audio.c revision 1.28.2.18 1 /* $NetBSD: audio.c,v 1.28.2.18 2020/12/19 13:54:56 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - x Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.28.2.18 2020/12/19 13:54:56 martin Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #ifdef _KERNEL
151
152 #include <sys/types.h>
153 #include <sys/param.h>
154 #include <sys/atomic.h>
155 #include <sys/audioio.h>
156 #include <sys/conf.h>
157 #include <sys/cpu.h>
158 #include <sys/device.h>
159 #include <sys/fcntl.h>
160 #include <sys/file.h>
161 #include <sys/filedesc.h>
162 #include <sys/intr.h>
163 #include <sys/ioctl.h>
164 #include <sys/kauth.h>
165 #include <sys/kernel.h>
166 #include <sys/kmem.h>
167 #include <sys/malloc.h>
168 #include <sys/mman.h>
169 #include <sys/module.h>
170 #include <sys/poll.h>
171 #include <sys/proc.h>
172 #include <sys/queue.h>
173 #include <sys/select.h>
174 #include <sys/signalvar.h>
175 #include <sys/stat.h>
176 #include <sys/sysctl.h>
177 #include <sys/systm.h>
178 #include <sys/syslog.h>
179 #include <sys/vnode.h>
180
181 #include <dev/audio/audio_if.h>
182 #include <dev/audio/audiovar.h>
183 #include <dev/audio/audiodef.h>
184 #include <dev/audio/linear.h>
185 #include <dev/audio/mulaw.h>
186
187 #include <machine/endian.h>
188
189 #include <uvm/uvm.h>
190
191 #include "ioconf.h"
192 #endif /* _KERNEL */
193
194 /*
195 * 0: No debug logs
196 * 1: action changes like open/close/set_format...
197 * 2: + normal operations like read/write/ioctl...
198 * 3: + TRACEs except interrupt
199 * 4: + TRACEs including interrupt
200 */
201 //#define AUDIO_DEBUG 1
202
203 #if defined(AUDIO_DEBUG)
204
205 int audiodebug = AUDIO_DEBUG;
206 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
207 const char *, va_list);
208 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
209 __printflike(3, 4);
210 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
211 __printflike(3, 4);
212 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
213 __printflike(3, 4);
214
215 /* XXX sloppy memory logger */
216 static void audio_mlog_init(void);
217 static void audio_mlog_free(void);
218 static void audio_mlog_softintr(void *);
219 extern void audio_mlog_flush(void);
220 extern void audio_mlog_printf(const char *, ...);
221
222 static int mlog_refs; /* reference counter */
223 static char *mlog_buf[2]; /* double buffer */
224 static int mlog_buflen; /* buffer length */
225 static int mlog_used; /* used length */
226 static int mlog_full; /* number of dropped lines by buffer full */
227 static int mlog_drop; /* number of dropped lines by busy */
228 static volatile uint32_t mlog_inuse; /* in-use */
229 static int mlog_wpage; /* active page */
230 static void *mlog_sih; /* softint handle */
231
232 static void
233 audio_mlog_init(void)
234 {
235 mlog_refs++;
236 if (mlog_refs > 1)
237 return;
238 mlog_buflen = 4096;
239 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
240 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
241 mlog_used = 0;
242 mlog_full = 0;
243 mlog_drop = 0;
244 mlog_inuse = 0;
245 mlog_wpage = 0;
246 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
247 if (mlog_sih == NULL)
248 printf("%s: softint_establish failed\n", __func__);
249 }
250
251 static void
252 audio_mlog_free(void)
253 {
254 mlog_refs--;
255 if (mlog_refs > 0)
256 return;
257
258 audio_mlog_flush();
259 if (mlog_sih)
260 softint_disestablish(mlog_sih);
261 kmem_free(mlog_buf[0], mlog_buflen);
262 kmem_free(mlog_buf[1], mlog_buflen);
263 }
264
265 /*
266 * Flush memory buffer.
267 * It must not be called from hardware interrupt context.
268 */
269 void
270 audio_mlog_flush(void)
271 {
272 if (mlog_refs == 0)
273 return;
274
275 /* Nothing to do if already in use ? */
276 if (atomic_swap_32(&mlog_inuse, 1) == 1)
277 return;
278
279 int rpage = mlog_wpage;
280 mlog_wpage ^= 1;
281 mlog_buf[mlog_wpage][0] = '\0';
282 mlog_used = 0;
283
284 atomic_swap_32(&mlog_inuse, 0);
285
286 if (mlog_buf[rpage][0] != '\0') {
287 printf("%s", mlog_buf[rpage]);
288 if (mlog_drop > 0)
289 printf("mlog_drop %d\n", mlog_drop);
290 if (mlog_full > 0)
291 printf("mlog_full %d\n", mlog_full);
292 }
293 mlog_full = 0;
294 mlog_drop = 0;
295 }
296
297 static void
298 audio_mlog_softintr(void *cookie)
299 {
300 audio_mlog_flush();
301 }
302
303 void
304 audio_mlog_printf(const char *fmt, ...)
305 {
306 int len;
307 va_list ap;
308
309 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
310 /* already inuse */
311 mlog_drop++;
312 return;
313 }
314
315 va_start(ap, fmt);
316 len = vsnprintf(
317 mlog_buf[mlog_wpage] + mlog_used,
318 mlog_buflen - mlog_used,
319 fmt, ap);
320 va_end(ap);
321
322 mlog_used += len;
323 if (mlog_buflen - mlog_used <= 1) {
324 mlog_full++;
325 }
326
327 atomic_swap_32(&mlog_inuse, 0);
328
329 if (mlog_sih)
330 softint_schedule(mlog_sih);
331 }
332
333 /* trace functions */
334 static void
335 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
336 const char *fmt, va_list ap)
337 {
338 char buf[256];
339 int n;
340
341 n = 0;
342 buf[0] = '\0';
343 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
344 funcname, device_unit(sc->sc_dev), header);
345 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
346
347 if (cpu_intr_p()) {
348 audio_mlog_printf("%s\n", buf);
349 } else {
350 audio_mlog_flush();
351 printf("%s\n", buf);
352 }
353 }
354
355 static void
356 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
357 {
358 va_list ap;
359
360 va_start(ap, fmt);
361 audio_vtrace(sc, funcname, "", fmt, ap);
362 va_end(ap);
363 }
364
365 static void
366 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
367 {
368 char hdr[16];
369 va_list ap;
370
371 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
372 va_start(ap, fmt);
373 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
374 va_end(ap);
375 }
376
377 static void
378 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
379 {
380 char hdr[32];
381 char phdr[16], rhdr[16];
382 va_list ap;
383
384 phdr[0] = '\0';
385 rhdr[0] = '\0';
386 if (file->ptrack)
387 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
388 if (file->rtrack)
389 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
390 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
391
392 va_start(ap, fmt);
393 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
394 va_end(ap);
395 }
396
397 #define DPRINTF(n, fmt...) do { \
398 if (audiodebug >= (n)) { \
399 audio_mlog_flush(); \
400 printf(fmt); \
401 } \
402 } while (0)
403 #define TRACE(n, fmt...) do { \
404 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
405 } while (0)
406 #define TRACET(n, t, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
408 } while (0)
409 #define TRACEF(n, f, fmt...) do { \
410 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
411 } while (0)
412
413 struct audio_track_debugbuf {
414 char usrbuf[32];
415 char codec[32];
416 char chvol[32];
417 char chmix[32];
418 char freq[32];
419 char outbuf[32];
420 };
421
422 static void
423 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
424 {
425
426 memset(buf, 0, sizeof(*buf));
427
428 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
429 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
430 if (track->freq.filter)
431 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
432 track->freq.srcbuf.head,
433 track->freq.srcbuf.used,
434 track->freq.srcbuf.capacity);
435 if (track->chmix.filter)
436 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
437 track->chmix.srcbuf.used);
438 if (track->chvol.filter)
439 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
440 track->chvol.srcbuf.used);
441 if (track->codec.filter)
442 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
443 track->codec.srcbuf.used);
444 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
445 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
446 }
447 #else
448 #define DPRINTF(n, fmt...) do { } while (0)
449 #define TRACE(n, fmt, ...) do { } while (0)
450 #define TRACET(n, t, fmt, ...) do { } while (0)
451 #define TRACEF(n, f, fmt, ...) do { } while (0)
452 #endif
453
454 #define SPECIFIED(x) ((x) != ~0)
455 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
456
457 /*
458 * Default hardware blocksize in msec.
459 *
460 * We use 10 msec for most modern platforms. This period is good enough to
461 * play audio and video synchronizely.
462 * In contrast, for very old platforms, this is usually too short and too
463 * severe. Also such platforms usually can not play video confortably, so
464 * it's not so important to make the blocksize shorter. If the platform
465 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
466 * uses this instead.
467 *
468 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
469 * configuration file if you wish.
470 */
471 #if !defined(AUDIO_BLK_MS)
472 # if defined(__AUDIO_BLK_MS)
473 # define AUDIO_BLK_MS __AUDIO_BLK_MS
474 # else
475 # define AUDIO_BLK_MS (10)
476 # endif
477 #endif
478
479 /* Device timeout in msec */
480 #define AUDIO_TIMEOUT (3000)
481
482 /* #define AUDIO_PM_IDLE */
483 #ifdef AUDIO_PM_IDLE
484 int audio_idle_timeout = 30;
485 #endif
486
487 /* Number of elements of async mixer's pid */
488 #define AM_CAPACITY (4)
489
490 struct portname {
491 const char *name;
492 int mask;
493 };
494
495 static int audiomatch(device_t, cfdata_t, void *);
496 static void audioattach(device_t, device_t, void *);
497 static int audiodetach(device_t, int);
498 static int audioactivate(device_t, enum devact);
499 static void audiochilddet(device_t, device_t);
500 static int audiorescan(device_t, const char *, const int *);
501
502 static int audio_modcmd(modcmd_t, void *);
503
504 #ifdef AUDIO_PM_IDLE
505 static void audio_idle(void *);
506 static void audio_activity(device_t, devactive_t);
507 #endif
508
509 static bool audio_suspend(device_t dv, const pmf_qual_t *);
510 static bool audio_resume(device_t dv, const pmf_qual_t *);
511 static void audio_volume_down(device_t);
512 static void audio_volume_up(device_t);
513 static void audio_volume_toggle(device_t);
514
515 static void audio_mixer_capture(struct audio_softc *);
516 static void audio_mixer_restore(struct audio_softc *);
517
518 static void audio_softintr_rd(void *);
519 static void audio_softintr_wr(void *);
520
521 static int audio_exlock_mutex_enter(struct audio_softc *);
522 static void audio_exlock_mutex_exit(struct audio_softc *);
523 static int audio_exlock_enter(struct audio_softc *);
524 static void audio_exlock_exit(struct audio_softc *);
525 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
526 static void audio_file_exit(struct audio_softc *, struct psref *);
527 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
528
529 static int audioclose(struct file *);
530 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
531 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
532 static int audioioctl(struct file *, u_long, void *);
533 static int audiopoll(struct file *, int);
534 static int audiokqfilter(struct file *, struct knote *);
535 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
536 struct uvm_object **, int *);
537 static int audiostat(struct file *, struct stat *);
538
539 static void filt_audiowrite_detach(struct knote *);
540 static int filt_audiowrite_event(struct knote *, long);
541 static void filt_audioread_detach(struct knote *);
542 static int filt_audioread_event(struct knote *, long);
543
544 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
545 audio_file_t **);
546 static int audio_close(struct audio_softc *, audio_file_t *);
547 static int audio_unlink(struct audio_softc *, audio_file_t *);
548 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
549 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
550 static void audio_file_clear(struct audio_softc *, audio_file_t *);
551 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
552 struct lwp *, audio_file_t *);
553 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
554 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
555 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
556 struct uvm_object **, int *, audio_file_t *);
557
558 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
559
560 static void audio_pintr(void *);
561 static void audio_rintr(void *);
562
563 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
564
565 static __inline int audio_track_readablebytes(const audio_track_t *);
566 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
567 const struct audio_info *);
568 static int audio_track_setinfo_check(audio_track_t *,
569 audio_format2_t *, const struct audio_prinfo *);
570 static void audio_track_setinfo_water(audio_track_t *,
571 const struct audio_info *);
572 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
573 struct audio_info *);
574 static int audio_hw_set_format(struct audio_softc *, int,
575 audio_format2_t *, audio_format2_t *,
576 audio_filter_reg_t *, audio_filter_reg_t *);
577 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
578 audio_file_t *);
579 static bool audio_can_playback(struct audio_softc *);
580 static bool audio_can_capture(struct audio_softc *);
581 static int audio_check_params(audio_format2_t *);
582 static int audio_mixers_init(struct audio_softc *sc, int,
583 const audio_format2_t *, const audio_format2_t *,
584 const audio_filter_reg_t *, const audio_filter_reg_t *);
585 static int audio_select_freq(const struct audio_format *);
586 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
587 static int audio_hw_validate_format(struct audio_softc *, int,
588 const audio_format2_t *);
589 static int audio_mixers_set_format(struct audio_softc *,
590 const struct audio_info *);
591 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
592 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
593 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
594 #if defined(AUDIO_DEBUG)
595 static int audio_sysctl_debug(SYSCTLFN_PROTO);
596 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
597 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
598 #endif
599
600 static void *audio_realloc(void *, size_t);
601 static int audio_realloc_usrbuf(audio_track_t *, int);
602 static void audio_free_usrbuf(audio_track_t *);
603
604 static audio_track_t *audio_track_create(struct audio_softc *,
605 audio_trackmixer_t *);
606 static void audio_track_destroy(audio_track_t *);
607 static audio_filter_t audio_track_get_codec(audio_track_t *,
608 const audio_format2_t *, const audio_format2_t *);
609 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
610 static void audio_track_play(audio_track_t *);
611 static int audio_track_drain(struct audio_softc *, audio_track_t *);
612 static void audio_track_record(audio_track_t *);
613 static void audio_track_clear(struct audio_softc *, audio_track_t *);
614
615 static int audio_mixer_init(struct audio_softc *, int,
616 const audio_format2_t *, const audio_filter_reg_t *);
617 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
618 static void audio_pmixer_start(struct audio_softc *, bool);
619 static void audio_pmixer_process(struct audio_softc *);
620 static void audio_pmixer_agc(audio_trackmixer_t *, int);
621 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
622 static void audio_pmixer_output(struct audio_softc *);
623 static int audio_pmixer_halt(struct audio_softc *);
624 static void audio_rmixer_start(struct audio_softc *);
625 static void audio_rmixer_process(struct audio_softc *);
626 static void audio_rmixer_input(struct audio_softc *);
627 static int audio_rmixer_halt(struct audio_softc *);
628
629 static void mixer_init(struct audio_softc *);
630 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
631 static int mixer_close(struct audio_softc *, audio_file_t *);
632 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
633 static void mixer_async_add(struct audio_softc *, pid_t);
634 static void mixer_async_remove(struct audio_softc *, pid_t);
635 static void mixer_signal(struct audio_softc *);
636
637 static int au_portof(struct audio_softc *, char *, int);
638
639 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
640 mixer_devinfo_t *, const struct portname *);
641 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
642 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
643 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
644 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
645 u_int *, u_char *);
646 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
647 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
648 static int au_set_monitor_gain(struct audio_softc *, int);
649 static int au_get_monitor_gain(struct audio_softc *);
650 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
651 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
652
653 static __inline struct audio_params
654 format2_to_params(const audio_format2_t *f2)
655 {
656 audio_params_t p;
657
658 /* validbits/precision <-> precision/stride */
659 p.sample_rate = f2->sample_rate;
660 p.channels = f2->channels;
661 p.encoding = f2->encoding;
662 p.validbits = f2->precision;
663 p.precision = f2->stride;
664 return p;
665 }
666
667 static __inline audio_format2_t
668 params_to_format2(const struct audio_params *p)
669 {
670 audio_format2_t f2;
671
672 /* precision/stride <-> validbits/precision */
673 f2.sample_rate = p->sample_rate;
674 f2.channels = p->channels;
675 f2.encoding = p->encoding;
676 f2.precision = p->validbits;
677 f2.stride = p->precision;
678 return f2;
679 }
680
681 /* Return true if this track is a playback track. */
682 static __inline bool
683 audio_track_is_playback(const audio_track_t *track)
684 {
685
686 return ((track->mode & AUMODE_PLAY) != 0);
687 }
688
689 /* Return true if this track is a recording track. */
690 static __inline bool
691 audio_track_is_record(const audio_track_t *track)
692 {
693
694 return ((track->mode & AUMODE_RECORD) != 0);
695 }
696
697 #if 0 /* XXX Not used yet */
698 /*
699 * Convert 0..255 volume used in userland to internal presentation 0..256.
700 */
701 static __inline u_int
702 audio_volume_to_inner(u_int v)
703 {
704
705 return v < 127 ? v : v + 1;
706 }
707
708 /*
709 * Convert 0..256 internal presentation to 0..255 volume used in userland.
710 */
711 static __inline u_int
712 audio_volume_to_outer(u_int v)
713 {
714
715 return v < 127 ? v : v - 1;
716 }
717 #endif /* 0 */
718
719 static dev_type_open(audioopen);
720 /* XXXMRG use more dev_type_xxx */
721
722 const struct cdevsw audio_cdevsw = {
723 .d_open = audioopen,
724 .d_close = noclose,
725 .d_read = noread,
726 .d_write = nowrite,
727 .d_ioctl = noioctl,
728 .d_stop = nostop,
729 .d_tty = notty,
730 .d_poll = nopoll,
731 .d_mmap = nommap,
732 .d_kqfilter = nokqfilter,
733 .d_discard = nodiscard,
734 .d_flag = D_OTHER | D_MPSAFE
735 };
736
737 const struct fileops audio_fileops = {
738 .fo_name = "audio",
739 .fo_read = audioread,
740 .fo_write = audiowrite,
741 .fo_ioctl = audioioctl,
742 .fo_fcntl = fnullop_fcntl,
743 .fo_stat = audiostat,
744 .fo_poll = audiopoll,
745 .fo_close = audioclose,
746 .fo_mmap = audiommap,
747 .fo_kqfilter = audiokqfilter,
748 .fo_restart = fnullop_restart
749 };
750
751 /* The default audio mode: 8 kHz mono mu-law */
752 static const struct audio_params audio_default = {
753 .sample_rate = 8000,
754 .encoding = AUDIO_ENCODING_ULAW,
755 .precision = 8,
756 .validbits = 8,
757 .channels = 1,
758 };
759
760 static const char *encoding_names[] = {
761 "none",
762 AudioEmulaw,
763 AudioEalaw,
764 "pcm16",
765 "pcm8",
766 AudioEadpcm,
767 AudioEslinear_le,
768 AudioEslinear_be,
769 AudioEulinear_le,
770 AudioEulinear_be,
771 AudioEslinear,
772 AudioEulinear,
773 AudioEmpeg_l1_stream,
774 AudioEmpeg_l1_packets,
775 AudioEmpeg_l1_system,
776 AudioEmpeg_l2_stream,
777 AudioEmpeg_l2_packets,
778 AudioEmpeg_l2_system,
779 AudioEac3,
780 };
781
782 /*
783 * Returns encoding name corresponding to AUDIO_ENCODING_*.
784 * Note that it may return a local buffer because it is mainly for debugging.
785 */
786 const char *
787 audio_encoding_name(int encoding)
788 {
789 static char buf[16];
790
791 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
792 return encoding_names[encoding];
793 } else {
794 snprintf(buf, sizeof(buf), "enc=%d", encoding);
795 return buf;
796 }
797 }
798
799 /*
800 * Supported encodings used by AUDIO_GETENC.
801 * index and flags are set by code.
802 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
803 */
804 static const audio_encoding_t audio_encodings[] = {
805 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
806 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
807 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
808 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
809 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
810 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
811 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
812 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
813 #if defined(AUDIO_SUPPORT_LINEAR24)
814 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
815 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
816 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
817 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
818 #endif
819 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
820 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
821 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
822 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
823 };
824
825 static const struct portname itable[] = {
826 { AudioNmicrophone, AUDIO_MICROPHONE },
827 { AudioNline, AUDIO_LINE_IN },
828 { AudioNcd, AUDIO_CD },
829 { 0, 0 }
830 };
831 static const struct portname otable[] = {
832 { AudioNspeaker, AUDIO_SPEAKER },
833 { AudioNheadphone, AUDIO_HEADPHONE },
834 { AudioNline, AUDIO_LINE_OUT },
835 { 0, 0 }
836 };
837
838 static struct psref_class *audio_psref_class __read_mostly;
839
840 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
841 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
842 audiochilddet, DVF_DETACH_SHUTDOWN);
843
844 static int
845 audiomatch(device_t parent, cfdata_t match, void *aux)
846 {
847 struct audio_attach_args *sa;
848
849 sa = aux;
850 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
851 __func__, sa->type, sa, sa->hwif);
852 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
853 }
854
855 static void
856 audioattach(device_t parent, device_t self, void *aux)
857 {
858 struct audio_softc *sc;
859 struct audio_attach_args *sa;
860 const struct audio_hw_if *hw_if;
861 audio_format2_t phwfmt;
862 audio_format2_t rhwfmt;
863 audio_filter_reg_t pfil;
864 audio_filter_reg_t rfil;
865 const struct sysctlnode *node;
866 void *hdlp;
867 bool has_playback;
868 bool has_capture;
869 bool has_indep;
870 bool has_fulldup;
871 int mode;
872 int error;
873
874 sc = device_private(self);
875 sc->sc_dev = self;
876 sa = (struct audio_attach_args *)aux;
877 hw_if = sa->hwif;
878 hdlp = sa->hdl;
879
880 if (hw_if == NULL || hw_if->get_locks == NULL) {
881 panic("audioattach: missing hw_if method");
882 }
883
884 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
885
886 #ifdef DIAGNOSTIC
887 if (hw_if->query_format == NULL ||
888 hw_if->set_format == NULL ||
889 (hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
890 (hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
891 hw_if->halt_output == NULL ||
892 hw_if->halt_input == NULL ||
893 hw_if->getdev == NULL ||
894 hw_if->set_port == NULL ||
895 hw_if->get_port == NULL ||
896 hw_if->query_devinfo == NULL ||
897 hw_if->get_props == NULL) {
898 aprint_error(": missing method\n");
899 return;
900 }
901 #endif
902
903 sc->hw_if = hw_if;
904 sc->hw_hdl = hdlp;
905 sc->hw_dev = parent;
906
907 sc->sc_exlock = 1;
908 sc->sc_blk_ms = AUDIO_BLK_MS;
909 SLIST_INIT(&sc->sc_files);
910 cv_init(&sc->sc_exlockcv, "audiolk");
911 sc->sc_am_capacity = 0;
912 sc->sc_am_used = 0;
913 sc->sc_am = NULL;
914
915 mutex_enter(sc->sc_lock);
916 sc->sc_props = hw_if->get_props(sc->hw_hdl);
917 mutex_exit(sc->sc_lock);
918
919 /* MMAP is now supported by upper layer. */
920 sc->sc_props |= AUDIO_PROP_MMAP;
921
922 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
923 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
924 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
925 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
926
927 KASSERT(has_playback || has_capture);
928 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
929 if (!has_playback || !has_capture) {
930 KASSERT(!has_indep);
931 KASSERT(!has_fulldup);
932 }
933
934 mode = 0;
935 if (has_playback) {
936 aprint_normal(": playback");
937 mode |= AUMODE_PLAY;
938 }
939 if (has_capture) {
940 aprint_normal("%c capture", has_playback ? ',' : ':');
941 mode |= AUMODE_RECORD;
942 }
943 if (has_playback && has_capture) {
944 if (has_fulldup)
945 aprint_normal(", full duplex");
946 else
947 aprint_normal(", half duplex");
948
949 if (has_indep)
950 aprint_normal(", independent");
951 }
952
953 aprint_naive("\n");
954 aprint_normal("\n");
955
956 /* probe hw params */
957 memset(&phwfmt, 0, sizeof(phwfmt));
958 memset(&rhwfmt, 0, sizeof(rhwfmt));
959 memset(&pfil, 0, sizeof(pfil));
960 memset(&rfil, 0, sizeof(rfil));
961 if (has_indep) {
962 int perror, rerror;
963
964 /* On independent devices, probe separately. */
965 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
966 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
967 if (perror && rerror) {
968 aprint_error_dev(self, "audio_hw_probe failed, "
969 "perror = %d, rerror = %d\n", perror, rerror);
970 goto bad;
971 }
972 if (perror) {
973 mode &= ~AUMODE_PLAY;
974 aprint_error_dev(self, "audio_hw_probe failed with "
975 "%d, playback disabled\n", perror);
976 }
977 if (rerror) {
978 mode &= ~AUMODE_RECORD;
979 aprint_error_dev(self, "audio_hw_probe failed with "
980 "%d, capture disabled\n", rerror);
981 }
982 } else {
983 /*
984 * On non independent devices or uni-directional devices,
985 * probe once (simultaneously).
986 */
987 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
988 error = audio_hw_probe(sc, fmt, mode);
989 if (error) {
990 aprint_error_dev(self, "audio_hw_probe failed, "
991 "error = %d\n", error);
992 goto bad;
993 }
994 if (has_playback && has_capture)
995 rhwfmt = phwfmt;
996 }
997
998 /* Init hardware. */
999 /* hw_probe() also validates [pr]hwfmt. */
1000 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1001 if (error) {
1002 aprint_error_dev(self, "audio_hw_set_format failed, "
1003 "error = %d\n", error);
1004 goto bad;
1005 }
1006
1007 /*
1008 * Init track mixers. If at least one direction is available on
1009 * attach time, we assume a success.
1010 */
1011 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1012 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1013 aprint_error_dev(self, "audio_mixers_init failed, "
1014 "error = %d\n", error);
1015 goto bad;
1016 }
1017
1018 sc->sc_psz = pserialize_create();
1019 psref_target_init(&sc->sc_psref, audio_psref_class);
1020
1021 selinit(&sc->sc_wsel);
1022 selinit(&sc->sc_rsel);
1023
1024 /* Initial parameter of /dev/sound */
1025 sc->sc_sound_pparams = params_to_format2(&audio_default);
1026 sc->sc_sound_rparams = params_to_format2(&audio_default);
1027 sc->sc_sound_ppause = false;
1028 sc->sc_sound_rpause = false;
1029
1030 /* XXX TODO: consider about sc_ai */
1031
1032 mixer_init(sc);
1033 TRACE(2, "inputs ports=0x%x, input master=%d, "
1034 "output ports=0x%x, output master=%d",
1035 sc->sc_inports.allports, sc->sc_inports.master,
1036 sc->sc_outports.allports, sc->sc_outports.master);
1037
1038 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1039 0,
1040 CTLTYPE_NODE, device_xname(sc->sc_dev),
1041 SYSCTL_DESCR("audio test"),
1042 NULL, 0,
1043 NULL, 0,
1044 CTL_HW,
1045 CTL_CREATE, CTL_EOL);
1046
1047 if (node != NULL) {
1048 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1049 CTLFLAG_READWRITE,
1050 CTLTYPE_INT, "blk_ms",
1051 SYSCTL_DESCR("blocksize in msec"),
1052 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1053 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1054
1055 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1056 CTLFLAG_READWRITE,
1057 CTLTYPE_BOOL, "multiuser",
1058 SYSCTL_DESCR("allow multiple user access"),
1059 audio_sysctl_multiuser, 0, (void *)sc, 0,
1060 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1061
1062 #if defined(AUDIO_DEBUG)
1063 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1064 CTLFLAG_READWRITE,
1065 CTLTYPE_INT, "debug",
1066 SYSCTL_DESCR("debug level (0..4)"),
1067 audio_sysctl_debug, 0, (void *)sc, 0,
1068 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1069 #endif
1070 }
1071
1072 #ifdef AUDIO_PM_IDLE
1073 callout_init(&sc->sc_idle_counter, 0);
1074 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1075 #endif
1076
1077 if (!pmf_device_register(self, audio_suspend, audio_resume))
1078 aprint_error_dev(self, "couldn't establish power handler\n");
1079 #ifdef AUDIO_PM_IDLE
1080 if (!device_active_register(self, audio_activity))
1081 aprint_error_dev(self, "couldn't register activity handler\n");
1082 #endif
1083
1084 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1085 audio_volume_down, true))
1086 aprint_error_dev(self, "couldn't add volume down handler\n");
1087 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1088 audio_volume_up, true))
1089 aprint_error_dev(self, "couldn't add volume up handler\n");
1090 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1091 audio_volume_toggle, true))
1092 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1093
1094 #ifdef AUDIO_PM_IDLE
1095 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1096 #endif
1097
1098 #if defined(AUDIO_DEBUG)
1099 audio_mlog_init();
1100 #endif
1101
1102 audiorescan(self, "audio", NULL);
1103 sc->sc_exlock = 0;
1104 return;
1105
1106 bad:
1107 /* Clearing hw_if means that device is attached but disabled. */
1108 sc->hw_if = NULL;
1109 sc->sc_exlock = 0;
1110 aprint_error_dev(sc->sc_dev, "disabled\n");
1111 return;
1112 }
1113
1114 /*
1115 * Initialize hardware mixer.
1116 * This function is called from audioattach().
1117 */
1118 static void
1119 mixer_init(struct audio_softc *sc)
1120 {
1121 mixer_devinfo_t mi;
1122 int iclass, mclass, oclass, rclass;
1123 int record_master_found, record_source_found;
1124
1125 iclass = mclass = oclass = rclass = -1;
1126 sc->sc_inports.index = -1;
1127 sc->sc_inports.master = -1;
1128 sc->sc_inports.nports = 0;
1129 sc->sc_inports.isenum = false;
1130 sc->sc_inports.allports = 0;
1131 sc->sc_inports.isdual = false;
1132 sc->sc_inports.mixerout = -1;
1133 sc->sc_inports.cur_port = -1;
1134 sc->sc_outports.index = -1;
1135 sc->sc_outports.master = -1;
1136 sc->sc_outports.nports = 0;
1137 sc->sc_outports.isenum = false;
1138 sc->sc_outports.allports = 0;
1139 sc->sc_outports.isdual = false;
1140 sc->sc_outports.mixerout = -1;
1141 sc->sc_outports.cur_port = -1;
1142 sc->sc_monitor_port = -1;
1143 /*
1144 * Read through the underlying driver's list, picking out the class
1145 * names from the mixer descriptions. We'll need them to decode the
1146 * mixer descriptions on the next pass through the loop.
1147 */
1148 mutex_enter(sc->sc_lock);
1149 for(mi.index = 0; ; mi.index++) {
1150 if (audio_query_devinfo(sc, &mi) != 0)
1151 break;
1152 /*
1153 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1154 * All the other types describe an actual mixer.
1155 */
1156 if (mi.type == AUDIO_MIXER_CLASS) {
1157 if (strcmp(mi.label.name, AudioCinputs) == 0)
1158 iclass = mi.mixer_class;
1159 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1160 mclass = mi.mixer_class;
1161 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1162 oclass = mi.mixer_class;
1163 if (strcmp(mi.label.name, AudioCrecord) == 0)
1164 rclass = mi.mixer_class;
1165 }
1166 }
1167 mutex_exit(sc->sc_lock);
1168
1169 /* Allocate save area. Ensure non-zero allocation. */
1170 sc->sc_nmixer_states = mi.index;
1171 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1172 (sc->sc_nmixer_states + 1), KM_SLEEP);
1173
1174 /*
1175 * This is where we assign each control in the "audio" model, to the
1176 * underlying "mixer" control. We walk through the whole list once,
1177 * assigning likely candidates as we come across them.
1178 */
1179 record_master_found = 0;
1180 record_source_found = 0;
1181 mutex_enter(sc->sc_lock);
1182 for(mi.index = 0; ; mi.index++) {
1183 if (audio_query_devinfo(sc, &mi) != 0)
1184 break;
1185 KASSERT(mi.index < sc->sc_nmixer_states);
1186 if (mi.type == AUDIO_MIXER_CLASS)
1187 continue;
1188 if (mi.mixer_class == iclass) {
1189 /*
1190 * AudioCinputs is only a fallback, when we don't
1191 * find what we're looking for in AudioCrecord, so
1192 * check the flags before accepting one of these.
1193 */
1194 if (strcmp(mi.label.name, AudioNmaster) == 0
1195 && record_master_found == 0)
1196 sc->sc_inports.master = mi.index;
1197 if (strcmp(mi.label.name, AudioNsource) == 0
1198 && record_source_found == 0) {
1199 if (mi.type == AUDIO_MIXER_ENUM) {
1200 int i;
1201 for(i = 0; i < mi.un.e.num_mem; i++)
1202 if (strcmp(mi.un.e.member[i].label.name,
1203 AudioNmixerout) == 0)
1204 sc->sc_inports.mixerout =
1205 mi.un.e.member[i].ord;
1206 }
1207 au_setup_ports(sc, &sc->sc_inports, &mi,
1208 itable);
1209 }
1210 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1211 sc->sc_outports.master == -1)
1212 sc->sc_outports.master = mi.index;
1213 } else if (mi.mixer_class == mclass) {
1214 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1215 sc->sc_monitor_port = mi.index;
1216 } else if (mi.mixer_class == oclass) {
1217 if (strcmp(mi.label.name, AudioNmaster) == 0)
1218 sc->sc_outports.master = mi.index;
1219 if (strcmp(mi.label.name, AudioNselect) == 0)
1220 au_setup_ports(sc, &sc->sc_outports, &mi,
1221 otable);
1222 } else if (mi.mixer_class == rclass) {
1223 /*
1224 * These are the preferred mixers for the audio record
1225 * controls, so set the flags here, but don't check.
