audio.c revision 1.28.2.11 1 /* $NetBSD: audio.c,v 1.28.2.11 2020/04/30 15:43:30 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - + (*1)
122 * freem - - + (*1)
123 * round_buffersize - x
124 * get_props - x Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * *1 Note: Before 8.0, since these have been called only at attach time,
131 * neither lock were necessary. Currently, on the other hand, since
132 * these may be also called after attach, the thread lock is required.
133 *
134 * In addition, there is an additional lock.
135 *
136 * - track->lock. This is an atomic variable and is similar to the
137 * "interrupt lock". This is one for each track. If any thread context
138 * (and software interrupt context) and hardware interrupt context who
139 * want to access some variables on this track, they must acquire this
140 * lock before. It protects track's consistency between hardware
141 * interrupt context and others.
142 */
143
144 #include <sys/cdefs.h>
145 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.28.2.11 2020/04/30 15:43:30 martin Exp $");
146
147 #ifdef _KERNEL_OPT
148 #include "audio.h"
149 #include "midi.h"
150 #endif
151
152 #if NAUDIO > 0
153
154 #ifdef _KERNEL
155
156 #include <sys/types.h>
157 #include <sys/param.h>
158 #include <sys/atomic.h>
159 #include <sys/audioio.h>
160 #include <sys/conf.h>
161 #include <sys/cpu.h>
162 #include <sys/device.h>
163 #include <sys/fcntl.h>
164 #include <sys/file.h>
165 #include <sys/filedesc.h>
166 #include <sys/intr.h>
167 #include <sys/ioctl.h>
168 #include <sys/kauth.h>
169 #include <sys/kernel.h>
170 #include <sys/kmem.h>
171 #include <sys/malloc.h>
172 #include <sys/mman.h>
173 #include <sys/module.h>
174 #include <sys/poll.h>
175 #include <sys/proc.h>
176 #include <sys/queue.h>
177 #include <sys/select.h>
178 #include <sys/signalvar.h>
179 #include <sys/stat.h>
180 #include <sys/sysctl.h>
181 #include <sys/systm.h>
182 #include <sys/syslog.h>
183 #include <sys/vnode.h>
184
185 #include <dev/audio/audio_if.h>
186 #include <dev/audio/audiovar.h>
187 #include <dev/audio/audiodef.h>
188 #include <dev/audio/linear.h>
189 #include <dev/audio/mulaw.h>
190
191 #include <machine/endian.h>
192
193 #include <uvm/uvm.h>
194
195 #include "ioconf.h"
196 #endif /* _KERNEL */
197
198 /*
199 * 0: No debug logs
200 * 1: action changes like open/close/set_format...
201 * 2: + normal operations like read/write/ioctl...
202 * 3: + TRACEs except interrupt
203 * 4: + TRACEs including interrupt
204 */
205 //#define AUDIO_DEBUG 1
206
207 #if defined(AUDIO_DEBUG)
208
209 int audiodebug = AUDIO_DEBUG;
210 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
211 const char *, va_list);
212 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
213 __printflike(3, 4);
214 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
215 __printflike(3, 4);
216 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
217 __printflike(3, 4);
218
219 /* XXX sloppy memory logger */
220 static void audio_mlog_init(void);
221 static void audio_mlog_free(void);
222 static void audio_mlog_softintr(void *);
223 extern void audio_mlog_flush(void);
224 extern void audio_mlog_printf(const char *, ...);
225
226 static int mlog_refs; /* reference counter */
227 static char *mlog_buf[2]; /* double buffer */
228 static int mlog_buflen; /* buffer length */
229 static int mlog_used; /* used length */
230 static int mlog_full; /* number of dropped lines by buffer full */
231 static int mlog_drop; /* number of dropped lines by busy */
232 static volatile uint32_t mlog_inuse; /* in-use */
233 static int mlog_wpage; /* active page */
234 static void *mlog_sih; /* softint handle */
235
236 static void
237 audio_mlog_init(void)
238 {
239 mlog_refs++;
240 if (mlog_refs > 1)
241 return;
242 mlog_buflen = 4096;
243 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
244 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
245 mlog_used = 0;
246 mlog_full = 0;
247 mlog_drop = 0;
248 mlog_inuse = 0;
249 mlog_wpage = 0;
250 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
251 if (mlog_sih == NULL)
252 printf("%s: softint_establish failed\n", __func__);
253 }
254
255 static void
256 audio_mlog_free(void)
257 {
258 mlog_refs--;
259 if (mlog_refs > 0)
260 return;
261
262 audio_mlog_flush();
263 if (mlog_sih)
264 softint_disestablish(mlog_sih);
265 kmem_free(mlog_buf[0], mlog_buflen);
266 kmem_free(mlog_buf[1], mlog_buflen);
267 }
268
269 /*
270 * Flush memory buffer.
271 * It must not be called from hardware interrupt context.
272 */
273 void
274 audio_mlog_flush(void)
275 {
276 if (mlog_refs == 0)
277 return;
278
279 /* Nothing to do if already in use ? */
280 if (atomic_swap_32(&mlog_inuse, 1) == 1)
281 return;
282
283 int rpage = mlog_wpage;
284 mlog_wpage ^= 1;
285 mlog_buf[mlog_wpage][0] = '\0';
286 mlog_used = 0;
287
288 atomic_swap_32(&mlog_inuse, 0);
289
290 if (mlog_buf[rpage][0] != '\0') {
291 printf("%s", mlog_buf[rpage]);
292 if (mlog_drop > 0)
293 printf("mlog_drop %d\n", mlog_drop);
294 if (mlog_full > 0)
295 printf("mlog_full %d\n", mlog_full);
296 }
297 mlog_full = 0;
298 mlog_drop = 0;
299 }
300
301 static void
302 audio_mlog_softintr(void *cookie)
303 {
304 audio_mlog_flush();
305 }
306
307 void
308 audio_mlog_printf(const char *fmt, ...)
309 {
310 int len;
311 va_list ap;
312
313 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
314 /* already inuse */
315 mlog_drop++;
316 return;
317 }
318
319 va_start(ap, fmt);
320 len = vsnprintf(
321 mlog_buf[mlog_wpage] + mlog_used,
322 mlog_buflen - mlog_used,
323 fmt, ap);
324 va_end(ap);
325
326 mlog_used += len;
327 if (mlog_buflen - mlog_used <= 1) {
328 mlog_full++;
329 }
330
331 atomic_swap_32(&mlog_inuse, 0);
332
333 if (mlog_sih)
334 softint_schedule(mlog_sih);
335 }
336
337 /* trace functions */
338 static void
339 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
340 const char *fmt, va_list ap)
341 {
342 char buf[256];
343 int n;
344
345 n = 0;
346 buf[0] = '\0';
347 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
348 funcname, device_unit(sc->sc_dev), header);
349 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
350
351 if (cpu_intr_p()) {
352 audio_mlog_printf("%s\n", buf);
353 } else {
354 audio_mlog_flush();
355 printf("%s\n", buf);
356 }
357 }
358
359 static void
360 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
361 {
362 va_list ap;
363
364 va_start(ap, fmt);
365 audio_vtrace(sc, funcname, "", fmt, ap);
366 va_end(ap);
367 }
368
369 static void
370 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
371 {
372 char hdr[16];
373 va_list ap;
374
375 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
376 va_start(ap, fmt);
377 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
378 va_end(ap);
379 }
380
381 static void
382 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
383 {
384 char hdr[32];
385 char phdr[16], rhdr[16];
386 va_list ap;
387
388 phdr[0] = '\0';
389 rhdr[0] = '\0';
390 if (file->ptrack)
391 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
392 if (file->rtrack)
393 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
394 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
395
396 va_start(ap, fmt);
397 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
398 va_end(ap);
399 }
400
401 #define DPRINTF(n, fmt...) do { \
402 if (audiodebug >= (n)) { \
403 audio_mlog_flush(); \
404 printf(fmt); \
405 } \
406 } while (0)
407 #define TRACE(n, fmt...) do { \
408 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
409 } while (0)
410 #define TRACET(n, t, fmt...) do { \
411 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
412 } while (0)
413 #define TRACEF(n, f, fmt...) do { \
414 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
415 } while (0)
416
417 struct audio_track_debugbuf {
418 char usrbuf[32];
419 char codec[32];
420 char chvol[32];
421 char chmix[32];
422 char freq[32];
423 char outbuf[32];
424 };
425
426 static void
427 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
428 {
429
430 memset(buf, 0, sizeof(*buf));
431
432 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
433 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
434 if (track->freq.filter)
435 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
436 track->freq.srcbuf.head,
437 track->freq.srcbuf.used,
438 track->freq.srcbuf.capacity);
439 if (track->chmix.filter)
440 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
441 track->chmix.srcbuf.used);
442 if (track->chvol.filter)
443 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
444 track->chvol.srcbuf.used);
445 if (track->codec.filter)
446 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
447 track->codec.srcbuf.used);
448 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
449 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
450 }
451 #else
452 #define DPRINTF(n, fmt...) do { } while (0)
453 #define TRACE(n, fmt, ...) do { } while (0)
454 #define TRACET(n, t, fmt, ...) do { } while (0)
455 #define TRACEF(n, f, fmt, ...) do { } while (0)
456 #endif
457
458 #define SPECIFIED(x) ((x) != ~0)
459 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
460
461 /* Device timeout in msec */
462 #define AUDIO_TIMEOUT (3000)
463
464 /* #define AUDIO_PM_IDLE */
465 #ifdef AUDIO_PM_IDLE
466 int audio_idle_timeout = 30;
467 #endif
468
469 struct portname {
470 const char *name;
471 int mask;
472 };
473
474 static int audiomatch(device_t, cfdata_t, void *);
475 static void audioattach(device_t, device_t, void *);
476 static int audiodetach(device_t, int);
477 static int audioactivate(device_t, enum devact);
478 static void audiochilddet(device_t, device_t);
479 static int audiorescan(device_t, const char *, const int *);
480
481 static int audio_modcmd(modcmd_t, void *);
482
483 #ifdef AUDIO_PM_IDLE
484 static void audio_idle(void *);
485 static void audio_activity(device_t, devactive_t);
486 #endif
487
488 static bool audio_suspend(device_t dv, const pmf_qual_t *);
489 static bool audio_resume(device_t dv, const pmf_qual_t *);
490 static void audio_volume_down(device_t);
491 static void audio_volume_up(device_t);
492 static void audio_volume_toggle(device_t);
493
494 static void audio_mixer_capture(struct audio_softc *);
495 static void audio_mixer_restore(struct audio_softc *);
496
497 static void audio_softintr_rd(void *);
498 static void audio_softintr_wr(void *);
499
500 static int audio_enter_exclusive(struct audio_softc *);
501 static void audio_exit_exclusive(struct audio_softc *);
502 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
503 static void audio_file_exit(struct audio_softc *, struct psref *);
504 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
505
506 static int audioclose(struct file *);
507 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
508 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
509 static int audioioctl(struct file *, u_long, void *);
510 static int audiopoll(struct file *, int);
511 static int audiokqfilter(struct file *, struct knote *);
512 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
513 struct uvm_object **, int *);
514 static int audiostat(struct file *, struct stat *);
515
516 static void filt_audiowrite_detach(struct knote *);
517 static int filt_audiowrite_event(struct knote *, long);
518 static void filt_audioread_detach(struct knote *);
519 static int filt_audioread_event(struct knote *, long);
520
521 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
522 audio_file_t **);
523 static int audio_close(struct audio_softc *, audio_file_t *);
524 static int audio_unlink(struct audio_softc *, audio_file_t *);
525 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
526 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
527 static void audio_file_clear(struct audio_softc *, audio_file_t *);
528 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
529 struct lwp *, audio_file_t *);
530 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
531 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
532 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
533 struct uvm_object **, int *, audio_file_t *);
534
535 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
536
537 static void audio_pintr(void *);
538 static void audio_rintr(void *);
539
540 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
541
542 static __inline int audio_track_readablebytes(const audio_track_t *);
543 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
544 const struct audio_info *);
545 static int audio_track_setinfo_check(audio_track_t *,
546 audio_format2_t *, const struct audio_prinfo *);
547 static void audio_track_setinfo_water(audio_track_t *,
548 const struct audio_info *);
549 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
550 struct audio_info *);
551 static int audio_hw_set_format(struct audio_softc *, int,
552 audio_format2_t *, audio_format2_t *,
553 audio_filter_reg_t *, audio_filter_reg_t *);
554 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
555 audio_file_t *);
556 static bool audio_can_playback(struct audio_softc *);
557 static bool audio_can_capture(struct audio_softc *);
558 static int audio_check_params(audio_format2_t *);
559 static int audio_mixers_init(struct audio_softc *sc, int,
560 const audio_format2_t *, const audio_format2_t *,
561 const audio_filter_reg_t *, const audio_filter_reg_t *);
562 static int audio_select_freq(const struct audio_format *);
563 static int audio_hw_probe(struct audio_softc *, int, int *,
564 audio_format2_t *, audio_format2_t *);
565 static int audio_hw_probe_fmt(struct audio_softc *, audio_format2_t *, int);
566 static int audio_hw_validate_format(struct audio_softc *, int,
567 const audio_format2_t *);
568 static int audio_mixers_set_format(struct audio_softc *,
569 const struct audio_info *);
570 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
571 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
572 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
573 #if defined(AUDIO_DEBUG)
574 static int audio_sysctl_debug(SYSCTLFN_PROTO);
575 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
576 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
577 #endif
578
579 static void *audio_realloc(void *, size_t);
580 static int audio_realloc_usrbuf(audio_track_t *, int);
581 static void audio_free_usrbuf(audio_track_t *);
582
583 static audio_track_t *audio_track_create(struct audio_softc *,
584 audio_trackmixer_t *);
585 static void audio_track_destroy(audio_track_t *);
586 static audio_filter_t audio_track_get_codec(audio_track_t *,
587 const audio_format2_t *, const audio_format2_t *);
588 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
589 static void audio_track_play(audio_track_t *);
590 static int audio_track_drain(struct audio_softc *, audio_track_t *);
591 static void audio_track_record(audio_track_t *);
592 static void audio_track_clear(struct audio_softc *, audio_track_t *);
593
594 static int audio_mixer_init(struct audio_softc *, int,
595 const audio_format2_t *, const audio_filter_reg_t *);
596 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
597 static void audio_pmixer_start(struct audio_softc *, bool);
598 static void audio_pmixer_process(struct audio_softc *);
599 static void audio_pmixer_agc(audio_trackmixer_t *, int);
600 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
601 static void audio_pmixer_output(struct audio_softc *);
602 static int audio_pmixer_halt(struct audio_softc *);
603 static void audio_rmixer_start(struct audio_softc *);
604 static void audio_rmixer_process(struct audio_softc *);
605 static void audio_rmixer_input(struct audio_softc *);
606 static int audio_rmixer_halt(struct audio_softc *);
607
608 static void mixer_init(struct audio_softc *);
609 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
610 static int mixer_close(struct audio_softc *, audio_file_t *);
611 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
612 static void mixer_remove(struct audio_softc *);
613 static void mixer_signal(struct audio_softc *);
614
615 static int au_portof(struct audio_softc *, char *, int);
616
617 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
618 mixer_devinfo_t *, const struct portname *);
619 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
620 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
621 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
622 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
623 u_int *, u_char *);
624 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
625 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
626 static int au_set_monitor_gain(struct audio_softc *, int);
627 static int au_get_monitor_gain(struct audio_softc *);
628 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
629 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
630
631 static __inline struct audio_params
632 format2_to_params(const audio_format2_t *f2)
633 {
634 audio_params_t p;
635
636 /* validbits/precision <-> precision/stride */
637 p.sample_rate = f2->sample_rate;
638 p.channels = f2->channels;
639 p.encoding = f2->encoding;
640 p.validbits = f2->precision;
641 p.precision = f2->stride;
642 return p;
643 }
644
645 static __inline audio_format2_t
646 params_to_format2(const struct audio_params *p)
647 {
648 audio_format2_t f2;
649
650 /* precision/stride <-> validbits/precision */
651 f2.sample_rate = p->sample_rate;
652 f2.channels = p->channels;
653 f2.encoding = p->encoding;
654 f2.precision = p->validbits;
655 f2.stride = p->precision;
656 return f2;
657 }
658
659 /* Return true if this track is a playback track. */
660 static __inline bool
661 audio_track_is_playback(const audio_track_t *track)
662 {
663
664 return ((track->mode & AUMODE_PLAY) != 0);
665 }
666
667 /* Return true if this track is a recording track. */
668 static __inline bool
669 audio_track_is_record(const audio_track_t *track)
670 {
671
672 return ((track->mode & AUMODE_RECORD) != 0);
673 }
674
675 #if 0 /* XXX Not used yet */
676 /*
677 * Convert 0..255 volume used in userland to internal presentation 0..256.
678 */
679 static __inline u_int
680 audio_volume_to_inner(u_int v)
681 {
682
683 return v < 127 ? v : v + 1;
684 }
685
686 /*
687 * Convert 0..256 internal presentation to 0..255 volume used in userland.
688 */
689 static __inline u_int
690 audio_volume_to_outer(u_int v)
691 {
692
693 return v < 127 ? v : v - 1;
694 }
695 #endif /* 0 */
696
697 static dev_type_open(audioopen);
698 /* XXXMRG use more dev_type_xxx */
699
700 const struct cdevsw audio_cdevsw = {
701 .d_open = audioopen,
702 .d_close = noclose,
703 .d_read = noread,
704 .d_write = nowrite,
705 .d_ioctl = noioctl,
706 .d_stop = nostop,
707 .d_tty = notty,
708 .d_poll = nopoll,
709 .d_mmap = nommap,
710 .d_kqfilter = nokqfilter,
711 .d_discard = nodiscard,
712 .d_flag = D_OTHER | D_MPSAFE
713 };
714
715 const struct fileops audio_fileops = {
716 .fo_name = "audio",
717 .fo_read = audioread,
718 .fo_write = audiowrite,
719 .fo_ioctl = audioioctl,
720 .fo_fcntl = fnullop_fcntl,
721 .fo_stat = audiostat,
722 .fo_poll = audiopoll,
723 .fo_close = audioclose,
724 .fo_mmap = audiommap,
725 .fo_kqfilter = audiokqfilter,
726 .fo_restart = fnullop_restart
727 };
728
729 /* The default audio mode: 8 kHz mono mu-law */
730 static const struct audio_params audio_default = {
731 .sample_rate = 8000,
732 .encoding = AUDIO_ENCODING_ULAW,
733 .precision = 8,
734 .validbits = 8,
735 .channels = 1,
736 };
737
738 static const char *encoding_names[] = {
739 "none",
740 AudioEmulaw,
741 AudioEalaw,
742 "pcm16",
743 "pcm8",
744 AudioEadpcm,
745 AudioEslinear_le,
746 AudioEslinear_be,
747 AudioEulinear_le,
748 AudioEulinear_be,
749 AudioEslinear,
750 AudioEulinear,
751 AudioEmpeg_l1_stream,
752 AudioEmpeg_l1_packets,
753 AudioEmpeg_l1_system,
754 AudioEmpeg_l2_stream,
755 AudioEmpeg_l2_packets,
756 AudioEmpeg_l2_system,
757 AudioEac3,
758 };
759
760 /*
761 * Returns encoding name corresponding to AUDIO_ENCODING_*.
762 * Note that it may return a local buffer because it is mainly for debugging.
763 */
764 const char *
765 audio_encoding_name(int encoding)
766 {
767 static char buf[16];
768
769 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
770 return encoding_names[encoding];
771 } else {
772 snprintf(buf, sizeof(buf), "enc=%d", encoding);
773 return buf;
774 }
775 }
776
777 /*
778 * Supported encodings used by AUDIO_GETENC.
779 * index and flags are set by code.
780 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
781 */
782 static const audio_encoding_t audio_encodings[] = {
783 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
784 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
785 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
786 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
787 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
788 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
789 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
790 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
791 #if defined(AUDIO_SUPPORT_LINEAR24)
792 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
793 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
794 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
795 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
796 #endif
797 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
798 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
799 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
800 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
801 };
802
803 static const struct portname itable[] = {
804 { AudioNmicrophone, AUDIO_MICROPHONE },
805 { AudioNline, AUDIO_LINE_IN },
806 { AudioNcd, AUDIO_CD },
807 { 0, 0 }
808 };
809 static const struct portname otable[] = {
810 { AudioNspeaker, AUDIO_SPEAKER },
811 { AudioNheadphone, AUDIO_HEADPHONE },
812 { AudioNline, AUDIO_LINE_OUT },
813 { 0, 0 }
814 };
815
816 static struct psref_class *audio_psref_class __read_mostly;
817
818 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
819 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
820 audiochilddet, DVF_DETACH_SHUTDOWN);
821
822 static int
823 audiomatch(device_t parent, cfdata_t match, void *aux)
824 {
825 struct audio_attach_args *sa;
826
827 sa = aux;
828 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
829 __func__, sa->type, sa, sa->hwif);
830 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
831 }
832
833 static void
834 audioattach(device_t parent, device_t self, void *aux)
835 {
836 struct audio_softc *sc;
837 struct audio_attach_args *sa;
838 const struct audio_hw_if *hw_if;
839 audio_format2_t phwfmt;
840 audio_format2_t rhwfmt;
841 audio_filter_reg_t pfil;
842 audio_filter_reg_t rfil;
843 const struct sysctlnode *node;
844 void *hdlp;
845 bool has_playback;
846 bool has_capture;
847 bool has_indep;
848 bool has_fulldup;
849 int mode;
850 int error;
851
852 sc = device_private(self);
853 sc->sc_dev = self;
854 sa = (struct audio_attach_args *)aux;
855 hw_if = sa->hwif;
856 hdlp = sa->hdl;
857
858 if (hw_if == NULL || hw_if->get_locks == NULL) {
859 panic("audioattach: missing hw_if method");
860 }
861
862 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
863
864 #ifdef DIAGNOSTIC
865 if (hw_if->query_format == NULL ||
866 hw_if->set_format == NULL ||
867 (hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
868 (hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
869 hw_if->halt_output == NULL ||
870 hw_if->halt_input == NULL ||
871 hw_if->getdev == NULL ||
872 hw_if->set_port == NULL ||
873 hw_if->get_port == NULL ||
874 hw_if->query_devinfo == NULL ||
875 hw_if->get_props == NULL) {
876 aprint_error(": missing method\n");
877 return;
878 }
879 #endif
880
881 sc->hw_if = hw_if;
882 sc->hw_hdl = hdlp;
883 sc->hw_dev = parent;
884
885 sc->sc_blk_ms = AUDIO_BLK_MS;
886 SLIST_INIT(&sc->sc_files);
887 cv_init(&sc->sc_exlockcv, "audiolk");
888
889 mutex_enter(sc->sc_lock);
890 sc->sc_props = hw_if->get_props(sc->hw_hdl);
891 mutex_exit(sc->sc_lock);
892
893 /* MMAP is now supported by upper layer. */
894 sc->sc_props |= AUDIO_PROP_MMAP;
895
896 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
897 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
898 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
899 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
900
901 KASSERT(has_playback || has_capture);
902 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
903 if (!has_playback || !has_capture) {
904 KASSERT(!has_indep);
905 KASSERT(!has_fulldup);
906 }
907
908 mode = 0;
909 if (has_playback) {
910 aprint_normal(": playback");
911 mode |= AUMODE_PLAY;
912 }
913 if (has_capture) {
914 aprint_normal("%c capture", has_playback ? ',' : ':');
915 mode |= AUMODE_RECORD;
916 }
917 if (has_playback && has_capture) {
918 if (has_fulldup)
919 aprint_normal(", full duplex");
920 else
921 aprint_normal(", half duplex");
922
923 if (has_indep)
924 aprint_normal(", independent");
925 }
926
927 aprint_naive("\n");
928 aprint_normal("\n");
929
930 /* probe hw params */
931 memset(&phwfmt, 0, sizeof(phwfmt));
932 memset(&rhwfmt, 0, sizeof(rhwfmt));
933 memset(&pfil, 0, sizeof(pfil));
934 memset(&rfil, 0, sizeof(rfil));
935 mutex_enter(sc->sc_lock);
936 error = audio_hw_probe(sc, has_indep, &mode, &phwfmt, &rhwfmt);
937 if (error) {
938 mutex_exit(sc->sc_lock);
939 aprint_error_dev(self, "audio_hw_probe failed, "
940 "error = %d\n", error);
941 goto bad;
942 }
943 if (mode == 0) {
944 mutex_exit(sc->sc_lock);
945 aprint_error_dev(self, "audio_hw_probe failed, no mode\n");
946 goto bad;
947 }
948 /* Init hardware. */
949 /* hw_probe() also validates [pr]hwfmt. */
950 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
951 if (error) {
952 mutex_exit(sc->sc_lock);
953 aprint_error_dev(self, "audio_hw_set_format failed, "
954 "error = %d\n", error);
955 goto bad;
956 }
957
958 /*
959 * Init track mixers. If at least one direction is available on
960 * attach time, we assume a success.
961 */
962 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
963 mutex_exit(sc->sc_lock);
964 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
965 aprint_error_dev(self, "audio_mixers_init failed, "
966 "error = %d\n", error);
967 goto bad;
968 }
969
970 sc->sc_psz = pserialize_create();
971 psref_target_init(&sc->sc_psref, audio_psref_class);
972
973 selinit(&sc->sc_wsel);
974 selinit(&sc->sc_rsel);
975
976 /* Initial parameter of /dev/sound */
977 sc->sc_sound_pparams = params_to_format2(&audio_default);
978 sc->sc_sound_rparams = params_to_format2(&audio_default);
979 sc->sc_sound_ppause = false;
980 sc->sc_sound_rpause = false;
981
982 /* XXX TODO: consider about sc_ai */
983
984 mixer_init(sc);
985 TRACE(2, "inputs ports=0x%x, input master=%d, "
986 "output ports=0x%x, output master=%d",
987 sc->sc_inports.allports, sc->sc_inports.master,
988 sc->sc_outports.allports, sc->sc_outports.master);
989
990 sysctl_createv(&sc->sc_log, 0, NULL, &node,
991 0,
992 CTLTYPE_NODE, device_xname(sc->sc_dev),
993 SYSCTL_DESCR("audio test"),
994 NULL, 0,
995 NULL, 0,
996 CTL_HW,
997 CTL_CREATE, CTL_EOL);
998
999 if (node != NULL) {
1000 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1001 CTLFLAG_READWRITE,
1002 CTLTYPE_INT, "blk_ms",
1003 SYSCTL_DESCR("blocksize in msec"),
1004 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1005 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1006
1007 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1008 CTLFLAG_READWRITE,
1009 CTLTYPE_BOOL, "multiuser",
1010 SYSCTL_DESCR("allow multiple user access"),
1011 audio_sysctl_multiuser, 0, (void *)sc, 0,
1012 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1013
1014 #if defined(AUDIO_DEBUG)
1015 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1016 CTLFLAG_READWRITE,
1017 CTLTYPE_INT, "debug",
1018 SYSCTL_DESCR("debug level (0..4)"),
1019 audio_sysctl_debug, 0, (void *)sc, 0,
1020 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1021 #endif
1022 }
1023
1024 #ifdef AUDIO_PM_IDLE
1025 callout_init(&sc->sc_idle_counter, 0);
1026 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1027 #endif
1028
1029 if (!pmf_device_register(self, audio_suspend, audio_resume))
1030 aprint_error_dev(self, "couldn't establish power handler\n");
1031 #ifdef AUDIO_PM_IDLE
1032 if (!device_active_register(self, audio_activity))
1033 aprint_error_dev(self, "couldn't register activity handler\n");
1034 #endif
1035
1036 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1037 audio_volume_down, true))
1038 aprint_error_dev(self, "couldn't add volume down handler\n");
1039 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1040 audio_volume_up, true))
1041 aprint_error_dev(self, "couldn't add volume up handler\n");
1042 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1043 audio_volume_toggle, true))
1044 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1045
1046 #ifdef AUDIO_PM_IDLE
1047 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1048 #endif
1049
1050 #if defined(AUDIO_DEBUG)
1051 audio_mlog_init();
1052 #endif
1053
1054 audiorescan(self, "audio", NULL);
1055 return;
1056
1057 bad:
1058 /* Clearing hw_if means that device is attached but disabled. */
1059 sc->hw_if = NULL;
1060 aprint_error_dev(sc->sc_dev, "disabled\n");
1061 return;
1062 }
1063
1064 /*
1065 * Initialize hardware mixer.
1066 * This function is called from audioattach().
1067 */
1068 static void
1069 mixer_init(struct audio_softc *sc)
1070 {
1071 mixer_devinfo_t mi;
1072 int iclass, mclass, oclass, rclass;
1073 int record_master_found, record_source_found;
1074
1075 iclass = mclass = oclass = rclass = -1;
1076 sc->sc_inports.index = -1;
1077 sc->sc_inports.master = -1;
1078 sc->sc_inports.nports = 0;
1079 sc->sc_inports.isenum = false;
1080 sc->sc_inports.allports = 0;
1081 sc->sc_inports.isdual = false;
1082 sc->sc_inports.mixerout = -1;
1083 sc->sc_inports.cur_port = -1;
1084 sc->sc_outports.index = -1;
1085 sc->sc_outports.master = -1;
1086 sc->sc_outports.nports = 0;
1087 sc->sc_outports.isenum = false;
1088 sc->sc_outports.allports = 0;
1089 sc->sc_outports.isdual = false;
1090 sc->sc_outports.mixerout = -1;
1091 sc->sc_outports.cur_port = -1;
1092 sc->sc_monitor_port = -1;
1093 /*
1094 * Read through the underlying driver's list, picking out the class
1095 * names from the mixer descriptions. We'll need them to decode the
1096 * mixer descriptions on the next pass through the loop.
1097 */
1098 mutex_enter(sc->sc_lock);
1099 for(mi.index = 0; ; mi.index++) {
1100 if (audio_query_devinfo(sc, &mi) != 0)
1101 break;
1102 /*
1103 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1104 * All the other types describe an actual mixer.
1105 */
1106 if (mi.type == AUDIO_MIXER_CLASS) {
1107 if (strcmp(mi.label.name, AudioCinputs) == 0)
1108 iclass = mi.mixer_class;
1109 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1110 mclass = mi.mixer_class;
1111 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1112 oclass = mi.mixer_class;
1113 if (strcmp(mi.label.name, AudioCrecord) == 0)
1114 rclass = mi.mixer_class;
1115 }
1116 }
1117 mutex_exit(sc->sc_lock);
1118
1119 /* Allocate save area. Ensure non-zero allocation. */
1120 sc->sc_nmixer_states = mi.index;
1121 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1122 (sc->sc_nmixer_states + 1), KM_SLEEP);
1123
1124 /*
1125 * This is where we assign each control in the "audio" model, to the
1126 * underlying "mixer" control. We walk through the whole list once,
1127 * assigning likely candidates as we come across them.
1128 */
1129 record_master_found = 0;
1130 record_source_found = 0;
1131 mutex_enter(sc->sc_lock);
1132 for(mi.index = 0; ; mi.index++) {
1133 if (audio_query_devinfo(sc, &mi) != 0)
1134 break;
1135 KASSERT(mi.index < sc->sc_nmixer_states);
1136 if (mi.type == AUDIO_MIXER_CLASS)
1137 continue;
1138 if (mi.mixer_class == iclass) {
1139 /*
1140 * AudioCinputs is only a fallback, when we don't
1141 * find what we're looking for in AudioCrecord, so
1142 * check the flags before accepting one of these.
1143 */
1144 if (strcmp(mi.label.name, AudioNmaster) == 0
1145 && record_master_found == 0)
1146 sc->sc_inports.master = mi.index;
1147 if (strcmp(mi.label.name, AudioNsource) == 0
1148 && record_source_found == 0) {
1149 if (mi.type == AUDIO_MIXER_ENUM) {
1150 int i;
1151 for(i = 0; i < mi.un.e.num_mem; i++)
1152 if (strcmp(mi.un.e.member[i].label.name,
1153 AudioNmixerout) == 0)
1154 sc->sc_inports.mixerout =
1155 mi.un.e.member[i].ord;
1156 }
1157 au_setup_ports(sc, &sc->sc_inports, &mi,
1158 itable);
1159 }
1160 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1161 sc->sc_outports.master == -1)
1162 sc->sc_outports.master = mi.index;
1163 } else if (mi.mixer_class == mclass) {
1164 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1165 sc->sc_monitor_port = mi.index;
1166 } else if (mi.mixer_class == oclass) {
1167 if (strcmp(mi.label.name, AudioNmaster) == 0)
1168 sc->sc_outports.master = mi.index;
1169 if (strcmp(mi.label.name, AudioNselect) == 0)
1170 au_setup_ports(sc, &sc->sc_outports, &mi,
1171 otable);
1172 } else if (mi.mixer_class == rclass) {
1173 /*
1174 * These are the preferred mixers for the audio record
1175 * controls, so set the flags here, but don't check.
