audio.c revision 1.2 1 /* $NetBSD: audio.c,v 1.2 2019/05/08 13:40:17 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - + (*1)
122 * freem - - + (*1)
123 * round_buffersize - x
124 * get_props - x
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * *1 Note: Before 8.0, since these have been called only at attach time,
131 * neither lock were necessary. Currently, on the other hand, since
132 * these may be also called after attach, the thread lock is required.
133 *
134 * In addition, there are two additional locks.
135 *
136 * - file->lock. This is a variable protected by sc_lock and is similar
137 * to the "thread lock". This is one for each file. If any thread
138 * context and software interrupt context who want to access the file
139 * structure, they must acquire this lock before. It protects
140 * descriptor's consistency among multithreaded accesses. Since this
141 * lock uses sc_lock, don't acquire from hardware interrupt context.
142 *
143 * - track->lock. This is an atomic variable and is similar to the
144 * "interrupt lock". This is one for each track. If any thread context
145 * (and software interrupt context) and hardware interrupt context who
146 * want to access some variables on this track, they must acquire this
147 * lock before. It protects track's consistency between hardware
148 * interrupt context and others.
149 */
150
151 #include <sys/cdefs.h>
152 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.2 2019/05/08 13:40:17 isaki Exp $");
153
154 #ifdef _KERNEL_OPT
155 #include "audio.h"
156 #include "midi.h"
157 #endif
158
159 #if NAUDIO > 0
160
161 #ifdef _KERNEL
162
163 #include <sys/types.h>
164 #include <sys/param.h>
165 #include <sys/atomic.h>
166 #include <sys/audioio.h>
167 #include <sys/conf.h>
168 #include <sys/cpu.h>
169 #include <sys/device.h>
170 #include <sys/fcntl.h>
171 #include <sys/file.h>
172 #include <sys/filedesc.h>
173 #include <sys/intr.h>
174 #include <sys/ioctl.h>
175 #include <sys/kauth.h>
176 #include <sys/kernel.h>
177 #include <sys/kmem.h>
178 #include <sys/malloc.h>
179 #include <sys/mman.h>
180 #include <sys/module.h>
181 #include <sys/poll.h>
182 #include <sys/proc.h>
183 #include <sys/queue.h>
184 #include <sys/select.h>
185 #include <sys/signalvar.h>
186 #include <sys/stat.h>
187 #include <sys/sysctl.h>
188 #include <sys/systm.h>
189 #include <sys/syslog.h>
190 #include <sys/vnode.h>
191
192 #include <dev/audio/audio_if.h>
193 #include <dev/audio/audiovar.h>
194 #include <dev/audio/audiodef.h>
195 #include <dev/audio/linear.h>
196 #include <dev/audio/mulaw.h>
197
198 #include <machine/endian.h>
199
200 #include <uvm/uvm.h>
201
202 #include "ioconf.h"
203 #endif /* _KERNEL */
204
205 /*
206 * 0: No debug logs
207 * 1: action changes like open/close/set_format...
208 * 2: + normal operations like read/write/ioctl...
209 * 3: + TRACEs except interrupt
210 * 4: + TRACEs including interrupt
211 */
212 //#define AUDIO_DEBUG 1
213
214 #if defined(AUDIO_DEBUG)
215
216 int audiodebug = AUDIO_DEBUG;
217 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
218 const char *, va_list);
219 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
220 __printflike(3, 4);
221 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
222 __printflike(3, 4);
223 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
224 __printflike(3, 4);
225
226 /* XXX sloppy memory logger */
227 static void audio_mlog_init(void);
228 static void audio_mlog_free(void);
229 static void audio_mlog_softintr(void *);
230 extern void audio_mlog_flush(void);
231 extern void audio_mlog_printf(const char *, ...);
232
233 static int mlog_refs; /* reference counter */
234 static char *mlog_buf[2]; /* double buffer */
235 static int mlog_buflen; /* buffer length */
236 static int mlog_used; /* used length */
237 static int mlog_full; /* number of dropped lines by buffer full */
238 static int mlog_drop; /* number of dropped lines by busy */
239 static volatile uint32_t mlog_inuse; /* in-use */
240 static int mlog_wpage; /* active page */
241 static void *mlog_sih; /* softint handle */
242
243 static void
244 audio_mlog_init(void)
245 {
246 mlog_refs++;
247 if (mlog_refs > 1)
248 return;
249 mlog_buflen = 4096;
250 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
251 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
252 mlog_used = 0;
253 mlog_full = 0;
254 mlog_drop = 0;
255 mlog_inuse = 0;
256 mlog_wpage = 0;
257 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
258 if (mlog_sih == NULL)
259 printf("%s: softint_establish failed\n", __func__);
260 }
261
262 static void
263 audio_mlog_free(void)
264 {
265 mlog_refs--;
266 if (mlog_refs > 0)
267 return;
268
269 audio_mlog_flush();
270 if (mlog_sih)
271 softint_disestablish(mlog_sih);
272 kmem_free(mlog_buf[0], mlog_buflen);
273 kmem_free(mlog_buf[1], mlog_buflen);
274 }
275
276 /*
277 * Flush memory buffer.
278 * It must not be called from hardware interrupt context.
279 */
280 void
281 audio_mlog_flush(void)
282 {
283 if (mlog_refs == 0)
284 return;
285
286 /* Nothing to do if already in use ? */
287 if (atomic_swap_32(&mlog_inuse, 1) == 1)
288 return;
289
290 int rpage = mlog_wpage;
291 mlog_wpage ^= 1;
292 mlog_buf[mlog_wpage][0] = '\0';
293 mlog_used = 0;
294
295 atomic_swap_32(&mlog_inuse, 0);
296
297 if (mlog_buf[rpage][0] != '\0') {
298 printf("%s", mlog_buf[rpage]);
299 if (mlog_drop > 0)
300 printf("mlog_drop %d\n", mlog_drop);
301 if (mlog_full > 0)
302 printf("mlog_full %d\n", mlog_full);
303 }
304 mlog_full = 0;
305 mlog_drop = 0;
306 }
307
308 static void
309 audio_mlog_softintr(void *cookie)
310 {
311 audio_mlog_flush();
312 }
313
314 void
315 audio_mlog_printf(const char *fmt, ...)
316 {
317 int len;
318 va_list ap;
319
320 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
321 /* already inuse */
322 mlog_drop++;
323 return;
324 }
325
326 va_start(ap, fmt);
327 len = vsnprintf(
328 mlog_buf[mlog_wpage] + mlog_used,
329 mlog_buflen - mlog_used,
330 fmt, ap);
331 va_end(ap);
332
333 mlog_used += len;
334 if (mlog_buflen - mlog_used <= 1) {
335 mlog_full++;
336 }
337
338 atomic_swap_32(&mlog_inuse, 0);
339
340 if (mlog_sih)
341 softint_schedule(mlog_sih);
342 }
343
344 /* trace functions */
345 static void
346 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
347 const char *fmt, va_list ap)
348 {
349 char buf[256];
350 int n;
351
352 n = 0;
353 buf[0] = '\0';
354 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
355 funcname, device_unit(sc->sc_dev), header);
356 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
357
358 if (cpu_intr_p()) {
359 audio_mlog_printf("%s\n", buf);
360 } else {
361 audio_mlog_flush();
362 printf("%s\n", buf);
363 }
364 }
365
366 static void
367 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
368 {
369 va_list ap;
370
371 va_start(ap, fmt);
372 audio_vtrace(sc, funcname, "", fmt, ap);
373 va_end(ap);
374 }
375
376 static void
377 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
378 {
379 char hdr[16];
380 va_list ap;
381
382 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
383 va_start(ap, fmt);
384 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
385 va_end(ap);
386 }
387
388 static void
389 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
390 {
391 char hdr[32];
392 char phdr[16], rhdr[16];
393 va_list ap;
394
395 phdr[0] = '\0';
396 rhdr[0] = '\0';
397 if (file->ptrack)
398 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
399 if (file->rtrack)
400 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
401 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
402
403 va_start(ap, fmt);
404 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
405 va_end(ap);
406 }
407
408 #define DPRINTF(n, fmt...) do { \
409 if (audiodebug >= (n)) { \
410 audio_mlog_flush(); \
411 printf(fmt); \
412 } \
413 } while (0)
414 #define TRACE(n, fmt...) do { \
415 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
416 } while (0)
417 #define TRACET(n, t, fmt...) do { \
418 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
419 } while (0)
420 #define TRACEF(n, f, fmt...) do { \
421 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
422 } while (0)
423
424 struct audio_track_debugbuf {
425 char usrbuf[32];
426 char codec[32];
427 char chvol[32];
428 char chmix[32];
429 char freq[32];
430 char outbuf[32];
431 };
432
433 static void
434 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
435 {
436
437 memset(buf, 0, sizeof(*buf));
438
439 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
440 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
441 if (track->freq.filter)
442 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
443 track->freq.srcbuf.head,
444 track->freq.srcbuf.used,
445 track->freq.srcbuf.capacity);
446 if (track->chmix.filter)
447 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
448 track->chmix.srcbuf.used);
449 if (track->chvol.filter)
450 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
451 track->chvol.srcbuf.used);
452 if (track->codec.filter)
453 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
454 track->codec.srcbuf.used);
455 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
456 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
457 }
458 #else
459 #define DPRINTF(n, fmt...) do { } while (0)
460 #define TRACE(n, fmt, ...) do { } while (0)
461 #define TRACET(n, t, fmt, ...) do { } while (0)
462 #define TRACEF(n, f, fmt, ...) do { } while (0)
463 #endif
464
465 #define SPECIFIED(x) ((x) != ~0)
466 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
467
468 /* Device timeout in msec */
469 #define AUDIO_TIMEOUT (3000)
470
471 /* #define AUDIO_PM_IDLE */
472 #ifdef AUDIO_PM_IDLE
473 int audio_idle_timeout = 30;
474 #endif
475
476 struct portname {
477 const char *name;
478 int mask;
479 };
480
481 static int audiomatch(device_t, cfdata_t, void *);
482 static void audioattach(device_t, device_t, void *);
483 static int audiodetach(device_t, int);
484 static int audioactivate(device_t, enum devact);
485 static void audiochilddet(device_t, device_t);
486 static int audiorescan(device_t, const char *, const int *);
487
488 static int audio_modcmd(modcmd_t, void *);
489
490 #ifdef AUDIO_PM_IDLE
491 static void audio_idle(void *);
492 static void audio_activity(device_t, devactive_t);
493 #endif
494
495 static bool audio_suspend(device_t dv, const pmf_qual_t *);
496 static bool audio_resume(device_t dv, const pmf_qual_t *);
497 static void audio_volume_down(device_t);
498 static void audio_volume_up(device_t);
499 static void audio_volume_toggle(device_t);
500
501 static void audio_mixer_capture(struct audio_softc *);
502 static void audio_mixer_restore(struct audio_softc *);
503
504 static void audio_softintr_rd(void *);
505 static void audio_softintr_wr(void *);
506
507 static int audio_enter_exclusive(struct audio_softc *);
508 static void audio_exit_exclusive(struct audio_softc *);
509 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
510 static int audio_file_acquire(struct audio_softc *, audio_file_t *);
511 static void audio_file_release(struct audio_softc *, audio_file_t *);
512
513 static int audioclose(struct file *);
514 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
515 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
516 static int audioioctl(struct file *, u_long, void *);
517 static int audiopoll(struct file *, int);
518 static int audiokqfilter(struct file *, struct knote *);
519 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
520 struct uvm_object **, int *);
521 static int audiostat(struct file *, struct stat *);
522
523 static void filt_audiowrite_detach(struct knote *);
524 static int filt_audiowrite_event(struct knote *, long);
525 static void filt_audioread_detach(struct knote *);
526 static int filt_audioread_event(struct knote *, long);
527
528 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
529 struct audiobell_arg *);
530 static int audio_close(struct audio_softc *, audio_file_t *);
531 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
532 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
533 static void audio_file_clear(struct audio_softc *, audio_file_t *);
534 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
535 struct lwp *, audio_file_t *);
536 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
537 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
538 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
539 struct uvm_object **, int *, audio_file_t *);
540
541 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
542
543 static void audio_pintr(void *);
544 static void audio_rintr(void *);
545
546 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
547
548 static __inline int audio_track_readablebytes(const audio_track_t *);
549 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
550 const struct audio_info *);
551 static int audio_track_setinfo_check(audio_format2_t *,
552 const struct audio_prinfo *);
553 static void audio_track_setinfo_water(audio_track_t *,
554 const struct audio_info *);
555 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
556 struct audio_info *);
557 static int audio_hw_set_format(struct audio_softc *, int,
558 audio_format2_t *, audio_format2_t *,
559 audio_filter_reg_t *, audio_filter_reg_t *);
560 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
561 audio_file_t *);
562 static int audio_get_props(struct audio_softc *);
563 static bool audio_can_playback(struct audio_softc *);
564 static bool audio_can_capture(struct audio_softc *);
565 static int audio_check_params(audio_format2_t *);
566 static int audio_mixers_init(struct audio_softc *sc, int,
567 const audio_format2_t *, const audio_format2_t *,
568 const audio_filter_reg_t *, const audio_filter_reg_t *);
569 static int audio_select_freq(const struct audio_format *);
570 static int audio_hw_probe(struct audio_softc *, int, int *,
571 audio_format2_t *, audio_format2_t *);
572 static int audio_hw_probe_fmt(struct audio_softc *, audio_format2_t *, int);
573 static int audio_hw_validate_format(struct audio_softc *, int,
574 const audio_format2_t *);
575 static int audio_mixers_set_format(struct audio_softc *,
576 const struct audio_info *);
577 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
578 static int audio_sysctl_volume(SYSCTLFN_PROTO);
579 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
580 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
581 #if defined(AUDIO_DEBUG)
582 static int audio_sysctl_debug(SYSCTLFN_PROTO);
583 #endif
584 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
585 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
586 #endif
587 #if defined(AUDIO_DEBUG)
588 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
589 #endif
590
591 static void *audio_realloc(void *, size_t);
592 static int audio_realloc_usrbuf(audio_track_t *, int);
593 static void audio_free_usrbuf(audio_track_t *);
594
595 static audio_track_t *audio_track_create(struct audio_softc *,
596 audio_trackmixer_t *);
597 static void audio_track_destroy(audio_track_t *);
598 static audio_filter_t audio_track_get_codec(audio_track_t *,
599 const audio_format2_t *, const audio_format2_t *);
600 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
601 static void audio_track_play(audio_track_t *);
602 static int audio_track_drain(struct audio_softc *, audio_track_t *);
603 static void audio_track_record(audio_track_t *);
604 static void audio_track_clear(struct audio_softc *, audio_track_t *);
605
606 static int audio_mixer_init(struct audio_softc *, int,
607 const audio_format2_t *, const audio_filter_reg_t *);
608 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
609 static void audio_pmixer_start(struct audio_softc *, bool);
610 static void audio_pmixer_process(struct audio_softc *);
611 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
612 static void audio_pmixer_output(struct audio_softc *);
613 static int audio_pmixer_halt(struct audio_softc *);
614 static void audio_rmixer_start(struct audio_softc *);
615 static void audio_rmixer_process(struct audio_softc *);
616 static void audio_rmixer_input(struct audio_softc *);
617 static int audio_rmixer_halt(struct audio_softc *);
618
619 static void mixer_init(struct audio_softc *);
620 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
621 static int mixer_close(struct audio_softc *, audio_file_t *);
622 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
623 static void mixer_remove(struct audio_softc *);
624 static void mixer_signal(struct audio_softc *);
625
626 static int au_portof(struct audio_softc *, char *, int);
627
628 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
629 mixer_devinfo_t *, const struct portname *);
630 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
631 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
632 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
633 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
634 u_int *, u_char *);
635 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
636 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
637 static int au_set_monitor_gain(struct audio_softc *, int);
638 static int au_get_monitor_gain(struct audio_softc *);
639 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
640 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
641
642 static __inline struct audio_params
643 format2_to_params(const audio_format2_t *f2)
644 {
645 audio_params_t p;
646
647 /* validbits/precision <-> precision/stride */
648 p.sample_rate = f2->sample_rate;
649 p.channels = f2->channels;
650 p.encoding = f2->encoding;
651 p.validbits = f2->precision;
652 p.precision = f2->stride;
653 return p;
654 }
655
656 static __inline audio_format2_t
657 params_to_format2(const struct audio_params *p)
658 {
659 audio_format2_t f2;
660
661 /* precision/stride <-> validbits/precision */
662 f2.sample_rate = p->sample_rate;
663 f2.channels = p->channels;
664 f2.encoding = p->encoding;
665 f2.precision = p->validbits;
666 f2.stride = p->precision;
667 return f2;
668 }
669
670 /* Return true if this track is a playback track. */
671 static __inline bool
672 audio_track_is_playback(const audio_track_t *track)
673 {
674
675 return ((track->mode & AUMODE_PLAY) != 0);
676 }
677
678 /* Return true if this track is a recording track. */
679 static __inline bool
680 audio_track_is_record(const audio_track_t *track)
681 {
682
683 return ((track->mode & AUMODE_RECORD) != 0);
684 }
685
686 #if 0 /* XXX Not used yet */
687 /*
688 * Convert 0..255 volume used in userland to internal presentation 0..256.
689 */
690 static __inline u_int
691 audio_volume_to_inner(u_int v)
692 {
693
694 return v < 127 ? v : v + 1;
695 }
696
697 /*
698 * Convert 0..256 internal presentation to 0..255 volume used in userland.
699 */
700 static __inline u_int
701 audio_volume_to_outer(u_int v)
702 {
703
704 return v < 127 ? v : v - 1;
705 }
706 #endif /* 0 */
707
708 static dev_type_open(audioopen);
709 /* XXXMRG use more dev_type_xxx */
710
711 const struct cdevsw audio_cdevsw = {
712 .d_open = audioopen,
713 .d_close = noclose,
714 .d_read = noread,
715 .d_write = nowrite,
716 .d_ioctl = noioctl,
717 .d_stop = nostop,
718 .d_tty = notty,
719 .d_poll = nopoll,
720 .d_mmap = nommap,
721 .d_kqfilter = nokqfilter,
722 .d_discard = nodiscard,
723 .d_flag = D_OTHER | D_MPSAFE
724 };
725
726 const struct fileops audio_fileops = {
727 .fo_name = "audio",
728 .fo_read = audioread,
729 .fo_write = audiowrite,
730 .fo_ioctl = audioioctl,
731 .fo_fcntl = fnullop_fcntl,
732 .fo_stat = audiostat,
733 .fo_poll = audiopoll,
734 .fo_close = audioclose,
735 .fo_mmap = audiommap,
736 .fo_kqfilter = audiokqfilter,
737 .fo_restart = fnullop_restart
738 };
739
740 /* The default audio mode: 8 kHz mono mu-law */
741 static const struct audio_params audio_default = {
742 .sample_rate = 8000,
743 .encoding = AUDIO_ENCODING_ULAW,
744 .precision = 8,
745 .validbits = 8,
746 .channels = 1,
747 };
748
749 static const char *encoding_names[] = {
750 "none",
751 AudioEmulaw,
752 AudioEalaw,
753 "pcm16",
754 "pcm8",
755 AudioEadpcm,
756 AudioEslinear_le,
757 AudioEslinear_be,
758 AudioEulinear_le,
759 AudioEulinear_be,
760 AudioEslinear,
761 AudioEulinear,
762 AudioEmpeg_l1_stream,
763 AudioEmpeg_l1_packets,
764 AudioEmpeg_l1_system,
765 AudioEmpeg_l2_stream,
766 AudioEmpeg_l2_packets,
767 AudioEmpeg_l2_system,
768 AudioEac3,
769 };
770
771 /*
772 * Returns encoding name corresponding to AUDIO_ENCODING_*.
773 * Note that it may return a local buffer because it is mainly for debugging.
774 */
775 const char *
776 audio_encoding_name(int encoding)
777 {
778 static char buf[16];
779
780 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
781 return encoding_names[encoding];
782 } else {
783 snprintf(buf, sizeof(buf), "enc=%d", encoding);
784 return buf;
785 }
786 }
787
788 /*
789 * Supported encodings used by AUDIO_GETENC.
790 * index and flags are set by code.
791 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
792 */
793 static const audio_encoding_t audio_encodings[] = {
794 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
795 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
796 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
797 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
798 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
799 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
800 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
801 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
802 #if defined(AUDIO_SUPPORT_LINEAR24)
803 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
804 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
805 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
806 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
807 #endif
808 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
809 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
810 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
811 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
812 };
813
814 static const struct portname itable[] = {
815 { AudioNmicrophone, AUDIO_MICROPHONE },
816 { AudioNline, AUDIO_LINE_IN },
817 { AudioNcd, AUDIO_CD },
818 { 0, 0 }
819 };
820 static const struct portname otable[] = {
821 { AudioNspeaker, AUDIO_SPEAKER },
822 { AudioNheadphone, AUDIO_HEADPHONE },
823 { AudioNline, AUDIO_LINE_OUT },
824 { 0, 0 }
825 };
826
827 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
828 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
829 audiochilddet, DVF_DETACH_SHUTDOWN);
830
831 static int
832 audiomatch(device_t parent, cfdata_t match, void *aux)
833 {
834 struct audio_attach_args *sa;
835
836 sa = aux;
837 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
838 __func__, sa->type, sa, sa->hwif);
839 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
840 }
841
842 static void
843 audioattach(device_t parent, device_t self, void *aux)
844 {
845 struct audio_softc *sc;
846 struct audio_attach_args *sa;
847 const struct audio_hw_if *hw_if;
848 audio_format2_t phwfmt;
849 audio_format2_t rhwfmt;
850 audio_filter_reg_t pfil;
851 audio_filter_reg_t rfil;
852 const struct sysctlnode *node;
853 void *hdlp;
854 bool is_indep;
855 int mode;
856 int props;
857 int error;
858
859 sc = device_private(self);
860 sc->sc_dev = self;
861 sa = (struct audio_attach_args *)aux;
862 hw_if = sa->hwif;
863 hdlp = sa->hdl;
864
865 if (hw_if == NULL || hw_if->get_locks == NULL) {
866 panic("audioattach: missing hw_if method");
867 }
868
869 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
870
871 #ifdef DIAGNOSTIC
872 if (hw_if->query_format == NULL ||
873 hw_if->set_format == NULL ||
874 (hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
875 (hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
876 hw_if->halt_output == NULL ||
877 hw_if->halt_input == NULL ||
878 hw_if->getdev == NULL ||
879 hw_if->set_port == NULL ||
880 hw_if->get_port == NULL ||
881 hw_if->query_devinfo == NULL ||
882 hw_if->get_props == NULL) {
883 aprint_error(": missing method\n");
884 return;
885 }
886 #endif
887
888 sc->hw_if = hw_if;
889 sc->hw_hdl = hdlp;
890 sc->hw_dev = parent;
891
892 sc->sc_blk_ms = AUDIO_BLK_MS;
893 SLIST_INIT(&sc->sc_files);
894 cv_init(&sc->sc_exlockcv, "audiolk");
895
896 mutex_enter(sc->sc_lock);
897 props = audio_get_props(sc);
898 mutex_exit(sc->sc_lock);
899
900 if ((props & AUDIO_PROP_FULLDUPLEX))
901 aprint_normal(": full duplex");
902 else
903 aprint_normal(": half duplex");
904
905 is_indep = (props & AUDIO_PROP_INDEPENDENT);
906 mode = 0;
907 if ((props & AUDIO_PROP_PLAYBACK)) {
908 mode |= AUMODE_PLAY;
909 aprint_normal(", playback");
910 }
911 if ((props & AUDIO_PROP_CAPTURE)) {
912 mode |= AUMODE_RECORD;
913 aprint_normal(", capture");
914 }
915 if ((props & AUDIO_PROP_MMAP) != 0)
916 aprint_normal(", mmap");
917 if (is_indep)
918 aprint_normal(", independent");
919
920 aprint_naive("\n");
921 aprint_normal("\n");
922
923 KASSERT((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0);
924
925 /* probe hw params */
926 memset(&phwfmt, 0, sizeof(phwfmt));
927 memset(&rhwfmt, 0, sizeof(rhwfmt));
928 memset(&pfil, 0, sizeof(pfil));
929 memset(&rfil, 0, sizeof(rfil));
930 mutex_enter(sc->sc_lock);
931 if (audio_hw_probe(sc, is_indep, &mode, &phwfmt, &rhwfmt) != 0) {
932 mutex_exit(sc->sc_lock);
933 goto bad;
934 }
935 if (mode == 0) {
936 mutex_exit(sc->sc_lock);
937 goto bad;
938 }
939 /* Init hardware. */
940 /* hw_probe() also validates [pr]hwfmt. */
941 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
942 if (error) {
943 mutex_exit(sc->sc_lock);
944 goto bad;
945 }
946
947 /*
948 * Init track mixers. If at least one direction is available on
949 * attach time, we assume a success.
950 */
951 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
952 mutex_exit(sc->sc_lock);
953 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL)
954 goto bad;
955
956 selinit(&sc->sc_wsel);
957 selinit(&sc->sc_rsel);
958
959 /* Initial parameter of /dev/sound */
960 sc->sc_sound_pparams = params_to_format2(&audio_default);
961 sc->sc_sound_rparams = params_to_format2(&audio_default);
962 sc->sc_sound_ppause = false;
963 sc->sc_sound_rpause = false;
964
965 /* XXX TODO: consider about sc_ai */
966
967 mixer_init(sc);
968 TRACE(2, "inputs ports=0x%x, input master=%d, "
969 "output ports=0x%x, output master=%d",
970 sc->sc_inports.allports, sc->sc_inports.master,
971 sc->sc_outports.allports, sc->sc_outports.master);
972
973 sysctl_createv(&sc->sc_log, 0, NULL, &node,
974 0,
975 CTLTYPE_NODE, device_xname(sc->sc_dev),
976 SYSCTL_DESCR("audio test"),
977 NULL, 0,
978 NULL, 0,
979 CTL_HW,
980 CTL_CREATE, CTL_EOL);
981
982 if (node != NULL) {
983 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
984 CTLFLAG_READWRITE,
985 CTLTYPE_INT, "volume",
986 SYSCTL_DESCR("software volume test"),
987 audio_sysctl_volume, 0, (void *)sc, 0,
988 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
989
990 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
991 CTLFLAG_READWRITE,
992 CTLTYPE_INT, "blk_ms",
993 SYSCTL_DESCR("blocksize in msec"),
994 audio_sysctl_blk_ms, 0, (void *)sc, 0,
995 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
996
997 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
998 CTLFLAG_READWRITE,
999 CTLTYPE_BOOL, "multiuser",
1000 SYSCTL_DESCR("allow multiple user access"),
1001 audio_sysctl_multiuser, 0, (void *)sc, 0,
1002 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1003
1004 #if defined(AUDIO_DEBUG)
1005 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1006 CTLFLAG_READWRITE,
1007 CTLTYPE_INT, "debug",
1008 SYSCTL_DESCR("debug level (0..4)"),
1009 audio_sysctl_debug, 0, (void *)sc, 0,
1010 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1011 #endif
1012 }
1013
1014 #ifdef AUDIO_PM_IDLE
1015 callout_init(&sc->sc_idle_counter, 0);
1016 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1017 #endif
1018
1019 if (!pmf_device_register(self, audio_suspend, audio_resume))
1020 aprint_error_dev(self, "couldn't establish power handler\n");
1021 #ifdef AUDIO_PM_IDLE
1022 if (!device_active_register(self, audio_activity))
1023 aprint_error_dev(self, "couldn't register activity handler\n");
1024 #endif
1025
1026 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1027 audio_volume_down, true))
1028 aprint_error_dev(self, "couldn't add volume down handler\n");
1029 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1030 audio_volume_up, true))
1031 aprint_error_dev(self, "couldn't add volume up handler\n");
1032 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1033 audio_volume_toggle, true))
1034 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1035
1036 #ifdef AUDIO_PM_IDLE
1037 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1038 #endif
1039
1040 #if defined(AUDIO_DEBUG)
1041 audio_mlog_init();
1042 #endif
1043
1044 audiorescan(self, "audio", NULL);
1045 return;
1046
1047 bad:
1048 /* Clearing hw_if means that device is attached but disabled. */
1049 sc->hw_if = NULL;
1050 aprint_error_dev(sc->sc_dev, "disabled\n");
1051 return;
1052 }
1053
1054 /*
1055 * Initialize hardware mixer.
1056 * This function is called from audioattach().
1057 */
1058 static void
1059 mixer_init(struct audio_softc *sc)
1060 {
1061 mixer_devinfo_t mi;
1062 int iclass, mclass, oclass, rclass;
1063 int record_master_found, record_source_found;
1064
1065 iclass = mclass = oclass = rclass = -1;
1066 sc->sc_inports.index = -1;
1067 sc->sc_inports.master = -1;
1068 sc->sc_inports.nports = 0;
1069 sc->sc_inports.isenum = false;
1070 sc->sc_inports.allports = 0;
1071 sc->sc_inports.isdual = false;
1072 sc->sc_inports.mixerout = -1;
1073 sc->sc_inports.cur_port = -1;
1074 sc->sc_outports.index = -1;
1075 sc->sc_outports.master = -1;
1076 sc->sc_outports.nports = 0;
1077 sc->sc_outports.isenum = false;
1078 sc->sc_outports.allports = 0;
1079 sc->sc_outports.isdual = false;
1080 sc->sc_outports.mixerout = -1;
1081 sc->sc_outports.cur_port = -1;
1082 sc->sc_monitor_port = -1;
1083 /*
1084 * Read through the underlying driver's list, picking out the class
1085 * names from the mixer descriptions. We'll need them to decode the
1086 * mixer descriptions on the next pass through the loop.
1087 */
1088 mutex_enter(sc->sc_lock);
1089 for(mi.index = 0; ; mi.index++) {
1090 if (audio_query_devinfo(sc, &mi) != 0)
1091 break;
1092 /*
1093 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1094 * All the other types describe an actual mixer.
1095 */
1096 if (mi.type == AUDIO_MIXER_CLASS) {
1097 if (strcmp(mi.label.name, AudioCinputs) == 0)
1098 iclass = mi.mixer_class;
1099 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1100 mclass = mi.mixer_class;
1101 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1102 oclass = mi.mixer_class;
1103 if (strcmp(mi.label.name, AudioCrecord) == 0)
1104 rclass = mi.mixer_class;
1105 }
1106 }
1107 mutex_exit(sc->sc_lock);
1108
1109 /* Allocate save area. Ensure non-zero allocation. */
1110 sc->sc_nmixer_states = mi.index;
1111 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1112 (sc->sc_nmixer_states + 1), KM_SLEEP);
1113
1114 /*
1115 * This is where we assign each control in the "audio" model, to the
1116 * underlying "mixer" control. We walk through the whole list once,
1117 * assigning likely candidates as we come across them.
1118 */
1119 record_master_found = 0;
1120 record_source_found = 0;
1121 mutex_enter(sc->sc_lock);
1122 for(mi.index = 0; ; mi.index++) {
1123 if (audio_query_devinfo(sc, &mi) != 0)
1124 break;
1125 KASSERT(mi.index < sc->sc_nmixer_states);
1126 if (mi.type == AUDIO_MIXER_CLASS)
1127 continue;
1128 if (mi.mixer_class == iclass) {
1129 /*
1130 * AudioCinputs is only a fallback, when we don't
1131 * find what we're looking for in AudioCrecord, so
1132 * check the flags before accepting one of these.
1133 */
1134 if (strcmp(mi.label.name, AudioNmaster) == 0
1135 && record_master_found == 0)
1136 sc->sc_inports.master = mi.index;
1137 if (strcmp(mi.label.name, AudioNsource) == 0
1138 && record_source_found == 0) {
1139 if (mi.type == AUDIO_MIXER_ENUM) {
1140 int i;
1141 for(i = 0; i < mi.un.e.num_mem; i++)
1142 if (strcmp(mi.un.e.member[i].label.name,
1143 AudioNmixerout) == 0)
1144 sc->sc_inports.mixerout =
1145 mi.un.e.member[i].ord;
1146 }
1147 au_setup_ports(sc, &sc->sc_inports, &mi,
1148 itable);
1149 }
1150 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1151 sc->sc_outports.master == -1)
1152 sc->sc_outports.master = mi.index;
1153 } else if (mi.mixer_class == mclass) {
1154 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1155 sc->sc_monitor_port = mi.index;
1156 } else if (mi.mixer_class == oclass) {
1157 if (strcmp(mi.label.name, AudioNmaster) == 0)
1158 sc->sc_outports.master = mi.index;
1159 if (strcmp(mi.label.name, AudioNselect) == 0)
1160 au_setup_ports(sc, &sc->sc_outports, &mi,
1161 otable);
1162 } else if (mi.mixer_class == rclass) {
1163 /*
1164 * These are the preferred mixers for the audio record
1165 * controls, so set the flags here, but don't check.