1226 */
1227 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1228 sc->sc_inports.master = mi.index;
1229 record_master_found = 1;
1230 }
1231 #if 1 /* Deprecated. Use AudioNmaster. */
1232 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1233 sc->sc_inports.master = mi.index;
1234 record_master_found = 1;
1235 }
1236 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1237 sc->sc_inports.master = mi.index;
1238 record_master_found = 1;
1239 }
1240 #endif
1241 if (strcmp(mi.label.name, AudioNsource) == 0) {
1242 if (mi.type == AUDIO_MIXER_ENUM) {
1243 int i;
1244 for(i = 0; i < mi.un.e.num_mem; i++)
1245 if (strcmp(mi.un.e.member[i].label.name,
1246 AudioNmixerout) == 0)
1247 sc->sc_inports.mixerout =
1248 mi.un.e.member[i].ord;
1249 }
1250 au_setup_ports(sc, &sc->sc_inports, &mi,
1251 itable);
1252 record_source_found = 1;
1253 }
1254 }
1255 }
1256 mutex_exit(sc->sc_lock);
1257 }
1258
1259 static int
1260 audioactivate(device_t self, enum devact act)
1261 {
1262 struct audio_softc *sc = device_private(self);
1263
1264 switch (act) {
1265 case DVACT_DEACTIVATE:
1266 mutex_enter(sc->sc_lock);
1267 sc->sc_dying = true;
1268 cv_broadcast(&sc->sc_exlockcv);
1269 mutex_exit(sc->sc_lock);
1270 return 0;
1271 default:
1272 return EOPNOTSUPP;
1273 }
1274 }
1275
1276 static int
1277 audiodetach(device_t self, int flags)
1278 {
1279 struct audio_softc *sc;
1280 struct audio_file *file;
1281 int error;
1282
1283 sc = device_private(self);
1284 TRACE(2, "flags=%d", flags);
1285
1286 /* device is not initialized */
1287 if (sc->hw_if == NULL)
1288 return 0;
1289
1290 /* Start draining existing accessors of the device. */
1291 error = config_detach_children(self, flags);
1292 if (error)
1293 return error;
1294
1295 /* delete sysctl nodes */
1296 sysctl_teardown(&sc->sc_log);
1297
1298 mutex_enter(sc->sc_lock);
1299 sc->sc_dying = true;
1300 cv_broadcast(&sc->sc_exlockcv);
1301 if (sc->sc_pmixer)
1302 cv_broadcast(&sc->sc_pmixer->outcv);
1303 if (sc->sc_rmixer)
1304 cv_broadcast(&sc->sc_rmixer->outcv);
1305
1306 /* Prevent new users */
1307 SLIST_FOREACH(file, &sc->sc_files, entry) {
1308 atomic_store_relaxed(&file->dying, true);
1309 }
1310
1311 /*
1312 * Wait for existing users to drain.
1313 * - pserialize_perform waits for all pserialize_read sections on
1314 * all CPUs; after this, no more new psref_acquire can happen.
1315 * - psref_target_destroy waits for all extant acquired psrefs to
1316 * be psref_released.
1317 */
1318 pserialize_perform(sc->sc_psz);
1319 mutex_exit(sc->sc_lock);
1320 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1321
1322 /*
1323 * We are now guaranteed that there are no calls to audio fileops
1324 * that hold sc, and any new calls with files that were for sc will
1325 * fail. Thus, we now have exclusive access to the softc.
1326 */
1327
1328 /*
1329 * Nuke all open instances.
1330 * Here, we no longer need any locks to traverse sc_files.
1331 */
1332 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1333 audio_unlink(sc, file);
1334 }
1335
1336 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1337 audio_volume_down, true);
1338 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1339 audio_volume_up, true);
1340 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1341 audio_volume_toggle, true);
1342
1343 #ifdef AUDIO_PM_IDLE
1344 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1345
1346 device_active_deregister(self, audio_activity);
1347 #endif
1348
1349 pmf_device_deregister(self);
1350
1351 /* Free resources */
1352 sc->sc_exlock = 1;
1353 if (sc->sc_pmixer) {
1354 audio_mixer_destroy(sc, sc->sc_pmixer);
1355 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1356 }
1357 if (sc->sc_rmixer) {
1358 audio_mixer_destroy(sc, sc->sc_rmixer);
1359 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1360 }
1361 if (sc->sc_am)
1362 kern_free(sc->sc_am);
1363
1364 seldestroy(&sc->sc_wsel);
1365 seldestroy(&sc->sc_rsel);
1366
1367 #ifdef AUDIO_PM_IDLE
1368 callout_destroy(&sc->sc_idle_counter);
1369 #endif
1370
1371 cv_destroy(&sc->sc_exlockcv);
1372
1373 #if defined(AUDIO_DEBUG)
1374 audio_mlog_free();
1375 #endif
1376
1377 return 0;
1378 }
1379
1380 static void
1381 audiochilddet(device_t self, device_t child)
1382 {
1383
1384 /* we hold no child references, so do nothing */
1385 }
1386
1387 static int
1388 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1389 {
1390
1391 if (config_match(parent, cf, aux))
1392 config_attach_loc(parent, cf, locs, aux, NULL);
1393
1394 return 0;
1395 }
1396
1397 static int
1398 audiorescan(device_t self, const char *ifattr, const int *flags)
1399 {
1400 struct audio_softc *sc = device_private(self);
1401
1402 if (!ifattr_match(ifattr, "audio"))
1403 return 0;
1404
1405 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1406
1407 return 0;
1408 }
1409
1410 /*
1411 * Called from hardware driver. This is where the MI audio driver gets
1412 * probed/attached to the hardware driver.
1413 */
1414 device_t
1415 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1416 {
1417 struct audio_attach_args arg;
1418
1419 #ifdef DIAGNOSTIC
1420 if (ahwp == NULL) {
1421 aprint_error("audio_attach_mi: NULL\n");
1422 return 0;
1423 }
1424 #endif
1425 arg.type = AUDIODEV_TYPE_AUDIO;
1426 arg.hwif = ahwp;
1427 arg.hdl = hdlp;
1428 return config_found(dev, &arg, audioprint);
1429 }
1430
1431 /*
1432 * Enter critical section and also keep sc_lock.
1433 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1434 * Must be called without sc_lock held.
1435 */
1436 static int
1437 audio_exlock_mutex_enter(struct audio_softc *sc)
1438 {
1439 int error;
1440
1441 mutex_enter(sc->sc_lock);
1442 if (sc->sc_dying) {
1443 mutex_exit(sc->sc_lock);
1444 return EIO;
1445 }
1446
1447 while (__predict_false(sc->sc_exlock != 0)) {
1448 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1449 if (sc->sc_dying)
1450 error = EIO;
1451 if (error) {
1452 mutex_exit(sc->sc_lock);
1453 return error;
1454 }
1455 }
1456
1457 /* Acquire */
1458 sc->sc_exlock = 1;
1459 return 0;
1460 }
1461
1462 /*
1463 * Exit critical section and exit sc_lock.
1464 * Must be called with sc_lock held.
1465 */
1466 static void
1467 audio_exlock_mutex_exit(struct audio_softc *sc)
1468 {
1469
1470 KASSERT(mutex_owned(sc->sc_lock));
1471
1472 sc->sc_exlock = 0;
1473 cv_broadcast(&sc->sc_exlockcv);
1474 mutex_exit(sc->sc_lock);
1475 }
1476
1477 /*
1478 * Enter critical section.
1479 * If successful, it returns 0. Otherwise returns errno.
1480 * Must be called without sc_lock held.
1481 * This function returns without sc_lock held.
1482 */
1483 static int
1484 audio_exlock_enter(struct audio_softc *sc)
1485 {
1486 int error;
1487
1488 error = audio_exlock_mutex_enter(sc);
1489 if (error)
1490 return error;
1491 mutex_exit(sc->sc_lock);
1492 return 0;
1493 }
1494
1495 /*
1496 * Exit critical section.
1497 * Must be called without sc_lock held.
1498 */
1499 static void
1500 audio_exlock_exit(struct audio_softc *sc)
1501 {
1502
1503 mutex_enter(sc->sc_lock);
1504 audio_exlock_mutex_exit(sc);
1505 }
1506
1507 /*
1508 * Acquire sc from file, and increment the psref count.
1509 * If successful, returns sc. Otherwise returns NULL.
1510 */
1511 struct audio_softc *
1512 audio_file_enter(audio_file_t *file, struct psref *refp)
1513 {
1514 int s;
1515 bool dying;
1516
1517 /* psref(9) forbids to migrate CPUs */
1518 curlwp_bind();
1519
1520 /* Block audiodetach while we acquire a reference */
1521 s = pserialize_read_enter();
1522
1523 /* If close or audiodetach already ran, tough -- no more audio */
1524 dying = atomic_load_relaxed(&file->dying);
1525 if (dying) {
1526 pserialize_read_exit(s);
1527 return NULL;
1528 }
1529
1530 /* Acquire a reference */
1531 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1532
1533 /* Now sc won't go away until we drop the reference count */
1534 pserialize_read_exit(s);
1535
1536 return file->sc;
1537 }
1538
1539 /*
1540 * Decrement the psref count.
1541 */
1542 void
1543 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1544 {
1545
1546 psref_release(refp, &sc->sc_psref, audio_psref_class);
1547 }
1548
1549 /*
1550 * Wait for I/O to complete, releasing sc_lock.
1551 * Must be called with sc_lock held.
1552 */
1553 static int
1554 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1555 {
1556 int error;
1557
1558 KASSERT(track);
1559 KASSERT(mutex_owned(sc->sc_lock));
1560
1561 /* Wait for pending I/O to complete. */
1562 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1563 mstohz(AUDIO_TIMEOUT));
1564 if (sc->sc_suspending) {
1565 /* If it's about to suspend, ignore timeout error. */
1566 if (error == EWOULDBLOCK) {
1567 TRACET(2, track, "timeout (suspending)");
1568 return 0;
1569 }
1570 }
1571 if (sc->sc_dying) {
1572 error = EIO;
1573 }
1574 if (error) {
1575 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1576 if (error == EWOULDBLOCK)
1577 device_printf(sc->sc_dev, "device timeout\n");
1578 } else {
1579 TRACET(3, track, "wakeup");
1580 }
1581 return error;
1582 }
1583
1584 /*
1585 * Try to acquire track lock.
1586 * It doesn't block if the track lock is already aquired.
1587 * Returns true if the track lock was acquired, or false if the track
1588 * lock was already acquired.
1589 */
1590 static __inline bool
1591 audio_track_lock_tryenter(audio_track_t *track)
1592 {
1593 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1594 }
1595
1596 /*
1597 * Acquire track lock.
1598 */
1599 static __inline void
1600 audio_track_lock_enter(audio_track_t *track)
1601 {
1602 /* Don't sleep here. */
1603 while (audio_track_lock_tryenter(track) == false)
1604 ;
1605 }
1606
1607 /*
1608 * Release track lock.
1609 */
1610 static __inline void
1611 audio_track_lock_exit(audio_track_t *track)
1612 {
1613 atomic_swap_uint(&track->lock, 0);
1614 }
1615
1616
1617 static int
1618 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1619 {
1620 struct audio_softc *sc;
1621 int error;
1622
1623 /* Find the device */
1624 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1625 if (sc == NULL || sc->hw_if == NULL)
1626 return ENXIO;
1627
1628 error = audio_exlock_enter(sc);
1629 if (error)
1630 return error;
1631
1632 device_active(sc->sc_dev, DVA_SYSTEM);
1633 switch (AUDIODEV(dev)) {
1634 case SOUND_DEVICE:
1635 case AUDIO_DEVICE:
1636 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1637 break;
1638 case AUDIOCTL_DEVICE:
1639 error = audioctl_open(dev, sc, flags, ifmt, l);
1640 break;
1641 case MIXER_DEVICE:
1642 error = mixer_open(dev, sc, flags, ifmt, l);
1643 break;
1644 default:
1645 error = ENXIO;
1646 break;
1647 }
1648 audio_exlock_exit(sc);
1649
1650 return error;
1651 }
1652
1653 static int
1654 audioclose(struct file *fp)
1655 {
1656 struct audio_softc *sc;
1657 struct psref sc_ref;
1658 audio_file_t *file;
1659 int error;
1660 dev_t dev;
1661
1662 KASSERT(fp->f_audioctx);
1663 file = fp->f_audioctx;
1664 dev = file->dev;
1665 error = 0;
1666
1667 /*
1668 * audioclose() must
1669 * - unplug track from the trackmixer (and unplug anything from softc),
1670 * if sc exists.
1671 * - free all memory objects, regardless of sc.
1672 */
1673
1674 sc = audio_file_enter(file, &sc_ref);
1675 if (sc) {
1676 switch (AUDIODEV(dev)) {
1677 case SOUND_DEVICE:
1678 case AUDIO_DEVICE:
1679 error = audio_close(sc, file);
1680 break;
1681 case AUDIOCTL_DEVICE:
1682 error = 0;
1683 break;
1684 case MIXER_DEVICE:
1685 error = mixer_close(sc, file);
1686 break;
1687 default:
1688 error = ENXIO;
1689 break;
1690 }
1691
1692 audio_file_exit(sc, &sc_ref);
1693 }
1694
1695 /* Free memory objects anyway */
1696 TRACEF(2, file, "free memory");
1697 if (file->ptrack)
1698 audio_track_destroy(file->ptrack);
1699 if (file->rtrack)
1700 audio_track_destroy(file->rtrack);
1701 kmem_free(file, sizeof(*file));
1702 fp->f_audioctx = NULL;
1703
1704 return error;
1705 }
1706
1707 static int
1708 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1709 int ioflag)
1710 {
1711 struct audio_softc *sc;
1712 struct psref sc_ref;
1713 audio_file_t *file;
1714 int error;
1715 dev_t dev;
1716
1717 KASSERT(fp->f_audioctx);
1718 file = fp->f_audioctx;
1719 dev = file->dev;
1720
1721 sc = audio_file_enter(file, &sc_ref);
1722 if (sc == NULL)
1723 return EIO;
1724
1725 if (fp->f_flag & O_NONBLOCK)
1726 ioflag |= IO_NDELAY;
1727
1728 switch (AUDIODEV(dev)) {
1729 case SOUND_DEVICE:
1730 case AUDIO_DEVICE:
1731 error = audio_read(sc, uio, ioflag, file);
1732 break;
1733 case AUDIOCTL_DEVICE:
1734 case MIXER_DEVICE:
1735 error = ENODEV;
1736 break;
1737 default:
1738 error = ENXIO;
1739 break;
1740 }
1741
1742 audio_file_exit(sc, &sc_ref);
1743 return error;
1744 }
1745
1746 static int
1747 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1748 int ioflag)
1749 {
1750 struct audio_softc *sc;
1751 struct psref sc_ref;
1752 audio_file_t *file;
1753 int error;
1754 dev_t dev;
1755
1756 KASSERT(fp->f_audioctx);
1757 file = fp->f_audioctx;
1758 dev = file->dev;
1759
1760 sc = audio_file_enter(file, &sc_ref);
1761 if (sc == NULL)
1762 return EIO;
1763
1764 if (fp->f_flag & O_NONBLOCK)
1765 ioflag |= IO_NDELAY;
1766
1767 switch (AUDIODEV(dev)) {
1768 case SOUND_DEVICE:
1769 case AUDIO_DEVICE:
1770 error = audio_write(sc, uio, ioflag, file);
1771 break;
1772 case AUDIOCTL_DEVICE:
1773 case MIXER_DEVICE:
1774 error = ENODEV;
1775 break;
1776 default:
1777 error = ENXIO;
1778 break;
1779 }
1780
1781 audio_file_exit(sc, &sc_ref);
1782 return error;
1783 }
1784
1785 static int
1786 audioioctl(struct file *fp, u_long cmd, void *addr)
1787 {
1788 struct audio_softc *sc;
1789 struct psref sc_ref;
1790 audio_file_t *file;
1791 struct lwp *l = curlwp;
1792 int error;
1793 dev_t dev;
1794
1795 KASSERT(fp->f_audioctx);
1796 file = fp->f_audioctx;
1797 dev = file->dev;
1798
1799 sc = audio_file_enter(file, &sc_ref);
1800 if (sc == NULL)
1801 return EIO;
1802
1803 switch (AUDIODEV(dev)) {
1804 case SOUND_DEVICE:
1805 case AUDIO_DEVICE:
1806 case AUDIOCTL_DEVICE:
1807 mutex_enter(sc->sc_lock);
1808 device_active(sc->sc_dev, DVA_SYSTEM);
1809 mutex_exit(sc->sc_lock);
1810 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1811 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1812 else
1813 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1814 file);
1815 break;
1816 case MIXER_DEVICE:
1817 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1818 break;
1819 default:
1820 error = ENXIO;
1821 break;
1822 }
1823
1824 audio_file_exit(sc, &sc_ref);
1825 return error;
1826 }
1827
1828 static int
1829 audiostat(struct file *fp, struct stat *st)
1830 {
1831 struct audio_softc *sc;
1832 struct psref sc_ref;
1833 audio_file_t *file;
1834
1835 KASSERT(fp->f_audioctx);
1836 file = fp->f_audioctx;
1837
1838 sc = audio_file_enter(file, &sc_ref);
1839 if (sc == NULL)
1840 return EIO;
1841
1842 memset(st, 0, sizeof(*st));
1843
1844 st->st_dev = file->dev;
1845 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1846 st->st_gid = kauth_cred_getegid(fp->f_cred);
1847 st->st_mode = S_IFCHR;
1848
1849 audio_file_exit(sc, &sc_ref);
1850 return 0;
1851 }
1852
1853 static int
1854 audiopoll(struct file *fp, int events)
1855 {
1856 struct audio_softc *sc;
1857 struct psref sc_ref;
1858 audio_file_t *file;
1859 struct lwp *l = curlwp;
1860 int revents;
1861 dev_t dev;
1862
1863 KASSERT(fp->f_audioctx);
1864 file = fp->f_audioctx;
1865 dev = file->dev;
1866
1867 sc = audio_file_enter(file, &sc_ref);
1868 if (sc == NULL)
1869 return EIO;
1870
1871 switch (AUDIODEV(dev)) {
1872 case SOUND_DEVICE:
1873 case AUDIO_DEVICE:
1874 revents = audio_poll(sc, events, l, file);
1875 break;
1876 case AUDIOCTL_DEVICE:
1877 case MIXER_DEVICE:
1878 revents = 0;
1879 break;
1880 default:
1881 revents = POLLERR;
1882 break;
1883 }
1884
1885 audio_file_exit(sc, &sc_ref);
1886 return revents;
1887 }
1888
1889 static int
1890 audiokqfilter(struct file *fp, struct knote *kn)
1891 {
1892 struct audio_softc *sc;
1893 struct psref sc_ref;
1894 audio_file_t *file;
1895 dev_t dev;
1896 int error;
1897
1898 KASSERT(fp->f_audioctx);
1899 file = fp->f_audioctx;
1900 dev = file->dev;
1901
1902 sc = audio_file_enter(file, &sc_ref);
1903 if (sc == NULL)
1904 return EIO;
1905
1906 switch (AUDIODEV(dev)) {
1907 case SOUND_DEVICE:
1908 case AUDIO_DEVICE:
1909 error = audio_kqfilter(sc, file, kn);
1910 break;
1911 case AUDIOCTL_DEVICE:
1912 case MIXER_DEVICE:
1913 error = ENODEV;
1914 break;
1915 default:
1916 error = ENXIO;
1917 break;
1918 }
1919
1920 audio_file_exit(sc, &sc_ref);
1921 return error;
1922 }
1923
1924 static int
1925 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1926 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1927 {
1928 struct audio_softc *sc;
1929 struct psref sc_ref;
1930 audio_file_t *file;
1931 dev_t dev;
1932 int error;
1933
1934 KASSERT(fp->f_audioctx);
1935 file = fp->f_audioctx;
1936 dev = file->dev;
1937
1938 sc = audio_file_enter(file, &sc_ref);
1939 if (sc == NULL)
1940 return EIO;
1941
1942 mutex_enter(sc->sc_lock);
1943 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1944 mutex_exit(sc->sc_lock);
1945
1946 switch (AUDIODEV(dev)) {
1947 case SOUND_DEVICE:
1948 case AUDIO_DEVICE:
1949 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1950 uobjp, maxprotp, file);
1951 break;
1952 case AUDIOCTL_DEVICE:
1953 case MIXER_DEVICE:
1954 default:
1955 error = ENOTSUP;
1956 break;
1957 }
1958
1959 audio_file_exit(sc, &sc_ref);
1960 return error;
1961 }
1962
1963
1964 /* Exported interfaces for audiobell. */
1965
1966 /*
1967 * Open for audiobell.
1968 * It stores allocated file to *filep.
1969 * If successful returns 0, otherwise errno.
1970 */
1971 int
1972 audiobellopen(dev_t dev, audio_file_t **filep)
1973 {
1974 struct audio_softc *sc;
1975 int error;
1976
1977 /* Find the device */
1978 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1979 if (sc == NULL || sc->hw_if == NULL)
1980 return ENXIO;
1981
1982 error = audio_exlock_enter(sc);
1983 if (error)
1984 return error;
1985
1986 device_active(sc->sc_dev, DVA_SYSTEM);
1987 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1988
1989 audio_exlock_exit(sc);
1990 return error;
1991 }
1992
1993 /* Close for audiobell */
1994 int
1995 audiobellclose(audio_file_t *file)
1996 {
1997 struct audio_softc *sc;
1998 struct psref sc_ref;
1999 int error;
2000
2001 sc = audio_file_enter(file, &sc_ref);
2002 if (sc == NULL)
2003 return EIO;
2004
2005 error = audio_close(sc, file);
2006
2007 audio_file_exit(sc, &sc_ref);
2008
2009 KASSERT(file->ptrack);
2010 audio_track_destroy(file->ptrack);
2011 KASSERT(file->rtrack == NULL);
2012 kmem_free(file, sizeof(*file));
2013 return error;
2014 }
2015
2016 /* Set sample rate for audiobell */
2017 int
2018 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2019 {
2020 struct audio_softc *sc;
2021 struct psref sc_ref;
2022 struct audio_info ai;
2023 int error;
2024
2025 sc = audio_file_enter(file, &sc_ref);
2026 if (sc == NULL)
2027 return EIO;
2028
2029 AUDIO_INITINFO(&ai);
2030 ai.play.sample_rate = sample_rate;
2031
2032 error = audio_exlock_enter(sc);
2033 if (error)
2034 goto done;
2035 error = audio_file_setinfo(sc, file, &ai);
2036 audio_exlock_exit(sc);
2037
2038 done:
2039 audio_file_exit(sc, &sc_ref);
2040 return error;
2041 }
2042
2043 /* Playback for audiobell */
2044 int
2045 audiobellwrite(audio_file_t *file, struct uio *uio)
2046 {
2047 struct audio_softc *sc;
2048 struct psref sc_ref;
2049 int error;
2050
2051 sc = audio_file_enter(file, &sc_ref);
2052 if (sc == NULL)
2053 return EIO;
2054
2055 error = audio_write(sc, uio, 0, file);
2056
2057 audio_file_exit(sc, &sc_ref);
2058 return error;
2059 }
2060
2061
2062 /*
2063 * Audio driver
2064 */
2065
2066 /*
2067 * Must be called with sc_exlock held and without sc_lock held.
2068 */
2069 int
2070 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2071 struct lwp *l, audio_file_t **bellfile)
2072 {
2073 struct audio_info ai;
2074 struct file *fp;
2075 audio_file_t *af;
2076 audio_ring_t *hwbuf;
2077 bool fullduplex;
2078 bool cred_held;
2079 bool hw_opened;
2080 bool rmixer_started;
2081 int fd;
2082 int error;
2083
2084 KASSERT(sc->sc_exlock);
2085
2086 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2087 (audiodebug >= 3) ? "start " : "",
2088 ISDEVSOUND(dev) ? "sound" : "audio",
2089 flags, sc->sc_popens, sc->sc_ropens);
2090
2091 fp = NULL;
2092 cred_held = false;
2093 hw_opened = false;
2094 rmixer_started = false;
2095
2096 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2097 af->sc = sc;
2098 af->dev = dev;
2099 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2100 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2101 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2102 af->mode |= AUMODE_RECORD;
2103 if (af->mode == 0) {
2104 error = ENXIO;
2105 goto bad;
2106 }
2107
2108 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2109
2110 /*
2111 * On half duplex hardware,
2112 * 1. if mode is (PLAY | REC), let mode PLAY.
2113 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2114 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2115 */
2116 if (fullduplex == false) {
2117 if ((af->mode & AUMODE_PLAY)) {
2118 if (sc->sc_ropens != 0) {
2119 TRACE(1, "record track already exists");
2120 error = ENODEV;
2121 goto bad;
2122 }
2123 /* Play takes precedence */
2124 af->mode &= ~AUMODE_RECORD;
2125 }
2126 if ((af->mode & AUMODE_RECORD)) {
2127 if (sc->sc_popens != 0) {
2128 TRACE(1, "play track already exists");
2129 error = ENODEV;
2130 goto bad;
2131 }
2132 }
2133 }
2134
2135 /* Create tracks */
2136 if ((af->mode & AUMODE_PLAY))
2137 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2138 if ((af->mode & AUMODE_RECORD))
2139 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2140
2141 /* Set parameters */
2142 AUDIO_INITINFO(&ai);
2143 if (bellfile) {
2144 /* If audiobell, only sample_rate will be set later. */
2145 ai.play.sample_rate = audio_default.sample_rate;
2146 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2147 ai.play.channels = 1;
2148 ai.play.precision = 16;
2149 ai.play.pause = false;
2150 } else if (ISDEVAUDIO(dev)) {
2151 /* If /dev/audio, initialize everytime. */
2152 ai.play.sample_rate = audio_default.sample_rate;
2153 ai.play.encoding = audio_default.encoding;
2154 ai.play.channels = audio_default.channels;
2155 ai.play.precision = audio_default.precision;
2156 ai.play.pause = false;
2157 ai.record.sample_rate = audio_default.sample_rate;
2158 ai.record.encoding = audio_default.encoding;
2159 ai.record.channels = audio_default.channels;
2160 ai.record.precision = audio_default.precision;
2161 ai.record.pause = false;
2162 } else {
2163 /* If /dev/sound, take over the previous parameters. */
2164 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2165 ai.play.encoding = sc->sc_sound_pparams.encoding;
2166 ai.play.channels = sc->sc_sound_pparams.channels;
2167 ai.play.precision = sc->sc_sound_pparams.precision;
2168 ai.play.pause = sc->sc_sound_ppause;
2169 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2170 ai.record.encoding = sc->sc_sound_rparams.encoding;
2171 ai.record.channels = sc->sc_sound_rparams.channels;
2172 ai.record.precision = sc->sc_sound_rparams.precision;
2173 ai.record.pause = sc->sc_sound_rpause;
2174 }
2175 error = audio_file_setinfo(sc, af, &ai);
2176 if (error)
2177 goto bad;
2178
2179 if (sc->sc_popens + sc->sc_ropens == 0) {
2180 /* First open */
2181
2182 sc->sc_cred = kauth_cred_get();
2183 kauth_cred_hold(sc->sc_cred);
2184 cred_held = true;
2185
2186 if (sc->hw_if->open) {
2187 int hwflags;
2188
2189 /*
2190 * Call hw_if->open() only at first open of
2191 * combination of playback and recording.
2192 * On full duplex hardware, the flags passed to
2193 * hw_if->open() is always (FREAD | FWRITE)
2194 * regardless of this open()'s flags.
2195 * see also dev/isa/aria.c
2196 * On half duplex hardware, the flags passed to
2197 * hw_if->open() is either FREAD or FWRITE.
2198 * see also arch/evbarm/mini2440/audio_mini2440.c
2199 */
2200 if (fullduplex) {
2201 hwflags = FREAD | FWRITE;
2202 } else {
2203 /* Construct hwflags from af->mode. */
2204 hwflags = 0;
2205 if ((af->mode & AUMODE_PLAY) != 0)
2206 hwflags |= FWRITE;
2207 if ((af->mode & AUMODE_RECORD) != 0)
2208 hwflags |= FREAD;
2209 }
2210
2211 mutex_enter(sc->sc_lock);
2212 mutex_enter(sc->sc_intr_lock);
2213 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2214 mutex_exit(sc->sc_intr_lock);
2215 mutex_exit(sc->sc_lock);
2216 if (error)
2217 goto bad;
2218 }
2219 /*
2220 * Regardless of whether we called hw_if->open (whether
2221 * hw_if->open exists) or not, we move to the Opened phase
2222 * here. Therefore from this point, we have to call
2223 * hw_if->close (if exists) whenever abort.
2224 * Note that both of hw_if->{open,close} are optional.
2225 */
2226 hw_opened = true;
2227
2228 /*
2229 * Set speaker mode when a half duplex.
2230 * XXX I'm not sure this is correct.
2231 */
2232 if (1/*XXX*/) {
2233 if (sc->hw_if->speaker_ctl) {
2234 int on;
2235 if (af->ptrack) {
2236 on = 1;
2237 } else {
2238 on = 0;
2239 }
2240 mutex_enter(sc->sc_lock);
2241 mutex_enter(sc->sc_intr_lock);
2242 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2243 mutex_exit(sc->sc_intr_lock);
2244 mutex_exit(sc->sc_lock);
2245 if (error)
2246 goto bad;
2247 }
2248 }
2249 } else if (sc->sc_multiuser == false) {
2250 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2251 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2252 error = EPERM;
2253 goto bad;
2254 }
2255 }
2256
2257 /* Call init_output if this is the first playback open. */
2258 if (af->ptrack && sc->sc_popens == 0) {
2259 if (sc->hw_if->init_output) {
2260 hwbuf = &sc->sc_pmixer->hwbuf;
2261 mutex_enter(sc->sc_lock);
2262 mutex_enter(sc->sc_intr_lock);
2263 error = sc->hw_if->init_output(sc->hw_hdl,
2264 hwbuf->mem,
2265 hwbuf->capacity *
2266 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2267 mutex_exit(sc->sc_intr_lock);
2268 mutex_exit(sc->sc_lock);
2269 if (error)
2270 goto bad;
2271 }
2272 }
2273 /*
2274 * Call init_input and start rmixer, if this is the first recording
2275 * open. See pause consideration notes.
2276 */
2277 if (af->rtrack && sc->sc_ropens == 0) {
2278 if (sc->hw_if->init_input) {
2279 hwbuf = &sc->sc_rmixer->hwbuf;
2280 mutex_enter(sc->sc_lock);
2281 mutex_enter(sc->sc_intr_lock);
2282 error = sc->hw_if->init_input(sc->hw_hdl,
2283 hwbuf->mem,
2284 hwbuf->capacity *
2285 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2286 mutex_exit(sc->sc_intr_lock);
2287 mutex_exit(sc->sc_lock);
2288 if (error)
2289 goto bad;
2290 }
2291
2292 mutex_enter(sc->sc_lock);
2293 audio_rmixer_start(sc);
2294 mutex_exit(sc->sc_lock);
2295 rmixer_started = true;
2296 }
2297
2298 if (bellfile) {
2299 *bellfile = af;
2300 } else {
2301 error = fd_allocfile(&fp, &fd);
2302 if (error)
2303 goto bad;
2304
2305 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2306 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2307 }
2308
2309 /*
2310 * Count up finally.
2311 * Don't fail from here.
2312 */
2313 mutex_enter(sc->sc_lock);
2314 if (af->ptrack)
2315 sc->sc_popens++;
2316 if (af->rtrack)
2317 sc->sc_ropens++;
2318 mutex_enter(sc->sc_intr_lock);
2319 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2320 mutex_exit(sc->sc_intr_lock);
2321 mutex_exit(sc->sc_lock);
2322
2323 TRACEF(3, af, "done");
2324 return error;
2325
2326 bad:
2327 if (fp) {
2328 fd_abort(curproc, fp, fd);
2329 }
2330
2331 if (rmixer_started) {
2332 mutex_enter(sc->sc_lock);
2333 audio_rmixer_halt(sc);
2334 mutex_exit(sc->sc_lock);
2335 }
2336
2337 if (hw_opened) {
2338 if (sc->hw_if->close) {
2339 mutex_enter(sc->sc_lock);
2340 mutex_enter(sc->sc_intr_lock);
2341 sc->hw_if->close(sc->hw_hdl);
2342 mutex_exit(sc->sc_intr_lock);
2343 mutex_exit(sc->sc_lock);
2344 }
2345 }
2346 if (cred_held) {
2347 kauth_cred_free(sc->sc_cred);
2348 }
2349
2350 /*
2351 * Since track here is not yet linked to sc_files,
2352 * you can call track_destroy() without sc_intr_lock.