1176 */
1177 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1178 sc->sc_inports.master = mi.index;
1179 record_master_found = 1;
1180 }
1181 #if 1 /* Deprecated. Use AudioNmaster. */
1182 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1183 sc->sc_inports.master = mi.index;
1184 record_master_found = 1;
1185 }
1186 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1187 sc->sc_inports.master = mi.index;
1188 record_master_found = 1;
1189 }
1190 #endif
1191 if (strcmp(mi.label.name, AudioNsource) == 0) {
1192 if (mi.type == AUDIO_MIXER_ENUM) {
1193 int i;
1194 for(i = 0; i < mi.un.e.num_mem; i++)
1195 if (strcmp(mi.un.e.member[i].label.name,
1196 AudioNmixerout) == 0)
1197 sc->sc_inports.mixerout =
1198 mi.un.e.member[i].ord;
1199 }
1200 au_setup_ports(sc, &sc->sc_inports, &mi,
1201 itable);
1202 record_source_found = 1;
1203 }
1204 }
1205 }
1206 mutex_exit(sc->sc_lock);
1207 }
1208
1209 static int
1210 audioactivate(device_t self, enum devact act)
1211 {
1212 struct audio_softc *sc = device_private(self);
1213
1214 switch (act) {
1215 case DVACT_DEACTIVATE:
1216 mutex_enter(sc->sc_lock);
1217 sc->sc_dying = true;
1218 cv_broadcast(&sc->sc_exlockcv);
1219 mutex_exit(sc->sc_lock);
1220 return 0;
1221 default:
1222 return EOPNOTSUPP;
1223 }
1224 }
1225
1226 static int
1227 audiodetach(device_t self, int flags)
1228 {
1229 struct audio_softc *sc;
1230 struct audio_file *file;
1231 int error;
1232
1233 sc = device_private(self);
1234 TRACE(2, "flags=%d", flags);
1235
1236 /* device is not initialized */
1237 if (sc->hw_if == NULL)
1238 return 0;
1239
1240 /* Start draining existing accessors of the device. */
1241 error = config_detach_children(self, flags);
1242 if (error)
1243 return error;
1244
1245 /* delete sysctl nodes */
1246 sysctl_teardown(&sc->sc_log);
1247
1248 mutex_enter(sc->sc_lock);
1249 sc->sc_dying = true;
1250 cv_broadcast(&sc->sc_exlockcv);
1251 if (sc->sc_pmixer)
1252 cv_broadcast(&sc->sc_pmixer->outcv);
1253 if (sc->sc_rmixer)
1254 cv_broadcast(&sc->sc_rmixer->outcv);
1255
1256 /* Prevent new users */
1257 SLIST_FOREACH(file, &sc->sc_files, entry) {
1258 atomic_store_relaxed(&file->dying, true);
1259 }
1260
1261 /*
1262 * Wait for existing users to drain.
1263 * - pserialize_perform waits for all pserialize_read sections on
1264 * all CPUs; after this, no more new psref_acquire can happen.
1265 * - psref_target_destroy waits for all extant acquired psrefs to
1266 * be psref_released.
1267 */
1268 pserialize_perform(sc->sc_psz);
1269 mutex_exit(sc->sc_lock);
1270 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1271
1272 /*
1273 * We are now guaranteed that there are no calls to audio fileops
1274 * that hold sc, and any new calls with files that were for sc will
1275 * fail. Thus, we now have exclusive access to the softc.
1276 */
1277
1278 /*
1279 * Nuke all open instances.
1280 * Here, we no longer need any locks to traverse sc_files.
1281 */
1282 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1283 audio_unlink(sc, file);
1284 }
1285
1286 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1287 audio_volume_down, true);
1288 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1289 audio_volume_up, true);
1290 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1291 audio_volume_toggle, true);
1292
1293 #ifdef AUDIO_PM_IDLE
1294 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1295
1296 device_active_deregister(self, audio_activity);
1297 #endif
1298
1299 pmf_device_deregister(self);
1300
1301 /* Free resources */
1302 mutex_enter(sc->sc_lock);
1303 if (sc->sc_pmixer) {
1304 audio_mixer_destroy(sc, sc->sc_pmixer);
1305 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1306 }
1307 if (sc->sc_rmixer) {
1308 audio_mixer_destroy(sc, sc->sc_rmixer);
1309 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1310 }
1311 mutex_exit(sc->sc_lock);
1312
1313 seldestroy(&sc->sc_wsel);
1314 seldestroy(&sc->sc_rsel);
1315
1316 #ifdef AUDIO_PM_IDLE
1317 callout_destroy(&sc->sc_idle_counter);
1318 #endif
1319
1320 cv_destroy(&sc->sc_exlockcv);
1321
1322 #if defined(AUDIO_DEBUG)
1323 audio_mlog_free();
1324 #endif
1325
1326 return 0;
1327 }
1328
1329 static void
1330 audiochilddet(device_t self, device_t child)
1331 {
1332
1333 /* we hold no child references, so do nothing */
1334 }
1335
1336 static int
1337 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1338 {
1339
1340 if (config_match(parent, cf, aux))
1341 config_attach_loc(parent, cf, locs, aux, NULL);
1342
1343 return 0;
1344 }
1345
1346 static int
1347 audiorescan(device_t self, const char *ifattr, const int *flags)
1348 {
1349 struct audio_softc *sc = device_private(self);
1350
1351 if (!ifattr_match(ifattr, "audio"))
1352 return 0;
1353
1354 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1355
1356 return 0;
1357 }
1358
1359 /*
1360 * Called from hardware driver. This is where the MI audio driver gets
1361 * probed/attached to the hardware driver.
1362 */
1363 device_t
1364 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1365 {
1366 struct audio_attach_args arg;
1367
1368 #ifdef DIAGNOSTIC
1369 if (ahwp == NULL) {
1370 aprint_error("audio_attach_mi: NULL\n");
1371 return 0;
1372 }
1373 #endif
1374 arg.type = AUDIODEV_TYPE_AUDIO;
1375 arg.hwif = ahwp;
1376 arg.hdl = hdlp;
1377 return config_found(dev, &arg, audioprint);
1378 }
1379
1380 /*
1381 * Acquire sc_lock and enter exlock critical section.
1382 * If successful, it returns 0. Otherwise returns errno.
1383 * Must be called without sc_lock held.
1384 */
1385 static int
1386 audio_enter_exclusive(struct audio_softc *sc)
1387 {
1388 int error;
1389
1390 mutex_enter(sc->sc_lock);
1391 if (sc->sc_dying) {
1392 mutex_exit(sc->sc_lock);
1393 return EIO;
1394 }
1395
1396 while (__predict_false(sc->sc_exlock != 0)) {
1397 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1398 if (sc->sc_dying)
1399 error = EIO;
1400 if (error) {
1401 mutex_exit(sc->sc_lock);
1402 return error;
1403 }
1404 }
1405
1406 /* Acquire */
1407 sc->sc_exlock = 1;
1408 return 0;
1409 }
1410
1411 /*
1412 * Leave exlock critical section and release sc_lock.
1413 * Must be called with sc_lock held.
1414 */
1415 static void
1416 audio_exit_exclusive(struct audio_softc *sc)
1417 {
1418
1419 KASSERT(mutex_owned(sc->sc_lock));
1420 KASSERT(sc->sc_exlock);
1421
1422 /* Leave critical section */
1423 sc->sc_exlock = 0;
1424 cv_broadcast(&sc->sc_exlockcv);
1425 mutex_exit(sc->sc_lock);
1426 }
1427
1428 /*
1429 * Acquire sc from file, and increment the psref count.
1430 * If successful, returns sc. Otherwise returns NULL.
1431 */
1432 struct audio_softc *
1433 audio_file_enter(audio_file_t *file, struct psref *refp)
1434 {
1435 int s;
1436 bool dying;
1437
1438 /* psref(9) forbids to migrate CPUs */
1439 curlwp_bind();
1440
1441 /* Block audiodetach while we acquire a reference */
1442 s = pserialize_read_enter();
1443
1444 /* If close or audiodetach already ran, tough -- no more audio */
1445 dying = atomic_load_relaxed(&file->dying);
1446 if (dying) {
1447 pserialize_read_exit(s);
1448 return NULL;
1449 }
1450
1451 /* Acquire a reference */
1452 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1453
1454 /* Now sc won't go away until we drop the reference count */
1455 pserialize_read_exit(s);
1456
1457 return file->sc;
1458 }
1459
1460 /*
1461 * Decrement the psref count.
1462 */
1463 void
1464 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1465 {
1466
1467 psref_release(refp, &sc->sc_psref, audio_psref_class);
1468 }
1469
1470 /*
1471 * Wait for I/O to complete, releasing sc_lock.
1472 * Must be called with sc_lock held.
1473 */
1474 static int
1475 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1476 {
1477 int error;
1478
1479 KASSERT(track);
1480 KASSERT(mutex_owned(sc->sc_lock));
1481
1482 /* Wait for pending I/O to complete. */
1483 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1484 mstohz(AUDIO_TIMEOUT));
1485 if (sc->sc_dying) {
1486 error = EIO;
1487 }
1488 if (error) {
1489 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1490 if (error == EWOULDBLOCK)
1491 device_printf(sc->sc_dev, "device timeout\n");
1492 } else {
1493 TRACET(3, track, "wakeup");
1494 }
1495 return error;
1496 }
1497
1498 /*
1499 * Try to acquire track lock.
1500 * It doesn't block if the track lock is already aquired.
1501 * Returns true if the track lock was acquired, or false if the track
1502 * lock was already acquired.
1503 */
1504 static __inline bool
1505 audio_track_lock_tryenter(audio_track_t *track)
1506 {
1507 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1508 }
1509
1510 /*
1511 * Acquire track lock.
1512 */
1513 static __inline void
1514 audio_track_lock_enter(audio_track_t *track)
1515 {
1516 /* Don't sleep here. */
1517 while (audio_track_lock_tryenter(track) == false)
1518 ;
1519 }
1520
1521 /*
1522 * Release track lock.
1523 */
1524 static __inline void
1525 audio_track_lock_exit(audio_track_t *track)
1526 {
1527 atomic_swap_uint(&track->lock, 0);
1528 }
1529
1530
1531 static int
1532 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1533 {
1534 struct audio_softc *sc;
1535 int error;
1536
1537 /* Find the device */
1538 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1539 if (sc == NULL || sc->hw_if == NULL)
1540 return ENXIO;
1541
1542 error = audio_enter_exclusive(sc);
1543 if (error)
1544 return error;
1545
1546 device_active(sc->sc_dev, DVA_SYSTEM);
1547 switch (AUDIODEV(dev)) {
1548 case SOUND_DEVICE:
1549 case AUDIO_DEVICE:
1550 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1551 break;
1552 case AUDIOCTL_DEVICE:
1553 error = audioctl_open(dev, sc, flags, ifmt, l);
1554 break;
1555 case MIXER_DEVICE:
1556 error = mixer_open(dev, sc, flags, ifmt, l);
1557 break;
1558 default:
1559 error = ENXIO;
1560 break;
1561 }
1562 audio_exit_exclusive(sc);
1563
1564 return error;
1565 }
1566
1567 static int
1568 audioclose(struct file *fp)
1569 {
1570 struct audio_softc *sc;
1571 struct psref sc_ref;
1572 audio_file_t *file;
1573 int error;
1574 dev_t dev;
1575
1576 KASSERT(fp->f_audioctx);
1577 file = fp->f_audioctx;
1578 dev = file->dev;
1579 error = 0;
1580
1581 /*
1582 * audioclose() must
1583 * - unplug track from the trackmixer (and unplug anything from softc),
1584 * if sc exists.
1585 * - free all memory objects, regardless of sc.
1586 */
1587
1588 sc = audio_file_enter(file, &sc_ref);
1589 if (sc) {
1590 switch (AUDIODEV(dev)) {
1591 case SOUND_DEVICE:
1592 case AUDIO_DEVICE:
1593 error = audio_close(sc, file);
1594 break;
1595 case AUDIOCTL_DEVICE:
1596 error = 0;
1597 break;
1598 case MIXER_DEVICE:
1599 error = mixer_close(sc, file);
1600 break;
1601 default:
1602 error = ENXIO;
1603 break;
1604 }
1605
1606 audio_file_exit(sc, &sc_ref);
1607 }
1608
1609 /* Free memory objects anyway */
1610 TRACEF(2, file, "free memory");
1611 if (file->ptrack)
1612 audio_track_destroy(file->ptrack);
1613 if (file->rtrack)
1614 audio_track_destroy(file->rtrack);
1615 kmem_free(file, sizeof(*file));
1616 fp->f_audioctx = NULL;
1617
1618 return error;
1619 }
1620
1621 static int
1622 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1623 int ioflag)
1624 {
1625 struct audio_softc *sc;
1626 struct psref sc_ref;
1627 audio_file_t *file;
1628 int error;
1629 dev_t dev;
1630
1631 KASSERT(fp->f_audioctx);
1632 file = fp->f_audioctx;
1633 dev = file->dev;
1634
1635 sc = audio_file_enter(file, &sc_ref);
1636 if (sc == NULL)
1637 return EIO;
1638
1639 if (fp->f_flag & O_NONBLOCK)
1640 ioflag |= IO_NDELAY;
1641
1642 switch (AUDIODEV(dev)) {
1643 case SOUND_DEVICE:
1644 case AUDIO_DEVICE:
1645 error = audio_read(sc, uio, ioflag, file);
1646 break;
1647 case AUDIOCTL_DEVICE:
1648 case MIXER_DEVICE:
1649 error = ENODEV;
1650 break;
1651 default:
1652 error = ENXIO;
1653 break;
1654 }
1655
1656 audio_file_exit(sc, &sc_ref);
1657 return error;
1658 }
1659
1660 static int
1661 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1662 int ioflag)
1663 {
1664 struct audio_softc *sc;
1665 struct psref sc_ref;
1666 audio_file_t *file;
1667 int error;
1668 dev_t dev;
1669
1670 KASSERT(fp->f_audioctx);
1671 file = fp->f_audioctx;
1672 dev = file->dev;
1673
1674 sc = audio_file_enter(file, &sc_ref);
1675 if (sc == NULL)
1676 return EIO;
1677
1678 if (fp->f_flag & O_NONBLOCK)
1679 ioflag |= IO_NDELAY;
1680
1681 switch (AUDIODEV(dev)) {
1682 case SOUND_DEVICE:
1683 case AUDIO_DEVICE:
1684 error = audio_write(sc, uio, ioflag, file);
1685 break;
1686 case AUDIOCTL_DEVICE:
1687 case MIXER_DEVICE:
1688 error = ENODEV;
1689 break;
1690 default:
1691 error = ENXIO;
1692 break;
1693 }
1694
1695 audio_file_exit(sc, &sc_ref);
1696 return error;
1697 }
1698
1699 static int
1700 audioioctl(struct file *fp, u_long cmd, void *addr)
1701 {
1702 struct audio_softc *sc;
1703 struct psref sc_ref;
1704 audio_file_t *file;
1705 struct lwp *l = curlwp;
1706 int error;
1707 dev_t dev;
1708
1709 KASSERT(fp->f_audioctx);
1710 file = fp->f_audioctx;
1711 dev = file->dev;
1712
1713 sc = audio_file_enter(file, &sc_ref);
1714 if (sc == NULL)
1715 return EIO;
1716
1717 switch (AUDIODEV(dev)) {
1718 case SOUND_DEVICE:
1719 case AUDIO_DEVICE:
1720 case AUDIOCTL_DEVICE:
1721 mutex_enter(sc->sc_lock);
1722 device_active(sc->sc_dev, DVA_SYSTEM);
1723 mutex_exit(sc->sc_lock);
1724 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1725 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1726 else
1727 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1728 file);
1729 break;
1730 case MIXER_DEVICE:
1731 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1732 break;
1733 default:
1734 error = ENXIO;
1735 break;
1736 }
1737
1738 audio_file_exit(sc, &sc_ref);
1739 return error;
1740 }
1741
1742 static int
1743 audiostat(struct file *fp, struct stat *st)
1744 {
1745 struct audio_softc *sc;
1746 struct psref sc_ref;
1747 audio_file_t *file;
1748
1749 KASSERT(fp->f_audioctx);
1750 file = fp->f_audioctx;
1751
1752 sc = audio_file_enter(file, &sc_ref);
1753 if (sc == NULL)
1754 return EIO;
1755
1756 memset(st, 0, sizeof(*st));
1757
1758 st->st_dev = file->dev;
1759 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1760 st->st_gid = kauth_cred_getegid(fp->f_cred);
1761 st->st_mode = S_IFCHR;
1762
1763 audio_file_exit(sc, &sc_ref);
1764 return 0;
1765 }
1766
1767 static int
1768 audiopoll(struct file *fp, int events)
1769 {
1770 struct audio_softc *sc;
1771 struct psref sc_ref;
1772 audio_file_t *file;
1773 struct lwp *l = curlwp;
1774 int revents;
1775 dev_t dev;
1776
1777 KASSERT(fp->f_audioctx);
1778 file = fp->f_audioctx;
1779 dev = file->dev;
1780
1781 sc = audio_file_enter(file, &sc_ref);
1782 if (sc == NULL)
1783 return EIO;
1784
1785 switch (AUDIODEV(dev)) {
1786 case SOUND_DEVICE:
1787 case AUDIO_DEVICE:
1788 revents = audio_poll(sc, events, l, file);
1789 break;
1790 case AUDIOCTL_DEVICE:
1791 case MIXER_DEVICE:
1792 revents = 0;
1793 break;
1794 default:
1795 revents = POLLERR;
1796 break;
1797 }
1798
1799 audio_file_exit(sc, &sc_ref);
1800 return revents;
1801 }
1802
1803 static int
1804 audiokqfilter(struct file *fp, struct knote *kn)
1805 {
1806 struct audio_softc *sc;
1807 struct psref sc_ref;
1808 audio_file_t *file;
1809 dev_t dev;
1810 int error;
1811
1812 KASSERT(fp->f_audioctx);
1813 file = fp->f_audioctx;
1814 dev = file->dev;
1815
1816 sc = audio_file_enter(file, &sc_ref);
1817 if (sc == NULL)
1818 return EIO;
1819
1820 switch (AUDIODEV(dev)) {
1821 case SOUND_DEVICE:
1822 case AUDIO_DEVICE:
1823 error = audio_kqfilter(sc, file, kn);
1824 break;
1825 case AUDIOCTL_DEVICE:
1826 case MIXER_DEVICE:
1827 error = ENODEV;
1828 break;
1829 default:
1830 error = ENXIO;
1831 break;
1832 }
1833
1834 audio_file_exit(sc, &sc_ref);
1835 return error;
1836 }
1837
1838 static int
1839 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1840 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1841 {
1842 struct audio_softc *sc;
1843 struct psref sc_ref;
1844 audio_file_t *file;
1845 dev_t dev;
1846 int error;
1847
1848 KASSERT(fp->f_audioctx);
1849 file = fp->f_audioctx;
1850 dev = file->dev;
1851
1852 sc = audio_file_enter(file, &sc_ref);
1853 if (sc == NULL)
1854 return EIO;
1855
1856 mutex_enter(sc->sc_lock);
1857 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1858 mutex_exit(sc->sc_lock);
1859
1860 switch (AUDIODEV(dev)) {
1861 case SOUND_DEVICE:
1862 case AUDIO_DEVICE:
1863 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1864 uobjp, maxprotp, file);
1865 break;
1866 case AUDIOCTL_DEVICE:
1867 case MIXER_DEVICE:
1868 default:
1869 error = ENOTSUP;
1870 break;
1871 }
1872
1873 audio_file_exit(sc, &sc_ref);
1874 return error;
1875 }
1876
1877
1878 /* Exported interfaces for audiobell. */
1879
1880 /*
1881 * Open for audiobell.
1882 * It stores allocated file to *filep.
1883 * If successful returns 0, otherwise errno.
1884 */
1885 int
1886 audiobellopen(dev_t dev, audio_file_t **filep)
1887 {
1888 struct audio_softc *sc;
1889 int error;
1890
1891 /* Find the device */
1892 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1893 if (sc == NULL || sc->hw_if == NULL)
1894 return ENXIO;
1895
1896 error = audio_enter_exclusive(sc);
1897 if (error)
1898 return error;
1899
1900 device_active(sc->sc_dev, DVA_SYSTEM);
1901 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1902
1903 audio_exit_exclusive(sc);
1904 return error;
1905 }
1906
1907 /* Close for audiobell */
1908 int
1909 audiobellclose(audio_file_t *file)
1910 {
1911 struct audio_softc *sc;
1912 struct psref sc_ref;
1913 int error;
1914
1915 sc = audio_file_enter(file, &sc_ref);
1916 if (sc == NULL)
1917 return EIO;
1918
1919 error = audio_close(sc, file);
1920
1921 audio_file_exit(sc, &sc_ref);
1922
1923 KASSERT(file->ptrack);
1924 audio_track_destroy(file->ptrack);
1925 KASSERT(file->rtrack == NULL);
1926 kmem_free(file, sizeof(*file));
1927 return error;
1928 }
1929
1930 /* Set sample rate for audiobell */
1931 int
1932 audiobellsetrate(audio_file_t *file, u_int sample_rate)
1933 {
1934 struct audio_softc *sc;
1935 struct psref sc_ref;
1936 struct audio_info ai;
1937 int error;
1938
1939 sc = audio_file_enter(file, &sc_ref);
1940 if (sc == NULL)
1941 return EIO;
1942
1943 AUDIO_INITINFO(&ai);
1944 ai.play.sample_rate = sample_rate;
1945
1946 error = audio_enter_exclusive(sc);
1947 if (error)
1948 goto done;
1949 error = audio_file_setinfo(sc, file, &ai);
1950 audio_exit_exclusive(sc);
1951
1952 done:
1953 audio_file_exit(sc, &sc_ref);
1954 return error;
1955 }
1956
1957 /* Playback for audiobell */
1958 int
1959 audiobellwrite(audio_file_t *file, struct uio *uio)
1960 {
1961 struct audio_softc *sc;
1962 struct psref sc_ref;
1963 int error;
1964
1965 sc = audio_file_enter(file, &sc_ref);
1966 if (sc == NULL)
1967 return EIO;
1968
1969 error = audio_write(sc, uio, 0, file);
1970
1971 audio_file_exit(sc, &sc_ref);
1972 return error;
1973 }
1974
1975
1976 /*
1977 * Audio driver
1978 */
1979 int
1980 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
1981 struct lwp *l, audio_file_t **bellfile)
1982 {
1983 struct audio_info ai;
1984 struct file *fp;
1985 audio_file_t *af;
1986 audio_ring_t *hwbuf;
1987 bool fullduplex;
1988 int fd;
1989 int error;
1990
1991 KASSERT(mutex_owned(sc->sc_lock));
1992 KASSERT(sc->sc_exlock);
1993
1994 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
1995 (audiodebug >= 3) ? "start " : "",
1996 ISDEVSOUND(dev) ? "sound" : "audio",
1997 flags, sc->sc_popens, sc->sc_ropens);
1998
1999 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2000 af->sc = sc;
2001 af->dev = dev;
2002 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2003 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2004 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2005 af->mode |= AUMODE_RECORD;
2006 if (af->mode == 0) {
2007 error = ENXIO;
2008 goto bad1;
2009 }
2010
2011 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2012
2013 /*
2014 * On half duplex hardware,
2015 * 1. if mode is (PLAY | REC), let mode PLAY.
2016 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2017 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2018 */
2019 if (fullduplex == false) {
2020 if ((af->mode & AUMODE_PLAY)) {
2021 if (sc->sc_ropens != 0) {
2022 TRACE(1, "record track already exists");
2023 error = ENODEV;
2024 goto bad1;
2025 }
2026 /* Play takes precedence */
2027 af->mode &= ~AUMODE_RECORD;
2028 }
2029 if ((af->mode & AUMODE_RECORD)) {
2030 if (sc->sc_popens != 0) {
2031 TRACE(1, "play track already exists");
2032 error = ENODEV;
2033 goto bad1;
2034 }
2035 }
2036 }
2037
2038 /* Create tracks */
2039 if ((af->mode & AUMODE_PLAY))
2040 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2041 if ((af->mode & AUMODE_RECORD))
2042 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2043
2044 /* Set parameters */
2045 AUDIO_INITINFO(&ai);
2046 if (bellfile) {
2047 /* If audiobell, only sample_rate will be set later. */
2048 ai.play.sample_rate = audio_default.sample_rate;
2049 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2050 ai.play.channels = 1;
2051 ai.play.precision = 16;
2052 ai.play.pause = false;
2053 } else if (ISDEVAUDIO(dev)) {
2054 /* If /dev/audio, initialize everytime. */
2055 ai.play.sample_rate = audio_default.sample_rate;
2056 ai.play.encoding = audio_default.encoding;
2057 ai.play.channels = audio_default.channels;
2058 ai.play.precision = audio_default.precision;
2059 ai.play.pause = false;
2060 ai.record.sample_rate = audio_default.sample_rate;
2061 ai.record.encoding = audio_default.encoding;
2062 ai.record.channels = audio_default.channels;
2063 ai.record.precision = audio_default.precision;
2064 ai.record.pause = false;
2065 } else {
2066 /* If /dev/sound, take over the previous parameters. */
2067 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2068 ai.play.encoding = sc->sc_sound_pparams.encoding;
2069 ai.play.channels = sc->sc_sound_pparams.channels;
2070 ai.play.precision = sc->sc_sound_pparams.precision;
2071 ai.play.pause = sc->sc_sound_ppause;
2072 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2073 ai.record.encoding = sc->sc_sound_rparams.encoding;
2074 ai.record.channels = sc->sc_sound_rparams.channels;
2075 ai.record.precision = sc->sc_sound_rparams.precision;
2076 ai.record.pause = sc->sc_sound_rpause;
2077 }
2078 error = audio_file_setinfo(sc, af, &ai);
2079 if (error)
2080 goto bad2;
2081
2082 if (sc->sc_popens + sc->sc_ropens == 0) {
2083 /* First open */
2084
2085 sc->sc_cred = kauth_cred_get();
2086 kauth_cred_hold(sc->sc_cred);
2087
2088 if (sc->hw_if->open) {
2089 int hwflags;
2090
2091 /*
2092 * Call hw_if->open() only at first open of
2093 * combination of playback and recording.
2094 * On full duplex hardware, the flags passed to
2095 * hw_if->open() is always (FREAD | FWRITE)
2096 * regardless of this open()'s flags.
2097 * see also dev/isa/aria.c
2098 * On half duplex hardware, the flags passed to
2099 * hw_if->open() is either FREAD or FWRITE.
2100 * see also arch/evbarm/mini2440/audio_mini2440.c
2101 */
2102 if (fullduplex) {
2103 hwflags = FREAD | FWRITE;
2104 } else {
2105 /* Construct hwflags from af->mode. */
2106 hwflags = 0;
2107 if ((af->mode & AUMODE_PLAY) != 0)
2108 hwflags |= FWRITE;
2109 if ((af->mode & AUMODE_RECORD) != 0)
2110 hwflags |= FREAD;
2111 }
2112
2113 mutex_enter(sc->sc_intr_lock);
2114 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2115 mutex_exit(sc->sc_intr_lock);
2116 if (error)
2117 goto bad2;
2118 }
2119
2120 /*
2121 * Set speaker mode when a half duplex.
2122 * XXX I'm not sure this is correct.
2123 */
2124 if (1/*XXX*/) {
2125 if (sc->hw_if->speaker_ctl) {
2126 int on;
2127 if (af->ptrack) {
2128 on = 1;
2129 } else {
2130 on = 0;
2131 }
2132 mutex_enter(sc->sc_intr_lock);
2133 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2134 mutex_exit(sc->sc_intr_lock);
2135 if (error)
2136 goto bad3;
2137 }
2138 }
2139 } else if (sc->sc_multiuser == false) {
2140 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2141 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2142 error = EPERM;
2143 goto bad2;
2144 }
2145 }
2146
2147 /* Call init_output if this is the first playback open. */
2148 if (af->ptrack && sc->sc_popens == 0) {
2149 if (sc->hw_if->init_output) {
2150 hwbuf = &sc->sc_pmixer->hwbuf;
2151 mutex_enter(sc->sc_intr_lock);
2152 error = sc->hw_if->init_output(sc->hw_hdl,
2153 hwbuf->mem,
2154 hwbuf->capacity *
2155 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2156 mutex_exit(sc->sc_intr_lock);
2157 if (error)
2158 goto bad3;
2159 }
2160 }
2161 /* Call init_input if this is the first recording open. */
2162 if (af->rtrack && sc->sc_ropens == 0) {
2163 if (sc->hw_if->init_input) {
2164 hwbuf = &sc->sc_rmixer->hwbuf;
2165 mutex_enter(sc->sc_intr_lock);
2166 error = sc->hw_if->init_input(sc->hw_hdl,
2167 hwbuf->mem,
2168 hwbuf->capacity *
2169 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2170 mutex_exit(sc->sc_intr_lock);
2171 if (error)
2172 goto bad3;
2173 }
2174 }
2175
2176 if (bellfile == NULL) {
2177 error = fd_allocfile(&fp, &fd);
2178 if (error)
2179 goto bad3;
2180 }
2181
2182 /*
2183 * Count up finally.
2184 * Don't fail from here.
2185 */
2186 if (af->ptrack)
2187 sc->sc_popens++;
2188 if (af->rtrack)
2189 sc->sc_ropens++;
2190 mutex_enter(sc->sc_intr_lock);
2191 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2192 mutex_exit(sc->sc_intr_lock);
2193
2194 if (bellfile) {
2195 *bellfile = af;
2196 } else {
2197 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2198 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2199 }
2200
2201 TRACEF(3, af, "done");
2202 return error;
2203
2204 /*
2205 * Since track here is not yet linked to sc_files,
2206 * you can call track_destroy() without sc_intr_lock.
2207 */
2208 bad3:
2209 if (sc->sc_popens + sc->sc_ropens == 0) {
2210 if (sc->hw_if->close) {
2211 mutex_enter(sc->sc_intr_lock);
2212 sc->hw_if->close(sc->hw_hdl);
2213 mutex_exit(sc->sc_intr_lock);
2214 }
2215 }
2216 bad2:
2217 if (af->rtrack) {
2218 audio_track_destroy(af->rtrack);
2219 af->rtrack = NULL;
2220 }
2221 if (af->ptrack) {
2222 audio_track_destroy(af->ptrack);
2223 af->ptrack = NULL;
2224 }
2225 bad1:
2226 kmem_free(af, sizeof(*af));
2227 return error;
2228 }
2229
2230 /*
2231 * Must be called without sc_lock nor sc_exlock held.
2232 */
2233 int
2234 audio_close(struct audio_softc *sc, audio_file_t *file)
2235 {
2236
2237 /* Protect entering new fileops to this file */
2238 atomic_store_relaxed(&file->dying, true);
2239
2240 /*
2241 * Drain first.
2242 * It must be done before unlinking(acquiring exclusive lock).
2243 */
2244 if (file->ptrack) {
2245 mutex_enter(sc->sc_lock);
2246 audio_track_drain(sc, file->ptrack);
2247 mutex_exit(sc->sc_lock);
2248 }
2249
2250 return audio_unlink(sc, file);
2251 }
2252
2253 /*
2254 * Unlink this file, but not freeing memory here.
2255 * Must be called without sc_lock nor sc_exlock held.
2256 */
2257 int
2258 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2259 {
2260 int error;
2261
2262 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2263 (audiodebug >= 3) ? "start " : "",
2264 (int)curproc->p_pid, (int)curlwp->l_lid,
2265 sc->sc_popens, sc->sc_ropens);
2266 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2267 "sc->sc_popens=%d, sc->sc_ropens=%d",
2268 sc->sc_popens, sc->sc_ropens);
2269
2270 mutex_enter(sc->sc_lock);
2271 /*
2272 * Acquire exclusive lock to protect counters.
2273 * Does not use audio_enter_exclusive() due to sc_dying.