1166 */
1167 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1168 sc->sc_inports.master = mi.index;
1169 record_master_found = 1;
1170 }
1171 #if 1 /* Deprecated. Use AudioNmaster. */
1172 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1173 sc->sc_inports.master = mi.index;
1174 record_master_found = 1;
1175 }
1176 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1177 sc->sc_inports.master = mi.index;
1178 record_master_found = 1;
1179 }
1180 #endif
1181 if (strcmp(mi.label.name, AudioNsource) == 0) {
1182 if (mi.type == AUDIO_MIXER_ENUM) {
1183 int i;
1184 for(i = 0; i < mi.un.e.num_mem; i++)
1185 if (strcmp(mi.un.e.member[i].label.name,
1186 AudioNmixerout) == 0)
1187 sc->sc_inports.mixerout =
1188 mi.un.e.member[i].ord;
1189 }
1190 au_setup_ports(sc, &sc->sc_inports, &mi,
1191 itable);
1192 record_source_found = 1;
1193 }
1194 }
1195 }
1196 mutex_exit(sc->sc_lock);
1197 }
1198
1199 static int
1200 audioactivate(device_t self, enum devact act)
1201 {
1202 struct audio_softc *sc = device_private(self);
1203
1204 switch (act) {
1205 case DVACT_DEACTIVATE:
1206 mutex_enter(sc->sc_lock);
1207 sc->sc_dying = true;
1208 cv_broadcast(&sc->sc_exlockcv);
1209 mutex_exit(sc->sc_lock);
1210 return 0;
1211 default:
1212 return EOPNOTSUPP;
1213 }
1214 }
1215
1216 static int
1217 audiodetach(device_t self, int flags)
1218 {
1219 struct audio_softc *sc;
1220 int maj, mn;
1221 int error;
1222
1223 sc = device_private(self);
1224 TRACE(2, "flags=%d", flags);
1225
1226 /* device is not initialized */
1227 if (sc->hw_if == NULL)
1228 return 0;
1229
1230 /* Start draining existing accessors of the device. */
1231 error = config_detach_children(self, flags);
1232 if (error)
1233 return error;
1234
1235 mutex_enter(sc->sc_lock);
1236 sc->sc_dying = true;
1237 cv_broadcast(&sc->sc_exlockcv);
1238 if (sc->sc_pmixer)
1239 cv_broadcast(&sc->sc_pmixer->outcv);
1240 if (sc->sc_rmixer)
1241 cv_broadcast(&sc->sc_rmixer->outcv);
1242 mutex_exit(sc->sc_lock);
1243
1244 /* locate the major number */
1245 maj = cdevsw_lookup_major(&audio_cdevsw);
1246
1247 /*
1248 * Nuke the vnodes for any open instances (calls close).
1249 * Will wait until any activity on the device nodes has ceased.
1250 */
1251 mn = device_unit(self);
1252 vdevgone(maj, mn | SOUND_DEVICE, mn | SOUND_DEVICE, VCHR);
1253 vdevgone(maj, mn | AUDIO_DEVICE, mn | AUDIO_DEVICE, VCHR);
1254 vdevgone(maj, mn | AUDIOCTL_DEVICE, mn | AUDIOCTL_DEVICE, VCHR);
1255 vdevgone(maj, mn | MIXER_DEVICE, mn | MIXER_DEVICE, VCHR);
1256
1257 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1258 audio_volume_down, true);
1259 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1260 audio_volume_up, true);
1261 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1262 audio_volume_toggle, true);
1263
1264 #ifdef AUDIO_PM_IDLE
1265 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1266
1267 device_active_deregister(self, audio_activity);
1268 #endif
1269
1270 pmf_device_deregister(self);
1271
1272 /* Free resources */
1273 mutex_enter(sc->sc_lock);
1274 if (sc->sc_pmixer) {
1275 audio_mixer_destroy(sc, sc->sc_pmixer);
1276 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1277 }
1278 if (sc->sc_rmixer) {
1279 audio_mixer_destroy(sc, sc->sc_rmixer);
1280 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1281 }
1282 mutex_exit(sc->sc_lock);
1283
1284 seldestroy(&sc->sc_wsel);
1285 seldestroy(&sc->sc_rsel);
1286
1287 #ifdef AUDIO_PM_IDLE
1288 callout_destroy(&sc->sc_idle_counter);
1289 #endif
1290
1291 cv_destroy(&sc->sc_exlockcv);
1292
1293 #if defined(AUDIO_DEBUG)
1294 audio_mlog_free();
1295 #endif
1296
1297 return 0;
1298 }
1299
1300 static void
1301 audiochilddet(device_t self, device_t child)
1302 {
1303
1304 /* we hold no child references, so do nothing */
1305 }
1306
1307 static int
1308 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1309 {
1310
1311 if (config_match(parent, cf, aux))
1312 config_attach_loc(parent, cf, locs, aux, NULL);
1313
1314 return 0;
1315 }
1316
1317 static int
1318 audiorescan(device_t self, const char *ifattr, const int *flags)
1319 {
1320 struct audio_softc *sc = device_private(self);
1321
1322 if (!ifattr_match(ifattr, "audio"))
1323 return 0;
1324
1325 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1326
1327 return 0;
1328 }
1329
1330 /*
1331 * Called from hardware driver. This is where the MI audio driver gets
1332 * probed/attached to the hardware driver.
1333 */
1334 device_t
1335 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1336 {
1337 struct audio_attach_args arg;
1338
1339 #ifdef DIAGNOSTIC
1340 if (ahwp == NULL) {
1341 aprint_error("audio_attach_mi: NULL\n");
1342 return 0;
1343 }
1344 #endif
1345 arg.type = AUDIODEV_TYPE_AUDIO;
1346 arg.hwif = ahwp;
1347 arg.hdl = hdlp;
1348 return config_found(dev, &arg, audioprint);
1349 }
1350
1351 /*
1352 * Acquire sc_lock and enter exlock critical section.
1353 * If successful, it returns 0. Otherwise returns errno.
1354 */
1355 static int
1356 audio_enter_exclusive(struct audio_softc *sc)
1357 {
1358 int error;
1359
1360 KASSERT(!mutex_owned(sc->sc_lock));
1361
1362 mutex_enter(sc->sc_lock);
1363 if (sc->sc_dying) {
1364 mutex_exit(sc->sc_lock);
1365 return EIO;
1366 }
1367
1368 while (__predict_false(sc->sc_exlock != 0)) {
1369 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1370 if (sc->sc_dying)
1371 error = EIO;
1372 if (error) {
1373 mutex_exit(sc->sc_lock);
1374 return error;
1375 }
1376 }
1377
1378 /* Acquire */
1379 sc->sc_exlock = 1;
1380 return 0;
1381 }
1382
1383 /*
1384 * Leave exlock critical section and release sc_lock.
1385 * Must be called with sc_lock held.
1386 */
1387 static void
1388 audio_exit_exclusive(struct audio_softc *sc)
1389 {
1390
1391 KASSERT(mutex_owned(sc->sc_lock));
1392 KASSERT(sc->sc_exlock);
1393
1394 /* Leave critical section */
1395 sc->sc_exlock = 0;
1396 cv_broadcast(&sc->sc_exlockcv);
1397 mutex_exit(sc->sc_lock);
1398 }
1399
1400 /*
1401 * Wait for I/O to complete, releasing sc_lock.
1402 * Must be called with sc_lock held.
1403 */
1404 static int
1405 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1406 {
1407 int error;
1408
1409 KASSERT(track);
1410 KASSERT(mutex_owned(sc->sc_lock));
1411
1412 /* Wait for pending I/O to complete. */
1413 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1414 mstohz(AUDIO_TIMEOUT));
1415 if (sc->sc_dying) {
1416 error = EIO;
1417 }
1418 if (error) {
1419 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1420 if (error == EWOULDBLOCK)
1421 device_printf(sc->sc_dev, "device timeout\n");
1422 } else {
1423 TRACET(3, track, "wakeup");
1424 }
1425 return error;
1426 }
1427
1428 /*
1429 * Acquire the file lock.
1430 * If file is acquired successfully, returns 0. Otherwise returns errno.
1431 * In both case, sc_lock is released.
1432 */
1433 static int
1434 audio_file_acquire(struct audio_softc *sc, audio_file_t *file)
1435 {
1436 int error;
1437
1438 KASSERT(!mutex_owned(sc->sc_lock));
1439
1440 mutex_enter(sc->sc_lock);
1441 if (sc->sc_dying) {
1442 mutex_exit(sc->sc_lock);
1443 return EIO;
1444 }
1445
1446 while (__predict_false(file->lock != 0)) {
1447 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1448 if (sc->sc_dying)
1449 error = EIO;
1450 if (error) {
1451 mutex_exit(sc->sc_lock);
1452 return error;
1453 }
1454 }
1455
1456 /* Mark this file locked */
1457 file->lock = 1;
1458 mutex_exit(sc->sc_lock);
1459
1460 return 0;
1461 }
1462
1463 /*
1464 * Release the file lock.
1465 */
1466 static void
1467 audio_file_release(struct audio_softc *sc, audio_file_t *file)
1468 {
1469
1470 KASSERT(!mutex_owned(sc->sc_lock));
1471
1472 mutex_enter(sc->sc_lock);
1473 KASSERT(file->lock);
1474 file->lock = 0;
1475 cv_broadcast(&sc->sc_exlockcv);
1476 mutex_exit(sc->sc_lock);
1477 }
1478
1479 /*
1480 * Try to acquire track lock.
1481 * It doesn't block if the track lock is already aquired.
1482 * Returns true if the track lock was acquired, or false if the track
1483 * lock was already acquired.
1484 */
1485 static __inline bool
1486 audio_track_lock_tryenter(audio_track_t *track)
1487 {
1488 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1489 }
1490
1491 /*
1492 * Acquire track lock.
1493 */
1494 static __inline void
1495 audio_track_lock_enter(audio_track_t *track)
1496 {
1497 /* Don't sleep here. */
1498 while (audio_track_lock_tryenter(track) == false)
1499 ;
1500 }
1501
1502 /*
1503 * Release track lock.
1504 */
1505 static __inline void
1506 audio_track_lock_exit(audio_track_t *track)
1507 {
1508 atomic_swap_uint(&track->lock, 0);
1509 }
1510
1511
1512 static int
1513 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1514 {
1515 struct audio_softc *sc;
1516 int error;
1517
1518 /* Find the device */
1519 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1520 if (sc == NULL || sc->hw_if == NULL)
1521 return ENXIO;
1522
1523 error = audio_enter_exclusive(sc);
1524 if (error)
1525 return error;
1526
1527 device_active(sc->sc_dev, DVA_SYSTEM);
1528 switch (AUDIODEV(dev)) {
1529 case SOUND_DEVICE:
1530 case AUDIO_DEVICE:
1531 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1532 break;
1533 case AUDIOCTL_DEVICE:
1534 error = audioctl_open(dev, sc, flags, ifmt, l);
1535 break;
1536 case MIXER_DEVICE:
1537 error = mixer_open(dev, sc, flags, ifmt, l);
1538 break;
1539 default:
1540 error = ENXIO;
1541 break;
1542 }
1543 audio_exit_exclusive(sc);
1544
1545 return error;
1546 }
1547
1548 static int
1549 audioclose(struct file *fp)
1550 {
1551 struct audio_softc *sc;
1552 audio_file_t *file;
1553 int error;
1554 dev_t dev;
1555
1556 KASSERT(fp->f_audioctx);
1557 file = fp->f_audioctx;
1558 sc = file->sc;
1559 dev = file->dev;
1560
1561 /* Acquire file lock and exlock */
1562 /* XXX what should I do when an error occurs? */
1563 error = audio_file_acquire(sc, file);
1564 if (error)
1565 return error;
1566
1567 device_active(sc->sc_dev, DVA_SYSTEM);
1568 switch (AUDIODEV(dev)) {
1569 case SOUND_DEVICE:
1570 case AUDIO_DEVICE:
1571 error = audio_close(sc, file);
1572 break;
1573 case AUDIOCTL_DEVICE:
1574 error = 0;
1575 break;
1576 case MIXER_DEVICE:
1577 error = mixer_close(sc, file);
1578 break;
1579 default:
1580 error = ENXIO;
1581 break;
1582 }
1583 if (error == 0) {
1584 kmem_free(fp->f_audioctx, sizeof(audio_file_t));
1585 fp->f_audioctx = NULL;
1586 }
1587
1588 /*
1589 * Since file has already been destructed,
1590 * audio_file_release() is not necessary.
1591 */
1592
1593 return error;
1594 }
1595
1596 static int
1597 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1598 int ioflag)
1599 {
1600 struct audio_softc *sc;
1601 audio_file_t *file;
1602 int error;
1603 dev_t dev;
1604
1605 KASSERT(fp->f_audioctx);
1606 file = fp->f_audioctx;
1607 sc = file->sc;
1608 dev = file->dev;
1609
1610 error = audio_file_acquire(sc, file);
1611 if (error)
1612 return error;
1613
1614 if (fp->f_flag & O_NONBLOCK)
1615 ioflag |= IO_NDELAY;
1616
1617 switch (AUDIODEV(dev)) {
1618 case SOUND_DEVICE:
1619 case AUDIO_DEVICE:
1620 error = audio_read(sc, uio, ioflag, file);
1621 break;
1622 case AUDIOCTL_DEVICE:
1623 case MIXER_DEVICE:
1624 error = ENODEV;
1625 break;
1626 default:
1627 error = ENXIO;
1628 break;
1629 }
1630 audio_file_release(sc, file);
1631
1632 return error;
1633 }
1634
1635 static int
1636 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1637 int ioflag)
1638 {
1639 struct audio_softc *sc;
1640 audio_file_t *file;
1641 int error;
1642 dev_t dev;
1643
1644 KASSERT(fp->f_audioctx);
1645 file = fp->f_audioctx;
1646 sc = file->sc;
1647 dev = file->dev;
1648
1649 error = audio_file_acquire(sc, file);
1650 if (error)
1651 return error;
1652
1653 if (fp->f_flag & O_NONBLOCK)
1654 ioflag |= IO_NDELAY;
1655
1656 switch (AUDIODEV(dev)) {
1657 case SOUND_DEVICE:
1658 case AUDIO_DEVICE:
1659 error = audio_write(sc, uio, ioflag, file);
1660 break;
1661 case AUDIOCTL_DEVICE:
1662 case MIXER_DEVICE:
1663 error = ENODEV;
1664 break;
1665 default:
1666 error = ENXIO;
1667 break;
1668 }
1669 audio_file_release(sc, file);
1670
1671 return error;
1672 }
1673
1674 static int
1675 audioioctl(struct file *fp, u_long cmd, void *addr)
1676 {
1677 struct audio_softc *sc;
1678 audio_file_t *file;
1679 struct lwp *l = curlwp;
1680 int error;
1681 dev_t dev;
1682
1683 KASSERT(fp->f_audioctx);
1684 file = fp->f_audioctx;
1685 sc = file->sc;
1686 dev = file->dev;
1687
1688 error = audio_file_acquire(sc, file);
1689 if (error)
1690 return error;
1691
1692 switch (AUDIODEV(dev)) {
1693 case SOUND_DEVICE:
1694 case AUDIO_DEVICE:
1695 case AUDIOCTL_DEVICE:
1696 mutex_enter(sc->sc_lock);
1697 device_active(sc->sc_dev, DVA_SYSTEM);
1698 mutex_exit(sc->sc_lock);
1699 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1700 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1701 else
1702 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1703 file);
1704 break;
1705 case MIXER_DEVICE:
1706 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1707 break;
1708 default:
1709 error = ENXIO;
1710 break;
1711 }
1712 audio_file_release(sc, file);
1713
1714 return error;
1715 }
1716
1717 static int
1718 audiostat(struct file *fp, struct stat *st)
1719 {
1720 audio_file_t *file;
1721
1722 KASSERT(fp->f_audioctx);
1723 file = fp->f_audioctx;
1724
1725 memset(st, 0, sizeof(*st));
1726
1727 st->st_dev = file->dev;
1728 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1729 st->st_gid = kauth_cred_getegid(fp->f_cred);
1730 st->st_mode = S_IFCHR;
1731 return 0;
1732 }
1733
1734 static int
1735 audiopoll(struct file *fp, int events)
1736 {
1737 struct audio_softc *sc;
1738 audio_file_t *file;
1739 struct lwp *l = curlwp;
1740 int revents;
1741 dev_t dev;
1742
1743 KASSERT(fp->f_audioctx);
1744 file = fp->f_audioctx;
1745 sc = file->sc;
1746 dev = file->dev;
1747
1748 if (audio_file_acquire(sc, file) != 0)
1749 return 0;
1750
1751 switch (AUDIODEV(dev)) {
1752 case SOUND_DEVICE:
1753 case AUDIO_DEVICE:
1754 revents = audio_poll(sc, events, l, file);
1755 break;
1756 case AUDIOCTL_DEVICE:
1757 case MIXER_DEVICE:
1758 revents = 0;
1759 break;
1760 default:
1761 revents = POLLERR;
1762 break;
1763 }
1764 audio_file_release(sc, file);
1765
1766 return revents;
1767 }
1768
1769 static int
1770 audiokqfilter(struct file *fp, struct knote *kn)
1771 {
1772 struct audio_softc *sc;
1773 audio_file_t *file;
1774 dev_t dev;
1775 int error;
1776
1777 KASSERT(fp->f_audioctx);
1778 file = fp->f_audioctx;
1779 sc = file->sc;
1780 dev = file->dev;
1781
1782 error = audio_file_acquire(sc, file);
1783 if (error)
1784 return error;
1785
1786 switch (AUDIODEV(dev)) {
1787 case SOUND_DEVICE:
1788 case AUDIO_DEVICE:
1789 error = audio_kqfilter(sc, file, kn);
1790 break;
1791 case AUDIOCTL_DEVICE:
1792 case MIXER_DEVICE:
1793 error = ENODEV;
1794 break;
1795 default:
1796 error = ENXIO;
1797 break;
1798 }
1799 audio_file_release(sc, file);
1800
1801 return error;
1802 }
1803
1804 static int
1805 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1806 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1807 {
1808 struct audio_softc *sc;
1809 audio_file_t *file;
1810 dev_t dev;
1811 int error;
1812
1813 KASSERT(fp->f_audioctx);
1814 file = fp->f_audioctx;
1815 sc = file->sc;
1816 dev = file->dev;
1817
1818 error = audio_file_acquire(sc, file);
1819 if (error)
1820 return error;
1821
1822 mutex_enter(sc->sc_lock);
1823 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1824 mutex_exit(sc->sc_lock);
1825
1826 switch (AUDIODEV(dev)) {
1827 case SOUND_DEVICE:
1828 case AUDIO_DEVICE:
1829 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1830 uobjp, maxprotp, file);
1831 break;
1832 case AUDIOCTL_DEVICE:
1833 case MIXER_DEVICE:
1834 default:
1835 error = ENOTSUP;
1836 break;
1837 }
1838 audio_file_release(sc, file);
1839
1840 return error;
1841 }
1842
1843
1844 /* Exported interfaces for audiobell. */
1845
1846 /*
1847 * Open for audiobell.
1848 * sample_rate, encoding, precision and channels in arg are in-parameter
1849 * and indicates input encoding.
1850 * Stores allocated file to arg->file.
1851 * Stores blocksize to arg->blocksize.
1852 * If successful returns 0, otherwise errno.
1853 */
1854 int
1855 audiobellopen(dev_t dev, struct audiobell_arg *arg)
1856 {
1857 struct audio_softc *sc;
1858 int error;
1859
1860 /* Find the device */
1861 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1862 if (sc == NULL || sc->hw_if == NULL)
1863 return ENXIO;
1864
1865 error = audio_enter_exclusive(sc);
1866 if (error)
1867 return error;
1868
1869 device_active(sc->sc_dev, DVA_SYSTEM);
1870 error = audio_open(dev, sc, FWRITE, 0, curlwp, arg);
1871
1872 audio_exit_exclusive(sc);
1873 return error;
1874 }
1875
1876 /* Close for audiobell */
1877 int
1878 audiobellclose(audio_file_t *file)
1879 {
1880 struct audio_softc *sc;
1881 int error;
1882
1883 sc = file->sc;
1884
1885 /* XXX what should I do when an error occurs? */
1886 error = audio_file_acquire(sc, file);
1887 if (error)
1888 return error;
1889
1890 device_active(sc->sc_dev, DVA_SYSTEM);
1891 error = audio_close(sc, file);
1892
1893 /*
1894 * Since file has already been destructed,
1895 * audio_file_release() is not necessary.
1896 */
1897
1898 return error;
1899 }
1900
1901 /* Playback for audiobell */
1902 int
1903 audiobellwrite(audio_file_t *file, struct uio *uio)
1904 {
1905 struct audio_softc *sc;
1906 int error;
1907
1908 sc = file->sc;
1909 error = audio_file_acquire(sc, file);
1910 if (error)
1911 return error;
1912
1913 error = audio_write(sc, uio, 0, file);
1914
1915 audio_file_release(sc, file);
1916 return error;
1917 }
1918
1919
1920 /*
1921 * Audio driver
1922 */
1923 int
1924 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
1925 struct lwp *l, struct audiobell_arg *bell)
1926 {
1927 struct audio_info ai;
1928 struct file *fp;
1929 audio_file_t *af;
1930 audio_ring_t *hwbuf;
1931 bool fullduplex;
1932 int fd;
1933 int error;
1934
1935 KASSERT(mutex_owned(sc->sc_lock));
1936 KASSERT(sc->sc_exlock);
1937
1938 TRACE(1, "%sflags=0x%x po=%d ro=%d",
1939 (audiodebug >= 3) ? "start " : "",
1940 flags, sc->sc_popens, sc->sc_ropens);
1941
1942 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
1943 af->sc = sc;
1944 af->dev = dev;
1945 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
1946 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
1947 if ((flags & FREAD) != 0 && audio_can_capture(sc))
1948 af->mode |= AUMODE_RECORD;
1949 if (af->mode == 0) {
1950 error = ENXIO;
1951 goto bad1;
1952 }
1953
1954 fullduplex = (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX);
1955
1956 /*
1957 * On half duplex hardware,
1958 * 1. if mode is (PLAY | REC), let mode PLAY.
1959 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
1960 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
1961 */
1962 if (fullduplex == false) {
1963 if ((af->mode & AUMODE_PLAY)) {
1964 if (sc->sc_ropens != 0) {
1965 TRACE(1, "record track already exists");
1966 error = ENODEV;
1967 goto bad1;
1968 }
1969 /* Play takes precedence */
1970 af->mode &= ~AUMODE_RECORD;
1971 }
1972 if ((af->mode & AUMODE_RECORD)) {
1973 if (sc->sc_popens != 0) {
1974 TRACE(1, "play track already exists");
1975 error = ENODEV;
1976 goto bad1;
1977 }
1978 }
1979 }
1980
1981 /* Create tracks */
1982 if ((af->mode & AUMODE_PLAY))
1983 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
1984 if ((af->mode & AUMODE_RECORD))
1985 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
1986
1987 /* Set parameters */
1988 AUDIO_INITINFO(&ai);
1989 if (bell) {
1990 ai.play.sample_rate = bell->sample_rate;
1991 ai.play.encoding = bell->encoding;
1992 ai.play.channels = bell->channels;
1993 ai.play.precision = bell->precision;
1994 ai.play.pause = false;
1995 } else if (ISDEVAUDIO(dev)) {
1996 /* If /dev/audio, initialize everytime. */
1997 ai.play.sample_rate = audio_default.sample_rate;
1998 ai.play.encoding = audio_default.encoding;
1999 ai.play.channels = audio_default.channels;
2000 ai.play.precision = audio_default.precision;
2001 ai.play.pause = false;
2002 ai.record.sample_rate = audio_default.sample_rate;
2003 ai.record.encoding = audio_default.encoding;
2004 ai.record.channels = audio_default.channels;
2005 ai.record.precision = audio_default.precision;
2006 ai.record.pause = false;
2007 } else {
2008 /* If /dev/sound, take over the previous parameters. */
2009 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2010 ai.play.encoding = sc->sc_sound_pparams.encoding;
2011 ai.play.channels = sc->sc_sound_pparams.channels;
2012 ai.play.precision = sc->sc_sound_pparams.precision;
2013 ai.play.pause = sc->sc_sound_ppause;
2014 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2015 ai.record.encoding = sc->sc_sound_rparams.encoding;
2016 ai.record.channels = sc->sc_sound_rparams.channels;
2017 ai.record.precision = sc->sc_sound_rparams.precision;
2018 ai.record.pause = sc->sc_sound_rpause;
2019 }
2020 error = audio_file_setinfo(sc, af, &ai);
2021 if (error)
2022 goto bad2;
2023
2024 if (sc->sc_popens + sc->sc_ropens == 0) {
2025 /* First open */
2026
2027 sc->sc_cred = kauth_cred_get();
2028 kauth_cred_hold(sc->sc_cred);
2029
2030 if (sc->hw_if->open) {
2031 int hwflags;
2032
2033 /*
2034 * Call hw_if->open() only at first open of
2035 * combination of playback and recording.
2036 * On full duplex hardware, the flags passed to
2037 * hw_if->open() is always (FREAD | FWRITE)
2038 * regardless of this open()'s flags.
2039 * see also dev/isa/aria.c
2040 * On half duplex hardware, the flags passed to
2041 * hw_if->open() is either FREAD or FWRITE.
2042 * see also arch/evbarm/mini2440/audio_mini2440.c
2043 */
2044 if (fullduplex) {
2045 hwflags = FREAD | FWRITE;
2046 } else {
2047 /* Construct hwflags from af->mode. */
2048 hwflags = 0;
2049 if ((af->mode & AUMODE_PLAY) != 0)
2050 hwflags |= FWRITE;
2051 if ((af->mode & AUMODE_RECORD) != 0)
2052 hwflags |= FREAD;
2053 }
2054
2055 mutex_enter(sc->sc_intr_lock);
2056 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2057 mutex_exit(sc->sc_intr_lock);
2058 if (error)
2059 goto bad2;
2060 }
2061
2062 /*
2063 * Set speaker mode when a half duplex.
2064 * XXX I'm not sure this is correct.
2065 */
2066 if (1/*XXX*/) {
2067 if (sc->hw_if->speaker_ctl) {
2068 int on;
2069 if (af->ptrack) {
2070 on = 1;
2071 } else {
2072 on = 0;
2073 }
2074 mutex_enter(sc->sc_intr_lock);
2075 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2076 mutex_exit(sc->sc_intr_lock);
2077 if (error)
2078 goto bad3;
2079 }
2080 }
2081 } else if (sc->sc_multiuser == false) {
2082 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2083 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2084 error = EPERM;
2085 goto bad2;
2086 }
2087 }
2088
2089 /* Call init_output if this is the first playback open. */
2090 if (af->ptrack && sc->sc_popens == 0) {
2091 if (sc->hw_if->init_output) {
2092 hwbuf = &sc->sc_pmixer->hwbuf;
2093 mutex_enter(sc->sc_intr_lock);
2094 error = sc->hw_if->init_output(sc->hw_hdl,
2095 hwbuf->mem,
2096 hwbuf->capacity *
2097 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2098 mutex_exit(sc->sc_intr_lock);
2099 if (error)
2100 goto bad3;
2101 }
2102 }
2103 /* Call init_input if this is the first recording open. */
2104 if (af->rtrack && sc->sc_ropens == 0) {
2105 if (sc->hw_if->init_input) {
2106 hwbuf = &sc->sc_rmixer->hwbuf;
2107 mutex_enter(sc->sc_intr_lock);
2108 error = sc->hw_if->init_input(sc->hw_hdl,
2109 hwbuf->mem,
2110 hwbuf->capacity *
2111 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2112 mutex_exit(sc->sc_intr_lock);
2113 if (error)
2114 goto bad3;
2115 }
2116 }
2117
2118 if (bell == NULL) {
2119 error = fd_allocfile(&fp, &fd);
2120 if (error)
2121 goto bad3;
2122 }
2123
2124 /*
2125 * Count up finally.
2126 * Don't fail from here.
2127 */
2128 if (af->ptrack)
2129 sc->sc_popens++;
2130 if (af->rtrack)
2131 sc->sc_ropens++;
2132 mutex_enter(sc->sc_intr_lock);
2133 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2134 mutex_exit(sc->sc_intr_lock);
2135
2136 if (bell) {
2137 bell->file = af;
2138 } else {
2139 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2140 KASSERT(error == EMOVEFD);
2141 }
2142
2143 TRACEF(3, af, "done");
2144 return error;
2145
2146 /*
2147 * Since track here is not yet linked to sc_files,
2148 * you can call track_destroy() without sc_intr_lock.
2149 */
2150 bad3:
2151 if (sc->sc_popens + sc->sc_ropens == 0) {
2152 if (sc->hw_if->close) {
2153 mutex_enter(sc->sc_intr_lock);
2154 sc->hw_if->close(sc->hw_hdl);
2155 mutex_exit(sc->sc_intr_lock);
2156 }
2157 }
2158 bad2:
2159 if (af->rtrack) {
2160 audio_track_destroy(af->rtrack);
2161 af->rtrack = NULL;
2162 }
2163 if (af->ptrack) {
2164 audio_track_destroy(af->ptrack);
2165 af->ptrack = NULL;
2166 }
2167 bad1:
2168 kmem_free(af, sizeof(*af));
2169 return error;
2170 }
2171
2172 int
2173 audio_close(struct audio_softc *sc, audio_file_t *file)
2174 {
2175 audio_track_t *oldtrack;
2176 int error;
2177
2178 KASSERT(!mutex_owned(sc->sc_lock));
2179 KASSERT(file->lock);
2180
2181 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2182 (audiodebug >= 3) ? "start " : "",
2183 (int)curproc->p_pid, (int)curlwp->l_lid,
2184 sc->sc_popens, sc->sc_ropens);
2185 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2186 "sc->sc_popens=%d, sc->sc_ropens=%d",
2187 sc->sc_popens, sc->sc_ropens);
2188
2189 /*
2190 * Drain first.
2191 * It must be done before acquiring exclusive lock.
2192 */
2193 if (file->ptrack) {
2194 mutex_enter(sc->sc_lock);
2195 audio_track_drain(sc, file->ptrack);
2196 mutex_exit(sc->sc_lock);
2197 }
2198
2199 /* Then, acquire exclusive lock to protect counters. */
2200 /* XXX what should I do when an error occurs? */
2201 error = audio_enter_exclusive(sc);
2202 if (error) {
2203 audio_file_release(sc, file);
2204 return error;
2205 }
2206
2207 if (file->ptrack) {
2208 /* Call hw halt_output if this is the last playback track. */
2209 if (sc->sc_popens == 1 && sc->sc_pbusy) {
2210 error = audio_pmixer_halt(sc);
2211 if (error) {
2212 device_printf(sc->sc_dev,
2213 "halt_output failed with %d\n", error);
2214 }
2215 }
2216
2217 /* Destroy the track. */
2218 oldtrack = file->ptrack;
2219 mutex_enter(sc->sc_intr_lock);
2220 file->ptrack = NULL;
2221 mutex_exit(sc->sc_intr_lock);
2222 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2223 oldtrack->dropframes);
2224 audio_track_destroy(oldtrack);
2225
2226 KASSERT(sc->sc_popens > 0);
2227 sc->sc_popens--;
2228 }
2229 if (file->rtrack) {
2230 /* Call hw halt_input if this is the last recording track. */
2231 if (sc->sc_ropens == 1 && sc->sc_rbusy) {
2232 error = audio_rmixer_halt(sc);
2233 if (error) {
2234 device_printf(sc->sc_dev,
2235 "halt_input failed with %d\n", error);
2236 }
2237 }
2238
2239 /* Destroy the track. */
2240 oldtrack = file->rtrack;
2241 mutex_enter(sc->sc_intr_lock);
2242 file->rtrack = NULL;
2243 mutex_exit(sc->sc_intr_lock);
2244 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2245 oldtrack->dropframes);
2246 audio_track_destroy(oldtrack);
2247
2248 KASSERT(sc->sc_ropens > 0);
2249 sc->sc_ropens--;
2250 }
2251
2252 /* Call hw close if this is the last track. */
2253 if (sc->sc_popens + sc->sc_ropens == 0) {
2254 if (sc->hw_if->close) {
2255 TRACE(2, "hw_if close");
2256 mutex_enter(sc->sc_intr_lock);
2257 sc->hw_if->close(sc->hw_hdl);
2258 mutex_exit(sc->sc_intr_lock);
2259 }
2260
2261 kauth_cred_free(sc->sc_cred);
2262 }
2263
2264 mutex_enter(sc->sc_intr_lock);
2265 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2266 mutex_exit(sc->sc_intr_lock);
2267
2268 TRACE(3, "done");
2269 audio_exit_exclusive(sc);
2270 return 0;
2271 }
2272
2273 int
2274 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2275 audio_file_t *file)
2276 {
2277 audio_track_t *track;
2278 audio_ring_t *usrbuf;
2279 audio_ring_t *input;
2280 int error;
2281
2282 track = file->rtrack;
2283 KASSERT(track);
2284 TRACET(2, track, "resid=%zd", uio->uio_resid);
2285
2286 KASSERT(!mutex_owned(sc->sc_lock));
2287 KASSERT(file->lock);
2288
2289 /* I think it's better than EINVAL. */
2290 if (track->mmapped)
2291 return EPERM;
2292
2293 #ifdef AUDIO_PM_IDLE
2294 mutex_enter(sc->sc_lock);
2295 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2296 device_active(&sc->sc_dev, DVA_SYSTEM);
2297 mutex_exit(sc->sc_lock);
2298 #endif
2299
2300 /*
2301 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2302 * However read() system call itself can be called because it's
2303 * opened with O_RDWR. So in this case, deny this read().