2353 */
2354 if (af->rtrack) {
2355 audio_track_destroy(af->rtrack);
2356 af->rtrack = NULL;
2357 }
2358 if (af->ptrack) {
2359 audio_track_destroy(af->ptrack);
2360 af->ptrack = NULL;
2361 }
2362
2363 kmem_free(af, sizeof(*af));
2364 return error;
2365 }
2366
2367 /*
2368 * Must be called without sc_lock nor sc_exlock held.
2369 */
2370 int
2371 audio_close(struct audio_softc *sc, audio_file_t *file)
2372 {
2373
2374 /* Protect entering new fileops to this file */
2375 atomic_store_relaxed(&file->dying, true);
2376
2377 /*
2378 * Drain first.
2379 * It must be done before unlinking(acquiring exlock).
2380 */
2381 if (file->ptrack) {
2382 mutex_enter(sc->sc_lock);
2383 audio_track_drain(sc, file->ptrack);
2384 mutex_exit(sc->sc_lock);
2385 }
2386
2387 return audio_unlink(sc, file);
2388 }
2389
2390 /*
2391 * Unlink this file, but not freeing memory here.
2392 * Must be called without sc_lock nor sc_exlock held.
2393 */
2394 int
2395 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2396 {
2397 int error;
2398
2399 mutex_enter(sc->sc_lock);
2400
2401 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2402 (audiodebug >= 3) ? "start " : "",
2403 (int)curproc->p_pid, (int)curlwp->l_lid,
2404 sc->sc_popens, sc->sc_ropens);
2405 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2406 "sc->sc_popens=%d, sc->sc_ropens=%d",
2407 sc->sc_popens, sc->sc_ropens);
2408
2409 /*
2410 * Acquire exlock to protect counters.
2411 * Does not use audio_exlock_enter() due to sc_dying.
2412 */
2413 while (__predict_false(sc->sc_exlock != 0)) {
2414 error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
2415 mstohz(AUDIO_TIMEOUT));
2416 /* XXX what should I do on error? */
2417 if (error == EWOULDBLOCK) {
2418 mutex_exit(sc->sc_lock);
2419 device_printf(sc->sc_dev,
2420 "%s: cv_timedwait_sig failed %d", __func__, error);
2421 return error;
2422 }
2423 }
2424 sc->sc_exlock = 1;
2425
2426 device_active(sc->sc_dev, DVA_SYSTEM);
2427
2428 mutex_enter(sc->sc_intr_lock);
2429 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2430 mutex_exit(sc->sc_intr_lock);
2431
2432 if (file->ptrack) {
2433 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2434 file->ptrack->dropframes);
2435
2436 KASSERT(sc->sc_popens > 0);
2437 sc->sc_popens--;
2438
2439 /* Call hw halt_output if this is the last playback track. */
2440 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2441 error = audio_pmixer_halt(sc);
2442 if (error) {
2443 device_printf(sc->sc_dev,
2444 "halt_output failed with %d (ignored)\n",
2445 error);
2446 }
2447 }
2448
2449 /* Restore mixing volume if all tracks are gone. */
2450 if (sc->sc_popens == 0) {
2451 /* intr_lock is not necessary, but just manners. */
2452 mutex_enter(sc->sc_intr_lock);
2453 sc->sc_pmixer->volume = 256;
2454 sc->sc_pmixer->voltimer = 0;
2455 mutex_exit(sc->sc_intr_lock);
2456 }
2457 }
2458 if (file->rtrack) {
2459 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2460 file->rtrack->dropframes);
2461
2462 KASSERT(sc->sc_ropens > 0);
2463 sc->sc_ropens--;
2464
2465 /* Call hw halt_input if this is the last recording track. */
2466 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2467 error = audio_rmixer_halt(sc);
2468 if (error) {
2469 device_printf(sc->sc_dev,
2470 "halt_input failed with %d (ignored)\n",
2471 error);
2472 }
2473 }
2474
2475 }
2476
2477 /* Call hw close if this is the last track. */
2478 if (sc->sc_popens + sc->sc_ropens == 0) {
2479 if (sc->hw_if->close) {
2480 TRACE(2, "hw_if close");
2481 mutex_enter(sc->sc_intr_lock);
2482 sc->hw_if->close(sc->hw_hdl);
2483 mutex_exit(sc->sc_intr_lock);
2484 }
2485 }
2486
2487 mutex_exit(sc->sc_lock);
2488 if (sc->sc_popens + sc->sc_ropens == 0)
2489 kauth_cred_free(sc->sc_cred);
2490
2491 TRACE(3, "done");
2492 audio_exlock_exit(sc);
2493
2494 return 0;
2495 }
2496
2497 /*
2498 * Must be called without sc_lock nor sc_exlock held.
2499 */
2500 int
2501 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2502 audio_file_t *file)
2503 {
2504 audio_track_t *track;
2505 audio_ring_t *usrbuf;
2506 audio_ring_t *input;
2507 int error;
2508
2509 /*
2510 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2511 * However read() system call itself can be called because it's
2512 * opened with O_RDWR. So in this case, deny this read().
2513 */
2514 track = file->rtrack;
2515 if (track == NULL) {
2516 return EBADF;
2517 }
2518
2519 /* I think it's better than EINVAL. */
2520 if (track->mmapped)
2521 return EPERM;
2522
2523 TRACET(2, track, "resid=%zd", uio->uio_resid);
2524
2525 #ifdef AUDIO_PM_IDLE
2526 error = audio_exlock_mutex_enter(sc);
2527 if (error)
2528 return error;
2529
2530 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2531 device_active(&sc->sc_dev, DVA_SYSTEM);
2532
2533 /* In recording, unlike playback, read() never operates rmixer. */
2534
2535 audio_exlock_mutex_exit(sc);
2536 #endif
2537
2538 usrbuf = &track->usrbuf;
2539 input = track->input;
2540 error = 0;
2541
2542 while (uio->uio_resid > 0 && error == 0) {
2543 int bytes;
2544
2545 TRACET(3, track,
2546 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2547 uio->uio_resid,
2548 input->head, input->used, input->capacity,
2549 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2550
2551 /* Wait when buffers are empty. */
2552 mutex_enter(sc->sc_lock);
2553 for (;;) {
2554 bool empty;
2555 audio_track_lock_enter(track);
2556 empty = (input->used == 0 && usrbuf->used == 0);
2557 audio_track_lock_exit(track);
2558 if (!empty)
2559 break;
2560
2561 if ((ioflag & IO_NDELAY)) {
2562 mutex_exit(sc->sc_lock);
2563 return EWOULDBLOCK;
2564 }
2565
2566 TRACET(3, track, "sleep");
2567 error = audio_track_waitio(sc, track);
2568 if (error) {
2569 mutex_exit(sc->sc_lock);
2570 return error;
2571 }
2572 }
2573 mutex_exit(sc->sc_lock);
2574
2575 audio_track_lock_enter(track);
2576 audio_track_record(track);
2577
2578 /* uiomove from usrbuf as much as possible. */
2579 bytes = uimin(usrbuf->used, uio->uio_resid);
2580 while (bytes > 0) {
2581 int head = usrbuf->head;
2582 int len = uimin(bytes, usrbuf->capacity - head);
2583 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2584 uio);
2585 if (error) {
2586 audio_track_lock_exit(track);
2587 device_printf(sc->sc_dev,
2588 "uiomove(len=%d) failed with %d\n",
2589 len, error);
2590 goto abort;
2591 }
2592 auring_take(usrbuf, len);
2593 track->useriobytes += len;
2594 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2595 len,
2596 usrbuf->head, usrbuf->used, usrbuf->capacity);
2597 bytes -= len;
2598 }
2599
2600 audio_track_lock_exit(track);
2601 }
2602
2603 abort:
2604 return error;
2605 }
2606
2607
2608 /*
2609 * Clear file's playback and/or record track buffer immediately.
2610 */
2611 static void
2612 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2613 {
2614
2615 if (file->ptrack)
2616 audio_track_clear(sc, file->ptrack);
2617 if (file->rtrack)
2618 audio_track_clear(sc, file->rtrack);
2619 }
2620
2621 /*
2622 * Must be called without sc_lock nor sc_exlock held.
2623 */
2624 int
2625 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2626 audio_file_t *file)
2627 {
2628 audio_track_t *track;
2629 audio_ring_t *usrbuf;
2630 audio_ring_t *outbuf;
2631 int error;
2632
2633 track = file->ptrack;
2634 KASSERT(track);
2635
2636 /* I think it's better than EINVAL. */
2637 if (track->mmapped)
2638 return EPERM;
2639
2640 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2641 audiodebug >= 3 ? "begin " : "",
2642 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2643
2644 if (uio->uio_resid == 0) {
2645 track->eofcounter++;
2646 return 0;
2647 }
2648
2649 error = audio_exlock_mutex_enter(sc);
2650 if (error)
2651 return error;
2652
2653 #ifdef AUDIO_PM_IDLE
2654 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2655 device_active(&sc->sc_dev, DVA_SYSTEM);
2656 #endif
2657
2658 /*
2659 * The first write starts pmixer.
2660 */
2661 if (sc->sc_pbusy == false)
2662 audio_pmixer_start(sc, false);
2663 audio_exlock_mutex_exit(sc);
2664
2665 usrbuf = &track->usrbuf;
2666 outbuf = &track->outbuf;
2667 track->pstate = AUDIO_STATE_RUNNING;
2668 error = 0;
2669
2670 while (uio->uio_resid > 0 && error == 0) {
2671 int bytes;
2672
2673 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2674 uio->uio_resid,
2675 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2676
2677 /* Wait when buffers are full. */
2678 mutex_enter(sc->sc_lock);
2679 for (;;) {
2680 bool full;
2681 audio_track_lock_enter(track);
2682 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2683 outbuf->used >= outbuf->capacity);
2684 audio_track_lock_exit(track);
2685 if (!full)
2686 break;
2687
2688 if ((ioflag & IO_NDELAY)) {
2689 error = EWOULDBLOCK;
2690 mutex_exit(sc->sc_lock);
2691 goto abort;
2692 }
2693
2694 TRACET(3, track, "sleep usrbuf=%d/H%d",
2695 usrbuf->used, track->usrbuf_usedhigh);
2696 error = audio_track_waitio(sc, track);
2697 if (error) {
2698 mutex_exit(sc->sc_lock);
2699 goto abort;
2700 }
2701 }
2702 mutex_exit(sc->sc_lock);
2703
2704 audio_track_lock_enter(track);
2705
2706 /* uiomove to usrbuf as much as possible. */
2707 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2708 uio->uio_resid);
2709 while (bytes > 0) {
2710 int tail = auring_tail(usrbuf);
2711 int len = uimin(bytes, usrbuf->capacity - tail);
2712 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2713 uio);
2714 if (error) {
2715 audio_track_lock_exit(track);
2716 device_printf(sc->sc_dev,
2717 "uiomove(len=%d) failed with %d\n",
2718 len, error);
2719 goto abort;
2720 }
2721 auring_push(usrbuf, len);
2722 track->useriobytes += len;
2723 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2724 len,
2725 usrbuf->head, usrbuf->used, usrbuf->capacity);
2726 bytes -= len;
2727 }
2728
2729 /* Convert them as much as possible. */
2730 while (usrbuf->used >= track->usrbuf_blksize &&
2731 outbuf->used < outbuf->capacity) {
2732 audio_track_play(track);
2733 }
2734
2735 audio_track_lock_exit(track);
2736 }
2737
2738 abort:
2739 TRACET(3, track, "done error=%d", error);
2740 return error;
2741 }
2742
2743 /*
2744 * Must be called without sc_lock nor sc_exlock held.
2745 */
2746 int
2747 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2748 struct lwp *l, audio_file_t *file)
2749 {
2750 struct audio_offset *ao;
2751 struct audio_info ai;
2752 audio_track_t *track;
2753 audio_encoding_t *ae;
2754 audio_format_query_t *query;
2755 u_int stamp;
2756 u_int offs;
2757 int fd;
2758 int index;
2759 int error;
2760
2761 #if defined(AUDIO_DEBUG)
2762 const char *ioctlnames[] = {
2763 " AUDIO_GETINFO", /* 21 */
2764 " AUDIO_SETINFO", /* 22 */
2765 " AUDIO_DRAIN", /* 23 */
2766 " AUDIO_FLUSH", /* 24 */
2767 " AUDIO_WSEEK", /* 25 */
2768 " AUDIO_RERROR", /* 26 */
2769 " AUDIO_GETDEV", /* 27 */
2770 " AUDIO_GETENC", /* 28 */
2771 " AUDIO_GETFD", /* 29 */
2772 " AUDIO_SETFD", /* 30 */
2773 " AUDIO_PERROR", /* 31 */
2774 " AUDIO_GETIOFFS", /* 32 */
2775 " AUDIO_GETOOFFS", /* 33 */
2776 " AUDIO_GETPROPS", /* 34 */
2777 " AUDIO_GETBUFINFO", /* 35 */
2778 " AUDIO_SETCHAN", /* 36 */
2779 " AUDIO_GETCHAN", /* 37 */
2780 " AUDIO_QUERYFORMAT", /* 38 */
2781 " AUDIO_GETFORMAT", /* 39 */
2782 " AUDIO_SETFORMAT", /* 40 */
2783 };
2784 int nameidx = (cmd & 0xff);
2785 const char *ioctlname = "";
2786 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2787 ioctlname = ioctlnames[nameidx - 21];
2788 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2789 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2790 (int)curproc->p_pid, (int)l->l_lid);
2791 #endif
2792
2793 error = 0;
2794 switch (cmd) {
2795 case FIONBIO:
2796 /* All handled in the upper FS layer. */
2797 break;
2798
2799 case FIONREAD:
2800 /* Get the number of bytes that can be read. */
2801 if (file->rtrack) {
2802 *(int *)addr = audio_track_readablebytes(file->rtrack);
2803 } else {
2804 *(int *)addr = 0;
2805 }
2806 break;
2807
2808 case FIOASYNC:
2809 /* Set/Clear ASYNC I/O. */
2810 if (*(int *)addr) {
2811 file->async_audio = curproc->p_pid;
2812 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2813 } else {
2814 file->async_audio = 0;
2815 TRACEF(2, file, "FIOASYNC off");
2816 }
2817 break;
2818
2819 case AUDIO_FLUSH:
2820 /* XXX TODO: clear errors and restart? */
2821 audio_file_clear(sc, file);
2822 break;
2823
2824 case AUDIO_RERROR:
2825 /*
2826 * Number of read bytes dropped. We don't know where
2827 * or when they were dropped (including conversion stage).
2828 * Therefore, the number of accurate bytes or samples is
2829 * also unknown.
2830 */
2831 track = file->rtrack;
2832 if (track) {
2833 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2834 track->dropframes);
2835 }
2836 break;
2837
2838 case AUDIO_PERROR:
2839 /*
2840 * Number of write bytes dropped. We don't know where
2841 * or when they were dropped (including conversion stage).
2842 * Therefore, the number of accurate bytes or samples is
2843 * also unknown.
2844 */
2845 track = file->ptrack;
2846 if (track) {
2847 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2848 track->dropframes);
2849 }
2850 break;
2851
2852 case AUDIO_GETIOFFS:
2853 /* XXX TODO */
2854 ao = (struct audio_offset *)addr;
2855 ao->samples = 0;
2856 ao->deltablks = 0;
2857 ao->offset = 0;
2858 break;
2859
2860 case AUDIO_GETOOFFS:
2861 ao = (struct audio_offset *)addr;
2862 track = file->ptrack;
2863 if (track == NULL) {
2864 ao->samples = 0;
2865 ao->deltablks = 0;
2866 ao->offset = 0;
2867 break;
2868 }
2869 mutex_enter(sc->sc_lock);
2870 mutex_enter(sc->sc_intr_lock);
2871 /* figure out where next DMA will start */
2872 stamp = track->usrbuf_stamp;
2873 offs = track->usrbuf.head;
2874 mutex_exit(sc->sc_intr_lock);
2875 mutex_exit(sc->sc_lock);
2876
2877 ao->samples = stamp;
2878 ao->deltablks = (stamp / track->usrbuf_blksize) -
2879 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2880 track->usrbuf_stamp_last = stamp;
2881 offs = rounddown(offs, track->usrbuf_blksize)
2882 + track->usrbuf_blksize;
2883 if (offs >= track->usrbuf.capacity)
2884 offs -= track->usrbuf.capacity;
2885 ao->offset = offs;
2886
2887 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2888 ao->samples, ao->deltablks, ao->offset);
2889 break;
2890
2891 case AUDIO_WSEEK:
2892 /* XXX return value does not include outbuf one. */
2893 if (file->ptrack)
2894 *(u_long *)addr = file->ptrack->usrbuf.used;
2895 break;
2896
2897 case AUDIO_SETINFO:
2898 error = audio_exlock_enter(sc);
2899 if (error)
2900 break;
2901 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2902 if (error) {
2903 audio_exlock_exit(sc);
2904 break;
2905 }
2906 /* XXX TODO: update last_ai if /dev/sound ? */
2907 if (ISDEVSOUND(dev))
2908 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2909 audio_exlock_exit(sc);
2910 break;
2911
2912 case AUDIO_GETINFO:
2913 error = audio_exlock_enter(sc);
2914 if (error)
2915 break;
2916 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2917 audio_exlock_exit(sc);
2918 break;
2919
2920 case AUDIO_GETBUFINFO:
2921 error = audio_exlock_enter(sc);
2922 if (error)
2923 break;
2924 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2925 audio_exlock_exit(sc);
2926 break;
2927
2928 case AUDIO_DRAIN:
2929 if (file->ptrack) {
2930 mutex_enter(sc->sc_lock);
2931 error = audio_track_drain(sc, file->ptrack);
2932 mutex_exit(sc->sc_lock);
2933 }
2934 break;
2935
2936 case AUDIO_GETDEV:
2937 mutex_enter(sc->sc_lock);
2938 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2939 mutex_exit(sc->sc_lock);
2940 break;
2941
2942 case AUDIO_GETENC:
2943 ae = (audio_encoding_t *)addr;
2944 index = ae->index;
2945 if (index < 0 || index >= __arraycount(audio_encodings)) {
2946 error = EINVAL;
2947 break;
2948 }
2949 *ae = audio_encodings[index];
2950 ae->index = index;
2951 /*
2952 * EMULATED always.
2953 * EMULATED flag at that time used to mean that it could
2954 * not be passed directly to the hardware as-is. But
2955 * currently, all formats including hardware native is not
2956 * passed directly to the hardware. So I set EMULATED
2957 * flag for all formats.
2958 */
2959 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2960 break;
2961
2962 case AUDIO_GETFD:
2963 /*
2964 * Returns the current setting of full duplex mode.
2965 * If HW has full duplex mode and there are two mixers,
2966 * it is full duplex. Otherwise half duplex.
2967 */
2968 error = audio_exlock_enter(sc);
2969 if (error)
2970 break;
2971 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2972 && (sc->sc_pmixer && sc->sc_rmixer);
2973 audio_exlock_exit(sc);
2974 *(int *)addr = fd;
2975 break;
2976
2977 case AUDIO_GETPROPS:
2978 *(int *)addr = sc->sc_props;
2979 break;
2980
2981 case AUDIO_QUERYFORMAT:
2982 query = (audio_format_query_t *)addr;
2983 mutex_enter(sc->sc_lock);
2984 error = sc->hw_if->query_format(sc->hw_hdl, query);
2985 mutex_exit(sc->sc_lock);
2986 /* Hide internal infomations */
2987 query->fmt.driver_data = NULL;
2988 break;
2989
2990 case AUDIO_GETFORMAT:
2991 error = audio_exlock_enter(sc);
2992 if (error)
2993 break;
2994 audio_mixers_get_format(sc, (struct audio_info *)addr);
2995 audio_exlock_exit(sc);
2996 break;
2997
2998 case AUDIO_SETFORMAT:
2999 error = audio_exlock_enter(sc);
3000 audio_mixers_get_format(sc, &ai);
3001 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3002 if (error) {
3003 /* Rollback */
3004 audio_mixers_set_format(sc, &ai);
3005 }
3006 audio_exlock_exit(sc);
3007 break;
3008
3009 case AUDIO_SETFD:
3010 case AUDIO_SETCHAN:
3011 case AUDIO_GETCHAN:
3012 /* Obsoleted */
3013 break;
3014
3015 default:
3016 if (sc->hw_if->dev_ioctl) {
3017 mutex_enter(sc->sc_lock);
3018 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3019 cmd, addr, flag, l);
3020 mutex_exit(sc->sc_lock);
3021 } else {
3022 TRACEF(2, file, "unknown ioctl");
3023 error = EINVAL;
3024 }
3025 break;
3026 }
3027 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
3028 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
3029 error);
3030 return error;
3031 }
3032
3033 /*
3034 * Returns the number of bytes that can be read on recording buffer.
3035 */
3036 static __inline int
3037 audio_track_readablebytes(const audio_track_t *track)
3038 {
3039 int bytes;
3040
3041 KASSERT(track);
3042 KASSERT(track->mode == AUMODE_RECORD);
3043
3044 /*
3045 * Although usrbuf is primarily readable data, recorded data
3046 * also stays in track->input until reading. So it is necessary
3047 * to add it. track->input is in frame, usrbuf is in byte.
3048 */
3049 bytes = track->usrbuf.used +
3050 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3051 return bytes;
3052 }
3053
3054 /*
3055 * Must be called without sc_lock nor sc_exlock held.
3056 */
3057 int
3058 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3059 audio_file_t *file)
3060 {
3061 audio_track_t *track;
3062 int revents;
3063 bool in_is_valid;
3064 bool out_is_valid;
3065
3066 #if defined(AUDIO_DEBUG)
3067 #define POLLEV_BITMAP "\177\020" \
3068 "b\10WRBAND\0" \
3069 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3070 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3071 char evbuf[64];
3072 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3073 TRACEF(2, file, "pid=%d.%d events=%s",
3074 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3075 #endif
3076
3077 revents = 0;
3078 in_is_valid = false;
3079 out_is_valid = false;
3080 if (events & (POLLIN | POLLRDNORM)) {
3081 track = file->rtrack;
3082 if (track) {
3083 int used;
3084 in_is_valid = true;
3085 used = audio_track_readablebytes(track);
3086 if (used > 0)
3087 revents |= events & (POLLIN | POLLRDNORM);
3088 }
3089 }
3090 if (events & (POLLOUT | POLLWRNORM)) {
3091 track = file->ptrack;
3092 if (track) {
3093 out_is_valid = true;
3094 if (track->usrbuf.used <= track->usrbuf_usedlow)
3095 revents |= events & (POLLOUT | POLLWRNORM);
3096 }
3097 }
3098
3099 if (revents == 0) {
3100 mutex_enter(sc->sc_lock);
3101 if (in_is_valid) {
3102 TRACEF(3, file, "selrecord rsel");
3103 selrecord(l, &sc->sc_rsel);
3104 }
3105 if (out_is_valid) {
3106 TRACEF(3, file, "selrecord wsel");
3107 selrecord(l, &sc->sc_wsel);
3108 }
3109 mutex_exit(sc->sc_lock);
3110 }
3111
3112 #if defined(AUDIO_DEBUG)
3113 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3114 TRACEF(2, file, "revents=%s", evbuf);
3115 #endif
3116 return revents;
3117 }
3118
3119 static const struct filterops audioread_filtops = {
3120 .f_isfd = 1,
3121 .f_attach = NULL,
3122 .f_detach = filt_audioread_detach,
3123 .f_event = filt_audioread_event,
3124 };
3125
3126 static void
3127 filt_audioread_detach(struct knote *kn)
3128 {
3129 struct audio_softc *sc;
3130 audio_file_t *file;
3131
3132 file = kn->kn_hook;
3133 sc = file->sc;
3134 TRACEF(3, file, "");
3135
3136 mutex_enter(sc->sc_lock);
3137 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
3138 mutex_exit(sc->sc_lock);
3139 }
3140
3141 static int
3142 filt_audioread_event(struct knote *kn, long hint)
3143 {
3144 audio_file_t *file;
3145 audio_track_t *track;
3146
3147 file = kn->kn_hook;
3148 track = file->rtrack;
3149
3150 /*
3151 * kn_data must contain the number of bytes can be read.
3152 * The return value indicates whether the event occurs or not.
3153 */
3154
3155 if (track == NULL) {
3156 /* can not read with this descriptor. */
3157 kn->kn_data = 0;
3158 return 0;
3159 }
3160
3161 kn->kn_data = audio_track_readablebytes(track);
3162 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3163 return kn->kn_data > 0;
3164 }
3165
3166 static const struct filterops audiowrite_filtops = {
3167 .f_isfd = 1,
3168 .f_attach = NULL,
3169 .f_detach = filt_audiowrite_detach,
3170 .f_event = filt_audiowrite_event,
3171 };
3172
3173 static void
3174 filt_audiowrite_detach(struct knote *kn)
3175 {
3176 struct audio_softc *sc;
3177 audio_file_t *file;
3178
3179 file = kn->kn_hook;
3180 sc = file->sc;
3181 TRACEF(3, file, "");
3182
3183 mutex_enter(sc->sc_lock);
3184 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
3185 mutex_exit(sc->sc_lock);
3186 }
3187
3188 static int
3189 filt_audiowrite_event(struct knote *kn, long hint)
3190 {
3191 audio_file_t *file;
3192 audio_track_t *track;
3193
3194 file = kn->kn_hook;
3195 track = file->ptrack;
3196
3197 /*
3198 * kn_data must contain the number of bytes can be write.
3199 * The return value indicates whether the event occurs or not.
3200 */
3201
3202 if (track == NULL) {
3203 /* can not write with this descriptor. */
3204 kn->kn_data = 0;
3205 return 0;
3206 }
3207
3208 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3209 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3210 return (track->usrbuf.used < track->usrbuf_usedlow);
3211 }
3212
3213 /*
3214 * Must be called without sc_lock nor sc_exlock held.
3215 */
3216 int
3217 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3218 {
3219 struct klist *klist;
3220
3221 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3222
3223 mutex_enter(sc->sc_lock);
3224 switch (kn->kn_filter) {
3225 case EVFILT_READ:
3226 klist = &sc->sc_rsel.sel_klist;
3227 kn->kn_fop = &audioread_filtops;
3228 break;
3229
3230 case EVFILT_WRITE:
3231 klist = &sc->sc_wsel.sel_klist;
3232 kn->kn_fop = &audiowrite_filtops;
3233 break;
3234
3235 default:
3236 mutex_exit(sc->sc_lock);
3237 return EINVAL;
3238 }
3239
3240 kn->kn_hook = file;
3241
3242 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3243 mutex_exit(sc->sc_lock);
3244
3245 return 0;
3246 }
3247
3248 /*
3249 * Must be called without sc_lock nor sc_exlock held.
3250 */
3251 int
3252 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3253 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3254 audio_file_t *file)
3255 {
3256 audio_track_t *track;
3257 vsize_t vsize;
3258 int error;
3259
3260 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3261
3262 if (*offp < 0)
3263 return EINVAL;
3264
3265 #if 0
3266 /* XXX
3267 * The idea here was to use the protection to determine if
3268 * we are mapping the read or write buffer, but it fails.
3269 * The VM system is broken in (at least) two ways.
3270 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3271 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3272 * has to be used for mmapping the play buffer.
3273 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3274 * audio_mmap will get called at some point with VM_PROT_READ
3275 * only.
3276 * So, alas, we always map the play buffer for now.
3277 */
3278 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3279 prot == VM_PROT_WRITE)
3280 track = file->ptrack;
3281 else if (prot == VM_PROT_READ)
3282 track = file->rtrack;
3283 else
3284 return EINVAL;
3285 #else
3286 track = file->ptrack;
3287 #endif
3288 if (track == NULL)
3289 return EACCES;
3290
3291 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3292 if (len > vsize)
3293 return EOVERFLOW;
3294 if (*offp > (uint)(vsize - len))
3295 return EOVERFLOW;
3296
3297 /* XXX TODO: what happens when mmap twice. */
3298 if (!track->mmapped) {
3299 track->mmapped = true;
3300
3301 if (!track->is_pause) {
3302 error = audio_exlock_mutex_enter(sc);
3303 if (error)
3304 return error;
3305 if (sc->sc_pbusy == false)
3306 audio_pmixer_start(sc, true);
3307 audio_exlock_mutex_exit(sc);
3308 }
3309 /* XXX mmapping record buffer is not supported */
3310 }
3311
3312 /* get ringbuffer */
3313 *uobjp = track->uobj;
3314
3315 /* Acquire a reference for the mmap. munmap will release. */
3316 uao_reference(*uobjp);
3317 *maxprotp = prot;
3318 *advicep = UVM_ADV_RANDOM;
3319 *flagsp = MAP_SHARED;
3320 return 0;
3321 }
3322
3323 /*
3324 * /dev/audioctl has to be able to open at any time without interference
3325 * with any /dev/audio or /dev/sound.
3326 * Must be called with sc_exlock held and without sc_lock held.
3327 */
3328 static int
3329 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3330 struct lwp *l)
3331 {
3332 struct file *fp;
3333 audio_file_t *af;
3334 int fd;
3335 int error;
3336
3337 KASSERT(sc->sc_exlock);
3338
3339 TRACE(1, "");
3340
3341 error = fd_allocfile(&fp, &fd);
3342 if (error)
3343 return error;
3344
3345 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3346 af->sc = sc;
3347 af->dev = dev;
3348
3349 /* Not necessary to insert sc_files. */
3350
3351 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3352 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3353
3354 return error;
3355 }
3356
3357 /*
3358 * Free 'mem' if available, and initialize the pointer.
3359 * For this reason, this is implemented as macro.
3360 */
3361 #define audio_free(mem) do { \
3362 if (mem != NULL) { \
3363 kern_free(mem); \
3364 mem = NULL; \
3365 } \
3366 } while (0)
3367
3368 /*
3369 * (Re)allocate 'memblock' with specified 'bytes'.
3370 * bytes must not be 0.
3371 * This function never returns NULL.
3372 */
3373 static void *
3374 audio_realloc(void *memblock, size_t bytes)
3375 {
3376
3377 KASSERT(bytes != 0);
3378 audio_free(memblock);
3379 return kern_malloc(bytes, M_WAITOK);
3380 }
3381
3382 /*
3383 * (Re)allocate usrbuf with 'newbufsize' bytes.
3384 * Use this function for usrbuf because only usrbuf can be mmapped.
3385 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3386 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3387 * and returns errno.
3388 * It must be called before updating usrbuf.capacity.
3389 */
3390 static int
3391 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3392 {
3393 struct audio_softc *sc;
3394 vaddr_t vstart;
3395 vsize_t oldvsize;
3396 vsize_t newvsize;
3397 int error;
3398
3399 KASSERT(newbufsize > 0);
3400 sc = track->mixer->sc;
3401
3402 /* Get a nonzero multiple of PAGE_SIZE */
3403 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3404
3405 if (track->usrbuf.mem != NULL) {
3406 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3407 PAGE_SIZE);
3408 if (oldvsize == newvsize) {
3409 track->usrbuf.capacity = newbufsize;
3410 return 0;
3411 }
3412 vstart = (vaddr_t)track->usrbuf.mem;
3413 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3414 /* uvm_unmap also detach uobj */
3415 track->uobj = NULL; /* paranoia */
3416 track->usrbuf.mem = NULL;
3417 }
3418
3419 /* Create a uvm anonymous object */
3420 track->uobj = uao_create(newvsize, 0);
3421
3422 /* Map it into the kernel virtual address space */
3423 vstart = 0;
3424 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3425 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3426 UVM_ADV_RANDOM, 0));
3427 if (error) {
3428 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3429 uao_detach(track->uobj); /* release reference */
3430 goto abort;
3431 }
3432
3433 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3434 false, 0);
3435 if (error) {
3436 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3437 error);
3438 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3439 /* uvm_unmap also detach uobj */
3440 goto abort;
3441 }
3442
3443 track->usrbuf.mem = (void *)vstart;
3444 track->usrbuf.capacity = newbufsize;
3445 memset(track->usrbuf.mem, 0, newvsize);
3446 return 0;
3447
3448 /* failure */
3449 abort:
3450 track->uobj = NULL; /* paranoia */
3451 track->usrbuf.mem = NULL;
3452 track->usrbuf.capacity = 0;
3453 return error;
3454 }
3455
3456 /*
3457 * Free usrbuf (if available).