2274 */
2275 while (__predict_false(sc->sc_exlock != 0)) {
2276 error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
2277 mstohz(AUDIO_TIMEOUT));
2278 /* XXX what should I do on error? */
2279 if (error == EWOULDBLOCK) {
2280 mutex_exit(sc->sc_lock);
2281 device_printf(sc->sc_dev,
2282 "%s: cv_timedwait_sig failed %d", __func__, error);
2283 return error;
2284 }
2285 }
2286 sc->sc_exlock = 1;
2287
2288 device_active(sc->sc_dev, DVA_SYSTEM);
2289
2290 mutex_enter(sc->sc_intr_lock);
2291 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2292 mutex_exit(sc->sc_intr_lock);
2293
2294 if (file->ptrack) {
2295 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2296 file->ptrack->dropframes);
2297
2298 KASSERT(sc->sc_popens > 0);
2299 sc->sc_popens--;
2300
2301 /* Call hw halt_output if this is the last playback track. */
2302 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2303 error = audio_pmixer_halt(sc);
2304 if (error) {
2305 device_printf(sc->sc_dev,
2306 "halt_output failed with %d (ignored)\n",
2307 error);
2308 }
2309 }
2310
2311 /* Restore mixing volume if all tracks are gone. */
2312 if (sc->sc_popens == 0) {
2313 /* intr_lock is not necessary, but just manners. */
2314 mutex_enter(sc->sc_intr_lock);
2315 sc->sc_pmixer->volume = 256;
2316 sc->sc_pmixer->voltimer = 0;
2317 mutex_exit(sc->sc_intr_lock);
2318 }
2319 }
2320 if (file->rtrack) {
2321 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2322 file->rtrack->dropframes);
2323
2324 KASSERT(sc->sc_ropens > 0);
2325 sc->sc_ropens--;
2326
2327 /* Call hw halt_input if this is the last recording track. */
2328 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2329 error = audio_rmixer_halt(sc);
2330 if (error) {
2331 device_printf(sc->sc_dev,
2332 "halt_input failed with %d (ignored)\n",
2333 error);
2334 }
2335 }
2336
2337 }
2338
2339 /* Call hw close if this is the last track. */
2340 if (sc->sc_popens + sc->sc_ropens == 0) {
2341 if (sc->hw_if->close) {
2342 TRACE(2, "hw_if close");
2343 mutex_enter(sc->sc_intr_lock);
2344 sc->hw_if->close(sc->hw_hdl);
2345 mutex_exit(sc->sc_intr_lock);
2346 }
2347
2348 kauth_cred_free(sc->sc_cred);
2349 }
2350
2351 TRACE(3, "done");
2352 audio_exit_exclusive(sc);
2353
2354 return 0;
2355 }
2356
2357 /*
2358 * Must be called without sc_lock nor sc_exlock held.
2359 */
2360 int
2361 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2362 audio_file_t *file)
2363 {
2364 audio_track_t *track;
2365 audio_ring_t *usrbuf;
2366 audio_ring_t *input;
2367 int error;
2368
2369 /*
2370 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2371 * However read() system call itself can be called because it's
2372 * opened with O_RDWR. So in this case, deny this read().
2373 */
2374 track = file->rtrack;
2375 if (track == NULL) {
2376 return EBADF;
2377 }
2378
2379 /* I think it's better than EINVAL. */
2380 if (track->mmapped)
2381 return EPERM;
2382
2383 TRACET(2, track, "resid=%zd", uio->uio_resid);
2384
2385 #ifdef AUDIO_PM_IDLE
2386 mutex_enter(sc->sc_lock);
2387 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2388 device_active(&sc->sc_dev, DVA_SYSTEM);
2389 mutex_exit(sc->sc_lock);
2390 #endif
2391
2392 usrbuf = &track->usrbuf;
2393 input = track->input;
2394
2395 /*
2396 * The first read starts rmixer.
2397 */
2398 error = audio_enter_exclusive(sc);
2399 if (error)
2400 return error;
2401 if (sc->sc_rbusy == false)
2402 audio_rmixer_start(sc);
2403 audio_exit_exclusive(sc);
2404
2405 error = 0;
2406 while (uio->uio_resid > 0 && error == 0) {
2407 int bytes;
2408
2409 TRACET(3, track,
2410 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2411 uio->uio_resid,
2412 input->head, input->used, input->capacity,
2413 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2414
2415 /* Wait when buffers are empty. */
2416 mutex_enter(sc->sc_lock);
2417 for (;;) {
2418 bool empty;
2419 audio_track_lock_enter(track);
2420 empty = (input->used == 0 && usrbuf->used == 0);
2421 audio_track_lock_exit(track);
2422 if (!empty)
2423 break;
2424
2425 if ((ioflag & IO_NDELAY)) {
2426 mutex_exit(sc->sc_lock);
2427 return EWOULDBLOCK;
2428 }
2429
2430 TRACET(3, track, "sleep");
2431 error = audio_track_waitio(sc, track);
2432 if (error) {
2433 mutex_exit(sc->sc_lock);
2434 return error;
2435 }
2436 }
2437 mutex_exit(sc->sc_lock);
2438
2439 audio_track_lock_enter(track);
2440 audio_track_record(track);
2441
2442 /* uiomove from usrbuf as much as possible. */
2443 bytes = uimin(usrbuf->used, uio->uio_resid);
2444 while (bytes > 0) {
2445 int head = usrbuf->head;
2446 int len = uimin(bytes, usrbuf->capacity - head);
2447 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2448 uio);
2449 if (error) {
2450 audio_track_lock_exit(track);
2451 device_printf(sc->sc_dev,
2452 "uiomove(len=%d) failed with %d\n",
2453 len, error);
2454 goto abort;
2455 }
2456 auring_take(usrbuf, len);
2457 track->useriobytes += len;
2458 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2459 len,
2460 usrbuf->head, usrbuf->used, usrbuf->capacity);
2461 bytes -= len;
2462 }
2463
2464 audio_track_lock_exit(track);
2465 }
2466
2467 abort:
2468 return error;
2469 }
2470
2471
2472 /*
2473 * Clear file's playback and/or record track buffer immediately.
2474 */
2475 static void
2476 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2477 {
2478
2479 if (file->ptrack)
2480 audio_track_clear(sc, file->ptrack);
2481 if (file->rtrack)
2482 audio_track_clear(sc, file->rtrack);
2483 }
2484
2485 /*
2486 * Must be called without sc_lock nor sc_exlock held.
2487 */
2488 int
2489 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2490 audio_file_t *file)
2491 {
2492 audio_track_t *track;
2493 audio_ring_t *usrbuf;
2494 audio_ring_t *outbuf;
2495 int error;
2496
2497 track = file->ptrack;
2498 KASSERT(track);
2499
2500 /* I think it's better than EINVAL. */
2501 if (track->mmapped)
2502 return EPERM;
2503
2504 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2505 audiodebug >= 3 ? "begin " : "",
2506 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2507
2508 if (uio->uio_resid == 0) {
2509 track->eofcounter++;
2510 return 0;
2511 }
2512
2513 #ifdef AUDIO_PM_IDLE
2514 mutex_enter(sc->sc_lock);
2515 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2516 device_active(&sc->sc_dev, DVA_SYSTEM);
2517 mutex_exit(sc->sc_lock);
2518 #endif
2519
2520 usrbuf = &track->usrbuf;
2521 outbuf = &track->outbuf;
2522
2523 /*
2524 * The first write starts pmixer.
2525 */
2526 error = audio_enter_exclusive(sc);
2527 if (error)
2528 return error;
2529 if (sc->sc_pbusy == false)
2530 audio_pmixer_start(sc, false);
2531 audio_exit_exclusive(sc);
2532
2533 track->pstate = AUDIO_STATE_RUNNING;
2534 error = 0;
2535 while (uio->uio_resid > 0 && error == 0) {
2536 int bytes;
2537
2538 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2539 uio->uio_resid,
2540 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2541
2542 /* Wait when buffers are full. */
2543 mutex_enter(sc->sc_lock);
2544 for (;;) {
2545 bool full;
2546 audio_track_lock_enter(track);
2547 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2548 outbuf->used >= outbuf->capacity);
2549 audio_track_lock_exit(track);
2550 if (!full)
2551 break;
2552
2553 if ((ioflag & IO_NDELAY)) {
2554 error = EWOULDBLOCK;
2555 mutex_exit(sc->sc_lock);
2556 goto abort;
2557 }
2558
2559 TRACET(3, track, "sleep usrbuf=%d/H%d",
2560 usrbuf->used, track->usrbuf_usedhigh);
2561 error = audio_track_waitio(sc, track);
2562 if (error) {
2563 mutex_exit(sc->sc_lock);
2564 goto abort;
2565 }
2566 }
2567 mutex_exit(sc->sc_lock);
2568
2569 audio_track_lock_enter(track);
2570
2571 /* uiomove to usrbuf as much as possible. */
2572 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2573 uio->uio_resid);
2574 while (bytes > 0) {
2575 int tail = auring_tail(usrbuf);
2576 int len = uimin(bytes, usrbuf->capacity - tail);
2577 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2578 uio);
2579 if (error) {
2580 audio_track_lock_exit(track);
2581 device_printf(sc->sc_dev,
2582 "uiomove(len=%d) failed with %d\n",
2583 len, error);
2584 goto abort;
2585 }
2586 auring_push(usrbuf, len);
2587 track->useriobytes += len;
2588 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2589 len,
2590 usrbuf->head, usrbuf->used, usrbuf->capacity);
2591 bytes -= len;
2592 }
2593
2594 /* Convert them as much as possible. */
2595 while (usrbuf->used >= track->usrbuf_blksize &&
2596 outbuf->used < outbuf->capacity) {
2597 audio_track_play(track);
2598 }
2599
2600 audio_track_lock_exit(track);
2601 }
2602
2603 abort:
2604 TRACET(3, track, "done error=%d", error);
2605 return error;
2606 }
2607
2608 /*
2609 * Must be called without sc_lock nor sc_exlock held.
2610 */
2611 int
2612 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2613 struct lwp *l, audio_file_t *file)
2614 {
2615 struct audio_offset *ao;
2616 struct audio_info ai;
2617 audio_track_t *track;
2618 audio_encoding_t *ae;
2619 audio_format_query_t *query;
2620 u_int stamp;
2621 u_int offs;
2622 int fd;
2623 int index;
2624 int error;
2625
2626 #if defined(AUDIO_DEBUG)
2627 const char *ioctlnames[] = {
2628 " AUDIO_GETINFO", /* 21 */
2629 " AUDIO_SETINFO", /* 22 */
2630 " AUDIO_DRAIN", /* 23 */
2631 " AUDIO_FLUSH", /* 24 */
2632 " AUDIO_WSEEK", /* 25 */
2633 " AUDIO_RERROR", /* 26 */
2634 " AUDIO_GETDEV", /* 27 */
2635 " AUDIO_GETENC", /* 28 */
2636 " AUDIO_GETFD", /* 29 */
2637 " AUDIO_SETFD", /* 30 */
2638 " AUDIO_PERROR", /* 31 */
2639 " AUDIO_GETIOFFS", /* 32 */
2640 " AUDIO_GETOOFFS", /* 33 */
2641 " AUDIO_GETPROPS", /* 34 */
2642 " AUDIO_GETBUFINFO", /* 35 */
2643 " AUDIO_SETCHAN", /* 36 */
2644 " AUDIO_GETCHAN", /* 37 */
2645 " AUDIO_QUERYFORMAT", /* 38 */
2646 " AUDIO_GETFORMAT", /* 39 */
2647 " AUDIO_SETFORMAT", /* 40 */
2648 };
2649 int nameidx = (cmd & 0xff);
2650 const char *ioctlname = "";
2651 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2652 ioctlname = ioctlnames[nameidx - 21];
2653 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2654 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2655 (int)curproc->p_pid, (int)l->l_lid);
2656 #endif
2657
2658 error = 0;
2659 switch (cmd) {
2660 case FIONBIO:
2661 /* All handled in the upper FS layer. */
2662 break;
2663
2664 case FIONREAD:
2665 /* Get the number of bytes that can be read. */
2666 if (file->rtrack) {
2667 *(int *)addr = audio_track_readablebytes(file->rtrack);
2668 } else {
2669 *(int *)addr = 0;
2670 }
2671 break;
2672
2673 case FIOASYNC:
2674 /* Set/Clear ASYNC I/O. */
2675 if (*(int *)addr) {
2676 file->async_audio = curproc->p_pid;
2677 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2678 } else {
2679 file->async_audio = 0;
2680 TRACEF(2, file, "FIOASYNC off");
2681 }
2682 break;
2683
2684 case AUDIO_FLUSH:
2685 /* XXX TODO: clear errors and restart? */
2686 audio_file_clear(sc, file);
2687 break;
2688
2689 case AUDIO_RERROR:
2690 /*
2691 * Number of read bytes dropped. We don't know where
2692 * or when they were dropped (including conversion stage).
2693 * Therefore, the number of accurate bytes or samples is
2694 * also unknown.
2695 */
2696 track = file->rtrack;
2697 if (track) {
2698 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2699 track->dropframes);
2700 }
2701 break;
2702
2703 case AUDIO_PERROR:
2704 /*
2705 * Number of write bytes dropped. We don't know where
2706 * or when they were dropped (including conversion stage).
2707 * Therefore, the number of accurate bytes or samples is
2708 * also unknown.
2709 */
2710 track = file->ptrack;
2711 if (track) {
2712 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2713 track->dropframes);
2714 }
2715 break;
2716
2717 case AUDIO_GETIOFFS:
2718 /* XXX TODO */
2719 ao = (struct audio_offset *)addr;
2720 ao->samples = 0;
2721 ao->deltablks = 0;
2722 ao->offset = 0;
2723 break;
2724
2725 case AUDIO_GETOOFFS:
2726 ao = (struct audio_offset *)addr;
2727 track = file->ptrack;
2728 if (track == NULL) {
2729 ao->samples = 0;
2730 ao->deltablks = 0;
2731 ao->offset = 0;
2732 break;
2733 }
2734 mutex_enter(sc->sc_lock);
2735 mutex_enter(sc->sc_intr_lock);
2736 /* figure out where next DMA will start */
2737 stamp = track->usrbuf_stamp;
2738 offs = track->usrbuf.head;
2739 mutex_exit(sc->sc_intr_lock);
2740 mutex_exit(sc->sc_lock);
2741
2742 ao->samples = stamp;
2743 ao->deltablks = (stamp / track->usrbuf_blksize) -
2744 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2745 track->usrbuf_stamp_last = stamp;
2746 offs = rounddown(offs, track->usrbuf_blksize)
2747 + track->usrbuf_blksize;
2748 if (offs >= track->usrbuf.capacity)
2749 offs -= track->usrbuf.capacity;
2750 ao->offset = offs;
2751
2752 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2753 ao->samples, ao->deltablks, ao->offset);
2754 break;
2755
2756 case AUDIO_WSEEK:
2757 /* XXX return value does not include outbuf one. */
2758 if (file->ptrack)
2759 *(u_long *)addr = file->ptrack->usrbuf.used;
2760 break;
2761
2762 case AUDIO_SETINFO:
2763 error = audio_enter_exclusive(sc);
2764 if (error)
2765 break;
2766 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2767 if (error) {
2768 audio_exit_exclusive(sc);
2769 break;
2770 }
2771 /* XXX TODO: update last_ai if /dev/sound ? */
2772 if (ISDEVSOUND(dev))
2773 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2774 audio_exit_exclusive(sc);
2775 break;
2776
2777 case AUDIO_GETINFO:
2778 error = audio_enter_exclusive(sc);
2779 if (error)
2780 break;
2781 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2782 audio_exit_exclusive(sc);
2783 break;
2784
2785 case AUDIO_GETBUFINFO:
2786 mutex_enter(sc->sc_lock);
2787 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2788 mutex_exit(sc->sc_lock);
2789 break;
2790
2791 case AUDIO_DRAIN:
2792 if (file->ptrack) {
2793 mutex_enter(sc->sc_lock);
2794 error = audio_track_drain(sc, file->ptrack);
2795 mutex_exit(sc->sc_lock);
2796 }
2797 break;
2798
2799 case AUDIO_GETDEV:
2800 mutex_enter(sc->sc_lock);
2801 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2802 mutex_exit(sc->sc_lock);
2803 break;
2804
2805 case AUDIO_GETENC:
2806 ae = (audio_encoding_t *)addr;
2807 index = ae->index;
2808 if (index < 0 || index >= __arraycount(audio_encodings)) {
2809 error = EINVAL;
2810 break;
2811 }
2812 *ae = audio_encodings[index];
2813 ae->index = index;
2814 /*
2815 * EMULATED always.
2816 * EMULATED flag at that time used to mean that it could
2817 * not be passed directly to the hardware as-is. But
2818 * currently, all formats including hardware native is not
2819 * passed directly to the hardware. So I set EMULATED
2820 * flag for all formats.
2821 */
2822 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2823 break;
2824
2825 case AUDIO_GETFD:
2826 /*
2827 * Returns the current setting of full duplex mode.
2828 * If HW has full duplex mode and there are two mixers,
2829 * it is full duplex. Otherwise half duplex.
2830 */
2831 mutex_enter(sc->sc_lock);
2832 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2833 && (sc->sc_pmixer && sc->sc_rmixer);
2834 mutex_exit(sc->sc_lock);
2835 *(int *)addr = fd;
2836 break;
2837
2838 case AUDIO_GETPROPS:
2839 *(int *)addr = sc->sc_props;
2840 break;
2841
2842 case AUDIO_QUERYFORMAT:
2843 query = (audio_format_query_t *)addr;
2844 if (sc->hw_if->query_format) {
2845 mutex_enter(sc->sc_lock);
2846 error = sc->hw_if->query_format(sc->hw_hdl, query);
2847 mutex_exit(sc->sc_lock);
2848 /* Hide internal infomations */
2849 query->fmt.driver_data = NULL;
2850 } else {
2851 error = ENODEV;
2852 }
2853 break;
2854
2855 case AUDIO_GETFORMAT:
2856 audio_mixers_get_format(sc, (struct audio_info *)addr);
2857 break;
2858
2859 case AUDIO_SETFORMAT:
2860 mutex_enter(sc->sc_lock);
2861 audio_mixers_get_format(sc, &ai);
2862 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2863 if (error) {
2864 /* Rollback */
2865 audio_mixers_set_format(sc, &ai);
2866 }
2867 mutex_exit(sc->sc_lock);
2868 break;
2869
2870 case AUDIO_SETFD:
2871 case AUDIO_SETCHAN:
2872 case AUDIO_GETCHAN:
2873 /* Obsoleted */
2874 break;
2875
2876 default:
2877 if (sc->hw_if->dev_ioctl) {
2878 error = audio_enter_exclusive(sc);
2879 if (error)
2880 break;
2881 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2882 cmd, addr, flag, l);
2883 audio_exit_exclusive(sc);
2884 } else {
2885 TRACEF(2, file, "unknown ioctl");
2886 error = EINVAL;
2887 }
2888 break;
2889 }
2890 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2891 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2892 error);
2893 return error;
2894 }
2895
2896 /*
2897 * Returns the number of bytes that can be read on recording buffer.
2898 */
2899 static __inline int
2900 audio_track_readablebytes(const audio_track_t *track)
2901 {
2902 int bytes;
2903
2904 KASSERT(track);
2905 KASSERT(track->mode == AUMODE_RECORD);
2906
2907 /*
2908 * Although usrbuf is primarily readable data, recorded data
2909 * also stays in track->input until reading. So it is necessary
2910 * to add it. track->input is in frame, usrbuf is in byte.
2911 */
2912 bytes = track->usrbuf.used +
2913 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
2914 return bytes;
2915 }
2916
2917 /*
2918 * Must be called without sc_lock nor sc_exlock held.
2919 */
2920 int
2921 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
2922 audio_file_t *file)
2923 {
2924 audio_track_t *track;
2925 int revents;
2926 bool in_is_valid;
2927 bool out_is_valid;
2928
2929 #if defined(AUDIO_DEBUG)
2930 #define POLLEV_BITMAP "\177\020" \
2931 "b\10WRBAND\0" \
2932 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
2933 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
2934 char evbuf[64];
2935 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
2936 TRACEF(2, file, "pid=%d.%d events=%s",
2937 (int)curproc->p_pid, (int)l->l_lid, evbuf);
2938 #endif
2939
2940 revents = 0;
2941 in_is_valid = false;
2942 out_is_valid = false;
2943 if (events & (POLLIN | POLLRDNORM)) {
2944 track = file->rtrack;
2945 if (track) {
2946 int used;
2947 in_is_valid = true;
2948 used = audio_track_readablebytes(track);
2949 if (used > 0)
2950 revents |= events & (POLLIN | POLLRDNORM);
2951 }
2952 }
2953 if (events & (POLLOUT | POLLWRNORM)) {
2954 track = file->ptrack;
2955 if (track) {
2956 out_is_valid = true;
2957 if (track->usrbuf.used <= track->usrbuf_usedlow)
2958 revents |= events & (POLLOUT | POLLWRNORM);
2959 }
2960 }
2961
2962 if (revents == 0) {
2963 mutex_enter(sc->sc_lock);
2964 if (in_is_valid) {
2965 TRACEF(3, file, "selrecord rsel");
2966 selrecord(l, &sc->sc_rsel);
2967 }
2968 if (out_is_valid) {
2969 TRACEF(3, file, "selrecord wsel");
2970 selrecord(l, &sc->sc_wsel);
2971 }
2972 mutex_exit(sc->sc_lock);
2973 }
2974
2975 #if defined(AUDIO_DEBUG)
2976 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
2977 TRACEF(2, file, "revents=%s", evbuf);
2978 #endif
2979 return revents;
2980 }
2981
2982 static const struct filterops audioread_filtops = {
2983 .f_isfd = 1,
2984 .f_attach = NULL,
2985 .f_detach = filt_audioread_detach,
2986 .f_event = filt_audioread_event,
2987 };
2988
2989 static void
2990 filt_audioread_detach(struct knote *kn)
2991 {
2992 struct audio_softc *sc;
2993 audio_file_t *file;
2994
2995 file = kn->kn_hook;
2996 sc = file->sc;
2997 TRACEF(3, file, "");
2998
2999 mutex_enter(sc->sc_lock);
3000 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
3001 mutex_exit(sc->sc_lock);
3002 }
3003
3004 static int
3005 filt_audioread_event(struct knote *kn, long hint)
3006 {
3007 audio_file_t *file;
3008 audio_track_t *track;
3009
3010 file = kn->kn_hook;
3011 track = file->rtrack;
3012
3013 /*
3014 * kn_data must contain the number of bytes can be read.
3015 * The return value indicates whether the event occurs or not.
3016 */
3017
3018 if (track == NULL) {
3019 /* can not read with this descriptor. */
3020 kn->kn_data = 0;
3021 return 0;
3022 }
3023
3024 kn->kn_data = audio_track_readablebytes(track);
3025 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3026 return kn->kn_data > 0;
3027 }
3028
3029 static const struct filterops audiowrite_filtops = {
3030 .f_isfd = 1,
3031 .f_attach = NULL,
3032 .f_detach = filt_audiowrite_detach,
3033 .f_event = filt_audiowrite_event,
3034 };
3035
3036 static void
3037 filt_audiowrite_detach(struct knote *kn)
3038 {
3039 struct audio_softc *sc;
3040 audio_file_t *file;
3041
3042 file = kn->kn_hook;
3043 sc = file->sc;
3044 TRACEF(3, file, "");
3045
3046 mutex_enter(sc->sc_lock);
3047 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
3048 mutex_exit(sc->sc_lock);
3049 }
3050
3051 static int
3052 filt_audiowrite_event(struct knote *kn, long hint)
3053 {
3054 audio_file_t *file;
3055 audio_track_t *track;
3056
3057 file = kn->kn_hook;
3058 track = file->ptrack;
3059
3060 /*
3061 * kn_data must contain the number of bytes can be write.
3062 * The return value indicates whether the event occurs or not.
3063 */
3064
3065 if (track == NULL) {
3066 /* can not write with this descriptor. */
3067 kn->kn_data = 0;
3068 return 0;
3069 }
3070
3071 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3072 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3073 return (track->usrbuf.used < track->usrbuf_usedlow);
3074 }
3075
3076 /*
3077 * Must be called without sc_lock nor sc_exlock held.
3078 */
3079 int
3080 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3081 {
3082 struct klist *klist;
3083
3084 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3085
3086 switch (kn->kn_filter) {
3087 case EVFILT_READ:
3088 klist = &sc->sc_rsel.sel_klist;
3089 kn->kn_fop = &audioread_filtops;
3090 break;
3091
3092 case EVFILT_WRITE:
3093 klist = &sc->sc_wsel.sel_klist;
3094 kn->kn_fop = &audiowrite_filtops;
3095 break;
3096
3097 default:
3098 return EINVAL;
3099 }
3100
3101 kn->kn_hook = file;
3102
3103 mutex_enter(sc->sc_lock);
3104 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3105 mutex_exit(sc->sc_lock);
3106
3107 return 0;
3108 }
3109
3110 /*
3111 * Must be called without sc_lock nor sc_exlock held.
3112 */
3113 int
3114 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3115 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3116 audio_file_t *file)
3117 {
3118 audio_track_t *track;
3119 vsize_t vsize;
3120 int error;
3121
3122 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3123
3124 if (*offp < 0)
3125 return EINVAL;
3126
3127 #if 0
3128 /* XXX
3129 * The idea here was to use the protection to determine if
3130 * we are mapping the read or write buffer, but it fails.
3131 * The VM system is broken in (at least) two ways.
3132 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3133 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3134 * has to be used for mmapping the play buffer.
3135 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3136 * audio_mmap will get called at some point with VM_PROT_READ
3137 * only.
3138 * So, alas, we always map the play buffer for now.
3139 */
3140 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3141 prot == VM_PROT_WRITE)
3142 track = file->ptrack;
3143 else if (prot == VM_PROT_READ)
3144 track = file->rtrack;
3145 else
3146 return EINVAL;
3147 #else
3148 track = file->ptrack;
3149 #endif
3150 if (track == NULL)
3151 return EACCES;
3152
3153 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3154 if (len > vsize)
3155 return EOVERFLOW;
3156 if (*offp > (uint)(vsize - len))
3157 return EOVERFLOW;
3158
3159 /* XXX TODO: what happens when mmap twice. */
3160 if (!track->mmapped) {
3161 track->mmapped = true;
3162
3163 if (!track->is_pause) {
3164 error = audio_enter_exclusive(sc);
3165 if (error)
3166 return error;
3167 if (sc->sc_pbusy == false)
3168 audio_pmixer_start(sc, true);
3169 audio_exit_exclusive(sc);
3170 }
3171 /* XXX mmapping record buffer is not supported */
3172 }
3173
3174 /* get ringbuffer */
3175 *uobjp = track->uobj;
3176
3177 /* Acquire a reference for the mmap. munmap will release. */
3178 uao_reference(*uobjp);
3179 *maxprotp = prot;
3180 *advicep = UVM_ADV_RANDOM;
3181 *flagsp = MAP_SHARED;
3182 return 0;
3183 }
3184
3185 /*
3186 * /dev/audioctl has to be able to open at any time without interference
3187 * with any /dev/audio or /dev/sound.
3188 */
3189 static int
3190 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3191 struct lwp *l)
3192 {
3193 struct file *fp;
3194 audio_file_t *af;
3195 int fd;
3196 int error;
3197
3198 KASSERT(mutex_owned(sc->sc_lock));
3199 KASSERT(sc->sc_exlock);
3200
3201 TRACE(1, "");
3202
3203 error = fd_allocfile(&fp, &fd);
3204 if (error)
3205 return error;
3206
3207 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3208 af->sc = sc;
3209 af->dev = dev;
3210
3211 /* Not necessary to insert sc_files. */
3212
3213 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3214 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3215
3216 return error;
3217 }
3218
3219 /*
3220 * Free 'mem' if available, and initialize the pointer.
3221 * For this reason, this is implemented as macro.
3222 */
3223 #define audio_free(mem) do { \
3224 if (mem != NULL) { \
3225 kern_free(mem); \
3226 mem = NULL; \
3227 } \
3228 } while (0)
3229
3230 /*
3231 * (Re)allocate 'memblock' with specified 'bytes'.
3232 * bytes must not be 0.
3233 * This function never returns NULL.
3234 */
3235 static void *
3236 audio_realloc(void *memblock, size_t bytes)
3237 {
3238
3239 KASSERT(bytes != 0);
3240 audio_free(memblock);
3241 return kern_malloc(bytes, M_WAITOK);
3242 }
3243
3244 /*
3245 * (Re)allocate usrbuf with 'newbufsize' bytes.
3246 * Use this function for usrbuf because only usrbuf can be mmapped.
3247 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3248 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3249 * and returns errno.
3250 * It must be called before updating usrbuf.capacity.
3251 */
3252 static int
3253 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3254 {
3255 struct audio_softc *sc;
3256 vaddr_t vstart;
3257 vsize_t oldvsize;
3258 vsize_t newvsize;
3259 int error;
3260
3261 KASSERT(newbufsize > 0);
3262 sc = track->mixer->sc;
3263
3264 /* Get a nonzero multiple of PAGE_SIZE */
3265 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3266
3267 if (track->usrbuf.mem != NULL) {
3268 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3269 PAGE_SIZE);
3270 if (oldvsize == newvsize) {
3271 track->usrbuf.capacity = newbufsize;
3272 return 0;
3273 }
3274 vstart = (vaddr_t)track->usrbuf.mem;
3275 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3276 /* uvm_unmap also detach uobj */
3277 track->uobj = NULL; /* paranoia */
3278 track->usrbuf.mem = NULL;
3279 }
3280
3281 /* Create a uvm anonymous object */
3282 track->uobj = uao_create(newvsize, 0);
3283
3284 /* Map it into the kernel virtual address space */
3285 vstart = 0;
3286 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3287 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3288 UVM_ADV_RANDOM, 0));
3289 if (error) {
3290 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3291 uao_detach(track->uobj); /* release reference */
3292 goto abort;
3293 }
3294
3295 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3296 false, 0);
3297 if (error) {
3298 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3299 error);
3300 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3301 /* uvm_unmap also detach uobj */
3302 goto abort;
3303 }
3304
3305 track->usrbuf.mem = (void *)vstart;
3306 track->usrbuf.capacity = newbufsize;
3307 memset(track->usrbuf.mem, 0, newvsize);
3308 return 0;
3309
3310 /* failure */
3311 abort:
3312 track->uobj = NULL; /* paranoia */
3313 track->usrbuf.mem = NULL;
3314 track->usrbuf.capacity = 0;
3315 return error;
3316 }
3317
3318 /*
3319 * Free usrbuf (if available).
3320 */
3321 static void
3322 audio_free_usrbuf(audio_track_t *track)
3323 {
3324 vaddr_t vstart;
3325 vsize_t vsize;
3326
3327 vstart = (vaddr_t)track->usrbuf.mem;
3328 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3329 if (track->usrbuf.mem != NULL) {
3330 /*
3331 * Unmap the kernel mapping. uvm_unmap releases the
3332 * reference to the uvm object, and this should be the
3333 * last virtual mapping of the uvm object, so no need
3334 * to explicitly release (`detach') the object.
3335 */
3336 uvm_unmap(kernel_map, vstart, vstart + vsize);
3337
3338 track->uobj = NULL;
3339 track->usrbuf.mem = NULL;
3340 track->usrbuf.capacity = 0;
3341 }
3342 }
3343
3344 /*
3345 * This filter changes the volume for each channel.
3346 * arg->context points track->ch_volume[].
3347 */
3348 static void
3349 audio_track_chvol(audio_filter_arg_t *arg)
3350 {
3351 int16_t *ch_volume;
3352 const aint_t *s;
3353 aint_t *d;
3354 u_int i;
3355 u_int ch;
3356 u_int channels;
3357
3358 DIAGNOSTIC_filter_arg(arg);
3359 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3360 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3361 arg->srcfmt->channels, arg->dstfmt->channels);
3362 KASSERT(arg->context != NULL);
3363 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3364 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3365
3366 s = arg->src;
3367 d = arg->dst;
3368 ch_volume = arg->context;
3369
3370 channels = arg->srcfmt->channels;
3371 for (i = 0; i < arg->count; i++) {
3372 for (ch = 0; ch < channels; ch++) {
3373 aint2_t val;
3374 val = *s++;
3375 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3376 *d++ = (aint_t)val;
3377 }
3378 }
3379 }
3380
3381 /*
3382 * This filter performs conversion from stereo (or more channels) to mono.
