .d_flag = D_OTHER | D_MPSAFE
796 };
797
798 const struct fileops audio_fileops = {
799 .fo_name = "audio",
800 .fo_read = audioread,
801 .fo_write = audiowrite,
802 .fo_ioctl = audioioctl,
803 .fo_fcntl = fnullop_fcntl,
804 .fo_stat = audiostat,
805 .fo_poll = audiopoll,
806 .fo_close = audioclose,
807 .fo_mmap = audiommap,
808 .fo_kqfilter = audiokqfilter,
809 .fo_restart = fnullop_restart
810 };
811
812 /* The default audio mode: 8 kHz mono mu-law */
813 static const struct audio_params audio_default = {
814 .sample_rate = 8000,
815 .encoding = AUDIO_ENCODING_ULAW,
816 .precision = 8,
817 .validbits = 8,
818 .channels = 1,
819 };
820
821 static const char *encoding_names[] = {
822 "none",
823 AudioEmulaw,
824 AudioEalaw,
825 "pcm16",
826 "pcm8",
827 AudioEadpcm,
828 AudioEslinear_le,
829 AudioEslinear_be,
830 AudioEulinear_le,
831 AudioEulinear_be,
832 AudioEslinear,
833 AudioEulinear,
834 AudioEmpeg_l1_stream,
835 AudioEmpeg_l1_packets,
836 AudioEmpeg_l1_system,
837 AudioEmpeg_l2_stream,
838 AudioEmpeg_l2_packets,
839 AudioEmpeg_l2_system,
840 AudioEac3,
841 };
842
843 /*
844 * Returns encoding name corresponding to AUDIO_ENCODING_*.
845 * Note that it may return a local buffer because it is mainly for debugging.
846 */
847 const char *
848 audio_encoding_name(int encoding)
849 {
850 static char buf[16];
851
852 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
853 return encoding_names[encoding];
854 } else {
855 snprintf(buf, sizeof(buf), "enc=%d", encoding);
856 return buf;
857 }
858 }
859
860 /*
861 * Supported encodings used by AUDIO_GETENC.
862 * index and flags are set by code.
863 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
864 */
865 static const audio_encoding_t audio_encodings[] = {
866 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
867 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
868 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
869 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
870 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
871 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
872 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
873 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
874 #if defined(AUDIO_SUPPORT_LINEAR24)
875 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
876 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
877 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
878 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
879 #endif
880 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
881 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
882 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
883 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
884 };
885
886 static const struct portname itable[] = {
887 { AudioNmicrophone, AUDIO_MICROPHONE },
888 { AudioNline, AUDIO_LINE_IN },
889 { AudioNcd, AUDIO_CD },
890 { 0, 0 }
891 };
892 static const struct portname otable[] = {
893 { AudioNspeaker, AUDIO_SPEAKER },
894 { AudioNheadphone, AUDIO_HEADPHONE },
895 { AudioNline, AUDIO_LINE_OUT },
896 { 0, 0 }
897 };
898
899 static struct psref_class *audio_psref_class __read_mostly;
900
901 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
902 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
903 audiochilddet, DVF_DETACH_SHUTDOWN);
904
905 static int
906 audiomatch(device_t parent, cfdata_t match, void *aux)
907 {
908 struct audio_attach_args *sa;
909
910 sa = aux;
911 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
912 __func__, sa->type, sa, sa->hwif);
913 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
914 }
915
916 static void
917 audioattach(device_t parent, device_t self, void *aux)
918 {
919 struct audio_softc *sc;
920 struct audio_attach_args *sa;
921 const struct audio_hw_if *hw_if;
922 audio_format2_t phwfmt;
923 audio_format2_t rhwfmt;
924 audio_filter_reg_t pfil;
925 audio_filter_reg_t rfil;
926 const struct sysctlnode *node;
927 void *hdlp;
928 bool has_playback;
929 bool has_capture;
930 bool has_indep;
931 bool has_fulldup;
932 int mode;
933 int error;
934
935 sc = device_private(self);
936 sc->sc_dev = self;
937 sa = (struct audio_attach_args *)aux;
938 hw_if = sa->hwif;
939 hdlp = sa->hdl;
940
941 if (hw_if == NULL) {
942 panic("audioattach: missing hw_if method");
943 }
944 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
945 aprint_error(": missing mandatory method\n");
946 return;
947 }
948
949 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
950 sc->sc_props = hw_if->get_props(hdlp);
951
952 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
953 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
954 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
955 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
956
957 #ifdef DIAGNOSTIC
958 if (hw_if->query_format == NULL ||
959 hw_if->set_format == NULL ||
960 hw_if->getdev == NULL ||
961 hw_if->set_port == NULL ||
962 hw_if->get_port == NULL ||
963 hw_if->query_devinfo == NULL) {
964 aprint_error(": missing mandatory method\n");
965 return;
966 }
967 if (has_playback) {
968 if ((hw_if->start_output == NULL &&
969 hw_if->trigger_output == NULL) ||
970 hw_if->halt_output == NULL) {
971 aprint_error(": missing playback method\n");
972 }
973 }
974 if (has_capture) {
975 if ((hw_if->start_input == NULL &&
976 hw_if->trigger_input == NULL) ||
977 hw_if->halt_input == NULL) {
978 aprint_error(": missing capture method\n");
979 }
980 }
981 #endif
982
983 sc->hw_if = hw_if;
984 sc->hw_hdl = hdlp;
985 sc->hw_dev = parent;
986
987 sc->sc_exlock = 1;
988 sc->sc_blk_ms = AUDIO_BLK_MS;
989 SLIST_INIT(&sc->sc_files);
990 cv_init(&sc->sc_exlockcv, "audiolk");
991 sc->sc_am_capacity = 0;
992 sc->sc_am_used = 0;
993 sc->sc_am = NULL;
994
995 /* MMAP is now supported by upper layer. */
996 sc->sc_props |= AUDIO_PROP_MMAP;
997
998 KASSERT(has_playback || has_capture);
999 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
1000 if (!has_playback || !has_capture) {
1001 KASSERT(!has_indep);
1002 KASSERT(!has_fulldup);
1003 }
1004
1005 mode = 0;
1006 if (has_playback) {
1007 aprint_normal(": playback");
1008 mode |= AUMODE_PLAY;
1009 }
1010 if (has_capture) {
1011 aprint_normal("%c capture", has_playback ? ',' : ':');
1012 mode |= AUMODE_RECORD;
1013 }
1014 if (has_playback && has_capture) {
1015 if (has_fulldup)
1016 aprint_normal(", full duplex");
1017 else
1018 aprint_normal(", half duplex");
1019
1020 if (has_indep)
1021 aprint_normal(", independent");
1022 }
1023
1024 aprint_naive("\n");
1025 aprint_normal("\n");
1026
1027 /* probe hw params */
1028 memset(&phwfmt, 0, sizeof(phwfmt));
1029 memset(&rhwfmt, 0, sizeof(rhwfmt));
1030 memset(&pfil, 0, sizeof(pfil));
1031 memset(&rfil, 0, sizeof(rfil));
1032 if (has_indep) {
1033 int perror, rerror;
1034
1035 /* On independent devices, probe separately. */
1036 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
1037 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
1038 if (perror && rerror) {
1039 aprint_error_dev(self,
1040 "audio_hw_probe failed: perror=%d, rerror=%d\n",
1041 perror, rerror);
1042 goto bad;
1043 }
1044 if (perror) {
1045 mode &= ~AUMODE_PLAY;
1046 aprint_error_dev(self, "audio_hw_probe failed: "
1047 "errno=%d, playback disabled\n", perror);
1048 }
1049 if (rerror) {
1050 mode &= ~AUMODE_RECORD;
1051 aprint_error_dev(self, "audio_hw_probe failed: "
1052 "errno=%d, capture disabled\n", rerror);
1053 }
1054 } else {
1055 /*
1056 * On non independent devices or uni-directional devices,
1057 * probe once (simultaneously).
1058 */
1059 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
1060 error = audio_hw_probe(sc, fmt, mode);
1061 if (error) {
1062 aprint_error_dev(self,
1063 "audio_hw_probe failed: errno=%d\n", error);
1064 goto bad;
1065 }
1066 if (has_playback && has_capture)
1067 rhwfmt = phwfmt;
1068 }
1069
1070 /* Make device id available */
1071 if (audio_properties(sc))
1072 aprint_error_dev(self, "audio_properties failed\n");
1073
1074 /* Init hardware. */
1075 /* hw_probe() also validates [pr]hwfmt. */
1076 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1077 if (error) {
1078 aprint_error_dev(self,
1079 "audio_hw_set_format failed: errno=%d\n", error);
1080 goto bad;
1081 }
1082
1083 /*
1084 * Init track mixers. If at least one direction is available on
1085 * attach time, we assume a success.
1086 */
1087 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1088 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1089 aprint_error_dev(self,
1090 "audio_mixers_init failed: errno=%d\n", error);
1091 goto bad;
1092 }
1093
1094 sc->sc_psz = pserialize_create();
1095 psref_target_init(&sc->sc_psref, audio_psref_class);
1096
1097 selinit(&sc->sc_wsel);
1098 selinit(&sc->sc_rsel);
1099
1100 /* Initial parameter of /dev/sound */
1101 sc->sc_sound_pparams = params_to_format2(&audio_default);
1102 sc->sc_sound_rparams = params_to_format2(&audio_default);
1103 sc->sc_sound_ppause = false;
1104 sc->sc_sound_rpause = false;
1105
1106 /* XXX TODO: consider about sc_ai */
1107
1108 mixer_init(sc);
1109 TRACE(2, "inputs ports=0x%x, input master=%d, "
1110 "output ports=0x%x, output master=%d",
1111 sc->sc_inports.allports, sc->sc_inports.master,
1112 sc->sc_outports.allports, sc->sc_outports.master);
1113
1114 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1115 0,
1116 CTLTYPE_NODE, device_xname(sc->sc_dev),
1117 SYSCTL_DESCR("audio test"),
1118 NULL, 0,
1119 NULL, 0,
1120 CTL_HW,
1121 CTL_CREATE, CTL_EOL);
1122
1123 if (node != NULL) {
1124 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1125 CTLFLAG_READWRITE,
1126 CTLTYPE_INT, "blk_ms",
1127 SYSCTL_DESCR("blocksize in msec"),
1128 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1129 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1130
1131 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1132 CTLFLAG_READWRITE,
1133 CTLTYPE_BOOL, "multiuser",
1134 SYSCTL_DESCR("allow multiple user access"),
1135 audio_sysctl_multiuser, 0, (void *)sc, 0,
1136 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1137
1138 #if defined(AUDIO_DEBUG)
1139 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1140 CTLFLAG_READWRITE,
1141 CTLTYPE_INT, "debug",
1142 SYSCTL_DESCR("debug level (0..4)"),
1143 audio_sysctl_debug, 0, (void *)sc, 0,
1144 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1145 #endif
1146 }
1147
1148 #ifdef AUDIO_PM_IDLE
1149 callout_init(&sc->sc_idle_counter, 0);
1150 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1151 #endif
1152
1153 if (!pmf_device_register(self, audio_suspend, audio_resume))
1154 aprint_error_dev(self, "couldn't establish power handler\n");
1155 #ifdef AUDIO_PM_IDLE
1156 if (!device_active_register(self, audio_activity))
1157 aprint_error_dev(self, "couldn't register activity handler\n");
1158 #endif
1159
1160 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1161 audio_volume_down, true))
1162 aprint_error_dev(self, "couldn't add volume down handler\n");
1163 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1164 audio_volume_up, true))
1165 aprint_error_dev(self, "couldn't add volume up handler\n");
1166 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1167 audio_volume_toggle, true))
1168 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1169
1170 #ifdef AUDIO_PM_IDLE
1171 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1172 #endif
1173
1174 #if defined(AUDIO_DEBUG)
1175 audio_mlog_init();
1176 #endif
1177
1178 audiorescan(self, NULL, NULL);
1179 sc->sc_exlock = 0;
1180 return;
1181
1182 bad:
1183 /* Clearing hw_if means that device is attached but disabled. */
1184 sc->hw_if = NULL;
1185 sc->sc_exlock = 0;
1186 aprint_error_dev(sc->sc_dev, "disabled\n");
1187 return;
1188 }
1189
1190 /*
1191 * Identify audio backend device for drvctl.
1192 */
1193 static int
1194 audio_properties(struct audio_softc *sc)
1195 {
1196 prop_dictionary_t dict = device_properties(sc->sc_dev);
1197 audio_device_t adev;
1198 int error;
1199
1200 error = sc->hw_if->getdev(sc->hw_hdl, &adev);
1201 if (error)
1202 return error;
1203
1204 prop_dictionary_set_string(dict, "name", adev.name);
1205 prop_dictionary_set_string(dict, "version", adev.version);
1206 prop_dictionary_set_string(dict, "config", adev.config);
1207
1208 return 0;
1209 }
1210
1211 /*
1212 * Initialize hardware mixer.
1213 * This function is called from audioattach().
1214 */
1215 static void
1216 mixer_init(struct audio_softc *sc)
1217 {
1218 mixer_devinfo_t mi;
1219 int iclass, mclass, oclass, rclass;
1220 int record_master_found, record_source_found;
1221
1222 iclass = mclass = oclass = rclass = -1;
1223 sc->sc_inports.index = -1;
1224 sc->sc_inports.master = -1;
1225 sc->sc_inports.nports = 0;
1226 sc->sc_inports.isenum = false;
1227 sc->sc_inports.allports = 0;
1228 sc->sc_inports.isdual = false;
1229 sc->sc_inports.mixerout = -1;
1230 sc->sc_inports.cur_port = -1;
1231 sc->sc_outports.index = -1;
1232 sc->sc_outports.master = -1;
1233 sc->sc_outports.nports = 0;
1234 sc->sc_outports.isenum = false;
1235 sc->sc_outports.allports = 0;
1236 sc->sc_outports.isdual = false;
1237 sc->sc_outports.mixerout = -1;
1238 sc->sc_outports.cur_port = -1;
1239 sc->sc_monitor_port = -1;
1240 /*
1241 * Read through the underlying driver's list, picking out the class
1242 * names from the mixer descriptions. We'll need them to decode the
1243 * mixer descriptions on the next pass through the loop.
1244 */
1245 mutex_enter(sc->sc_lock);
1246 for(mi.index = 0; ; mi.index++) {
1247 if (audio_query_devinfo(sc, &mi) != 0)
1248 break;
1249 /*
1250 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1251 * All the other types describe an actual mixer.
1252 */
1253 if (mi.type == AUDIO_MIXER_CLASS) {
1254 if (strcmp(mi.label.name, AudioCinputs) == 0)
1255 iclass = mi.mixer_class;
1256 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1257 mclass = mi.mixer_class;
1258 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1259 oclass = mi.mixer_class;
1260 if (strcmp(mi.label.name, AudioCrecord) == 0)
1261 rclass = mi.mixer_class;
1262 }
1263 }
1264 mutex_exit(sc->sc_lock);
1265
1266 /* Allocate save area. Ensure non-zero allocation. */
1267 sc->sc_nmixer_states = mi.index;
1268 sc->sc_mixer_state = kmem_zalloc(sizeof(sc->sc_mixer_state[0]) *
1269 (sc->sc_nmixer_states + 1), KM_SLEEP);
1270
1271 /*
1272 * This is where we assign each control in the "audio" model, to the
1273 * underlying "mixer" control. We walk through the whole list once,
1274 * assigning likely candidates as we come across them.
1275 */
1276 record_master_found = 0;
1277 record_source_found = 0;
1278 mutex_enter(sc->sc_lock);
1279 for(mi.index = 0; ; mi.index++) {
1280 if (audio_query_devinfo(sc, &mi) != 0)
1281 break;
1282 KASSERT(mi.index < sc->sc_nmixer_states);
1283 if (mi.type == AUDIO_MIXER_CLASS)
1284 continue;
1285 if (mi.mixer_class == iclass) {
1286 /*
1287 * AudioCinputs is only a fallback, when we don't
1288 * find what we're looking for in AudioCrecord, so
1289 * check the flags before accepting one of these.
1290 */
1291 if (strcmp(mi.label.name, AudioNmaster) == 0
1292 && record_master_found == 0)
1293 sc->sc_inports.master = mi.index;
1294 if (strcmp(mi.label.name, AudioNsource) == 0
1295 && record_source_found == 0) {
1296 if (mi.type == AUDIO_MIXER_ENUM) {
1297 int i;
1298 for(i = 0; i < mi.un.e.num_mem; i++)
1299 if (strcmp(mi.un.e.member[i].label.name,
1300 AudioNmixerout) == 0)
1301 sc->sc_inports.mixerout =
1302 mi.un.e.member[i].ord;
1303 }
1304 au_setup_ports(sc, &sc->sc_inports, &mi,
1305 itable);
1306 }
1307 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1308 sc->sc_outports.master == -1)
1309 sc->sc_outports.master = mi.index;
1310 } else if (mi.mixer_class == mclass) {
1311 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1312 sc->sc_monitor_port = mi.index;
1313 } else if (mi.mixer_class == oclass) {
1314 if (strcmp(mi.label.name, AudioNmaster) == 0)
1315 sc->sc_outports.master = mi.index;
1316 if (strcmp(mi.label.name, AudioNselect) == 0)
1317 au_setup_ports(sc, &sc->sc_outports, &mi,
1318 otable);
1319 } else if (mi.mixer_class == rclass) {
1320 /*
1321 * These are the preferred mixers for the audio record
1322 * controls, so set the flags here, but don't check.
1323 */
1324 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1325 sc->sc_inports.master = mi.index;
1326 record_master_found = 1;
1327 }
1328 #if 1 /* Deprecated. Use AudioNmaster. */
1329 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1330 sc->sc_inports.master = mi.index;
1331 record_master_found = 1;
1332 }
1333 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1334 sc->sc_inports.master = mi.index;
1335 record_master_found = 1;
1336 }
1337 #endif
1338 if (strcmp(mi.label.name, AudioNsource) == 0) {
1339 if (mi.type == AUDIO_MIXER_ENUM) {
1340 int i;
1341 for(i = 0; i < mi.un.e.num_mem; i++)
1342 if (strcmp(mi.un.e.member[i].label.name,
1343 AudioNmixerout) == 0)
1344 sc->sc_inports.mixerout =
1345 mi.un.e.member[i].ord;
1346 }
1347 au_setup_ports(sc, &sc->sc_inports, &mi,
1348 itable);
1349 record_source_found = 1;
1350 }
1351 }
1352 }
1353 mutex_exit(sc->sc_lock);
1354 }
1355
1356 static int
1357 audioactivate(device_t self, enum devact act)
1358 {
1359 struct audio_softc *sc = device_private(self);
1360
1361 switch (act) {
1362 case DVACT_DEACTIVATE:
1363 mutex_enter(sc->sc_lock);
1364 sc->sc_dying = true;
1365 cv_broadcast(&sc->sc_exlockcv);
1366 mutex_exit(sc->sc_lock);
1367 return 0;
1368 default:
1369 return EOPNOTSUPP;
1370 }
1371 }
1372
1373 static int
1374 audiodetach(device_t self, int flags)
1375 {
1376 struct audio_softc *sc;
1377 struct audio_file *file;
1378 int maj, mn;
1379 int error;
1380
1381 sc = device_private(self);
1382 TRACE(2, "flags=%d", flags);
1383
1384 /* device is not initialized */
1385 if (sc->hw_if == NULL)
1386 return 0;
1387
1388 /* Start draining existing accessors of the device. */
1389 error = config_detach_children(self, flags);
1390 if (error)
1391 return error;
1392
1393 /*
1394 * Prevent new opens and wait for existing opens to complete.
1395 *
1396 * At the moment there are only four bits in the minor for the
1397 * unit number, so we only revoke if the unit number could be
1398 * used in a device node.
1399 *
1400 * XXX If we want more audio units, we need to encode them
1401 * more elaborately in the minor space.
1402 */
1403 maj = cdevsw_lookup_major(&audio_cdevsw);
1404 mn = device_unit(self);
1405 if (mn <= 0xf) {
1406 vdevgone(maj, mn|SOUND_DEVICE, mn|SOUND_DEVICE, VCHR);
1407 vdevgone(maj, mn|AUDIO_DEVICE, mn|AUDIO_DEVICE, VCHR);
1408 vdevgone(maj, mn|AUDIOCTL_DEVICE, mn|AUDIOCTL_DEVICE, VCHR);
1409 vdevgone(maj, mn|MIXER_DEVICE, mn|MIXER_DEVICE, VCHR);
1410 }
1411
1412 /*
1413 * This waits currently running sysctls to finish if exists.
1414 * After this, no more new sysctls will come.
1415 */
1416 sysctl_teardown(&sc->sc_log);
1417
1418 mutex_enter(sc->sc_lock);
1419 sc->sc_dying = true;
1420 cv_broadcast(&sc->sc_exlockcv);
1421 if (sc->sc_pmixer)
1422 cv_broadcast(&sc->sc_pmixer->outcv);
1423 if (sc->sc_rmixer)
1424 cv_broadcast(&sc->sc_rmixer->outcv);
1425
1426 /* Prevent new users */
1427 SLIST_FOREACH(file, &sc->sc_files, entry) {
1428 atomic_store_relaxed(&file->dying, true);
1429 }
1430 mutex_exit(sc->sc_lock);
1431
1432 /*
1433 * Wait for existing users to drain.
1434 * - pserialize_perform waits for all pserialize_read sections on
1435 * all CPUs; after this, no more new psref_acquire can happen.
1436 * - psref_target_destroy waits for all extant acquired psrefs to
1437 * be psref_released.
1438 */
1439 pserialize_perform(sc->sc_psz);
1440 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1441
1442 /*
1443 * We are now guaranteed that there are no calls to audio fileops
1444 * that hold sc, and any new calls with files that were for sc will
1445 * fail. Thus, we now have exclusive access to the softc.
1446 */
1447 sc->sc_exlock = 1;
1448
1449 /*
1450 * Clean up all open instances.
1451 */
1452 mutex_enter(sc->sc_lock);
1453 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1454 mutex_enter(sc->sc_intr_lock);
1455 SLIST_REMOVE_HEAD(&sc->sc_files, entry);
1456 mutex_exit(sc->sc_intr_lock);
1457 if (file->ptrack || file->rtrack) {
1458 mutex_exit(sc->sc_lock);
1459 audio_unlink(sc, file);
1460 mutex_enter(sc->sc_lock);
1461 }
1462 }
1463 mutex_exit(sc->sc_lock);
1464
1465 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1466 audio_volume_down, true);
1467 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1468 audio_volume_up, true);
1469 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1470 audio_volume_toggle, true);
1471
1472 #ifdef AUDIO_PM_IDLE
1473 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1474
1475 device_active_deregister(self, audio_activity);
1476 #endif
1477
1478 pmf_device_deregister(self);
1479
1480 /* Free resources */
1481 if (sc->sc_pmixer) {
1482 audio_mixer_destroy(sc, sc->sc_pmixer);
1483 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1484 }
1485 if (sc->sc_rmixer) {
1486 audio_mixer_destroy(sc, sc->sc_rmixer);
1487 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1488 }
1489 if (sc->sc_am)
1490 kern_free(sc->sc_am);
1491
1492 seldestroy(&sc->sc_wsel);
1493 seldestroy(&sc->sc_rsel);
1494
1495 #ifdef AUDIO_PM_IDLE
1496 callout_destroy(&sc->sc_idle_counter);
1497 #endif
1498
1499 cv_destroy(&sc->sc_exlockcv);
1500
1501 #if defined(AUDIO_DEBUG)
1502 audio_mlog_free();
1503 #endif
1504
1505 return 0;
1506 }
1507
1508 static void
1509 audiochilddet(device_t self, device_t child)
1510 {
1511
1512 /* we hold no child references, so do nothing */
1513 }
1514
1515 static int
1516 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1517 {
1518
1519 if (config_probe(parent, cf, aux))
1520 config_attach(parent, cf, aux, NULL,
1521 CFARGS_NONE);
1522
1523 return 0;
1524 }
1525
1526 static int
1527 audiorescan(device_t self, const char *ifattr, const int *locators)
1528 {
1529 struct audio_softc *sc = device_private(self);
1530
1531 config_search(sc->sc_dev, NULL,
1532 CFARGS(.search = audiosearch));
1533
1534 return 0;
1535 }
1536
1537 /*
1538 * Called from hardware driver. This is where the MI audio driver gets
1539 * probed/attached to the hardware driver.
1540 */
1541 device_t
1542 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1543 {
1544 struct audio_attach_args arg;
1545
1546 #ifdef DIAGNOSTIC
1547 if (ahwp == NULL) {
1548 aprint_error("audio_attach_mi: NULL\n");
1549 return 0;
1550 }
1551 #endif
1552 arg.type = AUDIODEV_TYPE_AUDIO;
1553 arg.hwif = ahwp;
1554 arg.hdl = hdlp;
1555 return config_found(dev, &arg, audioprint,
1556 CFARGS(.iattr = "audiobus"));
1557 }
1558
1559 /*
1560 * audio_printf() outputs fmt... with the audio device name and MD device
1561 * name prefixed. If the message is considered to be related to the MD
1562 * driver, use this one instead of device_printf().
1563 */
1564 static void
1565 audio_printf(struct audio_softc *sc, const char *fmt, ...)
1566 {
1567 va_list ap;
1568
1569 printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
1570 va_start(ap, fmt);
1571 vprintf(fmt, ap);
1572 va_end(ap);
1573 }
1574
1575 /*
1576 * Enter critical section and also keep sc_lock.
1577 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1578 * Must be called without sc_lock held.
1579 */
1580 static int
1581 audio_exlock_mutex_enter(struct audio_softc *sc)
1582 {
1583 int error;
1584
1585 mutex_enter(sc->sc_lock);
1586 if (sc->sc_dying) {
1587 mutex_exit(sc->sc_lock);
1588 return EIO;
1589 }
1590
1591 while (__predict_false(sc->sc_exlock != 0)) {
1592 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1593 if (sc->sc_dying)
1594 error = EIO;
1595 if (error) {
1596 mutex_exit(sc->sc_lock);
1597 return error;
1598 }
1599 }
1600
1601 /* Acquire */
1602 sc->sc_exlock = 1;
1603 return 0;
1604 }
1605
1606 /*
1607 * Exit critical section and exit sc_lock.
1608 * Must be called with sc_lock held.
1609 */
1610 static void
1611 audio_exlock_mutex_exit(struct audio_softc *sc)
1612 {
1613
1614 KASSERT(mutex_owned(sc->sc_lock));
1615
1616 sc->sc_exlock = 0;
1617 cv_broadcast(&sc->sc_exlockcv);
1618 mutex_exit(sc->sc_lock);
1619 }
1620
1621 /*
1622 * Enter critical section.
1623 * If successful, it returns 0. Otherwise returns errno.
1624 * Must be called without sc_lock held.
1625 * This function returns without sc_lock held.
1626 */
1627 static int
1628 audio_exlock_enter(struct audio_softc *sc)
1629 {
1630 int error;
1631
1632 error = audio_exlock_mutex_enter(sc);
1633 if (error)
1634 return error;
1635 mutex_exit(sc->sc_lock);
1636 return 0;
1637 }
1638
1639 /*
1640 * Exit critical section.
1641 * Must be called without sc_lock held.
1642 */
1643 static void
1644 audio_exlock_exit(struct audio_softc *sc)
1645 {
1646
1647 mutex_enter(sc->sc_lock);
1648 audio_exlock_mutex_exit(sc);
1649 }
1650
1651 /*
1652 * Get sc from file, and increment reference counter for this sc.
1653 * This is intended to be used for methods other than open.
1654 * If successful, returns sc. Otherwise returns NULL.
1655 */
1656 struct audio_softc *
1657 audio_sc_acquire_fromfile(audio_file_t *file, struct psref *refp)
1658 {
1659 int s;
1660 bool dying;
1661
1662 /* Block audiodetach while we acquire a reference */
1663 s = pserialize_read_enter();
1664
1665 /* If close or audiodetach already ran, tough -- no more audio */
1666 dying = atomic_load_relaxed(&file->dying);
1667 if (dying) {
1668 pserialize_read_exit(s);
1669 return NULL;
1670 }
1671
1672 /* Acquire a reference */
1673 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1674
1675 /* Now sc won't go away until we drop the reference count */
1676 pserialize_read_exit(s);
1677
1678 return file->sc;
1679 }
1680
1681 /*
1682 * Decrement reference counter for this sc.
1683 */
1684 void
1685 audio_sc_release(struct audio_softc *sc, struct psref *refp)
1686 {
1687
1688 psref_release(refp, &sc->sc_psref, audio_psref_class);
1689 }
1690
1691 /*
1692 * Wait for I/O to complete, releasing sc_lock.
1693 * Must be called with sc_lock held.
1694 */
1695 static int
1696 audio_track_waitio(struct audio_softc *sc, audio_track_t *track,
1697 const char *mess)
1698 {
1699 int error;
1700
1701 KASSERT(track);
1702 KASSERT(mutex_owned(sc->sc_lock));
1703
1704 /* Wait for pending I/O to complete. */
1705 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1706 mstohz(AUDIO_TIMEOUT));
1707 if (sc->sc_suspending) {
1708 /* If it's about to suspend, ignore timeout error. */
1709 if (error == EWOULDBLOCK) {
1710 TRACET(2, track, "timeout (suspending)");
1711 return 0;
1712 }
1713 }
1714 if (sc->sc_dying) {
1715 error = EIO;
1716 }
1717 if (error) {
1718 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1719 if (error == EWOULDBLOCK) {
1720 audio_ring_t *usrbuf = &track->usrbuf;
1721 audio_ring_t *outbuf = &track->outbuf;
1722 audio_printf(sc,
1723 "%s: device timeout, seq=%d, usrbuf=%d/H%d, outbuf=%d/%d\n",
1724 mess, (int)track->seq,
1725 usrbuf->used, track->usrbuf_usedhigh,
1726 outbuf->used, outbuf->capacity);
1727 }
1728 } else {
1729 TRACET(3, track, "wakeup");
1730 }
1731 return error;
1732 }
1733
1734 /*
1735 * Try to acquire track lock.
1736 * It doesn't block if the track lock is already acquired.
1737 * Returns true if the track lock was acquired, or false if the track
1738 * lock was already acquired.
1739 */
1740 static __inline bool
1741 audio_track_lock_tryenter(audio_track_t *track)
1742 {
1743
1744 if (atomic_swap_uint(&track->lock, 1) != 0)
1745 return false;
1746 membar_acquire();
1747 return true;
1748 }
1749
1750 /*
1751 * Acquire track lock.
1752 */
1753 static __inline void
1754 audio_track_lock_enter(audio_track_t *track)
1755 {
1756
1757 /* Don't sleep here. */
1758 while (audio_track_lock_tryenter(track) == false)
1759 SPINLOCK_BACKOFF_HOOK;
1760 }
1761
1762 /*
1763 * Release track lock.
1764 */
1765 static __inline void
1766 audio_track_lock_exit(audio_track_t *track)
1767 {
1768
1769 atomic_store_release(&track->lock, 0);
1770 }
1771
1772
1773 static int
1774 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1775 {
1776 struct audio_softc *sc;
1777 int error;
1778
1779 /*
1780 * Find the device. Because we wired the cdevsw to the audio
1781 * autoconf instance, the system ensures it will not go away
1782 * until after we return.
1783 */
1784 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1785 if (sc == NULL || sc->hw_if == NULL)
1786 return ENXIO;
1787
1788 error = audio_exlock_enter(sc);
1789 if (error)
1790 return error;
1791
1792 device_active(sc->sc_dev, DVA_SYSTEM);
1793 switch (AUDIODEV(dev)) {
1794 case SOUND_DEVICE:
1795 case AUDIO_DEVICE:
1796 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1797 break;
1798 case AUDIOCTL_DEVICE:
1799 error = audioctl_open(dev, sc, flags, ifmt, l);
1800 break;
1801 case MIXER_DEVICE:
1802 error = mixer_open(dev, sc, flags, ifmt, l);
1803 break;
1804 default:
1805 error = ENXIO;
1806 break;
1807 }
1808 audio_exlock_exit(sc);
1809
1810 return error;
1811 }
1812
1813 static int
1814 audioclose(struct file *fp)
1815 {
1816 struct audio_softc *sc;
1817 struct psref sc_ref;
1818 audio_file_t *file;
1819 int bound;
1820 int error;
1821 dev_t dev;
1822
1823 KASSERT(fp->f_audioctx);
1824 file = fp->f_audioctx;
1825 dev = file->dev;
1826 error = 0;
1827
1828 /*
1829 * audioclose() must
1830 * - unplug track from the trackmixer (and unplug anything from softc),
1831 * if sc exists.
1832 * - free all memory objects, regardless of sc.
