audio.c revision 1.28.2.15 1 /* $NetBSD: audio.c,v 1.28.2.15 2020/05/18 18:12:24 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - x Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.28.2.15 2020/05/18 18:12:24 martin Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #ifdef _KERNEL
151
152 #include <sys/types.h>
153 #include <sys/param.h>
154 #include <sys/atomic.h>
155 #include <sys/audioio.h>
156 #include <sys/conf.h>
157 #include <sys/cpu.h>
158 #include <sys/device.h>
159 #include <sys/fcntl.h>
160 #include <sys/file.h>
161 #include <sys/filedesc.h>
162 #include <sys/intr.h>
163 #include <sys/ioctl.h>
164 #include <sys/kauth.h>
165 #include <sys/kernel.h>
166 #include <sys/kmem.h>
167 #include <sys/malloc.h>
168 #include <sys/mman.h>
169 #include <sys/module.h>
170 #include <sys/poll.h>
171 #include <sys/proc.h>
172 #include <sys/queue.h>
173 #include <sys/select.h>
174 #include <sys/signalvar.h>
175 #include <sys/stat.h>
176 #include <sys/sysctl.h>
177 #include <sys/systm.h>
178 #include <sys/syslog.h>
179 #include <sys/vnode.h>
180
181 #include <dev/audio/audio_if.h>
182 #include <dev/audio/audiovar.h>
183 #include <dev/audio/audiodef.h>
184 #include <dev/audio/linear.h>
185 #include <dev/audio/mulaw.h>
186
187 #include <machine/endian.h>
188
189 #include <uvm/uvm.h>
190
191 #include "ioconf.h"
192 #endif /* _KERNEL */
193
194 /*
195 * 0: No debug logs
196 * 1: action changes like open/close/set_format...
197 * 2: + normal operations like read/write/ioctl...
198 * 3: + TRACEs except interrupt
199 * 4: + TRACEs including interrupt
200 */
201 //#define AUDIO_DEBUG 1
202
203 #if defined(AUDIO_DEBUG)
204
205 int audiodebug = AUDIO_DEBUG;
206 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
207 const char *, va_list);
208 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
209 __printflike(3, 4);
210 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
211 __printflike(3, 4);
212 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
213 __printflike(3, 4);
214
215 /* XXX sloppy memory logger */
216 static void audio_mlog_init(void);
217 static void audio_mlog_free(void);
218 static void audio_mlog_softintr(void *);
219 extern void audio_mlog_flush(void);
220 extern void audio_mlog_printf(const char *, ...);
221
222 static int mlog_refs; /* reference counter */
223 static char *mlog_buf[2]; /* double buffer */
224 static int mlog_buflen; /* buffer length */
225 static int mlog_used; /* used length */
226 static int mlog_full; /* number of dropped lines by buffer full */
227 static int mlog_drop; /* number of dropped lines by busy */
228 static volatile uint32_t mlog_inuse; /* in-use */
229 static int mlog_wpage; /* active page */
230 static void *mlog_sih; /* softint handle */
231
232 static void
233 audio_mlog_init(void)
234 {
235 mlog_refs++;
236 if (mlog_refs > 1)
237 return;
238 mlog_buflen = 4096;
239 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
240 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
241 mlog_used = 0;
242 mlog_full = 0;
243 mlog_drop = 0;
244 mlog_inuse = 0;
245 mlog_wpage = 0;
246 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
247 if (mlog_sih == NULL)
248 printf("%s: softint_establish failed\n", __func__);
249 }
250
251 static void
252 audio_mlog_free(void)
253 {
254 mlog_refs--;
255 if (mlog_refs > 0)
256 return;
257
258 audio_mlog_flush();
259 if (mlog_sih)
260 softint_disestablish(mlog_sih);
261 kmem_free(mlog_buf[0], mlog_buflen);
262 kmem_free(mlog_buf[1], mlog_buflen);
263 }
264
265 /*
266 * Flush memory buffer.
267 * It must not be called from hardware interrupt context.
268 */
269 void
270 audio_mlog_flush(void)
271 {
272 if (mlog_refs == 0)
273 return;
274
275 /* Nothing to do if already in use ? */
276 if (atomic_swap_32(&mlog_inuse, 1) == 1)
277 return;
278
279 int rpage = mlog_wpage;
280 mlog_wpage ^= 1;
281 mlog_buf[mlog_wpage][0] = '\0';
282 mlog_used = 0;
283
284 atomic_swap_32(&mlog_inuse, 0);
285
286 if (mlog_buf[rpage][0] != '\0') {
287 printf("%s", mlog_buf[rpage]);
288 if (mlog_drop > 0)
289 printf("mlog_drop %d\n", mlog_drop);
290 if (mlog_full > 0)
291 printf("mlog_full %d\n", mlog_full);
292 }
293 mlog_full = 0;
294 mlog_drop = 0;
295 }
296
297 static void
298 audio_mlog_softintr(void *cookie)
299 {
300 audio_mlog_flush();
301 }
302
303 void
304 audio_mlog_printf(const char *fmt, ...)
305 {
306 int len;
307 va_list ap;
308
309 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
310 /* already inuse */
311 mlog_drop++;
312 return;
313 }
314
315 va_start(ap, fmt);
316 len = vsnprintf(
317 mlog_buf[mlog_wpage] + mlog_used,
318 mlog_buflen - mlog_used,
319 fmt, ap);
320 va_end(ap);
321
322 mlog_used += len;
323 if (mlog_buflen - mlog_used <= 1) {
324 mlog_full++;
325 }
326
327 atomic_swap_32(&mlog_inuse, 0);
328
329 if (mlog_sih)
330 softint_schedule(mlog_sih);
331 }
332
333 /* trace functions */
334 static void
335 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
336 const char *fmt, va_list ap)
337 {
338 char buf[256];
339 int n;
340
341 n = 0;
342 buf[0] = '\0';
343 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
344 funcname, device_unit(sc->sc_dev), header);
345 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
346
347 if (cpu_intr_p()) {
348 audio_mlog_printf("%s\n", buf);
349 } else {
350 audio_mlog_flush();
351 printf("%s\n", buf);
352 }
353 }
354
355 static void
356 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
357 {
358 va_list ap;
359
360 va_start(ap, fmt);
361 audio_vtrace(sc, funcname, "", fmt, ap);
362 va_end(ap);
363 }
364
365 static void
366 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
367 {
368 char hdr[16];
369 va_list ap;
370
371 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
372 va_start(ap, fmt);
373 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
374 va_end(ap);
375 }
376
377 static void
378 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
379 {
380 char hdr[32];
381 char phdr[16], rhdr[16];
382 va_list ap;
383
384 phdr[0] = '\0';
385 rhdr[0] = '\0';
386 if (file->ptrack)
387 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
388 if (file->rtrack)
389 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
390 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
391
392 va_start(ap, fmt);
393 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
394 va_end(ap);
395 }
396
397 #define DPRINTF(n, fmt...) do { \
398 if (audiodebug >= (n)) { \
399 audio_mlog_flush(); \
400 printf(fmt); \
401 } \
402 } while (0)
403 #define TRACE(n, fmt...) do { \
404 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
405 } while (0)
406 #define TRACET(n, t, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
408 } while (0)
409 #define TRACEF(n, f, fmt...) do { \
410 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
411 } while (0)
412
413 struct audio_track_debugbuf {
414 char usrbuf[32];
415 char codec[32];
416 char chvol[32];
417 char chmix[32];
418 char freq[32];
419 char outbuf[32];
420 };
421
422 static void
423 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
424 {
425
426 memset(buf, 0, sizeof(*buf));
427
428 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
429 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
430 if (track->freq.filter)
431 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
432 track->freq.srcbuf.head,
433 track->freq.srcbuf.used,
434 track->freq.srcbuf.capacity);
435 if (track->chmix.filter)
436 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
437 track->chmix.srcbuf.used);
438 if (track->chvol.filter)
439 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
440 track->chvol.srcbuf.used);
441 if (track->codec.filter)
442 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
443 track->codec.srcbuf.used);
444 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
445 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
446 }
447 #else
448 #define DPRINTF(n, fmt...) do { } while (0)
449 #define TRACE(n, fmt, ...) do { } while (0)
450 #define TRACET(n, t, fmt, ...) do { } while (0)
451 #define TRACEF(n, f, fmt, ...) do { } while (0)
452 #endif
453
454 #define SPECIFIED(x) ((x) != ~0)
455 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
456
457 /*
458 * Default hardware blocksize in msec.
459 *
460 * We use 10 msec for most modern platforms. This period is good enough to
461 * play audio and video synchronizely.
462 * In contrast, for very old platforms, this is usually too short and too
463 * severe. Also such platforms usually can not play video confortably, so
464 * it's not so important to make the blocksize shorter. If the platform
465 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
466 * uses this instead.
467 *
468 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
469 * configuration file if you wish.
470 */
471 #if !defined(AUDIO_BLK_MS)
472 # if defined(__AUDIO_BLK_MS)
473 # define AUDIO_BLK_MS __AUDIO_BLK_MS
474 # else
475 # define AUDIO_BLK_MS (10)
476 # endif
477 #endif
478
479 /* Device timeout in msec */
480 #define AUDIO_TIMEOUT (3000)
481
482 /* #define AUDIO_PM_IDLE */
483 #ifdef AUDIO_PM_IDLE
484 int audio_idle_timeout = 30;
485 #endif
486
487 /* Number of elements of async mixer's pid */
488 #define AM_CAPACITY (4)
489
490 struct portname {
491 const char *name;
492 int mask;
493 };
494
495 static int audiomatch(device_t, cfdata_t, void *);
496 static void audioattach(device_t, device_t, void *);
497 static int audiodetach(device_t, int);
498 static int audioactivate(device_t, enum devact);
499 static void audiochilddet(device_t, device_t);
500 static int audiorescan(device_t, const char *, const int *);
501
502 static int audio_modcmd(modcmd_t, void *);
503
504 #ifdef AUDIO_PM_IDLE
505 static void audio_idle(void *);
506 static void audio_activity(device_t, devactive_t);
507 #endif
508
509 static bool audio_suspend(device_t dv, const pmf_qual_t *);
510 static bool audio_resume(device_t dv, const pmf_qual_t *);
511 static void audio_volume_down(device_t);
512 static void audio_volume_up(device_t);
513 static void audio_volume_toggle(device_t);
514
515 static void audio_mixer_capture(struct audio_softc *);
516 static void audio_mixer_restore(struct audio_softc *);
517
518 static void audio_softintr_rd(void *);
519 static void audio_softintr_wr(void *);
520
521 static int audio_exlock_mutex_enter(struct audio_softc *);
522 static void audio_exlock_mutex_exit(struct audio_softc *);
523 static int audio_exlock_enter(struct audio_softc *);
524 static void audio_exlock_exit(struct audio_softc *);
525 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
526 static void audio_file_exit(struct audio_softc *, struct psref *);
527 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
528
529 static int audioclose(struct file *);
530 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
531 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
532 static int audioioctl(struct file *, u_long, void *);
533 static int audiopoll(struct file *, int);
534 static int audiokqfilter(struct file *, struct knote *);
535 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
536 struct uvm_object **, int *);
537 static int audiostat(struct file *, struct stat *);
538
539 static void filt_audiowrite_detach(struct knote *);
540 static int filt_audiowrite_event(struct knote *, long);
541 static void filt_audioread_detach(struct knote *);
542 static int filt_audioread_event(struct knote *, long);
543
544 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
545 audio_file_t **);
546 static int audio_close(struct audio_softc *, audio_file_t *);
547 static int audio_unlink(struct audio_softc *, audio_file_t *);
548 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
549 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
550 static void audio_file_clear(struct audio_softc *, audio_file_t *);
551 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
552 struct lwp *, audio_file_t *);
553 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
554 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
555 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
556 struct uvm_object **, int *, audio_file_t *);
557
558 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
559
560 static void audio_pintr(void *);
561 static void audio_rintr(void *);
562
563 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
564
565 static __inline int audio_track_readablebytes(const audio_track_t *);
566 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
567 const struct audio_info *);
568 static int audio_track_setinfo_check(audio_track_t *,
569 audio_format2_t *, const struct audio_prinfo *);
570 static void audio_track_setinfo_water(audio_track_t *,
571 const struct audio_info *);
572 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
573 struct audio_info *);
574 static int audio_hw_set_format(struct audio_softc *, int,
575 audio_format2_t *, audio_format2_t *,
576 audio_filter_reg_t *, audio_filter_reg_t *);
577 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
578 audio_file_t *);
579 static bool audio_can_playback(struct audio_softc *);
580 static bool audio_can_capture(struct audio_softc *);
581 static int audio_check_params(audio_format2_t *);
582 static int audio_mixers_init(struct audio_softc *sc, int,
583 const audio_format2_t *, const audio_format2_t *,
584 const audio_filter_reg_t *, const audio_filter_reg_t *);
585 static int audio_select_freq(const struct audio_format *);
586 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
587 static int audio_hw_validate_format(struct audio_softc *, int,
588 const audio_format2_t *);
589 static int audio_mixers_set_format(struct audio_softc *,
590 const struct audio_info *);
591 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
592 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
593 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
594 #if defined(AUDIO_DEBUG)
595 static int audio_sysctl_debug(SYSCTLFN_PROTO);
596 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
597 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
598 #endif
599
600 static void *audio_realloc(void *, size_t);
601 static int audio_realloc_usrbuf(audio_track_t *, int);
602 static void audio_free_usrbuf(audio_track_t *);
603
604 static audio_track_t *audio_track_create(struct audio_softc *,
605 audio_trackmixer_t *);
606 static void audio_track_destroy(audio_track_t *);
607 static audio_filter_t audio_track_get_codec(audio_track_t *,
608 const audio_format2_t *, const audio_format2_t *);
609 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
610 static void audio_track_play(audio_track_t *);
611 static int audio_track_drain(struct audio_softc *, audio_track_t *);
612 static void audio_track_record(audio_track_t *);
613 static void audio_track_clear(struct audio_softc *, audio_track_t *);
614
615 static int audio_mixer_init(struct audio_softc *, int,
616 const audio_format2_t *, const audio_filter_reg_t *);
617 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
618 static void audio_pmixer_start(struct audio_softc *, bool);
619 static void audio_pmixer_process(struct audio_softc *);
620 static void audio_pmixer_agc(audio_trackmixer_t *, int);
621 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
622 static void audio_pmixer_output(struct audio_softc *);
623 static int audio_pmixer_halt(struct audio_softc *);
624 static void audio_rmixer_start(struct audio_softc *);
625 static void audio_rmixer_process(struct audio_softc *);
626 static void audio_rmixer_input(struct audio_softc *);
627 static int audio_rmixer_halt(struct audio_softc *);
628
629 static void mixer_init(struct audio_softc *);
630 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
631 static int mixer_close(struct audio_softc *, audio_file_t *);
632 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
633 static void mixer_async_add(struct audio_softc *, pid_t);
634 static void mixer_async_remove(struct audio_softc *, pid_t);
635 static void mixer_signal(struct audio_softc *);
636
637 static int au_portof(struct audio_softc *, char *, int);
638
639 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
640 mixer_devinfo_t *, const struct portname *);
641 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
642 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
643 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
644 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
645 u_int *, u_char *);
646 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
647 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
648 static int au_set_monitor_gain(struct audio_softc *, int);
649 static int au_get_monitor_gain(struct audio_softc *);
650 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
651 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
652
653 static __inline struct audio_params
654 format2_to_params(const audio_format2_t *f2)
655 {
656 audio_params_t p;
657
658 /* validbits/precision <-> precision/stride */
659 p.sample_rate = f2->sample_rate;
660 p.channels = f2->channels;
661 p.encoding = f2->encoding;
662 p.validbits = f2->precision;
663 p.precision = f2->stride;
664 return p;
665 }
666
667 static __inline audio_format2_t
668 params_to_format2(const struct audio_params *p)
669 {
670 audio_format2_t f2;
671
672 /* precision/stride <-> validbits/precision */
673 f2.sample_rate = p->sample_rate;
674 f2.channels = p->channels;
675 f2.encoding = p->encoding;
676 f2.precision = p->validbits;
677 f2.stride = p->precision;
678 return f2;
679 }
680
681 /* Return true if this track is a playback track. */
682 static __inline bool
683 audio_track_is_playback(const audio_track_t *track)
684 {
685
686 return ((track->mode & AUMODE_PLAY) != 0);
687 }
688
689 /* Return true if this track is a recording track. */
690 static __inline bool
691 audio_track_is_record(const audio_track_t *track)
692 {
693
694 return ((track->mode & AUMODE_RECORD) != 0);
695 }
696
697 #if 0 /* XXX Not used yet */
698 /*
699 * Convert 0..255 volume used in userland to internal presentation 0..256.
700 */
701 static __inline u_int
702 audio_volume_to_inner(u_int v)
703 {
704
705 return v < 127 ? v : v + 1;
706 }
707
708 /*
709 * Convert 0..256 internal presentation to 0..255 volume used in userland.
710 */
711 static __inline u_int
712 audio_volume_to_outer(u_int v)
713 {
714
715 return v < 127 ? v : v - 1;
716 }
717 #endif /* 0 */
718
719 static dev_type_open(audioopen);
720 /* XXXMRG use more dev_type_xxx */
721
722 const struct cdevsw audio_cdevsw = {
723 .d_open = audioopen,
724 .d_close = noclose,
725 .d_read = noread,
726 .d_write = nowrite,
727 .d_ioctl = noioctl,
728 .d_stop = nostop,
729 .d_tty = notty,
730 .d_poll = nopoll,
731 .d_mmap = nommap,
732 .d_kqfilter = nokqfilter,
733 .d_discard = nodiscard,
734 .d_flag = D_OTHER | D_MPSAFE
735 };
736
737 const struct fileops audio_fileops = {
738 .fo_name = "audio",
739 .fo_read = audioread,
740 .fo_write = audiowrite,
741 .fo_ioctl = audioioctl,
742 .fo_fcntl = fnullop_fcntl,
743 .fo_stat = audiostat,
744 .fo_poll = audiopoll,
745 .fo_close = audioclose,
746 .fo_mmap = audiommap,
747 .fo_kqfilter = audiokqfilter,
748 .fo_restart = fnullop_restart
749 };
750
751 /* The default audio mode: 8 kHz mono mu-law */
752 static const struct audio_params audio_default = {
753 .sample_rate = 8000,
754 .encoding = AUDIO_ENCODING_ULAW,
755 .precision = 8,
756 .validbits = 8,
757 .channels = 1,
758 };
759
760 static const char *encoding_names[] = {
761 "none",
762 AudioEmulaw,
763 AudioEalaw,
764 "pcm16",
765 "pcm8",
766 AudioEadpcm,
767 AudioEslinear_le,
768 AudioEslinear_be,
769 AudioEulinear_le,
770 AudioEulinear_be,
771 AudioEslinear,
772 AudioEulinear,
773 AudioEmpeg_l1_stream,
774 AudioEmpeg_l1_packets,
775 AudioEmpeg_l1_system,
776 AudioEmpeg_l2_stream,
777 AudioEmpeg_l2_packets,
778 AudioEmpeg_l2_system,
779 AudioEac3,
780 };
781
782 /*
783 * Returns encoding name corresponding to AUDIO_ENCODING_*.
784 * Note that it may return a local buffer because it is mainly for debugging.
785 */
786 const char *
787 audio_encoding_name(int encoding)
788 {
789 static char buf[16];
790
791 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
792 return encoding_names[encoding];
793 } else {
794 snprintf(buf, sizeof(buf), "enc=%d", encoding);
795 return buf;
796 }
797 }
798
799 /*
800 * Supported encodings used by AUDIO_GETENC.
801 * index and flags are set by code.
802 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
803 */
804 static const audio_encoding_t audio_encodings[] = {
805 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
806 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
807 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
808 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
809 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
810 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
811 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
812 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
813 #if defined(AUDIO_SUPPORT_LINEAR24)
814 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
815 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
816 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
817 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
818 #endif
819 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
820 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
821 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
822 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
823 };
824
825 static const struct portname itable[] = {
826 { AudioNmicrophone, AUDIO_MICROPHONE },
827 { AudioNline, AUDIO_LINE_IN },
828 { AudioNcd, AUDIO_CD },
829 { 0, 0 }
830 };
831 static const struct portname otable[] = {
832 { AudioNspeaker, AUDIO_SPEAKER },
833 { AudioNheadphone, AUDIO_HEADPHONE },
834 { AudioNline, AUDIO_LINE_OUT },
835 { 0, 0 }
836 };
837
838 static struct psref_class *audio_psref_class __read_mostly;
839
840 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
841 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
842 audiochilddet, DVF_DETACH_SHUTDOWN);
843
844 static int
845 audiomatch(device_t parent, cfdata_t match, void *aux)
846 {
847 struct audio_attach_args *sa;
848
849 sa = aux;
850 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
851 __func__, sa->type, sa, sa->hwif);
852 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
853 }
854
855 static void
856 audioattach(device_t parent, device_t self, void *aux)
857 {
858 struct audio_softc *sc;
859 struct audio_attach_args *sa;
860 const struct audio_hw_if *hw_if;
861 audio_format2_t phwfmt;
862 audio_format2_t rhwfmt;
863 audio_filter_reg_t pfil;
864 audio_filter_reg_t rfil;
865 const struct sysctlnode *node;
866 void *hdlp;
867 bool has_playback;
868 bool has_capture;
869 bool has_indep;
870 bool has_fulldup;
871 int mode;
872 int error;
873
874 sc = device_private(self);
875 sc->sc_dev = self;
876 sa = (struct audio_attach_args *)aux;
877 hw_if = sa->hwif;
878 hdlp = sa->hdl;
879
880 if (hw_if == NULL || hw_if->get_locks == NULL) {
881 panic("audioattach: missing hw_if method");
882 }
883
884 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
885
886 #ifdef DIAGNOSTIC
887 if (hw_if->query_format == NULL ||
888 hw_if->set_format == NULL ||
889 (hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
890 (hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
891 hw_if->halt_output == NULL ||
892 hw_if->halt_input == NULL ||
893 hw_if->getdev == NULL ||
894 hw_if->set_port == NULL ||
895 hw_if->get_port == NULL ||
896 hw_if->query_devinfo == NULL ||
897 hw_if->get_props == NULL) {
898 aprint_error(": missing method\n");
899 return;
900 }
901 #endif
902
903 sc->hw_if = hw_if;
904 sc->hw_hdl = hdlp;
905 sc->hw_dev = parent;
906
907 sc->sc_exlock = 1;
908 sc->sc_blk_ms = AUDIO_BLK_MS;
909 SLIST_INIT(&sc->sc_files);
910 cv_init(&sc->sc_exlockcv, "audiolk");
911 sc->sc_am_capacity = 0;
912 sc->sc_am_used = 0;
913 sc->sc_am = NULL;
914
915 mutex_enter(sc->sc_lock);
916 sc->sc_props = hw_if->get_props(sc->hw_hdl);
917 mutex_exit(sc->sc_lock);
918
919 /* MMAP is now supported by upper layer. */
920 sc->sc_props |= AUDIO_PROP_MMAP;
921
922 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
923 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
924 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
925 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
926
927 KASSERT(has_playback || has_capture);
928 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
929 if (!has_playback || !has_capture) {
930 KASSERT(!has_indep);
931 KASSERT(!has_fulldup);
932 }
933
934 mode = 0;
935 if (has_playback) {
936 aprint_normal(": playback");
937 mode |= AUMODE_PLAY;
938 }
939 if (has_capture) {
940 aprint_normal("%c capture", has_playback ? ',' : ':');
941 mode |= AUMODE_RECORD;
942 }
943 if (has_playback && has_capture) {
944 if (has_fulldup)
945 aprint_normal(", full duplex");
946 else
947 aprint_normal(", half duplex");
948
949 if (has_indep)
950 aprint_normal(", independent");
951 }
952
953 aprint_naive("\n");
954 aprint_normal("\n");
955
956 /* probe hw params */
957 memset(&phwfmt, 0, sizeof(phwfmt));
958 memset(&rhwfmt, 0, sizeof(rhwfmt));
959 memset(&pfil, 0, sizeof(pfil));
960 memset(&rfil, 0, sizeof(rfil));
961 if (has_indep) {
962 int perror, rerror;
963
964 /* On independent devices, probe separately. */
965 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
966 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
967 if (perror && rerror) {
968 aprint_error_dev(self, "audio_hw_probe failed, "
969 "perror = %d, rerror = %d\n", perror, rerror);
970 goto bad;
971 }
972 if (perror) {
973 mode &= ~AUMODE_PLAY;
974 aprint_error_dev(self, "audio_hw_probe failed with "
975 "%d, playback disabled\n", perror);
976 }
977 if (rerror) {
978 mode &= ~AUMODE_RECORD;
979 aprint_error_dev(self, "audio_hw_probe failed with "
980 "%d, capture disabled\n", rerror);
981 }
982 } else {
983 /*
984 * On non independent devices or uni-directional devices,
985 * probe once (simultaneously).
986 */
987 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
988 error = audio_hw_probe(sc, fmt, mode);
989 if (error) {
990 aprint_error_dev(self, "audio_hw_probe failed, "
991 "error = %d\n", error);
992 goto bad;
993 }
994 if (has_playback && has_capture)
995 rhwfmt = phwfmt;
996 }
997
998 /* Init hardware. */
999 /* hw_probe() also validates [pr]hwfmt. */
1000 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1001 if (error) {
1002 aprint_error_dev(self, "audio_hw_set_format failed, "
1003 "error = %d\n", error);
1004 goto bad;
1005 }
1006
1007 /*
1008 * Init track mixers. If at least one direction is available on
1009 * attach time, we assume a success.
1010 */
1011 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1012 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1013 aprint_error_dev(self, "audio_mixers_init failed, "
1014 "error = %d\n", error);
1015 goto bad;
1016 }
1017
1018 sc->sc_psz = pserialize_create();
1019 psref_target_init(&sc->sc_psref, audio_psref_class);
1020
1021 selinit(&sc->sc_wsel);
1022 selinit(&sc->sc_rsel);
1023
1024 /* Initial parameter of /dev/sound */
1025 sc->sc_sound_pparams = params_to_format2(&audio_default);
1026 sc->sc_sound_rparams = params_to_format2(&audio_default);
1027 sc->sc_sound_ppause = false;
1028 sc->sc_sound_rpause = false;
1029
1030 /* XXX TODO: consider about sc_ai */
1031
1032 mixer_init(sc);
1033 TRACE(2, "inputs ports=0x%x, input master=%d, "
1034 "output ports=0x%x, output master=%d",
1035 sc->sc_inports.allports, sc->sc_inports.master,
1036 sc->sc_outports.allports, sc->sc_outports.master);
1037
1038 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1039 0,
1040 CTLTYPE_NODE, device_xname(sc->sc_dev),
1041 SYSCTL_DESCR("audio test"),
1042 NULL, 0,
1043 NULL, 0,
1044 CTL_HW,
1045 CTL_CREATE, CTL_EOL);
1046
1047 if (node != NULL) {
1048 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1049 CTLFLAG_READWRITE,
1050 CTLTYPE_INT, "blk_ms",
1051 SYSCTL_DESCR("blocksize in msec"),
1052 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1053 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1054
1055 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1056 CTLFLAG_READWRITE,
1057 CTLTYPE_BOOL, "multiuser",
1058 SYSCTL_DESCR("allow multiple user access"),
1059 audio_sysctl_multiuser, 0, (void *)sc, 0,
1060 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1061
1062 #if defined(AUDIO_DEBUG)
1063 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1064 CTLFLAG_READWRITE,
1065 CTLTYPE_INT, "debug",
1066 SYSCTL_DESCR("debug level (0..4)"),
1067 audio_sysctl_debug, 0, (void *)sc, 0,
1068 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1069 #endif
1070 }
1071
1072 #ifdef AUDIO_PM_IDLE
1073 callout_init(&sc->sc_idle_counter, 0);
1074 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1075 #endif
1076
1077 if (!pmf_device_register(self, audio_suspend, audio_resume))
1078 aprint_error_dev(self, "couldn't establish power handler\n");
1079 #ifdef AUDIO_PM_IDLE
1080 if (!device_active_register(self, audio_activity))
1081 aprint_error_dev(self, "couldn't register activity handler\n");
1082 #endif
1083
1084 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1085 audio_volume_down, true))
1086 aprint_error_dev(self, "couldn't add volume down handler\n");
1087 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1088 audio_volume_up, true))
1089 aprint_error_dev(self, "couldn't add volume up handler\n");
1090 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1091 audio_volume_toggle, true))
1092 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1093
1094 #ifdef AUDIO_PM_IDLE
1095 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1096 #endif
1097
1098 #if defined(AUDIO_DEBUG)
1099 audio_mlog_init();
1100 #endif
1101
1102 audiorescan(self, "audio", NULL);
1103 sc->sc_exlock = 0;
1104 return;
1105
1106 bad:
1107 /* Clearing hw_if means that device is attached but disabled. */
1108 sc->hw_if = NULL;
1109 sc->sc_exlock = 0;
1110 aprint_error_dev(sc->sc_dev, "disabled\n");
1111 return;
1112 }
1113
1114 /*
1115 * Initialize hardware mixer.
1116 * This function is called from audioattach().
1117 */
1118 static void
1119 mixer_init(struct audio_softc *sc)
1120 {
1121 mixer_devinfo_t mi;
1122 int iclass, mclass, oclass, rclass;
1123 int record_master_found, record_source_found;
1124
1125 iclass = mclass = oclass = rclass = -1;
1126 sc->sc_inports.index = -1;
1127 sc->sc_inports.master = -1;
1128 sc->sc_inports.nports = 0;
1129 sc->sc_inports.isenum = false;
1130 sc->sc_inports.allports = 0;
1131 sc->sc_inports.isdual = false;
1132 sc->sc_inports.mixerout = -1;
1133 sc->sc_inports.cur_port = -1;
1134 sc->sc_outports.index = -1;
1135 sc->sc_outports.master = -1;
1136 sc->sc_outports.nports = 0;
1137 sc->sc_outports.isenum = false;
1138 sc->sc_outports.allports = 0;
1139 sc->sc_outports.isdual = false;
1140 sc->sc_outports.mixerout = -1;
1141 sc->sc_outports.cur_port = -1;
1142 sc->sc_monitor_port = -1;
1143 /*
1144 * Read through the underlying driver's list, picking out the class
1145 * names from the mixer descriptions. We'll need them to decode the
1146 * mixer descriptions on the next pass through the loop.
1147 */
1148 mutex_enter(sc->sc_lock);
1149 for(mi.index = 0; ; mi.index++) {
1150 if (audio_query_devinfo(sc, &mi) != 0)
1151 break;
1152 /*
1153 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1154 * All the other types describe an actual mixer.
1155 */
1156 if (mi.type == AUDIO_MIXER_CLASS) {
1157 if (strcmp(mi.label.name, AudioCinputs) == 0)
1158 iclass = mi.mixer_class;
1159 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1160 mclass = mi.mixer_class;
1161 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1162 oclass = mi.mixer_class;
1163 if (strcmp(mi.label.name, AudioCrecord) == 0)
1164 rclass = mi.mixer_class;
1165 }
1166 }
1167 mutex_exit(sc->sc_lock);
1168
1169 /* Allocate save area. Ensure non-zero allocation. */
1170 sc->sc_nmixer_states = mi.index;
1171 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1172 (sc->sc_nmixer_states + 1), KM_SLEEP);
1173
1174 /*
1175 * This is where we assign each control in the "audio" model, to the
1176 * underlying "mixer" control. We walk through the whole list once,
1177 * assigning likely candidates as we come across them.
1178 */
1179 record_master_found = 0;
1180 record_source_found = 0;
1181 mutex_enter(sc->sc_lock);
1182 for(mi.index = 0; ; mi.index++) {
1183 if (audio_query_devinfo(sc, &mi) != 0)
1184 break;
1185 KASSERT(mi.index < sc->sc_nmixer_states);
1186 if (mi.type == AUDIO_MIXER_CLASS)
1187 continue;
1188 if (mi.mixer_class == iclass) {
1189 /*
1190 * AudioCinputs is only a fallback, when we don't
1191 * find what we're looking for in AudioCrecord, so
1192 * check the flags before accepting one of these.