3383 */
3384 static void
3385 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3386 {
3387 const aint_t *s;
3388 aint_t *d;
3389 u_int i;
3390
3391 DIAGNOSTIC_filter_arg(arg);
3392
3393 s = arg->src;
3394 d = arg->dst;
3395
3396 for (i = 0; i < arg->count; i++) {
3397 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3398 s += arg->srcfmt->channels;
3399 }
3400 }
3401
3402 /*
3403 * This filter performs conversion from mono to stereo (or more channels).
3404 */
3405 static void
3406 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3407 {
3408 const aint_t *s;
3409 aint_t *d;
3410 u_int i;
3411 u_int ch;
3412 u_int dstchannels;
3413
3414 DIAGNOSTIC_filter_arg(arg);
3415
3416 s = arg->src;
3417 d = arg->dst;
3418 dstchannels = arg->dstfmt->channels;
3419
3420 for (i = 0; i < arg->count; i++) {
3421 d[0] = s[0];
3422 d[1] = s[0];
3423 s++;
3424 d += dstchannels;
3425 }
3426 if (dstchannels > 2) {
3427 d = arg->dst;
3428 for (i = 0; i < arg->count; i++) {
3429 for (ch = 2; ch < dstchannels; ch++) {
3430 d[ch] = 0;
3431 }
3432 d += dstchannels;
3433 }
3434 }
3435 }
3436
3437 /*
3438 * This filter shrinks M channels into N channels.
3439 * Extra channels are discarded.
3440 */
3441 static void
3442 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3443 {
3444 const aint_t *s;
3445 aint_t *d;
3446 u_int i;
3447 u_int ch;
3448
3449 DIAGNOSTIC_filter_arg(arg);
3450
3451 s = arg->src;
3452 d = arg->dst;
3453
3454 for (i = 0; i < arg->count; i++) {
3455 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3456 *d++ = s[ch];
3457 }
3458 s += arg->srcfmt->channels;
3459 }
3460 }
3461
3462 /*
3463 * This filter expands M channels into N channels.
3464 * Silence is inserted for missing channels.
3465 */
3466 static void
3467 audio_track_chmix_expand(audio_filter_arg_t *arg)
3468 {
3469 const aint_t *s;
3470 aint_t *d;
3471 u_int i;
3472 u_int ch;
3473 u_int srcchannels;
3474 u_int dstchannels;
3475
3476 DIAGNOSTIC_filter_arg(arg);
3477
3478 s = arg->src;
3479 d = arg->dst;
3480
3481 srcchannels = arg->srcfmt->channels;
3482 dstchannels = arg->dstfmt->channels;
3483 for (i = 0; i < arg->count; i++) {
3484 for (ch = 0; ch < srcchannels; ch++) {
3485 *d++ = *s++;
3486 }
3487 for (; ch < dstchannels; ch++) {
3488 *d++ = 0;
3489 }
3490 }
3491 }
3492
3493 /*
3494 * This filter performs frequency conversion (up sampling).
3495 * It uses linear interpolation.
3496 */
3497 static void
3498 audio_track_freq_up(audio_filter_arg_t *arg)
3499 {
3500 audio_track_t *track;
3501 audio_ring_t *src;
3502 audio_ring_t *dst;
3503 const aint_t *s;
3504 aint_t *d;
3505 aint_t prev[AUDIO_MAX_CHANNELS];
3506 aint_t curr[AUDIO_MAX_CHANNELS];
3507 aint_t grad[AUDIO_MAX_CHANNELS];
3508 u_int i;
3509 u_int t;
3510 u_int step;
3511 u_int channels;
3512 u_int ch;
3513 int srcused;
3514
3515 track = arg->context;
3516 KASSERT(track);
3517 src = &track->freq.srcbuf;
3518 dst = track->freq.dst;
3519 DIAGNOSTIC_ring(dst);
3520 DIAGNOSTIC_ring(src);
3521 KASSERT(src->used > 0);
3522 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3523 "src->fmt.channels=%d dst->fmt.channels=%d",
3524 src->fmt.channels, dst->fmt.channels);
3525 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3526 "src->head=%d track->mixer->frames_per_block=%d",
3527 src->head, track->mixer->frames_per_block);
3528
3529 s = arg->src;
3530 d = arg->dst;
3531
3532 /*
3533 * In order to faciliate interpolation for each block, slide (delay)
3534 * input by one sample. As a result, strictly speaking, the output
3535 * phase is delayed by 1/dstfreq. However, I believe there is no
3536 * observable impact.
3537 *
3538 * Example)
3539 * srcfreq:dstfreq = 1:3
3540 *
3541 * A - -
3542 * |
3543 * |
3544 * | B - -
3545 * +-----+-----> input timeframe
3546 * 0 1
3547 *
3548 * 0 1
3549 * +-----+-----> input timeframe
3550 * | A
3551 * | x x
3552 * | x x
3553 * x (B)
3554 * +-+-+-+-+-+-> output timeframe
3555 * 0 1 2 3 4 5
3556 */
3557
3558 /* Last samples in previous block */
3559 channels = src->fmt.channels;
3560 for (ch = 0; ch < channels; ch++) {
3561 prev[ch] = track->freq_prev[ch];
3562 curr[ch] = track->freq_curr[ch];
3563 grad[ch] = curr[ch] - prev[ch];
3564 }
3565
3566 step = track->freq_step;
3567 t = track->freq_current;
3568 //#define FREQ_DEBUG
3569 #if defined(FREQ_DEBUG)
3570 #define PRINTF(fmt...) printf(fmt)
3571 #else
3572 #define PRINTF(fmt...) do { } while (0)
3573 #endif
3574 srcused = src->used;
3575 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3576 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3577 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3578 PRINTF(" t=%d\n", t);
3579
3580 for (i = 0; i < arg->count; i++) {
3581 PRINTF("i=%d t=%5d", i, t);
3582 if (t >= 65536) {
3583 for (ch = 0; ch < channels; ch++) {
3584 prev[ch] = curr[ch];
3585 curr[ch] = *s++;
3586 grad[ch] = curr[ch] - prev[ch];
3587 }
3588 PRINTF(" prev=%d s[%d]=%d",
3589 prev[0], src->used - srcused, curr[0]);
3590
3591 /* Update */
3592 t -= 65536;
3593 srcused--;
3594 if (srcused < 0) {
3595 PRINTF(" break\n");
3596 break;
3597 }
3598 }
3599
3600 for (ch = 0; ch < channels; ch++) {
3601 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3602 #if defined(FREQ_DEBUG)
3603 if (ch == 0)
3604 printf(" t=%5d *d=%d", t, d[-1]);
3605 #endif
3606 }
3607 t += step;
3608
3609 PRINTF("\n");
3610 }
3611 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3612
3613 auring_take(src, src->used);
3614 auring_push(dst, i);
3615
3616 /* Adjust */
3617 t += track->freq_leap;
3618
3619 track->freq_current = t;
3620 for (ch = 0; ch < channels; ch++) {
3621 track->freq_prev[ch] = prev[ch];
3622 track->freq_curr[ch] = curr[ch];
3623 }
3624 }
3625
3626 /*
3627 * This filter performs frequency conversion (down sampling).
3628 * It uses simple thinning.
3629 */
3630 static void
3631 audio_track_freq_down(audio_filter_arg_t *arg)
3632 {
3633 audio_track_t *track;
3634 audio_ring_t *src;
3635 audio_ring_t *dst;
3636 const aint_t *s0;
3637 aint_t *d;
3638 u_int i;
3639 u_int t;
3640 u_int step;
3641 u_int ch;
3642 u_int channels;
3643
3644 track = arg->context;
3645 KASSERT(track);
3646 src = &track->freq.srcbuf;
3647 dst = track->freq.dst;
3648
3649 DIAGNOSTIC_ring(dst);
3650 DIAGNOSTIC_ring(src);
3651 KASSERT(src->used > 0);
3652 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3653 "src->fmt.channels=%d dst->fmt.channels=%d",
3654 src->fmt.channels, dst->fmt.channels);
3655 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3656 "src->head=%d track->mixer->frames_per_block=%d",
3657 src->head, track->mixer->frames_per_block);
3658
3659 s0 = arg->src;
3660 d = arg->dst;
3661 t = track->freq_current;
3662 step = track->freq_step;
3663 channels = dst->fmt.channels;
3664 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3665 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3666 PRINTF(" t=%d\n", t);
3667
3668 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3669 const aint_t *s;
3670 PRINTF("i=%4d t=%10d", i, t);
3671 s = s0 + (t / 65536) * channels;
3672 PRINTF(" s=%5ld", (s - s0) / channels);
3673 for (ch = 0; ch < channels; ch++) {
3674 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3675 *d++ = s[ch];
3676 }
3677 PRINTF("\n");
3678 t += step;
3679 }
3680 t += track->freq_leap;
3681 PRINTF("end t=%d\n", t);
3682 auring_take(src, src->used);
3683 auring_push(dst, i);
3684 track->freq_current = t % 65536;
3685 }
3686
3687 /*
3688 * Creates track and returns it.
3689 */
3690 audio_track_t *
3691 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3692 {
3693 audio_track_t *track;
3694 static int newid = 0;
3695
3696 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3697
3698 track->id = newid++;
3699 track->mixer = mixer;
3700 track->mode = mixer->mode;
3701
3702 /* Do TRACE after id is assigned. */
3703 TRACET(3, track, "for %s",
3704 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3705
3706 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3707 track->volume = 256;
3708 #endif
3709 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3710 track->ch_volume[i] = 256;
3711 }
3712
3713 return track;
3714 }
3715
3716 /*
3717 * Release all resources of the track and track itself.
3718 * track must not be NULL. Don't specify the track within the file
3719 * structure linked from sc->sc_files.
3720 */
3721 static void
3722 audio_track_destroy(audio_track_t *track)
3723 {
3724
3725 KASSERT(track);
3726
3727 audio_free_usrbuf(track);
3728 audio_free(track->codec.srcbuf.mem);
3729 audio_free(track->chvol.srcbuf.mem);
3730 audio_free(track->chmix.srcbuf.mem);
3731 audio_free(track->freq.srcbuf.mem);
3732 audio_free(track->outbuf.mem);
3733
3734 kmem_free(track, sizeof(*track));
3735 }
3736
3737 /*
3738 * It returns encoding conversion filter according to src and dst format.
3739 * If it is not a convertible pair, it returns NULL. Either src or dst
3740 * must be internal format.
3741 */
3742 static audio_filter_t
3743 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3744 const audio_format2_t *dst)
3745 {
3746
3747 if (audio_format2_is_internal(src)) {
3748 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3749 return audio_internal_to_mulaw;
3750 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3751 return audio_internal_to_alaw;
3752 } else if (audio_format2_is_linear(dst)) {
3753 switch (dst->stride) {
3754 case 8:
3755 return audio_internal_to_linear8;
3756 case 16:
3757 return audio_internal_to_linear16;
3758 #if defined(AUDIO_SUPPORT_LINEAR24)
3759 case 24:
3760 return audio_internal_to_linear24;
3761 #endif
3762 case 32:
3763 return audio_internal_to_linear32;
3764 default:
3765 TRACET(1, track, "unsupported %s stride %d",
3766 "dst", dst->stride);
3767 goto abort;
3768 }
3769 }
3770 } else if (audio_format2_is_internal(dst)) {
3771 if (src->encoding == AUDIO_ENCODING_ULAW) {
3772 return audio_mulaw_to_internal;
3773 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3774 return audio_alaw_to_internal;
3775 } else if (audio_format2_is_linear(src)) {
3776 switch (src->stride) {
3777 case 8:
3778 return audio_linear8_to_internal;
3779 case 16:
3780 return audio_linear16_to_internal;
3781 #if defined(AUDIO_SUPPORT_LINEAR24)
3782 case 24:
3783 return audio_linear24_to_internal;
3784 #endif
3785 case 32:
3786 return audio_linear32_to_internal;
3787 default:
3788 TRACET(1, track, "unsupported %s stride %d",
3789 "src", src->stride);
3790 goto abort;
3791 }
3792 }
3793 }
3794
3795 TRACET(1, track, "unsupported encoding");
3796 abort:
3797 #if defined(AUDIO_DEBUG)
3798 if (audiodebug >= 2) {
3799 char buf[100];
3800 audio_format2_tostr(buf, sizeof(buf), src);
3801 TRACET(2, track, "src %s", buf);
3802 audio_format2_tostr(buf, sizeof(buf), dst);
3803 TRACET(2, track, "dst %s", buf);
3804 }
3805 #endif
3806 return NULL;
3807 }
3808
3809 /*
3810 * Initialize the codec stage of this track as necessary.
3811 * If successful, it initializes the codec stage as necessary, stores updated
3812 * last_dst in *last_dstp in any case, and returns 0.
3813 * Otherwise, it returns errno without modifying *last_dstp.
3814 */
3815 static int
3816 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3817 {
3818 audio_ring_t *last_dst;
3819 audio_ring_t *srcbuf;
3820 audio_format2_t *srcfmt;
3821 audio_format2_t *dstfmt;
3822 audio_filter_arg_t *arg;
3823 u_int len;
3824 int error;
3825
3826 KASSERT(track);
3827
3828 last_dst = *last_dstp;
3829 dstfmt = &last_dst->fmt;
3830 srcfmt = &track->inputfmt;
3831 srcbuf = &track->codec.srcbuf;
3832 error = 0;
3833
3834 if (srcfmt->encoding != dstfmt->encoding
3835 || srcfmt->precision != dstfmt->precision
3836 || srcfmt->stride != dstfmt->stride) {
3837 track->codec.dst = last_dst;
3838
3839 srcbuf->fmt = *dstfmt;
3840 srcbuf->fmt.encoding = srcfmt->encoding;
3841 srcbuf->fmt.precision = srcfmt->precision;
3842 srcbuf->fmt.stride = srcfmt->stride;
3843
3844 track->codec.filter = audio_track_get_codec(track,
3845 &srcbuf->fmt, dstfmt);
3846 if (track->codec.filter == NULL) {
3847 error = EINVAL;
3848 goto abort;
3849 }
3850
3851 srcbuf->head = 0;
3852 srcbuf->used = 0;
3853 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3854 len = auring_bytelen(srcbuf);
3855 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3856
3857 arg = &track->codec.arg;
3858 arg->srcfmt = &srcbuf->fmt;
3859 arg->dstfmt = dstfmt;
3860 arg->context = NULL;
3861
3862 *last_dstp = srcbuf;
3863 return 0;
3864 }
3865
3866 abort:
3867 track->codec.filter = NULL;
3868 audio_free(srcbuf->mem);
3869 return error;
3870 }
3871
3872 /*
3873 * Initialize the chvol stage of this track as necessary.
3874 * If successful, it initializes the chvol stage as necessary, stores updated
3875 * last_dst in *last_dstp in any case, and returns 0.
3876 * Otherwise, it returns errno without modifying *last_dstp.
3877 */
3878 static int
3879 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3880 {
3881 audio_ring_t *last_dst;
3882 audio_ring_t *srcbuf;
3883 audio_format2_t *srcfmt;
3884 audio_format2_t *dstfmt;
3885 audio_filter_arg_t *arg;
3886 u_int len;
3887 int error;
3888
3889 KASSERT(track);
3890
3891 last_dst = *last_dstp;
3892 dstfmt = &last_dst->fmt;
3893 srcfmt = &track->inputfmt;
3894 srcbuf = &track->chvol.srcbuf;
3895 error = 0;
3896
3897 /* Check whether channel volume conversion is necessary. */
3898 bool use_chvol = false;
3899 for (int ch = 0; ch < srcfmt->channels; ch++) {
3900 if (track->ch_volume[ch] != 256) {
3901 use_chvol = true;
3902 break;
3903 }
3904 }
3905
3906 if (use_chvol == true) {
3907 track->chvol.dst = last_dst;
3908 track->chvol.filter = audio_track_chvol;
3909
3910 srcbuf->fmt = *dstfmt;
3911 /* no format conversion occurs */
3912
3913 srcbuf->head = 0;
3914 srcbuf->used = 0;
3915 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3916 len = auring_bytelen(srcbuf);
3917 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3918
3919 arg = &track->chvol.arg;
3920 arg->srcfmt = &srcbuf->fmt;
3921 arg->dstfmt = dstfmt;
3922 arg->context = track->ch_volume;
3923
3924 *last_dstp = srcbuf;
3925 return 0;
3926 }
3927
3928 track->chvol.filter = NULL;
3929 audio_free(srcbuf->mem);
3930 return error;
3931 }
3932
3933 /*
3934 * Initialize the chmix stage of this track as necessary.
3935 * If successful, it initializes the chmix stage as necessary, stores updated
3936 * last_dst in *last_dstp in any case, and returns 0.
3937 * Otherwise, it returns errno without modifying *last_dstp.
3938 */
3939 static int
3940 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
3941 {
3942 audio_ring_t *last_dst;
3943 audio_ring_t *srcbuf;
3944 audio_format2_t *srcfmt;
3945 audio_format2_t *dstfmt;
3946 audio_filter_arg_t *arg;
3947 u_int srcch;
3948 u_int dstch;
3949 u_int len;
3950 int error;
3951
3952 KASSERT(track);
3953
3954 last_dst = *last_dstp;
3955 dstfmt = &last_dst->fmt;
3956 srcfmt = &track->inputfmt;
3957 srcbuf = &track->chmix.srcbuf;
3958 error = 0;
3959
3960 srcch = srcfmt->channels;
3961 dstch = dstfmt->channels;
3962 if (srcch != dstch) {
3963 track->chmix.dst = last_dst;
3964
3965 if (srcch >= 2 && dstch == 1) {
3966 track->chmix.filter = audio_track_chmix_mixLR;
3967 } else if (srcch == 1 && dstch >= 2) {
3968 track->chmix.filter = audio_track_chmix_dupLR;
3969 } else if (srcch > dstch) {
3970 track->chmix.filter = audio_track_chmix_shrink;
3971 } else {
3972 track->chmix.filter = audio_track_chmix_expand;
3973 }
3974
3975 srcbuf->fmt = *dstfmt;
3976 srcbuf->fmt.channels = srcch;
3977
3978 srcbuf->head = 0;
3979 srcbuf->used = 0;
3980 /* XXX The buffer size should be able to calculate. */
3981 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3982 len = auring_bytelen(srcbuf);
3983 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3984
3985 arg = &track->chmix.arg;
3986 arg->srcfmt = &srcbuf->fmt;
3987 arg->dstfmt = dstfmt;
3988 arg->context = NULL;
3989
3990 *last_dstp = srcbuf;
3991 return 0;
3992 }
3993
3994 track->chmix.filter = NULL;
3995 audio_free(srcbuf->mem);
3996 return error;
3997 }
3998
3999 /*
4000 * Initialize the freq stage of this track as necessary.
4001 * If successful, it initializes the freq stage as necessary, stores updated
4002 * last_dst in *last_dstp in any case, and returns 0.
4003 * Otherwise, it returns errno without modifying *last_dstp.
4004 */
4005 static int
4006 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4007 {
4008 audio_ring_t *last_dst;
4009 audio_ring_t *srcbuf;
4010 audio_format2_t *srcfmt;
4011 audio_format2_t *dstfmt;
4012 audio_filter_arg_t *arg;
4013 uint32_t srcfreq;
4014 uint32_t dstfreq;
4015 u_int dst_capacity;
4016 u_int mod;
4017 u_int len;
4018 int error;
4019
4020 KASSERT(track);
4021
4022 last_dst = *last_dstp;
4023 dstfmt = &last_dst->fmt;
4024 srcfmt = &track->inputfmt;
4025 srcbuf = &track->freq.srcbuf;
4026 error = 0;
4027
4028 srcfreq = srcfmt->sample_rate;
4029 dstfreq = dstfmt->sample_rate;
4030 if (srcfreq != dstfreq) {
4031 track->freq.dst = last_dst;
4032
4033 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4034 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4035
4036 /* freq_step is the ratio of src/dst when let dst 65536. */
4037 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4038
4039 dst_capacity = frame_per_block(track->mixer, dstfmt);
4040 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4041 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4042
4043 if (track->freq_step < 65536) {
4044 track->freq.filter = audio_track_freq_up;
4045 /* In order to carry at the first time. */
4046 track->freq_current = 65536;
4047 } else {
4048 track->freq.filter = audio_track_freq_down;
4049 track->freq_current = 0;
4050 }
4051
4052 srcbuf->fmt = *dstfmt;
4053 srcbuf->fmt.sample_rate = srcfreq;
4054
4055 srcbuf->head = 0;
4056 srcbuf->used = 0;
4057 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4058 len = auring_bytelen(srcbuf);
4059 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4060
4061 arg = &track->freq.arg;
4062 arg->srcfmt = &srcbuf->fmt;
4063 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4064 arg->context = track;
4065
4066 *last_dstp = srcbuf;
4067 return 0;
4068 }
4069
4070 track->freq.filter = NULL;
4071 audio_free(srcbuf->mem);
4072 return error;
4073 }
4074
4075 /*
4076 * When playing back: (e.g. if codec and freq stage are valid)
4077 *
4078 * write
4079 * | uiomove
4080 * v
4081 * usrbuf [...............] byte ring buffer (mmap-able)
4082 * | memcpy
4083 * v
4084 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4085 * .dst ----+
4086 * | convert
4087 * v
4088 * freq.srcbuf [....] 1 block (ring) buffer
4089 * .dst ----+
4090 * | convert
4091 * v
4092 * outbuf [...............] NBLKOUT blocks ring buffer
4093 *
4094 *
4095 * When recording:
4096 *
4097 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4098 * .dst ----+
4099 * | convert
4100 * v
4101 * codec.srcbuf[.....] 1 block (ring) buffer
4102 * .dst ----+
4103 * | convert
4104 * v
4105 * outbuf [.....] 1 block (ring) buffer
4106 * | memcpy
4107 * v
4108 * usrbuf [...............] byte ring buffer (mmap-able *)
4109 * | uiomove
4110 * v
4111 * read
4112 *
4113 * *: usrbuf for recording is also mmap-able due to symmetry with
4114 * playback buffer, but for now mmap will never happen for recording.
4115 */
4116
4117 /*
4118 * Set the userland format of this track.
4119 * usrfmt argument should be parameter verified with audio_check_params().
4120 * It will release and reallocate all internal conversion buffers.
4121 * It returns 0 if successful. Otherwise it returns errno with clearing all
4122 * internal buffers.
4123 * It must be called without sc_intr_lock since uvm_* routines require non
4124 * intr_lock state.
4125 * It must be called with track lock held since it may release and reallocate
4126 * outbuf.
4127 */
4128 static int
4129 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4130 {
4131 struct audio_softc *sc;
4132 u_int newbufsize;
4133 u_int oldblksize;
4134 u_int len;
4135 int error;
4136
4137 KASSERT(track);
4138 sc = track->mixer->sc;
4139
4140 /* usrbuf is the closest buffer to the userland. */
4141 track->usrbuf.fmt = *usrfmt;
4142
4143 /*
4144 * For references, one block size (in 40msec) is:
4145 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4146 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4147 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4148 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4149 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4150 *
4151 * For example,
4152 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4153 * newbufsize = rounddown(65536 / 7056) = 63504
4154 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4155 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4156 *
4157 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4158 * newbufsize = rounddown(65536 / 7680) = 61440
4159 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4160 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4161 */
4162 oldblksize = track->usrbuf_blksize;
4163 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4164 frame_per_block(track->mixer, &track->usrbuf.fmt));
4165 track->usrbuf.head = 0;
4166 track->usrbuf.used = 0;
4167 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4168 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4169 error = audio_realloc_usrbuf(track, newbufsize);
4170 if (error) {
4171 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4172 newbufsize);
4173 goto error;
4174 }
4175
4176 /* Recalc water mark. */
4177 if (track->usrbuf_blksize != oldblksize) {
4178 if (audio_track_is_playback(track)) {
4179 /* Set high at 100%, low at 75%. */
4180 track->usrbuf_usedhigh = track->usrbuf.capacity;
4181 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4182 } else {
4183 /* Set high at 100% minus 1block(?), low at 0% */
4184 track->usrbuf_usedhigh = track->usrbuf.capacity -
4185 track->usrbuf_blksize;
4186 track->usrbuf_usedlow = 0;
4187 }
4188 }
4189
4190 /* Stage buffer */
4191 audio_ring_t *last_dst = &track->outbuf;
4192 if (audio_track_is_playback(track)) {
4193 /* On playback, initialize from the mixer side in order. */
4194 track->inputfmt = *usrfmt;
4195 track->outbuf.fmt = track->mixer->track_fmt;
4196
4197 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4198 goto error;
4199 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4200 goto error;
4201 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4202 goto error;
4203 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4204 goto error;
4205 } else {
4206 /* On recording, initialize from userland side in order. */
4207 track->inputfmt = track->mixer->track_fmt;
4208 track->outbuf.fmt = *usrfmt;
4209
4210 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4211 goto error;
4212 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4213 goto error;
4214 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4215 goto error;
4216 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4217 goto error;
4218 }
4219 #if 0
4220 /* debug */
4221 if (track->freq.filter) {
4222 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4223 audio_print_format2("freq dst", &track->freq.dst->fmt);
4224 }
4225 if (track->chmix.filter) {
4226 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4227 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4228 }
4229 if (track->chvol.filter) {
4230 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4231 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4232 }
4233 if (track->codec.filter) {
4234 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4235 audio_print_format2("codec dst", &track->codec.dst->fmt);
4236 }
4237 #endif
4238
4239 /* Stage input buffer */
4240 track->input = last_dst;
4241
4242 /*
4243 * On the recording track, make the first stage a ring buffer.
4244 * XXX is there a better way?
4245 */
4246 if (audio_track_is_record(track)) {
4247 track->input->capacity = NBLKOUT *
4248 frame_per_block(track->mixer, &track->input->fmt);
4249 len = auring_bytelen(track->input);
4250 track->input->mem = audio_realloc(track->input->mem, len);
4251 }
4252
4253 /*
4254 * Output buffer.
4255 * On the playback track, its capacity is NBLKOUT blocks.
4256 * On the recording track, its capacity is 1 block.
4257 */
4258 track->outbuf.head = 0;
4259 track->outbuf.used = 0;
4260 track->outbuf.capacity = frame_per_block(track->mixer,
4261 &track->outbuf.fmt);
4262 if (audio_track_is_playback(track))
4263 track->outbuf.capacity *= NBLKOUT;
4264 len = auring_bytelen(&track->outbuf);
4265 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4266 if (track->outbuf.mem == NULL) {
4267 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4268 error = ENOMEM;
4269 goto error;
4270 }
4271
4272 #if defined(AUDIO_DEBUG)
4273 if (audiodebug >= 3) {
4274 struct audio_track_debugbuf m;
4275
4276 memset(&m, 0, sizeof(m));
4277 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4278 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4279 if (track->freq.filter)
4280 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4281 track->freq.srcbuf.capacity *
4282 frametobyte(&track->freq.srcbuf.fmt, 1));
4283 if (track->chmix.filter)
4284 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4285 track->chmix.srcbuf.capacity *
4286 frametobyte(&track->chmix.srcbuf.fmt, 1));
4287 if (track->chvol.filter)
4288 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4289 track->chvol.srcbuf.capacity *
4290 frametobyte(&track->chvol.srcbuf.fmt, 1));
4291 if (track->codec.filter)
4292 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4293 track->codec.srcbuf.capacity *
4294 frametobyte(&track->codec.srcbuf.fmt, 1));
4295 snprintf(m.usrbuf, sizeof(m.usrbuf),
4296 " usr=%d", track->usrbuf.capacity);
4297
4298 if (audio_track_is_playback(track)) {
4299 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4300 m.outbuf, m.freq, m.chmix,
4301 m.chvol, m.codec, m.usrbuf);
4302 } else {
4303 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4304 m.freq, m.chmix, m.chvol,
4305 m.codec, m.outbuf, m.usrbuf);
4306 }
4307 }
4308 #endif
4309 return 0;
4310
4311 error:
4312 audio_free_usrbuf(track);
4313 audio_free(track->codec.srcbuf.mem);
4314 audio_free(track->chvol.srcbuf.mem);
4315 audio_free(track->chmix.srcbuf.mem);
4316 audio_free(track->freq.srcbuf.mem);
4317 audio_free(track->outbuf.mem);
4318 return error;
4319 }
4320
4321 /*
4322 * Fill silence frames (as the internal format) up to 1 block
4323 * if the ring is not empty and less than 1 block.
4324 * It returns the number of appended frames.
4325 */
4326 static int
4327 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4328 {
4329 int fpb;
4330 int n;
4331
4332 KASSERT(track);
4333 KASSERT(audio_format2_is_internal(&ring->fmt));
4334
4335 /* XXX is n correct? */
4336 /* XXX memset uses frametobyte()? */
4337
4338 if (ring->used == 0)
4339 return 0;
4340
4341 fpb = frame_per_block(track->mixer, &ring->fmt);
4342 if (ring->used >= fpb)
4343 return 0;
4344
4345 n = (ring->capacity - ring->used) % fpb;
4346
4347 KASSERTMSG(auring_get_contig_free(ring) >= n,
4348 "auring_get_contig_free(ring)=%d n=%d",
4349 auring_get_contig_free(ring), n);
4350
4351 memset(auring_tailptr_aint(ring), 0,
4352 n * ring->fmt.channels * sizeof(aint_t));
4353 auring_push(ring, n);
4354 return n;
4355 }
4356
4357 /*
4358 * Execute the conversion stage.
4359 * It prepares arg from this stage and executes stage->filter.
4360 * It must be called only if stage->filter is not NULL.
4361 *
4362 * For stages other than frequency conversion, the function increments
4363 * src and dst counters here. For frequency conversion stage, on the
4364 * other hand, the function does not touch src and dst counters and
4365 * filter side has to increment them.
4366 */
4367 static void
4368 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4369 {
4370 audio_filter_arg_t *arg;
4371 int srccount;
4372 int dstcount;
4373 int count;
4374
4375 KASSERT(track);
4376 KASSERT(stage->filter);
4377
4378 srccount = auring_get_contig_used(&stage->srcbuf);
4379 dstcount = auring_get_contig_free(stage->dst);
4380
4381 if (isfreq) {
4382 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4383 count = uimin(dstcount, track->mixer->frames_per_block);
4384 } else {
4385 count = uimin(srccount, dstcount);
4386 }
4387
4388 if (count > 0) {
4389 arg = &stage->arg;
4390 arg->src = auring_headptr(&stage->srcbuf);
4391 arg->dst = auring_tailptr(stage->dst);
4392 arg->count = count;
4393
4394 stage->filter(arg);
4395
4396 if (!isfreq) {
4397 auring_take(&stage->srcbuf, count);
4398 auring_push(stage->dst, count);
4399 }
4400 }
4401 }
4402
4403 /*
4404 * Produce output buffer for playback from user input buffer.
4405 * It must be called only if usrbuf is not empty and outbuf is
4406 * available at least one free block.
4407 */
4408 static void
4409 audio_track_play(audio_track_t *track)
4410 {
4411 audio_ring_t *usrbuf;
4412 audio_ring_t *input;
4413 int count;
4414 int framesize;
4415 int bytes;
4416
4417 KASSERT(track);
4418 KASSERT(track->lock);
4419 TRACET(4, track, "start pstate=%d", track->pstate);
4420
4421 /* At this point usrbuf must not be empty. */
4422 KASSERT(track->usrbuf.used > 0);
4423 /* Also, outbuf must be available at least one block. */
4424 count = auring_get_contig_free(&track->outbuf);
4425 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4426 "count=%d fpb=%d",
4427 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4428
4429 /* XXX TODO: is this necessary for now? */
4430 int track_count_0 = track->outbuf.used;
4431
4432 usrbuf = &track->usrbuf;
4433 input = track->input;
4434
4435 /*
4436 * framesize is always 1 byte or more since all formats supported as
4437 * usrfmt(=input) have 8bit or more stride.
4438 */
4439 framesize = frametobyte(&input->fmt, 1);
4440 KASSERT(framesize >= 1);
4441
4442 /* The next stage of usrbuf (=input) must be available. */
4443 KASSERT(auring_get_contig_free(input) > 0);
4444
4445 /*
4446 * Copy usrbuf up to 1block to input buffer.
4447 * count is the number of frames to copy from usrbuf.
4448 * bytes is the number of bytes to copy from usrbuf. However it is
4449 * not copied less than one frame.