1833 */
1834
1835 bound = curlwp_bind();
1836 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1837 if (sc) {
1838 switch (AUDIODEV(dev)) {
1839 case SOUND_DEVICE:
1840 case AUDIO_DEVICE:
1841 error = audio_close(sc, file);
1842 break;
1843 case AUDIOCTL_DEVICE:
1844 mutex_enter(sc->sc_lock);
1845 mutex_enter(sc->sc_intr_lock);
1846 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1847 mutex_exit(sc->sc_intr_lock);
1848 mutex_exit(sc->sc_lock);
1849 error = 0;
1850 break;
1851 case MIXER_DEVICE:
1852 mutex_enter(sc->sc_lock);
1853 mutex_enter(sc->sc_intr_lock);
1854 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1855 mutex_exit(sc->sc_intr_lock);
1856 mutex_exit(sc->sc_lock);
1857 error = mixer_close(sc, file);
1858 break;
1859 default:
1860 error = ENXIO;
1861 break;
1862 }
1863
1864 audio_sc_release(sc, &sc_ref);
1865 }
1866 curlwp_bindx(bound);
1867
1868 /* Free memory objects anyway */
1869 TRACEF(2, file, "free memory");
1870 if (file->ptrack)
1871 audio_track_destroy(file->ptrack);
1872 if (file->rtrack)
1873 audio_track_destroy(file->rtrack);
1874 kmem_free(file, sizeof(*file));
1875 fp->f_audioctx = NULL;
1876
1877 return error;
1878 }
1879
1880 static int
1881 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1882 int ioflag)
1883 {
1884 struct audio_softc *sc;
1885 struct psref sc_ref;
1886 audio_file_t *file;
1887 int bound;
1888 int error;
1889 dev_t dev;
1890
1891 KASSERT(fp->f_audioctx);
1892 file = fp->f_audioctx;
1893 dev = file->dev;
1894
1895 bound = curlwp_bind();
1896 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1897 if (sc == NULL) {
1898 error = EIO;
1899 goto done;
1900 }
1901
1902 if (fp->f_flag & O_NONBLOCK)
1903 ioflag |= IO_NDELAY;
1904
1905 switch (AUDIODEV(dev)) {
1906 case SOUND_DEVICE:
1907 case AUDIO_DEVICE:
1908 error = audio_read(sc, uio, ioflag, file);
1909 break;
1910 case AUDIOCTL_DEVICE:
1911 case MIXER_DEVICE:
1912 error = ENODEV;
1913 break;
1914 default:
1915 error = ENXIO;
1916 break;
1917 }
1918
1919 audio_sc_release(sc, &sc_ref);
1920 done:
1921 curlwp_bindx(bound);
1922 return error;
1923 }
1924
1925 static int
1926 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1927 int ioflag)
1928 {
1929 struct audio_softc *sc;
1930 struct psref sc_ref;
1931 audio_file_t *file;
1932 int bound;
1933 int error;
1934 dev_t dev;
1935
1936 KASSERT(fp->f_audioctx);
1937 file = fp->f_audioctx;
1938 dev = file->dev;
1939
1940 bound = curlwp_bind();
1941 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1942 if (sc == NULL) {
1943 error = EIO;
1944 goto done;
1945 }
1946
1947 if (fp->f_flag & O_NONBLOCK)
1948 ioflag |= IO_NDELAY;
1949
1950 switch (AUDIODEV(dev)) {
1951 case SOUND_DEVICE:
1952 case AUDIO_DEVICE:
1953 error = audio_write(sc, uio, ioflag, file);
1954 break;
1955 case AUDIOCTL_DEVICE:
1956 case MIXER_DEVICE:
1957 error = ENODEV;
1958 break;
1959 default:
1960 error = ENXIO;
1961 break;
1962 }
1963
1964 audio_sc_release(sc, &sc_ref);
1965 done:
1966 curlwp_bindx(bound);
1967 return error;
1968 }
1969
1970 static int
1971 audioioctl(struct file *fp, u_long cmd, void *addr)
1972 {
1973 struct audio_softc *sc;
1974 struct psref sc_ref;
1975 audio_file_t *file;
1976 struct lwp *l = curlwp;
1977 int bound;
1978 int error;
1979 dev_t dev;
1980
1981 KASSERT(fp->f_audioctx);
1982 file = fp->f_audioctx;
1983 dev = file->dev;
1984
1985 bound = curlwp_bind();
1986 sc = audio_sc_acquire_fromfile(file, &sc_ref);
1987 if (sc == NULL) {
1988 error = EIO;
1989 goto done;
1990 }
1991
1992 switch (AUDIODEV(dev)) {
1993 case SOUND_DEVICE:
1994 case AUDIO_DEVICE:
1995 case AUDIOCTL_DEVICE:
1996 mutex_enter(sc->sc_lock);
1997 device_active(sc->sc_dev, DVA_SYSTEM);
1998 mutex_exit(sc->sc_lock);
1999 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
2000 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
2001 else
2002 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
2003 file);
2004 break;
2005 case MIXER_DEVICE:
2006 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
2007 break;
2008 default:
2009 error = ENXIO;
2010 break;
2011 }
2012
2013 audio_sc_release(sc, &sc_ref);
2014 done:
2015 curlwp_bindx(bound);
2016 return error;
2017 }
2018
2019 static int
2020 audiostat(struct file *fp, struct stat *st)
2021 {
2022 struct audio_softc *sc;
2023 struct psref sc_ref;
2024 audio_file_t *file;
2025 int bound;
2026 int error;
2027
2028 KASSERT(fp->f_audioctx);
2029 file = fp->f_audioctx;
2030
2031 bound = curlwp_bind();
2032 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2033 if (sc == NULL) {
2034 error = EIO;
2035 goto done;
2036 }
2037
2038 error = 0;
2039 memset(st, 0, sizeof(*st));
2040
2041 st->st_dev = file->dev;
2042 st->st_uid = kauth_cred_geteuid(fp->f_cred);
2043 st->st_gid = kauth_cred_getegid(fp->f_cred);
2044 st->st_mode = S_IFCHR;
2045
2046 audio_sc_release(sc, &sc_ref);
2047 done:
2048 curlwp_bindx(bound);
2049 return error;
2050 }
2051
2052 static int
2053 audiopoll(struct file *fp, int events)
2054 {
2055 struct audio_softc *sc;
2056 struct psref sc_ref;
2057 audio_file_t *file;
2058 struct lwp *l = curlwp;
2059 int bound;
2060 int revents;
2061 dev_t dev;
2062
2063 KASSERT(fp->f_audioctx);
2064 file = fp->f_audioctx;
2065 dev = file->dev;
2066
2067 bound = curlwp_bind();
2068 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2069 if (sc == NULL) {
2070 revents = POLLERR;
2071 goto done;
2072 }
2073
2074 switch (AUDIODEV(dev)) {
2075 case SOUND_DEVICE:
2076 case AUDIO_DEVICE:
2077 revents = audio_poll(sc, events, l, file);
2078 break;
2079 case AUDIOCTL_DEVICE:
2080 case MIXER_DEVICE:
2081 revents = 0;
2082 break;
2083 default:
2084 revents = POLLERR;
2085 break;
2086 }
2087
2088 audio_sc_release(sc, &sc_ref);
2089 done:
2090 curlwp_bindx(bound);
2091 return revents;
2092 }
2093
2094 static int
2095 audiokqfilter(struct file *fp, struct knote *kn)
2096 {
2097 struct audio_softc *sc;
2098 struct psref sc_ref;
2099 audio_file_t *file;
2100 dev_t dev;
2101 int bound;
2102 int error;
2103
2104 KASSERT(fp->f_audioctx);
2105 file = fp->f_audioctx;
2106 dev = file->dev;
2107
2108 bound = curlwp_bind();
2109 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2110 if (sc == NULL) {
2111 error = EIO;
2112 goto done;
2113 }
2114
2115 switch (AUDIODEV(dev)) {
2116 case SOUND_DEVICE:
2117 case AUDIO_DEVICE:
2118 error = audio_kqfilter(sc, file, kn);
2119 break;
2120 case AUDIOCTL_DEVICE:
2121 case MIXER_DEVICE:
2122 error = ENODEV;
2123 break;
2124 default:
2125 error = ENXIO;
2126 break;
2127 }
2128
2129 audio_sc_release(sc, &sc_ref);
2130 done:
2131 curlwp_bindx(bound);
2132 return error;
2133 }
2134
2135 static int
2136 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
2137 int *advicep, struct uvm_object **uobjp, int *maxprotp)
2138 {
2139 struct audio_softc *sc;
2140 struct psref sc_ref;
2141 audio_file_t *file;
2142 dev_t dev;
2143 int bound;
2144 int error;
2145
2146 KASSERT(len > 0);
2147
2148 KASSERT(fp->f_audioctx);
2149 file = fp->f_audioctx;
2150 dev = file->dev;
2151
2152 bound = curlwp_bind();
2153 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2154 if (sc == NULL) {
2155 error = EIO;
2156 goto done;
2157 }
2158
2159 mutex_enter(sc->sc_lock);
2160 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
2161 mutex_exit(sc->sc_lock);
2162
2163 switch (AUDIODEV(dev)) {
2164 case SOUND_DEVICE:
2165 case AUDIO_DEVICE:
2166 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
2167 uobjp, maxprotp, file);
2168 break;
2169 case AUDIOCTL_DEVICE:
2170 case MIXER_DEVICE:
2171 default:
2172 error = ENOTSUP;
2173 break;
2174 }
2175
2176 audio_sc_release(sc, &sc_ref);
2177 done:
2178 curlwp_bindx(bound);
2179 return error;
2180 }
2181
2182
2183 /* Exported interfaces for audiobell. */
2184
2185 /*
2186 * Open for audiobell.
2187 * It stores allocated file to *filep.
2188 * If successful returns 0, otherwise errno.
2189 */
2190 int
2191 audiobellopen(dev_t dev, audio_file_t **filep)
2192 {
2193 device_t audiodev = NULL;
2194 struct audio_softc *sc;
2195 bool exlock = false;
2196 int error;
2197
2198 /*
2199 * Find the autoconf instance and make sure it doesn't go away
2200 * while we are opening it.
2201 */
2202 audiodev = device_lookup_acquire(&audio_cd, AUDIOUNIT(dev));
2203 if (audiodev == NULL) {
2204 error = ENXIO;
2205 goto out;
2206 }
2207
2208 /* If attach failed, it's hopeless -- give up. */
2209 sc = device_private(audiodev);
2210 if (sc->hw_if == NULL) {
2211 error = ENXIO;
2212 goto out;
2213 }
2214
2215 /* Take the exclusive configuration lock. */
2216 error = audio_exlock_enter(sc);
2217 if (error)
2218 goto out;
2219 exlock = true;
2220
2221 /* Open the audio device. */
2222 device_active(sc->sc_dev, DVA_SYSTEM);
2223 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
2224
2225 out: if (exlock)
2226 audio_exlock_exit(sc);
2227 if (audiodev)
2228 device_release(audiodev);
2229 return error;
2230 }
2231
2232 /* Close for audiobell */
2233 int
2234 audiobellclose(audio_file_t *file)
2235 {
2236 struct audio_softc *sc;
2237 struct psref sc_ref;
2238 int bound;
2239 int error;
2240
2241 error = 0;
2242 /*
2243 * audiobellclose() must
2244 * - unplug track from the trackmixer if sc exist.
2245 * - free all memory objects, regardless of sc.
2246 */
2247 bound = curlwp_bind();
2248 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2249 if (sc) {
2250 error = audio_close(sc, file);
2251 audio_sc_release(sc, &sc_ref);
2252 }
2253 curlwp_bindx(bound);
2254
2255 /* Free memory objects anyway */
2256 KASSERT(file->ptrack);
2257 audio_track_destroy(file->ptrack);
2258 KASSERT(file->rtrack == NULL);
2259 kmem_free(file, sizeof(*file));
2260 return error;
2261 }
2262
2263 /* Set sample rate for audiobell */
2264 int
2265 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2266 {
2267 struct audio_softc *sc;
2268 struct psref sc_ref;
2269 struct audio_info ai;
2270 int bound;
2271 int error;
2272
2273 bound = curlwp_bind();
2274 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2275 if (sc == NULL) {
2276 error = EIO;
2277 goto done1;
2278 }
2279
2280 AUDIO_INITINFO(&ai);
2281 ai.play.sample_rate = sample_rate;
2282
2283 error = audio_exlock_enter(sc);
2284 if (error)
2285 goto done2;
2286 error = audio_file_setinfo(sc, file, &ai);
2287 audio_exlock_exit(sc);
2288
2289 done2:
2290 audio_sc_release(sc, &sc_ref);
2291 done1:
2292 curlwp_bindx(bound);
2293 return error;
2294 }
2295
2296 /* Playback for audiobell */
2297 int
2298 audiobellwrite(audio_file_t *file, struct uio *uio)
2299 {
2300 struct audio_softc *sc;
2301 struct psref sc_ref;
2302 int bound;
2303 int error;
2304
2305 bound = curlwp_bind();
2306 sc = audio_sc_acquire_fromfile(file, &sc_ref);
2307 if (sc == NULL) {
2308 error = EIO;
2309 goto done;
2310 }
2311
2312 error = audio_write(sc, uio, 0, file);
2313
2314 audio_sc_release(sc, &sc_ref);
2315 done:
2316 curlwp_bindx(bound);
2317 return error;
2318 }
2319
2320
2321 /*
2322 * Audio driver
2323 */
2324
2325 /*
2326 * Must be called with sc_exlock held and without sc_lock held.
2327 */
2328 int
2329 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2330 struct lwp *l, audio_file_t **bellfile)
2331 {
2332 struct audio_info ai;
2333 struct file *fp;
2334 audio_file_t *af;
2335 audio_ring_t *hwbuf;
2336 bool fullduplex;
2337 bool cred_held;
2338 bool hw_opened;
2339 bool rmixer_started;
2340 bool inserted;
2341 int fd;
2342 int error;
2343
2344 KASSERT(sc->sc_exlock);
2345
2346 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2347 (audiodebug >= 3) ? "start " : "",
2348 ISDEVSOUND(dev) ? "sound" : "audio",
2349 flags, sc->sc_popens, sc->sc_ropens);
2350
2351 fp = NULL;
2352 cred_held = false;
2353 hw_opened = false;
2354 rmixer_started = false;
2355 inserted = false;
2356
2357 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
2358 af->sc = sc;
2359 af->dev = dev;
2360 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2361 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2362 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2363 af->mode |= AUMODE_RECORD;
2364 if (af->mode == 0) {
2365 error = ENXIO;
2366 goto bad;
2367 }
2368
2369 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2370
2371 /*
2372 * On half duplex hardware,
2373 * 1. if mode is (PLAY | REC), let mode PLAY.
2374 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2375 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2376 */
2377 if (fullduplex == false) {
2378 if ((af->mode & AUMODE_PLAY)) {
2379 if (sc->sc_ropens != 0) {
2380 TRACE(1, "record track already exists");
2381 error = ENODEV;
2382 goto bad;
2383 }
2384 /* Play takes precedence */
2385 af->mode &= ~AUMODE_RECORD;
2386 }
2387 if ((af->mode & AUMODE_RECORD)) {
2388 if (sc->sc_popens != 0) {
2389 TRACE(1, "play track already exists");
2390 error = ENODEV;
2391 goto bad;
2392 }
2393 }
2394 }
2395
2396 /* Create tracks */
2397 if ((af->mode & AUMODE_PLAY))
2398 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2399 if ((af->mode & AUMODE_RECORD))
2400 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2401
2402 /* Set parameters */
2403 AUDIO_INITINFO(&ai);
2404 if (bellfile) {
2405 /* If audiobell, only sample_rate will be set later. */
2406 ai.play.sample_rate = audio_default.sample_rate;
2407 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2408 ai.play.channels = 1;
2409 ai.play.precision = 16;
2410 ai.play.pause = 0;
2411 } else if (ISDEVAUDIO(dev)) {
2412 /* If /dev/audio, initialize everytime. */
2413 ai.play.sample_rate = audio_default.sample_rate;
2414 ai.play.encoding = audio_default.encoding;
2415 ai.play.channels = audio_default.channels;
2416 ai.play.precision = audio_default.precision;
2417 ai.play.pause = 0;
2418 ai.record.sample_rate = audio_default.sample_rate;
2419 ai.record.encoding = audio_default.encoding;
2420 ai.record.channels = audio_default.channels;
2421 ai.record.precision = audio_default.precision;
2422 ai.record.pause = 0;
2423 } else {
2424 /* If /dev/sound, take over the previous parameters. */
2425 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2426 ai.play.encoding = sc->sc_sound_pparams.encoding;
2427 ai.play.channels = sc->sc_sound_pparams.channels;
2428 ai.play.precision = sc->sc_sound_pparams.precision;
2429 ai.play.pause = sc->sc_sound_ppause;
2430 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2431 ai.record.encoding = sc->sc_sound_rparams.encoding;
2432 ai.record.channels = sc->sc_sound_rparams.channels;
2433 ai.record.precision = sc->sc_sound_rparams.precision;
2434 ai.record.pause = sc->sc_sound_rpause;
2435 }
2436 error = audio_file_setinfo(sc, af, &ai);
2437 if (error)
2438 goto bad;
2439
2440 if (sc->sc_popens + sc->sc_ropens == 0) {
2441 /* First open */
2442
2443 sc->sc_cred = kauth_cred_get();
2444 kauth_cred_hold(sc->sc_cred);
2445 cred_held = true;
2446
2447 if (sc->hw_if->open) {
2448 int hwflags;
2449
2450 /*
2451 * Call hw_if->open() only at first open of
2452 * combination of playback and recording.
2453 * On full duplex hardware, the flags passed to
2454 * hw_if->open() is always (FREAD | FWRITE)
2455 * regardless of this open()'s flags.
2456 * see also dev/isa/aria.c
2457 * On half duplex hardware, the flags passed to
2458 * hw_if->open() is either FREAD or FWRITE.
2459 * see also arch/evbarm/mini2440/audio_mini2440.c
2460 */
2461 if (fullduplex) {
2462 hwflags = FREAD | FWRITE;
2463 } else {
2464 /* Construct hwflags from af->mode. */
2465 hwflags = 0;
2466 if ((af->mode & AUMODE_PLAY) != 0)
2467 hwflags |= FWRITE;
2468 if ((af->mode & AUMODE_RECORD) != 0)
2469 hwflags |= FREAD;
2470 }
2471
2472 mutex_enter(sc->sc_lock);
2473 mutex_enter(sc->sc_intr_lock);
2474 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2475 mutex_exit(sc->sc_intr_lock);
2476 mutex_exit(sc->sc_lock);
2477 if (error)
2478 goto bad;
2479 }
2480 /*
2481 * Regardless of whether we called hw_if->open (whether
2482 * hw_if->open exists) or not, we move to the Opened phase
2483 * here. Therefore from this point, we have to call
2484 * hw_if->close (if exists) whenever abort.
2485 * Note that both of hw_if->{open,close} are optional.
2486 */
2487 hw_opened = true;
2488
2489 /*
2490 * Set speaker mode when a half duplex.
2491 * XXX I'm not sure this is correct.
2492 */
2493 if (1/*XXX*/) {
2494 if (sc->hw_if->speaker_ctl) {
2495 int on;
2496 if (af->ptrack) {
2497 on = 1;
2498 } else {
2499 on = 0;
2500 }
2501 mutex_enter(sc->sc_lock);
2502 mutex_enter(sc->sc_intr_lock);
2503 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2504 mutex_exit(sc->sc_intr_lock);
2505 mutex_exit(sc->sc_lock);
2506 if (error)
2507 goto bad;
2508 }
2509 }
2510 } else if (sc->sc_multiuser == false) {
2511 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2512 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2513 error = EPERM;
2514 goto bad;
2515 }
2516 }
2517
2518 /* Call init_output if this is the first playback open. */
2519 if (af->ptrack && sc->sc_popens == 0) {
2520 if (sc->hw_if->init_output) {
2521 hwbuf = &sc->sc_pmixer->hwbuf;
2522 mutex_enter(sc->sc_lock);
2523 mutex_enter(sc->sc_intr_lock);
2524 error = sc->hw_if->init_output(sc->hw_hdl,
2525 hwbuf->mem,
2526 hwbuf->capacity *
2527 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2528 mutex_exit(sc->sc_intr_lock);
2529 mutex_exit(sc->sc_lock);
2530 if (error)
2531 goto bad;
2532 }
2533 }
2534 /*
2535 * Call init_input and start rmixer, if this is the first recording
2536 * open. See pause consideration notes.
2537 */
2538 if (af->rtrack && sc->sc_ropens == 0) {
2539 if (sc->hw_if->init_input) {
2540 hwbuf = &sc->sc_rmixer->hwbuf;
2541 mutex_enter(sc->sc_lock);
2542 mutex_enter(sc->sc_intr_lock);
2543 error = sc->hw_if->init_input(sc->hw_hdl,
2544 hwbuf->mem,
2545 hwbuf->capacity *
2546 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2547 mutex_exit(sc->sc_intr_lock);
2548 mutex_exit(sc->sc_lock);
2549 if (error)
2550 goto bad;
2551 }
2552
2553 mutex_enter(sc->sc_lock);
2554 audio_rmixer_start(sc);
2555 mutex_exit(sc->sc_lock);
2556 rmixer_started = true;
2557 }
2558
2559 /*
2560 * This is the last sc_lock section in the function, so we have to
2561 * examine sc_dying again before starting the rest tasks. Because
2562 * audiodeatch() may have been invoked (and it would set sc_dying)
2563 * from the time audioopen() was executed until now. If it happens,
2564 * audiodetach() may already have set file->dying for all sc_files
2565 * that exist at that point, so that audioopen() must abort without
2566 * inserting af to sc_files, in order to keep consistency.
2567 */
2568 mutex_enter(sc->sc_lock);
2569 if (sc->sc_dying) {
2570 mutex_exit(sc->sc_lock);
2571 error = ENXIO;
2572 goto bad;
2573 }
2574
2575 /* Count up finally */
2576 if (af->ptrack)
2577 sc->sc_popens++;
2578 if (af->rtrack)
2579 sc->sc_ropens++;
2580 mutex_enter(sc->sc_intr_lock);
2581 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2582 mutex_exit(sc->sc_intr_lock);
2583 mutex_exit(sc->sc_lock);
2584 inserted = true;
2585
2586 if (bellfile) {
2587 *bellfile = af;
2588 } else {
2589 error = fd_allocfile(&fp, &fd);
2590 if (error)
2591 goto bad;
2592
2593 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2594 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2595 }
2596
2597 /* Be nothing else after fd_clone */
2598
2599 TRACEF(3, af, "done");
2600 return error;
2601
2602 bad:
2603 if (inserted) {
2604 mutex_enter(sc->sc_lock);
2605 mutex_enter(sc->sc_intr_lock);
2606 SLIST_REMOVE(&sc->sc_files, af, audio_file, entry);
2607 mutex_exit(sc->sc_intr_lock);
2608 if (af->ptrack)
2609 sc->sc_popens--;
2610 if (af->rtrack)
2611 sc->sc_ropens--;
2612 mutex_exit(sc->sc_lock);
2613 }
2614
2615 if (rmixer_started) {
2616 mutex_enter(sc->sc_lock);
2617 audio_rmixer_halt(sc);
2618 mutex_exit(sc->sc_lock);
2619 }
2620
2621 if (hw_opened) {
2622 if (sc->hw_if->close) {
2623 mutex_enter(sc->sc_lock);
2624 mutex_enter(sc->sc_intr_lock);
2625 sc->hw_if->close(sc->hw_hdl);
2626 mutex_exit(sc->sc_intr_lock);
2627 mutex_exit(sc->sc_lock);
2628 }
2629 }
2630 if (cred_held) {
2631 kauth_cred_free(sc->sc_cred);
2632 }
2633
2634 /*
2635 * Since track here is not yet linked to sc_files,
2636 * you can call track_destroy() without sc_intr_lock.
2637 */
2638 if (af->rtrack) {
2639 audio_track_destroy(af->rtrack);
2640 af->rtrack = NULL;
2641 }
2642 if (af->ptrack) {
2643 audio_track_destroy(af->ptrack);
2644 af->ptrack = NULL;
2645 }
2646
2647 kmem_free(af, sizeof(*af));
2648 return error;
2649 }
2650
2651 /*
2652 * Must be called without sc_lock nor sc_exlock held.
2653 */
2654 int
2655 audio_close(struct audio_softc *sc, audio_file_t *file)
2656 {
2657 int error;
2658
2659 /*
2660 * Drain first.
2661 * It must be done before unlinking(acquiring exlock).
2662 */
2663 if (file->ptrack) {
2664 mutex_enter(sc->sc_lock);
2665 audio_track_drain(sc, file->ptrack);
2666 mutex_exit(sc->sc_lock);
2667 }
2668
2669 mutex_enter(sc->sc_lock);
2670 mutex_enter(sc->sc_intr_lock);
2671 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2672 mutex_exit(sc->sc_intr_lock);
2673 mutex_exit(sc->sc_lock);
2674
2675 error = audio_exlock_enter(sc);
2676 if (error) {
2677 /*
2678 * If EIO, this sc is about to detach. In this case, even if
2679 * we don't do subsequent _unlink(), audiodetach() will do it.
2680 */
2681 if (error == EIO)
2682 return error;
2683
2684 /* XXX This should not happen but what should I do ? */
2685 panic("%s: can't acquire exlock: errno=%d", __func__, error);
2686 }
2687 audio_unlink(sc, file);
2688 audio_exlock_exit(sc);
2689
2690 return 0;
2691 }
2692
2693 /*
2694 * Unlink this file, but not freeing memory here.
2695 * Must be called with sc_exlock held and without sc_lock held.
2696 */
2697 static void
2698 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2699 {
2700 kauth_cred_t cred = NULL;
2701 int error;
2702
2703 mutex_enter(sc->sc_lock);
2704
2705 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2706 (audiodebug >= 3) ? "start " : "",
2707 (int)curproc->p_pid, (int)curlwp->l_lid,
2708 sc->sc_popens, sc->sc_ropens);
2709 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2710 "sc->sc_popens=%d, sc->sc_ropens=%d",
2711 sc->sc_popens, sc->sc_ropens);
2712
2713 device_active(sc->sc_dev, DVA_SYSTEM);
2714
2715 if (file->ptrack) {
2716 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2717 file->ptrack->dropframes);
2718
2719 KASSERT(sc->sc_popens > 0);
2720 sc->sc_popens--;
2721
2722 /* Call hw halt_output if this is the last playback track. */
2723 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2724 error = audio_pmixer_halt(sc);
2725 if (error) {
2726 audio_printf(sc,
2727 "halt_output failed: errno=%d (ignored)\n",
2728 error);
2729 }
2730 }
2731
2732 /* Restore mixing volume if all tracks are gone. */
2733 if (sc->sc_popens == 0) {
2734 /* intr_lock is not necessary, but just manners. */
2735 mutex_enter(sc->sc_intr_lock);
2736 sc->sc_pmixer->volume = 256;
2737 sc->sc_pmixer->voltimer = 0;
2738 mutex_exit(sc->sc_intr_lock);
2739 }
2740 }
2741 if (file->rtrack) {
2742 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2743 file->rtrack->dropframes);
2744
2745 KASSERT(sc->sc_ropens > 0);
2746 sc->sc_ropens--;
2747
2748 /* Call hw halt_input if this is the last recording track. */
2749 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2750 error = audio_rmixer_halt(sc);
2751 if (error) {
2752 audio_printf(sc,
2753 "halt_input failed: errno=%d (ignored)\n",
2754 error);
2755 }
2756 }
2757
2758 }
2759
2760 /* Call hw close if this is the last track. */
2761 if (sc->sc_popens + sc->sc_ropens == 0) {
2762 if (sc->hw_if->close) {
2763 TRACE(2, "hw_if close");
2764 mutex_enter(sc->sc_intr_lock);
2765 sc->hw_if->close(sc->hw_hdl);
2766 mutex_exit(sc->sc_intr_lock);
2767 }
2768 cred = sc->sc_cred;
2769 sc->sc_cred = NULL;
2770 }
2771
2772 mutex_exit(sc->sc_lock);
2773 if (cred)
2774 kauth_cred_free(cred);
2775
2776 TRACE(3, "done");
2777 }
2778
2779 /*
2780 * Must be called without sc_lock nor sc_exlock held.
2781 */
2782 int
2783 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2784 audio_file_t *file)
2785 {
2786 audio_track_t *track;
2787 audio_ring_t *usrbuf;
2788 audio_ring_t *input;
2789 int error;
2790
2791 /*
2792 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2793 * However read() system call itself can be called because it's
2794 * opened with O_RDWR. So in this case, deny this read().
2795 */
2796 track = file->rtrack;
2797 if (track == NULL) {
2798 return EBADF;
2799 }
2800
2801 /* I think it's better than EINVAL. */
2802 if (track->mmapped)
2803 return EPERM;
2804
2805 TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2806
2807 #ifdef AUDIO_PM_IDLE
2808 error = audio_exlock_mutex_enter(sc);
2809 if (error)
2810 return error;
2811
2812 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2813 device_active(&sc->sc_dev, DVA_SYSTEM);
2814
2815 /* In recording, unlike playback, read() never operates rmixer. */
2816
2817 audio_exlock_mutex_exit(sc);
2818 #endif
2819
2820 usrbuf = &track->usrbuf;
2821 input = track->input;
2822 error = 0;
2823
2824 while (uio->uio_resid > 0 && error == 0) {
2825 int bytes;
2826
2827 TRACET(3, track,
2828 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/C%d",
2829 uio->uio_resid,
2830 input->head, input->used, input->capacity,
2831 usrbuf->head, usrbuf->used, usrbuf->capacity);
2832
2833 /* Wait when buffers are empty. */
2834 mutex_enter(sc->sc_lock);
2835 for (;;) {
2836 bool empty;
2837 audio_track_lock_enter(track);
2838 empty = (input->used == 0 && usrbuf->used == 0);
2839 audio_track_lock_exit(track);
2840 if (!empty)
2841 break;
2842
2843 if ((ioflag & IO_NDELAY)) {
2844 mutex_exit(sc->sc_lock);
2845 return EWOULDBLOCK;
2846 }
2847
2848 TRACET(3, track, "sleep");
2849 error = audio_track_waitio(sc, track, "audio_read");
2850 if (error) {
2851 mutex_exit(sc->sc_lock);
2852 return error;
2853 }
2854 }
2855 mutex_exit(sc->sc_lock);
2856
2857 audio_track_lock_enter(track);
2858 /* Convert one block if possible. */
2859 if (usrbuf->used == 0 && input->used > 0) {
2860 audio_track_record(track);
2861 }
2862
2863 /* uiomove from usrbuf as many bytes as possible. */
2864 bytes = uimin(usrbuf->used, uio->uio_resid);
2865 error = uiomove((uint8_t *)usrbuf->mem + usrbuf->head, bytes,
2866 uio);
2867 if (error) {
2868 audio_track_lock_exit(track);
2869 device_printf(sc->sc_dev,
2870 "%s: uiomove(%d) failed: errno=%d\n",
2871 __func__, bytes, error);
2872 goto abort;
2873 }
2874 auring_take(usrbuf, bytes);
2875 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2876 bytes,
2877 usrbuf->head, usrbuf->used, usrbuf->capacity);
2878
2879 audio_track_lock_exit(track);
2880 }
2881
2882 abort:
2883 return error;
2884 }
2885
2886
2887 /*
2888 * Clear file's playback and/or record track buffer immediately.
2889 */
2890 static void
2891 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2892 {
2893
2894 if (file->ptrack)
2895 audio_track_clear(sc, file->ptrack);
2896 if (file->rtrack)
2897 audio_track_clear(sc, file->rtrack);
2898 }
2899
2900 /*
2901 * Must be called without sc_lock nor sc_exlock held.
2902 */
2903 int
2904 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2905 audio_file_t *file)
2906 {
2907 audio_track_t *track;
2908 audio_ring_t *usrbuf;
2909 audio_ring_t *outbuf;
2910 int error;
2911
2912 track = file->ptrack;
2913 if (track == NULL)
2914 return EPERM;
2915
2916 /* I think it's better than EINVAL. */
2917 if (track->mmapped)
2918 return EPERM;
2919
2920 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2921 audiodebug >= 3 ? "begin " : "",
2922 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2923
2924 if (uio->uio_resid == 0) {
2925 track->eofcounter++;
2926 return 0;
2927 }
2928
2929 error = audio_exlock_mutex_enter(sc);
2930 if (error)
2931 return error;
2932
2933 #ifdef AUDIO_PM_IDLE
2934 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2935 device_active(&sc->sc_dev, DVA_SYSTEM);
2936 #endif
2937
2938 /*
2939 * The first write starts pmixer.
