audio.c revision 1.28.2.19 1 /* $NetBSD: audio.c,v 1.28.2.19 2021/02/28 07:05:14 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - x Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.28.2.19 2021/02/28 07:05:14 martin Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #ifdef _KERNEL
151
152 #include <sys/types.h>
153 #include <sys/param.h>
154 #include <sys/atomic.h>
155 #include <sys/audioio.h>
156 #include <sys/conf.h>
157 #include <sys/cpu.h>
158 #include <sys/device.h>
159 #include <sys/fcntl.h>
160 #include <sys/file.h>
161 #include <sys/filedesc.h>
162 #include <sys/intr.h>
163 #include <sys/ioctl.h>
164 #include <sys/kauth.h>
165 #include <sys/kernel.h>
166 #include <sys/kmem.h>
167 #include <sys/malloc.h>
168 #include <sys/mman.h>
169 #include <sys/module.h>
170 #include <sys/poll.h>
171 #include <sys/proc.h>
172 #include <sys/queue.h>
173 #include <sys/select.h>
174 #include <sys/signalvar.h>
175 #include <sys/stat.h>
176 #include <sys/sysctl.h>
177 #include <sys/systm.h>
178 #include <sys/syslog.h>
179 #include <sys/vnode.h>
180
181 #include <dev/audio/audio_if.h>
182 #include <dev/audio/audiovar.h>
183 #include <dev/audio/audiodef.h>
184 #include <dev/audio/linear.h>
185 #include <dev/audio/mulaw.h>
186
187 #include <machine/endian.h>
188
189 #include <uvm/uvm.h>
190
191 #include "ioconf.h"
192 #endif /* _KERNEL */
193
194 /*
195 * 0: No debug logs
196 * 1: action changes like open/close/set_format...
197 * 2: + normal operations like read/write/ioctl...
198 * 3: + TRACEs except interrupt
199 * 4: + TRACEs including interrupt
200 */
201 //#define AUDIO_DEBUG 1
202
203 #if defined(AUDIO_DEBUG)
204
205 int audiodebug = AUDIO_DEBUG;
206 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
207 const char *, va_list);
208 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
209 __printflike(3, 4);
210 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
211 __printflike(3, 4);
212 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
213 __printflike(3, 4);
214
215 /* XXX sloppy memory logger */
216 static void audio_mlog_init(void);
217 static void audio_mlog_free(void);
218 static void audio_mlog_softintr(void *);
219 extern void audio_mlog_flush(void);
220 extern void audio_mlog_printf(const char *, ...);
221
222 static int mlog_refs; /* reference counter */
223 static char *mlog_buf[2]; /* double buffer */
224 static int mlog_buflen; /* buffer length */
225 static int mlog_used; /* used length */
226 static int mlog_full; /* number of dropped lines by buffer full */
227 static int mlog_drop; /* number of dropped lines by busy */
228 static volatile uint32_t mlog_inuse; /* in-use */
229 static int mlog_wpage; /* active page */
230 static void *mlog_sih; /* softint handle */
231
232 static void
233 audio_mlog_init(void)
234 {
235 mlog_refs++;
236 if (mlog_refs > 1)
237 return;
238 mlog_buflen = 4096;
239 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
240 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
241 mlog_used = 0;
242 mlog_full = 0;
243 mlog_drop = 0;
244 mlog_inuse = 0;
245 mlog_wpage = 0;
246 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
247 if (mlog_sih == NULL)
248 printf("%s: softint_establish failed\n", __func__);
249 }
250
251 static void
252 audio_mlog_free(void)
253 {
254 mlog_refs--;
255 if (mlog_refs > 0)
256 return;
257
258 audio_mlog_flush();
259 if (mlog_sih)
260 softint_disestablish(mlog_sih);
261 kmem_free(mlog_buf[0], mlog_buflen);
262 kmem_free(mlog_buf[1], mlog_buflen);
263 }
264
265 /*
266 * Flush memory buffer.
267 * It must not be called from hardware interrupt context.