3458 */
3459 static void
3460 audio_free_usrbuf(audio_track_t *track)
3461 {
3462 vaddr_t vstart;
3463 vsize_t vsize;
3464
3465 vstart = (vaddr_t)track->usrbuf.mem;
3466 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3467 if (track->usrbuf.mem != NULL) {
3468 /*
3469 * Unmap the kernel mapping. uvm_unmap releases the
3470 * reference to the uvm object, and this should be the
3471 * last virtual mapping of the uvm object, so no need
3472 * to explicitly release (`detach') the object.
3473 */
3474 uvm_unmap(kernel_map, vstart, vstart + vsize);
3475
3476 track->uobj = NULL;
3477 track->usrbuf.mem = NULL;
3478 track->usrbuf.capacity = 0;
3479 }
3480 }
3481
3482 /*
3483 * This filter changes the volume for each channel.
3484 * arg->context points track->ch_volume[].
3485 */
3486 static void
3487 audio_track_chvol(audio_filter_arg_t *arg)
3488 {
3489 int16_t *ch_volume;
3490 const aint_t *s;
3491 aint_t *d;
3492 u_int i;
3493 u_int ch;
3494 u_int channels;
3495
3496 DIAGNOSTIC_filter_arg(arg);
3497 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3498 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3499 arg->srcfmt->channels, arg->dstfmt->channels);
3500 KASSERT(arg->context != NULL);
3501 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3502 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3503
3504 s = arg->src;
3505 d = arg->dst;
3506 ch_volume = arg->context;
3507
3508 channels = arg->srcfmt->channels;
3509 for (i = 0; i < arg->count; i++) {
3510 for (ch = 0; ch < channels; ch++) {
3511 aint2_t val;
3512 val = *s++;
3513 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3514 *d++ = (aint_t)val;
3515 }
3516 }
3517 }
3518
3519 /*
3520 * This filter performs conversion from stereo (or more channels) to mono.
3521 */
3522 static void
3523 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3524 {
3525 const aint_t *s;
3526 aint_t *d;
3527 u_int i;
3528
3529 DIAGNOSTIC_filter_arg(arg);
3530
3531 s = arg->src;
3532 d = arg->dst;
3533
3534 for (i = 0; i < arg->count; i++) {
3535 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3536 s += arg->srcfmt->channels;
3537 }
3538 }
3539
3540 /*
3541 * This filter performs conversion from mono to stereo (or more channels).
3542 */
3543 static void
3544 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3545 {
3546 const aint_t *s;
3547 aint_t *d;
3548 u_int i;
3549 u_int ch;
3550 u_int dstchannels;
3551
3552 DIAGNOSTIC_filter_arg(arg);
3553
3554 s = arg->src;
3555 d = arg->dst;
3556 dstchannels = arg->dstfmt->channels;
3557
3558 for (i = 0; i < arg->count; i++) {
3559 d[0] = s[0];
3560 d[1] = s[0];
3561 s++;
3562 d += dstchannels;
3563 }
3564 if (dstchannels > 2) {
3565 d = arg->dst;
3566 for (i = 0; i < arg->count; i++) {
3567 for (ch = 2; ch < dstchannels; ch++) {
3568 d[ch] = 0;
3569 }
3570 d += dstchannels;
3571 }
3572 }
3573 }
3574
3575 /*
3576 * This filter shrinks M channels into N channels.
3577 * Extra channels are discarded.
3578 */
3579 static void
3580 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3581 {
3582 const aint_t *s;
3583 aint_t *d;
3584 u_int i;
3585 u_int ch;
3586
3587 DIAGNOSTIC_filter_arg(arg);
3588
3589 s = arg->src;
3590 d = arg->dst;
3591
3592 for (i = 0; i < arg->count; i++) {
3593 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3594 *d++ = s[ch];
3595 }
3596 s += arg->srcfmt->channels;
3597 }
3598 }
3599
3600 /*
3601 * This filter expands M channels into N channels.
3602 * Silence is inserted for missing channels.
3603 */
3604 static void
3605 audio_track_chmix_expand(audio_filter_arg_t *arg)
3606 {
3607 const aint_t *s;
3608 aint_t *d;
3609 u_int i;
3610 u_int ch;
3611 u_int srcchannels;
3612 u_int dstchannels;
3613
3614 DIAGNOSTIC_filter_arg(arg);
3615
3616 s = arg->src;
3617 d = arg->dst;
3618
3619 srcchannels = arg->srcfmt->channels;
3620 dstchannels = arg->dstfmt->channels;
3621 for (i = 0; i < arg->count; i++) {
3622 for (ch = 0; ch < srcchannels; ch++) {
3623 *d++ = *s++;
3624 }
3625 for (; ch < dstchannels; ch++) {
3626 *d++ = 0;
3627 }
3628 }
3629 }
3630
3631 /*
3632 * This filter performs frequency conversion (up sampling).
3633 * It uses linear interpolation.
3634 */
3635 static void
3636 audio_track_freq_up(audio_filter_arg_t *arg)
3637 {
3638 audio_track_t *track;
3639 audio_ring_t *src;
3640 audio_ring_t *dst;
3641 const aint_t *s;
3642 aint_t *d;
3643 aint_t prev[AUDIO_MAX_CHANNELS];
3644 aint_t curr[AUDIO_MAX_CHANNELS];
3645 aint_t grad[AUDIO_MAX_CHANNELS];
3646 u_int i;
3647 u_int t;
3648 u_int step;
3649 u_int channels;
3650 u_int ch;
3651 int srcused;
3652
3653 track = arg->context;
3654 KASSERT(track);
3655 src = &track->freq.srcbuf;
3656 dst = track->freq.dst;
3657 DIAGNOSTIC_ring(dst);
3658 DIAGNOSTIC_ring(src);
3659 KASSERT(src->used > 0);
3660 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3661 "src->fmt.channels=%d dst->fmt.channels=%d",
3662 src->fmt.channels, dst->fmt.channels);
3663 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3664 "src->head=%d track->mixer->frames_per_block=%d",
3665 src->head, track->mixer->frames_per_block);
3666
3667 s = arg->src;
3668 d = arg->dst;
3669
3670 /*
3671 * In order to faciliate interpolation for each block, slide (delay)
3672 * input by one sample. As a result, strictly speaking, the output
3673 * phase is delayed by 1/dstfreq. However, I believe there is no
3674 * observable impact.
3675 *
3676 * Example)
3677 * srcfreq:dstfreq = 1:3
3678 *
3679 * A - -
3680 * |
3681 * |
3682 * | B - -
3683 * +-----+-----> input timeframe
3684 * 0 1
3685 *
3686 * 0 1
3687 * +-----+-----> input timeframe
3688 * | A
3689 * | x x
3690 * | x x
3691 * x (B)
3692 * +-+-+-+-+-+-> output timeframe
3693 * 0 1 2 3 4 5
3694 */
3695
3696 /* Last samples in previous block */
3697 channels = src->fmt.channels;
3698 for (ch = 0; ch < channels; ch++) {
3699 prev[ch] = track->freq_prev[ch];
3700 curr[ch] = track->freq_curr[ch];
3701 grad[ch] = curr[ch] - prev[ch];
3702 }
3703
3704 step = track->freq_step;
3705 t = track->freq_current;
3706 //#define FREQ_DEBUG
3707 #if defined(FREQ_DEBUG)
3708 #define PRINTF(fmt...) printf(fmt)
3709 #else
3710 #define PRINTF(fmt...) do { } while (0)
3711 #endif
3712 srcused = src->used;
3713 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3714 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3715 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3716 PRINTF(" t=%d\n", t);
3717
3718 for (i = 0; i < arg->count; i++) {
3719 PRINTF("i=%d t=%5d", i, t);
3720 if (t >= 65536) {
3721 for (ch = 0; ch < channels; ch++) {
3722 prev[ch] = curr[ch];
3723 curr[ch] = *s++;
3724 grad[ch] = curr[ch] - prev[ch];
3725 }
3726 PRINTF(" prev=%d s[%d]=%d",
3727 prev[0], src->used - srcused, curr[0]);
3728
3729 /* Update */
3730 t -= 65536;
3731 srcused--;
3732 if (srcused < 0) {
3733 PRINTF(" break\n");
3734 break;
3735 }
3736 }
3737
3738 for (ch = 0; ch < channels; ch++) {
3739 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3740 #if defined(FREQ_DEBUG)
3741 if (ch == 0)
3742 printf(" t=%5d *d=%d", t, d[-1]);
3743 #endif
3744 }
3745 t += step;
3746
3747 PRINTF("\n");
3748 }
3749 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3750
3751 auring_take(src, src->used);
3752 auring_push(dst, i);
3753
3754 /* Adjust */
3755 t += track->freq_leap;
3756
3757 track->freq_current = t;
3758 for (ch = 0; ch < channels; ch++) {
3759 track->freq_prev[ch] = prev[ch];
3760 track->freq_curr[ch] = curr[ch];
3761 }
3762 }
3763
3764 /*
3765 * This filter performs frequency conversion (down sampling).
3766 * It uses simple thinning.
3767 */
3768 static void
3769 audio_track_freq_down(audio_filter_arg_t *arg)
3770 {
3771 audio_track_t *track;
3772 audio_ring_t *src;
3773 audio_ring_t *dst;
3774 const aint_t *s0;
3775 aint_t *d;
3776 u_int i;
3777 u_int t;
3778 u_int step;
3779 u_int ch;
3780 u_int channels;
3781
3782 track = arg->context;
3783 KASSERT(track);
3784 src = &track->freq.srcbuf;
3785 dst = track->freq.dst;
3786
3787 DIAGNOSTIC_ring(dst);
3788 DIAGNOSTIC_ring(src);
3789 KASSERT(src->used > 0);
3790 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3791 "src->fmt.channels=%d dst->fmt.channels=%d",
3792 src->fmt.channels, dst->fmt.channels);
3793 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3794 "src->head=%d track->mixer->frames_per_block=%d",
3795 src->head, track->mixer->frames_per_block);
3796
3797 s0 = arg->src;
3798 d = arg->dst;
3799 t = track->freq_current;
3800 step = track->freq_step;
3801 channels = dst->fmt.channels;
3802 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3803 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3804 PRINTF(" t=%d\n", t);
3805
3806 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3807 const aint_t *s;
3808 PRINTF("i=%4d t=%10d", i, t);
3809 s = s0 + (t / 65536) * channels;
3810 PRINTF(" s=%5ld", (s - s0) / channels);
3811 for (ch = 0; ch < channels; ch++) {
3812 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3813 *d++ = s[ch];
3814 }
3815 PRINTF("\n");
3816 t += step;
3817 }
3818 t += track->freq_leap;
3819 PRINTF("end t=%d\n", t);
3820 auring_take(src, src->used);
3821 auring_push(dst, i);
3822 track->freq_current = t % 65536;
3823 }
3824
3825 /*
3826 * Creates track and returns it.
3827 * Must be called without sc_lock held.
3828 */
3829 audio_track_t *
3830 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3831 {
3832 audio_track_t *track;
3833 static int newid = 0;
3834
3835 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3836
3837 track->id = newid++;
3838 track->mixer = mixer;
3839 track->mode = mixer->mode;
3840
3841 /* Do TRACE after id is assigned. */
3842 TRACET(3, track, "for %s",
3843 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3844
3845 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3846 track->volume = 256;
3847 #endif
3848 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3849 track->ch_volume[i] = 256;
3850 }
3851
3852 return track;
3853 }
3854
3855 /*
3856 * Release all resources of the track and track itself.
3857 * track must not be NULL. Don't specify the track within the file
3858 * structure linked from sc->sc_files.
3859 */
3860 static void
3861 audio_track_destroy(audio_track_t *track)
3862 {
3863
3864 KASSERT(track);
3865
3866 audio_free_usrbuf(track);
3867 audio_free(track->codec.srcbuf.mem);
3868 audio_free(track->chvol.srcbuf.mem);
3869 audio_free(track->chmix.srcbuf.mem);
3870 audio_free(track->freq.srcbuf.mem);
3871 audio_free(track->outbuf.mem);
3872
3873 kmem_free(track, sizeof(*track));
3874 }
3875
3876 /*
3877 * It returns encoding conversion filter according to src and dst format.
3878 * If it is not a convertible pair, it returns NULL. Either src or dst
3879 * must be internal format.
3880 */
3881 static audio_filter_t
3882 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3883 const audio_format2_t *dst)
3884 {
3885
3886 if (audio_format2_is_internal(src)) {
3887 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3888 return audio_internal_to_mulaw;
3889 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3890 return audio_internal_to_alaw;
3891 } else if (audio_format2_is_linear(dst)) {
3892 switch (dst->stride) {
3893 case 8:
3894 return audio_internal_to_linear8;
3895 case 16:
3896 return audio_internal_to_linear16;
3897 #if defined(AUDIO_SUPPORT_LINEAR24)
3898 case 24:
3899 return audio_internal_to_linear24;
3900 #endif
3901 case 32:
3902 return audio_internal_to_linear32;
3903 default:
3904 TRACET(1, track, "unsupported %s stride %d",
3905 "dst", dst->stride);
3906 goto abort;
3907 }
3908 }
3909 } else if (audio_format2_is_internal(dst)) {
3910 if (src->encoding == AUDIO_ENCODING_ULAW) {
3911 return audio_mulaw_to_internal;
3912 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3913 return audio_alaw_to_internal;
3914 } else if (audio_format2_is_linear(src)) {
3915 switch (src->stride) {
3916 case 8:
3917 return audio_linear8_to_internal;
3918 case 16:
3919 return audio_linear16_to_internal;
3920 #if defined(AUDIO_SUPPORT_LINEAR24)
3921 case 24:
3922 return audio_linear24_to_internal;
3923 #endif
3924 case 32:
3925 return audio_linear32_to_internal;
3926 default:
3927 TRACET(1, track, "unsupported %s stride %d",
3928 "src", src->stride);
3929 goto abort;
3930 }
3931 }
3932 }
3933
3934 TRACET(1, track, "unsupported encoding");
3935 abort:
3936 #if defined(AUDIO_DEBUG)
3937 if (audiodebug >= 2) {
3938 char buf[100];
3939 audio_format2_tostr(buf, sizeof(buf), src);
3940 TRACET(2, track, "src %s", buf);
3941 audio_format2_tostr(buf, sizeof(buf), dst);
3942 TRACET(2, track, "dst %s", buf);
3943 }
3944 #endif
3945 return NULL;
3946 }
3947
3948 /*
3949 * Initialize the codec stage of this track as necessary.
3950 * If successful, it initializes the codec stage as necessary, stores updated
3951 * last_dst in *last_dstp in any case, and returns 0.
3952 * Otherwise, it returns errno without modifying *last_dstp.
3953 */
3954 static int
3955 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3956 {
3957 audio_ring_t *last_dst;
3958 audio_ring_t *srcbuf;
3959 audio_format2_t *srcfmt;
3960 audio_format2_t *dstfmt;
3961 audio_filter_arg_t *arg;
3962 u_int len;
3963 int error;
3964
3965 KASSERT(track);
3966
3967 last_dst = *last_dstp;
3968 dstfmt = &last_dst->fmt;
3969 srcfmt = &track->inputfmt;
3970 srcbuf = &track->codec.srcbuf;
3971 error = 0;
3972
3973 if (srcfmt->encoding != dstfmt->encoding
3974 || srcfmt->precision != dstfmt->precision
3975 || srcfmt->stride != dstfmt->stride) {
3976 track->codec.dst = last_dst;
3977
3978 srcbuf->fmt = *dstfmt;
3979 srcbuf->fmt.encoding = srcfmt->encoding;
3980 srcbuf->fmt.precision = srcfmt->precision;
3981 srcbuf->fmt.stride = srcfmt->stride;
3982
3983 track->codec.filter = audio_track_get_codec(track,
3984 &srcbuf->fmt, dstfmt);
3985 if (track->codec.filter == NULL) {
3986 error = EINVAL;
3987 goto abort;
3988 }
3989
3990 srcbuf->head = 0;
3991 srcbuf->used = 0;
3992 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3993 len = auring_bytelen(srcbuf);
3994 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3995
3996 arg = &track->codec.arg;
3997 arg->srcfmt = &srcbuf->fmt;
3998 arg->dstfmt = dstfmt;
3999 arg->context = NULL;
4000
4001 *last_dstp = srcbuf;
4002 return 0;
4003 }
4004
4005 abort:
4006 track->codec.filter = NULL;
4007 audio_free(srcbuf->mem);
4008 return error;
4009 }
4010
4011 /*
4012 * Initialize the chvol stage of this track as necessary.
4013 * If successful, it initializes the chvol stage as necessary, stores updated
4014 * last_dst in *last_dstp in any case, and returns 0.
4015 * Otherwise, it returns errno without modifying *last_dstp.
4016 */
4017 static int
4018 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4019 {
4020 audio_ring_t *last_dst;
4021 audio_ring_t *srcbuf;
4022 audio_format2_t *srcfmt;
4023 audio_format2_t *dstfmt;
4024 audio_filter_arg_t *arg;
4025 u_int len;
4026 int error;
4027
4028 KASSERT(track);
4029
4030 last_dst = *last_dstp;
4031 dstfmt = &last_dst->fmt;
4032 srcfmt = &track->inputfmt;
4033 srcbuf = &track->chvol.srcbuf;
4034 error = 0;
4035
4036 /* Check whether channel volume conversion is necessary. */
4037 bool use_chvol = false;
4038 for (int ch = 0; ch < srcfmt->channels; ch++) {
4039 if (track->ch_volume[ch] != 256) {
4040 use_chvol = true;
4041 break;
4042 }
4043 }
4044
4045 if (use_chvol == true) {
4046 track->chvol.dst = last_dst;
4047 track->chvol.filter = audio_track_chvol;
4048
4049 srcbuf->fmt = *dstfmt;
4050 /* no format conversion occurs */
4051
4052 srcbuf->head = 0;
4053 srcbuf->used = 0;
4054 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4055 len = auring_bytelen(srcbuf);
4056 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4057
4058 arg = &track->chvol.arg;
4059 arg->srcfmt = &srcbuf->fmt;
4060 arg->dstfmt = dstfmt;
4061 arg->context = track->ch_volume;
4062
4063 *last_dstp = srcbuf;
4064 return 0;
4065 }
4066
4067 track->chvol.filter = NULL;
4068 audio_free(srcbuf->mem);
4069 return error;
4070 }
4071
4072 /*
4073 * Initialize the chmix stage of this track as necessary.
4074 * If successful, it initializes the chmix stage as necessary, stores updated
4075 * last_dst in *last_dstp in any case, and returns 0.
4076 * Otherwise, it returns errno without modifying *last_dstp.
4077 */
4078 static int
4079 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4080 {
4081 audio_ring_t *last_dst;
4082 audio_ring_t *srcbuf;
4083 audio_format2_t *srcfmt;
4084 audio_format2_t *dstfmt;
4085 audio_filter_arg_t *arg;
4086 u_int srcch;
4087 u_int dstch;
4088 u_int len;
4089 int error;
4090
4091 KASSERT(track);
4092
4093 last_dst = *last_dstp;
4094 dstfmt = &last_dst->fmt;
4095 srcfmt = &track->inputfmt;
4096 srcbuf = &track->chmix.srcbuf;
4097 error = 0;
4098
4099 srcch = srcfmt->channels;
4100 dstch = dstfmt->channels;
4101 if (srcch != dstch) {
4102 track->chmix.dst = last_dst;
4103
4104 if (srcch >= 2 && dstch == 1) {
4105 track->chmix.filter = audio_track_chmix_mixLR;
4106 } else if (srcch == 1 && dstch >= 2) {
4107 track->chmix.filter = audio_track_chmix_dupLR;
4108 } else if (srcch > dstch) {
4109 track->chmix.filter = audio_track_chmix_shrink;
4110 } else {
4111 track->chmix.filter = audio_track_chmix_expand;
4112 }
4113
4114 srcbuf->fmt = *dstfmt;
4115 srcbuf->fmt.channels = srcch;
4116
4117 srcbuf->head = 0;
4118 srcbuf->used = 0;
4119 /* XXX The buffer size should be able to calculate. */
4120 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4121 len = auring_bytelen(srcbuf);
4122 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4123
4124 arg = &track->chmix.arg;
4125 arg->srcfmt = &srcbuf->fmt;
4126 arg->dstfmt = dstfmt;
4127 arg->context = NULL;
4128
4129 *last_dstp = srcbuf;
4130 return 0;
4131 }
4132
4133 track->chmix.filter = NULL;
4134 audio_free(srcbuf->mem);
4135 return error;
4136 }
4137
4138 /*
4139 * Initialize the freq stage of this track as necessary.
4140 * If successful, it initializes the freq stage as necessary, stores updated
4141 * last_dst in *last_dstp in any case, and returns 0.
4142 * Otherwise, it returns errno without modifying *last_dstp.
4143 */
4144 static int
4145 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4146 {
4147 audio_ring_t *last_dst;
4148 audio_ring_t *srcbuf;
4149 audio_format2_t *srcfmt;
4150 audio_format2_t *dstfmt;
4151 audio_filter_arg_t *arg;
4152 uint32_t srcfreq;
4153 uint32_t dstfreq;
4154 u_int dst_capacity;
4155 u_int mod;
4156 u_int len;
4157 int error;
4158
4159 KASSERT(track);
4160
4161 last_dst = *last_dstp;
4162 dstfmt = &last_dst->fmt;
4163 srcfmt = &track->inputfmt;
4164 srcbuf = &track->freq.srcbuf;
4165 error = 0;
4166
4167 srcfreq = srcfmt->sample_rate;
4168 dstfreq = dstfmt->sample_rate;
4169 if (srcfreq != dstfreq) {
4170 track->freq.dst = last_dst;
4171
4172 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4173 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4174
4175 /* freq_step is the ratio of src/dst when let dst 65536. */
4176 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4177
4178 dst_capacity = frame_per_block(track->mixer, dstfmt);
4179 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4180 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4181
4182 if (track->freq_step < 65536) {
4183 track->freq.filter = audio_track_freq_up;
4184 /* In order to carry at the first time. */
4185 track->freq_current = 65536;
4186 } else {
4187 track->freq.filter = audio_track_freq_down;
4188 track->freq_current = 0;
4189 }
4190
4191 srcbuf->fmt = *dstfmt;
4192 srcbuf->fmt.sample_rate = srcfreq;
4193
4194 srcbuf->head = 0;
4195 srcbuf->used = 0;
4196 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4197 len = auring_bytelen(srcbuf);
4198 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4199
4200 arg = &track->freq.arg;
4201 arg->srcfmt = &srcbuf->fmt;
4202 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4203 arg->context = track;
4204
4205 *last_dstp = srcbuf;
4206 return 0;
4207 }
4208
4209 track->freq.filter = NULL;
4210 audio_free(srcbuf->mem);
4211 return error;
4212 }
4213
4214 /*
4215 * When playing back: (e.g. if codec and freq stage are valid)
4216 *
4217 * write
4218 * | uiomove
4219 * v
4220 * usrbuf [...............] byte ring buffer (mmap-able)
4221 * | memcpy
4222 * v
4223 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4224 * .dst ----+
4225 * | convert
4226 * v
4227 * freq.srcbuf [....] 1 block (ring) buffer
4228 * .dst ----+
4229 * | convert
4230 * v
4231 * outbuf [...............] NBLKOUT blocks ring buffer
4232 *
4233 *
4234 * When recording:
4235 *
4236 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4237 * .dst ----+
4238 * | convert
4239 * v
4240 * codec.srcbuf[.....] 1 block (ring) buffer
4241 * .dst ----+
4242 * | convert
4243 * v
4244 * outbuf [.....] 1 block (ring) buffer
4245 * | memcpy
4246 * v
4247 * usrbuf [...............] byte ring buffer (mmap-able *)
4248 * | uiomove
4249 * v
4250 * read
4251 *
4252 * *: usrbuf for recording is also mmap-able due to symmetry with
4253 * playback buffer, but for now mmap will never happen for recording.
4254 */
4255
4256 /*
4257 * Set the userland format of this track.
4258 * usrfmt argument should be parameter verified with audio_check_params().
4259 * It will release and reallocate all internal conversion buffers.
4260 * It returns 0 if successful. Otherwise it returns errno with clearing all
4261 * internal buffers.
4262 * It must be called without sc_intr_lock since uvm_* routines require non
4263 * intr_lock state.
4264 * It must be called with track lock held since it may release and reallocate
4265 * outbuf.
4266 */
4267 static int
4268 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4269 {
4270 struct audio_softc *sc;
4271 u_int newbufsize;
4272 u_int oldblksize;
4273 u_int len;
4274 int error;
4275
4276 KASSERT(track);
4277 sc = track->mixer->sc;
4278
4279 /* usrbuf is the closest buffer to the userland. */
4280 track->usrbuf.fmt = *usrfmt;
4281
4282 /*
4283 * For references, one block size (in 40msec) is:
4284 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4285 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4286 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4287 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4288 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4289 *
4290 * For example,
4291 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4292 * newbufsize = rounddown(65536 / 7056) = 63504
4293 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4294 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4295 *
4296 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4297 * newbufsize = rounddown(65536 / 7680) = 61440
4298 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4299 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4300 */
4301 oldblksize = track->usrbuf_blksize;
4302 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4303 frame_per_block(track->mixer, &track->usrbuf.fmt));
4304 track->usrbuf.head = 0;
4305 track->usrbuf.used = 0;
4306 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4307 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4308 error = audio_realloc_usrbuf(track, newbufsize);
4309 if (error) {
4310 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4311 newbufsize);
4312 goto error;
4313 }
4314
4315 /* Recalc water mark. */
4316 if (track->usrbuf_blksize != oldblksize) {
4317 if (audio_track_is_playback(track)) {
4318 /* Set high at 100%, low at 75%. */
4319 track->usrbuf_usedhigh = track->usrbuf.capacity;
4320 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4321 } else {
4322 /* Set high at 100% minus 1block(?), low at 0% */
4323 track->usrbuf_usedhigh = track->usrbuf.capacity -
4324 track->usrbuf_blksize;
4325 track->usrbuf_usedlow = 0;
4326 }
4327 }
4328
4329 /* Stage buffer */
4330 audio_ring_t *last_dst = &track->outbuf;
4331 if (audio_track_is_playback(track)) {
4332 /* On playback, initialize from the mixer side in order. */
4333 track->inputfmt = *usrfmt;
4334 track->outbuf.fmt = track->mixer->track_fmt;
4335
4336 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4337 goto error;
4338 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4339 goto error;
4340 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4341 goto error;
4342 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4343 goto error;
4344 } else {
4345 /* On recording, initialize from userland side in order. */
4346 track->inputfmt = track->mixer->track_fmt;
4347 track->outbuf.fmt = *usrfmt;
4348
4349 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4350 goto error;
4351 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4352 goto error;
4353 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4354 goto error;
4355 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4356 goto error;
4357 }
4358 #if 0
4359 /* debug */
4360 if (track->freq.filter) {
4361 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4362 audio_print_format2("freq dst", &track->freq.dst->fmt);
4363 }
4364 if (track->chmix.filter) {
4365 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4366 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4367 }
4368 if (track->chvol.filter) {
4369 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4370 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4371 }
4372 if (track->codec.filter) {
4373 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4374 audio_print_format2("codec dst", &track->codec.dst->fmt);
4375 }
4376 #endif
4377
4378 /* Stage input buffer */
4379 track->input = last_dst;
4380
4381 /*
4382 * On the recording track, make the first stage a ring buffer.
4383 * XXX is there a better way?
4384 */
4385 if (audio_track_is_record(track)) {
4386 track->input->capacity = NBLKOUT *
4387 frame_per_block(track->mixer, &track->input->fmt);
4388 len = auring_bytelen(track->input);
4389 track->input->mem = audio_realloc(track->input->mem, len);
4390 }
4391
4392 /*
4393 * Output buffer.
4394 * On the playback track, its capacity is NBLKOUT blocks.
4395 * On the recording track, its capacity is 1 block.
4396 */
4397 track->outbuf.head = 0;
4398 track->outbuf.used = 0;
4399 track->outbuf.capacity = frame_per_block(track->mixer,
4400 &track->outbuf.fmt);
4401 if (audio_track_is_playback(track))
4402 track->outbuf.capacity *= NBLKOUT;
4403 len = auring_bytelen(&track->outbuf);
4404 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4405 if (track->outbuf.mem == NULL) {
4406 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4407 error = ENOMEM;
4408 goto error;
4409 }
4410
4411 #if defined(AUDIO_DEBUG)
4412 if (audiodebug >= 3) {
4413 struct audio_track_debugbuf m;
4414
4415 memset(&m, 0, sizeof(m));
4416 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4417 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4418 if (track->freq.filter)
4419 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4420 track->freq.srcbuf.capacity *
4421 frametobyte(&track->freq.srcbuf.fmt, 1));
4422 if (track->chmix.filter)
4423 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4424 track->chmix.srcbuf.capacity *
4425 frametobyte(&track->chmix.srcbuf.fmt, 1));
4426 if (track->chvol.filter)
4427 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4428 track->chvol.srcbuf.capacity *
4429 frametobyte(&track->chvol.srcbuf.fmt, 1));
4430 if (track->codec.filter)
4431 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4432 track->codec.srcbuf.capacity *
4433 frametobyte(&track->codec.srcbuf.fmt, 1));
4434 snprintf(m.usrbuf, sizeof(m.usrbuf),
4435 " usr=%d", track->usrbuf.capacity);
4436
4437 if (audio_track_is_playback(track)) {
4438 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4439 m.outbuf, m.freq, m.chmix,
4440 m.chvol, m.codec, m.usrbuf);
4441 } else {
4442 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4443 m.freq, m.chmix, m.chvol,
4444 m.codec, m.outbuf, m.usrbuf);
4445 }
4446 }
4447 #endif
4448 return 0;
4449
4450 error:
4451 audio_free_usrbuf(track);
4452 audio_free(track->codec.srcbuf.mem);
4453 audio_free(track->chvol.srcbuf.mem);
4454 audio_free(track->chmix.srcbuf.mem);
4455 audio_free(track->freq.srcbuf.mem);
4456 audio_free(track->outbuf.mem);
4457 return error;
4458 }
4459
4460 /*
4461 * Fill silence frames (as the internal format) up to 1 block
4462 * if the ring is not empty and less than 1 block.
4463 * It returns the number of appended frames.
4464 */
4465 static int
4466 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4467 {
4468 int fpb;
4469 int n;
4470
4471 KASSERT(track);
4472 KASSERT(audio_format2_is_internal(&ring->fmt));
4473
4474 /* XXX is n correct? */
4475 /* XXX memset uses frametobyte()? */
4476
4477 if (ring->used == 0)
4478 return 0;
4479
4480 fpb = frame_per_block(track->mixer, &ring->fmt);
4481 if (ring->used >= fpb)
4482 return 0;
4483
4484 n = (ring->capacity - ring->used) % fpb;
4485
4486 KASSERTMSG(auring_get_contig_free(ring) >= n,
4487 "auring_get_contig_free(ring)=%d n=%d",
4488 auring_get_contig_free(ring), n);
4489
4490 memset(auring_tailptr_aint(ring), 0,
4491 n * ring->fmt.channels * sizeof(aint_t));
4492 auring_push(ring, n);
4493 return n;
4494 }
4495
4496 /*
4497 * Execute the conversion stage.
4498 * It prepares arg from this stage and executes stage->filter.
4499 * It must be called only if stage->filter is not NULL.
4500 *
4501 * For stages other than frequency conversion, the function increments
4502 * src and dst counters here. For frequency conversion stage, on the
4503 * other hand, the function does not touch src and dst counters and
4504 * filter side has to increment them.
4505 */
4506 static void
4507 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4508 {
4509 audio_filter_arg_t *arg;
4510 int srccount;
4511 int dstcount;
4512 int count;
4513
4514 KASSERT(track);
4515 KASSERT(stage->filter);
4516
4517 srccount = auring_get_contig_used(&stage->srcbuf);
4518 dstcount = auring_get_contig_free(stage->dst);
4519
4520 if (isfreq) {
4521 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4522 count = uimin(dstcount, track->mixer->frames_per_block);
4523 } else {
4524 count = uimin(srccount, dstcount);
4525 }
4526
4527 if (count > 0) {
4528 arg = &stage->arg;
4529 arg->src = auring_headptr(&stage->srcbuf);
4530 arg->dst = auring_tailptr(stage->dst);
4531 arg->count = count;
4532
4533 stage->filter(arg);
4534
4535 if (!isfreq) {
4536 auring_take(&stage->srcbuf, count);
4537 auring_push(stage->dst, count);
4538 }
4539 }
4540 }
4541
4542 /*
4543 * Produce output buffer for playback from user input buffer.
4544 * It must be called only if usrbuf is not empty and outbuf is
4545 * available at least one free block.