2940 */
2941 if (sc->sc_pbusy == false)
2942 audio_pmixer_start(sc, false);
2943 audio_exlock_mutex_exit(sc);
2944
2945 usrbuf = &track->usrbuf;
2946 outbuf = &track->outbuf;
2947 track->pstate = AUDIO_STATE_RUNNING;
2948 error = 0;
2949
2950 while (uio->uio_resid > 0 && error == 0) {
2951 int bytes;
2952
2953 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2954 uio->uio_resid,
2955 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2956
2957 /* Wait when buffers are full. */
2958 mutex_enter(sc->sc_lock);
2959 for (;;) {
2960 bool full;
2961 audio_track_lock_enter(track);
2962 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2963 outbuf->used >= outbuf->capacity);
2964 audio_track_lock_exit(track);
2965 if (!full)
2966 break;
2967
2968 if ((ioflag & IO_NDELAY)) {
2969 error = EWOULDBLOCK;
2970 mutex_exit(sc->sc_lock);
2971 goto abort;
2972 }
2973
2974 TRACET(3, track, "sleep usrbuf=%d/H%d",
2975 usrbuf->used, track->usrbuf_usedhigh);
2976 error = audio_track_waitio(sc, track, "audio_write");
2977 if (error) {
2978 mutex_exit(sc->sc_lock);
2979 goto abort;
2980 }
2981 }
2982 mutex_exit(sc->sc_lock);
2983
2984 audio_track_lock_enter(track);
2985
2986 /* uiomove to usrbuf as many bytes as possible. */
2987 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2988 uio->uio_resid);
2989 while (bytes > 0) {
2990 int tail = auring_tail(usrbuf);
2991 int len = uimin(bytes, usrbuf->capacity - tail);
2992 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2993 uio);
2994 if (error) {
2995 audio_track_lock_exit(track);
2996 device_printf(sc->sc_dev,
2997 "%s: uiomove(%d) failed: errno=%d\n",
2998 __func__, len, error);
2999 goto abort;
3000 }
3001 auring_push(usrbuf, len);
3002 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
3003 len,
3004 usrbuf->head, usrbuf->used, usrbuf->capacity);
3005 bytes -= len;
3006 }
3007
3008 /* Convert them as many blocks as possible. */
3009 while (usrbuf->used >= track->usrbuf_blksize &&
3010 outbuf->used < outbuf->capacity) {
3011 audio_track_play(track);
3012 }
3013
3014 audio_track_lock_exit(track);
3015 }
3016
3017 abort:
3018 TRACET(3, track, "done error=%d", error);
3019 return error;
3020 }
3021
3022 /*
3023 * Must be called without sc_lock nor sc_exlock held.
3024 */
3025 int
3026 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
3027 struct lwp *l, audio_file_t *file)
3028 {
3029 struct audio_offset *ao;
3030 struct audio_info ai;
3031 audio_track_t *track;
3032 audio_encoding_t *ae;
3033 audio_format_query_t *query;
3034 u_int stamp;
3035 u_int offset;
3036 int val;
3037 int index;
3038 int error;
3039
3040 #if defined(AUDIO_DEBUG)
3041 const char *ioctlnames[] = {
3042 "AUDIO_GETINFO", /* 21 */
3043 "AUDIO_SETINFO", /* 22 */
3044 "AUDIO_DRAIN", /* 23 */
3045 "AUDIO_FLUSH", /* 24 */
3046 "AUDIO_WSEEK", /* 25 */
3047 "AUDIO_RERROR", /* 26 */
3048 "AUDIO_GETDEV", /* 27 */
3049 "AUDIO_GETENC", /* 28 */
3050 "AUDIO_GETFD", /* 29 */
3051 "AUDIO_SETFD", /* 30 */
3052 "AUDIO_PERROR", /* 31 */
3053 "AUDIO_GETIOFFS", /* 32 */
3054 "AUDIO_GETOOFFS", /* 33 */
3055 "AUDIO_GETPROPS", /* 34 */
3056 "AUDIO_GETBUFINFO", /* 35 */
3057 "AUDIO_SETCHAN", /* 36 */
3058 "AUDIO_GETCHAN", /* 37 */
3059 "AUDIO_QUERYFORMAT", /* 38 */
3060 "AUDIO_GETFORMAT", /* 39 */
3061 "AUDIO_SETFORMAT", /* 40 */
3062 };
3063 char pre[64];
3064 int nameidx = (cmd & 0xff);
3065 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames)) {
3066 snprintf(pre, sizeof(pre), "pid=%d.%d %s",
3067 (int)curproc->p_pid, (int)l->l_lid,
3068 ioctlnames[nameidx - 21]);
3069 } else {
3070 snprintf(pre, sizeof(pre), "pid=%d.%d (%lu,'%c',%u)",
3071 (int)curproc->p_pid, (int)l->l_lid,
3072 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), nameidx);
3073 }
3074 #endif
3075
3076 error = 0;
3077 switch (cmd) {
3078 case FIONBIO:
3079 /* All handled in the upper FS layer. */
3080 break;
3081
3082 case FIONREAD:
3083 /* Get the number of bytes that can be read. */
3084 track = file->rtrack;
3085 if (track) {
3086 val = audio_track_readablebytes(track);
3087 *(int *)addr = val;
3088 TRACET(2, track, "pid=%d.%d FIONREAD bytes=%d",
3089 (int)curproc->p_pid, (int)l->l_lid, val);
3090 } else {
3091 TRACEF(2, file, "pid=%d.%d FIONREAD no track",
3092 (int)curproc->p_pid, (int)l->l_lid);
3093 }
3094 break;
3095
3096 case FIOASYNC:
3097 /* Set/Clear ASYNC I/O. */
3098 if (*(int *)addr) {
3099 file->async_audio = curproc->p_pid;
3100 } else {
3101 file->async_audio = 0;
3102 }
3103 TRACEF(2, file, "pid=%d.%d FIOASYNC %s",
3104 (int)curproc->p_pid, (int)l->l_lid,
3105 file->async_audio ? "on" : "off");
3106 break;
3107
3108 case AUDIO_FLUSH:
3109 /* XXX TODO: clear errors and restart? */
3110 TRACEF(2, file, "%s", pre);
3111 audio_file_clear(sc, file);
3112 break;
3113
3114 case AUDIO_PERROR:
3115 case AUDIO_RERROR:
3116 /*
3117 * Number of dropped bytes during playback/record. We don't
3118 * know where or when they were dropped (including conversion
3119 * stage). Therefore, the number of accurate bytes or samples
3120 * is also unknown.
3121 */
3122 track = (cmd == AUDIO_PERROR) ? file->ptrack : file->rtrack;
3123 if (track) {
3124 val = frametobyte(&track->usrbuf.fmt,
3125 track->dropframes);
3126 *(int *)addr = val;
3127 TRACET(2, track, "%s bytes=%d", pre, val);
3128 } else {
3129 TRACEF(2, file, "%s no track", pre);
3130 }
3131 break;
3132
3133 case AUDIO_GETIOFFS:
3134 ao = (struct audio_offset *)addr;
3135 track = file->rtrack;
3136 if (track == NULL) {
3137 ao->samples = 0;
3138 ao->deltablks = 0;
3139 ao->offset = 0;
3140 TRACEF(2, file, "%s no rtrack", pre);
3141 break;
3142 }
3143 mutex_enter(sc->sc_lock);
3144 mutex_enter(sc->sc_intr_lock);
3145 /* figure out where next transfer will start */
3146 stamp = track->stamp;
3147 offset = auring_tail(track->input);
3148 mutex_exit(sc->sc_intr_lock);
3149 mutex_exit(sc->sc_lock);
3150
3151 /* samples will overflow soon but is as per spec. */
3152 ao->samples = stamp * track->usrbuf_blksize;
3153 ao->deltablks = stamp - track->last_stamp;
3154 ao->offset = audio_track_inputblk_as_usrbyte(track, offset);
3155 TRACET(2, track, "%s samples=%u deltablks=%u offset=%u",
3156 pre, ao->samples, ao->deltablks, ao->offset);
3157
3158 track->last_stamp = stamp;
3159 break;
3160
3161 case AUDIO_GETOOFFS:
3162 ao = (struct audio_offset *)addr;
3163 track = file->ptrack;
3164 if (track == NULL) {
3165 ao->samples = 0;
3166 ao->deltablks = 0;
3167 ao->offset = 0;
3168 TRACEF(2, file, "%s no ptrack", pre);
3169 break;
3170 }
3171 mutex_enter(sc->sc_lock);
3172 mutex_enter(sc->sc_intr_lock);
3173 /* figure out where next transfer will start */
3174 stamp = track->stamp;
3175 offset = track->usrbuf.head;
3176 mutex_exit(sc->sc_intr_lock);
3177 mutex_exit(sc->sc_lock);
3178
3179 /* samples will overflow soon but is as per spec. */
3180 ao->samples = stamp * track->usrbuf_blksize;
3181 ao->deltablks = stamp - track->last_stamp;
3182 ao->offset = offset;
3183 TRACET(2, track, "%s samples=%u deltablks=%u offset=%u",
3184 pre, ao->samples, ao->deltablks, ao->offset);
3185
3186 track->last_stamp = stamp;
3187 break;
3188
3189 case AUDIO_WSEEK:
3190 track = file->ptrack;
3191 if (track) {
3192 val = track->usrbuf.used;
3193 *(u_long *)addr = val;
3194 TRACET(2, track, "%s bytes=%d", pre, val);
3195 } else {
3196 TRACEF(2, file, "%s no ptrack", pre);
3197 }
3198 break;
3199
3200 case AUDIO_SETINFO:
3201 TRACEF(2, file, "%s", pre);
3202 error = audio_exlock_enter(sc);
3203 if (error)
3204 break;
3205 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
3206 if (error) {
3207 audio_exlock_exit(sc);
3208 break;
3209 }
3210 if (ISDEVSOUND(dev))
3211 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
3212 audio_exlock_exit(sc);
3213 break;
3214
3215 case AUDIO_GETINFO:
3216 TRACEF(2, file, "%s", pre);
3217 error = audio_exlock_enter(sc);
3218 if (error)
3219 break;
3220 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
3221 audio_exlock_exit(sc);
3222 break;
3223
3224 case AUDIO_GETBUFINFO:
3225 TRACEF(2, file, "%s", pre);
3226 error = audio_exlock_enter(sc);
3227 if (error)
3228 break;
3229 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
3230 audio_exlock_exit(sc);
3231 break;
3232
3233 case AUDIO_DRAIN:
3234 track = file->ptrack;
3235 if (track) {
3236 TRACET(2, track, "%s", pre);
3237 mutex_enter(sc->sc_lock);
3238 error = audio_track_drain(sc, track);
3239 mutex_exit(sc->sc_lock);
3240 } else {
3241 TRACEF(2, file, "%s no ptrack", pre);
3242 }
3243 break;
3244
3245 case AUDIO_GETDEV:
3246 TRACEF(2, file, "%s", pre);
3247 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
3248 break;
3249
3250 case AUDIO_GETENC:
3251 ae = (audio_encoding_t *)addr;
3252 index = ae->index;
3253 TRACEF(2, file, "%s index=%d", pre, index);
3254 if (index < 0 || index >= __arraycount(audio_encodings)) {
3255 error = EINVAL;
3256 break;
3257 }
3258 *ae = audio_encodings[index];
3259 ae->index = index;
3260 /*
3261 * EMULATED always.
3262 * EMULATED flag at that time used to mean that it could
3263 * not be passed directly to the hardware as-is. But
3264 * currently, all formats including hardware native is not
3265 * passed directly to the hardware. So I set EMULATED
3266 * flag for all formats.
3267 */
3268 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
3269 break;
3270
3271 case AUDIO_GETFD:
3272 /*
3273 * Returns the current setting of full duplex mode.
3274 * If HW has full duplex mode and there are two mixers,
3275 * it is full duplex. Otherwise half duplex.
3276 */
3277 error = audio_exlock_enter(sc);
3278 if (error)
3279 break;
3280 val = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
3281 && (sc->sc_pmixer && sc->sc_rmixer);
3282 audio_exlock_exit(sc);
3283 *(int *)addr = val;
3284 TRACEF(2, file, "%s fulldup=%d", pre, val);
3285 break;
3286
3287 case AUDIO_GETPROPS:
3288 val = sc->sc_props;
3289 *(int *)addr = val;
3290 #if defined(AUDIO_DEBUG)
3291 char pbuf[64];
3292 snprintb(pbuf, sizeof(pbuf), "\x10"
3293 "\6CAPTURE" "\5PLAY" "\3INDEP" "\2MMAP" "\1FULLDUP", val);
3294 TRACEF(2, file, "%s %s", pre, pbuf);
3295 #endif
3296 break;
3297
3298 case AUDIO_QUERYFORMAT:
3299 query = (audio_format_query_t *)addr;
3300 TRACEF(2, file, "%s index=%u", pre, query->index);
3301 mutex_enter(sc->sc_lock);
3302 error = sc->hw_if->query_format(sc->hw_hdl, query);
3303 mutex_exit(sc->sc_lock);
3304 /* Hide internal information */
3305 query->fmt.driver_data = NULL;
3306 break;
3307
3308 case AUDIO_GETFORMAT:
3309 TRACEF(2, file, "%s", pre);
3310 error = audio_exlock_enter(sc);
3311 if (error)
3312 break;
3313 audio_mixers_get_format(sc, (struct audio_info *)addr);
3314 audio_exlock_exit(sc);
3315 break;
3316
3317 case AUDIO_SETFORMAT:
3318 TRACEF(2, file, "%s", pre);
3319 error = audio_exlock_enter(sc);
3320 audio_mixers_get_format(sc, &ai);
3321 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3322 if (error) {
3323 /* Rollback */
3324 audio_mixers_set_format(sc, &ai);
3325 }
3326 audio_exlock_exit(sc);
3327 break;
3328
3329 case AUDIO_SETFD:
3330 case AUDIO_SETCHAN:
3331 case AUDIO_GETCHAN:
3332 /* Obsoleted */
3333 TRACEF(2, file, "%s", pre);
3334 break;
3335
3336 default:
3337 TRACEF(2, file, "%s", pre);
3338 if (sc->hw_if->dev_ioctl) {
3339 mutex_enter(sc->sc_lock);
3340 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3341 cmd, addr, flag, l);
3342 mutex_exit(sc->sc_lock);
3343 } else {
3344 error = EINVAL;
3345 }
3346 break;
3347 }
3348
3349 if (error)
3350 TRACEF(2, file, "%s error=%d", pre, error);
3351 return error;
3352 }
3353
3354 /*
3355 * Convert n [frames] of the input buffer to bytes in the usrbuf format.
3356 * n is in frames but should be a multiple of frame/block. Note that the
3357 * usrbuf's frame/block and the input buffer's frame/block may be different
3358 * (i.e., if frequencies are different).
3359 *
3360 * This function is for recording track only.
3361 */
3362 static int
3363 audio_track_inputblk_as_usrbyte(const audio_track_t *track, int n)
3364 {
3365 int input_fpb;
3366
3367 /*
3368 * In the input buffer on recording track, these are the same.
3369 * input_fpb = frame_per_block(track->mixer, &track->input->fmt);
3370 */
3371 input_fpb = track->mixer->frames_per_block;
3372
3373 return (n / input_fpb) * track->usrbuf_blksize;
3374 }
3375
3376 /*
3377 * Returns the number of bytes that can be read on recording buffer.
3378 */
3379 static int
3380 audio_track_readablebytes(const audio_track_t *track)
3381 {
3382 int bytes;
3383
3384 KASSERT(track);
3385 KASSERT(track->mode == AUMODE_RECORD);
3386
3387 /*
3388 * For recording, track->input is the main block-unit buffer and
3389 * track->usrbuf holds less than one block of byte data ("fragment").
3390 * Note that the input buffer is in frames and the usrbuf is in bytes.
3391 *
3392 * Actual total capacity of these two buffers is
3393 * input->capacity [frames] + usrbuf.capacity [bytes],
3394 * but only input->capacity is reported to userland as buffer_size.
3395 * So, even if the total used bytes exceed input->capacity, report it
3396 * as input->capacity for consistency.
3397 */
3398 bytes = audio_track_inputblk_as_usrbyte(track, track->input->used);
3399 if (track->input->used < track->input->capacity) {
3400 bytes += track->usrbuf.used;
3401 }
3402 return bytes;
3403 }
3404
3405 /*
3406 * Must be called without sc_lock nor sc_exlock held.
3407 */
3408 int
3409 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3410 audio_file_t *file)
3411 {
3412 audio_track_t *track;
3413 int revents;
3414 bool in_is_valid;
3415 bool out_is_valid;
3416
3417 #if defined(AUDIO_DEBUG)
3418 #define POLLEV_BITMAP "\177\020" \
3419 "b\10WRBAND\0" \
3420 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3421 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3422 char evbuf[64];
3423 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3424 TRACEF(2, file, "pid=%d.%d events=%s",
3425 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3426 #endif
3427
3428 revents = 0;
3429 in_is_valid = false;
3430 out_is_valid = false;
3431 if (events & (POLLIN | POLLRDNORM)) {
3432 track = file->rtrack;
3433 if (track) {
3434 int used;
3435 in_is_valid = true;
3436 used = audio_track_readablebytes(track);
3437 if (used > 0)
3438 revents |= events & (POLLIN | POLLRDNORM);
3439 }
3440 }
3441 if (events & (POLLOUT | POLLWRNORM)) {
3442 track = file->ptrack;
3443 if (track) {
3444 out_is_valid = true;
3445 if (track->usrbuf.used <= track->usrbuf_usedlow)
3446 revents |= events & (POLLOUT | POLLWRNORM);
3447 }
3448 }
3449
3450 if (revents == 0) {
3451 mutex_enter(sc->sc_lock);
3452 if (in_is_valid) {
3453 TRACEF(3, file, "selrecord rsel");
3454 selrecord(l, &sc->sc_rsel);
3455 }
3456 if (out_is_valid) {
3457 TRACEF(3, file, "selrecord wsel");
3458 selrecord(l, &sc->sc_wsel);
3459 }
3460 mutex_exit(sc->sc_lock);
3461 }
3462
3463 #if defined(AUDIO_DEBUG)
3464 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3465 TRACEF(2, file, "revents=%s", evbuf);
3466 #endif
3467 return revents;
3468 }
3469
3470 static const struct filterops audioread_filtops = {
3471 .f_flags = FILTEROP_ISFD,
3472 .f_attach = NULL,
3473 .f_detach = filt_audioread_detach,
3474 .f_event = filt_audioread_event,
3475 };
3476
3477 static void
3478 filt_audioread_detach(struct knote *kn)
3479 {
3480 struct audio_softc *sc;
3481 audio_file_t *file;
3482
3483 file = kn->kn_hook;
3484 sc = file->sc;
3485 TRACEF(3, file, "called");
3486
3487 mutex_enter(sc->sc_lock);
3488 selremove_knote(&sc->sc_rsel, kn);
3489 mutex_exit(sc->sc_lock);
3490 }
3491
3492 static int
3493 filt_audioread_event(struct knote *kn, long hint)
3494 {
3495 audio_file_t *file;
3496 audio_track_t *track;
3497
3498 file = kn->kn_hook;
3499 track = file->rtrack;
3500
3501 /*
3502 * kn_data must contain the number of bytes can be read.
3503 * The return value indicates whether the event occurs or not.
3504 */
3505
3506 if (track == NULL) {
3507 /* can not read with this descriptor. */
3508 kn->kn_data = 0;
3509 return 0;
3510 }
3511
3512 kn->kn_data = audio_track_readablebytes(track);
3513 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3514 return kn->kn_data > 0;
3515 }
3516
3517 static const struct filterops audiowrite_filtops = {
3518 .f_flags = FILTEROP_ISFD,
3519 .f_attach = NULL,
3520 .f_detach = filt_audiowrite_detach,
3521 .f_event = filt_audiowrite_event,
3522 };
3523
3524 static void
3525 filt_audiowrite_detach(struct knote *kn)
3526 {
3527 struct audio_softc *sc;
3528 audio_file_t *file;
3529
3530 file = kn->kn_hook;
3531 sc = file->sc;
3532 TRACEF(3, file, "called");
3533
3534 mutex_enter(sc->sc_lock);
3535 selremove_knote(&sc->sc_wsel, kn);
3536 mutex_exit(sc->sc_lock);
3537 }
3538
3539 static int
3540 filt_audiowrite_event(struct knote *kn, long hint)
3541 {
3542 audio_file_t *file;
3543 audio_track_t *track;
3544
3545 file = kn->kn_hook;
3546 track = file->ptrack;
3547
3548 /*
3549 * kn_data must contain the number of bytes can be write.
3550 * The return value indicates whether the event occurs or not.
3551 */
3552
3553 if (track == NULL) {
3554 /* can not write with this descriptor. */
3555 kn->kn_data = 0;
3556 return 0;
3557 }
3558
3559 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3560 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3561 return (track->usrbuf.used < track->usrbuf_usedlow);
3562 }
3563
3564 /*
3565 * Must be called without sc_lock nor sc_exlock held.
3566 */
3567 int
3568 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3569 {
3570 struct selinfo *sip;
3571
3572 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3573
3574 switch (kn->kn_filter) {
3575 case EVFILT_READ:
3576 sip = &sc->sc_rsel;
3577 kn->kn_fop = &audioread_filtops;
3578 break;
3579
3580 case EVFILT_WRITE:
3581 sip = &sc->sc_wsel;
3582 kn->kn_fop = &audiowrite_filtops;
3583 break;
3584
3585 default:
3586 return EINVAL;
3587 }
3588
3589 kn->kn_hook = file;
3590
3591 mutex_enter(sc->sc_lock);
3592 selrecord_knote(sip, kn);
3593 mutex_exit(sc->sc_lock);
3594
3595 return 0;
3596 }
3597
3598 /*
3599 * Must be called without sc_lock nor sc_exlock held.
3600 */
3601 int
3602 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3603 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3604 audio_file_t *file)
3605 {
3606 audio_track_t *track;
3607 struct uvm_object *uobj;
3608 vaddr_t vstart;
3609 vsize_t vsize;
3610 int error;
3611
3612 TRACEF(1, file, "off=%jd, len=%ju, prot=%d",
3613 (intmax_t)(*offp), (uintmax_t)len, prot);
3614
3615 KASSERT(len > 0);
3616
3617 if (*offp < 0)
3618 return EINVAL;
3619
3620 #if 0
3621 /* XXX
3622 * The idea here was to use the protection to determine if
3623 * we are mapping the read or write buffer, but it fails.
3624 * The VM system is broken in (at least) two ways.
3625 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3626 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3627 * has to be used for mmapping the play buffer.
3628 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3629 * audio_mmap will get called at some point with VM_PROT_READ
3630 * only.
3631 * So, alas, we always map the play buffer for now.
3632 */
3633 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3634 prot == VM_PROT_WRITE)
3635 track = file->ptrack;
3636 else if (prot == VM_PROT_READ)
3637 track = file->rtrack;
3638 else
3639 return EINVAL;
3640 #else
3641 track = file->ptrack;
3642 #endif
3643 if (track == NULL)
3644 return EACCES;
3645
3646 /* XXX TODO: what happens when mmap twice. */
3647 if (track->mmapped)
3648 return EIO;
3649
3650 /* Create a uvm anonymous object */
3651 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3652 if (*offp + len > vsize)
3653 return EOVERFLOW;
3654 uobj = uao_create(vsize, 0);
3655
3656 /* Map it into the kernel virtual address space */
3657 vstart = 0;
3658 error = uvm_map(kernel_map, &vstart, vsize, uobj, 0, 0,
3659 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3660 UVM_ADV_RANDOM, 0));
3661 if (error) {
3662 device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
3663 uao_detach(uobj); /* release reference */
3664 return error;
3665 }
3666
3667 error = uvm_map_pageable(kernel_map, vstart, vstart + vsize,
3668 false, 0);
3669 if (error) {
3670 device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
3671 error);
3672 goto abort;
3673 }
3674
3675 error = audio_exlock_mutex_enter(sc);
3676 if (error)
3677 goto abort;
3678
3679 /*
3680 * mmap() will start playing immediately. XXX Maybe we lack API...
3681 * If no one has played yet, start pmixer here.
3682 */
3683 if (sc->sc_pbusy == false)
3684 audio_pmixer_start(sc, true);
3685 audio_exlock_mutex_exit(sc);
3686
3687 /* Finally, replace the usrbuf from kmem to uvm. */
3688 audio_track_lock_enter(track);
3689 kmem_free(track->usrbuf.mem, track->usrbuf_allocsize);
3690 track->usrbuf.mem = (void *)vstart;
3691 track->usrbuf_allocsize = vsize;
3692 memset(track->usrbuf.mem, 0, vsize);
3693 track->mmapped = true;
3694 audio_track_lock_exit(track);
3695
3696 /* Acquire a reference for the mmap. munmap will release. */
3697 uao_reference(uobj);
3698 *uobjp = uobj;
3699 *maxprotp = prot;
3700 *advicep = UVM_ADV_RANDOM;
3701 *flagsp = MAP_SHARED;
3702
3703 return 0;
3704
3705 abort:
3706 uvm_unmap(kernel_map, vstart, vstart + vsize);
3707 /* uvm_unmap also detach uobj */
3708 return error;
3709 }
3710
3711 /*
3712 * /dev/audioctl has to be able to open at any time without interference
3713 * with any /dev/audio or /dev/sound.
3714 * Must be called with sc_exlock held and without sc_lock held.
3715 */
3716 static int
3717 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3718 struct lwp *l)
3719 {
3720 struct file *fp;
3721 audio_file_t *af;
3722 int fd;
3723 int error;
3724
3725 KASSERT(sc->sc_exlock);
3726
3727 TRACE(1, "called");
3728
3729 error = fd_allocfile(&fp, &fd);
3730 if (error)
3731 return error;
3732
3733 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
3734 af->sc = sc;
3735 af->dev = dev;
3736
3737 mutex_enter(sc->sc_lock);
3738 if (sc->sc_dying) {
3739 mutex_exit(sc->sc_lock);
3740 kmem_free(af, sizeof(*af));
3741 fd_abort(curproc, fp, fd);
3742 return ENXIO;
3743 }
3744 mutex_enter(sc->sc_intr_lock);
3745 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
3746 mutex_exit(sc->sc_intr_lock);
3747 mutex_exit(sc->sc_lock);
3748
3749 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3750 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3751
3752 return error;
3753 }
3754
3755 /*
3756 * Free 'mem' if available, and initialize the pointer.
3757 * For this reason, this is implemented as macro.
3758 */
3759 #define audio_free(mem) do { \
3760 if (mem != NULL) { \
3761 kern_free(mem); \
3762 mem = NULL; \
3763 } \
3764 } while (0)
3765
3766 /*
3767 * (Re)allocate 'memblock' with specified 'bytes'.
3768 * bytes must not be 0.
3769 * This function never returns NULL.
3770 */
3771 static void *
3772 audio_realloc(void *memblock, size_t bytes)
3773 {
3774
3775 KASSERT(bytes != 0);
3776 if (memblock)
3777 kern_free(memblock);
3778 return kern_malloc(bytes, M_WAITOK);
3779 }
3780
3781 /*
3782 * Free usrbuf (if available).
3783 */
3784 static void
3785 audio_free_usrbuf(audio_track_t *track)
3786 {
3787 vaddr_t vstart;
3788 vsize_t vsize;
3789
3790 if (track->usrbuf_allocsize != 0) {
3791 if (track->mmapped) {
3792 /*
3793 * Unmap the kernel mapping. uvm_unmap releases the
3794 * reference to the uvm object, and this should be the
3795 * last virtual mapping of the uvm object, so no need
3796 * to explicitly release (`detach') the object.
3797 */
3798 vstart = (vaddr_t)track->usrbuf.mem;
3799 vsize = track->usrbuf_allocsize;
3800 uvm_unmap(kernel_map, vstart, vstart + vsize);
3801 track->mmapped = false;
3802 } else {
3803 kmem_free(track->usrbuf.mem, track->usrbuf_allocsize);
3804 }
3805 }
3806 track->usrbuf.mem = NULL;
3807 track->usrbuf.capacity = 0;
3808 track->usrbuf_allocsize = 0;
3809 }
3810
3811 /*
3812 * This filter changes the volume for each channel.
3813 * arg->context points track->ch_volume[].
3814 */
3815 static void
3816 audio_track_chvol(audio_filter_arg_t *arg)
3817 {
3818 int16_t *ch_volume;
3819 const aint_t *s;
3820 aint_t *d;
3821 u_int i;
3822 u_int ch;
3823 u_int channels;
3824
3825 DIAGNOSTIC_filter_arg(arg);
3826 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3827 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3828 arg->srcfmt->channels, arg->dstfmt->channels);
3829 KASSERT(arg->context != NULL);
3830 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3831 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3832
3833 s = arg->src;
3834 d = arg->dst;
3835 ch_volume = arg->context;
3836
3837 channels = arg->srcfmt->channels;
3838 for (i = 0; i < arg->count; i++) {
3839 for (ch = 0; ch < channels; ch++) {
3840 aint2_t val;
3841 val = *s++;
3842 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3843 *d++ = (aint_t)val;
3844 }
3845 }
3846 }
3847
3848 /*
3849 * This filter performs conversion from stereo (or more channels) to mono.
3850 */
3851 static void
3852 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3853 {
3854 const aint_t *s;
3855 aint_t *d;
3856 u_int i;
3857
3858 DIAGNOSTIC_filter_arg(arg);
3859
3860 s = arg->src;
3861 d = arg->dst;
3862
3863 for (i = 0; i < arg->count; i++) {
3864 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3865 s += arg->srcfmt->channels;
3866 }
3867 }
3868
3869 /*
3870 * This filter performs conversion from mono to stereo (or more channels).
3871 */
3872 static void
3873 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3874 {
3875 const aint_t *s;
3876 aint_t *d;
3877 u_int i;
3878 u_int ch;
3879 u_int dstchannels;
3880
3881 DIAGNOSTIC_filter_arg(arg);
3882
3883 s = arg->src;
3884 d = arg->dst;
3885 dstchannels = arg->dstfmt->channels;
3886
3887 for (i = 0; i < arg->count; i++) {
3888 d[0] = s[0];
3889 d[1] = s[0];
3890 s++;
3891 d += dstchannels;
3892 }
3893 if (dstchannels > 2) {
3894 d = arg->dst;
3895 for (i = 0; i < arg->count; i++) {
3896 for (ch = 2; ch < dstchannels; ch++) {
3897 d[ch] = 0;
3898 }
3899 d += dstchannels;
3900 }
3901 }
3902 }
3903
3904 /*
3905 * This filter shrinks M channels into N channels.
3906 * Extra channels are discarded.
3907 */
3908 static void
3909 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3910 {
3911 const aint_t *s;
3912 aint_t *d;
3913 u_int i;
3914 u_int ch;
3915
3916 DIAGNOSTIC_filter_arg(arg);
3917
3918 s = arg->src;
3919 d = arg->dst;
3920
3921 for (i = 0; i < arg->count; i++) {
3922 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3923 *d++ = s[ch];
3924 }
3925 s += arg->srcfmt->channels;
3926 }
3927 }
3928
3929 /*
3930 * This filter expands M channels into N channels.
3931 * Silence is inserted for missing channels.
3932 */
3933 static void
3934 audio_track_chmix_expand(audio_filter_arg_t *arg)
3935 {
3936 const aint_t *s;
3937 aint_t *d;
3938 u_int i;
3939 u_int ch;
3940 u_int srcchannels;
3941 u_int dstchannels;
3942
3943 DIAGNOSTIC_filter_arg(arg);
3944
3945 s = arg->src;
3946 d = arg->dst;
3947
3948 srcchannels = arg->srcfmt->channels;
3949 dstchannels = arg->dstfmt->channels;
3950 for (i = 0; i < arg->count; i++) {
3951 for (ch = 0; ch < srcchannels; ch++) {
3952 *d++ = *s++;
3953 }
3954 for (; ch < dstchannels; ch++) {
3955 *d++ = 0;
3956 }
3957 }
3958 }
3959
3960 /*
3961 * This filter performs frequency conversion (up sampling).
3962 * It uses linear interpolation.
3963 */
3964 static void
3965 audio_track_freq_up(audio_filter_arg_t *arg)
3966 {
3967 audio_track_t *track;
3968 audio_ring_t *src;
3969 audio_ring_t *dst;
3970 const aint_t *s;
3971 aint_t *d;
3972 aint_t prev[AUDIO_MAX_CHANNELS];
3973 aint_t curr[AUDIO_MAX_CHANNELS];
3974 aint_t grad[AUDIO_MAX_CHANNELS];
3975 u_int i;
3976 u_int t;
3977 u_int step;
3978 u_int channels;
3979 u_int ch;
3980 int srcused;
3981
3982 track = arg->context;
3983 KASSERT(track);
3984 src = &track->freq.srcbuf;
3985 dst = track->freq.dst;
3986 DIAGNOSTIC_ring(dst);
3987 DIAGNOSTIC_ring(src);
3988 KASSERT(src->used > 0);
3989 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3990 "src->fmt.channels=%d dst->fmt.channels=%d",
3991 src->fmt.channels, dst->fmt.channels);
3992 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3993 "src->head=%d track->mixer->frames_per_block=%d",
3994 src->head, track->mixer->frames_per_block);
3995
3996 s = arg->src;
3997 d = arg->dst;
3998
3999 /*
4000 * In order to facilitate interpolation for each block, slide (delay)
4001 * input by one sample. As a result, strictly speaking, the output
4002 * phase is delayed by 1/dstfreq. However, I believe there is no
4003 * observable impact.