268 */
269 void
270 audio_mlog_flush(void)
271 {
272 if (mlog_refs == 0)
273 return;
274
275 /* Nothing to do if already in use ? */
276 if (atomic_swap_32(&mlog_inuse, 1) == 1)
277 return;
278
279 int rpage = mlog_wpage;
280 mlog_wpage ^= 1;
281 mlog_buf[mlog_wpage][0] = '\0';
282 mlog_used = 0;
283
284 atomic_swap_32(&mlog_inuse, 0);
285
286 if (mlog_buf[rpage][0] != '\0') {
287 printf("%s", mlog_buf[rpage]);
288 if (mlog_drop > 0)
289 printf("mlog_drop %d\n", mlog_drop);
290 if (mlog_full > 0)
291 printf("mlog_full %d\n", mlog_full);
292 }
293 mlog_full = 0;
294 mlog_drop = 0;
295 }
296
297 static void
298 audio_mlog_softintr(void *cookie)
299 {
300 audio_mlog_flush();
301 }
302
303 void
304 audio_mlog_printf(const char *fmt, ...)
305 {
306 int len;
307 va_list ap;
308
309 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
310 /* already inuse */
311 mlog_drop++;
312 return;
313 }
314
315 va_start(ap, fmt);
316 len = vsnprintf(
317 mlog_buf[mlog_wpage] + mlog_used,
318 mlog_buflen - mlog_used,
319 fmt, ap);
320 va_end(ap);
321
322 mlog_used += len;
323 if (mlog_buflen - mlog_used <= 1) {
324 mlog_full++;
325 }
326
327 atomic_swap_32(&mlog_inuse, 0);
328
329 if (mlog_sih)
330 softint_schedule(mlog_sih);
331 }
332
333 /* trace functions */
334 static void
335 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
336 const char *fmt, va_list ap)
337 {
338 char buf[256];
339 int n;
340
341 n = 0;
342 buf[0] = '\0';
343 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
344 funcname, device_unit(sc->sc_dev), header);
345 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
346
347 if (cpu_intr_p()) {
348 audio_mlog_printf("%s\n", buf);
349 } else {
350 audio_mlog_flush();
351 printf("%s\n", buf);
352 }
353 }
354
355 static void
356 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
357 {
358 va_list ap;
359
360 va_start(ap, fmt);
361 audio_vtrace(sc, funcname, "", fmt, ap);
362 va_end(ap);
363 }
364
365 static void
366 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
367 {
368 char hdr[16];
369 va_list ap;
370
371 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
372 va_start(ap, fmt);
373 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
374 va_end(ap);
375 }
376
377 static void
378 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
379 {
380 char hdr[32];
381 char phdr[16], rhdr[16];
382 va_list ap;
383
384 phdr[0] = '\0';
385 rhdr[0] = '\0';
386 if (file->ptrack)
387 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
388 if (file->rtrack)
389 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
390 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
391
392 va_start(ap, fmt);
393 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
394 va_end(ap);
395 }
396
397 #define DPRINTF(n, fmt...) do { \
398 if (audiodebug >= (n)) { \
399 audio_mlog_flush(); \
400 printf(fmt); \
401 } \
402 } while (0)
403 #define TRACE(n, fmt...) do { \
404 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
405 } while (0)
406 #define TRACET(n, t, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
408 } while (0)
409 #define TRACEF(n, f, fmt...) do { \
410 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
411 } while (0)
412
413 struct audio_track_debugbuf {
414 char usrbuf[32];
415 char codec[32];
416 char chvol[32];
417 char chmix[32];
418 char freq[32];
419 char outbuf[32];
420 };
421
422 static void
423 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
424 {
425
426 memset(buf, 0, sizeof(*buf));
427
428 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
429 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
430 if (track->freq.filter)
431 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
432 track->freq.srcbuf.head,
433 track->freq.srcbuf.used,
434 track->freq.srcbuf.capacity);
435 if (track->chmix.filter)
436 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
437 track->chmix.srcbuf.used);
438 if (track->chvol.filter)
439 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
440 track->chvol.srcbuf.used);
441 if (track->codec.filter)
442 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
443 track->codec.srcbuf.used);
444 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
445 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
446 }
447 #else
448 #define DPRINTF(n, fmt...) do { } while (0)
449 #define TRACE(n, fmt, ...) do { } while (0)
450 #define TRACET(n, t, fmt, ...) do { } while (0)
451 #define TRACEF(n, f, fmt, ...) do { } while (0)
452 #endif
453
454 #define SPECIFIED(x) ((x) != ~0)
455 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
456
457 /*
458 * Default hardware blocksize in msec.