1193 */
1194 if (strcmp(mi.label.name, AudioNmaster) == 0
1195 && record_master_found == 0)
1196 sc->sc_inports.master = mi.index;
1197 if (strcmp(mi.label.name, AudioNsource) == 0
1198 && record_source_found == 0) {
1199 if (mi.type == AUDIO_MIXER_ENUM) {
1200 int i;
1201 for(i = 0; i < mi.un.e.num_mem; i++)
1202 if (strcmp(mi.un.e.member[i].label.name,
1203 AudioNmixerout) == 0)
1204 sc->sc_inports.mixerout =
1205 mi.un.e.member[i].ord;
1206 }
1207 au_setup_ports(sc, &sc->sc_inports, &mi,
1208 itable);
1209 }
1210 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1211 sc->sc_outports.master == -1)
1212 sc->sc_outports.master = mi.index;
1213 } else if (mi.mixer_class == mclass) {
1214 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1215 sc->sc_monitor_port = mi.index;
1216 } else if (mi.mixer_class == oclass) {
1217 if (strcmp(mi.label.name, AudioNmaster) == 0)
1218 sc->sc_outports.master = mi.index;
1219 if (strcmp(mi.label.name, AudioNselect) == 0)
1220 au_setup_ports(sc, &sc->sc_outports, &mi,
1221 otable);
1222 } else if (mi.mixer_class == rclass) {
1223 /*
1224 * These are the preferred mixers for the audio record
1225 * controls, so set the flags here, but don't check.
1226 */
1227 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1228 sc->sc_inports.master = mi.index;
1229 record_master_found = 1;
1230 }
1231 #if 1 /* Deprecated. Use AudioNmaster. */
1232 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1233 sc->sc_inports.master = mi.index;
1234 record_master_found = 1;
1235 }
1236 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1237 sc->sc_inports.master = mi.index;
1238 record_master_found = 1;
1239 }
1240 #endif
1241 if (strcmp(mi.label.name, AudioNsource) == 0) {
1242 if (mi.type == AUDIO_MIXER_ENUM) {
1243 int i;
1244 for(i = 0; i < mi.un.e.num_mem; i++)
1245 if (strcmp(mi.un.e.member[i].label.name,
1246 AudioNmixerout) == 0)
1247 sc->sc_inports.mixerout =
1248 mi.un.e.member[i].ord;
1249 }
1250 au_setup_ports(sc, &sc->sc_inports, &mi,
1251 itable);
1252 record_source_found = 1;
1253 }
1254 }
1255 }
1256 mutex_exit(sc->sc_lock);
1257 }
1258
1259 static int
1260 audioactivate(device_t self, enum devact act)
1261 {
1262 struct audio_softc *sc = device_private(self);
1263
1264 switch (act) {
1265 case DVACT_DEACTIVATE:
1266 mutex_enter(sc->sc_lock);
1267 sc->sc_dying = true;
1268 cv_broadcast(&sc->sc_exlockcv);
1269 mutex_exit(sc->sc_lock);
1270 return 0;
1271 default:
1272 return EOPNOTSUPP;
1273 }
1274 }
1275
1276 static int
1277 audiodetach(device_t self, int flags)
1278 {
1279 struct audio_softc *sc;
1280 struct audio_file *file;
1281 int error;
1282
1283 sc = device_private(self);
1284 TRACE(2, "flags=%d", flags);
1285
1286 /* device is not initialized */
1287 if (sc->hw_if == NULL)
1288 return 0;
1289
1290 /* Start draining existing accessors of the device. */
1291 error = config_detach_children(self, flags);
1292 if (error)
1293 return error;
1294
1295 /* delete sysctl nodes */
1296 sysctl_teardown(&sc->sc_log);
1297
1298 mutex_enter(sc->sc_lock);
1299 sc->sc_dying = true;
1300 cv_broadcast(&sc->sc_exlockcv);
1301 if (sc->sc_pmixer)
1302 cv_broadcast(&sc->sc_pmixer->outcv);
1303 if (sc->sc_rmixer)
1304 cv_broadcast(&sc->sc_rmixer->outcv);
1305
1306 /* Prevent new users */
1307 SLIST_FOREACH(file, &sc->sc_files, entry) {
1308 atomic_store_relaxed(&file->dying, true);
1309 }
1310
1311 /*
1312 * Wait for existing users to drain.
1313 * - pserialize_perform waits for all pserialize_read sections on
1314 * all CPUs; after this, no more new psref_acquire can happen.
1315 * - psref_target_destroy waits for all extant acquired psrefs to
1316 * be psref_released.
1317 */
1318 pserialize_perform(sc->sc_psz);
1319 mutex_exit(sc->sc_lock);
1320 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1321
1322 /*
1323 * We are now guaranteed that there are no calls to audio fileops
1324 * that hold sc, and any new calls with files that were for sc will
1325 * fail. Thus, we now have exclusive access to the softc.
1326 */
1327 sc->sc_exlock = 1;
1328
1329 /*
1330 * Nuke all open instances.
1331 * Here, we no longer need any locks to traverse sc_files.
1332 */
1333 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1334 audio_unlink(sc, file);
1335 }
1336
1337 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1338 audio_volume_down, true);
1339 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1340 audio_volume_up, true);
1341 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1342 audio_volume_toggle, true);
1343
1344 #ifdef AUDIO_PM_IDLE
1345 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1346
1347 device_active_deregister(self, audio_activity);
1348 #endif
1349
1350 pmf_device_deregister(self);
1351
1352 /* Free resources */
1353 if (sc->sc_pmixer) {
1354 audio_mixer_destroy(sc, sc->sc_pmixer);
1355 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1356 }
1357 if (sc->sc_rmixer) {
1358 audio_mixer_destroy(sc, sc->sc_rmixer);
1359 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1360 }
1361 if (sc->sc_am)
1362 kern_free(sc->sc_am);
1363
1364 seldestroy(&sc->sc_wsel);
1365 seldestroy(&sc->sc_rsel);
1366
1367 #ifdef AUDIO_PM_IDLE
1368 callout_destroy(&sc->sc_idle_counter);
1369 #endif
1370
1371 cv_destroy(&sc->sc_exlockcv);
1372
1373 #if defined(AUDIO_DEBUG)
1374 audio_mlog_free();
1375 #endif
1376
1377 return 0;
1378 }
1379
1380 static void
1381 audiochilddet(device_t self, device_t child)
1382 {
1383
1384 /* we hold no child references, so do nothing */
1385 }
1386
1387 static int
1388 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1389 {
1390
1391 if (config_match(parent, cf, aux))
1392 config_attach_loc(parent, cf, locs, aux, NULL);
1393
1394 return 0;
1395 }
1396
1397 static int
1398 audiorescan(device_t self, const char *ifattr, const int *flags)
1399 {
1400 struct audio_softc *sc = device_private(self);
1401
1402 if (!ifattr_match(ifattr, "audio"))
1403 return 0;
1404
1405 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1406
1407 return 0;
1408 }
1409
1410 /*
1411 * Called from hardware driver. This is where the MI audio driver gets
1412 * probed/attached to the hardware driver.
1413 */
1414 device_t
1415 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1416 {
1417 struct audio_attach_args arg;
1418
1419 #ifdef DIAGNOSTIC
1420 if (ahwp == NULL) {
1421 aprint_error("audio_attach_mi: NULL\n");
1422 return 0;
1423 }
1424 #endif
1425 arg.type = AUDIODEV_TYPE_AUDIO;
1426 arg.hwif = ahwp;
1427 arg.hdl = hdlp;
1428 return config_found(dev, &arg, audioprint);
1429 }
1430
1431 /*
1432 * Enter critical section and also keep sc_lock.
1433 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1434 * Must be called without sc_lock held.
1435 */
1436 static int
1437 audio_exlock_mutex_enter(struct audio_softc *sc)
1438 {
1439 int error;
1440
1441 mutex_enter(sc->sc_lock);
1442 if (sc->sc_dying) {
1443 mutex_exit(sc->sc_lock);
1444 return EIO;
1445 }
1446
1447 while (__predict_false(sc->sc_exlock != 0)) {
1448 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1449 if (sc->sc_dying)
1450 error = EIO;
1451 if (error) {
1452 mutex_exit(sc->sc_lock);
1453 return error;
1454 }
1455 }
1456
1457 /* Acquire */
1458 sc->sc_exlock = 1;
1459 return 0;
1460 }
1461
1462 /*
1463 * Exit critical section and exit sc_lock.
1464 * Must be called with sc_lock held.
1465 */
1466 static void
1467 audio_exlock_mutex_exit(struct audio_softc *sc)
1468 {
1469
1470 KASSERT(mutex_owned(sc->sc_lock));
1471
1472 sc->sc_exlock = 0;
1473 cv_broadcast(&sc->sc_exlockcv);
1474 mutex_exit(sc->sc_lock);
1475 }
1476
1477 /*
1478 * Enter critical section.
1479 * If successful, it returns 0. Otherwise returns errno.
1480 * Must be called without sc_lock held.
1481 * This function returns without sc_lock held.
1482 */
1483 static int
1484 audio_exlock_enter(struct audio_softc *sc)
1485 {
1486 int error;
1487
1488 error = audio_exlock_mutex_enter(sc);
1489 if (error)
1490 return error;
1491 mutex_exit(sc->sc_lock);
1492 return 0;
1493 }
1494
1495 /*
1496 * Exit critical section.
1497 * Must be called without sc_lock held.
1498 */
1499 static void
1500 audio_exlock_exit(struct audio_softc *sc)
1501 {
1502
1503 mutex_enter(sc->sc_lock);
1504 audio_exlock_mutex_exit(sc);
1505 }
1506
1507 /*
1508 * Acquire sc from file, and increment the psref count.
1509 * If successful, returns sc. Otherwise returns NULL.
1510 */
1511 struct audio_softc *
1512 audio_file_enter(audio_file_t *file, struct psref *refp)
1513 {
1514 int s;
1515 bool dying;
1516
1517 /* psref(9) forbids to migrate CPUs */
1518 curlwp_bind();
1519
1520 /* Block audiodetach while we acquire a reference */
1521 s = pserialize_read_enter();
1522
1523 /* If close or audiodetach already ran, tough -- no more audio */
1524 dying = atomic_load_relaxed(&file->dying);
1525 if (dying) {
1526 pserialize_read_exit(s);
1527 return NULL;
1528 }
1529
1530 /* Acquire a reference */
1531 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1532
1533 /* Now sc won't go away until we drop the reference count */
1534 pserialize_read_exit(s);
1535
1536 return file->sc;
1537 }
1538
1539 /*
1540 * Decrement the psref count.
1541 */
1542 void
1543 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1544 {
1545
1546 psref_release(refp, &sc->sc_psref, audio_psref_class);
1547 }
1548
1549 /*
1550 * Wait for I/O to complete, releasing sc_lock.
1551 * Must be called with sc_lock held.
1552 */
1553 static int
1554 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1555 {
1556 int error;
1557
1558 KASSERT(track);
1559 KASSERT(mutex_owned(sc->sc_lock));
1560
1561 /* Wait for pending I/O to complete. */
1562 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1563 mstohz(AUDIO_TIMEOUT));
1564 if (sc->sc_dying) {
1565 error = EIO;
1566 }
1567 if (error) {
1568 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1569 if (error == EWOULDBLOCK)
1570 device_printf(sc->sc_dev, "device timeout\n");
1571 } else {
1572 TRACET(3, track, "wakeup");
1573 }
1574 return error;
1575 }
1576
1577 /*
1578 * Try to acquire track lock.
1579 * It doesn't block if the track lock is already aquired.
1580 * Returns true if the track lock was acquired, or false if the track
1581 * lock was already acquired.
1582 */
1583 static __inline bool
1584 audio_track_lock_tryenter(audio_track_t *track)
1585 {
1586 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1587 }
1588
1589 /*
1590 * Acquire track lock.
1591 */
1592 static __inline void
1593 audio_track_lock_enter(audio_track_t *track)
1594 {
1595 /* Don't sleep here. */
1596 while (audio_track_lock_tryenter(track) == false)
1597 ;
1598 }
1599
1600 /*
1601 * Release track lock.
1602 */
1603 static __inline void
1604 audio_track_lock_exit(audio_track_t *track)
1605 {
1606 atomic_swap_uint(&track->lock, 0);
1607 }
1608
1609
1610 static int
1611 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1612 {
1613 struct audio_softc *sc;
1614 int error;
1615
1616 /* Find the device */
1617 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1618 if (sc == NULL || sc->hw_if == NULL)
1619 return ENXIO;
1620
1621 error = audio_exlock_enter(sc);
1622 if (error)
1623 return error;
1624
1625 device_active(sc->sc_dev, DVA_SYSTEM);
1626 switch (AUDIODEV(dev)) {
1627 case SOUND_DEVICE:
1628 case AUDIO_DEVICE:
1629 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1630 break;
1631 case AUDIOCTL_DEVICE:
1632 error = audioctl_open(dev, sc, flags, ifmt, l);
1633 break;
1634 case MIXER_DEVICE:
1635 error = mixer_open(dev, sc, flags, ifmt, l);
1636 break;
1637 default:
1638 error = ENXIO;
1639 break;
1640 }
1641 audio_exlock_exit(sc);
1642
1643 return error;
1644 }
1645
1646 static int
1647 audioclose(struct file *fp)
1648 {
1649 struct audio_softc *sc;
1650 struct psref sc_ref;
1651 audio_file_t *file;
1652 int error;
1653 dev_t dev;
1654
1655 KASSERT(fp->f_audioctx);
1656 file = fp->f_audioctx;
1657 dev = file->dev;
1658 error = 0;
1659
1660 /*
1661 * audioclose() must
1662 * - unplug track from the trackmixer (and unplug anything from softc),
1663 * if sc exists.
1664 * - free all memory objects, regardless of sc.
1665 */
1666
1667 sc = audio_file_enter(file, &sc_ref);
1668 if (sc) {
1669 switch (AUDIODEV(dev)) {
1670 case SOUND_DEVICE:
1671 case AUDIO_DEVICE:
1672 error = audio_close(sc, file);
1673 break;
1674 case AUDIOCTL_DEVICE:
1675 error = 0;
1676 break;
1677 case MIXER_DEVICE:
1678 error = mixer_close(sc, file);
1679 break;
1680 default:
1681 error = ENXIO;
1682 break;
1683 }
1684
1685 audio_file_exit(sc, &sc_ref);
1686 }
1687
1688 /* Free memory objects anyway */
1689 TRACEF(2, file, "free memory");
1690 if (file->ptrack)
1691 audio_track_destroy(file->ptrack);
1692 if (file->rtrack)
1693 audio_track_destroy(file->rtrack);
1694 kmem_free(file, sizeof(*file));
1695 fp->f_audioctx = NULL;
1696
1697 return error;
1698 }
1699
1700 static int
1701 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1702 int ioflag)
1703 {
1704 struct audio_softc *sc;
1705 struct psref sc_ref;
1706 audio_file_t *file;
1707 int error;
1708 dev_t dev;
1709
1710 KASSERT(fp->f_audioctx);
1711 file = fp->f_audioctx;
1712 dev = file->dev;
1713
1714 sc = audio_file_enter(file, &sc_ref);
1715 if (sc == NULL)
1716 return EIO;
1717
1718 if (fp->f_flag & O_NONBLOCK)
1719 ioflag |= IO_NDELAY;
1720
1721 switch (AUDIODEV(dev)) {
1722 case SOUND_DEVICE:
1723 case AUDIO_DEVICE:
1724 error = audio_read(sc, uio, ioflag, file);
1725 break;
1726 case AUDIOCTL_DEVICE:
1727 case MIXER_DEVICE:
1728 error = ENODEV;
1729 break;
1730 default:
1731 error = ENXIO;
1732 break;
1733 }
1734
1735 audio_file_exit(sc, &sc_ref);
1736 return error;
1737 }
1738
1739 static int
1740 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1741 int ioflag)
1742 {
1743 struct audio_softc *sc;
1744 struct psref sc_ref;
1745 audio_file_t *file;
1746 int error;
1747 dev_t dev;
1748
1749 KASSERT(fp->f_audioctx);
1750 file = fp->f_audioctx;
1751 dev = file->dev;
1752
1753 sc = audio_file_enter(file, &sc_ref);
1754 if (sc == NULL)
1755 return EIO;
1756
1757 if (fp->f_flag & O_NONBLOCK)
1758 ioflag |= IO_NDELAY;
1759
1760 switch (AUDIODEV(dev)) {
1761 case SOUND_DEVICE:
1762 case AUDIO_DEVICE:
1763 error = audio_write(sc, uio, ioflag, file);
1764 break;
1765 case AUDIOCTL_DEVICE:
1766 case MIXER_DEVICE:
1767 error = ENODEV;
1768 break;
1769 default:
1770 error = ENXIO;
1771 break;
1772 }
1773
1774 audio_file_exit(sc, &sc_ref);
1775 return error;
1776 }
1777
1778 static int
1779 audioioctl(struct file *fp, u_long cmd, void *addr)
1780 {
1781 struct audio_softc *sc;
1782 struct psref sc_ref;
1783 audio_file_t *file;
1784 struct lwp *l = curlwp;
1785 int error;
1786 dev_t dev;
1787
1788 KASSERT(fp->f_audioctx);
1789 file = fp->f_audioctx;
1790 dev = file->dev;
1791
1792 sc = audio_file_enter(file, &sc_ref);
1793 if (sc == NULL)
1794 return EIO;
1795
1796 switch (AUDIODEV(dev)) {
1797 case SOUND_DEVICE:
1798 case AUDIO_DEVICE:
1799 case AUDIOCTL_DEVICE:
1800 mutex_enter(sc->sc_lock);
1801 device_active(sc->sc_dev, DVA_SYSTEM);
1802 mutex_exit(sc->sc_lock);
1803 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1804 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1805 else
1806 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1807 file);
1808 break;
1809 case MIXER_DEVICE:
1810 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1811 break;
1812 default:
1813 error = ENXIO;
1814 break;
1815 }
1816
1817 audio_file_exit(sc, &sc_ref);
1818 return error;
1819 }
1820
1821 static int
1822 audiostat(struct file *fp, struct stat *st)
1823 {
1824 struct audio_softc *sc;
1825 struct psref sc_ref;
1826 audio_file_t *file;
1827
1828 KASSERT(fp->f_audioctx);
1829 file = fp->f_audioctx;
1830
1831 sc = audio_file_enter(file, &sc_ref);
1832 if (sc == NULL)
1833 return EIO;
1834
1835 memset(st, 0, sizeof(*st));
1836
1837 st->st_dev = file->dev;
1838 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1839 st->st_gid = kauth_cred_getegid(fp->f_cred);
1840 st->st_mode = S_IFCHR;
1841
1842 audio_file_exit(sc, &sc_ref);
1843 return 0;
1844 }
1845
1846 static int
1847 audiopoll(struct file *fp, int events)
1848 {
1849 struct audio_softc *sc;
1850 struct psref sc_ref;
1851 audio_file_t *file;
1852 struct lwp *l = curlwp;
1853 int revents;
1854 dev_t dev;
1855
1856 KASSERT(fp->f_audioctx);
1857 file = fp->f_audioctx;
1858 dev = file->dev;
1859
1860 sc = audio_file_enter(file, &sc_ref);
1861 if (sc == NULL)
1862 return EIO;
1863
1864 switch (AUDIODEV(dev)) {
1865 case SOUND_DEVICE:
1866 case AUDIO_DEVICE:
1867 revents = audio_poll(sc, events, l, file);
1868 break;
1869 case AUDIOCTL_DEVICE:
1870 case MIXER_DEVICE:
1871 revents = 0;
1872 break;
1873 default:
1874 revents = POLLERR;
1875 break;
1876 }
1877
1878 audio_file_exit(sc, &sc_ref);
1879 return revents;
1880 }
1881
1882 static int
1883 audiokqfilter(struct file *fp, struct knote *kn)
1884 {
1885 struct audio_softc *sc;
1886 struct psref sc_ref;
1887 audio_file_t *file;
1888 dev_t dev;
1889 int error;
1890
1891 KASSERT(fp->f_audioctx);
1892 file = fp->f_audioctx;
1893 dev = file->dev;
1894
1895 sc = audio_file_enter(file, &sc_ref);
1896 if (sc == NULL)
1897 return EIO;
1898
1899 switch (AUDIODEV(dev)) {
1900 case SOUND_DEVICE:
1901 case AUDIO_DEVICE:
1902 error = audio_kqfilter(sc, file, kn);
1903 break;
1904 case AUDIOCTL_DEVICE:
1905 case MIXER_DEVICE:
1906 error = ENODEV;
1907 break;
1908 default:
1909 error = ENXIO;
1910 break;
1911 }
1912
1913 audio_file_exit(sc, &sc_ref);
1914 return error;
1915 }
1916
1917 static int
1918 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1919 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1920 {
1921 struct audio_softc *sc;
1922 struct psref sc_ref;
1923 audio_file_t *file;
1924 dev_t dev;
1925 int error;
1926
1927 KASSERT(fp->f_audioctx);
1928 file = fp->f_audioctx;
1929 dev = file->dev;
1930
1931 sc = audio_file_enter(file, &sc_ref);
1932 if (sc == NULL)
1933 return EIO;
1934
1935 mutex_enter(sc->sc_lock);
1936 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1937 mutex_exit(sc->sc_lock);
1938
1939 switch (AUDIODEV(dev)) {
1940 case SOUND_DEVICE:
1941 case AUDIO_DEVICE:
1942 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1943 uobjp, maxprotp, file);
1944 break;
1945 case AUDIOCTL_DEVICE:
1946 case MIXER_DEVICE:
1947 default:
1948 error = ENOTSUP;
1949 break;
1950 }
1951
1952 audio_file_exit(sc, &sc_ref);
1953 return error;
1954 }
1955
1956
1957 /* Exported interfaces for audiobell. */
1958
1959 /*
1960 * Open for audiobell.
1961 * It stores allocated file to *filep.
1962 * If successful returns 0, otherwise errno.
1963 */
1964 int
1965 audiobellopen(dev_t dev, audio_file_t **filep)
1966 {
1967 struct audio_softc *sc;
1968 int error;
1969
1970 /* Find the device */
1971 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1972 if (sc == NULL || sc->hw_if == NULL)
1973 return ENXIO;
1974
1975 error = audio_exlock_enter(sc);
1976 if (error)
1977 return error;
1978
1979 device_active(sc->sc_dev, DVA_SYSTEM);
1980 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1981
1982 audio_exlock_exit(sc);
1983 return error;
1984 }
1985
1986 /* Close for audiobell */
1987 int
1988 audiobellclose(audio_file_t *file)
1989 {
1990 struct audio_softc *sc;
1991 struct psref sc_ref;
1992 int error;
1993
1994 sc = audio_file_enter(file, &sc_ref);
1995 if (sc == NULL)
1996 return EIO;
1997
1998 error = audio_close(sc, file);
1999
2000 audio_file_exit(sc, &sc_ref);
2001
2002 KASSERT(file->ptrack);
2003 audio_track_destroy(file->ptrack);
2004 KASSERT(file->rtrack == NULL);
2005 kmem_free(file, sizeof(*file));
2006 return error;
2007 }
2008
2009 /* Set sample rate for audiobell */
2010 int
2011 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2012 {
2013 struct audio_softc *sc;
2014 struct psref sc_ref;
2015 struct audio_info ai;
2016 int error;
2017
2018 sc = audio_file_enter(file, &sc_ref);
2019 if (sc == NULL)
2020 return EIO;
2021
2022 AUDIO_INITINFO(&ai);
2023 ai.play.sample_rate = sample_rate;
2024
2025 error = audio_exlock_enter(sc);
2026 if (error)
2027 goto done;
2028 error = audio_file_setinfo(sc, file, &ai);
2029 audio_exlock_exit(sc);
2030
2031 done:
2032 audio_file_exit(sc, &sc_ref);
2033 return error;
2034 }
2035
2036 /* Playback for audiobell */
2037 int
2038 audiobellwrite(audio_file_t *file, struct uio *uio)
2039 {
2040 struct audio_softc *sc;
2041 struct psref sc_ref;
2042 int error;
2043
2044 sc = audio_file_enter(file, &sc_ref);
2045 if (sc == NULL)
2046 return EIO;
2047
2048 error = audio_write(sc, uio, 0, file);
2049
2050 audio_file_exit(sc, &sc_ref);
2051 return error;
2052 }
2053
2054
2055 /*
2056 * Audio driver
2057 */
2058
2059 /*
2060 * Must be called with sc_exlock held and without sc_lock held.
2061 */
2062 int
2063 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2064 struct lwp *l, audio_file_t **bellfile)
2065 {
2066 struct audio_info ai;
2067 struct file *fp;
2068 audio_file_t *af;
2069 audio_ring_t *hwbuf;
2070 bool fullduplex;
2071 int fd;
2072 int error;
2073
2074 KASSERT(sc->sc_exlock);
2075
2076 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2077 (audiodebug >= 3) ? "start " : "",
2078 ISDEVSOUND(dev) ? "sound" : "audio",
2079 flags, sc->sc_popens, sc->sc_ropens);
2080
2081 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2082 af->sc = sc;
2083 af->dev = dev;
2084 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2085 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2086 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2087 af->mode |= AUMODE_RECORD;
2088 if (af->mode == 0) {
2089 error = ENXIO;
2090 goto bad1;
2091 }
2092
2093 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2094
2095 /*
2096 * On half duplex hardware,
2097 * 1. if mode is (PLAY | REC), let mode PLAY.
2098 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2099 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2100 */
2101 if (fullduplex == false) {
2102 if ((af->mode & AUMODE_PLAY)) {
2103 if (sc->sc_ropens != 0) {
2104 TRACE(1, "record track already exists");
2105 error = ENODEV;
2106 goto bad1;
2107 }
2108 /* Play takes precedence */
2109 af->mode &= ~AUMODE_RECORD;
2110 }
2111 if ((af->mode & AUMODE_RECORD)) {
2112 if (sc->sc_popens != 0) {
2113 TRACE(1, "play track already exists");
2114 error = ENODEV;
2115 goto bad1;
2116 }
2117 }
2118 }
2119
2120 /* Create tracks */
2121 if ((af->mode & AUMODE_PLAY))
2122 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2123 if ((af->mode & AUMODE_RECORD))
2124 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2125
2126 /* Set parameters */
2127 AUDIO_INITINFO(&ai);
2128 if (bellfile) {
2129 /* If audiobell, only sample_rate will be set later. */
2130 ai.play.sample_rate = audio_default.sample_rate;
2131 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2132 ai.play.channels = 1;
2133 ai.play.precision = 16;
2134 ai.play.pause = false;
2135 } else if (ISDEVAUDIO(dev)) {
2136 /* If /dev/audio, initialize everytime. */
2137 ai.play.sample_rate = audio_default.sample_rate;
2138 ai.play.encoding = audio_default.encoding;
2139 ai.play.channels = audio_default.channels;
2140 ai.play.precision = audio_default.precision;
2141 ai.play.pause = false;
2142 ai.record.sample_rate = audio_default.sample_rate;
2143 ai.record.encoding = audio_default.encoding;
2144 ai.record.channels = audio_default.channels;
2145 ai.record.precision = audio_default.precision;
2146 ai.record.pause = false;
2147 } else {
2148 /* If /dev/sound, take over the previous parameters. */
2149 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2150 ai.play.encoding = sc->sc_sound_pparams.encoding;
2151 ai.play.channels = sc->sc_sound_pparams.channels;
2152 ai.play.precision = sc->sc_sound_pparams.precision;
2153 ai.play.pause = sc->sc_sound_ppause;
2154 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2155 ai.record.encoding = sc->sc_sound_rparams.encoding;
2156 ai.record.channels = sc->sc_sound_rparams.channels;
2157 ai.record.precision = sc->sc_sound_rparams.precision;
2158 ai.record.pause = sc->sc_sound_rpause;
2159 }
2160 error = audio_file_setinfo(sc, af, &ai);
2161 if (error)
2162 goto bad2;
2163
2164 if (sc->sc_popens + sc->sc_ropens == 0) {
2165 /* First open */
2166
2167 sc->sc_cred = kauth_cred_get();
2168 kauth_cred_hold(sc->sc_cred);
2169
2170 if (sc->hw_if->open) {
2171 int hwflags;
2172
2173 /*
2174 * Call hw_if->open() only at first open of
2175 * combination of playback and recording.
2176 * On full duplex hardware, the flags passed to
2177 * hw_if->open() is always (FREAD | FWRITE)
2178 * regardless of this open()'s flags.
2179 * see also dev/isa/aria.c
2180 * On half duplex hardware, the flags passed to
2181 * hw_if->open() is either FREAD or FWRITE.
2182 * see also arch/evbarm/mini2440/audio_mini2440.c
2183 */
2184 if (fullduplex) {
2185 hwflags = FREAD | FWRITE;
2186 } else {
2187 /* Construct hwflags from af->mode. */
2188 hwflags = 0;
2189 if ((af->mode & AUMODE_PLAY) != 0)
2190 hwflags |= FWRITE;
2191 if ((af->mode & AUMODE_RECORD) != 0)
2192 hwflags |= FREAD;
2193 }
2194
2195 mutex_enter(sc->sc_lock);
2196 mutex_enter(sc->sc_intr_lock);
2197 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2198 mutex_exit(sc->sc_intr_lock);
2199 mutex_exit(sc->sc_lock);
2200 if (error)
2201 goto bad2;
2202 }
2203
2204 /*
2205 * Set speaker mode when a half duplex.
2206 * XXX I'm not sure this is correct.
2207 */
2208 if (1/*XXX*/) {
2209 if (sc->hw_if->speaker_ctl) {
2210 int on;
2211 if (af->ptrack) {
2212 on = 1;
2213 } else {
2214 on = 0;
2215 }
2216 mutex_enter(sc->sc_lock);
2217 mutex_enter(sc->sc_intr_lock);
2218 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2219 mutex_exit(sc->sc_intr_lock);
2220 mutex_exit(sc->sc_lock);
2221 if (error)
2222 goto bad3;
2223 }
2224 }
2225 } else if (sc->sc_multiuser == false) {
2226 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2227 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2228 error = EPERM;
2229 goto bad2;
2230 }
2231 }
2232
2233 /* Call init_output if this is the first playback open. */
2234 if (af->ptrack && sc->sc_popens == 0) {
2235 if (sc->hw_if->init_output) {
2236 hwbuf = &sc->sc_pmixer->hwbuf;
2237 mutex_enter(sc->sc_lock);
2238 mutex_enter(sc->sc_intr_lock);
2239 error = sc->hw_if->init_output(sc->hw_hdl,
2240 hwbuf->mem,
2241 hwbuf->capacity *
2242 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2243 mutex_exit(sc->sc_intr_lock);
2244 mutex_exit(sc->sc_lock);
2245 if (error)
2246 goto bad3;
2247 }
2248 }
2249 /*
2250 * Call init_input and start rmixer, if this is the first recording
2251 * open. See pause consideration notes.
2252 */
2253 if (af->rtrack && sc->sc_ropens == 0) {
2254 if (sc->hw_if->init_input) {
2255 hwbuf = &sc->sc_rmixer->hwbuf;
2256 mutex_enter(sc->sc_lock);
2257 mutex_enter(sc->sc_intr_lock);
2258 error = sc->hw_if->init_input(sc->hw_hdl,
2259 hwbuf->mem,
2260 hwbuf->capacity *
2261 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2262 mutex_exit(sc->sc_intr_lock);
2263 mutex_exit(sc->sc_lock);
2264 if (error)
2265 goto bad3;
2266 }
2267
2268 mutex_enter(sc->sc_lock);
2269 audio_rmixer_start(sc);
2270 mutex_exit(sc->sc_lock);
2271 }
2272
2273 if (bellfile == NULL) {
2274 error = fd_allocfile(&fp, &fd);
2275 if (error)
2276 goto bad3;
2277 }
2278
2279 /*
2280 * Count up finally.
2281 * Don't fail from here.
2282 */
2283 mutex_enter(sc->sc_lock);
2284 if (af->ptrack)
2285 sc->sc_popens++;
2286 if (af->rtrack)
2287 sc->sc_ropens++;
2288 mutex_enter(sc->sc_intr_lock);
2289 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2290 mutex_exit(sc->sc_intr_lock);
2291 mutex_exit(sc->sc_lock);
2292
2293 if (bellfile) {
2294 *bellfile = af;
2295 } else {
2296 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2297 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2298 }
2299
2300 TRACEF(3, af, "done");
2301 return error;
2302
2303 /*
2304 * Since track here is not yet linked to sc_files,
2305 * you can call track_destroy() without sc_intr_lock.
2306 */
2307 bad3:
2308 if (sc->sc_popens + sc->sc_ropens == 0) {
2309 if (sc->hw_if->close) {
2310 mutex_enter(sc->sc_lock);
2311 mutex_enter(sc->sc_intr_lock);
2312 sc->hw_if->close(sc->hw_hdl);
2313 mutex_exit(sc->sc_intr_lock);
2314 mutex_exit(sc->sc_lock);
2315 }
2316 }
2317 bad2:
2318 if (af->rtrack) {
2319 audio_track_destroy(af->rtrack);
2320 af->rtrack = NULL;
2321 }
2322 if (af->ptrack) {
2323 audio_track_destroy(af->ptrack);
2324 af->ptrack = NULL;
2325 }
2326 bad1:
2327 kmem_free(af, sizeof(*af));
2328 return error;
2329 }
2330
2331 /*
2332 * Must be called without sc_lock nor sc_exlock held.