4004 *
4005 * Example)
4006 * srcfreq:dstfreq = 1:3
4007 *
4008 * A - -
4009 * |
4010 * |
4011 * | B - -
4012 * +-----+-----> input timeframe
4013 * 0 1
4014 *
4015 * 0 1
4016 * +-----+-----> input timeframe
4017 * | A
4018 * | x x
4019 * | x x
4020 * x (B)
4021 * +-+-+-+-+-+-> output timeframe
4022 * 0 1 2 3 4 5
4023 */
4024
4025 /* Last samples in previous block */
4026 channels = src->fmt.channels;
4027 for (ch = 0; ch < channels; ch++) {
4028 prev[ch] = track->freq_prev[ch];
4029 curr[ch] = track->freq_curr[ch];
4030 grad[ch] = curr[ch] - prev[ch];
4031 }
4032
4033 step = track->freq_step;
4034 t = track->freq_current;
4035 //#define FREQ_DEBUG
4036 #if defined(FREQ_DEBUG)
4037 #define PRINTF(fmt...) printf(fmt)
4038 #else
4039 #define PRINTF(fmt...) do { } while (0)
4040 #endif
4041 srcused = src->used;
4042 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
4043 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
4044 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
4045 PRINTF(" t=%d\n", t);
4046
4047 for (i = 0; i < arg->count; i++) {
4048 PRINTF("i=%d t=%5d", i, t);
4049 if (t >= 65536) {
4050 for (ch = 0; ch < channels; ch++) {
4051 prev[ch] = curr[ch];
4052 curr[ch] = *s++;
4053 grad[ch] = curr[ch] - prev[ch];
4054 }
4055 PRINTF(" prev=%d s[%d]=%d",
4056 prev[0], src->used - srcused, curr[0]);
4057
4058 /* Update */
4059 t -= 65536;
4060 srcused--;
4061 if (srcused < 0) {
4062 PRINTF(" break\n");
4063 break;
4064 }
4065 }
4066
4067 for (ch = 0; ch < channels; ch++) {
4068 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
4069 #if defined(FREQ_DEBUG)
4070 if (ch == 0)
4071 printf(" t=%5d *d=%d", t, d[-1]);
4072 #endif
4073 }
4074 t += step;
4075
4076 PRINTF("\n");
4077 }
4078 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
4079
4080 auring_take(src, src->used);
4081 auring_push(dst, i);
4082
4083 /* Adjust */
4084 t += track->freq_leap;
4085
4086 track->freq_current = t;
4087 for (ch = 0; ch < channels; ch++) {
4088 track->freq_prev[ch] = prev[ch];
4089 track->freq_curr[ch] = curr[ch];
4090 }
4091 }
4092
4093 /*
4094 * This filter performs frequency conversion (down sampling).
4095 * It uses simple thinning.
4096 */
4097 static void
4098 audio_track_freq_down(audio_filter_arg_t *arg)
4099 {
4100 audio_track_t *track;
4101 audio_ring_t *src;
4102 audio_ring_t *dst;
4103 const aint_t *s0;
4104 aint_t *d;
4105 u_int i;
4106 u_int t;
4107 u_int step;
4108 u_int ch;
4109 u_int channels;
4110
4111 track = arg->context;
4112 KASSERT(track);
4113 src = &track->freq.srcbuf;
4114 dst = track->freq.dst;
4115
4116 DIAGNOSTIC_ring(dst);
4117 DIAGNOSTIC_ring(src);
4118 KASSERT(src->used > 0);
4119 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
4120 "src->fmt.channels=%d dst->fmt.channels=%d",
4121 src->fmt.channels, dst->fmt.channels);
4122 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
4123 "src->head=%d track->mixer->frames_per_block=%d",
4124 src->head, track->mixer->frames_per_block);
4125
4126 s0 = arg->src;
4127 d = arg->dst;
4128 t = track->freq_current;
4129 step = track->freq_step;
4130 channels = dst->fmt.channels;
4131 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
4132 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
4133 PRINTF(" t=%d\n", t);
4134
4135 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
4136 const aint_t *s;
4137 PRINTF("i=%4d t=%10d", i, t);
4138 s = s0 + (t / 65536) * channels;
4139 PRINTF(" s=%5ld", (s - s0) / channels);
4140 for (ch = 0; ch < channels; ch++) {
4141 if (ch == 0) PRINTF(" *s=%d", s[ch]);
4142 *d++ = s[ch];
4143 }
4144 PRINTF("\n");
4145 t += step;
4146 }
4147 t += track->freq_leap;
4148 PRINTF("end t=%d\n", t);
4149 auring_take(src, src->used);
4150 auring_push(dst, i);
4151 track->freq_current = t % 65536;
4152 }
4153
4154 /*
4155 * Creates track and returns it.
4156 * Must be called without sc_lock held.
4157 */
4158 audio_track_t *
4159 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
4160 {
4161 audio_track_t *track;
4162 static int newid = 0;
4163
4164 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
4165
4166 track->id = newid++;
4167 track->mixer = mixer;
4168 track->mode = mixer->mode;
4169
4170 /* Do TRACE after id is assigned. */
4171 TRACET(3, track, "for %s",
4172 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
4173
4174 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
4175 track->volume = 256;
4176 #endif
4177 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
4178 track->ch_volume[i] = 256;
4179 }
4180
4181 return track;
4182 }
4183
4184 /*
4185 * Release all resources of the track and track itself.
4186 * track must not be NULL. Don't specify the track within the file
4187 * structure linked from sc->sc_files.
4188 */
4189 static void
4190 audio_track_destroy(audio_track_t *track)
4191 {
4192
4193 KASSERT(track);
4194
4195 audio_free_usrbuf(track);
4196 audio_free(track->codec.srcbuf.mem);
4197 audio_free(track->chvol.srcbuf.mem);
4198 audio_free(track->chmix.srcbuf.mem);
4199 audio_free(track->freq.srcbuf.mem);
4200 audio_free(track->outbuf.mem);
4201
4202 kmem_free(track, sizeof(*track));
4203 }
4204
4205 /*
4206 * It returns encoding conversion filter according to src and dst format.
4207 * If it is not a convertible pair, it returns NULL. Either src or dst
4208 * must be internal format.
4209 */
4210 static audio_filter_t
4211 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
4212 const audio_format2_t *dst)
4213 {
4214
4215 if (audio_format2_is_internal(src)) {
4216 if (dst->encoding == AUDIO_ENCODING_ULAW) {
4217 return audio_internal_to_mulaw;
4218 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
4219 return audio_internal_to_alaw;
4220 } else if (audio_format2_is_linear(dst)) {
4221 switch (dst->stride) {
4222 case 8:
4223 return audio_internal_to_linear8;
4224 case 16:
4225 return audio_internal_to_linear16;
4226 #if defined(AUDIO_SUPPORT_LINEAR24)
4227 case 24:
4228 return audio_internal_to_linear24;
4229 #endif
4230 case 32:
4231 return audio_internal_to_linear32;
4232 default:
4233 TRACET(1, track, "unsupported %s stride %d",
4234 "dst", dst->stride);
4235 goto abort;
4236 }
4237 }
4238 } else if (audio_format2_is_internal(dst)) {
4239 if (src->encoding == AUDIO_ENCODING_ULAW) {
4240 return audio_mulaw_to_internal;
4241 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
4242 return audio_alaw_to_internal;
4243 } else if (audio_format2_is_linear(src)) {
4244 switch (src->stride) {
4245 case 8:
4246 return audio_linear8_to_internal;
4247 case 16:
4248 return audio_linear16_to_internal;
4249 #if defined(AUDIO_SUPPORT_LINEAR24)
4250 case 24:
4251 return audio_linear24_to_internal;
4252 #endif
4253 case 32:
4254 return audio_linear32_to_internal;
4255 default:
4256 TRACET(1, track, "unsupported %s stride %d",
4257 "src", src->stride);
4258 goto abort;
4259 }
4260 }
4261 }
4262
4263 TRACET(1, track, "unsupported encoding");
4264 abort:
4265 #if defined(AUDIO_DEBUG)
4266 if (audiodebug >= 2) {
4267 char buf[100];
4268 audio_format2_tostr(buf, sizeof(buf), src);
4269 TRACET(2, track, "src %s", buf);
4270 audio_format2_tostr(buf, sizeof(buf), dst);
4271 TRACET(2, track, "dst %s", buf);
4272 }
4273 #endif
4274 return NULL;
4275 }
4276
4277 /*
4278 * Initialize the codec stage of this track as necessary.
4279 * If successful, it initializes the codec stage as necessary, stores updated
4280 * last_dst in *last_dstp in any case, and returns 0.
4281 * Otherwise, it returns errno without modifying *last_dstp.
4282 */
4283 static int
4284 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
4285 {
4286 audio_ring_t *last_dst;
4287 audio_ring_t *srcbuf;
4288 audio_format2_t *srcfmt;
4289 audio_format2_t *dstfmt;
4290 audio_filter_arg_t *arg;
4291 u_int len;
4292 int error;
4293
4294 KASSERT(track);
4295
4296 last_dst = *last_dstp;
4297 dstfmt = &last_dst->fmt;
4298 srcfmt = &track->inputfmt;
4299 srcbuf = &track->codec.srcbuf;
4300 error = 0;
4301
4302 if (srcfmt->encoding != dstfmt->encoding
4303 || srcfmt->precision != dstfmt->precision
4304 || srcfmt->stride != dstfmt->stride) {
4305 track->codec.dst = last_dst;
4306
4307 srcbuf->fmt = *dstfmt;
4308 srcbuf->fmt.encoding = srcfmt->encoding;
4309 srcbuf->fmt.precision = srcfmt->precision;
4310 srcbuf->fmt.stride = srcfmt->stride;
4311
4312 track->codec.filter = audio_track_get_codec(track,
4313 &srcbuf->fmt, dstfmt);
4314 if (track->codec.filter == NULL) {
4315 error = EINVAL;
4316 goto abort;
4317 }
4318
4319 srcbuf->head = 0;
4320 srcbuf->used = 0;
4321 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4322 len = auring_bytelen(srcbuf);
4323 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4324
4325 arg = &track->codec.arg;
4326 arg->srcfmt = &srcbuf->fmt;
4327 arg->dstfmt = dstfmt;
4328 arg->context = NULL;
4329
4330 *last_dstp = srcbuf;
4331 return 0;
4332 }
4333
4334 abort:
4335 track->codec.filter = NULL;
4336 audio_free(srcbuf->mem);
4337 return error;
4338 }
4339
4340 /*
4341 * Initialize the chvol stage of this track as necessary.
4342 * If successful, it initializes the chvol stage as necessary, stores updated
4343 * last_dst in *last_dstp in any case, and returns 0.
4344 * Otherwise, it returns errno without modifying *last_dstp.
4345 */
4346 static int
4347 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4348 {
4349 audio_ring_t *last_dst;
4350 audio_ring_t *srcbuf;
4351 audio_format2_t *srcfmt;
4352 audio_format2_t *dstfmt;
4353 audio_filter_arg_t *arg;
4354 u_int len;
4355 int error;
4356
4357 KASSERT(track);
4358
4359 last_dst = *last_dstp;
4360 dstfmt = &last_dst->fmt;
4361 srcfmt = &track->inputfmt;
4362 srcbuf = &track->chvol.srcbuf;
4363 error = 0;
4364
4365 /* Check whether channel volume conversion is necessary. */
4366 bool use_chvol = false;
4367 for (int ch = 0; ch < srcfmt->channels; ch++) {
4368 if (track->ch_volume[ch] != 256) {
4369 use_chvol = true;
4370 break;
4371 }
4372 }
4373
4374 if (use_chvol == true) {
4375 track->chvol.dst = last_dst;
4376 track->chvol.filter = audio_track_chvol;
4377
4378 srcbuf->fmt = *dstfmt;
4379 /* no format conversion occurs */
4380
4381 srcbuf->head = 0;
4382 srcbuf->used = 0;
4383 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4384 len = auring_bytelen(srcbuf);
4385 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4386
4387 arg = &track->chvol.arg;
4388 arg->srcfmt = &srcbuf->fmt;
4389 arg->dstfmt = dstfmt;
4390 arg->context = track->ch_volume;
4391
4392 *last_dstp = srcbuf;
4393 return 0;
4394 }
4395
4396 track->chvol.filter = NULL;
4397 audio_free(srcbuf->mem);
4398 return error;
4399 }
4400
4401 /*
4402 * Initialize the chmix stage of this track as necessary.
4403 * If successful, it initializes the chmix stage as necessary, stores updated
4404 * last_dst in *last_dstp in any case, and returns 0.
4405 * Otherwise, it returns errno without modifying *last_dstp.
4406 */
4407 static int
4408 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4409 {
4410 audio_ring_t *last_dst;
4411 audio_ring_t *srcbuf;
4412 audio_format2_t *srcfmt;
4413 audio_format2_t *dstfmt;
4414 audio_filter_arg_t *arg;
4415 u_int srcch;
4416 u_int dstch;
4417 u_int len;
4418 int error;
4419
4420 KASSERT(track);
4421
4422 last_dst = *last_dstp;
4423 dstfmt = &last_dst->fmt;
4424 srcfmt = &track->inputfmt;
4425 srcbuf = &track->chmix.srcbuf;
4426 error = 0;
4427
4428 srcch = srcfmt->channels;
4429 dstch = dstfmt->channels;
4430 if (srcch != dstch) {
4431 track->chmix.dst = last_dst;
4432
4433 if (srcch >= 2 && dstch == 1) {
4434 track->chmix.filter = audio_track_chmix_mixLR;
4435 } else if (srcch == 1 && dstch >= 2) {
4436 track->chmix.filter = audio_track_chmix_dupLR;
4437 } else if (srcch > dstch) {
4438 track->chmix.filter = audio_track_chmix_shrink;
4439 } else {
4440 track->chmix.filter = audio_track_chmix_expand;
4441 }
4442
4443 srcbuf->fmt = *dstfmt;
4444 srcbuf->fmt.channels = srcch;
4445
4446 srcbuf->head = 0;
4447 srcbuf->used = 0;
4448 /* XXX The buffer size should be able to calculate. */
4449 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4450 len = auring_bytelen(srcbuf);
4451 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4452
4453 arg = &track->chmix.arg;
4454 arg->srcfmt = &srcbuf->fmt;
4455 arg->dstfmt = dstfmt;
4456 arg->context = NULL;
4457
4458 *last_dstp = srcbuf;
4459 return 0;
4460 }
4461
4462 track->chmix.filter = NULL;
4463 audio_free(srcbuf->mem);
4464 return error;
4465 }
4466
4467 /*
4468 * Initialize the freq stage of this track as necessary.
4469 * If successful, it initializes the freq stage as necessary, stores updated
4470 * last_dst in *last_dstp in any case, and returns 0.
4471 * Otherwise, it returns errno without modifying *last_dstp.
4472 */
4473 static int
4474 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4475 {
4476 audio_ring_t *last_dst;
4477 audio_ring_t *srcbuf;
4478 audio_format2_t *srcfmt;
4479 audio_format2_t *dstfmt;
4480 audio_filter_arg_t *arg;
4481 uint32_t srcfreq;
4482 uint32_t dstfreq;
4483 u_int dst_capacity;
4484 u_int mod;
4485 u_int len;
4486 int error;
4487
4488 KASSERT(track);
4489
4490 last_dst = *last_dstp;
4491 dstfmt = &last_dst->fmt;
4492 srcfmt = &track->inputfmt;
4493 srcbuf = &track->freq.srcbuf;
4494 error = 0;
4495
4496 srcfreq = srcfmt->sample_rate;
4497 dstfreq = dstfmt->sample_rate;
4498 if (srcfreq != dstfreq) {
4499 track->freq.dst = last_dst;
4500
4501 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4502 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4503
4504 /* freq_step is the ratio of src/dst when let dst 65536. */
4505 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4506
4507 dst_capacity = frame_per_block(track->mixer, dstfmt);
4508 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4509 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4510
4511 if (track->freq_step < 65536) {
4512 track->freq.filter = audio_track_freq_up;
4513 /* In order to carry at the first time. */
4514 track->freq_current = 65536;
4515 } else {
4516 track->freq.filter = audio_track_freq_down;
4517 track->freq_current = 0;
4518 }
4519
4520 srcbuf->fmt = *dstfmt;
4521 srcbuf->fmt.sample_rate = srcfreq;
4522
4523 srcbuf->head = 0;
4524 srcbuf->used = 0;
4525 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4526 len = auring_bytelen(srcbuf);
4527 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4528
4529 arg = &track->freq.arg;
4530 arg->srcfmt = &srcbuf->fmt;
4531 arg->dstfmt = dstfmt;
4532 arg->context = track;
4533
4534 *last_dstp = srcbuf;
4535 return 0;
4536 }
4537
4538 track->freq.filter = NULL;
4539 audio_free(srcbuf->mem);
4540 return error;
4541 }
4542
4543 /*
4544 * There are two unit of buffers; A block buffer and a byte buffer. Both use
4545 * audio_ring_t. Internally, audio data is always handled in block unit.
4546 * Converting format, sythesizing tracks, transferring from/to the hardware,
4547 * and etc. Only one exception is usrbuf. To transfer with userland, usrbuf
4548 * is buffered in byte unit.
4549 * For playing back, write(2) writes arbitrary length of data to usrbuf.
4550 * When one block is filled, it is sent to the next stage (converting and/or
4551 * synthesizing).
4552 * For recording, the rmixer writes one block length of data to input buffer
4553 * (the bottom stage buffer) each time. read(2) (converts one block if usrbuf
4554 * is empty and then) reads arbitrary length of data from usrbuf.
4555 *
4556 * The following charts show the data flow and buffer types for playback and
4557 * recording track. In this example, both have two conversion stages, codec
4558 * and freq. Every [**] represents a buffer described below.
4559 *
4560 * On playback track:
4561 *
4562 * write(2)
4563 * |
4564 * | uiomove
4565 * v
4566 * usrbuf [BB|BB ... BB|BB] .. Byte ring buffer
4567 * |
4568 * | memcpy one block
4569 * v
4570 * codec.srcbuf [FF] .. 1 block (ring) buffer
4571 * .dst ----+
4572 * |
4573 * | convert
4574 * v
4575 * freq.srcbuf [FF] .. 1 block (ring) buffer
4576 * .dst ----+
4577 * |
4578 * | convert
4579 * v
4580 * outbuf [FF|FF|FF|FF] .. NBLKOUT blocks ring buffer
4581 * |
4582 * v
4583 * pmixer
4584 *
4585 * There are three different types of buffers:
4586 *
4587 * [BB|BB ... BB|BB] usrbuf. Is the buffer closest to userland. Mandatory.
4588 * This is a byte buffer and its length is basically less
4589 * than or equal to 64KB or at least AUMINNOBLK blocks.
4590 *
4591 * [FF] Interim conversion stage's srcbuf if necessary.
4592 * This is one block (ring) buffer counted in frames.
4593 *
4594 * [FF|FF|FF|FF] outbuf. Is the buffer closest to pmixer. Mandatory.
4595 * This is NBLKOUT blocks ring buffer counted in frames.
4596 *
4597 *
4598 * On recording track:
4599 *
4600 * read(2)
4601 * ^
4602 * | uiomove
4603 * |
4604 * usrbuf [BB] .. Byte (ring) buffer
4605 * ^
4606 * | memcpy one block
4607 * |
4608 * outbuf [FF] .. 1 block (ring) buffer
4609 * ^
4610 * | convert
4611 * |
4612 * codec.dst ----+
4613 * .srcbuf [FF] .. 1 block (ring) buffer
4614 * ^
4615 * | convert
4616 * |
4617 * freq.dst ----+
4618 * .srcbuf [FF|FF ... FF|FF] .. NBLKIN blocks ring buffer
4619 * ^
4620 * |
4621 * rmixer
4622 *
4623 * There are also three different types of buffers.
4624 *
4625 * [BB] usrbuf. Is the buffer closest to userland. Mandatory.
4626 * This is a byte buffer and its length is one block.
4627 * This buffer holds only "fragment".
4628 *
4629 * [FF] Interim conversion stage's srcbuf (or outbuf).
4630 * This is one block (ring) buffer counted in frames.
4631 *
4632 * [FF|FF ... FF|FF] The bottom conversion stage's srcbuf (or outbuf).
4633 * This is the buffer closest to rmixer, and mandatory.
4634 * This is NBLKIN blocks ring buffer counted in frames.
4635 * Also pointed by *input.
4636 */
4637
4638 /*
4639 * Set the userland format of this track.
4640 * usrfmt argument should have been previously verified by
4641 * audio_track_setinfo_check().
4642 * This function may release and reallocate all internal conversion buffers.
4643 * It returns 0 if successful. Otherwise it returns errno with clearing all
4644 * internal buffers.
4645 * It must be called without sc_intr_lock since uvm_* routines require non
4646 * intr_lock state.
4647 * It must be called with track lock held since it may release and reallocate
4648 * outbuf.
4649 */
4650 static int
4651 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4652 {
4653 audio_ring_t *last_dst;
4654 int is_playback;
4655 u_int newbufsize;
4656 u_int newvsize;
4657 u_int len;
4658 int error;
4659
4660 KASSERT(track);
4661
4662 is_playback = audio_track_is_playback(track);
4663
4664 /* Once mmap is called, the track format cannot be changed. */
4665 if (track->mmapped)
4666 return EIO;
4667
4668 /* usrbuf is the closest buffer to the userland. */
4669 track->usrbuf.fmt = *usrfmt;
4670
4671 /*
4672 * Usrbuf.
4673 * On the playback track, its capacity is less than or equal to 64KB
4674 * (for historical reason) and must be a multiple of a block
4675 * (constraint in this implementation). But at least AUMINNOBLK
4676 * blocks.
4677 * On the recording track, its capacity is one block.
4678 */
4679 /*
4680 * For references, one block size (in 40msec) is:
4681 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4682 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4683 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4684 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4685 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4686 *
4687 * For example,
4688 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4689 * newbufsize = rounddown(65536 / 7056) = 63504
4690 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4691 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4692 *
4693 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4694 * newbufsize = rounddown(65536 / 7680) = 61440
4695 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4696 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4697 */
4698 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4699 frame_per_block(track->mixer, &track->usrbuf.fmt));
4700 track->usrbuf.head = 0;
4701 track->usrbuf.used = 0;
4702 if (is_playback) {
4703 newbufsize = track->usrbuf_blksize * AUMINNOBLK;
4704 if (newbufsize < 65536)
4705 newbufsize = rounddown(65536, track->usrbuf_blksize);
4706 newvsize = roundup2(newbufsize, PAGE_SIZE);
4707 } else {
4708 newbufsize = track->usrbuf_blksize;
4709 newvsize = track->usrbuf_blksize;
4710 }
4711 /*
4712 * Reallocate only if the number of pages changes.
4713 * This is because we expect kmem to allocate memory on per page
4714 * basis if the request size is about 64KB.
4715 */
4716 if (newvsize != track->usrbuf_allocsize) {
4717 if (track->usrbuf_allocsize != 0) {
4718 kmem_free(track->usrbuf.mem, track->usrbuf_allocsize);
4719 }
4720 TRACET(2, track, "usrbuf_allocsize %d -> %d",
4721 track->usrbuf_allocsize, newvsize);
4722 track->usrbuf.mem = kmem_alloc(newvsize, KM_SLEEP);
4723 track->usrbuf_allocsize = newvsize;
4724 }
4725 track->usrbuf.capacity = newbufsize;
4726
4727 /* Recalc water mark. */
4728 if (is_playback) {
4729 /* Set high at 100%, low at 75%. */
4730 track->usrbuf_usedhigh = track->usrbuf.capacity;
4731 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4732 } else {
4733 /* Set high at 100%, low at 0%. (But not used) */
4734 track->usrbuf_usedhigh = track->usrbuf.capacity;
4735 track->usrbuf_usedlow = 0;
4736 }
4737
4738 /* Stage buffer */
4739 last_dst = &track->outbuf;
4740 if (is_playback) {
4741 /* On playback, initialize from the mixer side in order. */
4742 track->inputfmt = *usrfmt;
4743 track->outbuf.fmt = track->mixer->track_fmt;
4744
4745 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4746 goto error;
4747 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4748 goto error;
4749 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4750 goto error;
4751 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4752 goto error;
4753 } else {
4754 /* On recording, initialize from userland side in order. */
4755 track->inputfmt = track->mixer->track_fmt;
4756 track->outbuf.fmt = *usrfmt;
4757
4758 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4759 goto error;
4760 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4761 goto error;
4762 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4763 goto error;
4764 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4765 goto error;
4766 }
4767 #if 0
4768 /* debug */
4769 if (track->freq.filter) {
4770 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4771 audio_print_format2("freq dst", &track->freq.dst->fmt);
4772 }
4773 if (track->chmix.filter) {
4774 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4775 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4776 }
4777 if (track->chvol.filter) {
4778 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4779 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4780 }
4781 if (track->codec.filter) {
4782 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4783 audio_print_format2("codec dst", &track->codec.dst->fmt);
4784 }
4785 #endif
4786
4787 /* Stage input buffer */
4788 track->input = last_dst;
4789
4790 /*
4791 * Output buffer.
4792 * On the playback track, its capacity is NBLKOUT blocks.
4793 * On the recording track, its capacity is 1 block.
4794 */
4795 track->outbuf.head = 0;
4796 track->outbuf.used = 0;
4797 track->outbuf.capacity = frame_per_block(track->mixer,
4798 &track->outbuf.fmt);
4799 if (is_playback)
4800 track->outbuf.capacity *= NBLKOUT;
4801 len = auring_bytelen(&track->outbuf);
4802 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4803
4804 /*
4805 * On the recording track, expand the input stage buffer, which is
4806 * the closest buffer to rmixer, to NBLKIN blocks.
4807 * Note that input buffer may point to outbuf.
4808 */
4809 if (!is_playback) {
4810 int input_fpb;
4811
4812 input_fpb = frame_per_block(track->mixer, &track->input->fmt);
4813 track->input->capacity = input_fpb * NBLKIN;
4814 len = auring_bytelen(track->input);
4815 track->input->mem = audio_realloc(track->input->mem, len);
4816 }
4817
4818 #if defined(AUDIO_DEBUG)
4819 if (audiodebug >= 3) {
4820 struct audio_track_debugbuf m;
4821
4822 memset(&m, 0, sizeof(m));
4823 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4824 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4825 if (track->freq.filter)
4826 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4827 track->freq.srcbuf.capacity *
4828 frametobyte(&track->freq.srcbuf.fmt, 1));
4829 if (track->chmix.filter)
4830 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4831 track->chmix.srcbuf.capacity *
4832 frametobyte(&track->chmix.srcbuf.fmt, 1));
4833 if (track->chvol.filter)
4834 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4835 track->chvol.srcbuf.capacity *
4836 frametobyte(&track->chvol.srcbuf.fmt, 1));
4837 if (track->codec.filter)
4838 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4839 track->codec.srcbuf.capacity *
4840 frametobyte(&track->codec.srcbuf.fmt, 1));
4841 snprintf(m.usrbuf, sizeof(m.usrbuf),
4842 " usr=%d", track->usrbuf.capacity);
4843
4844 if (is_playback) {
4845 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4846 m.outbuf, m.freq, m.chmix,
4847 m.chvol, m.codec, m.usrbuf);
4848 } else {
4849 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4850 m.freq, m.chmix, m.chvol,
4851 m.codec, m.outbuf, m.usrbuf);
4852 }
4853 }
4854 #endif
4855 return 0;
4856
4857 error:
4858 audio_free_usrbuf(track);
4859 audio_free(track->codec.srcbuf.mem);
4860 audio_free(track->chvol.srcbuf.mem);
4861 audio_free(track->chmix.srcbuf.mem);
4862 audio_free(track->freq.srcbuf.mem);
4863 audio_free(track->outbuf.mem);
4864 return error;
4865 }
4866
4867 /*
4868 * Fill silence frames (as the internal format) up to 1 block
4869 * if the ring is not empty and less than 1 block.
4870 * It returns the number of appended frames.
4871 */
4872 static int
4873 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4874 {
4875 int fpb;
4876 int n;
4877
4878 KASSERT(track);
4879 KASSERT(audio_format2_is_internal(&ring->fmt));
4880
4881 /* XXX is n correct? */
4882 /* XXX memset uses frametobyte()? */
4883
4884 if (ring->used == 0)
4885 return 0;
4886
4887 fpb = frame_per_block(track->mixer, &ring->fmt);
4888 if (ring->used >= fpb)
4889 return 0;
4890
4891 n = (ring->capacity - ring->used) % fpb;
4892
4893 KASSERTMSG(auring_get_contig_free(ring) >= n,
4894 "auring_get_contig_free(ring)=%d n=%d",
4895 auring_get_contig_free(ring), n);
4896
4897 memset(auring_tailptr_aint(ring), 0,
4898 n * ring->fmt.channels * sizeof(aint_t));
4899 auring_push(ring, n);
4900 return n;
4901 }
4902
4903 /*
4904 * Execute the conversion stage.
4905 * It prepares arg from this stage and executes stage->filter.
4906 * It must be called only if stage->filter is not NULL.
4907 *
4908 * For stages other than frequency conversion, the function increments
4909 * src and dst counters here. For frequency conversion stage, on the
4910 * other hand, the function does not touch src and dst counters and
4911 * filter side has to increment them.
4912 */
4913 static void
4914 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4915 {
4916 audio_filter_arg_t *arg;
4917 int srccount;
4918 int dstcount;
4919 int count;
4920
4921 KASSERT(track);
4922 KASSERT(stage->filter);
4923
4924 srccount = auring_get_contig_used(&stage->srcbuf);
4925 dstcount = auring_get_contig_free(stage->dst);
4926
4927 if (isfreq) {
4928 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4929 count = uimin(dstcount, track->mixer->frames_per_block);
4930 } else {
4931 count = uimin(srccount, dstcount);
4932 }
4933
4934 if (count > 0) {
4935 arg = &stage->arg;
4936 arg->src = auring_headptr(&stage->srcbuf);
4937 arg->dst = auring_tailptr(stage->dst);
4938 arg->count = count;
4939
4940 stage->filter(arg);
4941
4942 if (!isfreq) {
4943 auring_take(&stage->srcbuf, count);
4944 auring_push(stage->dst, count);
4945 }
4946 }
4947 }
4948
4949 /*
4950 * Produce output buffer for playback from user input buffer.
4951 * It must be called only if usrbuf is not empty and outbuf is
4952 * available at least one free block.
4953 */
4954 static void
4955 audio_track_play(audio_track_t *track)
4956 {
4957 audio_ring_t *usrbuf;
4958 audio_ring_t *input;
4959 int count;
4960 int framesize;
4961 int bytes;
4962
4963 KASSERT(track);
4964 KASSERT(track->lock);
4965 TRACET(4, track, "start pstate=%d", track->pstate);
4966
4967 /* At this point usrbuf must not be empty. */
4968 KASSERT(track->usrbuf.used > 0);
4969 /* Also, outbuf must be available at least one block. */
4970 count = auring_get_contig_free(&track->outbuf);
4971 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4972 "count=%d fpb=%d",
4973 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4974
4975 usrbuf = &track->usrbuf;
4976 input = track->input;
4977
4978 /*
4979 * framesize is always 1 byte or more since all formats supported as
4980 * usrfmt(=input) have 8bit or more stride.
4981 */
4982 framesize = frametobyte(&input->fmt, 1);
4983 KASSERT(framesize >= 1);
4984
4985 /* The next stage of usrbuf (=input) must be available. */
4986 KASSERT(auring_get_contig_free(input) > 0);
4987
4988 /*
4989 * Copy usrbuf up to 1block to input buffer.
4990 * count is the number of frames to copy from usrbuf.
4991 * bytes is the number of bytes to copy from usrbuf. However it is
4992 * not copied less than one frame.
4993 */
4994 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4995 bytes = count * framesize;
4996
4997 if (usrbuf->head + bytes < usrbuf->capacity) {
4998 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4999 (uint8_t *)usrbuf->mem + usrbuf->head,
5000 bytes);
5001 auring_push(input, count);
5002 auring_take(usrbuf, bytes);
5003 } else {
5004 int bytes1;
5005 int bytes2;
5006
5007 bytes1 = auring_get_contig_used(usrbuf);
5008 KASSERTMSG(bytes1 % framesize == 0,
5009 "bytes1=%d framesize=%d", bytes1, framesize);
5010 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
5011 (uint8_t *)usrbuf->mem + usrbuf->head,
5012 bytes1);
5013 auring_push(input, bytes1 / framesize);
5014 auring_take(usrbuf, bytes1);
5015
5016 bytes2 = bytes - bytes1;
5017 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
5018 (uint8_t *)usrbuf->mem + usrbuf->head,
5019 bytes2);
5020 auring_push(input, bytes2 / framesize);
5021 auring_take(usrbuf, bytes2);
5022 }
5023
5024 /* Encoding conversion */
5025 if (track->codec.filter)
5026 audio_apply_stage(track, &track->codec, false);
5027
5028 /* Channel volume */
5029 if (track->chvol.filter)
5030 audio_apply_stage(track, &track->chvol, false);
5031
5032 /* Channel mix */
5033 if (track->chmix.filter)
5034 audio_apply_stage(track, &track->chmix, false);
5035
5036 /* Frequency conversion */
5037 /*
5038 * Since the frequency conversion needs correction for each block,
5039 * it rounds up to 1 block.
5040 */
5041 if (track->freq.filter) {
5042 int n;
5043 n = audio_append_silence(track, &track->freq.srcbuf);
5044 if (n > 0) {
5045 TRACET(4, track,
5046 "freq.srcbuf add silence %d -> %d/%d/%d",
5047 n,
5048 track->freq.srcbuf.head,
5049 track->freq.srcbuf.used,
5050 track->freq.srcbuf.capacity);
5051 }
5052 if (track->freq.srcbuf.used > 0) {
5053 audio_apply_stage(track, &track->freq, true);
5054 }
5055 }
5056
5057 if (bytes < track->usrbuf_blksize) {
5058 /*
5059 * Clear all conversion buffer pointer if the conversion was
5060 * not exactly one block. These conversion stage buffers are
5061 * certainly circular buffers because of symmetry with the
5062 * previous and next stage buffer. However, since they are
5063 * treated as simple contiguous buffers in operation, so head
5064 * always should point 0. This may happen during drain-age.
