audio.c revision 1.16.2.2 1 /* $NetBSD: audio.c,v 1.16.2.2 2019/06/10 22:07:06 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - + (*1)
122 * freem - - + (*1)
123 * round_buffersize - x
124 * get_props - x
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * *1 Note: Before 8.0, since these have been called only at attach time,
131 * neither lock were necessary. Currently, on the other hand, since
132 * these may be also called after attach, the thread lock is required.
133 *
134 * In addition, there is an additional lock.
135 *
136 * - track->lock. This is an atomic variable and is similar to the
137 * "interrupt lock". This is one for each track. If any thread context
138 * (and software interrupt context) and hardware interrupt context who
139 * want to access some variables on this track, they must acquire this
140 * lock before. It protects track's consistency between hardware
141 * interrupt context and others.
142 */
143
144 #include <sys/cdefs.h>
145 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.16.2.2 2019/06/10 22:07:06 christos Exp $");
146
147 #ifdef _KERNEL_OPT
148 #include "audio.h"
149 #include "midi.h"
150 #endif
151
152 #if NAUDIO > 0
153
154 #ifdef _KERNEL
155
156 #include <sys/types.h>
157 #include <sys/param.h>
158 #include <sys/atomic.h>
159 #include <sys/audioio.h>
160 #include <sys/conf.h>
161 #include <sys/cpu.h>
162 #include <sys/device.h>
163 #include <sys/fcntl.h>
164 #include <sys/file.h>
165 #include <sys/filedesc.h>
166 #include <sys/intr.h>
167 #include <sys/ioctl.h>
168 #include <sys/kauth.h>
169 #include <sys/kernel.h>
170 #include <sys/kmem.h>
171 #include <sys/malloc.h>
172 #include <sys/mman.h>
173 #include <sys/module.h>
174 #include <sys/poll.h>
175 #include <sys/proc.h>
176 #include <sys/queue.h>
177 #include <sys/select.h>
178 #include <sys/signalvar.h>
179 #include <sys/stat.h>
180 #include <sys/sysctl.h>
181 #include <sys/systm.h>
182 #include <sys/syslog.h>
183 #include <sys/vnode.h>
184
185 #include <dev/audio/audio_if.h>
186 #include <dev/audio/audiovar.h>
187 #include <dev/audio/audiodef.h>
188 #include <dev/audio/linear.h>
189 #include <dev/audio/mulaw.h>
190
191 #include <machine/endian.h>
192
193 #include <uvm/uvm.h>
194
195 #include "ioconf.h"
196 #endif /* _KERNEL */
197
198 /*
199 * 0: No debug logs
200 * 1: action changes like open/close/set_format...
201 * 2: + normal operations like read/write/ioctl...
202 * 3: + TRACEs except interrupt
203 * 4: + TRACEs including interrupt
204 */
205 //#define AUDIO_DEBUG 1
206
207 #if defined(AUDIO_DEBUG)
208
209 int audiodebug = AUDIO_DEBUG;
210 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
211 const char *, va_list);
212 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
213 __printflike(3, 4);
214 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
215 __printflike(3, 4);
216 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
217 __printflike(3, 4);
218
219 /* XXX sloppy memory logger */
220 static void audio_mlog_init(void);
221 static void audio_mlog_free(void);
222 static void audio_mlog_softintr(void *);
223 extern void audio_mlog_flush(void);
224 extern void audio_mlog_printf(const char *, ...);
225
226 static int mlog_refs; /* reference counter */
227 static char *mlog_buf[2]; /* double buffer */
228 static int mlog_buflen; /* buffer length */
229 static int mlog_used; /* used length */
230 static int mlog_full; /* number of dropped lines by buffer full */
231 static int mlog_drop; /* number of dropped lines by busy */
232 static volatile uint32_t mlog_inuse; /* in-use */
233 static int mlog_wpage; /* active page */
234 static void *mlog_sih; /* softint handle */
235
236 static void
237 audio_mlog_init(void)
238 {
239 mlog_refs++;
240 if (mlog_refs > 1)
241 return;
242 mlog_buflen = 4096;
243 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
244 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
245 mlog_used = 0;
246 mlog_full = 0;
247 mlog_drop = 0;
248 mlog_inuse = 0;
249 mlog_wpage = 0;
250 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
251 if (mlog_sih == NULL)
252 printf("%s: softint_establish failed\n", __func__);
253 }
254
255 static void
256 audio_mlog_free(void)
257 {
258 mlog_refs--;
259 if (mlog_refs > 0)
260 return;
261
262 audio_mlog_flush();
263 if (mlog_sih)
264 softint_disestablish(mlog_sih);
265 kmem_free(mlog_buf[0], mlog_buflen);
266 kmem_free(mlog_buf[1], mlog_buflen);
267 }
268
269 /*
270 * Flush memory buffer.
271 * It must not be called from hardware interrupt context.
272 */
273 void
274 audio_mlog_flush(void)
275 {
276 if (mlog_refs == 0)
277 return;
278
279 /* Nothing to do if already in use ? */
280 if (atomic_swap_32(&mlog_inuse, 1) == 1)
281 return;
282
283 int rpage = mlog_wpage;
284 mlog_wpage ^= 1;
285 mlog_buf[mlog_wpage][0] = '\0';
286 mlog_used = 0;
287
288 atomic_swap_32(&mlog_inuse, 0);
289
290 if (mlog_buf[rpage][0] != '\0') {
291 printf("%s", mlog_buf[rpage]);
292 if (mlog_drop > 0)
293 printf("mlog_drop %d\n", mlog_drop);
294 if (mlog_full > 0)
295 printf("mlog_full %d\n", mlog_full);
296 }
297 mlog_full = 0;
298 mlog_drop = 0;
299 }
300
301 static void
302 audio_mlog_softintr(void *cookie)
303 {
304 audio_mlog_flush();
305 }
306
307 void
308 audio_mlog_printf(const char *fmt, ...)
309 {
310 int len;
311 va_list ap;
312
313 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
314 /* already inuse */
315 mlog_drop++;
316 return;
317 }
318
319 va_start(ap, fmt);
320 len = vsnprintf(
321 mlog_buf[mlog_wpage] + mlog_used,
322 mlog_buflen - mlog_used,
323 fmt, ap);
324 va_end(ap);
325
326 mlog_used += len;
327 if (mlog_buflen - mlog_used <= 1) {
328 mlog_full++;
329 }
330
331 atomic_swap_32(&mlog_inuse, 0);
332
333 if (mlog_sih)
334 softint_schedule(mlog_sih);
335 }
336
337 /* trace functions */
338 static void
339 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
340 const char *fmt, va_list ap)
341 {
342 char buf[256];
343 int n;
344
345 n = 0;
346 buf[0] = '\0';
347 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
348 funcname, device_unit(sc->sc_dev), header);
349 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
350
351 if (cpu_intr_p()) {
352 audio_mlog_printf("%s\n", buf);
353 } else {
354 audio_mlog_flush();
355 printf("%s\n", buf);
356 }
357 }
358
359 static void
360 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
361 {
362 va_list ap;
363
364 va_start(ap, fmt);
365 audio_vtrace(sc, funcname, "", fmt, ap);
366 va_end(ap);
367 }
368
369 static void
370 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
371 {
372 char hdr[16];
373 va_list ap;
374
375 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
376 va_start(ap, fmt);
377 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
378 va_end(ap);
379 }
380
381 static void
382 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
383 {
384 char hdr[32];
385 char phdr[16], rhdr[16];
386 va_list ap;
387
388 phdr[0] = '\0';
389 rhdr[0] = '\0';
390 if (file->ptrack)
391 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
392 if (file->rtrack)
393 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
394 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
395
396 va_start(ap, fmt);
397 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
398 va_end(ap);
399 }
400
401 #define DPRINTF(n, fmt...) do { \
402 if (audiodebug >= (n)) { \
403 audio_mlog_flush(); \
404 printf(fmt); \
405 } \
406 } while (0)
407 #define TRACE(n, fmt...) do { \
408 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
409 } while (0)
410 #define TRACET(n, t, fmt...) do { \
411 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
412 } while (0)
413 #define TRACEF(n, f, fmt...) do { \
414 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
415 } while (0)
416
417 struct audio_track_debugbuf {
418 char usrbuf[32];
419 char codec[32];
420 char chvol[32];
421 char chmix[32];
422 char freq[32];
423 char outbuf[32];
424 };
425
426 static void
427 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
428 {
429
430 memset(buf, 0, sizeof(*buf));
431
432 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
433 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
434 if (track->freq.filter)
435 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
436 track->freq.srcbuf.head,
437 track->freq.srcbuf.used,
438 track->freq.srcbuf.capacity);
439 if (track->chmix.filter)
440 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
441 track->chmix.srcbuf.used);
442 if (track->chvol.filter)
443 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
444 track->chvol.srcbuf.used);
445 if (track->codec.filter)
446 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
447 track->codec.srcbuf.used);
448 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
449 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
450 }
451 #else
452 #define DPRINTF(n, fmt...) do { } while (0)
453 #define TRACE(n, fmt, ...) do { } while (0)
454 #define TRACET(n, t, fmt, ...) do { } while (0)
455 #define TRACEF(n, f, fmt, ...) do { } while (0)
456 #endif
457
458 #define SPECIFIED(x) ((x) != ~0)
459 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
460
461 /* Device timeout in msec */
462 #define AUDIO_TIMEOUT (3000)
463
464 /* #define AUDIO_PM_IDLE */
465 #ifdef AUDIO_PM_IDLE
466 int audio_idle_timeout = 30;
467 #endif
468
469 struct portname {
470 const char *name;
471 int mask;
472 };
473
474 static int audiomatch(device_t, cfdata_t, void *);
475 static void audioattach(device_t, device_t, void *);
476 static int audiodetach(device_t, int);
477 static int audioactivate(device_t, enum devact);
478 static void audiochilddet(device_t, device_t);
479 static int audiorescan(device_t, const char *, const int *);
480
481 static int audio_modcmd(modcmd_t, void *);
482
483 #ifdef AUDIO_PM_IDLE
484 static void audio_idle(void *);
485 static void audio_activity(device_t, devactive_t);
486 #endif
487
488 static bool audio_suspend(device_t dv, const pmf_qual_t *);
489 static bool audio_resume(device_t dv, const pmf_qual_t *);
490 static void audio_volume_down(device_t);
491 static void audio_volume_up(device_t);
492 static void audio_volume_toggle(device_t);
493
494 static void audio_mixer_capture(struct audio_softc *);
495 static void audio_mixer_restore(struct audio_softc *);
496
497 static void audio_softintr_rd(void *);
498 static void audio_softintr_wr(void *);
499
500 static int audio_enter_exclusive(struct audio_softc *);
501 static void audio_exit_exclusive(struct audio_softc *);
502 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
503
504 static int audioclose(struct file *);
505 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
506 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
507 static int audioioctl(struct file *, u_long, void *);
508 static int audiopoll(struct file *, int);
509 static int audiokqfilter(struct file *, struct knote *);
510 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
511 struct uvm_object **, int *);
512 static int audiostat(struct file *, struct stat *);
513
514 static void filt_audiowrite_detach(struct knote *);
515 static int filt_audiowrite_event(struct knote *, long);
516 static void filt_audioread_detach(struct knote *);
517 static int filt_audioread_event(struct knote *, long);
518
519 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
520 struct audiobell_arg *);
521 static int audio_close(struct audio_softc *, audio_file_t *);
522 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
523 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
524 static void audio_file_clear(struct audio_softc *, audio_file_t *);
525 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
526 struct lwp *, audio_file_t *);
527 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
528 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
529 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
530 struct uvm_object **, int *, audio_file_t *);
531
532 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
533
534 static void audio_pintr(void *);
535 static void audio_rintr(void *);
536
537 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
538
539 static __inline int audio_track_readablebytes(const audio_track_t *);
540 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
541 const struct audio_info *);
542 static int audio_track_setinfo_check(audio_format2_t *,
543 const struct audio_prinfo *);
544 static void audio_track_setinfo_water(audio_track_t *,
545 const struct audio_info *);
546 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
547 struct audio_info *);
548 static int audio_hw_set_format(struct audio_softc *, int,
549 audio_format2_t *, audio_format2_t *,
550 audio_filter_reg_t *, audio_filter_reg_t *);
551 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
552 audio_file_t *);
553 static int audio_get_props(struct audio_softc *);
554 static bool audio_can_playback(struct audio_softc *);
555 static bool audio_can_capture(struct audio_softc *);
556 static int audio_check_params(audio_format2_t *);
557 static int audio_mixers_init(struct audio_softc *sc, int,
558 const audio_format2_t *, const audio_format2_t *,
559 const audio_filter_reg_t *, const audio_filter_reg_t *);
560 static int audio_select_freq(const struct audio_format *);
561 static int audio_hw_probe(struct audio_softc *, int, int *,
562 audio_format2_t *, audio_format2_t *);
563 static int audio_hw_probe_fmt(struct audio_softc *, audio_format2_t *, int);
564 static int audio_hw_validate_format(struct audio_softc *, int,
565 const audio_format2_t *);
566 static int audio_mixers_set_format(struct audio_softc *,
567 const struct audio_info *);
568 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
569 static int audio_sysctl_volume(SYSCTLFN_PROTO);
570 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
571 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
572 #if defined(AUDIO_DEBUG)
573 static int audio_sysctl_debug(SYSCTLFN_PROTO);
574 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
575 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
576 #endif
577
578 static void *audio_realloc(void *, size_t);
579 static int audio_realloc_usrbuf(audio_track_t *, int);
580 static void audio_free_usrbuf(audio_track_t *);
581
582 static audio_track_t *audio_track_create(struct audio_softc *,
583 audio_trackmixer_t *);
584 static void audio_track_destroy(audio_track_t *);
585 static audio_filter_t audio_track_get_codec(audio_track_t *,
586 const audio_format2_t *, const audio_format2_t *);
587 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
588 static void audio_track_play(audio_track_t *);
589 static int audio_track_drain(struct audio_softc *, audio_track_t *);
590 static void audio_track_record(audio_track_t *);
591 static void audio_track_clear(struct audio_softc *, audio_track_t *);
592
593 static int audio_mixer_init(struct audio_softc *, int,
594 const audio_format2_t *, const audio_filter_reg_t *);
595 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
596 static void audio_pmixer_start(struct audio_softc *, bool);
597 static void audio_pmixer_process(struct audio_softc *);
598 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
599 static void audio_pmixer_output(struct audio_softc *);
600 static int audio_pmixer_halt(struct audio_softc *);
601 static void audio_rmixer_start(struct audio_softc *);
602 static void audio_rmixer_process(struct audio_softc *);
603 static void audio_rmixer_input(struct audio_softc *);
604 static int audio_rmixer_halt(struct audio_softc *);
605
606 static void mixer_init(struct audio_softc *);
607 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
608 static int mixer_close(struct audio_softc *, audio_file_t *);
609 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
610 static void mixer_remove(struct audio_softc *);
611 static void mixer_signal(struct audio_softc *);
612
613 static int au_portof(struct audio_softc *, char *, int);
614
615 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
616 mixer_devinfo_t *, const struct portname *);
617 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
618 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
619 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
620 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
621 u_int *, u_char *);
622 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
623 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
624 static int au_set_monitor_gain(struct audio_softc *, int);
625 static int au_get_monitor_gain(struct audio_softc *);
626 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
627 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
628
629 static __inline struct audio_params
630 format2_to_params(const audio_format2_t *f2)
631 {
632 audio_params_t p;
633
634 /* validbits/precision <-> precision/stride */
635 p.sample_rate = f2->sample_rate;
636 p.channels = f2->channels;
637 p.encoding = f2->encoding;
638 p.validbits = f2->precision;
639 p.precision = f2->stride;
640 return p;
641 }
642
643 static __inline audio_format2_t
644 params_to_format2(const struct audio_params *p)
645 {
646 audio_format2_t f2;
647
648 /* precision/stride <-> validbits/precision */
649 f2.sample_rate = p->sample_rate;
650 f2.channels = p->channels;
651 f2.encoding = p->encoding;
652 f2.precision = p->validbits;
653 f2.stride = p->precision;
654 return f2;
655 }
656
657 /* Return true if this track is a playback track. */
658 static __inline bool
659 audio_track_is_playback(const audio_track_t *track)
660 {
661
662 return ((track->mode & AUMODE_PLAY) != 0);
663 }
664
665 /* Return true if this track is a recording track. */
666 static __inline bool
667 audio_track_is_record(const audio_track_t *track)
668 {
669
670 return ((track->mode & AUMODE_RECORD) != 0);
671 }
672
673 #if 0 /* XXX Not used yet */
674 /*
675 * Convert 0..255 volume used in userland to internal presentation 0..256.
676 */
677 static __inline u_int
678 audio_volume_to_inner(u_int v)
679 {
680
681 return v < 127 ? v : v + 1;
682 }
683
684 /*
685 * Convert 0..256 internal presentation to 0..255 volume used in userland.
686 */
687 static __inline u_int
688 audio_volume_to_outer(u_int v)
689 {
690
691 return v < 127 ? v : v - 1;
692 }
693 #endif /* 0 */
694
695 static dev_type_open(audioopen);
696 /* XXXMRG use more dev_type_xxx */
697
698 const struct cdevsw audio_cdevsw = {
699 .d_open = audioopen,
700 .d_close = noclose,
701 .d_read = noread,
702 .d_write = nowrite,
703 .d_ioctl = noioctl,
704 .d_stop = nostop,
705 .d_tty = notty,
706 .d_poll = nopoll,
707 .d_mmap = nommap,
708 .d_kqfilter = nokqfilter,
709 .d_discard = nodiscard,
710 .d_flag = D_OTHER | D_MPSAFE
711 };
712
713 const struct fileops audio_fileops = {
714 .fo_name = "audio",
715 .fo_read = audioread,
716 .fo_write = audiowrite,
717 .fo_ioctl = audioioctl,
718 .fo_fcntl = fnullop_fcntl,
719 .fo_stat = audiostat,
720 .fo_poll = audiopoll,
721 .fo_close = audioclose,
722 .fo_mmap = audiommap,
723 .fo_kqfilter = audiokqfilter,
724 .fo_restart = fnullop_restart
725 };
726
727 /* The default audio mode: 8 kHz mono mu-law */
728 static const struct audio_params audio_default = {
729 .sample_rate = 8000,
730 .encoding = AUDIO_ENCODING_ULAW,
731 .precision = 8,
732 .validbits = 8,
733 .channels = 1,
734 };
735
736 static const char *encoding_names[] = {
737 "none",
738 AudioEmulaw,
739 AudioEalaw,
740 "pcm16",
741 "pcm8",
742 AudioEadpcm,
743 AudioEslinear_le,
744 AudioEslinear_be,
745 AudioEulinear_le,
746 AudioEulinear_be,
747 AudioEslinear,
748 AudioEulinear,
749 AudioEmpeg_l1_stream,
750 AudioEmpeg_l1_packets,
751 AudioEmpeg_l1_system,
752 AudioEmpeg_l2_stream,
753 AudioEmpeg_l2_packets,
754 AudioEmpeg_l2_system,
755 AudioEac3,
756 };
757
758 /*
759 * Returns encoding name corresponding to AUDIO_ENCODING_*.
760 * Note that it may return a local buffer because it is mainly for debugging.
761 */
762 const char *
763 audio_encoding_name(int encoding)
764 {
765 static char buf[16];
766
767 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
768 return encoding_names[encoding];
769 } else {
770 snprintf(buf, sizeof(buf), "enc=%d", encoding);
771 return buf;
772 }
773 }
774
775 /*
776 * Supported encodings used by AUDIO_GETENC.
777 * index and flags are set by code.
778 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
779 */
780 static const audio_encoding_t audio_encodings[] = {
781 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
782 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
783 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
784 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
785 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
786 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
787 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
788 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
789 #if defined(AUDIO_SUPPORT_LINEAR24)
790 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
791 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
792 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
793 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
794 #endif
795 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
796 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
797 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
798 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
799 };
800
801 static const struct portname itable[] = {
802 { AudioNmicrophone, AUDIO_MICROPHONE },
803 { AudioNline, AUDIO_LINE_IN },
804 { AudioNcd, AUDIO_CD },
805 { 0, 0 }
806 };
807 static const struct portname otable[] = {
808 { AudioNspeaker, AUDIO_SPEAKER },
809 { AudioNheadphone, AUDIO_HEADPHONE },
810 { AudioNline, AUDIO_LINE_OUT },
811 { 0, 0 }
812 };
813
814 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
815 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
816 audiochilddet, DVF_DETACH_SHUTDOWN);
817
818 static int
819 audiomatch(device_t parent, cfdata_t match, void *aux)
820 {
821 struct audio_attach_args *sa;
822
823 sa = aux;
824 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
825 __func__, sa->type, sa, sa->hwif);
826 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
827 }
828
829 static void
830 audioattach(device_t parent, device_t self, void *aux)
831 {
832 struct audio_softc *sc;
833 struct audio_attach_args *sa;
834 const struct audio_hw_if *hw_if;
835 audio_format2_t phwfmt;
836 audio_format2_t rhwfmt;
837 audio_filter_reg_t pfil;
838 audio_filter_reg_t rfil;
839 const struct sysctlnode *node;
840 void *hdlp;
841 bool has_playback;
842 bool has_capture;
843 bool has_indep;
844 bool has_fulldup;
845 int mode;
846 int props;
847 int error;
848
849 sc = device_private(self);
850 sc->sc_dev = self;
851 sa = (struct audio_attach_args *)aux;
852 hw_if = sa->hwif;
853 hdlp = sa->hdl;
854
855 if (hw_if == NULL || hw_if->get_locks == NULL) {
856 panic("audioattach: missing hw_if method");
857 }
858
859 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
860
861 #ifdef DIAGNOSTIC
862 if (hw_if->query_format == NULL ||
863 hw_if->set_format == NULL ||
864 (hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
865 (hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
866 hw_if->halt_output == NULL ||
867 hw_if->halt_input == NULL ||
868 hw_if->getdev == NULL ||
869 hw_if->set_port == NULL ||
870 hw_if->get_port == NULL ||
871 hw_if->query_devinfo == NULL ||
872 hw_if->get_props == NULL) {
873 aprint_error(": missing method\n");
874 return;
875 }
876 #endif
877
878 sc->hw_if = hw_if;
879 sc->hw_hdl = hdlp;
880 sc->hw_dev = parent;
881
882 sc->sc_blk_ms = AUDIO_BLK_MS;
883 SLIST_INIT(&sc->sc_files);
884 cv_init(&sc->sc_exlockcv, "audiolk");
885
886 mutex_enter(sc->sc_lock);
887 props = audio_get_props(sc);
888 mutex_exit(sc->sc_lock);
889
890 has_playback = (props & AUDIO_PROP_PLAYBACK);
891 has_capture = (props & AUDIO_PROP_CAPTURE);
892 has_indep = (props & AUDIO_PROP_INDEPENDENT);
893 has_fulldup = (props & AUDIO_PROP_FULLDUPLEX);
894
895 KASSERT(has_playback || has_capture);
896 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
897 if (!has_playback || !has_capture) {
898 KASSERT(!has_indep);
899 KASSERT(!has_fulldup);
900 }
901
902 mode = 0;
903 if (has_playback) {
904 aprint_normal(": playback");
905 mode |= AUMODE_PLAY;
906 }
907 if (has_capture) {
908 aprint_normal("%c capture", has_playback ? ',' : ':');
909 mode |= AUMODE_RECORD;
910 }
911 if (has_playback && has_capture) {
912 if (has_fulldup)
913 aprint_normal(", full duplex");
914 else
915 aprint_normal(", half duplex");
916
917 if (has_indep)
918 aprint_normal(", independent");
919 }
920
921 aprint_naive("\n");
922 aprint_normal("\n");
923
924 /* probe hw params */
925 memset(&phwfmt, 0, sizeof(phwfmt));
926 memset(&rhwfmt, 0, sizeof(rhwfmt));
927 memset(&pfil, 0, sizeof(pfil));
928 memset(&rfil, 0, sizeof(rfil));
929 mutex_enter(sc->sc_lock);
930 error = audio_hw_probe(sc, has_indep, &mode, &phwfmt, &rhwfmt);
931 if (error) {
932 mutex_exit(sc->sc_lock);
933 aprint_error_dev(self, "audio_hw_probe failed, "
934 "error = %d\n", error);
935 goto bad;
936 }
937 if (mode == 0) {
938 mutex_exit(sc->sc_lock);
939 aprint_error_dev(self, "audio_hw_probe failed, no mode\n");
940 goto bad;
941 }
942 /* Init hardware. */
943 /* hw_probe() also validates [pr]hwfmt. */
944 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
945 if (error) {
946 mutex_exit(sc->sc_lock);
947 aprint_error_dev(self, "audio_hw_set_format failed, "
948 "error = %d\n", error);
949 goto bad;
950 }
951
952 /*
953 * Init track mixers. If at least one direction is available on
954 * attach time, we assume a success.
955 */
956 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
957 mutex_exit(sc->sc_lock);
958 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
959 aprint_error_dev(self, "audio_mixers_init failed, "
960 "error = %d\n", error);
961 goto bad;
962 }
963
964 selinit(&sc->sc_wsel);
965 selinit(&sc->sc_rsel);
966
967 /* Initial parameter of /dev/sound */
968 sc->sc_sound_pparams = params_to_format2(&audio_default);
969 sc->sc_sound_rparams = params_to_format2(&audio_default);
970 sc->sc_sound_ppause = false;
971 sc->sc_sound_rpause = false;
972
973 /* XXX TODO: consider about sc_ai */
974
975 mixer_init(sc);
976 TRACE(2, "inputs ports=0x%x, input master=%d, "
977 "output ports=0x%x, output master=%d",
978 sc->sc_inports.allports, sc->sc_inports.master,
979 sc->sc_outports.allports, sc->sc_outports.master);
980
981 sysctl_createv(&sc->sc_log, 0, NULL, &node,
982 0,
983 CTLTYPE_NODE, device_xname(sc->sc_dev),
984 SYSCTL_DESCR("audio test"),
985 NULL, 0,
986 NULL, 0,
987 CTL_HW,
988 CTL_CREATE, CTL_EOL);
989
990 if (node != NULL) {
991 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
992 CTLFLAG_READWRITE,
993 CTLTYPE_INT, "volume",
994 SYSCTL_DESCR("software volume test"),
995 audio_sysctl_volume, 0, (void *)sc, 0,
996 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
997
998 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
999 CTLFLAG_READWRITE,
1000 CTLTYPE_INT, "blk_ms",
1001 SYSCTL_DESCR("blocksize in msec"),
1002 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1003 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1004
1005 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1006 CTLFLAG_READWRITE,
1007 CTLTYPE_BOOL, "multiuser",
1008 SYSCTL_DESCR("allow multiple user access"),
1009 audio_sysctl_multiuser, 0, (void *)sc, 0,
1010 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1011
1012 #if defined(AUDIO_DEBUG)
1013 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1014 CTLFLAG_READWRITE,
1015 CTLTYPE_INT, "debug",
1016 SYSCTL_DESCR("debug level (0..4)"),
1017 audio_sysctl_debug, 0, (void *)sc, 0,
1018 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1019 #endif
1020 }
1021
1022 #ifdef AUDIO_PM_IDLE
1023 callout_init(&sc->sc_idle_counter, 0);
1024 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1025 #endif
1026
1027 if (!pmf_device_register(self, audio_suspend, audio_resume))
1028 aprint_error_dev(self, "couldn't establish power handler\n");
1029 #ifdef AUDIO_PM_IDLE
1030 if (!device_active_register(self, audio_activity))
1031 aprint_error_dev(self, "couldn't register activity handler\n");
1032 #endif
1033
1034 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1035 audio_volume_down, true))
1036 aprint_error_dev(self, "couldn't add volume down handler\n");
1037 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1038 audio_volume_up, true))
1039 aprint_error_dev(self, "couldn't add volume up handler\n");
1040 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1041 audio_volume_toggle, true))
1042 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1043
1044 #ifdef AUDIO_PM_IDLE
1045 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1046 #endif
1047
1048 #if defined(AUDIO_DEBUG)
1049 audio_mlog_init();
1050 #endif
1051
1052 audiorescan(self, "audio", NULL);
1053 return;
1054
1055 bad:
1056 /* Clearing hw_if means that device is attached but disabled. */
1057 sc->hw_if = NULL;
1058 aprint_error_dev(sc->sc_dev, "disabled\n");
1059 return;
1060 }
1061
1062 /*
1063 * Initialize hardware mixer.
1064 * This function is called from audioattach().
1065 */
1066 static void
1067 mixer_init(struct audio_softc *sc)
1068 {
1069 mixer_devinfo_t mi;
1070 int iclass, mclass, oclass, rclass;
1071 int record_master_found, record_source_found;
1072
1073 iclass = mclass = oclass = rclass = -1;
1074 sc->sc_inports.index = -1;
1075 sc->sc_inports.master = -1;
1076 sc->sc_inports.nports = 0;
1077 sc->sc_inports.isenum = false;
1078 sc->sc_inports.allports = 0;
1079 sc->sc_inports.isdual = false;
1080 sc->sc_inports.mixerout = -1;
1081 sc->sc_inports.cur_port = -1;
1082 sc->sc_outports.index = -1;
1083 sc->sc_outports.master = -1;
1084 sc->sc_outports.nports = 0;
1085 sc->sc_outports.isenum = false;
1086 sc->sc_outports.allports = 0;
1087 sc->sc_outports.isdual = false;
1088 sc->sc_outports.mixerout = -1;
1089 sc->sc_outports.cur_port = -1;
1090 sc->sc_monitor_port = -1;
1091 /*
1092 * Read through the underlying driver's list, picking out the class
1093 * names from the mixer descriptions. We'll need them to decode the
1094 * mixer descriptions on the next pass through the loop.
1095 */
1096 mutex_enter(sc->sc_lock);
1097 for(mi.index = 0; ; mi.index++) {
1098 if (audio_query_devinfo(sc, &mi) != 0)
1099 break;
1100 /*
1101 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1102 * All the other types describe an actual mixer.
1103 */
1104 if (mi.type == AUDIO_MIXER_CLASS) {
1105 if (strcmp(mi.label.name, AudioCinputs) == 0)
1106 iclass = mi.mixer_class;
1107 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1108 mclass = mi.mixer_class;
1109 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1110 oclass = mi.mixer_class;
1111 if (strcmp(mi.label.name, AudioCrecord) == 0)
1112 rclass = mi.mixer_class;
1113 }
1114 }
1115 mutex_exit(sc->sc_lock);
1116
1117 /* Allocate save area. Ensure non-zero allocation. */
1118 sc->sc_nmixer_states = mi.index;
1119 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1120 (sc->sc_nmixer_states + 1), KM_SLEEP);
1121
1122 /*
1123 * This is where we assign each control in the "audio" model, to the
1124 * underlying "mixer" control. We walk through the whole list once,
1125 * assigning likely candidates as we come across them.
1126 */
1127 record_master_found = 0;
1128 record_source_found = 0;
1129 mutex_enter(sc->sc_lock);
1130 for(mi.index = 0; ; mi.index++) {
1131 if (audio_query_devinfo(sc, &mi) != 0)
1132 break;
1133 KASSERT(mi.index < sc->sc_nmixer_states);
1134 if (mi.type == AUDIO_MIXER_CLASS)
1135 continue;
1136 if (mi.mixer_class == iclass) {
1137 /*
1138 * AudioCinputs is only a fallback, when we don't
1139 * find what we're looking for in AudioCrecord, so
1140 * check the flags before accepting one of these.