459 *
460 * We use 10 msec for most modern platforms. This period is good enough to
461 * play audio and video synchronizely.
462 * In contrast, for very old platforms, this is usually too short and too
463 * severe. Also such platforms usually can not play video confortably, so
464 * it's not so important to make the blocksize shorter. If the platform
465 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
466 * uses this instead.
467 *
468 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
469 * configuration file if you wish.
470 */
471 #if !defined(AUDIO_BLK_MS)
472 # if defined(__AUDIO_BLK_MS)
473 # define AUDIO_BLK_MS __AUDIO_BLK_MS
474 # else
475 # define AUDIO_BLK_MS (10)
476 # endif
477 #endif
478
479 /* Device timeout in msec */
480 #define AUDIO_TIMEOUT (3000)
481
482 /* #define AUDIO_PM_IDLE */
483 #ifdef AUDIO_PM_IDLE
484 int audio_idle_timeout = 30;
485 #endif
486
487 /* Number of elements of async mixer's pid */
488 #define AM_CAPACITY (4)
489
490 struct portname {
491 const char *name;
492 int mask;
493 };
494
495 static int audiomatch(device_t, cfdata_t, void *);
496 static void audioattach(device_t, device_t, void *);
497 static int audiodetach(device_t, int);
498 static int audioactivate(device_t, enum devact);
499 static void audiochilddet(device_t, device_t);
500 static int audiorescan(device_t, const char *, const int *);
501
502 static int audio_modcmd(modcmd_t, void *);
503
504 #ifdef AUDIO_PM_IDLE
505 static void audio_idle(void *);
506 static void audio_activity(device_t, devactive_t);
507 #endif
508
509 static bool audio_suspend(device_t dv, const pmf_qual_t *);
510 static bool audio_resume(device_t dv, const pmf_qual_t *);
511 static void audio_volume_down(device_t);
512 static void audio_volume_up(device_t);
513 static void audio_volume_toggle(device_t);
514
515 static void audio_mixer_capture(struct audio_softc *);
516 static void audio_mixer_restore(struct audio_softc *);
517
518 static void audio_softintr_rd(void *);
519 static void audio_softintr_wr(void *);
520
521 static void audio_printf(struct audio_softc *, const char *, ...)
522 __printflike(2, 3);
523 static int audio_exlock_mutex_enter(struct audio_softc *);
524 static void audio_exlock_mutex_exit(struct audio_softc *);
525 static int audio_exlock_enter(struct audio_softc *);
526 static void audio_exlock_exit(struct audio_softc *);
527 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
528 static void audio_file_exit(struct audio_softc *, struct psref *);
529 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
530
531 static int audioclose(struct file *);
532 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
533 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
534 static int audioioctl(struct file *, u_long, void *);
535 static int audiopoll(struct file *, int);
536 static int audiokqfilter(struct file *, struct knote *);
537 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
538 struct uvm_object **, int *);
539 static int audiostat(struct file *, struct stat *);
540
541 static void filt_audiowrite_detach(struct knote *);
542 static int filt_audiowrite_event(struct knote *, long);
543 static void filt_audioread_detach(struct knote *);
544 static int filt_audioread_event(struct knote *, long);
545
546 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
547 audio_file_t **);
548 static int audio_close(struct audio_softc *, audio_file_t *);
549 static int audio_unlink(struct audio_softc *, audio_file_t *);
550 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
551 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
552 static void audio_file_clear(struct audio_softc *, audio_file_t *);
553 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
554 struct lwp *, audio_file_t *);
555 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
556 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
557 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
558 struct uvm_object **, int *, audio_file_t *);
559
560 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
561
562 static void audio_pintr(void *);
563 static void audio_rintr(void *);
564
565 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
566
567 static __inline int audio_track_readablebytes(const audio_track_t *);
568 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
569 const struct audio_info *);
570 static int audio_track_setinfo_check(audio_track_t *,
571 audio_format2_t *, const struct audio_prinfo *);
572 static void audio_track_setinfo_water(audio_track_t *,
573 const struct audio_info *);
574 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
575 struct audio_info *);
576 static int audio_hw_set_format(struct audio_softc *, int,