2304 */
2305 if ((file->mode & AUMODE_RECORD) == 0) {
2306 return EBADF;
2307 }
2308
2309 TRACET(3, track, "resid=%zd", uio->uio_resid);
2310
2311 usrbuf = &track->usrbuf;
2312 input = track->input;
2313
2314 /*
2315 * The first read starts rmixer.
2316 */
2317 error = audio_enter_exclusive(sc);
2318 if (error)
2319 return error;
2320 if (sc->sc_rbusy == false)
2321 audio_rmixer_start(sc);
2322 audio_exit_exclusive(sc);
2323
2324 error = 0;
2325 while (uio->uio_resid > 0 && error == 0) {
2326 int bytes;
2327
2328 TRACET(3, track,
2329 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2330 uio->uio_resid,
2331 input->head, input->used, input->capacity,
2332 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2333
2334 /* Wait when buffers are empty. */
2335 mutex_enter(sc->sc_lock);
2336 for (;;) {
2337 bool empty;
2338 audio_track_lock_enter(track);
2339 empty = (input->used == 0 && usrbuf->used == 0);
2340 audio_track_lock_exit(track);
2341 if (!empty)
2342 break;
2343
2344 if ((ioflag & IO_NDELAY)) {
2345 mutex_exit(sc->sc_lock);
2346 return EWOULDBLOCK;
2347 }
2348
2349 TRACET(3, track, "sleep");
2350 error = audio_track_waitio(sc, track);
2351 if (error) {
2352 mutex_exit(sc->sc_lock);
2353 return error;
2354 }
2355 }
2356 mutex_exit(sc->sc_lock);
2357
2358 audio_track_lock_enter(track);
2359 audio_track_record(track);
2360 audio_track_lock_exit(track);
2361
2362 /* uiomove from usrbuf as much as possible. */
2363 bytes = uimin(usrbuf->used, uio->uio_resid);
2364 while (bytes > 0) {
2365 int head = usrbuf->head;
2366 int len = uimin(bytes, usrbuf->capacity - head);
2367 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2368 uio);
2369 if (error) {
2370 device_printf(sc->sc_dev,
2371 "uiomove(len=%d) failed with %d\n",
2372 len, error);
2373 goto abort;
2374 }
2375 auring_take(usrbuf, len);
2376 track->useriobytes += len;
2377 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2378 len,
2379 usrbuf->head, usrbuf->used, usrbuf->capacity);
2380 bytes -= len;
2381 }
2382 }
2383
2384 abort:
2385 return error;
2386 }
2387
2388
2389 /*
2390 * Clear file's playback and/or record track buffer immediately.
2391 */
2392 static void
2393 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2394 {
2395
2396 if (file->ptrack)
2397 audio_track_clear(sc, file->ptrack);
2398 if (file->rtrack)
2399 audio_track_clear(sc, file->rtrack);
2400 }
2401
2402 int
2403 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2404 audio_file_t *file)
2405 {
2406 audio_track_t *track;
2407 audio_ring_t *usrbuf;
2408 audio_ring_t *outbuf;
2409 int error;
2410
2411 track = file->ptrack;
2412 KASSERT(track);
2413 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2414 audiodebug >= 3 ? "begin " : "",
2415 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2416
2417 KASSERT(!mutex_owned(sc->sc_lock));
2418 KASSERT(file->lock);
2419
2420 /* I think it's better than EINVAL. */
2421 if (track->mmapped)
2422 return EPERM;
2423
2424 if (uio->uio_resid == 0) {
2425 track->eofcounter++;
2426 return 0;
2427 }
2428
2429 #ifdef AUDIO_PM_IDLE
2430 mutex_enter(sc->sc_lock);
2431 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2432 device_active(&sc->sc_dev, DVA_SYSTEM);
2433 mutex_exit(sc->sc_lock);
2434 #endif
2435
2436 usrbuf = &track->usrbuf;
2437 outbuf = &track->outbuf;
2438
2439 /*
2440 * The first write starts pmixer.
2441 */
2442 error = audio_enter_exclusive(sc);
2443 if (error)
2444 return error;
2445 if (sc->sc_pbusy == false)
2446 audio_pmixer_start(sc, false);
2447 audio_exit_exclusive(sc);
2448
2449 track->pstate = AUDIO_STATE_RUNNING;
2450 error = 0;
2451 while (uio->uio_resid > 0 && error == 0) {
2452 int bytes;
2453
2454 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2455 uio->uio_resid,
2456 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2457
2458 /* Wait when buffers are full. */
2459 mutex_enter(sc->sc_lock);
2460 for (;;) {
2461 bool full;
2462 audio_track_lock_enter(track);
2463 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2464 outbuf->used >= outbuf->capacity);
2465 audio_track_lock_exit(track);
2466 if (!full)
2467 break;
2468
2469 if ((ioflag & IO_NDELAY)) {
2470 error = EWOULDBLOCK;
2471 mutex_exit(sc->sc_lock);
2472 goto abort;
2473 }
2474
2475 TRACET(3, track, "sleep usrbuf=%d/H%d",
2476 usrbuf->used, track->usrbuf_usedhigh);
2477 error = audio_track_waitio(sc, track);
2478 if (error) {
2479 mutex_exit(sc->sc_lock);
2480 goto abort;
2481 }
2482 }
2483 mutex_exit(sc->sc_lock);
2484
2485 /* uiomove to usrbuf as much as possible. */
2486 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2487 uio->uio_resid);
2488 while (bytes > 0) {
2489 int tail = auring_tail(usrbuf);
2490 int len = uimin(bytes, usrbuf->capacity - tail);
2491 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2492 uio);
2493 if (error) {
2494 device_printf(sc->sc_dev,
2495 "uiomove(len=%d) failed with %d\n",
2496 len, error);
2497 goto abort;
2498 }
2499 auring_push(usrbuf, len);
2500 track->useriobytes += len;
2501 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2502 len,
2503 usrbuf->head, usrbuf->used, usrbuf->capacity);
2504 bytes -= len;
2505 }
2506
2507 /* Convert them as much as possible. */
2508 audio_track_lock_enter(track);
2509 while (usrbuf->used >= track->usrbuf_blksize &&
2510 outbuf->used < outbuf->capacity) {
2511 audio_track_play(track);
2512 }
2513 audio_track_lock_exit(track);
2514 }
2515
2516 abort:
2517 TRACET(3, track, "done error=%d", error);
2518 return error;
2519 }
2520
2521 int
2522 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2523 struct lwp *l, audio_file_t *file)
2524 {
2525 struct audio_offset *ao;
2526 struct audio_info ai;
2527 audio_track_t *track;
2528 audio_encoding_t *ae;
2529 audio_format_query_t *query;
2530 u_int stamp;
2531 u_int offs;
2532 int fd;
2533 int index;
2534 int error;
2535
2536 KASSERT(!mutex_owned(sc->sc_lock));
2537 KASSERT(file->lock);
2538
2539 #if defined(AUDIO_DEBUG)
2540 const char *ioctlnames[] = {
2541 " AUDIO_GETINFO", /* 21 */
2542 " AUDIO_SETINFO", /* 22 */
2543 " AUDIO_DRAIN", /* 23 */
2544 " AUDIO_FLUSH", /* 24 */
2545 " AUDIO_WSEEK", /* 25 */
2546 " AUDIO_RERROR", /* 26 */
2547 " AUDIO_GETDEV", /* 27 */
2548 " AUDIO_GETENC", /* 28 */
2549 " AUDIO_GETFD", /* 29 */
2550 " AUDIO_SETFD", /* 30 */
2551 " AUDIO_PERROR", /* 31 */
2552 " AUDIO_GETIOFFS", /* 32 */
2553 " AUDIO_GETOOFFS", /* 33 */
2554 " AUDIO_GETPROPS", /* 34 */
2555 " AUDIO_GETBUFINFO", /* 35 */
2556 " AUDIO_SETCHAN", /* 36 */
2557 " AUDIO_GETCHAN", /* 37 */
2558 " AUDIO_QUERYFORMAT", /* 38 */
2559 " AUDIO_GETFORMAT", /* 39 */
2560 " AUDIO_SETFORMAT", /* 40 */
2561 };
2562 int nameidx = (cmd & 0xff);
2563 const char *ioctlname = "";
2564 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2565 ioctlname = ioctlnames[nameidx - 21];
2566 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2567 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2568 (int)curproc->p_pid, (int)l->l_lid);
2569 #endif
2570
2571 error = 0;
2572 switch (cmd) {
2573 case FIONBIO:
2574 /* All handled in the upper FS layer. */
2575 break;
2576
2577 case FIONREAD:
2578 /* Get the number of bytes that can be read. */
2579 if (file->rtrack) {
2580 *(int *)addr = audio_track_readablebytes(file->rtrack);
2581 } else {
2582 *(int *)addr = 0;
2583 }
2584 break;
2585
2586 case FIOASYNC:
2587 /* Set/Clear ASYNC I/O. */
2588 if (*(int *)addr) {
2589 file->async_audio = curproc->p_pid;
2590 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2591 } else {
2592 file->async_audio = 0;
2593 TRACEF(2, file, "FIOASYNC off");
2594 }
2595 break;
2596
2597 case AUDIO_FLUSH:
2598 /* XXX TODO: clear errors and restart? */
2599 audio_file_clear(sc, file);
2600 break;
2601
2602 case AUDIO_RERROR:
2603 /*
2604 * Number of read bytes dropped. We don't know where
2605 * or when they were dropped (including conversion stage).
2606 * Therefore, the number of accurate bytes or samples is
2607 * also unknown.
2608 */
2609 track = file->rtrack;
2610 if (track) {
2611 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2612 track->dropframes);
2613 }
2614 break;
2615
2616 case AUDIO_PERROR:
2617 /*
2618 * Number of write bytes dropped. We don't know where
2619 * or when they were dropped (including conversion stage).
2620 * Therefore, the number of accurate bytes or samples is
2621 * also unknown.
2622 */
2623 track = file->ptrack;
2624 if (track) {
2625 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2626 track->dropframes);
2627 }
2628 break;
2629
2630 case AUDIO_GETIOFFS:
2631 /* XXX TODO */
2632 ao = (struct audio_offset *)addr;
2633 ao->samples = 0;
2634 ao->deltablks = 0;
2635 ao->offset = 0;
2636 break;
2637
2638 case AUDIO_GETOOFFS:
2639 ao = (struct audio_offset *)addr;
2640 track = file->ptrack;
2641 if (track == NULL) {
2642 ao->samples = 0;
2643 ao->deltablks = 0;
2644 ao->offset = 0;
2645 break;
2646 }
2647 mutex_enter(sc->sc_lock);
2648 mutex_enter(sc->sc_intr_lock);
2649 /* figure out where next DMA will start */
2650 stamp = track->usrbuf_stamp;
2651 offs = track->usrbuf.head;
2652 mutex_exit(sc->sc_intr_lock);
2653 mutex_exit(sc->sc_lock);
2654
2655 ao->samples = stamp;
2656 ao->deltablks = (stamp / track->usrbuf_blksize) -
2657 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2658 track->usrbuf_stamp_last = stamp;
2659 offs = rounddown(offs, track->usrbuf_blksize)
2660 + track->usrbuf_blksize;
2661 if (offs >= track->usrbuf.capacity)
2662 offs -= track->usrbuf.capacity;
2663 ao->offset = offs;
2664
2665 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2666 ao->samples, ao->deltablks, ao->offset);
2667 break;
2668
2669 case AUDIO_WSEEK:
2670 /* XXX return value does not include outbuf one. */
2671 if (file->ptrack)
2672 *(u_long *)addr = file->ptrack->usrbuf.used;
2673 break;
2674
2675 case AUDIO_SETINFO:
2676 error = audio_enter_exclusive(sc);
2677 if (error)
2678 break;
2679 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2680 if (error) {
2681 audio_exit_exclusive(sc);
2682 break;
2683 }
2684 /* XXX TODO: update last_ai if /dev/sound ? */
2685 if (ISDEVSOUND(dev))
2686 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2687 audio_exit_exclusive(sc);
2688 break;
2689
2690 case AUDIO_GETINFO:
2691 error = audio_enter_exclusive(sc);
2692 if (error)
2693 break;
2694 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2695 audio_exit_exclusive(sc);
2696 break;
2697
2698 case AUDIO_GETBUFINFO:
2699 mutex_enter(sc->sc_lock);
2700 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2701 mutex_exit(sc->sc_lock);
2702 break;
2703
2704 case AUDIO_DRAIN:
2705 if (file->ptrack) {
2706 mutex_enter(sc->sc_lock);
2707 error = audio_track_drain(sc, file->ptrack);
2708 mutex_exit(sc->sc_lock);
2709 }
2710 break;
2711
2712 case AUDIO_GETDEV:
2713 mutex_enter(sc->sc_lock);
2714 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2715 mutex_exit(sc->sc_lock);
2716 break;
2717
2718 case AUDIO_GETENC:
2719 ae = (audio_encoding_t *)addr;
2720 index = ae->index;
2721 if (index < 0 || index >= __arraycount(audio_encodings)) {
2722 error = EINVAL;
2723 break;
2724 }
2725 *ae = audio_encodings[index];
2726 ae->index = index;
2727 /*
2728 * EMULATED always.
2729 * EMULATED flag at that time used to mean that it could
2730 * not be passed directly to the hardware as-is. But
2731 * currently, all formats including hardware native is not
2732 * passed directly to the hardware. So I set EMULATED
2733 * flag for all formats.
2734 */
2735 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2736 break;
2737
2738 case AUDIO_GETFD:
2739 /*
2740 * Returns the current setting of full duplex mode.
2741 * If HW has full duplex mode and there are two mixers,
2742 * it is full duplex. Otherwise half duplex.
2743 */
2744 mutex_enter(sc->sc_lock);
2745 fd = (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX)
2746 && (sc->sc_pmixer && sc->sc_rmixer);
2747 mutex_exit(sc->sc_lock);
2748 *(int *)addr = fd;
2749 break;
2750
2751 case AUDIO_GETPROPS:
2752 mutex_enter(sc->sc_lock);
2753 *(int *)addr = audio_get_props(sc);
2754 mutex_exit(sc->sc_lock);
2755 break;
2756
2757 case AUDIO_QUERYFORMAT:
2758 query = (audio_format_query_t *)addr;
2759 if (sc->hw_if->query_format) {
2760 mutex_enter(sc->sc_lock);
2761 error = sc->hw_if->query_format(sc->hw_hdl, query);
2762 mutex_exit(sc->sc_lock);
2763 /* Hide internal infomations */
2764 query->fmt.driver_data = NULL;
2765 } else {
2766 error = ENODEV;
2767 }
2768 break;
2769
2770 case AUDIO_GETFORMAT:
2771 audio_mixers_get_format(sc, (struct audio_info *)addr);
2772 break;
2773
2774 case AUDIO_SETFORMAT:
2775 mutex_enter(sc->sc_lock);
2776 audio_mixers_get_format(sc, &ai);
2777 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2778 if (error) {
2779 /* Rollback */
2780 audio_mixers_set_format(sc, &ai);
2781 }
2782 mutex_exit(sc->sc_lock);
2783 break;
2784
2785 case AUDIO_SETFD:
2786 case AUDIO_SETCHAN:
2787 case AUDIO_GETCHAN:
2788 /* Obsoleted */
2789 break;
2790
2791 default:
2792 if (sc->hw_if->dev_ioctl) {
2793 error = audio_enter_exclusive(sc);
2794 if (error)
2795 break;
2796 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2797 cmd, addr, flag, l);
2798 audio_exit_exclusive(sc);
2799 } else {
2800 TRACEF(2, file, "unknown ioctl");
2801 error = EINVAL;
2802 }
2803 break;
2804 }
2805 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2806 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2807 error);
2808 return error;
2809 }
2810
2811 /*
2812 * Returns the number of bytes that can be read on recording buffer.
2813 */
2814 static __inline int
2815 audio_track_readablebytes(const audio_track_t *track)
2816 {
2817 int bytes;
2818
2819 KASSERT(track);
2820 KASSERT(track->mode == AUMODE_RECORD);
2821
2822 /*
2823 * Although usrbuf is primarily readable data, recorded data
2824 * also stays in track->input until reading. So it is necessary
2825 * to add it. track->input is in frame, usrbuf is in byte.
2826 */
2827 bytes = track->usrbuf.used +
2828 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
2829 return bytes;
2830 }
2831
2832 int
2833 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
2834 audio_file_t *file)
2835 {
2836 audio_track_t *track;
2837 int revents;
2838 bool in_is_valid;
2839 bool out_is_valid;
2840
2841 KASSERT(!mutex_owned(sc->sc_lock));
2842 KASSERT(file->lock);
2843
2844 #if defined(AUDIO_DEBUG)
2845 #define POLLEV_BITMAP "\177\020" \
2846 "b\10WRBAND\0" \
2847 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
2848 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
2849 char evbuf[64];
2850 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
2851 TRACEF(2, file, "pid=%d.%d events=%s",
2852 (int)curproc->p_pid, (int)l->l_lid, evbuf);
2853 #endif
2854
2855 revents = 0;
2856 in_is_valid = false;
2857 out_is_valid = false;
2858 if (events & (POLLIN | POLLRDNORM)) {
2859 track = file->rtrack;
2860 if (track) {
2861 int used;
2862 in_is_valid = true;
2863 used = audio_track_readablebytes(track);
2864 if (used > 0)
2865 revents |= events & (POLLIN | POLLRDNORM);
2866 }
2867 }
2868 if (events & (POLLOUT | POLLWRNORM)) {
2869 track = file->ptrack;
2870 if (track) {
2871 out_is_valid = true;
2872 if (track->usrbuf.used <= track->usrbuf_usedlow)
2873 revents |= events & (POLLOUT | POLLWRNORM);
2874 }
2875 }
2876
2877 if (revents == 0) {
2878 mutex_enter(sc->sc_lock);
2879 if (in_is_valid) {
2880 TRACEF(3, file, "selrecord rsel");
2881 selrecord(l, &sc->sc_rsel);
2882 }
2883 if (out_is_valid) {
2884 TRACEF(3, file, "selrecord wsel");
2885 selrecord(l, &sc->sc_wsel);
2886 }
2887 mutex_exit(sc->sc_lock);
2888 }
2889
2890 #if defined(AUDIO_DEBUG)
2891 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
2892 TRACEF(2, file, "revents=%s", evbuf);
2893 #endif
2894 return revents;
2895 }
2896
2897 static const struct filterops audioread_filtops = {
2898 .f_isfd = 1,
2899 .f_attach = NULL,
2900 .f_detach = filt_audioread_detach,
2901 .f_event = filt_audioread_event,
2902 };
2903
2904 static void
2905 filt_audioread_detach(struct knote *kn)
2906 {
2907 struct audio_softc *sc;
2908 audio_file_t *file;
2909
2910 file = kn->kn_hook;
2911 sc = file->sc;
2912 TRACEF(3, file, "");
2913
2914 mutex_enter(sc->sc_lock);
2915 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
2916 mutex_exit(sc->sc_lock);
2917 }
2918
2919 static int
2920 filt_audioread_event(struct knote *kn, long hint)
2921 {
2922 audio_file_t *file;
2923 audio_track_t *track;
2924
2925 file = kn->kn_hook;
2926 track = file->rtrack;
2927
2928 /*
2929 * kn_data must contain the number of bytes can be read.
2930 * The return value indicates whether the event occurs or not.
2931 */
2932
2933 if (track == NULL) {
2934 /* can not read with this descriptor. */
2935 kn->kn_data = 0;
2936 return 0;
2937 }
2938
2939 kn->kn_data = audio_track_readablebytes(track);
2940 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2941 return kn->kn_data > 0;
2942 }
2943
2944 static const struct filterops audiowrite_filtops = {
2945 .f_isfd = 1,
2946 .f_attach = NULL,
2947 .f_detach = filt_audiowrite_detach,
2948 .f_event = filt_audiowrite_event,
2949 };
2950
2951 static void
2952 filt_audiowrite_detach(struct knote *kn)
2953 {
2954 struct audio_softc *sc;
2955 audio_file_t *file;
2956
2957 file = kn->kn_hook;
2958 sc = file->sc;
2959 TRACEF(3, file, "");
2960
2961 mutex_enter(sc->sc_lock);
2962 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
2963 mutex_exit(sc->sc_lock);
2964 }
2965
2966 static int
2967 filt_audiowrite_event(struct knote *kn, long hint)
2968 {
2969 audio_file_t *file;
2970 audio_track_t *track;
2971
2972 file = kn->kn_hook;
2973 track = file->ptrack;
2974
2975 /*
2976 * kn_data must contain the number of bytes can be write.
2977 * The return value indicates whether the event occurs or not.
2978 */
2979
2980 if (track == NULL) {
2981 /* can not write with this descriptor. */
2982 kn->kn_data = 0;
2983 return 0;
2984 }
2985
2986 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
2987 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2988 return (track->usrbuf.used < track->usrbuf_usedlow);
2989 }
2990
2991 int
2992 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
2993 {
2994 struct klist *klist;
2995
2996 KASSERT(!mutex_owned(sc->sc_lock));
2997 KASSERT(file->lock);
2998
2999 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3000
3001 switch (kn->kn_filter) {
3002 case EVFILT_READ:
3003 klist = &sc->sc_rsel.sel_klist;
3004 kn->kn_fop = &audioread_filtops;
3005 break;
3006
3007 case EVFILT_WRITE:
3008 klist = &sc->sc_wsel.sel_klist;
3009 kn->kn_fop = &audiowrite_filtops;
3010 break;
3011
3012 default:
3013 return EINVAL;
3014 }
3015
3016 kn->kn_hook = file;
3017
3018 mutex_enter(sc->sc_lock);
3019 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3020 mutex_exit(sc->sc_lock);
3021
3022 return 0;
3023 }
3024
3025 int
3026 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3027 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3028 audio_file_t *file)
3029 {
3030 audio_track_t *track;
3031 vsize_t vsize;
3032 int error;
3033
3034 KASSERT(!mutex_owned(sc->sc_lock));
3035 KASSERT(file->lock);
3036
3037 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3038
3039 if (*offp < 0)
3040 return EINVAL;
3041
3042 #if 0
3043 /* XXX
3044 * The idea here was to use the protection to determine if
3045 * we are mapping the read or write buffer, but it fails.
3046 * The VM system is broken in (at least) two ways.
3047 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3048 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3049 * has to be used for mmapping the play buffer.
3050 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3051 * audio_mmap will get called at some point with VM_PROT_READ
3052 * only.
3053 * So, alas, we always map the play buffer for now.
3054 */
3055 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3056 prot == VM_PROT_WRITE)
3057 track = file->ptrack;
3058 else if (prot == VM_PROT_READ)
3059 track = file->rtrack;
3060 else
3061 return EINVAL;
3062 #else
3063 track = file->ptrack;
3064 #endif
3065 if (track == NULL)
3066 return EACCES;
3067
3068 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3069 if (len > vsize)
3070 return EOVERFLOW;
3071 if (*offp > (uint)(vsize - len))
3072 return EOVERFLOW;
3073
3074 /* XXX TODO: what happens when mmap twice. */
3075 if (!track->mmapped) {
3076 track->mmapped = true;
3077
3078 if (!track->is_pause) {
3079 error = audio_enter_exclusive(sc);
3080 if (error)
3081 return error;
3082 if (sc->sc_pbusy == false)
3083 audio_pmixer_start(sc, true);
3084 audio_exit_exclusive(sc);
3085 }
3086 /* XXX mmapping record buffer is not supported */
3087 }
3088
3089 /* get ringbuffer */
3090 *uobjp = track->uobj;
3091
3092 /* Acquire a reference for the mmap. munmap will release. */
3093 uao_reference(*uobjp);
3094 *maxprotp = prot;
3095 *advicep = UVM_ADV_RANDOM;
3096 *flagsp = MAP_SHARED;
3097 return 0;
3098 }
3099
3100 /*
3101 * /dev/audioctl has to be able to open at any time without interference
3102 * with any /dev/audio or /dev/sound.
3103 */
3104 static int
3105 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3106 struct lwp *l)
3107 {
3108 struct file *fp;
3109 audio_file_t *af;
3110 int fd;
3111 int error;
3112
3113 KASSERT(mutex_owned(sc->sc_lock));
3114 KASSERT(sc->sc_exlock);
3115
3116 TRACE(1, "");
3117
3118 error = fd_allocfile(&fp, &fd);
3119 if (error)
3120 return error;
3121
3122 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3123 af->sc = sc;
3124 af->dev = dev;
3125
3126 /* Not necessary to insert sc_files. */
3127
3128 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3129 KASSERT(error == EMOVEFD);
3130
3131 return error;
3132 }
3133
3134 /*
3135 * Reallocate 'memblock' with specified 'bytes' if 'bytes' > 0.
3136 * Or free 'memblock' and return NULL if 'byte' is zero.
3137 */
3138 static void *
3139 audio_realloc(void *memblock, size_t bytes)
3140 {
3141
3142 if (memblock != NULL) {
3143 if (bytes != 0) {
3144 return kern_realloc(memblock, bytes, M_NOWAIT);
3145 } else {
3146 kern_free(memblock);
3147 return NULL;
3148 }
3149 } else {
3150 if (bytes != 0) {
3151 return kern_malloc(bytes, M_NOWAIT);
3152 } else {
3153 return NULL;
3154 }
3155 }
3156 }
3157
3158 /*
3159 * Free 'mem' if available, and initialize the pointer.
3160 * For this reason, this is implemented as macro.
3161 */
3162 #define audio_free(mem) do { \
3163 if (mem != NULL) { \
3164 kern_free(mem); \
3165 mem = NULL; \
3166 } \
3167 } while (0)
3168
3169 /*
3170 * (Re)allocate usrbuf with 'newbufsize' bytes.
3171 * Use this function for usrbuf because only usrbuf can be mmapped.
3172 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3173 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3174 * and returns errno.
3175 * It must be called before updating usrbuf.capacity.
3176 */
3177 static int
3178 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3179 {
3180 struct audio_softc *sc;
3181 vaddr_t vstart;
3182 vsize_t oldvsize;
3183 vsize_t newvsize;
3184 int error;
3185
3186 KASSERT(newbufsize > 0);
3187 sc = track->mixer->sc;
3188
3189 /* Get a nonzero multiple of PAGE_SIZE */
3190 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3191
3192 if (track->usrbuf.mem != NULL) {
3193 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3194 PAGE_SIZE);
3195 if (oldvsize == newvsize) {
3196 track->usrbuf.capacity = newbufsize;
3197 return 0;
3198 }
3199 vstart = (vaddr_t)track->usrbuf.mem;
3200 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3201 /* uvm_unmap also detach uobj */
3202 track->uobj = NULL; /* paranoia */
3203 track->usrbuf.mem = NULL;
3204 }
3205
3206 /* Create a uvm anonymous object */
3207 track->uobj = uao_create(newvsize, 0);
3208
3209 /* Map it into the kernel virtual address space */
3210 vstart = 0;
3211 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3212 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3213 UVM_ADV_RANDOM, 0));
3214 if (error) {
3215 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3216 uao_detach(track->uobj); /* release reference */
3217 goto abort;
3218 }
3219
3220 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3221 false, 0);
3222 if (error) {
3223 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3224 error);
3225 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3226 /* uvm_unmap also detach uobj */
3227 goto abort;
3228 }
3229
3230 track->usrbuf.mem = (void *)vstart;
3231 track->usrbuf.capacity = newbufsize;
3232 memset(track->usrbuf.mem, 0, newvsize);
3233 return 0;
3234
3235 /* failure */
3236 abort:
3237 track->uobj = NULL; /* paranoia */
3238 track->usrbuf.mem = NULL;
3239 track->usrbuf.capacity = 0;
3240 return error;
3241 }
3242
3243 /*
3244 * Free usrbuf (if available).
3245 */
3246 static void
3247 audio_free_usrbuf(audio_track_t *track)
3248 {
3249 vaddr_t vstart;
3250 vsize_t vsize;
3251
3252 vstart = (vaddr_t)track->usrbuf.mem;
3253 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3254 if (track->usrbuf.mem != NULL) {
3255 /*
3256 * Unmap the kernel mapping. uvm_unmap releases the
3257 * reference to the uvm object, and this should be the
3258 * last virtual mapping of the uvm object, so no need
3259 * to explicitly release (`detach') the object.
3260 */
3261 uvm_unmap(kernel_map, vstart, vstart + vsize);
3262
3263 track->uobj = NULL;
3264 track->usrbuf.mem = NULL;
3265 track->usrbuf.capacity = 0;
3266 }
3267 }
3268
3269 /*
3270 * This filter changes the volume for each channel.
3271 * arg->context points track->ch_volume[].
3272 */
3273 static void
3274 audio_track_chvol(audio_filter_arg_t *arg)
3275 {
3276 int16_t *ch_volume;
3277 const aint_t *s;
3278 aint_t *d;
3279 u_int i;
3280 u_int ch;
3281 u_int channels;
3282
3283 DIAGNOSTIC_filter_arg(arg);
3284 KASSERT(arg->srcfmt->channels == arg->dstfmt->channels);
3285 KASSERT(arg->context != NULL);
3286 KASSERT(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS);
3287
3288 s = arg->src;
3289 d = arg->dst;
3290 ch_volume = arg->context;
3291
3292 channels = arg->srcfmt->channels;
3293 for (i = 0; i < arg->count; i++) {
3294 for (ch = 0; ch < channels; ch++) {
3295 aint2_t val;
3296 val = *s++;
3297 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
3298 val = val * ch_volume[ch] >> 8;
3299 #else
3300 val = val * ch_volume[ch] / 256;
3301 #endif
3302 *d++ = (aint_t)val;
3303 }
3304 }
3305 }
3306
3307 /*
3308 * This filter performs conversion from stereo (or more channels) to mono.
3309 */
3310 static void
3311 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3312 {
3313 const aint_t *s;
3314 aint_t *d;
3315 u_int i;
3316
3317 DIAGNOSTIC_filter_arg(arg);
3318
3319 s = arg->src;
3320 d = arg->dst;
3321
3322 for (i = 0; i < arg->count; i++) {
3323 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
3324 *d++ = (s[0] >> 1) + (s[1] >> 1);
3325 #else
3326 *d++ = (s[0] / 2) + (s[1] / 2);
3327 #endif
3328 s += arg->srcfmt->channels;
3329 }
3330 }
3331
3332 /*
3333 * This filter performs conversion from mono to stereo (or more channels).
3334 */
3335 static void
3336 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3337 {
3338 const aint_t *s;
3339 aint_t *d;
3340 u_int i;
3341 u_int ch;
3342 u_int dstchannels;
3343
3344 DIAGNOSTIC_filter_arg(arg);
3345
3346 s = arg->src;
3347 d = arg->dst;
3348 dstchannels = arg->dstfmt->channels;
3349
3350 for (i = 0; i < arg->count; i++) {
3351 d[0] = s[0];
3352 d[1] = s[0];
3353 s++;
3354 d += dstchannels;
3355 }
3356 if (dstchannels > 2) {
3357 d = arg->dst;
3358 for (i = 0; i < arg->count; i++) {
3359 for (ch = 2; ch < dstchannels; ch++) {
3360 d[ch] = 0;
3361 }
3362 d += dstchannels;
3363 }
3364 }
3365 }
3366
3367 /*
3368 * This filter shrinks M channels into N channels.