4450 */
4451 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4452 bytes = count * framesize;
4453
4454 track->usrbuf_stamp += bytes;
4455
4456 if (usrbuf->head + bytes < usrbuf->capacity) {
4457 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4458 (uint8_t *)usrbuf->mem + usrbuf->head,
4459 bytes);
4460 auring_push(input, count);
4461 auring_take(usrbuf, bytes);
4462 } else {
4463 int bytes1;
4464 int bytes2;
4465
4466 bytes1 = auring_get_contig_used(usrbuf);
4467 KASSERTMSG(bytes1 % framesize == 0,
4468 "bytes1=%d framesize=%d", bytes1, framesize);
4469 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4470 (uint8_t *)usrbuf->mem + usrbuf->head,
4471 bytes1);
4472 auring_push(input, bytes1 / framesize);
4473 auring_take(usrbuf, bytes1);
4474
4475 bytes2 = bytes - bytes1;
4476 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4477 (uint8_t *)usrbuf->mem + usrbuf->head,
4478 bytes2);
4479 auring_push(input, bytes2 / framesize);
4480 auring_take(usrbuf, bytes2);
4481 }
4482
4483 /* Encoding conversion */
4484 if (track->codec.filter)
4485 audio_apply_stage(track, &track->codec, false);
4486
4487 /* Channel volume */
4488 if (track->chvol.filter)
4489 audio_apply_stage(track, &track->chvol, false);
4490
4491 /* Channel mix */
4492 if (track->chmix.filter)
4493 audio_apply_stage(track, &track->chmix, false);
4494
4495 /* Frequency conversion */
4496 /*
4497 * Since the frequency conversion needs correction for each block,
4498 * it rounds up to 1 block.
4499 */
4500 if (track->freq.filter) {
4501 int n;
4502 n = audio_append_silence(track, &track->freq.srcbuf);
4503 if (n > 0) {
4504 TRACET(4, track,
4505 "freq.srcbuf add silence %d -> %d/%d/%d",
4506 n,
4507 track->freq.srcbuf.head,
4508 track->freq.srcbuf.used,
4509 track->freq.srcbuf.capacity);
4510 }
4511 if (track->freq.srcbuf.used > 0) {
4512 audio_apply_stage(track, &track->freq, true);
4513 }
4514 }
4515
4516 if (bytes < track->usrbuf_blksize) {
4517 /*
4518 * Clear all conversion buffer pointer if the conversion was
4519 * not exactly one block. These conversion stage buffers are
4520 * certainly circular buffers because of symmetry with the
4521 * previous and next stage buffer. However, since they are
4522 * treated as simple contiguous buffers in operation, so head
4523 * always should point 0. This may happen during drain-age.
4524 */
4525 TRACET(4, track, "reset stage");
4526 if (track->codec.filter) {
4527 KASSERT(track->codec.srcbuf.used == 0);
4528 track->codec.srcbuf.head = 0;
4529 }
4530 if (track->chvol.filter) {
4531 KASSERT(track->chvol.srcbuf.used == 0);
4532 track->chvol.srcbuf.head = 0;
4533 }
4534 if (track->chmix.filter) {
4535 KASSERT(track->chmix.srcbuf.used == 0);
4536 track->chmix.srcbuf.head = 0;
4537 }
4538 if (track->freq.filter) {
4539 KASSERT(track->freq.srcbuf.used == 0);
4540 track->freq.srcbuf.head = 0;
4541 }
4542 }
4543
4544 if (track->input == &track->outbuf) {
4545 track->outputcounter = track->inputcounter;
4546 } else {
4547 track->outputcounter += track->outbuf.used - track_count_0;
4548 }
4549
4550 #if defined(AUDIO_DEBUG)
4551 if (audiodebug >= 3) {
4552 struct audio_track_debugbuf m;
4553 audio_track_bufstat(track, &m);
4554 TRACET(0, track, "end%s%s%s%s%s%s",
4555 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4556 }
4557 #endif
4558 }
4559
4560 /*
4561 * Produce user output buffer for recording from input buffer.
4562 */
4563 static void
4564 audio_track_record(audio_track_t *track)
4565 {
4566 audio_ring_t *outbuf;
4567 audio_ring_t *usrbuf;
4568 int count;
4569 int bytes;
4570 int framesize;
4571
4572 KASSERT(track);
4573 KASSERT(track->lock);
4574
4575 /* Number of frames to process */
4576 count = auring_get_contig_used(track->input);
4577 count = uimin(count, track->mixer->frames_per_block);
4578 if (count == 0) {
4579 TRACET(4, track, "count == 0");
4580 return;
4581 }
4582
4583 /* Frequency conversion */
4584 if (track->freq.filter) {
4585 if (track->freq.srcbuf.used > 0) {
4586 audio_apply_stage(track, &track->freq, true);
4587 /* XXX should input of freq be from beginning of buf? */
4588 }
4589 }
4590
4591 /* Channel mix */
4592 if (track->chmix.filter)
4593 audio_apply_stage(track, &track->chmix, false);
4594
4595 /* Channel volume */
4596 if (track->chvol.filter)
4597 audio_apply_stage(track, &track->chvol, false);
4598
4599 /* Encoding conversion */
4600 if (track->codec.filter)
4601 audio_apply_stage(track, &track->codec, false);
4602
4603 /* Copy outbuf to usrbuf */
4604 outbuf = &track->outbuf;
4605 usrbuf = &track->usrbuf;
4606 /*
4607 * framesize is always 1 byte or more since all formats supported
4608 * as usrfmt(=output) have 8bit or more stride.
4609 */
4610 framesize = frametobyte(&outbuf->fmt, 1);
4611 KASSERT(framesize >= 1);
4612 /*
4613 * count is the number of frames to copy to usrbuf.
4614 * bytes is the number of bytes to copy to usrbuf.
4615 */
4616 count = outbuf->used;
4617 count = uimin(count,
4618 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4619 bytes = count * framesize;
4620 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4621 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4622 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4623 bytes);
4624 auring_push(usrbuf, bytes);
4625 auring_take(outbuf, count);
4626 } else {
4627 int bytes1;
4628 int bytes2;
4629
4630 bytes1 = auring_get_contig_free(usrbuf);
4631 KASSERTMSG(bytes1 % framesize == 0,
4632 "bytes1=%d framesize=%d", bytes1, framesize);
4633 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4634 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4635 bytes1);
4636 auring_push(usrbuf, bytes1);
4637 auring_take(outbuf, bytes1 / framesize);
4638
4639 bytes2 = bytes - bytes1;
4640 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4641 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4642 bytes2);
4643 auring_push(usrbuf, bytes2);
4644 auring_take(outbuf, bytes2 / framesize);
4645 }
4646
4647 /* XXX TODO: any counters here? */
4648
4649 #if defined(AUDIO_DEBUG)
4650 if (audiodebug >= 3) {
4651 struct audio_track_debugbuf m;
4652 audio_track_bufstat(track, &m);
4653 TRACET(0, track, "end%s%s%s%s%s%s",
4654 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4655 }
4656 #endif
4657 }
4658
4659 /*
4660 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4661 * Must be called with sc_lock held.
4662 */
4663 static u_int
4664 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4665 {
4666 audio_format2_t *fmt;
4667 u_int blktime;
4668 u_int frames_per_block;
4669
4670 KASSERT(mutex_owned(sc->sc_lock));
4671
4672 fmt = &mixer->hwbuf.fmt;
4673 blktime = sc->sc_blk_ms;
4674
4675 /*
4676 * If stride is not multiples of 8, special treatment is necessary.
4677 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4678 */
4679 if (fmt->stride == 4) {
4680 frames_per_block = fmt->sample_rate * blktime / 1000;
4681 if ((frames_per_block & 1) != 0)
4682 blktime *= 2;
4683 }
4684 #ifdef DIAGNOSTIC
4685 else if (fmt->stride % NBBY != 0) {
4686 panic("unsupported HW stride %d", fmt->stride);
4687 }
4688 #endif
4689
4690 return blktime;
4691 }
4692
4693 /*
4694 * Initialize the mixer corresponding to the mode.
4695 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4696 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4697 * This function returns 0 on sucessful. Otherwise returns errno.
4698 * Must be called with sc_lock held.
4699 */
4700 static int
4701 audio_mixer_init(struct audio_softc *sc, int mode,
4702 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4703 {
4704 char codecbuf[64];
4705 audio_trackmixer_t *mixer;
4706 void (*softint_handler)(void *);
4707 int len;
4708 int blksize;
4709 int capacity;
4710 size_t bufsize;
4711 int hwblks;
4712 int blkms;
4713 int error;
4714
4715 KASSERT(hwfmt != NULL);
4716 KASSERT(reg != NULL);
4717 KASSERT(mutex_owned(sc->sc_lock));
4718
4719 error = 0;
4720 if (mode == AUMODE_PLAY)
4721 mixer = sc->sc_pmixer;
4722 else
4723 mixer = sc->sc_rmixer;
4724
4725 mixer->sc = sc;
4726 mixer->mode = mode;
4727
4728 mixer->hwbuf.fmt = *hwfmt;
4729 mixer->volume = 256;
4730 mixer->blktime_d = 1000;
4731 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4732 sc->sc_blk_ms = mixer->blktime_n;
4733 hwblks = NBLKHW;
4734
4735 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4736 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4737 if (sc->hw_if->round_blocksize) {
4738 int rounded;
4739 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4740 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4741 mode, &p);
4742 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4743 if (rounded != blksize) {
4744 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4745 mixer->hwbuf.fmt.channels) != 0) {
4746 device_printf(sc->sc_dev,
4747 "blksize not configured %d -> %d\n",
4748 blksize, rounded);
4749 return EINVAL;
4750 }
4751 /* Recalculation */
4752 blksize = rounded;
4753 mixer->frames_per_block = blksize * NBBY /
4754 (mixer->hwbuf.fmt.stride *
4755 mixer->hwbuf.fmt.channels);
4756 }
4757 }
4758 mixer->blktime_n = mixer->frames_per_block;
4759 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4760
4761 capacity = mixer->frames_per_block * hwblks;
4762 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4763 if (sc->hw_if->round_buffersize) {
4764 size_t rounded;
4765 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4766 bufsize);
4767 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4768 if (rounded < bufsize) {
4769 /* buffersize needs NBLKHW blocks at least. */
4770 device_printf(sc->sc_dev,
4771 "buffersize too small: buffersize=%zd blksize=%d\n",
4772 rounded, blksize);
4773 return EINVAL;
4774 }
4775 if (rounded % blksize != 0) {
4776 /* buffersize/blksize constraint mismatch? */
4777 device_printf(sc->sc_dev,
4778 "buffersize must be multiple of blksize: "
4779 "buffersize=%zu blksize=%d\n",
4780 rounded, blksize);
4781 return EINVAL;
4782 }
4783 if (rounded != bufsize) {
4784 /* Recalcuration */
4785 bufsize = rounded;
4786 hwblks = bufsize / blksize;
4787 capacity = mixer->frames_per_block * hwblks;
4788 }
4789 }
4790 TRACE(1, "buffersize for %s = %zu",
4791 (mode == AUMODE_PLAY) ? "playback" : "recording",
4792 bufsize);
4793 mixer->hwbuf.capacity = capacity;
4794
4795 /*
4796 * XXX need to release sc_lock for compatibility?
4797 */
4798 if (sc->hw_if->allocm) {
4799 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4800 if (mixer->hwbuf.mem == NULL) {
4801 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4802 __func__, bufsize);
4803 return ENOMEM;
4804 }
4805 } else {
4806 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4807 }
4808
4809 /* From here, audio_mixer_destroy is necessary to exit. */
4810 if (mode == AUMODE_PLAY) {
4811 cv_init(&mixer->outcv, "audiowr");
4812 } else {
4813 cv_init(&mixer->outcv, "audiord");
4814 }
4815
4816 if (mode == AUMODE_PLAY) {
4817 softint_handler = audio_softintr_wr;
4818 } else {
4819 softint_handler = audio_softintr_rd;
4820 }
4821 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4822 softint_handler, sc);
4823 if (mixer->sih == NULL) {
4824 device_printf(sc->sc_dev, "softint_establish failed\n");
4825 goto abort;
4826 }
4827
4828 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4829 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4830 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4831 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4832 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4833
4834 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4835 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4836 mixer->swap_endian = true;
4837 TRACE(1, "swap_endian");
4838 }
4839
4840 if (mode == AUMODE_PLAY) {
4841 /* Mixing buffer */
4842 mixer->mixfmt = mixer->track_fmt;
4843 mixer->mixfmt.precision *= 2;
4844 mixer->mixfmt.stride *= 2;
4845 /* XXX TODO: use some macros? */
4846 len = mixer->frames_per_block * mixer->mixfmt.channels *
4847 mixer->mixfmt.stride / NBBY;
4848 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4849 } else {
4850 /* No mixing buffer for recording */
4851 }
4852
4853 if (reg->codec) {
4854 mixer->codec = reg->codec;
4855 mixer->codecarg.context = reg->context;
4856 if (mode == AUMODE_PLAY) {
4857 mixer->codecarg.srcfmt = &mixer->track_fmt;
4858 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4859 } else {
4860 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4861 mixer->codecarg.dstfmt = &mixer->track_fmt;
4862 }
4863 mixer->codecbuf.fmt = mixer->track_fmt;
4864 mixer->codecbuf.capacity = mixer->frames_per_block;
4865 len = auring_bytelen(&mixer->codecbuf);
4866 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4867 if (mixer->codecbuf.mem == NULL) {
4868 device_printf(sc->sc_dev,
4869 "%s: malloc codecbuf(%d) failed\n",
4870 __func__, len);
4871 error = ENOMEM;
4872 goto abort;
4873 }
4874 }
4875
4876 /* Succeeded so display it. */
4877 codecbuf[0] = '\0';
4878 if (mixer->codec || mixer->swap_endian) {
4879 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4880 (mode == AUMODE_PLAY) ? "->" : "<-",
4881 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4882 mixer->hwbuf.fmt.precision);
4883 }
4884 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
4885 aprint_normal_dev(sc->sc_dev, "%s:%d%s %dch %dHz, blk %dms for %s\n",
4886 audio_encoding_name(mixer->track_fmt.encoding),
4887 mixer->track_fmt.precision,
4888 codecbuf,
4889 mixer->track_fmt.channels,
4890 mixer->track_fmt.sample_rate,
4891 blkms,
4892 (mode == AUMODE_PLAY) ? "playback" : "recording");
4893
4894 return 0;
4895
4896 abort:
4897 audio_mixer_destroy(sc, mixer);
4898 return error;
4899 }
4900
4901 /*
4902 * Releases all resources of 'mixer'.
4903 * Note that it does not release the memory area of 'mixer' itself.
4904 * Must be called with sc_lock held.
4905 */
4906 static void
4907 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
4908 {
4909 int bufsize;
4910
4911 KASSERT(mutex_owned(sc->sc_lock));
4912
4913 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
4914
4915 if (mixer->hwbuf.mem != NULL) {
4916 if (sc->hw_if->freem) {
4917 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
4918 } else {
4919 kmem_free(mixer->hwbuf.mem, bufsize);
4920 }
4921 mixer->hwbuf.mem = NULL;
4922 }
4923
4924 audio_free(mixer->codecbuf.mem);
4925 audio_free(mixer->mixsample);
4926
4927 cv_destroy(&mixer->outcv);
4928
4929 if (mixer->sih) {
4930 softint_disestablish(mixer->sih);
4931 mixer->sih = NULL;
4932 }
4933 }
4934
4935 /*
4936 * Starts playback mixer.
4937 * Must be called only if sc_pbusy is false.
4938 * Must be called with sc_lock held.
4939 * Must not be called from the interrupt context.
4940 */
4941 static void
4942 audio_pmixer_start(struct audio_softc *sc, bool force)
4943 {
4944 audio_trackmixer_t *mixer;
4945 int minimum;
4946
4947 KASSERT(mutex_owned(sc->sc_lock));
4948 KASSERT(sc->sc_pbusy == false);
4949
4950 mutex_enter(sc->sc_intr_lock);
4951
4952 mixer = sc->sc_pmixer;
4953 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
4954 (audiodebug >= 3) ? "begin " : "",
4955 (int)mixer->mixseq, (int)mixer->hwseq,
4956 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
4957 force ? " force" : "");
4958
4959 /* Need two blocks to start normally. */
4960 minimum = (force) ? 1 : 2;
4961 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
4962 audio_pmixer_process(sc);
4963 }
4964
4965 /* Start output */
4966 audio_pmixer_output(sc);
4967 sc->sc_pbusy = true;
4968
4969 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
4970 (int)mixer->mixseq, (int)mixer->hwseq,
4971 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
4972
4973 mutex_exit(sc->sc_intr_lock);
4974 }
4975
4976 /*
4977 * When playing back with MD filter:
4978 *
4979 * track track ...
4980 * v v
4981 * + mix (with aint2_t)
4982 * | master volume (with aint2_t)
4983 * v
4984 * mixsample [::::] wide-int 1 block (ring) buffer
4985 * |
4986 * | convert aint2_t -> aint_t
4987 * v
4988 * codecbuf [....] 1 block (ring) buffer
4989 * |
4990 * | convert to hw format
4991 * v
4992 * hwbuf [............] NBLKHW blocks ring buffer
4993 *
4994 * When playing back without MD filter:
4995 *
4996 * mixsample [::::] wide-int 1 block (ring) buffer
4997 * |
4998 * | convert aint2_t -> aint_t
4999 * | (with byte swap if necessary)
5000 * v
5001 * hwbuf [............] NBLKHW blocks ring buffer
5002 *
5003 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5004 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5005 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5006 */
5007
5008 /*
5009 * Performs track mixing and converts it to hwbuf.
5010 * Note that this function doesn't transfer hwbuf to hardware.
5011 * Must be called with sc_intr_lock held.
5012 */
5013 static void
5014 audio_pmixer_process(struct audio_softc *sc)
5015 {
5016 audio_trackmixer_t *mixer;
5017 audio_file_t *f;
5018 int frame_count;
5019 int sample_count;
5020 int mixed;
5021 int i;
5022 aint2_t *m;
5023 aint_t *h;
5024
5025 mixer = sc->sc_pmixer;
5026
5027 frame_count = mixer->frames_per_block;
5028 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5029 "auring_get_contig_free()=%d frame_count=%d",
5030 auring_get_contig_free(&mixer->hwbuf), frame_count);
5031 sample_count = frame_count * mixer->mixfmt.channels;
5032
5033 mixer->mixseq++;
5034
5035 /* Mix all tracks */
5036 mixed = 0;
5037 SLIST_FOREACH(f, &sc->sc_files, entry) {
5038 audio_track_t *track = f->ptrack;
5039
5040 if (track == NULL)
5041 continue;
5042
5043 if (track->is_pause) {
5044 TRACET(4, track, "skip; paused");
5045 continue;
5046 }
5047
5048 /* Skip if the track is used by process context. */
5049 if (audio_track_lock_tryenter(track) == false) {
5050 TRACET(4, track, "skip; in use");
5051 continue;
5052 }
5053
5054 /* Emulate mmap'ped track */
5055 if (track->mmapped) {
5056 auring_push(&track->usrbuf, track->usrbuf_blksize);
5057 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5058 track->usrbuf.head,
5059 track->usrbuf.used,
5060 track->usrbuf.capacity);
5061 }
5062
5063 if (track->outbuf.used < mixer->frames_per_block &&
5064 track->usrbuf.used > 0) {
5065 TRACET(4, track, "process");
5066 audio_track_play(track);
5067 }
5068
5069 if (track->outbuf.used > 0) {
5070 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5071 } else {
5072 TRACET(4, track, "skip; empty");
5073 }
5074
5075 audio_track_lock_exit(track);
5076 }
5077
5078 if (mixed == 0) {
5079 /* Silence */
5080 memset(mixer->mixsample, 0,
5081 frametobyte(&mixer->mixfmt, frame_count));
5082 } else {
5083 if (mixed > 1) {
5084 /* If there are multiple tracks, do auto gain control */
5085 audio_pmixer_agc(mixer, sample_count);
5086 }
5087
5088 /* Apply master volume */
5089 if (mixer->volume < 256) {
5090 m = mixer->mixsample;
5091 for (i = 0; i < sample_count; i++) {
5092 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5093 m++;
5094 }
5095
5096 /*
5097 * Recover the volume gradually at the pace of
5098 * several times per second. If it's too fast, you
5099 * can recognize that the volume changes up and down
5100 * quickly and it's not so comfortable.
5101 */
5102 mixer->voltimer += mixer->blktime_n;
5103 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5104 mixer->volume++;
5105 mixer->voltimer = 0;
5106 #if defined(AUDIO_DEBUG_AGC)
5107 TRACE(1, "volume recover: %d", mixer->volume);
5108 #endif
5109 }
5110 }
5111 }
5112
5113 /*
5114 * The rest is the hardware part.
5115 */
5116
5117 if (mixer->codec) {
5118 h = auring_tailptr_aint(&mixer->codecbuf);
5119 } else {
5120 h = auring_tailptr_aint(&mixer->hwbuf);
5121 }
5122
5123 m = mixer->mixsample;
5124 if (mixer->swap_endian) {
5125 for (i = 0; i < sample_count; i++) {
5126 *h++ = bswap16(*m++);
5127 }
5128 } else {
5129 for (i = 0; i < sample_count; i++) {
5130 *h++ = *m++;
5131 }
5132 }
5133
5134 /* Hardware driver's codec */
5135 if (mixer->codec) {
5136 auring_push(&mixer->codecbuf, frame_count);
5137 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5138 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5139 mixer->codecarg.count = frame_count;
5140 mixer->codec(&mixer->codecarg);
5141 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5142 }
5143
5144 auring_push(&mixer->hwbuf, frame_count);
5145
5146 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5147 (int)mixer->mixseq,
5148 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5149 (mixed == 0) ? " silent" : "");
5150 }
5151
5152 /*
5153 * Do auto gain control.
5154 * Must be called sc_intr_lock held.
5155 */
5156 static void
5157 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5158 {
5159 struct audio_softc *sc __unused;
5160 aint2_t val;
5161 aint2_t maxval;
5162 aint2_t minval;
5163 aint2_t over_plus;
5164 aint2_t over_minus;
5165 aint2_t *m;
5166 int newvol;
5167 int i;
5168
5169 sc = mixer->sc;
5170
5171 /* Overflow detection */
5172 maxval = AINT_T_MAX;
5173 minval = AINT_T_MIN;
5174 m = mixer->mixsample;
5175 for (i = 0; i < sample_count; i++) {
5176 val = *m++;
5177 if (val > maxval)
5178 maxval = val;
5179 else if (val < minval)
5180 minval = val;
5181 }
5182
5183 /* Absolute value of overflowed amount */
5184 over_plus = maxval - AINT_T_MAX;
5185 over_minus = AINT_T_MIN - minval;
5186
5187 if (over_plus > 0 || over_minus > 0) {
5188 if (over_plus > over_minus) {
5189 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5190 } else {
5191 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5192 }
5193
5194 /*
5195 * Change the volume only if new one is smaller.
5196 * Reset the timer even if the volume isn't changed.
5197 */
5198 if (newvol <= mixer->volume) {
5199 mixer->volume = newvol;
5200 mixer->voltimer = 0;
5201 #if defined(AUDIO_DEBUG_AGC)
5202 TRACE(1, "auto volume adjust: %d", mixer->volume);
5203 #endif
5204 }
5205 }
5206 }
5207
5208 /*
5209 * Mix one track.
5210 * 'mixed' specifies the number of tracks mixed so far.
5211 * It returns the number of tracks mixed. In other words, it returns
5212 * mixed + 1 if this track is mixed.
5213 */
5214 static int
5215 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5216 int mixed)
5217 {
5218 int count;
5219 int sample_count;
5220 int remain;
5221 int i;
5222 const aint_t *s;
5223 aint2_t *d;
5224
5225 /* XXX TODO: Is this necessary for now? */
5226 if (mixer->mixseq < track->seq)
5227 return mixed;
5228
5229 count = auring_get_contig_used(&track->outbuf);
5230 count = uimin(count, mixer->frames_per_block);
5231
5232 s = auring_headptr_aint(&track->outbuf);
5233 d = mixer->mixsample;
5234
5235 /*
5236 * Apply track volume with double-sized integer and perform
5237 * additive synthesis.
5238 *
5239 * XXX If you limit the track volume to 1.0 or less (<= 256),
5240 * it would be better to do this in the track conversion stage
5241 * rather than here. However, if you accept the volume to
5242 * be greater than 1.0 (> 256), it's better to do it here.
5243 * Because the operation here is done by double-sized integer.
5244 */
5245 sample_count = count * mixer->mixfmt.channels;
5246 if (mixed == 0) {
5247 /* If this is the first track, assignment can be used. */
5248 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5249 if (track->volume != 256) {
5250 for (i = 0; i < sample_count; i++) {
5251 aint2_t v;
5252 v = *s++;
5253 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5254 }
5255 } else
5256 #endif
5257 {
5258 for (i = 0; i < sample_count; i++) {
5259 *d++ = ((aint2_t)*s++);
5260 }
5261 }
5262 /* Fill silence if the first track is not filled. */
5263 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5264 *d++ = 0;
5265 } else {
5266 /* If this is the second or later, add it. */
5267 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5268 if (track->volume != 256) {
5269 for (i = 0; i < sample_count; i++) {
5270 aint2_t v;
5271 v = *s++;
5272 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5273 }
5274 } else
5275 #endif
5276 {
5277 for (i = 0; i < sample_count; i++) {
5278 *d++ += ((aint2_t)*s++);
5279 }
5280 }
5281 }
5282
5283 auring_take(&track->outbuf, count);
5284 /*
5285 * The counters have to align block even if outbuf is less than
5286 * one block. XXX Is this still necessary?
5287 */
5288 remain = mixer->frames_per_block - count;
5289 if (__predict_false(remain != 0)) {
5290 auring_push(&track->outbuf, remain);
5291 auring_take(&track->outbuf, remain);
5292 }
5293
5294 /*
5295 * Update track sequence.
5296 * mixseq has previous value yet at this point.
5297 */
5298 track->seq = mixer->mixseq + 1;
5299
5300 return mixed + 1;
5301 }
5302
5303 /*
5304 * Output one block from hwbuf to HW.
5305 * Must be called with sc_intr_lock held.
5306 */
5307 static void
5308 audio_pmixer_output(struct audio_softc *sc)
5309 {
5310 audio_trackmixer_t *mixer;
5311 audio_params_t params;
5312 void *start;
5313 void *end;
5314 int blksize;
5315 int error;
5316
5317 mixer = sc->sc_pmixer;
5318 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5319 sc->sc_pbusy,
5320 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5321 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5322 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5323 mixer->hwbuf.used, mixer->frames_per_block);
5324
5325 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5326
5327 if (sc->hw_if->trigger_output) {
5328 /* trigger (at once) */
5329 if (!sc->sc_pbusy) {
5330 start = mixer->hwbuf.mem;
5331 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5332 params = format2_to_params(&mixer->hwbuf.fmt);
5333
5334 error = sc->hw_if->trigger_output(sc->hw_hdl,
5335 start, end, blksize, audio_pintr, sc, ¶ms);
5336 if (error) {
5337 device_printf(sc->sc_dev,
5338 "trigger_output failed with %d\n", error);
5339 return;
5340 }
5341 }
5342 } else {
5343 /* start (everytime) */
5344 start = auring_headptr(&mixer->hwbuf);
5345
5346 error = sc->hw_if->start_output(sc->hw_hdl,
5347 start, blksize, audio_pintr, sc);
5348 if (error) {
5349 device_printf(sc->sc_dev,
5350 "start_output failed with %d\n", error);
5351 return;
5352 }
5353 }
5354 }
5355
5356 /*
5357 * This is an interrupt handler for playback.
5358 * It is called with sc_intr_lock held.
5359 *
5360 * It is usually called from hardware interrupt. However, note that
5361 * for some drivers (e.g. uaudio) it is called from software interrupt.
5362 */
5363 static void
5364 audio_pintr(void *arg)
5365 {
5366 struct audio_softc *sc;
5367 audio_trackmixer_t *mixer;
5368
5369 sc = arg;
5370 KASSERT(mutex_owned(sc->sc_intr_lock));
5371
5372 if (sc->sc_dying)
5373 return;
5374 #if defined(DIAGNOSTIC)
5375 if (sc->sc_pbusy == false) {
5376 device_printf(sc->sc_dev, "stray interrupt\n");
5377 return;
5378 }
5379 #endif
5380
5381 mixer = sc->sc_pmixer;
5382 mixer->hw_complete_counter += mixer->frames_per_block;
5383 mixer->hwseq++;
5384
5385 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5386
5387 TRACE(4,
5388 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5389 mixer->hwseq, mixer->hw_complete_counter,
5390 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5391
5392 #if !defined(_KERNEL)
5393 /* This is a debug code for userland test. */
5394 return;
5395 #endif
5396
5397 #if defined(AUDIO_HW_SINGLE_BUFFER)
5398 /*
5399 * Create a new block here and output it immediately.
5400 * It makes a latency lower but needs machine power.
5401 */
5402 audio_pmixer_process(sc);
5403 audio_pmixer_output(sc);
5404 #else
5405 /*
5406 * It is called when block N output is done.
5407 * Output immediately block N+1 created by the last interrupt.
5408 * And then create block N+2 for the next interrupt.
5409 * This method makes playback robust even on slower machines.
5410 * Instead the latency is increased by one block.
5411 */
5412
5413 /* At first, output ready block. */
5414 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5415 audio_pmixer_output(sc);
5416 }
5417
5418 bool later = false;
5419
5420 if (mixer->hwbuf.used < mixer->frames_per_block) {
5421 later = true;
5422 }
5423
5424 /* Then, process next block. */
5425 audio_pmixer_process(sc);
5426
5427 if (later) {
5428 audio_pmixer_output(sc);
5429 }
5430 #endif
5431
5432 /*
5433 * When this interrupt is the real hardware interrupt, disabling
5434 * preemption here is not necessary. But some drivers (e.g. uaudio)
5435 * emulate it by software interrupt, so kpreempt_disable is necessary.
5436 */
5437 kpreempt_disable();
5438 softint_schedule(mixer->sih);
5439 kpreempt_enable();
5440 }
5441
5442 /*
5443 * Starts record mixer.
5444 * Must be called only if sc_rbusy is false.
5445 * Must be called with sc_lock held.
5446 * Must not be called from the interrupt context.
5447 */
5448 static void
5449 audio_rmixer_start(struct audio_softc *sc)
5450 {
5451
5452 KASSERT(mutex_owned(sc->sc_lock));
5453 KASSERT(sc->sc_rbusy == false);
5454
5455 mutex_enter(sc->sc_intr_lock);
5456
5457 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5458 audio_rmixer_input(sc);
5459 sc->sc_rbusy = true;
5460 TRACE(3, "end");
5461
5462 mutex_exit(sc->sc_intr_lock);
5463 }
5464
5465 /*
5466 * When recording with MD filter:
5467 *
5468 * hwbuf [............] NBLKHW blocks ring buffer
5469 * |
5470 * | convert from hw format
5471 * v
5472 * codecbuf [....] 1 block (ring) buffer
5473 * | |
5474 * v v
5475 * track track ...
5476 *
5477 * When recording without MD filter:
5478 *
5479 * hwbuf [............] NBLKHW blocks ring buffer
5480 * | |
5481 * v v
5482 * track track ...
5483 *
5484 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5485 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5486 */
5487
5488 /*
5489 * Distribute a recorded block to all recording tracks.
5490 */
5491 static void
5492 audio_rmixer_process(struct audio_softc *sc)
5493 {
5494 audio_trackmixer_t *mixer;
5495 audio_ring_t *mixersrc;
5496 audio_file_t *f;
5497 aint_t *p;
5498 int count;
5499 int bytes;
5500 int i;
5501
5502 mixer = sc->sc_rmixer;
5503
5504 /*
5505 * count is the number of frames to be retrieved this time.
5506 * count should be one block.