2333 */
2334 int
2335 audio_close(struct audio_softc *sc, audio_file_t *file)
2336 {
2337
2338 /* Protect entering new fileops to this file */
2339 atomic_store_relaxed(&file->dying, true);
2340
2341 /*
2342 * Drain first.
2343 * It must be done before unlinking(acquiring exlock).
2344 */
2345 if (file->ptrack) {
2346 mutex_enter(sc->sc_lock);
2347 audio_track_drain(sc, file->ptrack);
2348 mutex_exit(sc->sc_lock);
2349 }
2350
2351 return audio_unlink(sc, file);
2352 }
2353
2354 /*
2355 * Unlink this file, but not freeing memory here.
2356 * Must be called without sc_lock nor sc_exlock held.
2357 */
2358 int
2359 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2360 {
2361 int error;
2362
2363 mutex_enter(sc->sc_lock);
2364
2365 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2366 (audiodebug >= 3) ? "start " : "",
2367 (int)curproc->p_pid, (int)curlwp->l_lid,
2368 sc->sc_popens, sc->sc_ropens);
2369 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2370 "sc->sc_popens=%d, sc->sc_ropens=%d",
2371 sc->sc_popens, sc->sc_ropens);
2372
2373 /*
2374 * Acquire exlock to protect counters.
2375 * Does not use audio_exlock_enter() due to sc_dying.
2376 */
2377 while (__predict_false(sc->sc_exlock != 0)) {
2378 error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
2379 mstohz(AUDIO_TIMEOUT));
2380 /* XXX what should I do on error? */
2381 if (error == EWOULDBLOCK) {
2382 mutex_exit(sc->sc_lock);
2383 device_printf(sc->sc_dev,
2384 "%s: cv_timedwait_sig failed %d", __func__, error);
2385 return error;
2386 }
2387 }
2388 sc->sc_exlock = 1;
2389
2390 device_active(sc->sc_dev, DVA_SYSTEM);
2391
2392 mutex_enter(sc->sc_intr_lock);
2393 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2394 mutex_exit(sc->sc_intr_lock);
2395
2396 if (file->ptrack) {
2397 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2398 file->ptrack->dropframes);
2399
2400 KASSERT(sc->sc_popens > 0);
2401 sc->sc_popens--;
2402
2403 /* Call hw halt_output if this is the last playback track. */
2404 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2405 error = audio_pmixer_halt(sc);
2406 if (error) {
2407 device_printf(sc->sc_dev,
2408 "halt_output failed with %d (ignored)\n",
2409 error);
2410 }
2411 }
2412
2413 /* Restore mixing volume if all tracks are gone. */
2414 if (sc->sc_popens == 0) {
2415 /* intr_lock is not necessary, but just manners. */
2416 mutex_enter(sc->sc_intr_lock);
2417 sc->sc_pmixer->volume = 256;
2418 sc->sc_pmixer->voltimer = 0;
2419 mutex_exit(sc->sc_intr_lock);
2420 }
2421 }
2422 if (file->rtrack) {
2423 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2424 file->rtrack->dropframes);
2425
2426 KASSERT(sc->sc_ropens > 0);
2427 sc->sc_ropens--;
2428
2429 /* Call hw halt_input if this is the last recording track. */
2430 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2431 error = audio_rmixer_halt(sc);
2432 if (error) {
2433 device_printf(sc->sc_dev,
2434 "halt_input failed with %d (ignored)\n",
2435 error);
2436 }
2437 }
2438
2439 }
2440
2441 /* Call hw close if this is the last track. */
2442 if (sc->sc_popens + sc->sc_ropens == 0) {
2443 if (sc->hw_if->close) {
2444 TRACE(2, "hw_if close");
2445 mutex_enter(sc->sc_intr_lock);
2446 sc->hw_if->close(sc->hw_hdl);
2447 mutex_exit(sc->sc_intr_lock);
2448 }
2449 }
2450
2451 mutex_exit(sc->sc_lock);
2452 if (sc->sc_popens + sc->sc_ropens == 0)
2453 kauth_cred_free(sc->sc_cred);
2454
2455 TRACE(3, "done");
2456 audio_exlock_exit(sc);
2457
2458 return 0;
2459 }
2460
2461 /*
2462 * Must be called without sc_lock nor sc_exlock held.
2463 */
2464 int
2465 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2466 audio_file_t *file)
2467 {
2468 audio_track_t *track;
2469 audio_ring_t *usrbuf;
2470 audio_ring_t *input;
2471 int error;
2472
2473 /*
2474 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2475 * However read() system call itself can be called because it's
2476 * opened with O_RDWR. So in this case, deny this read().
2477 */
2478 track = file->rtrack;
2479 if (track == NULL) {
2480 return EBADF;
2481 }
2482
2483 /* I think it's better than EINVAL. */
2484 if (track->mmapped)
2485 return EPERM;
2486
2487 TRACET(2, track, "resid=%zd", uio->uio_resid);
2488
2489 #ifdef AUDIO_PM_IDLE
2490 error = audio_exlock_mutex_enter(sc);
2491 if (error)
2492 return error;
2493
2494 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2495 device_active(&sc->sc_dev, DVA_SYSTEM);
2496
2497 /* In recording, unlike playback, read() never operates rmixer. */
2498
2499 audio_exlock_mutex_exit(sc);
2500 #endif
2501
2502 usrbuf = &track->usrbuf;
2503 input = track->input;
2504 error = 0;
2505
2506 while (uio->uio_resid > 0 && error == 0) {
2507 int bytes;
2508
2509 TRACET(3, track,
2510 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2511 uio->uio_resid,
2512 input->head, input->used, input->capacity,
2513 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2514
2515 /* Wait when buffers are empty. */
2516 mutex_enter(sc->sc_lock);
2517 for (;;) {
2518 bool empty;
2519 audio_track_lock_enter(track);
2520 empty = (input->used == 0 && usrbuf->used == 0);
2521 audio_track_lock_exit(track);
2522 if (!empty)
2523 break;
2524
2525 if ((ioflag & IO_NDELAY)) {
2526 mutex_exit(sc->sc_lock);
2527 return EWOULDBLOCK;
2528 }
2529
2530 TRACET(3, track, "sleep");
2531 error = audio_track_waitio(sc, track);
2532 if (error) {
2533 mutex_exit(sc->sc_lock);
2534 return error;
2535 }
2536 }
2537 mutex_exit(sc->sc_lock);
2538
2539 audio_track_lock_enter(track);
2540 audio_track_record(track);
2541
2542 /* uiomove from usrbuf as much as possible. */
2543 bytes = uimin(usrbuf->used, uio->uio_resid);
2544 while (bytes > 0) {
2545 int head = usrbuf->head;
2546 int len = uimin(bytes, usrbuf->capacity - head);
2547 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2548 uio);
2549 if (error) {
2550 audio_track_lock_exit(track);
2551 device_printf(sc->sc_dev,
2552 "uiomove(len=%d) failed with %d\n",
2553 len, error);
2554 goto abort;
2555 }
2556 auring_take(usrbuf, len);
2557 track->useriobytes += len;
2558 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2559 len,
2560 usrbuf->head, usrbuf->used, usrbuf->capacity);
2561 bytes -= len;
2562 }
2563
2564 audio_track_lock_exit(track);
2565 }
2566
2567 abort:
2568 return error;
2569 }
2570
2571
2572 /*
2573 * Clear file's playback and/or record track buffer immediately.
2574 */
2575 static void
2576 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2577 {
2578
2579 if (file->ptrack)
2580 audio_track_clear(sc, file->ptrack);
2581 if (file->rtrack)
2582 audio_track_clear(sc, file->rtrack);
2583 }
2584
2585 /*
2586 * Must be called without sc_lock nor sc_exlock held.
2587 */
2588 int
2589 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2590 audio_file_t *file)
2591 {
2592 audio_track_t *track;
2593 audio_ring_t *usrbuf;
2594 audio_ring_t *outbuf;
2595 int error;
2596
2597 track = file->ptrack;
2598 KASSERT(track);
2599
2600 /* I think it's better than EINVAL. */
2601 if (track->mmapped)
2602 return EPERM;
2603
2604 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2605 audiodebug >= 3 ? "begin " : "",
2606 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2607
2608 if (uio->uio_resid == 0) {
2609 track->eofcounter++;
2610 return 0;
2611 }
2612
2613 error = audio_exlock_mutex_enter(sc);
2614 if (error)
2615 return error;
2616
2617 #ifdef AUDIO_PM_IDLE
2618 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2619 device_active(&sc->sc_dev, DVA_SYSTEM);
2620 #endif
2621
2622 /*
2623 * The first write starts pmixer.
2624 */
2625 if (sc->sc_pbusy == false)
2626 audio_pmixer_start(sc, false);
2627 audio_exlock_mutex_exit(sc);
2628
2629 usrbuf = &track->usrbuf;
2630 outbuf = &track->outbuf;
2631 track->pstate = AUDIO_STATE_RUNNING;
2632 error = 0;
2633
2634 while (uio->uio_resid > 0 && error == 0) {
2635 int bytes;
2636
2637 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2638 uio->uio_resid,
2639 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2640
2641 /* Wait when buffers are full. */
2642 mutex_enter(sc->sc_lock);
2643 for (;;) {
2644 bool full;
2645 audio_track_lock_enter(track);
2646 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2647 outbuf->used >= outbuf->capacity);
2648 audio_track_lock_exit(track);
2649 if (!full)
2650 break;
2651
2652 if ((ioflag & IO_NDELAY)) {
2653 error = EWOULDBLOCK;
2654 mutex_exit(sc->sc_lock);
2655 goto abort;
2656 }
2657
2658 TRACET(3, track, "sleep usrbuf=%d/H%d",
2659 usrbuf->used, track->usrbuf_usedhigh);
2660 error = audio_track_waitio(sc, track);
2661 if (error) {
2662 mutex_exit(sc->sc_lock);
2663 goto abort;
2664 }
2665 }
2666 mutex_exit(sc->sc_lock);
2667
2668 audio_track_lock_enter(track);
2669
2670 /* uiomove to usrbuf as much as possible. */
2671 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2672 uio->uio_resid);
2673 while (bytes > 0) {
2674 int tail = auring_tail(usrbuf);
2675 int len = uimin(bytes, usrbuf->capacity - tail);
2676 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2677 uio);
2678 if (error) {
2679 audio_track_lock_exit(track);
2680 device_printf(sc->sc_dev,
2681 "uiomove(len=%d) failed with %d\n",
2682 len, error);
2683 goto abort;
2684 }
2685 auring_push(usrbuf, len);
2686 track->useriobytes += len;
2687 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2688 len,
2689 usrbuf->head, usrbuf->used, usrbuf->capacity);
2690 bytes -= len;
2691 }
2692
2693 /* Convert them as much as possible. */
2694 while (usrbuf->used >= track->usrbuf_blksize &&
2695 outbuf->used < outbuf->capacity) {
2696 audio_track_play(track);
2697 }
2698
2699 audio_track_lock_exit(track);
2700 }
2701
2702 abort:
2703 TRACET(3, track, "done error=%d", error);
2704 return error;
2705 }
2706
2707 /*
2708 * Must be called without sc_lock nor sc_exlock held.
2709 */
2710 int
2711 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2712 struct lwp *l, audio_file_t *file)
2713 {
2714 struct audio_offset *ao;
2715 struct audio_info ai;
2716 audio_track_t *track;
2717 audio_encoding_t *ae;
2718 audio_format_query_t *query;
2719 u_int stamp;
2720 u_int offs;
2721 int fd;
2722 int index;
2723 int error;
2724
2725 #if defined(AUDIO_DEBUG)
2726 const char *ioctlnames[] = {
2727 " AUDIO_GETINFO", /* 21 */
2728 " AUDIO_SETINFO", /* 22 */
2729 " AUDIO_DRAIN", /* 23 */
2730 " AUDIO_FLUSH", /* 24 */
2731 " AUDIO_WSEEK", /* 25 */
2732 " AUDIO_RERROR", /* 26 */
2733 " AUDIO_GETDEV", /* 27 */
2734 " AUDIO_GETENC", /* 28 */
2735 " AUDIO_GETFD", /* 29 */
2736 " AUDIO_SETFD", /* 30 */
2737 " AUDIO_PERROR", /* 31 */
2738 " AUDIO_GETIOFFS", /* 32 */
2739 " AUDIO_GETOOFFS", /* 33 */
2740 " AUDIO_GETPROPS", /* 34 */
2741 " AUDIO_GETBUFINFO", /* 35 */
2742 " AUDIO_SETCHAN", /* 36 */
2743 " AUDIO_GETCHAN", /* 37 */
2744 " AUDIO_QUERYFORMAT", /* 38 */
2745 " AUDIO_GETFORMAT", /* 39 */
2746 " AUDIO_SETFORMAT", /* 40 */
2747 };
2748 int nameidx = (cmd & 0xff);
2749 const char *ioctlname = "";
2750 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2751 ioctlname = ioctlnames[nameidx - 21];
2752 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2753 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2754 (int)curproc->p_pid, (int)l->l_lid);
2755 #endif
2756
2757 error = 0;
2758 switch (cmd) {
2759 case FIONBIO:
2760 /* All handled in the upper FS layer. */
2761 break;
2762
2763 case FIONREAD:
2764 /* Get the number of bytes that can be read. */
2765 if (file->rtrack) {
2766 *(int *)addr = audio_track_readablebytes(file->rtrack);
2767 } else {
2768 *(int *)addr = 0;
2769 }
2770 break;
2771
2772 case FIOASYNC:
2773 /* Set/Clear ASYNC I/O. */
2774 if (*(int *)addr) {
2775 file->async_audio = curproc->p_pid;
2776 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2777 } else {
2778 file->async_audio = 0;
2779 TRACEF(2, file, "FIOASYNC off");
2780 }
2781 break;
2782
2783 case AUDIO_FLUSH:
2784 /* XXX TODO: clear errors and restart? */
2785 audio_file_clear(sc, file);
2786 break;
2787
2788 case AUDIO_RERROR:
2789 /*
2790 * Number of read bytes dropped. We don't know where
2791 * or when they were dropped (including conversion stage).
2792 * Therefore, the number of accurate bytes or samples is
2793 * also unknown.
2794 */
2795 track = file->rtrack;
2796 if (track) {
2797 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2798 track->dropframes);
2799 }
2800 break;
2801
2802 case AUDIO_PERROR:
2803 /*
2804 * Number of write bytes dropped. We don't know where
2805 * or when they were dropped (including conversion stage).
2806 * Therefore, the number of accurate bytes or samples is
2807 * also unknown.
2808 */
2809 track = file->ptrack;
2810 if (track) {
2811 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2812 track->dropframes);
2813 }
2814 break;
2815
2816 case AUDIO_GETIOFFS:
2817 /* XXX TODO */
2818 ao = (struct audio_offset *)addr;
2819 ao->samples = 0;
2820 ao->deltablks = 0;
2821 ao->offset = 0;
2822 break;
2823
2824 case AUDIO_GETOOFFS:
2825 ao = (struct audio_offset *)addr;
2826 track = file->ptrack;
2827 if (track == NULL) {
2828 ao->samples = 0;
2829 ao->deltablks = 0;
2830 ao->offset = 0;
2831 break;
2832 }
2833 mutex_enter(sc->sc_lock);
2834 mutex_enter(sc->sc_intr_lock);
2835 /* figure out where next DMA will start */
2836 stamp = track->usrbuf_stamp;
2837 offs = track->usrbuf.head;
2838 mutex_exit(sc->sc_intr_lock);
2839 mutex_exit(sc->sc_lock);
2840
2841 ao->samples = stamp;
2842 ao->deltablks = (stamp / track->usrbuf_blksize) -
2843 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2844 track->usrbuf_stamp_last = stamp;
2845 offs = rounddown(offs, track->usrbuf_blksize)
2846 + track->usrbuf_blksize;
2847 if (offs >= track->usrbuf.capacity)
2848 offs -= track->usrbuf.capacity;
2849 ao->offset = offs;
2850
2851 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2852 ao->samples, ao->deltablks, ao->offset);
2853 break;
2854
2855 case AUDIO_WSEEK:
2856 /* XXX return value does not include outbuf one. */
2857 if (file->ptrack)
2858 *(u_long *)addr = file->ptrack->usrbuf.used;
2859 break;
2860
2861 case AUDIO_SETINFO:
2862 error = audio_exlock_enter(sc);
2863 if (error)
2864 break;
2865 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2866 if (error) {
2867 audio_exlock_exit(sc);
2868 break;
2869 }
2870 /* XXX TODO: update last_ai if /dev/sound ? */
2871 if (ISDEVSOUND(dev))
2872 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2873 audio_exlock_exit(sc);
2874 break;
2875
2876 case AUDIO_GETINFO:
2877 error = audio_exlock_enter(sc);
2878 if (error)
2879 break;
2880 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2881 audio_exlock_exit(sc);
2882 break;
2883
2884 case AUDIO_GETBUFINFO:
2885 error = audio_exlock_enter(sc);
2886 if (error)
2887 break;
2888 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2889 audio_exlock_exit(sc);
2890 break;
2891
2892 case AUDIO_DRAIN:
2893 if (file->ptrack) {
2894 mutex_enter(sc->sc_lock);
2895 error = audio_track_drain(sc, file->ptrack);
2896 mutex_exit(sc->sc_lock);
2897 }
2898 break;
2899
2900 case AUDIO_GETDEV:
2901 mutex_enter(sc->sc_lock);
2902 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2903 mutex_exit(sc->sc_lock);
2904 break;
2905
2906 case AUDIO_GETENC:
2907 ae = (audio_encoding_t *)addr;
2908 index = ae->index;
2909 if (index < 0 || index >= __arraycount(audio_encodings)) {
2910 error = EINVAL;
2911 break;
2912 }
2913 *ae = audio_encodings[index];
2914 ae->index = index;
2915 /*
2916 * EMULATED always.
2917 * EMULATED flag at that time used to mean that it could
2918 * not be passed directly to the hardware as-is. But
2919 * currently, all formats including hardware native is not
2920 * passed directly to the hardware. So I set EMULATED
2921 * flag for all formats.
2922 */
2923 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2924 break;
2925
2926 case AUDIO_GETFD:
2927 /*
2928 * Returns the current setting of full duplex mode.
2929 * If HW has full duplex mode and there are two mixers,
2930 * it is full duplex. Otherwise half duplex.
2931 */
2932 error = audio_exlock_enter(sc);
2933 if (error)
2934 break;
2935 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2936 && (sc->sc_pmixer && sc->sc_rmixer);
2937 audio_exlock_exit(sc);
2938 *(int *)addr = fd;
2939 break;
2940
2941 case AUDIO_GETPROPS:
2942 *(int *)addr = sc->sc_props;
2943 break;
2944
2945 case AUDIO_QUERYFORMAT:
2946 query = (audio_format_query_t *)addr;
2947 mutex_enter(sc->sc_lock);
2948 error = sc->hw_if->query_format(sc->hw_hdl, query);
2949 mutex_exit(sc->sc_lock);
2950 /* Hide internal infomations */
2951 query->fmt.driver_data = NULL;
2952 break;
2953
2954 case AUDIO_GETFORMAT:
2955 error = audio_exlock_enter(sc);
2956 if (error)
2957 break;
2958 audio_mixers_get_format(sc, (struct audio_info *)addr);
2959 audio_exlock_exit(sc);
2960 break;
2961
2962 case AUDIO_SETFORMAT:
2963 error = audio_exlock_enter(sc);
2964 audio_mixers_get_format(sc, &ai);
2965 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2966 if (error) {
2967 /* Rollback */
2968 audio_mixers_set_format(sc, &ai);
2969 }
2970 audio_exlock_exit(sc);
2971 break;
2972
2973 case AUDIO_SETFD:
2974 case AUDIO_SETCHAN:
2975 case AUDIO_GETCHAN:
2976 /* Obsoleted */
2977 break;
2978
2979 default:
2980 if (sc->hw_if->dev_ioctl) {
2981 mutex_enter(sc->sc_lock);
2982 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2983 cmd, addr, flag, l);
2984 mutex_exit(sc->sc_lock);
2985 } else {
2986 TRACEF(2, file, "unknown ioctl");
2987 error = EINVAL;
2988 }
2989 break;
2990 }
2991 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2992 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2993 error);
2994 return error;
2995 }
2996
2997 /*
2998 * Returns the number of bytes that can be read on recording buffer.
2999 */
3000 static __inline int
3001 audio_track_readablebytes(const audio_track_t *track)
3002 {
3003 int bytes;
3004
3005 KASSERT(track);
3006 KASSERT(track->mode == AUMODE_RECORD);
3007
3008 /*
3009 * Although usrbuf is primarily readable data, recorded data
3010 * also stays in track->input until reading. So it is necessary
3011 * to add it. track->input is in frame, usrbuf is in byte.
3012 */
3013 bytes = track->usrbuf.used +
3014 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3015 return bytes;
3016 }
3017
3018 /*
3019 * Must be called without sc_lock nor sc_exlock held.
3020 */
3021 int
3022 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3023 audio_file_t *file)
3024 {
3025 audio_track_t *track;
3026 int revents;
3027 bool in_is_valid;
3028 bool out_is_valid;
3029
3030 #if defined(AUDIO_DEBUG)
3031 #define POLLEV_BITMAP "\177\020" \
3032 "b\10WRBAND\0" \
3033 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3034 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3035 char evbuf[64];
3036 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3037 TRACEF(2, file, "pid=%d.%d events=%s",
3038 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3039 #endif
3040
3041 revents = 0;
3042 in_is_valid = false;
3043 out_is_valid = false;
3044 if (events & (POLLIN | POLLRDNORM)) {
3045 track = file->rtrack;
3046 if (track) {
3047 int used;
3048 in_is_valid = true;
3049 used = audio_track_readablebytes(track);
3050 if (used > 0)
3051 revents |= events & (POLLIN | POLLRDNORM);
3052 }
3053 }
3054 if (events & (POLLOUT | POLLWRNORM)) {
3055 track = file->ptrack;
3056 if (track) {
3057 out_is_valid = true;
3058 if (track->usrbuf.used <= track->usrbuf_usedlow)
3059 revents |= events & (POLLOUT | POLLWRNORM);
3060 }
3061 }
3062
3063 if (revents == 0) {
3064 mutex_enter(sc->sc_lock);
3065 if (in_is_valid) {
3066 TRACEF(3, file, "selrecord rsel");
3067 selrecord(l, &sc->sc_rsel);
3068 }
3069 if (out_is_valid) {
3070 TRACEF(3, file, "selrecord wsel");
3071 selrecord(l, &sc->sc_wsel);
3072 }
3073 mutex_exit(sc->sc_lock);
3074 }
3075
3076 #if defined(AUDIO_DEBUG)
3077 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3078 TRACEF(2, file, "revents=%s", evbuf);
3079 #endif
3080 return revents;
3081 }
3082
3083 static const struct filterops audioread_filtops = {
3084 .f_isfd = 1,
3085 .f_attach = NULL,
3086 .f_detach = filt_audioread_detach,
3087 .f_event = filt_audioread_event,
3088 };
3089
3090 static void
3091 filt_audioread_detach(struct knote *kn)
3092 {
3093 struct audio_softc *sc;
3094 audio_file_t *file;
3095
3096 file = kn->kn_hook;
3097 sc = file->sc;
3098 TRACEF(3, file, "");
3099
3100 mutex_enter(sc->sc_lock);
3101 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
3102 mutex_exit(sc->sc_lock);
3103 }
3104
3105 static int
3106 filt_audioread_event(struct knote *kn, long hint)
3107 {
3108 audio_file_t *file;
3109 audio_track_t *track;
3110
3111 file = kn->kn_hook;
3112 track = file->rtrack;
3113
3114 /*
3115 * kn_data must contain the number of bytes can be read.
3116 * The return value indicates whether the event occurs or not.
3117 */
3118
3119 if (track == NULL) {
3120 /* can not read with this descriptor. */
3121 kn->kn_data = 0;
3122 return 0;
3123 }
3124
3125 kn->kn_data = audio_track_readablebytes(track);
3126 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3127 return kn->kn_data > 0;
3128 }
3129
3130 static const struct filterops audiowrite_filtops = {
3131 .f_isfd = 1,
3132 .f_attach = NULL,
3133 .f_detach = filt_audiowrite_detach,
3134 .f_event = filt_audiowrite_event,
3135 };
3136
3137 static void
3138 filt_audiowrite_detach(struct knote *kn)
3139 {
3140 struct audio_softc *sc;
3141 audio_file_t *file;
3142
3143 file = kn->kn_hook;
3144 sc = file->sc;
3145 TRACEF(3, file, "");
3146
3147 mutex_enter(sc->sc_lock);
3148 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
3149 mutex_exit(sc->sc_lock);
3150 }
3151
3152 static int
3153 filt_audiowrite_event(struct knote *kn, long hint)
3154 {
3155 audio_file_t *file;
3156 audio_track_t *track;
3157
3158 file = kn->kn_hook;
3159 track = file->ptrack;
3160
3161 /*
3162 * kn_data must contain the number of bytes can be write.
3163 * The return value indicates whether the event occurs or not.
3164 */
3165
3166 if (track == NULL) {
3167 /* can not write with this descriptor. */
3168 kn->kn_data = 0;
3169 return 0;
3170 }
3171
3172 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3173 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3174 return (track->usrbuf.used < track->usrbuf_usedlow);
3175 }
3176
3177 /*
3178 * Must be called without sc_lock nor sc_exlock held.
3179 */
3180 int
3181 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3182 {
3183 struct klist *klist;
3184
3185 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3186
3187 mutex_enter(sc->sc_lock);
3188 switch (kn->kn_filter) {
3189 case EVFILT_READ:
3190 klist = &sc->sc_rsel.sel_klist;
3191 kn->kn_fop = &audioread_filtops;
3192 break;
3193
3194 case EVFILT_WRITE:
3195 klist = &sc->sc_wsel.sel_klist;
3196 kn->kn_fop = &audiowrite_filtops;
3197 break;
3198
3199 default:
3200 mutex_exit(sc->sc_lock);
3201 return EINVAL;
3202 }
3203
3204 kn->kn_hook = file;
3205
3206 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3207 mutex_exit(sc->sc_lock);
3208
3209 return 0;
3210 }
3211
3212 /*
3213 * Must be called without sc_lock nor sc_exlock held.
3214 */
3215 int
3216 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3217 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3218 audio_file_t *file)
3219 {
3220 audio_track_t *track;
3221 vsize_t vsize;
3222 int error;
3223
3224 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3225
3226 if (*offp < 0)
3227 return EINVAL;
3228
3229 #if 0
3230 /* XXX
3231 * The idea here was to use the protection to determine if
3232 * we are mapping the read or write buffer, but it fails.
3233 * The VM system is broken in (at least) two ways.
3234 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3235 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3236 * has to be used for mmapping the play buffer.
3237 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3238 * audio_mmap will get called at some point with VM_PROT_READ
3239 * only.
3240 * So, alas, we always map the play buffer for now.
3241 */
3242 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3243 prot == VM_PROT_WRITE)
3244 track = file->ptrack;
3245 else if (prot == VM_PROT_READ)
3246 track = file->rtrack;
3247 else
3248 return EINVAL;
3249 #else
3250 track = file->ptrack;
3251 #endif
3252 if (track == NULL)
3253 return EACCES;
3254
3255 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3256 if (len > vsize)
3257 return EOVERFLOW;
3258 if (*offp > (uint)(vsize - len))
3259 return EOVERFLOW;
3260
3261 /* XXX TODO: what happens when mmap twice. */
3262 if (!track->mmapped) {
3263 track->mmapped = true;
3264
3265 if (!track->is_pause) {
3266 error = audio_exlock_mutex_enter(sc);
3267 if (error)
3268 return error;
3269 if (sc->sc_pbusy == false)
3270 audio_pmixer_start(sc, true);
3271 audio_exlock_mutex_exit(sc);
3272 }
3273 /* XXX mmapping record buffer is not supported */
3274 }
3275
3276 /* get ringbuffer */
3277 *uobjp = track->uobj;
3278
3279 /* Acquire a reference for the mmap. munmap will release. */
3280 uao_reference(*uobjp);
3281 *maxprotp = prot;
3282 *advicep = UVM_ADV_RANDOM;
3283 *flagsp = MAP_SHARED;
3284 return 0;
3285 }
3286
3287 /*
3288 * /dev/audioctl has to be able to open at any time without interference
3289 * with any /dev/audio or /dev/sound.
3290 * Must be called with sc_exlock held and without sc_lock held.
3291 */
3292 static int
3293 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3294 struct lwp *l)
3295 {
3296 struct file *fp;
3297 audio_file_t *af;
3298 int fd;
3299 int error;
3300
3301 KASSERT(sc->sc_exlock);
3302
3303 TRACE(1, "");
3304
3305 error = fd_allocfile(&fp, &fd);
3306 if (error)
3307 return error;
3308
3309 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3310 af->sc = sc;
3311 af->dev = dev;
3312
3313 /* Not necessary to insert sc_files. */
3314
3315 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3316 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3317
3318 return error;
3319 }
3320
3321 /*
3322 * Free 'mem' if available, and initialize the pointer.
3323 * For this reason, this is implemented as macro.
3324 */
3325 #define audio_free(mem) do { \
3326 if (mem != NULL) { \
3327 kern_free(mem); \
3328 mem = NULL; \
3329 } \
3330 } while (0)
3331
3332 /*
3333 * (Re)allocate 'memblock' with specified 'bytes'.
3334 * bytes must not be 0.
3335 * This function never returns NULL.
3336 */
3337 static void *
3338 audio_realloc(void *memblock, size_t bytes)
3339 {
3340
3341 KASSERT(bytes != 0);
3342 audio_free(memblock);
3343 return kern_malloc(bytes, M_WAITOK);
3344 }
3345
3346 /*
3347 * (Re)allocate usrbuf with 'newbufsize' bytes.
3348 * Use this function for usrbuf because only usrbuf can be mmapped.
3349 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3350 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3351 * and returns errno.
3352 * It must be called before updating usrbuf.capacity.
3353 */
3354 static int
3355 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3356 {
3357 struct audio_softc *sc;
3358 vaddr_t vstart;
3359 vsize_t oldvsize;
3360 vsize_t newvsize;
3361 int error;
3362
3363 KASSERT(newbufsize > 0);
3364 sc = track->mixer->sc;
3365
3366 /* Get a nonzero multiple of PAGE_SIZE */
3367 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3368
3369 if (track->usrbuf.mem != NULL) {
3370 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3371 PAGE_SIZE);
3372 if (oldvsize == newvsize) {
3373 track->usrbuf.capacity = newbufsize;
3374 return 0;
3375 }
3376 vstart = (vaddr_t)track->usrbuf.mem;
3377 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3378 /* uvm_unmap also detach uobj */
3379 track->uobj = NULL; /* paranoia */
3380 track->usrbuf.mem = NULL;
3381 }
3382
3383 /* Create a uvm anonymous object */
3384 track->uobj = uao_create(newvsize, 0);
3385
3386 /* Map it into the kernel virtual address space */
3387 vstart = 0;
3388 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3389 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3390 UVM_ADV_RANDOM, 0));
3391 if (error) {
3392 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3393 uao_detach(track->uobj); /* release reference */
3394 goto abort;
3395 }
3396
3397 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3398 false, 0);
3399 if (error) {
3400 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3401 error);
3402 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3403 /* uvm_unmap also detach uobj */
3404 goto abort;
3405 }
3406
3407 track->usrbuf.mem = (void *)vstart;
3408 track->usrbuf.capacity = newbufsize;
3409 memset(track->usrbuf.mem, 0, newvsize);
3410 return 0;
3411
3412 /* failure */
3413 abort:
3414 track->uobj = NULL; /* paranoia */
3415 track->usrbuf.mem = NULL;
3416 track->usrbuf.capacity = 0;
3417 return error;
3418 }
3419
3420 /*
3421 * Free usrbuf (if available).
3422 */
3423 static void
3424 audio_free_usrbuf(audio_track_t *track)
3425 {
3426 vaddr_t vstart;
3427 vsize_t vsize;
3428
3429 vstart = (vaddr_t)track->usrbuf.mem;
3430 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3431 if (track->usrbuf.mem != NULL) {
3432 /*
3433 * Unmap the kernel mapping. uvm_unmap releases the
3434 * reference to the uvm object, and this should be the
3435 * last virtual mapping of the uvm object, so no need
3436 * to explicitly release (`detach') the object.