1141 */
1142 if (strcmp(mi.label.name, AudioNmaster) == 0
1143 && record_master_found == 0)
1144 sc->sc_inports.master = mi.index;
1145 if (strcmp(mi.label.name, AudioNsource) == 0
1146 && record_source_found == 0) {
1147 if (mi.type == AUDIO_MIXER_ENUM) {
1148 int i;
1149 for(i = 0; i < mi.un.e.num_mem; i++)
1150 if (strcmp(mi.un.e.member[i].label.name,
1151 AudioNmixerout) == 0)
1152 sc->sc_inports.mixerout =
1153 mi.un.e.member[i].ord;
1154 }
1155 au_setup_ports(sc, &sc->sc_inports, &mi,
1156 itable);
1157 }
1158 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1159 sc->sc_outports.master == -1)
1160 sc->sc_outports.master = mi.index;
1161 } else if (mi.mixer_class == mclass) {
1162 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1163 sc->sc_monitor_port = mi.index;
1164 } else if (mi.mixer_class == oclass) {
1165 if (strcmp(mi.label.name, AudioNmaster) == 0)
1166 sc->sc_outports.master = mi.index;
1167 if (strcmp(mi.label.name, AudioNselect) == 0)
1168 au_setup_ports(sc, &sc->sc_outports, &mi,
1169 otable);
1170 } else if (mi.mixer_class == rclass) {
1171 /*
1172 * These are the preferred mixers for the audio record
1173 * controls, so set the flags here, but don't check.
1174 */
1175 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1176 sc->sc_inports.master = mi.index;
1177 record_master_found = 1;
1178 }
1179 #if 1 /* Deprecated. Use AudioNmaster. */
1180 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1181 sc->sc_inports.master = mi.index;
1182 record_master_found = 1;
1183 }
1184 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1185 sc->sc_inports.master = mi.index;
1186 record_master_found = 1;
1187 }
1188 #endif
1189 if (strcmp(mi.label.name, AudioNsource) == 0) {
1190 if (mi.type == AUDIO_MIXER_ENUM) {
1191 int i;
1192 for(i = 0; i < mi.un.e.num_mem; i++)
1193 if (strcmp(mi.un.e.member[i].label.name,
1194 AudioNmixerout) == 0)
1195 sc->sc_inports.mixerout =
1196 mi.un.e.member[i].ord;
1197 }
1198 au_setup_ports(sc, &sc->sc_inports, &mi,
1199 itable);
1200 record_source_found = 1;
1201 }
1202 }
1203 }
1204 mutex_exit(sc->sc_lock);
1205 }
1206
1207 static int
1208 audioactivate(device_t self, enum devact act)
1209 {
1210 struct audio_softc *sc = device_private(self);
1211
1212 switch (act) {
1213 case DVACT_DEACTIVATE:
1214 mutex_enter(sc->sc_lock);
1215 sc->sc_dying = true;
1216 cv_broadcast(&sc->sc_exlockcv);
1217 mutex_exit(sc->sc_lock);
1218 return 0;
1219 default:
1220 return EOPNOTSUPP;
1221 }
1222 }
1223
1224 static int
1225 audiodetach(device_t self, int flags)
1226 {
1227 struct audio_softc *sc;
1228 int maj, mn;
1229 int error;
1230
1231 sc = device_private(self);
1232 TRACE(2, "flags=%d", flags);
1233
1234 /* device is not initialized */
1235 if (sc->hw_if == NULL)
1236 return 0;
1237
1238 /* Start draining existing accessors of the device. */
1239 error = config_detach_children(self, flags);
1240 if (error)
1241 return error;
1242
1243 mutex_enter(sc->sc_lock);
1244 sc->sc_dying = true;
1245 cv_broadcast(&sc->sc_exlockcv);
1246 if (sc->sc_pmixer)
1247 cv_broadcast(&sc->sc_pmixer->outcv);
1248 if (sc->sc_rmixer)
1249 cv_broadcast(&sc->sc_rmixer->outcv);
1250 mutex_exit(sc->sc_lock);
1251
1252 /* locate the major number */
1253 maj = cdevsw_lookup_major(&audio_cdevsw);
1254
1255 /*
1256 * Nuke the vnodes for any open instances (calls close).
1257 * Will wait until any activity on the device nodes has ceased.
1258 */
1259 mn = device_unit(self);
1260 vdevgone(maj, mn | SOUND_DEVICE, mn | SOUND_DEVICE, VCHR);
1261 vdevgone(maj, mn | AUDIO_DEVICE, mn | AUDIO_DEVICE, VCHR);
1262 vdevgone(maj, mn | AUDIOCTL_DEVICE, mn | AUDIOCTL_DEVICE, VCHR);
1263 vdevgone(maj, mn | MIXER_DEVICE, mn | MIXER_DEVICE, VCHR);
1264
1265 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1266 audio_volume_down, true);
1267 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1268 audio_volume_up, true);
1269 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1270 audio_volume_toggle, true);
1271
1272 #ifdef AUDIO_PM_IDLE
1273 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1274
1275 device_active_deregister(self, audio_activity);
1276 #endif
1277
1278 pmf_device_deregister(self);
1279
1280 /* Free resources */
1281 mutex_enter(sc->sc_lock);
1282 if (sc->sc_pmixer) {
1283 audio_mixer_destroy(sc, sc->sc_pmixer);
1284 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1285 }
1286 if (sc->sc_rmixer) {
1287 audio_mixer_destroy(sc, sc->sc_rmixer);
1288 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1289 }
1290 mutex_exit(sc->sc_lock);
1291
1292 seldestroy(&sc->sc_wsel);
1293 seldestroy(&sc->sc_rsel);
1294
1295 #ifdef AUDIO_PM_IDLE
1296 callout_destroy(&sc->sc_idle_counter);
1297 #endif
1298
1299 cv_destroy(&sc->sc_exlockcv);
1300
1301 #if defined(AUDIO_DEBUG)
1302 audio_mlog_free();
1303 #endif
1304
1305 return 0;
1306 }
1307
1308 static void
1309 audiochilddet(device_t self, device_t child)
1310 {
1311
1312 /* we hold no child references, so do nothing */
1313 }
1314
1315 static int
1316 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1317 {
1318
1319 if (config_match(parent, cf, aux))
1320 config_attach_loc(parent, cf, locs, aux, NULL);
1321
1322 return 0;
1323 }
1324
1325 static int
1326 audiorescan(device_t self, const char *ifattr, const int *flags)
1327 {
1328 struct audio_softc *sc = device_private(self);
1329
1330 if (!ifattr_match(ifattr, "audio"))
1331 return 0;
1332
1333 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1334
1335 return 0;
1336 }
1337
1338 /*
1339 * Called from hardware driver. This is where the MI audio driver gets
1340 * probed/attached to the hardware driver.
1341 */
1342 device_t
1343 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1344 {
1345 struct audio_attach_args arg;
1346
1347 #ifdef DIAGNOSTIC
1348 if (ahwp == NULL) {
1349 aprint_error("audio_attach_mi: NULL\n");
1350 return 0;
1351 }
1352 #endif
1353 arg.type = AUDIODEV_TYPE_AUDIO;
1354 arg.hwif = ahwp;
1355 arg.hdl = hdlp;
1356 return config_found(dev, &arg, audioprint);
1357 }
1358
1359 /*
1360 * Acquire sc_lock and enter exlock critical section.
1361 * If successful, it returns 0. Otherwise returns errno.
1362 */
1363 static int
1364 audio_enter_exclusive(struct audio_softc *sc)
1365 {
1366 int error;
1367
1368 KASSERT(!mutex_owned(sc->sc_lock));
1369
1370 mutex_enter(sc->sc_lock);
1371 if (sc->sc_dying) {
1372 mutex_exit(sc->sc_lock);
1373 return EIO;
1374 }
1375
1376 while (__predict_false(sc->sc_exlock != 0)) {
1377 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1378 if (sc->sc_dying)
1379 error = EIO;
1380 if (error) {
1381 mutex_exit(sc->sc_lock);
1382 return error;
1383 }
1384 }
1385
1386 /* Acquire */
1387 sc->sc_exlock = 1;
1388 return 0;
1389 }
1390
1391 /*
1392 * Leave exlock critical section and release sc_lock.
1393 * Must be called with sc_lock held.
1394 */
1395 static void
1396 audio_exit_exclusive(struct audio_softc *sc)
1397 {
1398
1399 KASSERT(mutex_owned(sc->sc_lock));
1400 KASSERT(sc->sc_exlock);
1401
1402 /* Leave critical section */
1403 sc->sc_exlock = 0;
1404 cv_broadcast(&sc->sc_exlockcv);
1405 mutex_exit(sc->sc_lock);
1406 }
1407
1408 /*
1409 * Wait for I/O to complete, releasing sc_lock.
1410 * Must be called with sc_lock held.
1411 */
1412 static int
1413 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1414 {
1415 int error;
1416
1417 KASSERT(track);
1418 KASSERT(mutex_owned(sc->sc_lock));
1419
1420 /* Wait for pending I/O to complete. */
1421 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1422 mstohz(AUDIO_TIMEOUT));
1423 if (sc->sc_dying) {
1424 error = EIO;
1425 }
1426 if (error) {
1427 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1428 if (error == EWOULDBLOCK)
1429 device_printf(sc->sc_dev, "device timeout\n");
1430 } else {
1431 TRACET(3, track, "wakeup");
1432 }
1433 return error;
1434 }
1435
1436 /*
1437 * Try to acquire track lock.
1438 * It doesn't block if the track lock is already aquired.
1439 * Returns true if the track lock was acquired, or false if the track
1440 * lock was already acquired.
1441 */
1442 static __inline bool
1443 audio_track_lock_tryenter(audio_track_t *track)
1444 {
1445 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1446 }
1447
1448 /*
1449 * Acquire track lock.
1450 */
1451 static __inline void
1452 audio_track_lock_enter(audio_track_t *track)
1453 {
1454 /* Don't sleep here. */
1455 while (audio_track_lock_tryenter(track) == false)
1456 ;
1457 }
1458
1459 /*
1460 * Release track lock.
1461 */
1462 static __inline void
1463 audio_track_lock_exit(audio_track_t *track)
1464 {
1465 atomic_swap_uint(&track->lock, 0);
1466 }
1467
1468
1469 static int
1470 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1471 {
1472 struct audio_softc *sc;
1473 int error;
1474
1475 /* Find the device */
1476 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1477 if (sc == NULL || sc->hw_if == NULL)
1478 return ENXIO;
1479
1480 error = audio_enter_exclusive(sc);
1481 if (error)
1482 return error;
1483
1484 device_active(sc->sc_dev, DVA_SYSTEM);
1485 switch (AUDIODEV(dev)) {
1486 case SOUND_DEVICE:
1487 case AUDIO_DEVICE:
1488 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1489 break;
1490 case AUDIOCTL_DEVICE:
1491 error = audioctl_open(dev, sc, flags, ifmt, l);
1492 break;
1493 case MIXER_DEVICE:
1494 error = mixer_open(dev, sc, flags, ifmt, l);
1495 break;
1496 default:
1497 error = ENXIO;
1498 break;
1499 }
1500 audio_exit_exclusive(sc);
1501
1502 return error;
1503 }
1504
1505 static int
1506 audioclose(struct file *fp)
1507 {
1508 struct audio_softc *sc;
1509 audio_file_t *file;
1510 int error;
1511 dev_t dev;
1512
1513 KASSERT(fp->f_audioctx);
1514 file = fp->f_audioctx;
1515 sc = file->sc;
1516 dev = file->dev;
1517
1518 /* audio_{enter,exit}_exclusive() is called by lower audio_close() */
1519
1520 device_active(sc->sc_dev, DVA_SYSTEM);
1521 switch (AUDIODEV(dev)) {
1522 case SOUND_DEVICE:
1523 case AUDIO_DEVICE:
1524 error = audio_close(sc, file);
1525 break;
1526 case AUDIOCTL_DEVICE:
1527 error = 0;
1528 break;
1529 case MIXER_DEVICE:
1530 error = mixer_close(sc, file);
1531 break;
1532 default:
1533 error = ENXIO;
1534 break;
1535 }
1536 if (error == 0) {
1537 kmem_free(fp->f_audioctx, sizeof(audio_file_t));
1538 fp->f_audioctx = NULL;
1539 }
1540
1541 return error;
1542 }
1543
1544 static int
1545 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1546 int ioflag)
1547 {
1548 struct audio_softc *sc;
1549 audio_file_t *file;
1550 int error;
1551 dev_t dev;
1552
1553 KASSERT(fp->f_audioctx);
1554 file = fp->f_audioctx;
1555 sc = file->sc;
1556 dev = file->dev;
1557
1558 if (fp->f_flag & O_NONBLOCK)
1559 ioflag |= IO_NDELAY;
1560
1561 switch (AUDIODEV(dev)) {
1562 case SOUND_DEVICE:
1563 case AUDIO_DEVICE:
1564 error = audio_read(sc, uio, ioflag, file);
1565 break;
1566 case AUDIOCTL_DEVICE:
1567 case MIXER_DEVICE:
1568 error = ENODEV;
1569 break;
1570 default:
1571 error = ENXIO;
1572 break;
1573 }
1574
1575 return error;
1576 }
1577
1578 static int
1579 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1580 int ioflag)
1581 {
1582 struct audio_softc *sc;
1583 audio_file_t *file;
1584 int error;
1585 dev_t dev;
1586
1587 KASSERT(fp->f_audioctx);
1588 file = fp->f_audioctx;
1589 sc = file->sc;
1590 dev = file->dev;
1591
1592 if (fp->f_flag & O_NONBLOCK)
1593 ioflag |= IO_NDELAY;
1594
1595 switch (AUDIODEV(dev)) {
1596 case SOUND_DEVICE:
1597 case AUDIO_DEVICE:
1598 error = audio_write(sc, uio, ioflag, file);
1599 break;
1600 case AUDIOCTL_DEVICE:
1601 case MIXER_DEVICE:
1602 error = ENODEV;
1603 break;
1604 default:
1605 error = ENXIO;
1606 break;
1607 }
1608
1609 return error;
1610 }
1611
1612 static int
1613 audioioctl(struct file *fp, u_long cmd, void *addr)
1614 {
1615 struct audio_softc *sc;
1616 audio_file_t *file;
1617 struct lwp *l = curlwp;
1618 int error;
1619 dev_t dev;
1620
1621 KASSERT(fp->f_audioctx);
1622 file = fp->f_audioctx;
1623 sc = file->sc;
1624 dev = file->dev;
1625
1626 switch (AUDIODEV(dev)) {
1627 case SOUND_DEVICE:
1628 case AUDIO_DEVICE:
1629 case AUDIOCTL_DEVICE:
1630 mutex_enter(sc->sc_lock);
1631 device_active(sc->sc_dev, DVA_SYSTEM);
1632 mutex_exit(sc->sc_lock);
1633 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1634 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1635 else
1636 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1637 file);
1638 break;
1639 case MIXER_DEVICE:
1640 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1641 break;
1642 default:
1643 error = ENXIO;
1644 break;
1645 }
1646
1647 return error;
1648 }
1649
1650 static int
1651 audiostat(struct file *fp, struct stat *st)
1652 {
1653 audio_file_t *file;
1654
1655 KASSERT(fp->f_audioctx);
1656 file = fp->f_audioctx;
1657
1658 memset(st, 0, sizeof(*st));
1659
1660 st->st_dev = file->dev;
1661 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1662 st->st_gid = kauth_cred_getegid(fp->f_cred);
1663 st->st_mode = S_IFCHR;
1664 return 0;
1665 }
1666
1667 static int
1668 audiopoll(struct file *fp, int events)
1669 {
1670 struct audio_softc *sc;
1671 audio_file_t *file;
1672 struct lwp *l = curlwp;
1673 int revents;
1674 dev_t dev;
1675
1676 KASSERT(fp->f_audioctx);
1677 file = fp->f_audioctx;
1678 sc = file->sc;
1679 dev = file->dev;
1680
1681 switch (AUDIODEV(dev)) {
1682 case SOUND_DEVICE:
1683 case AUDIO_DEVICE:
1684 revents = audio_poll(sc, events, l, file);
1685 break;
1686 case AUDIOCTL_DEVICE:
1687 case MIXER_DEVICE:
1688 revents = 0;
1689 break;
1690 default:
1691 revents = POLLERR;
1692 break;
1693 }
1694
1695 return revents;
1696 }
1697
1698 static int
1699 audiokqfilter(struct file *fp, struct knote *kn)
1700 {
1701 struct audio_softc *sc;
1702 audio_file_t *file;
1703 dev_t dev;
1704 int error;
1705
1706 KASSERT(fp->f_audioctx);
1707 file = fp->f_audioctx;
1708 sc = file->sc;
1709 dev = file->dev;
1710
1711 switch (AUDIODEV(dev)) {
1712 case SOUND_DEVICE:
1713 case AUDIO_DEVICE:
1714 error = audio_kqfilter(sc, file, kn);
1715 break;
1716 case AUDIOCTL_DEVICE:
1717 case MIXER_DEVICE:
1718 error = ENODEV;
1719 break;
1720 default:
1721 error = ENXIO;
1722 break;
1723 }
1724
1725 return error;
1726 }
1727
1728 static int
1729 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1730 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1731 {
1732 struct audio_softc *sc;
1733 audio_file_t *file;
1734 dev_t dev;
1735 int error;
1736
1737 KASSERT(fp->f_audioctx);
1738 file = fp->f_audioctx;
1739 sc = file->sc;
1740 dev = file->dev;
1741
1742 mutex_enter(sc->sc_lock);
1743 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1744 mutex_exit(sc->sc_lock);
1745
1746 switch (AUDIODEV(dev)) {
1747 case SOUND_DEVICE:
1748 case AUDIO_DEVICE:
1749 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1750 uobjp, maxprotp, file);
1751 break;
1752 case AUDIOCTL_DEVICE:
1753 case MIXER_DEVICE:
1754 default:
1755 error = ENOTSUP;
1756 break;
1757 }
1758
1759 return error;
1760 }
1761
1762
1763 /* Exported interfaces for audiobell. */
1764
1765 /*
1766 * Open for audiobell.
1767 * sample_rate, encoding, precision and channels in arg are in-parameter
1768 * and indicates input encoding.
1769 * Stores allocated file to arg->file.
1770 * Stores blocksize to arg->blocksize.
1771 * If successful returns 0, otherwise errno.
1772 */
1773 int
1774 audiobellopen(dev_t dev, struct audiobell_arg *arg)
1775 {
1776 struct audio_softc *sc;
1777 int error;
1778
1779 /* Find the device */
1780 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1781 if (sc == NULL || sc->hw_if == NULL)
1782 return ENXIO;
1783
1784 error = audio_enter_exclusive(sc);
1785 if (error)
1786 return error;
1787
1788 device_active(sc->sc_dev, DVA_SYSTEM);
1789 error = audio_open(dev, sc, FWRITE, 0, curlwp, arg);
1790
1791 audio_exit_exclusive(sc);
1792 return error;
1793 }
1794
1795 /* Close for audiobell */
1796 int
1797 audiobellclose(audio_file_t *file)
1798 {
1799 struct audio_softc *sc;
1800 int error;
1801
1802 sc = file->sc;
1803
1804 device_active(sc->sc_dev, DVA_SYSTEM);
1805 error = audio_close(sc, file);
1806
1807 /*
1808 * Since file has already been destructed,
1809 * audio_file_release() is not necessary.
1810 */
1811
1812 return error;
1813 }
1814
1815 /* Playback for audiobell */
1816 int
1817 audiobellwrite(audio_file_t *file, struct uio *uio)
1818 {
1819 struct audio_softc *sc;
1820 int error;
1821
1822 sc = file->sc;
1823 error = audio_write(sc, uio, 0, file);
1824 return error;
1825 }
1826
1827
1828 /*
1829 * Audio driver
1830 */
1831 int
1832 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
1833 struct lwp *l, struct audiobell_arg *bell)
1834 {
1835 struct audio_info ai;
1836 struct file *fp;
1837 audio_file_t *af;
1838 audio_ring_t *hwbuf;
1839 bool fullduplex;
1840 int fd;
1841 int error;
1842
1843 KASSERT(mutex_owned(sc->sc_lock));
1844 KASSERT(sc->sc_exlock);
1845
1846 TRACE(1, "%sflags=0x%x po=%d ro=%d",
1847 (audiodebug >= 3) ? "start " : "",
1848 flags, sc->sc_popens, sc->sc_ropens);
1849
1850 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
1851 af->sc = sc;
1852 af->dev = dev;
1853 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
1854 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
1855 if ((flags & FREAD) != 0 && audio_can_capture(sc))
1856 af->mode |= AUMODE_RECORD;
1857 if (af->mode == 0) {
1858 error = ENXIO;
1859 goto bad1;
1860 }
1861
1862 fullduplex = (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX);
1863
1864 /*
1865 * On half duplex hardware,
1866 * 1. if mode is (PLAY | REC), let mode PLAY.
1867 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
1868 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
1869 */
1870 if (fullduplex == false) {
1871 if ((af->mode & AUMODE_PLAY)) {
1872 if (sc->sc_ropens != 0) {
1873 TRACE(1, "record track already exists");
1874 error = ENODEV;
1875 goto bad1;
1876 }
1877 /* Play takes precedence */
1878 af->mode &= ~AUMODE_RECORD;
1879 }
1880 if ((af->mode & AUMODE_RECORD)) {
1881 if (sc->sc_popens != 0) {
1882 TRACE(1, "play track already exists");
1883 error = ENODEV;
1884 goto bad1;
1885 }
1886 }
1887 }
1888
1889 /* Create tracks */
1890 if ((af->mode & AUMODE_PLAY))
1891 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
1892 if ((af->mode & AUMODE_RECORD))
1893 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
1894
1895 /* Set parameters */
1896 AUDIO_INITINFO(&ai);
1897 if (bell) {
1898 ai.play.sample_rate = bell->sample_rate;
1899 ai.play.encoding = bell->encoding;
1900 ai.play.channels = bell->channels;
1901 ai.play.precision = bell->precision;
1902 ai.play.pause = false;
1903 } else if (ISDEVAUDIO(dev)) {
1904 /* If /dev/audio, initialize everytime. */
1905 ai.play.sample_rate = audio_default.sample_rate;
1906 ai.play.encoding = audio_default.encoding;
1907 ai.play.channels = audio_default.channels;
1908 ai.play.precision = audio_default.precision;
1909 ai.play.pause = false;
1910 ai.record.sample_rate = audio_default.sample_rate;
1911 ai.record.encoding = audio_default.encoding;
1912 ai.record.channels = audio_default.channels;
1913 ai.record.precision = audio_default.precision;
1914 ai.record.pause = false;
1915 } else {
1916 /* If /dev/sound, take over the previous parameters. */
1917 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
1918 ai.play.encoding = sc->sc_sound_pparams.encoding;
1919 ai.play.channels = sc->sc_sound_pparams.channels;
1920 ai.play.precision = sc->sc_sound_pparams.precision;
1921 ai.play.pause = sc->sc_sound_ppause;
1922 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
1923 ai.record.encoding = sc->sc_sound_rparams.encoding;
1924 ai.record.channels = sc->sc_sound_rparams.channels;
1925 ai.record.precision = sc->sc_sound_rparams.precision;
1926 ai.record.pause = sc->sc_sound_rpause;
1927 }
1928 error = audio_file_setinfo(sc, af, &ai);
1929 if (error)
1930 goto bad2;
1931
1932 if (sc->sc_popens + sc->sc_ropens == 0) {
1933 /* First open */
1934
1935 sc->sc_cred = kauth_cred_get();
1936 kauth_cred_hold(sc->sc_cred);
1937
1938 if (sc->hw_if->open) {
1939 int hwflags;
1940
1941 /*
1942 * Call hw_if->open() only at first open of
1943 * combination of playback and recording.
1944 * On full duplex hardware, the flags passed to
1945 * hw_if->open() is always (FREAD | FWRITE)
1946 * regardless of this open()'s flags.
1947 * see also dev/isa/aria.c
1948 * On half duplex hardware, the flags passed to
1949 * hw_if->open() is either FREAD or FWRITE.
1950 * see also arch/evbarm/mini2440/audio_mini2440.c
1951 */
1952 if (fullduplex) {
1953 hwflags = FREAD | FWRITE;
1954 } else {
1955 /* Construct hwflags from af->mode. */
1956 hwflags = 0;
1957 if ((af->mode & AUMODE_PLAY) != 0)
1958 hwflags |= FWRITE;
1959 if ((af->mode & AUMODE_RECORD) != 0)
1960 hwflags |= FREAD;
1961 }
1962
1963 mutex_enter(sc->sc_intr_lock);
1964 error = sc->hw_if->open(sc->hw_hdl, hwflags);
1965 mutex_exit(sc->sc_intr_lock);
1966 if (error)
1967 goto bad2;
1968 }
1969
1970 /*
1971 * Set speaker mode when a half duplex.
1972 * XXX I'm not sure this is correct.
1973 */
1974 if (1/*XXX*/) {
1975 if (sc->hw_if->speaker_ctl) {
1976 int on;
1977 if (af->ptrack) {
1978 on = 1;
1979 } else {
1980 on = 0;
1981 }
1982 mutex_enter(sc->sc_intr_lock);
1983 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
1984 mutex_exit(sc->sc_intr_lock);
1985 if (error)
1986 goto bad3;
1987 }
1988 }
1989 } else if (sc->sc_multiuser == false) {
1990 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
1991 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
1992 error = EPERM;
1993 goto bad2;
1994 }
1995 }
1996
1997 /* Call init_output if this is the first playback open. */
1998 if (af->ptrack && sc->sc_popens == 0) {
1999 if (sc->hw_if->init_output) {
2000 hwbuf = &sc->sc_pmixer->hwbuf;
2001 mutex_enter(sc->sc_intr_lock);
2002 error = sc->hw_if->init_output(sc->hw_hdl,
2003 hwbuf->mem,
2004 hwbuf->capacity *
2005 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2006 mutex_exit(sc->sc_intr_lock);
2007 if (error)
2008 goto bad3;
2009 }
2010 }
2011 /* Call init_input if this is the first recording open. */
2012 if (af->rtrack && sc->sc_ropens == 0) {
2013 if (sc->hw_if->init_input) {
2014 hwbuf = &sc->sc_rmixer->hwbuf;
2015 mutex_enter(sc->sc_intr_lock);
2016 error = sc->hw_if->init_input(sc->hw_hdl,
2017 hwbuf->mem,
2018 hwbuf->capacity *
2019 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2020 mutex_exit(sc->sc_intr_lock);
2021 if (error)
2022 goto bad3;
2023 }
2024 }
2025
2026 if (bell == NULL) {
2027 error = fd_allocfile(&fp, &fd);
2028 if (error)
2029 goto bad3;
2030 }
2031
2032 /*
2033 * Count up finally.
2034 * Don't fail from here.
2035 */
2036 if (af->ptrack)
2037 sc->sc_popens++;
2038 if (af->rtrack)
2039 sc->sc_ropens++;
2040 mutex_enter(sc->sc_intr_lock);
2041 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2042 mutex_exit(sc->sc_intr_lock);
2043
2044 if (bell) {
2045 bell->file = af;
2046 } else {
2047 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2048 KASSERT(error == EMOVEFD);
2049 }
2050
2051 TRACEF(3, af, "done");
2052 return error;
2053
2054 /*
2055 * Since track here is not yet linked to sc_files,
2056 * you can call track_destroy() without sc_intr_lock.
2057 */
2058 bad3:
2059 if (sc->sc_popens + sc->sc_ropens == 0) {
2060 if (sc->hw_if->close) {
2061 mutex_enter(sc->sc_intr_lock);
2062 sc->hw_if->close(sc->hw_hdl);
2063 mutex_exit(sc->sc_intr_lock);
2064 }
2065 }
2066 bad2:
2067 if (af->rtrack) {
2068 audio_track_destroy(af->rtrack);
2069 af->rtrack = NULL;
2070 }
2071 if (af->ptrack) {
2072 audio_track_destroy(af->ptrack);
2073 af->ptrack = NULL;
2074 }
2075 bad1:
2076 kmem_free(af, sizeof(*af));
2077 return error;
2078 }
2079
2080 /*
2081 * Must NOT called with sc_lock nor sc_exlock held.
2082 */
2083 int
2084 audio_close(struct audio_softc *sc, audio_file_t *file)
2085 {
2086 audio_track_t *oldtrack;
2087 int error;
2088
2089 KASSERT(!mutex_owned(sc->sc_lock));
2090
2091 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2092 (audiodebug >= 3) ? "start " : "",
2093 (int)curproc->p_pid, (int)curlwp->l_lid,
2094 sc->sc_popens, sc->sc_ropens);
2095 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2096 "sc->sc_popens=%d, sc->sc_ropens=%d",
2097 sc->sc_popens, sc->sc_ropens);
2098
2099 /*
2100 * Drain first.
2101 * It must be done before acquiring exclusive lock.
2102 */
2103 if (file->ptrack) {
2104 mutex_enter(sc->sc_lock);
2105 audio_track_drain(sc, file->ptrack);
2106 mutex_exit(sc->sc_lock);
2107 }
2108
2109 /* Then, acquire exclusive lock to protect counters. */
2110 /* XXX what should I do when an error occurs? */
2111 error = audio_enter_exclusive(sc);
2112 if (error)
2113 return error;
2114
2115 if (file->ptrack) {
2116 /* Call hw halt_output if this is the last playback track. */
2117 if (sc->sc_popens == 1 && sc->sc_pbusy) {
2118 error = audio_pmixer_halt(sc);
2119 if (error) {
2120 device_printf(sc->sc_dev,
2121 "halt_output failed with %d\n", error);
2122 }
2123 }
2124
2125 /* Destroy the track. */
2126 oldtrack = file->ptrack;
2127 mutex_enter(sc->sc_intr_lock);
2128 file->ptrack = NULL;
2129 mutex_exit(sc->sc_intr_lock);
2130 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2131 oldtrack->dropframes);
2132 audio_track_destroy(oldtrack);
2133
2134 KASSERT(sc->sc_popens > 0);
2135 sc->sc_popens--;
2136 }
2137 if (file->rtrack) {
2138 /* Call hw halt_input if this is the last recording track. */
2139 if (sc->sc_ropens == 1 && sc->sc_rbusy) {
2140 error = audio_rmixer_halt(sc);
2141 if (error) {
2142 device_printf(sc->sc_dev,
2143 "halt_input failed with %d\n", error);
2144 }
2145 }
2146
2147 /* Destroy the track. */
2148 oldtrack = file->rtrack;
2149 mutex_enter(sc->sc_intr_lock);
2150 file->rtrack = NULL;
2151 mutex_exit(sc->sc_intr_lock);
2152 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2153 oldtrack->dropframes);
2154 audio_track_destroy(oldtrack);
2155
2156 KASSERT(sc->sc_ropens > 0);
2157 sc->sc_ropens--;
2158 }
2159
2160 /* Call hw close if this is the last track. */
2161 if (sc->sc_popens + sc->sc_ropens == 0) {
2162 if (sc->hw_if->close) {
2163 TRACE(2, "hw_if close");
2164 mutex_enter(sc->sc_intr_lock);
2165 sc->hw_if->close(sc->hw_hdl);
2166 mutex_exit(sc->sc_intr_lock);
2167 }
2168
2169 kauth_cred_free(sc->sc_cred);
2170 }
2171
2172 mutex_enter(sc->sc_intr_lock);
2173 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2174 mutex_exit(sc->sc_intr_lock);
2175
2176 TRACE(3, "done");
2177 audio_exit_exclusive(sc);
2178 return 0;
2179 }
2180
2181 int
2182 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2183 audio_file_t *file)
2184 {
2185 audio_track_t *track;
2186 audio_ring_t *usrbuf;
2187 audio_ring_t *input;
2188 int error;
2189
2190 track = file->rtrack;
2191 KASSERT(track);
2192 TRACET(2, track, "resid=%zd", uio->uio_resid);
2193
2194 KASSERT(!mutex_owned(sc->sc_lock));
2195
2196 /* I think it's better than EINVAL. */
2197 if (track->mmapped)
2198 return EPERM;
2199
2200 #ifdef AUDIO_PM_IDLE
2201 mutex_enter(sc->sc_lock);
2202 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2203 device_active(&sc->sc_dev, DVA_SYSTEM);
2204 mutex_exit(sc->sc_lock);
2205 #endif
2206
2207 /*
2208 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2209 * However read() system call itself can be called because it's
2210 * opened with O_RDWR. So in this case, deny this read().
2211 */
2212 if ((file->mode & AUMODE_RECORD) == 0) {
2213 return EBADF;
2214 }
2215
2216 TRACET(3, track, "resid=%zd", uio->uio_resid);
2217
2218 usrbuf = &track->usrbuf;
2219 input = track->input;
2220
2221 /*
2222 * The first read starts rmixer.