4546 */
4547 static void
4548 audio_track_play(audio_track_t *track)
4549 {
4550 audio_ring_t *usrbuf;
4551 audio_ring_t *input;
4552 int count;
4553 int framesize;
4554 int bytes;
4555
4556 KASSERT(track);
4557 KASSERT(track->lock);
4558 TRACET(4, track, "start pstate=%d", track->pstate);
4559
4560 /* At this point usrbuf must not be empty. */
4561 KASSERT(track->usrbuf.used > 0);
4562 /* Also, outbuf must be available at least one block. */
4563 count = auring_get_contig_free(&track->outbuf);
4564 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4565 "count=%d fpb=%d",
4566 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4567
4568 /* XXX TODO: is this necessary for now? */
4569 int track_count_0 = track->outbuf.used;
4570
4571 usrbuf = &track->usrbuf;
4572 input = track->input;
4573
4574 /*
4575 * framesize is always 1 byte or more since all formats supported as
4576 * usrfmt(=input) have 8bit or more stride.
4577 */
4578 framesize = frametobyte(&input->fmt, 1);
4579 KASSERT(framesize >= 1);
4580
4581 /* The next stage of usrbuf (=input) must be available. */
4582 KASSERT(auring_get_contig_free(input) > 0);
4583
4584 /*
4585 * Copy usrbuf up to 1block to input buffer.
4586 * count is the number of frames to copy from usrbuf.
4587 * bytes is the number of bytes to copy from usrbuf. However it is
4588 * not copied less than one frame.
4589 */
4590 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4591 bytes = count * framesize;
4592
4593 track->usrbuf_stamp += bytes;
4594
4595 if (usrbuf->head + bytes < usrbuf->capacity) {
4596 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4597 (uint8_t *)usrbuf->mem + usrbuf->head,
4598 bytes);
4599 auring_push(input, count);
4600 auring_take(usrbuf, bytes);
4601 } else {
4602 int bytes1;
4603 int bytes2;
4604
4605 bytes1 = auring_get_contig_used(usrbuf);
4606 KASSERTMSG(bytes1 % framesize == 0,
4607 "bytes1=%d framesize=%d", bytes1, framesize);
4608 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4609 (uint8_t *)usrbuf->mem + usrbuf->head,
4610 bytes1);
4611 auring_push(input, bytes1 / framesize);
4612 auring_take(usrbuf, bytes1);
4613
4614 bytes2 = bytes - bytes1;
4615 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4616 (uint8_t *)usrbuf->mem + usrbuf->head,
4617 bytes2);
4618 auring_push(input, bytes2 / framesize);
4619 auring_take(usrbuf, bytes2);
4620 }
4621
4622 /* Encoding conversion */
4623 if (track->codec.filter)
4624 audio_apply_stage(track, &track->codec, false);
4625
4626 /* Channel volume */
4627 if (track->chvol.filter)
4628 audio_apply_stage(track, &track->chvol, false);
4629
4630 /* Channel mix */
4631 if (track->chmix.filter)
4632 audio_apply_stage(track, &track->chmix, false);
4633
4634 /* Frequency conversion */
4635 /*
4636 * Since the frequency conversion needs correction for each block,
4637 * it rounds up to 1 block.
4638 */
4639 if (track->freq.filter) {
4640 int n;
4641 n = audio_append_silence(track, &track->freq.srcbuf);
4642 if (n > 0) {
4643 TRACET(4, track,
4644 "freq.srcbuf add silence %d -> %d/%d/%d",
4645 n,
4646 track->freq.srcbuf.head,
4647 track->freq.srcbuf.used,
4648 track->freq.srcbuf.capacity);
4649 }
4650 if (track->freq.srcbuf.used > 0) {
4651 audio_apply_stage(track, &track->freq, true);
4652 }
4653 }
4654
4655 if (bytes < track->usrbuf_blksize) {
4656 /*
4657 * Clear all conversion buffer pointer if the conversion was
4658 * not exactly one block. These conversion stage buffers are
4659 * certainly circular buffers because of symmetry with the
4660 * previous and next stage buffer. However, since they are
4661 * treated as simple contiguous buffers in operation, so head
4662 * always should point 0. This may happen during drain-age.
4663 */
4664 TRACET(4, track, "reset stage");
4665 if (track->codec.filter) {
4666 KASSERT(track->codec.srcbuf.used == 0);
4667 track->codec.srcbuf.head = 0;
4668 }
4669 if (track->chvol.filter) {
4670 KASSERT(track->chvol.srcbuf.used == 0);
4671 track->chvol.srcbuf.head = 0;
4672 }
4673 if (track->chmix.filter) {
4674 KASSERT(track->chmix.srcbuf.used == 0);
4675 track->chmix.srcbuf.head = 0;
4676 }
4677 if (track->freq.filter) {
4678 KASSERT(track->freq.srcbuf.used == 0);
4679 track->freq.srcbuf.head = 0;
4680 }
4681 }
4682
4683 if (track->input == &track->outbuf) {
4684 track->outputcounter = track->inputcounter;
4685 } else {
4686 track->outputcounter += track->outbuf.used - track_count_0;
4687 }
4688
4689 #if defined(AUDIO_DEBUG)
4690 if (audiodebug >= 3) {
4691 struct audio_track_debugbuf m;
4692 audio_track_bufstat(track, &m);
4693 TRACET(0, track, "end%s%s%s%s%s%s",
4694 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4695 }
4696 #endif
4697 }
4698
4699 /*
4700 * Produce user output buffer for recording from input buffer.
4701 */
4702 static void
4703 audio_track_record(audio_track_t *track)
4704 {
4705 audio_ring_t *outbuf;
4706 audio_ring_t *usrbuf;
4707 int count;
4708 int bytes;
4709 int framesize;
4710
4711 KASSERT(track);
4712 KASSERT(track->lock);
4713
4714 /* Number of frames to process */
4715 count = auring_get_contig_used(track->input);
4716 count = uimin(count, track->mixer->frames_per_block);
4717 if (count == 0) {
4718 TRACET(4, track, "count == 0");
4719 return;
4720 }
4721
4722 /* Frequency conversion */
4723 if (track->freq.filter) {
4724 if (track->freq.srcbuf.used > 0) {
4725 audio_apply_stage(track, &track->freq, true);
4726 /* XXX should input of freq be from beginning of buf? */
4727 }
4728 }
4729
4730 /* Channel mix */
4731 if (track->chmix.filter)
4732 audio_apply_stage(track, &track->chmix, false);
4733
4734 /* Channel volume */
4735 if (track->chvol.filter)
4736 audio_apply_stage(track, &track->chvol, false);
4737
4738 /* Encoding conversion */
4739 if (track->codec.filter)
4740 audio_apply_stage(track, &track->codec, false);
4741
4742 /* Copy outbuf to usrbuf */
4743 outbuf = &track->outbuf;
4744 usrbuf = &track->usrbuf;
4745 /*
4746 * framesize is always 1 byte or more since all formats supported
4747 * as usrfmt(=output) have 8bit or more stride.
4748 */
4749 framesize = frametobyte(&outbuf->fmt, 1);
4750 KASSERT(framesize >= 1);
4751 /*
4752 * count is the number of frames to copy to usrbuf.
4753 * bytes is the number of bytes to copy to usrbuf.
4754 */
4755 count = outbuf->used;
4756 count = uimin(count,
4757 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4758 bytes = count * framesize;
4759 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4760 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4761 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4762 bytes);
4763 auring_push(usrbuf, bytes);
4764 auring_take(outbuf, count);
4765 } else {
4766 int bytes1;
4767 int bytes2;
4768
4769 bytes1 = auring_get_contig_free(usrbuf);
4770 KASSERTMSG(bytes1 % framesize == 0,
4771 "bytes1=%d framesize=%d", bytes1, framesize);
4772 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4773 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4774 bytes1);
4775 auring_push(usrbuf, bytes1);
4776 auring_take(outbuf, bytes1 / framesize);
4777
4778 bytes2 = bytes - bytes1;
4779 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4780 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4781 bytes2);
4782 auring_push(usrbuf, bytes2);
4783 auring_take(outbuf, bytes2 / framesize);
4784 }
4785
4786 /* XXX TODO: any counters here? */
4787
4788 #if defined(AUDIO_DEBUG)
4789 if (audiodebug >= 3) {
4790 struct audio_track_debugbuf m;
4791 audio_track_bufstat(track, &m);
4792 TRACET(0, track, "end%s%s%s%s%s%s",
4793 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4794 }
4795 #endif
4796 }
4797
4798 /*
4799 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4800 * Must be called with sc_exlock held.
4801 */
4802 static u_int
4803 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4804 {
4805 audio_format2_t *fmt;
4806 u_int blktime;
4807 u_int frames_per_block;
4808
4809 KASSERT(sc->sc_exlock);
4810
4811 fmt = &mixer->hwbuf.fmt;
4812 blktime = sc->sc_blk_ms;
4813
4814 /*
4815 * If stride is not multiples of 8, special treatment is necessary.
4816 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4817 */
4818 if (fmt->stride == 4) {
4819 frames_per_block = fmt->sample_rate * blktime / 1000;
4820 if ((frames_per_block & 1) != 0)
4821 blktime *= 2;
4822 }
4823 #ifdef DIAGNOSTIC
4824 else if (fmt->stride % NBBY != 0) {
4825 panic("unsupported HW stride %d", fmt->stride);
4826 }
4827 #endif
4828
4829 return blktime;
4830 }
4831
4832 /*
4833 * Initialize the mixer corresponding to the mode.
4834 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4835 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4836 * This function returns 0 on sucessful. Otherwise returns errno.
4837 * Must be called with sc_exlock held and without sc_lock held.
4838 */
4839 static int
4840 audio_mixer_init(struct audio_softc *sc, int mode,
4841 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4842 {
4843 char codecbuf[64];
4844 char blkdmsbuf[8];
4845 audio_trackmixer_t *mixer;
4846 void (*softint_handler)(void *);
4847 int len;
4848 int blksize;
4849 int capacity;
4850 size_t bufsize;
4851 int hwblks;
4852 int blkms;
4853 int blkdms;
4854 int error;
4855
4856 KASSERT(hwfmt != NULL);
4857 KASSERT(reg != NULL);
4858 KASSERT(sc->sc_exlock);
4859
4860 error = 0;
4861 if (mode == AUMODE_PLAY)
4862 mixer = sc->sc_pmixer;
4863 else
4864 mixer = sc->sc_rmixer;
4865
4866 mixer->sc = sc;
4867 mixer->mode = mode;
4868
4869 mixer->hwbuf.fmt = *hwfmt;
4870 mixer->volume = 256;
4871 mixer->blktime_d = 1000;
4872 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4873 sc->sc_blk_ms = mixer->blktime_n;
4874 hwblks = NBLKHW;
4875
4876 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4877 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4878 if (sc->hw_if->round_blocksize) {
4879 int rounded;
4880 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4881 mutex_enter(sc->sc_lock);
4882 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4883 mode, &p);
4884 mutex_exit(sc->sc_lock);
4885 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4886 if (rounded != blksize) {
4887 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4888 mixer->hwbuf.fmt.channels) != 0) {
4889 device_printf(sc->sc_dev,
4890 "round_blocksize must return blocksize "
4891 "divisible by framesize: "
4892 "blksize=%d rounded=%d "
4893 "stride=%ubit channels=%u\n",
4894 blksize, rounded,
4895 mixer->hwbuf.fmt.stride,
4896 mixer->hwbuf.fmt.channels);
4897 return EINVAL;
4898 }
4899 /* Recalculation */
4900 blksize = rounded;
4901 mixer->frames_per_block = blksize * NBBY /
4902 (mixer->hwbuf.fmt.stride *
4903 mixer->hwbuf.fmt.channels);
4904 }
4905 }
4906 mixer->blktime_n = mixer->frames_per_block;
4907 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4908
4909 capacity = mixer->frames_per_block * hwblks;
4910 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4911 if (sc->hw_if->round_buffersize) {
4912 size_t rounded;
4913 mutex_enter(sc->sc_lock);
4914 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4915 bufsize);
4916 mutex_exit(sc->sc_lock);
4917 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4918 if (rounded < bufsize) {
4919 /* buffersize needs NBLKHW blocks at least. */
4920 device_printf(sc->sc_dev,
4921 "buffersize too small: buffersize=%zd blksize=%d\n",
4922 rounded, blksize);
4923 return EINVAL;
4924 }
4925 if (rounded % blksize != 0) {
4926 /* buffersize/blksize constraint mismatch? */
4927 device_printf(sc->sc_dev,
4928 "buffersize must be multiple of blksize: "
4929 "buffersize=%zu blksize=%d\n",
4930 rounded, blksize);
4931 return EINVAL;
4932 }
4933 if (rounded != bufsize) {
4934 /* Recalcuration */
4935 bufsize = rounded;
4936 hwblks = bufsize / blksize;
4937 capacity = mixer->frames_per_block * hwblks;
4938 }
4939 }
4940 TRACE(1, "buffersize for %s = %zu",
4941 (mode == AUMODE_PLAY) ? "playback" : "recording",
4942 bufsize);
4943 mixer->hwbuf.capacity = capacity;
4944
4945 if (sc->hw_if->allocm) {
4946 /* sc_lock is not necessary for allocm */
4947 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4948 if (mixer->hwbuf.mem == NULL) {
4949 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4950 __func__, bufsize);
4951 return ENOMEM;
4952 }
4953 } else {
4954 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4955 }
4956
4957 /* From here, audio_mixer_destroy is necessary to exit. */
4958 if (mode == AUMODE_PLAY) {
4959 cv_init(&mixer->outcv, "audiowr");
4960 } else {
4961 cv_init(&mixer->outcv, "audiord");
4962 }
4963
4964 if (mode == AUMODE_PLAY) {
4965 softint_handler = audio_softintr_wr;
4966 } else {
4967 softint_handler = audio_softintr_rd;
4968 }
4969 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4970 softint_handler, sc);
4971 if (mixer->sih == NULL) {
4972 device_printf(sc->sc_dev, "softint_establish failed\n");
4973 goto abort;
4974 }
4975
4976 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4977 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4978 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4979 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4980 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4981
4982 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4983 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4984 mixer->swap_endian = true;
4985 TRACE(1, "swap_endian");
4986 }
4987
4988 if (mode == AUMODE_PLAY) {
4989 /* Mixing buffer */
4990 mixer->mixfmt = mixer->track_fmt;
4991 mixer->mixfmt.precision *= 2;
4992 mixer->mixfmt.stride *= 2;
4993 /* XXX TODO: use some macros? */
4994 len = mixer->frames_per_block * mixer->mixfmt.channels *
4995 mixer->mixfmt.stride / NBBY;
4996 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4997 } else {
4998 /* No mixing buffer for recording */
4999 }
5000
5001 if (reg->codec) {
5002 mixer->codec = reg->codec;
5003 mixer->codecarg.context = reg->context;
5004 if (mode == AUMODE_PLAY) {
5005 mixer->codecarg.srcfmt = &mixer->track_fmt;
5006 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5007 } else {
5008 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5009 mixer->codecarg.dstfmt = &mixer->track_fmt;
5010 }
5011 mixer->codecbuf.fmt = mixer->track_fmt;
5012 mixer->codecbuf.capacity = mixer->frames_per_block;
5013 len = auring_bytelen(&mixer->codecbuf);
5014 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5015 if (mixer->codecbuf.mem == NULL) {
5016 device_printf(sc->sc_dev,
5017 "%s: malloc codecbuf(%d) failed\n",
5018 __func__, len);
5019 error = ENOMEM;
5020 goto abort;
5021 }
5022 }
5023
5024 /* Succeeded so display it. */
5025 codecbuf[0] = '\0';
5026 if (mixer->codec || mixer->swap_endian) {
5027 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5028 (mode == AUMODE_PLAY) ? "->" : "<-",
5029 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5030 mixer->hwbuf.fmt.precision);
5031 }
5032 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5033 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5034 blkdmsbuf[0] = '\0';
5035 if (blkdms != 0) {
5036 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5037 }
5038 aprint_normal_dev(sc->sc_dev,
5039 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5040 audio_encoding_name(mixer->track_fmt.encoding),
5041 mixer->track_fmt.precision,
5042 codecbuf,
5043 mixer->track_fmt.channels,
5044 mixer->track_fmt.sample_rate,
5045 blksize,
5046 blkms, blkdmsbuf,
5047 (mode == AUMODE_PLAY) ? "playback" : "recording");
5048
5049 return 0;
5050
5051 abort:
5052 audio_mixer_destroy(sc, mixer);
5053 return error;
5054 }
5055
5056 /*
5057 * Releases all resources of 'mixer'.
5058 * Note that it does not release the memory area of 'mixer' itself.
5059 * Must be called with sc_exlock held and without sc_lock held.
5060 */
5061 static void
5062 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5063 {
5064 int bufsize;
5065
5066 KASSERT(sc->sc_exlock == 1);
5067
5068 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5069
5070 if (mixer->hwbuf.mem != NULL) {
5071 if (sc->hw_if->freem) {
5072 /* sc_lock is not necessary for freem */
5073 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5074 } else {
5075 kmem_free(mixer->hwbuf.mem, bufsize);
5076 }
5077 mixer->hwbuf.mem = NULL;
5078 }
5079
5080 audio_free(mixer->codecbuf.mem);
5081 audio_free(mixer->mixsample);
5082
5083 cv_destroy(&mixer->outcv);
5084
5085 if (mixer->sih) {
5086 softint_disestablish(mixer->sih);
5087 mixer->sih = NULL;
5088 }
5089 }
5090
5091 /*
5092 * Starts playback mixer.
5093 * Must be called only if sc_pbusy is false.
5094 * Must be called with sc_lock held.
5095 * Must not be called from the interrupt context.
5096 */
5097 static void
5098 audio_pmixer_start(struct audio_softc *sc, bool force)
5099 {
5100 audio_trackmixer_t *mixer;
5101 int minimum;
5102
5103 KASSERT(mutex_owned(sc->sc_lock));
5104 KASSERT(sc->sc_pbusy == false);
5105
5106 mutex_enter(sc->sc_intr_lock);
5107
5108 mixer = sc->sc_pmixer;
5109 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5110 (audiodebug >= 3) ? "begin " : "",
5111 (int)mixer->mixseq, (int)mixer->hwseq,
5112 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5113 force ? " force" : "");
5114
5115 /* Need two blocks to start normally. */
5116 minimum = (force) ? 1 : 2;
5117 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5118 audio_pmixer_process(sc);
5119 }
5120
5121 /* Start output */
5122 audio_pmixer_output(sc);
5123 sc->sc_pbusy = true;
5124
5125 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5126 (int)mixer->mixseq, (int)mixer->hwseq,
5127 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5128
5129 mutex_exit(sc->sc_intr_lock);
5130 }
5131
5132 /*
5133 * When playing back with MD filter:
5134 *
5135 * track track ...
5136 * v v
5137 * + mix (with aint2_t)
5138 * | master volume (with aint2_t)
5139 * v
5140 * mixsample [::::] wide-int 1 block (ring) buffer
5141 * |
5142 * | convert aint2_t -> aint_t
5143 * v
5144 * codecbuf [....] 1 block (ring) buffer
5145 * |
5146 * | convert to hw format
5147 * v
5148 * hwbuf [............] NBLKHW blocks ring buffer
5149 *
5150 * When playing back without MD filter:
5151 *
5152 * mixsample [::::] wide-int 1 block (ring) buffer
5153 * |
5154 * | convert aint2_t -> aint_t
5155 * | (with byte swap if necessary)
5156 * v
5157 * hwbuf [............] NBLKHW blocks ring buffer
5158 *
5159 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5160 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5161 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5162 */
5163
5164 /*
5165 * Performs track mixing and converts it to hwbuf.
5166 * Note that this function doesn't transfer hwbuf to hardware.
5167 * Must be called with sc_intr_lock held.
5168 */
5169 static void
5170 audio_pmixer_process(struct audio_softc *sc)
5171 {
5172 audio_trackmixer_t *mixer;
5173 audio_file_t *f;
5174 int frame_count;
5175 int sample_count;
5176 int mixed;
5177 int i;
5178 aint2_t *m;
5179 aint_t *h;
5180
5181 mixer = sc->sc_pmixer;
5182
5183 frame_count = mixer->frames_per_block;
5184 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5185 "auring_get_contig_free()=%d frame_count=%d",
5186 auring_get_contig_free(&mixer->hwbuf), frame_count);
5187 sample_count = frame_count * mixer->mixfmt.channels;
5188
5189 mixer->mixseq++;
5190
5191 /* Mix all tracks */
5192 mixed = 0;
5193 SLIST_FOREACH(f, &sc->sc_files, entry) {
5194 audio_track_t *track = f->ptrack;
5195
5196 if (track == NULL)
5197 continue;
5198
5199 if (track->is_pause) {
5200 TRACET(4, track, "skip; paused");
5201 continue;
5202 }
5203
5204 /* Skip if the track is used by process context. */
5205 if (audio_track_lock_tryenter(track) == false) {
5206 TRACET(4, track, "skip; in use");
5207 continue;
5208 }
5209
5210 /* Emulate mmap'ped track */
5211 if (track->mmapped) {
5212 auring_push(&track->usrbuf, track->usrbuf_blksize);
5213 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5214 track->usrbuf.head,
5215 track->usrbuf.used,
5216 track->usrbuf.capacity);
5217 }
5218
5219 if (track->outbuf.used < mixer->frames_per_block &&
5220 track->usrbuf.used > 0) {
5221 TRACET(4, track, "process");
5222 audio_track_play(track);
5223 }
5224
5225 if (track->outbuf.used > 0) {
5226 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5227 } else {
5228 TRACET(4, track, "skip; empty");
5229 }
5230
5231 audio_track_lock_exit(track);
5232 }
5233
5234 if (mixed == 0) {
5235 /* Silence */
5236 memset(mixer->mixsample, 0,
5237 frametobyte(&mixer->mixfmt, frame_count));
5238 } else {
5239 if (mixed > 1) {
5240 /* If there are multiple tracks, do auto gain control */
5241 audio_pmixer_agc(mixer, sample_count);
5242 }
5243
5244 /* Apply master volume */
5245 if (mixer->volume < 256) {
5246 m = mixer->mixsample;
5247 for (i = 0; i < sample_count; i++) {
5248 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5249 m++;
5250 }
5251
5252 /*
5253 * Recover the volume gradually at the pace of
5254 * several times per second. If it's too fast, you
5255 * can recognize that the volume changes up and down
5256 * quickly and it's not so comfortable.
5257 */
5258 mixer->voltimer += mixer->blktime_n;
5259 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5260 mixer->volume++;
5261 mixer->voltimer = 0;
5262 #if defined(AUDIO_DEBUG_AGC)
5263 TRACE(1, "volume recover: %d", mixer->volume);
5264 #endif
5265 }
5266 }
5267 }
5268
5269 /*
5270 * The rest is the hardware part.
5271 */
5272
5273 if (mixer->codec) {
5274 h = auring_tailptr_aint(&mixer->codecbuf);
5275 } else {
5276 h = auring_tailptr_aint(&mixer->hwbuf);
5277 }
5278
5279 m = mixer->mixsample;
5280 if (mixer->swap_endian) {
5281 for (i = 0; i < sample_count; i++) {
5282 *h++ = bswap16(*m++);
5283 }
5284 } else {
5285 for (i = 0; i < sample_count; i++) {
5286 *h++ = *m++;
5287 }
5288 }
5289
5290 /* Hardware driver's codec */
5291 if (mixer->codec) {
5292 auring_push(&mixer->codecbuf, frame_count);
5293 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5294 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5295 mixer->codecarg.count = frame_count;
5296 mixer->codec(&mixer->codecarg);
5297 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5298 }
5299
5300 auring_push(&mixer->hwbuf, frame_count);
5301
5302 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5303 (int)mixer->mixseq,
5304 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5305 (mixed == 0) ? " silent" : "");
5306 }
5307
5308 /*
5309 * Do auto gain control.
5310 * Must be called sc_intr_lock held.
5311 */
5312 static void
5313 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5314 {
5315 struct audio_softc *sc __unused;
5316 aint2_t val;
5317 aint2_t maxval;
5318 aint2_t minval;
5319 aint2_t over_plus;
5320 aint2_t over_minus;
5321 aint2_t *m;
5322 int newvol;
5323 int i;
5324
5325 sc = mixer->sc;
5326
5327 /* Overflow detection */
5328 maxval = AINT_T_MAX;
5329 minval = AINT_T_MIN;
5330 m = mixer->mixsample;
5331 for (i = 0; i < sample_count; i++) {
5332 val = *m++;
5333 if (val > maxval)
5334 maxval = val;
5335 else if (val < minval)
5336 minval = val;
5337 }
5338
5339 /* Absolute value of overflowed amount */
5340 over_plus = maxval - AINT_T_MAX;
5341 over_minus = AINT_T_MIN - minval;
5342
5343 if (over_plus > 0 || over_minus > 0) {
5344 if (over_plus > over_minus) {
5345 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5346 } else {
5347 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5348 }
5349
5350 /*
5351 * Change the volume only if new one is smaller.
5352 * Reset the timer even if the volume isn't changed.
5353 */
5354 if (newvol <= mixer->volume) {
5355 mixer->volume = newvol;
5356 mixer->voltimer = 0;
5357 #if defined(AUDIO_DEBUG_AGC)
5358 TRACE(1, "auto volume adjust: %d", mixer->volume);
5359 #endif
5360 }
5361 }
5362 }
5363
5364 /*
5365 * Mix one track.
5366 * 'mixed' specifies the number of tracks mixed so far.
5367 * It returns the number of tracks mixed. In other words, it returns
5368 * mixed + 1 if this track is mixed.
5369 */
5370 static int
5371 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5372 int mixed)
5373 {
5374 int count;
5375 int sample_count;
5376 int remain;
5377 int i;
5378 const aint_t *s;
5379 aint2_t *d;
5380
5381 /* XXX TODO: Is this necessary for now? */
5382 if (mixer->mixseq < track->seq)
5383 return mixed;
5384
5385 count = auring_get_contig_used(&track->outbuf);
5386 count = uimin(count, mixer->frames_per_block);
5387
5388 s = auring_headptr_aint(&track->outbuf);
5389 d = mixer->mixsample;
5390
5391 /*
5392 * Apply track volume with double-sized integer and perform
5393 * additive synthesis.
5394 *
5395 * XXX If you limit the track volume to 1.0 or less (<= 256),
5396 * it would be better to do this in the track conversion stage
5397 * rather than here. However, if you accept the volume to
5398 * be greater than 1.0 (> 256), it's better to do it here.
5399 * Because the operation here is done by double-sized integer.
5400 */
5401 sample_count = count * mixer->mixfmt.channels;
5402 if (mixed == 0) {
5403 /* If this is the first track, assignment can be used. */
5404 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5405 if (track->volume != 256) {
5406 for (i = 0; i < sample_count; i++) {
5407 aint2_t v;
5408 v = *s++;
5409 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5410 }
5411 } else
5412 #endif
5413 {
5414 for (i = 0; i < sample_count; i++) {
5415 *d++ = ((aint2_t)*s++);
5416 }
5417 }
5418 /* Fill silence if the first track is not filled. */
5419 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5420 *d++ = 0;
5421 } else {
5422 /* If this is the second or later, add it. */
5423 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5424 if (track->volume != 256) {
5425 for (i = 0; i < sample_count; i++) {
5426 aint2_t v;
5427 v = *s++;
5428 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5429 }
5430 } else
5431 #endif
5432 {
5433 for (i = 0; i < sample_count; i++) {
5434 *d++ += ((aint2_t)*s++);
5435 }
5436 }
5437 }
5438
5439 auring_take(&track->outbuf, count);
5440 /*
5441 * The counters have to align block even if outbuf is less than
5442 * one block. XXX Is this still necessary?
5443 */
5444 remain = mixer->frames_per_block - count;
5445 if (__predict_false(remain != 0)) {
5446 auring_push(&track->outbuf, remain);
5447 auring_take(&track->outbuf, remain);
5448 }
5449
5450 /*
5451 * Update track sequence.
5452 * mixseq has previous value yet at this point.
5453 */
5454 track->seq = mixer->mixseq + 1;
5455
5456 return mixed + 1;
5457 }
5458
5459 /*
5460 * Output one block from hwbuf to HW.
5461 * Must be called with sc_intr_lock held.
5462 */
5463 static void
5464 audio_pmixer_output(struct audio_softc *sc)
5465 {
5466 audio_trackmixer_t *mixer;
5467 audio_params_t params;
5468 void *start;
5469 void *end;
5470 int blksize;
5471 int error;
5472
5473 mixer = sc->sc_pmixer;
5474 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5475 sc->sc_pbusy,
5476 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5477 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5478 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5479 mixer->hwbuf.used, mixer->frames_per_block);
5480
5481 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5482
5483 if (sc->hw_if->trigger_output) {
5484 /* trigger (at once) */
5485 if (!sc->sc_pbusy) {
5486 start = mixer->hwbuf.mem;
5487 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5488 params = format2_to_params(&mixer->hwbuf.fmt);
5489
5490 error = sc->hw_if->trigger_output(sc->hw_hdl,
5491 start, end, blksize, audio_pintr, sc, ¶ms);
5492 if (error) {
5493 device_printf(sc->sc_dev,
5494 "trigger_output failed with %d\n", error);
5495 return;
5496 }
5497 }
5498 } else {
5499 /* start (everytime) */
5500 start = auring_headptr(&mixer->hwbuf);
5501
5502 error = sc->hw_if->start_output(sc->hw_hdl,
5503 start, blksize, audio_pintr, sc);
5504 if (error) {
5505 device_printf(sc->sc_dev,
5506 "start_output failed with %d\n", error);
5507 return;
5508 }
5509 }
5510 }
5511
5512 /*
5513 * This is an interrupt handler for playback.
5514 * It is called with sc_intr_lock held.
5515 *
5516 * It is usually called from hardware interrupt. However, note that
5517 * for some drivers (e.g. uaudio) it is called from software interrupt.
5518 */
5519 static void
5520 audio_pintr(void *arg)
5521 {
5522 struct audio_softc *sc;
5523 audio_trackmixer_t *mixer;
5524
5525 sc = arg;
5526 KASSERT(mutex_owned(sc->sc_intr_lock));
5527
5528 if (sc->sc_dying)
5529 return;
5530 if (sc->sc_pbusy == false) {
5531 #if defined(DIAGNOSTIC)
5532 device_printf(sc->sc_dev,
5533 "DIAGNOSTIC: %s raised stray interrupt\n",
5534 device_xname(sc->hw_dev));
5535 #endif
5536 return;
5537 }
5538
5539 mixer = sc->sc_pmixer;
5540 mixer->hw_complete_counter += mixer->frames_per_block;
5541 mixer->hwseq++;
5542
5543 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5544
5545 TRACE(4,
5546 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5547 mixer->hwseq, mixer->hw_complete_counter,
5548 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5549
5550 #if !defined(_KERNEL)
5551 /* This is a debug code for userland test. */
5552 return;
5553 #endif
5554
5555 #if defined(AUDIO_HW_SINGLE_BUFFER)
5556 /*
5557 * Create a new block here and output it immediately.
5558 * It makes a latency lower but needs machine power.
5559 */
5560 audio_pmixer_process(sc);
5561 audio_pmixer_output(sc);
5562 #else
5563 /*
5564 * It is called when block N output is done.
5565 * Output immediately block N+1 created by the last interrupt.
5566 * And then create block N+2 for the next interrupt.
5567 * This method makes playback robust even on slower machines.
5568 * Instead the latency is increased by one block.
5569 */
5570
5571 /* At first, output ready block. */
5572 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5573 audio_pmixer_output(sc);
5574 }
5575
5576 bool later = false;
5577
5578 if (mixer->hwbuf.used < mixer->frames_per_block) {
5579 later = true;
5580 }
5581
5582 /* Then, process next block. */
5583 audio_pmixer_process(sc);
5584
5585 if (later) {
5586 audio_pmixer_output(sc);
5587 }
5588 #endif
5589
5590 /*
5591 * When this interrupt is the real hardware interrupt, disabling
5592 * preemption here is not necessary. But some drivers (e.g. uaudio)
5593 * emulate it by software interrupt, so kpreempt_disable is necessary.
5594 */
5595 kpreempt_disable();
5596 softint_schedule(mixer->sih);
5597 kpreempt_enable();
5598 }
5599
5600 /*
5601 * Starts record mixer.
5602 * Must be called only if sc_rbusy is false.
5603 * Must be called with sc_lock held.
5604 * Must not be called from the interrupt context.
5605 */
5606 static void
5607 audio_rmixer_start(struct audio_softc *sc)
5608 {
5609
5610 KASSERT(mutex_owned(sc->sc_lock));
5611 KASSERT(sc->sc_rbusy == false);
5612
5613 mutex_enter(sc->sc_intr_lock);
5614
5615 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5616 audio_rmixer_input(sc);
5617 sc->sc_rbusy = true;
5618 TRACE(3, "end");
5619
5620 mutex_exit(sc->sc_intr_lock);
5621 }
5622
5623 /*
5624 * When recording with MD filter:
5625 *
5626 * hwbuf [............] NBLKHW blocks ring buffer
5627 * |
5628 * | convert from hw format
5629 * v
5630 * codecbuf [....] 1 block (ring) buffer
5631 * | |
5632 * v v
5633 * track track ...