3437 */
3438 uvm_unmap(kernel_map, vstart, vstart + vsize);
3439
3440 track->uobj = NULL;
3441 track->usrbuf.mem = NULL;
3442 track->usrbuf.capacity = 0;
3443 }
3444 }
3445
3446 /*
3447 * This filter changes the volume for each channel.
3448 * arg->context points track->ch_volume[].
3449 */
3450 static void
3451 audio_track_chvol(audio_filter_arg_t *arg)
3452 {
3453 int16_t *ch_volume;
3454 const aint_t *s;
3455 aint_t *d;
3456 u_int i;
3457 u_int ch;
3458 u_int channels;
3459
3460 DIAGNOSTIC_filter_arg(arg);
3461 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3462 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3463 arg->srcfmt->channels, arg->dstfmt->channels);
3464 KASSERT(arg->context != NULL);
3465 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3466 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3467
3468 s = arg->src;
3469 d = arg->dst;
3470 ch_volume = arg->context;
3471
3472 channels = arg->srcfmt->channels;
3473 for (i = 0; i < arg->count; i++) {
3474 for (ch = 0; ch < channels; ch++) {
3475 aint2_t val;
3476 val = *s++;
3477 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3478 *d++ = (aint_t)val;
3479 }
3480 }
3481 }
3482
3483 /*
3484 * This filter performs conversion from stereo (or more channels) to mono.
3485 */
3486 static void
3487 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3488 {
3489 const aint_t *s;
3490 aint_t *d;
3491 u_int i;
3492
3493 DIAGNOSTIC_filter_arg(arg);
3494
3495 s = arg->src;
3496 d = arg->dst;
3497
3498 for (i = 0; i < arg->count; i++) {
3499 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3500 s += arg->srcfmt->channels;
3501 }
3502 }
3503
3504 /*
3505 * This filter performs conversion from mono to stereo (or more channels).
3506 */
3507 static void
3508 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3509 {
3510 const aint_t *s;
3511 aint_t *d;
3512 u_int i;
3513 u_int ch;
3514 u_int dstchannels;
3515
3516 DIAGNOSTIC_filter_arg(arg);
3517
3518 s = arg->src;
3519 d = arg->dst;
3520 dstchannels = arg->dstfmt->channels;
3521
3522 for (i = 0; i < arg->count; i++) {
3523 d[0] = s[0];
3524 d[1] = s[0];
3525 s++;
3526 d += dstchannels;
3527 }
3528 if (dstchannels > 2) {
3529 d = arg->dst;
3530 for (i = 0; i < arg->count; i++) {
3531 for (ch = 2; ch < dstchannels; ch++) {
3532 d[ch] = 0;
3533 }
3534 d += dstchannels;
3535 }
3536 }
3537 }
3538
3539 /*
3540 * This filter shrinks M channels into N channels.
3541 * Extra channels are discarded.
3542 */
3543 static void
3544 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3545 {
3546 const aint_t *s;
3547 aint_t *d;
3548 u_int i;
3549 u_int ch;
3550
3551 DIAGNOSTIC_filter_arg(arg);
3552
3553 s = arg->src;
3554 d = arg->dst;
3555
3556 for (i = 0; i < arg->count; i++) {
3557 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3558 *d++ = s[ch];
3559 }
3560 s += arg->srcfmt->channels;
3561 }
3562 }
3563
3564 /*
3565 * This filter expands M channels into N channels.
3566 * Silence is inserted for missing channels.
3567 */
3568 static void
3569 audio_track_chmix_expand(audio_filter_arg_t *arg)
3570 {
3571 const aint_t *s;
3572 aint_t *d;
3573 u_int i;
3574 u_int ch;
3575 u_int srcchannels;
3576 u_int dstchannels;
3577
3578 DIAGNOSTIC_filter_arg(arg);
3579
3580 s = arg->src;
3581 d = arg->dst;
3582
3583 srcchannels = arg->srcfmt->channels;
3584 dstchannels = arg->dstfmt->channels;
3585 for (i = 0; i < arg->count; i++) {
3586 for (ch = 0; ch < srcchannels; ch++) {
3587 *d++ = *s++;
3588 }
3589 for (; ch < dstchannels; ch++) {
3590 *d++ = 0;
3591 }
3592 }
3593 }
3594
3595 /*
3596 * This filter performs frequency conversion (up sampling).
3597 * It uses linear interpolation.
3598 */
3599 static void
3600 audio_track_freq_up(audio_filter_arg_t *arg)
3601 {
3602 audio_track_t *track;
3603 audio_ring_t *src;
3604 audio_ring_t *dst;
3605 const aint_t *s;
3606 aint_t *d;
3607 aint_t prev[AUDIO_MAX_CHANNELS];
3608 aint_t curr[AUDIO_MAX_CHANNELS];
3609 aint_t grad[AUDIO_MAX_CHANNELS];
3610 u_int i;
3611 u_int t;
3612 u_int step;
3613 u_int channels;
3614 u_int ch;
3615 int srcused;
3616
3617 track = arg->context;
3618 KASSERT(track);
3619 src = &track->freq.srcbuf;
3620 dst = track->freq.dst;
3621 DIAGNOSTIC_ring(dst);
3622 DIAGNOSTIC_ring(src);
3623 KASSERT(src->used > 0);
3624 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3625 "src->fmt.channels=%d dst->fmt.channels=%d",
3626 src->fmt.channels, dst->fmt.channels);
3627 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3628 "src->head=%d track->mixer->frames_per_block=%d",
3629 src->head, track->mixer->frames_per_block);
3630
3631 s = arg->src;
3632 d = arg->dst;
3633
3634 /*
3635 * In order to faciliate interpolation for each block, slide (delay)
3636 * input by one sample. As a result, strictly speaking, the output
3637 * phase is delayed by 1/dstfreq. However, I believe there is no
3638 * observable impact.
3639 *
3640 * Example)
3641 * srcfreq:dstfreq = 1:3
3642 *
3643 * A - -
3644 * |
3645 * |
3646 * | B - -
3647 * +-----+-----> input timeframe
3648 * 0 1
3649 *
3650 * 0 1
3651 * +-----+-----> input timeframe
3652 * | A
3653 * | x x
3654 * | x x
3655 * x (B)
3656 * +-+-+-+-+-+-> output timeframe
3657 * 0 1 2 3 4 5
3658 */
3659
3660 /* Last samples in previous block */
3661 channels = src->fmt.channels;
3662 for (ch = 0; ch < channels; ch++) {
3663 prev[ch] = track->freq_prev[ch];
3664 curr[ch] = track->freq_curr[ch];
3665 grad[ch] = curr[ch] - prev[ch];
3666 }
3667
3668 step = track->freq_step;
3669 t = track->freq_current;
3670 //#define FREQ_DEBUG
3671 #if defined(FREQ_DEBUG)
3672 #define PRINTF(fmt...) printf(fmt)
3673 #else
3674 #define PRINTF(fmt...) do { } while (0)
3675 #endif
3676 srcused = src->used;
3677 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3678 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3679 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3680 PRINTF(" t=%d\n", t);
3681
3682 for (i = 0; i < arg->count; i++) {
3683 PRINTF("i=%d t=%5d", i, t);
3684 if (t >= 65536) {
3685 for (ch = 0; ch < channels; ch++) {
3686 prev[ch] = curr[ch];
3687 curr[ch] = *s++;
3688 grad[ch] = curr[ch] - prev[ch];
3689 }
3690 PRINTF(" prev=%d s[%d]=%d",
3691 prev[0], src->used - srcused, curr[0]);
3692
3693 /* Update */
3694 t -= 65536;
3695 srcused--;
3696 if (srcused < 0) {
3697 PRINTF(" break\n");
3698 break;
3699 }
3700 }
3701
3702 for (ch = 0; ch < channels; ch++) {
3703 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3704 #if defined(FREQ_DEBUG)
3705 if (ch == 0)
3706 printf(" t=%5d *d=%d", t, d[-1]);
3707 #endif
3708 }
3709 t += step;
3710
3711 PRINTF("\n");
3712 }
3713 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3714
3715 auring_take(src, src->used);
3716 auring_push(dst, i);
3717
3718 /* Adjust */
3719 t += track->freq_leap;
3720
3721 track->freq_current = t;
3722 for (ch = 0; ch < channels; ch++) {
3723 track->freq_prev[ch] = prev[ch];
3724 track->freq_curr[ch] = curr[ch];
3725 }
3726 }
3727
3728 /*
3729 * This filter performs frequency conversion (down sampling).
3730 * It uses simple thinning.
3731 */
3732 static void
3733 audio_track_freq_down(audio_filter_arg_t *arg)
3734 {
3735 audio_track_t *track;
3736 audio_ring_t *src;
3737 audio_ring_t *dst;
3738 const aint_t *s0;
3739 aint_t *d;
3740 u_int i;
3741 u_int t;
3742 u_int step;
3743 u_int ch;
3744 u_int channels;
3745
3746 track = arg->context;
3747 KASSERT(track);
3748 src = &track->freq.srcbuf;
3749 dst = track->freq.dst;
3750
3751 DIAGNOSTIC_ring(dst);
3752 DIAGNOSTIC_ring(src);
3753 KASSERT(src->used > 0);
3754 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3755 "src->fmt.channels=%d dst->fmt.channels=%d",
3756 src->fmt.channels, dst->fmt.channels);
3757 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3758 "src->head=%d track->mixer->frames_per_block=%d",
3759 src->head, track->mixer->frames_per_block);
3760
3761 s0 = arg->src;
3762 d = arg->dst;
3763 t = track->freq_current;
3764 step = track->freq_step;
3765 channels = dst->fmt.channels;
3766 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3767 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3768 PRINTF(" t=%d\n", t);
3769
3770 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3771 const aint_t *s;
3772 PRINTF("i=%4d t=%10d", i, t);
3773 s = s0 + (t / 65536) * channels;
3774 PRINTF(" s=%5ld", (s - s0) / channels);
3775 for (ch = 0; ch < channels; ch++) {
3776 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3777 *d++ = s[ch];
3778 }
3779 PRINTF("\n");
3780 t += step;
3781 }
3782 t += track->freq_leap;
3783 PRINTF("end t=%d\n", t);
3784 auring_take(src, src->used);
3785 auring_push(dst, i);
3786 track->freq_current = t % 65536;
3787 }
3788
3789 /*
3790 * Creates track and returns it.
3791 * Must be called without sc_lock held.
3792 */
3793 audio_track_t *
3794 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3795 {
3796 audio_track_t *track;
3797 static int newid = 0;
3798
3799 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3800
3801 track->id = newid++;
3802 track->mixer = mixer;
3803 track->mode = mixer->mode;
3804
3805 /* Do TRACE after id is assigned. */
3806 TRACET(3, track, "for %s",
3807 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3808
3809 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3810 track->volume = 256;
3811 #endif
3812 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3813 track->ch_volume[i] = 256;
3814 }
3815
3816 return track;
3817 }
3818
3819 /*
3820 * Release all resources of the track and track itself.
3821 * track must not be NULL. Don't specify the track within the file
3822 * structure linked from sc->sc_files.
3823 */
3824 static void
3825 audio_track_destroy(audio_track_t *track)
3826 {
3827
3828 KASSERT(track);
3829
3830 audio_free_usrbuf(track);
3831 audio_free(track->codec.srcbuf.mem);
3832 audio_free(track->chvol.srcbuf.mem);
3833 audio_free(track->chmix.srcbuf.mem);
3834 audio_free(track->freq.srcbuf.mem);
3835 audio_free(track->outbuf.mem);
3836
3837 kmem_free(track, sizeof(*track));
3838 }
3839
3840 /*
3841 * It returns encoding conversion filter according to src and dst format.
3842 * If it is not a convertible pair, it returns NULL. Either src or dst
3843 * must be internal format.
3844 */
3845 static audio_filter_t
3846 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3847 const audio_format2_t *dst)
3848 {
3849
3850 if (audio_format2_is_internal(src)) {
3851 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3852 return audio_internal_to_mulaw;
3853 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3854 return audio_internal_to_alaw;
3855 } else if (audio_format2_is_linear(dst)) {
3856 switch (dst->stride) {
3857 case 8:
3858 return audio_internal_to_linear8;
3859 case 16:
3860 return audio_internal_to_linear16;
3861 #if defined(AUDIO_SUPPORT_LINEAR24)
3862 case 24:
3863 return audio_internal_to_linear24;
3864 #endif
3865 case 32:
3866 return audio_internal_to_linear32;
3867 default:
3868 TRACET(1, track, "unsupported %s stride %d",
3869 "dst", dst->stride);
3870 goto abort;
3871 }
3872 }
3873 } else if (audio_format2_is_internal(dst)) {
3874 if (src->encoding == AUDIO_ENCODING_ULAW) {
3875 return audio_mulaw_to_internal;
3876 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3877 return audio_alaw_to_internal;
3878 } else if (audio_format2_is_linear(src)) {
3879 switch (src->stride) {
3880 case 8:
3881 return audio_linear8_to_internal;
3882 case 16:
3883 return audio_linear16_to_internal;
3884 #if defined(AUDIO_SUPPORT_LINEAR24)
3885 case 24:
3886 return audio_linear24_to_internal;
3887 #endif
3888 case 32:
3889 return audio_linear32_to_internal;
3890 default:
3891 TRACET(1, track, "unsupported %s stride %d",
3892 "src", src->stride);
3893 goto abort;
3894 }
3895 }
3896 }
3897
3898 TRACET(1, track, "unsupported encoding");
3899 abort:
3900 #if defined(AUDIO_DEBUG)
3901 if (audiodebug >= 2) {
3902 char buf[100];
3903 audio_format2_tostr(buf, sizeof(buf), src);
3904 TRACET(2, track, "src %s", buf);
3905 audio_format2_tostr(buf, sizeof(buf), dst);
3906 TRACET(2, track, "dst %s", buf);
3907 }
3908 #endif
3909 return NULL;
3910 }
3911
3912 /*
3913 * Initialize the codec stage of this track as necessary.
3914 * If successful, it initializes the codec stage as necessary, stores updated
3915 * last_dst in *last_dstp in any case, and returns 0.
3916 * Otherwise, it returns errno without modifying *last_dstp.
3917 */
3918 static int
3919 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3920 {
3921 audio_ring_t *last_dst;
3922 audio_ring_t *srcbuf;
3923 audio_format2_t *srcfmt;
3924 audio_format2_t *dstfmt;
3925 audio_filter_arg_t *arg;
3926 u_int len;
3927 int error;
3928
3929 KASSERT(track);
3930
3931 last_dst = *last_dstp;
3932 dstfmt = &last_dst->fmt;
3933 srcfmt = &track->inputfmt;
3934 srcbuf = &track->codec.srcbuf;
3935 error = 0;
3936
3937 if (srcfmt->encoding != dstfmt->encoding
3938 || srcfmt->precision != dstfmt->precision
3939 || srcfmt->stride != dstfmt->stride) {
3940 track->codec.dst = last_dst;
3941
3942 srcbuf->fmt = *dstfmt;
3943 srcbuf->fmt.encoding = srcfmt->encoding;
3944 srcbuf->fmt.precision = srcfmt->precision;
3945 srcbuf->fmt.stride = srcfmt->stride;
3946
3947 track->codec.filter = audio_track_get_codec(track,
3948 &srcbuf->fmt, dstfmt);
3949 if (track->codec.filter == NULL) {
3950 error = EINVAL;
3951 goto abort;
3952 }
3953
3954 srcbuf->head = 0;
3955 srcbuf->used = 0;
3956 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3957 len = auring_bytelen(srcbuf);
3958 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3959
3960 arg = &track->codec.arg;
3961 arg->srcfmt = &srcbuf->fmt;
3962 arg->dstfmt = dstfmt;
3963 arg->context = NULL;
3964
3965 *last_dstp = srcbuf;
3966 return 0;
3967 }
3968
3969 abort:
3970 track->codec.filter = NULL;
3971 audio_free(srcbuf->mem);
3972 return error;
3973 }
3974
3975 /*
3976 * Initialize the chvol stage of this track as necessary.
3977 * If successful, it initializes the chvol stage as necessary, stores updated
3978 * last_dst in *last_dstp in any case, and returns 0.
3979 * Otherwise, it returns errno without modifying *last_dstp.
3980 */
3981 static int
3982 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3983 {
3984 audio_ring_t *last_dst;
3985 audio_ring_t *srcbuf;
3986 audio_format2_t *srcfmt;
3987 audio_format2_t *dstfmt;
3988 audio_filter_arg_t *arg;
3989 u_int len;
3990 int error;
3991
3992 KASSERT(track);
3993
3994 last_dst = *last_dstp;
3995 dstfmt = &last_dst->fmt;
3996 srcfmt = &track->inputfmt;
3997 srcbuf = &track->chvol.srcbuf;
3998 error = 0;
3999
4000 /* Check whether channel volume conversion is necessary. */
4001 bool use_chvol = false;
4002 for (int ch = 0; ch < srcfmt->channels; ch++) {
4003 if (track->ch_volume[ch] != 256) {
4004 use_chvol = true;
4005 break;
4006 }
4007 }
4008
4009 if (use_chvol == true) {
4010 track->chvol.dst = last_dst;
4011 track->chvol.filter = audio_track_chvol;
4012
4013 srcbuf->fmt = *dstfmt;
4014 /* no format conversion occurs */
4015
4016 srcbuf->head = 0;
4017 srcbuf->used = 0;
4018 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4019 len = auring_bytelen(srcbuf);
4020 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4021
4022 arg = &track->chvol.arg;
4023 arg->srcfmt = &srcbuf->fmt;
4024 arg->dstfmt = dstfmt;
4025 arg->context = track->ch_volume;
4026
4027 *last_dstp = srcbuf;
4028 return 0;
4029 }
4030
4031 track->chvol.filter = NULL;
4032 audio_free(srcbuf->mem);
4033 return error;
4034 }
4035
4036 /*
4037 * Initialize the chmix stage of this track as necessary.
4038 * If successful, it initializes the chmix stage as necessary, stores updated
4039 * last_dst in *last_dstp in any case, and returns 0.
4040 * Otherwise, it returns errno without modifying *last_dstp.
4041 */
4042 static int
4043 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4044 {
4045 audio_ring_t *last_dst;
4046 audio_ring_t *srcbuf;
4047 audio_format2_t *srcfmt;
4048 audio_format2_t *dstfmt;
4049 audio_filter_arg_t *arg;
4050 u_int srcch;
4051 u_int dstch;
4052 u_int len;
4053 int error;
4054
4055 KASSERT(track);
4056
4057 last_dst = *last_dstp;
4058 dstfmt = &last_dst->fmt;
4059 srcfmt = &track->inputfmt;
4060 srcbuf = &track->chmix.srcbuf;
4061 error = 0;
4062
4063 srcch = srcfmt->channels;
4064 dstch = dstfmt->channels;
4065 if (srcch != dstch) {
4066 track->chmix.dst = last_dst;
4067
4068 if (srcch >= 2 && dstch == 1) {
4069 track->chmix.filter = audio_track_chmix_mixLR;
4070 } else if (srcch == 1 && dstch >= 2) {
4071 track->chmix.filter = audio_track_chmix_dupLR;
4072 } else if (srcch > dstch) {
4073 track->chmix.filter = audio_track_chmix_shrink;
4074 } else {
4075 track->chmix.filter = audio_track_chmix_expand;
4076 }
4077
4078 srcbuf->fmt = *dstfmt;
4079 srcbuf->fmt.channels = srcch;
4080
4081 srcbuf->head = 0;
4082 srcbuf->used = 0;
4083 /* XXX The buffer size should be able to calculate. */
4084 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4085 len = auring_bytelen(srcbuf);
4086 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4087
4088 arg = &track->chmix.arg;
4089 arg->srcfmt = &srcbuf->fmt;
4090 arg->dstfmt = dstfmt;
4091 arg->context = NULL;
4092
4093 *last_dstp = srcbuf;
4094 return 0;
4095 }
4096
4097 track->chmix.filter = NULL;
4098 audio_free(srcbuf->mem);
4099 return error;
4100 }
4101
4102 /*
4103 * Initialize the freq stage of this track as necessary.
4104 * If successful, it initializes the freq stage as necessary, stores updated
4105 * last_dst in *last_dstp in any case, and returns 0.
4106 * Otherwise, it returns errno without modifying *last_dstp.
4107 */
4108 static int
4109 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4110 {
4111 audio_ring_t *last_dst;
4112 audio_ring_t *srcbuf;
4113 audio_format2_t *srcfmt;
4114 audio_format2_t *dstfmt;
4115 audio_filter_arg_t *arg;
4116 uint32_t srcfreq;
4117 uint32_t dstfreq;
4118 u_int dst_capacity;
4119 u_int mod;
4120 u_int len;
4121 int error;
4122
4123 KASSERT(track);
4124
4125 last_dst = *last_dstp;
4126 dstfmt = &last_dst->fmt;
4127 srcfmt = &track->inputfmt;
4128 srcbuf = &track->freq.srcbuf;
4129 error = 0;
4130
4131 srcfreq = srcfmt->sample_rate;
4132 dstfreq = dstfmt->sample_rate;
4133 if (srcfreq != dstfreq) {
4134 track->freq.dst = last_dst;
4135
4136 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4137 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4138
4139 /* freq_step is the ratio of src/dst when let dst 65536. */
4140 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4141
4142 dst_capacity = frame_per_block(track->mixer, dstfmt);
4143 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4144 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4145
4146 if (track->freq_step < 65536) {
4147 track->freq.filter = audio_track_freq_up;
4148 /* In order to carry at the first time. */
4149 track->freq_current = 65536;
4150 } else {
4151 track->freq.filter = audio_track_freq_down;
4152 track->freq_current = 0;
4153 }
4154
4155 srcbuf->fmt = *dstfmt;
4156 srcbuf->fmt.sample_rate = srcfreq;
4157
4158 srcbuf->head = 0;
4159 srcbuf->used = 0;
4160 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4161 len = auring_bytelen(srcbuf);
4162 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4163
4164 arg = &track->freq.arg;
4165 arg->srcfmt = &srcbuf->fmt;
4166 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4167 arg->context = track;
4168
4169 *last_dstp = srcbuf;
4170 return 0;
4171 }
4172
4173 track->freq.filter = NULL;
4174 audio_free(srcbuf->mem);
4175 return error;
4176 }
4177
4178 /*
4179 * When playing back: (e.g. if codec and freq stage are valid)
4180 *
4181 * write
4182 * | uiomove
4183 * v
4184 * usrbuf [...............] byte ring buffer (mmap-able)
4185 * | memcpy
4186 * v
4187 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4188 * .dst ----+
4189 * | convert
4190 * v
4191 * freq.srcbuf [....] 1 block (ring) buffer
4192 * .dst ----+
4193 * | convert
4194 * v
4195 * outbuf [...............] NBLKOUT blocks ring buffer
4196 *
4197 *
4198 * When recording:
4199 *
4200 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4201 * .dst ----+
4202 * | convert
4203 * v
4204 * codec.srcbuf[.....] 1 block (ring) buffer
4205 * .dst ----+
4206 * | convert
4207 * v
4208 * outbuf [.....] 1 block (ring) buffer
4209 * | memcpy
4210 * v
4211 * usrbuf [...............] byte ring buffer (mmap-able *)
4212 * | uiomove
4213 * v
4214 * read
4215 *
4216 * *: usrbuf for recording is also mmap-able due to symmetry with
4217 * playback buffer, but for now mmap will never happen for recording.
4218 */
4219
4220 /*
4221 * Set the userland format of this track.
4222 * usrfmt argument should be parameter verified with audio_check_params().
4223 * It will release and reallocate all internal conversion buffers.
4224 * It returns 0 if successful. Otherwise it returns errno with clearing all
4225 * internal buffers.
4226 * It must be called without sc_intr_lock since uvm_* routines require non
4227 * intr_lock state.
4228 * It must be called with track lock held since it may release and reallocate
4229 * outbuf.
4230 */
4231 static int
4232 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4233 {
4234 struct audio_softc *sc;
4235 u_int newbufsize;
4236 u_int oldblksize;
4237 u_int len;
4238 int error;
4239
4240 KASSERT(track);
4241 sc = track->mixer->sc;
4242
4243 /* usrbuf is the closest buffer to the userland. */
4244 track->usrbuf.fmt = *usrfmt;
4245
4246 /*
4247 * For references, one block size (in 40msec) is:
4248 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4249 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4250 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4251 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4252 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4253 *
4254 * For example,
4255 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4256 * newbufsize = rounddown(65536 / 7056) = 63504
4257 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4258 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4259 *
4260 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4261 * newbufsize = rounddown(65536 / 7680) = 61440
4262 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4263 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4264 */
4265 oldblksize = track->usrbuf_blksize;
4266 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4267 frame_per_block(track->mixer, &track->usrbuf.fmt));
4268 track->usrbuf.head = 0;
4269 track->usrbuf.used = 0;
4270 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4271 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4272 error = audio_realloc_usrbuf(track, newbufsize);
4273 if (error) {
4274 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4275 newbufsize);
4276 goto error;
4277 }
4278
4279 /* Recalc water mark. */
4280 if (track->usrbuf_blksize != oldblksize) {
4281 if (audio_track_is_playback(track)) {
4282 /* Set high at 100%, low at 75%. */
4283 track->usrbuf_usedhigh = track->usrbuf.capacity;
4284 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4285 } else {
4286 /* Set high at 100% minus 1block(?), low at 0% */
4287 track->usrbuf_usedhigh = track->usrbuf.capacity -
4288 track->usrbuf_blksize;
4289 track->usrbuf_usedlow = 0;
4290 }
4291 }
4292
4293 /* Stage buffer */
4294 audio_ring_t *last_dst = &track->outbuf;
4295 if (audio_track_is_playback(track)) {
4296 /* On playback, initialize from the mixer side in order. */
4297 track->inputfmt = *usrfmt;
4298 track->outbuf.fmt = track->mixer->track_fmt;
4299
4300 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4301 goto error;
4302 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4303 goto error;
4304 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4305 goto error;
4306 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4307 goto error;
4308 } else {
4309 /* On recording, initialize from userland side in order. */
4310 track->inputfmt = track->mixer->track_fmt;
4311 track->outbuf.fmt = *usrfmt;
4312
4313 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4314 goto error;
4315 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4316 goto error;
4317 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4318 goto error;
4319 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4320 goto error;
4321 }
4322 #if 0
4323 /* debug */
4324 if (track->freq.filter) {
4325 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4326 audio_print_format2("freq dst", &track->freq.dst->fmt);
4327 }
4328 if (track->chmix.filter) {
4329 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4330 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4331 }
4332 if (track->chvol.filter) {
4333 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4334 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4335 }
4336 if (track->codec.filter) {
4337 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4338 audio_print_format2("codec dst", &track->codec.dst->fmt);
4339 }
4340 #endif
4341
4342 /* Stage input buffer */
4343 track->input = last_dst;
4344
4345 /*
4346 * On the recording track, make the first stage a ring buffer.
4347 * XXX is there a better way?
4348 */
4349 if (audio_track_is_record(track)) {
4350 track->input->capacity = NBLKOUT *
4351 frame_per_block(track->mixer, &track->input->fmt);
4352 len = auring_bytelen(track->input);
4353 track->input->mem = audio_realloc(track->input->mem, len);
4354 }
4355
4356 /*
4357 * Output buffer.
4358 * On the playback track, its capacity is NBLKOUT blocks.
4359 * On the recording track, its capacity is 1 block.
4360 */
4361 track->outbuf.head = 0;
4362 track->outbuf.used = 0;
4363 track->outbuf.capacity = frame_per_block(track->mixer,
4364 &track->outbuf.fmt);
4365 if (audio_track_is_playback(track))
4366 track->outbuf.capacity *= NBLKOUT;
4367 len = auring_bytelen(&track->outbuf);
4368 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4369 if (track->outbuf.mem == NULL) {
4370 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4371 error = ENOMEM;
4372 goto error;
4373 }
4374
4375 #if defined(AUDIO_DEBUG)
4376 if (audiodebug >= 3) {
4377 struct audio_track_debugbuf m;
4378
4379 memset(&m, 0, sizeof(m));
4380 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4381 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4382 if (track->freq.filter)
4383 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4384 track->freq.srcbuf.capacity *
4385 frametobyte(&track->freq.srcbuf.fmt, 1));
4386 if (track->chmix.filter)
4387 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4388 track->chmix.srcbuf.capacity *
4389 frametobyte(&track->chmix.srcbuf.fmt, 1));
4390 if (track->chvol.filter)
4391 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4392 track->chvol.srcbuf.capacity *
4393 frametobyte(&track->chvol.srcbuf.fmt, 1));
4394 if (track->codec.filter)
4395 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4396 track->codec.srcbuf.capacity *
4397 frametobyte(&track->codec.srcbuf.fmt, 1));
4398 snprintf(m.usrbuf, sizeof(m.usrbuf),
4399 " usr=%d", track->usrbuf.capacity);
4400
4401 if (audio_track_is_playback(track)) {
4402 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4403 m.outbuf, m.freq, m.chmix,
4404 m.chvol, m.codec, m.usrbuf);
4405 } else {
4406 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4407 m.freq, m.chmix, m.chvol,
4408 m.codec, m.outbuf, m.usrbuf);
4409 }
4410 }
4411 #endif
4412 return 0;
4413
4414 error:
4415 audio_free_usrbuf(track);
4416 audio_free(track->codec.srcbuf.mem);
4417 audio_free(track->chvol.srcbuf.mem);
4418 audio_free(track->chmix.srcbuf.mem);
4419 audio_free(track->freq.srcbuf.mem);
4420 audio_free(track->outbuf.mem);
4421 return error;
4422 }
4423
4424 /*
4425 * Fill silence frames (as the internal format) up to 1 block
4426 * if the ring is not empty and less than 1 block.
4427 * It returns the number of appended frames.
4428 */
4429 static int
4430 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4431 {
4432 int fpb;
4433 int n;
4434
4435 KASSERT(track);
4436 KASSERT(audio_format2_is_internal(&ring->fmt));
4437
4438 /* XXX is n correct? */
4439 /* XXX memset uses frametobyte()? */
4440
4441 if (ring->used == 0)
4442 return 0;
4443
4444 fpb = frame_per_block(track->mixer, &ring->fmt);
4445 if (ring->used >= fpb)
4446 return 0;
4447
4448 n = (ring->capacity - ring->used) % fpb;
4449
4450 KASSERTMSG(auring_get_contig_free(ring) >= n,
4451 "auring_get_contig_free(ring)=%d n=%d",
4452 auring_get_contig_free(ring), n);
4453
4454 memset(auring_tailptr_aint(ring), 0,
4455 n * ring->fmt.channels * sizeof(aint_t));
4456 auring_push(ring, n);
4457 return n;
4458 }
4459
4460 /*
4461 * Execute the conversion stage.
4462 * It prepares arg from this stage and executes stage->filter.
4463 * It must be called only if stage->filter is not NULL.
4464 *
4465 * For stages other than frequency conversion, the function increments
4466 * src and dst counters here. For frequency conversion stage, on the
4467 * other hand, the function does not touch src and dst counters and
4468 * filter side has to increment them.
4469 */
4470 static void
4471 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4472 {
4473 audio_filter_arg_t *arg;
4474 int srccount;
4475 int dstcount;
4476 int count;
4477
4478 KASSERT(track);
4479 KASSERT(stage->filter);
4480
4481 srccount = auring_get_contig_used(&stage->srcbuf);
4482 dstcount = auring_get_contig_free(stage->dst);
4483
4484 if (isfreq) {
4485 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4486 count = uimin(dstcount, track->mixer->frames_per_block);
4487 } else {
4488 count = uimin(srccount, dstcount);
4489 }
4490
4491 if (count > 0) {
4492 arg = &stage->arg;
4493 arg->src = auring_headptr(&stage->srcbuf);
4494 arg->dst = auring_tailptr(stage->dst);
4495 arg->count = count;
4496
4497 stage->filter(arg);
4498
4499 if (!isfreq) {
4500 auring_take(&stage->srcbuf, count);
4501 auring_push(stage->dst, count);
4502 }
4503 }
4504 }
4505
4506 /*
4507 * Produce output buffer for playback from user input buffer.
4508 * It must be called only if usrbuf is not empty and outbuf is
4509 * available at least one free block.
4510 */
4511 static void
4512 audio_track_play(audio_track_t *track)
4513 {
4514 audio_ring_t *usrbuf;
4515 audio_ring_t *input;
4516 int count;
4517 int framesize;
4518 int bytes;
4519
4520 KASSERT(track);
4521 KASSERT(track->lock);
4522 TRACET(4, track, "start pstate=%d", track->pstate);
4523
4524 /* At this point usrbuf must not be empty. */
4525 KASSERT(track->usrbuf.used > 0);
4526 /* Also, outbuf must be available at least one block. */
4527 count = auring_get_contig_free(&track->outbuf);
4528 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4529 "count=%d fpb=%d",
4530 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4531
4532 /* XXX TODO: is this necessary for now? */
4533 int track_count_0 = track->outbuf.used;
4534
4535 usrbuf = &track->usrbuf;
4536 input = track->input;
4537
4538 /*
4539 * framesize is always 1 byte or more since all formats supported as
4540 * usrfmt(=input) have 8bit or more stride.