2223 */
2224 error = audio_enter_exclusive(sc);
2225 if (error)
2226 return error;
2227 if (sc->sc_rbusy == false)
2228 audio_rmixer_start(sc);
2229 audio_exit_exclusive(sc);
2230
2231 error = 0;
2232 while (uio->uio_resid > 0 && error == 0) {
2233 int bytes;
2234
2235 TRACET(3, track,
2236 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2237 uio->uio_resid,
2238 input->head, input->used, input->capacity,
2239 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2240
2241 /* Wait when buffers are empty. */
2242 mutex_enter(sc->sc_lock);
2243 for (;;) {
2244 bool empty;
2245 audio_track_lock_enter(track);
2246 empty = (input->used == 0 && usrbuf->used == 0);
2247 audio_track_lock_exit(track);
2248 if (!empty)
2249 break;
2250
2251 if ((ioflag & IO_NDELAY)) {
2252 mutex_exit(sc->sc_lock);
2253 return EWOULDBLOCK;
2254 }
2255
2256 TRACET(3, track, "sleep");
2257 error = audio_track_waitio(sc, track);
2258 if (error) {
2259 mutex_exit(sc->sc_lock);
2260 return error;
2261 }
2262 }
2263 mutex_exit(sc->sc_lock);
2264
2265 audio_track_lock_enter(track);
2266 audio_track_record(track);
2267
2268 /* uiomove from usrbuf as much as possible. */
2269 bytes = uimin(usrbuf->used, uio->uio_resid);
2270 while (bytes > 0) {
2271 int head = usrbuf->head;
2272 int len = uimin(bytes, usrbuf->capacity - head);
2273 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2274 uio);
2275 if (error) {
2276 audio_track_lock_exit(track);
2277 device_printf(sc->sc_dev,
2278 "uiomove(len=%d) failed with %d\n",
2279 len, error);
2280 goto abort;
2281 }
2282 auring_take(usrbuf, len);
2283 track->useriobytes += len;
2284 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2285 len,
2286 usrbuf->head, usrbuf->used, usrbuf->capacity);
2287 bytes -= len;
2288 }
2289
2290 audio_track_lock_exit(track);
2291 }
2292
2293 abort:
2294 return error;
2295 }
2296
2297
2298 /*
2299 * Clear file's playback and/or record track buffer immediately.
2300 */
2301 static void
2302 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2303 {
2304
2305 if (file->ptrack)
2306 audio_track_clear(sc, file->ptrack);
2307 if (file->rtrack)
2308 audio_track_clear(sc, file->rtrack);
2309 }
2310
2311 int
2312 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2313 audio_file_t *file)
2314 {
2315 audio_track_t *track;
2316 audio_ring_t *usrbuf;
2317 audio_ring_t *outbuf;
2318 int error;
2319
2320 track = file->ptrack;
2321 KASSERT(track);
2322 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2323 audiodebug >= 3 ? "begin " : "",
2324 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2325
2326 KASSERT(!mutex_owned(sc->sc_lock));
2327
2328 /* I think it's better than EINVAL. */
2329 if (track->mmapped)
2330 return EPERM;
2331
2332 if (uio->uio_resid == 0) {
2333 track->eofcounter++;
2334 return 0;
2335 }
2336
2337 #ifdef AUDIO_PM_IDLE
2338 mutex_enter(sc->sc_lock);
2339 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2340 device_active(&sc->sc_dev, DVA_SYSTEM);
2341 mutex_exit(sc->sc_lock);
2342 #endif
2343
2344 usrbuf = &track->usrbuf;
2345 outbuf = &track->outbuf;
2346
2347 /*
2348 * The first write starts pmixer.
2349 */
2350 error = audio_enter_exclusive(sc);
2351 if (error)
2352 return error;
2353 if (sc->sc_pbusy == false)
2354 audio_pmixer_start(sc, false);
2355 audio_exit_exclusive(sc);
2356
2357 track->pstate = AUDIO_STATE_RUNNING;
2358 error = 0;
2359 while (uio->uio_resid > 0 && error == 0) {
2360 int bytes;
2361
2362 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2363 uio->uio_resid,
2364 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2365
2366 /* Wait when buffers are full. */
2367 mutex_enter(sc->sc_lock);
2368 for (;;) {
2369 bool full;
2370 audio_track_lock_enter(track);
2371 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2372 outbuf->used >= outbuf->capacity);
2373 audio_track_lock_exit(track);
2374 if (!full)
2375 break;
2376
2377 if ((ioflag & IO_NDELAY)) {
2378 error = EWOULDBLOCK;
2379 mutex_exit(sc->sc_lock);
2380 goto abort;
2381 }
2382
2383 TRACET(3, track, "sleep usrbuf=%d/H%d",
2384 usrbuf->used, track->usrbuf_usedhigh);
2385 error = audio_track_waitio(sc, track);
2386 if (error) {
2387 mutex_exit(sc->sc_lock);
2388 goto abort;
2389 }
2390 }
2391 mutex_exit(sc->sc_lock);
2392
2393 audio_track_lock_enter(track);
2394
2395 /* uiomove to usrbuf as much as possible. */
2396 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2397 uio->uio_resid);
2398 while (bytes > 0) {
2399 int tail = auring_tail(usrbuf);
2400 int len = uimin(bytes, usrbuf->capacity - tail);
2401 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2402 uio);
2403 if (error) {
2404 audio_track_lock_exit(track);
2405 device_printf(sc->sc_dev,
2406 "uiomove(len=%d) failed with %d\n",
2407 len, error);
2408 goto abort;
2409 }
2410 auring_push(usrbuf, len);
2411 track->useriobytes += len;
2412 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2413 len,
2414 usrbuf->head, usrbuf->used, usrbuf->capacity);
2415 bytes -= len;
2416 }
2417
2418 /* Convert them as much as possible. */
2419 while (usrbuf->used >= track->usrbuf_blksize &&
2420 outbuf->used < outbuf->capacity) {
2421 audio_track_play(track);
2422 }
2423
2424 audio_track_lock_exit(track);
2425 }
2426
2427 abort:
2428 TRACET(3, track, "done error=%d", error);
2429 return error;
2430 }
2431
2432 int
2433 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2434 struct lwp *l, audio_file_t *file)
2435 {
2436 struct audio_offset *ao;
2437 struct audio_info ai;
2438 audio_track_t *track;
2439 audio_encoding_t *ae;
2440 audio_format_query_t *query;
2441 u_int stamp;
2442 u_int offs;
2443 int fd;
2444 int index;
2445 int error;
2446
2447 KASSERT(!mutex_owned(sc->sc_lock));
2448
2449 #if defined(AUDIO_DEBUG)
2450 const char *ioctlnames[] = {
2451 " AUDIO_GETINFO", /* 21 */
2452 " AUDIO_SETINFO", /* 22 */
2453 " AUDIO_DRAIN", /* 23 */
2454 " AUDIO_FLUSH", /* 24 */
2455 " AUDIO_WSEEK", /* 25 */
2456 " AUDIO_RERROR", /* 26 */
2457 " AUDIO_GETDEV", /* 27 */
2458 " AUDIO_GETENC", /* 28 */
2459 " AUDIO_GETFD", /* 29 */
2460 " AUDIO_SETFD", /* 30 */
2461 " AUDIO_PERROR", /* 31 */
2462 " AUDIO_GETIOFFS", /* 32 */
2463 " AUDIO_GETOOFFS", /* 33 */
2464 " AUDIO_GETPROPS", /* 34 */
2465 " AUDIO_GETBUFINFO", /* 35 */
2466 " AUDIO_SETCHAN", /* 36 */
2467 " AUDIO_GETCHAN", /* 37 */
2468 " AUDIO_QUERYFORMAT", /* 38 */
2469 " AUDIO_GETFORMAT", /* 39 */
2470 " AUDIO_SETFORMAT", /* 40 */
2471 };
2472 int nameidx = (cmd & 0xff);
2473 const char *ioctlname = "";
2474 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2475 ioctlname = ioctlnames[nameidx - 21];
2476 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2477 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2478 (int)curproc->p_pid, (int)l->l_lid);
2479 #endif
2480
2481 error = 0;
2482 switch (cmd) {
2483 case FIONBIO:
2484 /* All handled in the upper FS layer. */
2485 break;
2486
2487 case FIONREAD:
2488 /* Get the number of bytes that can be read. */
2489 if (file->rtrack) {
2490 *(int *)addr = audio_track_readablebytes(file->rtrack);
2491 } else {
2492 *(int *)addr = 0;
2493 }
2494 break;
2495
2496 case FIOASYNC:
2497 /* Set/Clear ASYNC I/O. */
2498 if (*(int *)addr) {
2499 file->async_audio = curproc->p_pid;
2500 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2501 } else {
2502 file->async_audio = 0;
2503 TRACEF(2, file, "FIOASYNC off");
2504 }
2505 break;
2506
2507 case AUDIO_FLUSH:
2508 /* XXX TODO: clear errors and restart? */
2509 audio_file_clear(sc, file);
2510 break;
2511
2512 case AUDIO_RERROR:
2513 /*
2514 * Number of read bytes dropped. We don't know where
2515 * or when they were dropped (including conversion stage).
2516 * Therefore, the number of accurate bytes or samples is
2517 * also unknown.
2518 */
2519 track = file->rtrack;
2520 if (track) {
2521 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2522 track->dropframes);
2523 }
2524 break;
2525
2526 case AUDIO_PERROR:
2527 /*
2528 * Number of write bytes dropped. We don't know where
2529 * or when they were dropped (including conversion stage).
2530 * Therefore, the number of accurate bytes or samples is
2531 * also unknown.
2532 */
2533 track = file->ptrack;
2534 if (track) {
2535 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2536 track->dropframes);
2537 }
2538 break;
2539
2540 case AUDIO_GETIOFFS:
2541 /* XXX TODO */
2542 ao = (struct audio_offset *)addr;
2543 ao->samples = 0;
2544 ao->deltablks = 0;
2545 ao->offset = 0;
2546 break;
2547
2548 case AUDIO_GETOOFFS:
2549 ao = (struct audio_offset *)addr;
2550 track = file->ptrack;
2551 if (track == NULL) {
2552 ao->samples = 0;
2553 ao->deltablks = 0;
2554 ao->offset = 0;
2555 break;
2556 }
2557 mutex_enter(sc->sc_lock);
2558 mutex_enter(sc->sc_intr_lock);
2559 /* figure out where next DMA will start */
2560 stamp = track->usrbuf_stamp;
2561 offs = track->usrbuf.head;
2562 mutex_exit(sc->sc_intr_lock);
2563 mutex_exit(sc->sc_lock);
2564
2565 ao->samples = stamp;
2566 ao->deltablks = (stamp / track->usrbuf_blksize) -
2567 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2568 track->usrbuf_stamp_last = stamp;
2569 offs = rounddown(offs, track->usrbuf_blksize)
2570 + track->usrbuf_blksize;
2571 if (offs >= track->usrbuf.capacity)
2572 offs -= track->usrbuf.capacity;
2573 ao->offset = offs;
2574
2575 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2576 ao->samples, ao->deltablks, ao->offset);
2577 break;
2578
2579 case AUDIO_WSEEK:
2580 /* XXX return value does not include outbuf one. */
2581 if (file->ptrack)
2582 *(u_long *)addr = file->ptrack->usrbuf.used;
2583 break;
2584
2585 case AUDIO_SETINFO:
2586 error = audio_enter_exclusive(sc);
2587 if (error)
2588 break;
2589 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2590 if (error) {
2591 audio_exit_exclusive(sc);
2592 break;
2593 }
2594 /* XXX TODO: update last_ai if /dev/sound ? */
2595 if (ISDEVSOUND(dev))
2596 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2597 audio_exit_exclusive(sc);
2598 break;
2599
2600 case AUDIO_GETINFO:
2601 error = audio_enter_exclusive(sc);
2602 if (error)
2603 break;
2604 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2605 audio_exit_exclusive(sc);
2606 break;
2607
2608 case AUDIO_GETBUFINFO:
2609 mutex_enter(sc->sc_lock);
2610 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2611 mutex_exit(sc->sc_lock);
2612 break;
2613
2614 case AUDIO_DRAIN:
2615 if (file->ptrack) {
2616 mutex_enter(sc->sc_lock);
2617 error = audio_track_drain(sc, file->ptrack);
2618 mutex_exit(sc->sc_lock);
2619 }
2620 break;
2621
2622 case AUDIO_GETDEV:
2623 mutex_enter(sc->sc_lock);
2624 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2625 mutex_exit(sc->sc_lock);
2626 break;
2627
2628 case AUDIO_GETENC:
2629 ae = (audio_encoding_t *)addr;
2630 index = ae->index;
2631 if (index < 0 || index >= __arraycount(audio_encodings)) {
2632 error = EINVAL;
2633 break;
2634 }
2635 *ae = audio_encodings[index];
2636 ae->index = index;
2637 /*
2638 * EMULATED always.
2639 * EMULATED flag at that time used to mean that it could
2640 * not be passed directly to the hardware as-is. But
2641 * currently, all formats including hardware native is not
2642 * passed directly to the hardware. So I set EMULATED
2643 * flag for all formats.
2644 */
2645 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2646 break;
2647
2648 case AUDIO_GETFD:
2649 /*
2650 * Returns the current setting of full duplex mode.
2651 * If HW has full duplex mode and there are two mixers,
2652 * it is full duplex. Otherwise half duplex.
2653 */
2654 mutex_enter(sc->sc_lock);
2655 fd = (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX)
2656 && (sc->sc_pmixer && sc->sc_rmixer);
2657 mutex_exit(sc->sc_lock);
2658 *(int *)addr = fd;
2659 break;
2660
2661 case AUDIO_GETPROPS:
2662 mutex_enter(sc->sc_lock);
2663 *(int *)addr = audio_get_props(sc);
2664 mutex_exit(sc->sc_lock);
2665 break;
2666
2667 case AUDIO_QUERYFORMAT:
2668 query = (audio_format_query_t *)addr;
2669 if (sc->hw_if->query_format) {
2670 mutex_enter(sc->sc_lock);
2671 error = sc->hw_if->query_format(sc->hw_hdl, query);
2672 mutex_exit(sc->sc_lock);
2673 /* Hide internal infomations */
2674 query->fmt.driver_data = NULL;
2675 } else {
2676 error = ENODEV;
2677 }
2678 break;
2679
2680 case AUDIO_GETFORMAT:
2681 audio_mixers_get_format(sc, (struct audio_info *)addr);
2682 break;
2683
2684 case AUDIO_SETFORMAT:
2685 mutex_enter(sc->sc_lock);
2686 audio_mixers_get_format(sc, &ai);
2687 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2688 if (error) {
2689 /* Rollback */
2690 audio_mixers_set_format(sc, &ai);
2691 }
2692 mutex_exit(sc->sc_lock);
2693 break;
2694
2695 case AUDIO_SETFD:
2696 case AUDIO_SETCHAN:
2697 case AUDIO_GETCHAN:
2698 /* Obsoleted */
2699 break;
2700
2701 default:
2702 if (sc->hw_if->dev_ioctl) {
2703 error = audio_enter_exclusive(sc);
2704 if (error)
2705 break;
2706 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2707 cmd, addr, flag, l);
2708 audio_exit_exclusive(sc);
2709 } else {
2710 TRACEF(2, file, "unknown ioctl");
2711 error = EINVAL;
2712 }
2713 break;
2714 }
2715 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2716 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2717 error);
2718 return error;
2719 }
2720
2721 /*
2722 * Returns the number of bytes that can be read on recording buffer.
2723 */
2724 static __inline int
2725 audio_track_readablebytes(const audio_track_t *track)
2726 {
2727 int bytes;
2728
2729 KASSERT(track);
2730 KASSERT(track->mode == AUMODE_RECORD);
2731
2732 /*
2733 * Although usrbuf is primarily readable data, recorded data
2734 * also stays in track->input until reading. So it is necessary
2735 * to add it. track->input is in frame, usrbuf is in byte.
2736 */
2737 bytes = track->usrbuf.used +
2738 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
2739 return bytes;
2740 }
2741
2742 int
2743 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
2744 audio_file_t *file)
2745 {
2746 audio_track_t *track;
2747 int revents;
2748 bool in_is_valid;
2749 bool out_is_valid;
2750
2751 KASSERT(!mutex_owned(sc->sc_lock));
2752
2753 #if defined(AUDIO_DEBUG)
2754 #define POLLEV_BITMAP "\177\020" \
2755 "b\10WRBAND\0" \
2756 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
2757 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
2758 char evbuf[64];
2759 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
2760 TRACEF(2, file, "pid=%d.%d events=%s",
2761 (int)curproc->p_pid, (int)l->l_lid, evbuf);
2762 #endif
2763
2764 revents = 0;
2765 in_is_valid = false;
2766 out_is_valid = false;
2767 if (events & (POLLIN | POLLRDNORM)) {
2768 track = file->rtrack;
2769 if (track) {
2770 int used;
2771 in_is_valid = true;
2772 used = audio_track_readablebytes(track);
2773 if (used > 0)
2774 revents |= events & (POLLIN | POLLRDNORM);
2775 }
2776 }
2777 if (events & (POLLOUT | POLLWRNORM)) {
2778 track = file->ptrack;
2779 if (track) {
2780 out_is_valid = true;
2781 if (track->usrbuf.used <= track->usrbuf_usedlow)
2782 revents |= events & (POLLOUT | POLLWRNORM);
2783 }
2784 }
2785
2786 if (revents == 0) {
2787 mutex_enter(sc->sc_lock);
2788 if (in_is_valid) {
2789 TRACEF(3, file, "selrecord rsel");
2790 selrecord(l, &sc->sc_rsel);
2791 }
2792 if (out_is_valid) {
2793 TRACEF(3, file, "selrecord wsel");
2794 selrecord(l, &sc->sc_wsel);
2795 }
2796 mutex_exit(sc->sc_lock);
2797 }
2798
2799 #if defined(AUDIO_DEBUG)
2800 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
2801 TRACEF(2, file, "revents=%s", evbuf);
2802 #endif
2803 return revents;
2804 }
2805
2806 static const struct filterops audioread_filtops = {
2807 .f_isfd = 1,
2808 .f_attach = NULL,
2809 .f_detach = filt_audioread_detach,
2810 .f_event = filt_audioread_event,
2811 };
2812
2813 static void
2814 filt_audioread_detach(struct knote *kn)
2815 {
2816 struct audio_softc *sc;
2817 audio_file_t *file;
2818
2819 file = kn->kn_hook;
2820 sc = file->sc;
2821 TRACEF(3, file, "");
2822
2823 mutex_enter(sc->sc_lock);
2824 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
2825 mutex_exit(sc->sc_lock);
2826 }
2827
2828 static int
2829 filt_audioread_event(struct knote *kn, long hint)
2830 {
2831 audio_file_t *file;
2832 audio_track_t *track;
2833
2834 file = kn->kn_hook;
2835 track = file->rtrack;
2836
2837 /*
2838 * kn_data must contain the number of bytes can be read.
2839 * The return value indicates whether the event occurs or not.
2840 */
2841
2842 if (track == NULL) {
2843 /* can not read with this descriptor. */
2844 kn->kn_data = 0;
2845 return 0;
2846 }
2847
2848 kn->kn_data = audio_track_readablebytes(track);
2849 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2850 return kn->kn_data > 0;
2851 }
2852
2853 static const struct filterops audiowrite_filtops = {
2854 .f_isfd = 1,
2855 .f_attach = NULL,
2856 .f_detach = filt_audiowrite_detach,
2857 .f_event = filt_audiowrite_event,
2858 };
2859
2860 static void
2861 filt_audiowrite_detach(struct knote *kn)
2862 {
2863 struct audio_softc *sc;
2864 audio_file_t *file;
2865
2866 file = kn->kn_hook;
2867 sc = file->sc;
2868 TRACEF(3, file, "");
2869
2870 mutex_enter(sc->sc_lock);
2871 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
2872 mutex_exit(sc->sc_lock);
2873 }
2874
2875 static int
2876 filt_audiowrite_event(struct knote *kn, long hint)
2877 {
2878 audio_file_t *file;
2879 audio_track_t *track;
2880
2881 file = kn->kn_hook;
2882 track = file->ptrack;
2883
2884 /*
2885 * kn_data must contain the number of bytes can be write.
2886 * The return value indicates whether the event occurs or not.
2887 */
2888
2889 if (track == NULL) {
2890 /* can not write with this descriptor. */
2891 kn->kn_data = 0;
2892 return 0;
2893 }
2894
2895 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
2896 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2897 return (track->usrbuf.used < track->usrbuf_usedlow);
2898 }
2899
2900 int
2901 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
2902 {
2903 struct klist *klist;
2904
2905 KASSERT(!mutex_owned(sc->sc_lock));
2906
2907 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
2908
2909 switch (kn->kn_filter) {
2910 case EVFILT_READ:
2911 klist = &sc->sc_rsel.sel_klist;
2912 kn->kn_fop = &audioread_filtops;
2913 break;
2914
2915 case EVFILT_WRITE:
2916 klist = &sc->sc_wsel.sel_klist;
2917 kn->kn_fop = &audiowrite_filtops;
2918 break;
2919
2920 default:
2921 return EINVAL;
2922 }
2923
2924 kn->kn_hook = file;
2925
2926 mutex_enter(sc->sc_lock);
2927 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
2928 mutex_exit(sc->sc_lock);
2929
2930 return 0;
2931 }
2932
2933 int
2934 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
2935 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
2936 audio_file_t *file)
2937 {
2938 audio_track_t *track;
2939 vsize_t vsize;
2940 int error;
2941
2942 KASSERT(!mutex_owned(sc->sc_lock));
2943
2944 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
2945
2946 if (*offp < 0)
2947 return EINVAL;
2948
2949 #if 0
2950 /* XXX
2951 * The idea here was to use the protection to determine if
2952 * we are mapping the read or write buffer, but it fails.
2953 * The VM system is broken in (at least) two ways.
2954 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
2955 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
2956 * has to be used for mmapping the play buffer.
2957 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
2958 * audio_mmap will get called at some point with VM_PROT_READ
2959 * only.
2960 * So, alas, we always map the play buffer for now.
2961 */
2962 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
2963 prot == VM_PROT_WRITE)
2964 track = file->ptrack;
2965 else if (prot == VM_PROT_READ)
2966 track = file->rtrack;
2967 else
2968 return EINVAL;
2969 #else
2970 track = file->ptrack;
2971 #endif
2972 if (track == NULL)
2973 return EACCES;
2974
2975 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
2976 if (len > vsize)
2977 return EOVERFLOW;
2978 if (*offp > (uint)(vsize - len))
2979 return EOVERFLOW;
2980
2981 /* XXX TODO: what happens when mmap twice. */
2982 if (!track->mmapped) {
2983 track->mmapped = true;
2984
2985 if (!track->is_pause) {
2986 error = audio_enter_exclusive(sc);
2987 if (error)
2988 return error;
2989 if (sc->sc_pbusy == false)
2990 audio_pmixer_start(sc, true);
2991 audio_exit_exclusive(sc);
2992 }
2993 /* XXX mmapping record buffer is not supported */
2994 }
2995
2996 /* get ringbuffer */
2997 *uobjp = track->uobj;
2998
2999 /* Acquire a reference for the mmap. munmap will release. */
3000 uao_reference(*uobjp);
3001 *maxprotp = prot;
3002 *advicep = UVM_ADV_RANDOM;
3003 *flagsp = MAP_SHARED;
3004 return 0;
3005 }
3006
3007 /*
3008 * /dev/audioctl has to be able to open at any time without interference
3009 * with any /dev/audio or /dev/sound.
3010 */
3011 static int
3012 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3013 struct lwp *l)
3014 {
3015 struct file *fp;
3016 audio_file_t *af;
3017 int fd;
3018 int error;
3019
3020 KASSERT(mutex_owned(sc->sc_lock));
3021 KASSERT(sc->sc_exlock);
3022
3023 TRACE(1, "");
3024
3025 error = fd_allocfile(&fp, &fd);
3026 if (error)
3027 return error;
3028
3029 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3030 af->sc = sc;
3031 af->dev = dev;
3032
3033 /* Not necessary to insert sc_files. */
3034
3035 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3036 KASSERT(error == EMOVEFD);
3037
3038 return error;
3039 }
3040
3041 /*
3042 * Reallocate 'memblock' with specified 'bytes' if 'bytes' > 0.
3043 * Or free 'memblock' and return NULL if 'byte' is zero.
3044 */
3045 static void *
3046 audio_realloc(void *memblock, size_t bytes)
3047 {
3048
3049 if (memblock != NULL) {
3050 if (bytes != 0) {
3051 return kern_realloc(memblock, bytes, M_NOWAIT);
3052 } else {
3053 kern_free(memblock);
3054 return NULL;
3055 }
3056 } else {
3057 if (bytes != 0) {
3058 return kern_malloc(bytes, M_NOWAIT);
3059 } else {
3060 return NULL;
3061 }
3062 }
3063 }
3064
3065 /*
3066 * Free 'mem' if available, and initialize the pointer.
3067 * For this reason, this is implemented as macro.
3068 */
3069 #define audio_free(mem) do { \
3070 if (mem != NULL) { \
3071 kern_free(mem); \
3072 mem = NULL; \
3073 } \
3074 } while (0)
3075
3076 /*
3077 * (Re)allocate usrbuf with 'newbufsize' bytes.
3078 * Use this function for usrbuf because only usrbuf can be mmapped.
3079 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3080 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3081 * and returns errno.
3082 * It must be called before updating usrbuf.capacity.
3083 */
3084 static int
3085 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3086 {
3087 struct audio_softc *sc;
3088 vaddr_t vstart;
3089 vsize_t oldvsize;
3090 vsize_t newvsize;
3091 int error;
3092
3093 KASSERT(newbufsize > 0);
3094 sc = track->mixer->sc;
3095
3096 /* Get a nonzero multiple of PAGE_SIZE */
3097 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3098
3099 if (track->usrbuf.mem != NULL) {
3100 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3101 PAGE_SIZE);
3102 if (oldvsize == newvsize) {
3103 track->usrbuf.capacity = newbufsize;
3104 return 0;
3105 }
3106 vstart = (vaddr_t)track->usrbuf.mem;
3107 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3108 /* uvm_unmap also detach uobj */
3109 track->uobj = NULL; /* paranoia */
3110 track->usrbuf.mem = NULL;
3111 }
3112
3113 /* Create a uvm anonymous object */
3114 track->uobj = uao_create(newvsize, 0);
3115
3116 /* Map it into the kernel virtual address space */
3117 vstart = 0;
3118 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3119 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3120 UVM_ADV_RANDOM, 0));
3121 if (error) {
3122 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3123 uao_detach(track->uobj); /* release reference */
3124 goto abort;
3125 }
3126
3127 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3128 false, 0);
3129 if (error) {
3130 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3131 error);
3132 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3133 /* uvm_unmap also detach uobj */
3134 goto abort;
3135 }
3136
3137 track->usrbuf.mem = (void *)vstart;
3138 track->usrbuf.capacity = newbufsize;
3139 memset(track->usrbuf.mem, 0, newvsize);
3140 return 0;
3141
3142 /* failure */
3143 abort:
3144 track->uobj = NULL; /* paranoia */
3145 track->usrbuf.mem = NULL;
3146 track->usrbuf.capacity = 0;
3147 return error;
3148 }
3149
3150 /*
3151 * Free usrbuf (if available).
3152 */
3153 static void
3154 audio_free_usrbuf(audio_track_t *track)
3155 {
3156 vaddr_t vstart;
3157 vsize_t vsize;
3158
3159 vstart = (vaddr_t)track->usrbuf.mem;
3160 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3161 if (track->usrbuf.mem != NULL) {
3162 /*
3163 * Unmap the kernel mapping. uvm_unmap releases the
3164 * reference to the uvm object, and this should be the
3165 * last virtual mapping of the uvm object, so no need
3166 * to explicitly release (`detach') the object.
3167 */
3168 uvm_unmap(kernel_map, vstart, vstart + vsize);
3169
3170 track->uobj = NULL;
3171 track->usrbuf.mem = NULL;
3172 track->usrbuf.capacity = 0;
3173 }
3174 }
3175
3176 /*
3177 * This filter changes the volume for each channel.
3178 * arg->context points track->ch_volume[].
3179 */
3180 static void
3181 audio_track_chvol(audio_filter_arg_t *arg)
3182 {
3183 int16_t *ch_volume;
3184 const aint_t *s;
3185 aint_t *d;
3186 u_int i;
3187 u_int ch;
3188 u_int channels;
3189
3190 DIAGNOSTIC_filter_arg(arg);
3191 KASSERT(arg->srcfmt->channels == arg->dstfmt->channels);
3192 KASSERT(arg->context != NULL);
3193 KASSERT(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS);
3194
3195 s = arg->src;
3196 d = arg->dst;
3197 ch_volume = arg->context;
3198
3199 channels = arg->srcfmt->channels;
3200 for (i = 0; i < arg->count; i++) {
3201 for (ch = 0; ch < channels; ch++) {
3202 aint2_t val;
3203 val = *s++;
3204 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
3205 val = val * ch_volume[ch] >> 8;
3206 #else
3207 val = val * ch_volume[ch] / 256;
3208 #endif
3209 *d++ = (aint_t)val;
3210 }
3211 }
3212 }
3213
3214 /*
3215 * This filter performs conversion from stereo (or more channels) to mono.
3216 */
3217 static void
3218 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3219 {
3220 const aint_t *s;
3221 aint_t *d;
3222 u_int i;
3223
3224 DIAGNOSTIC_filter_arg(arg);
3225
3226 s = arg->src;
3227 d = arg->dst;
3228
3229 for (i = 0; i < arg->count; i++) {
3230 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
3231 *d++ = (s[0] >> 1) + (s[1] >> 1);
3232 #else
3233 *d++ = (s[0] / 2) + (s[1] / 2);
3234 #endif
3235 s += arg->srcfmt->channels;
3236 }
3237 }
3238
3239 /*
3240 * This filter performs conversion from mono to stereo (or more channels).
3241 */
3242 static void
3243 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3244 {
3245 const aint_t *s;
3246 aint_t *d;
3247 u_int i;
3248 u_int ch;
3249 u_int dstchannels;
3250
3251 DIAGNOSTIC_filter_arg(arg);
3252
3253 s = arg->src;
3254 d = arg->dst;
3255 dstchannels = arg->dstfmt->channels;
3256
3257 for (i = 0; i < arg->count; i++) {
3258 d[0] = s[0];
3259 d[1] = s[0];
3260 s++;
3261 d += dstchannels;
3262 }
3263 if (dstchannels > 2) {
3264 d = arg->dst;
3265 for (i = 0; i < arg->count; i++) {
3266 for (ch = 2; ch < dstchannels; ch++) {
3267 d[ch] = 0;
3268 }
3269 d += dstchannels;
3270 }
3271 }
3272 }
3273
3274 /*
3275 * This filter shrinks M channels into N channels.
3276 * Extra channels are discarded.
3277 */
3278 static void
3279 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3280 {
3281 const aint_t *s;
3282 aint_t *d;
3283 u_int i;
3284 u_int ch;
3285
3286 DIAGNOSTIC_filter_arg(arg);
3287
3288 s = arg->src;
3289 d = arg->dst;
3290
3291 for (i = 0; i < arg->count; i++) {
3292 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3293 *d++ = s[ch];
3294 }
3295 s += arg->srcfmt->channels;
3296 }
3297 }
3298
3299 /*
3300 * This filter expands M channels into N channels.
3301 * Silence is inserted for missing channels.
3302 */
3303 static void
3304 audio_track_chmix_expand(audio_filter_arg_t *arg)
3305 {
3306 const aint_t *s;
3307 aint_t *d;
3308 u_int i;
3309 u_int ch;
3310 u_int srcchannels;
3311 u_int dstchannels;
3312
3313 DIAGNOSTIC_filter_arg(arg);
3314
3315 s = arg->src;
3316 d = arg->dst;
3317
3318 srcchannels = arg->srcfmt->channels;
3319 dstchannels = arg->dstfmt->channels;
3320 for (i = 0; i < arg->count; i++) {
3321 for (ch = 0; ch < srcchannels; ch++) {
3322 *d++ = *s++;
3323 }
3324 for (; ch < dstchannels; ch++) {
3325 *d++ = 0;
3326 }
3327 }
3328 }
3329
3330 /*
3331 * This filter performs frequency conversion (up sampling).