5634 *
5635 * When recording without MD filter:
5636 *
5637 * hwbuf [............] NBLKHW blocks ring buffer
5638 * | |
5639 * v v
5640 * track track ...
5641 *
5642 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5643 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5644 */
5645
5646 /*
5647 * Distribute a recorded block to all recording tracks.
5648 */
5649 static void
5650 audio_rmixer_process(struct audio_softc *sc)
5651 {
5652 audio_trackmixer_t *mixer;
5653 audio_ring_t *mixersrc;
5654 audio_file_t *f;
5655 aint_t *p;
5656 int count;
5657 int bytes;
5658 int i;
5659
5660 mixer = sc->sc_rmixer;
5661
5662 /*
5663 * count is the number of frames to be retrieved this time.
5664 * count should be one block.
5665 */
5666 count = auring_get_contig_used(&mixer->hwbuf);
5667 count = uimin(count, mixer->frames_per_block);
5668 if (count <= 0) {
5669 TRACE(4, "count %d: too short", count);
5670 return;
5671 }
5672 bytes = frametobyte(&mixer->track_fmt, count);
5673
5674 /* Hardware driver's codec */
5675 if (mixer->codec) {
5676 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5677 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5678 mixer->codecarg.count = count;
5679 mixer->codec(&mixer->codecarg);
5680 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5681 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5682 mixersrc = &mixer->codecbuf;
5683 } else {
5684 mixersrc = &mixer->hwbuf;
5685 }
5686
5687 if (mixer->swap_endian) {
5688 /* inplace conversion */
5689 p = auring_headptr_aint(mixersrc);
5690 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5691 *p = bswap16(*p);
5692 }
5693 }
5694
5695 /* Distribute to all tracks. */
5696 SLIST_FOREACH(f, &sc->sc_files, entry) {
5697 audio_track_t *track = f->rtrack;
5698 audio_ring_t *input;
5699
5700 if (track == NULL)
5701 continue;
5702
5703 if (track->is_pause) {
5704 TRACET(4, track, "skip; paused");
5705 continue;
5706 }
5707
5708 if (audio_track_lock_tryenter(track) == false) {
5709 TRACET(4, track, "skip; in use");
5710 continue;
5711 }
5712
5713 /* If the track buffer is full, discard the oldest one? */
5714 input = track->input;
5715 if (input->capacity - input->used < mixer->frames_per_block) {
5716 int drops = mixer->frames_per_block -
5717 (input->capacity - input->used);
5718 track->dropframes += drops;
5719 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5720 drops,
5721 input->head, input->used, input->capacity);
5722 auring_take(input, drops);
5723 }
5724 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5725 "input->used=%d mixer->frames_per_block=%d",
5726 input->used, mixer->frames_per_block);
5727
5728 memcpy(auring_tailptr_aint(input),
5729 auring_headptr_aint(mixersrc),
5730 bytes);
5731 auring_push(input, count);
5732
5733 /* XXX sequence counter? */
5734
5735 audio_track_lock_exit(track);
5736 }
5737
5738 auring_take(mixersrc, count);
5739 }
5740
5741 /*
5742 * Input one block from HW to hwbuf.
5743 * Must be called with sc_intr_lock held.
5744 */
5745 static void
5746 audio_rmixer_input(struct audio_softc *sc)
5747 {
5748 audio_trackmixer_t *mixer;
5749 audio_params_t params;
5750 void *start;
5751 void *end;
5752 int blksize;
5753 int error;
5754
5755 mixer = sc->sc_rmixer;
5756 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5757
5758 if (sc->hw_if->trigger_input) {
5759 /* trigger (at once) */
5760 if (!sc->sc_rbusy) {
5761 start = mixer->hwbuf.mem;
5762 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5763 params = format2_to_params(&mixer->hwbuf.fmt);
5764
5765 error = sc->hw_if->trigger_input(sc->hw_hdl,
5766 start, end, blksize, audio_rintr, sc, ¶ms);
5767 if (error) {
5768 device_printf(sc->sc_dev,
5769 "trigger_input failed with %d\n", error);
5770 return;
5771 }
5772 }
5773 } else {
5774 /* start (everytime) */
5775 start = auring_tailptr(&mixer->hwbuf);
5776
5777 error = sc->hw_if->start_input(sc->hw_hdl,
5778 start, blksize, audio_rintr, sc);
5779 if (error) {
5780 device_printf(sc->sc_dev,
5781 "start_input failed with %d\n", error);
5782 return;
5783 }
5784 }
5785 }
5786
5787 /*
5788 * This is an interrupt handler for recording.
5789 * It is called with sc_intr_lock.
5790 *
5791 * It is usually called from hardware interrupt. However, note that
5792 * for some drivers (e.g. uaudio) it is called from software interrupt.
5793 */
5794 static void
5795 audio_rintr(void *arg)
5796 {
5797 struct audio_softc *sc;
5798 audio_trackmixer_t *mixer;
5799
5800 sc = arg;
5801 KASSERT(mutex_owned(sc->sc_intr_lock));
5802
5803 if (sc->sc_dying)
5804 return;
5805 if (sc->sc_rbusy == false) {
5806 #if defined(DIAGNOSTIC)
5807 device_printf(sc->sc_dev,
5808 "DIAGNOSTIC: %s raised stray interrupt\n",
5809 device_xname(sc->hw_dev));
5810 #endif
5811 return;
5812 }
5813
5814 mixer = sc->sc_rmixer;
5815 mixer->hw_complete_counter += mixer->frames_per_block;
5816 mixer->hwseq++;
5817
5818 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5819
5820 TRACE(4,
5821 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5822 mixer->hwseq, mixer->hw_complete_counter,
5823 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5824
5825 /* Distrubute recorded block */
5826 audio_rmixer_process(sc);
5827
5828 /* Request next block */
5829 audio_rmixer_input(sc);
5830
5831 /*
5832 * When this interrupt is the real hardware interrupt, disabling
5833 * preemption here is not necessary. But some drivers (e.g. uaudio)
5834 * emulate it by software interrupt, so kpreempt_disable is necessary.
5835 */
5836 kpreempt_disable();
5837 softint_schedule(mixer->sih);
5838 kpreempt_enable();
5839 }
5840
5841 /*
5842 * Halts playback mixer.
5843 * This function also clears related parameters, so call this function
5844 * instead of calling halt_output directly.
5845 * Must be called only if sc_pbusy is true.
5846 * Must be called with sc_lock && sc_exlock held.
5847 */
5848 static int
5849 audio_pmixer_halt(struct audio_softc *sc)
5850 {
5851 int error;
5852
5853 TRACE(2, "");
5854 KASSERT(mutex_owned(sc->sc_lock));
5855 KASSERT(sc->sc_exlock);
5856
5857 mutex_enter(sc->sc_intr_lock);
5858 error = sc->hw_if->halt_output(sc->hw_hdl);
5859 mutex_exit(sc->sc_intr_lock);
5860
5861 /* Halts anyway even if some error has occurred. */
5862 sc->sc_pbusy = false;
5863 sc->sc_pmixer->hwbuf.head = 0;
5864 sc->sc_pmixer->hwbuf.used = 0;
5865 sc->sc_pmixer->mixseq = 0;
5866 sc->sc_pmixer->hwseq = 0;
5867
5868 return error;
5869 }
5870
5871 /*
5872 * Halts recording mixer.
5873 * This function also clears related parameters, so call this function
5874 * instead of calling halt_input directly.
5875 * Must be called only if sc_rbusy is true.
5876 * Must be called with sc_lock && sc_exlock held.
5877 */
5878 static int
5879 audio_rmixer_halt(struct audio_softc *sc)
5880 {
5881 int error;
5882
5883 TRACE(2, "");
5884 KASSERT(mutex_owned(sc->sc_lock));
5885 KASSERT(sc->sc_exlock);
5886
5887 mutex_enter(sc->sc_intr_lock);
5888 error = sc->hw_if->halt_input(sc->hw_hdl);
5889 mutex_exit(sc->sc_intr_lock);
5890
5891 /* Halts anyway even if some error has occurred. */
5892 sc->sc_rbusy = false;
5893 sc->sc_rmixer->hwbuf.head = 0;
5894 sc->sc_rmixer->hwbuf.used = 0;
5895 sc->sc_rmixer->mixseq = 0;
5896 sc->sc_rmixer->hwseq = 0;
5897
5898 return error;
5899 }
5900
5901 /*
5902 * Flush this track.
5903 * Halts all operations, clears all buffers, reset error counters.
5904 * XXX I'm not sure...
5905 */
5906 static void
5907 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5908 {
5909
5910 KASSERT(track);
5911 TRACET(3, track, "clear");
5912
5913 audio_track_lock_enter(track);
5914
5915 track->usrbuf.used = 0;
5916 /* Clear all internal parameters. */
5917 if (track->codec.filter) {
5918 track->codec.srcbuf.used = 0;
5919 track->codec.srcbuf.head = 0;
5920 }
5921 if (track->chvol.filter) {
5922 track->chvol.srcbuf.used = 0;
5923 track->chvol.srcbuf.head = 0;
5924 }
5925 if (track->chmix.filter) {
5926 track->chmix.srcbuf.used = 0;
5927 track->chmix.srcbuf.head = 0;
5928 }
5929 if (track->freq.filter) {
5930 track->freq.srcbuf.used = 0;
5931 track->freq.srcbuf.head = 0;
5932 if (track->freq_step < 65536)
5933 track->freq_current = 65536;
5934 else
5935 track->freq_current = 0;
5936 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5937 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5938 }
5939 /* Clear buffer, then operation halts naturally. */
5940 track->outbuf.used = 0;
5941
5942 /* Clear counters. */
5943 track->dropframes = 0;
5944
5945 audio_track_lock_exit(track);
5946 }
5947
5948 /*
5949 * Drain the track.
5950 * track must be present and for playback.
5951 * If successful, it returns 0. Otherwise returns errno.
5952 * Must be called with sc_lock held.
5953 */
5954 static int
5955 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5956 {
5957 audio_trackmixer_t *mixer;
5958 int done;
5959 int error;
5960
5961 KASSERT(track);
5962 TRACET(3, track, "start");
5963 mixer = track->mixer;
5964 KASSERT(mutex_owned(sc->sc_lock));
5965
5966 /* Ignore them if pause. */
5967 if (track->is_pause) {
5968 TRACET(3, track, "pause -> clear");
5969 track->pstate = AUDIO_STATE_CLEAR;
5970 }
5971 /* Terminate early here if there is no data in the track. */
5972 if (track->pstate == AUDIO_STATE_CLEAR) {
5973 TRACET(3, track, "no need to drain");
5974 return 0;
5975 }
5976 track->pstate = AUDIO_STATE_DRAINING;
5977
5978 for (;;) {
5979 /* I want to display it before condition evaluation. */
5980 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5981 (int)curproc->p_pid, (int)curlwp->l_lid,
5982 (int)track->seq, (int)mixer->hwseq,
5983 track->outbuf.head, track->outbuf.used,
5984 track->outbuf.capacity);
5985
5986 /* Condition to terminate */
5987 audio_track_lock_enter(track);
5988 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5989 track->outbuf.used == 0 &&
5990 track->seq <= mixer->hwseq);
5991 audio_track_lock_exit(track);
5992 if (done)
5993 break;
5994
5995 TRACET(3, track, "sleep");
5996 error = audio_track_waitio(sc, track);
5997 if (error)
5998 return error;
5999
6000 /* XXX call audio_track_play here ? */
6001 }
6002
6003 track->pstate = AUDIO_STATE_CLEAR;
6004 TRACET(3, track, "done trk_inp=%d trk_out=%d",
6005 (int)track->inputcounter, (int)track->outputcounter);
6006 return 0;
6007 }
6008
6009 /*
6010 * Send signal to process.
6011 * This is intended to be called only from audio_softintr_{rd,wr}.
6012 * Must be called without sc_intr_lock held.
6013 */
6014 static inline void
6015 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6016 {
6017 proc_t *p;
6018
6019 KASSERT(pid != 0);
6020
6021 /*
6022 * psignal() must be called without spin lock held.
6023 */
6024
6025 mutex_enter(proc_lock);
6026 p = proc_find(pid);
6027 if (p)
6028 psignal(p, signum);
6029 mutex_exit(proc_lock);
6030 }
6031
6032 /*
6033 * This is software interrupt handler for record.
6034 * It is called from recording hardware interrupt everytime.
6035 * It does:
6036 * - Deliver SIGIO for all async processes.
6037 * - Notify to audio_read() that data has arrived.
6038 * - selnotify() for select/poll-ing processes.
6039 */
6040 /*
6041 * XXX If a process issues FIOASYNC between hardware interrupt and
6042 * software interrupt, (stray) SIGIO will be sent to the process
6043 * despite the fact that it has not receive recorded data yet.
6044 */
6045 static void
6046 audio_softintr_rd(void *cookie)
6047 {
6048 struct audio_softc *sc = cookie;
6049 audio_file_t *f;
6050 pid_t pid;
6051
6052 mutex_enter(sc->sc_lock);
6053
6054 SLIST_FOREACH(f, &sc->sc_files, entry) {
6055 audio_track_t *track = f->rtrack;
6056
6057 if (track == NULL)
6058 continue;
6059
6060 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6061 track->input->head,
6062 track->input->used,
6063 track->input->capacity);
6064
6065 pid = f->async_audio;
6066 if (pid != 0) {
6067 TRACEF(4, f, "sending SIGIO %d", pid);
6068 audio_psignal(sc, pid, SIGIO);
6069 }
6070 }
6071
6072 /* Notify that data has arrived. */
6073 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6074 KNOTE(&sc->sc_rsel.sel_klist, 0);
6075 cv_broadcast(&sc->sc_rmixer->outcv);
6076
6077 mutex_exit(sc->sc_lock);
6078 }
6079
6080 /*
6081 * This is software interrupt handler for playback.
6082 * It is called from playback hardware interrupt everytime.
6083 * It does:
6084 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6085 * - Notify to audio_write() that outbuf block available.
6086 * - selnotify() for select/poll-ing processes if there are any writable
6087 * (used < lowat) processes. Checking each descriptor will be done by
6088 * filt_audiowrite_event().
6089 */
6090 static void
6091 audio_softintr_wr(void *cookie)
6092 {
6093 struct audio_softc *sc = cookie;
6094 audio_file_t *f;
6095 bool found;
6096 pid_t pid;
6097
6098 TRACE(4, "called");
6099 found = false;
6100
6101 mutex_enter(sc->sc_lock);
6102
6103 SLIST_FOREACH(f, &sc->sc_files, entry) {
6104 audio_track_t *track = f->ptrack;
6105
6106 if (track == NULL)
6107 continue;
6108
6109 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
6110 (int)track->seq,
6111 track->outbuf.head,
6112 track->outbuf.used,
6113 track->outbuf.capacity);
6114
6115 /*
6116 * Send a signal if the process is async mode and
6117 * used is lower than lowat.
6118 */
6119 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6120 !track->is_pause) {
6121 /* For selnotify */
6122 found = true;
6123 /* For SIGIO */
6124 pid = f->async_audio;
6125 if (pid != 0) {
6126 TRACEF(4, f, "sending SIGIO %d", pid);
6127 audio_psignal(sc, pid, SIGIO);
6128 }
6129 }
6130 }
6131
6132 /*
6133 * Notify for select/poll when someone become writable.
6134 * It needs sc_lock (and not sc_intr_lock).
6135 */
6136 if (found) {
6137 TRACE(4, "selnotify");
6138 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6139 KNOTE(&sc->sc_wsel.sel_klist, 0);
6140 }
6141
6142 /* Notify to audio_write() that outbuf available. */
6143 cv_broadcast(&sc->sc_pmixer->outcv);
6144
6145 mutex_exit(sc->sc_lock);
6146 }
6147
6148 /*
6149 * Check (and convert) the format *p came from userland.
6150 * If successful, it writes back the converted format to *p if necessary
6151 * and returns 0. Otherwise returns errno (*p may change even this case).
6152 */
6153 static int
6154 audio_check_params(audio_format2_t *p)
6155 {
6156
6157 /* Convert obsoleted AUDIO_ENCODING_PCM* */
6158 /* XXX Is this conversion right? */
6159 if (p->encoding == AUDIO_ENCODING_PCM16) {
6160 if (p->precision == 8)
6161 p->encoding = AUDIO_ENCODING_ULINEAR;
6162 else
6163 p->encoding = AUDIO_ENCODING_SLINEAR;
6164 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6165 if (p->precision == 8)
6166 p->encoding = AUDIO_ENCODING_ULINEAR;
6167 else
6168 return EINVAL;
6169 }
6170
6171 /*
6172 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6173 * suffix.
6174 */
6175 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6176 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6177 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6178 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6179
6180 switch (p->encoding) {
6181 case AUDIO_ENCODING_ULAW:
6182 case AUDIO_ENCODING_ALAW:
6183 if (p->precision != 8)
6184 return EINVAL;
6185 break;
6186 case AUDIO_ENCODING_ADPCM:
6187 if (p->precision != 4 && p->precision != 8)
6188 return EINVAL;
6189 break;
6190 case AUDIO_ENCODING_SLINEAR_LE:
6191 case AUDIO_ENCODING_SLINEAR_BE:
6192 case AUDIO_ENCODING_ULINEAR_LE:
6193 case AUDIO_ENCODING_ULINEAR_BE:
6194 if (p->precision != 8 && p->precision != 16 &&
6195 p->precision != 24 && p->precision != 32)
6196 return EINVAL;
6197
6198 /* 8bit format does not have endianness. */
6199 if (p->precision == 8) {
6200 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6201 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6202 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6203 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6204 }
6205
6206 if (p->precision > p->stride)
6207 return EINVAL;
6208 break;
6209 case AUDIO_ENCODING_MPEG_L1_STREAM:
6210 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6211 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6212 case AUDIO_ENCODING_MPEG_L2_STREAM:
6213 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6214 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6215 case AUDIO_ENCODING_AC3:
6216 break;
6217 default:
6218 return EINVAL;
6219 }
6220
6221 /* sanity check # of channels*/
6222 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6223 return EINVAL;
6224
6225 return 0;
6226 }
6227
6228 /*
6229 * Initialize playback and record mixers.
6230 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initalized.
6231 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6232 * the filter registration information. These four must not be NULL.
6233 * If successful returns 0. Otherwise returns errno.
6234 * Must be called with sc_exlock held and without sc_lock held.
6235 * Must not be called if there are any tracks.
6236 * Caller should check that the initialization succeed by whether
6237 * sc_[pr]mixer is not NULL.
6238 */
6239 static int
6240 audio_mixers_init(struct audio_softc *sc, int mode,
6241 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6242 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6243 {
6244 int error;
6245
6246 KASSERT(phwfmt != NULL);
6247 KASSERT(rhwfmt != NULL);
6248 KASSERT(pfil != NULL);
6249 KASSERT(rfil != NULL);
6250 KASSERT(sc->sc_exlock);
6251
6252 if ((mode & AUMODE_PLAY)) {
6253 if (sc->sc_pmixer == NULL) {
6254 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6255 KM_SLEEP);
6256 } else {
6257 /* destroy() doesn't free memory. */
6258 audio_mixer_destroy(sc, sc->sc_pmixer);
6259 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6260 }
6261 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6262 if (error) {
6263 aprint_error_dev(sc->sc_dev,
6264 "configuring playback mode failed\n");
6265 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6266 sc->sc_pmixer = NULL;
6267 return error;
6268 }
6269 }
6270 if ((mode & AUMODE_RECORD)) {
6271 if (sc->sc_rmixer == NULL) {
6272 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6273 KM_SLEEP);
6274 } else {
6275 /* destroy() doesn't free memory. */
6276 audio_mixer_destroy(sc, sc->sc_rmixer);
6277 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6278 }
6279 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6280 if (error) {
6281 aprint_error_dev(sc->sc_dev,
6282 "configuring record mode failed\n");
6283 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6284 sc->sc_rmixer = NULL;
6285 return error;
6286 }
6287 }
6288
6289 return 0;
6290 }
6291
6292 /*
6293 * Select a frequency.
6294 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6295 * XXX Better algorithm?
6296 */
6297 static int
6298 audio_select_freq(const struct audio_format *fmt)
6299 {
6300 int freq;
6301 int high;
6302 int low;
6303 int j;
6304
6305 if (fmt->frequency_type == 0) {
6306 low = fmt->frequency[0];
6307 high = fmt->frequency[1];
6308 freq = 48000;
6309 if (low <= freq && freq <= high) {
6310 return freq;
6311 }
6312 freq = 44100;
6313 if (low <= freq && freq <= high) {
6314 return freq;
6315 }
6316 return high;
6317 } else {
6318 for (j = 0; j < fmt->frequency_type; j++) {
6319 if (fmt->frequency[j] == 48000) {
6320 return fmt->frequency[j];
6321 }
6322 }
6323 high = 0;
6324 for (j = 0; j < fmt->frequency_type; j++) {
6325 if (fmt->frequency[j] == 44100) {
6326 return fmt->frequency[j];
6327 }
6328 if (fmt->frequency[j] > high) {
6329 high = fmt->frequency[j];
6330 }
6331 }
6332 return high;
6333 }
6334 }
6335
6336 /*
6337 * Choose the most preferred hardware format.
6338 * If successful, it will store the chosen format into *cand and return 0.
6339 * Otherwise, return errno.
6340 * Must be called without sc_lock held.
6341 */
6342 static int
6343 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6344 {
6345 audio_format_query_t query;
6346 int cand_score;
6347 int score;
6348 int i;
6349 int error;
6350
6351 /*
6352 * Score each formats and choose the highest one.
6353 *
6354 * +---- priority(0-3)
6355 * |+--- encoding/precision
6356 * ||+-- channels
6357 * score = 0x000000PEC
6358 */
6359
6360 cand_score = 0;
6361 for (i = 0; ; i++) {
6362 memset(&query, 0, sizeof(query));
6363 query.index = i;
6364
6365 mutex_enter(sc->sc_lock);
6366 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6367 mutex_exit(sc->sc_lock);
6368 if (error == EINVAL)
6369 break;
6370 if (error)
6371 return error;
6372
6373 #if defined(AUDIO_DEBUG)
6374 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6375 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6376 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6377 query.fmt.priority,
6378 audio_encoding_name(query.fmt.encoding),
6379 query.fmt.validbits,
6380 query.fmt.precision,
6381 query.fmt.channels);
6382 if (query.fmt.frequency_type == 0) {
6383 DPRINTF(1, "{%d-%d",
6384 query.fmt.frequency[0], query.fmt.frequency[1]);
6385 } else {
6386 int j;
6387 for (j = 0; j < query.fmt.frequency_type; j++) {
6388 DPRINTF(1, "%c%d",
6389 (j == 0) ? '{' : ',',
6390 query.fmt.frequency[j]);
6391 }
6392 }
6393 DPRINTF(1, "}\n");
6394 #endif
6395
6396 if ((query.fmt.mode & mode) == 0) {
6397 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6398 mode);
6399 continue;
6400 }
6401
6402 if (query.fmt.priority < 0) {
6403 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6404 continue;
6405 }
6406
6407 /* Score */
6408 score = (query.fmt.priority & 3) * 0x100;
6409 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6410 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6411 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6412 score += 0x20;
6413 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6414 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6415 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6416 score += 0x10;
6417 }
6418 score += query.fmt.channels;
6419
6420 if (score < cand_score) {
6421 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6422 score, cand_score);
6423 continue;
6424 }
6425
6426 /* Update candidate */
6427 cand_score = score;
6428 cand->encoding = query.fmt.encoding;
6429 cand->precision = query.fmt.validbits;
6430 cand->stride = query.fmt.precision;
6431 cand->channels = query.fmt.channels;
6432 cand->sample_rate = audio_select_freq(&query.fmt);
6433 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6434 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6435 cand_score, query.fmt.priority,
6436 audio_encoding_name(query.fmt.encoding),
6437 cand->precision, cand->stride,
6438 cand->channels, cand->sample_rate);
6439 }
6440
6441 if (cand_score == 0) {
6442 DPRINTF(1, "%s no fmt\n", __func__);
6443 return ENXIO;
6444 }
6445 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6446 audio_encoding_name(cand->encoding),
6447 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6448 return 0;
6449 }
6450
6451 /*
6452 * Validate fmt with query_format.
6453 * If fmt is included in the result of query_format, returns 0.
6454 * Otherwise returns EINVAL.
6455 * Must be called without sc_lock held.
6456 */
6457 static int
6458 audio_hw_validate_format(struct audio_softc *sc, int mode,
6459 const audio_format2_t *fmt)
6460 {
6461 audio_format_query_t query;
6462 struct audio_format *q;
6463 int index;
6464 int error;
6465 int j;
6466
6467 for (index = 0; ; index++) {
6468 query.index = index;
6469 mutex_enter(sc->sc_lock);
6470 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6471 mutex_exit(sc->sc_lock);
6472 if (error == EINVAL)
6473 break;
6474 if (error)
6475 return error;
6476
6477 q = &query.fmt;
6478 /*
6479 * Note that fmt is audio_format2_t (precision/stride) but
6480 * q is audio_format_t (validbits/precision).
6481 */
6482 if ((q->mode & mode) == 0) {
6483 continue;
6484 }
6485 if (fmt->encoding != q->encoding) {
6486 continue;
6487 }
6488 if (fmt->precision != q->validbits) {
6489 continue;
6490 }
6491 if (fmt->stride != q->precision) {
6492 continue;
6493 }
6494 if (fmt->channels != q->channels) {
6495 continue;
6496 }
6497 if (q->frequency_type == 0) {
6498 if (fmt->sample_rate < q->frequency[0] ||
6499 fmt->sample_rate > q->frequency[1]) {
6500 continue;
6501 }
6502 } else {
6503 for (j = 0; j < q->frequency_type; j++) {
6504 if (fmt->sample_rate == q->frequency[j])
6505 break;
6506 }
6507 if (j == query.fmt.frequency_type) {
6508 continue;
6509 }
6510 }
6511
6512 /* Matched. */
6513 return 0;
6514 }
6515
6516 return EINVAL;
6517 }
6518
6519 /*
6520 * Set track mixer's format depending on ai->mode.
6521 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6522 * with ai.play.{channels, sample_rate}.
6523 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6524 * with ai.record.{channels, sample_rate}.
6525 * All other fields in ai are ignored.
6526 * If successful returns 0. Otherwise returns errno.
6527 * This function does not roll back even if it fails.
6528 * Must be called with sc_exlock held and without sc_lock held.
6529 */
6530 static int
6531 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6532 {
6533 audio_format2_t phwfmt;
6534 audio_format2_t rhwfmt;
6535 audio_filter_reg_t pfil;
6536 audio_filter_reg_t rfil;
6537 int mode;
6538 int error;
6539
6540 KASSERT(sc->sc_exlock);
6541
6542 /*
6543 * Even when setting either one of playback and recording,
6544 * both must be halted.
6545 */
6546 if (sc->sc_popens + sc->sc_ropens > 0)
6547 return EBUSY;
6548
6549 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6550 return ENOTTY;
6551
6552 /* Only channels and sample_rate are changeable. */
6553 mode = ai->mode;
6554 if ((mode & AUMODE_PLAY)) {
6555 phwfmt.encoding = ai->play.encoding;
6556 phwfmt.precision = ai->play.precision;
6557 phwfmt.stride = ai->play.precision;
6558 phwfmt.channels = ai->play.channels;
6559 phwfmt.sample_rate = ai->play.sample_rate;
6560 }
6561 if ((mode & AUMODE_RECORD)) {
6562 rhwfmt.encoding = ai->record.encoding;
6563 rhwfmt.precision = ai->record.precision;
6564 rhwfmt.stride = ai->record.precision;
6565 rhwfmt.channels = ai->record.channels;
6566 rhwfmt.sample_rate = ai->record.sample_rate;
6567 }
6568
6569 /* On non-independent devices, use the same format for both. */
6570 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6571 if (mode == AUMODE_RECORD) {
6572 phwfmt = rhwfmt;
6573 } else {
6574 rhwfmt = phwfmt;
6575 }
6576 mode = AUMODE_PLAY | AUMODE_RECORD;
6577 }
6578
6579 /* Then, unset the direction not exist on the hardware. */
6580 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6581 mode &= ~AUMODE_PLAY;
6582 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6583 mode &= ~AUMODE_RECORD;
6584
6585 /* debug */
6586 if ((mode & AUMODE_PLAY)) {
6587 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6588 audio_encoding_name(phwfmt.encoding),
6589 phwfmt.precision,
6590 phwfmt.stride,
6591 phwfmt.channels,
6592 phwfmt.sample_rate);
6593 }
6594 if ((mode & AUMODE_RECORD)) {
6595 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6596 audio_encoding_name(rhwfmt.encoding),
6597 rhwfmt.precision,
6598 rhwfmt.stride,
6599 rhwfmt.channels,
6600 rhwfmt.sample_rate);
6601 }
6602
6603 /* Check the format */
6604 if ((mode & AUMODE_PLAY)) {
6605 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6606 TRACE(1, "invalid format");
6607 return EINVAL;
6608 }
6609 }
6610 if ((mode & AUMODE_RECORD)) {
6611 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6612 TRACE(1, "invalid format");
6613 return EINVAL;
6614 }
6615 }
6616
6617 /* Configure the mixers. */
6618 memset(&pfil, 0, sizeof(pfil));
6619 memset(&rfil, 0, sizeof(rfil));
6620 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6621 if (error)
6622 return error;
6623
6624 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6625 if (error)
6626 return error;
6627
6628 /*
6629 * Reinitialize the sticky parameters for /dev/sound.
6630 * If the number of the hardware channels becomes less than the number
6631 * of channels that sticky parameters remember, subsequent /dev/sound
6632 * open will fail. To prevent this, reinitialize the sticky
6633 * parameters whenever the hardware format is changed.
6634 */
6635 sc->sc_sound_pparams = params_to_format2(&audio_default);
6636 sc->sc_sound_rparams = params_to_format2(&audio_default);
6637 sc->sc_sound_ppause = false;
6638 sc->sc_sound_rpause = false;
6639
6640 return 0;
6641 }
6642
6643 /*
6644 * Store current mixers format into *ai.
6645 * Must be called with sc_exlock held.
6646 */
6647 static void
6648 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6649 {
6650
6651 KASSERT(sc->sc_exlock);
6652
6653 /*
6654 * There is no stride information in audio_info but it doesn't matter.
6655 * trackmixer always treats stride and precision as the same.
6656 */
6657 AUDIO_INITINFO(ai);
6658 ai->mode = 0;
6659 if (sc->sc_pmixer) {
6660 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6661 ai->play.encoding = fmt->encoding;
6662 ai->play.precision = fmt->precision;
6663 ai->play.channels = fmt->channels;
6664 ai->play.sample_rate = fmt->sample_rate;
6665 ai->mode |= AUMODE_PLAY;
6666 }
6667 if (sc->sc_rmixer) {
6668 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6669 ai->record.encoding = fmt->encoding;
6670 ai->record.precision = fmt->precision;
6671 ai->record.channels = fmt->channels;
6672 ai->record.sample_rate = fmt->sample_rate;
6673 ai->mode |= AUMODE_RECORD;
6674 }
6675 }
6676
6677 /*
6678 * audio_info details:
6679 *
6680 * ai.{play,record}.sample_rate (R/W)
6681 * ai.{play,record}.encoding (R/W)
6682 * ai.{play,record}.precision (R/W)
6683 * ai.{play,record}.channels (R/W)
6684 * These specify the playback or recording format.
6685 * Ignore members within an inactive track.
6686 *
6687 * ai.mode (R/W)
6688 * It specifies the playback or recording mode, AUMODE_*.
6689 * Currently, a mode change operation by ai.mode after opening is
6690 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6691 * However, it's possible to get or to set for backward compatibility.
6692 *
6693 * ai.{hiwat,lowat} (R/W)
6694 * These specify the high water mark and low water mark for playback
6695 * track. The unit is block.
6696 *
6697 * ai.{play,record}.gain (R/W)
6698 * It specifies the HW mixer volume in 0-255.
6699 * It is historical reason that the gain is connected to HW mixer.
6700 *
6701 * ai.{play,record}.balance (R/W)
6702 * It specifies the left-right balance of HW mixer in 0-64.
6703 * 32 means the center.
6704 * It is historical reason that the balance is connected to HW mixer.
6705 *
6706 * ai.{play,record}.port (R/W)
6707 * It specifies the input/output port of HW mixer.
6708 *
6709 * ai.monitor_gain (R/W)
6710 * It specifies the recording monitor gain(?) of HW mixer.
6711 *
6712 * ai.{play,record}.pause (R/W)
6713 * Non-zero means the track is paused.
6714 *
6715 * ai.play.seek (R/-)
6716 * It indicates the number of bytes written but not processed.
6717 * ai.record.seek (R/-)
6718 * It indicates the number of bytes to be able to read.