4541 */
4542 framesize = frametobyte(&input->fmt, 1);
4543 KASSERT(framesize >= 1);
4544
4545 /* The next stage of usrbuf (=input) must be available. */
4546 KASSERT(auring_get_contig_free(input) > 0);
4547
4548 /*
4549 * Copy usrbuf up to 1block to input buffer.
4550 * count is the number of frames to copy from usrbuf.
4551 * bytes is the number of bytes to copy from usrbuf. However it is
4552 * not copied less than one frame.
4553 */
4554 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4555 bytes = count * framesize;
4556
4557 track->usrbuf_stamp += bytes;
4558
4559 if (usrbuf->head + bytes < usrbuf->capacity) {
4560 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4561 (uint8_t *)usrbuf->mem + usrbuf->head,
4562 bytes);
4563 auring_push(input, count);
4564 auring_take(usrbuf, bytes);
4565 } else {
4566 int bytes1;
4567 int bytes2;
4568
4569 bytes1 = auring_get_contig_used(usrbuf);
4570 KASSERTMSG(bytes1 % framesize == 0,
4571 "bytes1=%d framesize=%d", bytes1, framesize);
4572 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4573 (uint8_t *)usrbuf->mem + usrbuf->head,
4574 bytes1);
4575 auring_push(input, bytes1 / framesize);
4576 auring_take(usrbuf, bytes1);
4577
4578 bytes2 = bytes - bytes1;
4579 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4580 (uint8_t *)usrbuf->mem + usrbuf->head,
4581 bytes2);
4582 auring_push(input, bytes2 / framesize);
4583 auring_take(usrbuf, bytes2);
4584 }
4585
4586 /* Encoding conversion */
4587 if (track->codec.filter)
4588 audio_apply_stage(track, &track->codec, false);
4589
4590 /* Channel volume */
4591 if (track->chvol.filter)
4592 audio_apply_stage(track, &track->chvol, false);
4593
4594 /* Channel mix */
4595 if (track->chmix.filter)
4596 audio_apply_stage(track, &track->chmix, false);
4597
4598 /* Frequency conversion */
4599 /*
4600 * Since the frequency conversion needs correction for each block,
4601 * it rounds up to 1 block.
4602 */
4603 if (track->freq.filter) {
4604 int n;
4605 n = audio_append_silence(track, &track->freq.srcbuf);
4606 if (n > 0) {
4607 TRACET(4, track,
4608 "freq.srcbuf add silence %d -> %d/%d/%d",
4609 n,
4610 track->freq.srcbuf.head,
4611 track->freq.srcbuf.used,
4612 track->freq.srcbuf.capacity);
4613 }
4614 if (track->freq.srcbuf.used > 0) {
4615 audio_apply_stage(track, &track->freq, true);
4616 }
4617 }
4618
4619 if (bytes < track->usrbuf_blksize) {
4620 /*
4621 * Clear all conversion buffer pointer if the conversion was
4622 * not exactly one block. These conversion stage buffers are
4623 * certainly circular buffers because of symmetry with the
4624 * previous and next stage buffer. However, since they are
4625 * treated as simple contiguous buffers in operation, so head
4626 * always should point 0. This may happen during drain-age.
4627 */
4628 TRACET(4, track, "reset stage");
4629 if (track->codec.filter) {
4630 KASSERT(track->codec.srcbuf.used == 0);
4631 track->codec.srcbuf.head = 0;
4632 }
4633 if (track->chvol.filter) {
4634 KASSERT(track->chvol.srcbuf.used == 0);
4635 track->chvol.srcbuf.head = 0;
4636 }
4637 if (track->chmix.filter) {
4638 KASSERT(track->chmix.srcbuf.used == 0);
4639 track->chmix.srcbuf.head = 0;
4640 }
4641 if (track->freq.filter) {
4642 KASSERT(track->freq.srcbuf.used == 0);
4643 track->freq.srcbuf.head = 0;
4644 }
4645 }
4646
4647 if (track->input == &track->outbuf) {
4648 track->outputcounter = track->inputcounter;
4649 } else {
4650 track->outputcounter += track->outbuf.used - track_count_0;
4651 }
4652
4653 #if defined(AUDIO_DEBUG)
4654 if (audiodebug >= 3) {
4655 struct audio_track_debugbuf m;
4656 audio_track_bufstat(track, &m);
4657 TRACET(0, track, "end%s%s%s%s%s%s",
4658 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4659 }
4660 #endif
4661 }
4662
4663 /*
4664 * Produce user output buffer for recording from input buffer.
4665 */
4666 static void
4667 audio_track_record(audio_track_t *track)
4668 {
4669 audio_ring_t *outbuf;
4670 audio_ring_t *usrbuf;
4671 int count;
4672 int bytes;
4673 int framesize;
4674
4675 KASSERT(track);
4676 KASSERT(track->lock);
4677
4678 /* Number of frames to process */
4679 count = auring_get_contig_used(track->input);
4680 count = uimin(count, track->mixer->frames_per_block);
4681 if (count == 0) {
4682 TRACET(4, track, "count == 0");
4683 return;
4684 }
4685
4686 /* Frequency conversion */
4687 if (track->freq.filter) {
4688 if (track->freq.srcbuf.used > 0) {
4689 audio_apply_stage(track, &track->freq, true);
4690 /* XXX should input of freq be from beginning of buf? */
4691 }
4692 }
4693
4694 /* Channel mix */
4695 if (track->chmix.filter)
4696 audio_apply_stage(track, &track->chmix, false);
4697
4698 /* Channel volume */
4699 if (track->chvol.filter)
4700 audio_apply_stage(track, &track->chvol, false);
4701
4702 /* Encoding conversion */
4703 if (track->codec.filter)
4704 audio_apply_stage(track, &track->codec, false);
4705
4706 /* Copy outbuf to usrbuf */
4707 outbuf = &track->outbuf;
4708 usrbuf = &track->usrbuf;
4709 /*
4710 * framesize is always 1 byte or more since all formats supported
4711 * as usrfmt(=output) have 8bit or more stride.
4712 */
4713 framesize = frametobyte(&outbuf->fmt, 1);
4714 KASSERT(framesize >= 1);
4715 /*
4716 * count is the number of frames to copy to usrbuf.
4717 * bytes is the number of bytes to copy to usrbuf.
4718 */
4719 count = outbuf->used;
4720 count = uimin(count,
4721 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4722 bytes = count * framesize;
4723 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4724 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4725 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4726 bytes);
4727 auring_push(usrbuf, bytes);
4728 auring_take(outbuf, count);
4729 } else {
4730 int bytes1;
4731 int bytes2;
4732
4733 bytes1 = auring_get_contig_free(usrbuf);
4734 KASSERTMSG(bytes1 % framesize == 0,
4735 "bytes1=%d framesize=%d", bytes1, framesize);
4736 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4737 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4738 bytes1);
4739 auring_push(usrbuf, bytes1);
4740 auring_take(outbuf, bytes1 / framesize);
4741
4742 bytes2 = bytes - bytes1;
4743 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4744 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4745 bytes2);
4746 auring_push(usrbuf, bytes2);
4747 auring_take(outbuf, bytes2 / framesize);
4748 }
4749
4750 /* XXX TODO: any counters here? */
4751
4752 #if defined(AUDIO_DEBUG)
4753 if (audiodebug >= 3) {
4754 struct audio_track_debugbuf m;
4755 audio_track_bufstat(track, &m);
4756 TRACET(0, track, "end%s%s%s%s%s%s",
4757 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4758 }
4759 #endif
4760 }
4761
4762 /*
4763 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4764 * Must be called with sc_exlock held.
4765 */
4766 static u_int
4767 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4768 {
4769 audio_format2_t *fmt;
4770 u_int blktime;
4771 u_int frames_per_block;
4772
4773 KASSERT(sc->sc_exlock);
4774
4775 fmt = &mixer->hwbuf.fmt;
4776 blktime = sc->sc_blk_ms;
4777
4778 /*
4779 * If stride is not multiples of 8, special treatment is necessary.
4780 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4781 */
4782 if (fmt->stride == 4) {
4783 frames_per_block = fmt->sample_rate * blktime / 1000;
4784 if ((frames_per_block & 1) != 0)
4785 blktime *= 2;
4786 }
4787 #ifdef DIAGNOSTIC
4788 else if (fmt->stride % NBBY != 0) {
4789 panic("unsupported HW stride %d", fmt->stride);
4790 }
4791 #endif
4792
4793 return blktime;
4794 }
4795
4796 /*
4797 * Initialize the mixer corresponding to the mode.
4798 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4799 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4800 * This function returns 0 on sucessful. Otherwise returns errno.
4801 * Must be called with sc_exlock held and without sc_lock held.
4802 */
4803 static int
4804 audio_mixer_init(struct audio_softc *sc, int mode,
4805 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4806 {
4807 char codecbuf[64];
4808 char blkdmsbuf[8];
4809 audio_trackmixer_t *mixer;
4810 void (*softint_handler)(void *);
4811 int len;
4812 int blksize;
4813 int capacity;
4814 size_t bufsize;
4815 int hwblks;
4816 int blkms;
4817 int blkdms;
4818 int error;
4819
4820 KASSERT(hwfmt != NULL);
4821 KASSERT(reg != NULL);
4822 KASSERT(sc->sc_exlock);
4823
4824 error = 0;
4825 if (mode == AUMODE_PLAY)
4826 mixer = sc->sc_pmixer;
4827 else
4828 mixer = sc->sc_rmixer;
4829
4830 mixer->sc = sc;
4831 mixer->mode = mode;
4832
4833 mixer->hwbuf.fmt = *hwfmt;
4834 mixer->volume = 256;
4835 mixer->blktime_d = 1000;
4836 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4837 sc->sc_blk_ms = mixer->blktime_n;
4838 hwblks = NBLKHW;
4839
4840 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4841 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4842 if (sc->hw_if->round_blocksize) {
4843 int rounded;
4844 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4845 mutex_enter(sc->sc_lock);
4846 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4847 mode, &p);
4848 mutex_exit(sc->sc_lock);
4849 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4850 if (rounded != blksize) {
4851 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4852 mixer->hwbuf.fmt.channels) != 0) {
4853 device_printf(sc->sc_dev,
4854 "round_blocksize must return blocksize "
4855 "divisible by framesize: "
4856 "blksize=%d rounded=%d "
4857 "stride=%ubit channels=%u\n",
4858 blksize, rounded,
4859 mixer->hwbuf.fmt.stride,
4860 mixer->hwbuf.fmt.channels);
4861 return EINVAL;
4862 }
4863 /* Recalculation */
4864 blksize = rounded;
4865 mixer->frames_per_block = blksize * NBBY /
4866 (mixer->hwbuf.fmt.stride *
4867 mixer->hwbuf.fmt.channels);
4868 }
4869 }
4870 mixer->blktime_n = mixer->frames_per_block;
4871 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4872
4873 capacity = mixer->frames_per_block * hwblks;
4874 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4875 if (sc->hw_if->round_buffersize) {
4876 size_t rounded;
4877 mutex_enter(sc->sc_lock);
4878 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4879 bufsize);
4880 mutex_exit(sc->sc_lock);
4881 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4882 if (rounded < bufsize) {
4883 /* buffersize needs NBLKHW blocks at least. */
4884 device_printf(sc->sc_dev,
4885 "buffersize too small: buffersize=%zd blksize=%d\n",
4886 rounded, blksize);
4887 return EINVAL;
4888 }
4889 if (rounded % blksize != 0) {
4890 /* buffersize/blksize constraint mismatch? */
4891 device_printf(sc->sc_dev,
4892 "buffersize must be multiple of blksize: "
4893 "buffersize=%zu blksize=%d\n",
4894 rounded, blksize);
4895 return EINVAL;
4896 }
4897 if (rounded != bufsize) {
4898 /* Recalcuration */
4899 bufsize = rounded;
4900 hwblks = bufsize / blksize;
4901 capacity = mixer->frames_per_block * hwblks;
4902 }
4903 }
4904 TRACE(1, "buffersize for %s = %zu",
4905 (mode == AUMODE_PLAY) ? "playback" : "recording",
4906 bufsize);
4907 mixer->hwbuf.capacity = capacity;
4908
4909 if (sc->hw_if->allocm) {
4910 /* sc_lock is not necessary for allocm */
4911 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4912 if (mixer->hwbuf.mem == NULL) {
4913 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4914 __func__, bufsize);
4915 return ENOMEM;
4916 }
4917 } else {
4918 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4919 }
4920
4921 /* From here, audio_mixer_destroy is necessary to exit. */
4922 if (mode == AUMODE_PLAY) {
4923 cv_init(&mixer->outcv, "audiowr");
4924 } else {
4925 cv_init(&mixer->outcv, "audiord");
4926 }
4927
4928 if (mode == AUMODE_PLAY) {
4929 softint_handler = audio_softintr_wr;
4930 } else {
4931 softint_handler = audio_softintr_rd;
4932 }
4933 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4934 softint_handler, sc);
4935 if (mixer->sih == NULL) {
4936 device_printf(sc->sc_dev, "softint_establish failed\n");
4937 goto abort;
4938 }
4939
4940 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4941 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4942 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4943 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4944 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4945
4946 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4947 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4948 mixer->swap_endian = true;
4949 TRACE(1, "swap_endian");
4950 }
4951
4952 if (mode == AUMODE_PLAY) {
4953 /* Mixing buffer */
4954 mixer->mixfmt = mixer->track_fmt;
4955 mixer->mixfmt.precision *= 2;
4956 mixer->mixfmt.stride *= 2;
4957 /* XXX TODO: use some macros? */
4958 len = mixer->frames_per_block * mixer->mixfmt.channels *
4959 mixer->mixfmt.stride / NBBY;
4960 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4961 } else {
4962 /* No mixing buffer for recording */
4963 }
4964
4965 if (reg->codec) {
4966 mixer->codec = reg->codec;
4967 mixer->codecarg.context = reg->context;
4968 if (mode == AUMODE_PLAY) {
4969 mixer->codecarg.srcfmt = &mixer->track_fmt;
4970 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4971 } else {
4972 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4973 mixer->codecarg.dstfmt = &mixer->track_fmt;
4974 }
4975 mixer->codecbuf.fmt = mixer->track_fmt;
4976 mixer->codecbuf.capacity = mixer->frames_per_block;
4977 len = auring_bytelen(&mixer->codecbuf);
4978 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4979 if (mixer->codecbuf.mem == NULL) {
4980 device_printf(sc->sc_dev,
4981 "%s: malloc codecbuf(%d) failed\n",
4982 __func__, len);
4983 error = ENOMEM;
4984 goto abort;
4985 }
4986 }
4987
4988 /* Succeeded so display it. */
4989 codecbuf[0] = '\0';
4990 if (mixer->codec || mixer->swap_endian) {
4991 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4992 (mode == AUMODE_PLAY) ? "->" : "<-",
4993 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4994 mixer->hwbuf.fmt.precision);
4995 }
4996 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
4997 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
4998 blkdmsbuf[0] = '\0';
4999 if (blkdms != 0) {
5000 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5001 }
5002 aprint_normal_dev(sc->sc_dev,
5003 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5004 audio_encoding_name(mixer->track_fmt.encoding),
5005 mixer->track_fmt.precision,
5006 codecbuf,
5007 mixer->track_fmt.channels,
5008 mixer->track_fmt.sample_rate,
5009 blksize,
5010 blkms, blkdmsbuf,
5011 (mode == AUMODE_PLAY) ? "playback" : "recording");
5012
5013 return 0;
5014
5015 abort:
5016 audio_mixer_destroy(sc, mixer);
5017 return error;
5018 }
5019
5020 /*
5021 * Releases all resources of 'mixer'.
5022 * Note that it does not release the memory area of 'mixer' itself.
5023 * Must be called with sc_exlock held and without sc_lock held.
5024 */
5025 static void
5026 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5027 {
5028 int bufsize;
5029
5030 KASSERT(sc->sc_exlock == 1);
5031
5032 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5033
5034 if (mixer->hwbuf.mem != NULL) {
5035 if (sc->hw_if->freem) {
5036 /* sc_lock is not necessary for freem */
5037 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5038 } else {
5039 kmem_free(mixer->hwbuf.mem, bufsize);
5040 }
5041 mixer->hwbuf.mem = NULL;
5042 }
5043
5044 audio_free(mixer->codecbuf.mem);
5045 audio_free(mixer->mixsample);
5046
5047 cv_destroy(&mixer->outcv);
5048
5049 if (mixer->sih) {
5050 softint_disestablish(mixer->sih);
5051 mixer->sih = NULL;
5052 }
5053 }
5054
5055 /*
5056 * Starts playback mixer.
5057 * Must be called only if sc_pbusy is false.
5058 * Must be called with sc_lock held.
5059 * Must not be called from the interrupt context.
5060 */
5061 static void
5062 audio_pmixer_start(struct audio_softc *sc, bool force)
5063 {
5064 audio_trackmixer_t *mixer;
5065 int minimum;
5066
5067 KASSERT(mutex_owned(sc->sc_lock));
5068 KASSERT(sc->sc_pbusy == false);
5069
5070 mutex_enter(sc->sc_intr_lock);
5071
5072 mixer = sc->sc_pmixer;
5073 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5074 (audiodebug >= 3) ? "begin " : "",
5075 (int)mixer->mixseq, (int)mixer->hwseq,
5076 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5077 force ? " force" : "");
5078
5079 /* Need two blocks to start normally. */
5080 minimum = (force) ? 1 : 2;
5081 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5082 audio_pmixer_process(sc);
5083 }
5084
5085 /* Start output */
5086 audio_pmixer_output(sc);
5087 sc->sc_pbusy = true;
5088
5089 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5090 (int)mixer->mixseq, (int)mixer->hwseq,
5091 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5092
5093 mutex_exit(sc->sc_intr_lock);
5094 }
5095
5096 /*
5097 * When playing back with MD filter:
5098 *
5099 * track track ...
5100 * v v
5101 * + mix (with aint2_t)
5102 * | master volume (with aint2_t)
5103 * v
5104 * mixsample [::::] wide-int 1 block (ring) buffer
5105 * |
5106 * | convert aint2_t -> aint_t
5107 * v
5108 * codecbuf [....] 1 block (ring) buffer
5109 * |
5110 * | convert to hw format
5111 * v
5112 * hwbuf [............] NBLKHW blocks ring buffer
5113 *
5114 * When playing back without MD filter:
5115 *
5116 * mixsample [::::] wide-int 1 block (ring) buffer
5117 * |
5118 * | convert aint2_t -> aint_t
5119 * | (with byte swap if necessary)
5120 * v
5121 * hwbuf [............] NBLKHW blocks ring buffer
5122 *
5123 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5124 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5125 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5126 */
5127
5128 /*
5129 * Performs track mixing and converts it to hwbuf.
5130 * Note that this function doesn't transfer hwbuf to hardware.
5131 * Must be called with sc_intr_lock held.
5132 */
5133 static void
5134 audio_pmixer_process(struct audio_softc *sc)
5135 {
5136 audio_trackmixer_t *mixer;
5137 audio_file_t *f;
5138 int frame_count;
5139 int sample_count;
5140 int mixed;
5141 int i;
5142 aint2_t *m;
5143 aint_t *h;
5144
5145 mixer = sc->sc_pmixer;
5146
5147 frame_count = mixer->frames_per_block;
5148 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5149 "auring_get_contig_free()=%d frame_count=%d",
5150 auring_get_contig_free(&mixer->hwbuf), frame_count);
5151 sample_count = frame_count * mixer->mixfmt.channels;
5152
5153 mixer->mixseq++;
5154
5155 /* Mix all tracks */
5156 mixed = 0;
5157 SLIST_FOREACH(f, &sc->sc_files, entry) {
5158 audio_track_t *track = f->ptrack;
5159
5160 if (track == NULL)
5161 continue;
5162
5163 if (track->is_pause) {
5164 TRACET(4, track, "skip; paused");
5165 continue;
5166 }
5167
5168 /* Skip if the track is used by process context. */
5169 if (audio_track_lock_tryenter(track) == false) {
5170 TRACET(4, track, "skip; in use");
5171 continue;
5172 }
5173
5174 /* Emulate mmap'ped track */
5175 if (track->mmapped) {
5176 auring_push(&track->usrbuf, track->usrbuf_blksize);
5177 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5178 track->usrbuf.head,
5179 track->usrbuf.used,
5180 track->usrbuf.capacity);
5181 }
5182
5183 if (track->outbuf.used < mixer->frames_per_block &&
5184 track->usrbuf.used > 0) {
5185 TRACET(4, track, "process");
5186 audio_track_play(track);
5187 }
5188
5189 if (track->outbuf.used > 0) {
5190 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5191 } else {
5192 TRACET(4, track, "skip; empty");
5193 }
5194
5195 audio_track_lock_exit(track);
5196 }
5197
5198 if (mixed == 0) {
5199 /* Silence */
5200 memset(mixer->mixsample, 0,
5201 frametobyte(&mixer->mixfmt, frame_count));
5202 } else {
5203 if (mixed > 1) {
5204 /* If there are multiple tracks, do auto gain control */
5205 audio_pmixer_agc(mixer, sample_count);
5206 }
5207
5208 /* Apply master volume */
5209 if (mixer->volume < 256) {
5210 m = mixer->mixsample;
5211 for (i = 0; i < sample_count; i++) {
5212 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5213 m++;
5214 }
5215
5216 /*
5217 * Recover the volume gradually at the pace of
5218 * several times per second. If it's too fast, you
5219 * can recognize that the volume changes up and down
5220 * quickly and it's not so comfortable.
5221 */
5222 mixer->voltimer += mixer->blktime_n;
5223 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5224 mixer->volume++;
5225 mixer->voltimer = 0;
5226 #if defined(AUDIO_DEBUG_AGC)
5227 TRACE(1, "volume recover: %d", mixer->volume);
5228 #endif
5229 }
5230 }
5231 }
5232
5233 /*
5234 * The rest is the hardware part.
5235 */
5236
5237 if (mixer->codec) {
5238 h = auring_tailptr_aint(&mixer->codecbuf);
5239 } else {
5240 h = auring_tailptr_aint(&mixer->hwbuf);
5241 }
5242
5243 m = mixer->mixsample;
5244 if (mixer->swap_endian) {
5245 for (i = 0; i < sample_count; i++) {
5246 *h++ = bswap16(*m++);
5247 }
5248 } else {
5249 for (i = 0; i < sample_count; i++) {
5250 *h++ = *m++;
5251 }
5252 }
5253
5254 /* Hardware driver's codec */
5255 if (mixer->codec) {
5256 auring_push(&mixer->codecbuf, frame_count);
5257 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5258 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5259 mixer->codecarg.count = frame_count;
5260 mixer->codec(&mixer->codecarg);
5261 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5262 }
5263
5264 auring_push(&mixer->hwbuf, frame_count);
5265
5266 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5267 (int)mixer->mixseq,
5268 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5269 (mixed == 0) ? " silent" : "");
5270 }
5271
5272 /*
5273 * Do auto gain control.
5274 * Must be called sc_intr_lock held.
5275 */
5276 static void
5277 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5278 {
5279 struct audio_softc *sc __unused;
5280 aint2_t val;
5281 aint2_t maxval;
5282 aint2_t minval;
5283 aint2_t over_plus;
5284 aint2_t over_minus;
5285 aint2_t *m;
5286 int newvol;
5287 int i;
5288
5289 sc = mixer->sc;
5290
5291 /* Overflow detection */
5292 maxval = AINT_T_MAX;
5293 minval = AINT_T_MIN;
5294 m = mixer->mixsample;
5295 for (i = 0; i < sample_count; i++) {
5296 val = *m++;
5297 if (val > maxval)
5298 maxval = val;
5299 else if (val < minval)
5300 minval = val;
5301 }
5302
5303 /* Absolute value of overflowed amount */
5304 over_plus = maxval - AINT_T_MAX;
5305 over_minus = AINT_T_MIN - minval;
5306
5307 if (over_plus > 0 || over_minus > 0) {
5308 if (over_plus > over_minus) {
5309 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5310 } else {
5311 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5312 }
5313
5314 /*
5315 * Change the volume only if new one is smaller.
5316 * Reset the timer even if the volume isn't changed.
5317 */
5318 if (newvol <= mixer->volume) {
5319 mixer->volume = newvol;
5320 mixer->voltimer = 0;
5321 #if defined(AUDIO_DEBUG_AGC)
5322 TRACE(1, "auto volume adjust: %d", mixer->volume);
5323 #endif
5324 }
5325 }
5326 }
5327
5328 /*
5329 * Mix one track.
5330 * 'mixed' specifies the number of tracks mixed so far.
5331 * It returns the number of tracks mixed. In other words, it returns
5332 * mixed + 1 if this track is mixed.
5333 */
5334 static int
5335 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5336 int mixed)
5337 {
5338 int count;
5339 int sample_count;
5340 int remain;
5341 int i;
5342 const aint_t *s;
5343 aint2_t *d;
5344
5345 /* XXX TODO: Is this necessary for now? */
5346 if (mixer->mixseq < track->seq)
5347 return mixed;
5348
5349 count = auring_get_contig_used(&track->outbuf);
5350 count = uimin(count, mixer->frames_per_block);
5351
5352 s = auring_headptr_aint(&track->outbuf);
5353 d = mixer->mixsample;
5354
5355 /*
5356 * Apply track volume with double-sized integer and perform
5357 * additive synthesis.
5358 *
5359 * XXX If you limit the track volume to 1.0 or less (<= 256),
5360 * it would be better to do this in the track conversion stage
5361 * rather than here. However, if you accept the volume to
5362 * be greater than 1.0 (> 256), it's better to do it here.
5363 * Because the operation here is done by double-sized integer.
5364 */
5365 sample_count = count * mixer->mixfmt.channels;
5366 if (mixed == 0) {
5367 /* If this is the first track, assignment can be used. */
5368 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5369 if (track->volume != 256) {
5370 for (i = 0; i < sample_count; i++) {
5371 aint2_t v;
5372 v = *s++;
5373 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5374 }
5375 } else
5376 #endif
5377 {
5378 for (i = 0; i < sample_count; i++) {
5379 *d++ = ((aint2_t)*s++);
5380 }
5381 }
5382 /* Fill silence if the first track is not filled. */
5383 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5384 *d++ = 0;
5385 } else {
5386 /* If this is the second or later, add it. */
5387 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5388 if (track->volume != 256) {
5389 for (i = 0; i < sample_count; i++) {
5390 aint2_t v;
5391 v = *s++;
5392 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5393 }
5394 } else
5395 #endif
5396 {
5397 for (i = 0; i < sample_count; i++) {
5398 *d++ += ((aint2_t)*s++);
5399 }
5400 }
5401 }
5402
5403 auring_take(&track->outbuf, count);
5404 /*
5405 * The counters have to align block even if outbuf is less than
5406 * one block. XXX Is this still necessary?
5407 */
5408 remain = mixer->frames_per_block - count;
5409 if (__predict_false(remain != 0)) {
5410 auring_push(&track->outbuf, remain);
5411 auring_take(&track->outbuf, remain);
5412 }
5413
5414 /*
5415 * Update track sequence.
5416 * mixseq has previous value yet at this point.
5417 */
5418 track->seq = mixer->mixseq + 1;
5419
5420 return mixed + 1;
5421 }
5422
5423 /*
5424 * Output one block from hwbuf to HW.
5425 * Must be called with sc_intr_lock held.
5426 */
5427 static void
5428 audio_pmixer_output(struct audio_softc *sc)
5429 {
5430 audio_trackmixer_t *mixer;
5431 audio_params_t params;
5432 void *start;
5433 void *end;
5434 int blksize;
5435 int error;
5436
5437 mixer = sc->sc_pmixer;
5438 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5439 sc->sc_pbusy,
5440 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5441 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5442 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5443 mixer->hwbuf.used, mixer->frames_per_block);
5444
5445 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5446
5447 if (sc->hw_if->trigger_output) {
5448 /* trigger (at once) */
5449 if (!sc->sc_pbusy) {
5450 start = mixer->hwbuf.mem;
5451 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5452 params = format2_to_params(&mixer->hwbuf.fmt);
5453
5454 error = sc->hw_if->trigger_output(sc->hw_hdl,
5455 start, end, blksize, audio_pintr, sc, ¶ms);
5456 if (error) {
5457 device_printf(sc->sc_dev,
5458 "trigger_output failed with %d\n", error);
5459 return;
5460 }
5461 }
5462 } else {
5463 /* start (everytime) */
5464 start = auring_headptr(&mixer->hwbuf);
5465
5466 error = sc->hw_if->start_output(sc->hw_hdl,
5467 start, blksize, audio_pintr, sc);
5468 if (error) {
5469 device_printf(sc->sc_dev,
5470 "start_output failed with %d\n", error);
5471 return;
5472 }
5473 }
5474 }
5475
5476 /*
5477 * This is an interrupt handler for playback.
5478 * It is called with sc_intr_lock held.
5479 *
5480 * It is usually called from hardware interrupt. However, note that
5481 * for some drivers (e.g. uaudio) it is called from software interrupt.
5482 */
5483 static void
5484 audio_pintr(void *arg)
5485 {
5486 struct audio_softc *sc;
5487 audio_trackmixer_t *mixer;
5488
5489 sc = arg;
5490 KASSERT(mutex_owned(sc->sc_intr_lock));
5491
5492 if (sc->sc_dying)
5493 return;
5494 if (sc->sc_pbusy == false) {
5495 #if defined(DIAGNOSTIC)
5496 device_printf(sc->sc_dev,
5497 "DIAGNOSTIC: %s raised stray interrupt\n",
5498 device_xname(sc->hw_dev));
5499 #endif
5500 return;
5501 }
5502
5503 mixer = sc->sc_pmixer;
5504 mixer->hw_complete_counter += mixer->frames_per_block;
5505 mixer->hwseq++;
5506
5507 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5508
5509 TRACE(4,
5510 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5511 mixer->hwseq, mixer->hw_complete_counter,
5512 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5513
5514 #if !defined(_KERNEL)
5515 /* This is a debug code for userland test. */
5516 return;
5517 #endif
5518
5519 #if defined(AUDIO_HW_SINGLE_BUFFER)
5520 /*
5521 * Create a new block here and output it immediately.
5522 * It makes a latency lower but needs machine power.
5523 */
5524 audio_pmixer_process(sc);
5525 audio_pmixer_output(sc);
5526 #else
5527 /*
5528 * It is called when block N output is done.
5529 * Output immediately block N+1 created by the last interrupt.
5530 * And then create block N+2 for the next interrupt.
5531 * This method makes playback robust even on slower machines.
5532 * Instead the latency is increased by one block.
5533 */
5534
5535 /* At first, output ready block. */
5536 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5537 audio_pmixer_output(sc);
5538 }
5539
5540 bool later = false;
5541
5542 if (mixer->hwbuf.used < mixer->frames_per_block) {
5543 later = true;
5544 }
5545
5546 /* Then, process next block. */
5547 audio_pmixer_process(sc);
5548
5549 if (later) {
5550 audio_pmixer_output(sc);
5551 }
5552 #endif
5553
5554 /*
5555 * When this interrupt is the real hardware interrupt, disabling
5556 * preemption here is not necessary. But some drivers (e.g. uaudio)
5557 * emulate it by software interrupt, so kpreempt_disable is necessary.
5558 */
5559 kpreempt_disable();
5560 softint_schedule(mixer->sih);
5561 kpreempt_enable();
5562 }
5563
5564 /*
5565 * Starts record mixer.
5566 * Must be called only if sc_rbusy is false.
5567 * Must be called with sc_lock held.
5568 * Must not be called from the interrupt context.
5569 */
5570 static void
5571 audio_rmixer_start(struct audio_softc *sc)
5572 {
5573
5574 KASSERT(mutex_owned(sc->sc_lock));
5575 KASSERT(sc->sc_rbusy == false);
5576
5577 mutex_enter(sc->sc_intr_lock);
5578
5579 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5580 audio_rmixer_input(sc);
5581 sc->sc_rbusy = true;
5582 TRACE(3, "end");
5583
5584 mutex_exit(sc->sc_intr_lock);
5585 }
5586
5587 /*
5588 * When recording with MD filter:
5589 *
5590 * hwbuf [............] NBLKHW blocks ring buffer
5591 * |
5592 * | convert from hw format
5593 * v
5594 * codecbuf [....] 1 block (ring) buffer
5595 * | |
5596 * v v
5597 * track track ...