3332 * It uses linear interpolation.
3333 */
3334 static void
3335 audio_track_freq_up(audio_filter_arg_t *arg)
3336 {
3337 audio_track_t *track;
3338 audio_ring_t *src;
3339 audio_ring_t *dst;
3340 const aint_t *s;
3341 aint_t *d;
3342 aint_t prev[AUDIO_MAX_CHANNELS];
3343 aint_t curr[AUDIO_MAX_CHANNELS];
3344 aint_t grad[AUDIO_MAX_CHANNELS];
3345 u_int i;
3346 u_int t;
3347 u_int step;
3348 u_int channels;
3349 u_int ch;
3350 int srcused;
3351
3352 track = arg->context;
3353 KASSERT(track);
3354 src = &track->freq.srcbuf;
3355 dst = track->freq.dst;
3356 DIAGNOSTIC_ring(dst);
3357 DIAGNOSTIC_ring(src);
3358 KASSERT(src->used > 0);
3359 KASSERT(src->fmt.channels == dst->fmt.channels);
3360 KASSERT(src->head % track->mixer->frames_per_block == 0);
3361
3362 s = arg->src;
3363 d = arg->dst;
3364
3365 /*
3366 * In order to faciliate interpolation for each block, slide (delay)
3367 * input by one sample. As a result, strictly speaking, the output
3368 * phase is delayed by 1/dstfreq. However, I believe there is no
3369 * observable impact.
3370 *
3371 * Example)
3372 * srcfreq:dstfreq = 1:3
3373 *
3374 * A - -
3375 * |
3376 * |
3377 * | B - -
3378 * +-----+-----> input timeframe
3379 * 0 1
3380 *
3381 * 0 1
3382 * +-----+-----> input timeframe
3383 * | A
3384 * | x x
3385 * | x x
3386 * x (B)
3387 * +-+-+-+-+-+-> output timeframe
3388 * 0 1 2 3 4 5
3389 */
3390
3391 /* Last samples in previous block */
3392 channels = src->fmt.channels;
3393 for (ch = 0; ch < channels; ch++) {
3394 prev[ch] = track->freq_prev[ch];
3395 curr[ch] = track->freq_curr[ch];
3396 grad[ch] = curr[ch] - prev[ch];
3397 }
3398
3399 step = track->freq_step;
3400 t = track->freq_current;
3401 //#define FREQ_DEBUG
3402 #if defined(FREQ_DEBUG)
3403 #define PRINTF(fmt...) printf(fmt)
3404 #else
3405 #define PRINTF(fmt...) do { } while (0)
3406 #endif
3407 srcused = src->used;
3408 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3409 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3410 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3411 PRINTF(" t=%d\n", t);
3412
3413 for (i = 0; i < arg->count; i++) {
3414 PRINTF("i=%d t=%5d", i, t);
3415 if (t >= 65536) {
3416 for (ch = 0; ch < channels; ch++) {
3417 prev[ch] = curr[ch];
3418 curr[ch] = *s++;
3419 grad[ch] = curr[ch] - prev[ch];
3420 }
3421 PRINTF(" prev=%d s[%d]=%d",
3422 prev[0], src->used - srcused, curr[0]);
3423
3424 /* Update */
3425 t -= 65536;
3426 srcused--;
3427 if (srcused < 0) {
3428 PRINTF(" break\n");
3429 break;
3430 }
3431 }
3432
3433 for (ch = 0; ch < channels; ch++) {
3434 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3435 #if defined(FREQ_DEBUG)
3436 if (ch == 0)
3437 printf(" t=%5d *d=%d", t, d[-1]);
3438 #endif
3439 }
3440 t += step;
3441
3442 PRINTF("\n");
3443 }
3444 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3445
3446 auring_take(src, src->used);
3447 auring_push(dst, i);
3448
3449 /* Adjust */
3450 t += track->freq_leap;
3451
3452 track->freq_current = t;
3453 for (ch = 0; ch < channels; ch++) {
3454 track->freq_prev[ch] = prev[ch];
3455 track->freq_curr[ch] = curr[ch];
3456 }
3457 }
3458
3459 /*
3460 * This filter performs frequency conversion (down sampling).
3461 * It uses simple thinning.
3462 */
3463 static void
3464 audio_track_freq_down(audio_filter_arg_t *arg)
3465 {
3466 audio_track_t *track;
3467 audio_ring_t *src;
3468 audio_ring_t *dst;
3469 const aint_t *s0;
3470 aint_t *d;
3471 u_int i;
3472 u_int t;
3473 u_int step;
3474 u_int ch;
3475 u_int channels;
3476
3477 track = arg->context;
3478 KASSERT(track);
3479 src = &track->freq.srcbuf;
3480 dst = track->freq.dst;
3481
3482 DIAGNOSTIC_ring(dst);
3483 DIAGNOSTIC_ring(src);
3484 KASSERT(src->used > 0);
3485 KASSERT(src->fmt.channels == dst->fmt.channels);
3486 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3487 "src->head=%d fpb=%d",
3488 src->head, track->mixer->frames_per_block);
3489
3490 s0 = arg->src;
3491 d = arg->dst;
3492 t = track->freq_current;
3493 step = track->freq_step;
3494 channels = dst->fmt.channels;
3495 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3496 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3497 PRINTF(" t=%d\n", t);
3498
3499 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3500 const aint_t *s;
3501 PRINTF("i=%4d t=%10d", i, t);
3502 s = s0 + (t / 65536) * channels;
3503 PRINTF(" s=%5ld", (s - s0) / channels);
3504 for (ch = 0; ch < channels; ch++) {
3505 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3506 *d++ = s[ch];
3507 }
3508 PRINTF("\n");
3509 t += step;
3510 }
3511 t += track->freq_leap;
3512 PRINTF("end t=%d\n", t);
3513 auring_take(src, src->used);
3514 auring_push(dst, i);
3515 track->freq_current = t % 65536;
3516 }
3517
3518 /*
3519 * Creates track and returns it.
3520 */
3521 audio_track_t *
3522 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3523 {
3524 audio_track_t *track;
3525 static int newid = 0;
3526
3527 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3528
3529 track->id = newid++;
3530 track->mixer = mixer;
3531 track->mode = mixer->mode;
3532
3533 /* Do TRACE after id is assigned. */
3534 TRACET(3, track, "for %s",
3535 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3536
3537 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3538 track->volume = 256;
3539 #endif
3540 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3541 track->ch_volume[i] = 256;
3542 }
3543
3544 return track;
3545 }
3546
3547 /*
3548 * Release all resources of the track and track itself.
3549 * track must not be NULL. Don't specify the track within the file
3550 * structure linked from sc->sc_files.
3551 */
3552 static void
3553 audio_track_destroy(audio_track_t *track)
3554 {
3555
3556 KASSERT(track);
3557
3558 audio_free_usrbuf(track);
3559 audio_free(track->codec.srcbuf.mem);
3560 audio_free(track->chvol.srcbuf.mem);
3561 audio_free(track->chmix.srcbuf.mem);
3562 audio_free(track->freq.srcbuf.mem);
3563 audio_free(track->outbuf.mem);
3564
3565 kmem_free(track, sizeof(*track));
3566 }
3567
3568 /*
3569 * It returns encoding conversion filter according to src and dst format.
3570 * If it is not a convertible pair, it returns NULL. Either src or dst
3571 * must be internal format.
3572 */
3573 static audio_filter_t
3574 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3575 const audio_format2_t *dst)
3576 {
3577
3578 if (audio_format2_is_internal(src)) {
3579 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3580 return audio_internal_to_mulaw;
3581 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3582 return audio_internal_to_alaw;
3583 } else if (audio_format2_is_linear(dst)) {
3584 switch (dst->stride) {
3585 case 8:
3586 return audio_internal_to_linear8;
3587 case 16:
3588 return audio_internal_to_linear16;
3589 #if defined(AUDIO_SUPPORT_LINEAR24)
3590 case 24:
3591 return audio_internal_to_linear24;
3592 #endif
3593 case 32:
3594 return audio_internal_to_linear32;
3595 default:
3596 TRACET(1, track, "unsupported %s stride %d",
3597 "dst", dst->stride);
3598 goto abort;
3599 }
3600 }
3601 } else if (audio_format2_is_internal(dst)) {
3602 if (src->encoding == AUDIO_ENCODING_ULAW) {
3603 return audio_mulaw_to_internal;
3604 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3605 return audio_alaw_to_internal;
3606 } else if (audio_format2_is_linear(src)) {
3607 switch (src->stride) {
3608 case 8:
3609 return audio_linear8_to_internal;
3610 case 16:
3611 return audio_linear16_to_internal;
3612 #if defined(AUDIO_SUPPORT_LINEAR24)
3613 case 24:
3614 return audio_linear24_to_internal;
3615 #endif
3616 case 32:
3617 return audio_linear32_to_internal;
3618 default:
3619 TRACET(1, track, "unsupported %s stride %d",
3620 "src", src->stride);
3621 goto abort;
3622 }
3623 }
3624 }
3625
3626 TRACET(1, track, "unsupported encoding");
3627 abort:
3628 #if defined(AUDIO_DEBUG)
3629 if (audiodebug >= 2) {
3630 char buf[100];
3631 audio_format2_tostr(buf, sizeof(buf), src);
3632 TRACET(2, track, "src %s", buf);
3633 audio_format2_tostr(buf, sizeof(buf), dst);
3634 TRACET(2, track, "dst %s", buf);
3635 }
3636 #endif
3637 return NULL;
3638 }
3639
3640 /*
3641 * Initialize the codec stage of this track as necessary.
3642 * If successful, it initializes the codec stage as necessary, stores updated
3643 * last_dst in *last_dstp in any case, and returns 0.
3644 * Otherwise, it returns errno without modifying *last_dstp.
3645 */
3646 static int
3647 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3648 {
3649 struct audio_softc *sc;
3650 audio_ring_t *last_dst;
3651 audio_ring_t *srcbuf;
3652 audio_format2_t *srcfmt;
3653 audio_format2_t *dstfmt;
3654 audio_filter_arg_t *arg;
3655 u_int len;
3656 int error;
3657
3658 KASSERT(track);
3659
3660 sc = track->mixer->sc;
3661 last_dst = *last_dstp;
3662 dstfmt = &last_dst->fmt;
3663 srcfmt = &track->inputfmt;
3664 srcbuf = &track->codec.srcbuf;
3665 error = 0;
3666
3667 if (srcfmt->encoding != dstfmt->encoding
3668 || srcfmt->precision != dstfmt->precision
3669 || srcfmt->stride != dstfmt->stride) {
3670 track->codec.dst = last_dst;
3671
3672 srcbuf->fmt = *dstfmt;
3673 srcbuf->fmt.encoding = srcfmt->encoding;
3674 srcbuf->fmt.precision = srcfmt->precision;
3675 srcbuf->fmt.stride = srcfmt->stride;
3676
3677 track->codec.filter = audio_track_get_codec(track,
3678 &srcbuf->fmt, dstfmt);
3679 if (track->codec.filter == NULL) {
3680 error = EINVAL;
3681 goto abort;
3682 }
3683
3684 srcbuf->head = 0;
3685 srcbuf->used = 0;
3686 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3687 len = auring_bytelen(srcbuf);
3688 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3689 if (srcbuf->mem == NULL) {
3690 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3691 __func__, len);
3692 error = ENOMEM;
3693 goto abort;
3694 }
3695
3696 arg = &track->codec.arg;
3697 arg->srcfmt = &srcbuf->fmt;
3698 arg->dstfmt = dstfmt;
3699 arg->context = NULL;
3700
3701 *last_dstp = srcbuf;
3702 return 0;
3703 }
3704
3705 abort:
3706 track->codec.filter = NULL;
3707 audio_free(srcbuf->mem);
3708 return error;
3709 }
3710
3711 /*
3712 * Initialize the chvol stage of this track as necessary.
3713 * If successful, it initializes the chvol stage as necessary, stores updated
3714 * last_dst in *last_dstp in any case, and returns 0.
3715 * Otherwise, it returns errno without modifying *last_dstp.
3716 */
3717 static int
3718 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3719 {
3720 struct audio_softc *sc;
3721 audio_ring_t *last_dst;
3722 audio_ring_t *srcbuf;
3723 audio_format2_t *srcfmt;
3724 audio_format2_t *dstfmt;
3725 audio_filter_arg_t *arg;
3726 u_int len;
3727 int error;
3728
3729 KASSERT(track);
3730
3731 sc = track->mixer->sc;
3732 last_dst = *last_dstp;
3733 dstfmt = &last_dst->fmt;
3734 srcfmt = &track->inputfmt;
3735 srcbuf = &track->chvol.srcbuf;
3736 error = 0;
3737
3738 /* Check whether channel volume conversion is necessary. */
3739 bool use_chvol = false;
3740 for (int ch = 0; ch < srcfmt->channels; ch++) {
3741 if (track->ch_volume[ch] != 256) {
3742 use_chvol = true;
3743 break;
3744 }
3745 }
3746
3747 if (use_chvol == true) {
3748 track->chvol.dst = last_dst;
3749 track->chvol.filter = audio_track_chvol;
3750
3751 srcbuf->fmt = *dstfmt;
3752 /* no format conversion occurs */
3753
3754 srcbuf->head = 0;
3755 srcbuf->used = 0;
3756 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3757 len = auring_bytelen(srcbuf);
3758 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3759 if (srcbuf->mem == NULL) {
3760 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3761 __func__, len);
3762 error = ENOMEM;
3763 goto abort;
3764 }
3765
3766 arg = &track->chvol.arg;
3767 arg->srcfmt = &srcbuf->fmt;
3768 arg->dstfmt = dstfmt;
3769 arg->context = track->ch_volume;
3770
3771 *last_dstp = srcbuf;
3772 return 0;
3773 }
3774
3775 abort:
3776 track->chvol.filter = NULL;
3777 audio_free(srcbuf->mem);
3778 return error;
3779 }
3780
3781 /*
3782 * Initialize the chmix stage of this track as necessary.
3783 * If successful, it initializes the chmix stage as necessary, stores updated
3784 * last_dst in *last_dstp in any case, and returns 0.
3785 * Otherwise, it returns errno without modifying *last_dstp.
3786 */
3787 static int
3788 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
3789 {
3790 struct audio_softc *sc;
3791 audio_ring_t *last_dst;
3792 audio_ring_t *srcbuf;
3793 audio_format2_t *srcfmt;
3794 audio_format2_t *dstfmt;
3795 audio_filter_arg_t *arg;
3796 u_int srcch;
3797 u_int dstch;
3798 u_int len;
3799 int error;
3800
3801 KASSERT(track);
3802
3803 sc = track->mixer->sc;
3804 last_dst = *last_dstp;
3805 dstfmt = &last_dst->fmt;
3806 srcfmt = &track->inputfmt;
3807 srcbuf = &track->chmix.srcbuf;
3808 error = 0;
3809
3810 srcch = srcfmt->channels;
3811 dstch = dstfmt->channels;
3812 if (srcch != dstch) {
3813 track->chmix.dst = last_dst;
3814
3815 if (srcch >= 2 && dstch == 1) {
3816 track->chmix.filter = audio_track_chmix_mixLR;
3817 } else if (srcch == 1 && dstch >= 2) {
3818 track->chmix.filter = audio_track_chmix_dupLR;
3819 } else if (srcch > dstch) {
3820 track->chmix.filter = audio_track_chmix_shrink;
3821 } else {
3822 track->chmix.filter = audio_track_chmix_expand;
3823 }
3824
3825 srcbuf->fmt = *dstfmt;
3826 srcbuf->fmt.channels = srcch;
3827
3828 srcbuf->head = 0;
3829 srcbuf->used = 0;
3830 /* XXX The buffer size should be able to calculate. */
3831 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3832 len = auring_bytelen(srcbuf);
3833 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3834 if (srcbuf->mem == NULL) {
3835 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3836 __func__, len);
3837 error = ENOMEM;
3838 goto abort;
3839 }
3840
3841 arg = &track->chmix.arg;
3842 arg->srcfmt = &srcbuf->fmt;
3843 arg->dstfmt = dstfmt;
3844 arg->context = NULL;
3845
3846 *last_dstp = srcbuf;
3847 return 0;
3848 }
3849
3850 abort:
3851 track->chmix.filter = NULL;
3852 audio_free(srcbuf->mem);
3853 return error;
3854 }
3855
3856 /*
3857 * Initialize the freq stage of this track as necessary.
3858 * If successful, it initializes the freq stage as necessary, stores updated
3859 * last_dst in *last_dstp in any case, and returns 0.
3860 * Otherwise, it returns errno without modifying *last_dstp.
3861 */
3862 static int
3863 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
3864 {
3865 struct audio_softc *sc;
3866 audio_ring_t *last_dst;
3867 audio_ring_t *srcbuf;
3868 audio_format2_t *srcfmt;
3869 audio_format2_t *dstfmt;
3870 audio_filter_arg_t *arg;
3871 uint32_t srcfreq;
3872 uint32_t dstfreq;
3873 u_int dst_capacity;
3874 u_int mod;
3875 u_int len;
3876 int error;
3877
3878 KASSERT(track);
3879
3880 sc = track->mixer->sc;
3881 last_dst = *last_dstp;
3882 dstfmt = &last_dst->fmt;
3883 srcfmt = &track->inputfmt;
3884 srcbuf = &track->freq.srcbuf;
3885 error = 0;
3886
3887 srcfreq = srcfmt->sample_rate;
3888 dstfreq = dstfmt->sample_rate;
3889 if (srcfreq != dstfreq) {
3890 track->freq.dst = last_dst;
3891
3892 memset(track->freq_prev, 0, sizeof(track->freq_prev));
3893 memset(track->freq_curr, 0, sizeof(track->freq_curr));
3894
3895 /* freq_step is the ratio of src/dst when let dst 65536. */
3896 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
3897
3898 dst_capacity = frame_per_block(track->mixer, dstfmt);
3899 mod = (uint64_t)srcfreq * 65536 % dstfreq;
3900 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
3901
3902 if (track->freq_step < 65536) {
3903 track->freq.filter = audio_track_freq_up;
3904 /* In order to carry at the first time. */
3905 track->freq_current = 65536;
3906 } else {
3907 track->freq.filter = audio_track_freq_down;
3908 track->freq_current = 0;
3909 }
3910
3911 srcbuf->fmt = *dstfmt;
3912 srcbuf->fmt.sample_rate = srcfreq;
3913
3914 srcbuf->head = 0;
3915 srcbuf->used = 0;
3916 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3917 len = auring_bytelen(srcbuf);
3918 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3919 if (srcbuf->mem == NULL) {
3920 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3921 __func__, len);
3922 error = ENOMEM;
3923 goto abort;
3924 }
3925
3926 arg = &track->freq.arg;
3927 arg->srcfmt = &srcbuf->fmt;
3928 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
3929 arg->context = track;
3930
3931 *last_dstp = srcbuf;
3932 return 0;
3933 }
3934
3935 abort:
3936 track->freq.filter = NULL;
3937 audio_free(srcbuf->mem);
3938 return error;
3939 }
3940
3941 /*
3942 * When playing back: (e.g. if codec and freq stage are valid)
3943 *
3944 * write
3945 * | uiomove
3946 * v
3947 * usrbuf [...............] byte ring buffer (mmap-able)
3948 * | memcpy
3949 * v
3950 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
3951 * .dst ----+
3952 * | convert
3953 * v
3954 * freq.srcbuf [....] 1 block (ring) buffer
3955 * .dst ----+
3956 * | convert
3957 * v
3958 * outbuf [...............] NBLKOUT blocks ring buffer
3959 *
3960 *
3961 * When recording:
3962 *
3963 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
3964 * .dst ----+
3965 * | convert
3966 * v
3967 * codec.srcbuf[.....] 1 block (ring) buffer
3968 * .dst ----+
3969 * | convert
3970 * v
3971 * outbuf [.....] 1 block (ring) buffer
3972 * | memcpy
3973 * v
3974 * usrbuf [...............] byte ring buffer (mmap-able *)
3975 * | uiomove
3976 * v
3977 * read
3978 *
3979 * *: usrbuf for recording is also mmap-able due to symmetry with
3980 * playback buffer, but for now mmap will never happen for recording.
3981 */
3982
3983 /*
3984 * Set the userland format of this track.
3985 * usrfmt argument should be parameter verified with audio_check_params().
3986 * It will release and reallocate all internal conversion buffers.
3987 * It returns 0 if successful. Otherwise it returns errno with clearing all
3988 * internal buffers.
3989 * It must be called without sc_intr_lock since uvm_* routines require non
3990 * intr_lock state.
3991 * It must be called with track lock held since it may release and reallocate
3992 * outbuf.
3993 */
3994 static int
3995 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
3996 {
3997 struct audio_softc *sc;
3998 u_int newbufsize;
3999 u_int oldblksize;
4000 u_int len;
4001 int error;
4002
4003 KASSERT(track);
4004 sc = track->mixer->sc;
4005
4006 /* usrbuf is the closest buffer to the userland. */
4007 track->usrbuf.fmt = *usrfmt;
4008
4009 /*
4010 * For references, one block size (in 40msec) is:
4011 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4012 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4013 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4014 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4015 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4016 *
4017 * For example,
4018 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4019 * newbufsize = rounddown(65536 / 7056) = 63504
4020 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4021 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4022 *
4023 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4024 * newbufsize = rounddown(65536 / 7680) = 61440
4025 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4026 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4027 */
4028 oldblksize = track->usrbuf_blksize;
4029 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4030 frame_per_block(track->mixer, &track->usrbuf.fmt));
4031 track->usrbuf.head = 0;
4032 track->usrbuf.used = 0;
4033 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4034 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4035 error = audio_realloc_usrbuf(track, newbufsize);
4036 if (error) {
4037 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4038 newbufsize);
4039 goto error;
4040 }
4041
4042 /* Recalc water mark. */
4043 if (track->usrbuf_blksize != oldblksize) {
4044 if (audio_track_is_playback(track)) {
4045 /* Set high at 100%, low at 75%. */
4046 track->usrbuf_usedhigh = track->usrbuf.capacity;
4047 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4048 } else {
4049 /* Set high at 100% minus 1block(?), low at 0% */
4050 track->usrbuf_usedhigh = track->usrbuf.capacity -
4051 track->usrbuf_blksize;
4052 track->usrbuf_usedlow = 0;
4053 }
4054 }
4055
4056 /* Stage buffer */
4057 audio_ring_t *last_dst = &track->outbuf;
4058 if (audio_track_is_playback(track)) {
4059 /* On playback, initialize from the mixer side in order. */
4060 track->inputfmt = *usrfmt;
4061 track->outbuf.fmt = track->mixer->track_fmt;
4062
4063 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4064 goto error;
4065 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4066 goto error;
4067 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4068 goto error;
4069 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4070 goto error;
4071 } else {
4072 /* On recording, initialize from userland side in order. */
4073 track->inputfmt = track->mixer->track_fmt;
4074 track->outbuf.fmt = *usrfmt;
4075
4076 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4077 goto error;
4078 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4079 goto error;
4080 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4081 goto error;
4082 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4083 goto error;
4084 }
4085 #if 0
4086 /* debug */
4087 if (track->freq.filter) {
4088 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4089 audio_print_format2("freq dst", &track->freq.dst->fmt);
4090 }
4091 if (track->chmix.filter) {
4092 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4093 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4094 }
4095 if (track->chvol.filter) {
4096 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4097 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4098 }
4099 if (track->codec.filter) {
4100 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4101 audio_print_format2("codec dst", &track->codec.dst->fmt);
4102 }
4103 #endif
4104
4105 /* Stage input buffer */
4106 track->input = last_dst;
4107
4108 /*
4109 * On the recording track, make the first stage a ring buffer.
4110 * XXX is there a better way?
4111 */
4112 if (audio_track_is_record(track)) {
4113 track->input->capacity = NBLKOUT *
4114 frame_per_block(track->mixer, &track->input->fmt);
4115 len = auring_bytelen(track->input);
4116 track->input->mem = audio_realloc(track->input->mem, len);
4117 if (track->input->mem == NULL) {
4118 device_printf(sc->sc_dev, "malloc input(%d) failed\n",
4119 len);
4120 error = ENOMEM;
4121 goto error;
4122 }
4123 }
4124
4125 /*
4126 * Output buffer.
4127 * On the playback track, its capacity is NBLKOUT blocks.
4128 * On the recording track, its capacity is 1 block.
4129 */
4130 track->outbuf.head = 0;
4131 track->outbuf.used = 0;
4132 track->outbuf.capacity = frame_per_block(track->mixer,
4133 &track->outbuf.fmt);
4134 if (audio_track_is_playback(track))
4135 track->outbuf.capacity *= NBLKOUT;
4136 len = auring_bytelen(&track->outbuf);
4137 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4138 if (track->outbuf.mem == NULL) {
4139 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4140 error = ENOMEM;
4141 goto error;
4142 }
4143
4144 #if defined(AUDIO_DEBUG)
4145 if (audiodebug >= 3) {
4146 struct audio_track_debugbuf m;
4147
4148 memset(&m, 0, sizeof(m));
4149 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4150 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4151 if (track->freq.filter)
4152 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4153 track->freq.srcbuf.capacity *
4154 frametobyte(&track->freq.srcbuf.fmt, 1));
4155 if (track->chmix.filter)
4156 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4157 track->chmix.srcbuf.capacity *
4158 frametobyte(&track->chmix.srcbuf.fmt, 1));
4159 if (track->chvol.filter)
4160 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4161 track->chvol.srcbuf.capacity *
4162 frametobyte(&track->chvol.srcbuf.fmt, 1));
4163 if (track->codec.filter)
4164 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4165 track->codec.srcbuf.capacity *
4166 frametobyte(&track->codec.srcbuf.fmt, 1));
4167 snprintf(m.usrbuf, sizeof(m.usrbuf),
4168 " usr=%d", track->usrbuf.capacity);
4169
4170 if (audio_track_is_playback(track)) {
4171 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4172 m.outbuf, m.freq, m.chmix,
4173 m.chvol, m.codec, m.usrbuf);
4174 } else {
4175 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4176 m.freq, m.chmix, m.chvol,
4177 m.codec, m.outbuf, m.usrbuf);
4178 }
4179 }
4180 #endif
4181 return 0;
4182
4183 error:
4184 audio_free_usrbuf(track);
4185 audio_free(track->codec.srcbuf.mem);
4186 audio_free(track->chvol.srcbuf.mem);
4187 audio_free(track->chmix.srcbuf.mem);
4188 audio_free(track->freq.srcbuf.mem);
4189 audio_free(track->outbuf.mem);
4190 return error;
4191 }
4192
4193 /*
4194 * Fill silence frames (as the internal format) up to 1 block
4195 * if the ring is not empty and less than 1 block.
4196 * It returns the number of appended frames.
4197 */
4198 static int
4199 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4200 {
4201 int fpb;
4202 int n;
4203
4204 KASSERT(track);
4205 KASSERT(audio_format2_is_internal(&ring->fmt));
4206
4207 /* XXX is n correct? */
4208 /* XXX memset uses frametobyte()? */
4209
4210 if (ring->used == 0)
4211 return 0;
4212
4213 fpb = frame_per_block(track->mixer, &ring->fmt);
4214 if (ring->used >= fpb)
4215 return 0;
4216
4217 n = (ring->capacity - ring->used) % fpb;
4218
4219 KASSERT(auring_get_contig_free(ring) >= n);
4220
4221 memset(auring_tailptr_aint(ring), 0,
4222 n * ring->fmt.channels * sizeof(aint_t));
4223 auring_push(ring, n);
4224 return n;
4225 }
4226
4227 /*
4228 * Execute the conversion stage.
4229 * It prepares arg from this stage and executes stage->filter.
4230 * It must be called only if stage->filter is not NULL.
4231 *
4232 * For stages other than frequency conversion, the function increments
4233 * src and dst counters here. For frequency conversion stage, on the
4234 * other hand, the function does not touch src and dst counters and
4235 * filter side has to increment them.
4236 */
4237 static void
4238 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4239 {
4240 audio_filter_arg_t *arg;
4241 int srccount;
4242 int dstcount;
4243 int count;
4244
4245 KASSERT(track);
4246 KASSERT(stage->filter);
4247
4248 srccount = auring_get_contig_used(&stage->srcbuf);
4249 dstcount = auring_get_contig_free(stage->dst);
4250
4251 if (isfreq) {
4252 KASSERTMSG(srccount > 0, "freq but srccount == %d", srccount);
4253 count = uimin(dstcount, track->mixer->frames_per_block);
4254 } else {
4255 count = uimin(srccount, dstcount);
4256 }
4257
4258 if (count > 0) {
4259 arg = &stage->arg;
4260 arg->src = auring_headptr(&stage->srcbuf);
4261 arg->dst = auring_tailptr(stage->dst);
4262 arg->count = count;
4263
4264 stage->filter(arg);
4265
4266 if (!isfreq) {
4267 auring_take(&stage->srcbuf, count);
4268 auring_push(stage->dst, count);
4269 }
4270 }
4271 }
4272
4273 /*
4274 * Produce output buffer for playback from user input buffer.
4275 * It must be called only if usrbuf is not empty and outbuf is
4276 * available at least one free block.
4277 */
4278 static void
4279 audio_track_play(audio_track_t *track)
4280 {
4281 audio_ring_t *usrbuf;
4282 audio_ring_t *input;
4283 int count;
4284 int framesize;
4285 int bytes;
4286 u_int dropcount;
4287
4288 KASSERT(track);
4289 KASSERT(track->lock);
4290 TRACET(4, track, "start pstate=%d", track->pstate);
4291
4292 /* At this point usrbuf must not be empty. */
4293 KASSERT(track->usrbuf.used > 0);
4294 /* Also, outbuf must be available at least one block. */
4295 count = auring_get_contig_free(&track->outbuf);
4296 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4297 "count=%d fpb=%d",
4298 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4299
4300 /* XXX TODO: is this necessary for now? */
4301 int track_count_0 = track->outbuf.used;
4302
4303 usrbuf = &track->usrbuf;
4304 input = track->input;
4305 dropcount = 0;
4306
4307 /*
4308 * framesize is always 1 byte or more since all formats supported as
4309 * usrfmt(=input) have 8bit or more stride.
4310 */
4311 framesize = frametobyte(&input->fmt, 1);
4312 KASSERT(framesize >= 1);
4313
4314 /* The next stage of usrbuf (=input) must be available. */
4315 KASSERT(auring_get_contig_free(input) > 0);
4316
4317 /*
4318 * Copy usrbuf up to 1block to input buffer.
4319 * count is the number of frames to copy from usrbuf.
4320 * bytes is the number of bytes to copy from usrbuf. However it is
4321 * not copied less than one frame.
4322 */
4323 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4324 bytes = count * framesize;
4325
4326 /*
4327 * If bytes is less than one block,
4328 * if not draining, buffer is not filled so return.
4329 * if draining, fall through.
4330 */
4331 if (count < track->usrbuf_blksize / framesize) {
4332 dropcount = track->usrbuf_blksize / framesize - count;
4333
4334 if (track->pstate != AUDIO_STATE_DRAINING) {
4335 /* Wait until filled. */
4336 TRACET(4, track, "not enough; return");
4337 return;
4338 }
4339 }
4340
4341 track->usrbuf_stamp += bytes;
4342
4343 if (usrbuf->head + bytes < usrbuf->capacity) {
4344 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4345 (uint8_t *)usrbuf->mem + usrbuf->head,
4346 bytes);
4347 auring_push(input, count);
4348 auring_take(usrbuf, bytes);
4349 } else {
4350 int bytes1;
4351 int bytes2;
4352
4353 bytes1 = auring_get_contig_used(usrbuf);
4354 KASSERT(bytes1 % framesize == 0);
4355 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4356 (uint8_t *)usrbuf->mem + usrbuf->head,
4357 bytes1);
4358 auring_push(input, bytes1 / framesize);
4359 auring_take(usrbuf, bytes1);
4360
4361 bytes2 = bytes - bytes1;
4362 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4363 (uint8_t *)usrbuf->mem + usrbuf->head,
4364 bytes2);
4365 auring_push(input, bytes2 / framesize);
4366 auring_take(usrbuf, bytes2);
4367 }
4368
4369 /* Encoding conversion */
4370 if (track->codec.filter)
4371 audio_apply_stage(track, &track->codec, false);
4372
4373 /* Channel volume */
4374 if (track->chvol.filter)
4375 audio_apply_stage(track, &track->chvol, false);
4376
4377 /* Channel mix */
4378 if (track->chmix.filter)
4379 audio_apply_stage(track, &track->chmix, false);
4380
4381 /* Frequency conversion */
4382 /*
4383 * Since the frequency conversion needs correction for each block,
4384 * it rounds up to 1 block.