3369 * Extra channels are discarded.
3370 */
3371 static void
3372 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3373 {
3374 const aint_t *s;
3375 aint_t *d;
3376 u_int i;
3377 u_int ch;
3378
3379 DIAGNOSTIC_filter_arg(arg);
3380
3381 s = arg->src;
3382 d = arg->dst;
3383
3384 for (i = 0; i < arg->count; i++) {
3385 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3386 *d++ = s[ch];
3387 }
3388 s += arg->srcfmt->channels;
3389 }
3390 }
3391
3392 /*
3393 * This filter expands M channels into N channels.
3394 * Silence is inserted for missing channels.
3395 */
3396 static void
3397 audio_track_chmix_expand(audio_filter_arg_t *arg)
3398 {
3399 const aint_t *s;
3400 aint_t *d;
3401 u_int i;
3402 u_int ch;
3403 u_int srcchannels;
3404 u_int dstchannels;
3405
3406 DIAGNOSTIC_filter_arg(arg);
3407
3408 s = arg->src;
3409 d = arg->dst;
3410
3411 srcchannels = arg->srcfmt->channels;
3412 dstchannels = arg->dstfmt->channels;
3413 for (i = 0; i < arg->count; i++) {
3414 for (ch = 0; ch < srcchannels; ch++) {
3415 *d++ = *s++;
3416 }
3417 for (; ch < dstchannels; ch++) {
3418 *d++ = 0;
3419 }
3420 }
3421 }
3422
3423 /*
3424 * This filter performs frequency conversion (up sampling).
3425 * It uses linear interpolation.
3426 */
3427 static void
3428 audio_track_freq_up(audio_filter_arg_t *arg)
3429 {
3430 audio_track_t *track;
3431 audio_ring_t *src;
3432 audio_ring_t *dst;
3433 const aint_t *s;
3434 aint_t *d;
3435 aint_t prev[AUDIO_MAX_CHANNELS];
3436 aint_t curr[AUDIO_MAX_CHANNELS];
3437 aint_t grad[AUDIO_MAX_CHANNELS];
3438 u_int i;
3439 u_int t;
3440 u_int step;
3441 u_int channels;
3442 u_int ch;
3443 int srcused;
3444
3445 track = arg->context;
3446 KASSERT(track);
3447 src = &track->freq.srcbuf;
3448 dst = track->freq.dst;
3449 DIAGNOSTIC_ring(dst);
3450 DIAGNOSTIC_ring(src);
3451 KASSERT(src->used > 0);
3452 KASSERT(src->fmt.channels == dst->fmt.channels);
3453 KASSERT(src->head % track->mixer->frames_per_block == 0);
3454
3455 s = arg->src;
3456 d = arg->dst;
3457
3458 /*
3459 * In order to faciliate interpolation for each block, slide (delay)
3460 * input by one sample. As a result, strictly speaking, the output
3461 * phase is delayed by 1/dstfreq. However, I believe there is no
3462 * observable impact.
3463 *
3464 * Example)
3465 * srcfreq:dstfreq = 1:3
3466 *
3467 * A - -
3468 * |
3469 * |
3470 * | B - -
3471 * +-----+-----> input timeframe
3472 * 0 1
3473 *
3474 * 0 1
3475 * +-----+-----> input timeframe
3476 * | A
3477 * | x x
3478 * | x x
3479 * x (B)
3480 * +-+-+-+-+-+-> output timeframe
3481 * 0 1 2 3 4 5
3482 */
3483
3484 /* Last samples in previous block */
3485 channels = src->fmt.channels;
3486 for (ch = 0; ch < channels; ch++) {
3487 prev[ch] = track->freq_prev[ch];
3488 curr[ch] = track->freq_curr[ch];
3489 grad[ch] = curr[ch] - prev[ch];
3490 }
3491
3492 step = track->freq_step;
3493 t = track->freq_current;
3494 //#define FREQ_DEBUG
3495 #if defined(FREQ_DEBUG)
3496 #define PRINTF(fmt...) printf(fmt)
3497 #else
3498 #define PRINTF(fmt...) do { } while (0)
3499 #endif
3500 srcused = src->used;
3501 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3502 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3503 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3504 PRINTF(" t=%d\n", t);
3505
3506 for (i = 0; i < arg->count; i++) {
3507 PRINTF("i=%d t=%5d", i, t);
3508 if (t >= 65536) {
3509 for (ch = 0; ch < channels; ch++) {
3510 prev[ch] = curr[ch];
3511 curr[ch] = *s++;
3512 grad[ch] = curr[ch] - prev[ch];
3513 }
3514 PRINTF(" prev=%d s[%d]=%d",
3515 prev[0], src->used - srcused, curr[0]);
3516
3517 /* Update */
3518 t -= 65536;
3519 srcused--;
3520 if (srcused < 0) {
3521 PRINTF(" break\n");
3522 break;
3523 }
3524 }
3525
3526 for (ch = 0; ch < channels; ch++) {
3527 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3528 #if defined(FREQ_DEBUG)
3529 if (ch == 0)
3530 printf(" t=%5d *d=%d", t, d[-1]);
3531 #endif
3532 }
3533 t += step;
3534
3535 PRINTF("\n");
3536 }
3537 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3538
3539 auring_take(src, src->used);
3540 auring_push(dst, i);
3541
3542 /* Adjust */
3543 t += track->freq_leap;
3544
3545 track->freq_current = t;
3546 for (ch = 0; ch < channels; ch++) {
3547 track->freq_prev[ch] = prev[ch];
3548 track->freq_curr[ch] = curr[ch];
3549 }
3550 }
3551
3552 /*
3553 * This filter performs frequency conversion (down sampling).
3554 * It uses simple thinning.
3555 */
3556 static void
3557 audio_track_freq_down(audio_filter_arg_t *arg)
3558 {
3559 audio_track_t *track;
3560 audio_ring_t *src;
3561 audio_ring_t *dst;
3562 const aint_t *s0;
3563 aint_t *d;
3564 u_int i;
3565 u_int t;
3566 u_int step;
3567 u_int ch;
3568 u_int channels;
3569
3570 track = arg->context;
3571 KASSERT(track);
3572 src = &track->freq.srcbuf;
3573 dst = track->freq.dst;
3574
3575 DIAGNOSTIC_ring(dst);
3576 DIAGNOSTIC_ring(src);
3577 KASSERT(src->used > 0);
3578 KASSERT(src->fmt.channels == dst->fmt.channels);
3579 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3580 "src->head=%d fpb=%d",
3581 src->head, track->mixer->frames_per_block);
3582
3583 s0 = arg->src;
3584 d = arg->dst;
3585 t = track->freq_current;
3586 step = track->freq_step;
3587 channels = dst->fmt.channels;
3588 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3589 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3590 PRINTF(" t=%d\n", t);
3591
3592 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3593 const aint_t *s;
3594 PRINTF("i=%4d t=%10d", i, t);
3595 s = s0 + (t / 65536) * channels;
3596 PRINTF(" s=%5ld", (s - s0) / channels);
3597 for (ch = 0; ch < channels; ch++) {
3598 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3599 *d++ = s[ch];
3600 }
3601 PRINTF("\n");
3602 t += step;
3603 }
3604 t += track->freq_leap;
3605 PRINTF("end t=%d\n", t);
3606 auring_take(src, src->used);
3607 auring_push(dst, i);
3608 track->freq_current = t % 65536;
3609 }
3610
3611 /*
3612 * Creates track and returns it.
3613 */
3614 audio_track_t *
3615 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3616 {
3617 audio_track_t *track;
3618 static int newid = 0;
3619
3620 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3621
3622 track->id = newid++;
3623 track->mixer = mixer;
3624 track->mode = mixer->mode;
3625
3626 /* Do TRACE after id is assigned. */
3627 TRACET(3, track, "for %s",
3628 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3629
3630 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3631 track->volume = 256;
3632 #endif
3633 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3634 track->ch_volume[i] = 256;
3635 }
3636
3637 return track;
3638 }
3639
3640 /*
3641 * Release all resources of the track and track itself.
3642 * track must not be NULL. Don't specify the track within the file
3643 * structure linked from sc->sc_files.
3644 */
3645 static void
3646 audio_track_destroy(audio_track_t *track)
3647 {
3648
3649 KASSERT(track);
3650
3651 audio_free_usrbuf(track);
3652 audio_free(track->codec.srcbuf.mem);
3653 audio_free(track->chvol.srcbuf.mem);
3654 audio_free(track->chmix.srcbuf.mem);
3655 audio_free(track->freq.srcbuf.mem);
3656 audio_free(track->outbuf.mem);
3657
3658 kmem_free(track, sizeof(*track));
3659 }
3660
3661 /*
3662 * It returns encoding conversion filter according to src and dst format.
3663 * If it is not a convertible pair, it returns NULL. Either src or dst
3664 * must be internal format.
3665 */
3666 static audio_filter_t
3667 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3668 const audio_format2_t *dst)
3669 {
3670
3671 if (audio_format2_is_internal(src)) {
3672 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3673 return audio_internal_to_mulaw;
3674 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3675 return audio_internal_to_alaw;
3676 } else if (audio_format2_is_linear(dst)) {
3677 switch (dst->stride) {
3678 case 8:
3679 return audio_internal_to_linear8;
3680 case 16:
3681 return audio_internal_to_linear16;
3682 #if defined(AUDIO_SUPPORT_LINEAR24)
3683 case 24:
3684 return audio_internal_to_linear24;
3685 #endif
3686 case 32:
3687 return audio_internal_to_linear32;
3688 default:
3689 TRACET(1, track, "unsupported %s stride %d",
3690 "dst", dst->stride);
3691 goto abort;
3692 }
3693 }
3694 } else if (audio_format2_is_internal(dst)) {
3695 if (src->encoding == AUDIO_ENCODING_ULAW) {
3696 return audio_mulaw_to_internal;
3697 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3698 return audio_alaw_to_internal;
3699 } else if (audio_format2_is_linear(src)) {
3700 switch (src->stride) {
3701 case 8:
3702 return audio_linear8_to_internal;
3703 case 16:
3704 return audio_linear16_to_internal;
3705 #if defined(AUDIO_SUPPORT_LINEAR24)
3706 case 24:
3707 return audio_linear24_to_internal;
3708 #endif
3709 case 32:
3710 return audio_linear32_to_internal;
3711 default:
3712 TRACET(1, track, "unsupported %s stride %d",
3713 "src", src->stride);
3714 goto abort;
3715 }
3716 }
3717 }
3718
3719 TRACET(1, track, "unsupported encoding");
3720 abort:
3721 #if defined(AUDIO_DEBUG)
3722 if (audiodebug >= 2) {
3723 char buf[100];
3724 audio_format2_tostr(buf, sizeof(buf), src);
3725 TRACET(2, track, "src %s", buf);
3726 audio_format2_tostr(buf, sizeof(buf), dst);
3727 TRACET(2, track, "dst %s", buf);
3728 }
3729 #endif
3730 return NULL;
3731 }
3732
3733 /*
3734 * Initialize the codec stage of this track as necessary.
3735 * If successful, it initializes the codec stage as necessary, stores updated
3736 * last_dst in *last_dstp in any case, and returns 0.
3737 * Otherwise, it returns errno without modifying *last_dstp.
3738 */
3739 static int
3740 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3741 {
3742 struct audio_softc *sc;
3743 audio_ring_t *last_dst;
3744 audio_ring_t *srcbuf;
3745 audio_format2_t *srcfmt;
3746 audio_format2_t *dstfmt;
3747 audio_filter_arg_t *arg;
3748 u_int len;
3749 int error;
3750
3751 KASSERT(track);
3752
3753 sc = track->mixer->sc;
3754 last_dst = *last_dstp;
3755 dstfmt = &last_dst->fmt;
3756 srcfmt = &track->inputfmt;
3757 srcbuf = &track->codec.srcbuf;
3758 error = 0;
3759
3760 if (srcfmt->encoding != dstfmt->encoding
3761 || srcfmt->precision != dstfmt->precision
3762 || srcfmt->stride != dstfmt->stride) {
3763 track->codec.dst = last_dst;
3764
3765 srcbuf->fmt = *dstfmt;
3766 srcbuf->fmt.encoding = srcfmt->encoding;
3767 srcbuf->fmt.precision = srcfmt->precision;
3768 srcbuf->fmt.stride = srcfmt->stride;
3769
3770 track->codec.filter = audio_track_get_codec(track,
3771 &srcbuf->fmt, dstfmt);
3772 if (track->codec.filter == NULL) {
3773 error = EINVAL;
3774 goto abort;
3775 }
3776
3777 srcbuf->head = 0;
3778 srcbuf->used = 0;
3779 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3780 len = auring_bytelen(srcbuf);
3781 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3782 if (srcbuf->mem == NULL) {
3783 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3784 __func__, len);
3785 error = ENOMEM;
3786 goto abort;
3787 }
3788
3789 arg = &track->codec.arg;
3790 arg->srcfmt = &srcbuf->fmt;
3791 arg->dstfmt = dstfmt;
3792 arg->context = NULL;
3793
3794 *last_dstp = srcbuf;
3795 return 0;
3796 }
3797
3798 abort:
3799 track->codec.filter = NULL;
3800 audio_free(srcbuf->mem);
3801 return error;
3802 }
3803
3804 /*
3805 * Initialize the chvol stage of this track as necessary.
3806 * If successful, it initializes the chvol stage as necessary, stores updated
3807 * last_dst in *last_dstp in any case, and returns 0.
3808 * Otherwise, it returns errno without modifying *last_dstp.
3809 */
3810 static int
3811 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3812 {
3813 struct audio_softc *sc;
3814 audio_ring_t *last_dst;
3815 audio_ring_t *srcbuf;
3816 audio_format2_t *srcfmt;
3817 audio_format2_t *dstfmt;
3818 audio_filter_arg_t *arg;
3819 u_int len;
3820 int error;
3821
3822 KASSERT(track);
3823
3824 sc = track->mixer->sc;
3825 last_dst = *last_dstp;
3826 dstfmt = &last_dst->fmt;
3827 srcfmt = &track->inputfmt;
3828 srcbuf = &track->chvol.srcbuf;
3829 error = 0;
3830
3831 /* Check whether channel volume conversion is necessary. */
3832 bool use_chvol = false;
3833 for (int ch = 0; ch < srcfmt->channels; ch++) {
3834 if (track->ch_volume[ch] != 256) {
3835 use_chvol = true;
3836 break;
3837 }
3838 }
3839
3840 if (use_chvol == true) {
3841 track->chvol.dst = last_dst;
3842 track->chvol.filter = audio_track_chvol;
3843
3844 srcbuf->fmt = *dstfmt;
3845 /* no format conversion occurs */
3846
3847 srcbuf->head = 0;
3848 srcbuf->used = 0;
3849 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3850 len = auring_bytelen(srcbuf);
3851 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3852 if (srcbuf->mem == NULL) {
3853 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3854 __func__, len);
3855 error = ENOMEM;
3856 goto abort;
3857 }
3858
3859 arg = &track->chvol.arg;
3860 arg->srcfmt = &srcbuf->fmt;
3861 arg->dstfmt = dstfmt;
3862 arg->context = track->ch_volume;
3863
3864 *last_dstp = srcbuf;
3865 return 0;
3866 }
3867
3868 abort:
3869 track->chvol.filter = NULL;
3870 audio_free(srcbuf->mem);
3871 return error;
3872 }
3873
3874 /*
3875 * Initialize the chmix stage of this track as necessary.
3876 * If successful, it initializes the chmix stage as necessary, stores updated
3877 * last_dst in *last_dstp in any case, and returns 0.
3878 * Otherwise, it returns errno without modifying *last_dstp.
3879 */
3880 static int
3881 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
3882 {
3883 struct audio_softc *sc;
3884 audio_ring_t *last_dst;
3885 audio_ring_t *srcbuf;
3886 audio_format2_t *srcfmt;
3887 audio_format2_t *dstfmt;
3888 audio_filter_arg_t *arg;
3889 u_int srcch;
3890 u_int dstch;
3891 u_int len;
3892 int error;
3893
3894 KASSERT(track);
3895
3896 sc = track->mixer->sc;
3897 last_dst = *last_dstp;
3898 dstfmt = &last_dst->fmt;
3899 srcfmt = &track->inputfmt;
3900 srcbuf = &track->chmix.srcbuf;
3901 error = 0;
3902
3903 srcch = srcfmt->channels;
3904 dstch = dstfmt->channels;
3905 if (srcch != dstch) {
3906 track->chmix.dst = last_dst;
3907
3908 if (srcch >= 2 && dstch == 1) {
3909 track->chmix.filter = audio_track_chmix_mixLR;
3910 } else if (srcch == 1 && dstch >= 2) {
3911 track->chmix.filter = audio_track_chmix_dupLR;
3912 } else if (srcch > dstch) {
3913 track->chmix.filter = audio_track_chmix_shrink;
3914 } else {
3915 track->chmix.filter = audio_track_chmix_expand;
3916 }
3917
3918 srcbuf->fmt = *dstfmt;
3919 srcbuf->fmt.channels = srcch;
3920
3921 srcbuf->head = 0;
3922 srcbuf->used = 0;
3923 /* XXX The buffer size should be able to calculate. */
3924 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3925 len = auring_bytelen(srcbuf);
3926 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3927 if (srcbuf->mem == NULL) {
3928 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3929 __func__, len);
3930 error = ENOMEM;
3931 goto abort;
3932 }
3933
3934 arg = &track->chmix.arg;
3935 arg->srcfmt = &srcbuf->fmt;
3936 arg->dstfmt = dstfmt;
3937 arg->context = NULL;
3938
3939 *last_dstp = srcbuf;
3940 return 0;
3941 }
3942
3943 abort:
3944 track->chmix.filter = NULL;
3945 audio_free(srcbuf->mem);
3946 return error;
3947 }
3948
3949 /*
3950 * Initialize the freq stage of this track as necessary.
3951 * If successful, it initializes the freq stage as necessary, stores updated
3952 * last_dst in *last_dstp in any case, and returns 0.
3953 * Otherwise, it returns errno without modifying *last_dstp.
3954 */
3955 static int
3956 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
3957 {
3958 struct audio_softc *sc;
3959 audio_ring_t *last_dst;
3960 audio_ring_t *srcbuf;
3961 audio_format2_t *srcfmt;
3962 audio_format2_t *dstfmt;
3963 audio_filter_arg_t *arg;
3964 uint32_t srcfreq;
3965 uint32_t dstfreq;
3966 u_int dst_capacity;
3967 u_int mod;
3968 u_int len;
3969 int error;
3970
3971 KASSERT(track);
3972
3973 sc = track->mixer->sc;
3974 last_dst = *last_dstp;
3975 dstfmt = &last_dst->fmt;
3976 srcfmt = &track->inputfmt;
3977 srcbuf = &track->freq.srcbuf;
3978 error = 0;
3979
3980 srcfreq = srcfmt->sample_rate;
3981 dstfreq = dstfmt->sample_rate;
3982 if (srcfreq != dstfreq) {
3983 track->freq.dst = last_dst;
3984
3985 memset(track->freq_prev, 0, sizeof(track->freq_prev));
3986 memset(track->freq_curr, 0, sizeof(track->freq_curr));
3987
3988 /* freq_step is the ratio of src/dst when let dst 65536. */
3989 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
3990
3991 dst_capacity = frame_per_block(track->mixer, dstfmt);
3992 mod = (uint64_t)srcfreq * 65536 % dstfreq;
3993 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
3994
3995 if (track->freq_step < 65536) {
3996 track->freq.filter = audio_track_freq_up;
3997 /* In order to carry at the first time. */
3998 track->freq_current = 65536;
3999 } else {
4000 track->freq.filter = audio_track_freq_down;
4001 track->freq_current = 0;
4002 }
4003
4004 srcbuf->fmt = *dstfmt;
4005 srcbuf->fmt.sample_rate = srcfreq;
4006
4007 srcbuf->head = 0;
4008 srcbuf->used = 0;
4009 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4010 len = auring_bytelen(srcbuf);
4011 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4012 if (srcbuf->mem == NULL) {
4013 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
4014 __func__, len);
4015 error = ENOMEM;
4016 goto abort;
4017 }
4018
4019 arg = &track->freq.arg;
4020 arg->srcfmt = &srcbuf->fmt;
4021 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4022 arg->context = track;
4023
4024 *last_dstp = srcbuf;
4025 return 0;
4026 }
4027
4028 abort:
4029 track->freq.filter = NULL;
4030 audio_free(srcbuf->mem);
4031 return error;
4032 }
4033
4034 /*
4035 * When playing back: (e.g. if codec and freq stage are valid)
4036 *
4037 * write
4038 * | uiomove
4039 * v
4040 * usrbuf [...............] byte ring buffer (mmap-able)
4041 * | memcpy
4042 * v
4043 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4044 * .dst ----+
4045 * | convert
4046 * v
4047 * freq.srcbuf [....] 1 block (ring) buffer
4048 * .dst ----+
4049 * | convert
4050 * v
4051 * outbuf [...............] NBLKOUT blocks ring buffer
4052 *
4053 *
4054 * When recording:
4055 *
4056 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4057 * .dst ----+
4058 * | convert
4059 * v
4060 * codec.srcbuf[.....] 1 block (ring) buffer
4061 * .dst ----+
4062 * | convert
4063 * v
4064 * outbuf [.....] 1 block (ring) buffer
4065 * | memcpy
4066 * v
4067 * usrbuf [...............] byte ring buffer (mmap-able *)
4068 * | uiomove
4069 * v
4070 * read
4071 *
4072 * *: usrbuf for recording is also mmap-able due to symmetry with
4073 * playback buffer, but for now mmap will never happen for recording.
4074 */
4075
4076 /*
4077 * Set the userland format of this track.
4078 * usrfmt argument should be parameter verified with audio_check_params().
4079 * It will release and reallocate all internal conversion buffers.
4080 * It returns 0 if successful. Otherwise it returns errno with clearing all
4081 * internal buffers.
4082 * It must be called without sc_intr_lock since uvm_* routines require non
4083 * intr_lock state.
4084 * It must be called with track lock held since it may release and reallocate
4085 * outbuf.
4086 */
4087 static int
4088 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4089 {
4090 struct audio_softc *sc;
4091 u_int newbufsize;
4092 u_int oldblksize;
4093 u_int len;
4094 int error;
4095
4096 KASSERT(track);
4097 sc = track->mixer->sc;
4098
4099 /* usrbuf is the closest buffer to the userland. */
4100 track->usrbuf.fmt = *usrfmt;
4101
4102 /*
4103 * For references, one block size (in 40msec) is:
4104 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4105 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4106 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4107 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4108 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4109 *
4110 * For example,
4111 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4112 * newbufsize = rounddown(65536 / 7056) = 63504
4113 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4114 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4115 *
4116 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4117 * newbufsize = rounddown(65536 / 7680) = 61440
4118 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4119 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4120 */
4121 oldblksize = track->usrbuf_blksize;
4122 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4123 frame_per_block(track->mixer, &track->usrbuf.fmt));
4124 track->usrbuf.head = 0;
4125 track->usrbuf.used = 0;
4126 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4127 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4128 error = audio_realloc_usrbuf(track, newbufsize);
4129 if (error) {
4130 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4131 newbufsize);
4132 goto error;
4133 }
4134
4135 /* Recalc water mark. */
4136 if (track->usrbuf_blksize != oldblksize) {
4137 if (audio_track_is_playback(track)) {
4138 /* Set high at 100%, low at 75%. */
4139 track->usrbuf_usedhigh = track->usrbuf.capacity;
4140 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4141 } else {
4142 /* Set high at 100% minus 1block(?), low at 0% */
4143 track->usrbuf_usedhigh = track->usrbuf.capacity -
4144 track->usrbuf_blksize;
4145 track->usrbuf_usedlow = 0;
4146 }
4147 }
4148
4149 /* Stage buffer */
4150 audio_ring_t *last_dst = &track->outbuf;
4151 if (audio_track_is_playback(track)) {
4152 /* On playback, initialize from the mixer side in order. */
4153 track->inputfmt = *usrfmt;
4154 track->outbuf.fmt = track->mixer->track_fmt;
4155
4156 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4157 goto error;
4158 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4159 goto error;
4160 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4161 goto error;
4162 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4163 goto error;
4164 } else {
4165 /* On recording, initialize from userland side in order. */
4166 track->inputfmt = track->mixer->track_fmt;
4167 track->outbuf.fmt = *usrfmt;
4168
4169 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4170 goto error;
4171 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4172 goto error;
4173 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4174 goto error;
4175 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4176 goto error;
4177 }
4178 #if 0
4179 /* debug */
4180 if (track->freq.filter) {
4181 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4182 audio_print_format2("freq dst", &track->freq.dst->fmt);
4183 }
4184 if (track->chmix.filter) {
4185 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4186 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4187 }
4188 if (track->chvol.filter) {
4189 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4190 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4191 }
4192 if (track->codec.filter) {
4193 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4194 audio_print_format2("codec dst", &track->codec.dst->fmt);
4195 }
4196 #endif
4197
4198 /* Stage input buffer */
4199 track->input = last_dst;
4200
4201 /*
4202 * On the recording track, make the first stage a ring buffer.
4203 * XXX is there a better way?
4204 */
4205 if (audio_track_is_record(track)) {
4206 track->input->capacity = NBLKOUT *
4207 frame_per_block(track->mixer, &track->input->fmt);
4208 len = auring_bytelen(track->input);
4209 track->input->mem = audio_realloc(track->input->mem, len);
4210 if (track->input->mem == NULL) {
4211 device_printf(sc->sc_dev, "malloc input(%d) failed\n",
4212 len);
4213 error = ENOMEM;
4214 goto error;
4215 }
4216 }
4217
4218 /*
4219 * Output buffer.
4220 * On the playback track, its capacity is NBLKOUT blocks.
4221 * On the recording track, its capacity is 1 block.
4222 */
4223 track->outbuf.head = 0;
4224 track->outbuf.used = 0;
4225 track->outbuf.capacity = frame_per_block(track->mixer,
4226 &track->outbuf.fmt);
4227 if (audio_track_is_playback(track))
4228 track->outbuf.capacity *= NBLKOUT;
4229 len = auring_bytelen(&track->outbuf);
4230 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4231 if (track->outbuf.mem == NULL) {
4232 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4233 error = ENOMEM;
4234 goto error;
4235 }
4236
4237 #if defined(AUDIO_DEBUG)
4238 if (audiodebug >= 3) {
4239 struct audio_track_debugbuf m;
4240
4241 memset(&m, 0, sizeof(m));
4242 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4243 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4244 if (track->freq.filter)
4245 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4246 track->freq.srcbuf.capacity *
4247 frametobyte(&track->freq.srcbuf.fmt, 1));
4248 if (track->chmix.filter)
4249 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4250 track->chmix.srcbuf.capacity *
4251 frametobyte(&track->chmix.srcbuf.fmt, 1));
4252 if (track->chvol.filter)
4253 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4254 track->chvol.srcbuf.capacity *
4255 frametobyte(&track->chvol.srcbuf.fmt, 1));
4256 if (track->codec.filter)
4257 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4258 track->codec.srcbuf.capacity *
4259 frametobyte(&track->codec.srcbuf.fmt, 1));
4260 snprintf(m.usrbuf, sizeof(m.usrbuf),
4261 " usr=%d", track->usrbuf.capacity);
4262
4263 if (audio_track_is_playback(track)) {
4264 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4265 m.outbuf, m.freq, m.chmix,
4266 m.chvol, m.codec, m.usrbuf);
4267 } else {
4268 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4269 m.freq, m.chmix, m.chvol,
4270 m.codec, m.outbuf, m.usrbuf);
4271 }
4272 }
4273 #endif
4274 return 0;
4275
4276 error:
4277 audio_free_usrbuf(track);
4278 audio_free(track->codec.srcbuf.mem);
4279 audio_free(track->chvol.srcbuf.mem);
4280 audio_free(track->chmix.srcbuf.mem);
4281 audio_free(track->freq.srcbuf.mem);
4282 audio_free(track->outbuf.mem);
4283 return error;
4284 }
4285
4286 /*
4287 * Fill silence frames (as the internal format) up to 1 block
4288 * if the ring is not empty and less than 1 block.
4289 * It returns the number of appended frames.
4290 */
4291 static int
4292 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4293 {
4294 int fpb;
4295 int n;
4296
4297 KASSERT(track);
4298 KASSERT(audio_format2_is_internal(&ring->fmt));
4299
4300 /* XXX is n correct? */
4301 /* XXX memset uses frametobyte()? */
4302
4303 if (ring->used == 0)
4304 return 0;
4305
4306 fpb = frame_per_block(track->mixer, &ring->fmt);
4307 if (ring->used >= fpb)
4308 return 0;
4309
4310 n = (ring->capacity - ring->used) % fpb;
4311
4312 KASSERT(auring_get_contig_free(ring) >= n);
4313
4314 memset(auring_tailptr_aint(ring), 0,
4315 n * ring->fmt.channels * sizeof(aint_t));
4316 auring_push(ring, n);
4317 return n;
4318 }
4319
4320 /*
4321 * Execute the conversion stage.
4322 * It prepares arg from this stage and executes stage->filter.
4323 * It must be called only if stage->filter is not NULL.
4324 *
4325 * For stages other than frequency conversion, the function increments
4326 * src and dst counters here. For frequency conversion stage, on the
4327 * other hand, the function does not touch src and dst counters and
4328 * filter side has to increment them.
4329 */
4330 static void
4331 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4332 {
4333 audio_filter_arg_t *arg;
4334 int srccount;
4335 int dstcount;
4336 int count;
4337
4338 KASSERT(track);
4339 KASSERT(stage->filter);
4340
4341 srccount = auring_get_contig_used(&stage->srcbuf);
4342 dstcount = auring_get_contig_free(stage->dst);
4343
4344 if (isfreq) {
4345 KASSERTMSG(srccount > 0, "freq but srccount == %d", srccount);
4346 count = uimin(dstcount, track->mixer->frames_per_block);
4347 } else {
4348 count = uimin(srccount, dstcount);
4349 }
4350
4351 if (count > 0) {
4352 arg = &stage->arg;
4353 arg->src = auring_headptr(&stage->srcbuf);
4354 arg->dst = auring_tailptr(stage->dst);
4355 arg->count = count;
4356
4357 stage->filter(arg);
4358
4359 if (!isfreq) {
4360 auring_take(&stage->srcbuf, count);
4361 auring_push(stage->dst, count);
4362 }
4363 }
4364 }
4365
4366 /*
4367 * Produce output buffer for playback from user input buffer.
4368 * It must be called only if usrbuf is not empty and outbuf is
4369 * available at least one free block.
4370 */
4371 static void
4372 audio_track_play(audio_track_t *track)
4373 {
4374 audio_ring_t *usrbuf;
4375 audio_ring_t *input;
4376 int count;
4377 int framesize;
4378 int bytes;
4379 u_int dropcount;
4380
4381 KASSERT(track);
4382 KASSERT(track->lock);
4383 TRACET(4, track, "start pstate=%d", track->pstate);
4384
4385 /* At this point usrbuf must not be empty. */
4386 KASSERT(track->usrbuf.used > 0);
4387 /* Also, outbuf must be available at least one block. */
4388 count = auring_get_contig_free(&track->outbuf);
4389 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4390 "count=%d fpb=%d",
4391 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4392
4393 /* XXX TODO: is this necessary for now? */
4394 int track_count_0 = track->outbuf.used;
4395
4396 usrbuf = &track->usrbuf;
4397 input = track->input;
4398 dropcount = 0;
4399
4400 /*
4401 * framesize is always 1 byte or more since all formats supported as
4402 * usrfmt(=input) have 8bit or more stride.
4403 */
4404 framesize = frametobyte(&input->fmt, 1);
4405 KASSERT(framesize >= 1);
4406
4407 /* The next stage of usrbuf (=input) must be available. */
4408 KASSERT(auring_get_contig_free(input) > 0);
4409
4410 /*
4411 * Copy usrbuf up to 1block to input buffer.
4412 * count is the number of frames to copy from usrbuf.
4413 * bytes is the number of bytes to copy from usrbuf. However it is
4414 * not copied less than one frame.
4415 */
4416 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4417 bytes = count * framesize;
4418
4419 /*
4420 * If bytes is less than one block,
4421 * if not draining, buffer is not filled so return.