6719 *
6720 * ai.{play,record}.avail_ports (R/-)
6721 * Mixer info.
6722 *
6723 * ai.{play,record}.buffer_size (R/-)
6724 * It indicates the buffer size in bytes. Internally it means usrbuf.
6725 *
6726 * ai.{play,record}.samples (R/-)
6727 * It indicates the total number of bytes played or recorded.
6728 *
6729 * ai.{play,record}.eof (R/-)
6730 * It indicates the number of times reached EOF(?).
6731 *
6732 * ai.{play,record}.error (R/-)
6733 * Non-zero indicates overflow/underflow has occured.
6734 *
6735 * ai.{play,record}.waiting (R/-)
6736 * Non-zero indicates that other process waits to open.
6737 * It will never happen anymore.
6738 *
6739 * ai.{play,record}.open (R/-)
6740 * Non-zero indicates the direction is opened by this process(?).
6741 * XXX Is this better to indicate that "the device is opened by
6742 * at least one process"?
6743 *
6744 * ai.{play,record}.active (R/-)
6745 * Non-zero indicates that I/O is currently active.
6746 *
6747 * ai.blocksize (R/-)
6748 * It indicates the block size in bytes.
6749 * XXX The blocksize of playback and recording may be different.
6750 */
6751
6752 /*
6753 * Pause consideration:
6754 *
6755 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6756 * operation simple. Note that playback and recording are asymmetric.
6757 *
6758 * For playback,
6759 * 1. Any playback open doesn't start pmixer regardless of initial pause
6760 * state of this track.
6761 * 2. The first write access among playback tracks only starts pmixer
6762 * regardless of this track's pause state.
6763 * 3. Even a pause of the last playback track doesn't stop pmixer.
6764 * 4. The last close of all playback tracks only stops pmixer.
6765 *
6766 * For recording,
6767 * 1. The first recording open only starts rmixer regardless of initial
6768 * pause state of this track.
6769 * 2. Even a pause of the last track doesn't stop rmixer.
6770 * 3. The last close of all recording tracks only stops rmixer.
6771 */
6772
6773 /*
6774 * Set both track's parameters within a file depending on ai.
6775 * Update sc_sound_[pr]* if set.
6776 * Must be called with sc_exlock held and without sc_lock held.
6777 */
6778 static int
6779 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6780 const struct audio_info *ai)
6781 {
6782 const struct audio_prinfo *pi;
6783 const struct audio_prinfo *ri;
6784 audio_track_t *ptrack;
6785 audio_track_t *rtrack;
6786 audio_format2_t pfmt;
6787 audio_format2_t rfmt;
6788 int pchanges;
6789 int rchanges;
6790 int mode;
6791 struct audio_info saved_ai;
6792 audio_format2_t saved_pfmt;
6793 audio_format2_t saved_rfmt;
6794 int error;
6795
6796 KASSERT(sc->sc_exlock);
6797
6798 pi = &ai->play;
6799 ri = &ai->record;
6800 pchanges = 0;
6801 rchanges = 0;
6802
6803 ptrack = file->ptrack;
6804 rtrack = file->rtrack;
6805
6806 #if defined(AUDIO_DEBUG)
6807 if (audiodebug >= 2) {
6808 char buf[256];
6809 char p[64];
6810 int buflen;
6811 int plen;
6812 #define SPRINTF(var, fmt...) do { \
6813 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6814 } while (0)
6815
6816 buflen = 0;
6817 plen = 0;
6818 if (SPECIFIED(pi->encoding))
6819 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6820 if (SPECIFIED(pi->precision))
6821 SPRINTF(p, "/%dbit", pi->precision);
6822 if (SPECIFIED(pi->channels))
6823 SPRINTF(p, "/%dch", pi->channels);
6824 if (SPECIFIED(pi->sample_rate))
6825 SPRINTF(p, "/%dHz", pi->sample_rate);
6826 if (plen > 0)
6827 SPRINTF(buf, ",play.param=%s", p + 1);
6828
6829 plen = 0;
6830 if (SPECIFIED(ri->encoding))
6831 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6832 if (SPECIFIED(ri->precision))
6833 SPRINTF(p, "/%dbit", ri->precision);
6834 if (SPECIFIED(ri->channels))
6835 SPRINTF(p, "/%dch", ri->channels);
6836 if (SPECIFIED(ri->sample_rate))
6837 SPRINTF(p, "/%dHz", ri->sample_rate);
6838 if (plen > 0)
6839 SPRINTF(buf, ",record.param=%s", p + 1);
6840
6841 if (SPECIFIED(ai->mode))
6842 SPRINTF(buf, ",mode=%d", ai->mode);
6843 if (SPECIFIED(ai->hiwat))
6844 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6845 if (SPECIFIED(ai->lowat))
6846 SPRINTF(buf, ",lowat=%d", ai->lowat);
6847 if (SPECIFIED(ai->play.gain))
6848 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6849 if (SPECIFIED(ai->record.gain))
6850 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6851 if (SPECIFIED_CH(ai->play.balance))
6852 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6853 if (SPECIFIED_CH(ai->record.balance))
6854 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6855 if (SPECIFIED(ai->play.port))
6856 SPRINTF(buf, ",play.port=%d", ai->play.port);
6857 if (SPECIFIED(ai->record.port))
6858 SPRINTF(buf, ",record.port=%d", ai->record.port);
6859 if (SPECIFIED(ai->monitor_gain))
6860 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6861 if (SPECIFIED_CH(ai->play.pause))
6862 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6863 if (SPECIFIED_CH(ai->record.pause))
6864 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6865
6866 if (buflen > 0)
6867 TRACE(2, "specified %s", buf + 1);
6868 }
6869 #endif
6870
6871 AUDIO_INITINFO(&saved_ai);
6872 /* XXX shut up gcc */
6873 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6874 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6875
6876 /*
6877 * Set default value and save current parameters.
6878 * For backward compatibility, use sticky parameters for nonexistent
6879 * track.
6880 */
6881 if (ptrack) {
6882 pfmt = ptrack->usrbuf.fmt;
6883 saved_pfmt = ptrack->usrbuf.fmt;
6884 saved_ai.play.pause = ptrack->is_pause;
6885 } else {
6886 pfmt = sc->sc_sound_pparams;
6887 }
6888 if (rtrack) {
6889 rfmt = rtrack->usrbuf.fmt;
6890 saved_rfmt = rtrack->usrbuf.fmt;
6891 saved_ai.record.pause = rtrack->is_pause;
6892 } else {
6893 rfmt = sc->sc_sound_rparams;
6894 }
6895 saved_ai.mode = file->mode;
6896
6897 /*
6898 * Overwrite if specified.
6899 */
6900 mode = file->mode;
6901 if (SPECIFIED(ai->mode)) {
6902 /*
6903 * Setting ai->mode no longer does anything because it's
6904 * prohibited to change playback/recording mode after open
6905 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6906 * keeps the state of AUMODE_PLAY_ALL itself for backward
6907 * compatibility.
6908 * In the internal, only file->mode has the state of
6909 * AUMODE_PLAY_ALL flag and track->mode in both track does
6910 * not have.
6911 */
6912 if ((file->mode & AUMODE_PLAY)) {
6913 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6914 | (ai->mode & AUMODE_PLAY_ALL);
6915 }
6916 }
6917
6918 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
6919 if (pchanges == -1) {
6920 #if defined(AUDIO_DEBUG)
6921 TRACEF(1, file, "check play.params failed: "
6922 "%s %ubit %uch %uHz",
6923 audio_encoding_name(pi->encoding),
6924 pi->precision,
6925 pi->channels,
6926 pi->sample_rate);
6927 #endif
6928 return EINVAL;
6929 }
6930
6931 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
6932 if (rchanges == -1) {
6933 #if defined(AUDIO_DEBUG)
6934 TRACEF(1, file, "check record.params failed: "
6935 "%s %ubit %uch %uHz",
6936 audio_encoding_name(ri->encoding),
6937 ri->precision,
6938 ri->channels,
6939 ri->sample_rate);
6940 #endif
6941 return EINVAL;
6942 }
6943
6944 if (SPECIFIED(ai->mode)) {
6945 pchanges = 1;
6946 rchanges = 1;
6947 }
6948
6949 /*
6950 * Even when setting either one of playback and recording,
6951 * both track must be halted.
6952 */
6953 if (pchanges || rchanges) {
6954 audio_file_clear(sc, file);
6955 #if defined(AUDIO_DEBUG)
6956 char nbuf[16];
6957 char fmtbuf[64];
6958 if (pchanges) {
6959 if (ptrack) {
6960 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
6961 } else {
6962 snprintf(nbuf, sizeof(nbuf), "-");
6963 }
6964 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6965 DPRINTF(1, "audio track#%s play mode: %s\n",
6966 nbuf, fmtbuf);
6967 }
6968 if (rchanges) {
6969 if (rtrack) {
6970 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
6971 } else {
6972 snprintf(nbuf, sizeof(nbuf), "-");
6973 }
6974 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6975 DPRINTF(1, "audio track#%s rec mode: %s\n",
6976 nbuf, fmtbuf);
6977 }
6978 #endif
6979 }
6980
6981 /* Set mixer parameters */
6982 mutex_enter(sc->sc_lock);
6983 error = audio_hw_setinfo(sc, ai, &saved_ai);
6984 mutex_exit(sc->sc_lock);
6985 if (error)
6986 goto abort1;
6987
6988 /*
6989 * Set to track and update sticky parameters.
6990 */
6991 error = 0;
6992 file->mode = mode;
6993
6994 if (SPECIFIED_CH(pi->pause)) {
6995 if (ptrack)
6996 ptrack->is_pause = pi->pause;
6997 sc->sc_sound_ppause = pi->pause;
6998 }
6999 if (pchanges) {
7000 if (ptrack) {
7001 audio_track_lock_enter(ptrack);
7002 error = audio_track_set_format(ptrack, &pfmt);
7003 audio_track_lock_exit(ptrack);
7004 if (error) {
7005 TRACET(1, ptrack, "set play.params failed");
7006 goto abort2;
7007 }
7008 }
7009 sc->sc_sound_pparams = pfmt;
7010 }
7011 /* Change water marks after initializing the buffers. */
7012 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7013 if (ptrack)
7014 audio_track_setinfo_water(ptrack, ai);
7015 }
7016
7017 if (SPECIFIED_CH(ri->pause)) {
7018 if (rtrack)
7019 rtrack->is_pause = ri->pause;
7020 sc->sc_sound_rpause = ri->pause;
7021 }
7022 if (rchanges) {
7023 if (rtrack) {
7024 audio_track_lock_enter(rtrack);
7025 error = audio_track_set_format(rtrack, &rfmt);
7026 audio_track_lock_exit(rtrack);
7027 if (error) {
7028 TRACET(1, rtrack, "set record.params failed");
7029 goto abort3;
7030 }
7031 }
7032 sc->sc_sound_rparams = rfmt;
7033 }
7034
7035 return 0;
7036
7037 /* Rollback */
7038 abort3:
7039 if (error != ENOMEM) {
7040 rtrack->is_pause = saved_ai.record.pause;
7041 audio_track_lock_enter(rtrack);
7042 audio_track_set_format(rtrack, &saved_rfmt);
7043 audio_track_lock_exit(rtrack);
7044 }
7045 sc->sc_sound_rpause = saved_ai.record.pause;
7046 sc->sc_sound_rparams = saved_rfmt;
7047 abort2:
7048 if (ptrack && error != ENOMEM) {
7049 ptrack->is_pause = saved_ai.play.pause;
7050 audio_track_lock_enter(ptrack);
7051 audio_track_set_format(ptrack, &saved_pfmt);
7052 audio_track_lock_exit(ptrack);
7053 }
7054 sc->sc_sound_ppause = saved_ai.play.pause;
7055 sc->sc_sound_pparams = saved_pfmt;
7056 file->mode = saved_ai.mode;
7057 abort1:
7058 mutex_enter(sc->sc_lock);
7059 audio_hw_setinfo(sc, &saved_ai, NULL);
7060 mutex_exit(sc->sc_lock);
7061
7062 return error;
7063 }
7064
7065 /*
7066 * Write SPECIFIED() parameters within info back to fmt.
7067 * Note that track can be NULL here.
7068 * Return value of 1 indicates that fmt is modified.
7069 * Return value of 0 indicates that fmt is not modified.
7070 * Return value of -1 indicates that error EINVAL has occurred.
7071 */
7072 static int
7073 audio_track_setinfo_check(audio_track_t *track,
7074 audio_format2_t *fmt, const struct audio_prinfo *info)
7075 {
7076 const audio_format2_t *hwfmt;
7077 int changes;
7078
7079 changes = 0;
7080 if (SPECIFIED(info->sample_rate)) {
7081 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7082 return -1;
7083 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7084 return -1;
7085 fmt->sample_rate = info->sample_rate;
7086 changes = 1;
7087 }
7088 if (SPECIFIED(info->encoding)) {
7089 fmt->encoding = info->encoding;
7090 changes = 1;
7091 }
7092 if (SPECIFIED(info->precision)) {
7093 fmt->precision = info->precision;
7094 /* we don't have API to specify stride */
7095 fmt->stride = info->precision;
7096 changes = 1;
7097 }
7098 if (SPECIFIED(info->channels)) {
7099 /*
7100 * We can convert between monaural and stereo each other.
7101 * We can reduce than the number of channels that the hardware
7102 * supports.
7103 */
7104 if (info->channels > 2) {
7105 if (track) {
7106 hwfmt = &track->mixer->hwbuf.fmt;
7107 if (info->channels > hwfmt->channels)
7108 return -1;
7109 } else {
7110 /*
7111 * This should never happen.
7112 * If track == NULL, channels should be <= 2.
7113 */
7114 return -1;
7115 }
7116 }
7117 fmt->channels = info->channels;
7118 changes = 1;
7119 }
7120
7121 if (changes) {
7122 if (audio_check_params(fmt) != 0)
7123 return -1;
7124 }
7125
7126 return changes;
7127 }
7128
7129 /*
7130 * Change water marks for playback track if specfied.
7131 */
7132 static void
7133 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7134 {
7135 u_int blks;
7136 u_int maxblks;
7137 u_int blksize;
7138
7139 KASSERT(audio_track_is_playback(track));
7140
7141 blksize = track->usrbuf_blksize;
7142 maxblks = track->usrbuf.capacity / blksize;
7143
7144 if (SPECIFIED(ai->hiwat)) {
7145 blks = ai->hiwat;
7146 if (blks > maxblks)
7147 blks = maxblks;
7148 if (blks < 2)
7149 blks = 2;
7150 track->usrbuf_usedhigh = blks * blksize;
7151 }
7152 if (SPECIFIED(ai->lowat)) {
7153 blks = ai->lowat;
7154 if (blks > maxblks - 1)
7155 blks = maxblks - 1;
7156 track->usrbuf_usedlow = blks * blksize;
7157 }
7158 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7159 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7160 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7161 blksize;
7162 }
7163 }
7164 }
7165
7166 /*
7167 * Set hardware part of *ai.
7168 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7169 * If oldai is specified, previous parameters are stored.
7170 * This function itself does not roll back if error occurred.
7171 * Must be called with sc_lock && sc_exlock held.
7172 */
7173 static int
7174 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7175 struct audio_info *oldai)
7176 {
7177 const struct audio_prinfo *newpi;
7178 const struct audio_prinfo *newri;
7179 struct audio_prinfo *oldpi;
7180 struct audio_prinfo *oldri;
7181 u_int pgain;
7182 u_int rgain;
7183 u_char pbalance;
7184 u_char rbalance;
7185 int error;
7186
7187 KASSERT(mutex_owned(sc->sc_lock));
7188 KASSERT(sc->sc_exlock);
7189
7190 /* XXX shut up gcc */
7191 oldpi = NULL;
7192 oldri = NULL;
7193
7194 newpi = &newai->play;
7195 newri = &newai->record;
7196 if (oldai) {
7197 oldpi = &oldai->play;
7198 oldri = &oldai->record;
7199 }
7200 error = 0;
7201
7202 /*
7203 * It looks like unnecessary to halt HW mixers to set HW mixers.
7204 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7205 */
7206
7207 if (SPECIFIED(newpi->port)) {
7208 if (oldai)
7209 oldpi->port = au_get_port(sc, &sc->sc_outports);
7210 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7211 if (error) {
7212 device_printf(sc->sc_dev,
7213 "setting play.port=%d failed with %d\n",
7214 newpi->port, error);
7215 goto abort;
7216 }
7217 }
7218 if (SPECIFIED(newri->port)) {
7219 if (oldai)
7220 oldri->port = au_get_port(sc, &sc->sc_inports);
7221 error = au_set_port(sc, &sc->sc_inports, newri->port);
7222 if (error) {
7223 device_printf(sc->sc_dev,
7224 "setting record.port=%d failed with %d\n",
7225 newri->port, error);
7226 goto abort;
7227 }
7228 }
7229
7230 /* Backup play.{gain,balance} */
7231 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7232 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7233 if (oldai) {
7234 oldpi->gain = pgain;
7235 oldpi->balance = pbalance;
7236 }
7237 }
7238 /* Backup record.{gain,balance} */
7239 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7240 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7241 if (oldai) {
7242 oldri->gain = rgain;
7243 oldri->balance = rbalance;
7244 }
7245 }
7246 if (SPECIFIED(newpi->gain)) {
7247 error = au_set_gain(sc, &sc->sc_outports,
7248 newpi->gain, pbalance);
7249 if (error) {
7250 device_printf(sc->sc_dev,
7251 "setting play.gain=%d failed with %d\n",
7252 newpi->gain, error);
7253 goto abort;
7254 }
7255 }
7256 if (SPECIFIED(newri->gain)) {
7257 error = au_set_gain(sc, &sc->sc_inports,
7258 newri->gain, rbalance);
7259 if (error) {
7260 device_printf(sc->sc_dev,
7261 "setting record.gain=%d failed with %d\n",
7262 newri->gain, error);
7263 goto abort;
7264 }
7265 }
7266 if (SPECIFIED_CH(newpi->balance)) {
7267 error = au_set_gain(sc, &sc->sc_outports,
7268 pgain, newpi->balance);
7269 if (error) {
7270 device_printf(sc->sc_dev,
7271 "setting play.balance=%d failed with %d\n",
7272 newpi->balance, error);
7273 goto abort;
7274 }
7275 }
7276 if (SPECIFIED_CH(newri->balance)) {
7277 error = au_set_gain(sc, &sc->sc_inports,
7278 rgain, newri->balance);
7279 if (error) {
7280 device_printf(sc->sc_dev,
7281 "setting record.balance=%d failed with %d\n",
7282 newri->balance, error);
7283 goto abort;
7284 }
7285 }
7286
7287 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7288 if (oldai)
7289 oldai->monitor_gain = au_get_monitor_gain(sc);
7290 error = au_set_monitor_gain(sc, newai->monitor_gain);
7291 if (error) {
7292 device_printf(sc->sc_dev,
7293 "setting monitor_gain=%d failed with %d\n",
7294 newai->monitor_gain, error);
7295 goto abort;
7296 }
7297 }
7298
7299 /* XXX TODO */
7300 /* sc->sc_ai = *ai; */
7301
7302 error = 0;
7303 abort:
7304 return error;
7305 }
7306
7307 /*
7308 * Setup the hardware with mixer format phwfmt, rhwfmt.
7309 * The arguments have following restrictions:
7310 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7311 * or both.
7312 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7313 * - On non-independent devices, phwfmt and rhwfmt must have the same
7314 * parameters.
7315 * - pfil and rfil must be zero-filled.
7316 * If successful,
7317 * - phwfmt, rhwfmt will be overwritten by hardware format.
7318 * - pfil, rfil will be filled with filter information specified by the
7319 * hardware driver.
7320 * and then returns 0. Otherwise returns errno.
7321 * Must be called without sc_lock held.
7322 */
7323 static int
7324 audio_hw_set_format(struct audio_softc *sc, int setmode,
7325 audio_format2_t *phwfmt, audio_format2_t *rhwfmt,
7326 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7327 {
7328 audio_params_t pp, rp;
7329 int error;
7330
7331 KASSERT(phwfmt != NULL);
7332 KASSERT(rhwfmt != NULL);
7333
7334 pp = format2_to_params(phwfmt);
7335 rp = format2_to_params(rhwfmt);
7336
7337 mutex_enter(sc->sc_lock);
7338 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7339 &pp, &rp, pfil, rfil);
7340 if (error) {
7341 mutex_exit(sc->sc_lock);
7342 device_printf(sc->sc_dev,
7343 "set_format failed with %d\n", error);
7344 return error;
7345 }
7346
7347 if (sc->hw_if->commit_settings) {
7348 error = sc->hw_if->commit_settings(sc->hw_hdl);
7349 if (error) {
7350 mutex_exit(sc->sc_lock);
7351 device_printf(sc->sc_dev,
7352 "commit_settings failed with %d\n", error);
7353 return error;
7354 }
7355 }
7356 mutex_exit(sc->sc_lock);
7357
7358 return 0;
7359 }
7360
7361 /*
7362 * Fill audio_info structure. If need_mixerinfo is true, it will also
7363 * fill the hardware mixer information.
7364 * Must be called with sc_exlock held and without sc_lock held.
7365 */
7366 static int
7367 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7368 audio_file_t *file)
7369 {
7370 struct audio_prinfo *ri, *pi;
7371 audio_track_t *track;
7372 audio_track_t *ptrack;
7373 audio_track_t *rtrack;
7374 int gain;
7375
7376 KASSERT(sc->sc_exlock);
7377
7378 ri = &ai->record;
7379 pi = &ai->play;
7380 ptrack = file->ptrack;
7381 rtrack = file->rtrack;
7382
7383 memset(ai, 0, sizeof(*ai));
7384
7385 if (ptrack) {
7386 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7387 pi->channels = ptrack->usrbuf.fmt.channels;
7388 pi->precision = ptrack->usrbuf.fmt.precision;
7389 pi->encoding = ptrack->usrbuf.fmt.encoding;
7390 pi->pause = ptrack->is_pause;
7391 } else {
7392 /* Use sticky parameters if the track is not available. */
7393 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7394 pi->channels = sc->sc_sound_pparams.channels;
7395 pi->precision = sc->sc_sound_pparams.precision;
7396 pi->encoding = sc->sc_sound_pparams.encoding;
7397 pi->pause = sc->sc_sound_ppause;
7398 }
7399 if (rtrack) {
7400 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7401 ri->channels = rtrack->usrbuf.fmt.channels;
7402 ri->precision = rtrack->usrbuf.fmt.precision;
7403 ri->encoding = rtrack->usrbuf.fmt.encoding;
7404 ri->pause = rtrack->is_pause;
7405 } else {
7406 /* Use sticky parameters if the track is not available. */
7407 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7408 ri->channels = sc->sc_sound_rparams.channels;
7409 ri->precision = sc->sc_sound_rparams.precision;
7410 ri->encoding = sc->sc_sound_rparams.encoding;
7411 ri->pause = sc->sc_sound_rpause;
7412 }
7413
7414 if (ptrack) {
7415 pi->seek = ptrack->usrbuf.used;
7416 pi->samples = ptrack->usrbuf_stamp;
7417 pi->eof = ptrack->eofcounter;
7418 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7419 pi->open = 1;
7420 pi->buffer_size = ptrack->usrbuf.capacity;
7421 }
7422 pi->waiting = 0; /* open never hangs */
7423 pi->active = sc->sc_pbusy;
7424
7425 if (rtrack) {
7426 ri->seek = rtrack->usrbuf.used;
7427 ri->samples = rtrack->usrbuf_stamp;
7428 ri->eof = 0;
7429 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7430 ri->open = 1;
7431 ri->buffer_size = rtrack->usrbuf.capacity;
7432 }
7433 ri->waiting = 0; /* open never hangs */
7434 ri->active = sc->sc_rbusy;
7435
7436 /*
7437 * XXX There may be different number of channels between playback
7438 * and recording, so that blocksize also may be different.
7439 * But struct audio_info has an united blocksize...
7440 * Here, I use play info precedencely if ptrack is available,
7441 * otherwise record info.
7442 *
7443 * XXX hiwat/lowat is a playback-only parameter. What should I
7444 * return for a record-only descriptor?
7445 */
7446 track = ptrack ? ptrack : rtrack;
7447 if (track) {
7448 ai->blocksize = track->usrbuf_blksize;
7449 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7450 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7451 }
7452 ai->mode = file->mode;
7453
7454 /*
7455 * For backward compatibility, we have to pad these five fields
7456 * a fake non-zero value even if there are no tracks.
7457 */
7458 if (ptrack == NULL)
7459 pi->buffer_size = 65536;
7460 if (rtrack == NULL)
7461 ri->buffer_size = 65536;
7462 if (ptrack == NULL && rtrack == NULL) {
7463 ai->blocksize = 2048;
7464 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7465 ai->lowat = ai->hiwat * 3 / 4;
7466 }
7467
7468 if (need_mixerinfo) {
7469 mutex_enter(sc->sc_lock);
7470
7471 pi->port = au_get_port(sc, &sc->sc_outports);
7472 ri->port = au_get_port(sc, &sc->sc_inports);
7473
7474 pi->avail_ports = sc->sc_outports.allports;
7475 ri->avail_ports = sc->sc_inports.allports;
7476
7477 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7478 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7479
7480 if (sc->sc_monitor_port != -1) {
7481 gain = au_get_monitor_gain(sc);
7482 if (gain != -1)
7483 ai->monitor_gain = gain;
7484 }
7485 mutex_exit(sc->sc_lock);
7486 }
7487
7488 return 0;
7489 }
7490
7491 /*
7492 * Return true if playback is configured.
7493 * This function can be used after audioattach.
7494 */
7495 static bool
7496 audio_can_playback(struct audio_softc *sc)
7497 {
7498
7499 return (sc->sc_pmixer != NULL);
7500 }
7501
7502 /*
7503 * Return true if recording is configured.
7504 * This function can be used after audioattach.
7505 */
7506 static bool
7507 audio_can_capture(struct audio_softc *sc)
7508 {
7509
7510 return (sc->sc_rmixer != NULL);
7511 }
7512
7513 /*
7514 * Get the afp->index'th item from the valid one of format[].
7515 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7516 *
7517 * This is common routines for query_format.
7518 * If your hardware driver has struct audio_format[], the simplest case
7519 * you can write your query_format interface as follows:
7520 *
7521 * struct audio_format foo_format[] = { ... };
7522 *
7523 * int
7524 * foo_query_format(void *hdl, audio_format_query_t *afp)
7525 * {
7526 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7527 * }
7528 */
7529 int
7530 audio_query_format(const struct audio_format *format, int nformats,
7531 audio_format_query_t *afp)
7532 {
7533 const struct audio_format *f;
7534 int idx;
7535 int i;
7536
7537 idx = 0;
7538 for (i = 0; i < nformats; i++) {
7539 f = &format[i];
7540 if (!AUFMT_IS_VALID(f))
7541 continue;
7542 if (afp->index == idx) {
7543 afp->fmt = *f;
7544 return 0;
7545 }
7546 idx++;
7547 }
7548 return EINVAL;
7549 }
7550
7551 /*
7552 * This function is provided for the hardware driver's set_format() to
7553 * find index matches with 'param' from array of audio_format_t 'formats'.
7554 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7555 * It returns the matched index and never fails. Because param passed to
7556 * set_format() is selected from query_format().
7557 * This function will be an alternative to auconv_set_converter() to
7558 * find index.
7559 */
7560 int
7561 audio_indexof_format(const struct audio_format *formats, int nformats,
7562 int mode, const audio_params_t *param)
7563 {
7564 const struct audio_format *f;
7565 int index;
7566 int j;
7567
7568 for (index = 0; index < nformats; index++) {
7569 f = &formats[index];
7570
7571 if (!AUFMT_IS_VALID(f))
7572 continue;
7573 if ((f->mode & mode) == 0)
7574 continue;
7575 if (f->encoding != param->encoding)
7576 continue;
7577 if (f->validbits != param->precision)
7578 continue;
7579 if (f->channels != param->channels)
7580 continue;
7581
7582 if (f->frequency_type == 0) {
7583 if (param->sample_rate < f->frequency[0] ||
7584 param->sample_rate > f->frequency[1])
7585 continue;
7586 } else {
7587 for (j = 0; j < f->frequency_type; j++) {
7588 if (param->sample_rate == f->frequency[j])
7589 break;
7590 }
7591 if (j == f->frequency_type)
7592 continue;
7593 }
7594
7595 /* Then, matched */
7596 return index;
7597 }
7598
7599 /* Not matched. This should not be happened. */
7600 panic("%s: cannot find matched format\n", __func__);
7601 }
7602
7603 /*
7604 * Get or set hardware blocksize in msec.
7605 * XXX It's for debug.
7606 */
7607 static int
7608 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7609 {
7610 struct sysctlnode node;
7611 struct audio_softc *sc;
7612 audio_format2_t phwfmt;
7613 audio_format2_t rhwfmt;
7614 audio_filter_reg_t pfil;
7615 audio_filter_reg_t rfil;
7616 int t;
7617 int old_blk_ms;
7618 int mode;
7619 int error;
7620
7621 node = *rnode;
7622 sc = node.sysctl_data;
7623
7624 error = audio_exlock_enter(sc);
7625 if (error)
7626 return error;
7627
7628 old_blk_ms = sc->sc_blk_ms;
7629 t = old_blk_ms;
7630 node.sysctl_data = &t;
7631 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7632 if (error || newp == NULL)
7633 goto abort;
7634
7635 if (t < 0) {
7636 error = EINVAL;
7637 goto abort;
7638 }
7639
7640 if (sc->sc_popens + sc->sc_ropens > 0) {
7641 error = EBUSY;
7642 goto abort;
7643 }
7644 sc->sc_blk_ms = t;
7645 mode = 0;
7646 if (sc->sc_pmixer) {
7647 mode |= AUMODE_PLAY;
7648 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7649 }
7650 if (sc->sc_rmixer) {
7651 mode |= AUMODE_RECORD;
7652 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7653 }
7654
7655 /* re-init hardware */
7656 memset(&pfil, 0, sizeof(pfil));
7657 memset(&rfil, 0, sizeof(rfil));
7658 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7659 if (error) {
7660 goto abort;
7661 }
7662
7663 /* re-init track mixer */
7664 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7665 if (error) {
7666 /* Rollback */
7667 sc->sc_blk_ms = old_blk_ms;
7668 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7669 goto abort;
7670 }
7671 error = 0;
7672 abort:
7673 audio_exlock_exit(sc);
7674 return error;
7675 }
7676
7677 /*
7678 * Get or set multiuser mode.
7679 */
7680 static int
7681 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7682 {
7683 struct sysctlnode node;
7684 struct audio_softc *sc;
7685 bool t;
7686 int error;
7687
7688 node = *rnode;
7689 sc = node.sysctl_data;
7690
7691 error = audio_exlock_enter(sc);
7692 if (error)
7693 return error;
7694
7695 t = sc->sc_multiuser;
7696 node.sysctl_data = &t;
7697 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7698 if (error || newp == NULL)
7699 goto abort;
7700
7701 sc->sc_multiuser = t;
7702 error = 0;
7703 abort:
7704 audio_exlock_exit(sc);
7705 return error;
7706 }
7707
7708 #if defined(AUDIO_DEBUG)
7709 /*
7710 * Get or set debug verbose level. (0..4)
7711 * XXX It's for debug.
7712 * XXX It is not separated per device.