5507 */
5508 count = auring_get_contig_used(&mixer->hwbuf);
5509 count = uimin(count, mixer->frames_per_block);
5510 if (count <= 0) {
5511 TRACE(4, "count %d: too short", count);
5512 return;
5513 }
5514 bytes = frametobyte(&mixer->track_fmt, count);
5515
5516 /* Hardware driver's codec */
5517 if (mixer->codec) {
5518 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5519 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5520 mixer->codecarg.count = count;
5521 mixer->codec(&mixer->codecarg);
5522 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5523 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5524 mixersrc = &mixer->codecbuf;
5525 } else {
5526 mixersrc = &mixer->hwbuf;
5527 }
5528
5529 if (mixer->swap_endian) {
5530 /* inplace conversion */
5531 p = auring_headptr_aint(mixersrc);
5532 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5533 *p = bswap16(*p);
5534 }
5535 }
5536
5537 /* Distribute to all tracks. */
5538 SLIST_FOREACH(f, &sc->sc_files, entry) {
5539 audio_track_t *track = f->rtrack;
5540 audio_ring_t *input;
5541
5542 if (track == NULL)
5543 continue;
5544
5545 if (track->is_pause) {
5546 TRACET(4, track, "skip; paused");
5547 continue;
5548 }
5549
5550 if (audio_track_lock_tryenter(track) == false) {
5551 TRACET(4, track, "skip; in use");
5552 continue;
5553 }
5554
5555 /* If the track buffer is full, discard the oldest one? */
5556 input = track->input;
5557 if (input->capacity - input->used < mixer->frames_per_block) {
5558 int drops = mixer->frames_per_block -
5559 (input->capacity - input->used);
5560 track->dropframes += drops;
5561 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5562 drops,
5563 input->head, input->used, input->capacity);
5564 auring_take(input, drops);
5565 }
5566 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5567 "input->used=%d mixer->frames_per_block=%d",
5568 input->used, mixer->frames_per_block);
5569
5570 memcpy(auring_tailptr_aint(input),
5571 auring_headptr_aint(mixersrc),
5572 bytes);
5573 auring_push(input, count);
5574
5575 /* XXX sequence counter? */
5576
5577 audio_track_lock_exit(track);
5578 }
5579
5580 auring_take(mixersrc, count);
5581 }
5582
5583 /*
5584 * Input one block from HW to hwbuf.
5585 * Must be called with sc_intr_lock held.
5586 */
5587 static void
5588 audio_rmixer_input(struct audio_softc *sc)
5589 {
5590 audio_trackmixer_t *mixer;
5591 audio_params_t params;
5592 void *start;
5593 void *end;
5594 int blksize;
5595 int error;
5596
5597 mixer = sc->sc_rmixer;
5598 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5599
5600 if (sc->hw_if->trigger_input) {
5601 /* trigger (at once) */
5602 if (!sc->sc_rbusy) {
5603 start = mixer->hwbuf.mem;
5604 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5605 params = format2_to_params(&mixer->hwbuf.fmt);
5606
5607 error = sc->hw_if->trigger_input(sc->hw_hdl,
5608 start, end, blksize, audio_rintr, sc, ¶ms);
5609 if (error) {
5610 device_printf(sc->sc_dev,
5611 "trigger_input failed with %d\n", error);
5612 return;
5613 }
5614 }
5615 } else {
5616 /* start (everytime) */
5617 start = auring_tailptr(&mixer->hwbuf);
5618
5619 error = sc->hw_if->start_input(sc->hw_hdl,
5620 start, blksize, audio_rintr, sc);
5621 if (error) {
5622 device_printf(sc->sc_dev,
5623 "start_input failed with %d\n", error);
5624 return;
5625 }
5626 }
5627 }
5628
5629 /*
5630 * This is an interrupt handler for recording.
5631 * It is called with sc_intr_lock.
5632 *
5633 * It is usually called from hardware interrupt. However, note that
5634 * for some drivers (e.g. uaudio) it is called from software interrupt.
5635 */
5636 static void
5637 audio_rintr(void *arg)
5638 {
5639 struct audio_softc *sc;
5640 audio_trackmixer_t *mixer;
5641
5642 sc = arg;
5643 KASSERT(mutex_owned(sc->sc_intr_lock));
5644
5645 if (sc->sc_dying)
5646 return;
5647 #if defined(DIAGNOSTIC)
5648 if (sc->sc_rbusy == false) {
5649 device_printf(sc->sc_dev, "stray interrupt\n");
5650 return;
5651 }
5652 #endif
5653
5654 mixer = sc->sc_rmixer;
5655 mixer->hw_complete_counter += mixer->frames_per_block;
5656 mixer->hwseq++;
5657
5658 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5659
5660 TRACE(4,
5661 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5662 mixer->hwseq, mixer->hw_complete_counter,
5663 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5664
5665 /* Distrubute recorded block */
5666 audio_rmixer_process(sc);
5667
5668 /* Request next block */
5669 audio_rmixer_input(sc);
5670
5671 /*
5672 * When this interrupt is the real hardware interrupt, disabling
5673 * preemption here is not necessary. But some drivers (e.g. uaudio)
5674 * emulate it by software interrupt, so kpreempt_disable is necessary.
5675 */
5676 kpreempt_disable();
5677 softint_schedule(mixer->sih);
5678 kpreempt_enable();
5679 }
5680
5681 /*
5682 * Halts playback mixer.
5683 * This function also clears related parameters, so call this function
5684 * instead of calling halt_output directly.
5685 * Must be called only if sc_pbusy is true.
5686 * Must be called with sc_lock && sc_exlock held.
5687 */
5688 static int
5689 audio_pmixer_halt(struct audio_softc *sc)
5690 {
5691 int error;
5692
5693 TRACE(2, "");
5694 KASSERT(mutex_owned(sc->sc_lock));
5695 KASSERT(sc->sc_exlock);
5696
5697 mutex_enter(sc->sc_intr_lock);
5698 error = sc->hw_if->halt_output(sc->hw_hdl);
5699 mutex_exit(sc->sc_intr_lock);
5700
5701 /* Halts anyway even if some error has occurred. */
5702 sc->sc_pbusy = false;
5703 sc->sc_pmixer->hwbuf.head = 0;
5704 sc->sc_pmixer->hwbuf.used = 0;
5705 sc->sc_pmixer->mixseq = 0;
5706 sc->sc_pmixer->hwseq = 0;
5707
5708 return error;
5709 }
5710
5711 /*
5712 * Halts recording mixer.
5713 * This function also clears related parameters, so call this function
5714 * instead of calling halt_input directly.
5715 * Must be called only if sc_rbusy is true.
5716 * Must be called with sc_lock && sc_exlock held.
5717 */
5718 static int
5719 audio_rmixer_halt(struct audio_softc *sc)
5720 {
5721 int error;
5722
5723 TRACE(2, "");
5724 KASSERT(mutex_owned(sc->sc_lock));
5725 KASSERT(sc->sc_exlock);
5726
5727 mutex_enter(sc->sc_intr_lock);
5728 error = sc->hw_if->halt_input(sc->hw_hdl);
5729 mutex_exit(sc->sc_intr_lock);
5730
5731 /* Halts anyway even if some error has occurred. */
5732 sc->sc_rbusy = false;
5733 sc->sc_rmixer->hwbuf.head = 0;
5734 sc->sc_rmixer->hwbuf.used = 0;
5735 sc->sc_rmixer->mixseq = 0;
5736 sc->sc_rmixer->hwseq = 0;
5737
5738 return error;
5739 }
5740
5741 /*
5742 * Flush this track.
5743 * Halts all operations, clears all buffers, reset error counters.
5744 * XXX I'm not sure...
5745 */
5746 static void
5747 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5748 {
5749
5750 KASSERT(track);
5751 TRACET(3, track, "clear");
5752
5753 audio_track_lock_enter(track);
5754
5755 track->usrbuf.used = 0;
5756 /* Clear all internal parameters. */
5757 if (track->codec.filter) {
5758 track->codec.srcbuf.used = 0;
5759 track->codec.srcbuf.head = 0;
5760 }
5761 if (track->chvol.filter) {
5762 track->chvol.srcbuf.used = 0;
5763 track->chvol.srcbuf.head = 0;
5764 }
5765 if (track->chmix.filter) {
5766 track->chmix.srcbuf.used = 0;
5767 track->chmix.srcbuf.head = 0;
5768 }
5769 if (track->freq.filter) {
5770 track->freq.srcbuf.used = 0;
5771 track->freq.srcbuf.head = 0;
5772 if (track->freq_step < 65536)
5773 track->freq_current = 65536;
5774 else
5775 track->freq_current = 0;
5776 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5777 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5778 }
5779 /* Clear buffer, then operation halts naturally. */
5780 track->outbuf.used = 0;
5781
5782 /* Clear counters. */
5783 track->dropframes = 0;
5784
5785 audio_track_lock_exit(track);
5786 }
5787
5788 /*
5789 * Drain the track.
5790 * track must be present and for playback.
5791 * If successful, it returns 0. Otherwise returns errno.
5792 * Must be called with sc_lock held.
5793 */
5794 static int
5795 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5796 {
5797 audio_trackmixer_t *mixer;
5798 int done;
5799 int error;
5800
5801 KASSERT(track);
5802 TRACET(3, track, "start");
5803 mixer = track->mixer;
5804 KASSERT(mutex_owned(sc->sc_lock));
5805
5806 /* Ignore them if pause. */
5807 if (track->is_pause) {
5808 TRACET(3, track, "pause -> clear");
5809 track->pstate = AUDIO_STATE_CLEAR;
5810 }
5811 /* Terminate early here if there is no data in the track. */
5812 if (track->pstate == AUDIO_STATE_CLEAR) {
5813 TRACET(3, track, "no need to drain");
5814 return 0;
5815 }
5816 track->pstate = AUDIO_STATE_DRAINING;
5817
5818 for (;;) {
5819 /* I want to display it before condition evaluation. */
5820 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5821 (int)curproc->p_pid, (int)curlwp->l_lid,
5822 (int)track->seq, (int)mixer->hwseq,
5823 track->outbuf.head, track->outbuf.used,
5824 track->outbuf.capacity);
5825
5826 /* Condition to terminate */
5827 audio_track_lock_enter(track);
5828 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5829 track->outbuf.used == 0 &&
5830 track->seq <= mixer->hwseq);
5831 audio_track_lock_exit(track);
5832 if (done)
5833 break;
5834
5835 TRACET(3, track, "sleep");
5836 error = audio_track_waitio(sc, track);
5837 if (error)
5838 return error;
5839
5840 /* XXX call audio_track_play here ? */
5841 }
5842
5843 track->pstate = AUDIO_STATE_CLEAR;
5844 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5845 (int)track->inputcounter, (int)track->outputcounter);
5846 return 0;
5847 }
5848
5849 /*
5850 * Send signal to process.
5851 * This is intended to be called only from audio_softintr_{rd,wr}.
5852 * Must be called with sc_lock && sc_intr_lock held.
5853 */
5854 static inline void
5855 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
5856 {
5857 proc_t *p;
5858
5859 KASSERT(mutex_owned(sc->sc_lock));
5860 KASSERT(mutex_owned(sc->sc_intr_lock));
5861 KASSERT(pid != 0);
5862
5863 /*
5864 * psignal() must be called without spin lock held.
5865 * So leave intr_lock temporarily here.
5866 */
5867 mutex_exit(sc->sc_intr_lock);
5868
5869 mutex_enter(proc_lock);
5870 p = proc_find(pid);
5871 if (p)
5872 psignal(p, signum);
5873 mutex_exit(proc_lock);
5874
5875 /* Enter intr_lock again */
5876 mutex_enter(sc->sc_intr_lock);
5877 }
5878
5879 /*
5880 * This is software interrupt handler for record.
5881 * It is called from recording hardware interrupt everytime.
5882 * It does:
5883 * - Deliver SIGIO for all async processes.
5884 * - Notify to audio_read() that data has arrived.
5885 * - selnotify() for select/poll-ing processes.
5886 */
5887 /*
5888 * XXX If a process issues FIOASYNC between hardware interrupt and
5889 * software interrupt, (stray) SIGIO will be sent to the process
5890 * despite the fact that it has not receive recorded data yet.
5891 */
5892 static void
5893 audio_softintr_rd(void *cookie)
5894 {
5895 struct audio_softc *sc = cookie;
5896 audio_file_t *f;
5897 pid_t pid;
5898
5899 mutex_enter(sc->sc_lock);
5900 mutex_enter(sc->sc_intr_lock);
5901
5902 SLIST_FOREACH(f, &sc->sc_files, entry) {
5903 audio_track_t *track = f->rtrack;
5904
5905 if (track == NULL)
5906 continue;
5907
5908 TRACET(4, track, "broadcast; inp=%d/%d/%d",
5909 track->input->head,
5910 track->input->used,
5911 track->input->capacity);
5912
5913 pid = f->async_audio;
5914 if (pid != 0) {
5915 TRACEF(4, f, "sending SIGIO %d", pid);
5916 audio_psignal(sc, pid, SIGIO);
5917 }
5918 }
5919 mutex_exit(sc->sc_intr_lock);
5920
5921 /* Notify that data has arrived. */
5922 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
5923 KNOTE(&sc->sc_rsel.sel_klist, 0);
5924 cv_broadcast(&sc->sc_rmixer->outcv);
5925
5926 mutex_exit(sc->sc_lock);
5927 }
5928
5929 /*
5930 * This is software interrupt handler for playback.
5931 * It is called from playback hardware interrupt everytime.
5932 * It does:
5933 * - Deliver SIGIO for all async and writable (used < lowat) processes.
5934 * - Notify to audio_write() that outbuf block available.
5935 * - selnotify() for select/poll-ing processes if there are any writable
5936 * (used < lowat) processes. Checking each descriptor will be done by
5937 * filt_audiowrite_event().
5938 */
5939 static void
5940 audio_softintr_wr(void *cookie)
5941 {
5942 struct audio_softc *sc = cookie;
5943 audio_file_t *f;
5944 bool found;
5945 pid_t pid;
5946
5947 TRACE(4, "called");
5948 found = false;
5949
5950 mutex_enter(sc->sc_lock);
5951 mutex_enter(sc->sc_intr_lock);
5952
5953 SLIST_FOREACH(f, &sc->sc_files, entry) {
5954 audio_track_t *track = f->ptrack;
5955
5956 if (track == NULL)
5957 continue;
5958
5959 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
5960 (int)track->seq,
5961 track->outbuf.head,
5962 track->outbuf.used,
5963 track->outbuf.capacity);
5964
5965 /*
5966 * Send a signal if the process is async mode and
5967 * used is lower than lowat.
5968 */
5969 if (track->usrbuf.used <= track->usrbuf_usedlow &&
5970 !track->is_pause) {
5971 /* For selnotify */
5972 found = true;
5973 /* For SIGIO */
5974 pid = f->async_audio;
5975 if (pid != 0) {
5976 TRACEF(4, f, "sending SIGIO %d", pid);
5977 audio_psignal(sc, pid, SIGIO);
5978 }
5979 }
5980 }
5981 mutex_exit(sc->sc_intr_lock);
5982
5983 /*
5984 * Notify for select/poll when someone become writable.
5985 * It needs sc_lock (and not sc_intr_lock).
5986 */
5987 if (found) {
5988 TRACE(4, "selnotify");
5989 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
5990 KNOTE(&sc->sc_wsel.sel_klist, 0);
5991 }
5992
5993 /* Notify to audio_write() that outbuf available. */
5994 cv_broadcast(&sc->sc_pmixer->outcv);
5995
5996 mutex_exit(sc->sc_lock);
5997 }
5998
5999 /*
6000 * Check (and convert) the format *p came from userland.
6001 * If successful, it writes back the converted format to *p if necessary
6002 * and returns 0. Otherwise returns errno (*p may change even this case).
6003 */
6004 static int
6005 audio_check_params(audio_format2_t *p)
6006 {
6007
6008 /* Convert obsoleted AUDIO_ENCODING_PCM* */
6009 /* XXX Is this conversion right? */
6010 if (p->encoding == AUDIO_ENCODING_PCM16) {
6011 if (p->precision == 8)
6012 p->encoding = AUDIO_ENCODING_ULINEAR;
6013 else
6014 p->encoding = AUDIO_ENCODING_SLINEAR;
6015 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6016 if (p->precision == 8)
6017 p->encoding = AUDIO_ENCODING_ULINEAR;
6018 else
6019 return EINVAL;
6020 }
6021
6022 /*
6023 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6024 * suffix.
6025 */
6026 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6027 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6028 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6029 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6030
6031 switch (p->encoding) {
6032 case AUDIO_ENCODING_ULAW:
6033 case AUDIO_ENCODING_ALAW:
6034 if (p->precision != 8)
6035 return EINVAL;
6036 break;
6037 case AUDIO_ENCODING_ADPCM:
6038 if (p->precision != 4 && p->precision != 8)
6039 return EINVAL;
6040 break;
6041 case AUDIO_ENCODING_SLINEAR_LE:
6042 case AUDIO_ENCODING_SLINEAR_BE:
6043 case AUDIO_ENCODING_ULINEAR_LE:
6044 case AUDIO_ENCODING_ULINEAR_BE:
6045 if (p->precision != 8 && p->precision != 16 &&
6046 p->precision != 24 && p->precision != 32)
6047 return EINVAL;
6048
6049 /* 8bit format does not have endianness. */
6050 if (p->precision == 8) {
6051 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6052 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6053 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6054 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6055 }
6056
6057 if (p->precision > p->stride)
6058 return EINVAL;
6059 break;
6060 case AUDIO_ENCODING_MPEG_L1_STREAM:
6061 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6062 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6063 case AUDIO_ENCODING_MPEG_L2_STREAM:
6064 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6065 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6066 case AUDIO_ENCODING_AC3:
6067 break;
6068 default:
6069 return EINVAL;
6070 }
6071
6072 /* sanity check # of channels*/
6073 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6074 return EINVAL;
6075
6076 return 0;
6077 }
6078
6079 /*
6080 * Initialize playback and record mixers.
6081 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initalized.
6082 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6083 * the filter registration information. These four must not be NULL.
6084 * If successful returns 0. Otherwise returns errno.
6085 * Must be called with sc_lock held.
6086 * Must not be called if there are any tracks.
6087 * Caller should check that the initialization succeed by whether
6088 * sc_[pr]mixer is not NULL.
6089 */
6090 static int
6091 audio_mixers_init(struct audio_softc *sc, int mode,
6092 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6093 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6094 {
6095 int error;
6096
6097 KASSERT(phwfmt != NULL);
6098 KASSERT(rhwfmt != NULL);
6099 KASSERT(pfil != NULL);
6100 KASSERT(rfil != NULL);
6101 KASSERT(mutex_owned(sc->sc_lock));
6102
6103 if ((mode & AUMODE_PLAY)) {
6104 if (sc->sc_pmixer == NULL) {
6105 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6106 KM_SLEEP);
6107 } else {
6108 /* destroy() doesn't free memory. */
6109 audio_mixer_destroy(sc, sc->sc_pmixer);
6110 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6111 }
6112 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6113 if (error) {
6114 aprint_error_dev(sc->sc_dev,
6115 "configuring playback mode failed\n");
6116 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6117 sc->sc_pmixer = NULL;
6118 return error;
6119 }
6120 }
6121 if ((mode & AUMODE_RECORD)) {
6122 if (sc->sc_rmixer == NULL) {
6123 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6124 KM_SLEEP);
6125 } else {
6126 /* destroy() doesn't free memory. */
6127 audio_mixer_destroy(sc, sc->sc_rmixer);
6128 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6129 }
6130 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6131 if (error) {
6132 aprint_error_dev(sc->sc_dev,
6133 "configuring record mode failed\n");
6134 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6135 sc->sc_rmixer = NULL;
6136 return error;
6137 }
6138 }
6139
6140 return 0;
6141 }
6142
6143 /*
6144 * Select a frequency.
6145 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6146 * XXX Better algorithm?
6147 */
6148 static int
6149 audio_select_freq(const struct audio_format *fmt)
6150 {
6151 int freq;
6152 int high;
6153 int low;
6154 int j;
6155
6156 if (fmt->frequency_type == 0) {
6157 low = fmt->frequency[0];
6158 high = fmt->frequency[1];
6159 freq = 48000;
6160 if (low <= freq && freq <= high) {
6161 return freq;
6162 }
6163 freq = 44100;
6164 if (low <= freq && freq <= high) {
6165 return freq;
6166 }
6167 return high;
6168 } else {
6169 for (j = 0; j < fmt->frequency_type; j++) {
6170 if (fmt->frequency[j] == 48000) {
6171 return fmt->frequency[j];
6172 }
6173 }
6174 high = 0;
6175 for (j = 0; j < fmt->frequency_type; j++) {
6176 if (fmt->frequency[j] == 44100) {
6177 return fmt->frequency[j];
6178 }
6179 if (fmt->frequency[j] > high) {
6180 high = fmt->frequency[j];
6181 }
6182 }
6183 return high;
6184 }
6185 }
6186
6187 /*
6188 * Probe playback and/or recording format (depending on *modep).
6189 * *modep is an in-out parameter. It indicates the direction to configure
6190 * as an argument, and the direction configured is written back as out
6191 * parameter.
6192 * If successful, probed hardware format is stored into *phwfmt, *rhwfmt
6193 * depending on *modep, and return 0. Otherwise it returns errno.
6194 * Must be called with sc_lock held.
6195 */
6196 static int
6197 audio_hw_probe(struct audio_softc *sc, int is_indep, int *modep,
6198 audio_format2_t *phwfmt, audio_format2_t *rhwfmt)
6199 {
6200 audio_format2_t fmt;
6201 int mode;
6202 int error = 0;
6203
6204 KASSERT(mutex_owned(sc->sc_lock));
6205
6206 mode = *modep;
6207 KASSERTMSG((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0, "mode=0x%x", mode);
6208
6209 if (is_indep) {
6210 int errorp = 0, errorr = 0;
6211
6212 /* On independent devices, probe separately. */
6213 if ((mode & AUMODE_PLAY) != 0) {
6214 errorp = audio_hw_probe_fmt(sc, phwfmt, AUMODE_PLAY);
6215 if (errorp)
6216 mode &= ~AUMODE_PLAY;
6217 }
6218 if ((mode & AUMODE_RECORD) != 0) {
6219 errorr = audio_hw_probe_fmt(sc, rhwfmt, AUMODE_RECORD);
6220 if (errorr)
6221 mode &= ~AUMODE_RECORD;
6222 }
6223
6224 /* Return error if both play and record probes failed. */
6225 if (errorp && errorr)
6226 error = errorp;
6227 } else {
6228 /* On non independent devices, probe simultaneously. */
6229 error = audio_hw_probe_fmt(sc, &fmt, mode);
6230 if (error) {
6231 mode = 0;
6232 } else {
6233 *phwfmt = fmt;
6234 *rhwfmt = fmt;
6235 }
6236 }
6237
6238 *modep = mode;
6239 return error;
6240 }
6241
6242 /*
6243 * Choose the most preferred hardware format.
6244 * If successful, it will store the chosen format into *cand and return 0.
6245 * Otherwise, return errno.
6246 * Must be called with sc_lock held.
6247 */
6248 static int
6249 audio_hw_probe_fmt(struct audio_softc *sc, audio_format2_t *cand, int mode)
6250 {
6251 audio_format_query_t query;
6252 int cand_score;
6253 int score;
6254 int i;
6255 int error;
6256
6257 KASSERT(mutex_owned(sc->sc_lock));
6258
6259 /*
6260 * Score each formats and choose the highest one.
6261 *
6262 * +---- priority(0-3)
6263 * |+--- encoding/precision
6264 * ||+-- channels
6265 * score = 0x000000PEC
6266 */
6267
6268 cand_score = 0;
6269 for (i = 0; ; i++) {
6270 memset(&query, 0, sizeof(query));
6271 query.index = i;
6272
6273 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6274 if (error == EINVAL)
6275 break;
6276 if (error)
6277 return error;
6278
6279 #if defined(AUDIO_DEBUG)
6280 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6281 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6282 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6283 query.fmt.priority,
6284 audio_encoding_name(query.fmt.encoding),
6285 query.fmt.validbits,
6286 query.fmt.precision,
6287 query.fmt.channels);
6288 if (query.fmt.frequency_type == 0) {
6289 DPRINTF(1, "{%d-%d",
6290 query.fmt.frequency[0], query.fmt.frequency[1]);
6291 } else {
6292 int j;
6293 for (j = 0; j < query.fmt.frequency_type; j++) {
6294 DPRINTF(1, "%c%d",
6295 (j == 0) ? '{' : ',',
6296 query.fmt.frequency[j]);
6297 }
6298 }
6299 DPRINTF(1, "}\n");
6300 #endif
6301
6302 if ((query.fmt.mode & mode) == 0) {
6303 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6304 mode);
6305 continue;
6306 }
6307
6308 if (query.fmt.priority < 0) {
6309 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6310 continue;
6311 }
6312
6313 /* Score */
6314 score = (query.fmt.priority & 3) * 0x100;
6315 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6316 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6317 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6318 score += 0x20;
6319 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6320 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6321 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6322 score += 0x10;
6323 }
6324 score += query.fmt.channels;
6325
6326 if (score < cand_score) {
6327 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6328 score, cand_score);
6329 continue;
6330 }
6331
6332 /* Update candidate */
6333 cand_score = score;
6334 cand->encoding = query.fmt.encoding;
6335 cand->precision = query.fmt.validbits;
6336 cand->stride = query.fmt.precision;
6337 cand->channels = query.fmt.channels;
6338 cand->sample_rate = audio_select_freq(&query.fmt);
6339 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6340 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6341 cand_score, query.fmt.priority,
6342 audio_encoding_name(query.fmt.encoding),
6343 cand->precision, cand->stride,
6344 cand->channels, cand->sample_rate);
6345 }
6346
6347 if (cand_score == 0) {
6348 DPRINTF(1, "%s no fmt\n", __func__);
6349 return ENXIO;
6350 }
6351 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6352 audio_encoding_name(cand->encoding),
6353 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6354 return 0;
6355 }
6356
6357 /*
6358 * Validate fmt with query_format.
6359 * If fmt is included in the result of query_format, returns 0.
6360 * Otherwise returns EINVAL.
6361 * Must be called with sc_lock held.
6362 */
6363 static int
6364 audio_hw_validate_format(struct audio_softc *sc, int mode,
6365 const audio_format2_t *fmt)
6366 {
6367 audio_format_query_t query;
6368 struct audio_format *q;
6369 int index;
6370 int error;
6371 int j;
6372
6373 KASSERT(mutex_owned(sc->sc_lock));
6374
6375 /*
6376 * If query_format is not supported by hardware driver,
6377 * a rough check instead will be performed.
6378 * XXX This will gone in the future.
6379 */
6380 if (sc->hw_if->query_format == NULL) {
6381 if (fmt->encoding != AUDIO_ENCODING_SLINEAR_NE)
6382 return EINVAL;
6383 if (fmt->precision != AUDIO_INTERNAL_BITS)
6384 return EINVAL;
6385 if (fmt->stride != AUDIO_INTERNAL_BITS)
6386 return EINVAL;
6387 return 0;
6388 }
6389
6390 for (index = 0; ; index++) {
6391 query.index = index;
6392 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6393 if (error == EINVAL)
6394 break;
6395 if (error)
6396 return error;
6397
6398 q = &query.fmt;
6399 /*
6400 * Note that fmt is audio_format2_t (precision/stride) but
6401 * q is audio_format_t (validbits/precision).
6402 */
6403 if ((q->mode & mode) == 0) {
6404 continue;
6405 }
6406 if (fmt->encoding != q->encoding) {
6407 continue;
6408 }
6409 if (fmt->precision != q->validbits) {
6410 continue;
6411 }
6412 if (fmt->stride != q->precision) {
6413 continue;
6414 }
6415 if (fmt->channels != q->channels) {
6416 continue;
6417 }
6418 if (q->frequency_type == 0) {
6419 if (fmt->sample_rate < q->frequency[0] ||
6420 fmt->sample_rate > q->frequency[1]) {
6421 continue;
6422 }
6423 } else {
6424 for (j = 0; j < q->frequency_type; j++) {
6425 if (fmt->sample_rate == q->frequency[j])
6426 break;
6427 }
6428 if (j == query.fmt.frequency_type) {
6429 continue;
6430 }
6431 }
6432
6433 /* Matched. */
6434 return 0;
6435 }
6436
6437 return EINVAL;
6438 }
6439
6440 /*
6441 * Set track mixer's format depending on ai->mode.
6442 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6443 * with ai.play.{channels, sample_rate}.
6444 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6445 * with ai.record.{channels, sample_rate}.
6446 * All other fields in ai are ignored.
6447 * If successful returns 0. Otherwise returns errno.
6448 * This function does not roll back even if it fails.
6449 * Must be called with sc_lock held.
6450 */
6451 static int
6452 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6453 {
6454 audio_format2_t phwfmt;
6455 audio_format2_t rhwfmt;
6456 audio_filter_reg_t pfil;
6457 audio_filter_reg_t rfil;
6458 int mode;
6459 int error;
6460
6461 KASSERT(mutex_owned(sc->sc_lock));
6462
6463 /*
6464 * Even when setting either one of playback and recording,
6465 * both must be halted.
6466 */
6467 if (sc->sc_popens + sc->sc_ropens > 0)
6468 return EBUSY;
6469
6470 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6471 return ENOTTY;
6472
6473 /* Only channels and sample_rate are changeable. */
6474 mode = ai->mode;
6475 if ((mode & AUMODE_PLAY)) {
6476 phwfmt.encoding = ai->play.encoding;
6477 phwfmt.precision = ai->play.precision;
6478 phwfmt.stride = ai->play.precision;
6479 phwfmt.channels = ai->play.channels;
6480 phwfmt.sample_rate = ai->play.sample_rate;
6481 }
6482 if ((mode & AUMODE_RECORD)) {
6483 rhwfmt.encoding = ai->record.encoding;
6484 rhwfmt.precision = ai->record.precision;
6485 rhwfmt.stride = ai->record.precision;
6486 rhwfmt.channels = ai->record.channels;
6487 rhwfmt.sample_rate = ai->record.sample_rate;
6488 }
6489
6490 /* On non-independent devices, use the same format for both. */
6491 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6492 if (mode == AUMODE_RECORD) {
6493 phwfmt = rhwfmt;
6494 } else {
6495 rhwfmt = phwfmt;
6496 }
6497 mode = AUMODE_PLAY | AUMODE_RECORD;
6498 }
6499
6500 /* Then, unset the direction not exist on the hardware. */
6501 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6502 mode &= ~AUMODE_PLAY;
6503 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6504 mode &= ~AUMODE_RECORD;
6505
6506 /* debug */
6507 if ((mode & AUMODE_PLAY)) {
6508 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6509 audio_encoding_name(phwfmt.encoding),
6510 phwfmt.precision,
6511 phwfmt.stride,
6512 phwfmt.channels,
6513 phwfmt.sample_rate);
6514 }
6515 if ((mode & AUMODE_RECORD)) {
6516 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6517 audio_encoding_name(rhwfmt.encoding),
6518 rhwfmt.precision,
6519 rhwfmt.stride,
6520 rhwfmt.channels,
6521 rhwfmt.sample_rate);
6522 }
6523
6524 /* Check the format */
6525 if ((mode & AUMODE_PLAY)) {
6526 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6527 TRACE(1, "invalid format");
6528 return EINVAL;
6529 }
6530 }
6531 if ((mode & AUMODE_RECORD)) {
6532 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6533 TRACE(1, "invalid format");
6534 return EINVAL;
6535 }
6536 }
6537
6538 /* Configure the mixers. */
6539 memset(&pfil, 0, sizeof(pfil));
6540 memset(&rfil, 0, sizeof(rfil));
6541 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6542 if (error)
6543 return error;
6544
6545 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6546 if (error)
6547 return error;
6548
6549 /*
6550 * Reinitialize the sticky parameters for /dev/sound.
6551 * If the number of the hardware channels becomes less than the number
6552 * of channels that sticky parameters remember, subsequent /dev/sound
6553 * open will fail. To prevent this, reinitialize the sticky
6554 * parameters whenever the hardware format is changed.
6555 */
6556 sc->sc_sound_pparams = params_to_format2(&audio_default);
6557 sc->sc_sound_rparams = params_to_format2(&audio_default);
6558 sc->sc_sound_ppause = false;
6559 sc->sc_sound_rpause = false;
6560
6561 return 0;
6562 }
6563
6564 /*
6565 * Store current mixers format into *ai.
6566 */
6567 static void
6568 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6569 {
6570 /*
6571 * There is no stride information in audio_info but it doesn't matter.
6572 * trackmixer always treats stride and precision as the same.
6573 */
6574 AUDIO_INITINFO(ai);
6575 ai->mode = 0;
6576 if (sc->sc_pmixer) {
6577 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6578 ai->play.encoding = fmt->encoding;
6579 ai->play.precision = fmt->precision;
6580 ai->play.channels = fmt->channels;
6581 ai->play.sample_rate = fmt->sample_rate;
6582 ai->mode |= AUMODE_PLAY;
6583 }
6584 if (sc->sc_rmixer) {
6585 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6586 ai->record.encoding = fmt->encoding;
6587 ai->record.precision = fmt->precision;
6588 ai->record.channels = fmt->channels;
6589 ai->record.sample_rate = fmt->sample_rate;
6590 ai->mode |= AUMODE_RECORD;
6591 }
6592 }
6593
6594 /*
6595 * audio_info details:
6596 *
6597 * ai.{play,record}.sample_rate (R/W)
6598 * ai.{play,record}.encoding (R/W)
6599 * ai.{play,record}.precision (R/W)
6600 * ai.{play,record}.channels (R/W)
6601 * These specify the playback or recording format.