4422 * if draining, fall through.
4423 */
4424 if (count < track->usrbuf_blksize / framesize) {
4425 dropcount = track->usrbuf_blksize / framesize - count;
4426
4427 if (track->pstate != AUDIO_STATE_DRAINING) {
4428 /* Wait until filled. */
4429 TRACET(4, track, "not enough; return");
4430 return;
4431 }
4432 }
4433
4434 track->usrbuf_stamp += bytes;
4435
4436 if (usrbuf->head + bytes < usrbuf->capacity) {
4437 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4438 (uint8_t *)usrbuf->mem + usrbuf->head,
4439 bytes);
4440 auring_push(input, count);
4441 auring_take(usrbuf, bytes);
4442 } else {
4443 int bytes1;
4444 int bytes2;
4445
4446 bytes1 = auring_get_contig_used(usrbuf);
4447 KASSERT(bytes1 % framesize == 0);
4448 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4449 (uint8_t *)usrbuf->mem + usrbuf->head,
4450 bytes1);
4451 auring_push(input, bytes1 / framesize);
4452 auring_take(usrbuf, bytes1);
4453
4454 bytes2 = bytes - bytes1;
4455 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4456 (uint8_t *)usrbuf->mem + usrbuf->head,
4457 bytes2);
4458 auring_push(input, bytes2 / framesize);
4459 auring_take(usrbuf, bytes2);
4460 }
4461
4462 /* Encoding conversion */
4463 if (track->codec.filter)
4464 audio_apply_stage(track, &track->codec, false);
4465
4466 /* Channel volume */
4467 if (track->chvol.filter)
4468 audio_apply_stage(track, &track->chvol, false);
4469
4470 /* Channel mix */
4471 if (track->chmix.filter)
4472 audio_apply_stage(track, &track->chmix, false);
4473
4474 /* Frequency conversion */
4475 /*
4476 * Since the frequency conversion needs correction for each block,
4477 * it rounds up to 1 block.
4478 */
4479 if (track->freq.filter) {
4480 int n;
4481 n = audio_append_silence(track, &track->freq.srcbuf);
4482 if (n > 0) {
4483 TRACET(4, track,
4484 "freq.srcbuf add silence %d -> %d/%d/%d",
4485 n,
4486 track->freq.srcbuf.head,
4487 track->freq.srcbuf.used,
4488 track->freq.srcbuf.capacity);
4489 }
4490 if (track->freq.srcbuf.used > 0) {
4491 audio_apply_stage(track, &track->freq, true);
4492 }
4493 }
4494
4495 if (dropcount != 0) {
4496 /*
4497 * Clear all conversion buffer pointer if the conversion was
4498 * not exactly one block. These conversion stage buffers are
4499 * certainly circular buffers because of symmetry with the
4500 * previous and next stage buffer. However, since they are
4501 * treated as simple contiguous buffers in operation, so head
4502 * always should point 0. This may happen during drain-age.
4503 */
4504 TRACET(4, track, "reset stage");
4505 if (track->codec.filter) {
4506 KASSERT(track->codec.srcbuf.used == 0);
4507 track->codec.srcbuf.head = 0;
4508 }
4509 if (track->chvol.filter) {
4510 KASSERT(track->chvol.srcbuf.used == 0);
4511 track->chvol.srcbuf.head = 0;
4512 }
4513 if (track->chmix.filter) {
4514 KASSERT(track->chmix.srcbuf.used == 0);
4515 track->chmix.srcbuf.head = 0;
4516 }
4517 if (track->freq.filter) {
4518 KASSERT(track->freq.srcbuf.used == 0);
4519 track->freq.srcbuf.head = 0;
4520 }
4521 }
4522
4523 if (track->input == &track->outbuf) {
4524 track->outputcounter = track->inputcounter;
4525 } else {
4526 track->outputcounter += track->outbuf.used - track_count_0;
4527 }
4528
4529 #if defined(AUDIO_DEBUG)
4530 if (audiodebug >= 3) {
4531 struct audio_track_debugbuf m;
4532 audio_track_bufstat(track, &m);
4533 TRACET(0, track, "end%s%s%s%s%s%s",
4534 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4535 }
4536 #endif
4537 }
4538
4539 /*
4540 * Produce user output buffer for recording from input buffer.
4541 */
4542 static void
4543 audio_track_record(audio_track_t *track)
4544 {
4545 audio_ring_t *outbuf;
4546 audio_ring_t *usrbuf;
4547 int count;
4548 int bytes;
4549 int framesize;
4550
4551 KASSERT(track);
4552 KASSERT(track->lock);
4553
4554 /* Number of frames to process */
4555 count = auring_get_contig_used(track->input);
4556 count = uimin(count, track->mixer->frames_per_block);
4557 if (count == 0) {
4558 TRACET(4, track, "count == 0");
4559 return;
4560 }
4561
4562 /* Frequency conversion */
4563 if (track->freq.filter) {
4564 if (track->freq.srcbuf.used > 0) {
4565 audio_apply_stage(track, &track->freq, true);
4566 /* XXX should input of freq be from beginning of buf? */
4567 }
4568 }
4569
4570 /* Channel mix */
4571 if (track->chmix.filter)
4572 audio_apply_stage(track, &track->chmix, false);
4573
4574 /* Channel volume */
4575 if (track->chvol.filter)
4576 audio_apply_stage(track, &track->chvol, false);
4577
4578 /* Encoding conversion */
4579 if (track->codec.filter)
4580 audio_apply_stage(track, &track->codec, false);
4581
4582 /* Copy outbuf to usrbuf */
4583 outbuf = &track->outbuf;
4584 usrbuf = &track->usrbuf;
4585 /*
4586 * framesize is always 1 byte or more since all formats supported
4587 * as usrfmt(=output) have 8bit or more stride.
4588 */
4589 framesize = frametobyte(&outbuf->fmt, 1);
4590 KASSERT(framesize >= 1);
4591 /*
4592 * count is the number of frames to copy to usrbuf.
4593 * bytes is the number of bytes to copy to usrbuf.
4594 */
4595 count = outbuf->used;
4596 count = uimin(count,
4597 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4598 bytes = count * framesize;
4599 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4600 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4601 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4602 bytes);
4603 auring_push(usrbuf, bytes);
4604 auring_take(outbuf, count);
4605 } else {
4606 int bytes1;
4607 int bytes2;
4608
4609 bytes1 = auring_get_contig_used(usrbuf);
4610 KASSERT(bytes1 % framesize == 0);
4611 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4612 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4613 bytes1);
4614 auring_push(usrbuf, bytes1);
4615 auring_take(outbuf, bytes1 / framesize);
4616
4617 bytes2 = bytes - bytes1;
4618 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4619 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4620 bytes2);
4621 auring_push(usrbuf, bytes2);
4622 auring_take(outbuf, bytes2 / framesize);
4623 }
4624
4625 /* XXX TODO: any counters here? */
4626
4627 #if defined(AUDIO_DEBUG)
4628 if (audiodebug >= 3) {
4629 struct audio_track_debugbuf m;
4630 audio_track_bufstat(track, &m);
4631 TRACET(0, track, "end%s%s%s%s%s%s",
4632 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4633 }
4634 #endif
4635 }
4636
4637 /*
4638 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4639 * Must be called with sc_lock held.
4640 */
4641 static u_int
4642 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4643 {
4644 audio_format2_t *fmt;
4645 u_int blktime;
4646 u_int frames_per_block;
4647
4648 KASSERT(mutex_owned(sc->sc_lock));
4649
4650 fmt = &mixer->hwbuf.fmt;
4651 blktime = sc->sc_blk_ms;
4652
4653 /*
4654 * If stride is not multiples of 8, special treatment is necessary.
4655 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4656 */
4657 if (fmt->stride == 4) {
4658 frames_per_block = fmt->sample_rate * blktime / 1000;
4659 if ((frames_per_block & 1) != 0)
4660 blktime *= 2;
4661 }
4662 #ifdef DIAGNOSTIC
4663 else if (fmt->stride % NBBY != 0) {
4664 panic("unsupported HW stride %d", fmt->stride);
4665 }
4666 #endif
4667
4668 return blktime;
4669 }
4670
4671 /*
4672 * Initialize the mixer corresponding to the mode.
4673 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4674 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4675 * This function returns 0 on sucessful. Otherwise returns errno.
4676 * Must be called with sc_lock held.
4677 */
4678 static int
4679 audio_mixer_init(struct audio_softc *sc, int mode,
4680 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4681 {
4682 char codecbuf[64];
4683 audio_trackmixer_t *mixer;
4684 void (*softint_handler)(void *);
4685 int len;
4686 int blksize;
4687 int capacity;
4688 size_t bufsize;
4689 int hwblks;
4690 int blkms;
4691 int error;
4692
4693 KASSERT(hwfmt != NULL);
4694 KASSERT(reg != NULL);
4695 KASSERT(mutex_owned(sc->sc_lock));
4696
4697 error = 0;
4698 if (mode == AUMODE_PLAY)
4699 mixer = sc->sc_pmixer;
4700 else
4701 mixer = sc->sc_rmixer;
4702
4703 mixer->sc = sc;
4704 mixer->mode = mode;
4705
4706 mixer->hwbuf.fmt = *hwfmt;
4707 mixer->volume = 256;
4708 mixer->blktime_d = 1000;
4709 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4710 sc->sc_blk_ms = mixer->blktime_n;
4711 hwblks = NBLKHW;
4712
4713 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4714 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4715 if (sc->hw_if->round_blocksize) {
4716 int rounded;
4717 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4718 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4719 mode, &p);
4720 TRACE(2, "round_blocksize %d -> %d", blksize, rounded);
4721 if (rounded != blksize) {
4722 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4723 mixer->hwbuf.fmt.channels) != 0) {
4724 device_printf(sc->sc_dev,
4725 "blksize not configured %d -> %d\n",
4726 blksize, rounded);
4727 return EINVAL;
4728 }
4729 /* Recalculation */
4730 blksize = rounded;
4731 mixer->frames_per_block = blksize * NBBY /
4732 (mixer->hwbuf.fmt.stride *
4733 mixer->hwbuf.fmt.channels);
4734 }
4735 }
4736 mixer->blktime_n = mixer->frames_per_block;
4737 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4738
4739 capacity = mixer->frames_per_block * hwblks;
4740 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4741 if (sc->hw_if->round_buffersize) {
4742 size_t rounded;
4743 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4744 bufsize);
4745 TRACE(2, "round_buffersize %zd -> %zd", bufsize, rounded);
4746 if (rounded < bufsize) {
4747 /* buffersize needs NBLKHW blocks at least. */
4748 device_printf(sc->sc_dev,
4749 "buffersize too small: buffersize=%zd blksize=%d\n",
4750 rounded, blksize);
4751 return EINVAL;
4752 }
4753 if (rounded % blksize != 0) {
4754 /* buffersize/blksize constraint mismatch? */
4755 device_printf(sc->sc_dev,
4756 "buffersize must be multiple of blksize: "
4757 "buffersize=%zu blksize=%d\n",
4758 rounded, blksize);
4759 return EINVAL;
4760 }
4761 if (rounded != bufsize) {
4762 /* Recalcuration */
4763 bufsize = rounded;
4764 hwblks = bufsize / blksize;
4765 capacity = mixer->frames_per_block * hwblks;
4766 }
4767 }
4768 TRACE(2, "buffersize for %s = %zu",
4769 (mode == AUMODE_PLAY) ? "playback" : "recording",
4770 bufsize);
4771 mixer->hwbuf.capacity = capacity;
4772
4773 /*
4774 * XXX need to release sc_lock for compatibility?
4775 */
4776 if (sc->hw_if->allocm) {
4777 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4778 if (mixer->hwbuf.mem == NULL) {
4779 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4780 __func__, bufsize);
4781 return ENOMEM;
4782 }
4783 } else {
4784 mixer->hwbuf.mem = kern_malloc(bufsize, M_NOWAIT);
4785 if (mixer->hwbuf.mem == NULL) {
4786 device_printf(sc->sc_dev,
4787 "%s: malloc hwbuf(%zu) failed\n",
4788 __func__, bufsize);
4789 return ENOMEM;
4790 }
4791 }
4792
4793 /* From here, audio_mixer_destroy is necessary to exit. */
4794 if (mode == AUMODE_PLAY) {
4795 cv_init(&mixer->outcv, "audiowr");
4796 } else {
4797 cv_init(&mixer->outcv, "audiord");
4798 }
4799
4800 if (mode == AUMODE_PLAY) {
4801 softint_handler = audio_softintr_wr;
4802 } else {
4803 softint_handler = audio_softintr_rd;
4804 }
4805 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4806 softint_handler, sc);
4807 if (mixer->sih == NULL) {
4808 device_printf(sc->sc_dev, "softint_establish failed\n");
4809 goto abort;
4810 }
4811
4812 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4813 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4814 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4815 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4816 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4817
4818 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4819 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4820 mixer->swap_endian = true;
4821 TRACE(1, "swap_endian");
4822 }
4823
4824 if (mode == AUMODE_PLAY) {
4825 /* Mixing buffer */
4826 mixer->mixfmt = mixer->track_fmt;
4827 mixer->mixfmt.precision *= 2;
4828 mixer->mixfmt.stride *= 2;
4829 /* XXX TODO: use some macros? */
4830 len = mixer->frames_per_block * mixer->mixfmt.channels *
4831 mixer->mixfmt.stride / NBBY;
4832 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4833 if (mixer->mixsample == NULL) {
4834 device_printf(sc->sc_dev,
4835 "%s: malloc mixsample(%d) failed\n",
4836 __func__, len);
4837 error = ENOMEM;
4838 goto abort;
4839 }
4840 } else {
4841 /* No mixing buffer for recording */
4842 }
4843
4844 if (reg->codec) {
4845 mixer->codec = reg->codec;
4846 mixer->codecarg.context = reg->context;
4847 if (mode == AUMODE_PLAY) {
4848 mixer->codecarg.srcfmt = &mixer->track_fmt;
4849 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4850 } else {
4851 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4852 mixer->codecarg.dstfmt = &mixer->track_fmt;
4853 }
4854 mixer->codecbuf.fmt = mixer->track_fmt;
4855 mixer->codecbuf.capacity = mixer->frames_per_block;
4856 len = auring_bytelen(&mixer->codecbuf);
4857 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4858 if (mixer->codecbuf.mem == NULL) {
4859 device_printf(sc->sc_dev,
4860 "%s: malloc codecbuf(%d) failed\n",
4861 __func__, len);
4862 error = ENOMEM;
4863 goto abort;
4864 }
4865 }
4866
4867 /* Succeeded so display it. */
4868 codecbuf[0] = '\0';
4869 if (mixer->codec || mixer->swap_endian) {
4870 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4871 (mode == AUMODE_PLAY) ? "->" : "<-",
4872 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4873 mixer->hwbuf.fmt.precision);
4874 }
4875 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
4876 aprint_normal_dev(sc->sc_dev, "%s:%d%s %dch %dHz, blk %dms for %s\n",
4877 audio_encoding_name(mixer->track_fmt.encoding),
4878 mixer->track_fmt.precision,
4879 codecbuf,
4880 mixer->track_fmt.channels,
4881 mixer->track_fmt.sample_rate,
4882 blkms,
4883 (mode == AUMODE_PLAY) ? "playback" : "recording");
4884
4885 return 0;
4886
4887 abort:
4888 audio_mixer_destroy(sc, mixer);
4889 return error;
4890 }
4891
4892 /*
4893 * Releases all resources of 'mixer'.
4894 * Note that it does not release the memory area of 'mixer' itself.
4895 * Must be called with sc_lock held.
4896 */
4897 static void
4898 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
4899 {
4900 int mode;
4901
4902 KASSERT(mutex_owned(sc->sc_lock));
4903
4904 mode = mixer->mode;
4905 KASSERT(mode == AUMODE_PLAY || mode == AUMODE_RECORD);
4906
4907 if (mixer->hwbuf.mem != NULL) {
4908 if (sc->hw_if->freem) {
4909 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, mode);
4910 } else {
4911 kern_free(mixer->hwbuf.mem);
4912 }
4913 mixer->hwbuf.mem = NULL;
4914 }
4915
4916 audio_free(mixer->codecbuf.mem);
4917 audio_free(mixer->mixsample);
4918
4919 cv_destroy(&mixer->outcv);
4920
4921 if (mixer->sih) {
4922 softint_disestablish(mixer->sih);
4923 mixer->sih = NULL;
4924 }
4925 }
4926
4927 /*
4928 * Starts playback mixer.
4929 * Must be called only if sc_pbusy is false.
4930 * Must be called with sc_lock held.
4931 * Must not be called from the interrupt context.
4932 */
4933 static void
4934 audio_pmixer_start(struct audio_softc *sc, bool force)
4935 {
4936 audio_trackmixer_t *mixer;
4937 int minimum;
4938
4939 KASSERT(mutex_owned(sc->sc_lock));
4940 KASSERT(sc->sc_pbusy == false);
4941
4942 mutex_enter(sc->sc_intr_lock);
4943
4944 mixer = sc->sc_pmixer;
4945 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
4946 (audiodebug >= 3) ? "begin " : "",
4947 (int)mixer->mixseq, (int)mixer->hwseq,
4948 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
4949 force ? " force" : "");
4950
4951 /* Need two blocks to start normally. */
4952 minimum = (force) ? 1 : 2;
4953 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
4954 audio_pmixer_process(sc);
4955 }
4956
4957 /* Start output */
4958 audio_pmixer_output(sc);
4959 sc->sc_pbusy = true;
4960
4961 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
4962 (int)mixer->mixseq, (int)mixer->hwseq,
4963 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
4964
4965 mutex_exit(sc->sc_intr_lock);
4966 }
4967
4968 /*
4969 * When playing back with MD filter:
4970 *
4971 * track track ...
4972 * v v
4973 * + mix (with aint2_t)
4974 * | master volume (with aint2_t)
4975 * v
4976 * mixsample [::::] wide-int 1 block (ring) buffer
4977 * |
4978 * | convert aint2_t -> aint_t
4979 * v
4980 * codecbuf [....] 1 block (ring) buffer
4981 * |
4982 * | convert to hw format
4983 * v
4984 * hwbuf [............] NBLKHW blocks ring buffer
4985 *
4986 * When playing back without MD filter:
4987 *
4988 * mixsample [::::] wide-int 1 block (ring) buffer
4989 * |
4990 * | convert aint2_t -> aint_t
4991 * | (with byte swap if necessary)
4992 * v
4993 * hwbuf [............] NBLKHW blocks ring buffer
4994 *
4995 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
4996 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
4997 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
4998 */
4999
5000 /*
5001 * Performs track mixing and converts it to hwbuf.
5002 * Note that this function doesn't transfer hwbuf to hardware.
5003 * Must be called with sc_intr_lock held.
5004 */
5005 static void
5006 audio_pmixer_process(struct audio_softc *sc)
5007 {
5008 audio_trackmixer_t *mixer;
5009 audio_file_t *f;
5010 int frame_count;
5011 int sample_count;
5012 int mixed;
5013 int i;
5014 aint2_t *m;
5015 aint_t *h;
5016
5017 mixer = sc->sc_pmixer;
5018
5019 frame_count = mixer->frames_per_block;
5020 KASSERT(auring_get_contig_free(&mixer->hwbuf) >= frame_count);
5021 sample_count = frame_count * mixer->mixfmt.channels;
5022
5023 mixer->mixseq++;
5024
5025 /* Mix all tracks */
5026 mixed = 0;
5027 SLIST_FOREACH(f, &sc->sc_files, entry) {
5028 audio_track_t *track = f->ptrack;
5029
5030 if (track == NULL)
5031 continue;
5032
5033 if (track->is_pause) {
5034 TRACET(4, track, "skip; paused");
5035 continue;
5036 }
5037
5038 /* Skip if the track is used by process context. */
5039 if (audio_track_lock_tryenter(track) == false) {
5040 TRACET(4, track, "skip; in use");
5041 continue;
5042 }
5043
5044 /* Emulate mmap'ped track */
5045 if (track->mmapped) {
5046 auring_push(&track->usrbuf, track->usrbuf_blksize);
5047 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5048 track->usrbuf.head,
5049 track->usrbuf.used,
5050 track->usrbuf.capacity);
5051 }
5052
5053 if (track->outbuf.used < mixer->frames_per_block &&
5054 track->usrbuf.used > 0) {
5055 TRACET(4, track, "process");
5056 audio_track_play(track);
5057 }
5058
5059 if (track->outbuf.used > 0) {
5060 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5061 } else {
5062 TRACET(4, track, "skip; empty");
5063 }
5064
5065 audio_track_lock_exit(track);
5066 }
5067
5068 if (mixed == 0) {
5069 /* Silence */
5070 memset(mixer->mixsample, 0,
5071 frametobyte(&mixer->mixfmt, frame_count));
5072 } else {
5073 aint2_t ovf_plus;
5074 aint2_t ovf_minus;
5075 int vol;
5076
5077 /* Overflow detection */
5078 ovf_plus = AINT_T_MAX;
5079 ovf_minus = AINT_T_MIN;
5080 m = mixer->mixsample;
5081 for (i = 0; i < sample_count; i++) {
5082 aint2_t val;
5083
5084 val = *m++;
5085 if (val > ovf_plus)
5086 ovf_plus = val;
5087 else if (val < ovf_minus)
5088 ovf_minus = val;
5089 }
5090
5091 /* Master Volume Auto Adjust */
5092 vol = mixer->volume;
5093 if (ovf_plus > (aint2_t)AINT_T_MAX
5094 || ovf_minus < (aint2_t)AINT_T_MIN) {
5095 aint2_t ovf;
5096 int vol2;
5097
5098 /* XXX TODO: Check AINT2_T_MIN ? */
5099 ovf = ovf_plus;
5100 if (ovf < -ovf_minus)
5101 ovf = -ovf_minus;
5102
5103 /* Turn down the volume if overflow occured. */
5104 vol2 = (int)((aint2_t)AINT_T_MAX * 256 / ovf);
5105 if (vol2 < vol)
5106 vol = vol2;
5107
5108 if (vol < mixer->volume) {
5109 /* Turn down gradually to 128. */
5110 if (mixer->volume > 128) {
5111 mixer->volume =
5112 (mixer->volume * 95) / 100;
5113 device_printf(sc->sc_dev,
5114 "auto volume adjust: volume %d\n",
5115 mixer->volume);
5116 }
5117 }
5118 }
5119
5120 /* Apply Master Volume. */
5121 if (vol != 256) {
5122 m = mixer->mixsample;
5123 for (i = 0; i < sample_count; i++) {
5124 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5125 *m = *m * vol >> 8;
5126 #else
5127 *m = *m * vol / 256;
5128 #endif
5129 m++;
5130 }
5131 }
5132 }
5133
5134 /*
5135 * The rest is the hardware part.
5136 */
5137
5138 if (mixer->codec) {
5139 h = auring_tailptr_aint(&mixer->codecbuf);
5140 } else {
5141 h = auring_tailptr_aint(&mixer->hwbuf);
5142 }
5143
5144 m = mixer->mixsample;
5145 if (mixer->swap_endian) {
5146 for (i = 0; i < sample_count; i++) {
5147 *h++ = bswap16(*m++);
5148 }
5149 } else {
5150 for (i = 0; i < sample_count; i++) {
5151 *h++ = *m++;
5152 }
5153 }
5154
5155 /* Hardware driver's codec */
5156 if (mixer->codec) {
5157 auring_push(&mixer->codecbuf, frame_count);
5158 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5159 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5160 mixer->codecarg.count = frame_count;
5161 mixer->codec(&mixer->codecarg);
5162 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5163 }
5164
5165 auring_push(&mixer->hwbuf, frame_count);
5166
5167 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5168 (int)mixer->mixseq,
5169 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5170 (mixed == 0) ? " silent" : "");
5171 }
5172
5173 /*
5174 * Mix one track.
5175 * 'mixed' specifies the number of tracks mixed so far.
5176 * It returns the number of tracks mixed. In other words, it returns
5177 * mixed + 1 if this track is mixed.
5178 */
5179 static int
5180 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5181 int mixed)
5182 {
5183 int count;
5184 int sample_count;
5185 int remain;
5186 int i;
5187 const aint_t *s;
5188 aint2_t *d;
5189
5190 /* XXX TODO: Is this necessary for now? */
5191 if (mixer->mixseq < track->seq)
5192 return mixed;
5193
5194 count = auring_get_contig_used(&track->outbuf);
5195 count = uimin(count, mixer->frames_per_block);
5196
5197 s = auring_headptr_aint(&track->outbuf);
5198 d = mixer->mixsample;
5199
5200 /*
5201 * Apply track volume with double-sized integer and perform
5202 * additive synthesis.
5203 *
5204 * XXX If you limit the track volume to 1.0 or less (<= 256),
5205 * it would be better to do this in the track conversion stage
5206 * rather than here. However, if you accept the volume to
5207 * be greater than 1.0 (> 256), it's better to do it here.
5208 * Because the operation here is done by double-sized integer.
5209 */
5210 sample_count = count * mixer->mixfmt.channels;
5211 if (mixed == 0) {
5212 /* If this is the first track, assignment can be used. */
5213 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5214 if (track->volume != 256) {
5215 for (i = 0; i < sample_count; i++) {
5216 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5217 *d++ = ((aint2_t)*s++) * track->volume >> 8;
5218 #else
5219 *d++ = ((aint2_t)*s++) * track->volume / 256;
5220 #endif
5221 }
5222 } else
5223 #endif
5224 {
5225 for (i = 0; i < sample_count; i++) {
5226 *d++ = ((aint2_t)*s++);
5227 }
5228 }
5229 } else {
5230 /* If this is the second or later, add it. */
5231 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5232 if (track->volume != 256) {
5233 for (i = 0; i < sample_count; i++) {
5234 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5235 *d++ += ((aint2_t)*s++) * track->volume >> 8;
5236 #else
5237 *d++ += ((aint2_t)*s++) * track->volume / 256;
5238 #endif
5239 }
5240 } else
5241 #endif
5242 {
5243 for (i = 0; i < sample_count; i++) {
5244 *d++ += ((aint2_t)*s++);
5245 }
5246 }
5247 }
5248
5249 auring_take(&track->outbuf, count);
5250 /*
5251 * The counters have to align block even if outbuf is less than
5252 * one block. XXX Is this still necessary?
5253 */
5254 remain = mixer->frames_per_block - count;
5255 if (__predict_false(remain != 0)) {
5256 auring_push(&track->outbuf, remain);
5257 auring_take(&track->outbuf, remain);
5258 }
5259
5260 /*
5261 * Update track sequence.
5262 * mixseq has previous value yet at this point.
5263 */
5264 track->seq = mixer->mixseq + 1;
5265
5266 return mixed + 1;
5267 }
5268
5269 /*
5270 * Output one block from hwbuf to HW.
5271 * Must be called with sc_intr_lock held.
5272 */
5273 static void
5274 audio_pmixer_output(struct audio_softc *sc)
5275 {
5276 audio_trackmixer_t *mixer;
5277 audio_params_t params;
5278 void *start;
5279 void *end;
5280 int blksize;
5281 int error;
5282
5283 mixer = sc->sc_pmixer;
5284 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5285 sc->sc_pbusy,
5286 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5287 KASSERT(mixer->hwbuf.used >= mixer->frames_per_block);
5288
5289 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5290
5291 if (sc->hw_if->trigger_output) {
5292 /* trigger (at once) */
5293 if (!sc->sc_pbusy) {
5294 start = mixer->hwbuf.mem;
5295 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5296 params = format2_to_params(&mixer->hwbuf.fmt);
5297
5298 error = sc->hw_if->trigger_output(sc->hw_hdl,
5299 start, end, blksize, audio_pintr, sc, ¶ms);
5300 if (error) {
5301 device_printf(sc->sc_dev,
5302 "trigger_output failed with %d", error);
5303 return;
5304 }
5305 }
5306 } else {
5307 /* start (everytime) */
5308 start = auring_headptr(&mixer->hwbuf);
5309
5310 error = sc->hw_if->start_output(sc->hw_hdl,
5311 start, blksize, audio_pintr, sc);
5312 if (error) {
5313 device_printf(sc->sc_dev,
5314 "start_output failed with %d", error);
5315 return;
5316 }
5317 }
5318 }
5319
5320 /*
5321 * This is an interrupt handler for playback.
5322 * It is called with sc_intr_lock held.
5323 *
5324 * It is usually called from hardware interrupt. However, note that
5325 * for some drivers (e.g. uaudio) it is called from software interrupt.
5326 */
5327 static void
5328 audio_pintr(void *arg)
5329 {
5330 struct audio_softc *sc;
5331 audio_trackmixer_t *mixer;
5332
5333 sc = arg;
5334 KASSERT(mutex_owned(sc->sc_intr_lock));
5335
5336 if (sc->sc_dying)
5337 return;
5338 #if defined(DIAGNOSTIC)
5339 if (sc->sc_pbusy == false) {
5340 device_printf(sc->sc_dev, "stray interrupt\n");
5341 return;
5342 }
5343 #endif
5344
5345 mixer = sc->sc_pmixer;
5346 mixer->hw_complete_counter += mixer->frames_per_block;
5347 mixer->hwseq++;
5348
5349 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5350
5351 TRACE(4,
5352 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5353 mixer->hwseq, mixer->hw_complete_counter,
5354 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5355
5356 #if !defined(_KERNEL)
5357 /* This is a debug code for userland test. */
5358 return;
5359 #endif
5360
5361 #if defined(AUDIO_HW_SINGLE_BUFFER)
5362 /*
5363 * Create a new block here and output it immediately.
5364 * It makes a latency lower but needs machine power.
5365 */
5366 audio_pmixer_process(sc);
5367 audio_pmixer_output(sc);
5368 #else
5369 /*
5370 * It is called when block N output is done.
5371 * Output immediately block N+1 created by the last interrupt.
5372 * And then create block N+2 for the next interrupt.
5373 * This method makes playback robust even on slower machines.
5374 * Instead the latency is increased by one block.
5375 */
5376
5377 /* At first, output ready block. */
5378 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5379 audio_pmixer_output(sc);
5380 }
5381
5382 bool later = false;
5383
5384 if (mixer->hwbuf.used < mixer->frames_per_block) {
5385 later = true;
5386 }
5387
5388 /* Then, process next block. */
5389 audio_pmixer_process(sc);
5390
5391 if (later) {
5392 audio_pmixer_output(sc);
5393 }
5394 #endif
5395
5396 /*
5397 * When this interrupt is the real hardware interrupt, disabling
5398 * preemption here is not necessary. But some drivers (e.g. uaudio)
5399 * emulate it by software interrupt, so kpreempt_disable is necessary.
5400 */
5401 kpreempt_disable();
5402 softint_schedule(mixer->sih);
5403 kpreempt_enable();
5404 }
5405
5406 /*
5407 * Starts record mixer.
5408 * Must be called only if sc_rbusy is false.
5409 * Must be called with sc_lock held.
5410 * Must not be called from the interrupt context.
5411 */
5412 static void
5413 audio_rmixer_start(struct audio_softc *sc)
5414 {
5415
5416 KASSERT(mutex_owned(sc->sc_lock));
5417 KASSERT(sc->sc_rbusy == false);
5418
5419 mutex_enter(sc->sc_intr_lock);
5420
5421 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5422 audio_rmixer_input(sc);
5423 sc->sc_rbusy = true;
5424 TRACE(3, "end");
5425
5426 mutex_exit(sc->sc_intr_lock);
5427 }
5428
5429 /*
5430 * When recording with MD filter:
5431 *
5432 * hwbuf [............] NBLKHW blocks ring buffer
5433 * |
5434 * | convert from hw format
5435 * v
5436 * codecbuf [....] 1 block (ring) buffer
5437 * | |
5438 * v v
5439 * track track ...
5440 *
5441 * When recording without MD filter:
5442 *
5443 * hwbuf [............] NBLKHW blocks ring buffer
5444 * | |
5445 * v v
5446 * track track ...
5447 *
5448 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5449 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5450 */
5451
5452 /*
5453 * Distribute a recorded block to all recording tracks.
5454 */
5455 static void
5456 audio_rmixer_process(struct audio_softc *sc)
5457 {
5458 audio_trackmixer_t *mixer;
5459 audio_ring_t *mixersrc;
5460 audio_file_t *f;
5461 aint_t *p;
5462 int count;
5463 int bytes;
5464 int i;
5465
5466 mixer = sc->sc_rmixer;
5467
5468 /*
5469 * count is the number of frames to be retrieved this time.
5470 * count should be one block.