4385 */
4386 if (track->freq.filter) {
4387 int n;
4388 n = audio_append_silence(track, &track->freq.srcbuf);
4389 if (n > 0) {
4390 TRACET(4, track,
4391 "freq.srcbuf add silence %d -> %d/%d/%d",
4392 n,
4393 track->freq.srcbuf.head,
4394 track->freq.srcbuf.used,
4395 track->freq.srcbuf.capacity);
4396 }
4397 if (track->freq.srcbuf.used > 0) {
4398 audio_apply_stage(track, &track->freq, true);
4399 }
4400 }
4401
4402 if (dropcount != 0) {
4403 /*
4404 * Clear all conversion buffer pointer if the conversion was
4405 * not exactly one block. These conversion stage buffers are
4406 * certainly circular buffers because of symmetry with the
4407 * previous and next stage buffer. However, since they are
4408 * treated as simple contiguous buffers in operation, so head
4409 * always should point 0. This may happen during drain-age.
4410 */
4411 TRACET(4, track, "reset stage");
4412 if (track->codec.filter) {
4413 KASSERT(track->codec.srcbuf.used == 0);
4414 track->codec.srcbuf.head = 0;
4415 }
4416 if (track->chvol.filter) {
4417 KASSERT(track->chvol.srcbuf.used == 0);
4418 track->chvol.srcbuf.head = 0;
4419 }
4420 if (track->chmix.filter) {
4421 KASSERT(track->chmix.srcbuf.used == 0);
4422 track->chmix.srcbuf.head = 0;
4423 }
4424 if (track->freq.filter) {
4425 KASSERT(track->freq.srcbuf.used == 0);
4426 track->freq.srcbuf.head = 0;
4427 }
4428 }
4429
4430 if (track->input == &track->outbuf) {
4431 track->outputcounter = track->inputcounter;
4432 } else {
4433 track->outputcounter += track->outbuf.used - track_count_0;
4434 }
4435
4436 #if defined(AUDIO_DEBUG)
4437 if (audiodebug >= 3) {
4438 struct audio_track_debugbuf m;
4439 audio_track_bufstat(track, &m);
4440 TRACET(0, track, "end%s%s%s%s%s%s",
4441 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4442 }
4443 #endif
4444 }
4445
4446 /*
4447 * Produce user output buffer for recording from input buffer.
4448 */
4449 static void
4450 audio_track_record(audio_track_t *track)
4451 {
4452 audio_ring_t *outbuf;
4453 audio_ring_t *usrbuf;
4454 int count;
4455 int bytes;
4456 int framesize;
4457
4458 KASSERT(track);
4459 KASSERT(track->lock);
4460
4461 /* Number of frames to process */
4462 count = auring_get_contig_used(track->input);
4463 count = uimin(count, track->mixer->frames_per_block);
4464 if (count == 0) {
4465 TRACET(4, track, "count == 0");
4466 return;
4467 }
4468
4469 /* Frequency conversion */
4470 if (track->freq.filter) {
4471 if (track->freq.srcbuf.used > 0) {
4472 audio_apply_stage(track, &track->freq, true);
4473 /* XXX should input of freq be from beginning of buf? */
4474 }
4475 }
4476
4477 /* Channel mix */
4478 if (track->chmix.filter)
4479 audio_apply_stage(track, &track->chmix, false);
4480
4481 /* Channel volume */
4482 if (track->chvol.filter)
4483 audio_apply_stage(track, &track->chvol, false);
4484
4485 /* Encoding conversion */
4486 if (track->codec.filter)
4487 audio_apply_stage(track, &track->codec, false);
4488
4489 /* Copy outbuf to usrbuf */
4490 outbuf = &track->outbuf;
4491 usrbuf = &track->usrbuf;
4492 /*
4493 * framesize is always 1 byte or more since all formats supported
4494 * as usrfmt(=output) have 8bit or more stride.
4495 */
4496 framesize = frametobyte(&outbuf->fmt, 1);
4497 KASSERT(framesize >= 1);
4498 /*
4499 * count is the number of frames to copy to usrbuf.
4500 * bytes is the number of bytes to copy to usrbuf.
4501 */
4502 count = outbuf->used;
4503 count = uimin(count,
4504 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4505 bytes = count * framesize;
4506 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4507 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4508 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4509 bytes);
4510 auring_push(usrbuf, bytes);
4511 auring_take(outbuf, count);
4512 } else {
4513 int bytes1;
4514 int bytes2;
4515
4516 bytes1 = auring_get_contig_used(usrbuf);
4517 KASSERT(bytes1 % framesize == 0);
4518 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4519 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4520 bytes1);
4521 auring_push(usrbuf, bytes1);
4522 auring_take(outbuf, bytes1 / framesize);
4523
4524 bytes2 = bytes - bytes1;
4525 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4526 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4527 bytes2);
4528 auring_push(usrbuf, bytes2);
4529 auring_take(outbuf, bytes2 / framesize);
4530 }
4531
4532 /* XXX TODO: any counters here? */
4533
4534 #if defined(AUDIO_DEBUG)
4535 if (audiodebug >= 3) {
4536 struct audio_track_debugbuf m;
4537 audio_track_bufstat(track, &m);
4538 TRACET(0, track, "end%s%s%s%s%s%s",
4539 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4540 }
4541 #endif
4542 }
4543
4544 /*
4545 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4546 * Must be called with sc_lock held.
4547 */
4548 static u_int
4549 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4550 {
4551 audio_format2_t *fmt;
4552 u_int blktime;
4553 u_int frames_per_block;
4554
4555 KASSERT(mutex_owned(sc->sc_lock));
4556
4557 fmt = &mixer->hwbuf.fmt;
4558 blktime = sc->sc_blk_ms;
4559
4560 /*
4561 * If stride is not multiples of 8, special treatment is necessary.
4562 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4563 */
4564 if (fmt->stride == 4) {
4565 frames_per_block = fmt->sample_rate * blktime / 1000;
4566 if ((frames_per_block & 1) != 0)
4567 blktime *= 2;
4568 }
4569 #ifdef DIAGNOSTIC
4570 else if (fmt->stride % NBBY != 0) {
4571 panic("unsupported HW stride %d", fmt->stride);
4572 }
4573 #endif
4574
4575 return blktime;
4576 }
4577
4578 /*
4579 * Initialize the mixer corresponding to the mode.
4580 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4581 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4582 * This function returns 0 on sucessful. Otherwise returns errno.
4583 * Must be called with sc_lock held.
4584 */
4585 static int
4586 audio_mixer_init(struct audio_softc *sc, int mode,
4587 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4588 {
4589 char codecbuf[64];
4590 audio_trackmixer_t *mixer;
4591 void (*softint_handler)(void *);
4592 int len;
4593 int blksize;
4594 int capacity;
4595 size_t bufsize;
4596 int hwblks;
4597 int blkms;
4598 int error;
4599
4600 KASSERT(hwfmt != NULL);
4601 KASSERT(reg != NULL);
4602 KASSERT(mutex_owned(sc->sc_lock));
4603
4604 error = 0;
4605 if (mode == AUMODE_PLAY)
4606 mixer = sc->sc_pmixer;
4607 else
4608 mixer = sc->sc_rmixer;
4609
4610 mixer->sc = sc;
4611 mixer->mode = mode;
4612
4613 mixer->hwbuf.fmt = *hwfmt;
4614 mixer->volume = 256;
4615 mixer->blktime_d = 1000;
4616 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4617 sc->sc_blk_ms = mixer->blktime_n;
4618 hwblks = NBLKHW;
4619
4620 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4621 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4622 if (sc->hw_if->round_blocksize) {
4623 int rounded;
4624 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4625 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4626 mode, &p);
4627 TRACE(2, "round_blocksize %d -> %d", blksize, rounded);
4628 if (rounded != blksize) {
4629 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4630 mixer->hwbuf.fmt.channels) != 0) {
4631 device_printf(sc->sc_dev,
4632 "blksize not configured %d -> %d\n",
4633 blksize, rounded);
4634 return EINVAL;
4635 }
4636 /* Recalculation */
4637 blksize = rounded;
4638 mixer->frames_per_block = blksize * NBBY /
4639 (mixer->hwbuf.fmt.stride *
4640 mixer->hwbuf.fmt.channels);
4641 }
4642 }
4643 mixer->blktime_n = mixer->frames_per_block;
4644 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4645
4646 capacity = mixer->frames_per_block * hwblks;
4647 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4648 if (sc->hw_if->round_buffersize) {
4649 size_t rounded;
4650 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4651 bufsize);
4652 TRACE(2, "round_buffersize %zd -> %zd", bufsize, rounded);
4653 if (rounded < bufsize) {
4654 /* buffersize needs NBLKHW blocks at least. */
4655 device_printf(sc->sc_dev,
4656 "buffersize too small: buffersize=%zd blksize=%d\n",
4657 rounded, blksize);
4658 return EINVAL;
4659 }
4660 if (rounded % blksize != 0) {
4661 /* buffersize/blksize constraint mismatch? */
4662 device_printf(sc->sc_dev,
4663 "buffersize must be multiple of blksize: "
4664 "buffersize=%zu blksize=%d\n",
4665 rounded, blksize);
4666 return EINVAL;
4667 }
4668 if (rounded != bufsize) {
4669 /* Recalcuration */
4670 bufsize = rounded;
4671 hwblks = bufsize / blksize;
4672 capacity = mixer->frames_per_block * hwblks;
4673 }
4674 }
4675 TRACE(2, "buffersize for %s = %zu",
4676 (mode == AUMODE_PLAY) ? "playback" : "recording",
4677 bufsize);
4678 mixer->hwbuf.capacity = capacity;
4679
4680 /*
4681 * XXX need to release sc_lock for compatibility?
4682 */
4683 if (sc->hw_if->allocm) {
4684 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4685 if (mixer->hwbuf.mem == NULL) {
4686 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4687 __func__, bufsize);
4688 return ENOMEM;
4689 }
4690 } else {
4691 mixer->hwbuf.mem = kern_malloc(bufsize, M_NOWAIT);
4692 if (mixer->hwbuf.mem == NULL) {
4693 device_printf(sc->sc_dev,
4694 "%s: malloc hwbuf(%zu) failed\n",
4695 __func__, bufsize);
4696 return ENOMEM;
4697 }
4698 }
4699
4700 /* From here, audio_mixer_destroy is necessary to exit. */
4701 if (mode == AUMODE_PLAY) {
4702 cv_init(&mixer->outcv, "audiowr");
4703 } else {
4704 cv_init(&mixer->outcv, "audiord");
4705 }
4706
4707 if (mode == AUMODE_PLAY) {
4708 softint_handler = audio_softintr_wr;
4709 } else {
4710 softint_handler = audio_softintr_rd;
4711 }
4712 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4713 softint_handler, sc);
4714 if (mixer->sih == NULL) {
4715 device_printf(sc->sc_dev, "softint_establish failed\n");
4716 goto abort;
4717 }
4718
4719 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4720 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4721 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4722 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4723 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4724
4725 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4726 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4727 mixer->swap_endian = true;
4728 TRACE(1, "swap_endian");
4729 }
4730
4731 if (mode == AUMODE_PLAY) {
4732 /* Mixing buffer */
4733 mixer->mixfmt = mixer->track_fmt;
4734 mixer->mixfmt.precision *= 2;
4735 mixer->mixfmt.stride *= 2;
4736 /* XXX TODO: use some macros? */
4737 len = mixer->frames_per_block * mixer->mixfmt.channels *
4738 mixer->mixfmt.stride / NBBY;
4739 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4740 if (mixer->mixsample == NULL) {
4741 device_printf(sc->sc_dev,
4742 "%s: malloc mixsample(%d) failed\n",
4743 __func__, len);
4744 error = ENOMEM;
4745 goto abort;
4746 }
4747 } else {
4748 /* No mixing buffer for recording */
4749 }
4750
4751 if (reg->codec) {
4752 mixer->codec = reg->codec;
4753 mixer->codecarg.context = reg->context;
4754 if (mode == AUMODE_PLAY) {
4755 mixer->codecarg.srcfmt = &mixer->track_fmt;
4756 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4757 } else {
4758 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4759 mixer->codecarg.dstfmt = &mixer->track_fmt;
4760 }
4761 mixer->codecbuf.fmt = mixer->track_fmt;
4762 mixer->codecbuf.capacity = mixer->frames_per_block;
4763 len = auring_bytelen(&mixer->codecbuf);
4764 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4765 if (mixer->codecbuf.mem == NULL) {
4766 device_printf(sc->sc_dev,
4767 "%s: malloc codecbuf(%d) failed\n",
4768 __func__, len);
4769 error = ENOMEM;
4770 goto abort;
4771 }
4772 }
4773
4774 /* Succeeded so display it. */
4775 codecbuf[0] = '\0';
4776 if (mixer->codec || mixer->swap_endian) {
4777 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4778 (mode == AUMODE_PLAY) ? "->" : "<-",
4779 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4780 mixer->hwbuf.fmt.precision);
4781 }
4782 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
4783 aprint_normal_dev(sc->sc_dev, "%s:%d%s %dch %dHz, blk %dms for %s\n",
4784 audio_encoding_name(mixer->track_fmt.encoding),
4785 mixer->track_fmt.precision,
4786 codecbuf,
4787 mixer->track_fmt.channels,
4788 mixer->track_fmt.sample_rate,
4789 blkms,
4790 (mode == AUMODE_PLAY) ? "playback" : "recording");
4791
4792 return 0;
4793
4794 abort:
4795 audio_mixer_destroy(sc, mixer);
4796 return error;
4797 }
4798
4799 /*
4800 * Releases all resources of 'mixer'.
4801 * Note that it does not release the memory area of 'mixer' itself.
4802 * Must be called with sc_lock held.
4803 */
4804 static void
4805 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
4806 {
4807 int mode;
4808
4809 KASSERT(mutex_owned(sc->sc_lock));
4810
4811 mode = mixer->mode;
4812 KASSERT(mode == AUMODE_PLAY || mode == AUMODE_RECORD);
4813
4814 if (mixer->hwbuf.mem != NULL) {
4815 if (sc->hw_if->freem) {
4816 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, mode);
4817 } else {
4818 kern_free(mixer->hwbuf.mem);
4819 }
4820 mixer->hwbuf.mem = NULL;
4821 }
4822
4823 audio_free(mixer->codecbuf.mem);
4824 audio_free(mixer->mixsample);
4825
4826 cv_destroy(&mixer->outcv);
4827
4828 if (mixer->sih) {
4829 softint_disestablish(mixer->sih);
4830 mixer->sih = NULL;
4831 }
4832 }
4833
4834 /*
4835 * Starts playback mixer.
4836 * Must be called only if sc_pbusy is false.
4837 * Must be called with sc_lock held.
4838 * Must not be called from the interrupt context.
4839 */
4840 static void
4841 audio_pmixer_start(struct audio_softc *sc, bool force)
4842 {
4843 audio_trackmixer_t *mixer;
4844 int minimum;
4845
4846 KASSERT(mutex_owned(sc->sc_lock));
4847 KASSERT(sc->sc_pbusy == false);
4848
4849 mutex_enter(sc->sc_intr_lock);
4850
4851 mixer = sc->sc_pmixer;
4852 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
4853 (audiodebug >= 3) ? "begin " : "",
4854 (int)mixer->mixseq, (int)mixer->hwseq,
4855 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
4856 force ? " force" : "");
4857
4858 /* Need two blocks to start normally. */
4859 minimum = (force) ? 1 : 2;
4860 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
4861 audio_pmixer_process(sc);
4862 }
4863
4864 /* Start output */
4865 audio_pmixer_output(sc);
4866 sc->sc_pbusy = true;
4867
4868 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
4869 (int)mixer->mixseq, (int)mixer->hwseq,
4870 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
4871
4872 mutex_exit(sc->sc_intr_lock);
4873 }
4874
4875 /*
4876 * When playing back with MD filter:
4877 *
4878 * track track ...
4879 * v v
4880 * + mix (with aint2_t)
4881 * | master volume (with aint2_t)
4882 * v
4883 * mixsample [::::] wide-int 1 block (ring) buffer
4884 * |
4885 * | convert aint2_t -> aint_t
4886 * v
4887 * codecbuf [....] 1 block (ring) buffer
4888 * |
4889 * | convert to hw format
4890 * v
4891 * hwbuf [............] NBLKHW blocks ring buffer
4892 *
4893 * When playing back without MD filter:
4894 *
4895 * mixsample [::::] wide-int 1 block (ring) buffer
4896 * |
4897 * | convert aint2_t -> aint_t
4898 * | (with byte swap if necessary)
4899 * v
4900 * hwbuf [............] NBLKHW blocks ring buffer
4901 *
4902 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
4903 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
4904 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
4905 */
4906
4907 /*
4908 * Performs track mixing and converts it to hwbuf.
4909 * Note that this function doesn't transfer hwbuf to hardware.
4910 * Must be called with sc_intr_lock held.
4911 */
4912 static void
4913 audio_pmixer_process(struct audio_softc *sc)
4914 {
4915 audio_trackmixer_t *mixer;
4916 audio_file_t *f;
4917 int frame_count;
4918 int sample_count;
4919 int mixed;
4920 int i;
4921 aint2_t *m;
4922 aint_t *h;
4923
4924 mixer = sc->sc_pmixer;
4925
4926 frame_count = mixer->frames_per_block;
4927 KASSERT(auring_get_contig_free(&mixer->hwbuf) >= frame_count);
4928 sample_count = frame_count * mixer->mixfmt.channels;
4929
4930 mixer->mixseq++;
4931
4932 /* Mix all tracks */
4933 mixed = 0;
4934 SLIST_FOREACH(f, &sc->sc_files, entry) {
4935 audio_track_t *track = f->ptrack;
4936
4937 if (track == NULL)
4938 continue;
4939
4940 if (track->is_pause) {
4941 TRACET(4, track, "skip; paused");
4942 continue;
4943 }
4944
4945 /* Skip if the track is used by process context. */
4946 if (audio_track_lock_tryenter(track) == false) {
4947 TRACET(4, track, "skip; in use");
4948 continue;
4949 }
4950
4951 /* Emulate mmap'ped track */
4952 if (track->mmapped) {
4953 auring_push(&track->usrbuf, track->usrbuf_blksize);
4954 TRACET(4, track, "mmap; usr=%d/%d/C%d",
4955 track->usrbuf.head,
4956 track->usrbuf.used,
4957 track->usrbuf.capacity);
4958 }
4959
4960 if (track->outbuf.used < mixer->frames_per_block &&
4961 track->usrbuf.used > 0) {
4962 TRACET(4, track, "process");
4963 audio_track_play(track);
4964 }
4965
4966 if (track->outbuf.used > 0) {
4967 mixed = audio_pmixer_mix_track(mixer, track, mixed);
4968 } else {
4969 TRACET(4, track, "skip; empty");
4970 }
4971
4972 audio_track_lock_exit(track);
4973 }
4974
4975 if (mixed == 0) {
4976 /* Silence */
4977 memset(mixer->mixsample, 0,
4978 frametobyte(&mixer->mixfmt, frame_count));
4979 } else {
4980 aint2_t ovf_plus;
4981 aint2_t ovf_minus;
4982 int vol;
4983
4984 /* Overflow detection */
4985 ovf_plus = AINT_T_MAX;
4986 ovf_minus = AINT_T_MIN;
4987 m = mixer->mixsample;
4988 for (i = 0; i < sample_count; i++) {
4989 aint2_t val;
4990
4991 val = *m++;
4992 if (val > ovf_plus)
4993 ovf_plus = val;
4994 else if (val < ovf_minus)
4995 ovf_minus = val;
4996 }
4997
4998 /* Master Volume Auto Adjust */
4999 vol = mixer->volume;
5000 if (ovf_plus > (aint2_t)AINT_T_MAX
5001 || ovf_minus < (aint2_t)AINT_T_MIN) {
5002 aint2_t ovf;
5003 int vol2;
5004
5005 /* XXX TODO: Check AINT2_T_MIN ? */
5006 ovf = ovf_plus;
5007 if (ovf < -ovf_minus)
5008 ovf = -ovf_minus;
5009
5010 /* Turn down the volume if overflow occured. */
5011 vol2 = (int)((aint2_t)AINT_T_MAX * 256 / ovf);
5012 if (vol2 < vol)
5013 vol = vol2;
5014
5015 if (vol < mixer->volume) {
5016 /* Turn down gradually to 128. */
5017 if (mixer->volume > 128) {
5018 mixer->volume =
5019 (mixer->volume * 95) / 100;
5020 device_printf(sc->sc_dev,
5021 "auto volume adjust: volume %d\n",
5022 mixer->volume);
5023 }
5024 }
5025 }
5026
5027 /* Apply Master Volume. */
5028 if (vol != 256) {
5029 m = mixer->mixsample;
5030 for (i = 0; i < sample_count; i++) {
5031 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5032 *m = *m * vol >> 8;
5033 #else
5034 *m = *m * vol / 256;
5035 #endif
5036 m++;
5037 }
5038 }
5039 }
5040
5041 /*
5042 * The rest is the hardware part.
5043 */
5044
5045 if (mixer->codec) {
5046 h = auring_tailptr_aint(&mixer->codecbuf);
5047 } else {
5048 h = auring_tailptr_aint(&mixer->hwbuf);
5049 }
5050
5051 m = mixer->mixsample;
5052 if (mixer->swap_endian) {
5053 for (i = 0; i < sample_count; i++) {
5054 *h++ = bswap16(*m++);
5055 }
5056 } else {
5057 for (i = 0; i < sample_count; i++) {
5058 *h++ = *m++;
5059 }
5060 }
5061
5062 /* Hardware driver's codec */
5063 if (mixer->codec) {
5064 auring_push(&mixer->codecbuf, frame_count);
5065 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5066 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5067 mixer->codecarg.count = frame_count;
5068 mixer->codec(&mixer->codecarg);
5069 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5070 }
5071
5072 auring_push(&mixer->hwbuf, frame_count);
5073
5074 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5075 (int)mixer->mixseq,
5076 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5077 (mixed == 0) ? " silent" : "");
5078 }
5079
5080 /*
5081 * Mix one track.
5082 * 'mixed' specifies the number of tracks mixed so far.
5083 * It returns the number of tracks mixed. In other words, it returns
5084 * mixed + 1 if this track is mixed.
5085 */
5086 static int
5087 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5088 int mixed)
5089 {
5090 int count;
5091 int sample_count;
5092 int remain;
5093 int i;
5094 const aint_t *s;
5095 aint2_t *d;
5096
5097 /* XXX TODO: Is this necessary for now? */
5098 if (mixer->mixseq < track->seq)
5099 return mixed;
5100
5101 count = auring_get_contig_used(&track->outbuf);
5102 count = uimin(count, mixer->frames_per_block);
5103
5104 s = auring_headptr_aint(&track->outbuf);
5105 d = mixer->mixsample;
5106
5107 /*
5108 * Apply track volume with double-sized integer and perform
5109 * additive synthesis.
5110 *
5111 * XXX If you limit the track volume to 1.0 or less (<= 256),
5112 * it would be better to do this in the track conversion stage
5113 * rather than here. However, if you accept the volume to
5114 * be greater than 1.0 (> 256), it's better to do it here.
5115 * Because the operation here is done by double-sized integer.
5116 */
5117 sample_count = count * mixer->mixfmt.channels;
5118 if (mixed == 0) {
5119 /* If this is the first track, assignment can be used. */
5120 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5121 if (track->volume != 256) {
5122 for (i = 0; i < sample_count; i++) {
5123 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5124 *d++ = ((aint2_t)*s++) * track->volume >> 8;
5125 #else
5126 *d++ = ((aint2_t)*s++) * track->volume / 256;
5127 #endif
5128 }
5129 } else
5130 #endif
5131 {
5132 for (i = 0; i < sample_count; i++) {
5133 *d++ = ((aint2_t)*s++);
5134 }
5135 }
5136 } else {
5137 /* If this is the second or later, add it. */
5138 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5139 if (track->volume != 256) {
5140 for (i = 0; i < sample_count; i++) {
5141 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5142 *d++ += ((aint2_t)*s++) * track->volume >> 8;
5143 #else
5144 *d++ += ((aint2_t)*s++) * track->volume / 256;
5145 #endif
5146 }
5147 } else
5148 #endif
5149 {
5150 for (i = 0; i < sample_count; i++) {
5151 *d++ += ((aint2_t)*s++);
5152 }
5153 }
5154 }
5155
5156 auring_take(&track->outbuf, count);
5157 /*
5158 * The counters have to align block even if outbuf is less than
5159 * one block. XXX Is this still necessary?
5160 */
5161 remain = mixer->frames_per_block - count;
5162 if (__predict_false(remain != 0)) {
5163 auring_push(&track->outbuf, remain);
5164 auring_take(&track->outbuf, remain);
5165 }
5166
5167 /*
5168 * Update track sequence.
5169 * mixseq has previous value yet at this point.
5170 */
5171 track->seq = mixer->mixseq + 1;
5172
5173 return mixed + 1;
5174 }
5175
5176 /*
5177 * Output one block from hwbuf to HW.
5178 * Must be called with sc_intr_lock held.
5179 */
5180 static void
5181 audio_pmixer_output(struct audio_softc *sc)
5182 {
5183 audio_trackmixer_t *mixer;
5184 audio_params_t params;
5185 void *start;
5186 void *end;
5187 int blksize;
5188 int error;
5189
5190 mixer = sc->sc_pmixer;
5191 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5192 sc->sc_pbusy,
5193 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5194 KASSERT(mixer->hwbuf.used >= mixer->frames_per_block);
5195
5196 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5197
5198 if (sc->hw_if->trigger_output) {
5199 /* trigger (at once) */
5200 if (!sc->sc_pbusy) {
5201 start = mixer->hwbuf.mem;
5202 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5203 params = format2_to_params(&mixer->hwbuf.fmt);
5204
5205 error = sc->hw_if->trigger_output(sc->hw_hdl,
5206 start, end, blksize, audio_pintr, sc, ¶ms);
5207 if (error) {
5208 device_printf(sc->sc_dev,
5209 "trigger_output failed with %d", error);
5210 return;
5211 }
5212 }
5213 } else {
5214 /* start (everytime) */
5215 start = auring_headptr(&mixer->hwbuf);
5216
5217 error = sc->hw_if->start_output(sc->hw_hdl,
5218 start, blksize, audio_pintr, sc);
5219 if (error) {
5220 device_printf(sc->sc_dev,
5221 "start_output failed with %d", error);
5222 return;
5223 }
5224 }
5225 }
5226
5227 /*
5228 * This is an interrupt handler for playback.
5229 * It is called with sc_intr_lock held.
5230 *
5231 * It is usually called from hardware interrupt. However, note that
5232 * for some drivers (e.g. uaudio) it is called from software interrupt.
5233 */
5234 static void
5235 audio_pintr(void *arg)
5236 {
5237 struct audio_softc *sc;
5238 audio_trackmixer_t *mixer;
5239
5240 sc = arg;
5241 KASSERT(mutex_owned(sc->sc_intr_lock));
5242
5243 if (sc->sc_dying)
5244 return;
5245 #if defined(DIAGNOSTIC)
5246 if (sc->sc_pbusy == false) {
5247 device_printf(sc->sc_dev, "stray interrupt\n");
5248 return;
5249 }
5250 #endif
5251
5252 mixer = sc->sc_pmixer;
5253 mixer->hw_complete_counter += mixer->frames_per_block;
5254 mixer->hwseq++;
5255
5256 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5257
5258 TRACE(4,
5259 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5260 mixer->hwseq, mixer->hw_complete_counter,
5261 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5262
5263 #if !defined(_KERNEL)
5264 /* This is a debug code for userland test. */
5265 return;
5266 #endif
5267
5268 #if defined(AUDIO_HW_SINGLE_BUFFER)
5269 /*
5270 * Create a new block here and output it immediately.
5271 * It makes a latency lower but needs machine power.
5272 */
5273 audio_pmixer_process(sc);
5274 audio_pmixer_output(sc);
5275 #else
5276 /*
5277 * It is called when block N output is done.
5278 * Output immediately block N+1 created by the last interrupt.
5279 * And then create block N+2 for the next interrupt.
5280 * This method makes playback robust even on slower machines.
5281 * Instead the latency is increased by one block.
5282 */
5283
5284 /* At first, output ready block. */
5285 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5286 audio_pmixer_output(sc);
5287 }
5288
5289 bool later = false;
5290
5291 if (mixer->hwbuf.used < mixer->frames_per_block) {
5292 later = true;
5293 }
5294
5295 /* Then, process next block. */
5296 audio_pmixer_process(sc);
5297
5298 if (later) {
5299 audio_pmixer_output(sc);
5300 }
5301 #endif
5302
5303 /*
5304 * When this interrupt is the real hardware interrupt, disabling
5305 * preemption here is not necessary. But some drivers (e.g. uaudio)
5306 * emulate it by software interrupt, so kpreempt_disable is necessary.
5307 */
5308 kpreempt_disable();
5309 softint_schedule(mixer->sih);
5310 kpreempt_enable();
5311 }
5312
5313 /*
5314 * Starts record mixer.
5315 * Must be called only if sc_rbusy is false.
5316 * Must be called with sc_lock held.
5317 * Must not be called from the interrupt context.
5318 */
5319 static void
5320 audio_rmixer_start(struct audio_softc *sc)
5321 {
5322
5323 KASSERT(mutex_owned(sc->sc_lock));
5324 KASSERT(sc->sc_rbusy == false);
5325
5326 mutex_enter(sc->sc_intr_lock);
5327
5328 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5329 audio_rmixer_input(sc);
5330 sc->sc_rbusy = true;
5331 TRACE(3, "end");
5332
5333 mutex_exit(sc->sc_intr_lock);
5334 }
5335
5336 /*
5337 * When recording with MD filter:
5338 *
5339 * hwbuf [............] NBLKHW blocks ring buffer
5340 * |
5341 * | convert from hw format
5342 * v
5343 * codecbuf [....] 1 block (ring) buffer
5344 * | |
5345 * v v
5346 * track track ...
5347 *
5348 * When recording without MD filter:
5349 *
5350 * hwbuf [............] NBLKHW blocks ring buffer
5351 * | |
5352 * v v
5353 * track track ...
5354 *
5355 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5356 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5357 */
5358
5359 /*
5360 * Distribute a recorded block to all recording tracks.
5361 */
5362 static void
5363 audio_rmixer_process(struct audio_softc *sc)
5364 {
5365 audio_trackmixer_t *mixer;
5366 audio_ring_t *mixersrc;
5367 audio_file_t *f;
5368 aint_t *p;
5369 int count;
5370 int bytes;
5371 int i;
5372
5373 mixer = sc->sc_rmixer;
5374
5375 /*
5376 * count is the number of frames to be retrieved this time.
5377 * count should be one block.