5065 */
5066 TRACET(4, track, "reset stage");
5067 if (track->codec.filter) {
5068 KASSERT(track->codec.srcbuf.used == 0);
5069 track->codec.srcbuf.head = 0;
5070 }
5071 if (track->chvol.filter) {
5072 KASSERT(track->chvol.srcbuf.used == 0);
5073 track->chvol.srcbuf.head = 0;
5074 }
5075 if (track->chmix.filter) {
5076 KASSERT(track->chmix.srcbuf.used == 0);
5077 track->chmix.srcbuf.head = 0;
5078 }
5079 if (track->freq.filter) {
5080 KASSERT(track->freq.srcbuf.used == 0);
5081 track->freq.srcbuf.head = 0;
5082 }
5083 }
5084
5085 track->stamp++;
5086
5087 #if defined(AUDIO_DEBUG)
5088 if (audiodebug >= 3) {
5089 struct audio_track_debugbuf m;
5090 audio_track_bufstat(track, &m);
5091 TRACET(0, track, "end%s%s%s%s%s%s",
5092 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
5093 }
5094 #endif
5095 }
5096
5097 /*
5098 * Produce user output buffer for recording from input buffer.
5099 */
5100 static void
5101 audio_track_record(audio_track_t *track)
5102 {
5103 audio_ring_t *outbuf;
5104 audio_ring_t *usrbuf;
5105 int count;
5106 int bytes;
5107 int framesize;
5108
5109 KASSERT(track);
5110 KASSERT(track->lock);
5111
5112 if (auring_get_contig_used(track->input) == 0) {
5113 TRACET(4, track, "input->used == 0");
5114 return;
5115 }
5116
5117 /* Frequency conversion */
5118 if (track->freq.filter) {
5119 if (track->freq.srcbuf.used > 0) {
5120 audio_apply_stage(track, &track->freq, true);
5121 /* XXX should input of freq be from beginning of buf? */
5122 }
5123 }
5124
5125 /* Channel mix */
5126 if (track->chmix.filter)
5127 audio_apply_stage(track, &track->chmix, false);
5128
5129 /* Channel volume */
5130 if (track->chvol.filter)
5131 audio_apply_stage(track, &track->chvol, false);
5132
5133 /* Encoding conversion */
5134 if (track->codec.filter)
5135 audio_apply_stage(track, &track->codec, false);
5136
5137 /* Copy outbuf to usrbuf */
5138 outbuf = &track->outbuf;
5139 usrbuf = &track->usrbuf;
5140 /* usrbuf should be empty. */
5141 KASSERT(usrbuf->used == 0);
5142 /*
5143 * framesize is always 1 byte or more since all formats supported
5144 * as usrfmt(=output) have 8bit or more stride.
5145 */
5146 framesize = frametobyte(&outbuf->fmt, 1);
5147 KASSERT(framesize >= 1);
5148 /*
5149 * count is the number of frames to copy to usrbuf.
5150 * bytes is the number of bytes to copy to usrbuf.
5151 */
5152 count = outbuf->used;
5153 count = uimin(count, track->usrbuf_blksize / framesize);
5154 bytes = count * framesize;
5155 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
5156 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5157 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5158 bytes);
5159 auring_push(usrbuf, bytes);
5160 auring_take(outbuf, count);
5161 } else {
5162 int bytes1;
5163 int bytes2;
5164
5165 bytes1 = auring_get_contig_free(usrbuf);
5166 KASSERTMSG(bytes1 % framesize == 0,
5167 "bytes1=%d framesize=%d", bytes1, framesize);
5168 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5169 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5170 bytes1);
5171 auring_push(usrbuf, bytes1);
5172 auring_take(outbuf, bytes1 / framesize);
5173
5174 bytes2 = bytes - bytes1;
5175 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5176 (uint8_t *)outbuf->mem + outbuf->head * framesize,
5177 bytes2);
5178 auring_push(usrbuf, bytes2);
5179 auring_take(outbuf, bytes2 / framesize);
5180 }
5181
5182 #if defined(AUDIO_DEBUG)
5183 if (audiodebug >= 3) {
5184 struct audio_track_debugbuf m;
5185 audio_track_bufstat(track, &m);
5186 TRACET(0, track, "end%s%s%s%s%s%s",
5187 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
5188 }
5189 #endif
5190 }
5191
5192 /*
5193 * Calculate blktime [msec] from mixer(.hwbuf.fmt).
5194 * Must be called with sc_exlock held.
5195 */
5196 static u_int
5197 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
5198 {
5199 audio_format2_t *fmt;
5200 u_int blktime;
5201 u_int frames_per_block;
5202
5203 KASSERT(sc->sc_exlock);
5204
5205 fmt = &mixer->hwbuf.fmt;
5206 blktime = sc->sc_blk_ms;
5207
5208 /*
5209 * If stride is not multiples of 8, special treatment is necessary.
5210 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
5211 */
5212 if (fmt->stride == 4) {
5213 frames_per_block = fmt->sample_rate * blktime / 1000;
5214 if ((frames_per_block & 1) != 0)
5215 blktime *= 2;
5216 }
5217 #ifdef DIAGNOSTIC
5218 else if (fmt->stride % NBBY != 0) {
5219 panic("unsupported HW stride %d", fmt->stride);
5220 }
5221 #endif
5222
5223 return blktime;
5224 }
5225
5226 /*
5227 * Initialize the mixer corresponding to the mode.
5228 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
5229 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
5230 * This function returns 0 on successful. Otherwise returns errno.
5231 * Must be called with sc_exlock held and without sc_lock held.
5232 */
5233 static int
5234 audio_mixer_init(struct audio_softc *sc, int mode,
5235 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
5236 {
5237 char codecbuf[64];
5238 char blkdmsbuf[8];
5239 audio_trackmixer_t *mixer;
5240 void (*softint_handler)(void *);
5241 int len;
5242 int blksize;
5243 int capacity;
5244 size_t bufsize;
5245 int hwblks;
5246 int blkms;
5247 int blkdms;
5248 int error;
5249
5250 KASSERT(hwfmt != NULL);
5251 KASSERT(reg != NULL);
5252 KASSERT(sc->sc_exlock);
5253
5254 error = 0;
5255 if (mode == AUMODE_PLAY)
5256 mixer = sc->sc_pmixer;
5257 else
5258 mixer = sc->sc_rmixer;
5259
5260 mixer->sc = sc;
5261 mixer->mode = mode;
5262
5263 mixer->hwbuf.fmt = *hwfmt;
5264 mixer->volume = 256;
5265 mixer->blktime_d = 1000;
5266 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
5267 sc->sc_blk_ms = mixer->blktime_n;
5268 hwblks = NBLKHW;
5269
5270 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
5271 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5272 if (sc->hw_if->round_blocksize) {
5273 int rounded;
5274 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
5275 mutex_enter(sc->sc_lock);
5276 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
5277 mode, &p);
5278 mutex_exit(sc->sc_lock);
5279 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
5280 if (rounded != blksize) {
5281 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
5282 mixer->hwbuf.fmt.channels) != 0) {
5283 audio_printf(sc,
5284 "round_blocksize returned blocksize "
5285 "indivisible by framesize: "
5286 "blksize=%d rounded=%d "
5287 "stride=%ubit channels=%u\n",
5288 blksize, rounded,
5289 mixer->hwbuf.fmt.stride,
5290 mixer->hwbuf.fmt.channels);
5291 return EINVAL;
5292 }
5293 /* Recalculation */
5294 blksize = rounded;
5295 mixer->frames_per_block = blksize * NBBY /
5296 (mixer->hwbuf.fmt.stride *
5297 mixer->hwbuf.fmt.channels);
5298 }
5299 }
5300 mixer->blktime_n = mixer->frames_per_block;
5301 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
5302
5303 capacity = mixer->frames_per_block * hwblks;
5304 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
5305 if (sc->hw_if->round_buffersize) {
5306 size_t rounded;
5307 mutex_enter(sc->sc_lock);
5308 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
5309 bufsize);
5310 mutex_exit(sc->sc_lock);
5311 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
5312 if (rounded < bufsize) {
5313 /* buffersize needs NBLKHW blocks at least. */
5314 audio_printf(sc,
5315 "round_buffersize returned too small buffersize: "
5316 "buffersize=%zd blksize=%d\n",
5317 rounded, blksize);
5318 return EINVAL;
5319 }
5320 if (rounded % blksize != 0) {
5321 /* buffersize/blksize constraint mismatch? */
5322 audio_printf(sc,
5323 "round_buffersize returned buffersize indivisible "
5324 "by blksize: buffersize=%zu blksize=%d\n",
5325 rounded, blksize);
5326 return EINVAL;
5327 }
5328 if (rounded != bufsize) {
5329 /* Recalculation */
5330 bufsize = rounded;
5331 hwblks = bufsize / blksize;
5332 capacity = mixer->frames_per_block * hwblks;
5333 }
5334 }
5335 TRACE(1, "buffersize for %s = %zu",
5336 (mode == AUMODE_PLAY) ? "playback" : "recording",
5337 bufsize);
5338 mixer->hwbuf.capacity = capacity;
5339
5340 if (sc->hw_if->allocm) {
5341 /* sc_lock is not necessary for allocm */
5342 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
5343 if (mixer->hwbuf.mem == NULL) {
5344 audio_printf(sc, "allocm(%zu) failed\n", bufsize);
5345 return ENOMEM;
5346 }
5347 } else {
5348 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
5349 }
5350
5351 /* From here, audio_mixer_destroy is necessary to exit. */
5352 if (mode == AUMODE_PLAY) {
5353 cv_init(&mixer->outcv, "audiowr");
5354 } else {
5355 cv_init(&mixer->outcv, "audiord");
5356 }
5357
5358 if (mode == AUMODE_PLAY) {
5359 softint_handler = audio_softintr_wr;
5360 } else {
5361 softint_handler = audio_softintr_rd;
5362 }
5363 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
5364 softint_handler, sc);
5365 if (mixer->sih == NULL) {
5366 device_printf(sc->sc_dev, "softint_establish failed\n");
5367 goto abort;
5368 }
5369
5370 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
5371 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
5372 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
5373 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
5374 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
5375
5376 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
5377 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
5378 mixer->swap_endian = true;
5379 TRACE(1, "swap_endian");
5380 }
5381
5382 if (mode == AUMODE_PLAY) {
5383 /* Mixing buffer */
5384 mixer->mixfmt = mixer->track_fmt;
5385 mixer->mixfmt.precision *= 2;
5386 mixer->mixfmt.stride *= 2;
5387 /* XXX TODO: use some macros? */
5388 len = mixer->frames_per_block * mixer->mixfmt.channels *
5389 mixer->mixfmt.stride / NBBY;
5390 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5391 } else if (reg->codec == NULL) {
5392 /*
5393 * Recording requires an input conversion buffer
5394 * unless the hardware provides a codec itself
5395 */
5396 mixer->mixfmt = mixer->track_fmt;
5397 len = mixer->frames_per_block * mixer->mixfmt.channels *
5398 mixer->mixfmt.stride / NBBY;
5399 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5400 }
5401
5402 if (reg->codec) {
5403 mixer->codec = reg->codec;
5404 mixer->codecarg.context = reg->context;
5405 if (mode == AUMODE_PLAY) {
5406 mixer->codecarg.srcfmt = &mixer->track_fmt;
5407 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5408 } else {
5409 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5410 mixer->codecarg.dstfmt = &mixer->track_fmt;
5411 }
5412 mixer->codecbuf.fmt = mixer->track_fmt;
5413 mixer->codecbuf.capacity = mixer->frames_per_block;
5414 len = auring_bytelen(&mixer->codecbuf);
5415 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5416 }
5417
5418 /* Succeeded so display it. */
5419 codecbuf[0] = '\0';
5420 if (mixer->codec || mixer->swap_endian) {
5421 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5422 (mode == AUMODE_PLAY) ? "->" : "<-",
5423 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5424 mixer->hwbuf.fmt.precision);
5425 }
5426 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5427 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5428 blkdmsbuf[0] = '\0';
5429 if (blkdms != 0) {
5430 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5431 }
5432 aprint_normal_dev(sc->sc_dev,
5433 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5434 audio_encoding_name(mixer->track_fmt.encoding),
5435 mixer->track_fmt.precision,
5436 codecbuf,
5437 mixer->track_fmt.channels,
5438 mixer->track_fmt.sample_rate,
5439 blksize,
5440 blkms, blkdmsbuf,
5441 (mode == AUMODE_PLAY) ? "playback" : "recording");
5442
5443 return 0;
5444
5445 abort:
5446 audio_mixer_destroy(sc, mixer);
5447 return error;
5448 }
5449
5450 /*
5451 * Releases all resources of 'mixer'.
5452 * Note that it does not release the memory area of 'mixer' itself.
5453 * Must be called with sc_exlock held and without sc_lock held.
5454 */
5455 static void
5456 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5457 {
5458 int bufsize;
5459
5460 KASSERT(sc->sc_exlock == 1);
5461
5462 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5463
5464 if (mixer->hwbuf.mem != NULL) {
5465 if (sc->hw_if->freem) {
5466 /* sc_lock is not necessary for freem */
5467 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5468 } else {
5469 kmem_free(mixer->hwbuf.mem, bufsize);
5470 }
5471 mixer->hwbuf.mem = NULL;
5472 }
5473
5474 audio_free(mixer->codecbuf.mem);
5475 audio_free(mixer->mixsample);
5476
5477 cv_destroy(&mixer->outcv);
5478
5479 if (mixer->sih) {
5480 softint_disestablish(mixer->sih);
5481 mixer->sih = NULL;
5482 }
5483 }
5484
5485 /*
5486 * Starts playback mixer.
5487 * Must be called only if sc_pbusy is false.
5488 * Must be called with sc_lock && sc_exlock held.
5489 * Must not be called from the interrupt context.
5490 */
5491 static void
5492 audio_pmixer_start(struct audio_softc *sc, bool force)
5493 {
5494 audio_trackmixer_t *mixer;
5495 int minimum;
5496
5497 KASSERT(mutex_owned(sc->sc_lock));
5498 KASSERT(sc->sc_exlock);
5499 KASSERT(sc->sc_pbusy == false);
5500
5501 mutex_enter(sc->sc_intr_lock);
5502
5503 mixer = sc->sc_pmixer;
5504 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5505 (audiodebug >= 3) ? "begin " : "",
5506 (int)mixer->mixseq, (int)mixer->hwseq,
5507 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5508 force ? " force" : "");
5509
5510 /* Need two blocks to start normally. */
5511 minimum = (force) ? 1 : 2;
5512 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5513 audio_pmixer_process(sc);
5514 }
5515
5516 /* Start output */
5517 audio_pmixer_output(sc);
5518 sc->sc_pbusy = true;
5519
5520 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5521 (int)mixer->mixseq, (int)mixer->hwseq,
5522 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5523
5524 mutex_exit(sc->sc_intr_lock);
5525 }
5526
5527 /*
5528 * When playing back with MD filter:
5529 *
5530 * track track ...
5531 * v v
5532 * + mix (with aint2_t)
5533 * | master volume (with aint2_t)
5534 * v
5535 * mixsample [::::] wide-int 1 block (ring) buffer
5536 * |
5537 * | convert aint2_t -> aint_t
5538 * v
5539 * codecbuf [....] 1 block (ring) buffer
5540 * |
5541 * | convert to hw format
5542 * v
5543 * hwbuf [............] NBLKHW blocks ring buffer
5544 *
5545 * When playing back without MD filter:
5546 *
5547 * mixsample [::::] wide-int 1 block (ring) buffer
5548 * |
5549 * | convert aint2_t -> aint_t
5550 * | (with byte swap if necessary)
5551 * v
5552 * hwbuf [............] NBLKHW blocks ring buffer
5553 *
5554 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5555 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5556 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5557 */
5558
5559 /*
5560 * Performs track mixing and converts it to hwbuf.
5561 * Note that this function doesn't transfer hwbuf to hardware.
5562 * Must be called with sc_intr_lock held.
5563 */
5564 static void
5565 audio_pmixer_process(struct audio_softc *sc)
5566 {
5567 audio_trackmixer_t *mixer;
5568 audio_file_t *f;
5569 int frame_count;
5570 int sample_count;
5571 int mixed;
5572 int i;
5573 aint2_t *m;
5574 aint_t *h;
5575
5576 mixer = sc->sc_pmixer;
5577
5578 frame_count = mixer->frames_per_block;
5579 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5580 "auring_get_contig_free()=%d frame_count=%d",
5581 auring_get_contig_free(&mixer->hwbuf), frame_count);
5582 sample_count = frame_count * mixer->mixfmt.channels;
5583
5584 mixer->mixseq++;
5585
5586 /* Mix all tracks */
5587 mixed = 0;
5588 SLIST_FOREACH(f, &sc->sc_files, entry) {
5589 audio_track_t *track = f->ptrack;
5590
5591 if (track == NULL)
5592 continue;
5593
5594 if (track->is_pause) {
5595 TRACET(4, track, "skip; paused");
5596 continue;
5597 }
5598
5599 /* Skip if the track is used by process context. */
5600 if (audio_track_lock_tryenter(track) == false) {
5601 TRACET(4, track, "skip; in use");
5602 continue;
5603 }
5604
5605 /* Emulate mmap'ped track */
5606 if (track->mmapped) {
5607 auring_push(&track->usrbuf, track->usrbuf_blksize);
5608 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5609 track->usrbuf.head,
5610 track->usrbuf.used,
5611 track->usrbuf.capacity);
5612 }
5613
5614 if (track->outbuf.used < mixer->frames_per_block &&
5615 track->usrbuf.used > 0) {
5616 TRACET(4, track, "process");
5617 audio_track_play(track);
5618 }
5619
5620 if (track->outbuf.used > 0) {
5621 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5622 } else {
5623 TRACET(4, track, "skip; empty");
5624 }
5625
5626 audio_track_lock_exit(track);
5627 }
5628
5629 if (mixed == 0) {
5630 /* Silence */
5631 memset(mixer->mixsample, 0,
5632 frametobyte(&mixer->mixfmt, frame_count));
5633 } else {
5634 if (mixed > 1) {
5635 /* If there are multiple tracks, do auto gain control */
5636 audio_pmixer_agc(mixer, sample_count);
5637 }
5638
5639 /* Apply master volume */
5640 if (mixer->volume < 256) {
5641 m = mixer->mixsample;
5642 for (i = 0; i < sample_count; i++) {
5643 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5644 m++;
5645 }
5646
5647 /*
5648 * Recover the volume gradually at the pace of
5649 * several times per second. If it's too fast, you
5650 * can recognize that the volume changes up and down
5651 * quickly and it's not so comfortable.
5652 */
5653 mixer->voltimer += mixer->blktime_n;
5654 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5655 mixer->volume++;
5656 mixer->voltimer = 0;
5657 #if defined(AUDIO_DEBUG_AGC)
5658 TRACE(1, "volume recover: %d", mixer->volume);
5659 #endif
5660 }
5661 }
5662 }
5663
5664 /*
5665 * The rest is the hardware part.
5666 */
5667
5668 m = mixer->mixsample;
5669
5670 if (mixer->codec) {
5671 TRACE(4, "codec count=%d", frame_count);
5672
5673 h = auring_tailptr_aint(&mixer->codecbuf);
5674 for (i=0; i<sample_count; ++i)
5675 *h++ = *m++;
5676
5677 /* Hardware driver's codec */
5678 auring_push(&mixer->codecbuf, frame_count);
5679 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5680 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5681 mixer->codecarg.count = frame_count;
5682 mixer->codec(&mixer->codecarg);
5683 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5684 } else {
5685 TRACE(4, "direct count=%d", frame_count);
5686
5687 /* Direct conversion to linear output */
5688 mixer->codecarg.src = m;
5689 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5690 mixer->codecarg.count = frame_count;
5691 mixer->codecarg.srcfmt = &mixer->mixfmt;
5692 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5693 audio_mixsample_to_linear(&mixer->codecarg);
5694 }
5695
5696 auring_push(&mixer->hwbuf, frame_count);
5697
5698 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5699 (int)mixer->mixseq,
5700 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5701 (mixed == 0) ? " silent" : "");
5702 }
5703
5704 /*
5705 * Do auto gain control.
5706 * Must be called sc_intr_lock held.
5707 */
5708 static void
5709 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5710 {
5711 struct audio_softc *sc __unused;
5712 aint2_t val;
5713 aint2_t maxval;
5714 aint2_t minval;
5715 aint2_t over_plus;
5716 aint2_t over_minus;
5717 aint2_t *m;
5718 int newvol;
5719 int i;
5720
5721 sc = mixer->sc;
5722
5723 /* Overflow detection */
5724 maxval = AINT_T_MAX;
5725 minval = AINT_T_MIN;
5726 m = mixer->mixsample;
5727 for (i = 0; i < sample_count; i++) {
5728 val = *m++;
5729 if (val > maxval)
5730 maxval = val;
5731 else if (val < minval)
5732 minval = val;
5733 }
5734
5735 /* Absolute value of overflowed amount */
5736 over_plus = maxval - AINT_T_MAX;
5737 over_minus = AINT_T_MIN - minval;
5738
5739 if (over_plus > 0 || over_minus > 0) {
5740 if (over_plus > over_minus) {
5741 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5742 } else {
5743 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5744 }
5745
5746 /*
5747 * Change the volume only if new one is smaller.
5748 * Reset the timer even if the volume isn't changed.
5749 */
5750 if (newvol <= mixer->volume) {
5751 mixer->volume = newvol;
5752 mixer->voltimer = 0;
5753 #if defined(AUDIO_DEBUG_AGC)
5754 TRACE(1, "auto volume adjust: %d", mixer->volume);
5755 #endif
5756 }
5757 }
5758 }
5759
5760 /*
5761 * Mix one track.
5762 * 'mixed' specifies the number of tracks mixed so far.
5763 * It returns the number of tracks mixed. In other words, it returns
5764 * mixed + 1 if this track is mixed.
5765 */
5766 static int
5767 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5768 int mixed)
5769 {
5770 int count;
5771 int sample_count;
5772 int remain;
5773 int i;
5774 const aint_t *s;
5775 aint2_t *d;
5776
5777 /* XXX TODO: Is this necessary for now? */
5778 if (mixer->mixseq < track->seq)
5779 return mixed;
5780
5781 count = auring_get_contig_used(&track->outbuf);
5782 count = uimin(count, mixer->frames_per_block);
5783
5784 s = auring_headptr_aint(&track->outbuf);
5785 d = mixer->mixsample;
5786
5787 /*
5788 * Apply track volume with double-sized integer and perform
5789 * additive synthesis.
5790 *
5791 * XXX If you limit the track volume to 1.0 or less (<= 256),
5792 * it would be better to do this in the track conversion stage
5793 * rather than here. However, if you accept the volume to
5794 * be greater than 1.0 (> 256), it's better to do it here.
5795 * Because the operation here is done by double-sized integer.
5796 */
5797 sample_count = count * mixer->mixfmt.channels;
5798 if (mixed == 0) {
5799 /* If this is the first track, assignment can be used. */
5800 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5801 if (track->volume != 256) {
5802 for (i = 0; i < sample_count; i++) {
5803 aint2_t v;
5804 v = *s++;
5805 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5806 }
5807 } else
5808 #endif
5809 {
5810 for (i = 0; i < sample_count; i++) {
5811 *d++ = ((aint2_t)*s++);
5812 }
5813 }
5814 /* Fill silence if the first track is not filled. */
5815 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5816 *d++ = 0;
5817 } else {
5818 /* If this is the second or later, add it. */
5819 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5820 if (track->volume != 256) {
5821 for (i = 0; i < sample_count; i++) {
5822 aint2_t v;
5823 v = *s++;
5824 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5825 }
5826 } else
5827 #endif
5828 {
5829 for (i = 0; i < sample_count; i++) {
5830 *d++ += ((aint2_t)*s++);
5831 }
5832 }
5833 }
5834
5835 auring_take(&track->outbuf, count);
5836 /*
5837 * The counters have to align block even if outbuf is less than
5838 * one block. XXX Is this still necessary?
5839 */
5840 remain = mixer->frames_per_block - count;
5841 if (__predict_false(remain != 0)) {
5842 auring_push(&track->outbuf, remain);
5843 auring_take(&track->outbuf, remain);
5844 }
5845
5846 /*
5847 * Update track sequence.
5848 * mixseq has previous value yet at this point.
5849 */
5850 track->seq = mixer->mixseq + 1;
5851
5852 return mixed + 1;
5853 }
5854
5855 /*
5856 * Output one block from hwbuf to HW.
5857 * Must be called with sc_intr_lock held.
5858 */
5859 static void
5860 audio_pmixer_output(struct audio_softc *sc)
5861 {
5862 audio_trackmixer_t *mixer;
5863 audio_params_t params;
5864 void *start;
5865 void *end;
5866 int blksize;
5867 int error;
5868
5869 mixer = sc->sc_pmixer;
5870 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5871 sc->sc_pbusy,
5872 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5873 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5874 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5875 mixer->hwbuf.used, mixer->frames_per_block);
5876
5877 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5878
5879 if (sc->hw_if->trigger_output) {
5880 /* trigger (at once) */
5881 if (!sc->sc_pbusy) {
5882 start = mixer->hwbuf.mem;
5883 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5884 params = format2_to_params(&mixer->hwbuf.fmt);
5885
5886 error = sc->hw_if->trigger_output(sc->hw_hdl,
5887 start, end, blksize, audio_pintr, sc, ¶ms);
5888 if (error) {
5889 audio_printf(sc,
5890 "trigger_output failed: errno=%d\n",
5891 error);
5892 return;
5893 }
5894 }
5895 } else {
5896 /* start (everytime) */
5897 start = auring_headptr(&mixer->hwbuf);
5898
5899 error = sc->hw_if->start_output(sc->hw_hdl,
5900 start, blksize, audio_pintr, sc);
5901 if (error) {
5902 audio_printf(sc,
5903 "start_output failed: errno=%d\n", error);
5904 return;
5905 }
5906 }
5907 }
5908
5909 /*
5910 * This is an interrupt handler for playback.
5911 * It is called with sc_intr_lock held.
5912 *
5913 * It is usually called from hardware interrupt. However, note that
5914 * for some drivers (e.g. uaudio) it is called from software interrupt.
5915 */
5916 static void
5917 audio_pintr(void *arg)
5918 {
5919 struct audio_softc *sc;
5920 audio_trackmixer_t *mixer;
5921
5922 sc = arg;
5923 KASSERT(mutex_owned(sc->sc_intr_lock));
5924
5925 if (sc->sc_dying)
5926 return;
5927 if (sc->sc_pbusy == false) {
5928 #if defined(DIAGNOSTIC)
5929 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5930 device_xname(sc->hw_dev));
5931 #endif
5932 return;
5933 }
5934
5935 mixer = sc->sc_pmixer;
5936 mixer->hw_complete_counter += mixer->frames_per_block;
5937 mixer->hwseq++;
5938
5939 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5940
5941 TRACE(4,
5942 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5943 mixer->hwseq, mixer->hw_complete_counter,
5944 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5945
5946 #if defined(AUDIO_HW_SINGLE_BUFFER)
5947 /*
5948 * Create a new block here and output it immediately.
5949 * It makes a latency lower but needs machine power.
5950 */
5951 audio_pmixer_process(sc);
5952 audio_pmixer_output(sc);
5953 #else
5954 /*
5955 * It is called when block N output is done.
5956 * Output immediately block N+1 created by the last interrupt.
5957 * And then create block N+2 for the next interrupt.
5958 * This method makes playback robust even on slower machines.
5959 * Instead the latency is increased by one block.
5960 */
5961
5962 /* At first, output ready block. */
5963 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5964 audio_pmixer_output(sc);
5965 }
5966
5967 bool later = false;
5968
5969 if (mixer->hwbuf.used < mixer->frames_per_block) {
5970 later = true;
5971 }
5972
5973 /* Then, process next block. */
5974 audio_pmixer_process(sc);
5975
5976 if (later) {
5977 audio_pmixer_output(sc);
5978 }
5979 #endif
5980
5981 /*
5982 * When this interrupt is the real hardware interrupt, disabling
5983 * preemption here is not necessary. But some drivers (e.g. uaudio)
5984 * emulate it by software interrupt, so kpreempt_disable is necessary.
5985 */
5986 kpreempt_disable();
5987 softint_schedule(mixer->sih);
5988 kpreempt_enable();
5989 }
5990
5991 /*
5992 * Starts record mixer.
5993 * Must be called only if sc_rbusy is false.
5994 * Must be called with sc_lock && sc_exlock held.
5995 * Must not be called from the interrupt context.
5996 */
5997 static void
5998 audio_rmixer_start(struct audio_softc *sc)
5999 {
6000
6001 KASSERT(mutex_owned(sc->sc_lock));
6002 KASSERT(sc->sc_exlock);
6003 KASSERT(sc->sc_rbusy == false);
6004
6005 mutex_enter(sc->sc_intr_lock);
6006
6007 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
6008 audio_rmixer_input(sc);
6009 sc->sc_rbusy = true;
6010 TRACE(3, "end");
6011
6012 mutex_exit(sc->sc_intr_lock);
6013 }
6014
6015 /*
6016 * When recording with MD filter:
6017 *
6018 * hwbuf [............] NBLKHW blocks ring buffer
6019 * |
6020 * | convert from hw format
6021 * v
6022 * codecbuf [....] 1 block (ring) buffer
6023 * | |
6024 * v v
6025 * track track ...
6026 *
6027 * When recording without MD filter:
6028 *
6029 * hwbuf [............] NBLKHW blocks ring buffer
6030 * | |
6031 * v v
6032 * track track ...
6033 *
6034 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
6035 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
6036 */
6037
6038 /*
6039 * Distribute a recorded block to all recording tracks.
6040 */
6041 static void
6042 audio_rmixer_process(struct audio_softc *sc)
6043 {
6044 audio_trackmixer_t *mixer;
6045 audio_ring_t *mixersrc;
6046 audio_ring_t tmpsrc;
6047 audio_filter_t codec;
6048 audio_filter_arg_t codecarg;
6049 audio_file_t *f;
6050 int count;
6051 int bytes;
6052
6053 mixer = sc->sc_rmixer;
6054
6055 /*
6056 * count is the number of frames to be retrieved this time.
6057 * count should be one block.
6058 */
6059 count = auring_get_contig_used(&mixer->hwbuf);
6060 count = uimin(count, mixer->frames_per_block);
6061 if (count <= 0) {
6062 TRACE(4, "count %d: too short", count);
6063 return;
6064 }
6065 bytes = frametobyte(&mixer->track_fmt, count);
6066
6067 /* Hardware driver's codec */
6068 if (mixer->codec) {
6069 TRACE(4, "codec count=%d", count);
6070 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
6071 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
6072 mixer->codecarg.count = count;
6073 mixer->codec(&mixer->codecarg);
6074 mixersrc = &mixer->codecbuf;
6075 } else {
6076 TRACE(4, "direct count=%d", count);
6077 /* temporary ring using mixsample buffer */
6078 tmpsrc.fmt = mixer->mixfmt;
6079 tmpsrc.capacity = mixer->frames_per_block;
6080 tmpsrc.mem = mixer->mixsample;
6081 tmpsrc.head = 0;
6082 tmpsrc.used = 0;
6083
6084 /* ad-hoc codec */
6085 codecarg.srcfmt = &mixer->hwbuf.fmt;
6086 codecarg.dstfmt = &mixer->mixfmt;
6087 codec = NULL;
6088 if (audio_format2_is_linear(codecarg.srcfmt)) {
6089 switch (codecarg.srcfmt->stride) {
6090 case 8:
6091 codec = audio_linear8_to_internal;
6092 break;
6093 case 16:
6094 codec = audio_linear16_to_internal;
6095 break;
6096 #if defined(AUDIO_SUPPORT_LINEAR24)
6097 case 24:
6098 codec = audio_linear24_to_internal;
6099 break;
6100 #endif
6101 case 32:
6102 codec = audio_linear32_to_internal;
6103 break;
6104 }
6105 }
6106 if (codec == NULL) {
6107 TRACE(4, "unsupported hw format");
6108 return;
6109 }
6110
6111 codecarg.src = auring_headptr(&mixer->hwbuf);
6112 codecarg.dst = auring_tailptr(&tmpsrc);
6113 codecarg.count = count;
6114 codec(&codecarg);
6115 mixersrc = &tmpsrc;
6116 }
6117
6118 auring_take(&mixer->hwbuf, count);
6119 auring_push(mixersrc, count);
6120
6121 TRACE(4, "distribute");
6122
6123 /* Distribute to all tracks. */
6124 SLIST_FOREACH(f, &sc->sc_files, entry) {
6125 audio_track_t *track = f->rtrack;
6126 audio_ring_t *input;
6127
6128 if (track == NULL)
6129 continue;
6130
6131 if (track->is_pause) {
6132 TRACET(4, track, "skip; paused");
6133 continue;
6134 }
6135
6136 if (audio_track_lock_tryenter(track) == false) {
6137 TRACET(4, track, "skip; in use");
6138 continue;
6139 }
6140
6141 /*
6142 * If the track buffer has less than one block of free space,
6143 * make one block free.