5471 */
5472 count = auring_get_contig_used(&mixer->hwbuf);
5473 count = uimin(count, mixer->frames_per_block);
5474 if (count <= 0) {
5475 TRACE(4, "count %d: too short", count);
5476 return;
5477 }
5478 bytes = frametobyte(&mixer->track_fmt, count);
5479
5480 /* Hardware driver's codec */
5481 if (mixer->codec) {
5482 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5483 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5484 mixer->codecarg.count = count;
5485 mixer->codec(&mixer->codecarg);
5486 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5487 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5488 mixersrc = &mixer->codecbuf;
5489 } else {
5490 mixersrc = &mixer->hwbuf;
5491 }
5492
5493 if (mixer->swap_endian) {
5494 /* inplace conversion */
5495 p = auring_headptr_aint(mixersrc);
5496 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5497 *p = bswap16(*p);
5498 }
5499 }
5500
5501 /* Distribute to all tracks. */
5502 SLIST_FOREACH(f, &sc->sc_files, entry) {
5503 audio_track_t *track = f->rtrack;
5504 audio_ring_t *input;
5505
5506 if (track == NULL)
5507 continue;
5508
5509 if (track->is_pause) {
5510 TRACET(4, track, "skip; paused");
5511 continue;
5512 }
5513
5514 if (audio_track_lock_tryenter(track) == false) {
5515 TRACET(4, track, "skip; in use");
5516 continue;
5517 }
5518
5519 /* If the track buffer is full, discard the oldest one? */
5520 input = track->input;
5521 if (input->capacity - input->used < mixer->frames_per_block) {
5522 int drops = mixer->frames_per_block -
5523 (input->capacity - input->used);
5524 track->dropframes += drops;
5525 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5526 drops,
5527 input->head, input->used, input->capacity);
5528 auring_take(input, drops);
5529 }
5530 KASSERT(input->used % mixer->frames_per_block == 0);
5531
5532 memcpy(auring_tailptr_aint(input),
5533 auring_headptr_aint(mixersrc),
5534 bytes);
5535 auring_push(input, count);
5536
5537 /* XXX sequence counter? */
5538
5539 audio_track_lock_exit(track);
5540 }
5541
5542 auring_take(mixersrc, count);
5543 }
5544
5545 /*
5546 * Input one block from HW to hwbuf.
5547 * Must be called with sc_intr_lock held.
5548 */
5549 static void
5550 audio_rmixer_input(struct audio_softc *sc)
5551 {
5552 audio_trackmixer_t *mixer;
5553 audio_params_t params;
5554 void *start;
5555 void *end;
5556 int blksize;
5557 int error;
5558
5559 mixer = sc->sc_rmixer;
5560 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5561
5562 if (sc->hw_if->trigger_input) {
5563 /* trigger (at once) */
5564 if (!sc->sc_rbusy) {
5565 start = mixer->hwbuf.mem;
5566 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5567 params = format2_to_params(&mixer->hwbuf.fmt);
5568
5569 error = sc->hw_if->trigger_input(sc->hw_hdl,
5570 start, end, blksize, audio_rintr, sc, ¶ms);
5571 if (error) {
5572 device_printf(sc->sc_dev,
5573 "trigger_input failed with %d", error);
5574 return;
5575 }
5576 }
5577 } else {
5578 /* start (everytime) */
5579 start = auring_tailptr(&mixer->hwbuf);
5580
5581 error = sc->hw_if->start_input(sc->hw_hdl,
5582 start, blksize, audio_rintr, sc);
5583 if (error) {
5584 device_printf(sc->sc_dev,
5585 "start_input failed with %d", error);
5586 return;
5587 }
5588 }
5589 }
5590
5591 /*
5592 * This is an interrupt handler for recording.
5593 * It is called with sc_intr_lock.
5594 *
5595 * It is usually called from hardware interrupt. However, note that
5596 * for some drivers (e.g. uaudio) it is called from software interrupt.
5597 */
5598 static void
5599 audio_rintr(void *arg)
5600 {
5601 struct audio_softc *sc;
5602 audio_trackmixer_t *mixer;
5603
5604 sc = arg;
5605 KASSERT(mutex_owned(sc->sc_intr_lock));
5606
5607 if (sc->sc_dying)
5608 return;
5609 #if defined(DIAGNOSTIC)
5610 if (sc->sc_rbusy == false) {
5611 device_printf(sc->sc_dev, "stray interrupt\n");
5612 return;
5613 }
5614 #endif
5615
5616 mixer = sc->sc_rmixer;
5617 mixer->hw_complete_counter += mixer->frames_per_block;
5618 mixer->hwseq++;
5619
5620 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5621
5622 TRACE(4,
5623 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5624 mixer->hwseq, mixer->hw_complete_counter,
5625 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5626
5627 /* Distrubute recorded block */
5628 audio_rmixer_process(sc);
5629
5630 /* Request next block */
5631 audio_rmixer_input(sc);
5632
5633 /*
5634 * When this interrupt is the real hardware interrupt, disabling
5635 * preemption here is not necessary. But some drivers (e.g. uaudio)
5636 * emulate it by software interrupt, so kpreempt_disable is necessary.
5637 */
5638 kpreempt_disable();
5639 softint_schedule(mixer->sih);
5640 kpreempt_enable();
5641 }
5642
5643 /*
5644 * Halts playback mixer.
5645 * This function also clears related parameters, so call this function
5646 * instead of calling halt_output directly.
5647 * Must be called only if sc_pbusy is true.
5648 * Must be called with sc_lock && sc_exlock held.
5649 */
5650 static int
5651 audio_pmixer_halt(struct audio_softc *sc)
5652 {
5653 int error;
5654
5655 TRACE(2, "");
5656 KASSERT(mutex_owned(sc->sc_lock));
5657 KASSERT(sc->sc_exlock);
5658
5659 mutex_enter(sc->sc_intr_lock);
5660 error = sc->hw_if->halt_output(sc->hw_hdl);
5661 mutex_exit(sc->sc_intr_lock);
5662
5663 /* Halts anyway even if some error has occurred. */
5664 sc->sc_pbusy = false;
5665 sc->sc_pmixer->hwbuf.head = 0;
5666 sc->sc_pmixer->hwbuf.used = 0;
5667 sc->sc_pmixer->mixseq = 0;
5668 sc->sc_pmixer->hwseq = 0;
5669
5670 return error;
5671 }
5672
5673 /*
5674 * Halts recording mixer.
5675 * This function also clears related parameters, so call this function
5676 * instead of calling halt_input directly.
5677 * Must be called only if sc_rbusy is true.
5678 * Must be called with sc_lock && sc_exlock held.
5679 */
5680 static int
5681 audio_rmixer_halt(struct audio_softc *sc)
5682 {
5683 int error;
5684
5685 TRACE(2, "");
5686 KASSERT(mutex_owned(sc->sc_lock));
5687 KASSERT(sc->sc_exlock);
5688
5689 mutex_enter(sc->sc_intr_lock);
5690 error = sc->hw_if->halt_input(sc->hw_hdl);
5691 mutex_exit(sc->sc_intr_lock);
5692
5693 /* Halts anyway even if some error has occurred. */
5694 sc->sc_rbusy = false;
5695 sc->sc_rmixer->hwbuf.head = 0;
5696 sc->sc_rmixer->hwbuf.used = 0;
5697 sc->sc_rmixer->mixseq = 0;
5698 sc->sc_rmixer->hwseq = 0;
5699
5700 return error;
5701 }
5702
5703 /*
5704 * Flush this track.
5705 * Halts all operations, clears all buffers, reset error counters.
5706 * XXX I'm not sure...
5707 */
5708 static void
5709 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5710 {
5711
5712 KASSERT(track);
5713 TRACET(3, track, "clear");
5714
5715 audio_track_lock_enter(track);
5716
5717 track->usrbuf.used = 0;
5718 /* Clear all internal parameters. */
5719 if (track->codec.filter) {
5720 track->codec.srcbuf.used = 0;
5721 track->codec.srcbuf.head = 0;
5722 }
5723 if (track->chvol.filter) {
5724 track->chvol.srcbuf.used = 0;
5725 track->chvol.srcbuf.head = 0;
5726 }
5727 if (track->chmix.filter) {
5728 track->chmix.srcbuf.used = 0;
5729 track->chmix.srcbuf.head = 0;
5730 }
5731 if (track->freq.filter) {
5732 track->freq.srcbuf.used = 0;
5733 track->freq.srcbuf.head = 0;
5734 if (track->freq_step < 65536)
5735 track->freq_current = 65536;
5736 else
5737 track->freq_current = 0;
5738 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5739 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5740 }
5741 /* Clear buffer, then operation halts naturally. */
5742 track->outbuf.used = 0;
5743
5744 /* Clear counters. */
5745 track->dropframes = 0;
5746
5747 audio_track_lock_exit(track);
5748 }
5749
5750 /*
5751 * Drain the track.
5752 * track must be present and for playback.
5753 * If successful, it returns 0. Otherwise returns errno.
5754 * Must be called with sc_lock held.
5755 */
5756 static int
5757 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5758 {
5759 audio_trackmixer_t *mixer;
5760 int done;
5761 int error;
5762
5763 KASSERT(track);
5764 TRACET(3, track, "start");
5765 mixer = track->mixer;
5766 KASSERT(mutex_owned(sc->sc_lock));
5767
5768 /* Ignore them if pause. */
5769 if (track->is_pause) {
5770 TRACET(3, track, "pause -> clear");
5771 track->pstate = AUDIO_STATE_CLEAR;
5772 }
5773 /* Terminate early here if there is no data in the track. */
5774 if (track->pstate == AUDIO_STATE_CLEAR) {
5775 TRACET(3, track, "no need to drain");
5776 return 0;
5777 }
5778 track->pstate = AUDIO_STATE_DRAINING;
5779
5780 for (;;) {
5781 /* I want to display it bofore condition evaluation. */
5782 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5783 (int)curproc->p_pid, (int)curlwp->l_lid,
5784 (int)track->seq, (int)mixer->hwseq,
5785 track->outbuf.head, track->outbuf.used,
5786 track->outbuf.capacity);
5787
5788 /* Condition to terminate */
5789 audio_track_lock_enter(track);
5790 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5791 track->outbuf.used == 0 &&
5792 track->seq <= mixer->hwseq);
5793 audio_track_lock_exit(track);
5794 if (done)
5795 break;
5796
5797 TRACET(3, track, "sleep");
5798 error = audio_track_waitio(sc, track);
5799 if (error)
5800 return error;
5801
5802 /* XXX call audio_track_play here ? */
5803 }
5804
5805 track->pstate = AUDIO_STATE_CLEAR;
5806 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5807 (int)track->inputcounter, (int)track->outputcounter);
5808 return 0;
5809 }
5810
5811 /*
5812 * This is software interrupt handler for record.
5813 * It is called from recording hardware interrupt everytime.
5814 * It does:
5815 * - Deliver SIGIO for all async processes.
5816 * - Notify to audio_read() that data has arrived.
5817 * - selnotify() for select/poll-ing processes.
5818 */
5819 /*
5820 * XXX If a process issues FIOASYNC between hardware interrupt and
5821 * software interrupt, (stray) SIGIO will be sent to the process
5822 * despite the fact that it has not receive recorded data yet.
5823 */
5824 static void
5825 audio_softintr_rd(void *cookie)
5826 {
5827 struct audio_softc *sc = cookie;
5828 audio_file_t *f;
5829 proc_t *p;
5830 pid_t pid;
5831
5832 mutex_enter(sc->sc_lock);
5833 mutex_enter(sc->sc_intr_lock);
5834
5835 SLIST_FOREACH(f, &sc->sc_files, entry) {
5836 audio_track_t *track = f->rtrack;
5837
5838 if (track == NULL)
5839 continue;
5840
5841 TRACET(4, track, "broadcast; inp=%d/%d/%d",
5842 track->input->head,
5843 track->input->used,
5844 track->input->capacity);
5845
5846 pid = f->async_audio;
5847 if (pid != 0) {
5848 TRACEF(4, f, "sending SIGIO %d", pid);
5849 mutex_enter(proc_lock);
5850 if ((p = proc_find(pid)) != NULL)
5851 psignal(p, SIGIO);
5852 mutex_exit(proc_lock);
5853 }
5854 }
5855 mutex_exit(sc->sc_intr_lock);
5856
5857 /* Notify that data has arrived. */
5858 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
5859 KNOTE(&sc->sc_rsel.sel_klist, 0);
5860 cv_broadcast(&sc->sc_rmixer->outcv);
5861
5862 mutex_exit(sc->sc_lock);
5863 }
5864
5865 /*
5866 * This is software interrupt handler for playback.
5867 * It is called from playback hardware interrupt everytime.
5868 * It does:
5869 * - Deliver SIGIO for all async and writable (used < lowat) processes.
5870 * - Notify to audio_write() that outbuf block available.
5871 * - selnotify() for select/poll-ing processes if there are any writable
5872 * (used < lowat) processes. Checking each descriptor will be done by
5873 * filt_audiowrite_event().
5874 */
5875 static void
5876 audio_softintr_wr(void *cookie)
5877 {
5878 struct audio_softc *sc = cookie;
5879 audio_file_t *f;
5880 bool found;
5881 proc_t *p;
5882 pid_t pid;
5883
5884 TRACE(4, "called");
5885 found = false;
5886
5887 mutex_enter(sc->sc_lock);
5888 mutex_enter(sc->sc_intr_lock);
5889
5890 SLIST_FOREACH(f, &sc->sc_files, entry) {
5891 audio_track_t *track = f->ptrack;
5892
5893 if (track == NULL)
5894 continue;
5895
5896 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
5897 (int)track->seq,
5898 track->outbuf.head,
5899 track->outbuf.used,
5900 track->outbuf.capacity);
5901
5902 /*
5903 * Send a signal if the process is async mode and
5904 * used is lower than lowat.
5905 */
5906 if (track->usrbuf.used <= track->usrbuf_usedlow &&
5907 !track->is_pause) {
5908 found = true;
5909 pid = f->async_audio;
5910 if (pid != 0) {
5911 TRACEF(4, f, "sending SIGIO %d", pid);
5912 mutex_enter(proc_lock);
5913 if ((p = proc_find(pid)) != NULL)
5914 psignal(p, SIGIO);
5915 mutex_exit(proc_lock);
5916 }
5917 }
5918 }
5919 mutex_exit(sc->sc_intr_lock);
5920
5921 /*
5922 * Notify for select/poll when someone become writable.
5923 * It needs sc_lock (and not sc_intr_lock).
5924 */
5925 if (found) {
5926 TRACE(4, "selnotify");
5927 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
5928 KNOTE(&sc->sc_wsel.sel_klist, 0);
5929 }
5930
5931 /* Notify to audio_write() that outbuf available. */
5932 cv_broadcast(&sc->sc_pmixer->outcv);
5933
5934 mutex_exit(sc->sc_lock);
5935 }
5936
5937 /*
5938 * Check (and convert) the format *p came from userland.
5939 * If successful, it writes back the converted format to *p if necessary
5940 * and returns 0. Otherwise returns errno (*p may change even this case).
5941 */
5942 static int
5943 audio_check_params(audio_format2_t *p)
5944 {
5945
5946 /* Convert obsoleted AUDIO_ENCODING_PCM* */
5947 /* XXX Is this conversion right? */
5948 if (p->encoding == AUDIO_ENCODING_PCM16) {
5949 if (p->precision == 8)
5950 p->encoding = AUDIO_ENCODING_ULINEAR;
5951 else
5952 p->encoding = AUDIO_ENCODING_SLINEAR;
5953 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
5954 if (p->precision == 8)
5955 p->encoding = AUDIO_ENCODING_ULINEAR;
5956 else
5957 return EINVAL;
5958 }
5959
5960 /*
5961 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
5962 * suffix.
5963 */
5964 if (p->encoding == AUDIO_ENCODING_SLINEAR)
5965 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5966 if (p->encoding == AUDIO_ENCODING_ULINEAR)
5967 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5968
5969 switch (p->encoding) {
5970 case AUDIO_ENCODING_ULAW:
5971 case AUDIO_ENCODING_ALAW:
5972 if (p->precision != 8)
5973 return EINVAL;
5974 break;
5975 case AUDIO_ENCODING_ADPCM:
5976 if (p->precision != 4 && p->precision != 8)
5977 return EINVAL;
5978 break;
5979 case AUDIO_ENCODING_SLINEAR_LE:
5980 case AUDIO_ENCODING_SLINEAR_BE:
5981 case AUDIO_ENCODING_ULINEAR_LE:
5982 case AUDIO_ENCODING_ULINEAR_BE:
5983 if (p->precision != 8 && p->precision != 16 &&
5984 p->precision != 24 && p->precision != 32)
5985 return EINVAL;
5986
5987 /* 8bit format does not have endianness. */
5988 if (p->precision == 8) {
5989 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
5990 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5991 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
5992 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5993 }
5994
5995 if (p->precision > p->stride)
5996 return EINVAL;
5997 break;
5998 case AUDIO_ENCODING_MPEG_L1_STREAM:
5999 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6000 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6001 case AUDIO_ENCODING_MPEG_L2_STREAM:
6002 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6003 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6004 case AUDIO_ENCODING_AC3:
6005 break;
6006 default:
6007 return EINVAL;
6008 }
6009
6010 /* sanity check # of channels*/
6011 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6012 return EINVAL;
6013
6014 return 0;
6015 }
6016
6017 /*
6018 * Initialize playback and record mixers.
6019 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initalized.
6020 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6021 * the filter registration information. These four must not be NULL.
6022 * If successful returns 0. Otherwise returns errno.
6023 * Must be called with sc_lock held.
6024 * Must not be called if there are any tracks.
6025 * Caller should check that the initialization succeed by whether
6026 * sc_[pr]mixer is not NULL.
6027 */
6028 static int
6029 audio_mixers_init(struct audio_softc *sc, int mode,
6030 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6031 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6032 {
6033 int error;
6034
6035 KASSERT(phwfmt != NULL);
6036 KASSERT(rhwfmt != NULL);
6037 KASSERT(pfil != NULL);
6038 KASSERT(rfil != NULL);
6039 KASSERT(mutex_owned(sc->sc_lock));
6040
6041 if ((mode & AUMODE_PLAY)) {
6042 if (sc->sc_pmixer) {
6043 audio_mixer_destroy(sc, sc->sc_pmixer);
6044 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6045 }
6046 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer), KM_SLEEP);
6047 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6048 if (error) {
6049 aprint_error_dev(sc->sc_dev,
6050 "configuring playback mode failed\n");
6051 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6052 sc->sc_pmixer = NULL;
6053 return error;
6054 }
6055 }
6056 if ((mode & AUMODE_RECORD)) {
6057 if (sc->sc_rmixer) {
6058 audio_mixer_destroy(sc, sc->sc_rmixer);
6059 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6060 }
6061 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer), KM_SLEEP);
6062 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6063 if (error) {
6064 aprint_error_dev(sc->sc_dev,
6065 "configuring record mode failed\n");
6066 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6067 sc->sc_rmixer = NULL;
6068 return error;
6069 }
6070 }
6071
6072 return 0;
6073 }
6074
6075 /*
6076 * Select a frequency.
6077 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6078 * XXX Better algorithm?
6079 */
6080 static int
6081 audio_select_freq(const struct audio_format *fmt)
6082 {
6083 int freq;
6084 int high;
6085 int low;
6086 int j;
6087
6088 if (fmt->frequency_type == 0) {
6089 low = fmt->frequency[0];
6090 high = fmt->frequency[1];
6091 freq = 48000;
6092 if (low <= freq && freq <= high) {
6093 return freq;
6094 }
6095 freq = 44100;
6096 if (low <= freq && freq <= high) {
6097 return freq;
6098 }
6099 return high;
6100 } else {
6101 for (j = 0; j < fmt->frequency_type; j++) {
6102 if (fmt->frequency[j] == 48000) {
6103 return fmt->frequency[j];
6104 }
6105 }
6106 high = 0;
6107 for (j = 0; j < fmt->frequency_type; j++) {
6108 if (fmt->frequency[j] == 44100) {
6109 return fmt->frequency[j];
6110 }
6111 if (fmt->frequency[j] > high) {
6112 high = fmt->frequency[j];
6113 }
6114 }
6115 return high;
6116 }
6117 }
6118
6119 /*
6120 * Probe playback and/or recording format (depending on *modep).
6121 * *modep is an in-out parameter. It indicates the direction to configure
6122 * as an argument, and the direction configured is written back as out
6123 * parameter.
6124 * If successful, probed hardware format is stored into *phwfmt, *rhwfmt
6125 * depending on *modep, and return 0. Otherwise it returns errno.
6126 * Must be called with sc_lock held.
6127 */
6128 static int
6129 audio_hw_probe(struct audio_softc *sc, int is_indep, int *modep,
6130 audio_format2_t *phwfmt, audio_format2_t *rhwfmt)
6131 {
6132 audio_format2_t fmt;
6133 int mode;
6134 int error = 0;
6135
6136 KASSERT(mutex_owned(sc->sc_lock));
6137
6138 mode = *modep;
6139 KASSERTMSG((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0,
6140 "invalid mode = %x", mode);
6141
6142 if (is_indep) {
6143 /* On independent devices, probe separately. */
6144 if ((mode & AUMODE_PLAY) != 0) {
6145 error = audio_hw_probe_fmt(sc, phwfmt, AUMODE_PLAY);
6146 if (error)
6147 mode &= ~AUMODE_PLAY;
6148 }
6149 if ((mode & AUMODE_RECORD) != 0) {
6150 error = audio_hw_probe_fmt(sc, rhwfmt, AUMODE_RECORD);
6151 if (error)
6152 mode &= ~AUMODE_RECORD;
6153 }
6154 } else {
6155 /* On non independent devices, probe simultaneously. */
6156 error = audio_hw_probe_fmt(sc, &fmt, mode);
6157 if (error) {
6158 mode = 0;
6159 } else {
6160 *phwfmt = fmt;
6161 *rhwfmt = fmt;
6162 }
6163 }
6164
6165 *modep = mode;
6166 return error;
6167 }
6168
6169 /*
6170 * Choose the most preferred hardware format.
6171 * If successful, it will store the chosen format into *cand and return 0.
6172 * Otherwise, return errno.
6173 * Must be called with sc_lock held.
6174 */
6175 static int
6176 audio_hw_probe_fmt(struct audio_softc *sc, audio_format2_t *cand, int mode)
6177 {
6178 audio_format_query_t query;
6179 int cand_score;
6180 int score;
6181 int i;
6182 int error;
6183
6184 KASSERT(mutex_owned(sc->sc_lock));
6185
6186 /*
6187 * Score each formats and choose the highest one.
6188 *
6189 * +---- priority(0-3)
6190 * |+--- encoding/precision
6191 * ||+-- channels
6192 * score = 0x000000PEC
6193 */
6194
6195 cand_score = 0;
6196 for (i = 0; ; i++) {
6197 memset(&query, 0, sizeof(query));
6198 query.index = i;
6199
6200 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6201 if (error == EINVAL)
6202 break;
6203 if (error)
6204 return error;
6205
6206 #if defined(AUDIO_DEBUG)
6207 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6208 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6209 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6210 query.fmt.priority,
6211 audio_encoding_name(query.fmt.encoding),
6212 query.fmt.validbits,
6213 query.fmt.precision,
6214 query.fmt.channels);
6215 if (query.fmt.frequency_type == 0) {
6216 DPRINTF(1, "{%d-%d",
6217 query.fmt.frequency[0], query.fmt.frequency[1]);
6218 } else {
6219 int j;
6220 for (j = 0; j < query.fmt.frequency_type; j++) {
6221 DPRINTF(1, "%c%d",
6222 (j == 0) ? '{' : ',',
6223 query.fmt.frequency[j]);
6224 }
6225 }
6226 DPRINTF(1, "}\n");
6227 #endif
6228
6229 if ((query.fmt.mode & mode) == 0) {
6230 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6231 mode);
6232 continue;
6233 }
6234
6235 if (query.fmt.priority < 0) {
6236 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6237 continue;
6238 }
6239
6240 /* Score */
6241 score = (query.fmt.priority & 3) * 0x100;
6242 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6243 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6244 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6245 score += 0x20;
6246 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6247 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6248 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6249 score += 0x10;
6250 }
6251 score += query.fmt.channels;
6252
6253 if (score < cand_score) {
6254 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6255 score, cand_score);
6256 continue;
6257 }
6258
6259 /* Update candidate */
6260 cand_score = score;
6261 cand->encoding = query.fmt.encoding;
6262 cand->precision = query.fmt.validbits;
6263 cand->stride = query.fmt.precision;
6264 cand->channels = query.fmt.channels;
6265 cand->sample_rate = audio_select_freq(&query.fmt);
6266 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6267 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6268 cand_score, query.fmt.priority,
6269 audio_encoding_name(query.fmt.encoding),
6270 cand->precision, cand->stride,
6271 cand->channels, cand->sample_rate);
6272 }
6273
6274 if (cand_score == 0) {
6275 DPRINTF(1, "%s no fmt\n", __func__);
6276 return ENXIO;
6277 }
6278 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6279 audio_encoding_name(cand->encoding),
6280 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6281 return 0;
6282 }
6283
6284 /*
6285 * Validate fmt with query_format.
6286 * If fmt is included in the result of query_format, returns 0.
6287 * Otherwise returns EINVAL.
6288 * Must be called with sc_lock held.
6289 */
6290 static int
6291 audio_hw_validate_format(struct audio_softc *sc, int mode,
6292 const audio_format2_t *fmt)
6293 {
6294 audio_format_query_t query;
6295 struct audio_format *q;
6296 int index;
6297 int error;
6298 int j;
6299
6300 KASSERT(mutex_owned(sc->sc_lock));
6301
6302 /*
6303 * If query_format is not supported by hardware driver,
6304 * a rough check instead will be performed.
6305 * XXX This will gone in the future.
6306 */
6307 if (sc->hw_if->query_format == NULL) {
6308 if (fmt->encoding != AUDIO_ENCODING_SLINEAR_NE)
6309 return EINVAL;
6310 if (fmt->precision != AUDIO_INTERNAL_BITS)
6311 return EINVAL;
6312 if (fmt->stride != AUDIO_INTERNAL_BITS)
6313 return EINVAL;
6314 return 0;
6315 }
6316
6317 for (index = 0; ; index++) {
6318 query.index = index;
6319 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6320 if (error == EINVAL)
6321 break;
6322 if (error)
6323 return error;
6324
6325 q = &query.fmt;
6326 /*
6327 * Note that fmt is audio_format2_t (precision/stride) but
6328 * q is audio_format_t (validbits/precision).
6329 */
6330 if ((q->mode & mode) == 0) {
6331 continue;
6332 }
6333 if (fmt->encoding != q->encoding) {
6334 continue;
6335 }
6336 if (fmt->precision != q->validbits) {
6337 continue;
6338 }
6339 if (fmt->stride != q->precision) {
6340 continue;
6341 }
6342 if (fmt->channels != q->channels) {
6343 continue;
6344 }
6345 if (q->frequency_type == 0) {
6346 if (fmt->sample_rate < q->frequency[0] ||
6347 fmt->sample_rate > q->frequency[1]) {
6348 continue;
6349 }
6350 } else {
6351 for (j = 0; j < q->frequency_type; j++) {
6352 if (fmt->sample_rate == q->frequency[j])
6353 break;
6354 }
6355 if (j == query.fmt.frequency_type) {
6356 continue;
6357 }
6358 }
6359
6360 /* Matched. */
6361 return 0;
6362 }
6363
6364 return EINVAL;
6365 }
6366
6367 /*
6368 * Set track mixer's format depending on ai->mode.
6369 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6370 * with ai.play.{channels, sample_rate}.
6371 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6372 * with ai.record.{channels, sample_rate}.
6373 * All other fields in ai are ignored.
6374 * If successful returns 0. Otherwise returns errno.
6375 * This function does not roll back even if it fails.
6376 * Must be called with sc_lock held.
6377 */
6378 static int
6379 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6380 {
6381 audio_format2_t phwfmt;
6382 audio_format2_t rhwfmt;
6383 audio_filter_reg_t pfil;
6384 audio_filter_reg_t rfil;
6385 int mode;
6386 int props;
6387 int error;
6388
6389 KASSERT(mutex_owned(sc->sc_lock));
6390
6391 /*
6392 * Even when setting either one of playback and recording,
6393 * both must be halted.
6394 */
6395 if (sc->sc_popens + sc->sc_ropens > 0)
6396 return EBUSY;
6397
6398 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6399 return ENOTTY;
6400
6401 /* Only channels and sample_rate are changeable. */
6402 mode = ai->mode;
6403 if ((mode & AUMODE_PLAY)) {
6404 phwfmt.encoding = ai->play.encoding;
6405 phwfmt.precision = ai->play.precision;
6406 phwfmt.stride = ai->play.precision;
6407 phwfmt.channels = ai->play.channels;
6408 phwfmt.sample_rate = ai->play.sample_rate;
6409 }
6410 if ((mode & AUMODE_RECORD)) {
6411 rhwfmt.encoding = ai->record.encoding;
6412 rhwfmt.precision = ai->record.precision;
6413 rhwfmt.stride = ai->record.precision;
6414 rhwfmt.channels = ai->record.channels;
6415 rhwfmt.sample_rate = ai->record.sample_rate;
6416 }
6417
6418 /* On non-independent devices, use the same format for both. */
6419 props = audio_get_props(sc);
6420 if ((props & AUDIO_PROP_INDEPENDENT) == 0) {
6421 if (mode == AUMODE_RECORD) {
6422 phwfmt = rhwfmt;
6423 } else {
6424 rhwfmt = phwfmt;
6425 }
6426 mode = AUMODE_PLAY | AUMODE_RECORD;
6427 }
6428
6429 /* Then, unset the direction not exist on the hardware. */
6430 if ((props & AUDIO_PROP_PLAYBACK) == 0)
6431 mode &= ~AUMODE_PLAY;
6432 if ((props & AUDIO_PROP_CAPTURE) == 0)
6433 mode &= ~AUMODE_RECORD;
6434
6435 /* debug */
6436 if ((mode & AUMODE_PLAY)) {
6437 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6438 audio_encoding_name(phwfmt.encoding),
6439 phwfmt.precision,
6440 phwfmt.stride,
6441 phwfmt.channels,
6442 phwfmt.sample_rate);
6443 }
6444 if ((mode & AUMODE_RECORD)) {
6445 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6446 audio_encoding_name(rhwfmt.encoding),
6447 rhwfmt.precision,
6448 rhwfmt.stride,
6449 rhwfmt.channels,
6450 rhwfmt.sample_rate);
6451 }
6452
6453 /* Check the format */
6454 if ((mode & AUMODE_PLAY)) {
6455 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6456 TRACE(1, "invalid format");
6457 return EINVAL;
6458 }
6459 }
6460 if ((mode & AUMODE_RECORD)) {
6461 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6462 TRACE(1, "invalid format");
6463 return EINVAL;
6464 }
6465 }
6466
6467 /* Configure the mixers. */
6468 memset(&pfil, 0, sizeof(pfil));
6469 memset(&rfil, 0, sizeof(rfil));
6470 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6471 if (error)
6472 return error;
6473
6474 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6475 if (error)
6476 return error;
6477
6478 return 0;
6479 }
6480
6481 /*
6482 * Store current mixers format into *ai.
6483 */
6484 static void
6485 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6486 {
6487 /*
6488 * There is no stride information in audio_info but it doesn't matter.
6489 * trackmixer always treats stride and precision as the same.
6490 */
6491 AUDIO_INITINFO(ai);
6492 ai->mode = 0;
6493 if (sc->sc_pmixer) {
6494 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6495 ai->play.encoding = fmt->encoding;
6496 ai->play.precision = fmt->precision;
6497 ai->play.channels = fmt->channels;
6498 ai->play.sample_rate = fmt->sample_rate;
6499 ai->mode |= AUMODE_PLAY;
6500 }
6501 if (sc->sc_rmixer) {
6502 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6503 ai->record.encoding = fmt->encoding;
6504 ai->record.precision = fmt->precision;
6505 ai->record.channels = fmt->channels;
6506 ai->record.sample_rate = fmt->sample_rate;
6507 ai->mode |= AUMODE_RECORD;
6508 }
6509 }
6510
6511 /*
6512 * audio_info details:
6513 *
6514 * ai.{play,record}.sample_rate (R/W)
6515 * ai.{play,record}.encoding (R/W)
6516 * ai.{play,record}.precision (R/W)
6517 * ai.{play,record}.channels (R/W)
6518 * These specify the playback or recording format.