5378 */
5379 count = auring_get_contig_used(&mixer->hwbuf);
5380 count = uimin(count, mixer->frames_per_block);
5381 if (count <= 0) {
5382 TRACE(4, "count %d: too short", count);
5383 return;
5384 }
5385 bytes = frametobyte(&mixer->track_fmt, count);
5386
5387 /* Hardware driver's codec */
5388 if (mixer->codec) {
5389 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5390 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5391 mixer->codecarg.count = count;
5392 mixer->codec(&mixer->codecarg);
5393 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5394 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5395 mixersrc = &mixer->codecbuf;
5396 } else {
5397 mixersrc = &mixer->hwbuf;
5398 }
5399
5400 if (mixer->swap_endian) {
5401 /* inplace conversion */
5402 p = auring_headptr_aint(mixersrc);
5403 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5404 *p = bswap16(*p);
5405 }
5406 }
5407
5408 /* Distribute to all tracks. */
5409 SLIST_FOREACH(f, &sc->sc_files, entry) {
5410 audio_track_t *track = f->rtrack;
5411 audio_ring_t *input;
5412
5413 if (track == NULL)
5414 continue;
5415
5416 if (track->is_pause) {
5417 TRACET(4, track, "skip; paused");
5418 continue;
5419 }
5420
5421 if (audio_track_lock_tryenter(track) == false) {
5422 TRACET(4, track, "skip; in use");
5423 continue;
5424 }
5425
5426 /* If the track buffer is full, discard the oldest one? */
5427 input = track->input;
5428 if (input->capacity - input->used < mixer->frames_per_block) {
5429 int drops = mixer->frames_per_block -
5430 (input->capacity - input->used);
5431 track->dropframes += drops;
5432 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5433 drops,
5434 input->head, input->used, input->capacity);
5435 auring_take(input, drops);
5436 }
5437 KASSERT(input->used % mixer->frames_per_block == 0);
5438
5439 memcpy(auring_tailptr_aint(input),
5440 auring_headptr_aint(mixersrc),
5441 bytes);
5442 auring_push(input, count);
5443
5444 /* XXX sequence counter? */
5445
5446 audio_track_lock_exit(track);
5447 }
5448
5449 auring_take(mixersrc, count);
5450 }
5451
5452 /*
5453 * Input one block from HW to hwbuf.
5454 * Must be called with sc_intr_lock held.
5455 */
5456 static void
5457 audio_rmixer_input(struct audio_softc *sc)
5458 {
5459 audio_trackmixer_t *mixer;
5460 audio_params_t params;
5461 void *start;
5462 void *end;
5463 int blksize;
5464 int error;
5465
5466 mixer = sc->sc_rmixer;
5467 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5468
5469 if (sc->hw_if->trigger_input) {
5470 /* trigger (at once) */
5471 if (!sc->sc_rbusy) {
5472 start = mixer->hwbuf.mem;
5473 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5474 params = format2_to_params(&mixer->hwbuf.fmt);
5475
5476 error = sc->hw_if->trigger_input(sc->hw_hdl,
5477 start, end, blksize, audio_rintr, sc, ¶ms);
5478 if (error) {
5479 device_printf(sc->sc_dev,
5480 "trigger_input failed with %d", error);
5481 return;
5482 }
5483 }
5484 } else {
5485 /* start (everytime) */
5486 start = auring_tailptr(&mixer->hwbuf);
5487
5488 error = sc->hw_if->start_input(sc->hw_hdl,
5489 start, blksize, audio_rintr, sc);
5490 if (error) {
5491 device_printf(sc->sc_dev,
5492 "start_input failed with %d", error);
5493 return;
5494 }
5495 }
5496 }
5497
5498 /*
5499 * This is an interrupt handler for recording.
5500 * It is called with sc_intr_lock.
5501 *
5502 * It is usually called from hardware interrupt. However, note that
5503 * for some drivers (e.g. uaudio) it is called from software interrupt.
5504 */
5505 static void
5506 audio_rintr(void *arg)
5507 {
5508 struct audio_softc *sc;
5509 audio_trackmixer_t *mixer;
5510
5511 sc = arg;
5512 KASSERT(mutex_owned(sc->sc_intr_lock));
5513
5514 if (sc->sc_dying)
5515 return;
5516 #if defined(DIAGNOSTIC)
5517 if (sc->sc_rbusy == false) {
5518 device_printf(sc->sc_dev, "stray interrupt\n");
5519 return;
5520 }
5521 #endif
5522
5523 mixer = sc->sc_rmixer;
5524 mixer->hw_complete_counter += mixer->frames_per_block;
5525 mixer->hwseq++;
5526
5527 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5528
5529 TRACE(4,
5530 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5531 mixer->hwseq, mixer->hw_complete_counter,
5532 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5533
5534 /* Distrubute recorded block */
5535 audio_rmixer_process(sc);
5536
5537 /* Request next block */
5538 audio_rmixer_input(sc);
5539
5540 /*
5541 * When this interrupt is the real hardware interrupt, disabling
5542 * preemption here is not necessary. But some drivers (e.g. uaudio)
5543 * emulate it by software interrupt, so kpreempt_disable is necessary.
5544 */
5545 kpreempt_disable();
5546 softint_schedule(mixer->sih);
5547 kpreempt_enable();
5548 }
5549
5550 /*
5551 * Halts playback mixer.
5552 * This function also clears related parameters, so call this function
5553 * instead of calling halt_output directly.
5554 * Must be called only if sc_pbusy is true.
5555 * Must be called with sc_lock && sc_exlock held.
5556 */
5557 static int
5558 audio_pmixer_halt(struct audio_softc *sc)
5559 {
5560 int error;
5561
5562 TRACE(2, "");
5563 KASSERT(mutex_owned(sc->sc_lock));
5564 KASSERT(sc->sc_exlock);
5565
5566 mutex_enter(sc->sc_intr_lock);
5567 error = sc->hw_if->halt_output(sc->hw_hdl);
5568 mutex_exit(sc->sc_intr_lock);
5569
5570 /* Halts anyway even if some error has occurred. */
5571 sc->sc_pbusy = false;
5572 sc->sc_pmixer->hwbuf.head = 0;
5573 sc->sc_pmixer->hwbuf.used = 0;
5574 sc->sc_pmixer->mixseq = 0;
5575 sc->sc_pmixer->hwseq = 0;
5576
5577 return error;
5578 }
5579
5580 /*
5581 * Halts recording mixer.
5582 * This function also clears related parameters, so call this function
5583 * instead of calling halt_input directly.
5584 * Must be called only if sc_rbusy is true.
5585 * Must be called with sc_lock && sc_exlock held.
5586 */
5587 static int
5588 audio_rmixer_halt(struct audio_softc *sc)
5589 {
5590 int error;
5591
5592 TRACE(2, "");
5593 KASSERT(mutex_owned(sc->sc_lock));
5594 KASSERT(sc->sc_exlock);
5595
5596 mutex_enter(sc->sc_intr_lock);
5597 error = sc->hw_if->halt_input(sc->hw_hdl);
5598 mutex_exit(sc->sc_intr_lock);
5599
5600 /* Halts anyway even if some error has occurred. */
5601 sc->sc_rbusy = false;
5602 sc->sc_rmixer->hwbuf.head = 0;
5603 sc->sc_rmixer->hwbuf.used = 0;
5604 sc->sc_rmixer->mixseq = 0;
5605 sc->sc_rmixer->hwseq = 0;
5606
5607 return error;
5608 }
5609
5610 /*
5611 * Flush this track.
5612 * Halts all operations, clears all buffers, reset error counters.
5613 * XXX I'm not sure...
5614 */
5615 static void
5616 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5617 {
5618
5619 KASSERT(track);
5620 TRACET(3, track, "clear");
5621
5622 audio_track_lock_enter(track);
5623
5624 track->usrbuf.used = 0;
5625 /* Clear all internal parameters. */
5626 if (track->codec.filter) {
5627 track->codec.srcbuf.used = 0;
5628 track->codec.srcbuf.head = 0;
5629 }
5630 if (track->chvol.filter) {
5631 track->chvol.srcbuf.used = 0;
5632 track->chvol.srcbuf.head = 0;
5633 }
5634 if (track->chmix.filter) {
5635 track->chmix.srcbuf.used = 0;
5636 track->chmix.srcbuf.head = 0;
5637 }
5638 if (track->freq.filter) {
5639 track->freq.srcbuf.used = 0;
5640 track->freq.srcbuf.head = 0;
5641 if (track->freq_step < 65536)
5642 track->freq_current = 65536;
5643 else
5644 track->freq_current = 0;
5645 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5646 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5647 }
5648 /* Clear buffer, then operation halts naturally. */
5649 track->outbuf.used = 0;
5650
5651 /* Clear counters. */
5652 track->dropframes = 0;
5653
5654 audio_track_lock_exit(track);
5655 }
5656
5657 /*
5658 * Drain the track.
5659 * track must be present and for playback.
5660 * If successful, it returns 0. Otherwise returns errno.
5661 * Must be called with sc_lock held.
5662 */
5663 static int
5664 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5665 {
5666 audio_trackmixer_t *mixer;
5667 int done;
5668 int error;
5669
5670 KASSERT(track);
5671 TRACET(3, track, "start");
5672 mixer = track->mixer;
5673 KASSERT(mutex_owned(sc->sc_lock));
5674
5675 /* Ignore them if pause. */
5676 if (track->is_pause) {
5677 TRACET(3, track, "pause -> clear");
5678 track->pstate = AUDIO_STATE_CLEAR;
5679 }
5680 /* Terminate early here if there is no data in the track. */
5681 if (track->pstate == AUDIO_STATE_CLEAR) {
5682 TRACET(3, track, "no need to drain");
5683 return 0;
5684 }
5685 track->pstate = AUDIO_STATE_DRAINING;
5686
5687 for (;;) {
5688 /* I want to display it before condition evaluation. */
5689 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5690 (int)curproc->p_pid, (int)curlwp->l_lid,
5691 (int)track->seq, (int)mixer->hwseq,
5692 track->outbuf.head, track->outbuf.used,
5693 track->outbuf.capacity);
5694
5695 /* Condition to terminate */
5696 audio_track_lock_enter(track);
5697 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5698 track->outbuf.used == 0 &&
5699 track->seq <= mixer->hwseq);
5700 audio_track_lock_exit(track);
5701 if (done)
5702 break;
5703
5704 TRACET(3, track, "sleep");
5705 error = audio_track_waitio(sc, track);
5706 if (error)
5707 return error;
5708
5709 /* XXX call audio_track_play here ? */
5710 }
5711
5712 track->pstate = AUDIO_STATE_CLEAR;
5713 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5714 (int)track->inputcounter, (int)track->outputcounter);
5715 return 0;
5716 }
5717
5718 /*
5719 * This is software interrupt handler for record.
5720 * It is called from recording hardware interrupt everytime.
5721 * It does:
5722 * - Deliver SIGIO for all async processes.
5723 * - Notify to audio_read() that data has arrived.
5724 * - selnotify() for select/poll-ing processes.
5725 */
5726 /*
5727 * XXX If a process issues FIOASYNC between hardware interrupt and
5728 * software interrupt, (stray) SIGIO will be sent to the process
5729 * despite the fact that it has not receive recorded data yet.
5730 */
5731 static void
5732 audio_softintr_rd(void *cookie)
5733 {
5734 struct audio_softc *sc = cookie;
5735 audio_file_t *f;
5736 proc_t *p;
5737 pid_t pid;
5738
5739 mutex_enter(sc->sc_lock);
5740 mutex_enter(sc->sc_intr_lock);
5741
5742 SLIST_FOREACH(f, &sc->sc_files, entry) {
5743 audio_track_t *track = f->rtrack;
5744
5745 if (track == NULL)
5746 continue;
5747
5748 TRACET(4, track, "broadcast; inp=%d/%d/%d",
5749 track->input->head,
5750 track->input->used,
5751 track->input->capacity);
5752
5753 pid = f->async_audio;
5754 if (pid != 0) {
5755 TRACEF(4, f, "sending SIGIO %d", pid);
5756 mutex_enter(proc_lock);
5757 if ((p = proc_find(pid)) != NULL)
5758 psignal(p, SIGIO);
5759 mutex_exit(proc_lock);
5760 }
5761 }
5762 mutex_exit(sc->sc_intr_lock);
5763
5764 /* Notify that data has arrived. */
5765 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
5766 KNOTE(&sc->sc_rsel.sel_klist, 0);
5767 cv_broadcast(&sc->sc_rmixer->outcv);
5768
5769 mutex_exit(sc->sc_lock);
5770 }
5771
5772 /*
5773 * This is software interrupt handler for playback.
5774 * It is called from playback hardware interrupt everytime.
5775 * It does:
5776 * - Deliver SIGIO for all async and writable (used < lowat) processes.
5777 * - Notify to audio_write() that outbuf block available.
5778 * - selnotify() for select/poll-ing processes if there are any writable
5779 * (used < lowat) processes. Checking each descriptor will be done by
5780 * filt_audiowrite_event().
5781 */
5782 static void
5783 audio_softintr_wr(void *cookie)
5784 {
5785 struct audio_softc *sc = cookie;
5786 audio_file_t *f;
5787 bool found;
5788 proc_t *p;
5789 pid_t pid;
5790
5791 TRACE(4, "called");
5792 found = false;
5793
5794 mutex_enter(sc->sc_lock);
5795 mutex_enter(sc->sc_intr_lock);
5796
5797 SLIST_FOREACH(f, &sc->sc_files, entry) {
5798 audio_track_t *track = f->ptrack;
5799
5800 if (track == NULL)
5801 continue;
5802
5803 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
5804 (int)track->seq,
5805 track->outbuf.head,
5806 track->outbuf.used,
5807 track->outbuf.capacity);
5808
5809 /*
5810 * Send a signal if the process is async mode and
5811 * used is lower than lowat.
5812 */
5813 if (track->usrbuf.used <= track->usrbuf_usedlow &&
5814 !track->is_pause) {
5815 found = true;
5816 pid = f->async_audio;
5817 if (pid != 0) {
5818 TRACEF(4, f, "sending SIGIO %d", pid);
5819 mutex_enter(proc_lock);
5820 if ((p = proc_find(pid)) != NULL)
5821 psignal(p, SIGIO);
5822 mutex_exit(proc_lock);
5823 }
5824 }
5825 }
5826 mutex_exit(sc->sc_intr_lock);
5827
5828 /*
5829 * Notify for select/poll when someone become writable.
5830 * It needs sc_lock (and not sc_intr_lock).
5831 */
5832 if (found) {
5833 TRACE(4, "selnotify");
5834 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
5835 KNOTE(&sc->sc_wsel.sel_klist, 0);
5836 }
5837
5838 /* Notify to audio_write() that outbuf available. */
5839 cv_broadcast(&sc->sc_pmixer->outcv);
5840
5841 mutex_exit(sc->sc_lock);
5842 }
5843
5844 /*
5845 * Check (and convert) the format *p came from userland.
5846 * If successful, it writes back the converted format to *p if necessary
5847 * and returns 0. Otherwise returns errno (*p may change even this case).
5848 */
5849 static int
5850 audio_check_params(audio_format2_t *p)
5851 {
5852
5853 /* Convert obsoleted AUDIO_ENCODING_PCM* */
5854 /* XXX Is this conversion right? */
5855 if (p->encoding == AUDIO_ENCODING_PCM16) {
5856 if (p->precision == 8)
5857 p->encoding = AUDIO_ENCODING_ULINEAR;
5858 else
5859 p->encoding = AUDIO_ENCODING_SLINEAR;
5860 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
5861 if (p->precision == 8)
5862 p->encoding = AUDIO_ENCODING_ULINEAR;
5863 else
5864 return EINVAL;
5865 }
5866
5867 /*
5868 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
5869 * suffix.
5870 */
5871 if (p->encoding == AUDIO_ENCODING_SLINEAR)
5872 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5873 if (p->encoding == AUDIO_ENCODING_ULINEAR)
5874 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5875
5876 switch (p->encoding) {
5877 case AUDIO_ENCODING_ULAW:
5878 case AUDIO_ENCODING_ALAW:
5879 if (p->precision != 8)
5880 return EINVAL;
5881 break;
5882 case AUDIO_ENCODING_ADPCM:
5883 if (p->precision != 4 && p->precision != 8)
5884 return EINVAL;
5885 break;
5886 case AUDIO_ENCODING_SLINEAR_LE:
5887 case AUDIO_ENCODING_SLINEAR_BE:
5888 case AUDIO_ENCODING_ULINEAR_LE:
5889 case AUDIO_ENCODING_ULINEAR_BE:
5890 if (p->precision != 8 && p->precision != 16 &&
5891 p->precision != 24 && p->precision != 32)
5892 return EINVAL;
5893
5894 /* 8bit format does not have endianness. */
5895 if (p->precision == 8) {
5896 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
5897 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5898 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
5899 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5900 }
5901
5902 if (p->precision > p->stride)
5903 return EINVAL;
5904 break;
5905 case AUDIO_ENCODING_MPEG_L1_STREAM:
5906 case AUDIO_ENCODING_MPEG_L1_PACKETS:
5907 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
5908 case AUDIO_ENCODING_MPEG_L2_STREAM:
5909 case AUDIO_ENCODING_MPEG_L2_PACKETS:
5910 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
5911 case AUDIO_ENCODING_AC3:
5912 break;
5913 default:
5914 return EINVAL;
5915 }
5916
5917 /* sanity check # of channels*/
5918 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
5919 return EINVAL;
5920
5921 return 0;
5922 }
5923
5924 /*
5925 * Initialize playback and record mixers.
5926 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initalized.
5927 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
5928 * the filter registration information. These four must not be NULL.
5929 * If successful returns 0. Otherwise returns errno.
5930 * Must be called with sc_lock held.
5931 * Must not be called if there are any tracks.
5932 * Caller should check that the initialization succeed by whether
5933 * sc_[pr]mixer is not NULL.
5934 */
5935 static int
5936 audio_mixers_init(struct audio_softc *sc, int mode,
5937 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
5938 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
5939 {
5940 int error;
5941
5942 KASSERT(phwfmt != NULL);
5943 KASSERT(rhwfmt != NULL);
5944 KASSERT(pfil != NULL);
5945 KASSERT(rfil != NULL);
5946 KASSERT(mutex_owned(sc->sc_lock));
5947
5948 if ((mode & AUMODE_PLAY)) {
5949 if (sc->sc_pmixer) {
5950 audio_mixer_destroy(sc, sc->sc_pmixer);
5951 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
5952 }
5953 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer), KM_SLEEP);
5954 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
5955 if (error) {
5956 aprint_error_dev(sc->sc_dev,
5957 "configuring playback mode failed\n");
5958 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
5959 sc->sc_pmixer = NULL;
5960 return error;
5961 }
5962 }
5963 if ((mode & AUMODE_RECORD)) {
5964 if (sc->sc_rmixer) {
5965 audio_mixer_destroy(sc, sc->sc_rmixer);
5966 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
5967 }
5968 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer), KM_SLEEP);
5969 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
5970 if (error) {
5971 aprint_error_dev(sc->sc_dev,
5972 "configuring record mode failed\n");
5973 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
5974 sc->sc_rmixer = NULL;
5975 return error;
5976 }
5977 }
5978
5979 return 0;
5980 }
5981
5982 /*
5983 * Select a frequency.
5984 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
5985 * XXX Better algorithm?
5986 */
5987 static int
5988 audio_select_freq(const struct audio_format *fmt)
5989 {
5990 int freq;
5991 int high;
5992 int low;
5993 int j;
5994
5995 if (fmt->frequency_type == 0) {
5996 low = fmt->frequency[0];
5997 high = fmt->frequency[1];
5998 freq = 48000;
5999 if (low <= freq && freq <= high) {
6000 return freq;
6001 }
6002 freq = 44100;
6003 if (low <= freq && freq <= high) {
6004 return freq;
6005 }
6006 return high;
6007 } else {
6008 for (j = 0; j < fmt->frequency_type; j++) {
6009 if (fmt->frequency[j] == 48000) {
6010 return fmt->frequency[j];
6011 }
6012 }
6013 high = 0;
6014 for (j = 0; j < fmt->frequency_type; j++) {
6015 if (fmt->frequency[j] == 44100) {
6016 return fmt->frequency[j];
6017 }
6018 if (fmt->frequency[j] > high) {
6019 high = fmt->frequency[j];
6020 }
6021 }
6022 return high;
6023 }
6024 }
6025
6026 /*
6027 * Probe playback and/or recording format (depending on *modep).
6028 * *modep is an in-out parameter. It indicates the direction to configure
6029 * as an argument, and the direction configured is written back as out
6030 * parameter.
6031 * If successful, probed hardware format is stored into *phwfmt, *rhwfmt
6032 * depending on *modep, and return 0. Otherwise it returns errno.
6033 * Must be called with sc_lock held.
6034 */
6035 static int
6036 audio_hw_probe(struct audio_softc *sc, int is_indep, int *modep,
6037 audio_format2_t *phwfmt, audio_format2_t *rhwfmt)
6038 {
6039 audio_format2_t fmt;
6040 int mode;
6041 int error = 0;
6042
6043 KASSERT(mutex_owned(sc->sc_lock));
6044
6045 mode = *modep;
6046 KASSERTMSG((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0,
6047 "invalid mode = %x", mode);
6048
6049 if (is_indep) {
6050 int errorp = 0, errorr = 0;
6051
6052 /* On independent devices, probe separately. */
6053 if ((mode & AUMODE_PLAY) != 0) {
6054 errorp = audio_hw_probe_fmt(sc, phwfmt, AUMODE_PLAY);
6055 if (errorp)
6056 mode &= ~AUMODE_PLAY;
6057 }
6058 if ((mode & AUMODE_RECORD) != 0) {
6059 errorr = audio_hw_probe_fmt(sc, rhwfmt, AUMODE_RECORD);
6060 if (errorr)
6061 mode &= ~AUMODE_RECORD;
6062 }
6063
6064 /* Return error if both play and record probes failed. */
6065 if (errorp && errorr)
6066 error = errorp;
6067 } else {
6068 /* On non independent devices, probe simultaneously. */
6069 error = audio_hw_probe_fmt(sc, &fmt, mode);
6070 if (error) {
6071 mode = 0;
6072 } else {
6073 *phwfmt = fmt;
6074 *rhwfmt = fmt;
6075 }
6076 }
6077
6078 *modep = mode;
6079 return error;
6080 }
6081
6082 /*
6083 * Choose the most preferred hardware format.
6084 * If successful, it will store the chosen format into *cand and return 0.
6085 * Otherwise, return errno.
6086 * Must be called with sc_lock held.
6087 */
6088 static int
6089 audio_hw_probe_fmt(struct audio_softc *sc, audio_format2_t *cand, int mode)
6090 {
6091 audio_format_query_t query;
6092 int cand_score;
6093 int score;
6094 int i;
6095 int error;
6096
6097 KASSERT(mutex_owned(sc->sc_lock));
6098
6099 /*
6100 * Score each formats and choose the highest one.
6101 *
6102 * +---- priority(0-3)
6103 * |+--- encoding/precision
6104 * ||+-- channels
6105 * score = 0x000000PEC
6106 */
6107
6108 cand_score = 0;
6109 for (i = 0; ; i++) {
6110 memset(&query, 0, sizeof(query));
6111 query.index = i;
6112
6113 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6114 if (error == EINVAL)
6115 break;
6116 if (error)
6117 return error;
6118
6119 #if defined(AUDIO_DEBUG)
6120 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6121 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6122 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6123 query.fmt.priority,
6124 audio_encoding_name(query.fmt.encoding),
6125 query.fmt.validbits,
6126 query.fmt.precision,
6127 query.fmt.channels);
6128 if (query.fmt.frequency_type == 0) {
6129 DPRINTF(1, "{%d-%d",
6130 query.fmt.frequency[0], query.fmt.frequency[1]);
6131 } else {
6132 int j;
6133 for (j = 0; j < query.fmt.frequency_type; j++) {
6134 DPRINTF(1, "%c%d",
6135 (j == 0) ? '{' : ',',
6136 query.fmt.frequency[j]);
6137 }
6138 }
6139 DPRINTF(1, "}\n");
6140 #endif
6141
6142 if ((query.fmt.mode & mode) == 0) {
6143 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6144 mode);
6145 continue;
6146 }
6147
6148 if (query.fmt.priority < 0) {
6149 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6150 continue;
6151 }
6152
6153 /* Score */
6154 score = (query.fmt.priority & 3) * 0x100;
6155 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6156 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6157 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6158 score += 0x20;
6159 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6160 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6161 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6162 score += 0x10;
6163 }
6164 score += query.fmt.channels;
6165
6166 if (score < cand_score) {
6167 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6168 score, cand_score);
6169 continue;
6170 }
6171
6172 /* Update candidate */
6173 cand_score = score;
6174 cand->encoding = query.fmt.encoding;
6175 cand->precision = query.fmt.validbits;
6176 cand->stride = query.fmt.precision;
6177 cand->channels = query.fmt.channels;
6178 cand->sample_rate = audio_select_freq(&query.fmt);
6179 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6180 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6181 cand_score, query.fmt.priority,
6182 audio_encoding_name(query.fmt.encoding),
6183 cand->precision, cand->stride,
6184 cand->channels, cand->sample_rate);
6185 }
6186
6187 if (cand_score == 0) {
6188 DPRINTF(1, "%s no fmt\n", __func__);
6189 return ENXIO;
6190 }
6191 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6192 audio_encoding_name(cand->encoding),
6193 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6194 return 0;
6195 }
6196
6197 /*
6198 * Validate fmt with query_format.
6199 * If fmt is included in the result of query_format, returns 0.
6200 * Otherwise returns EINVAL.
6201 * Must be called with sc_lock held.
6202 */
6203 static int
6204 audio_hw_validate_format(struct audio_softc *sc, int mode,
6205 const audio_format2_t *fmt)
6206 {
6207 audio_format_query_t query;
6208 struct audio_format *q;
6209 int index;
6210 int error;
6211 int j;
6212
6213 KASSERT(mutex_owned(sc->sc_lock));
6214
6215 /*
6216 * If query_format is not supported by hardware driver,
6217 * a rough check instead will be performed.
6218 * XXX This will gone in the future.
6219 */
6220 if (sc->hw_if->query_format == NULL) {
6221 if (fmt->encoding != AUDIO_ENCODING_SLINEAR_NE)
6222 return EINVAL;
6223 if (fmt->precision != AUDIO_INTERNAL_BITS)
6224 return EINVAL;
6225 if (fmt->stride != AUDIO_INTERNAL_BITS)
6226 return EINVAL;
6227 return 0;
6228 }
6229
6230 for (index = 0; ; index++) {
6231 query.index = index;
6232 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6233 if (error == EINVAL)
6234 break;
6235 if (error)
6236 return error;
6237
6238 q = &query.fmt;
6239 /*
6240 * Note that fmt is audio_format2_t (precision/stride) but
6241 * q is audio_format_t (validbits/precision).
6242 */
6243 if ((q->mode & mode) == 0) {
6244 continue;
6245 }
6246 if (fmt->encoding != q->encoding) {
6247 continue;
6248 }
6249 if (fmt->precision != q->validbits) {
6250 continue;
6251 }
6252 if (fmt->stride != q->precision) {
6253 continue;
6254 }
6255 if (fmt->channels != q->channels) {
6256 continue;
6257 }
6258 if (q->frequency_type == 0) {
6259 if (fmt->sample_rate < q->frequency[0] ||
6260 fmt->sample_rate > q->frequency[1]) {
6261 continue;
6262 }
6263 } else {
6264 for (j = 0; j < q->frequency_type; j++) {
6265 if (fmt->sample_rate == q->frequency[j])
6266 break;
6267 }
6268 if (j == query.fmt.frequency_type) {
6269 continue;
6270 }
6271 }
6272
6273 /* Matched. */
6274 return 0;
6275 }
6276
6277 return EINVAL;
6278 }
6279
6280 /*
6281 * Set track mixer's format depending on ai->mode.
6282 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6283 * with ai.play.{channels, sample_rate}.
6284 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6285 * with ai.record.{channels, sample_rate}.
6286 * All other fields in ai are ignored.
6287 * If successful returns 0. Otherwise returns errno.
6288 * This function does not roll back even if it fails.
6289 * Must be called with sc_lock held.
6290 */
6291 static int
6292 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6293 {
6294 audio_format2_t phwfmt;
6295 audio_format2_t rhwfmt;
6296 audio_filter_reg_t pfil;
6297 audio_filter_reg_t rfil;
6298 int mode;
6299 int props;
6300 int error;
6301
6302 KASSERT(mutex_owned(sc->sc_lock));
6303
6304 /*
6305 * Even when setting either one of playback and recording,
6306 * both must be halted.
6307 */
6308 if (sc->sc_popens + sc->sc_ropens > 0)
6309 return EBUSY;
6310
6311 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6312 return ENOTTY;
6313
6314 /* Only channels and sample_rate are changeable. */
6315 mode = ai->mode;
6316 if ((mode & AUMODE_PLAY)) {
6317 phwfmt.encoding = ai->play.encoding;
6318 phwfmt.precision = ai->play.precision;
6319 phwfmt.stride = ai->play.precision;
6320 phwfmt.channels = ai->play.channels;
6321 phwfmt.sample_rate = ai->play.sample_rate;
6322 }
6323 if ((mode & AUMODE_RECORD)) {
6324 rhwfmt.encoding = ai->record.encoding;
6325 rhwfmt.precision = ai->record.precision;
6326 rhwfmt.stride = ai->record.precision;
6327 rhwfmt.channels = ai->record.channels;
6328 rhwfmt.sample_rate = ai->record.sample_rate;
6329 }
6330
6331 /* On non-independent devices, use the same format for both. */
6332 props = audio_get_props(sc);
6333 if ((props & AUDIO_PROP_INDEPENDENT) == 0) {
6334 if (mode == AUMODE_RECORD) {
6335 phwfmt = rhwfmt;
6336 } else {
6337 rhwfmt = phwfmt;
6338 }
6339 mode = AUMODE_PLAY | AUMODE_RECORD;
6340 }
6341
6342 /* Then, unset the direction not exist on the hardware. */
6343 if ((props & AUDIO_PROP_PLAYBACK) == 0)
6344 mode &= ~AUMODE_PLAY;
6345 if ((props & AUDIO_PROP_CAPTURE) == 0)
6346 mode &= ~AUMODE_RECORD;
6347
6348 /* debug */
6349 if ((mode & AUMODE_PLAY)) {
6350 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6351 audio_encoding_name(phwfmt.encoding),
6352 phwfmt.precision,
6353 phwfmt.stride,
6354 phwfmt.channels,
6355 phwfmt.sample_rate);
6356 }
6357 if ((mode & AUMODE_RECORD)) {
6358 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6359 audio_encoding_name(rhwfmt.encoding),
6360 rhwfmt.precision,
6361 rhwfmt.stride,
6362 rhwfmt.channels,
6363 rhwfmt.sample_rate);
6364 }
6365
6366 /* Check the format */
6367 if ((mode & AUMODE_PLAY)) {
6368 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6369 TRACE(1, "invalid format");
6370 return EINVAL;
6371 }
6372 }
6373 if ((mode & AUMODE_RECORD)) {
6374 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6375 TRACE(1, "invalid format");
6376 return EINVAL;
6377 }
6378 }
6379
6380 /* Configure the mixers. */
6381 memset(&pfil, 0, sizeof(pfil));
6382 memset(&rfil, 0, sizeof(rfil));
6383 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6384 if (error)
6385 return error;
6386
6387 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6388 if (error)
6389 return error;
6390
6391 return 0;
6392 }
6393
6394 /*
6395 * Store current mixers format into *ai.
6396 */
6397 static void
6398 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6399 {
6400 /*
6401 * There is no stride information in audio_info but it doesn't matter.
6402 * trackmixer always treats stride and precision as the same.
6403 */
6404 AUDIO_INITINFO(ai);
6405 ai->mode = 0;
6406 if (sc->sc_pmixer) {
6407 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6408 ai->play.encoding = fmt->encoding;
6409 ai->play.precision = fmt->precision;
6410 ai->play.channels = fmt->channels;
6411 ai->play.sample_rate = fmt->sample_rate;
6412 ai->mode |= AUMODE_PLAY;
6413 }
6414 if (sc->sc_rmixer) {
6415 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6416 ai->record.encoding = fmt->encoding;
6417 ai->record.precision = fmt->precision;
6418 ai->record.channels = fmt->channels;
6419 ai->record.sample_rate = fmt->sample_rate;
6420 ai->mode |= AUMODE_RECORD;
6421 }
6422 }
6423
6424 /*
6425 * audio_info details:
6426 *
6427 * ai.{play,record}.sample_rate (R/W)
6428 * ai.{play,record}.encoding (R/W)
6429 * ai.{play,record}.precision (R/W)
6430 * ai.{play,record}.channels (R/W)
6431 * These specify the playback or recording format.
6432 * Ignore members within an inactive track.
6433 *
6434 * ai.mode (R/W)
6435 * It specifies the playback or recording mode, AUMODE_*.
6436 * Currently, a mode change operation by ai.mode after opening is
6437 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6438 * However, it's possible to get or to set for backward compatibility.
6439 *
6440 * ai.{hiwat,lowat} (R/W)
6441 * These specify the high water mark and low water mark for playback
6442 * track. The unit is block.