6144 */
6145 input = track->input;
6146 if (input->capacity - input->used < mixer->frames_per_block) {
6147 int drops = mixer->frames_per_block -
6148 (input->capacity - input->used);
6149 track->dropframes += drops;
6150 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
6151 drops,
6152 input->head, input->used, input->capacity);
6153 auring_take(input, drops);
6154 }
6155
6156 KASSERTMSG(auring_tail(input) % mixer->frames_per_block == 0,
6157 "inputtail=%d mixer->frames_per_block=%d",
6158 auring_tail(input), mixer->frames_per_block);
6159 memcpy(auring_tailptr_aint(input),
6160 auring_headptr_aint(mixersrc),
6161 bytes);
6162 auring_push(input, count);
6163
6164 track->stamp++;
6165
6166 audio_track_lock_exit(track);
6167 }
6168
6169 auring_take(mixersrc, count);
6170 }
6171
6172 /*
6173 * Input one block from HW to hwbuf.
6174 * Must be called with sc_intr_lock held.
6175 */
6176 static void
6177 audio_rmixer_input(struct audio_softc *sc)
6178 {
6179 audio_trackmixer_t *mixer;
6180 audio_params_t params;
6181 void *start;
6182 void *end;
6183 int blksize;
6184 int error;
6185
6186 mixer = sc->sc_rmixer;
6187 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
6188
6189 if (sc->hw_if->trigger_input) {
6190 /* trigger (at once) */
6191 if (!sc->sc_rbusy) {
6192 start = mixer->hwbuf.mem;
6193 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
6194 params = format2_to_params(&mixer->hwbuf.fmt);
6195
6196 error = sc->hw_if->trigger_input(sc->hw_hdl,
6197 start, end, blksize, audio_rintr, sc, ¶ms);
6198 if (error) {
6199 audio_printf(sc,
6200 "trigger_input failed: errno=%d\n",
6201 error);
6202 return;
6203 }
6204 }
6205 } else {
6206 /* start (everytime) */
6207 start = auring_tailptr(&mixer->hwbuf);
6208
6209 error = sc->hw_if->start_input(sc->hw_hdl,
6210 start, blksize, audio_rintr, sc);
6211 if (error) {
6212 audio_printf(sc,
6213 "start_input failed: errno=%d\n", error);
6214 return;
6215 }
6216 }
6217 }
6218
6219 /*
6220 * This is an interrupt handler for recording.
6221 * It is called with sc_intr_lock.
6222 *
6223 * It is usually called from hardware interrupt. However, note that
6224 * for some drivers (e.g. uaudio) it is called from software interrupt.
6225 */
6226 static void
6227 audio_rintr(void *arg)
6228 {
6229 struct audio_softc *sc;
6230 audio_trackmixer_t *mixer;
6231
6232 sc = arg;
6233 KASSERT(mutex_owned(sc->sc_intr_lock));
6234
6235 if (sc->sc_dying)
6236 return;
6237 if (sc->sc_rbusy == false) {
6238 #if defined(DIAGNOSTIC)
6239 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
6240 device_xname(sc->hw_dev));
6241 #endif
6242 return;
6243 }
6244
6245 mixer = sc->sc_rmixer;
6246 mixer->hw_complete_counter += mixer->frames_per_block;
6247 mixer->hwseq++;
6248
6249 auring_push(&mixer->hwbuf, mixer->frames_per_block);
6250
6251 TRACE(4,
6252 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
6253 mixer->hwseq, mixer->hw_complete_counter,
6254 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
6255
6256 /* Distrubute recorded block */
6257 audio_rmixer_process(sc);
6258
6259 /* Request next block */
6260 audio_rmixer_input(sc);
6261
6262 /*
6263 * When this interrupt is the real hardware interrupt, disabling
6264 * preemption here is not necessary. But some drivers (e.g. uaudio)
6265 * emulate it by software interrupt, so kpreempt_disable is necessary.
6266 */
6267 kpreempt_disable();
6268 softint_schedule(mixer->sih);
6269 kpreempt_enable();
6270 }
6271
6272 /*
6273 * Halts playback mixer.
6274 * This function also clears related parameters, so call this function
6275 * instead of calling halt_output directly.
6276 * Must be called only if sc_pbusy is true.
6277 * Must be called with sc_lock && sc_exlock held.
6278 */
6279 static int
6280 audio_pmixer_halt(struct audio_softc *sc)
6281 {
6282 int error;
6283
6284 TRACE(2, "called");
6285 KASSERT(mutex_owned(sc->sc_lock));
6286 KASSERT(sc->sc_exlock);
6287
6288 mutex_enter(sc->sc_intr_lock);
6289 error = sc->hw_if->halt_output(sc->hw_hdl);
6290
6291 /* Halts anyway even if some error has occurred. */
6292 sc->sc_pbusy = false;
6293 sc->sc_pmixer->hwbuf.head = 0;
6294 sc->sc_pmixer->hwbuf.used = 0;
6295 sc->sc_pmixer->mixseq = 0;
6296 sc->sc_pmixer->hwseq = 0;
6297 mutex_exit(sc->sc_intr_lock);
6298
6299 return error;
6300 }
6301
6302 /*
6303 * Halts recording mixer.
6304 * This function also clears related parameters, so call this function
6305 * instead of calling halt_input directly.
6306 * Must be called only if sc_rbusy is true.
6307 * Must be called with sc_lock && sc_exlock held.
6308 */
6309 static int
6310 audio_rmixer_halt(struct audio_softc *sc)
6311 {
6312 int error;
6313
6314 TRACE(2, "called");
6315 KASSERT(mutex_owned(sc->sc_lock));
6316 KASSERT(sc->sc_exlock);
6317
6318 mutex_enter(sc->sc_intr_lock);
6319 error = sc->hw_if->halt_input(sc->hw_hdl);
6320
6321 /* Halts anyway even if some error has occurred. */
6322 sc->sc_rbusy = false;
6323 sc->sc_rmixer->hwbuf.head = 0;
6324 sc->sc_rmixer->hwbuf.used = 0;
6325 sc->sc_rmixer->mixseq = 0;
6326 sc->sc_rmixer->hwseq = 0;
6327 mutex_exit(sc->sc_intr_lock);
6328
6329 return error;
6330 }
6331
6332 /*
6333 * Flush this track.
6334 * Halts all operations, clears all buffers, reset error counters.
6335 * XXX I'm not sure...
6336 */
6337 static void
6338 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
6339 {
6340
6341 KASSERT(track);
6342 TRACET(3, track, "clear");
6343
6344 audio_track_lock_enter(track);
6345
6346 /* Clear all internal parameters. */
6347 track->usrbuf.used = 0;
6348 track->usrbuf.head = 0;
6349 if (track->codec.filter) {
6350 track->codec.srcbuf.used = 0;
6351 track->codec.srcbuf.head = 0;
6352 }
6353 if (track->chvol.filter) {
6354 track->chvol.srcbuf.used = 0;
6355 track->chvol.srcbuf.head = 0;
6356 }
6357 if (track->chmix.filter) {
6358 track->chmix.srcbuf.used = 0;
6359 track->chmix.srcbuf.head = 0;
6360 }
6361 if (track->freq.filter) {
6362 track->freq.srcbuf.used = 0;
6363 track->freq.srcbuf.head = 0;
6364 if (track->freq_step < 65536)
6365 track->freq_current = 65536;
6366 else
6367 track->freq_current = 0;
6368 memset(track->freq_prev, 0, sizeof(track->freq_prev));
6369 memset(track->freq_curr, 0, sizeof(track->freq_curr));
6370 }
6371 /* Clear buffer, then operation halts naturally. */
6372 track->outbuf.used = 0;
6373
6374 /* Clear counters. */
6375 track->stamp = 0;
6376 track->last_stamp = 0;
6377 track->dropframes = 0;
6378
6379 audio_track_lock_exit(track);
6380 }
6381
6382 /*
6383 * Drain the track.
6384 * track must be present and for playback.
6385 * If successful, it returns 0. Otherwise returns errno.
6386 * Must be called with sc_lock held.
6387 */
6388 static int
6389 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
6390 {
6391 audio_trackmixer_t *mixer;
6392 int done;
6393 int error;
6394
6395 KASSERT(track);
6396 TRACET(3, track, "start");
6397 mixer = track->mixer;
6398 KASSERT(mutex_owned(sc->sc_lock));
6399
6400 /* Ignore them if pause. */
6401 if (track->is_pause) {
6402 TRACET(3, track, "pause -> clear");
6403 track->pstate = AUDIO_STATE_CLEAR;
6404 }
6405 /* Terminate early here if there is no data in the track. */
6406 if (track->pstate == AUDIO_STATE_CLEAR) {
6407 TRACET(3, track, "no need to drain");
6408 return 0;
6409 }
6410 track->pstate = AUDIO_STATE_DRAINING;
6411
6412 for (;;) {
6413 /* I want to display it before condition evaluation. */
6414 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
6415 (int)curproc->p_pid, (int)curlwp->l_lid,
6416 (int)track->seq, (int)mixer->hwseq,
6417 track->outbuf.head, track->outbuf.used,
6418 track->outbuf.capacity);
6419
6420 /* Condition to terminate */
6421 audio_track_lock_enter(track);
6422 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
6423 track->outbuf.used == 0 &&
6424 track->seq <= mixer->hwseq);
6425 audio_track_lock_exit(track);
6426 if (done)
6427 break;
6428
6429 TRACET(3, track, "sleep");
6430 error = audio_track_waitio(sc, track, "audio_drain");
6431 if (error)
6432 return error;
6433
6434 /* XXX call audio_track_play here ? */
6435 }
6436
6437 track->pstate = AUDIO_STATE_CLEAR;
6438 TRACET(3, track, "done");
6439 return 0;
6440 }
6441
6442 /*
6443 * Send signal to process.
6444 * This is intended to be called only from audio_softintr_{rd,wr}.
6445 * Must be called without sc_intr_lock held.
6446 */
6447 static inline void
6448 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6449 {
6450 proc_t *p;
6451
6452 KASSERT(pid != 0);
6453
6454 /*
6455 * psignal() must be called without spin lock held.
6456 */
6457
6458 mutex_enter(&proc_lock);
6459 p = proc_find(pid);
6460 if (p)
6461 psignal(p, signum);
6462 mutex_exit(&proc_lock);
6463 }
6464
6465 /*
6466 * This is software interrupt handler for record.
6467 * It is called from recording hardware interrupt everytime.
6468 * It does:
6469 * - Deliver SIGIO for all async processes.
6470 * - Notify to audio_read() that data has arrived.
6471 * - selnotify() for select/poll-ing processes.
6472 */
6473 /*
6474 * XXX If a process issues FIOASYNC between hardware interrupt and
6475 * software interrupt, (stray) SIGIO will be sent to the process
6476 * despite the fact that it has not receive recorded data yet.
6477 */
6478 static void
6479 audio_softintr_rd(void *cookie)
6480 {
6481 struct audio_softc *sc = cookie;
6482 audio_file_t *f;
6483 pid_t pid;
6484
6485 mutex_enter(sc->sc_lock);
6486
6487 SLIST_FOREACH(f, &sc->sc_files, entry) {
6488 audio_track_t *track = f->rtrack;
6489
6490 if (track == NULL)
6491 continue;
6492
6493 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6494 track->input->head,
6495 track->input->used,
6496 track->input->capacity);
6497
6498 pid = f->async_audio;
6499 if (pid != 0) {
6500 TRACEF(4, f, "sending SIGIO %d", pid);
6501 audio_psignal(sc, pid, SIGIO);
6502 }
6503 }
6504
6505 /* Notify that data has arrived. */
6506 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6507 cv_broadcast(&sc->sc_rmixer->outcv);
6508
6509 mutex_exit(sc->sc_lock);
6510 }
6511
6512 /*
6513 * This is software interrupt handler for playback.
6514 * It is called from playback hardware interrupt everytime.
6515 * It does:
6516 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6517 * - Notify to audio_write() that outbuf block available.
6518 * - selnotify() for select/poll-ing processes if there are any writable
6519 * (used < lowat) processes. Checking each descriptor will be done by
6520 * filt_audiowrite_event().
6521 */
6522 static void
6523 audio_softintr_wr(void *cookie)
6524 {
6525 struct audio_softc *sc = cookie;
6526 audio_file_t *f;
6527 bool found;
6528 pid_t pid;
6529
6530 TRACE(4, "called");
6531 found = false;
6532
6533 mutex_enter(sc->sc_lock);
6534
6535 SLIST_FOREACH(f, &sc->sc_files, entry) {
6536 audio_track_t *track = f->ptrack;
6537
6538 if (track == NULL)
6539 continue;
6540
6541 TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6542 (int)track->seq,
6543 track->outbuf.head,
6544 track->outbuf.used,
6545 track->outbuf.capacity);
6546
6547 /*
6548 * Send a signal if the process is async mode and
6549 * used is lower than lowat.
6550 */
6551 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6552 !track->is_pause) {
6553 /* For selnotify */
6554 found = true;
6555 /* For SIGIO */
6556 pid = f->async_audio;
6557 if (pid != 0) {
6558 TRACEF(4, f, "sending SIGIO %d", pid);
6559 audio_psignal(sc, pid, SIGIO);
6560 }
6561 }
6562 }
6563
6564 /*
6565 * Notify for select/poll when someone become writable.
6566 * It needs sc_lock (and not sc_intr_lock).
6567 */
6568 if (found) {
6569 TRACE(4, "selnotify");
6570 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6571 }
6572
6573 /* Notify to audio_write() that outbuf available. */
6574 cv_broadcast(&sc->sc_pmixer->outcv);
6575
6576 mutex_exit(sc->sc_lock);
6577 }
6578
6579 /*
6580 * Check (and convert) the format *p came from userland.
6581 * If successful, it writes back the converted format to *p if necessary and
6582 * returns 0. Otherwise returns errno (*p may be changed even in this case).
6583 */
6584 static int
6585 audio_check_params(audio_format2_t *p)
6586 {
6587
6588 /*
6589 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6590 *
6591 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6592 * So, it's always signed, as in SunOS.
6593 *
6594 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6595 * So, it's always unsigned, as in SunOS.
6596 */
6597 if (p->encoding == AUDIO_ENCODING_PCM16) {
6598 p->encoding = AUDIO_ENCODING_SLINEAR;
6599 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6600 if (p->precision == 8)
6601 p->encoding = AUDIO_ENCODING_ULINEAR;
6602 else
6603 return EINVAL;
6604 }
6605
6606 /*
6607 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6608 * suffix.
6609 */
6610 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6611 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6612 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6613 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6614
6615 switch (p->encoding) {
6616 case AUDIO_ENCODING_ULAW:
6617 case AUDIO_ENCODING_ALAW:
6618 if (p->precision != 8)
6619 return EINVAL;
6620 break;
6621 case AUDIO_ENCODING_ADPCM:
6622 if (p->precision != 4 && p->precision != 8)
6623 return EINVAL;
6624 break;
6625 case AUDIO_ENCODING_SLINEAR_LE:
6626 case AUDIO_ENCODING_SLINEAR_BE:
6627 case AUDIO_ENCODING_ULINEAR_LE:
6628 case AUDIO_ENCODING_ULINEAR_BE:
6629 if (p->precision != 8 && p->precision != 16 &&
6630 p->precision != 24 && p->precision != 32)
6631 return EINVAL;
6632
6633 /* 8bit format does not have endianness. */
6634 if (p->precision == 8) {
6635 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6636 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6637 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6638 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6639 }
6640
6641 if (p->precision > p->stride)
6642 return EINVAL;
6643 break;
6644 case AUDIO_ENCODING_MPEG_L1_STREAM:
6645 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6646 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6647 case AUDIO_ENCODING_MPEG_L2_STREAM:
6648 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6649 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6650 case AUDIO_ENCODING_AC3:
6651 break;
6652 default:
6653 return EINVAL;
6654 }
6655
6656 /* sanity check # of channels*/
6657 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6658 return EINVAL;
6659
6660 return 0;
6661 }
6662
6663 /*
6664 * Initialize playback and record mixers.
6665 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6666 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6667 * the filter registration information. These four must not be NULL.
6668 * If successful returns 0. Otherwise returns errno.
6669 * Must be called with sc_exlock held and without sc_lock held.
6670 * Must not be called if there are any tracks.
6671 * Caller should check that the initialization succeed by whether
6672 * sc_[pr]mixer is not NULL.
6673 */
6674 static int
6675 audio_mixers_init(struct audio_softc *sc, int mode,
6676 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6677 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6678 {
6679 int error;
6680
6681 KASSERT(phwfmt != NULL);
6682 KASSERT(rhwfmt != NULL);
6683 KASSERT(pfil != NULL);
6684 KASSERT(rfil != NULL);
6685 KASSERT(sc->sc_exlock);
6686
6687 if ((mode & AUMODE_PLAY)) {
6688 if (sc->sc_pmixer == NULL) {
6689 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6690 KM_SLEEP);
6691 } else {
6692 /* destroy() doesn't free memory. */
6693 audio_mixer_destroy(sc, sc->sc_pmixer);
6694 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6695 }
6696 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6697 if (error) {
6698 /* audio_mixer_init already displayed error code */
6699 audio_printf(sc, "configuring playback mode failed\n");
6700 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6701 sc->sc_pmixer = NULL;
6702 return error;
6703 }
6704 }
6705 if ((mode & AUMODE_RECORD)) {
6706 if (sc->sc_rmixer == NULL) {
6707 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6708 KM_SLEEP);
6709 } else {
6710 /* destroy() doesn't free memory. */
6711 audio_mixer_destroy(sc, sc->sc_rmixer);
6712 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6713 }
6714 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6715 if (error) {
6716 /* audio_mixer_init already displayed error code */
6717 audio_printf(sc, "configuring record mode failed\n");
6718 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6719 sc->sc_rmixer = NULL;
6720 return error;
6721 }
6722 }
6723
6724 return 0;
6725 }
6726
6727 /*
6728 * Select a frequency.
6729 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6730 * XXX Better algorithm?
6731 */
6732 static int
6733 audio_select_freq(const struct audio_format *fmt)
6734 {
6735 int freq;
6736 int high;
6737 int low;
6738 int j;
6739
6740 if (fmt->frequency_type == 0) {
6741 low = fmt->frequency[0];
6742 high = fmt->frequency[1];
6743 freq = 48000;
6744 if (low <= freq && freq <= high) {
6745 return freq;
6746 }
6747 freq = 44100;
6748 if (low <= freq && freq <= high) {
6749 return freq;
6750 }
6751 return high;
6752 } else {
6753 for (j = 0; j < fmt->frequency_type; j++) {
6754 if (fmt->frequency[j] == 48000) {
6755 return fmt->frequency[j];
6756 }
6757 }
6758 high = 0;
6759 for (j = 0; j < fmt->frequency_type; j++) {
6760 if (fmt->frequency[j] == 44100) {
6761 return fmt->frequency[j];
6762 }
6763 if (fmt->frequency[j] > high) {
6764 high = fmt->frequency[j];
6765 }
6766 }
6767 return high;
6768 }
6769 }
6770
6771 /*
6772 * Choose the most preferred hardware format.
6773 * If successful, it will store the chosen format into *cand and return 0.
6774 * Otherwise, return errno.
6775 * Must be called without sc_lock held.
6776 */
6777 static int
6778 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6779 {
6780 audio_format_query_t query;
6781 int cand_score;
6782 int score;
6783 int i;
6784 int error;
6785
6786 /*
6787 * Score each formats and choose the highest one.
6788 *
6789 * +---- priority(0-3)
6790 * |+--- encoding/precision
6791 * ||+-- channels
6792 * score = 0x000000PEC
6793 */
6794
6795 cand_score = 0;
6796 for (i = 0; ; i++) {
6797 memset(&query, 0, sizeof(query));
6798 query.index = i;
6799
6800 mutex_enter(sc->sc_lock);
6801 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6802 mutex_exit(sc->sc_lock);
6803 if (error == EINVAL)
6804 break;
6805 if (error)
6806 return error;
6807
6808 #if defined(AUDIO_DEBUG)
6809 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6810 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6811 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6812 query.fmt.priority,
6813 audio_encoding_name(query.fmt.encoding),
6814 query.fmt.validbits,
6815 query.fmt.precision,
6816 query.fmt.channels);
6817 if (query.fmt.frequency_type == 0) {
6818 DPRINTF(1, "{%d-%d",
6819 query.fmt.frequency[0], query.fmt.frequency[1]);
6820 } else {
6821 int j;
6822 for (j = 0; j < query.fmt.frequency_type; j++) {
6823 DPRINTF(1, "%c%d",
6824 (j == 0) ? '{' : ',',
6825 query.fmt.frequency[j]);
6826 }
6827 }
6828 DPRINTF(1, "}\n");
6829 #endif
6830
6831 if ((query.fmt.mode & mode) == 0) {
6832 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6833 mode);
6834 continue;
6835 }
6836
6837 if (query.fmt.priority < 0) {
6838 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6839 continue;
6840 }
6841
6842 /* Score */
6843 score = (query.fmt.priority & 3) * 0x100;
6844 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6845 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6846 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6847 score += 0x20;
6848 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6849 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6850 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6851 score += 0x10;
6852 }
6853
6854 /* Do not prefer surround formats */
6855 if (query.fmt.channels <= 2)
6856 score += query.fmt.channels;
6857
6858 if (score < cand_score) {
6859 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6860 score, cand_score);
6861 continue;
6862 }
6863
6864 /* Update candidate */
6865 cand_score = score;
6866 cand->encoding = query.fmt.encoding;
6867 cand->precision = query.fmt.validbits;
6868 cand->stride = query.fmt.precision;
6869 cand->channels = query.fmt.channels;
6870 cand->sample_rate = audio_select_freq(&query.fmt);
6871 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6872 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6873 cand_score, query.fmt.priority,
6874 audio_encoding_name(query.fmt.encoding),
6875 cand->precision, cand->stride,
6876 cand->channels, cand->sample_rate);
6877 }
6878
6879 if (cand_score == 0) {
6880 DPRINTF(1, "%s no fmt\n", __func__);
6881 return ENXIO;
6882 }
6883 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6884 audio_encoding_name(cand->encoding),
6885 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6886 return 0;
6887 }
6888
6889 /*
6890 * Validate fmt with query_format.
6891 * If fmt is included in the result of query_format, returns 0.
6892 * Otherwise returns EINVAL.
6893 * Must be called without sc_lock held.
6894 */
6895 static int
6896 audio_hw_validate_format(struct audio_softc *sc, int mode,
6897 const audio_format2_t *fmt)
6898 {
6899 audio_format_query_t query;
6900 struct audio_format *q;
6901 int index;
6902 int error;
6903 int j;
6904
6905 for (index = 0; ; index++) {
6906 query.index = index;
6907 mutex_enter(sc->sc_lock);
6908 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6909 mutex_exit(sc->sc_lock);
6910 if (error == EINVAL)
6911 break;
6912 if (error)
6913 return error;
6914
6915 q = &query.fmt;
6916 /*
6917 * Note that fmt is audio_format2_t (precision/stride) but
6918 * q is audio_format_t (validbits/precision).
6919 */
6920 if ((q->mode & mode) == 0) {
6921 continue;
6922 }
6923 if (fmt->encoding != q->encoding) {
6924 continue;
6925 }
6926 if (fmt->precision != q->validbits) {
6927 continue;
6928 }
6929 if (fmt->stride != q->precision) {
6930 continue;
6931 }
6932 if (fmt->channels != q->channels) {
6933 continue;
6934 }
6935 if (q->frequency_type == 0) {
6936 if (fmt->sample_rate < q->frequency[0] ||
6937 fmt->sample_rate > q->frequency[1]) {
6938 continue;
6939 }
6940 } else {
6941 for (j = 0; j < q->frequency_type; j++) {
6942 if (fmt->sample_rate == q->frequency[j])
6943 break;
6944 }
6945 if (j == query.fmt.frequency_type) {
6946 continue;
6947 }
6948 }
6949
6950 /* Matched. */
6951 return 0;
6952 }
6953
6954 return EINVAL;
6955 }
6956
6957 /*
6958 * Set track mixer's format depending on ai->mode.
6959 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6960 * with ai.play.*.
6961 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6962 * with ai.record.*.
6963 * All other fields in ai are ignored.
6964 * If successful returns 0. Otherwise returns errno.
6965 * This function does not roll back even if it fails.
6966 * Must be called with sc_exlock held and without sc_lock held.
6967 */
6968 static int
6969 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6970 {
6971 audio_format2_t phwfmt;
6972 audio_format2_t rhwfmt;
6973 audio_filter_reg_t pfil;
6974 audio_filter_reg_t rfil;
6975 int mode;
6976 int error;
6977
6978 KASSERT(sc->sc_exlock);
6979
6980 /*
6981 * Even when setting either one of playback and recording,
6982 * both must be halted.
6983 */
6984 if (sc->sc_popens + sc->sc_ropens > 0)
6985 return EBUSY;
6986
6987 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6988 return ENOTTY;
6989
6990 mode = ai->mode;
6991 if ((mode & AUMODE_PLAY)) {
6992 phwfmt.encoding = ai->play.encoding;
6993 phwfmt.precision = ai->play.precision;
6994 phwfmt.stride = ai->play.precision;
6995 phwfmt.channels = ai->play.channels;
6996 phwfmt.sample_rate = ai->play.sample_rate;
6997 }
6998 if ((mode & AUMODE_RECORD)) {
6999 rhwfmt.encoding = ai->record.encoding;
7000 rhwfmt.precision = ai->record.precision;
7001 rhwfmt.stride = ai->record.precision;
7002 rhwfmt.channels = ai->record.channels;
7003 rhwfmt.sample_rate = ai->record.sample_rate;
7004 }
7005
7006 /* On non-independent devices, use the same format for both. */
7007 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
7008 if (mode == AUMODE_RECORD) {
7009 phwfmt = rhwfmt;
7010 } else {
7011 rhwfmt = phwfmt;
7012 }
7013 mode = AUMODE_PLAY | AUMODE_RECORD;
7014 }
7015
7016 /* Then, unset the direction not exist on the hardware. */
7017 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
7018 mode &= ~AUMODE_PLAY;
7019 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
7020 mode &= ~AUMODE_RECORD;
7021
7022 /* debug */
7023 if ((mode & AUMODE_PLAY)) {
7024 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
7025 audio_encoding_name(phwfmt.encoding),
7026 phwfmt.precision,
7027 phwfmt.stride,
7028 phwfmt.channels,
7029 phwfmt.sample_rate);
7030 }
7031 if ((mode & AUMODE_RECORD)) {
7032 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
7033 audio_encoding_name(rhwfmt.encoding),
7034 rhwfmt.precision,
7035 rhwfmt.stride,
7036 rhwfmt.channels,
7037 rhwfmt.sample_rate);
7038 }
7039
7040 /* Check the format */
7041 if ((mode & AUMODE_PLAY)) {
7042 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
7043 TRACE(1, "invalid format");
7044 return EINVAL;
7045 }
7046 }
7047 if ((mode & AUMODE_RECORD)) {
7048 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
7049 TRACE(1, "invalid format");
7050 return EINVAL;
7051 }
7052 }
7053
7054 /* Configure the mixers. */
7055 memset(&pfil, 0, sizeof(pfil));
7056 memset(&rfil, 0, sizeof(rfil));
7057 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7058 if (error)
7059 return error;
7060
7061 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7062 if (error)
7063 return error;
7064
7065 /*
7066 * Reinitialize the sticky parameters for /dev/sound.
7067 * If the number of the hardware channels becomes less than the number
7068 * of channels that sticky parameters remember, subsequent /dev/sound
7069 * open will fail. To prevent this, reinitialize the sticky
7070 * parameters whenever the hardware format is changed.
7071 */
7072 sc->sc_sound_pparams = params_to_format2(&audio_default);
7073 sc->sc_sound_rparams = params_to_format2(&audio_default);
7074 sc->sc_sound_ppause = false;
7075 sc->sc_sound_rpause = false;
7076
7077 return 0;
7078 }
7079
7080 /*
7081 * Store current mixers format into *ai.
7082 * Must be called with sc_exlock held.
7083 */
7084 static void
7085 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
7086 {
7087
7088 KASSERT(sc->sc_exlock);
7089
7090 /*
7091 * There is no stride information in audio_info but it doesn't matter.
7092 * trackmixer always treats stride and precision as the same.
7093 */
7094 AUDIO_INITINFO(ai);
7095 ai->mode = 0;
7096 if (sc->sc_pmixer) {
7097 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
7098 ai->play.encoding = fmt->encoding;
7099 ai->play.precision = fmt->precision;
7100 ai->play.channels = fmt->channels;
7101 ai->play.sample_rate = fmt->sample_rate;
7102 ai->mode |= AUMODE_PLAY;
7103 }
7104 if (sc->sc_rmixer) {
7105 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
7106 ai->record.encoding = fmt->encoding;
7107 ai->record.precision = fmt->precision;
7108 ai->record.channels = fmt->channels;
7109 ai->record.sample_rate = fmt->sample_rate;
7110 ai->mode |= AUMODE_RECORD;
7111 }
7112 }
7113
7114 /*
7115 * audio_info details:
7116 *
7117 * ai.{play,record}.sample_rate (R/W)
7118 * ai.{play,record}.encoding (R/W)
7119 * ai.{play,record}.precision (R/W)
7120 * ai.{play,record}.channels (R/W)
7121 * These specify the playback or recording format.
7122 * Ignore members within an inactive track.
7123 *
7124 * ai.mode (R/W)
7125 * It specifies the playback or recording mode, AUMODE_*.
7126 * Currently, a mode change operation by ai.mode after opening is
7127 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
7128 * However, it's possible to get or to set for backward compatibility.
7129 *
7130 * ai.{hiwat,lowat} (R/W)
7131 * These specify the high water mark and low water mark for playback
7132 * track. The unit is block.
7133 *
7134 * ai.{play,record}.gain (R/W)
7135 * It specifies the HW mixer volume in 0-255.
7136 * It is historical reason that the gain is connected to HW mixer.
7137 *
7138 * ai.{play,record}.balance (R/W)
7139 * It specifies the left-right balance of HW mixer in 0-64.
7140 * 32 means the center.
7141 * It is historical reason that the balance is connected to HW mixer.
7142 *
7143 * ai.{play,record}.port (R/W)
7144 * It specifies the input/output port of HW mixer.
7145 *
7146 * ai.monitor_gain (R/W)
7147 * It specifies the recording monitor gain(?) of HW mixer.
7148 *
7149 * ai.{play,record}.pause (R/W)
7150 * Non-zero means the track is paused.
7151 *
7152 * ai.play.seek (R/-)
7153 * It indicates the number of bytes written but not processed.
7154 * ai.record.seek (R/-)
7155 * It indicates the number of bytes to be able to read.
7156 *
7157 * ai.{play,record}.avail_ports (R/-)
7158 * Mixer info.
7159 *
7160 * ai.{play,record}.buffer_size (R/-)
7161 * It indicates the buffer size in bytes. Internally it means usrbuf.
7162 *
7163 * ai.{play,record}.samples (R/-)
7164 * It indicates the total number of bytes played or recorded.
7165 *
7166 * ai.{play,record}.eof (R/-)
7167 * It indicates the number of times reached EOF(?).
7168 *
7169 * ai.{play,record}.error (R/-)
7170 * Non-zero indicates overflow/underflow has occurred.
7171 *
7172 * ai.{play,record}.waiting (R/-)
7173 * Non-zero indicates that other process waits to open.
7174 * It will never happen anymore.
7175 *
7176 * ai.{play,record}.open (R/-)
7177 * Non-zero indicates the direction is opened by this process(?).
7178 * XXX Is this better to indicate that "the device is opened by
7179 * at least one process"?
7180 *
7181 * ai.{play,record}.active (R/-)
7182 * Non-zero indicates that I/O is currently active.
7183 *
7184 * ai.blocksize (R/-)
7185 * It indicates the block size in bytes.
7186 * XXX The blocksize of playback and recording may be different.
7187 */
7188
7189 /*
7190 * Pause consideration:
7191 *
7192 * Pausing/unpausing never affect [pr]mixer. This single rule makes
7193 * operation simple. Note that playback and recording are asymmetric.
7194 *
7195 * For playback,
7196 * 1. Any playback open doesn't start pmixer regardless of initial pause
7197 * state of this track.
7198 * 2. The first write access among playback tracks only starts pmixer
7199 * regardless of this track's pause state.
7200 * 3. Even a pause of the last playback track doesn't stop pmixer.
7201 * 4. The last close of all playback tracks only stops pmixer.
7202 *
7203 * For recording,
7204 * 1. The first recording open only starts rmixer regardless of initial
7205 * pause state of this track.
7206 * 2. Even a pause of the last track doesn't stop rmixer.
7207 * 3. The last close of all recording tracks only stops rmixer.
7208 */
7209
7210 /*
7211 * Set both track's parameters within a file depending on ai.
7212 * Update sc_sound_[pr]* if set.
7213 * Must be called with sc_exlock held and without sc_lock held.