5598 *
5599 * When recording without MD filter:
5600 *
5601 * hwbuf [............] NBLKHW blocks ring buffer
5602 * | |
5603 * v v
5604 * track track ...
5605 *
5606 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5607 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5608 */
5609
5610 /*
5611 * Distribute a recorded block to all recording tracks.
5612 */
5613 static void
5614 audio_rmixer_process(struct audio_softc *sc)
5615 {
5616 audio_trackmixer_t *mixer;
5617 audio_ring_t *mixersrc;
5618 audio_file_t *f;
5619 aint_t *p;
5620 int count;
5621 int bytes;
5622 int i;
5623
5624 mixer = sc->sc_rmixer;
5625
5626 /*
5627 * count is the number of frames to be retrieved this time.
5628 * count should be one block.
5629 */
5630 count = auring_get_contig_used(&mixer->hwbuf);
5631 count = uimin(count, mixer->frames_per_block);
5632 if (count <= 0) {
5633 TRACE(4, "count %d: too short", count);
5634 return;
5635 }
5636 bytes = frametobyte(&mixer->track_fmt, count);
5637
5638 /* Hardware driver's codec */
5639 if (mixer->codec) {
5640 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5641 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5642 mixer->codecarg.count = count;
5643 mixer->codec(&mixer->codecarg);
5644 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5645 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5646 mixersrc = &mixer->codecbuf;
5647 } else {
5648 mixersrc = &mixer->hwbuf;
5649 }
5650
5651 if (mixer->swap_endian) {
5652 /* inplace conversion */
5653 p = auring_headptr_aint(mixersrc);
5654 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5655 *p = bswap16(*p);
5656 }
5657 }
5658
5659 /* Distribute to all tracks. */
5660 SLIST_FOREACH(f, &sc->sc_files, entry) {
5661 audio_track_t *track = f->rtrack;
5662 audio_ring_t *input;
5663
5664 if (track == NULL)
5665 continue;
5666
5667 if (track->is_pause) {
5668 TRACET(4, track, "skip; paused");
5669 continue;
5670 }
5671
5672 if (audio_track_lock_tryenter(track) == false) {
5673 TRACET(4, track, "skip; in use");
5674 continue;
5675 }
5676
5677 /* If the track buffer is full, discard the oldest one? */
5678 input = track->input;
5679 if (input->capacity - input->used < mixer->frames_per_block) {
5680 int drops = mixer->frames_per_block -
5681 (input->capacity - input->used);
5682 track->dropframes += drops;
5683 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5684 drops,
5685 input->head, input->used, input->capacity);
5686 auring_take(input, drops);
5687 }
5688 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5689 "input->used=%d mixer->frames_per_block=%d",
5690 input->used, mixer->frames_per_block);
5691
5692 memcpy(auring_tailptr_aint(input),
5693 auring_headptr_aint(mixersrc),
5694 bytes);
5695 auring_push(input, count);
5696
5697 /* XXX sequence counter? */
5698
5699 audio_track_lock_exit(track);
5700 }
5701
5702 auring_take(mixersrc, count);
5703 }
5704
5705 /*
5706 * Input one block from HW to hwbuf.
5707 * Must be called with sc_intr_lock held.
5708 */
5709 static void
5710 audio_rmixer_input(struct audio_softc *sc)
5711 {
5712 audio_trackmixer_t *mixer;
5713 audio_params_t params;
5714 void *start;
5715 void *end;
5716 int blksize;
5717 int error;
5718
5719 mixer = sc->sc_rmixer;
5720 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5721
5722 if (sc->hw_if->trigger_input) {
5723 /* trigger (at once) */
5724 if (!sc->sc_rbusy) {
5725 start = mixer->hwbuf.mem;
5726 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5727 params = format2_to_params(&mixer->hwbuf.fmt);
5728
5729 error = sc->hw_if->trigger_input(sc->hw_hdl,
5730 start, end, blksize, audio_rintr, sc, ¶ms);
5731 if (error) {
5732 device_printf(sc->sc_dev,
5733 "trigger_input failed with %d\n", error);
5734 return;
5735 }
5736 }
5737 } else {
5738 /* start (everytime) */
5739 start = auring_tailptr(&mixer->hwbuf);
5740
5741 error = sc->hw_if->start_input(sc->hw_hdl,
5742 start, blksize, audio_rintr, sc);
5743 if (error) {
5744 device_printf(sc->sc_dev,
5745 "start_input failed with %d\n", error);
5746 return;
5747 }
5748 }
5749 }
5750
5751 /*
5752 * This is an interrupt handler for recording.
5753 * It is called with sc_intr_lock.
5754 *
5755 * It is usually called from hardware interrupt. However, note that
5756 * for some drivers (e.g. uaudio) it is called from software interrupt.
5757 */
5758 static void
5759 audio_rintr(void *arg)
5760 {
5761 struct audio_softc *sc;
5762 audio_trackmixer_t *mixer;
5763
5764 sc = arg;
5765 KASSERT(mutex_owned(sc->sc_intr_lock));
5766
5767 if (sc->sc_dying)
5768 return;
5769 if (sc->sc_rbusy == false) {
5770 #if defined(DIAGNOSTIC)
5771 device_printf(sc->sc_dev,
5772 "DIAGNOSTIC: %s raised stray interrupt\n",
5773 device_xname(sc->hw_dev));
5774 #endif
5775 return;
5776 }
5777
5778 mixer = sc->sc_rmixer;
5779 mixer->hw_complete_counter += mixer->frames_per_block;
5780 mixer->hwseq++;
5781
5782 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5783
5784 TRACE(4,
5785 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5786 mixer->hwseq, mixer->hw_complete_counter,
5787 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5788
5789 /* Distrubute recorded block */
5790 audio_rmixer_process(sc);
5791
5792 /* Request next block */
5793 audio_rmixer_input(sc);
5794
5795 /*
5796 * When this interrupt is the real hardware interrupt, disabling
5797 * preemption here is not necessary. But some drivers (e.g. uaudio)
5798 * emulate it by software interrupt, so kpreempt_disable is necessary.
5799 */
5800 kpreempt_disable();
5801 softint_schedule(mixer->sih);
5802 kpreempt_enable();
5803 }
5804
5805 /*
5806 * Halts playback mixer.
5807 * This function also clears related parameters, so call this function
5808 * instead of calling halt_output directly.
5809 * Must be called only if sc_pbusy is true.
5810 * Must be called with sc_lock && sc_exlock held.
5811 */
5812 static int
5813 audio_pmixer_halt(struct audio_softc *sc)
5814 {
5815 int error;
5816
5817 TRACE(2, "");
5818 KASSERT(mutex_owned(sc->sc_lock));
5819 KASSERT(sc->sc_exlock);
5820
5821 mutex_enter(sc->sc_intr_lock);
5822 error = sc->hw_if->halt_output(sc->hw_hdl);
5823 mutex_exit(sc->sc_intr_lock);
5824
5825 /* Halts anyway even if some error has occurred. */
5826 sc->sc_pbusy = false;
5827 sc->sc_pmixer->hwbuf.head = 0;
5828 sc->sc_pmixer->hwbuf.used = 0;
5829 sc->sc_pmixer->mixseq = 0;
5830 sc->sc_pmixer->hwseq = 0;
5831
5832 return error;
5833 }
5834
5835 /*
5836 * Halts recording mixer.
5837 * This function also clears related parameters, so call this function
5838 * instead of calling halt_input directly.
5839 * Must be called only if sc_rbusy is true.
5840 * Must be called with sc_lock && sc_exlock held.
5841 */
5842 static int
5843 audio_rmixer_halt(struct audio_softc *sc)
5844 {
5845 int error;
5846
5847 TRACE(2, "");
5848 KASSERT(mutex_owned(sc->sc_lock));
5849 KASSERT(sc->sc_exlock);
5850
5851 mutex_enter(sc->sc_intr_lock);
5852 error = sc->hw_if->halt_input(sc->hw_hdl);
5853 mutex_exit(sc->sc_intr_lock);
5854
5855 /* Halts anyway even if some error has occurred. */
5856 sc->sc_rbusy = false;
5857 sc->sc_rmixer->hwbuf.head = 0;
5858 sc->sc_rmixer->hwbuf.used = 0;
5859 sc->sc_rmixer->mixseq = 0;
5860 sc->sc_rmixer->hwseq = 0;
5861
5862 return error;
5863 }
5864
5865 /*
5866 * Flush this track.
5867 * Halts all operations, clears all buffers, reset error counters.
5868 * XXX I'm not sure...
5869 */
5870 static void
5871 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5872 {
5873
5874 KASSERT(track);
5875 TRACET(3, track, "clear");
5876
5877 audio_track_lock_enter(track);
5878
5879 track->usrbuf.used = 0;
5880 /* Clear all internal parameters. */
5881 if (track->codec.filter) {
5882 track->codec.srcbuf.used = 0;
5883 track->codec.srcbuf.head = 0;
5884 }
5885 if (track->chvol.filter) {
5886 track->chvol.srcbuf.used = 0;
5887 track->chvol.srcbuf.head = 0;
5888 }
5889 if (track->chmix.filter) {
5890 track->chmix.srcbuf.used = 0;
5891 track->chmix.srcbuf.head = 0;
5892 }
5893 if (track->freq.filter) {
5894 track->freq.srcbuf.used = 0;
5895 track->freq.srcbuf.head = 0;
5896 if (track->freq_step < 65536)
5897 track->freq_current = 65536;
5898 else
5899 track->freq_current = 0;
5900 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5901 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5902 }
5903 /* Clear buffer, then operation halts naturally. */
5904 track->outbuf.used = 0;
5905
5906 /* Clear counters. */
5907 track->dropframes = 0;
5908
5909 audio_track_lock_exit(track);
5910 }
5911
5912 /*
5913 * Drain the track.
5914 * track must be present and for playback.
5915 * If successful, it returns 0. Otherwise returns errno.
5916 * Must be called with sc_lock held.
5917 */
5918 static int
5919 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5920 {
5921 audio_trackmixer_t *mixer;
5922 int done;
5923 int error;
5924
5925 KASSERT(track);
5926 TRACET(3, track, "start");
5927 mixer = track->mixer;
5928 KASSERT(mutex_owned(sc->sc_lock));
5929
5930 /* Ignore them if pause. */
5931 if (track->is_pause) {
5932 TRACET(3, track, "pause -> clear");
5933 track->pstate = AUDIO_STATE_CLEAR;
5934 }
5935 /* Terminate early here if there is no data in the track. */
5936 if (track->pstate == AUDIO_STATE_CLEAR) {
5937 TRACET(3, track, "no need to drain");
5938 return 0;
5939 }
5940 track->pstate = AUDIO_STATE_DRAINING;
5941
5942 for (;;) {
5943 /* I want to display it before condition evaluation. */
5944 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5945 (int)curproc->p_pid, (int)curlwp->l_lid,
5946 (int)track->seq, (int)mixer->hwseq,
5947 track->outbuf.head, track->outbuf.used,
5948 track->outbuf.capacity);
5949
5950 /* Condition to terminate */
5951 audio_track_lock_enter(track);
5952 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5953 track->outbuf.used == 0 &&
5954 track->seq <= mixer->hwseq);
5955 audio_track_lock_exit(track);
5956 if (done)
5957 break;
5958
5959 TRACET(3, track, "sleep");
5960 error = audio_track_waitio(sc, track);
5961 if (error)
5962 return error;
5963
5964 /* XXX call audio_track_play here ? */
5965 }
5966
5967 track->pstate = AUDIO_STATE_CLEAR;
5968 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5969 (int)track->inputcounter, (int)track->outputcounter);
5970 return 0;
5971 }
5972
5973 /*
5974 * Send signal to process.
5975 * This is intended to be called only from audio_softintr_{rd,wr}.
5976 * Must be called without sc_intr_lock held.
5977 */
5978 static inline void
5979 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
5980 {
5981 proc_t *p;
5982
5983 KASSERT(pid != 0);
5984
5985 /*
5986 * psignal() must be called without spin lock held.
5987 */
5988
5989 mutex_enter(proc_lock);
5990 p = proc_find(pid);
5991 if (p)
5992 psignal(p, signum);
5993 mutex_exit(proc_lock);
5994 }
5995
5996 /*
5997 * This is software interrupt handler for record.
5998 * It is called from recording hardware interrupt everytime.
5999 * It does:
6000 * - Deliver SIGIO for all async processes.
6001 * - Notify to audio_read() that data has arrived.
6002 * - selnotify() for select/poll-ing processes.
6003 */
6004 /*
6005 * XXX If a process issues FIOASYNC between hardware interrupt and
6006 * software interrupt, (stray) SIGIO will be sent to the process
6007 * despite the fact that it has not receive recorded data yet.
6008 */
6009 static void
6010 audio_softintr_rd(void *cookie)
6011 {
6012 struct audio_softc *sc = cookie;
6013 audio_file_t *f;
6014 pid_t pid;
6015
6016 mutex_enter(sc->sc_lock);
6017
6018 SLIST_FOREACH(f, &sc->sc_files, entry) {
6019 audio_track_t *track = f->rtrack;
6020
6021 if (track == NULL)
6022 continue;
6023
6024 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6025 track->input->head,
6026 track->input->used,
6027 track->input->capacity);
6028
6029 pid = f->async_audio;
6030 if (pid != 0) {
6031 TRACEF(4, f, "sending SIGIO %d", pid);
6032 audio_psignal(sc, pid, SIGIO);
6033 }
6034 }
6035
6036 /* Notify that data has arrived. */
6037 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6038 KNOTE(&sc->sc_rsel.sel_klist, 0);
6039 cv_broadcast(&sc->sc_rmixer->outcv);
6040
6041 mutex_exit(sc->sc_lock);
6042 }
6043
6044 /*
6045 * This is software interrupt handler for playback.
6046 * It is called from playback hardware interrupt everytime.
6047 * It does:
6048 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6049 * - Notify to audio_write() that outbuf block available.
6050 * - selnotify() for select/poll-ing processes if there are any writable
6051 * (used < lowat) processes. Checking each descriptor will be done by
6052 * filt_audiowrite_event().
6053 */
6054 static void
6055 audio_softintr_wr(void *cookie)
6056 {
6057 struct audio_softc *sc = cookie;
6058 audio_file_t *f;
6059 bool found;
6060 pid_t pid;
6061
6062 TRACE(4, "called");
6063 found = false;
6064
6065 mutex_enter(sc->sc_lock);
6066
6067 SLIST_FOREACH(f, &sc->sc_files, entry) {
6068 audio_track_t *track = f->ptrack;
6069
6070 if (track == NULL)
6071 continue;
6072
6073 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
6074 (int)track->seq,
6075 track->outbuf.head,
6076 track->outbuf.used,
6077 track->outbuf.capacity);
6078
6079 /*
6080 * Send a signal if the process is async mode and
6081 * used is lower than lowat.
6082 */
6083 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6084 !track->is_pause) {
6085 /* For selnotify */
6086 found = true;
6087 /* For SIGIO */
6088 pid = f->async_audio;
6089 if (pid != 0) {
6090 TRACEF(4, f, "sending SIGIO %d", pid);
6091 audio_psignal(sc, pid, SIGIO);
6092 }
6093 }
6094 }
6095
6096 /*
6097 * Notify for select/poll when someone become writable.
6098 * It needs sc_lock (and not sc_intr_lock).
6099 */
6100 if (found) {
6101 TRACE(4, "selnotify");
6102 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6103 KNOTE(&sc->sc_wsel.sel_klist, 0);
6104 }
6105
6106 /* Notify to audio_write() that outbuf available. */
6107 cv_broadcast(&sc->sc_pmixer->outcv);
6108
6109 mutex_exit(sc->sc_lock);
6110 }
6111
6112 /*
6113 * Check (and convert) the format *p came from userland.
6114 * If successful, it writes back the converted format to *p if necessary
6115 * and returns 0. Otherwise returns errno (*p may change even this case).
6116 */
6117 static int
6118 audio_check_params(audio_format2_t *p)
6119 {
6120
6121 /* Convert obsoleted AUDIO_ENCODING_PCM* */
6122 /* XXX Is this conversion right? */
6123 if (p->encoding == AUDIO_ENCODING_PCM16) {
6124 if (p->precision == 8)
6125 p->encoding = AUDIO_ENCODING_ULINEAR;
6126 else
6127 p->encoding = AUDIO_ENCODING_SLINEAR;
6128 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6129 if (p->precision == 8)
6130 p->encoding = AUDIO_ENCODING_ULINEAR;
6131 else
6132 return EINVAL;
6133 }
6134
6135 /*
6136 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6137 * suffix.
6138 */
6139 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6140 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6141 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6142 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6143
6144 switch (p->encoding) {
6145 case AUDIO_ENCODING_ULAW:
6146 case AUDIO_ENCODING_ALAW:
6147 if (p->precision != 8)
6148 return EINVAL;
6149 break;
6150 case AUDIO_ENCODING_ADPCM:
6151 if (p->precision != 4 && p->precision != 8)
6152 return EINVAL;
6153 break;
6154 case AUDIO_ENCODING_SLINEAR_LE:
6155 case AUDIO_ENCODING_SLINEAR_BE:
6156 case AUDIO_ENCODING_ULINEAR_LE:
6157 case AUDIO_ENCODING_ULINEAR_BE:
6158 if (p->precision != 8 && p->precision != 16 &&
6159 p->precision != 24 && p->precision != 32)
6160 return EINVAL;
6161
6162 /* 8bit format does not have endianness. */
6163 if (p->precision == 8) {
6164 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6165 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6166 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6167 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6168 }
6169
6170 if (p->precision > p->stride)
6171 return EINVAL;
6172 break;
6173 case AUDIO_ENCODING_MPEG_L1_STREAM:
6174 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6175 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6176 case AUDIO_ENCODING_MPEG_L2_STREAM:
6177 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6178 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6179 case AUDIO_ENCODING_AC3:
6180 break;
6181 default:
6182 return EINVAL;
6183 }
6184
6185 /* sanity check # of channels*/
6186 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6187 return EINVAL;
6188
6189 return 0;
6190 }
6191
6192 /*
6193 * Initialize playback and record mixers.
6194 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initalized.
6195 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6196 * the filter registration information. These four must not be NULL.
6197 * If successful returns 0. Otherwise returns errno.
6198 * Must be called with sc_exlock held and without sc_lock held.
6199 * Must not be called if there are any tracks.
6200 * Caller should check that the initialization succeed by whether
6201 * sc_[pr]mixer is not NULL.
6202 */
6203 static int
6204 audio_mixers_init(struct audio_softc *sc, int mode,
6205 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6206 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6207 {
6208 int error;
6209
6210 KASSERT(phwfmt != NULL);
6211 KASSERT(rhwfmt != NULL);
6212 KASSERT(pfil != NULL);
6213 KASSERT(rfil != NULL);
6214 KASSERT(sc->sc_exlock);
6215
6216 if ((mode & AUMODE_PLAY)) {
6217 if (sc->sc_pmixer == NULL) {
6218 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6219 KM_SLEEP);
6220 } else {
6221 /* destroy() doesn't free memory. */
6222 audio_mixer_destroy(sc, sc->sc_pmixer);
6223 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6224 }
6225 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6226 if (error) {
6227 aprint_error_dev(sc->sc_dev,
6228 "configuring playback mode failed\n");
6229 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6230 sc->sc_pmixer = NULL;
6231 return error;
6232 }
6233 }
6234 if ((mode & AUMODE_RECORD)) {
6235 if (sc->sc_rmixer == NULL) {
6236 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6237 KM_SLEEP);
6238 } else {
6239 /* destroy() doesn't free memory. */
6240 audio_mixer_destroy(sc, sc->sc_rmixer);
6241 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6242 }
6243 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6244 if (error) {
6245 aprint_error_dev(sc->sc_dev,
6246 "configuring record mode failed\n");
6247 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6248 sc->sc_rmixer = NULL;
6249 return error;
6250 }
6251 }
6252
6253 return 0;
6254 }
6255
6256 /*
6257 * Select a frequency.
6258 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6259 * XXX Better algorithm?
6260 */
6261 static int
6262 audio_select_freq(const struct audio_format *fmt)
6263 {
6264 int freq;
6265 int high;
6266 int low;
6267 int j;
6268
6269 if (fmt->frequency_type == 0) {
6270 low = fmt->frequency[0];
6271 high = fmt->frequency[1];
6272 freq = 48000;
6273 if (low <= freq && freq <= high) {
6274 return freq;
6275 }
6276 freq = 44100;
6277 if (low <= freq && freq <= high) {
6278 return freq;
6279 }
6280 return high;
6281 } else {
6282 for (j = 0; j < fmt->frequency_type; j++) {
6283 if (fmt->frequency[j] == 48000) {
6284 return fmt->frequency[j];
6285 }
6286 }
6287 high = 0;
6288 for (j = 0; j < fmt->frequency_type; j++) {
6289 if (fmt->frequency[j] == 44100) {
6290 return fmt->frequency[j];
6291 }
6292 if (fmt->frequency[j] > high) {
6293 high = fmt->frequency[j];
6294 }
6295 }
6296 return high;
6297 }
6298 }
6299
6300 /*
6301 * Choose the most preferred hardware format.
6302 * If successful, it will store the chosen format into *cand and return 0.
6303 * Otherwise, return errno.
6304 * Must be called without sc_lock held.
6305 */
6306 static int
6307 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6308 {
6309 audio_format_query_t query;
6310 int cand_score;
6311 int score;
6312 int i;
6313 int error;
6314
6315 /*
6316 * Score each formats and choose the highest one.
6317 *
6318 * +---- priority(0-3)
6319 * |+--- encoding/precision
6320 * ||+-- channels
6321 * score = 0x000000PEC
6322 */
6323
6324 cand_score = 0;
6325 for (i = 0; ; i++) {
6326 memset(&query, 0, sizeof(query));
6327 query.index = i;
6328
6329 mutex_enter(sc->sc_lock);
6330 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6331 mutex_exit(sc->sc_lock);
6332 if (error == EINVAL)
6333 break;
6334 if (error)
6335 return error;
6336
6337 #if defined(AUDIO_DEBUG)
6338 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6339 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6340 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6341 query.fmt.priority,
6342 audio_encoding_name(query.fmt.encoding),
6343 query.fmt.validbits,
6344 query.fmt.precision,
6345 query.fmt.channels);
6346 if (query.fmt.frequency_type == 0) {
6347 DPRINTF(1, "{%d-%d",
6348 query.fmt.frequency[0], query.fmt.frequency[1]);
6349 } else {
6350 int j;
6351 for (j = 0; j < query.fmt.frequency_type; j++) {
6352 DPRINTF(1, "%c%d",
6353 (j == 0) ? '{' : ',',
6354 query.fmt.frequency[j]);
6355 }
6356 }
6357 DPRINTF(1, "}\n");
6358 #endif
6359
6360 if ((query.fmt.mode & mode) == 0) {
6361 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6362 mode);
6363 continue;
6364 }
6365
6366 if (query.fmt.priority < 0) {
6367 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6368 continue;
6369 }
6370
6371 /* Score */
6372 score = (query.fmt.priority & 3) * 0x100;
6373 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6374 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6375 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6376 score += 0x20;
6377 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6378 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6379 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6380 score += 0x10;
6381 }
6382 score += query.fmt.channels;
6383
6384 if (score < cand_score) {
6385 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6386 score, cand_score);
6387 continue;
6388 }
6389
6390 /* Update candidate */
6391 cand_score = score;
6392 cand->encoding = query.fmt.encoding;
6393 cand->precision = query.fmt.validbits;
6394 cand->stride = query.fmt.precision;
6395 cand->channels = query.fmt.channels;
6396 cand->sample_rate = audio_select_freq(&query.fmt);
6397 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6398 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6399 cand_score, query.fmt.priority,
6400 audio_encoding_name(query.fmt.encoding),
6401 cand->precision, cand->stride,
6402 cand->channels, cand->sample_rate);
6403 }
6404
6405 if (cand_score == 0) {
6406 DPRINTF(1, "%s no fmt\n", __func__);
6407 return ENXIO;
6408 }
6409 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6410 audio_encoding_name(cand->encoding),
6411 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6412 return 0;
6413 }
6414
6415 /*
6416 * Validate fmt with query_format.
6417 * If fmt is included in the result of query_format, returns 0.
6418 * Otherwise returns EINVAL.
6419 * Must be called without sc_lock held.
6420 */
6421 static int
6422 audio_hw_validate_format(struct audio_softc *sc, int mode,
6423 const audio_format2_t *fmt)
6424 {
6425 audio_format_query_t query;
6426 struct audio_format *q;
6427 int index;
6428 int error;
6429 int j;
6430
6431 for (index = 0; ; index++) {
6432 query.index = index;
6433 mutex_enter(sc->sc_lock);
6434 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6435 mutex_exit(sc->sc_lock);
6436 if (error == EINVAL)
6437 break;
6438 if (error)
6439 return error;
6440
6441 q = &query.fmt;
6442 /*
6443 * Note that fmt is audio_format2_t (precision/stride) but
6444 * q is audio_format_t (validbits/precision).
6445 */
6446 if ((q->mode & mode) == 0) {
6447 continue;
6448 }
6449 if (fmt->encoding != q->encoding) {
6450 continue;
6451 }
6452 if (fmt->precision != q->validbits) {
6453 continue;
6454 }
6455 if (fmt->stride != q->precision) {
6456 continue;
6457 }
6458 if (fmt->channels != q->channels) {
6459 continue;
6460 }
6461 if (q->frequency_type == 0) {
6462 if (fmt->sample_rate < q->frequency[0] ||
6463 fmt->sample_rate > q->frequency[1]) {
6464 continue;
6465 }
6466 } else {
6467 for (j = 0; j < q->frequency_type; j++) {
6468 if (fmt->sample_rate == q->frequency[j])
6469 break;
6470 }
6471 if (j == query.fmt.frequency_type) {
6472 continue;
6473 }
6474 }
6475
6476 /* Matched. */
6477 return 0;
6478 }
6479
6480 return EINVAL;
6481 }
6482
6483 /*
6484 * Set track mixer's format depending on ai->mode.
6485 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6486 * with ai.play.{channels, sample_rate}.
6487 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6488 * with ai.record.{channels, sample_rate}.
6489 * All other fields in ai are ignored.
6490 * If successful returns 0. Otherwise returns errno.
6491 * This function does not roll back even if it fails.
6492 * Must be called with sc_exlock held and without sc_lock held.
6493 */
6494 static int
6495 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6496 {
6497 audio_format2_t phwfmt;
6498 audio_format2_t rhwfmt;
6499 audio_filter_reg_t pfil;
6500 audio_filter_reg_t rfil;
6501 int mode;
6502 int error;
6503
6504 KASSERT(sc->sc_exlock);
6505
6506 /*
6507 * Even when setting either one of playback and recording,
6508 * both must be halted.
6509 */
6510 if (sc->sc_popens + sc->sc_ropens > 0)
6511 return EBUSY;
6512
6513 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6514 return ENOTTY;
6515
6516 /* Only channels and sample_rate are changeable. */
6517 mode = ai->mode;
6518 if ((mode & AUMODE_PLAY)) {
6519 phwfmt.encoding = ai->play.encoding;
6520 phwfmt.precision = ai->play.precision;
6521 phwfmt.stride = ai->play.precision;
6522 phwfmt.channels = ai->play.channels;
6523 phwfmt.sample_rate = ai->play.sample_rate;
6524 }
6525 if ((mode & AUMODE_RECORD)) {
6526 rhwfmt.encoding = ai->record.encoding;
6527 rhwfmt.precision = ai->record.precision;
6528 rhwfmt.stride = ai->record.precision;
6529 rhwfmt.channels = ai->record.channels;
6530 rhwfmt.sample_rate = ai->record.sample_rate;
6531 }
6532
6533 /* On non-independent devices, use the same format for both. */
6534 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6535 if (mode == AUMODE_RECORD) {
6536 phwfmt = rhwfmt;
6537 } else {
6538 rhwfmt = phwfmt;
6539 }
6540 mode = AUMODE_PLAY | AUMODE_RECORD;
6541 }
6542
6543 /* Then, unset the direction not exist on the hardware. */
6544 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6545 mode &= ~AUMODE_PLAY;
6546 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6547 mode &= ~AUMODE_RECORD;
6548
6549 /* debug */
6550 if ((mode & AUMODE_PLAY)) {
6551 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6552 audio_encoding_name(phwfmt.encoding),
6553 phwfmt.precision,
6554 phwfmt.stride,
6555 phwfmt.channels,
6556 phwfmt.sample_rate);
6557 }
6558 if ((mode & AUMODE_RECORD)) {
6559 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6560 audio_encoding_name(rhwfmt.encoding),
6561 rhwfmt.precision,
6562 rhwfmt.stride,
6563 rhwfmt.channels,
6564 rhwfmt.sample_rate);
6565 }
6566
6567 /* Check the format */
6568 if ((mode & AUMODE_PLAY)) {
6569 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6570 TRACE(1, "invalid format");
6571 return EINVAL;
6572 }
6573 }
6574 if ((mode & AUMODE_RECORD)) {
6575 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6576 TRACE(1, "invalid format");
6577 return EINVAL;
6578 }
6579 }
6580
6581 /* Configure the mixers. */
6582 memset(&pfil, 0, sizeof(pfil));
6583 memset(&rfil, 0, sizeof(rfil));
6584 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6585 if (error)
6586 return error;
6587
6588 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6589 if (error)
6590 return error;
6591
6592 /*
6593 * Reinitialize the sticky parameters for /dev/sound.
6594 * If the number of the hardware channels becomes less than the number
6595 * of channels that sticky parameters remember, subsequent /dev/sound
6596 * open will fail. To prevent this, reinitialize the sticky
6597 * parameters whenever the hardware format is changed.
6598 */
6599 sc->sc_sound_pparams = params_to_format2(&audio_default);
6600 sc->sc_sound_rparams = params_to_format2(&audio_default);
6601 sc->sc_sound_ppause = false;
6602 sc->sc_sound_rpause = false;
6603
6604 return 0;
6605 }
6606
6607 /*
6608 * Store current mixers format into *ai.
6609 * Must be called with sc_exlock held.
6610 */
6611 static void
6612 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6613 {
6614
6615 KASSERT(sc->sc_exlock);
6616
6617 /*
6618 * There is no stride information in audio_info but it doesn't matter.
6619 * trackmixer always treats stride and precision as the same.
6620 */
6621 AUDIO_INITINFO(ai);
6622 ai->mode = 0;
6623 if (sc->sc_pmixer) {
6624 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6625 ai->play.encoding = fmt->encoding;
6626 ai->play.precision = fmt->precision;
6627 ai->play.channels = fmt->channels;
6628 ai->play.sample_rate = fmt->sample_rate;
6629 ai->mode |= AUMODE_PLAY;
6630 }
6631 if (sc->sc_rmixer) {
6632 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6633 ai->record.encoding = fmt->encoding;
6634 ai->record.precision = fmt->precision;
6635 ai->record.channels = fmt->channels;
6636 ai->record.sample_rate = fmt->sample_rate;
6637 ai->mode |= AUMODE_RECORD;
6638 }
6639 }
6640
6641 /*
6642 * audio_info details:
6643 *
6644 * ai.{play,record}.sample_rate (R/W)
6645 * ai.{play,record}.encoding (R/W)
6646 * ai.{play,record}.precision (R/W)
6647 * ai.{play,record}.channels (R/W)
6648 * These specify the playback or recording format.
6649 * Ignore members within an inactive track.
6650 *
6651 * ai.mode (R/W)
6652 * It specifies the playback or recording mode, AUMODE_*.
6653 * Currently, a mode change operation by ai.mode after opening is
6654 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6655 * However, it's possible to get or to set for backward compatibility.
6656 *
6657 * ai.{hiwat,lowat} (R/W)
6658 * These specify the high water mark and low water mark for playback
6659 * track. The unit is block.
6660 *
6661 * ai.{play,record}.gain (R/W)
6662 * It specifies the HW mixer volume in 0-255.
6663 * It is historical reason that the gain is connected to HW mixer.
6664 *
6665 * ai.{play,record}.balance (R/W)
6666 * It specifies the left-right balance of HW mixer in 0-64.
6667 * 32 means the center.
6668 * It is historical reason that the balance is connected to HW mixer.
6669 *
6670 * ai.{play,record}.port (R/W)
6671 * It specifies the input/output port of HW mixer.
6672 *
6673 * ai.monitor_gain (R/W)
6674 * It specifies the recording monitor gain(?) of HW mixer.
6675 *
6676 * ai.{play,record}.pause (R/W)
6677 * Non-zero means the track is paused.
6678 *
6679 * ai.play.seek (R/-)
6680 * It indicates the number of bytes written but not processed.