6443 *
6444 * ai.{play,record}.gain (R/W)
6445 * It specifies the HW mixer volume in 0-255.
6446 * It is historical reason that the gain is connected to HW mixer.
6447 *
6448 * ai.{play,record}.balance (R/W)
6449 * It specifies the left-right balance of HW mixer in 0-64.
6450 * 32 means the center.
6451 * It is historical reason that the balance is connected to HW mixer.
6452 *
6453 * ai.{play,record}.port (R/W)
6454 * It specifies the input/output port of HW mixer.
6455 *
6456 * ai.monitor_gain (R/W)
6457 * It specifies the recording monitor gain(?) of HW mixer.
6458 *
6459 * ai.{play,record}.pause (R/W)
6460 * Non-zero means the track is paused.
6461 *
6462 * ai.play.seek (R/-)
6463 * It indicates the number of bytes written but not processed.
6464 * ai.record.seek (R/-)
6465 * It indicates the number of bytes to be able to read.
6466 *
6467 * ai.{play,record}.avail_ports (R/-)
6468 * Mixer info.
6469 *
6470 * ai.{play,record}.buffer_size (R/-)
6471 * It indicates the buffer size in bytes. Internally it means usrbuf.
6472 *
6473 * ai.{play,record}.samples (R/-)
6474 * It indicates the total number of bytes played or recorded.
6475 *
6476 * ai.{play,record}.eof (R/-)
6477 * It indicates the number of times reached EOF(?).
6478 *
6479 * ai.{play,record}.error (R/-)
6480 * Non-zero indicates overflow/underflow has occured.
6481 *
6482 * ai.{play,record}.waiting (R/-)
6483 * Non-zero indicates that other process waits to open.
6484 * It will never happen anymore.
6485 *
6486 * ai.{play,record}.open (R/-)
6487 * Non-zero indicates the direction is opened by this process(?).
6488 * XXX Is this better to indicate that "the device is opened by
6489 * at least one process"?
6490 *
6491 * ai.{play,record}.active (R/-)
6492 * Non-zero indicates that I/O is currently active.
6493 *
6494 * ai.blocksize (R/-)
6495 * It indicates the block size in bytes.
6496 * XXX The blocksize of playback and recording may be different.
6497 */
6498
6499 /*
6500 * Pause consideration:
6501 *
6502 * The introduction of these two behavior makes pause/unpause operation
6503 * simple.
6504 * 1. The first read/write access of the first track makes mixer start.
6505 * 2. A pause of the last track doesn't make mixer stop.
6506 */
6507
6508 /*
6509 * Set both track's parameters within a file depending on ai.
6510 * Update sc_sound_[pr]* if set.
6511 * Must be called with sc_lock and sc_exlock held.
6512 */
6513 static int
6514 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6515 const struct audio_info *ai)
6516 {
6517 const struct audio_prinfo *pi;
6518 const struct audio_prinfo *ri;
6519 audio_track_t *ptrack;
6520 audio_track_t *rtrack;
6521 audio_format2_t pfmt;
6522 audio_format2_t rfmt;
6523 int pchanges;
6524 int rchanges;
6525 int mode;
6526 struct audio_info saved_ai;
6527 audio_format2_t saved_pfmt;
6528 audio_format2_t saved_rfmt;
6529 int error;
6530
6531 KASSERT(mutex_owned(sc->sc_lock));
6532 KASSERT(sc->sc_exlock);
6533
6534 pi = &ai->play;
6535 ri = &ai->record;
6536 pchanges = 0;
6537 rchanges = 0;
6538
6539 ptrack = file->ptrack;
6540 rtrack = file->rtrack;
6541
6542 #if defined(AUDIO_DEBUG)
6543 if (audiodebug >= 2) {
6544 char buf[256];
6545 char p[64];
6546 int buflen;
6547 int plen;
6548 #define SPRINTF(var, fmt...) do { \
6549 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6550 } while (0)
6551
6552 buflen = 0;
6553 plen = 0;
6554 if (SPECIFIED(pi->encoding))
6555 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6556 if (SPECIFIED(pi->precision))
6557 SPRINTF(p, "/%dbit", pi->precision);
6558 if (SPECIFIED(pi->channels))
6559 SPRINTF(p, "/%dch", pi->channels);
6560 if (SPECIFIED(pi->sample_rate))
6561 SPRINTF(p, "/%dHz", pi->sample_rate);
6562 if (plen > 0)
6563 SPRINTF(buf, ",play.param=%s", p + 1);
6564
6565 plen = 0;
6566 if (SPECIFIED(ri->encoding))
6567 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6568 if (SPECIFIED(ri->precision))
6569 SPRINTF(p, "/%dbit", ri->precision);
6570 if (SPECIFIED(ri->channels))
6571 SPRINTF(p, "/%dch", ri->channels);
6572 if (SPECIFIED(ri->sample_rate))
6573 SPRINTF(p, "/%dHz", ri->sample_rate);
6574 if (plen > 0)
6575 SPRINTF(buf, ",record.param=%s", p + 1);
6576
6577 if (SPECIFIED(ai->mode))
6578 SPRINTF(buf, ",mode=%d", ai->mode);
6579 if (SPECIFIED(ai->hiwat))
6580 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6581 if (SPECIFIED(ai->lowat))
6582 SPRINTF(buf, ",lowat=%d", ai->lowat);
6583 if (SPECIFIED(ai->play.gain))
6584 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6585 if (SPECIFIED(ai->record.gain))
6586 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6587 if (SPECIFIED_CH(ai->play.balance))
6588 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6589 if (SPECIFIED_CH(ai->record.balance))
6590 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6591 if (SPECIFIED(ai->play.port))
6592 SPRINTF(buf, ",play.port=%d", ai->play.port);
6593 if (SPECIFIED(ai->record.port))
6594 SPRINTF(buf, ",record.port=%d", ai->record.port);
6595 if (SPECIFIED(ai->monitor_gain))
6596 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6597 if (SPECIFIED_CH(ai->play.pause))
6598 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6599 if (SPECIFIED_CH(ai->record.pause))
6600 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6601
6602 if (buflen > 0)
6603 TRACE(2, "specified %s", buf + 1);
6604 }
6605 #endif
6606
6607 AUDIO_INITINFO(&saved_ai);
6608 /* XXX shut up gcc */
6609 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6610 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6611
6612 /* Set default value and save current parameters */
6613 if (ptrack) {
6614 pfmt = ptrack->usrbuf.fmt;
6615 saved_pfmt = ptrack->usrbuf.fmt;
6616 saved_ai.play.pause = ptrack->is_pause;
6617 }
6618 if (rtrack) {
6619 rfmt = rtrack->usrbuf.fmt;
6620 saved_rfmt = rtrack->usrbuf.fmt;
6621 saved_ai.record.pause = rtrack->is_pause;
6622 }
6623 saved_ai.mode = file->mode;
6624
6625 /* Overwrite if specified */
6626 mode = file->mode;
6627 if (SPECIFIED(ai->mode)) {
6628 /*
6629 * Setting ai->mode no longer does anything because it's
6630 * prohibited to change playback/recording mode after open
6631 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6632 * keeps the state of AUMODE_PLAY_ALL itself for backward
6633 * compatibility.
6634 * In the internal, only file->mode has the state of
6635 * AUMODE_PLAY_ALL flag and track->mode in both track does
6636 * not have.
6637 */
6638 if ((file->mode & AUMODE_PLAY)) {
6639 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6640 | (ai->mode & AUMODE_PLAY_ALL);
6641 }
6642 }
6643
6644 if (ptrack) {
6645 pchanges = audio_track_setinfo_check(&pfmt, pi);
6646 if (pchanges == -1) {
6647 #if defined(AUDIO_DEBUG)
6648 char fmtbuf[64];
6649 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6650 TRACET(1, ptrack, "check play.params failed: %s",
6651 fmtbuf);
6652 #endif
6653 return EINVAL;
6654 }
6655 if (SPECIFIED(ai->mode))
6656 pchanges = 1;
6657 }
6658 if (rtrack) {
6659 rchanges = audio_track_setinfo_check(&rfmt, ri);
6660 if (rchanges == -1) {
6661 #if defined(AUDIO_DEBUG)
6662 char fmtbuf[64];
6663 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6664 TRACET(1, rtrack, "check record.params failed: %s",
6665 fmtbuf);
6666 #endif
6667 return EINVAL;
6668 }
6669 if (SPECIFIED(ai->mode))
6670 rchanges = 1;
6671 }
6672
6673 /*
6674 * Even when setting either one of playback and recording,
6675 * both track must be halted.
6676 */
6677 if (pchanges || rchanges) {
6678 audio_file_clear(sc, file);
6679 #if defined(AUDIO_DEBUG)
6680 char fmtbuf[64];
6681 if (pchanges) {
6682 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6683 DPRINTF(1, "audio track#%d play mode: %s\n",
6684 ptrack->id, fmtbuf);
6685 }
6686 if (rchanges) {
6687 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6688 DPRINTF(1, "audio track#%d rec mode: %s\n",
6689 rtrack->id, fmtbuf);
6690 }
6691 #endif
6692 }
6693
6694 /* Set mixer parameters */
6695 error = audio_hw_setinfo(sc, ai, &saved_ai);
6696 if (error)
6697 goto abort1;
6698
6699 /* Set to track and update sticky parameters */
6700 error = 0;
6701 file->mode = mode;
6702 if (ptrack) {
6703 if (SPECIFIED_CH(pi->pause)) {
6704 ptrack->is_pause = pi->pause;
6705 sc->sc_sound_ppause = pi->pause;
6706 }
6707 if (pchanges) {
6708 audio_track_lock_enter(ptrack);
6709 error = audio_track_set_format(ptrack, &pfmt);
6710 audio_track_lock_exit(ptrack);
6711 if (error) {
6712 TRACET(1, ptrack, "set play.params failed");
6713 goto abort2;
6714 }
6715 sc->sc_sound_pparams = pfmt;
6716 }
6717 /* Change water marks after initializing the buffers. */
6718 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat))
6719 audio_track_setinfo_water(ptrack, ai);
6720 }
6721 if (rtrack) {
6722 if (SPECIFIED_CH(ri->pause)) {
6723 rtrack->is_pause = ri->pause;
6724 sc->sc_sound_rpause = ri->pause;
6725 }
6726 if (rchanges) {
6727 audio_track_lock_enter(rtrack);
6728 error = audio_track_set_format(rtrack, &rfmt);
6729 audio_track_lock_exit(rtrack);
6730 if (error) {
6731 TRACET(1, rtrack, "set record.params failed");
6732 goto abort3;
6733 }
6734 sc->sc_sound_rparams = rfmt;
6735 }
6736 }
6737
6738 return 0;
6739
6740 /* Rollback */
6741 abort3:
6742 if (error != ENOMEM) {
6743 rtrack->is_pause = saved_ai.record.pause;
6744 audio_track_lock_enter(rtrack);
6745 audio_track_set_format(rtrack, &saved_rfmt);
6746 audio_track_lock_exit(rtrack);
6747 }
6748 abort2:
6749 if (ptrack && error != ENOMEM) {
6750 ptrack->is_pause = saved_ai.play.pause;
6751 audio_track_lock_enter(ptrack);
6752 audio_track_set_format(ptrack, &saved_pfmt);
6753 audio_track_lock_exit(ptrack);
6754 sc->sc_sound_pparams = saved_pfmt;
6755 sc->sc_sound_ppause = saved_ai.play.pause;
6756 }
6757 file->mode = saved_ai.mode;
6758 abort1:
6759 audio_hw_setinfo(sc, &saved_ai, NULL);
6760
6761 return error;
6762 }
6763
6764 /*
6765 * Write SPECIFIED() parameters within info back to fmt.
6766 * Return value of 1 indicates that fmt is modified.
6767 * Return value of 0 indicates that fmt is not modified.
6768 * Return value of -1 indicates that error EINVAL has occurred.
6769 */
6770 static int
6771 audio_track_setinfo_check(audio_format2_t *fmt, const struct audio_prinfo *info)
6772 {
6773 int changes;
6774
6775 changes = 0;
6776 if (SPECIFIED(info->sample_rate)) {
6777 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
6778 return -1;
6779 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
6780 return -1;
6781 fmt->sample_rate = info->sample_rate;
6782 changes = 1;
6783 }
6784 if (SPECIFIED(info->encoding)) {
6785 fmt->encoding = info->encoding;
6786 changes = 1;
6787 }
6788 if (SPECIFIED(info->precision)) {
6789 fmt->precision = info->precision;
6790 /* we don't have API to specify stride */
6791 fmt->stride = info->precision;
6792 changes = 1;
6793 }
6794 if (SPECIFIED(info->channels)) {
6795 fmt->channels = info->channels;
6796 changes = 1;
6797 }
6798
6799 if (changes) {
6800 if (audio_check_params(fmt) != 0)
6801 return -1;
6802 }
6803
6804 return changes;
6805 }
6806
6807 /*
6808 * Change water marks for playback track if specfied.
6809 */
6810 static void
6811 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
6812 {
6813 u_int blks;
6814 u_int maxblks;
6815 u_int blksize;
6816
6817 KASSERT(audio_track_is_playback(track));
6818
6819 blksize = track->usrbuf_blksize;
6820 maxblks = track->usrbuf.capacity / blksize;
6821
6822 if (SPECIFIED(ai->hiwat)) {
6823 blks = ai->hiwat;
6824 if (blks > maxblks)
6825 blks = maxblks;
6826 if (blks < 2)
6827 blks = 2;
6828 track->usrbuf_usedhigh = blks * blksize;
6829 }
6830 if (SPECIFIED(ai->lowat)) {
6831 blks = ai->lowat;
6832 if (blks > maxblks - 1)
6833 blks = maxblks - 1;
6834 track->usrbuf_usedlow = blks * blksize;
6835 }
6836 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6837 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
6838 track->usrbuf_usedlow = track->usrbuf_usedhigh -
6839 blksize;
6840 }
6841 }
6842 }
6843
6844 /*
6845 * Set hardware part of *ai.
6846 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
6847 * If oldai is specified, previous parameters are stored.
6848 * This function itself does not roll back if error occurred.
6849 * Must be called with sc_lock and sc_exlock held.
6850 */
6851 static int
6852 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
6853 struct audio_info *oldai)
6854 {
6855 const struct audio_prinfo *newpi;
6856 const struct audio_prinfo *newri;
6857 struct audio_prinfo *oldpi;
6858 struct audio_prinfo *oldri;
6859 u_int pgain;
6860 u_int rgain;
6861 u_char pbalance;
6862 u_char rbalance;
6863 int error;
6864
6865 KASSERT(mutex_owned(sc->sc_lock));
6866 KASSERT(sc->sc_exlock);
6867
6868 /* XXX shut up gcc */
6869 oldpi = NULL;
6870 oldri = NULL;
6871
6872 newpi = &newai->play;
6873 newri = &newai->record;
6874 if (oldai) {
6875 oldpi = &oldai->play;
6876 oldri = &oldai->record;
6877 }
6878 error = 0;
6879
6880 /*
6881 * It looks like unnecessary to halt HW mixers to set HW mixers.
6882 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
6883 */
6884
6885 if (SPECIFIED(newpi->port)) {
6886 if (oldai)
6887 oldpi->port = au_get_port(sc, &sc->sc_outports);
6888 error = au_set_port(sc, &sc->sc_outports, newpi->port);
6889 if (error) {
6890 device_printf(sc->sc_dev,
6891 "setting play.port=%d failed with %d\n",
6892 newpi->port, error);
6893 goto abort;
6894 }
6895 }
6896 if (SPECIFIED(newri->port)) {
6897 if (oldai)
6898 oldri->port = au_get_port(sc, &sc->sc_inports);
6899 error = au_set_port(sc, &sc->sc_inports, newri->port);
6900 if (error) {
6901 device_printf(sc->sc_dev,
6902 "setting record.port=%d failed with %d\n",
6903 newri->port, error);
6904 goto abort;
6905 }
6906 }
6907
6908 /* Backup play.{gain,balance} */
6909 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
6910 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
6911 if (oldai) {
6912 oldpi->gain = pgain;
6913 oldpi->balance = pbalance;
6914 }
6915 }
6916 /* Backup record.{gain,balance} */
6917 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
6918 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
6919 if (oldai) {
6920 oldri->gain = rgain;
6921 oldri->balance = rbalance;
6922 }
6923 }
6924 if (SPECIFIED(newpi->gain)) {
6925 error = au_set_gain(sc, &sc->sc_outports,
6926 newpi->gain, pbalance);
6927 if (error) {
6928 device_printf(sc->sc_dev,
6929 "setting play.gain=%d failed with %d\n",
6930 newpi->gain, error);
6931 goto abort;
6932 }
6933 }
6934 if (SPECIFIED(newri->gain)) {
6935 error = au_set_gain(sc, &sc->sc_inports,
6936 newri->gain, rbalance);
6937 if (error) {
6938 device_printf(sc->sc_dev,
6939 "setting record.gain=%d failed with %d\n",
6940 newri->gain, error);
6941 goto abort;
6942 }
6943 }
6944 if (SPECIFIED_CH(newpi->balance)) {
6945 error = au_set_gain(sc, &sc->sc_outports,
6946 pgain, newpi->balance);
6947 if (error) {
6948 device_printf(sc->sc_dev,
6949 "setting play.balance=%d failed with %d\n",
6950 newpi->balance, error);
6951 goto abort;
6952 }
6953 }
6954 if (SPECIFIED_CH(newri->balance)) {
6955 error = au_set_gain(sc, &sc->sc_inports,
6956 rgain, newri->balance);
6957 if (error) {
6958 device_printf(sc->sc_dev,
6959 "setting record.balance=%d failed with %d\n",
6960 newri->balance, error);
6961 goto abort;
6962 }
6963 }
6964
6965 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
6966 if (oldai)
6967 oldai->monitor_gain = au_get_monitor_gain(sc);
6968 error = au_set_monitor_gain(sc, newai->monitor_gain);
6969 if (error) {
6970 device_printf(sc->sc_dev,
6971 "setting monitor_gain=%d failed with %d\n",
6972 newai->monitor_gain, error);
6973 goto abort;
6974 }
6975 }
6976
6977 /* XXX TODO */
6978 /* sc->sc_ai = *ai; */
6979
6980 error = 0;
6981 abort:
6982 return error;
6983 }
6984
6985 /*
6986 * Setup the hardware with mixer format phwfmt, rhwfmt.
6987 * The arguments have following restrictions:
6988 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
6989 * or both.
6990 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
6991 * - On non-independent devices, phwfmt and rhwfmt must have the same
6992 * parameters.
6993 * - pfil and rfil must be zero-filled.
6994 * If successful,
6995 * - phwfmt, rhwfmt will be overwritten by hardware format.
6996 * - pfil, rfil will be filled with filter information specified by the
6997 * hardware driver.
6998 * and then returns 0. Otherwise returns errno.
6999 * Must be called with sc_lock held.
7000 */
7001 static int
7002 audio_hw_set_format(struct audio_softc *sc, int setmode,
7003 audio_format2_t *phwfmt, audio_format2_t *rhwfmt,
7004 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7005 {
7006 audio_params_t pp, rp;
7007 int error;
7008
7009 KASSERT(mutex_owned(sc->sc_lock));
7010 KASSERT(phwfmt != NULL);
7011 KASSERT(rhwfmt != NULL);
7012
7013 pp = format2_to_params(phwfmt);
7014 rp = format2_to_params(rhwfmt);
7015
7016 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7017 &pp, &rp, pfil, rfil);
7018 if (error) {
7019 device_printf(sc->sc_dev,
7020 "set_format failed with %d\n", error);
7021 return error;
7022 }
7023
7024 if (sc->hw_if->commit_settings) {
7025 error = sc->hw_if->commit_settings(sc->hw_hdl);
7026 if (error) {
7027 device_printf(sc->sc_dev,
7028 "commit_settings failed with %d\n", error);
7029 return error;
7030 }
7031 }
7032
7033 return 0;
7034 }
7035
7036 /*
7037 * Fill audio_info structure. If need_mixerinfo is true, it will also
7038 * fill the hardware mixer information.
7039 * Must be called with sc_lock held.
7040 * Must be called with sc_exlock held, in addition, if need_mixerinfo is
7041 * true.
7042 */
7043 static int
7044 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7045 audio_file_t *file)
7046 {
7047 struct audio_prinfo *ri, *pi;
7048 audio_track_t *track;
7049 audio_track_t *ptrack;
7050 audio_track_t *rtrack;
7051 int gain;
7052
7053 KASSERT(mutex_owned(sc->sc_lock));
7054
7055 ri = &ai->record;
7056 pi = &ai->play;
7057 ptrack = file->ptrack;
7058 rtrack = file->rtrack;
7059
7060 memset(ai, 0, sizeof(*ai));
7061
7062 if (ptrack) {
7063 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7064 pi->channels = ptrack->usrbuf.fmt.channels;
7065 pi->precision = ptrack->usrbuf.fmt.precision;
7066 pi->encoding = ptrack->usrbuf.fmt.encoding;
7067 } else {
7068 /* Set default parameters if the track is not available. */
7069 if (ISDEVAUDIO(file->dev)) {
7070 pi->sample_rate = audio_default.sample_rate;
7071 pi->channels = audio_default.channels;
7072 pi->precision = audio_default.precision;
7073 pi->encoding = audio_default.encoding;
7074 } else {
7075 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7076 pi->channels = sc->sc_sound_pparams.channels;
7077 pi->precision = sc->sc_sound_pparams.precision;
7078 pi->encoding = sc->sc_sound_pparams.encoding;
7079 }
7080 }
7081 if (rtrack) {
7082 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7083 ri->channels = rtrack->usrbuf.fmt.channels;
7084 ri->precision = rtrack->usrbuf.fmt.precision;
7085 ri->encoding = rtrack->usrbuf.fmt.encoding;
7086 } else {
7087 /* Set default parameters if the track is not available. */
7088 if (ISDEVAUDIO(file->dev)) {
7089 ri->sample_rate = audio_default.sample_rate;
7090 ri->channels = audio_default.channels;
7091 ri->precision = audio_default.precision;
7092 ri->encoding = audio_default.encoding;
7093 } else {
7094 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7095 ri->channels = sc->sc_sound_rparams.channels;
7096 ri->precision = sc->sc_sound_rparams.precision;
7097 ri->encoding = sc->sc_sound_rparams.encoding;
7098 }
7099 }
7100
7101 if (ptrack) {
7102 pi->seek = ptrack->usrbuf.used;
7103 pi->samples = ptrack->usrbuf_stamp;
7104 pi->eof = ptrack->eofcounter;
7105 pi->pause = ptrack->is_pause;
7106 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7107 pi->waiting = 0; /* open never hangs */
7108 pi->open = 1;
7109 pi->active = sc->sc_pbusy;
7110 pi->buffer_size = ptrack->usrbuf.capacity;
7111 }
7112 if (rtrack) {
7113 ri->seek = rtrack->usrbuf.used;
7114 ri->samples = rtrack->usrbuf_stamp;
7115 ri->eof = 0;
7116 ri->pause = rtrack->is_pause;
7117 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7118 ri->waiting = 0; /* open never hangs */
7119 ri->open = 1;
7120 ri->active = sc->sc_rbusy;
7121 ri->buffer_size = rtrack->usrbuf.capacity;
7122 }
7123
7124 /*
7125 * XXX There may be different number of channels between playback
7126 * and recording, so that blocksize also may be different.
7127 * But struct audio_info has an united blocksize...
7128 * Here, I use play info precedencely if ptrack is available,
7129 * otherwise record info.
7130 *
7131 * XXX hiwat/lowat is a playback-only parameter. What should I
7132 * return for a record-only descriptor?
7133 */
7134 track = ptrack ? ptrack : rtrack;
7135 if (track) {
7136 ai->blocksize = track->usrbuf_blksize;
7137 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7138 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7139 }
7140 ai->mode = file->mode;
7141
7142 if (need_mixerinfo) {
7143 KASSERT(sc->sc_exlock);
7144
7145 pi->port = au_get_port(sc, &sc->sc_outports);
7146 ri->port = au_get_port(sc, &sc->sc_inports);
7147
7148 pi->avail_ports = sc->sc_outports.allports;
7149 ri->avail_ports = sc->sc_inports.allports;
7150
7151 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7152 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7153
7154 if (sc->sc_monitor_port != -1) {
7155 gain = au_get_monitor_gain(sc);
7156 if (gain != -1)
7157 ai->monitor_gain = gain;
7158 }
7159 }
7160
7161 return 0;
7162 }
7163
7164 /*
7165 * Must be called with sc_lock held.
7166 */
7167 static int
7168 audio_get_props(struct audio_softc *sc)
7169 {
7170 const struct audio_hw_if *hw;
7171 int props;
7172
7173 KASSERT(mutex_owned(sc->sc_lock));
7174
7175 hw = sc->hw_if;
7176 props = hw->get_props(sc->hw_hdl);
7177
7178 /* MMAP is now supported by upper layer. */
7179 props |= AUDIO_PROP_MMAP;
7180
7181 return props;
7182 }
7183
7184 /*
7185 * Return true if playback is configured.
7186 * This function can be used after audioattach.
7187 */
7188 static bool
7189 audio_can_playback(struct audio_softc *sc)
7190 {
7191
7192 return (sc->sc_pmixer != NULL);
7193 }
7194
7195 /*
7196 * Return true if recording is configured.
7197 * This function can be used after audioattach.
7198 */
7199 static bool
7200 audio_can_capture(struct audio_softc *sc)
7201 {
7202
7203 return (sc->sc_rmixer != NULL);
7204 }
7205
7206 /*
7207 * Get the afp->index'th item from the valid one of format[].
7208 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7209 *
7210 * This is common routines for query_format.
7211 * If your hardware driver has struct audio_format[], the simplest case
7212 * you can write your query_format interface as follows:
7213 *
7214 * struct audio_format foo_format[] = { ... };
7215 *
7216 * int
7217 * foo_query_format(void *hdl, audio_format_query_t *afp)
7218 * {
7219 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7220 * }
7221 */
7222 int
7223 audio_query_format(const struct audio_format *format, int nformats,
7224 audio_format_query_t *afp)
7225 {
7226 const struct audio_format *f;
7227 int idx;
7228 int i;
7229
7230 idx = 0;
7231 for (i = 0; i < nformats; i++) {
7232 f = &format[i];
7233 if (!AUFMT_IS_VALID(f))
7234 continue;
7235 if (afp->index == idx) {
7236 afp->fmt = *f;
7237 return 0;
7238 }
7239 idx++;
7240 }
7241 return EINVAL;
7242 }
7243
7244 /*
7245 * This function is provided for the hardware driver's set_format() to
7246 * find index matches with 'param' from array of audio_format_t 'formats'.
7247 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7248 * It returns the matched index and never fails. Because param passed to
7249 * set_format() is selected from query_format().
7250 * This function will be an alternative to auconv_set_converter() to
7251 * find index.
7252 */
7253 int
7254 audio_indexof_format(const struct audio_format *formats, int nformats,
7255 int mode, const audio_params_t *param)
7256 {
7257 const struct audio_format *f;
7258 int index;
7259 int j;
7260
7261 for (index = 0; index < nformats; index++) {
7262 f = &formats[index];
7263
7264 if (!AUFMT_IS_VALID(f))
7265 continue;
7266 if ((f->mode & mode) == 0)
7267 continue;
7268 if (f->encoding != param->encoding)
7269 continue;
7270 if (f->validbits != param->precision)
7271 continue;
7272 if (f->channels != param->channels)
7273 continue;
7274
7275 if (f->frequency_type == 0) {
7276 if (param->sample_rate < f->frequency[0] ||
7277 param->sample_rate > f->frequency[1])
7278 continue;
7279 } else {
7280 for (j = 0; j < f->frequency_type; j++) {
7281 if (param->sample_rate == f->frequency[j])
7282 break;
7283 }
7284 if (j == f->frequency_type)
7285 continue;
7286 }
7287
7288 /* Then, matched */
7289 return index;
7290 }
7291
7292 /* Not matched. This should not be happened. */
7293 panic("%s: cannot find matched format\n", __func__);
7294 }
7295
7296 /*
7297 * Get or set software master volume: 0..256
7298 * XXX It's for debug.
7299 */
7300 static int
7301 audio_sysctl_volume(SYSCTLFN_ARGS)
7302 {
7303 struct sysctlnode node;
7304 struct audio_softc *sc;
7305 int t, error;
7306
7307 node = *rnode;
7308 sc = node.sysctl_data;
7309
7310 if (sc->sc_pmixer)
7311 t = sc->sc_pmixer->volume;
7312 else
7313 t = -1;
7314 node.sysctl_data = &t;
7315 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7316 if (error || newp == NULL)
7317 return error;
7318
7319 if (sc->sc_pmixer == NULL)
7320 return EINVAL;
7321 if (t < 0)
7322 return EINVAL;
7323
7324 sc->sc_pmixer->volume = t;
7325 return 0;
7326 }
7327
7328 /*
7329 * Get or set hardware blocksize in msec.
7330 * XXX It's for debug.
7331 */
7332 static int
7333 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7334 {
7335 struct sysctlnode node;
7336 struct audio_softc *sc;
7337 audio_format2_t phwfmt;
7338 audio_format2_t rhwfmt;
7339 audio_filter_reg_t pfil;
7340 audio_filter_reg_t rfil;
7341 int t;
7342 int old_blk_ms;
7343 int mode;
7344 int error;
7345
7346 node = *rnode;
7347 sc = node.sysctl_data;
7348
7349 mutex_enter(sc->sc_lock);
7350
7351 old_blk_ms = sc->sc_blk_ms;
7352 t = old_blk_ms;
7353 node.sysctl_data = &t;
7354 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7355 if (error || newp == NULL)
7356 goto abort;
7357
7358 if (t < 0) {
7359 error = EINVAL;
7360 goto abort;
7361 }
7362
7363 if (sc->sc_popens + sc->sc_ropens > 0) {
7364 error = EBUSY;
7365 goto abort;
7366 }
7367 sc->sc_blk_ms = t;
7368 mode = 0;
7369 if (sc->sc_pmixer) {
7370 mode |= AUMODE_PLAY;
7371 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7372 }
7373 if (sc->sc_rmixer) {
7374 mode |= AUMODE_RECORD;
7375 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7376 }
7377
7378 /* re-init hardware */
7379 memset(&pfil, 0, sizeof(pfil));
7380 memset(&rfil, 0, sizeof(rfil));
7381 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7382 if (error) {
7383 goto abort;
7384 }
7385
7386 /* re-init track mixer */
7387 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7388 if (error) {
7389 /* Rollback */
7390 sc->sc_blk_ms = old_blk_ms;
7391 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7392 goto abort;
7393 }
7394 error = 0;
7395 abort:
7396 mutex_exit(sc->sc_lock);
7397 return error;
7398 }
7399
7400 /*
7401 * Get or set multiuser mode.
7402 */
7403 static int
7404 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7405 {
7406 struct sysctlnode node;
7407 struct audio_softc *sc;
7408 bool t;
7409 int error;
7410
7411 node = *rnode;
7412 sc = node.sysctl_data;
7413
7414 mutex_enter(sc->sc_lock);
7415
7416 t = sc->sc_multiuser;
7417 node.sysctl_data = &t;
7418 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7419 if (error || newp == NULL)
7420 goto abort;
7421
7422 sc->sc_multiuser = t;
7423 error = 0;
7424 abort:
7425 mutex_exit(sc->sc_lock);
7426 return error;
7427 }
7428
7429 #if defined(AUDIO_DEBUG)
7430 /*
7431 * Get or set debug verbose level. (0..4)
7432 * XXX It's for debug.
7433 * XXX It is not separated per device.