7214 */
7215 static int
7216 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
7217 const struct audio_info *ai)
7218 {
7219 const struct audio_prinfo *pi;
7220 const struct audio_prinfo *ri;
7221 audio_track_t *ptrack;
7222 audio_track_t *rtrack;
7223 audio_format2_t pfmt;
7224 audio_format2_t rfmt;
7225 int pchanges;
7226 int rchanges;
7227 int mode;
7228 struct audio_info saved_ai;
7229 audio_format2_t saved_pfmt;
7230 audio_format2_t saved_rfmt;
7231 int error;
7232
7233 KASSERT(sc->sc_exlock);
7234
7235 pi = &ai->play;
7236 ri = &ai->record;
7237 pchanges = 0;
7238 rchanges = 0;
7239
7240 ptrack = file->ptrack;
7241 rtrack = file->rtrack;
7242
7243 #if defined(AUDIO_DEBUG)
7244 if (audiodebug >= 2) {
7245 char buf[256];
7246 char p[64];
7247 int buflen;
7248 int plen;
7249 #define SPRINTF(var, fmt...) do { \
7250 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
7251 } while (0)
7252
7253 buflen = 0;
7254 plen = 0;
7255 if (SPECIFIED(pi->encoding))
7256 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
7257 if (SPECIFIED(pi->precision))
7258 SPRINTF(p, "/%dbit", pi->precision);
7259 if (SPECIFIED(pi->channels))
7260 SPRINTF(p, "/%dch", pi->channels);
7261 if (SPECIFIED(pi->sample_rate))
7262 SPRINTF(p, "/%dHz", pi->sample_rate);
7263 if (plen > 0)
7264 SPRINTF(buf, ",play.param=%s", p + 1);
7265
7266 plen = 0;
7267 if (SPECIFIED(ri->encoding))
7268 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
7269 if (SPECIFIED(ri->precision))
7270 SPRINTF(p, "/%dbit", ri->precision);
7271 if (SPECIFIED(ri->channels))
7272 SPRINTF(p, "/%dch", ri->channels);
7273 if (SPECIFIED(ri->sample_rate))
7274 SPRINTF(p, "/%dHz", ri->sample_rate);
7275 if (plen > 0)
7276 SPRINTF(buf, ",record.param=%s", p + 1);
7277
7278 if (SPECIFIED(ai->mode))
7279 SPRINTF(buf, ",mode=%d", ai->mode);
7280 if (SPECIFIED(ai->hiwat))
7281 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
7282 if (SPECIFIED(ai->lowat))
7283 SPRINTF(buf, ",lowat=%d", ai->lowat);
7284 if (SPECIFIED(ai->play.gain))
7285 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
7286 if (SPECIFIED(ai->record.gain))
7287 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
7288 if (SPECIFIED_CH(ai->play.balance))
7289 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
7290 if (SPECIFIED_CH(ai->record.balance))
7291 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
7292 if (SPECIFIED(ai->play.port))
7293 SPRINTF(buf, ",play.port=%d", ai->play.port);
7294 if (SPECIFIED(ai->record.port))
7295 SPRINTF(buf, ",record.port=%d", ai->record.port);
7296 if (SPECIFIED(ai->monitor_gain))
7297 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
7298 if (SPECIFIED_CH(ai->play.pause))
7299 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
7300 if (SPECIFIED_CH(ai->record.pause))
7301 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
7302
7303 if (buflen > 0)
7304 TRACE(2, "specified %s", buf + 1);
7305 }
7306 #endif
7307
7308 AUDIO_INITINFO(&saved_ai);
7309 /* XXX shut up gcc */
7310 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
7311 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
7312
7313 /*
7314 * Set default value and save current parameters.
7315 * For backward compatibility, use sticky parameters for nonexistent
7316 * track.
7317 */
7318 if (ptrack) {
7319 pfmt = ptrack->usrbuf.fmt;
7320 saved_pfmt = ptrack->usrbuf.fmt;
7321 saved_ai.play.pause = ptrack->is_pause;
7322 } else {
7323 pfmt = sc->sc_sound_pparams;
7324 }
7325 if (rtrack) {
7326 rfmt = rtrack->usrbuf.fmt;
7327 saved_rfmt = rtrack->usrbuf.fmt;
7328 saved_ai.record.pause = rtrack->is_pause;
7329 } else {
7330 rfmt = sc->sc_sound_rparams;
7331 }
7332 saved_ai.mode = file->mode;
7333
7334 /*
7335 * Overwrite if specified.
7336 */
7337 mode = file->mode;
7338 if (SPECIFIED(ai->mode)) {
7339 /*
7340 * Setting ai->mode no longer does anything because it's
7341 * prohibited to change playback/recording mode after open
7342 * and AUMODE_PLAY_ALL is obsoleted. However, it still
7343 * keeps the state of AUMODE_PLAY_ALL itself for backward
7344 * compatibility.
7345 * In the internal, only file->mode has the state of
7346 * AUMODE_PLAY_ALL flag and track->mode in both track does
7347 * not have.
7348 */
7349 if ((file->mode & AUMODE_PLAY)) {
7350 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
7351 | (ai->mode & AUMODE_PLAY_ALL);
7352 }
7353 }
7354
7355 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
7356 if (pchanges == -1) {
7357 #if defined(AUDIO_DEBUG)
7358 TRACEF(1, file, "check play.params failed: "
7359 "%s %ubit %uch %uHz",
7360 audio_encoding_name(pi->encoding),
7361 pi->precision,
7362 pi->channels,
7363 pi->sample_rate);
7364 #endif
7365 return EINVAL;
7366 }
7367
7368 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
7369 if (rchanges == -1) {
7370 #if defined(AUDIO_DEBUG)
7371 TRACEF(1, file, "check record.params failed: "
7372 "%s %ubit %uch %uHz",
7373 audio_encoding_name(ri->encoding),
7374 ri->precision,
7375 ri->channels,
7376 ri->sample_rate);
7377 #endif
7378 return EINVAL;
7379 }
7380
7381 if (SPECIFIED(ai->mode)) {
7382 pchanges = 1;
7383 rchanges = 1;
7384 }
7385
7386 /*
7387 * Even when setting either one of playback and recording,
7388 * both track must be halted.
7389 */
7390 if (pchanges || rchanges) {
7391 audio_file_clear(sc, file);
7392 #if defined(AUDIO_DEBUG)
7393 char nbuf[16];
7394 char fmtbuf[64];
7395 if (pchanges) {
7396 if (ptrack) {
7397 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
7398 } else {
7399 snprintf(nbuf, sizeof(nbuf), "-");
7400 }
7401 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
7402 DPRINTF(1, "audio track#%s play mode: %s\n",
7403 nbuf, fmtbuf);
7404 }
7405 if (rchanges) {
7406 if (rtrack) {
7407 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
7408 } else {
7409 snprintf(nbuf, sizeof(nbuf), "-");
7410 }
7411 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
7412 DPRINTF(1, "audio track#%s rec mode: %s\n",
7413 nbuf, fmtbuf);
7414 }
7415 #endif
7416 }
7417
7418 /* Set mixer parameters */
7419 mutex_enter(sc->sc_lock);
7420 error = audio_hw_setinfo(sc, ai, &saved_ai);
7421 mutex_exit(sc->sc_lock);
7422 if (error)
7423 goto abort1;
7424
7425 /*
7426 * Set to track and update sticky parameters.
7427 */
7428 error = 0;
7429 file->mode = mode;
7430
7431 if (SPECIFIED_CH(pi->pause)) {
7432 if (ptrack)
7433 ptrack->is_pause = pi->pause;
7434 sc->sc_sound_ppause = pi->pause;
7435 }
7436 if (pchanges) {
7437 if (ptrack) {
7438 audio_track_lock_enter(ptrack);
7439 error = audio_track_set_format(ptrack, &pfmt);
7440 audio_track_lock_exit(ptrack);
7441 if (error) {
7442 TRACET(1, ptrack, "set play.params failed");
7443 goto abort2;
7444 }
7445 }
7446 sc->sc_sound_pparams = pfmt;
7447 }
7448 /* Change water marks after initializing the buffers. */
7449 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7450 if (ptrack)
7451 audio_track_setinfo_water(ptrack, ai);
7452 }
7453
7454 if (SPECIFIED_CH(ri->pause)) {
7455 if (rtrack)
7456 rtrack->is_pause = ri->pause;
7457 sc->sc_sound_rpause = ri->pause;
7458 }
7459 if (rchanges) {
7460 if (rtrack) {
7461 audio_track_lock_enter(rtrack);
7462 error = audio_track_set_format(rtrack, &rfmt);
7463 audio_track_lock_exit(rtrack);
7464 if (error) {
7465 TRACET(1, rtrack, "set record.params failed");
7466 goto abort3;
7467 }
7468 }
7469 sc->sc_sound_rparams = rfmt;
7470 }
7471
7472 return 0;
7473
7474 /* Rollback */
7475 abort3:
7476 if (error != ENOMEM) {
7477 rtrack->is_pause = saved_ai.record.pause;
7478 audio_track_lock_enter(rtrack);
7479 audio_track_set_format(rtrack, &saved_rfmt);
7480 audio_track_lock_exit(rtrack);
7481 }
7482 sc->sc_sound_rpause = saved_ai.record.pause;
7483 sc->sc_sound_rparams = saved_rfmt;
7484 abort2:
7485 if (ptrack && error != ENOMEM) {
7486 ptrack->is_pause = saved_ai.play.pause;
7487 audio_track_lock_enter(ptrack);
7488 audio_track_set_format(ptrack, &saved_pfmt);
7489 audio_track_lock_exit(ptrack);
7490 }
7491 sc->sc_sound_ppause = saved_ai.play.pause;
7492 sc->sc_sound_pparams = saved_pfmt;
7493 file->mode = saved_ai.mode;
7494 abort1:
7495 mutex_enter(sc->sc_lock);
7496 audio_hw_setinfo(sc, &saved_ai, NULL);
7497 mutex_exit(sc->sc_lock);
7498
7499 return error;
7500 }
7501
7502 /*
7503 * Write SPECIFIED() parameters within info back to fmt.
7504 * Note that track can be NULL here.
7505 * Return value of 1 indicates that fmt is modified.
7506 * Return value of 0 indicates that fmt is not modified.
7507 * Return value of -1 indicates that error EINVAL has occurred.
7508 */
7509 static int
7510 audio_track_setinfo_check(audio_track_t *track,
7511 audio_format2_t *fmt, const struct audio_prinfo *info)
7512 {
7513 const audio_format2_t *hwfmt;
7514 int changes;
7515
7516 changes = 0;
7517 if (SPECIFIED(info->sample_rate)) {
7518 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7519 return -1;
7520 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7521 return -1;
7522 fmt->sample_rate = info->sample_rate;
7523 changes = 1;
7524 }
7525 if (SPECIFIED(info->encoding)) {
7526 fmt->encoding = info->encoding;
7527 changes = 1;
7528 }
7529 if (SPECIFIED(info->precision)) {
7530 fmt->precision = info->precision;
7531 /* we don't have API to specify stride */
7532 fmt->stride = info->precision;
7533 changes = 1;
7534 }
7535 if (SPECIFIED(info->channels)) {
7536 /*
7537 * We can convert between monaural and stereo each other.
7538 * We can reduce than the number of channels that the hardware
7539 * supports.
7540 */
7541 if (info->channels > 2) {
7542 if (track) {
7543 hwfmt = &track->mixer->hwbuf.fmt;
7544 if (info->channels > hwfmt->channels)
7545 return -1;
7546 } else {
7547 /*
7548 * This should never happen.
7549 * If track == NULL, channels should be <= 2.
7550 */
7551 return -1;
7552 }
7553 }
7554 fmt->channels = info->channels;
7555 changes = 1;
7556 }
7557
7558 if (changes) {
7559 if (audio_check_params(fmt) != 0)
7560 return -1;
7561 }
7562
7563 return changes;
7564 }
7565
7566 /*
7567 * Change water marks for playback track if specified.
7568 */
7569 static void
7570 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7571 {
7572 u_int blks;
7573 u_int maxblks;
7574 u_int blksize;
7575
7576 KASSERT(audio_track_is_playback(track));
7577
7578 blksize = track->usrbuf_blksize;
7579 maxblks = track->usrbuf.capacity / blksize;
7580
7581 if (SPECIFIED(ai->hiwat)) {
7582 blks = ai->hiwat;
7583 if (blks > maxblks)
7584 blks = maxblks;
7585 if (blks < 2)
7586 blks = 2;
7587 track->usrbuf_usedhigh = blks * blksize;
7588 }
7589 if (SPECIFIED(ai->lowat)) {
7590 blks = ai->lowat;
7591 if (blks > maxblks - 1)
7592 blks = maxblks - 1;
7593 track->usrbuf_usedlow = blks * blksize;
7594 }
7595 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7596 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7597 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7598 blksize;
7599 }
7600 }
7601 }
7602
7603 /*
7604 * Set hardware part of *newai.
7605 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7606 * If oldai is specified, previous parameters are stored.
7607 * This function itself does not roll back if error occurred.
7608 * Must be called with sc_lock && sc_exlock held.
7609 */
7610 static int
7611 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7612 struct audio_info *oldai)
7613 {
7614 const struct audio_prinfo *newpi;
7615 const struct audio_prinfo *newri;
7616 struct audio_prinfo *oldpi;
7617 struct audio_prinfo *oldri;
7618 u_int pgain;
7619 u_int rgain;
7620 u_char pbalance;
7621 u_char rbalance;
7622 int error;
7623
7624 KASSERT(mutex_owned(sc->sc_lock));
7625 KASSERT(sc->sc_exlock);
7626
7627 /* XXX shut up gcc */
7628 oldpi = NULL;
7629 oldri = NULL;
7630
7631 newpi = &newai->play;
7632 newri = &newai->record;
7633 if (oldai) {
7634 oldpi = &oldai->play;
7635 oldri = &oldai->record;
7636 }
7637 error = 0;
7638
7639 /*
7640 * It looks like unnecessary to halt HW mixers to set HW mixers.
7641 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7642 */
7643
7644 if (SPECIFIED(newpi->port)) {
7645 if (oldai)
7646 oldpi->port = au_get_port(sc, &sc->sc_outports);
7647 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7648 if (error) {
7649 audio_printf(sc,
7650 "setting play.port=%d failed: errno=%d\n",
7651 newpi->port, error);
7652 goto abort;
7653 }
7654 }
7655 if (SPECIFIED(newri->port)) {
7656 if (oldai)
7657 oldri->port = au_get_port(sc, &sc->sc_inports);
7658 error = au_set_port(sc, &sc->sc_inports, newri->port);
7659 if (error) {
7660 audio_printf(sc,
7661 "setting record.port=%d failed: errno=%d\n",
7662 newri->port, error);
7663 goto abort;
7664 }
7665 }
7666
7667 /* play.{gain,balance} */
7668 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7669 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7670 if (oldai) {
7671 oldpi->gain = pgain;
7672 oldpi->balance = pbalance;
7673 }
7674
7675 if (SPECIFIED(newpi->gain))
7676 pgain = newpi->gain;
7677 if (SPECIFIED_CH(newpi->balance))
7678 pbalance = newpi->balance;
7679 error = au_set_gain(sc, &sc->sc_outports, pgain, pbalance);
7680 if (error) {
7681 audio_printf(sc,
7682 "setting play.gain=%d/balance=%d failed: "
7683 "errno=%d\n",
7684 pgain, pbalance, error);
7685 goto abort;
7686 }
7687 }
7688
7689 /* record.{gain,balance} */
7690 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7691 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7692 if (oldai) {
7693 oldri->gain = rgain;
7694 oldri->balance = rbalance;
7695 }
7696
7697 if (SPECIFIED(newri->gain))
7698 rgain = newri->gain;
7699 if (SPECIFIED_CH(newri->balance))
7700 rbalance = newri->balance;
7701 error = au_set_gain(sc, &sc->sc_inports, rgain, rbalance);
7702 if (error) {
7703 audio_printf(sc,
7704 "setting record.gain=%d/balance=%d failed: "
7705 "errno=%d\n",
7706 rgain, rbalance, error);
7707 goto abort;
7708 }
7709 }
7710
7711 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7712 if (oldai)
7713 oldai->monitor_gain = au_get_monitor_gain(sc);
7714 error = au_set_monitor_gain(sc, newai->monitor_gain);
7715 if (error) {
7716 audio_printf(sc,
7717 "setting monitor_gain=%d failed: errno=%d\n",
7718 newai->monitor_gain, error);
7719 goto abort;
7720 }
7721 }
7722
7723 /* XXX TODO */
7724 /* sc->sc_ai = *ai; */
7725
7726 error = 0;
7727 abort:
7728 return error;
7729 }
7730
7731 /*
7732 * Setup the hardware with mixer format phwfmt, rhwfmt.
7733 * The arguments have following restrictions:
7734 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7735 * or both.
7736 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7737 * - On non-independent devices, phwfmt and rhwfmt must have the same
7738 * parameters.
7739 * - pfil and rfil must be zero-filled.
7740 * If successful,
7741 * - pfil, rfil will be filled with filter information specified by the
7742 * hardware driver if necessary.
7743 * and then returns 0. Otherwise returns errno.
7744 * Must be called without sc_lock held.
7745 */
7746 static int
7747 audio_hw_set_format(struct audio_softc *sc, int setmode,
7748 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7749 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7750 {
7751 audio_params_t pp, rp;
7752 int error;
7753
7754 KASSERT(phwfmt != NULL);
7755 KASSERT(rhwfmt != NULL);
7756
7757 pp = format2_to_params(phwfmt);
7758 rp = format2_to_params(rhwfmt);
7759
7760 mutex_enter(sc->sc_lock);
7761 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7762 &pp, &rp, pfil, rfil);
7763 if (error) {
7764 mutex_exit(sc->sc_lock);
7765 audio_printf(sc, "set_format failed: errno=%d\n", error);
7766 return error;
7767 }
7768
7769 if (sc->hw_if->commit_settings) {
7770 error = sc->hw_if->commit_settings(sc->hw_hdl);
7771 if (error) {
7772 mutex_exit(sc->sc_lock);
7773 audio_printf(sc,
7774 "commit_settings failed: errno=%d\n", error);
7775 return error;
7776 }
7777 }
7778 mutex_exit(sc->sc_lock);
7779
7780 return 0;
7781 }
7782
7783 /*
7784 * Fill audio_info structure. If need_mixerinfo is true, it will also
7785 * fill the hardware mixer information.
7786 * Must be called with sc_exlock held and without sc_lock held.
7787 */
7788 static int
7789 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7790 audio_file_t *file)
7791 {
7792 struct audio_prinfo *ri, *pi;
7793 audio_track_t *track;
7794 audio_track_t *ptrack;
7795 audio_track_t *rtrack;
7796 int gain;
7797
7798 KASSERT(sc->sc_exlock);
7799
7800 ri = &ai->record;
7801 pi = &ai->play;
7802 ptrack = file->ptrack;
7803 rtrack = file->rtrack;
7804
7805 memset(ai, 0, sizeof(*ai));
7806
7807 if (ptrack) {
7808 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7809 pi->channels = ptrack->usrbuf.fmt.channels;
7810 pi->precision = ptrack->usrbuf.fmt.precision;
7811 pi->encoding = ptrack->usrbuf.fmt.encoding;
7812 pi->pause = ptrack->is_pause;
7813 } else {
7814 /* Use sticky parameters if the track is not available. */
7815 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7816 pi->channels = sc->sc_sound_pparams.channels;
7817 pi->precision = sc->sc_sound_pparams.precision;
7818 pi->encoding = sc->sc_sound_pparams.encoding;
7819 pi->pause = sc->sc_sound_ppause;
7820 }
7821 if (rtrack) {
7822 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7823 ri->channels = rtrack->usrbuf.fmt.channels;
7824 ri->precision = rtrack->usrbuf.fmt.precision;
7825 ri->encoding = rtrack->usrbuf.fmt.encoding;
7826 ri->pause = rtrack->is_pause;
7827 } else {
7828 /* Use sticky parameters if the track is not available. */
7829 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7830 ri->channels = sc->sc_sound_rparams.channels;
7831 ri->precision = sc->sc_sound_rparams.precision;
7832 ri->encoding = sc->sc_sound_rparams.encoding;
7833 ri->pause = sc->sc_sound_rpause;
7834 }
7835
7836 if (ptrack) {
7837 pi->seek = ptrack->usrbuf.used;
7838 pi->samples = ptrack->stamp * ptrack->usrbuf_blksize;
7839 pi->eof = ptrack->eofcounter;
7840 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7841 pi->open = 1;
7842 pi->buffer_size = ptrack->usrbuf.capacity;
7843 }
7844 pi->waiting = 0; /* open never hangs */
7845 pi->active = sc->sc_pbusy;
7846
7847 if (rtrack) {
7848 ri->seek = audio_track_readablebytes(rtrack);
7849 ri->samples = rtrack->stamp * rtrack->usrbuf_blksize;
7850 ri->eof = 0;
7851 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7852 ri->open = 1;
7853 ri->buffer_size = audio_track_inputblk_as_usrbyte(rtrack,
7854 rtrack->input->capacity);
7855 }
7856 ri->waiting = 0; /* open never hangs */
7857 ri->active = sc->sc_rbusy;
7858
7859 /*
7860 * XXX There may be different number of channels between playback
7861 * and recording, so that blocksize also may be different.
7862 * But struct audio_info has an united blocksize...
7863 * Here, I use play info precedencely if ptrack is available,
7864 * otherwise record info.
7865 *
7866 * XXX hiwat/lowat is a playback-only parameter. What should I
7867 * return for a record-only descriptor?
7868 */
7869 track = ptrack ? ptrack : rtrack;
7870 if (track) {
7871 ai->blocksize = track->usrbuf_blksize;
7872 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7873 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7874 }
7875 ai->mode = file->mode;
7876
7877 /*
7878 * For backward compatibility, we have to pad these five fields
7879 * a fake non-zero value even if there are no tracks.
7880 */
7881 if (ptrack == NULL)
7882 pi->buffer_size = 65536;
7883 if (rtrack == NULL)
7884 ri->buffer_size = 65536;
7885 if (ptrack == NULL && rtrack == NULL) {
7886 ai->blocksize = 2048;
7887 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7888 ai->lowat = ai->hiwat * 3 / 4;
7889 }
7890
7891 if (need_mixerinfo) {
7892 mutex_enter(sc->sc_lock);
7893
7894 pi->port = au_get_port(sc, &sc->sc_outports);
7895 ri->port = au_get_port(sc, &sc->sc_inports);
7896
7897 pi->avail_ports = sc->sc_outports.allports;
7898 ri->avail_ports = sc->sc_inports.allports;
7899
7900 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7901 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7902
7903 if (sc->sc_monitor_port != -1) {
7904 gain = au_get_monitor_gain(sc);
7905 if (gain != -1)
7906 ai->monitor_gain = gain;
7907 }
7908 mutex_exit(sc->sc_lock);
7909 }
7910
7911 return 0;
7912 }
7913
7914 /*
7915 * Return true if playback is configured.
7916 * This function can be used after audioattach.
7917 */
7918 static bool
7919 audio_can_playback(struct audio_softc *sc)
7920 {
7921
7922 return (sc->sc_pmixer != NULL);
7923 }
7924
7925 /*
7926 * Return true if recording is configured.
7927 * This function can be used after audioattach.
7928 */
7929 static bool
7930 audio_can_capture(struct audio_softc *sc)
7931 {
7932
7933 return (sc->sc_rmixer != NULL);
7934 }
7935
7936 /*
7937 * Get the afp->index'th item from the valid one of format[].
7938 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7939 *
7940 * This is common routines for query_format.
7941 * If your hardware driver has struct audio_format[], the simplest case
7942 * you can write your query_format interface as follows:
7943 *
7944 * struct audio_format foo_format[] = { ... };
7945 *
7946 * int
7947 * foo_query_format(void *hdl, audio_format_query_t *afp)
7948 * {
7949 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7950 * }
7951 */
7952 int
7953 audio_query_format(const struct audio_format *format, int nformats,
7954 audio_format_query_t *afp)
7955 {
7956 const struct audio_format *f;
7957 int idx;
7958 int i;
7959
7960 idx = 0;
7961 for (i = 0; i < nformats; i++) {
7962 f = &format[i];
7963 if (!AUFMT_IS_VALID(f))
7964 continue;
7965 if (afp->index == idx) {
7966 afp->fmt = *f;
7967 return 0;
7968 }
7969 idx++;
7970 }
7971 return EINVAL;
7972 }
7973
7974 /*
7975 * This function is provided for the hardware driver's set_format() to
7976 * find index matches with 'param' from array of audio_format_t 'formats'.
7977 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7978 * It returns the matched index and never fails. Because param passed to
7979 * set_format() is selected from query_format().
7980 * This function will be an alternative to auconv_set_converter() to
7981 * find index.
7982 */
7983 int
7984 audio_indexof_format(const struct audio_format *formats, int nformats,
7985 int mode, const audio_params_t *param)
7986 {
7987 const struct audio_format *f;
7988 int index;
7989 int j;
7990
7991 for (index = 0; index < nformats; index++) {
7992 f = &formats[index];
7993
7994 if (!AUFMT_IS_VALID(f))
7995 continue;
7996 if ((f->mode & mode) == 0)
7997 continue;
7998 if (f->encoding != param->encoding)
7999 continue;
8000 if (f->validbits != param->precision)
8001 continue;
8002 if (f->channels != param->channels)
8003 continue;
8004
8005 if (f->frequency_type == 0) {
8006 if (param->sample_rate < f->frequency[0] ||
8007 param->sample_rate > f->frequency[1])
8008 continue;
8009 } else {
8010 for (j = 0; j < f->frequency_type; j++) {
8011 if (param->sample_rate == f->frequency[j])
8012 break;
8013 }
8014 if (j == f->frequency_type)
8015 continue;
8016 }
8017
8018 /* Then, matched */
8019 return index;
8020 }
8021
8022 /* Not matched. This should not be happened. */
8023 panic("%s: cannot find matched format\n", __func__);
8024 }
8025
8026 /*
8027 * Get or set hardware blocksize in msec.
8028 * XXX It's for debug.
8029 */
8030 static int
8031 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
8032 {
8033 struct sysctlnode node;
8034 struct audio_softc *sc;
8035 audio_format2_t phwfmt;
8036 audio_format2_t rhwfmt;
8037 audio_filter_reg_t pfil;
8038 audio_filter_reg_t rfil;
8039 int t;
8040 int old_blk_ms;
8041 int mode;
8042 int error;
8043
8044 node = *rnode;
8045 sc = node.sysctl_data;
8046
8047 error = audio_exlock_enter(sc);
8048 if (error)
8049 return error;
8050
8051 old_blk_ms = sc->sc_blk_ms;
8052 t = old_blk_ms;
8053 node.sysctl_data = &t;
8054 error = sysctl_lookup(SYSCTLFN_CALL(&node));
8055 if (error || newp == NULL)
8056 goto abort;
8057
8058 if (t < 0) {
8059 error = EINVAL;
8060 goto abort;
8061 }
8062
8063 if (sc->sc_popens + sc->sc_ropens > 0) {
8064 error = EBUSY;
8065 goto abort;
8066 }
8067 sc->sc_blk_ms = t;
8068 mode = 0;
8069 if (sc->sc_pmixer) {
8070 mode |= AUMODE_PLAY;
8071 phwfmt = sc->sc_pmixer->hwbuf.fmt;
8072 }
8073 if (sc->sc_rmixer) {
8074 mode |= AUMODE_RECORD;
8075 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
8076 }
8077
8078 /* re-init hardware */
8079 memset(&pfil, 0, sizeof(pfil));
8080 memset(&rfil, 0, sizeof(rfil));
8081 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8082 if (error) {
8083 goto abort;
8084 }
8085
8086 /* re-init track mixer */
8087 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8088 if (error) {
8089 /* Rollback */
8090 sc->sc_blk_ms = old_blk_ms;
8091 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8092 goto abort;
8093 }
8094 error = 0;
8095 abort:
8096 audio_exlock_exit(sc);
8097 return error;
8098 }
8099
8100 /*
8101 * Get or set multiuser mode.
8102 */
8103 static int
8104 audio_sysctl_multiuser(SYSCTLFN_ARGS)
8105 {
8106 struct sysctlnode node;
8107 struct audio_softc *sc;
8108 bool t;
8109 int error;
8110
8111 node = *rnode;
8112 sc = node.sysctl_data;
8113
8114 error = audio_exlock_enter(sc);
8115 if (error)
8116 return error;
8117
8118 t = sc->sc_multiuser;
8119 node.sysctl_data = &t;
8120 error = sysctl_lookup(SYSCTLFN_CALL(&node));
8121 if (error || newp == NULL)
8122 goto abort;
8123
8124 sc->sc_multiuser = t;
8125 error = 0;
8126 abort:
8127 audio_exlock_exit(sc);
8128 return error;
8129 }
8130
8131 #if defined(AUDIO_DEBUG)
8132 /*
8133 * Get or set debug verbose level. (0..4)
8134 * XXX It's for debug.
8135 * XXX It is not separated per device.
8136 */
8137 static int
8138 audio_sysctl_debug(SYSCTLFN_ARGS)
8139 {
8140 struct sysctlnode node;
8141 int t;
8142 int error;
8143
8144 node = *rnode;
8145 t = audiodebug;
8146 node.sysctl_data = &t;
8147 error = sysctl_lookup(SYSCTLFN_CALL(&node));
8148 if (error || newp == NULL)
8149 return error;
8150
8151 if (t < 0 || t > 4)
8152 return EINVAL;
8153 audiodebug = t;
8154 printf("audio: audiodebug = %d\n", audiodebug);
8155 return 0;
8156 }
8157 #endif /* AUDIO_DEBUG */
8158
8159 #ifdef AUDIO_PM_IDLE
8160 static void
8161 audio_idle(void *arg)
8162 {
8163 device_t dv = arg;
8164 struct audio_softc *sc = device_private(dv);
8165
8166 #ifdef PNP_DEBUG
8167 extern int pnp_debug_idle;
8168 if (pnp_debug_idle)
8169 printf("%s: idle handler called\n", device_xname(dv));
8170 #endif
8171
8172 sc->sc_idle = true;
8173
8174 /* XXX joerg Make pmf_device_suspend handle children? */
8175 if (!pmf_device_suspend(dv, PMF_Q_SELF))
8176 return;
8177
8178 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
8179 pmf_device_resume(dv, PMF_Q_SELF);
8180 }
8181
8182 static void
8183 audio_activity(device_t dv, devactive_t type)
8184 {
8185 struct audio_softc *sc = device_private(dv);
8186
8187 if (type != DVA_SYSTEM)
8188 return;
8189
8190 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
8191
8192 sc->sc_idle = false;
8193 if (!device_is_active(dv)) {
8194 /* XXX joerg How to deal with a failing resume... */
8195 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
8196 pmf_device_resume(dv, PMF_Q_SELF);
8197 }
8198 }
8199 #endif
8200
8201 static bool
8202 audio_suspend(device_t dv, const pmf_qual_t *qual)
8203 {
8204 struct audio_softc *sc = device_private(dv);
8205 int error;
8206
8207 error = audio_exlock_mutex_enter(sc);
8208 if (error)
8209 return error;
8210 sc->sc_suspending = true;
8211 audio_mixer_capture(sc);
8212
8213 if (sc->sc_pbusy) {
8214 audio_pmixer_halt(sc);
8215 /* Reuse this as need-to-restart flag while suspending */
8216 sc->sc_pbusy = true;
8217 }
8218 if (sc->sc_rbusy) {
8219 audio_rmixer_halt(sc);
8220 /* Reuse this as need-to-restart flag while suspending */
8221 sc->sc_rbusy = true;
8222 }
8223
8224 #ifdef AUDIO_PM_IDLE
8225 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
8226 #endif
8227 audio_exlock_mutex_exit(sc);
8228
8229 return true;
8230 }
8231
8232 static bool
8233 audio_resume(device_t dv, const pmf_qual_t *qual)
8234 {
8235 struct audio_softc *sc = device_private(dv);
8236 struct audio_info ai;
8237 int error;
8238
8239 error = audio_exlock_mutex_enter(sc);
8240 if (error)
8241 return error;
8242
8243 sc->sc_suspending = false;
8244 audio_mixer_restore(sc);
8245 /* XXX ? */
8246 AUDIO_INITINFO(&ai);
8247 audio_hw_setinfo(sc, &ai, NULL);
8248
8249 /*
8250 * During from suspend to resume here, sc_[pr]busy is used as
8251 * need-to-restart flag temporarily. After this point,
8252 * sc_[pr]busy is returned to its original usage (busy flag).