6519 * Ignore members within an inactive track.
6520 *
6521 * ai.mode (R/W)
6522 * It specifies the playback or recording mode, AUMODE_*.
6523 * Currently, a mode change operation by ai.mode after opening is
6524 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6525 * However, it's possible to get or to set for backward compatibility.
6526 *
6527 * ai.{hiwat,lowat} (R/W)
6528 * These specify the high water mark and low water mark for playback
6529 * track. The unit is block.
6530 *
6531 * ai.{play,record}.gain (R/W)
6532 * It specifies the HW mixer volume in 0-255.
6533 * It is historical reason that the gain is connected to HW mixer.
6534 *
6535 * ai.{play,record}.balance (R/W)
6536 * It specifies the left-right balance of HW mixer in 0-64.
6537 * 32 means the center.
6538 * It is historical reason that the balance is connected to HW mixer.
6539 *
6540 * ai.{play,record}.port (R/W)
6541 * It specifies the input/output port of HW mixer.
6542 *
6543 * ai.monitor_gain (R/W)
6544 * It specifies the recording monitor gain(?) of HW mixer.
6545 *
6546 * ai.{play,record}.pause (R/W)
6547 * Non-zero means the track is paused.
6548 *
6549 * ai.play.seek (R/-)
6550 * It indicates the number of bytes written but not processed.
6551 * ai.record.seek (R/-)
6552 * It indicates the number of bytes to be able to read.
6553 *
6554 * ai.{play,record}.avail_ports (R/-)
6555 * Mixer info.
6556 *
6557 * ai.{play,record}.buffer_size (R/-)
6558 * It indicates the buffer size in bytes. Internally it means usrbuf.
6559 *
6560 * ai.{play,record}.samples (R/-)
6561 * It indicates the total number of bytes played or recorded.
6562 *
6563 * ai.{play,record}.eof (R/-)
6564 * It indicates the number of times reached EOF(?).
6565 *
6566 * ai.{play,record}.error (R/-)
6567 * Non-zero indicates overflow/underflow has occured.
6568 *
6569 * ai.{play,record}.waiting (R/-)
6570 * Non-zero indicates that other process waits to open.
6571 * It will never happen anymore.
6572 *
6573 * ai.{play,record}.open (R/-)
6574 * Non-zero indicates the direction is opened by this process(?).
6575 * XXX Is this better to indicate that "the device is opened by
6576 * at least one process"?
6577 *
6578 * ai.{play,record}.active (R/-)
6579 * Non-zero indicates that I/O is currently active.
6580 *
6581 * ai.blocksize (R/-)
6582 * It indicates the block size in bytes.
6583 * XXX The blocksize of playback and recording may be different.
6584 */
6585
6586 /*
6587 * Pause consideration:
6588 *
6589 * The introduction of these two behavior makes pause/unpause operation
6590 * simple.
6591 * 1. The first read/write access of the first track makes mixer start.
6592 * 2. A pause of the last track doesn't make mixer stop.
6593 */
6594
6595 /*
6596 * Set both track's parameters within a file depending on ai.
6597 * Update sc_sound_[pr]* if set.
6598 * Must be called with sc_lock and sc_exlock held.
6599 */
6600 static int
6601 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6602 const struct audio_info *ai)
6603 {
6604 const struct audio_prinfo *pi;
6605 const struct audio_prinfo *ri;
6606 audio_track_t *ptrack;
6607 audio_track_t *rtrack;
6608 audio_format2_t pfmt;
6609 audio_format2_t rfmt;
6610 int pchanges;
6611 int rchanges;
6612 int mode;
6613 struct audio_info saved_ai;
6614 audio_format2_t saved_pfmt;
6615 audio_format2_t saved_rfmt;
6616 int error;
6617
6618 KASSERT(mutex_owned(sc->sc_lock));
6619 KASSERT(sc->sc_exlock);
6620
6621 pi = &ai->play;
6622 ri = &ai->record;
6623 pchanges = 0;
6624 rchanges = 0;
6625
6626 ptrack = file->ptrack;
6627 rtrack = file->rtrack;
6628
6629 #if defined(AUDIO_DEBUG)
6630 if (audiodebug >= 2) {
6631 char buf[256];
6632 char p[64];
6633 int buflen;
6634 int plen;
6635 #define SPRINTF(var, fmt...) do { \
6636 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6637 } while (0)
6638
6639 buflen = 0;
6640 plen = 0;
6641 if (SPECIFIED(pi->encoding))
6642 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6643 if (SPECIFIED(pi->precision))
6644 SPRINTF(p, "/%dbit", pi->precision);
6645 if (SPECIFIED(pi->channels))
6646 SPRINTF(p, "/%dch", pi->channels);
6647 if (SPECIFIED(pi->sample_rate))
6648 SPRINTF(p, "/%dHz", pi->sample_rate);
6649 if (plen > 0)
6650 SPRINTF(buf, ",play.param=%s", p + 1);
6651
6652 plen = 0;
6653 if (SPECIFIED(ri->encoding))
6654 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6655 if (SPECIFIED(ri->precision))
6656 SPRINTF(p, "/%dbit", ri->precision);
6657 if (SPECIFIED(ri->channels))
6658 SPRINTF(p, "/%dch", ri->channels);
6659 if (SPECIFIED(ri->sample_rate))
6660 SPRINTF(p, "/%dHz", ri->sample_rate);
6661 if (plen > 0)
6662 SPRINTF(buf, ",record.param=%s", p + 1);
6663
6664 if (SPECIFIED(ai->mode))
6665 SPRINTF(buf, ",mode=%d", ai->mode);
6666 if (SPECIFIED(ai->hiwat))
6667 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6668 if (SPECIFIED(ai->lowat))
6669 SPRINTF(buf, ",lowat=%d", ai->lowat);
6670 if (SPECIFIED(ai->play.gain))
6671 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6672 if (SPECIFIED(ai->record.gain))
6673 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6674 if (SPECIFIED_CH(ai->play.balance))
6675 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6676 if (SPECIFIED_CH(ai->record.balance))
6677 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6678 if (SPECIFIED(ai->play.port))
6679 SPRINTF(buf, ",play.port=%d", ai->play.port);
6680 if (SPECIFIED(ai->record.port))
6681 SPRINTF(buf, ",record.port=%d", ai->record.port);
6682 if (SPECIFIED(ai->monitor_gain))
6683 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6684 if (SPECIFIED_CH(ai->play.pause))
6685 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6686 if (SPECIFIED_CH(ai->record.pause))
6687 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6688
6689 if (buflen > 0)
6690 TRACE(2, "specified %s", buf + 1);
6691 }
6692 #endif
6693
6694 AUDIO_INITINFO(&saved_ai);
6695 /* XXX shut up gcc */
6696 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6697 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6698
6699 /* Set default value and save current parameters */
6700 if (ptrack) {
6701 pfmt = ptrack->usrbuf.fmt;
6702 saved_pfmt = ptrack->usrbuf.fmt;
6703 saved_ai.play.pause = ptrack->is_pause;
6704 }
6705 if (rtrack) {
6706 rfmt = rtrack->usrbuf.fmt;
6707 saved_rfmt = rtrack->usrbuf.fmt;
6708 saved_ai.record.pause = rtrack->is_pause;
6709 }
6710 saved_ai.mode = file->mode;
6711
6712 /* Overwrite if specified */
6713 mode = file->mode;
6714 if (SPECIFIED(ai->mode)) {
6715 /*
6716 * Setting ai->mode no longer does anything because it's
6717 * prohibited to change playback/recording mode after open
6718 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6719 * keeps the state of AUMODE_PLAY_ALL itself for backward
6720 * compatibility.
6721 * In the internal, only file->mode has the state of
6722 * AUMODE_PLAY_ALL flag and track->mode in both track does
6723 * not have.
6724 */
6725 if ((file->mode & AUMODE_PLAY)) {
6726 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6727 | (ai->mode & AUMODE_PLAY_ALL);
6728 }
6729 }
6730
6731 if (ptrack) {
6732 pchanges = audio_track_setinfo_check(&pfmt, pi);
6733 if (pchanges == -1) {
6734 TRACET(1, ptrack, "check play.params failed");
6735 return EINVAL;
6736 }
6737 if (SPECIFIED(ai->mode))
6738 pchanges = 1;
6739 }
6740 if (rtrack) {
6741 rchanges = audio_track_setinfo_check(&rfmt, ri);
6742 if (rchanges == -1) {
6743 TRACET(1, rtrack, "check record.params failed");
6744 return EINVAL;
6745 }
6746 if (SPECIFIED(ai->mode))
6747 rchanges = 1;
6748 }
6749
6750 /*
6751 * Even when setting either one of playback and recording,
6752 * both track must be halted.
6753 */
6754 if (pchanges || rchanges) {
6755 audio_file_clear(sc, file);
6756 #if defined(AUDIO_DEBUG)
6757 char fmtbuf[64];
6758 if (pchanges) {
6759 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6760 DPRINTF(1, "audio track#%d play mode: %s\n",
6761 ptrack->id, fmtbuf);
6762 }
6763 if (rchanges) {
6764 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6765 DPRINTF(1, "audio track#%d rec mode: %s\n",
6766 rtrack->id, fmtbuf);
6767 }
6768 #endif
6769 }
6770
6771 /* Set mixer parameters */
6772 error = audio_hw_setinfo(sc, ai, &saved_ai);
6773 if (error)
6774 goto abort1;
6775
6776 /* Set to track and update sticky parameters */
6777 error = 0;
6778 file->mode = mode;
6779 if (ptrack) {
6780 if (SPECIFIED_CH(pi->pause)) {
6781 ptrack->is_pause = pi->pause;
6782 sc->sc_sound_ppause = pi->pause;
6783 }
6784 if (pchanges) {
6785 audio_track_lock_enter(ptrack);
6786 error = audio_track_set_format(ptrack, &pfmt);
6787 audio_track_lock_exit(ptrack);
6788 if (error) {
6789 TRACET(1, ptrack, "set play.params failed");
6790 goto abort2;
6791 }
6792 sc->sc_sound_pparams = pfmt;
6793 }
6794 /* Change water marks after initializing the buffers. */
6795 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat))
6796 audio_track_setinfo_water(ptrack, ai);
6797 }
6798 if (rtrack) {
6799 if (SPECIFIED_CH(ri->pause)) {
6800 rtrack->is_pause = ri->pause;
6801 sc->sc_sound_rpause = ri->pause;
6802 }
6803 if (rchanges) {
6804 audio_track_lock_enter(rtrack);
6805 error = audio_track_set_format(rtrack, &rfmt);
6806 audio_track_lock_exit(rtrack);
6807 if (error) {
6808 TRACET(1, rtrack, "set record.params failed");
6809 goto abort3;
6810 }
6811 sc->sc_sound_rparams = rfmt;
6812 }
6813 }
6814
6815 return 0;
6816
6817 /* Rollback */
6818 abort3:
6819 if (error != ENOMEM) {
6820 rtrack->is_pause = saved_ai.record.pause;
6821 audio_track_lock_enter(rtrack);
6822 audio_track_set_format(rtrack, &saved_rfmt);
6823 audio_track_lock_exit(rtrack);
6824 }
6825 abort2:
6826 if (ptrack && error != ENOMEM) {
6827 ptrack->is_pause = saved_ai.play.pause;
6828 audio_track_lock_enter(ptrack);
6829 audio_track_set_format(ptrack, &saved_pfmt);
6830 audio_track_lock_exit(ptrack);
6831 sc->sc_sound_pparams = saved_pfmt;
6832 sc->sc_sound_ppause = saved_ai.play.pause;
6833 }
6834 file->mode = saved_ai.mode;
6835 abort1:
6836 audio_hw_setinfo(sc, &saved_ai, NULL);
6837
6838 return error;
6839 }
6840
6841 /*
6842 * Write SPECIFIED() parameters within info back to fmt.
6843 * Return value of 1 indicates that fmt is modified.
6844 * Return value of 0 indicates that fmt is not modified.
6845 * Return value of -1 indicates that error EINVAL has occurred.
6846 */
6847 static int
6848 audio_track_setinfo_check(audio_format2_t *fmt, const struct audio_prinfo *info)
6849 {
6850 int changes;
6851
6852 changes = 0;
6853 if (SPECIFIED(info->sample_rate)) {
6854 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
6855 return -1;
6856 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
6857 return -1;
6858 fmt->sample_rate = info->sample_rate;
6859 changes = 1;
6860 }
6861 if (SPECIFIED(info->encoding)) {
6862 fmt->encoding = info->encoding;
6863 changes = 1;
6864 }
6865 if (SPECIFIED(info->precision)) {
6866 fmt->precision = info->precision;
6867 /* we don't have API to specify stride */
6868 fmt->stride = info->precision;
6869 changes = 1;
6870 }
6871 if (SPECIFIED(info->channels)) {
6872 fmt->channels = info->channels;
6873 changes = 1;
6874 }
6875
6876 if (changes) {
6877 if (audio_check_params(fmt) != 0) {
6878 #ifdef DIAGNOSTIC
6879 char fmtbuf[64];
6880 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), fmt);
6881 printf("%s failed: %s\n", __func__, fmtbuf);
6882 #endif
6883 return -1;
6884 }
6885 }
6886
6887 return changes;
6888 }
6889
6890 /*
6891 * Change water marks for playback track if specfied.
6892 */
6893 static void
6894 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
6895 {
6896 u_int blks;
6897 u_int maxblks;
6898 u_int blksize;
6899
6900 KASSERT(audio_track_is_playback(track));
6901
6902 blksize = track->usrbuf_blksize;
6903 maxblks = track->usrbuf.capacity / blksize;
6904
6905 if (SPECIFIED(ai->hiwat)) {
6906 blks = ai->hiwat;
6907 if (blks > maxblks)
6908 blks = maxblks;
6909 if (blks < 2)
6910 blks = 2;
6911 track->usrbuf_usedhigh = blks * blksize;
6912 }
6913 if (SPECIFIED(ai->lowat)) {
6914 blks = ai->lowat;
6915 if (blks > maxblks - 1)
6916 blks = maxblks - 1;
6917 track->usrbuf_usedlow = blks * blksize;
6918 }
6919 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6920 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
6921 track->usrbuf_usedlow = track->usrbuf_usedhigh -
6922 blksize;
6923 }
6924 }
6925 }
6926
6927 /*
6928 * Set hardware part of *ai.
6929 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
6930 * If oldai is specified, previous parameters are stored.
6931 * This function itself does not roll back if error occurred.
6932 * Must be called with sc_lock and sc_exlock held.
6933 */
6934 static int
6935 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
6936 struct audio_info *oldai)
6937 {
6938 const struct audio_prinfo *newpi;
6939 const struct audio_prinfo *newri;
6940 struct audio_prinfo *oldpi;
6941 struct audio_prinfo *oldri;
6942 u_int pgain;
6943 u_int rgain;
6944 u_char pbalance;
6945 u_char rbalance;
6946 int error;
6947
6948 KASSERT(mutex_owned(sc->sc_lock));
6949 KASSERT(sc->sc_exlock);
6950
6951 /* XXX shut up gcc */
6952 oldpi = NULL;
6953 oldri = NULL;
6954
6955 newpi = &newai->play;
6956 newri = &newai->record;
6957 if (oldai) {
6958 oldpi = &oldai->play;
6959 oldri = &oldai->record;
6960 }
6961 error = 0;
6962
6963 /*
6964 * It looks like unnecessary to halt HW mixers to set HW mixers.
6965 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
6966 */
6967
6968 if (SPECIFIED(newpi->port)) {
6969 if (oldai)
6970 oldpi->port = au_get_port(sc, &sc->sc_outports);
6971 error = au_set_port(sc, &sc->sc_outports, newpi->port);
6972 if (error) {
6973 device_printf(sc->sc_dev,
6974 "setting play.port=%d failed with %d\n",
6975 newpi->port, error);
6976 goto abort;
6977 }
6978 }
6979 if (SPECIFIED(newri->port)) {
6980 if (oldai)
6981 oldri->port = au_get_port(sc, &sc->sc_inports);
6982 error = au_set_port(sc, &sc->sc_inports, newri->port);
6983 if (error) {
6984 device_printf(sc->sc_dev,
6985 "setting record.port=%d failed with %d\n",
6986 newri->port, error);
6987 goto abort;
6988 }
6989 }
6990
6991 /* Backup play.{gain,balance} */
6992 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
6993 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
6994 if (oldai) {
6995 oldpi->gain = pgain;
6996 oldpi->balance = pbalance;
6997 }
6998 }
6999 /* Backup record.{gain,balance} */
7000 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7001 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7002 if (oldai) {
7003 oldri->gain = rgain;
7004 oldri->balance = rbalance;
7005 }
7006 }
7007 if (SPECIFIED(newpi->gain)) {
7008 error = au_set_gain(sc, &sc->sc_outports,
7009 newpi->gain, pbalance);
7010 if (error) {
7011 device_printf(sc->sc_dev,
7012 "setting play.gain=%d failed with %d\n",
7013 newpi->gain, error);
7014 goto abort;
7015 }
7016 }
7017 if (SPECIFIED(newri->gain)) {
7018 error = au_set_gain(sc, &sc->sc_inports,
7019 newri->gain, rbalance);
7020 if (error) {
7021 device_printf(sc->sc_dev,
7022 "setting record.gain=%d failed with %d\n",
7023 newri->gain, error);
7024 goto abort;
7025 }
7026 }
7027 if (SPECIFIED_CH(newpi->balance)) {
7028 error = au_set_gain(sc, &sc->sc_outports,
7029 pgain, newpi->balance);
7030 if (error) {
7031 device_printf(sc->sc_dev,
7032 "setting play.balance=%d failed with %d\n",
7033 newpi->balance, error);
7034 goto abort;
7035 }
7036 }
7037 if (SPECIFIED_CH(newri->balance)) {
7038 error = au_set_gain(sc, &sc->sc_inports,
7039 rgain, newri->balance);
7040 if (error) {
7041 device_printf(sc->sc_dev,
7042 "setting record.balance=%d failed with %d\n",
7043 newri->balance, error);
7044 goto abort;
7045 }
7046 }
7047
7048 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7049 if (oldai)
7050 oldai->monitor_gain = au_get_monitor_gain(sc);
7051 error = au_set_monitor_gain(sc, newai->monitor_gain);
7052 if (error) {
7053 device_printf(sc->sc_dev,
7054 "setting monitor_gain=%d failed with %d\n",
7055 newai->monitor_gain, error);
7056 goto abort;
7057 }
7058 }
7059
7060 /* XXX TODO */
7061 /* sc->sc_ai = *ai; */
7062
7063 error = 0;
7064 abort:
7065 return error;
7066 }
7067
7068 /*
7069 * Setup the hardware with mixer format phwfmt, rhwfmt.
7070 * The arguments have following restrictions:
7071 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7072 * or both.
7073 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7074 * - On non-independent devices, phwfmt and rhwfmt must have the same
7075 * parameters.
7076 * - pfil and rfil must be zero-filled.
7077 * If successful,
7078 * - phwfmt, rhwfmt will be overwritten by hardware format.
7079 * - pfil, rfil will be filled with filter information specified by the
7080 * hardware driver.
7081 * and then returns 0. Otherwise returns errno.
7082 * Must be called with sc_lock held.
7083 */
7084 static int
7085 audio_hw_set_format(struct audio_softc *sc, int setmode,
7086 audio_format2_t *phwfmt, audio_format2_t *rhwfmt,
7087 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7088 {
7089 audio_params_t pp, rp;
7090 int error;
7091
7092 KASSERT(mutex_owned(sc->sc_lock));
7093 KASSERT(phwfmt != NULL);
7094 KASSERT(rhwfmt != NULL);
7095
7096 pp = format2_to_params(phwfmt);
7097 rp = format2_to_params(rhwfmt);
7098
7099 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7100 &pp, &rp, pfil, rfil);
7101 if (error) {
7102 device_printf(sc->sc_dev,
7103 "set_format failed with %d\n", error);
7104 return error;
7105 }
7106
7107 if (sc->hw_if->commit_settings) {
7108 error = sc->hw_if->commit_settings(sc->hw_hdl);
7109 if (error) {
7110 device_printf(sc->sc_dev,
7111 "commit_settings failed with %d\n", error);
7112 return error;
7113 }
7114 }
7115
7116 return 0;
7117 }
7118
7119 /*
7120 * Fill audio_info structure. If need_mixerinfo is true, it will also
7121 * fill the hardware mixer information.
7122 * Must be called with sc_lock held.
7123 * Must be called with sc_exlock held, in addition, if need_mixerinfo is
7124 * true.
7125 */
7126 static int
7127 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7128 audio_file_t *file)
7129 {
7130 struct audio_prinfo *ri, *pi;
7131 audio_track_t *track;
7132 audio_track_t *ptrack;
7133 audio_track_t *rtrack;
7134 int gain;
7135
7136 KASSERT(mutex_owned(sc->sc_lock));
7137
7138 ri = &ai->record;
7139 pi = &ai->play;
7140 ptrack = file->ptrack;
7141 rtrack = file->rtrack;
7142
7143 memset(ai, 0, sizeof(*ai));
7144
7145 if (ptrack) {
7146 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7147 pi->channels = ptrack->usrbuf.fmt.channels;
7148 pi->precision = ptrack->usrbuf.fmt.precision;
7149 pi->encoding = ptrack->usrbuf.fmt.encoding;
7150 } else {
7151 /* Set default parameters if the track is not available. */
7152 if (ISDEVAUDIO(file->dev)) {
7153 pi->sample_rate = audio_default.sample_rate;
7154 pi->channels = audio_default.channels;
7155 pi->precision = audio_default.precision;
7156 pi->encoding = audio_default.encoding;
7157 } else {
7158 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7159 pi->channels = sc->sc_sound_pparams.channels;
7160 pi->precision = sc->sc_sound_pparams.precision;
7161 pi->encoding = sc->sc_sound_pparams.encoding;
7162 }
7163 }
7164 if (rtrack) {
7165 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7166 ri->channels = rtrack->usrbuf.fmt.channels;
7167 ri->precision = rtrack->usrbuf.fmt.precision;
7168 ri->encoding = rtrack->usrbuf.fmt.encoding;
7169 } else {
7170 /* Set default parameters if the track is not available. */
7171 if (ISDEVAUDIO(file->dev)) {
7172 ri->sample_rate = audio_default.sample_rate;
7173 ri->channels = audio_default.channels;
7174 ri->precision = audio_default.precision;
7175 ri->encoding = audio_default.encoding;
7176 } else {
7177 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7178 ri->channels = sc->sc_sound_rparams.channels;
7179 ri->precision = sc->sc_sound_rparams.precision;
7180 ri->encoding = sc->sc_sound_rparams.encoding;
7181 }
7182 }
7183
7184 if (ptrack) {
7185 pi->seek = ptrack->usrbuf.used;
7186 pi->samples = ptrack->usrbuf_stamp;
7187 pi->eof = ptrack->eofcounter;
7188 pi->pause = ptrack->is_pause;
7189 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7190 pi->waiting = 0; /* open never hangs */
7191 pi->open = 1;
7192 pi->active = sc->sc_pbusy;
7193 pi->buffer_size = ptrack->usrbuf.capacity;
7194 }
7195 if (rtrack) {
7196 ri->seek = rtrack->usrbuf.used;
7197 ri->samples = rtrack->usrbuf_stamp;
7198 ri->eof = 0;
7199 ri->pause = rtrack->is_pause;
7200 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7201 ri->waiting = 0; /* open never hangs */
7202 ri->open = 1;
7203 ri->active = sc->sc_rbusy;
7204 ri->buffer_size = rtrack->usrbuf.capacity;
7205 }
7206
7207 /*
7208 * XXX There may be different number of channels between playback
7209 * and recording, so that blocksize also may be different.
7210 * But struct audio_info has an united blocksize...
7211 * Here, I use play info precedencely if ptrack is available,
7212 * otherwise record info.
7213 *
7214 * XXX hiwat/lowat is a playback-only parameter. What should I
7215 * return for a record-only descriptor?
7216 */
7217 track = ptrack ?: rtrack;
7218 if (track) {
7219 ai->blocksize = track->usrbuf_blksize;
7220 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7221 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7222 }
7223 ai->mode = file->mode;
7224
7225 if (need_mixerinfo) {
7226 KASSERT(sc->sc_exlock);
7227
7228 pi->port = au_get_port(sc, &sc->sc_outports);
7229 ri->port = au_get_port(sc, &sc->sc_inports);
7230
7231 pi->avail_ports = sc->sc_outports.allports;
7232 ri->avail_ports = sc->sc_inports.allports;
7233
7234 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7235 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7236
7237 if (sc->sc_monitor_port != -1) {
7238 gain = au_get_monitor_gain(sc);
7239 if (gain != -1)
7240 ai->monitor_gain = gain;
7241 }
7242 }
7243
7244 return 0;
7245 }
7246
7247 /*
7248 * Must be called with sc_lock held.
7249 */
7250 static int
7251 audio_get_props(struct audio_softc *sc)
7252 {
7253 const struct audio_hw_if *hw;
7254 int props;
7255
7256 KASSERT(mutex_owned(sc->sc_lock));
7257
7258 hw = sc->hw_if;
7259 props = hw->get_props(sc->hw_hdl);
7260
7261 /*
7262 * For historical reasons, if neither playback nor capture
7263 * properties are reported, assume both are supported.
7264 * XXX Ideally (all) hardware driver should be updated...
7265 */
7266 if ((props & (AUDIO_PROP_PLAYBACK|AUDIO_PROP_CAPTURE)) == 0)
7267 props |= (AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE);
7268
7269 /* MMAP is now supported by upper layer. */
7270 props |= AUDIO_PROP_MMAP;
7271
7272 return props;
7273 }
7274
7275 /*
7276 * Return true if playback is configured.
7277 * This function can be used after audioattach.
7278 */
7279 static bool
7280 audio_can_playback(struct audio_softc *sc)
7281 {
7282
7283 return (sc->sc_pmixer != NULL);
7284 }
7285
7286 /*
7287 * Return true if recording is configured.
7288 * This function can be used after audioattach.
7289 */
7290 static bool
7291 audio_can_capture(struct audio_softc *sc)
7292 {
7293
7294 return (sc->sc_rmixer != NULL);
7295 }
7296
7297 /*
7298 * Get the afp->index'th item from the valid one of format[].
7299 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7300 *
7301 * This is common routines for query_format.
7302 * If your hardware driver has struct audio_format[], the simplest case
7303 * you can write your query_format interface as follows:
7304 *
7305 * struct audio_format foo_format[] = { ... };
7306 *
7307 * int
7308 * foo_query_format(void *hdl, audio_format_query_t *afp)
7309 * {
7310 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7311 * }
7312 */
7313 int
7314 audio_query_format(const struct audio_format *format, int nformats,
7315 audio_format_query_t *afp)
7316 {
7317 const struct audio_format *f;
7318 int idx;
7319 int i;
7320
7321 idx = 0;
7322 for (i = 0; i < nformats; i++) {
7323 f = &format[i];
7324 if (!AUFMT_IS_VALID(f))
7325 continue;
7326 if (afp->index == idx) {
7327 afp->fmt = *f;
7328 return 0;
7329 }
7330 idx++;
7331 }
7332 return EINVAL;
7333 }
7334
7335 /*
7336 * This function is provided for the hardware driver's set_format() to
7337 * find index matches with 'param' from array of audio_format_t 'formats'.
7338 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7339 * It returns the matched index and never fails. Because param passed to
7340 * set_format() is selected from query_format().
7341 * This function will be an alternative to auconv_set_converter() to
7342 * find index.
7343 */
7344 int
7345 audio_indexof_format(const struct audio_format *formats, int nformats,
7346 int mode, const audio_params_t *param)
7347 {
7348 const struct audio_format *f;
7349 int index;
7350 int j;
7351
7352 for (index = 0; index < nformats; index++) {
7353 f = &formats[index];
7354
7355 if (!AUFMT_IS_VALID(f))
7356 continue;
7357 if ((f->mode & mode) == 0)
7358 continue;
7359 if (f->encoding != param->encoding)
7360 continue;
7361 if (f->validbits != param->precision)
7362 continue;
7363 if (f->channels != param->channels)
7364 continue;
7365
7366 if (f->frequency_type == 0) {
7367 if (param->sample_rate < f->frequency[0] ||
7368 param->sample_rate > f->frequency[1])
7369 continue;
7370 } else {
7371 for (j = 0; j < f->frequency_type; j++) {
7372 if (param->sample_rate == f->frequency[j])
7373 break;
7374 }
7375 if (j == f->frequency_type)
7376 continue;
7377 }
7378
7379 /* Then, matched */
7380 return index;
7381 }
7382
7383 /* Not matched. This should not be happened. */
7384 panic("%s: cannot find matched format\n", __func__);
7385 }
7386
7387 /*
7388 * Get or set software master volume: 0..256
7389 * XXX It's for debug.
7390 */
7391 static int
7392 audio_sysctl_volume(SYSCTLFN_ARGS)
7393 {
7394 struct sysctlnode node;
7395 struct audio_softc *sc;
7396 int t, error;
7397
7398 node = *rnode;
7399 sc = node.sysctl_data;
7400
7401 if (sc->sc_pmixer)
7402 t = sc->sc_pmixer->volume;
7403 else
7404 t = -1;
7405 node.sysctl_data = &t;
7406 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7407 if (error || newp == NULL)
7408 return error;
7409
7410 if (sc->sc_pmixer == NULL)
7411 return EINVAL;
7412 if (t < 0)
7413 return EINVAL;
7414
7415 sc->sc_pmixer->volume = t;
7416 return 0;
7417 }
7418
7419 /*
7420 * Get or set hardware blocksize in msec.
7421 * XXX It's for debug.
7422 */
7423 static int
7424 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7425 {
7426 struct sysctlnode node;
7427 struct audio_softc *sc;
7428 audio_format2_t phwfmt;
7429 audio_format2_t rhwfmt;
7430 audio_filter_reg_t pfil;
7431 audio_filter_reg_t rfil;
7432 int t;
7433 int old_blk_ms;
7434 int mode;
7435 int error;
7436
7437 node = *rnode;
7438 sc = node.sysctl_data;
7439
7440 mutex_enter(sc->sc_lock);
7441
7442 old_blk_ms = sc->sc_blk_ms;
7443 t = old_blk_ms;
7444 node.sysctl_data = &t;
7445 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7446 if (error || newp == NULL)
7447 goto abort;
7448
7449 if (t < 0) {
7450 error = EINVAL;
7451 goto abort;
7452 }
7453
7454 if (sc->sc_popens + sc->sc_ropens > 0) {
7455 error = EBUSY;
7456 goto abort;
7457 }
7458 sc->sc_blk_ms = t;
7459 mode = 0;
7460 if (sc->sc_pmixer) {
7461 mode |= AUMODE_PLAY;
7462 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7463 }
7464 if (sc->sc_rmixer) {
7465 mode |= AUMODE_RECORD;
7466 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7467 }
7468
7469 /* re-init hardware */
7470 memset(&pfil, 0, sizeof(pfil));
7471 memset(&rfil, 0, sizeof(rfil));
7472 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7473 if (error) {
7474 goto abort;
7475 }
7476
7477 /* re-init track mixer */
7478 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7479 if (error) {
7480 /* Rollback */
7481 sc->sc_blk_ms = old_blk_ms;
7482 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7483 goto abort;
7484 }
7485 error = 0;
7486 abort:
7487 mutex_exit(sc->sc_lock);
7488 return error;
7489 }
7490
7491 /*
7492 * Get or set multiuser mode.
7493 */
7494 static int
7495 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7496 {
7497 struct sysctlnode node;
7498 struct audio_softc *sc;
7499 int t, error;
7500
7501 node = *rnode;
7502 sc = node.sysctl_data;
7503
7504 mutex_enter(sc->sc_lock);
7505
7506 t = sc->sc_multiuser;
7507 node.sysctl_data = &t;
7508 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7509 if (error || newp == NULL)
7510 goto abort;
7511
7512 sc->sc_multiuser = t;
7513 error = 0;
7514 abort:
7515 mutex_exit(sc->sc_lock);
7516 return error;
7517 }
7518
7519 #if defined(AUDIO_DEBUG)
7520 /*
7521 * Get or set debug verbose level. (0..4)
7522 * XXX It's for debug.
7523 * XXX It is not separated per device.