7434 */
7435 static int
7436 audio_sysctl_debug(SYSCTLFN_ARGS)
7437 {
7438 struct sysctlnode node;
7439 int t;
7440 int error;
7441
7442 node = *rnode;
7443 t = audiodebug;
7444 node.sysctl_data = &t;
7445 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7446 if (error || newp == NULL)
7447 return error;
7448
7449 if (t < 0 || t > 4)
7450 return EINVAL;
7451 audiodebug = t;
7452 printf("audio: audiodebug = %d\n", audiodebug);
7453 return 0;
7454 }
7455 #endif /* AUDIO_DEBUG */
7456
7457 #ifdef AUDIO_PM_IDLE
7458 static void
7459 audio_idle(void *arg)
7460 {
7461 device_t dv = arg;
7462 struct audio_softc *sc = device_private(dv);
7463
7464 #ifdef PNP_DEBUG
7465 extern int pnp_debug_idle;
7466 if (pnp_debug_idle)
7467 printf("%s: idle handler called\n", device_xname(dv));
7468 #endif
7469
7470 sc->sc_idle = true;
7471
7472 /* XXX joerg Make pmf_device_suspend handle children? */
7473 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7474 return;
7475
7476 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7477 pmf_device_resume(dv, PMF_Q_SELF);
7478 }
7479
7480 static void
7481 audio_activity(device_t dv, devactive_t type)
7482 {
7483 struct audio_softc *sc = device_private(dv);
7484
7485 if (type != DVA_SYSTEM)
7486 return;
7487
7488 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7489
7490 sc->sc_idle = false;
7491 if (!device_is_active(dv)) {
7492 /* XXX joerg How to deal with a failing resume... */
7493 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7494 pmf_device_resume(dv, PMF_Q_SELF);
7495 }
7496 }
7497 #endif
7498
7499 static bool
7500 audio_suspend(device_t dv, const pmf_qual_t *qual)
7501 {
7502 struct audio_softc *sc = device_private(dv);
7503 int error;
7504
7505 error = audio_enter_exclusive(sc);
7506 if (error)
7507 return error;
7508 audio_mixer_capture(sc);
7509
7510 /* Halts mixers but don't clear busy flag for resume */
7511 if (sc->sc_pbusy) {
7512 audio_pmixer_halt(sc);
7513 sc->sc_pbusy = true;
7514 }
7515 if (sc->sc_rbusy) {
7516 audio_rmixer_halt(sc);
7517 sc->sc_rbusy = true;
7518 }
7519
7520 #ifdef AUDIO_PM_IDLE
7521 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7522 #endif
7523 audio_exit_exclusive(sc);
7524
7525 return true;
7526 }
7527
7528 static bool
7529 audio_resume(device_t dv, const pmf_qual_t *qual)
7530 {
7531 struct audio_softc *sc = device_private(dv);
7532 struct audio_info ai;
7533 int error;
7534
7535 error = audio_enter_exclusive(sc);
7536 if (error)
7537 return error;
7538
7539 audio_mixer_restore(sc);
7540 /* XXX ? */
7541 AUDIO_INITINFO(&ai);
7542 audio_hw_setinfo(sc, &ai, NULL);
7543
7544 if (sc->sc_pbusy)
7545 audio_pmixer_start(sc, true);
7546 if (sc->sc_rbusy)
7547 audio_rmixer_start(sc);
7548
7549 audio_exit_exclusive(sc);
7550
7551 return true;
7552 }
7553
7554 #if defined(AUDIO_DEBUG)
7555 static void
7556 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7557 {
7558 int n;
7559
7560 n = 0;
7561 n += snprintf(buf + n, bufsize - n, "%s",
7562 audio_encoding_name(fmt->encoding));
7563 if (fmt->precision == fmt->stride) {
7564 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7565 } else {
7566 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7567 fmt->precision, fmt->stride);
7568 }
7569
7570 snprintf(buf + n, bufsize - n, " %uch %uHz",
7571 fmt->channels, fmt->sample_rate);
7572 }
7573 #endif
7574
7575 #if defined(AUDIO_DEBUG)
7576 static void
7577 audio_print_format2(const char *s, const audio_format2_t *fmt)
7578 {
7579 char fmtstr[64];
7580
7581 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7582 printf("%s %s\n", s, fmtstr);
7583 }
7584 #endif
7585
7586 #ifdef DIAGNOSTIC
7587 void
7588 audio_diagnostic_format2(const char *func, const audio_format2_t *fmt)
7589 {
7590
7591 KASSERTMSG(fmt, "%s: fmt == NULL", func);
7592
7593 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7594 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7595 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7596 "%s: stride(%d) is invalid", func, fmt->stride);
7597 } else {
7598 KASSERTMSG(fmt->stride % NBBY == 0,
7599 "%s: stride(%d) is invalid", func, fmt->stride);
7600 }
7601 KASSERTMSG(fmt->precision <= fmt->stride,
7602 "%s: precision(%d) <= stride(%d)",
7603 func, fmt->precision, fmt->stride);
7604 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7605 "%s: channels(%d) is out of range",
7606 func, fmt->channels);
7607
7608 /* XXX No check for encodings? */
7609 }
7610
7611 void
7612 audio_diagnostic_filter_arg(const char *func, const audio_filter_arg_t *arg)
7613 {
7614
7615 KASSERT(arg != NULL);
7616 KASSERT(arg->src != NULL);
7617 KASSERT(arg->dst != NULL);
7618 DIAGNOSTIC_format2(arg->srcfmt);
7619 DIAGNOSTIC_format2(arg->dstfmt);
7620 KASSERTMSG(arg->count > 0,
7621 "%s: count(%d) is out of range", func, arg->count);
7622 }
7623
7624 void
7625 audio_diagnostic_ring(const char *func, const audio_ring_t *ring)
7626 {
7627
7628 KASSERTMSG(ring, "%s: ring == NULL", func);
7629 DIAGNOSTIC_format2(&ring->fmt);
7630 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7631 "%s: capacity(%d) is out of range", func, ring->capacity);
7632 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7633 "%s: used(%d) is out of range (capacity:%d)",
7634 func, ring->used, ring->capacity);
7635 if (ring->capacity == 0) {
7636 KASSERTMSG(ring->mem == NULL,
7637 "%s: capacity == 0 but mem != NULL", func);
7638 } else {
7639 KASSERTMSG(ring->mem != NULL,
7640 "%s: capacity != 0 but mem == NULL", func);
7641 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7642 "%s: head(%d) is out of range (capacity:%d)",
7643 func, ring->head, ring->capacity);
7644 }
7645 }
7646 #endif /* DIAGNOSTIC */
7647
7648
7649 /*
7650 * Mixer driver
7651 */
7652 int
7653 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7654 struct lwp *l)
7655 {
7656 struct file *fp;
7657 audio_file_t *af;
7658 int error, fd;
7659
7660 KASSERT(mutex_owned(sc->sc_lock));
7661
7662 TRACE(1, "flags=0x%x", flags);
7663
7664 error = fd_allocfile(&fp, &fd);
7665 if (error)
7666 return error;
7667
7668 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7669 af->sc = sc;
7670 af->dev = dev;
7671
7672 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7673 KASSERT(error == EMOVEFD);
7674
7675 return error;
7676 }
7677
7678 /*
7679 * Remove a process from those to be signalled on mixer activity.
7680 * Must be called with sc_lock held.
7681 */
7682 static void
7683 mixer_remove(struct audio_softc *sc)
7684 {
7685 struct mixer_asyncs **pm, *m;
7686 pid_t pid;
7687
7688 KASSERT(mutex_owned(sc->sc_lock));
7689
7690 pid = curproc->p_pid;
7691 for (pm = &sc->sc_async_mixer; *pm; pm = &(*pm)->next) {
7692 if ((*pm)->pid == pid) {
7693 m = *pm;
7694 *pm = m->next;
7695 kmem_free(m, sizeof(*m));
7696 return;
7697 }
7698 }
7699 }
7700
7701 /*
7702 * Signal all processes waiting for the mixer.
7703 * Must be called with sc_lock held.
7704 */
7705 static void
7706 mixer_signal(struct audio_softc *sc)
7707 {
7708 struct mixer_asyncs *m;
7709 proc_t *p;
7710
7711 for (m = sc->sc_async_mixer; m; m = m->next) {
7712 mutex_enter(proc_lock);
7713 if ((p = proc_find(m->pid)) != NULL)
7714 psignal(p, SIGIO);
7715 mutex_exit(proc_lock);
7716 }
7717 }
7718
7719 /*
7720 * Close a mixer device
7721 */
7722 int
7723 mixer_close(struct audio_softc *sc, audio_file_t *file)
7724 {
7725
7726 mutex_enter(sc->sc_lock);
7727 TRACE(1, "");
7728 mixer_remove(sc);
7729 mutex_exit(sc->sc_lock);
7730
7731 return 0;
7732 }
7733
7734 int
7735 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
7736 struct lwp *l)
7737 {
7738 struct mixer_asyncs *ma;
7739 mixer_devinfo_t *mi;
7740 mixer_ctrl_t *mc;
7741 int error;
7742
7743 KASSERT(!mutex_owned(sc->sc_lock));
7744
7745 TRACE(2, "(%lu,'%c',%lu)",
7746 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
7747 error = EINVAL;
7748
7749 /* we can return cached values if we are sleeping */
7750 if (cmd != AUDIO_MIXER_READ) {
7751 mutex_enter(sc->sc_lock);
7752 device_active(sc->sc_dev, DVA_SYSTEM);
7753 mutex_exit(sc->sc_lock);
7754 }
7755
7756 switch (cmd) {
7757 case FIOASYNC:
7758 if (*(int *)addr) {
7759 ma = kmem_alloc(sizeof(struct mixer_asyncs), KM_SLEEP);
7760 } else {
7761 ma = NULL;
7762 }
7763 mixer_remove(sc); /* remove old entry */
7764 if (ma != NULL) {
7765 ma->next = sc->sc_async_mixer;
7766 ma->pid = curproc->p_pid;
7767 sc->sc_async_mixer = ma;
7768 }
7769 error = 0;
7770 break;
7771
7772 case AUDIO_GETDEV:
7773 TRACE(2, "AUDIO_GETDEV");
7774 error = audio_enter_exclusive(sc);
7775 if (error)
7776 break;
7777 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
7778 audio_exit_exclusive(sc);
7779 break;
7780
7781 case AUDIO_MIXER_DEVINFO:
7782 TRACE(2, "AUDIO_MIXER_DEVINFO");
7783 mi = (mixer_devinfo_t *)addr;
7784
7785 mi->un.v.delta = 0; /* default */
7786 mutex_enter(sc->sc_lock);
7787 error = audio_query_devinfo(sc, mi);
7788 mutex_exit(sc->sc_lock);
7789 break;
7790
7791 case AUDIO_MIXER_READ:
7792 TRACE(2, "AUDIO_MIXER_READ");
7793 mc = (mixer_ctrl_t *)addr;
7794
7795 error = audio_enter_exclusive(sc);
7796 if (error)
7797 break;
7798 if (device_is_active(sc->hw_dev))
7799 error = audio_get_port(sc, mc);
7800 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
7801 error = ENXIO;
7802 else {
7803 int dev = mc->dev;
7804 memcpy(mc, &sc->sc_mixer_state[dev],
7805 sizeof(mixer_ctrl_t));
7806 error = 0;
7807 }
7808 audio_exit_exclusive(sc);
7809 break;
7810
7811 case AUDIO_MIXER_WRITE:
7812 TRACE(2, "AUDIO_MIXER_WRITE");
7813 error = audio_enter_exclusive(sc);
7814 if (error)
7815 break;
7816 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
7817 if (error) {
7818 audio_exit_exclusive(sc);
7819 break;
7820 }
7821
7822 if (sc->hw_if->commit_settings) {
7823 error = sc->hw_if->commit_settings(sc->hw_hdl);
7824 if (error) {
7825 audio_exit_exclusive(sc);
7826 break;
7827 }
7828 }
7829 mixer_signal(sc);
7830 audio_exit_exclusive(sc);
7831 break;
7832
7833 default:
7834 if (sc->hw_if->dev_ioctl) {
7835 error = audio_enter_exclusive(sc);
7836 if (error)
7837 break;
7838 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
7839 cmd, addr, flag, l);
7840 audio_exit_exclusive(sc);
7841 } else
7842 error = EINVAL;
7843 break;
7844 }
7845 TRACE(2, "(%lu,'%c',%lu) result %d",
7846 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
7847 return error;
7848 }
7849
7850 /*
7851 * Must be called with sc_lock held.
7852 */
7853 int
7854 au_portof(struct audio_softc *sc, char *name, int class)
7855 {
7856 mixer_devinfo_t mi;
7857
7858 KASSERT(mutex_owned(sc->sc_lock));
7859
7860 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
7861 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
7862 return mi.index;
7863 }
7864 return -1;
7865 }
7866
7867 /*
7868 * Must be called with sc_lock held.
7869 */
7870 void
7871 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
7872 mixer_devinfo_t *mi, const struct portname *tbl)
7873 {
7874 int i, j;
7875
7876 KASSERT(mutex_owned(sc->sc_lock));
7877
7878 ports->index = mi->index;
7879 if (mi->type == AUDIO_MIXER_ENUM) {
7880 ports->isenum = true;
7881 for(i = 0; tbl[i].name; i++)
7882 for(j = 0; j < mi->un.e.num_mem; j++)
7883 if (strcmp(mi->un.e.member[j].label.name,
7884 tbl[i].name) == 0) {
7885 ports->allports |= tbl[i].mask;
7886 ports->aumask[ports->nports] = tbl[i].mask;
7887 ports->misel[ports->nports] =
7888 mi->un.e.member[j].ord;
7889 ports->miport[ports->nports] =
7890 au_portof(sc, mi->un.e.member[j].label.name,
7891 mi->mixer_class);
7892 if (ports->mixerout != -1 &&
7893 ports->miport[ports->nports] != -1)
7894 ports->isdual = true;
7895 ++ports->nports;
7896 }
7897 } else if (mi->type == AUDIO_MIXER_SET) {
7898 for(i = 0; tbl[i].name; i++)
7899 for(j = 0; j < mi->un.s.num_mem; j++)
7900 if (strcmp(mi->un.s.member[j].label.name,
7901 tbl[i].name) == 0) {
7902 ports->allports |= tbl[i].mask;
7903 ports->aumask[ports->nports] = tbl[i].mask;
7904 ports->misel[ports->nports] =
7905 mi->un.s.member[j].mask;
7906 ports->miport[ports->nports] =
7907 au_portof(sc, mi->un.s.member[j].label.name,
7908 mi->mixer_class);
7909 ++ports->nports;
7910 }
7911 }
7912 }
7913
7914 /*
7915 * Must be called with sc_lock && sc_exlock held.
7916 */
7917 int
7918 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
7919 {
7920
7921 KASSERT(mutex_owned(sc->sc_lock));
7922 KASSERT(sc->sc_exlock);
7923
7924 ct->type = AUDIO_MIXER_VALUE;
7925 ct->un.value.num_channels = 2;
7926 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
7927 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
7928 if (audio_set_port(sc, ct) == 0)
7929 return 0;
7930 ct->un.value.num_channels = 1;
7931 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
7932 return audio_set_port(sc, ct);
7933 }
7934
7935 /*
7936 * Must be called with sc_lock && sc_exlock held.
7937 */
7938 int
7939 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
7940 {
7941 int error;
7942
7943 KASSERT(mutex_owned(sc->sc_lock));
7944 KASSERT(sc->sc_exlock);
7945
7946 ct->un.value.num_channels = 2;
7947 if (audio_get_port(sc, ct) == 0) {
7948 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
7949 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
7950 } else {
7951 ct->un.value.num_channels = 1;
7952 error = audio_get_port(sc, ct);
7953 if (error)
7954 return error;
7955 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
7956 }
7957 return 0;
7958 }
7959
7960 /*
7961 * Must be called with sc_lock && sc_exlock held.
7962 */
7963 int
7964 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
7965 int gain, int balance)
7966 {
7967 mixer_ctrl_t ct;
7968 int i, error;
7969 int l, r;
7970 u_int mask;
7971 int nset;
7972
7973 KASSERT(mutex_owned(sc->sc_lock));
7974 KASSERT(sc->sc_exlock);
7975
7976 if (balance == AUDIO_MID_BALANCE) {
7977 l = r = gain;
7978 } else if (balance < AUDIO_MID_BALANCE) {
7979 l = gain;
7980 r = (balance * gain) / AUDIO_MID_BALANCE;
7981 } else {
7982 r = gain;
7983 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
7984 / AUDIO_MID_BALANCE;
7985 }
7986 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
7987
7988 if (ports->index == -1) {
7989 usemaster:
7990 if (ports->master == -1)
7991 return 0; /* just ignore it silently */
7992 ct.dev = ports->master;
7993 error = au_set_lr_value(sc, &ct, l, r);
7994 } else {
7995 ct.dev = ports->index;
7996 if (ports->isenum) {
7997 ct.type = AUDIO_MIXER_ENUM;
7998 error = audio_get_port(sc, &ct);
7999 if (error)
8000 return error;
8001 if (ports->isdual) {
8002 if (ports->cur_port == -1)
8003 ct.dev = ports->master;
8004 else
8005 ct.dev = ports->miport[ports->cur_port];
8006 error = au_set_lr_value(sc, &ct, l, r);
8007 } else {
8008 for(i = 0; i < ports->nports; i++)
8009 if (ports->misel[i] == ct.un.ord) {
8010 ct.dev = ports->miport[i];
8011 if (ct.dev == -1 ||
8012 au_set_lr_value(sc, &ct, l, r))
8013 goto usemaster;
8014 else
8015 break;
8016 }
8017 }
8018 } else {
8019 ct.type = AUDIO_MIXER_SET;
8020 error = audio_get_port(sc, &ct);
8021 if (error)
8022 return error;
8023 mask = ct.un.mask;
8024 nset = 0;
8025 for(i = 0; i < ports->nports; i++) {
8026 if (ports->misel[i] & mask) {
8027 ct.dev = ports->miport[i];
8028 if (ct.dev != -1 &&
8029 au_set_lr_value(sc, &ct, l, r) == 0)
8030 nset++;
8031 }
8032 }
8033 if (nset == 0)
8034 goto usemaster;
8035 }
8036 }
8037 if (!error)
8038 mixer_signal(sc);
8039 return error;
8040 }
8041
8042 /*
8043 * Must be called with sc_lock && sc_exlock held.
8044 */
8045 void
8046 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8047 u_int *pgain, u_char *pbalance)
8048 {
8049 mixer_ctrl_t ct;
8050 int i, l, r, n;
8051 int lgain, rgain;
8052
8053 KASSERT(mutex_owned(sc->sc_lock));
8054 KASSERT(sc->sc_exlock);
8055
8056 lgain = AUDIO_MAX_GAIN / 2;
8057 rgain = AUDIO_MAX_GAIN / 2;
8058 if (ports->index == -1) {
8059 usemaster:
8060 if (ports->master == -1)
8061 goto bad;
8062 ct.dev = ports->master;
8063 ct.type = AUDIO_MIXER_VALUE;
8064 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8065 goto bad;
8066 } else {
8067 ct.dev = ports->index;
8068 if (ports->isenum) {
8069 ct.type = AUDIO_MIXER_ENUM;
8070 if (audio_get_port(sc, &ct))
8071 goto bad;
8072 ct.type = AUDIO_MIXER_VALUE;
8073 if (ports->isdual) {
8074 if (ports->cur_port == -1)
8075 ct.dev = ports->master;
8076 else
8077 ct.dev = ports->miport[ports->cur_port];
8078 au_get_lr_value(sc, &ct, &lgain, &rgain);
8079 } else {
8080 for(i = 0; i < ports->nports; i++)
8081 if (ports->misel[i] == ct.un.ord) {
8082 ct.dev = ports->miport[i];
8083 if (ct.dev == -1 ||
8084 au_get_lr_value(sc, &ct,
8085 &lgain, &rgain))
8086 goto usemaster;
8087 else
8088 break;
8089 }
8090 }
8091 } else {
8092 ct.type = AUDIO_MIXER_SET;
8093 if (audio_get_port(sc, &ct))
8094 goto bad;
8095 ct.type = AUDIO_MIXER_VALUE;
8096 lgain = rgain = n = 0;
8097 for(i = 0; i < ports->nports; i++) {
8098 if (ports->misel[i] & ct.un.mask) {
8099 ct.dev = ports->miport[i];
8100 if (ct.dev == -1 ||
8101 au_get_lr_value(sc, &ct, &l, &r))
8102 goto usemaster;
8103 else {
8104 lgain += l;
8105 rgain += r;
8106 n++;
8107 }
8108 }
8109 }
8110 if (n != 0) {
8111 lgain /= n;
8112 rgain /= n;
8113 }
8114 }
8115 }
8116 bad:
8117 if (lgain == rgain) { /* handles lgain==rgain==0 */
8118 *pgain = lgain;
8119 *pbalance = AUDIO_MID_BALANCE;
8120 } else if (lgain < rgain) {
8121 *pgain = rgain;
8122 /* balance should be > AUDIO_MID_BALANCE */
8123 *pbalance = AUDIO_RIGHT_BALANCE -
8124 (AUDIO_MID_BALANCE * lgain) / rgain;
8125 } else /* lgain > rgain */ {
8126 *pgain = lgain;
8127 /* balance should be < AUDIO_MID_BALANCE */
8128 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8129 }
8130 }
8131
8132 /*
8133 * Must be called with sc_lock && sc_exlock held.
8134 */
8135 int
8136 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8137 {
8138 mixer_ctrl_t ct;
8139 int i, error, use_mixerout;
8140
8141 KASSERT(mutex_owned(sc->sc_lock));
8142 KASSERT(sc->sc_exlock);
8143
8144 use_mixerout = 1;
8145 if (port == 0) {
8146 if (ports->allports == 0)
8147 return 0; /* Allow this special case. */
8148 else if (ports->isdual) {
8149 if (ports->cur_port == -1) {
8150 return 0;
8151 } else {
8152 port = ports->aumask[ports->cur_port];
8153 ports->cur_port = -1;
8154 use_mixerout = 0;
8155 }
8156 }
8157 }
8158 if (ports->index == -1)
8159 return EINVAL;
8160 ct.dev = ports->index;
8161 if (ports->isenum) {
8162 if (port & (port-1))
8163 return EINVAL; /* Only one port allowed */
8164 ct.type = AUDIO_MIXER_ENUM;
8165 error = EINVAL;
8166 for(i = 0; i < ports->nports; i++)
8167 if (ports->aumask[i] == port) {
8168 if (ports->isdual && use_mixerout) {
8169 ct.un.ord = ports->mixerout;
8170 ports->cur_port = i;
8171 } else {
8172 ct.un.ord = ports->misel[i];
8173 }
8174 error = audio_set_port(sc, &ct);
8175 break;
8176 }
8177 } else {
8178 ct.type = AUDIO_MIXER_SET;
8179 ct.un.mask = 0;
8180 for(i = 0; i < ports->nports; i++)
8181 if (ports->aumask[i] & port)
8182 ct.un.mask |= ports->misel[i];
8183 if (port != 0 && ct.un.mask == 0)
8184 error = EINVAL;
8185 else
8186 error = audio_set_port(sc, &ct);
8187 }
8188 if (!error)
8189 mixer_signal(sc);
8190 return error;
8191 }
8192
8193 /*
8194 * Must be called with sc_lock && sc_exlock held.
8195 */
8196 int
8197 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8198 {
8199 mixer_ctrl_t ct;
8200 int i, aumask;
8201
8202 KASSERT(mutex_owned(sc->sc_lock));
8203 KASSERT(sc->sc_exlock);
8204
8205 if (ports->index == -1)
8206 return 0;
8207 ct.dev = ports->index;
8208 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8209 if (audio_get_port(sc, &ct))
8210 return 0;
8211 aumask = 0;
8212 if (ports->isenum) {
8213 if (ports->isdual && ports->cur_port != -1) {
8214 if (ports->mixerout == ct.un.ord)
8215 aumask = ports->aumask[ports->cur_port];
8216 else
8217 ports->cur_port = -1;
8218 }
8219 if (aumask == 0)
8220 for(i = 0; i < ports->nports; i++)
8221 if (ports->misel[i] == ct.un.ord)
8222 aumask = ports->aumask[i];
8223 } else {
8224 for(i = 0; i < ports->nports; i++)
8225 if (ct.un.mask & ports->misel[i])
8226 aumask |= ports->aumask[i];
8227 }
8228 return aumask;
8229 }
8230
8231 /*
8232 * It returns 0 if success, otherwise errno.
8233 * Must be called only if sc->sc_monitor_port != -1.
8234 * Must be called with sc_lock && sc_exlock held.
8235 */
8236 static int
8237 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8238 {
8239 mixer_ctrl_t ct;
8240
8241 KASSERT(mutex_owned(sc->sc_lock));
8242 KASSERT(sc->sc_exlock);
8243
8244 ct.dev = sc->sc_monitor_port;
8245 ct.type = AUDIO_MIXER_VALUE;
8246 ct.un.value.num_channels = 1;
8247 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8248 return audio_set_port(sc, &ct);
8249 }
8250
8251 /*
8252 * It returns monitor gain if success, otherwise -1.
8253 * Must be called only if sc->sc_monitor_port != -1.
8254 * Must be called with sc_lock && sc_exlock held.
8255 */
8256 static int
8257 au_get_monitor_gain(struct audio_softc *sc)
8258 {
8259 mixer_ctrl_t ct;
8260
8261 KASSERT(mutex_owned(sc->sc_lock));
8262 KASSERT(sc->sc_exlock);
8263
8264 ct.dev = sc->sc_monitor_port;
8265 ct.type = AUDIO_MIXER_VALUE;
8266 ct.un.value.num_channels = 1;
8267 if (audio_get_port(sc, &ct))
8268 return -1;
8269 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8270 }
8271
8272 /*
8273 * Must be called with sc_lock && sc_exlock held.
8274 */
8275 static int
8276 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8277 {
8278
8279 KASSERT(mutex_owned(sc->sc_lock));
8280 KASSERT(sc->sc_exlock);
8281
8282 return sc->hw_if->set_port(sc->hw_hdl, mc);
8283 }
8284
8285 /*
8286 * Must be called with sc_lock && sc_exlock held.
8287 */
8288 static int
8289 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8290 {
8291
8292 KASSERT(mutex_owned(sc->sc_lock));
8293 KASSERT(sc->sc_exlock);
8294
8295 return sc->hw_if->get_port(sc->hw_hdl, mc);
8296 }
8297
8298 /*
8299 * Must be called with sc_lock && sc_exlock held.
8300 */
8301 static void
8302 audio_mixer_capture(struct audio_softc *sc)
8303 {
8304 mixer_devinfo_t mi;
8305 mixer_ctrl_t *mc;
8306
8307 KASSERT(mutex_owned(sc->sc_lock));
8308 KASSERT(sc->sc_exlock);
8309
8310 for (mi.index = 0;; mi.index++) {
8311 if (audio_query_devinfo(sc, &mi) != 0)
8312 break;
8313 KASSERT(mi.index < sc->sc_nmixer_states);
8314 if (mi.type == AUDIO_MIXER_CLASS)
8315 continue;
8316 mc = &sc->sc_mixer_state[mi.index];
8317 mc->dev = mi.index;
8318 mc->type = mi.type;
8319 mc->un.value.num_channels = mi.un.v.num_channels;
8320 (void)audio_get_port(sc, mc);
8321 }
8322
8323 return;
8324 }
8325
8326 /*
8327 * Must be called with sc_lock && sc_exlock held.
8328 */
8329 static void
8330 audio_mixer_restore(struct audio_softc *sc)
8331 {
8332 mixer_devinfo_t mi;
8333 mixer_ctrl_t *mc;
8334
8335 KASSERT(mutex_owned(sc->sc_lock));
8336 KASSERT(sc->sc_exlock);
8337
8338 for (mi.index = 0; ; mi.index++) {
8339 if (audio_query_devinfo(sc, &mi) != 0)
8340 break;
8341 if (mi.type == AUDIO_MIXER_CLASS)
8342 continue;
8343 mc = &sc->sc_mixer_state[mi.index];
8344 (void)audio_set_port(sc, mc);
8345 }
8346 if (sc->hw_if->commit_settings)
8347 sc->hw_if->commit_settings(sc->hw_hdl);
8348
8349 return;
8350 }
8351
8352 static void
8353 audio_volume_down(device_t dv)
8354 {
8355 struct audio_softc *sc = device_private(dv);
8356 mixer_devinfo_t mi;
8357 int newgain;
8358 u_int gain;
8359 u_char balance;
8360
8361 if (audio_enter_exclusive(sc) != 0)
8362 return;
8363 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8364 mi.index = sc->sc_outports.master;
8365 mi.un.v.delta = 0;
8366 if (audio_query_devinfo(sc, &mi) == 0) {
8367 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8368 newgain = gain - mi.un.v.delta;
8369 if (newgain < AUDIO_MIN_GAIN)
8370 newgain = AUDIO_MIN_GAIN;
8371 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8372 }
8373 }
8374 audio_exit_exclusive(sc);
8375 }
8376
8377 static void
8378 audio_volume_up(device_t dv)
8379 {
8380 struct audio_softc *sc = device_private(dv);
8381 mixer_devinfo_t mi;
8382 u_int gain, newgain;
8383 u_char balance;
8384
8385 if (audio_enter_exclusive(sc) != 0)
8386 return;
8387 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8388 mi.index = sc->sc_outports.master;
8389 mi.un.v.delta = 0;
8390 if (audio_query_devinfo(sc, &mi) == 0) {
8391 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8392 newgain = gain + mi.un.v.delta;
8393 if (newgain > AUDIO_MAX_GAIN)
8394 newgain = AUDIO_MAX_GAIN;
8395 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8396 }
8397 }
8398 audio_exit_exclusive(sc);
8399 }
8400
8401 static void
8402 audio_volume_toggle(device_t dv)
8403 {
8404 struct audio_softc *sc = device_private(dv);
8405 u_int gain, newgain;
8406 u_char balance;
8407
8408 if (audio_enter_exclusive(sc) != 0)
8409 return;
8410 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8411 if (gain != 0) {
8412 sc->sc_lastgain = gain;
8413 newgain = 0;
8414 } else
8415 newgain = sc->sc_lastgain;
8416 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8417 audio_exit_exclusive(sc);
8418 }
8419
8420 static int
8421 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8422 {
8423
8424 KASSERT(mutex_owned(sc->sc_lock));
8425
8426 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8427 }
8428
8429 #endif /* NAUDIO > 0 */
8430
8431 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8432 #include <sys/param.h>
8433 #include <sys/systm.h>
8434 #include <sys/device.h>
8435 #include <sys/audioio.h>
8436 #include <dev/audio/audio_if.h>
8437 #endif
8438
8439 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8440 int
8441 audioprint(void *aux, const char *pnp)
8442 {
8443 struct audio_attach_args *arg;
8444 const char *type;
8445
8446 if (pnp != NULL) {
8447 arg = aux;
8448 switch (arg->type) {
8449 case AUDIODEV_TYPE_AUDIO:
8450 type = "audio";
8451 break;
8452 case AUDIODEV_TYPE_MIDI:
8453 type = "midi";
8454 break;
8455 case AUDIODEV_TYPE_OPL:
8456 type = "opl";
8457 break;
8458 case AUDIODEV_TYPE_MPU:
8459 type = "mpu";
8460 break;
8461 default:
8462 panic("audioprint: unknown type %d", arg->type);
8463 }
8464 aprint_normal("%s at %s", type, pnp);
8465 }
8466 return UNCONF;
8467 }
8468
8469 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8470
8471 #ifdef _MODULE
8472
8473 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8474
8475 #include "ioconf.c"
8476
8477 #endif
8478
8479 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8480
8481 static int
8482 audio_modcmd(modcmd_t cmd, void *arg)
8483 {
8484 int error = 0;
8485
8486 #ifdef _MODULE
8487 switch (cmd) {
8488 case MODULE_CMD_INIT:
8489 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8490 &audio_cdevsw, &audio_cmajor);
8491 if (error)
8492 break;
8493
8494 error = config_init_component(cfdriver_ioconf_audio,
8495 cfattach_ioconf_audio, cfdata_ioconf_audio);
8496 if (error) {
8497 devsw_detach(NULL, &audio_cdevsw);
8498 }
8499 break;
8500 case MODULE_CMD_FINI:
8501 devsw_detach(NULL, &audio_cdevsw);
8502 error = config_fini_component(cfdriver_ioconf_audio,
8503 cfattach_ioconf_audio, cfdata_ioconf_audio);
8504 if (error)
8505 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8506 &audio_cdevsw, &audio_cmajor);
8507 break;
8508 default:
8509 error = ENOTTY;
8510 break;
8511 }
8512 #endif
8513
8514 return error;
8515 }
8516