7713 */
7714 static int
7715 audio_sysctl_debug(SYSCTLFN_ARGS)
7716 {
7717 struct sysctlnode node;
7718 int t;
7719 int error;
7720
7721 node = *rnode;
7722 t = audiodebug;
7723 node.sysctl_data = &t;
7724 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7725 if (error || newp == NULL)
7726 return error;
7727
7728 if (t < 0 || t > 4)
7729 return EINVAL;
7730 audiodebug = t;
7731 printf("audio: audiodebug = %d\n", audiodebug);
7732 return 0;
7733 }
7734 #endif /* AUDIO_DEBUG */
7735
7736 #ifdef AUDIO_PM_IDLE
7737 static void
7738 audio_idle(void *arg)
7739 {
7740 device_t dv = arg;
7741 struct audio_softc *sc = device_private(dv);
7742
7743 #ifdef PNP_DEBUG
7744 extern int pnp_debug_idle;
7745 if (pnp_debug_idle)
7746 printf("%s: idle handler called\n", device_xname(dv));
7747 #endif
7748
7749 sc->sc_idle = true;
7750
7751 /* XXX joerg Make pmf_device_suspend handle children? */
7752 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7753 return;
7754
7755 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7756 pmf_device_resume(dv, PMF_Q_SELF);
7757 }
7758
7759 static void
7760 audio_activity(device_t dv, devactive_t type)
7761 {
7762 struct audio_softc *sc = device_private(dv);
7763
7764 if (type != DVA_SYSTEM)
7765 return;
7766
7767 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7768
7769 sc->sc_idle = false;
7770 if (!device_is_active(dv)) {
7771 /* XXX joerg How to deal with a failing resume... */
7772 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7773 pmf_device_resume(dv, PMF_Q_SELF);
7774 }
7775 }
7776 #endif
7777
7778 static bool
7779 audio_suspend(device_t dv, const pmf_qual_t *qual)
7780 {
7781 struct audio_softc *sc = device_private(dv);
7782 int error;
7783
7784 error = audio_exlock_mutex_enter(sc);
7785 if (error)
7786 return error;
7787 sc->sc_suspending = true;
7788 audio_mixer_capture(sc);
7789
7790 if (sc->sc_pbusy) {
7791 audio_pmixer_halt(sc);
7792 /* Reuse this as need-to-restart flag while suspending */
7793 sc->sc_pbusy = true;
7794 }
7795 if (sc->sc_rbusy) {
7796 audio_rmixer_halt(sc);
7797 /* Reuse this as need-to-restart flag while suspending */
7798 sc->sc_rbusy = true;
7799 }
7800
7801 #ifdef AUDIO_PM_IDLE
7802 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7803 #endif
7804 audio_exlock_mutex_exit(sc);
7805
7806 return true;
7807 }
7808
7809 static bool
7810 audio_resume(device_t dv, const pmf_qual_t *qual)
7811 {
7812 struct audio_softc *sc = device_private(dv);
7813 struct audio_info ai;
7814 int error;
7815
7816 error = audio_exlock_mutex_enter(sc);
7817 if (error)
7818 return error;
7819
7820 sc->sc_suspending = false;
7821 audio_mixer_restore(sc);
7822 /* XXX ? */
7823 AUDIO_INITINFO(&ai);
7824 audio_hw_setinfo(sc, &ai, NULL);
7825
7826 /*
7827 * During from suspend to resume here, sc_[pr]busy is used as
7828 * need-to-restart flag temporarily. After this point,
7829 * sc_[pr]busy is returned to its original usage (busy flag).
7830 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
7831 */
7832 if (sc->sc_pbusy) {
7833 /* pmixer_start() requires pbusy is false */
7834 sc->sc_pbusy = false;
7835 audio_pmixer_start(sc, true);
7836 }
7837 if (sc->sc_rbusy) {
7838 /* rmixer_start() requires rbusy is false */
7839 sc->sc_rbusy = false;
7840 audio_rmixer_start(sc);
7841 }
7842
7843 audio_exlock_mutex_exit(sc);
7844
7845 return true;
7846 }
7847
7848 #if defined(AUDIO_DEBUG)
7849 static void
7850 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7851 {
7852 int n;
7853
7854 n = 0;
7855 n += snprintf(buf + n, bufsize - n, "%s",
7856 audio_encoding_name(fmt->encoding));
7857 if (fmt->precision == fmt->stride) {
7858 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7859 } else {
7860 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7861 fmt->precision, fmt->stride);
7862 }
7863
7864 snprintf(buf + n, bufsize - n, " %uch %uHz",
7865 fmt->channels, fmt->sample_rate);
7866 }
7867 #endif
7868
7869 #if defined(AUDIO_DEBUG)
7870 static void
7871 audio_print_format2(const char *s, const audio_format2_t *fmt)
7872 {
7873 char fmtstr[64];
7874
7875 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7876 printf("%s %s\n", s, fmtstr);
7877 }
7878 #endif
7879
7880 #ifdef DIAGNOSTIC
7881 void
7882 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7883 {
7884
7885 KASSERTMSG(fmt, "called from %s", where);
7886
7887 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7888 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7889 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7890 "called from %s: fmt->stride=%d", where, fmt->stride);
7891 } else {
7892 KASSERTMSG(fmt->stride % NBBY == 0,
7893 "called from %s: fmt->stride=%d", where, fmt->stride);
7894 }
7895 KASSERTMSG(fmt->precision <= fmt->stride,
7896 "called from %s: fmt->precision=%d fmt->stride=%d",
7897 where, fmt->precision, fmt->stride);
7898 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7899 "called from %s: fmt->channels=%d", where, fmt->channels);
7900
7901 /* XXX No check for encodings? */
7902 }
7903
7904 void
7905 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7906 {
7907
7908 KASSERT(arg != NULL);
7909 KASSERT(arg->src != NULL);
7910 KASSERT(arg->dst != NULL);
7911 audio_diagnostic_format2(where, arg->srcfmt);
7912 audio_diagnostic_format2(where, arg->dstfmt);
7913 KASSERT(arg->count > 0);
7914 }
7915
7916 void
7917 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7918 {
7919
7920 KASSERTMSG(ring, "called from %s", where);
7921 audio_diagnostic_format2(where, &ring->fmt);
7922 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7923 "called from %s: ring->capacity=%d", where, ring->capacity);
7924 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7925 "called from %s: ring->used=%d ring->capacity=%d",
7926 where, ring->used, ring->capacity);
7927 if (ring->capacity == 0) {
7928 KASSERTMSG(ring->mem == NULL,
7929 "called from %s: capacity == 0 but mem != NULL", where);
7930 } else {
7931 KASSERTMSG(ring->mem != NULL,
7932 "called from %s: capacity != 0 but mem == NULL", where);
7933 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7934 "called from %s: ring->head=%d ring->capacity=%d",
7935 where, ring->head, ring->capacity);
7936 }
7937 }
7938 #endif /* DIAGNOSTIC */
7939
7940
7941 /*
7942 * Mixer driver
7943 */
7944
7945 /*
7946 * Must be called without sc_lock held.
7947 */
7948 int
7949 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7950 struct lwp *l)
7951 {
7952 struct file *fp;
7953 audio_file_t *af;
7954 int error, fd;
7955
7956 TRACE(1, "flags=0x%x", flags);
7957
7958 error = fd_allocfile(&fp, &fd);
7959 if (error)
7960 return error;
7961
7962 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7963 af->sc = sc;
7964 af->dev = dev;
7965
7966 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7967 KASSERT(error == EMOVEFD);
7968
7969 return error;
7970 }
7971
7972 /*
7973 * Add a process to those to be signalled on mixer activity.
7974 * If the process has already been added, do nothing.
7975 * Must be called with sc_exlock held and without sc_lock held.
7976 */
7977 static void
7978 mixer_async_add(struct audio_softc *sc, pid_t pid)
7979 {
7980 int i;
7981
7982 KASSERT(sc->sc_exlock);
7983
7984 /* If already exists, returns without doing anything. */
7985 for (i = 0; i < sc->sc_am_used; i++) {
7986 if (sc->sc_am[i] == pid)
7987 return;
7988 }
7989
7990 /* Extend array if necessary. */
7991 if (sc->sc_am_used >= sc->sc_am_capacity) {
7992 sc->sc_am_capacity += AM_CAPACITY;
7993 sc->sc_am = kern_realloc(sc->sc_am,
7994 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
7995 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
7996 }
7997
7998 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
7999 sc->sc_am[sc->sc_am_used++] = pid;
8000 }
8001
8002 /*
8003 * Remove a process from those to be signalled on mixer activity.
8004 * If the process has not been added, do nothing.
8005 * Must be called with sc_exlock held and without sc_lock held.
8006 */
8007 static void
8008 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8009 {
8010 int i;
8011
8012 KASSERT(sc->sc_exlock);
8013
8014 for (i = 0; i < sc->sc_am_used; i++) {
8015 if (sc->sc_am[i] == pid) {
8016 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8017 TRACE(2, "am[%d](%d) removed, used=%d",
8018 i, (int)pid, sc->sc_am_used);
8019
8020 /* Empty array if no longer necessary. */
8021 if (sc->sc_am_used == 0) {
8022 kern_free(sc->sc_am);
8023 sc->sc_am = NULL;
8024 sc->sc_am_capacity = 0;
8025 TRACE(2, "released");
8026 }
8027 return;
8028 }
8029 }
8030 }
8031
8032 /*
8033 * Signal all processes waiting for the mixer.
8034 * Must be called with sc_exlock held.
8035 */
8036 static void
8037 mixer_signal(struct audio_softc *sc)
8038 {
8039 proc_t *p;
8040 int i;
8041
8042 KASSERT(sc->sc_exlock);
8043
8044 for (i = 0; i < sc->sc_am_used; i++) {
8045 mutex_enter(proc_lock);
8046 p = proc_find(sc->sc_am[i]);
8047 if (p)
8048 psignal(p, SIGIO);
8049 mutex_exit(proc_lock);
8050 }
8051 }
8052
8053 /*
8054 * Close a mixer device
8055 */
8056 int
8057 mixer_close(struct audio_softc *sc, audio_file_t *file)
8058 {
8059 int error;
8060
8061 error = audio_exlock_enter(sc);
8062 if (error)
8063 return error;
8064 TRACE(1, "");
8065 mixer_async_remove(sc, curproc->p_pid);
8066 audio_exlock_exit(sc);
8067
8068 return 0;
8069 }
8070
8071 /*
8072 * Must be called without sc_lock nor sc_exlock held.
8073 */
8074 int
8075 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8076 struct lwp *l)
8077 {
8078 mixer_devinfo_t *mi;
8079 mixer_ctrl_t *mc;
8080 int error;
8081
8082 TRACE(2, "(%lu,'%c',%lu)",
8083 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8084 error = EINVAL;
8085
8086 /* we can return cached values if we are sleeping */
8087 if (cmd != AUDIO_MIXER_READ) {
8088 mutex_enter(sc->sc_lock);
8089 device_active(sc->sc_dev, DVA_SYSTEM);
8090 mutex_exit(sc->sc_lock);
8091 }
8092
8093 switch (cmd) {
8094 case FIOASYNC:
8095 error = audio_exlock_enter(sc);
8096 if (error)
8097 break;
8098 if (*(int *)addr) {
8099 mixer_async_add(sc, curproc->p_pid);
8100 } else {
8101 mixer_async_remove(sc, curproc->p_pid);
8102 }
8103 audio_exlock_exit(sc);
8104 break;
8105
8106 case AUDIO_GETDEV:
8107 TRACE(2, "AUDIO_GETDEV");
8108 mutex_enter(sc->sc_lock);
8109 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8110 mutex_exit(sc->sc_lock);
8111 break;
8112
8113 case AUDIO_MIXER_DEVINFO:
8114 TRACE(2, "AUDIO_MIXER_DEVINFO");
8115 mi = (mixer_devinfo_t *)addr;
8116
8117 mi->un.v.delta = 0; /* default */
8118 mutex_enter(sc->sc_lock);
8119 error = audio_query_devinfo(sc, mi);
8120 mutex_exit(sc->sc_lock);
8121 break;
8122
8123 case AUDIO_MIXER_READ:
8124 TRACE(2, "AUDIO_MIXER_READ");
8125 mc = (mixer_ctrl_t *)addr;
8126
8127 error = audio_exlock_mutex_enter(sc);
8128 if (error)
8129 break;
8130 if (device_is_active(sc->hw_dev))
8131 error = audio_get_port(sc, mc);
8132 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8133 error = ENXIO;
8134 else {
8135 int dev = mc->dev;
8136 memcpy(mc, &sc->sc_mixer_state[dev],
8137 sizeof(mixer_ctrl_t));
8138 error = 0;
8139 }
8140 audio_exlock_mutex_exit(sc);
8141 break;
8142
8143 case AUDIO_MIXER_WRITE:
8144 TRACE(2, "AUDIO_MIXER_WRITE");
8145 error = audio_exlock_mutex_enter(sc);
8146 if (error)
8147 break;
8148 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8149 if (error) {
8150 audio_exlock_mutex_exit(sc);
8151 break;
8152 }
8153
8154 if (sc->hw_if->commit_settings) {
8155 error = sc->hw_if->commit_settings(sc->hw_hdl);
8156 if (error) {
8157 audio_exlock_mutex_exit(sc);
8158 break;
8159 }
8160 }
8161 mutex_exit(sc->sc_lock);
8162 mixer_signal(sc);
8163 audio_exlock_exit(sc);
8164 break;
8165
8166 default:
8167 if (sc->hw_if->dev_ioctl) {
8168 mutex_enter(sc->sc_lock);
8169 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8170 cmd, addr, flag, l);
8171 mutex_exit(sc->sc_lock);
8172 } else
8173 error = EINVAL;
8174 break;
8175 }
8176 TRACE(2, "(%lu,'%c',%lu) result %d",
8177 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8178 return error;
8179 }
8180
8181 /*
8182 * Must be called with sc_lock held.
8183 */
8184 int
8185 au_portof(struct audio_softc *sc, char *name, int class)
8186 {
8187 mixer_devinfo_t mi;
8188
8189 KASSERT(mutex_owned(sc->sc_lock));
8190
8191 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8192 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8193 return mi.index;
8194 }
8195 return -1;
8196 }
8197
8198 /*
8199 * Must be called with sc_lock held.
8200 */
8201 void
8202 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8203 mixer_devinfo_t *mi, const struct portname *tbl)
8204 {
8205 int i, j;
8206
8207 KASSERT(mutex_owned(sc->sc_lock));
8208
8209 ports->index = mi->index;
8210 if (mi->type == AUDIO_MIXER_ENUM) {
8211 ports->isenum = true;
8212 for(i = 0; tbl[i].name; i++)
8213 for(j = 0; j < mi->un.e.num_mem; j++)
8214 if (strcmp(mi->un.e.member[j].label.name,
8215 tbl[i].name) == 0) {
8216 ports->allports |= tbl[i].mask;
8217 ports->aumask[ports->nports] = tbl[i].mask;
8218 ports->misel[ports->nports] =
8219 mi->un.e.member[j].ord;
8220 ports->miport[ports->nports] =
8221 au_portof(sc, mi->un.e.member[j].label.name,
8222 mi->mixer_class);
8223 if (ports->mixerout != -1 &&
8224 ports->miport[ports->nports] != -1)
8225 ports->isdual = true;
8226 ++ports->nports;
8227 }
8228 } else if (mi->type == AUDIO_MIXER_SET) {
8229 for(i = 0; tbl[i].name; i++)
8230 for(j = 0; j < mi->un.s.num_mem; j++)
8231 if (strcmp(mi->un.s.member[j].label.name,
8232 tbl[i].name) == 0) {
8233 ports->allports |= tbl[i].mask;
8234 ports->aumask[ports->nports] = tbl[i].mask;
8235 ports->misel[ports->nports] =
8236 mi->un.s.member[j].mask;
8237 ports->miport[ports->nports] =
8238 au_portof(sc, mi->un.s.member[j].label.name,
8239 mi->mixer_class);
8240 ++ports->nports;
8241 }
8242 }
8243 }
8244
8245 /*
8246 * Must be called with sc_lock && sc_exlock held.
8247 */
8248 int
8249 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8250 {
8251
8252 KASSERT(mutex_owned(sc->sc_lock));
8253 KASSERT(sc->sc_exlock);
8254
8255 ct->type = AUDIO_MIXER_VALUE;
8256 ct->un.value.num_channels = 2;
8257 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8258 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8259 if (audio_set_port(sc, ct) == 0)
8260 return 0;
8261 ct->un.value.num_channels = 1;
8262 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8263 return audio_set_port(sc, ct);
8264 }
8265
8266 /*
8267 * Must be called with sc_lock && sc_exlock held.
8268 */
8269 int
8270 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8271 {
8272 int error;
8273
8274 KASSERT(mutex_owned(sc->sc_lock));
8275 KASSERT(sc->sc_exlock);
8276
8277 ct->un.value.num_channels = 2;
8278 if (audio_get_port(sc, ct) == 0) {
8279 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8280 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8281 } else {
8282 ct->un.value.num_channels = 1;
8283 error = audio_get_port(sc, ct);
8284 if (error)
8285 return error;
8286 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8287 }
8288 return 0;
8289 }
8290
8291 /*
8292 * Must be called with sc_lock && sc_exlock held.
8293 */
8294 int
8295 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8296 int gain, int balance)
8297 {
8298 mixer_ctrl_t ct;
8299 int i, error;
8300 int l, r;
8301 u_int mask;
8302 int nset;
8303
8304 KASSERT(mutex_owned(sc->sc_lock));
8305 KASSERT(sc->sc_exlock);
8306
8307 if (balance == AUDIO_MID_BALANCE) {
8308 l = r = gain;
8309 } else if (balance < AUDIO_MID_BALANCE) {
8310 l = gain;
8311 r = (balance * gain) / AUDIO_MID_BALANCE;
8312 } else {
8313 r = gain;
8314 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8315 / AUDIO_MID_BALANCE;
8316 }
8317 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8318
8319 if (ports->index == -1) {
8320 usemaster:
8321 if (ports->master == -1)
8322 return 0; /* just ignore it silently */
8323 ct.dev = ports->master;
8324 error = au_set_lr_value(sc, &ct, l, r);
8325 } else {
8326 ct.dev = ports->index;
8327 if (ports->isenum) {
8328 ct.type = AUDIO_MIXER_ENUM;
8329 error = audio_get_port(sc, &ct);
8330 if (error)
8331 return error;
8332 if (ports->isdual) {
8333 if (ports->cur_port == -1)
8334 ct.dev = ports->master;
8335 else
8336 ct.dev = ports->miport[ports->cur_port];
8337 error = au_set_lr_value(sc, &ct, l, r);
8338 } else {
8339 for(i = 0; i < ports->nports; i++)
8340 if (ports->misel[i] == ct.un.ord) {
8341 ct.dev = ports->miport[i];
8342 if (ct.dev == -1 ||
8343 au_set_lr_value(sc, &ct, l, r))
8344 goto usemaster;
8345 else
8346 break;
8347 }
8348 }
8349 } else {
8350 ct.type = AUDIO_MIXER_SET;
8351 error = audio_get_port(sc, &ct);
8352 if (error)
8353 return error;
8354 mask = ct.un.mask;
8355 nset = 0;
8356 for(i = 0; i < ports->nports; i++) {
8357 if (ports->misel[i] & mask) {
8358 ct.dev = ports->miport[i];
8359 if (ct.dev != -1 &&
8360 au_set_lr_value(sc, &ct, l, r) == 0)
8361 nset++;
8362 }
8363 }
8364 if (nset == 0)
8365 goto usemaster;
8366 }
8367 }
8368 if (!error)
8369 mixer_signal(sc);
8370 return error;
8371 }
8372
8373 /*
8374 * Must be called with sc_lock && sc_exlock held.
8375 */
8376 void
8377 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8378 u_int *pgain, u_char *pbalance)
8379 {
8380 mixer_ctrl_t ct;
8381 int i, l, r, n;
8382 int lgain, rgain;
8383
8384 KASSERT(mutex_owned(sc->sc_lock));
8385 KASSERT(sc->sc_exlock);
8386
8387 lgain = AUDIO_MAX_GAIN / 2;
8388 rgain = AUDIO_MAX_GAIN / 2;
8389 if (ports->index == -1) {
8390 usemaster:
8391 if (ports->master == -1)
8392 goto bad;
8393 ct.dev = ports->master;
8394 ct.type = AUDIO_MIXER_VALUE;
8395 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8396 goto bad;
8397 } else {
8398 ct.dev = ports->index;
8399 if (ports->isenum) {
8400 ct.type = AUDIO_MIXER_ENUM;
8401 if (audio_get_port(sc, &ct))
8402 goto bad;
8403 ct.type = AUDIO_MIXER_VALUE;
8404 if (ports->isdual) {
8405 if (ports->cur_port == -1)
8406 ct.dev = ports->master;
8407 else
8408 ct.dev = ports->miport[ports->cur_port];
8409 au_get_lr_value(sc, &ct, &lgain, &rgain);
8410 } else {
8411 for(i = 0; i < ports->nports; i++)
8412 if (ports->misel[i] == ct.un.ord) {
8413 ct.dev = ports->miport[i];
8414 if (ct.dev == -1 ||
8415 au_get_lr_value(sc, &ct,
8416 &lgain, &rgain))
8417 goto usemaster;
8418 else
8419 break;
8420 }
8421 }
8422 } else {
8423 ct.type = AUDIO_MIXER_SET;
8424 if (audio_get_port(sc, &ct))
8425 goto bad;
8426 ct.type = AUDIO_MIXER_VALUE;
8427 lgain = rgain = n = 0;
8428 for(i = 0; i < ports->nports; i++) {
8429 if (ports->misel[i] & ct.un.mask) {
8430 ct.dev = ports->miport[i];
8431 if (ct.dev == -1 ||
8432 au_get_lr_value(sc, &ct, &l, &r))
8433 goto usemaster;
8434 else {
8435 lgain += l;
8436 rgain += r;
8437 n++;
8438 }
8439 }
8440 }
8441 if (n != 0) {
8442 lgain /= n;
8443 rgain /= n;
8444 }
8445 }
8446 }
8447 bad:
8448 if (lgain == rgain) { /* handles lgain==rgain==0 */
8449 *pgain = lgain;
8450 *pbalance = AUDIO_MID_BALANCE;
8451 } else if (lgain < rgain) {
8452 *pgain = rgain;
8453 /* balance should be > AUDIO_MID_BALANCE */
8454 *pbalance = AUDIO_RIGHT_BALANCE -
8455 (AUDIO_MID_BALANCE * lgain) / rgain;
8456 } else /* lgain > rgain */ {
8457 *pgain = lgain;
8458 /* balance should be < AUDIO_MID_BALANCE */
8459 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8460 }
8461 }
8462
8463 /*
8464 * Must be called with sc_lock && sc_exlock held.
8465 */
8466 int
8467 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8468 {
8469 mixer_ctrl_t ct;
8470 int i, error, use_mixerout;
8471
8472 KASSERT(mutex_owned(sc->sc_lock));
8473 KASSERT(sc->sc_exlock);
8474
8475 use_mixerout = 1;
8476 if (port == 0) {
8477 if (ports->allports == 0)
8478 return 0; /* Allow this special case. */
8479 else if (ports->isdual) {
8480 if (ports->cur_port == -1) {
8481 return 0;
8482 } else {
8483 port = ports->aumask[ports->cur_port];
8484 ports->cur_port = -1;
8485 use_mixerout = 0;
8486 }
8487 }
8488 }
8489 if (ports->index == -1)
8490 return EINVAL;
8491 ct.dev = ports->index;
8492 if (ports->isenum) {
8493 if (port & (port-1))
8494 return EINVAL; /* Only one port allowed */
8495 ct.type = AUDIO_MIXER_ENUM;
8496 error = EINVAL;
8497 for(i = 0; i < ports->nports; i++)
8498 if (ports->aumask[i] == port) {
8499 if (ports->isdual && use_mixerout) {
8500 ct.un.ord = ports->mixerout;
8501 ports->cur_port = i;
8502 } else {
8503 ct.un.ord = ports->misel[i];
8504 }
8505 error = audio_set_port(sc, &ct);
8506 break;
8507 }
8508 } else {
8509 ct.type = AUDIO_MIXER_SET;
8510 ct.un.mask = 0;
8511 for(i = 0; i < ports->nports; i++)
8512 if (ports->aumask[i] & port)
8513 ct.un.mask |= ports->misel[i];
8514 if (port != 0 && ct.un.mask == 0)
8515 error = EINVAL;
8516 else
8517 error = audio_set_port(sc, &ct);
8518 }
8519 if (!error)
8520 mixer_signal(sc);
8521 return error;
8522 }
8523
8524 /*
8525 * Must be called with sc_lock && sc_exlock held.
8526 */
8527 int
8528 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8529 {
8530 mixer_ctrl_t ct;
8531 int i, aumask;
8532
8533 KASSERT(mutex_owned(sc->sc_lock));
8534 KASSERT(sc->sc_exlock);
8535
8536 if (ports->index == -1)
8537 return 0;
8538 ct.dev = ports->index;
8539 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8540 if (audio_get_port(sc, &ct))
8541 return 0;
8542 aumask = 0;
8543 if (ports->isenum) {
8544 if (ports->isdual && ports->cur_port != -1) {
8545 if (ports->mixerout == ct.un.ord)
8546 aumask = ports->aumask[ports->cur_port];
8547 else
8548 ports->cur_port = -1;
8549 }
8550 if (aumask == 0)
8551 for(i = 0; i < ports->nports; i++)
8552 if (ports->misel[i] == ct.un.ord)
8553 aumask = ports->aumask[i];
8554 } else {
8555 for(i = 0; i < ports->nports; i++)
8556 if (ct.un.mask & ports->misel[i])
8557 aumask |= ports->aumask[i];
8558 }
8559 return aumask;
8560 }
8561
8562 /*
8563 * It returns 0 if success, otherwise errno.
8564 * Must be called only if sc->sc_monitor_port != -1.
8565 * Must be called with sc_lock && sc_exlock held.
8566 */
8567 static int
8568 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8569 {
8570 mixer_ctrl_t ct;
8571
8572 KASSERT(mutex_owned(sc->sc_lock));
8573 KASSERT(sc->sc_exlock);
8574
8575 ct.dev = sc->sc_monitor_port;
8576 ct.type = AUDIO_MIXER_VALUE;
8577 ct.un.value.num_channels = 1;
8578 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8579 return audio_set_port(sc, &ct);
8580 }
8581
8582 /*
8583 * It returns monitor gain if success, otherwise -1.
8584 * Must be called only if sc->sc_monitor_port != -1.
8585 * Must be called with sc_lock && sc_exlock held.
8586 */
8587 static int
8588 au_get_monitor_gain(struct audio_softc *sc)
8589 {
8590 mixer_ctrl_t ct;
8591
8592 KASSERT(mutex_owned(sc->sc_lock));
8593 KASSERT(sc->sc_exlock);
8594
8595 ct.dev = sc->sc_monitor_port;
8596 ct.type = AUDIO_MIXER_VALUE;
8597 ct.un.value.num_channels = 1;
8598 if (audio_get_port(sc, &ct))
8599 return -1;
8600 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8601 }
8602
8603 /*
8604 * Must be called with sc_lock && sc_exlock held.
8605 */
8606 static int
8607 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8608 {
8609
8610 KASSERT(mutex_owned(sc->sc_lock));
8611 KASSERT(sc->sc_exlock);
8612
8613 return sc->hw_if->set_port(sc->hw_hdl, mc);
8614 }
8615
8616 /*
8617 * Must be called with sc_lock && sc_exlock held.
8618 */
8619 static int
8620 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8621 {
8622
8623 KASSERT(mutex_owned(sc->sc_lock));
8624 KASSERT(sc->sc_exlock);
8625
8626 return sc->hw_if->get_port(sc->hw_hdl, mc);
8627 }
8628
8629 /*
8630 * Must be called with sc_lock && sc_exlock held.
8631 */
8632 static void
8633 audio_mixer_capture(struct audio_softc *sc)
8634 {
8635 mixer_devinfo_t mi;
8636 mixer_ctrl_t *mc;
8637
8638 KASSERT(mutex_owned(sc->sc_lock));
8639 KASSERT(sc->sc_exlock);
8640
8641 for (mi.index = 0;; mi.index++) {
8642 if (audio_query_devinfo(sc, &mi) != 0)
8643 break;
8644 KASSERT(mi.index < sc->sc_nmixer_states);
8645 if (mi.type == AUDIO_MIXER_CLASS)
8646 continue;
8647 mc = &sc->sc_mixer_state[mi.index];
8648 mc->dev = mi.index;
8649 mc->type = mi.type;
8650 mc->un.value.num_channels = mi.un.v.num_channels;
8651 (void)audio_get_port(sc, mc);
8652 }
8653
8654 return;
8655 }
8656
8657 /*
8658 * Must be called with sc_lock && sc_exlock held.
8659 */
8660 static void
8661 audio_mixer_restore(struct audio_softc *sc)
8662 {
8663 mixer_devinfo_t mi;
8664 mixer_ctrl_t *mc;
8665
8666 KASSERT(mutex_owned(sc->sc_lock));
8667 KASSERT(sc->sc_exlock);
8668
8669 for (mi.index = 0; ; mi.index++) {
8670 if (audio_query_devinfo(sc, &mi) != 0)
8671 break;
8672 if (mi.type == AUDIO_MIXER_CLASS)
8673 continue;
8674 mc = &sc->sc_mixer_state[mi.index];
8675 (void)audio_set_port(sc, mc);
8676 }
8677 if (sc->hw_if->commit_settings)
8678 sc->hw_if->commit_settings(sc->hw_hdl);
8679
8680 return;
8681 }
8682
8683 static void
8684 audio_volume_down(device_t dv)
8685 {
8686 struct audio_softc *sc = device_private(dv);
8687 mixer_devinfo_t mi;
8688 int newgain;
8689 u_int gain;
8690 u_char balance;
8691
8692 if (audio_exlock_mutex_enter(sc) != 0)
8693 return;
8694 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8695 mi.index = sc->sc_outports.master;
8696 mi.un.v.delta = 0;
8697 if (audio_query_devinfo(sc, &mi) == 0) {
8698 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8699 newgain = gain - mi.un.v.delta;
8700 if (newgain < AUDIO_MIN_GAIN)
8701 newgain = AUDIO_MIN_GAIN;
8702 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8703 }
8704 }
8705 audio_exlock_mutex_exit(sc);
8706 }
8707
8708 static void
8709 audio_volume_up(device_t dv)
8710 {
8711 struct audio_softc *sc = device_private(dv);
8712 mixer_devinfo_t mi;
8713 u_int gain, newgain;
8714 u_char balance;
8715
8716 if (audio_exlock_mutex_enter(sc) != 0)
8717 return;
8718 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8719 mi.index = sc->sc_outports.master;
8720 mi.un.v.delta = 0;
8721 if (audio_query_devinfo(sc, &mi) == 0) {
8722 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8723 newgain = gain + mi.un.v.delta;
8724 if (newgain > AUDIO_MAX_GAIN)
8725 newgain = AUDIO_MAX_GAIN;
8726 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8727 }
8728 }
8729 audio_exlock_mutex_exit(sc);
8730 }
8731
8732 static void
8733 audio_volume_toggle(device_t dv)
8734 {
8735 struct audio_softc *sc = device_private(dv);
8736 u_int gain, newgain;
8737 u_char balance;
8738
8739 if (audio_exlock_mutex_enter(sc) != 0)
8740 return;
8741 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8742 if (gain != 0) {
8743 sc->sc_lastgain = gain;
8744 newgain = 0;
8745 } else
8746 newgain = sc->sc_lastgain;
8747 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8748 audio_exlock_mutex_exit(sc);
8749 }
8750
8751 /*
8752 * Must be called with sc_lock held.
8753 */
8754 static int
8755 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8756 {
8757
8758 KASSERT(mutex_owned(sc->sc_lock));
8759
8760 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8761 }
8762
8763 #endif /* NAUDIO > 0 */
8764
8765 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8766 #include <sys/param.h>
8767 #include <sys/systm.h>
8768 #include <sys/device.h>
8769 #include <sys/audioio.h>
8770 #include <dev/audio/audio_if.h>
8771 #endif
8772
8773 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8774 int
8775 audioprint(void *aux, const char *pnp)
8776 {
8777 struct audio_attach_args *arg;
8778 const char *type;
8779
8780 if (pnp != NULL) {
8781 arg = aux;
8782 switch (arg->type) {
8783 case AUDIODEV_TYPE_AUDIO:
8784 type = "audio";
8785 break;
8786 case AUDIODEV_TYPE_MIDI:
8787 type = "midi";
8788 break;
8789 case AUDIODEV_TYPE_OPL:
8790 type = "opl";
8791 break;
8792 case AUDIODEV_TYPE_MPU:
8793 type = "mpu";
8794 break;
8795 default:
8796 panic("audioprint: unknown type %d", arg->type);
8797 }
8798 aprint_normal("%s at %s", type, pnp);
8799 }
8800 return UNCONF;
8801 }
8802
8803 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8804
8805 #ifdef _MODULE
8806
8807 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8808
8809 #include "ioconf.c"
8810
8811 #endif
8812
8813 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8814
8815 static int
8816 audio_modcmd(modcmd_t cmd, void *arg)
8817 {
8818 int error = 0;
8819
8820 switch (cmd) {
8821 case MODULE_CMD_INIT:
8822 /* XXX interrupt level? */
8823 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8824 #ifdef _MODULE
8825 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8826 &audio_cdevsw, &audio_cmajor);
8827 if (error)
8828 break;
8829
8830 error = config_init_component(cfdriver_ioconf_audio,
8831 cfattach_ioconf_audio, cfdata_ioconf_audio);
8832 if (error) {
8833 devsw_detach(NULL, &audio_cdevsw);
8834 }
8835 #endif
8836 break;
8837 case MODULE_CMD_FINI:
8838 #ifdef _MODULE
8839 devsw_detach(NULL, &audio_cdevsw);
8840 error = config_fini_component(cfdriver_ioconf_audio,
8841 cfattach_ioconf_audio, cfdata_ioconf_audio);
8842 if (error)
8843 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8844 &audio_cdevsw, &audio_cmajor);
8845 #endif
8846 psref_class_destroy(audio_psref_class);
8847 break;
8848 default:
8849 error = ENOTTY;
8850 break;
8851 }
8852
8853 return error;
8854 }
8855