6681 * ai.record.seek (R/-)
6682 * It indicates the number of bytes to be able to read.
6683 *
6684 * ai.{play,record}.avail_ports (R/-)
6685 * Mixer info.
6686 *
6687 * ai.{play,record}.buffer_size (R/-)
6688 * It indicates the buffer size in bytes. Internally it means usrbuf.
6689 *
6690 * ai.{play,record}.samples (R/-)
6691 * It indicates the total number of bytes played or recorded.
6692 *
6693 * ai.{play,record}.eof (R/-)
6694 * It indicates the number of times reached EOF(?).
6695 *
6696 * ai.{play,record}.error (R/-)
6697 * Non-zero indicates overflow/underflow has occured.
6698 *
6699 * ai.{play,record}.waiting (R/-)
6700 * Non-zero indicates that other process waits to open.
6701 * It will never happen anymore.
6702 *
6703 * ai.{play,record}.open (R/-)
6704 * Non-zero indicates the direction is opened by this process(?).
6705 * XXX Is this better to indicate that "the device is opened by
6706 * at least one process"?
6707 *
6708 * ai.{play,record}.active (R/-)
6709 * Non-zero indicates that I/O is currently active.
6710 *
6711 * ai.blocksize (R/-)
6712 * It indicates the block size in bytes.
6713 * XXX The blocksize of playback and recording may be different.
6714 */
6715
6716 /*
6717 * Pause consideration:
6718 *
6719 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6720 * operation simple. Note that playback and recording are asymmetric.
6721 *
6722 * For playback,
6723 * 1. Any playback open doesn't start pmixer regardless of initial pause
6724 * state of this track.
6725 * 2. The first write access among playback tracks only starts pmixer
6726 * regardless of this track's pause state.
6727 * 3. Even a pause of the last playback track doesn't stop pmixer.
6728 * 4. The last close of all playback tracks only stops pmixer.
6729 *
6730 * For recording,
6731 * 1. The first recording open only starts rmixer regardless of initial
6732 * pause state of this track.
6733 * 2. Even a pause of the last track doesn't stop rmixer.
6734 * 3. The last close of all recording tracks only stops rmixer.
6735 */
6736
6737 /*
6738 * Set both track's parameters within a file depending on ai.
6739 * Update sc_sound_[pr]* if set.
6740 * Must be called with sc_exlock held and without sc_lock held.
6741 */
6742 static int
6743 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6744 const struct audio_info *ai)
6745 {
6746 const struct audio_prinfo *pi;
6747 const struct audio_prinfo *ri;
6748 audio_track_t *ptrack;
6749 audio_track_t *rtrack;
6750 audio_format2_t pfmt;
6751 audio_format2_t rfmt;
6752 int pchanges;
6753 int rchanges;
6754 int mode;
6755 struct audio_info saved_ai;
6756 audio_format2_t saved_pfmt;
6757 audio_format2_t saved_rfmt;
6758 int error;
6759
6760 KASSERT(sc->sc_exlock);
6761
6762 pi = &ai->play;
6763 ri = &ai->record;
6764 pchanges = 0;
6765 rchanges = 0;
6766
6767 ptrack = file->ptrack;
6768 rtrack = file->rtrack;
6769
6770 #if defined(AUDIO_DEBUG)
6771 if (audiodebug >= 2) {
6772 char buf[256];
6773 char p[64];
6774 int buflen;
6775 int plen;
6776 #define SPRINTF(var, fmt...) do { \
6777 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6778 } while (0)
6779
6780 buflen = 0;
6781 plen = 0;
6782 if (SPECIFIED(pi->encoding))
6783 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6784 if (SPECIFIED(pi->precision))
6785 SPRINTF(p, "/%dbit", pi->precision);
6786 if (SPECIFIED(pi->channels))
6787 SPRINTF(p, "/%dch", pi->channels);
6788 if (SPECIFIED(pi->sample_rate))
6789 SPRINTF(p, "/%dHz", pi->sample_rate);
6790 if (plen > 0)
6791 SPRINTF(buf, ",play.param=%s", p + 1);
6792
6793 plen = 0;
6794 if (SPECIFIED(ri->encoding))
6795 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6796 if (SPECIFIED(ri->precision))
6797 SPRINTF(p, "/%dbit", ri->precision);
6798 if (SPECIFIED(ri->channels))
6799 SPRINTF(p, "/%dch", ri->channels);
6800 if (SPECIFIED(ri->sample_rate))
6801 SPRINTF(p, "/%dHz", ri->sample_rate);
6802 if (plen > 0)
6803 SPRINTF(buf, ",record.param=%s", p + 1);
6804
6805 if (SPECIFIED(ai->mode))
6806 SPRINTF(buf, ",mode=%d", ai->mode);
6807 if (SPECIFIED(ai->hiwat))
6808 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6809 if (SPECIFIED(ai->lowat))
6810 SPRINTF(buf, ",lowat=%d", ai->lowat);
6811 if (SPECIFIED(ai->play.gain))
6812 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6813 if (SPECIFIED(ai->record.gain))
6814 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6815 if (SPECIFIED_CH(ai->play.balance))
6816 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6817 if (SPECIFIED_CH(ai->record.balance))
6818 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6819 if (SPECIFIED(ai->play.port))
6820 SPRINTF(buf, ",play.port=%d", ai->play.port);
6821 if (SPECIFIED(ai->record.port))
6822 SPRINTF(buf, ",record.port=%d", ai->record.port);
6823 if (SPECIFIED(ai->monitor_gain))
6824 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6825 if (SPECIFIED_CH(ai->play.pause))
6826 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6827 if (SPECIFIED_CH(ai->record.pause))
6828 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6829
6830 if (buflen > 0)
6831 TRACE(2, "specified %s", buf + 1);
6832 }
6833 #endif
6834
6835 AUDIO_INITINFO(&saved_ai);
6836 /* XXX shut up gcc */
6837 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6838 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6839
6840 /*
6841 * Set default value and save current parameters.
6842 * For backward compatibility, use sticky parameters for nonexistent
6843 * track.
6844 */
6845 if (ptrack) {
6846 pfmt = ptrack->usrbuf.fmt;
6847 saved_pfmt = ptrack->usrbuf.fmt;
6848 saved_ai.play.pause = ptrack->is_pause;
6849 } else {
6850 pfmt = sc->sc_sound_pparams;
6851 }
6852 if (rtrack) {
6853 rfmt = rtrack->usrbuf.fmt;
6854 saved_rfmt = rtrack->usrbuf.fmt;
6855 saved_ai.record.pause = rtrack->is_pause;
6856 } else {
6857 rfmt = sc->sc_sound_rparams;
6858 }
6859 saved_ai.mode = file->mode;
6860
6861 /*
6862 * Overwrite if specified.
6863 */
6864 mode = file->mode;
6865 if (SPECIFIED(ai->mode)) {
6866 /*
6867 * Setting ai->mode no longer does anything because it's
6868 * prohibited to change playback/recording mode after open
6869 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6870 * keeps the state of AUMODE_PLAY_ALL itself for backward
6871 * compatibility.
6872 * In the internal, only file->mode has the state of
6873 * AUMODE_PLAY_ALL flag and track->mode in both track does
6874 * not have.
6875 */
6876 if ((file->mode & AUMODE_PLAY)) {
6877 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6878 | (ai->mode & AUMODE_PLAY_ALL);
6879 }
6880 }
6881
6882 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
6883 if (pchanges == -1) {
6884 #if defined(AUDIO_DEBUG)
6885 TRACEF(1, file, "check play.params failed: "
6886 "%s %ubit %uch %uHz",
6887 audio_encoding_name(pi->encoding),
6888 pi->precision,
6889 pi->channels,
6890 pi->sample_rate);
6891 #endif
6892 return EINVAL;
6893 }
6894
6895 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
6896 if (rchanges == -1) {
6897 #if defined(AUDIO_DEBUG)
6898 TRACEF(1, file, "check record.params failed: "
6899 "%s %ubit %uch %uHz",
6900 audio_encoding_name(ri->encoding),
6901 ri->precision,
6902 ri->channels,
6903 ri->sample_rate);
6904 #endif
6905 return EINVAL;
6906 }
6907
6908 if (SPECIFIED(ai->mode)) {
6909 pchanges = 1;
6910 rchanges = 1;
6911 }
6912
6913 /*
6914 * Even when setting either one of playback and recording,
6915 * both track must be halted.
6916 */
6917 if (pchanges || rchanges) {
6918 audio_file_clear(sc, file);
6919 #if defined(AUDIO_DEBUG)
6920 char nbuf[16];
6921 char fmtbuf[64];
6922 if (pchanges) {
6923 if (ptrack) {
6924 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
6925 } else {
6926 snprintf(nbuf, sizeof(nbuf), "-");
6927 }
6928 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6929 DPRINTF(1, "audio track#%s play mode: %s\n",
6930 nbuf, fmtbuf);
6931 }
6932 if (rchanges) {
6933 if (rtrack) {
6934 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
6935 } else {
6936 snprintf(nbuf, sizeof(nbuf), "-");
6937 }
6938 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6939 DPRINTF(1, "audio track#%s rec mode: %s\n",
6940 nbuf, fmtbuf);
6941 }
6942 #endif
6943 }
6944
6945 /* Set mixer parameters */
6946 mutex_enter(sc->sc_lock);
6947 error = audio_hw_setinfo(sc, ai, &saved_ai);
6948 mutex_exit(sc->sc_lock);
6949 if (error)
6950 goto abort1;
6951
6952 /*
6953 * Set to track and update sticky parameters.
6954 */
6955 error = 0;
6956 file->mode = mode;
6957
6958 if (SPECIFIED_CH(pi->pause)) {
6959 if (ptrack)
6960 ptrack->is_pause = pi->pause;
6961 sc->sc_sound_ppause = pi->pause;
6962 }
6963 if (pchanges) {
6964 if (ptrack) {
6965 audio_track_lock_enter(ptrack);
6966 error = audio_track_set_format(ptrack, &pfmt);
6967 audio_track_lock_exit(ptrack);
6968 if (error) {
6969 TRACET(1, ptrack, "set play.params failed");
6970 goto abort2;
6971 }
6972 }
6973 sc->sc_sound_pparams = pfmt;
6974 }
6975 /* Change water marks after initializing the buffers. */
6976 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6977 if (ptrack)
6978 audio_track_setinfo_water(ptrack, ai);
6979 }
6980
6981 if (SPECIFIED_CH(ri->pause)) {
6982 if (rtrack)
6983 rtrack->is_pause = ri->pause;
6984 sc->sc_sound_rpause = ri->pause;
6985 }
6986 if (rchanges) {
6987 if (rtrack) {
6988 audio_track_lock_enter(rtrack);
6989 error = audio_track_set_format(rtrack, &rfmt);
6990 audio_track_lock_exit(rtrack);
6991 if (error) {
6992 TRACET(1, rtrack, "set record.params failed");
6993 goto abort3;
6994 }
6995 }
6996 sc->sc_sound_rparams = rfmt;
6997 }
6998
6999 return 0;
7000
7001 /* Rollback */
7002 abort3:
7003 if (error != ENOMEM) {
7004 rtrack->is_pause = saved_ai.record.pause;
7005 audio_track_lock_enter(rtrack);
7006 audio_track_set_format(rtrack, &saved_rfmt);
7007 audio_track_lock_exit(rtrack);
7008 }
7009 sc->sc_sound_rpause = saved_ai.record.pause;
7010 sc->sc_sound_rparams = saved_rfmt;
7011 abort2:
7012 if (ptrack && error != ENOMEM) {
7013 ptrack->is_pause = saved_ai.play.pause;
7014 audio_track_lock_enter(ptrack);
7015 audio_track_set_format(ptrack, &saved_pfmt);
7016 audio_track_lock_exit(ptrack);
7017 }
7018 sc->sc_sound_ppause = saved_ai.play.pause;
7019 sc->sc_sound_pparams = saved_pfmt;
7020 file->mode = saved_ai.mode;
7021 abort1:
7022 mutex_enter(sc->sc_lock);
7023 audio_hw_setinfo(sc, &saved_ai, NULL);
7024 mutex_exit(sc->sc_lock);
7025
7026 return error;
7027 }
7028
7029 /*
7030 * Write SPECIFIED() parameters within info back to fmt.
7031 * Note that track can be NULL here.
7032 * Return value of 1 indicates that fmt is modified.
7033 * Return value of 0 indicates that fmt is not modified.
7034 * Return value of -1 indicates that error EINVAL has occurred.
7035 */
7036 static int
7037 audio_track_setinfo_check(audio_track_t *track,
7038 audio_format2_t *fmt, const struct audio_prinfo *info)
7039 {
7040 const audio_format2_t *hwfmt;
7041 int changes;
7042
7043 changes = 0;
7044 if (SPECIFIED(info->sample_rate)) {
7045 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7046 return -1;
7047 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7048 return -1;
7049 fmt->sample_rate = info->sample_rate;
7050 changes = 1;
7051 }
7052 if (SPECIFIED(info->encoding)) {
7053 fmt->encoding = info->encoding;
7054 changes = 1;
7055 }
7056 if (SPECIFIED(info->precision)) {
7057 fmt->precision = info->precision;
7058 /* we don't have API to specify stride */
7059 fmt->stride = info->precision;
7060 changes = 1;
7061 }
7062 if (SPECIFIED(info->channels)) {
7063 /*
7064 * We can convert between monaural and stereo each other.
7065 * We can reduce than the number of channels that the hardware
7066 * supports.
7067 */
7068 if (info->channels > 2) {
7069 if (track) {
7070 hwfmt = &track->mixer->hwbuf.fmt;
7071 if (info->channels > hwfmt->channels)
7072 return -1;
7073 } else {
7074 /*
7075 * This should never happen.
7076 * If track == NULL, channels should be <= 2.
7077 */
7078 return -1;
7079 }
7080 }
7081 fmt->channels = info->channels;
7082 changes = 1;
7083 }
7084
7085 if (changes) {
7086 if (audio_check_params(fmt) != 0)
7087 return -1;
7088 }
7089
7090 return changes;
7091 }
7092
7093 /*
7094 * Change water marks for playback track if specfied.
7095 */
7096 static void
7097 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7098 {
7099 u_int blks;
7100 u_int maxblks;
7101 u_int blksize;
7102
7103 KASSERT(audio_track_is_playback(track));
7104
7105 blksize = track->usrbuf_blksize;
7106 maxblks = track->usrbuf.capacity / blksize;
7107
7108 if (SPECIFIED(ai->hiwat)) {
7109 blks = ai->hiwat;
7110 if (blks > maxblks)
7111 blks = maxblks;
7112 if (blks < 2)
7113 blks = 2;
7114 track->usrbuf_usedhigh = blks * blksize;
7115 }
7116 if (SPECIFIED(ai->lowat)) {
7117 blks = ai->lowat;
7118 if (blks > maxblks - 1)
7119 blks = maxblks - 1;
7120 track->usrbuf_usedlow = blks * blksize;
7121 }
7122 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7123 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7124 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7125 blksize;
7126 }
7127 }
7128 }
7129
7130 /*
7131 * Set hardware part of *ai.
7132 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7133 * If oldai is specified, previous parameters are stored.
7134 * This function itself does not roll back if error occurred.
7135 * Must be called with sc_lock && sc_exlock held.
7136 */
7137 static int
7138 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7139 struct audio_info *oldai)
7140 {
7141 const struct audio_prinfo *newpi;
7142 const struct audio_prinfo *newri;
7143 struct audio_prinfo *oldpi;
7144 struct audio_prinfo *oldri;
7145 u_int pgain;
7146 u_int rgain;
7147 u_char pbalance;
7148 u_char rbalance;
7149 int error;
7150
7151 KASSERT(mutex_owned(sc->sc_lock));
7152 KASSERT(sc->sc_exlock);
7153
7154 /* XXX shut up gcc */
7155 oldpi = NULL;
7156 oldri = NULL;
7157
7158 newpi = &newai->play;
7159 newri = &newai->record;
7160 if (oldai) {
7161 oldpi = &oldai->play;
7162 oldri = &oldai->record;
7163 }
7164 error = 0;
7165
7166 /*
7167 * It looks like unnecessary to halt HW mixers to set HW mixers.
7168 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7169 */
7170
7171 if (SPECIFIED(newpi->port)) {
7172 if (oldai)
7173 oldpi->port = au_get_port(sc, &sc->sc_outports);
7174 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7175 if (error) {
7176 device_printf(sc->sc_dev,
7177 "setting play.port=%d failed with %d\n",
7178 newpi->port, error);
7179 goto abort;
7180 }
7181 }
7182 if (SPECIFIED(newri->port)) {
7183 if (oldai)
7184 oldri->port = au_get_port(sc, &sc->sc_inports);
7185 error = au_set_port(sc, &sc->sc_inports, newri->port);
7186 if (error) {
7187 device_printf(sc->sc_dev,
7188 "setting record.port=%d failed with %d\n",
7189 newri->port, error);
7190 goto abort;
7191 }
7192 }
7193
7194 /* Backup play.{gain,balance} */
7195 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7196 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7197 if (oldai) {
7198 oldpi->gain = pgain;
7199 oldpi->balance = pbalance;
7200 }
7201 }
7202 /* Backup record.{gain,balance} */
7203 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7204 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7205 if (oldai) {
7206 oldri->gain = rgain;
7207 oldri->balance = rbalance;
7208 }
7209 }
7210 if (SPECIFIED(newpi->gain)) {
7211 error = au_set_gain(sc, &sc->sc_outports,
7212 newpi->gain, pbalance);
7213 if (error) {
7214 device_printf(sc->sc_dev,
7215 "setting play.gain=%d failed with %d\n",
7216 newpi->gain, error);
7217 goto abort;
7218 }
7219 }
7220 if (SPECIFIED(newri->gain)) {
7221 error = au_set_gain(sc, &sc->sc_inports,
7222 newri->gain, rbalance);
7223 if (error) {
7224 device_printf(sc->sc_dev,
7225 "setting record.gain=%d failed with %d\n",
7226 newri->gain, error);
7227 goto abort;
7228 }
7229 }
7230 if (SPECIFIED_CH(newpi->balance)) {
7231 error = au_set_gain(sc, &sc->sc_outports,
7232 pgain, newpi->balance);
7233 if (error) {
7234 device_printf(sc->sc_dev,
7235 "setting play.balance=%d failed with %d\n",
7236 newpi->balance, error);
7237 goto abort;
7238 }
7239 }
7240 if (SPECIFIED_CH(newri->balance)) {
7241 error = au_set_gain(sc, &sc->sc_inports,
7242 rgain, newri->balance);
7243 if (error) {
7244 device_printf(sc->sc_dev,
7245 "setting record.balance=%d failed with %d\n",
7246 newri->balance, error);
7247 goto abort;
7248 }
7249 }
7250
7251 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7252 if (oldai)
7253 oldai->monitor_gain = au_get_monitor_gain(sc);
7254 error = au_set_monitor_gain(sc, newai->monitor_gain);
7255 if (error) {
7256 device_printf(sc->sc_dev,
7257 "setting monitor_gain=%d failed with %d\n",
7258 newai->monitor_gain, error);
7259 goto abort;
7260 }
7261 }
7262
7263 /* XXX TODO */
7264 /* sc->sc_ai = *ai; */
7265
7266 error = 0;
7267 abort:
7268 return error;
7269 }
7270
7271 /*
7272 * Setup the hardware with mixer format phwfmt, rhwfmt.
7273 * The arguments have following restrictions:
7274 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7275 * or both.
7276 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7277 * - On non-independent devices, phwfmt and rhwfmt must have the same
7278 * parameters.
7279 * - pfil and rfil must be zero-filled.
7280 * If successful,
7281 * - phwfmt, rhwfmt will be overwritten by hardware format.
7282 * - pfil, rfil will be filled with filter information specified by the
7283 * hardware driver.
7284 * and then returns 0. Otherwise returns errno.
7285 * Must be called without sc_lock held.
7286 */
7287 static int
7288 audio_hw_set_format(struct audio_softc *sc, int setmode,
7289 audio_format2_t *phwfmt, audio_format2_t *rhwfmt,
7290 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7291 {
7292 audio_params_t pp, rp;
7293 int error;
7294
7295 KASSERT(phwfmt != NULL);
7296 KASSERT(rhwfmt != NULL);
7297
7298 pp = format2_to_params(phwfmt);
7299 rp = format2_to_params(rhwfmt);
7300
7301 mutex_enter(sc->sc_lock);
7302 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7303 &pp, &rp, pfil, rfil);
7304 if (error) {
7305 mutex_exit(sc->sc_lock);
7306 device_printf(sc->sc_dev,
7307 "set_format failed with %d\n", error);
7308 return error;
7309 }
7310
7311 if (sc->hw_if->commit_settings) {
7312 error = sc->hw_if->commit_settings(sc->hw_hdl);
7313 if (error) {
7314 mutex_exit(sc->sc_lock);
7315 device_printf(sc->sc_dev,
7316 "commit_settings failed with %d\n", error);
7317 return error;
7318 }
7319 }
7320 mutex_exit(sc->sc_lock);
7321
7322 return 0;
7323 }
7324
7325 /*
7326 * Fill audio_info structure. If need_mixerinfo is true, it will also
7327 * fill the hardware mixer information.
7328 * Must be called with sc_exlock held and without sc_lock held.
7329 */
7330 static int
7331 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7332 audio_file_t *file)
7333 {
7334 struct audio_prinfo *ri, *pi;
7335 audio_track_t *track;
7336 audio_track_t *ptrack;
7337 audio_track_t *rtrack;
7338 int gain;
7339
7340 KASSERT(sc->sc_exlock);
7341
7342 ri = &ai->record;
7343 pi = &ai->play;
7344 ptrack = file->ptrack;
7345 rtrack = file->rtrack;
7346
7347 memset(ai, 0, sizeof(*ai));
7348
7349 if (ptrack) {
7350 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7351 pi->channels = ptrack->usrbuf.fmt.channels;
7352 pi->precision = ptrack->usrbuf.fmt.precision;
7353 pi->encoding = ptrack->usrbuf.fmt.encoding;
7354 pi->pause = ptrack->is_pause;
7355 } else {
7356 /* Use sticky parameters if the track is not available. */
7357 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7358 pi->channels = sc->sc_sound_pparams.channels;
7359 pi->precision = sc->sc_sound_pparams.precision;
7360 pi->encoding = sc->sc_sound_pparams.encoding;
7361 pi->pause = sc->sc_sound_ppause;
7362 }
7363 if (rtrack) {
7364 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7365 ri->channels = rtrack->usrbuf.fmt.channels;
7366 ri->precision = rtrack->usrbuf.fmt.precision;
7367 ri->encoding = rtrack->usrbuf.fmt.encoding;
7368 ri->pause = rtrack->is_pause;
7369 } else {
7370 /* Use sticky parameters if the track is not available. */
7371 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7372 ri->channels = sc->sc_sound_rparams.channels;
7373 ri->precision = sc->sc_sound_rparams.precision;
7374 ri->encoding = sc->sc_sound_rparams.encoding;
7375 ri->pause = sc->sc_sound_rpause;
7376 }
7377
7378 if (ptrack) {
7379 pi->seek = ptrack->usrbuf.used;
7380 pi->samples = ptrack->usrbuf_stamp;
7381 pi->eof = ptrack->eofcounter;
7382 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7383 pi->open = 1;
7384 pi->buffer_size = ptrack->usrbuf.capacity;
7385 }
7386 pi->waiting = 0; /* open never hangs */
7387 pi->active = sc->sc_pbusy;
7388
7389 if (rtrack) {
7390 ri->seek = rtrack->usrbuf.used;
7391 ri->samples = rtrack->usrbuf_stamp;
7392 ri->eof = 0;
7393 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7394 ri->open = 1;
7395 ri->buffer_size = rtrack->usrbuf.capacity;
7396 }
7397 ri->waiting = 0; /* open never hangs */
7398 ri->active = sc->sc_rbusy;
7399
7400 /*
7401 * XXX There may be different number of channels between playback
7402 * and recording, so that blocksize also may be different.
7403 * But struct audio_info has an united blocksize...
7404 * Here, I use play info precedencely if ptrack is available,
7405 * otherwise record info.
7406 *
7407 * XXX hiwat/lowat is a playback-only parameter. What should I
7408 * return for a record-only descriptor?
7409 */
7410 track = ptrack ? ptrack : rtrack;
7411 if (track) {
7412 ai->blocksize = track->usrbuf_blksize;
7413 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7414 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7415 }
7416 ai->mode = file->mode;
7417
7418 /*
7419 * For backward compatibility, we have to pad these five fields
7420 * a fake non-zero value even if there are no tracks.
7421 */
7422 if (ptrack == NULL)
7423 pi->buffer_size = 65536;
7424 if (rtrack == NULL)
7425 ri->buffer_size = 65536;
7426 if (ptrack == NULL && rtrack == NULL) {
7427 ai->blocksize = 2048;
7428 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7429 ai->lowat = ai->hiwat * 3 / 4;
7430 }
7431
7432 if (need_mixerinfo) {
7433 mutex_enter(sc->sc_lock);
7434
7435 pi->port = au_get_port(sc, &sc->sc_outports);
7436 ri->port = au_get_port(sc, &sc->sc_inports);
7437
7438 pi->avail_ports = sc->sc_outports.allports;
7439 ri->avail_ports = sc->sc_inports.allports;
7440
7441 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7442 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7443
7444 if (sc->sc_monitor_port != -1) {
7445 gain = au_get_monitor_gain(sc);
7446 if (gain != -1)
7447 ai->monitor_gain = gain;
7448 }
7449 mutex_exit(sc->sc_lock);
7450 }
7451
7452 return 0;
7453 }
7454
7455 /*
7456 * Return true if playback is configured.
7457 * This function can be used after audioattach.
7458 */
7459 static bool
7460 audio_can_playback(struct audio_softc *sc)
7461 {
7462
7463 return (sc->sc_pmixer != NULL);
7464 }
7465
7466 /*
7467 * Return true if recording is configured.
7468 * This function can be used after audioattach.
7469 */
7470 static bool
7471 audio_can_capture(struct audio_softc *sc)
7472 {
7473
7474 return (sc->sc_rmixer != NULL);
7475 }
7476
7477 /*
7478 * Get the afp->index'th item from the valid one of format[].
7479 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7480 *
7481 * This is common routines for query_format.
7482 * If your hardware driver has struct audio_format[], the simplest case
7483 * you can write your query_format interface as follows:
7484 *
7485 * struct audio_format foo_format[] = { ... };
7486 *
7487 * int
7488 * foo_query_format(void *hdl, audio_format_query_t *afp)
7489 * {
7490 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7491 * }
7492 */
7493 int
7494 audio_query_format(const struct audio_format *format, int nformats,
7495 audio_format_query_t *afp)
7496 {
7497 const struct audio_format *f;
7498 int idx;
7499 int i;
7500
7501 idx = 0;
7502 for (i = 0; i < nformats; i++) {
7503 f = &format[i];
7504 if (!AUFMT_IS_VALID(f))
7505 continue;
7506 if (afp->index == idx) {
7507 afp->fmt = *f;
7508 return 0;
7509 }
7510 idx++;
7511 }
7512 return EINVAL;
7513 }
7514
7515 /*
7516 * This function is provided for the hardware driver's set_format() to
7517 * find index matches with 'param' from array of audio_format_t 'formats'.
7518 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7519 * It returns the matched index and never fails. Because param passed to
7520 * set_format() is selected from query_format().
7521 * This function will be an alternative to auconv_set_converter() to
7522 * find index.
7523 */
7524 int
7525 audio_indexof_format(const struct audio_format *formats, int nformats,
7526 int mode, const audio_params_t *param)
7527 {
7528 const struct audio_format *f;
7529 int index;
7530 int j;
7531
7532 for (index = 0; index < nformats; index++) {
7533 f = &formats[index];
7534
7535 if (!AUFMT_IS_VALID(f))
7536 continue;
7537 if ((f->mode & mode) == 0)
7538 continue;
7539 if (f->encoding != param->encoding)
7540 continue;
7541 if (f->validbits != param->precision)
7542 continue;
7543 if (f->channels != param->channels)
7544 continue;
7545
7546 if (f->frequency_type == 0) {
7547 if (param->sample_rate < f->frequency[0] ||
7548 param->sample_rate > f->frequency[1])
7549 continue;
7550 } else {
7551 for (j = 0; j < f->frequency_type; j++) {
7552 if (param->sample_rate == f->frequency[j])
7553 break;
7554 }
7555 if (j == f->frequency_type)
7556 continue;
7557 }
7558
7559 /* Then, matched */
7560 return index;
7561 }
7562
7563 /* Not matched. This should not be happened. */
7564 panic("%s: cannot find matched format\n", __func__);
7565 }
7566
7567 /*
7568 * Get or set hardware blocksize in msec.
7569 * XXX It's for debug.
7570 */
7571 static int
7572 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7573 {
7574 struct sysctlnode node;
7575 struct audio_softc *sc;
7576 audio_format2_t phwfmt;
7577 audio_format2_t rhwfmt;
7578 audio_filter_reg_t pfil;
7579 audio_filter_reg_t rfil;
7580 int t;
7581 int old_blk_ms;
7582 int mode;
7583 int error;
7584
7585 node = *rnode;
7586 sc = node.sysctl_data;
7587
7588 error = audio_exlock_enter(sc);
7589 if (error)
7590 return error;
7591
7592 old_blk_ms = sc->sc_blk_ms;
7593 t = old_blk_ms;
7594 node.sysctl_data = &t;
7595 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7596 if (error || newp == NULL)
7597 goto abort;
7598
7599 if (t < 0) {
7600 error = EINVAL;
7601 goto abort;
7602 }
7603
7604 if (sc->sc_popens + sc->sc_ropens > 0) {
7605 error = EBUSY;
7606 goto abort;
7607 }
7608 sc->sc_blk_ms = t;
7609 mode = 0;
7610 if (sc->sc_pmixer) {
7611 mode |= AUMODE_PLAY;
7612 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7613 }
7614 if (sc->sc_rmixer) {
7615 mode |= AUMODE_RECORD;
7616 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7617 }
7618
7619 /* re-init hardware */
7620 memset(&pfil, 0, sizeof(pfil));
7621 memset(&rfil, 0, sizeof(rfil));
7622 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7623 if (error) {
7624 goto abort;
7625 }
7626
7627 /* re-init track mixer */
7628 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7629 if (error) {
7630 /* Rollback */
7631 sc->sc_blk_ms = old_blk_ms;
7632 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7633 goto abort;
7634 }
7635 error = 0;
7636 abort:
7637 audio_exlock_exit(sc);
7638 return error;
7639 }
7640
7641 /*
7642 * Get or set multiuser mode.
7643 */
7644 static int
7645 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7646 {
7647 struct sysctlnode node;
7648 struct audio_softc *sc;
7649 bool t;
7650 int error;
7651
7652 node = *rnode;
7653 sc = node.sysctl_data;
7654
7655 error = audio_exlock_enter(sc);
7656 if (error)
7657 return error;
7658
7659 t = sc->sc_multiuser;
7660 node.sysctl_data = &t;
7661 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7662 if (error || newp == NULL)
7663 goto abort;
7664
7665 sc->sc_multiuser = t;
7666 error = 0;
7667 abort:
7668 audio_exlock_exit(sc);
7669 return error;
7670 }
7671
7672 #if defined(AUDIO_DEBUG)
7673 /*
7674 * Get or set debug verbose level. (0..4)
7675 * XXX It's for debug.
7676 * XXX It is not separated per device.