6602 * Ignore members within an inactive track.
6603 *
6604 * ai.mode (R/W)
6605 * It specifies the playback or recording mode, AUMODE_*.
6606 * Currently, a mode change operation by ai.mode after opening is
6607 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6608 * However, it's possible to get or to set for backward compatibility.
6609 *
6610 * ai.{hiwat,lowat} (R/W)
6611 * These specify the high water mark and low water mark for playback
6612 * track. The unit is block.
6613 *
6614 * ai.{play,record}.gain (R/W)
6615 * It specifies the HW mixer volume in 0-255.
6616 * It is historical reason that the gain is connected to HW mixer.
6617 *
6618 * ai.{play,record}.balance (R/W)
6619 * It specifies the left-right balance of HW mixer in 0-64.
6620 * 32 means the center.
6621 * It is historical reason that the balance is connected to HW mixer.
6622 *
6623 * ai.{play,record}.port (R/W)
6624 * It specifies the input/output port of HW mixer.
6625 *
6626 * ai.monitor_gain (R/W)
6627 * It specifies the recording monitor gain(?) of HW mixer.
6628 *
6629 * ai.{play,record}.pause (R/W)
6630 * Non-zero means the track is paused.
6631 *
6632 * ai.play.seek (R/-)
6633 * It indicates the number of bytes written but not processed.
6634 * ai.record.seek (R/-)
6635 * It indicates the number of bytes to be able to read.
6636 *
6637 * ai.{play,record}.avail_ports (R/-)
6638 * Mixer info.
6639 *
6640 * ai.{play,record}.buffer_size (R/-)
6641 * It indicates the buffer size in bytes. Internally it means usrbuf.
6642 *
6643 * ai.{play,record}.samples (R/-)
6644 * It indicates the total number of bytes played or recorded.
6645 *
6646 * ai.{play,record}.eof (R/-)
6647 * It indicates the number of times reached EOF(?).
6648 *
6649 * ai.{play,record}.error (R/-)
6650 * Non-zero indicates overflow/underflow has occured.
6651 *
6652 * ai.{play,record}.waiting (R/-)
6653 * Non-zero indicates that other process waits to open.
6654 * It will never happen anymore.
6655 *
6656 * ai.{play,record}.open (R/-)
6657 * Non-zero indicates the direction is opened by this process(?).
6658 * XXX Is this better to indicate that "the device is opened by
6659 * at least one process"?
6660 *
6661 * ai.{play,record}.active (R/-)
6662 * Non-zero indicates that I/O is currently active.
6663 *
6664 * ai.blocksize (R/-)
6665 * It indicates the block size in bytes.
6666 * XXX The blocksize of playback and recording may be different.
6667 */
6668
6669 /*
6670 * Pause consideration:
6671 *
6672 * The introduction of these two behavior makes pause/unpause operation
6673 * simple.
6674 * 1. The first read/write access of the first track makes mixer start.
6675 * 2. A pause of the last track doesn't make mixer stop.
6676 */
6677
6678 /*
6679 * Set both track's parameters within a file depending on ai.
6680 * Update sc_sound_[pr]* if set.
6681 * Must be called with sc_lock and sc_exlock held.
6682 */
6683 static int
6684 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6685 const struct audio_info *ai)
6686 {
6687 const struct audio_prinfo *pi;
6688 const struct audio_prinfo *ri;
6689 audio_track_t *ptrack;
6690 audio_track_t *rtrack;
6691 audio_format2_t pfmt;
6692 audio_format2_t rfmt;
6693 int pchanges;
6694 int rchanges;
6695 int mode;
6696 struct audio_info saved_ai;
6697 audio_format2_t saved_pfmt;
6698 audio_format2_t saved_rfmt;
6699 int error;
6700
6701 KASSERT(mutex_owned(sc->sc_lock));
6702 KASSERT(sc->sc_exlock);
6703
6704 pi = &ai->play;
6705 ri = &ai->record;
6706 pchanges = 0;
6707 rchanges = 0;
6708
6709 ptrack = file->ptrack;
6710 rtrack = file->rtrack;
6711
6712 #if defined(AUDIO_DEBUG)
6713 if (audiodebug >= 2) {
6714 char buf[256];
6715 char p[64];
6716 int buflen;
6717 int plen;
6718 #define SPRINTF(var, fmt...) do { \
6719 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6720 } while (0)
6721
6722 buflen = 0;
6723 plen = 0;
6724 if (SPECIFIED(pi->encoding))
6725 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6726 if (SPECIFIED(pi->precision))
6727 SPRINTF(p, "/%dbit", pi->precision);
6728 if (SPECIFIED(pi->channels))
6729 SPRINTF(p, "/%dch", pi->channels);
6730 if (SPECIFIED(pi->sample_rate))
6731 SPRINTF(p, "/%dHz", pi->sample_rate);
6732 if (plen > 0)
6733 SPRINTF(buf, ",play.param=%s", p + 1);
6734
6735 plen = 0;
6736 if (SPECIFIED(ri->encoding))
6737 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6738 if (SPECIFIED(ri->precision))
6739 SPRINTF(p, "/%dbit", ri->precision);
6740 if (SPECIFIED(ri->channels))
6741 SPRINTF(p, "/%dch", ri->channels);
6742 if (SPECIFIED(ri->sample_rate))
6743 SPRINTF(p, "/%dHz", ri->sample_rate);
6744 if (plen > 0)
6745 SPRINTF(buf, ",record.param=%s", p + 1);
6746
6747 if (SPECIFIED(ai->mode))
6748 SPRINTF(buf, ",mode=%d", ai->mode);
6749 if (SPECIFIED(ai->hiwat))
6750 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6751 if (SPECIFIED(ai->lowat))
6752 SPRINTF(buf, ",lowat=%d", ai->lowat);
6753 if (SPECIFIED(ai->play.gain))
6754 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6755 if (SPECIFIED(ai->record.gain))
6756 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6757 if (SPECIFIED_CH(ai->play.balance))
6758 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6759 if (SPECIFIED_CH(ai->record.balance))
6760 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6761 if (SPECIFIED(ai->play.port))
6762 SPRINTF(buf, ",play.port=%d", ai->play.port);
6763 if (SPECIFIED(ai->record.port))
6764 SPRINTF(buf, ",record.port=%d", ai->record.port);
6765 if (SPECIFIED(ai->monitor_gain))
6766 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6767 if (SPECIFIED_CH(ai->play.pause))
6768 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6769 if (SPECIFIED_CH(ai->record.pause))
6770 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6771
6772 if (buflen > 0)
6773 TRACE(2, "specified %s", buf + 1);
6774 }
6775 #endif
6776
6777 AUDIO_INITINFO(&saved_ai);
6778 /* XXX shut up gcc */
6779 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6780 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6781
6782 /*
6783 * Set default value and save current parameters.
6784 * For backward compatibility, use sticky parameters for nonexistent
6785 * track.
6786 */
6787 if (ptrack) {
6788 pfmt = ptrack->usrbuf.fmt;
6789 saved_pfmt = ptrack->usrbuf.fmt;
6790 saved_ai.play.pause = ptrack->is_pause;
6791 } else {
6792 pfmt = sc->sc_sound_pparams;
6793 }
6794 if (rtrack) {
6795 rfmt = rtrack->usrbuf.fmt;
6796 saved_rfmt = rtrack->usrbuf.fmt;
6797 saved_ai.record.pause = rtrack->is_pause;
6798 } else {
6799 rfmt = sc->sc_sound_rparams;
6800 }
6801 saved_ai.mode = file->mode;
6802
6803 /*
6804 * Overwrite if specified.
6805 */
6806 mode = file->mode;
6807 if (SPECIFIED(ai->mode)) {
6808 /*
6809 * Setting ai->mode no longer does anything because it's
6810 * prohibited to change playback/recording mode after open
6811 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6812 * keeps the state of AUMODE_PLAY_ALL itself for backward
6813 * compatibility.
6814 * In the internal, only file->mode has the state of
6815 * AUMODE_PLAY_ALL flag and track->mode in both track does
6816 * not have.
6817 */
6818 if ((file->mode & AUMODE_PLAY)) {
6819 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6820 | (ai->mode & AUMODE_PLAY_ALL);
6821 }
6822 }
6823
6824 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
6825 if (pchanges == -1) {
6826 #if defined(AUDIO_DEBUG)
6827 TRACEF(1, file, "check play.params failed: "
6828 "%s %ubit %uch %uHz",
6829 audio_encoding_name(pi->encoding),
6830 pi->precision,
6831 pi->channels,
6832 pi->sample_rate);
6833 #endif
6834 return EINVAL;
6835 }
6836
6837 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
6838 if (rchanges == -1) {
6839 #if defined(AUDIO_DEBUG)
6840 TRACEF(1, file, "check record.params failed: "
6841 "%s %ubit %uch %uHz",
6842 audio_encoding_name(ri->encoding),
6843 ri->precision,
6844 ri->channels,
6845 ri->sample_rate);
6846 #endif
6847 return EINVAL;
6848 }
6849
6850 if (SPECIFIED(ai->mode)) {
6851 pchanges = 1;
6852 rchanges = 1;
6853 }
6854
6855 /*
6856 * Even when setting either one of playback and recording,
6857 * both track must be halted.
6858 */
6859 if (pchanges || rchanges) {
6860 audio_file_clear(sc, file);
6861 #if defined(AUDIO_DEBUG)
6862 char nbuf[16];
6863 char fmtbuf[64];
6864 if (pchanges) {
6865 if (ptrack) {
6866 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
6867 } else {
6868 snprintf(nbuf, sizeof(nbuf), "-");
6869 }
6870 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6871 DPRINTF(1, "audio track#%s play mode: %s\n",
6872 nbuf, fmtbuf);
6873 }
6874 if (rchanges) {
6875 if (rtrack) {
6876 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
6877 } else {
6878 snprintf(nbuf, sizeof(nbuf), "-");
6879 }
6880 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6881 DPRINTF(1, "audio track#%s rec mode: %s\n",
6882 nbuf, fmtbuf);
6883 }
6884 #endif
6885 }
6886
6887 /* Set mixer parameters */
6888 error = audio_hw_setinfo(sc, ai, &saved_ai);
6889 if (error)
6890 goto abort1;
6891
6892 /*
6893 * Set to track and update sticky parameters.
6894 */
6895 error = 0;
6896 file->mode = mode;
6897
6898 if (SPECIFIED_CH(pi->pause)) {
6899 if (ptrack)
6900 ptrack->is_pause = pi->pause;
6901 sc->sc_sound_ppause = pi->pause;
6902 }
6903 if (pchanges) {
6904 if (ptrack) {
6905 audio_track_lock_enter(ptrack);
6906 error = audio_track_set_format(ptrack, &pfmt);
6907 audio_track_lock_exit(ptrack);
6908 if (error) {
6909 TRACET(1, ptrack, "set play.params failed");
6910 goto abort2;
6911 }
6912 }
6913 sc->sc_sound_pparams = pfmt;
6914 }
6915 /* Change water marks after initializing the buffers. */
6916 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6917 if (ptrack)
6918 audio_track_setinfo_water(ptrack, ai);
6919 }
6920
6921 if (SPECIFIED_CH(ri->pause)) {
6922 if (rtrack)
6923 rtrack->is_pause = ri->pause;
6924 sc->sc_sound_rpause = ri->pause;
6925 }
6926 if (rchanges) {
6927 if (rtrack) {
6928 audio_track_lock_enter(rtrack);
6929 error = audio_track_set_format(rtrack, &rfmt);
6930 audio_track_lock_exit(rtrack);
6931 if (error) {
6932 TRACET(1, rtrack, "set record.params failed");
6933 goto abort3;
6934 }
6935 }
6936 sc->sc_sound_rparams = rfmt;
6937 }
6938
6939 return 0;
6940
6941 /* Rollback */
6942 abort3:
6943 if (error != ENOMEM) {
6944 rtrack->is_pause = saved_ai.record.pause;
6945 audio_track_lock_enter(rtrack);
6946 audio_track_set_format(rtrack, &saved_rfmt);
6947 audio_track_lock_exit(rtrack);
6948 }
6949 sc->sc_sound_rpause = saved_ai.record.pause;
6950 sc->sc_sound_rparams = saved_rfmt;
6951 abort2:
6952 if (ptrack && error != ENOMEM) {
6953 ptrack->is_pause = saved_ai.play.pause;
6954 audio_track_lock_enter(ptrack);
6955 audio_track_set_format(ptrack, &saved_pfmt);
6956 audio_track_lock_exit(ptrack);
6957 }
6958 sc->sc_sound_ppause = saved_ai.play.pause;
6959 sc->sc_sound_pparams = saved_pfmt;
6960 file->mode = saved_ai.mode;
6961 abort1:
6962 audio_hw_setinfo(sc, &saved_ai, NULL);
6963
6964 return error;
6965 }
6966
6967 /*
6968 * Write SPECIFIED() parameters within info back to fmt.
6969 * Note that track can be NULL here.
6970 * Return value of 1 indicates that fmt is modified.
6971 * Return value of 0 indicates that fmt is not modified.
6972 * Return value of -1 indicates that error EINVAL has occurred.
6973 */
6974 static int
6975 audio_track_setinfo_check(audio_track_t *track,
6976 audio_format2_t *fmt, const struct audio_prinfo *info)
6977 {
6978 const audio_format2_t *hwfmt;
6979 int changes;
6980
6981 changes = 0;
6982 if (SPECIFIED(info->sample_rate)) {
6983 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
6984 return -1;
6985 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
6986 return -1;
6987 fmt->sample_rate = info->sample_rate;
6988 changes = 1;
6989 }
6990 if (SPECIFIED(info->encoding)) {
6991 fmt->encoding = info->encoding;
6992 changes = 1;
6993 }
6994 if (SPECIFIED(info->precision)) {
6995 fmt->precision = info->precision;
6996 /* we don't have API to specify stride */
6997 fmt->stride = info->precision;
6998 changes = 1;
6999 }
7000 if (SPECIFIED(info->channels)) {
7001 /*
7002 * We can convert between monaural and stereo each other.
7003 * We can reduce than the number of channels that the hardware
7004 * supports.
7005 */
7006 if (info->channels > 2) {
7007 if (track) {
7008 hwfmt = &track->mixer->hwbuf.fmt;
7009 if (info->channels > hwfmt->channels)
7010 return -1;
7011 } else {
7012 /*
7013 * This should never happen.
7014 * If track == NULL, channels should be <= 2.
7015 */
7016 return -1;
7017 }
7018 }
7019 fmt->channels = info->channels;
7020 changes = 1;
7021 }
7022
7023 if (changes) {
7024 if (audio_check_params(fmt) != 0)
7025 return -1;
7026 }
7027
7028 return changes;
7029 }
7030
7031 /*
7032 * Change water marks for playback track if specfied.
7033 */
7034 static void
7035 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7036 {
7037 u_int blks;
7038 u_int maxblks;
7039 u_int blksize;
7040
7041 KASSERT(audio_track_is_playback(track));
7042
7043 blksize = track->usrbuf_blksize;
7044 maxblks = track->usrbuf.capacity / blksize;
7045
7046 if (SPECIFIED(ai->hiwat)) {
7047 blks = ai->hiwat;
7048 if (blks > maxblks)
7049 blks = maxblks;
7050 if (blks < 2)
7051 blks = 2;
7052 track->usrbuf_usedhigh = blks * blksize;
7053 }
7054 if (SPECIFIED(ai->lowat)) {
7055 blks = ai->lowat;
7056 if (blks > maxblks - 1)
7057 blks = maxblks - 1;
7058 track->usrbuf_usedlow = blks * blksize;
7059 }
7060 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7061 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7062 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7063 blksize;
7064 }
7065 }
7066 }
7067
7068 /*
7069 * Set hardware part of *ai.
7070 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7071 * If oldai is specified, previous parameters are stored.
7072 * This function itself does not roll back if error occurred.
7073 * Must be called with sc_lock and sc_exlock held.
7074 */
7075 static int
7076 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7077 struct audio_info *oldai)
7078 {
7079 const struct audio_prinfo *newpi;
7080 const struct audio_prinfo *newri;
7081 struct audio_prinfo *oldpi;
7082 struct audio_prinfo *oldri;
7083 u_int pgain;
7084 u_int rgain;
7085 u_char pbalance;
7086 u_char rbalance;
7087 int error;
7088
7089 KASSERT(mutex_owned(sc->sc_lock));
7090 KASSERT(sc->sc_exlock);
7091
7092 /* XXX shut up gcc */
7093 oldpi = NULL;
7094 oldri = NULL;
7095
7096 newpi = &newai->play;
7097 newri = &newai->record;
7098 if (oldai) {
7099 oldpi = &oldai->play;
7100 oldri = &oldai->record;
7101 }
7102 error = 0;
7103
7104 /*
7105 * It looks like unnecessary to halt HW mixers to set HW mixers.
7106 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7107 */
7108
7109 if (SPECIFIED(newpi->port)) {
7110 if (oldai)
7111 oldpi->port = au_get_port(sc, &sc->sc_outports);
7112 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7113 if (error) {
7114 device_printf(sc->sc_dev,
7115 "setting play.port=%d failed with %d\n",
7116 newpi->port, error);
7117 goto abort;
7118 }
7119 }
7120 if (SPECIFIED(newri->port)) {
7121 if (oldai)
7122 oldri->port = au_get_port(sc, &sc->sc_inports);
7123 error = au_set_port(sc, &sc->sc_inports, newri->port);
7124 if (error) {
7125 device_printf(sc->sc_dev,
7126 "setting record.port=%d failed with %d\n",
7127 newri->port, error);
7128 goto abort;
7129 }
7130 }
7131
7132 /* Backup play.{gain,balance} */
7133 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7134 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7135 if (oldai) {
7136 oldpi->gain = pgain;
7137 oldpi->balance = pbalance;
7138 }
7139 }
7140 /* Backup record.{gain,balance} */
7141 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7142 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7143 if (oldai) {
7144 oldri->gain = rgain;
7145 oldri->balance = rbalance;
7146 }
7147 }
7148 if (SPECIFIED(newpi->gain)) {
7149 error = au_set_gain(sc, &sc->sc_outports,
7150 newpi->gain, pbalance);
7151 if (error) {
7152 device_printf(sc->sc_dev,
7153 "setting play.gain=%d failed with %d\n",
7154 newpi->gain, error);
7155 goto abort;
7156 }
7157 }
7158 if (SPECIFIED(newri->gain)) {
7159 error = au_set_gain(sc, &sc->sc_inports,
7160 newri->gain, rbalance);
7161 if (error) {
7162 device_printf(sc->sc_dev,
7163 "setting record.gain=%d failed with %d\n",
7164 newri->gain, error);
7165 goto abort;
7166 }
7167 }
7168 if (SPECIFIED_CH(newpi->balance)) {
7169 error = au_set_gain(sc, &sc->sc_outports,
7170 pgain, newpi->balance);
7171 if (error) {
7172 device_printf(sc->sc_dev,
7173 "setting play.balance=%d failed with %d\n",
7174 newpi->balance, error);
7175 goto abort;
7176 }
7177 }
7178 if (SPECIFIED_CH(newri->balance)) {
7179 error = au_set_gain(sc, &sc->sc_inports,
7180 rgain, newri->balance);
7181 if (error) {
7182 device_printf(sc->sc_dev,
7183 "setting record.balance=%d failed with %d\n",
7184 newri->balance, error);
7185 goto abort;
7186 }
7187 }
7188
7189 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7190 if (oldai)
7191 oldai->monitor_gain = au_get_monitor_gain(sc);
7192 error = au_set_monitor_gain(sc, newai->monitor_gain);
7193 if (error) {
7194 device_printf(sc->sc_dev,
7195 "setting monitor_gain=%d failed with %d\n",
7196 newai->monitor_gain, error);
7197 goto abort;
7198 }
7199 }
7200
7201 /* XXX TODO */
7202 /* sc->sc_ai = *ai; */
7203
7204 error = 0;
7205 abort:
7206 return error;
7207 }
7208
7209 /*
7210 * Setup the hardware with mixer format phwfmt, rhwfmt.
7211 * The arguments have following restrictions:
7212 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7213 * or both.
7214 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7215 * - On non-independent devices, phwfmt and rhwfmt must have the same
7216 * parameters.
7217 * - pfil and rfil must be zero-filled.
7218 * If successful,
7219 * - phwfmt, rhwfmt will be overwritten by hardware format.
7220 * - pfil, rfil will be filled with filter information specified by the
7221 * hardware driver.
7222 * and then returns 0. Otherwise returns errno.
7223 * Must be called with sc_lock held.
7224 */
7225 static int
7226 audio_hw_set_format(struct audio_softc *sc, int setmode,
7227 audio_format2_t *phwfmt, audio_format2_t *rhwfmt,
7228 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7229 {
7230 audio_params_t pp, rp;
7231 int error;
7232
7233 KASSERT(mutex_owned(sc->sc_lock));
7234 KASSERT(phwfmt != NULL);
7235 KASSERT(rhwfmt != NULL);
7236
7237 pp = format2_to_params(phwfmt);
7238 rp = format2_to_params(rhwfmt);
7239
7240 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7241 &pp, &rp, pfil, rfil);
7242 if (error) {
7243 device_printf(sc->sc_dev,
7244 "set_format failed with %d\n", error);
7245 return error;
7246 }
7247
7248 if (sc->hw_if->commit_settings) {
7249 error = sc->hw_if->commit_settings(sc->hw_hdl);
7250 if (error) {
7251 device_printf(sc->sc_dev,
7252 "commit_settings failed with %d\n", error);
7253 return error;
7254 }
7255 }
7256
7257 return 0;
7258 }
7259
7260 /*
7261 * Fill audio_info structure. If need_mixerinfo is true, it will also
7262 * fill the hardware mixer information.
7263 * Must be called with sc_lock held.
7264 * Must be called with sc_exlock held, in addition, if need_mixerinfo is
7265 * true.
7266 */
7267 static int
7268 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7269 audio_file_t *file)
7270 {
7271 struct audio_prinfo *ri, *pi;
7272 audio_track_t *track;
7273 audio_track_t *ptrack;
7274 audio_track_t *rtrack;
7275 int gain;
7276
7277 KASSERT(mutex_owned(sc->sc_lock));
7278
7279 ri = &ai->record;
7280 pi = &ai->play;
7281 ptrack = file->ptrack;
7282 rtrack = file->rtrack;
7283
7284 memset(ai, 0, sizeof(*ai));
7285
7286 if (ptrack) {
7287 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7288 pi->channels = ptrack->usrbuf.fmt.channels;
7289 pi->precision = ptrack->usrbuf.fmt.precision;
7290 pi->encoding = ptrack->usrbuf.fmt.encoding;
7291 pi->pause = ptrack->is_pause;
7292 } else {
7293 /* Use sticky parameters if the track is not available. */
7294 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7295 pi->channels = sc->sc_sound_pparams.channels;
7296 pi->precision = sc->sc_sound_pparams.precision;
7297 pi->encoding = sc->sc_sound_pparams.encoding;
7298 pi->pause = sc->sc_sound_ppause;
7299 }
7300 if (rtrack) {
7301 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7302 ri->channels = rtrack->usrbuf.fmt.channels;
7303 ri->precision = rtrack->usrbuf.fmt.precision;
7304 ri->encoding = rtrack->usrbuf.fmt.encoding;
7305 ri->pause = rtrack->is_pause;
7306 } else {
7307 /* Use sticky parameters if the track is not available. */
7308 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7309 ri->channels = sc->sc_sound_rparams.channels;
7310 ri->precision = sc->sc_sound_rparams.precision;
7311 ri->encoding = sc->sc_sound_rparams.encoding;
7312 ri->pause = sc->sc_sound_rpause;
7313 }
7314
7315 if (ptrack) {
7316 pi->seek = ptrack->usrbuf.used;
7317 pi->samples = ptrack->usrbuf_stamp;
7318 pi->eof = ptrack->eofcounter;
7319 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7320 pi->open = 1;
7321 pi->buffer_size = ptrack->usrbuf.capacity;
7322 }
7323 pi->waiting = 0; /* open never hangs */
7324 pi->active = sc->sc_pbusy;
7325
7326 if (rtrack) {
7327 ri->seek = rtrack->usrbuf.used;
7328 ri->samples = rtrack->usrbuf_stamp;
7329 ri->eof = 0;
7330 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7331 ri->open = 1;
7332 ri->buffer_size = rtrack->usrbuf.capacity;
7333 }
7334 ri->waiting = 0; /* open never hangs */
7335 ri->active = sc->sc_rbusy;
7336
7337 /*
7338 * XXX There may be different number of channels between playback
7339 * and recording, so that blocksize also may be different.
7340 * But struct audio_info has an united blocksize...
7341 * Here, I use play info precedencely if ptrack is available,
7342 * otherwise record info.
7343 *
7344 * XXX hiwat/lowat is a playback-only parameter. What should I
7345 * return for a record-only descriptor?
7346 */
7347 track = ptrack ? ptrack : rtrack;
7348 if (track) {
7349 ai->blocksize = track->usrbuf_blksize;
7350 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7351 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7352 }
7353 ai->mode = file->mode;
7354
7355 /*
7356 * For backward compatibility, we have to pad these five fields
7357 * a fake non-zero value even if there are no tracks.
7358 */
7359 if (ptrack == NULL)
7360 pi->buffer_size = 65536;
7361 if (rtrack == NULL)
7362 ri->buffer_size = 65536;
7363 if (ptrack == NULL && rtrack == NULL) {
7364 ai->blocksize = 2048;
7365 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7366 ai->lowat = ai->hiwat * 3 / 4;
7367 }
7368
7369 if (need_mixerinfo) {
7370 KASSERT(sc->sc_exlock);
7371
7372 pi->port = au_get_port(sc, &sc->sc_outports);
7373 ri->port = au_get_port(sc, &sc->sc_inports);
7374
7375 pi->avail_ports = sc->sc_outports.allports;
7376 ri->avail_ports = sc->sc_inports.allports;
7377
7378 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7379 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7380
7381 if (sc->sc_monitor_port != -1) {
7382 gain = au_get_monitor_gain(sc);
7383 if (gain != -1)
7384 ai->monitor_gain = gain;
7385 }
7386 }
7387
7388 return 0;
7389 }
7390
7391 /*
7392 * Return true if playback is configured.
7393 * This function can be used after audioattach.
7394 */
7395 static bool
7396 audio_can_playback(struct audio_softc *sc)
7397 {
7398
7399 return (sc->sc_pmixer != NULL);
7400 }
7401
7402 /*
7403 * Return true if recording is configured.
7404 * This function can be used after audioattach.
7405 */
7406 static bool
7407 audio_can_capture(struct audio_softc *sc)
7408 {
7409
7410 return (sc->sc_rmixer != NULL);
7411 }
7412
7413 /*
7414 * Get the afp->index'th item from the valid one of format[].
7415 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7416 *
7417 * This is common routines for query_format.
7418 * If your hardware driver has struct audio_format[], the simplest case
7419 * you can write your query_format interface as follows:
7420 *
7421 * struct audio_format foo_format[] = { ... };
7422 *
7423 * int
7424 * foo_query_format(void *hdl, audio_format_query_t *afp)
7425 * {
7426 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7427 * }
7428 */
7429 int
7430 audio_query_format(const struct audio_format *format, int nformats,
7431 audio_format_query_t *afp)
7432 {
7433 const struct audio_format *f;
7434 int idx;
7435 int i;
7436
7437 idx = 0;
7438 for (i = 0; i < nformats; i++) {
7439 f = &format[i];
7440 if (!AUFMT_IS_VALID(f))
7441 continue;
7442 if (afp->index == idx) {
7443 afp->fmt = *f;
7444 return 0;
7445 }
7446 idx++;
7447 }
7448 return EINVAL;
7449 }
7450
7451 /*
7452 * This function is provided for the hardware driver's set_format() to
7453 * find index matches with 'param' from array of audio_format_t 'formats'.
7454 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7455 * It returns the matched index and never fails. Because param passed to
7456 * set_format() is selected from query_format().
7457 * This function will be an alternative to auconv_set_converter() to
7458 * find index.
7459 */
7460 int
7461 audio_indexof_format(const struct audio_format *formats, int nformats,
7462 int mode, const audio_params_t *param)
7463 {
7464 const struct audio_format *f;
7465 int index;
7466 int j;
7467
7468 for (index = 0; index < nformats; index++) {
7469 f = &formats[index];
7470
7471 if (!AUFMT_IS_VALID(f))
7472 continue;
7473 if ((f->mode & mode) == 0)
7474 continue;
7475 if (f->encoding != param->encoding)
7476 continue;
7477 if (f->validbits != param->precision)
7478 continue;
7479 if (f->channels != param->channels)
7480 continue;
7481
7482 if (f->frequency_type == 0) {
7483 if (param->sample_rate < f->frequency[0] ||
7484 param->sample_rate > f->frequency[1])
7485 continue;
7486 } else {
7487 for (j = 0; j < f->frequency_type; j++) {
7488 if (param->sample_rate == f->frequency[j])
7489 break;
7490 }
7491 if (j == f->frequency_type)
7492 continue;
7493 }
7494
7495 /* Then, matched */
7496 return index;
7497 }
7498
7499 /* Not matched. This should not be happened. */
7500 panic("%s: cannot find matched format\n", __func__);
7501 }
7502
7503 /*
7504 * Get or set hardware blocksize in msec.
7505 * XXX It's for debug.
7506 */
7507 static int
7508 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7509 {
7510 struct sysctlnode node;
7511 struct audio_softc *sc;
7512 audio_format2_t phwfmt;
7513 audio_format2_t rhwfmt;
7514 audio_filter_reg_t pfil;
7515 audio_filter_reg_t rfil;
7516 int t;
7517 int old_blk_ms;
7518 int mode;
7519 int error;
7520
7521 node = *rnode;
7522 sc = node.sysctl_data;
7523
7524 mutex_enter(sc->sc_lock);
7525
7526 old_blk_ms = sc->sc_blk_ms;
7527 t = old_blk_ms;
7528 node.sysctl_data = &t;
7529 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7530 if (error || newp == NULL)
7531 goto abort;
7532
7533 if (t < 0) {
7534 error = EINVAL;
7535 goto abort;
7536 }
7537
7538 if (sc->sc_popens + sc->sc_ropens > 0) {
7539 error = EBUSY;
7540 goto abort;
7541 }
7542 sc->sc_blk_ms = t;
7543 mode = 0;
7544 if (sc->sc_pmixer) {
7545 mode |= AUMODE_PLAY;
7546 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7547 }
7548 if (sc->sc_rmixer) {
7549 mode |= AUMODE_RECORD;
7550 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7551 }
7552
7553 /* re-init hardware */
7554 memset(&pfil, 0, sizeof(pfil));
7555 memset(&rfil, 0, sizeof(rfil));
7556 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7557 if (error) {
7558 goto abort;
7559 }
7560
7561 /* re-init track mixer */
7562 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7563 if (error) {
7564 /* Rollback */
7565 sc->sc_blk_ms = old_blk_ms;
7566 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7567 goto abort;
7568 }
7569 error = 0;
7570 abort:
7571 mutex_exit(sc->sc_lock);
7572 return error;
7573 }
7574
7575 /*
7576 * Get or set multiuser mode.
7577 */
7578 static int
7579 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7580 {
7581 struct sysctlnode node;
7582 struct audio_softc *sc;
7583 bool t;
7584 int error;
7585
7586 node = *rnode;
7587 sc = node.sysctl_data;
7588
7589 mutex_enter(sc->sc_lock);
7590
7591 t = sc->sc_multiuser;
7592 node.sysctl_data = &t;
7593 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7594 if (error || newp == NULL)
7595 goto abort;
7596
7597 sc->sc_multiuser = t;
7598 error = 0;
7599 abort:
7600 mutex_exit(sc->sc_lock);
7601 return error;
7602 }
7603
7604 #if defined(AUDIO_DEBUG)
7605 /*
7606 * Get or set debug verbose level. (0..4)
7607 * XXX It's for debug.
7608 * XXX It is not separated per device.