8253 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
8254 */
8255 if (sc->sc_pbusy) {
8256 /* pmixer_start() requires pbusy is false */
8257 sc->sc_pbusy = false;
8258 audio_pmixer_start(sc, true);
8259 }
8260 if (sc->sc_rbusy) {
8261 /* rmixer_start() requires rbusy is false */
8262 sc->sc_rbusy = false;
8263 audio_rmixer_start(sc);
8264 }
8265
8266 audio_exlock_mutex_exit(sc);
8267
8268 return true;
8269 }
8270
8271 #if defined(AUDIO_DEBUG)
8272 static void
8273 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
8274 {
8275 int n;
8276
8277 n = 0;
8278 n += snprintf(buf + n, bufsize - n, "%s",
8279 audio_encoding_name(fmt->encoding));
8280 if (fmt->precision == fmt->stride) {
8281 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
8282 } else {
8283 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
8284 fmt->precision, fmt->stride);
8285 }
8286
8287 snprintf(buf + n, bufsize - n, " %uch %uHz",
8288 fmt->channels, fmt->sample_rate);
8289 }
8290 #endif
8291
8292 #if defined(AUDIO_DEBUG)
8293 static void
8294 audio_print_format2(const char *s, const audio_format2_t *fmt)
8295 {
8296 char fmtstr[64];
8297
8298 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
8299 printf("%s %s\n", s, fmtstr);
8300 }
8301 #endif
8302
8303 #ifdef DIAGNOSTIC
8304 void
8305 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
8306 {
8307
8308 KASSERTMSG(fmt, "called from %s", where);
8309
8310 /* XXX MSM6258 vs(4) only has 4bit stride format. */
8311 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
8312 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
8313 "called from %s: fmt->stride=%d", where, fmt->stride);
8314 } else {
8315 KASSERTMSG(fmt->stride % NBBY == 0,
8316 "called from %s: fmt->stride=%d", where, fmt->stride);
8317 }
8318 KASSERTMSG(fmt->precision <= fmt->stride,
8319 "called from %s: fmt->precision=%d fmt->stride=%d",
8320 where, fmt->precision, fmt->stride);
8321 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
8322 "called from %s: fmt->channels=%d", where, fmt->channels);
8323
8324 /* XXX No check for encodings? */
8325 }
8326
8327 void
8328 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
8329 {
8330
8331 KASSERT(arg != NULL);
8332 KASSERT(arg->src != NULL);
8333 KASSERT(arg->dst != NULL);
8334 audio_diagnostic_format2(where, arg->srcfmt);
8335 audio_diagnostic_format2(where, arg->dstfmt);
8336 KASSERT(arg->count > 0);
8337 }
8338
8339 void
8340 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
8341 {
8342
8343 KASSERTMSG(ring, "called from %s", where);
8344 audio_diagnostic_format2(where, &ring->fmt);
8345 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
8346 "called from %s: ring->capacity=%d", where, ring->capacity);
8347 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
8348 "called from %s: ring->used=%d ring->capacity=%d",
8349 where, ring->used, ring->capacity);
8350 if (ring->capacity == 0) {
8351 KASSERTMSG(ring->mem == NULL,
8352 "called from %s: capacity == 0 but mem != NULL", where);
8353 } else {
8354 KASSERTMSG(ring->mem != NULL,
8355 "called from %s: capacity != 0 but mem == NULL", where);
8356 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
8357 "called from %s: ring->head=%d ring->capacity=%d",
8358 where, ring->head, ring->capacity);
8359 }
8360 }
8361 #endif /* DIAGNOSTIC */
8362
8363
8364 /*
8365 * Mixer driver
8366 */
8367
8368 /*
8369 * Must be called without sc_lock held.
8370 */
8371 int
8372 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
8373 struct lwp *l)
8374 {
8375 struct file *fp;
8376 audio_file_t *af;
8377 int error, fd;
8378
8379 TRACE(1, "flags=0x%x", flags);
8380
8381 error = fd_allocfile(&fp, &fd);
8382 if (error)
8383 return error;
8384
8385 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
8386 af->sc = sc;
8387 af->dev = dev;
8388
8389 mutex_enter(sc->sc_lock);
8390 if (sc->sc_dying) {
8391 mutex_exit(sc->sc_lock);
8392 kmem_free(af, sizeof(*af));
8393 fd_abort(curproc, fp, fd);
8394 return ENXIO;
8395 }
8396 mutex_enter(sc->sc_intr_lock);
8397 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
8398 mutex_exit(sc->sc_intr_lock);
8399 mutex_exit(sc->sc_lock);
8400
8401 error = fd_clone(fp, fd, flags, &audio_fileops, af);
8402 KASSERT(error == EMOVEFD);
8403
8404 return error;
8405 }
8406
8407 /*
8408 * Add a process to those to be signalled on mixer activity.
8409 * If the process has already been added, do nothing.
8410 * Must be called with sc_exlock held and without sc_lock held.
8411 */
8412 static void
8413 mixer_async_add(struct audio_softc *sc, pid_t pid)
8414 {
8415 int i;
8416
8417 KASSERT(sc->sc_exlock);
8418
8419 /* If already exists, returns without doing anything. */
8420 for (i = 0; i < sc->sc_am_used; i++) {
8421 if (sc->sc_am[i] == pid)
8422 return;
8423 }
8424
8425 /* Extend array if necessary. */
8426 if (sc->sc_am_used >= sc->sc_am_capacity) {
8427 sc->sc_am_capacity += AM_CAPACITY;
8428 sc->sc_am = kern_realloc(sc->sc_am,
8429 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8430 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8431 }
8432
8433 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8434 sc->sc_am[sc->sc_am_used++] = pid;
8435 }
8436
8437 /*
8438 * Remove a process from those to be signalled on mixer activity.
8439 * If the process has not been added, do nothing.
8440 * Must be called with sc_exlock held and without sc_lock held.
8441 */
8442 static void
8443 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8444 {
8445 int i;
8446
8447 KASSERT(sc->sc_exlock);
8448
8449 for (i = 0; i < sc->sc_am_used; i++) {
8450 if (sc->sc_am[i] == pid) {
8451 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8452 TRACE(2, "am[%d](%d) removed, used=%d",
8453 i, (int)pid, sc->sc_am_used);
8454
8455 /* Empty array if no longer necessary. */
8456 if (sc->sc_am_used == 0) {
8457 kern_free(sc->sc_am);
8458 sc->sc_am = NULL;
8459 sc->sc_am_capacity = 0;
8460 TRACE(2, "released");
8461 }
8462 return;
8463 }
8464 }
8465 }
8466
8467 /*
8468 * Signal all processes waiting for the mixer.
8469 * Must be called with sc_exlock held.
8470 */
8471 static void
8472 mixer_signal(struct audio_softc *sc)
8473 {
8474 proc_t *p;
8475 int i;
8476
8477 KASSERT(sc->sc_exlock);
8478
8479 for (i = 0; i < sc->sc_am_used; i++) {
8480 mutex_enter(&proc_lock);
8481 p = proc_find(sc->sc_am[i]);
8482 if (p)
8483 psignal(p, SIGIO);
8484 mutex_exit(&proc_lock);
8485 }
8486 }
8487
8488 /*
8489 * Close a mixer device
8490 */
8491 int
8492 mixer_close(struct audio_softc *sc, audio_file_t *file)
8493 {
8494 int error;
8495
8496 error = audio_exlock_enter(sc);
8497 if (error)
8498 return error;
8499 TRACE(1, "called");
8500 mixer_async_remove(sc, curproc->p_pid);
8501 audio_exlock_exit(sc);
8502
8503 return 0;
8504 }
8505
8506 /*
8507 * Must be called without sc_lock nor sc_exlock held.
8508 */
8509 int
8510 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8511 struct lwp *l)
8512 {
8513 mixer_devinfo_t *mi;
8514 mixer_ctrl_t *mc;
8515 int val;
8516 int error;
8517
8518 #if defined(AUDIO_DEBUG)
8519 char pre[64];
8520 snprintf(pre, sizeof(pre), "pid=%d.%d",
8521 (int)curproc->p_pid, (int)l->l_lid);
8522 #endif
8523 error = EINVAL;
8524
8525 /* we can return cached values if we are sleeping */
8526 if (cmd != AUDIO_MIXER_READ) {
8527 mutex_enter(sc->sc_lock);
8528 device_active(sc->sc_dev, DVA_SYSTEM);
8529 mutex_exit(sc->sc_lock);
8530 }
8531
8532 switch (cmd) {
8533 case FIOASYNC:
8534 val = *(int *)addr;
8535 TRACE(2, "%s FIOASYNC %s", pre, val ? "on" : "off");
8536 error = audio_exlock_enter(sc);
8537 if (error)
8538 break;
8539 if (val) {
8540 mixer_async_add(sc, curproc->p_pid);
8541 } else {
8542 mixer_async_remove(sc, curproc->p_pid);
8543 }
8544 audio_exlock_exit(sc);
8545 break;
8546
8547 case AUDIO_GETDEV:
8548 TRACE(2, "%s AUDIO_GETDEV", pre);
8549 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8550 break;
8551
8552 case AUDIO_MIXER_DEVINFO:
8553 TRACE(2, "%s AUDIO_MIXER_DEVINFO", pre);
8554 mi = (mixer_devinfo_t *)addr;
8555
8556 mi->un.v.delta = 0; /* default */
8557 mutex_enter(sc->sc_lock);
8558 error = audio_query_devinfo(sc, mi);
8559 mutex_exit(sc->sc_lock);
8560 break;
8561
8562 case AUDIO_MIXER_READ:
8563 TRACE(2, "%s AUDIO_MIXER_READ", pre);
8564 mc = (mixer_ctrl_t *)addr;
8565
8566 error = audio_exlock_mutex_enter(sc);
8567 if (error)
8568 break;
8569 if (device_is_active(sc->hw_dev))
8570 error = audio_get_port(sc, mc);
8571 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8572 error = ENXIO;
8573 else {
8574 int dev = mc->dev;
8575 memcpy(mc, &sc->sc_mixer_state[dev],
8576 sizeof(mixer_ctrl_t));
8577 error = 0;
8578 }
8579 audio_exlock_mutex_exit(sc);
8580 break;
8581
8582 case AUDIO_MIXER_WRITE:
8583 TRACE(2, "%s AUDIO_MIXER_WRITE", pre);
8584 error = audio_exlock_mutex_enter(sc);
8585 if (error)
8586 break;
8587 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8588 if (error) {
8589 audio_exlock_mutex_exit(sc);
8590 break;
8591 }
8592
8593 if (sc->hw_if->commit_settings) {
8594 error = sc->hw_if->commit_settings(sc->hw_hdl);
8595 if (error) {
8596 audio_exlock_mutex_exit(sc);
8597 break;
8598 }
8599 }
8600 mutex_exit(sc->sc_lock);
8601 mixer_signal(sc);
8602 audio_exlock_exit(sc);
8603 break;
8604
8605 default:
8606 TRACE(2, "(%lu,'%c',%lu)",
8607 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8608 if (sc->hw_if->dev_ioctl) {
8609 mutex_enter(sc->sc_lock);
8610 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8611 cmd, addr, flag, l);
8612 mutex_exit(sc->sc_lock);
8613 } else
8614 error = EINVAL;
8615 break;
8616 }
8617
8618 if (error)
8619 TRACE(2, "error=%d", error);
8620 return error;
8621 }
8622
8623 /*
8624 * Must be called with sc_lock held.
8625 */
8626 int
8627 au_portof(struct audio_softc *sc, char *name, int class)
8628 {
8629 mixer_devinfo_t mi;
8630
8631 KASSERT(mutex_owned(sc->sc_lock));
8632
8633 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8634 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8635 return mi.index;
8636 }
8637 return -1;
8638 }
8639
8640 /*
8641 * Must be called with sc_lock held.
8642 */
8643 void
8644 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8645 mixer_devinfo_t *mi, const struct portname *tbl)
8646 {
8647 int i, j;
8648
8649 KASSERT(mutex_owned(sc->sc_lock));
8650
8651 ports->index = mi->index;
8652 if (mi->type == AUDIO_MIXER_ENUM) {
8653 ports->isenum = true;
8654 for(i = 0; tbl[i].name; i++)
8655 for(j = 0; j < mi->un.e.num_mem; j++)
8656 if (strcmp(mi->un.e.member[j].label.name,
8657 tbl[i].name) == 0) {
8658 ports->allports |= tbl[i].mask;
8659 ports->aumask[ports->nports] = tbl[i].mask;
8660 ports->misel[ports->nports] =
8661 mi->un.e.member[j].ord;
8662 ports->miport[ports->nports] =
8663 au_portof(sc, mi->un.e.member[j].label.name,
8664 mi->mixer_class);
8665 if (ports->mixerout != -1 &&
8666 ports->miport[ports->nports] != -1)
8667 ports->isdual = true;
8668 ++ports->nports;
8669 }
8670 } else if (mi->type == AUDIO_MIXER_SET) {
8671 for(i = 0; tbl[i].name; i++)
8672 for(j = 0; j < mi->un.s.num_mem; j++)
8673 if (strcmp(mi->un.s.member[j].label.name,
8674 tbl[i].name) == 0) {
8675 ports->allports |= tbl[i].mask;
8676 ports->aumask[ports->nports] = tbl[i].mask;
8677 ports->misel[ports->nports] =
8678 mi->un.s.member[j].mask;
8679 ports->miport[ports->nports] =
8680 au_portof(sc, mi->un.s.member[j].label.name,
8681 mi->mixer_class);
8682 ++ports->nports;
8683 }
8684 }
8685 }
8686
8687 /*
8688 * Must be called with sc_lock && sc_exlock held.
8689 */
8690 int
8691 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8692 {
8693
8694 KASSERT(mutex_owned(sc->sc_lock));
8695 KASSERT(sc->sc_exlock);
8696
8697 ct->type = AUDIO_MIXER_VALUE;
8698 ct->un.value.num_channels = 2;
8699 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8700 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8701 if (audio_set_port(sc, ct) == 0)
8702 return 0;
8703 ct->un.value.num_channels = 1;
8704 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8705 return audio_set_port(sc, ct);
8706 }
8707
8708 /*
8709 * Must be called with sc_lock && sc_exlock held.
8710 */
8711 int
8712 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8713 {
8714 int error;
8715
8716 KASSERT(mutex_owned(sc->sc_lock));
8717 KASSERT(sc->sc_exlock);
8718
8719 ct->un.value.num_channels = 2;
8720 if (audio_get_port(sc, ct) == 0) {
8721 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8722 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8723 } else {
8724 ct->un.value.num_channels = 1;
8725 error = audio_get_port(sc, ct);
8726 if (error)
8727 return error;
8728 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8729 }
8730 return 0;
8731 }
8732
8733 /*
8734 * Must be called with sc_lock && sc_exlock held.
8735 */
8736 int
8737 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8738 int gain, int balance)
8739 {
8740 mixer_ctrl_t ct;
8741 int i, error;
8742 int l, r;
8743 u_int mask;
8744 int nset;
8745
8746 KASSERT(mutex_owned(sc->sc_lock));
8747 KASSERT(sc->sc_exlock);
8748
8749 if (balance == AUDIO_MID_BALANCE) {
8750 l = r = gain;
8751 } else if (balance < AUDIO_MID_BALANCE) {
8752 l = gain;
8753 r = (balance * gain) / AUDIO_MID_BALANCE;
8754 } else {
8755 r = gain;
8756 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8757 / AUDIO_MID_BALANCE;
8758 }
8759 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8760
8761 if (ports->index == -1) {
8762 usemaster:
8763 if (ports->master == -1)
8764 return 0; /* just ignore it silently */
8765 ct.dev = ports->master;
8766 error = au_set_lr_value(sc, &ct, l, r);
8767 } else {
8768 ct.dev = ports->index;
8769 if (ports->isenum) {
8770 ct.type = AUDIO_MIXER_ENUM;
8771 error = audio_get_port(sc, &ct);
8772 if (error)
8773 return error;
8774 if (ports->isdual) {
8775 if (ports->cur_port == -1)
8776 ct.dev = ports->master;
8777 else
8778 ct.dev = ports->miport[ports->cur_port];
8779 error = au_set_lr_value(sc, &ct, l, r);
8780 } else {
8781 for(i = 0; i < ports->nports; i++)
8782 if (ports->misel[i] == ct.un.ord) {
8783 ct.dev = ports->miport[i];
8784 if (ct.dev == -1 ||
8785 au_set_lr_value(sc, &ct, l, r))
8786 goto usemaster;
8787 else
8788 break;
8789 }
8790 }
8791 } else {
8792 ct.type = AUDIO_MIXER_SET;
8793 error = audio_get_port(sc, &ct);
8794 if (error)
8795 return error;
8796 mask = ct.un.mask;
8797 nset = 0;
8798 for(i = 0; i < ports->nports; i++) {
8799 if (ports->misel[i] & mask) {
8800 ct.dev = ports->miport[i];
8801 if (ct.dev != -1 &&
8802 au_set_lr_value(sc, &ct, l, r) == 0)
8803 nset++;
8804 }
8805 }
8806 if (nset == 0)
8807 goto usemaster;
8808 }
8809 }
8810 if (!error)
8811 mixer_signal(sc);
8812 return error;
8813 }
8814
8815 /*
8816 * Must be called with sc_lock && sc_exlock held.
8817 */
8818 void
8819 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8820 u_int *pgain, u_char *pbalance)
8821 {
8822 mixer_ctrl_t ct;
8823 int i, l, r, n;
8824 int lgain, rgain;
8825
8826 KASSERT(mutex_owned(sc->sc_lock));
8827 KASSERT(sc->sc_exlock);
8828
8829 lgain = AUDIO_MAX_GAIN / 2;
8830 rgain = AUDIO_MAX_GAIN / 2;
8831 if (ports->index == -1) {
8832 usemaster:
8833 if (ports->master == -1)
8834 goto bad;
8835 ct.dev = ports->master;
8836 ct.type = AUDIO_MIXER_VALUE;
8837 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8838 goto bad;
8839 } else {
8840 ct.dev = ports->index;
8841 if (ports->isenum) {
8842 ct.type = AUDIO_MIXER_ENUM;
8843 if (audio_get_port(sc, &ct))
8844 goto bad;
8845 ct.type = AUDIO_MIXER_VALUE;
8846 if (ports->isdual) {
8847 if (ports->cur_port == -1)
8848 ct.dev = ports->master;
8849 else
8850 ct.dev = ports->miport[ports->cur_port];
8851 au_get_lr_value(sc, &ct, &lgain, &rgain);
8852 } else {
8853 for(i = 0; i < ports->nports; i++)
8854 if (ports->misel[i] == ct.un.ord) {
8855 ct.dev = ports->miport[i];
8856 if (ct.dev == -1 ||
8857 au_get_lr_value(sc, &ct,
8858 &lgain, &rgain))
8859 goto usemaster;
8860 else
8861 break;
8862 }
8863 }
8864 } else {
8865 ct.type = AUDIO_MIXER_SET;
8866 if (audio_get_port(sc, &ct))
8867 goto bad;
8868 ct.type = AUDIO_MIXER_VALUE;
8869 lgain = rgain = n = 0;
8870 for(i = 0; i < ports->nports; i++) {
8871 if (ports->misel[i] & ct.un.mask) {
8872 ct.dev = ports->miport[i];
8873 if (ct.dev == -1 ||
8874 au_get_lr_value(sc, &ct, &l, &r))
8875 goto usemaster;
8876 else {
8877 lgain += l;
8878 rgain += r;
8879 n++;
8880 }
8881 }
8882 }
8883 if (n != 0) {
8884 lgain /= n;
8885 rgain /= n;
8886 }
8887 }
8888 }
8889 bad:
8890 if (lgain == rgain) { /* handles lgain==rgain==0 */
8891 *pgain = lgain;
8892 *pbalance = AUDIO_MID_BALANCE;
8893 } else if (lgain < rgain) {
8894 *pgain = rgain;
8895 /* balance should be > AUDIO_MID_BALANCE */
8896 *pbalance = AUDIO_RIGHT_BALANCE -
8897 (AUDIO_MID_BALANCE * lgain) / rgain;
8898 } else /* lgain > rgain */ {
8899 *pgain = lgain;
8900 /* balance should be < AUDIO_MID_BALANCE */
8901 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8902 }
8903 }
8904
8905 /*
8906 * Must be called with sc_lock && sc_exlock held.
8907 */
8908 int
8909 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8910 {
8911 mixer_ctrl_t ct;
8912 int i, error, use_mixerout;
8913
8914 KASSERT(mutex_owned(sc->sc_lock));
8915 KASSERT(sc->sc_exlock);
8916
8917 use_mixerout = 1;
8918 if (port == 0) {
8919 if (ports->allports == 0)
8920 return 0; /* Allow this special case. */
8921 else if (ports->isdual) {
8922 if (ports->cur_port == -1) {
8923 return 0;
8924 } else {
8925 port = ports->aumask[ports->cur_port];
8926 ports->cur_port = -1;
8927 use_mixerout = 0;
8928 }
8929 }
8930 }
8931 if (ports->index == -1)
8932 return EINVAL;
8933 ct.dev = ports->index;
8934 if (ports->isenum) {
8935 if (port & (port-1))
8936 return EINVAL; /* Only one port allowed */
8937 ct.type = AUDIO_MIXER_ENUM;
8938 error = EINVAL;
8939 for(i = 0; i < ports->nports; i++)
8940 if (ports->aumask[i] == port) {
8941 if (ports->isdual && use_mixerout) {
8942 ct.un.ord = ports->mixerout;
8943 ports->cur_port = i;
8944 } else {
8945 ct.un.ord = ports->misel[i];
8946 }
8947 error = audio_set_port(sc, &ct);
8948 break;
8949 }
8950 } else {
8951 ct.type = AUDIO_MIXER_SET;
8952 ct.un.mask = 0;
8953 for(i = 0; i < ports->nports; i++)
8954 if (ports->aumask[i] & port)
8955 ct.un.mask |= ports->misel[i];
8956 if (port != 0 && ct.un.mask == 0)
8957 error = EINVAL;
8958 else
8959 error = audio_set_port(sc, &ct);
8960 }
8961 if (!error)
8962 mixer_signal(sc);
8963 return error;
8964 }
8965
8966 /*
8967 * Must be called with sc_lock && sc_exlock held.
8968 */
8969 int
8970 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8971 {
8972 mixer_ctrl_t ct;
8973 int i, aumask;
8974
8975 KASSERT(mutex_owned(sc->sc_lock));
8976 KASSERT(sc->sc_exlock);
8977
8978 if (ports->index == -1)
8979 return 0;
8980 ct.dev = ports->index;
8981 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8982 if (audio_get_port(sc, &ct))
8983 return 0;
8984 aumask = 0;
8985 if (ports->isenum) {
8986 if (ports->isdual && ports->cur_port != -1) {
8987 if (ports->mixerout == ct.un.ord)
8988 aumask = ports->aumask[ports->cur_port];
8989 else
8990 ports->cur_port = -1;
8991 }
8992 if (aumask == 0)
8993 for(i = 0; i < ports->nports; i++)
8994 if (ports->misel[i] == ct.un.ord)
8995 aumask = ports->aumask[i];
8996 } else {
8997 for(i = 0; i < ports->nports; i++)
8998 if (ct.un.mask & ports->misel[i])
8999 aumask |= ports->aumask[i];
9000 }
9001 return aumask;
9002 }
9003
9004 /*
9005 * It returns 0 if success, otherwise errno.
9006 * Must be called only if sc->sc_monitor_port != -1.
9007 * Must be called with sc_lock && sc_exlock held.
9008 */
9009 static int
9010 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
9011 {
9012 mixer_ctrl_t ct;
9013
9014 KASSERT(mutex_owned(sc->sc_lock));
9015 KASSERT(sc->sc_exlock);
9016
9017 ct.dev = sc->sc_monitor_port;
9018 ct.type = AUDIO_MIXER_VALUE;
9019 ct.un.value.num_channels = 1;
9020 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
9021 return audio_set_port(sc, &ct);
9022 }
9023
9024 /*
9025 * It returns monitor gain if success, otherwise -1.
9026 * Must be called only if sc->sc_monitor_port != -1.
9027 * Must be called with sc_lock && sc_exlock held.
9028 */
9029 static int
9030 au_get_monitor_gain(struct audio_softc *sc)
9031 {
9032 mixer_ctrl_t ct;
9033
9034 KASSERT(mutex_owned(sc->sc_lock));
9035 KASSERT(sc->sc_exlock);
9036
9037 ct.dev = sc->sc_monitor_port;
9038 ct.type = AUDIO_MIXER_VALUE;
9039 ct.un.value.num_channels = 1;
9040 if (audio_get_port(sc, &ct))
9041 return -1;
9042 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
9043 }
9044
9045 /*
9046 * Must be called with sc_lock && sc_exlock held.
9047 */
9048 static int
9049 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
9050 {
9051
9052 KASSERT(mutex_owned(sc->sc_lock));
9053 KASSERT(sc->sc_exlock);
9054
9055 return sc->hw_if->set_port(sc->hw_hdl, mc);
9056 }
9057
9058 /*
9059 * Must be called with sc_lock && sc_exlock held.
9060 */
9061 static int
9062 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
9063 {
9064
9065 KASSERT(mutex_owned(sc->sc_lock));
9066 KASSERT(sc->sc_exlock);
9067
9068 return sc->hw_if->get_port(sc->hw_hdl, mc);
9069 }
9070
9071 /*
9072 * Must be called with sc_lock && sc_exlock held.
9073 */
9074 static void
9075 audio_mixer_capture(struct audio_softc *sc)
9076 {
9077 mixer_devinfo_t mi;
9078 mixer_ctrl_t *mc;
9079
9080 KASSERT(mutex_owned(sc->sc_lock));
9081 KASSERT(sc->sc_exlock);
9082
9083 for (mi.index = 0;; mi.index++) {
9084 if (audio_query_devinfo(sc, &mi) != 0)
9085 break;
9086 KASSERT(mi.index < sc->sc_nmixer_states);
9087 if (mi.type == AUDIO_MIXER_CLASS)
9088 continue;
9089 mc = &sc->sc_mixer_state[mi.index];
9090 mc->dev = mi.index;
9091 mc->type = mi.type;
9092 mc->un.value.num_channels = mi.un.v.num_channels;
9093 (void)audio_get_port(sc, mc);
9094 }
9095
9096 return;
9097 }
9098
9099 /*
9100 * Must be called with sc_lock && sc_exlock held.
9101 */
9102 static void
9103 audio_mixer_restore(struct audio_softc *sc)
9104 {
9105 mixer_devinfo_t mi;
9106 mixer_ctrl_t *mc;
9107
9108 KASSERT(mutex_owned(sc->sc_lock));
9109 KASSERT(sc->sc_exlock);
9110
9111 for (mi.index = 0; ; mi.index++) {
9112 if (audio_query_devinfo(sc, &mi) != 0)
9113 break;
9114 if (mi.type == AUDIO_MIXER_CLASS)
9115 continue;
9116 mc = &sc->sc_mixer_state[mi.index];
9117 (void)audio_set_port(sc, mc);
9118 }
9119 if (sc->hw_if->commit_settings)
9120 sc->hw_if->commit_settings(sc->hw_hdl);
9121
9122 return;
9123 }
9124
9125 static void
9126 audio_volume_down(device_t dv)
9127 {
9128 struct audio_softc *sc = device_private(dv);
9129 mixer_devinfo_t mi;
9130 int newgain;
9131 u_int gain;
9132 u_char balance;
9133
9134 if (audio_exlock_mutex_enter(sc) != 0)
9135 return;
9136 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
9137 mi.index = sc->sc_outports.master;
9138 mi.un.v.delta = 0;
9139 if (audio_query_devinfo(sc, &mi) == 0) {
9140 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9141 newgain = gain - mi.un.v.delta;
9142 if (newgain < AUDIO_MIN_GAIN)
9143 newgain = AUDIO_MIN_GAIN;
9144 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9145 }
9146 }
9147 audio_exlock_mutex_exit(sc);
9148 }
9149
9150 static void
9151 audio_volume_up(device_t dv)
9152 {
9153 struct audio_softc *sc = device_private(dv);
9154 mixer_devinfo_t mi;
9155 u_int gain, newgain;
9156 u_char balance;
9157
9158 if (audio_exlock_mutex_enter(sc) != 0)
9159 return;
9160 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
9161 mi.index = sc->sc_outports.master;
9162 mi.un.v.delta = 0;
9163 if (audio_query_devinfo(sc, &mi) == 0) {
9164 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9165 newgain = gain + mi.un.v.delta;
9166 if (newgain > AUDIO_MAX_GAIN)
9167 newgain = AUDIO_MAX_GAIN;
9168 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9169 }
9170 }
9171 audio_exlock_mutex_exit(sc);
9172 }
9173
9174 static void
9175 audio_volume_toggle(device_t dv)
9176 {
9177 struct audio_softc *sc = device_private(dv);
9178 u_int gain, newgain;
9179 u_char balance;
9180
9181 if (audio_exlock_mutex_enter(sc) != 0)
9182 return;
9183 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9184 if (gain != 0) {
9185 sc->sc_lastgain = gain;
9186 newgain = 0;
9187 } else
9188 newgain = sc->sc_lastgain;
9189 au_set_gain(sc, &sc->sc_outports, newgain, balance);
9190 audio_exlock_mutex_exit(sc);
9191 }
9192
9193 /*
9194 * Must be called with sc_lock held.
9195 */
9196 static int
9197 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
9198 {
9199
9200 KASSERT(mutex_owned(sc->sc_lock));
9201
9202 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
9203 }
9204
9205 void
9206 audio_mixsample_to_linear(audio_filter_arg_t *arg)
9207 {
9208 const audio_format2_t *fmt;
9209 const aint2_t *m;
9210 uint8_t *p;
9211 u_int sample_count;
9212 bool swap;
9213 aint2_t v, xor;
9214 u_int i, bps;
9215 bool little;
9216
9217 DIAGNOSTIC_filter_arg(arg);
9218 KASSERT(audio_format2_is_linear(arg->dstfmt));
9219 KASSERT(arg->srcfmt->channels == arg->dstfmt->channels);
9220
9221 fmt = arg->dstfmt;
9222 m = arg->src;
9223 p = arg->dst;
9224 sample_count = arg->count * fmt->channels;
9225 swap = arg->dstfmt->encoding == AUDIO_ENCODING_SLINEAR_OE;
9226
9227 #if BYTE_ORDER == LITTLE_ENDIAN
9228 little = !swap;
9229 #endif
9230 #if BYTE_ORDER == BIG_ENDIAN
9231 little = swap;
9232 #endif
9233
9234 bps = fmt->stride / NBBY;
9235
9236 xor = audio_format2_is_signed(fmt)
9237 ? 0 : 1 << (fmt->stride - 1);
9238
9239 for (i=0; i<sample_count; ++i) {
9240 v = *m++;
9241
9242 /* scale up to 32bit and then down to target size */
9243 v <<= 32 - AUDIO_INTERNAL_BITS;
9244 v >>= (4 - bps) * NBBY;
9245
9246 /* signed -> unsigned */
9247 v ^= xor;
9248
9249 if (little) {
9250 switch (bps) {
9251 case 4: *p++ = v; v >>= 8; /* FALLTHROUGH */
9252 case 3: *p++ = v; v >>= 8; /* FALLTHROUGH */
9253 case 2: *p++ = v; v >>= 8; /* FALLTHROUGH */
9254 case 1: *p++ = v; /* FALLTHROUGH */
9255 }
9256 } else {
9257 switch (bps) {
9258 case 4: *p++ = v >> 24; v <<= 8; /* FALLTHROUGH */
9259 case 3: *p++ = v >> 24; v <<= 8; /* FALLTHROUGH */
9260 case 2: *p++ = v >> 24; v <<= 8; /* FALLTHROUGH */
9261 case 1: *p++ = v >> 24; /* FALLTHROUGH */
9262 }
9263 }
9264 }
9265 }
9266
9267
9268 #endif /* NAUDIO > 0 */
9269
9270 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
9271 #include <sys/param.h>
9272 #include <sys/systm.h>
9273 #include <sys/device.h>
9274 #include <sys/audioio.h>
9275 #include <dev/audio/audio_if.h>
9276 #endif
9277
9278 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
9279 int
9280 audioprint(void *aux, const char *pnp)
9281 {
9282 struct audio_attach_args *arg;
9283 const char *type;
9284
9285 if (pnp != NULL) {
9286 arg = aux;
9287 switch (arg->type) {
9288 case AUDIODEV_TYPE_AUDIO:
9289 type = "audio";
9290 break;
9291 case AUDIODEV_TYPE_MIDI:
9292 type = "midi";
9293 break;
9294 case AUDIODEV_TYPE_OPL:
9295 type = "opl";
9296 break;
9297 case AUDIODEV_TYPE_MPU:
9298 type = "mpu";
9299 break;
9300 case AUDIODEV_TYPE_AUX:
9301 type = "aux";
9302 break;
9303 default:
9304 panic("audioprint: unknown type %d", arg->type);
9305 }
9306 aprint_normal("%s at %s", type, pnp);
9307 }
9308 return UNCONF;
9309 }
9310
9311 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
9312
9313 #ifdef _MODULE
9314
9315 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
9316
9317 #include "ioconf.c"
9318
9319 #endif
9320
9321 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
9322
9323 static int
9324 audio_modcmd(modcmd_t cmd, void *arg)
9325 {
9326 int error = 0;
9327
9328 switch (cmd) {
9329 case MODULE_CMD_INIT:
9330 /* XXX interrupt level? */
9331 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
9332 #ifdef _MODULE
9333 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
9334 &audio_cdevsw, &audio_cmajor);
9335 if (error)
9336 break;
9337
9338 error = config_init_component(cfdriver_ioconf_audio,
9339 cfattach_ioconf_audio, cfdata_ioconf_audio);
9340 if (error) {
9341 devsw_detach(NULL, &audio_cdevsw);
9342 }
9343 #endif
9344 break;
9345 case MODULE_CMD_FINI:
9346 #ifdef _MODULE
9347 error = config_fini_component(cfdriver_ioconf_audio,
9348 cfattach_ioconf_audio, cfdata_ioconf_audio);
9349 if (error == 0)
9350 devsw_detach(NULL, &audio_cdevsw);
9351 #endif
9352 if (error == 0)
9353 psref_class_destroy(audio_psref_class);
9354 break;
9355 default:
9356 error = ENOTTY;
9357 break;
9358 }
9359
9360 return error;
9361 }
9362