7524 */
7525 static int
7526 audio_sysctl_debug(SYSCTLFN_ARGS)
7527 {
7528 struct sysctlnode node;
7529 int t;
7530 int error;
7531
7532 node = *rnode;
7533 t = audiodebug;
7534 node.sysctl_data = &t;
7535 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7536 if (error || newp == NULL)
7537 return error;
7538
7539 if (t < 0 || t > 4)
7540 return EINVAL;
7541 audiodebug = t;
7542 printf("audio: audiodebug = %d\n", audiodebug);
7543 return 0;
7544 }
7545 #endif /* AUDIO_DEBUG */
7546
7547 #ifdef AUDIO_PM_IDLE
7548 static void
7549 audio_idle(void *arg)
7550 {
7551 device_t dv = arg;
7552 struct audio_softc *sc = device_private(dv);
7553
7554 #ifdef PNP_DEBUG
7555 extern int pnp_debug_idle;
7556 if (pnp_debug_idle)
7557 printf("%s: idle handler called\n", device_xname(dv));
7558 #endif
7559
7560 sc->sc_idle = true;
7561
7562 /* XXX joerg Make pmf_device_suspend handle children? */
7563 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7564 return;
7565
7566 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7567 pmf_device_resume(dv, PMF_Q_SELF);
7568 }
7569
7570 static void
7571 audio_activity(device_t dv, devactive_t type)
7572 {
7573 struct audio_softc *sc = device_private(dv);
7574
7575 if (type != DVA_SYSTEM)
7576 return;
7577
7578 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7579
7580 sc->sc_idle = false;
7581 if (!device_is_active(dv)) {
7582 /* XXX joerg How to deal with a failing resume... */
7583 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7584 pmf_device_resume(dv, PMF_Q_SELF);
7585 }
7586 }
7587 #endif
7588
7589 static bool
7590 audio_suspend(device_t dv, const pmf_qual_t *qual)
7591 {
7592 struct audio_softc *sc = device_private(dv);
7593 int error;
7594
7595 error = audio_enter_exclusive(sc);
7596 if (error)
7597 return error;
7598 audio_mixer_capture(sc);
7599
7600 /* Halts mixers but don't clear busy flag for resume */
7601 if (sc->sc_pbusy) {
7602 audio_pmixer_halt(sc);
7603 sc->sc_pbusy = true;
7604 }
7605 if (sc->sc_rbusy) {
7606 audio_rmixer_halt(sc);
7607 sc->sc_rbusy = true;
7608 }
7609
7610 #ifdef AUDIO_PM_IDLE
7611 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7612 #endif
7613 audio_exit_exclusive(sc);
7614
7615 return true;
7616 }
7617
7618 static bool
7619 audio_resume(device_t dv, const pmf_qual_t *qual)
7620 {
7621 struct audio_softc *sc = device_private(dv);
7622 struct audio_info ai;
7623 int error;
7624
7625 error = audio_enter_exclusive(sc);
7626 if (error)
7627 return error;
7628
7629 audio_mixer_restore(sc);
7630 /* XXX ? */
7631 AUDIO_INITINFO(&ai);
7632 audio_hw_setinfo(sc, &ai, NULL);
7633
7634 if (sc->sc_pbusy)
7635 audio_pmixer_start(sc, true);
7636 if (sc->sc_rbusy)
7637 audio_rmixer_start(sc);
7638
7639 audio_exit_exclusive(sc);
7640
7641 return true;
7642 }
7643
7644 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
7645 static void
7646 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7647 {
7648 int n;
7649
7650 n = 0;
7651 n += snprintf(buf + n, bufsize - n, "%s",
7652 audio_encoding_name(fmt->encoding));
7653 if (fmt->precision == fmt->stride) {
7654 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7655 } else {
7656 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7657 fmt->precision, fmt->stride);
7658 }
7659
7660 snprintf(buf + n, bufsize - n, " %uch %uHz",
7661 fmt->channels, fmt->sample_rate);
7662 }
7663 #endif
7664
7665 #if defined(AUDIO_DEBUG)
7666 static void
7667 audio_print_format2(const char *s, const audio_format2_t *fmt)
7668 {
7669 char fmtstr[64];
7670
7671 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7672 printf("%s %s\n", s, fmtstr);
7673 }
7674 #endif
7675
7676 #ifdef DIAGNOSTIC
7677 void
7678 audio_diagnostic_format2(const char *func, const audio_format2_t *fmt)
7679 {
7680
7681 KASSERTMSG(fmt, "%s: fmt == NULL", func);
7682
7683 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7684 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7685 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7686 "%s: stride(%d) is invalid", func, fmt->stride);
7687 } else {
7688 KASSERTMSG(fmt->stride % NBBY == 0,
7689 "%s: stride(%d) is invalid", func, fmt->stride);
7690 }
7691 KASSERTMSG(fmt->precision <= fmt->stride,
7692 "%s: precision(%d) <= stride(%d)",
7693 func, fmt->precision, fmt->stride);
7694 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7695 "%s: channels(%d) is out of range",
7696 func, fmt->channels);
7697
7698 /* XXX No check for encodings? */
7699 }
7700
7701 void
7702 audio_diagnostic_filter_arg(const char *func, const audio_filter_arg_t *arg)
7703 {
7704
7705 KASSERT(arg != NULL);
7706 KASSERT(arg->src != NULL);
7707 KASSERT(arg->dst != NULL);
7708 DIAGNOSTIC_format2(arg->srcfmt);
7709 DIAGNOSTIC_format2(arg->dstfmt);
7710 KASSERTMSG(arg->count > 0,
7711 "%s: count(%d) is out of range", func, arg->count);
7712 }
7713
7714 void
7715 audio_diagnostic_ring(const char *func, const audio_ring_t *ring)
7716 {
7717
7718 KASSERTMSG(ring, "%s: ring == NULL", func);
7719 DIAGNOSTIC_format2(&ring->fmt);
7720 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7721 "%s: capacity(%d) is out of range", func, ring->capacity);
7722 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7723 "%s: used(%d) is out of range (capacity:%d)",
7724 func, ring->used, ring->capacity);
7725 if (ring->capacity == 0) {
7726 KASSERTMSG(ring->mem == NULL,
7727 "%s: capacity == 0 but mem != NULL", func);
7728 } else {
7729 KASSERTMSG(ring->mem != NULL,
7730 "%s: capacity != 0 but mem == NULL", func);
7731 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7732 "%s: head(%d) is out of range (capacity:%d)",
7733 func, ring->head, ring->capacity);
7734 }
7735 }
7736 #endif /* DIAGNOSTIC */
7737
7738
7739 /*
7740 * Mixer driver
7741 */
7742 int
7743 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7744 struct lwp *l)
7745 {
7746 struct file *fp;
7747 audio_file_t *af;
7748 int error, fd;
7749
7750 KASSERT(mutex_owned(sc->sc_lock));
7751
7752 TRACE(1, "flags=0x%x", flags);
7753
7754 error = fd_allocfile(&fp, &fd);
7755 if (error)
7756 return error;
7757
7758 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7759 af->sc = sc;
7760 af->dev = dev;
7761
7762 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7763 KASSERT(error == EMOVEFD);
7764
7765 return error;
7766 }
7767
7768 /*
7769 * Remove a process from those to be signalled on mixer activity.
7770 * Must be called with sc_lock held.
7771 */
7772 static void
7773 mixer_remove(struct audio_softc *sc)
7774 {
7775 struct mixer_asyncs **pm, *m;
7776 pid_t pid;
7777
7778 KASSERT(mutex_owned(sc->sc_lock));
7779
7780 pid = curproc->p_pid;
7781 for (pm = &sc->sc_async_mixer; *pm; pm = &(*pm)->next) {
7782 if ((*pm)->pid == pid) {
7783 m = *pm;
7784 *pm = m->next;
7785 kmem_free(m, sizeof(*m));
7786 return;
7787 }
7788 }
7789 }
7790
7791 /*
7792 * Signal all processes waiting for the mixer.
7793 * Must be called with sc_lock held.
7794 */
7795 static void
7796 mixer_signal(struct audio_softc *sc)
7797 {
7798 struct mixer_asyncs *m;
7799 proc_t *p;
7800
7801 for (m = sc->sc_async_mixer; m; m = m->next) {
7802 mutex_enter(proc_lock);
7803 if ((p = proc_find(m->pid)) != NULL)
7804 psignal(p, SIGIO);
7805 mutex_exit(proc_lock);
7806 }
7807 }
7808
7809 /*
7810 * Close a mixer device
7811 */
7812 int
7813 mixer_close(struct audio_softc *sc, audio_file_t *file)
7814 {
7815
7816 mutex_enter(sc->sc_lock);
7817 TRACE(1, "");
7818 mixer_remove(sc);
7819 mutex_exit(sc->sc_lock);
7820
7821 return 0;
7822 }
7823
7824 int
7825 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
7826 struct lwp *l)
7827 {
7828 struct mixer_asyncs *ma;
7829 mixer_devinfo_t *mi;
7830 mixer_ctrl_t *mc;
7831 int error;
7832
7833 KASSERT(!mutex_owned(sc->sc_lock));
7834
7835 TRACE(2, "(%lu,'%c',%lu)",
7836 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
7837 error = EINVAL;
7838
7839 /* we can return cached values if we are sleeping */
7840 if (cmd != AUDIO_MIXER_READ) {
7841 mutex_enter(sc->sc_lock);
7842 device_active(sc->sc_dev, DVA_SYSTEM);
7843 mutex_exit(sc->sc_lock);
7844 }
7845
7846 switch (cmd) {
7847 case FIOASYNC:
7848 if (*(int *)addr) {
7849 ma = kmem_alloc(sizeof(struct mixer_asyncs), KM_SLEEP);
7850 } else {
7851 ma = NULL;
7852 }
7853 mixer_remove(sc); /* remove old entry */
7854 if (ma != NULL) {
7855 ma->next = sc->sc_async_mixer;
7856 ma->pid = curproc->p_pid;
7857 sc->sc_async_mixer = ma;
7858 }
7859 error = 0;
7860 break;
7861
7862 case AUDIO_GETDEV:
7863 TRACE(2, "AUDIO_GETDEV");
7864 error = audio_enter_exclusive(sc);
7865 if (error)
7866 break;
7867 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
7868 audio_exit_exclusive(sc);
7869 break;
7870
7871 case AUDIO_MIXER_DEVINFO:
7872 TRACE(2, "AUDIO_MIXER_DEVINFO");
7873 mi = (mixer_devinfo_t *)addr;
7874
7875 mi->un.v.delta = 0; /* default */
7876 mutex_enter(sc->sc_lock);
7877 error = audio_query_devinfo(sc, mi);
7878 mutex_exit(sc->sc_lock);
7879 break;
7880
7881 case AUDIO_MIXER_READ:
7882 TRACE(2, "AUDIO_MIXER_READ");
7883 mc = (mixer_ctrl_t *)addr;
7884
7885 error = audio_enter_exclusive(sc);
7886 if (error)
7887 break;
7888 if (device_is_active(sc->hw_dev))
7889 error = audio_get_port(sc, mc);
7890 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
7891 error = ENXIO;
7892 else {
7893 int dev = mc->dev;
7894 memcpy(mc, &sc->sc_mixer_state[dev],
7895 sizeof(mixer_ctrl_t));
7896 error = 0;
7897 }
7898 audio_exit_exclusive(sc);
7899 break;
7900
7901 case AUDIO_MIXER_WRITE:
7902 TRACE(2, "AUDIO_MIXER_WRITE");
7903 error = audio_enter_exclusive(sc);
7904 if (error)
7905 break;
7906 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
7907 if (error) {
7908 audio_exit_exclusive(sc);
7909 break;
7910 }
7911
7912 if (sc->hw_if->commit_settings) {
7913 error = sc->hw_if->commit_settings(sc->hw_hdl);
7914 if (error) {
7915 audio_exit_exclusive(sc);
7916 break;
7917 }
7918 }
7919 mixer_signal(sc);
7920 audio_exit_exclusive(sc);
7921 break;
7922
7923 default:
7924 if (sc->hw_if->dev_ioctl) {
7925 error = audio_enter_exclusive(sc);
7926 if (error)
7927 break;
7928 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
7929 cmd, addr, flag, l);
7930 audio_exit_exclusive(sc);
7931 } else
7932 error = EINVAL;
7933 break;
7934 }
7935 TRACE(2, "(%lu,'%c',%lu) result %d",
7936 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
7937 return error;
7938 }
7939
7940 /*
7941 * Must be called with sc_lock held.
7942 */
7943 int
7944 au_portof(struct audio_softc *sc, char *name, int class)
7945 {
7946 mixer_devinfo_t mi;
7947
7948 KASSERT(mutex_owned(sc->sc_lock));
7949
7950 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
7951 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
7952 return mi.index;
7953 }
7954 return -1;
7955 }
7956
7957 /*
7958 * Must be called with sc_lock held.
7959 */
7960 void
7961 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
7962 mixer_devinfo_t *mi, const struct portname *tbl)
7963 {
7964 int i, j;
7965
7966 KASSERT(mutex_owned(sc->sc_lock));
7967
7968 ports->index = mi->index;
7969 if (mi->type == AUDIO_MIXER_ENUM) {
7970 ports->isenum = true;
7971 for(i = 0; tbl[i].name; i++)
7972 for(j = 0; j < mi->un.e.num_mem; j++)
7973 if (strcmp(mi->un.e.member[j].label.name,
7974 tbl[i].name) == 0) {
7975 ports->allports |= tbl[i].mask;
7976 ports->aumask[ports->nports] = tbl[i].mask;
7977 ports->misel[ports->nports] =
7978 mi->un.e.member[j].ord;
7979 ports->miport[ports->nports] =
7980 au_portof(sc, mi->un.e.member[j].label.name,
7981 mi->mixer_class);
7982 if (ports->mixerout != -1 &&
7983 ports->miport[ports->nports] != -1)
7984 ports->isdual = true;
7985 ++ports->nports;
7986 }
7987 } else if (mi->type == AUDIO_MIXER_SET) {
7988 for(i = 0; tbl[i].name; i++)
7989 for(j = 0; j < mi->un.s.num_mem; j++)
7990 if (strcmp(mi->un.s.member[j].label.name,
7991 tbl[i].name) == 0) {
7992 ports->allports |= tbl[i].mask;
7993 ports->aumask[ports->nports] = tbl[i].mask;
7994 ports->misel[ports->nports] =
7995 mi->un.s.member[j].mask;
7996 ports->miport[ports->nports] =
7997 au_portof(sc, mi->un.s.member[j].label.name,
7998 mi->mixer_class);
7999 ++ports->nports;
8000 }
8001 }
8002 }
8003
8004 /*
8005 * Must be called with sc_lock && sc_exlock held.
8006 */
8007 int
8008 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8009 {
8010
8011 KASSERT(mutex_owned(sc->sc_lock));
8012 KASSERT(sc->sc_exlock);
8013
8014 ct->type = AUDIO_MIXER_VALUE;
8015 ct->un.value.num_channels = 2;
8016 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8017 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8018 if (audio_set_port(sc, ct) == 0)
8019 return 0;
8020 ct->un.value.num_channels = 1;
8021 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8022 return audio_set_port(sc, ct);
8023 }
8024
8025 /*
8026 * Must be called with sc_lock && sc_exlock held.
8027 */
8028 int
8029 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8030 {
8031 int error;
8032
8033 KASSERT(mutex_owned(sc->sc_lock));
8034 KASSERT(sc->sc_exlock);
8035
8036 ct->un.value.num_channels = 2;
8037 if (audio_get_port(sc, ct) == 0) {
8038 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8039 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8040 } else {
8041 ct->un.value.num_channels = 1;
8042 error = audio_get_port(sc, ct);
8043 if (error)
8044 return error;
8045 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8046 }
8047 return 0;
8048 }
8049
8050 /*
8051 * Must be called with sc_lock && sc_exlock held.
8052 */
8053 int
8054 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8055 int gain, int balance)
8056 {
8057 mixer_ctrl_t ct;
8058 int i, error;
8059 int l, r;
8060 u_int mask;
8061 int nset;
8062
8063 KASSERT(mutex_owned(sc->sc_lock));
8064 KASSERT(sc->sc_exlock);
8065
8066 if (balance == AUDIO_MID_BALANCE) {
8067 l = r = gain;
8068 } else if (balance < AUDIO_MID_BALANCE) {
8069 l = gain;
8070 r = (balance * gain) / AUDIO_MID_BALANCE;
8071 } else {
8072 r = gain;
8073 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8074 / AUDIO_MID_BALANCE;
8075 }
8076 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8077
8078 if (ports->index == -1) {
8079 usemaster:
8080 if (ports->master == -1)
8081 return 0; /* just ignore it silently */
8082 ct.dev = ports->master;
8083 error = au_set_lr_value(sc, &ct, l, r);
8084 } else {
8085 ct.dev = ports->index;
8086 if (ports->isenum) {
8087 ct.type = AUDIO_MIXER_ENUM;
8088 error = audio_get_port(sc, &ct);
8089 if (error)
8090 return error;
8091 if (ports->isdual) {
8092 if (ports->cur_port == -1)
8093 ct.dev = ports->master;
8094 else
8095 ct.dev = ports->miport[ports->cur_port];
8096 error = au_set_lr_value(sc, &ct, l, r);
8097 } else {
8098 for(i = 0; i < ports->nports; i++)
8099 if (ports->misel[i] == ct.un.ord) {
8100 ct.dev = ports->miport[i];
8101 if (ct.dev == -1 ||
8102 au_set_lr_value(sc, &ct, l, r))
8103 goto usemaster;
8104 else
8105 break;
8106 }
8107 }
8108 } else {
8109 ct.type = AUDIO_MIXER_SET;
8110 error = audio_get_port(sc, &ct);
8111 if (error)
8112 return error;
8113 mask = ct.un.mask;
8114 nset = 0;
8115 for(i = 0; i < ports->nports; i++) {
8116 if (ports->misel[i] & mask) {
8117 ct.dev = ports->miport[i];
8118 if (ct.dev != -1 &&
8119 au_set_lr_value(sc, &ct, l, r) == 0)
8120 nset++;
8121 }
8122 }
8123 if (nset == 0)
8124 goto usemaster;
8125 }
8126 }
8127 if (!error)
8128 mixer_signal(sc);
8129 return error;
8130 }
8131
8132 /*
8133 * Must be called with sc_lock && sc_exlock held.
8134 */
8135 void
8136 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8137 u_int *pgain, u_char *pbalance)
8138 {
8139 mixer_ctrl_t ct;
8140 int i, l, r, n;
8141 int lgain, rgain;
8142
8143 KASSERT(mutex_owned(sc->sc_lock));
8144 KASSERT(sc->sc_exlock);
8145
8146 lgain = AUDIO_MAX_GAIN / 2;
8147 rgain = AUDIO_MAX_GAIN / 2;
8148 if (ports->index == -1) {
8149 usemaster:
8150 if (ports->master == -1)
8151 goto bad;
8152 ct.dev = ports->master;
8153 ct.type = AUDIO_MIXER_VALUE;
8154 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8155 goto bad;
8156 } else {
8157 ct.dev = ports->index;
8158 if (ports->isenum) {
8159 ct.type = AUDIO_MIXER_ENUM;
8160 if (audio_get_port(sc, &ct))
8161 goto bad;
8162 ct.type = AUDIO_MIXER_VALUE;
8163 if (ports->isdual) {
8164 if (ports->cur_port == -1)
8165 ct.dev = ports->master;
8166 else
8167 ct.dev = ports->miport[ports->cur_port];
8168 au_get_lr_value(sc, &ct, &lgain, &rgain);
8169 } else {
8170 for(i = 0; i < ports->nports; i++)
8171 if (ports->misel[i] == ct.un.ord) {
8172 ct.dev = ports->miport[i];
8173 if (ct.dev == -1 ||
8174 au_get_lr_value(sc, &ct,
8175 &lgain, &rgain))
8176 goto usemaster;
8177 else
8178 break;
8179 }
8180 }
8181 } else {
8182 ct.type = AUDIO_MIXER_SET;
8183 if (audio_get_port(sc, &ct))
8184 goto bad;
8185 ct.type = AUDIO_MIXER_VALUE;
8186 lgain = rgain = n = 0;
8187 for(i = 0; i < ports->nports; i++) {
8188 if (ports->misel[i] & ct.un.mask) {
8189 ct.dev = ports->miport[i];
8190 if (ct.dev == -1 ||
8191 au_get_lr_value(sc, &ct, &l, &r))
8192 goto usemaster;
8193 else {
8194 lgain += l;
8195 rgain += r;
8196 n++;
8197 }
8198 }
8199 }
8200 if (n != 0) {
8201 lgain /= n;
8202 rgain /= n;
8203 }
8204 }
8205 }
8206 bad:
8207 if (lgain == rgain) { /* handles lgain==rgain==0 */
8208 *pgain = lgain;
8209 *pbalance = AUDIO_MID_BALANCE;
8210 } else if (lgain < rgain) {
8211 *pgain = rgain;
8212 /* balance should be > AUDIO_MID_BALANCE */
8213 *pbalance = AUDIO_RIGHT_BALANCE -
8214 (AUDIO_MID_BALANCE * lgain) / rgain;
8215 } else /* lgain > rgain */ {
8216 *pgain = lgain;
8217 /* balance should be < AUDIO_MID_BALANCE */
8218 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8219 }
8220 }
8221
8222 /*
8223 * Must be called with sc_lock && sc_exlock held.
8224 */
8225 int
8226 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8227 {
8228 mixer_ctrl_t ct;
8229 int i, error, use_mixerout;
8230
8231 KASSERT(mutex_owned(sc->sc_lock));
8232 KASSERT(sc->sc_exlock);
8233
8234 use_mixerout = 1;
8235 if (port == 0) {
8236 if (ports->allports == 0)
8237 return 0; /* Allow this special case. */
8238 else if (ports->isdual) {
8239 if (ports->cur_port == -1) {
8240 return 0;
8241 } else {
8242 port = ports->aumask[ports->cur_port];
8243 ports->cur_port = -1;
8244 use_mixerout = 0;
8245 }
8246 }
8247 }
8248 if (ports->index == -1)
8249 return EINVAL;
8250 ct.dev = ports->index;
8251 if (ports->isenum) {
8252 if (port & (port-1))
8253 return EINVAL; /* Only one port allowed */
8254 ct.type = AUDIO_MIXER_ENUM;
8255 error = EINVAL;
8256 for(i = 0; i < ports->nports; i++)
8257 if (ports->aumask[i] == port) {
8258 if (ports->isdual && use_mixerout) {
8259 ct.un.ord = ports->mixerout;
8260 ports->cur_port = i;
8261 } else {
8262 ct.un.ord = ports->misel[i];
8263 }
8264 error = audio_set_port(sc, &ct);
8265 break;
8266 }
8267 } else {
8268 ct.type = AUDIO_MIXER_SET;
8269 ct.un.mask = 0;
8270 for(i = 0; i < ports->nports; i++)
8271 if (ports->aumask[i] & port)
8272 ct.un.mask |= ports->misel[i];
8273 if (port != 0 && ct.un.mask == 0)
8274 error = EINVAL;
8275 else
8276 error = audio_set_port(sc, &ct);
8277 }
8278 if (!error)
8279 mixer_signal(sc);
8280 return error;
8281 }
8282
8283 /*
8284 * Must be called with sc_lock && sc_exlock held.
8285 */
8286 int
8287 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8288 {
8289 mixer_ctrl_t ct;
8290 int i, aumask;
8291
8292 KASSERT(mutex_owned(sc->sc_lock));
8293 KASSERT(sc->sc_exlock);
8294
8295 if (ports->index == -1)
8296 return 0;
8297 ct.dev = ports->index;
8298 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8299 if (audio_get_port(sc, &ct))
8300 return 0;
8301 aumask = 0;
8302 if (ports->isenum) {
8303 if (ports->isdual && ports->cur_port != -1) {
8304 if (ports->mixerout == ct.un.ord)
8305 aumask = ports->aumask[ports->cur_port];
8306 else
8307 ports->cur_port = -1;
8308 }
8309 if (aumask == 0)
8310 for(i = 0; i < ports->nports; i++)
8311 if (ports->misel[i] == ct.un.ord)
8312 aumask = ports->aumask[i];
8313 } else {
8314 for(i = 0; i < ports->nports; i++)
8315 if (ct.un.mask & ports->misel[i])
8316 aumask |= ports->aumask[i];
8317 }
8318 return aumask;
8319 }
8320
8321 /*
8322 * It returns 0 if success, otherwise errno.
8323 * Must be called only if sc->sc_monitor_port != -1.
8324 * Must be called with sc_lock && sc_exlock held.
8325 */
8326 static int
8327 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8328 {
8329 mixer_ctrl_t ct;
8330
8331 KASSERT(mutex_owned(sc->sc_lock));
8332 KASSERT(sc->sc_exlock);
8333
8334 ct.dev = sc->sc_monitor_port;
8335 ct.type = AUDIO_MIXER_VALUE;
8336 ct.un.value.num_channels = 1;
8337 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8338 return audio_set_port(sc, &ct);
8339 }
8340
8341 /*
8342 * It returns monitor gain if success, otherwise -1.
8343 * Must be called only if sc->sc_monitor_port != -1.
8344 * Must be called with sc_lock && sc_exlock held.
8345 */
8346 static int
8347 au_get_monitor_gain(struct audio_softc *sc)
8348 {
8349 mixer_ctrl_t ct;
8350
8351 KASSERT(mutex_owned(sc->sc_lock));
8352 KASSERT(sc->sc_exlock);
8353
8354 ct.dev = sc->sc_monitor_port;
8355 ct.type = AUDIO_MIXER_VALUE;
8356 ct.un.value.num_channels = 1;
8357 if (audio_get_port(sc, &ct))
8358 return -1;
8359 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8360 }
8361
8362 /*
8363 * Must be called with sc_lock && sc_exlock held.
8364 */
8365 static int
8366 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8367 {
8368
8369 KASSERT(mutex_owned(sc->sc_lock));
8370 KASSERT(sc->sc_exlock);
8371
8372 return sc->hw_if->set_port(sc->hw_hdl, mc);
8373 }
8374
8375 /*
8376 * Must be called with sc_lock && sc_exlock held.
8377 */
8378 static int
8379 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8380 {
8381
8382 KASSERT(mutex_owned(sc->sc_lock));
8383 KASSERT(sc->sc_exlock);
8384
8385 return sc->hw_if->get_port(sc->hw_hdl, mc);
8386 }
8387
8388 /*
8389 * Must be called with sc_lock && sc_exlock held.
8390 */
8391 static void
8392 audio_mixer_capture(struct audio_softc *sc)
8393 {
8394 mixer_devinfo_t mi;
8395 mixer_ctrl_t *mc;
8396
8397 KASSERT(mutex_owned(sc->sc_lock));
8398 KASSERT(sc->sc_exlock);
8399
8400 for (mi.index = 0;; mi.index++) {
8401 if (audio_query_devinfo(sc, &mi) != 0)
8402 break;
8403 KASSERT(mi.index < sc->sc_nmixer_states);
8404 if (mi.type == AUDIO_MIXER_CLASS)
8405 continue;
8406 mc = &sc->sc_mixer_state[mi.index];
8407 mc->dev = mi.index;
8408 mc->type = mi.type;
8409 mc->un.value.num_channels = mi.un.v.num_channels;
8410 (void)audio_get_port(sc, mc);
8411 }
8412
8413 return;
8414 }
8415
8416 /*
8417 * Must be called with sc_lock && sc_exlock held.
8418 */
8419 static void
8420 audio_mixer_restore(struct audio_softc *sc)
8421 {
8422 mixer_devinfo_t mi;
8423 mixer_ctrl_t *mc;
8424
8425 KASSERT(mutex_owned(sc->sc_lock));
8426 KASSERT(sc->sc_exlock);
8427
8428 for (mi.index = 0; ; mi.index++) {
8429 if (audio_query_devinfo(sc, &mi) != 0)
8430 break;
8431 if (mi.type == AUDIO_MIXER_CLASS)
8432 continue;
8433 mc = &sc->sc_mixer_state[mi.index];
8434 (void)audio_set_port(sc, mc);
8435 }
8436 if (sc->hw_if->commit_settings)
8437 sc->hw_if->commit_settings(sc->hw_hdl);
8438
8439 return;
8440 }
8441
8442 static void
8443 audio_volume_down(device_t dv)
8444 {
8445 struct audio_softc *sc = device_private(dv);
8446 mixer_devinfo_t mi;
8447 int newgain;
8448 u_int gain;
8449 u_char balance;
8450
8451 if (audio_enter_exclusive(sc) != 0)
8452 return;
8453 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8454 mi.index = sc->sc_outports.master;
8455 mi.un.v.delta = 0;
8456 if (audio_query_devinfo(sc, &mi) == 0) {
8457 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8458 newgain = gain - mi.un.v.delta;
8459 if (newgain < AUDIO_MIN_GAIN)
8460 newgain = AUDIO_MIN_GAIN;
8461 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8462 }
8463 }
8464 audio_exit_exclusive(sc);
8465 }
8466
8467 static void
8468 audio_volume_up(device_t dv)
8469 {
8470 struct audio_softc *sc = device_private(dv);
8471 mixer_devinfo_t mi;
8472 u_int gain, newgain;
8473 u_char balance;
8474
8475 if (audio_enter_exclusive(sc) != 0)
8476 return;
8477 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8478 mi.index = sc->sc_outports.master;
8479 mi.un.v.delta = 0;
8480 if (audio_query_devinfo(sc, &mi) == 0) {
8481 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8482 newgain = gain + mi.un.v.delta;
8483 if (newgain > AUDIO_MAX_GAIN)
8484 newgain = AUDIO_MAX_GAIN;
8485 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8486 }
8487 }
8488 audio_exit_exclusive(sc);
8489 }
8490
8491 static void
8492 audio_volume_toggle(device_t dv)
8493 {
8494 struct audio_softc *sc = device_private(dv);
8495 u_int gain, newgain;
8496 u_char balance;
8497
8498 if (audio_enter_exclusive(sc) != 0)
8499 return;
8500 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8501 if (gain != 0) {
8502 sc->sc_lastgain = gain;
8503 newgain = 0;
8504 } else
8505 newgain = sc->sc_lastgain;
8506 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8507 audio_exit_exclusive(sc);
8508 }
8509
8510 static int
8511 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8512 {
8513
8514 KASSERT(mutex_owned(sc->sc_lock));
8515
8516 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8517 }
8518
8519 #endif /* NAUDIO > 0 */
8520
8521 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8522 #include <sys/param.h>
8523 #include <sys/systm.h>
8524 #include <sys/device.h>
8525 #include <sys/audioio.h>
8526 #include <dev/audio/audio_if.h>
8527 #endif
8528
8529 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8530 int
8531 audioprint(void *aux, const char *pnp)
8532 {
8533 struct audio_attach_args *arg;
8534 const char *type;
8535
8536 if (pnp != NULL) {
8537 arg = aux;
8538 switch (arg->type) {
8539 case AUDIODEV_TYPE_AUDIO:
8540 type = "audio";
8541 break;
8542 case AUDIODEV_TYPE_MIDI:
8543 type = "midi";
8544 break;
8545 case AUDIODEV_TYPE_OPL:
8546 type = "opl";
8547 break;
8548 case AUDIODEV_TYPE_MPU:
8549 type = "mpu";
8550 break;
8551 default:
8552 panic("audioprint: unknown type %d", arg->type);
8553 }
8554 aprint_normal("%s at %s", type, pnp);
8555 }
8556 return UNCONF;
8557 }
8558
8559 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8560
8561 #ifdef _MODULE
8562
8563 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8564
8565 #include "ioconf.c"
8566
8567 #endif
8568
8569 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8570
8571 static int
8572 audio_modcmd(modcmd_t cmd, void *arg)
8573 {
8574 int error = 0;
8575
8576 #ifdef _MODULE
8577 switch (cmd) {
8578 case MODULE_CMD_INIT:
8579 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8580 &audio_cdevsw, &audio_cmajor);
8581 if (error)
8582 break;
8583
8584 error = config_init_component(cfdriver_ioconf_audio,
8585 cfattach_ioconf_audio, cfdata_ioconf_audio);
8586 if (error) {
8587 devsw_detach(NULL, &audio_cdevsw);
8588 }
8589 break;
8590 case MODULE_CMD_FINI:
8591 devsw_detach(NULL, &audio_cdevsw);
8592 error = config_fini_component(cfdriver_ioconf_audio,
8593 cfattach_ioconf_audio, cfdata_ioconf_audio);
8594 if (error)
8595 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8596 &audio_cdevsw, &audio_cmajor);
8597 break;
8598 default:
8599 error = ENOTTY;
8600 break;
8601 }
8602 #endif
8603
8604 return error;
8605 }
8606