7609 */
7610 static int
7611 audio_sysctl_debug(SYSCTLFN_ARGS)
7612 {
7613 struct sysctlnode node;
7614 int t;
7615 int error;
7616
7617 node = *rnode;
7618 t = audiodebug;
7619 node.sysctl_data = &t;
7620 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7621 if (error || newp == NULL)
7622 return error;
7623
7624 if (t < 0 || t > 4)
7625 return EINVAL;
7626 audiodebug = t;
7627 printf("audio: audiodebug = %d\n", audiodebug);
7628 return 0;
7629 }
7630 #endif /* AUDIO_DEBUG */
7631
7632 #ifdef AUDIO_PM_IDLE
7633 static void
7634 audio_idle(void *arg)
7635 {
7636 device_t dv = arg;
7637 struct audio_softc *sc = device_private(dv);
7638
7639 #ifdef PNP_DEBUG
7640 extern int pnp_debug_idle;
7641 if (pnp_debug_idle)
7642 printf("%s: idle handler called\n", device_xname(dv));
7643 #endif
7644
7645 sc->sc_idle = true;
7646
7647 /* XXX joerg Make pmf_device_suspend handle children? */
7648 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7649 return;
7650
7651 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7652 pmf_device_resume(dv, PMF_Q_SELF);
7653 }
7654
7655 static void
7656 audio_activity(device_t dv, devactive_t type)
7657 {
7658 struct audio_softc *sc = device_private(dv);
7659
7660 if (type != DVA_SYSTEM)
7661 return;
7662
7663 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7664
7665 sc->sc_idle = false;
7666 if (!device_is_active(dv)) {
7667 /* XXX joerg How to deal with a failing resume... */
7668 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7669 pmf_device_resume(dv, PMF_Q_SELF);
7670 }
7671 }
7672 #endif
7673
7674 static bool
7675 audio_suspend(device_t dv, const pmf_qual_t *qual)
7676 {
7677 struct audio_softc *sc = device_private(dv);
7678 int error;
7679
7680 error = audio_enter_exclusive(sc);
7681 if (error)
7682 return error;
7683 audio_mixer_capture(sc);
7684
7685 /* Halts mixers but don't clear busy flag for resume */
7686 if (sc->sc_pbusy) {
7687 audio_pmixer_halt(sc);
7688 sc->sc_pbusy = true;
7689 }
7690 if (sc->sc_rbusy) {
7691 audio_rmixer_halt(sc);
7692 sc->sc_rbusy = true;
7693 }
7694
7695 #ifdef AUDIO_PM_IDLE
7696 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7697 #endif
7698 audio_exit_exclusive(sc);
7699
7700 return true;
7701 }
7702
7703 static bool
7704 audio_resume(device_t dv, const pmf_qual_t *qual)
7705 {
7706 struct audio_softc *sc = device_private(dv);
7707 struct audio_info ai;
7708 int error;
7709
7710 error = audio_enter_exclusive(sc);
7711 if (error)
7712 return error;
7713
7714 audio_mixer_restore(sc);
7715 /* XXX ? */
7716 AUDIO_INITINFO(&ai);
7717 audio_hw_setinfo(sc, &ai, NULL);
7718
7719 if (sc->sc_pbusy)
7720 audio_pmixer_start(sc, true);
7721 if (sc->sc_rbusy)
7722 audio_rmixer_start(sc);
7723
7724 audio_exit_exclusive(sc);
7725
7726 return true;
7727 }
7728
7729 #if defined(AUDIO_DEBUG)
7730 static void
7731 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7732 {
7733 int n;
7734
7735 n = 0;
7736 n += snprintf(buf + n, bufsize - n, "%s",
7737 audio_encoding_name(fmt->encoding));
7738 if (fmt->precision == fmt->stride) {
7739 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7740 } else {
7741 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7742 fmt->precision, fmt->stride);
7743 }
7744
7745 snprintf(buf + n, bufsize - n, " %uch %uHz",
7746 fmt->channels, fmt->sample_rate);
7747 }
7748 #endif
7749
7750 #if defined(AUDIO_DEBUG)
7751 static void
7752 audio_print_format2(const char *s, const audio_format2_t *fmt)
7753 {
7754 char fmtstr[64];
7755
7756 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7757 printf("%s %s\n", s, fmtstr);
7758 }
7759 #endif
7760
7761 #ifdef DIAGNOSTIC
7762 void
7763 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7764 {
7765
7766 KASSERTMSG(fmt, "called from %s", where);
7767
7768 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7769 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7770 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7771 "called from %s: fmt->stride=%d", where, fmt->stride);
7772 } else {
7773 KASSERTMSG(fmt->stride % NBBY == 0,
7774 "called from %s: fmt->stride=%d", where, fmt->stride);
7775 }
7776 KASSERTMSG(fmt->precision <= fmt->stride,
7777 "called from %s: fmt->precision=%d fmt->stride=%d",
7778 where, fmt->precision, fmt->stride);
7779 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7780 "called from %s: fmt->channels=%d", where, fmt->channels);
7781
7782 /* XXX No check for encodings? */
7783 }
7784
7785 void
7786 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7787 {
7788
7789 KASSERT(arg != NULL);
7790 KASSERT(arg->src != NULL);
7791 KASSERT(arg->dst != NULL);
7792 audio_diagnostic_format2(where, arg->srcfmt);
7793 audio_diagnostic_format2(where, arg->dstfmt);
7794 KASSERT(arg->count > 0);
7795 }
7796
7797 void
7798 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7799 {
7800
7801 KASSERTMSG(ring, "called from %s", where);
7802 audio_diagnostic_format2(where, &ring->fmt);
7803 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7804 "called from %s: ring->capacity=%d", where, ring->capacity);
7805 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7806 "called from %s: ring->used=%d ring->capacity=%d",
7807 where, ring->used, ring->capacity);
7808 if (ring->capacity == 0) {
7809 KASSERTMSG(ring->mem == NULL,
7810 "called from %s: capacity == 0 but mem != NULL", where);
7811 } else {
7812 KASSERTMSG(ring->mem != NULL,
7813 "called from %s: capacity != 0 but mem == NULL", where);
7814 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7815 "called from %s: ring->head=%d ring->capacity=%d",
7816 where, ring->head, ring->capacity);
7817 }
7818 }
7819 #endif /* DIAGNOSTIC */
7820
7821
7822 /*
7823 * Mixer driver
7824 */
7825 int
7826 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7827 struct lwp *l)
7828 {
7829 struct file *fp;
7830 audio_file_t *af;
7831 int error, fd;
7832
7833 KASSERT(mutex_owned(sc->sc_lock));
7834
7835 TRACE(1, "flags=0x%x", flags);
7836
7837 error = fd_allocfile(&fp, &fd);
7838 if (error)
7839 return error;
7840
7841 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7842 af->sc = sc;
7843 af->dev = dev;
7844
7845 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7846 KASSERT(error == EMOVEFD);
7847
7848 return error;
7849 }
7850
7851 /*
7852 * Remove a process from those to be signalled on mixer activity.
7853 * Must be called with sc_lock held.
7854 */
7855 static void
7856 mixer_remove(struct audio_softc *sc)
7857 {
7858 struct mixer_asyncs **pm, *m;
7859 pid_t pid;
7860
7861 KASSERT(mutex_owned(sc->sc_lock));
7862
7863 pid = curproc->p_pid;
7864 for (pm = &sc->sc_async_mixer; *pm; pm = &(*pm)->next) {
7865 if ((*pm)->pid == pid) {
7866 m = *pm;
7867 *pm = m->next;
7868 kmem_free(m, sizeof(*m));
7869 return;
7870 }
7871 }
7872 }
7873
7874 /*
7875 * Signal all processes waiting for the mixer.
7876 * Must be called with sc_lock held.
7877 */
7878 static void
7879 mixer_signal(struct audio_softc *sc)
7880 {
7881 struct mixer_asyncs *m;
7882 proc_t *p;
7883
7884 for (m = sc->sc_async_mixer; m; m = m->next) {
7885 mutex_enter(proc_lock);
7886 if ((p = proc_find(m->pid)) != NULL)
7887 psignal(p, SIGIO);
7888 mutex_exit(proc_lock);
7889 }
7890 }
7891
7892 /*
7893 * Close a mixer device
7894 */
7895 int
7896 mixer_close(struct audio_softc *sc, audio_file_t *file)
7897 {
7898
7899 mutex_enter(sc->sc_lock);
7900 TRACE(1, "");
7901 mixer_remove(sc);
7902 mutex_exit(sc->sc_lock);
7903
7904 return 0;
7905 }
7906
7907 /*
7908 * Must be called without sc_lock nor sc_exlock held.
7909 */
7910 int
7911 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
7912 struct lwp *l)
7913 {
7914 struct mixer_asyncs *ma;
7915 mixer_devinfo_t *mi;
7916 mixer_ctrl_t *mc;
7917 int error;
7918
7919 TRACE(2, "(%lu,'%c',%lu)",
7920 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
7921 error = EINVAL;
7922
7923 /* we can return cached values if we are sleeping */
7924 if (cmd != AUDIO_MIXER_READ) {
7925 mutex_enter(sc->sc_lock);
7926 device_active(sc->sc_dev, DVA_SYSTEM);
7927 mutex_exit(sc->sc_lock);
7928 }
7929
7930 switch (cmd) {
7931 case FIOASYNC:
7932 if (*(int *)addr) {
7933 ma = kmem_alloc(sizeof(struct mixer_asyncs), KM_SLEEP);
7934 } else {
7935 ma = NULL;
7936 }
7937 mutex_enter(sc->sc_lock);
7938 mixer_remove(sc); /* remove old entry */
7939 if (ma != NULL) {
7940 ma->next = sc->sc_async_mixer;
7941 ma->pid = curproc->p_pid;
7942 sc->sc_async_mixer = ma;
7943 }
7944 mutex_exit(sc->sc_lock);
7945 error = 0;
7946 break;
7947
7948 case AUDIO_GETDEV:
7949 TRACE(2, "AUDIO_GETDEV");
7950 error = audio_enter_exclusive(sc);
7951 if (error)
7952 break;
7953 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
7954 audio_exit_exclusive(sc);
7955 break;
7956
7957 case AUDIO_MIXER_DEVINFO:
7958 TRACE(2, "AUDIO_MIXER_DEVINFO");
7959 mi = (mixer_devinfo_t *)addr;
7960
7961 mi->un.v.delta = 0; /* default */
7962 mutex_enter(sc->sc_lock);
7963 error = audio_query_devinfo(sc, mi);
7964 mutex_exit(sc->sc_lock);
7965 break;
7966
7967 case AUDIO_MIXER_READ:
7968 TRACE(2, "AUDIO_MIXER_READ");
7969 mc = (mixer_ctrl_t *)addr;
7970
7971 error = audio_enter_exclusive(sc);
7972 if (error)
7973 break;
7974 if (device_is_active(sc->hw_dev))
7975 error = audio_get_port(sc, mc);
7976 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
7977 error = ENXIO;
7978 else {
7979 int dev = mc->dev;
7980 memcpy(mc, &sc->sc_mixer_state[dev],
7981 sizeof(mixer_ctrl_t));
7982 error = 0;
7983 }
7984 audio_exit_exclusive(sc);
7985 break;
7986
7987 case AUDIO_MIXER_WRITE:
7988 TRACE(2, "AUDIO_MIXER_WRITE");
7989 error = audio_enter_exclusive(sc);
7990 if (error)
7991 break;
7992 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
7993 if (error) {
7994 audio_exit_exclusive(sc);
7995 break;
7996 }
7997
7998 if (sc->hw_if->commit_settings) {
7999 error = sc->hw_if->commit_settings(sc->hw_hdl);
8000 if (error) {
8001 audio_exit_exclusive(sc);
8002 break;
8003 }
8004 }
8005 mixer_signal(sc);
8006 audio_exit_exclusive(sc);
8007 break;
8008
8009 default:
8010 if (sc->hw_if->dev_ioctl) {
8011 error = audio_enter_exclusive(sc);
8012 if (error)
8013 break;
8014 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8015 cmd, addr, flag, l);
8016 audio_exit_exclusive(sc);
8017 } else
8018 error = EINVAL;
8019 break;
8020 }
8021 TRACE(2, "(%lu,'%c',%lu) result %d",
8022 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8023 return error;
8024 }
8025
8026 /*
8027 * Must be called with sc_lock held.
8028 */
8029 int
8030 au_portof(struct audio_softc *sc, char *name, int class)
8031 {
8032 mixer_devinfo_t mi;
8033
8034 KASSERT(mutex_owned(sc->sc_lock));
8035
8036 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8037 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8038 return mi.index;
8039 }
8040 return -1;
8041 }
8042
8043 /*
8044 * Must be called with sc_lock held.
8045 */
8046 void
8047 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8048 mixer_devinfo_t *mi, const struct portname *tbl)
8049 {
8050 int i, j;
8051
8052 KASSERT(mutex_owned(sc->sc_lock));
8053
8054 ports->index = mi->index;
8055 if (mi->type == AUDIO_MIXER_ENUM) {
8056 ports->isenum = true;
8057 for(i = 0; tbl[i].name; i++)
8058 for(j = 0; j < mi->un.e.num_mem; j++)
8059 if (strcmp(mi->un.e.member[j].label.name,
8060 tbl[i].name) == 0) {
8061 ports->allports |= tbl[i].mask;
8062 ports->aumask[ports->nports] = tbl[i].mask;
8063 ports->misel[ports->nports] =
8064 mi->un.e.member[j].ord;
8065 ports->miport[ports->nports] =
8066 au_portof(sc, mi->un.e.member[j].label.name,
8067 mi->mixer_class);
8068 if (ports->mixerout != -1 &&
8069 ports->miport[ports->nports] != -1)
8070 ports->isdual = true;
8071 ++ports->nports;
8072 }
8073 } else if (mi->type == AUDIO_MIXER_SET) {
8074 for(i = 0; tbl[i].name; i++)
8075 for(j = 0; j < mi->un.s.num_mem; j++)
8076 if (strcmp(mi->un.s.member[j].label.name,
8077 tbl[i].name) == 0) {
8078 ports->allports |= tbl[i].mask;
8079 ports->aumask[ports->nports] = tbl[i].mask;
8080 ports->misel[ports->nports] =
8081 mi->un.s.member[j].mask;
8082 ports->miport[ports->nports] =
8083 au_portof(sc, mi->un.s.member[j].label.name,
8084 mi->mixer_class);
8085 ++ports->nports;
8086 }
8087 }
8088 }
8089
8090 /*
8091 * Must be called with sc_lock && sc_exlock held.
8092 */
8093 int
8094 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8095 {
8096
8097 KASSERT(mutex_owned(sc->sc_lock));
8098 KASSERT(sc->sc_exlock);
8099
8100 ct->type = AUDIO_MIXER_VALUE;
8101 ct->un.value.num_channels = 2;
8102 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8103 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8104 if (audio_set_port(sc, ct) == 0)
8105 return 0;
8106 ct->un.value.num_channels = 1;
8107 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8108 return audio_set_port(sc, ct);
8109 }
8110
8111 /*
8112 * Must be called with sc_lock && sc_exlock held.
8113 */
8114 int
8115 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8116 {
8117 int error;
8118
8119 KASSERT(mutex_owned(sc->sc_lock));
8120 KASSERT(sc->sc_exlock);
8121
8122 ct->un.value.num_channels = 2;
8123 if (audio_get_port(sc, ct) == 0) {
8124 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8125 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8126 } else {
8127 ct->un.value.num_channels = 1;
8128 error = audio_get_port(sc, ct);
8129 if (error)
8130 return error;
8131 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8132 }
8133 return 0;
8134 }
8135
8136 /*
8137 * Must be called with sc_lock && sc_exlock held.
8138 */
8139 int
8140 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8141 int gain, int balance)
8142 {
8143 mixer_ctrl_t ct;
8144 int i, error;
8145 int l, r;
8146 u_int mask;
8147 int nset;
8148
8149 KASSERT(mutex_owned(sc->sc_lock));
8150 KASSERT(sc->sc_exlock);
8151
8152 if (balance == AUDIO_MID_BALANCE) {
8153 l = r = gain;
8154 } else if (balance < AUDIO_MID_BALANCE) {
8155 l = gain;
8156 r = (balance * gain) / AUDIO_MID_BALANCE;
8157 } else {
8158 r = gain;
8159 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8160 / AUDIO_MID_BALANCE;
8161 }
8162 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8163
8164 if (ports->index == -1) {
8165 usemaster:
8166 if (ports->master == -1)
8167 return 0; /* just ignore it silently */
8168 ct.dev = ports->master;
8169 error = au_set_lr_value(sc, &ct, l, r);
8170 } else {
8171 ct.dev = ports->index;
8172 if (ports->isenum) {
8173 ct.type = AUDIO_MIXER_ENUM;
8174 error = audio_get_port(sc, &ct);
8175 if (error)
8176 return error;
8177 if (ports->isdual) {
8178 if (ports->cur_port == -1)
8179 ct.dev = ports->master;
8180 else
8181 ct.dev = ports->miport[ports->cur_port];
8182 error = au_set_lr_value(sc, &ct, l, r);
8183 } else {
8184 for(i = 0; i < ports->nports; i++)
8185 if (ports->misel[i] == ct.un.ord) {
8186 ct.dev = ports->miport[i];
8187 if (ct.dev == -1 ||
8188 au_set_lr_value(sc, &ct, l, r))
8189 goto usemaster;
8190 else
8191 break;
8192 }
8193 }
8194 } else {
8195 ct.type = AUDIO_MIXER_SET;
8196 error = audio_get_port(sc, &ct);
8197 if (error)
8198 return error;
8199 mask = ct.un.mask;
8200 nset = 0;
8201 for(i = 0; i < ports->nports; i++) {
8202 if (ports->misel[i] & mask) {
8203 ct.dev = ports->miport[i];
8204 if (ct.dev != -1 &&
8205 au_set_lr_value(sc, &ct, l, r) == 0)
8206 nset++;
8207 }
8208 }
8209 if (nset == 0)
8210 goto usemaster;
8211 }
8212 }
8213 if (!error)
8214 mixer_signal(sc);
8215 return error;
8216 }
8217
8218 /*
8219 * Must be called with sc_lock && sc_exlock held.
8220 */
8221 void
8222 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8223 u_int *pgain, u_char *pbalance)
8224 {
8225 mixer_ctrl_t ct;
8226 int i, l, r, n;
8227 int lgain, rgain;
8228
8229 KASSERT(mutex_owned(sc->sc_lock));
8230 KASSERT(sc->sc_exlock);
8231
8232 lgain = AUDIO_MAX_GAIN / 2;
8233 rgain = AUDIO_MAX_GAIN / 2;
8234 if (ports->index == -1) {
8235 usemaster:
8236 if (ports->master == -1)
8237 goto bad;
8238 ct.dev = ports->master;
8239 ct.type = AUDIO_MIXER_VALUE;
8240 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8241 goto bad;
8242 } else {
8243 ct.dev = ports->index;
8244 if (ports->isenum) {
8245 ct.type = AUDIO_MIXER_ENUM;
8246 if (audio_get_port(sc, &ct))
8247 goto bad;
8248 ct.type = AUDIO_MIXER_VALUE;
8249 if (ports->isdual) {
8250 if (ports->cur_port == -1)
8251 ct.dev = ports->master;
8252 else
8253 ct.dev = ports->miport[ports->cur_port];
8254 au_get_lr_value(sc, &ct, &lgain, &rgain);
8255 } else {
8256 for(i = 0; i < ports->nports; i++)
8257 if (ports->misel[i] == ct.un.ord) {
8258 ct.dev = ports->miport[i];
8259 if (ct.dev == -1 ||
8260 au_get_lr_value(sc, &ct,
8261 &lgain, &rgain))
8262 goto usemaster;
8263 else
8264 break;
8265 }
8266 }
8267 } else {
8268 ct.type = AUDIO_MIXER_SET;
8269 if (audio_get_port(sc, &ct))
8270 goto bad;
8271 ct.type = AUDIO_MIXER_VALUE;
8272 lgain = rgain = n = 0;
8273 for(i = 0; i < ports->nports; i++) {
8274 if (ports->misel[i] & ct.un.mask) {
8275 ct.dev = ports->miport[i];
8276 if (ct.dev == -1 ||
8277 au_get_lr_value(sc, &ct, &l, &r))
8278 goto usemaster;
8279 else {
8280 lgain += l;
8281 rgain += r;
8282 n++;
8283 }
8284 }
8285 }
8286 if (n != 0) {
8287 lgain /= n;
8288 rgain /= n;
8289 }
8290 }
8291 }
8292 bad:
8293 if (lgain == rgain) { /* handles lgain==rgain==0 */
8294 *pgain = lgain;
8295 *pbalance = AUDIO_MID_BALANCE;
8296 } else if (lgain < rgain) {
8297 *pgain = rgain;
8298 /* balance should be > AUDIO_MID_BALANCE */
8299 *pbalance = AUDIO_RIGHT_BALANCE -
8300 (AUDIO_MID_BALANCE * lgain) / rgain;
8301 } else /* lgain > rgain */ {
8302 *pgain = lgain;
8303 /* balance should be < AUDIO_MID_BALANCE */
8304 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8305 }
8306 }
8307
8308 /*
8309 * Must be called with sc_lock && sc_exlock held.
8310 */
8311 int
8312 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8313 {
8314 mixer_ctrl_t ct;
8315 int i, error, use_mixerout;
8316
8317 KASSERT(mutex_owned(sc->sc_lock));
8318 KASSERT(sc->sc_exlock);
8319
8320 use_mixerout = 1;
8321 if (port == 0) {
8322 if (ports->allports == 0)
8323 return 0; /* Allow this special case. */
8324 else if (ports->isdual) {
8325 if (ports->cur_port == -1) {
8326 return 0;
8327 } else {
8328 port = ports->aumask[ports->cur_port];
8329 ports->cur_port = -1;
8330 use_mixerout = 0;
8331 }
8332 }
8333 }
8334 if (ports->index == -1)
8335 return EINVAL;
8336 ct.dev = ports->index;
8337 if (ports->isenum) {
8338 if (port & (port-1))
8339 return EINVAL; /* Only one port allowed */
8340 ct.type = AUDIO_MIXER_ENUM;
8341 error = EINVAL;
8342 for(i = 0; i < ports->nports; i++)
8343 if (ports->aumask[i] == port) {
8344 if (ports->isdual && use_mixerout) {
8345 ct.un.ord = ports->mixerout;
8346 ports->cur_port = i;
8347 } else {
8348 ct.un.ord = ports->misel[i];
8349 }
8350 error = audio_set_port(sc, &ct);
8351 break;
8352 }
8353 } else {
8354 ct.type = AUDIO_MIXER_SET;
8355 ct.un.mask = 0;
8356 for(i = 0; i < ports->nports; i++)
8357 if (ports->aumask[i] & port)
8358 ct.un.mask |= ports->misel[i];
8359 if (port != 0 && ct.un.mask == 0)
8360 error = EINVAL;
8361 else
8362 error = audio_set_port(sc, &ct);
8363 }
8364 if (!error)
8365 mixer_signal(sc);
8366 return error;
8367 }
8368
8369 /*
8370 * Must be called with sc_lock && sc_exlock held.
8371 */
8372 int
8373 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8374 {
8375 mixer_ctrl_t ct;
8376 int i, aumask;
8377
8378 KASSERT(mutex_owned(sc->sc_lock));
8379 KASSERT(sc->sc_exlock);
8380
8381 if (ports->index == -1)
8382 return 0;
8383 ct.dev = ports->index;
8384 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8385 if (audio_get_port(sc, &ct))
8386 return 0;
8387 aumask = 0;
8388 if (ports->isenum) {
8389 if (ports->isdual && ports->cur_port != -1) {
8390 if (ports->mixerout == ct.un.ord)
8391 aumask = ports->aumask[ports->cur_port];
8392 else
8393 ports->cur_port = -1;
8394 }
8395 if (aumask == 0)
8396 for(i = 0; i < ports->nports; i++)
8397 if (ports->misel[i] == ct.un.ord)
8398 aumask = ports->aumask[i];
8399 } else {
8400 for(i = 0; i < ports->nports; i++)
8401 if (ct.un.mask & ports->misel[i])
8402 aumask |= ports->aumask[i];
8403 }
8404 return aumask;
8405 }
8406
8407 /*
8408 * It returns 0 if success, otherwise errno.
8409 * Must be called only if sc->sc_monitor_port != -1.
8410 * Must be called with sc_lock && sc_exlock held.
8411 */
8412 static int
8413 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8414 {
8415 mixer_ctrl_t ct;
8416
8417 KASSERT(mutex_owned(sc->sc_lock));
8418 KASSERT(sc->sc_exlock);
8419
8420 ct.dev = sc->sc_monitor_port;
8421 ct.type = AUDIO_MIXER_VALUE;
8422 ct.un.value.num_channels = 1;
8423 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8424 return audio_set_port(sc, &ct);
8425 }
8426
8427 /*
8428 * It returns monitor gain if success, otherwise -1.
8429 * Must be called only if sc->sc_monitor_port != -1.
8430 * Must be called with sc_lock && sc_exlock held.
8431 */
8432 static int
8433 au_get_monitor_gain(struct audio_softc *sc)
8434 {
8435 mixer_ctrl_t ct;
8436
8437 KASSERT(mutex_owned(sc->sc_lock));
8438 KASSERT(sc->sc_exlock);
8439
8440 ct.dev = sc->sc_monitor_port;
8441 ct.type = AUDIO_MIXER_VALUE;
8442 ct.un.value.num_channels = 1;
8443 if (audio_get_port(sc, &ct))
8444 return -1;
8445 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8446 }
8447
8448 /*
8449 * Must be called with sc_lock && sc_exlock held.
8450 */
8451 static int
8452 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8453 {
8454
8455 KASSERT(mutex_owned(sc->sc_lock));
8456 KASSERT(sc->sc_exlock);
8457
8458 return sc->hw_if->set_port(sc->hw_hdl, mc);
8459 }
8460
8461 /*
8462 * Must be called with sc_lock && sc_exlock held.
8463 */
8464 static int
8465 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8466 {
8467
8468 KASSERT(mutex_owned(sc->sc_lock));
8469 KASSERT(sc->sc_exlock);
8470
8471 return sc->hw_if->get_port(sc->hw_hdl, mc);
8472 }
8473
8474 /*
8475 * Must be called with sc_lock && sc_exlock held.
8476 */
8477 static void
8478 audio_mixer_capture(struct audio_softc *sc)
8479 {
8480 mixer_devinfo_t mi;
8481 mixer_ctrl_t *mc;
8482
8483 KASSERT(mutex_owned(sc->sc_lock));
8484 KASSERT(sc->sc_exlock);
8485
8486 for (mi.index = 0;; mi.index++) {
8487 if (audio_query_devinfo(sc, &mi) != 0)
8488 break;
8489 KASSERT(mi.index < sc->sc_nmixer_states);
8490 if (mi.type == AUDIO_MIXER_CLASS)
8491 continue;
8492 mc = &sc->sc_mixer_state[mi.index];
8493 mc->dev = mi.index;
8494 mc->type = mi.type;
8495 mc->un.value.num_channels = mi.un.v.num_channels;
8496 (void)audio_get_port(sc, mc);
8497 }
8498
8499 return;
8500 }
8501
8502 /*
8503 * Must be called with sc_lock && sc_exlock held.
8504 */
8505 static void
8506 audio_mixer_restore(struct audio_softc *sc)
8507 {
8508 mixer_devinfo_t mi;
8509 mixer_ctrl_t *mc;
8510
8511 KASSERT(mutex_owned(sc->sc_lock));
8512 KASSERT(sc->sc_exlock);
8513
8514 for (mi.index = 0; ; mi.index++) {
8515 if (audio_query_devinfo(sc, &mi) != 0)
8516 break;
8517 if (mi.type == AUDIO_MIXER_CLASS)
8518 continue;
8519 mc = &sc->sc_mixer_state[mi.index];
8520 (void)audio_set_port(sc, mc);
8521 }
8522 if (sc->hw_if->commit_settings)
8523 sc->hw_if->commit_settings(sc->hw_hdl);
8524
8525 return;
8526 }
8527
8528 static void
8529 audio_volume_down(device_t dv)
8530 {
8531 struct audio_softc *sc = device_private(dv);
8532 mixer_devinfo_t mi;
8533 int newgain;
8534 u_int gain;
8535 u_char balance;
8536
8537 if (audio_enter_exclusive(sc) != 0)
8538 return;
8539 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8540 mi.index = sc->sc_outports.master;
8541 mi.un.v.delta = 0;
8542 if (audio_query_devinfo(sc, &mi) == 0) {
8543 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8544 newgain = gain - mi.un.v.delta;
8545 if (newgain < AUDIO_MIN_GAIN)
8546 newgain = AUDIO_MIN_GAIN;
8547 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8548 }
8549 }
8550 audio_exit_exclusive(sc);
8551 }
8552
8553 static void
8554 audio_volume_up(device_t dv)
8555 {
8556 struct audio_softc *sc = device_private(dv);
8557 mixer_devinfo_t mi;
8558 u_int gain, newgain;
8559 u_char balance;
8560
8561 if (audio_enter_exclusive(sc) != 0)
8562 return;
8563 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8564 mi.index = sc->sc_outports.master;
8565 mi.un.v.delta = 0;
8566 if (audio_query_devinfo(sc, &mi) == 0) {
8567 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8568 newgain = gain + mi.un.v.delta;
8569 if (newgain > AUDIO_MAX_GAIN)
8570 newgain = AUDIO_MAX_GAIN;
8571 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8572 }
8573 }
8574 audio_exit_exclusive(sc);
8575 }
8576
8577 static void
8578 audio_volume_toggle(device_t dv)
8579 {
8580 struct audio_softc *sc = device_private(dv);
8581 u_int gain, newgain;
8582 u_char balance;
8583
8584 if (audio_enter_exclusive(sc) != 0)
8585 return;
8586 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8587 if (gain != 0) {
8588 sc->sc_lastgain = gain;
8589 newgain = 0;
8590 } else
8591 newgain = sc->sc_lastgain;
8592 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8593 audio_exit_exclusive(sc);
8594 }
8595
8596 static int
8597 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8598 {
8599
8600 KASSERT(mutex_owned(sc->sc_lock));
8601
8602 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8603 }
8604
8605 #endif /* NAUDIO > 0 */
8606
8607 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8608 #include <sys/param.h>
8609 #include <sys/systm.h>
8610 #include <sys/device.h>
8611 #include <sys/audioio.h>
8612 #include <dev/audio/audio_if.h>
8613 #endif
8614
8615 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8616 int
8617 audioprint(void *aux, const char *pnp)
8618 {
8619 struct audio_attach_args *arg;
8620 const char *type;
8621
8622 if (pnp != NULL) {
8623 arg = aux;
8624 switch (arg->type) {
8625 case AUDIODEV_TYPE_AUDIO:
8626 type = "audio";
8627 break;
8628 case AUDIODEV_TYPE_MIDI:
8629 type = "midi";
8630 break;
8631 case AUDIODEV_TYPE_OPL:
8632 type = "opl";
8633 break;
8634 case AUDIODEV_TYPE_MPU:
8635 type = "mpu";
8636 break;
8637 default:
8638 panic("audioprint: unknown type %d", arg->type);
8639 }
8640 aprint_normal("%s at %s", type, pnp);
8641 }
8642 return UNCONF;
8643 }
8644
8645 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8646
8647 #ifdef _MODULE
8648
8649 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8650
8651 #include "ioconf.c"
8652
8653 #endif
8654
8655 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8656
8657 static int
8658 audio_modcmd(modcmd_t cmd, void *arg)
8659 {
8660 int error = 0;
8661
8662 switch (cmd) {
8663 case MODULE_CMD_INIT:
8664 /* XXX interrupt level? */
8665 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8666 #ifdef _MODULE
8667 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8668 &audio_cdevsw, &audio_cmajor);
8669 if (error)
8670 break;
8671
8672 error = config_init_component(cfdriver_ioconf_audio,
8673 cfattach_ioconf_audio, cfdata_ioconf_audio);
8674 if (error) {
8675 devsw_detach(NULL, &audio_cdevsw);
8676 }
8677 #endif
8678 break;
8679 case MODULE_CMD_FINI:
8680 #ifdef _MODULE
8681 devsw_detach(NULL, &audio_cdevsw);
8682 error = config_fini_component(cfdriver_ioconf_audio,
8683 cfattach_ioconf_audio, cfdata_ioconf_audio);
8684 if (error)
8685 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8686 &audio_cdevsw, &audio_cmajor);
8687 #endif
8688 psref_class_destroy(audio_psref_class);
8689 break;
8690 default:
8691 error = ENOTTY;
8692 break;
8693 }
8694
8695 return error;
8696 }
8697