7677 */
7678 static int
7679 audio_sysctl_debug(SYSCTLFN_ARGS)
7680 {
7681 struct sysctlnode node;
7682 int t;
7683 int error;
7684
7685 node = *rnode;
7686 t = audiodebug;
7687 node.sysctl_data = &t;
7688 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7689 if (error || newp == NULL)
7690 return error;
7691
7692 if (t < 0 || t > 4)
7693 return EINVAL;
7694 audiodebug = t;
7695 printf("audio: audiodebug = %d\n", audiodebug);
7696 return 0;
7697 }
7698 #endif /* AUDIO_DEBUG */
7699
7700 #ifdef AUDIO_PM_IDLE
7701 static void
7702 audio_idle(void *arg)
7703 {
7704 device_t dv = arg;
7705 struct audio_softc *sc = device_private(dv);
7706
7707 #ifdef PNP_DEBUG
7708 extern int pnp_debug_idle;
7709 if (pnp_debug_idle)
7710 printf("%s: idle handler called\n", device_xname(dv));
7711 #endif
7712
7713 sc->sc_idle = true;
7714
7715 /* XXX joerg Make pmf_device_suspend handle children? */
7716 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7717 return;
7718
7719 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7720 pmf_device_resume(dv, PMF_Q_SELF);
7721 }
7722
7723 static void
7724 audio_activity(device_t dv, devactive_t type)
7725 {
7726 struct audio_softc *sc = device_private(dv);
7727
7728 if (type != DVA_SYSTEM)
7729 return;
7730
7731 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7732
7733 sc->sc_idle = false;
7734 if (!device_is_active(dv)) {
7735 /* XXX joerg How to deal with a failing resume... */
7736 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7737 pmf_device_resume(dv, PMF_Q_SELF);
7738 }
7739 }
7740 #endif
7741
7742 static bool
7743 audio_suspend(device_t dv, const pmf_qual_t *qual)
7744 {
7745 struct audio_softc *sc = device_private(dv);
7746 int error;
7747
7748 error = audio_exlock_mutex_enter(sc);
7749 if (error)
7750 return error;
7751 audio_mixer_capture(sc);
7752
7753 /* Halts mixers but don't clear busy flag for resume */
7754 if (sc->sc_pbusy) {
7755 audio_pmixer_halt(sc);
7756 sc->sc_pbusy = true;
7757 }
7758 if (sc->sc_rbusy) {
7759 audio_rmixer_halt(sc);
7760 sc->sc_rbusy = true;
7761 }
7762
7763 #ifdef AUDIO_PM_IDLE
7764 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7765 #endif
7766 audio_exlock_mutex_exit(sc);
7767
7768 return true;
7769 }
7770
7771 static bool
7772 audio_resume(device_t dv, const pmf_qual_t *qual)
7773 {
7774 struct audio_softc *sc = device_private(dv);
7775 struct audio_info ai;
7776 int error;
7777
7778 error = audio_exlock_mutex_enter(sc);
7779 if (error)
7780 return error;
7781
7782 audio_mixer_restore(sc);
7783 /* XXX ? */
7784 AUDIO_INITINFO(&ai);
7785 audio_hw_setinfo(sc, &ai, NULL);
7786
7787 if (sc->sc_pbusy)
7788 audio_pmixer_start(sc, true);
7789 if (sc->sc_rbusy)
7790 audio_rmixer_start(sc);
7791
7792 audio_exlock_mutex_exit(sc);
7793
7794 return true;
7795 }
7796
7797 #if defined(AUDIO_DEBUG)
7798 static void
7799 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7800 {
7801 int n;
7802
7803 n = 0;
7804 n += snprintf(buf + n, bufsize - n, "%s",
7805 audio_encoding_name(fmt->encoding));
7806 if (fmt->precision == fmt->stride) {
7807 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7808 } else {
7809 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7810 fmt->precision, fmt->stride);
7811 }
7812
7813 snprintf(buf + n, bufsize - n, " %uch %uHz",
7814 fmt->channels, fmt->sample_rate);
7815 }
7816 #endif
7817
7818 #if defined(AUDIO_DEBUG)
7819 static void
7820 audio_print_format2(const char *s, const audio_format2_t *fmt)
7821 {
7822 char fmtstr[64];
7823
7824 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7825 printf("%s %s\n", s, fmtstr);
7826 }
7827 #endif
7828
7829 #ifdef DIAGNOSTIC
7830 void
7831 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7832 {
7833
7834 KASSERTMSG(fmt, "called from %s", where);
7835
7836 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7837 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7838 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7839 "called from %s: fmt->stride=%d", where, fmt->stride);
7840 } else {
7841 KASSERTMSG(fmt->stride % NBBY == 0,
7842 "called from %s: fmt->stride=%d", where, fmt->stride);
7843 }
7844 KASSERTMSG(fmt->precision <= fmt->stride,
7845 "called from %s: fmt->precision=%d fmt->stride=%d",
7846 where, fmt->precision, fmt->stride);
7847 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7848 "called from %s: fmt->channels=%d", where, fmt->channels);
7849
7850 /* XXX No check for encodings? */
7851 }
7852
7853 void
7854 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7855 {
7856
7857 KASSERT(arg != NULL);
7858 KASSERT(arg->src != NULL);
7859 KASSERT(arg->dst != NULL);
7860 audio_diagnostic_format2(where, arg->srcfmt);
7861 audio_diagnostic_format2(where, arg->dstfmt);
7862 KASSERT(arg->count > 0);
7863 }
7864
7865 void
7866 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7867 {
7868
7869 KASSERTMSG(ring, "called from %s", where);
7870 audio_diagnostic_format2(where, &ring->fmt);
7871 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7872 "called from %s: ring->capacity=%d", where, ring->capacity);
7873 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7874 "called from %s: ring->used=%d ring->capacity=%d",
7875 where, ring->used, ring->capacity);
7876 if (ring->capacity == 0) {
7877 KASSERTMSG(ring->mem == NULL,
7878 "called from %s: capacity == 0 but mem != NULL", where);
7879 } else {
7880 KASSERTMSG(ring->mem != NULL,
7881 "called from %s: capacity != 0 but mem == NULL", where);
7882 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7883 "called from %s: ring->head=%d ring->capacity=%d",
7884 where, ring->head, ring->capacity);
7885 }
7886 }
7887 #endif /* DIAGNOSTIC */
7888
7889
7890 /*
7891 * Mixer driver
7892 */
7893
7894 /*
7895 * Must be called without sc_lock held.
7896 */
7897 int
7898 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7899 struct lwp *l)
7900 {
7901 struct file *fp;
7902 audio_file_t *af;
7903 int error, fd;
7904
7905 TRACE(1, "flags=0x%x", flags);
7906
7907 error = fd_allocfile(&fp, &fd);
7908 if (error)
7909 return error;
7910
7911 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7912 af->sc = sc;
7913 af->dev = dev;
7914
7915 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7916 KASSERT(error == EMOVEFD);
7917
7918 return error;
7919 }
7920
7921 /*
7922 * Add a process to those to be signalled on mixer activity.
7923 * If the process has already been added, do nothing.
7924 * Must be called with sc_exlock held and without sc_lock held.
7925 */
7926 static void
7927 mixer_async_add(struct audio_softc *sc, pid_t pid)
7928 {
7929 int i;
7930
7931 KASSERT(sc->sc_exlock);
7932
7933 /* If already exists, returns without doing anything. */
7934 for (i = 0; i < sc->sc_am_used; i++) {
7935 if (sc->sc_am[i] == pid)
7936 return;
7937 }
7938
7939 /* Extend array if necessary. */
7940 if (sc->sc_am_used >= sc->sc_am_capacity) {
7941 sc->sc_am_capacity += AM_CAPACITY;
7942 sc->sc_am = kern_realloc(sc->sc_am,
7943 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
7944 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
7945 }
7946
7947 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
7948 sc->sc_am[sc->sc_am_used++] = pid;
7949 }
7950
7951 /*
7952 * Remove a process from those to be signalled on mixer activity.
7953 * If the process has not been added, do nothing.
7954 * Must be called with sc_exlock held and without sc_lock held.
7955 */
7956 static void
7957 mixer_async_remove(struct audio_softc *sc, pid_t pid)
7958 {
7959 int i;
7960
7961 KASSERT(sc->sc_exlock);
7962
7963 for (i = 0; i < sc->sc_am_used; i++) {
7964 if (sc->sc_am[i] == pid) {
7965 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
7966 TRACE(2, "am[%d](%d) removed, used=%d",
7967 i, (int)pid, sc->sc_am_used);
7968
7969 /* Empty array if no longer necessary. */
7970 if (sc->sc_am_used == 0) {
7971 kern_free(sc->sc_am);
7972 sc->sc_am = NULL;
7973 sc->sc_am_capacity = 0;
7974 TRACE(2, "released");
7975 }
7976 return;
7977 }
7978 }
7979 }
7980
7981 /*
7982 * Signal all processes waiting for the mixer.
7983 * Must be called with sc_exlock held.
7984 */
7985 static void
7986 mixer_signal(struct audio_softc *sc)
7987 {
7988 proc_t *p;
7989 int i;
7990
7991 KASSERT(sc->sc_exlock);
7992
7993 for (i = 0; i < sc->sc_am_used; i++) {
7994 mutex_enter(proc_lock);
7995 p = proc_find(sc->sc_am[i]);
7996 if (p)
7997 psignal(p, SIGIO);
7998 mutex_exit(proc_lock);
7999 }
8000 }
8001
8002 /*
8003 * Close a mixer device
8004 */
8005 int
8006 mixer_close(struct audio_softc *sc, audio_file_t *file)
8007 {
8008 int error;
8009
8010 error = audio_exlock_enter(sc);
8011 if (error)
8012 return error;
8013 TRACE(1, "");
8014 mixer_async_remove(sc, curproc->p_pid);
8015 audio_exlock_exit(sc);
8016
8017 return 0;
8018 }
8019
8020 /*
8021 * Must be called without sc_lock nor sc_exlock held.
8022 */
8023 int
8024 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8025 struct lwp *l)
8026 {
8027 mixer_devinfo_t *mi;
8028 mixer_ctrl_t *mc;
8029 int error;
8030
8031 TRACE(2, "(%lu,'%c',%lu)",
8032 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8033 error = EINVAL;
8034
8035 /* we can return cached values if we are sleeping */
8036 if (cmd != AUDIO_MIXER_READ) {
8037 mutex_enter(sc->sc_lock);
8038 device_active(sc->sc_dev, DVA_SYSTEM);
8039 mutex_exit(sc->sc_lock);
8040 }
8041
8042 switch (cmd) {
8043 case FIOASYNC:
8044 error = audio_exlock_enter(sc);
8045 if (error)
8046 break;
8047 if (*(int *)addr) {
8048 mixer_async_add(sc, curproc->p_pid);
8049 } else {
8050 mixer_async_remove(sc, curproc->p_pid);
8051 }
8052 audio_exlock_exit(sc);
8053 break;
8054
8055 case AUDIO_GETDEV:
8056 TRACE(2, "AUDIO_GETDEV");
8057 mutex_enter(sc->sc_lock);
8058 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8059 mutex_exit(sc->sc_lock);
8060 break;
8061
8062 case AUDIO_MIXER_DEVINFO:
8063 TRACE(2, "AUDIO_MIXER_DEVINFO");
8064 mi = (mixer_devinfo_t *)addr;
8065
8066 mi->un.v.delta = 0; /* default */
8067 mutex_enter(sc->sc_lock);
8068 error = audio_query_devinfo(sc, mi);
8069 mutex_exit(sc->sc_lock);
8070 break;
8071
8072 case AUDIO_MIXER_READ:
8073 TRACE(2, "AUDIO_MIXER_READ");
8074 mc = (mixer_ctrl_t *)addr;
8075
8076 error = audio_exlock_mutex_enter(sc);
8077 if (error)
8078 break;
8079 if (device_is_active(sc->hw_dev))
8080 error = audio_get_port(sc, mc);
8081 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8082 error = ENXIO;
8083 else {
8084 int dev = mc->dev;
8085 memcpy(mc, &sc->sc_mixer_state[dev],
8086 sizeof(mixer_ctrl_t));
8087 error = 0;
8088 }
8089 audio_exlock_mutex_exit(sc);
8090 break;
8091
8092 case AUDIO_MIXER_WRITE:
8093 TRACE(2, "AUDIO_MIXER_WRITE");
8094 error = audio_exlock_mutex_enter(sc);
8095 if (error)
8096 break;
8097 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8098 if (error) {
8099 audio_exlock_mutex_exit(sc);
8100 break;
8101 }
8102
8103 if (sc->hw_if->commit_settings) {
8104 error = sc->hw_if->commit_settings(sc->hw_hdl);
8105 if (error) {
8106 audio_exlock_mutex_exit(sc);
8107 break;
8108 }
8109 }
8110 mutex_exit(sc->sc_lock);
8111 mixer_signal(sc);
8112 audio_exlock_exit(sc);
8113 break;
8114
8115 default:
8116 if (sc->hw_if->dev_ioctl) {
8117 mutex_enter(sc->sc_lock);
8118 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8119 cmd, addr, flag, l);
8120 mutex_exit(sc->sc_lock);
8121 } else
8122 error = EINVAL;
8123 break;
8124 }
8125 TRACE(2, "(%lu,'%c',%lu) result %d",
8126 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8127 return error;
8128 }
8129
8130 /*
8131 * Must be called with sc_lock held.
8132 */
8133 int
8134 au_portof(struct audio_softc *sc, char *name, int class)
8135 {
8136 mixer_devinfo_t mi;
8137
8138 KASSERT(mutex_owned(sc->sc_lock));
8139
8140 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8141 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8142 return mi.index;
8143 }
8144 return -1;
8145 }
8146
8147 /*
8148 * Must be called with sc_lock held.
8149 */
8150 void
8151 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8152 mixer_devinfo_t *mi, const struct portname *tbl)
8153 {
8154 int i, j;
8155
8156 KASSERT(mutex_owned(sc->sc_lock));
8157
8158 ports->index = mi->index;
8159 if (mi->type == AUDIO_MIXER_ENUM) {
8160 ports->isenum = true;
8161 for(i = 0; tbl[i].name; i++)
8162 for(j = 0; j < mi->un.e.num_mem; j++)
8163 if (strcmp(mi->un.e.member[j].label.name,
8164 tbl[i].name) == 0) {
8165 ports->allports |= tbl[i].mask;
8166 ports->aumask[ports->nports] = tbl[i].mask;
8167 ports->misel[ports->nports] =
8168 mi->un.e.member[j].ord;
8169 ports->miport[ports->nports] =
8170 au_portof(sc, mi->un.e.member[j].label.name,
8171 mi->mixer_class);
8172 if (ports->mixerout != -1 &&
8173 ports->miport[ports->nports] != -1)
8174 ports->isdual = true;
8175 ++ports->nports;
8176 }
8177 } else if (mi->type == AUDIO_MIXER_SET) {
8178 for(i = 0; tbl[i].name; i++)
8179 for(j = 0; j < mi->un.s.num_mem; j++)
8180 if (strcmp(mi->un.s.member[j].label.name,
8181 tbl[i].name) == 0) {
8182 ports->allports |= tbl[i].mask;
8183 ports->aumask[ports->nports] = tbl[i].mask;
8184 ports->misel[ports->nports] =
8185 mi->un.s.member[j].mask;
8186 ports->miport[ports->nports] =
8187 au_portof(sc, mi->un.s.member[j].label.name,
8188 mi->mixer_class);
8189 ++ports->nports;
8190 }
8191 }
8192 }
8193
8194 /*
8195 * Must be called with sc_lock && sc_exlock held.
8196 */
8197 int
8198 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8199 {
8200
8201 KASSERT(mutex_owned(sc->sc_lock));
8202 KASSERT(sc->sc_exlock);
8203
8204 ct->type = AUDIO_MIXER_VALUE;
8205 ct->un.value.num_channels = 2;
8206 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8207 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8208 if (audio_set_port(sc, ct) == 0)
8209 return 0;
8210 ct->un.value.num_channels = 1;
8211 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8212 return audio_set_port(sc, ct);
8213 }
8214
8215 /*
8216 * Must be called with sc_lock && sc_exlock held.
8217 */
8218 int
8219 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8220 {
8221 int error;
8222
8223 KASSERT(mutex_owned(sc->sc_lock));
8224 KASSERT(sc->sc_exlock);
8225
8226 ct->un.value.num_channels = 2;
8227 if (audio_get_port(sc, ct) == 0) {
8228 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8229 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8230 } else {
8231 ct->un.value.num_channels = 1;
8232 error = audio_get_port(sc, ct);
8233 if (error)
8234 return error;
8235 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8236 }
8237 return 0;
8238 }
8239
8240 /*
8241 * Must be called with sc_lock && sc_exlock held.
8242 */
8243 int
8244 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8245 int gain, int balance)
8246 {
8247 mixer_ctrl_t ct;
8248 int i, error;
8249 int l, r;
8250 u_int mask;
8251 int nset;
8252
8253 KASSERT(mutex_owned(sc->sc_lock));
8254 KASSERT(sc->sc_exlock);
8255
8256 if (balance == AUDIO_MID_BALANCE) {
8257 l = r = gain;
8258 } else if (balance < AUDIO_MID_BALANCE) {
8259 l = gain;
8260 r = (balance * gain) / AUDIO_MID_BALANCE;
8261 } else {
8262 r = gain;
8263 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8264 / AUDIO_MID_BALANCE;
8265 }
8266 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8267
8268 if (ports->index == -1) {
8269 usemaster:
8270 if (ports->master == -1)
8271 return 0; /* just ignore it silently */
8272 ct.dev = ports->master;
8273 error = au_set_lr_value(sc, &ct, l, r);
8274 } else {
8275 ct.dev = ports->index;
8276 if (ports->isenum) {
8277 ct.type = AUDIO_MIXER_ENUM;
8278 error = audio_get_port(sc, &ct);
8279 if (error)
8280 return error;
8281 if (ports->isdual) {
8282 if (ports->cur_port == -1)
8283 ct.dev = ports->master;
8284 else
8285 ct.dev = ports->miport[ports->cur_port];
8286 error = au_set_lr_value(sc, &ct, l, r);
8287 } else {
8288 for(i = 0; i < ports->nports; i++)
8289 if (ports->misel[i] == ct.un.ord) {
8290 ct.dev = ports->miport[i];
8291 if (ct.dev == -1 ||
8292 au_set_lr_value(sc, &ct, l, r))
8293 goto usemaster;
8294 else
8295 break;
8296 }
8297 }
8298 } else {
8299 ct.type = AUDIO_MIXER_SET;
8300 error = audio_get_port(sc, &ct);
8301 if (error)
8302 return error;
8303 mask = ct.un.mask;
8304 nset = 0;
8305 for(i = 0; i < ports->nports; i++) {
8306 if (ports->misel[i] & mask) {
8307 ct.dev = ports->miport[i];
8308 if (ct.dev != -1 &&
8309 au_set_lr_value(sc, &ct, l, r) == 0)
8310 nset++;
8311 }
8312 }
8313 if (nset == 0)
8314 goto usemaster;
8315 }
8316 }
8317 if (!error)
8318 mixer_signal(sc);
8319 return error;
8320 }
8321
8322 /*
8323 * Must be called with sc_lock && sc_exlock held.
8324 */
8325 void
8326 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8327 u_int *pgain, u_char *pbalance)
8328 {
8329 mixer_ctrl_t ct;
8330 int i, l, r, n;
8331 int lgain, rgain;
8332
8333 KASSERT(mutex_owned(sc->sc_lock));
8334 KASSERT(sc->sc_exlock);
8335
8336 lgain = AUDIO_MAX_GAIN / 2;
8337 rgain = AUDIO_MAX_GAIN / 2;
8338 if (ports->index == -1) {
8339 usemaster:
8340 if (ports->master == -1)
8341 goto bad;
8342 ct.dev = ports->master;
8343 ct.type = AUDIO_MIXER_VALUE;
8344 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8345 goto bad;
8346 } else {
8347 ct.dev = ports->index;
8348 if (ports->isenum) {
8349 ct.type = AUDIO_MIXER_ENUM;
8350 if (audio_get_port(sc, &ct))
8351 goto bad;
8352 ct.type = AUDIO_MIXER_VALUE;
8353 if (ports->isdual) {
8354 if (ports->cur_port == -1)
8355 ct.dev = ports->master;
8356 else
8357 ct.dev = ports->miport[ports->cur_port];
8358 au_get_lr_value(sc, &ct, &lgain, &rgain);
8359 } else {
8360 for(i = 0; i < ports->nports; i++)
8361 if (ports->misel[i] == ct.un.ord) {
8362 ct.dev = ports->miport[i];
8363 if (ct.dev == -1 ||
8364 au_get_lr_value(sc, &ct,
8365 &lgain, &rgain))
8366 goto usemaster;
8367 else
8368 break;
8369 }
8370 }
8371 } else {
8372 ct.type = AUDIO_MIXER_SET;
8373 if (audio_get_port(sc, &ct))
8374 goto bad;
8375 ct.type = AUDIO_MIXER_VALUE;
8376 lgain = rgain = n = 0;
8377 for(i = 0; i < ports->nports; i++) {
8378 if (ports->misel[i] & ct.un.mask) {
8379 ct.dev = ports->miport[i];
8380 if (ct.dev == -1 ||
8381 au_get_lr_value(sc, &ct, &l, &r))
8382 goto usemaster;
8383 else {
8384 lgain += l;
8385 rgain += r;
8386 n++;
8387 }
8388 }
8389 }
8390 if (n != 0) {
8391 lgain /= n;
8392 rgain /= n;
8393 }
8394 }
8395 }
8396 bad:
8397 if (lgain == rgain) { /* handles lgain==rgain==0 */
8398 *pgain = lgain;
8399 *pbalance = AUDIO_MID_BALANCE;
8400 } else if (lgain < rgain) {
8401 *pgain = rgain;
8402 /* balance should be > AUDIO_MID_BALANCE */
8403 *pbalance = AUDIO_RIGHT_BALANCE -
8404 (AUDIO_MID_BALANCE * lgain) / rgain;
8405 } else /* lgain > rgain */ {
8406 *pgain = lgain;
8407 /* balance should be < AUDIO_MID_BALANCE */
8408 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8409 }
8410 }
8411
8412 /*
8413 * Must be called with sc_lock && sc_exlock held.
8414 */
8415 int
8416 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8417 {
8418 mixer_ctrl_t ct;
8419 int i, error, use_mixerout;
8420
8421 KASSERT(mutex_owned(sc->sc_lock));
8422 KASSERT(sc->sc_exlock);
8423
8424 use_mixerout = 1;
8425 if (port == 0) {
8426 if (ports->allports == 0)
8427 return 0; /* Allow this special case. */
8428 else if (ports->isdual) {
8429 if (ports->cur_port == -1) {
8430 return 0;
8431 } else {
8432 port = ports->aumask[ports->cur_port];
8433 ports->cur_port = -1;
8434 use_mixerout = 0;
8435 }
8436 }
8437 }
8438 if (ports->index == -1)
8439 return EINVAL;
8440 ct.dev = ports->index;
8441 if (ports->isenum) {
8442 if (port & (port-1))
8443 return EINVAL; /* Only one port allowed */
8444 ct.type = AUDIO_MIXER_ENUM;
8445 error = EINVAL;
8446 for(i = 0; i < ports->nports; i++)
8447 if (ports->aumask[i] == port) {
8448 if (ports->isdual && use_mixerout) {
8449 ct.un.ord = ports->mixerout;
8450 ports->cur_port = i;
8451 } else {
8452 ct.un.ord = ports->misel[i];
8453 }
8454 error = audio_set_port(sc, &ct);
8455 break;
8456 }
8457 } else {
8458 ct.type = AUDIO_MIXER_SET;
8459 ct.un.mask = 0;
8460 for(i = 0; i < ports->nports; i++)
8461 if (ports->aumask[i] & port)
8462 ct.un.mask |= ports->misel[i];
8463 if (port != 0 && ct.un.mask == 0)
8464 error = EINVAL;
8465 else
8466 error = audio_set_port(sc, &ct);
8467 }
8468 if (!error)
8469 mixer_signal(sc);
8470 return error;
8471 }
8472
8473 /*
8474 * Must be called with sc_lock && sc_exlock held.
8475 */
8476 int
8477 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8478 {
8479 mixer_ctrl_t ct;
8480 int i, aumask;
8481
8482 KASSERT(mutex_owned(sc->sc_lock));
8483 KASSERT(sc->sc_exlock);
8484
8485 if (ports->index == -1)
8486 return 0;
8487 ct.dev = ports->index;
8488 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8489 if (audio_get_port(sc, &ct))
8490 return 0;
8491 aumask = 0;
8492 if (ports->isenum) {
8493 if (ports->isdual && ports->cur_port != -1) {
8494 if (ports->mixerout == ct.un.ord)
8495 aumask = ports->aumask[ports->cur_port];
8496 else
8497 ports->cur_port = -1;
8498 }
8499 if (aumask == 0)
8500 for(i = 0; i < ports->nports; i++)
8501 if (ports->misel[i] == ct.un.ord)
8502 aumask = ports->aumask[i];
8503 } else {
8504 for(i = 0; i < ports->nports; i++)
8505 if (ct.un.mask & ports->misel[i])
8506 aumask |= ports->aumask[i];
8507 }
8508 return aumask;
8509 }
8510
8511 /*
8512 * It returns 0 if success, otherwise errno.
8513 * Must be called only if sc->sc_monitor_port != -1.
8514 * Must be called with sc_lock && sc_exlock held.
8515 */
8516 static int
8517 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8518 {
8519 mixer_ctrl_t ct;
8520
8521 KASSERT(mutex_owned(sc->sc_lock));
8522 KASSERT(sc->sc_exlock);
8523
8524 ct.dev = sc->sc_monitor_port;
8525 ct.type = AUDIO_MIXER_VALUE;
8526 ct.un.value.num_channels = 1;
8527 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8528 return audio_set_port(sc, &ct);
8529 }
8530
8531 /*
8532 * It returns monitor gain if success, otherwise -1.
8533 * Must be called only if sc->sc_monitor_port != -1.
8534 * Must be called with sc_lock && sc_exlock held.
8535 */
8536 static int
8537 au_get_monitor_gain(struct audio_softc *sc)
8538 {
8539 mixer_ctrl_t ct;
8540
8541 KASSERT(mutex_owned(sc->sc_lock));
8542 KASSERT(sc->sc_exlock);
8543
8544 ct.dev = sc->sc_monitor_port;
8545 ct.type = AUDIO_MIXER_VALUE;
8546 ct.un.value.num_channels = 1;
8547 if (audio_get_port(sc, &ct))
8548 return -1;
8549 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8550 }
8551
8552 /*
8553 * Must be called with sc_lock && sc_exlock held.
8554 */
8555 static int
8556 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8557 {
8558
8559 KASSERT(mutex_owned(sc->sc_lock));
8560 KASSERT(sc->sc_exlock);
8561
8562 return sc->hw_if->set_port(sc->hw_hdl, mc);
8563 }
8564
8565 /*
8566 * Must be called with sc_lock && sc_exlock held.
8567 */
8568 static int
8569 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8570 {
8571
8572 KASSERT(mutex_owned(sc->sc_lock));
8573 KASSERT(sc->sc_exlock);
8574
8575 return sc->hw_if->get_port(sc->hw_hdl, mc);
8576 }
8577
8578 /*
8579 * Must be called with sc_lock && sc_exlock held.
8580 */
8581 static void
8582 audio_mixer_capture(struct audio_softc *sc)
8583 {
8584 mixer_devinfo_t mi;
8585 mixer_ctrl_t *mc;
8586
8587 KASSERT(mutex_owned(sc->sc_lock));
8588 KASSERT(sc->sc_exlock);
8589
8590 for (mi.index = 0;; mi.index++) {
8591 if (audio_query_devinfo(sc, &mi) != 0)
8592 break;
8593 KASSERT(mi.index < sc->sc_nmixer_states);
8594 if (mi.type == AUDIO_MIXER_CLASS)
8595 continue;
8596 mc = &sc->sc_mixer_state[mi.index];
8597 mc->dev = mi.index;
8598 mc->type = mi.type;
8599 mc->un.value.num_channels = mi.un.v.num_channels;
8600 (void)audio_get_port(sc, mc);
8601 }
8602
8603 return;
8604 }
8605
8606 /*
8607 * Must be called with sc_lock && sc_exlock held.
8608 */
8609 static void
8610 audio_mixer_restore(struct audio_softc *sc)
8611 {
8612 mixer_devinfo_t mi;
8613 mixer_ctrl_t *mc;
8614
8615 KASSERT(mutex_owned(sc->sc_lock));
8616 KASSERT(sc->sc_exlock);
8617
8618 for (mi.index = 0; ; mi.index++) {
8619 if (audio_query_devinfo(sc, &mi) != 0)
8620 break;
8621 if (mi.type == AUDIO_MIXER_CLASS)
8622 continue;
8623 mc = &sc->sc_mixer_state[mi.index];
8624 (void)audio_set_port(sc, mc);
8625 }
8626 if (sc->hw_if->commit_settings)
8627 sc->hw_if->commit_settings(sc->hw_hdl);
8628
8629 return;
8630 }
8631
8632 static void
8633 audio_volume_down(device_t dv)
8634 {
8635 struct audio_softc *sc = device_private(dv);
8636 mixer_devinfo_t mi;
8637 int newgain;
8638 u_int gain;
8639 u_char balance;
8640
8641 if (audio_exlock_mutex_enter(sc) != 0)
8642 return;
8643 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8644 mi.index = sc->sc_outports.master;
8645 mi.un.v.delta = 0;
8646 if (audio_query_devinfo(sc, &mi) == 0) {
8647 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8648 newgain = gain - mi.un.v.delta;
8649 if (newgain < AUDIO_MIN_GAIN)
8650 newgain = AUDIO_MIN_GAIN;
8651 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8652 }
8653 }
8654 audio_exlock_mutex_exit(sc);
8655 }
8656
8657 static void
8658 audio_volume_up(device_t dv)
8659 {
8660 struct audio_softc *sc = device_private(dv);
8661 mixer_devinfo_t mi;
8662 u_int gain, newgain;
8663 u_char balance;
8664
8665 if (audio_exlock_mutex_enter(sc) != 0)
8666 return;
8667 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8668 mi.index = sc->sc_outports.master;
8669 mi.un.v.delta = 0;
8670 if (audio_query_devinfo(sc, &mi) == 0) {
8671 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8672 newgain = gain + mi.un.v.delta;
8673 if (newgain > AUDIO_MAX_GAIN)
8674 newgain = AUDIO_MAX_GAIN;
8675 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8676 }
8677 }
8678 audio_exlock_mutex_exit(sc);
8679 }
8680
8681 static void
8682 audio_volume_toggle(device_t dv)
8683 {
8684 struct audio_softc *sc = device_private(dv);
8685 u_int gain, newgain;
8686 u_char balance;
8687
8688 if (audio_exlock_mutex_enter(sc) != 0)
8689 return;
8690 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8691 if (gain != 0) {
8692 sc->sc_lastgain = gain;
8693 newgain = 0;
8694 } else
8695 newgain = sc->sc_lastgain;
8696 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8697 audio_exlock_mutex_exit(sc);
8698 }
8699
8700 /*
8701 * Must be called with sc_lock held.
8702 */
8703 static int
8704 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8705 {
8706
8707 KASSERT(mutex_owned(sc->sc_lock));
8708
8709 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8710 }
8711
8712 #endif /* NAUDIO > 0 */
8713
8714 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8715 #include <sys/param.h>
8716 #include <sys/systm.h>
8717 #include <sys/device.h>
8718 #include <sys/audioio.h>
8719 #include <dev/audio/audio_if.h>
8720 #endif
8721
8722 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8723 int
8724 audioprint(void *aux, const char *pnp)
8725 {
8726 struct audio_attach_args *arg;
8727 const char *type;
8728
8729 if (pnp != NULL) {
8730 arg = aux;
8731 switch (arg->type) {
8732 case AUDIODEV_TYPE_AUDIO:
8733 type = "audio";
8734 break;
8735 case AUDIODEV_TYPE_MIDI:
8736 type = "midi";
8737 break;
8738 case AUDIODEV_TYPE_OPL:
8739 type = "opl";
8740 break;
8741 case AUDIODEV_TYPE_MPU:
8742 type = "mpu";
8743 break;
8744 default:
8745 panic("audioprint: unknown type %d", arg->type);
8746 }
8747 aprint_normal("%s at %s", type, pnp);
8748 }
8749 return UNCONF;
8750 }
8751
8752 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8753
8754 #ifdef _MODULE
8755
8756 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8757
8758 #include "ioconf.c"
8759
8760 #endif
8761
8762 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8763
8764 static int
8765 audio_modcmd(modcmd_t cmd, void *arg)
8766 {
8767 int error = 0;
8768
8769 switch (cmd) {
8770 case MODULE_CMD_INIT:
8771 /* XXX interrupt level? */
8772 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8773 #ifdef _MODULE
8774 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8775 &audio_cdevsw, &audio_cmajor);
8776 if (error)
8777 break;
8778
8779 error = config_init_component(cfdriver_ioconf_audio,
8780 cfattach_ioconf_audio, cfdata_ioconf_audio);
8781 if (error) {
8782 devsw_detach(NULL, &audio_cdevsw);
8783 }
8784 #endif
8785 break;
8786 case MODULE_CMD_FINI:
8787 #ifdef _MODULE
8788 devsw_detach(NULL, &audio_cdevsw);
8789 error = config_fini_component(cfdriver_ioconf_audio,
8790 cfattach_ioconf_audio, cfdata_ioconf_audio);
8791 if (error)
8792 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8793 &audio_cdevsw, &audio_cmajor);
8794 #endif
8795 psref_class_destroy(audio_psref_class);
8796 break;
8797 default:
8798 error = ENOTTY;
8799 break;
8800 }
8801
8802 return error;
8803 }
8804