577 audio_format2_t *, audio_format2_t *,
578 audio_filter_reg_t *, audio_filter_reg_t *);
579 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
580 audio_file_t *);
581 static bool audio_can_playback(struct audio_softc *);
582 static bool audio_can_capture(struct audio_softc *);
583 static int audio_check_params(audio_format2_t *);
584 static int audio_mixers_init(struct audio_softc *sc, int,
585 const audio_format2_t *, const audio_format2_t *,
586 const audio_filter_reg_t *, const audio_filter_reg_t *);
587 static int audio_select_freq(const struct audio_format *);
588 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
589 static int audio_hw_validate_format(struct audio_softc *, int,
590 const audio_format2_t *);
591 static int audio_mixers_set_format(struct audio_softc *,
592 const struct audio_info *);
593 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
594 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
595 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
596 #if defined(AUDIO_DEBUG)
597 static int audio_sysctl_debug(SYSCTLFN_PROTO);
598 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
599 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
600 #endif
601
602 static void *audio_realloc(void *, size_t);
603 static int audio_realloc_usrbuf(audio_track_t *, int);
604 static void audio_free_usrbuf(audio_track_t *);
605
606 static audio_track_t *audio_track_create(struct audio_softc *,
607 audio_trackmixer_t *);
608 static void audio_track_destroy(audio_track_t *);
609 static audio_filter_t audio_track_get_codec(audio_track_t *,
610 const audio_format2_t *, const audio_format2_t *);
611 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
612 static void audio_track_play(audio_track_t *);
613 static int audio_track_drain(struct audio_softc *, audio_track_t *);
614 static void audio_track_record(audio_track_t *);
615 static void audio_track_clear(struct audio_softc *, audio_track_t *);
616
617 static int audio_mixer_init(struct audio_softc *, int,
618 const audio_format2_t *, const audio_filter_reg_t *);
619 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
620 static void audio_pmixer_start(struct audio_softc *, bool);
621 static void audio_pmixer_process(struct audio_softc *);
622 static void audio_pmixer_agc(audio_trackmixer_t *, int);
623 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
624 static void audio_pmixer_output(struct audio_softc *);
625 static int audio_pmixer_halt(struct audio_softc *);
626 static void audio_rmixer_start(struct audio_softc *);
627 static void audio_rmixer_process(struct audio_softc *);
628 static void audio_rmixer_input(struct audio_softc *);
629 static int audio_rmixer_halt(struct audio_softc *);
630
631 static void mixer_init(struct audio_softc *);
632 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
633 static int mixer_close(struct audio_softc *, audio_file_t *);
634 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
635 static void mixer_async_add(struct audio_softc *, pid_t);
636 static void mixer_async_remove(struct audio_softc *, pid_t);
637 static void mixer_signal(struct audio_softc *);
638
639 static int au_portof(struct audio_softc *, char *, int);
640
641 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
642 mixer_devinfo_t *, const struct portname *);
643 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
644 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
645 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
646 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
647 u_int *, u_char *);
648 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
649 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
650 static int au_set_monitor_gain(struct audio_softc *, int);
651 static int au_get_monitor_gain(struct audio_softc *);
652 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
653 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
654
655 static __inline struct audio_params
656 format2_to_params(const audio_format2_t *f2)
657 {
658 audio_params_t p;
659
660 /* validbits/precision <-> precision/stride */
661 p.sample_rate = f2->sample_rate;
662 p.channels = f2->channels;
663 p.encoding = f2->encoding;
664 p.validbits = f2->precision;
665 p.precision = f2->stride;
666 return p;
667 }
668
669 static __inline audio_format2_t
670 params_to_format2(const struct audio_params *p)
671 {
672 audio_format2_t f2;
673
674 /* precision/stride <-> validbits/precision */
675 f2.sample_rate = p->sample_rate;
676 f2.channels = p->channels;
677 f2.encoding = p->encoding;
678 f2.precision = p->validbits;
679 f2.stride = p->precision;
680 return f2;
681 }
682
683 /* Return true if this track is a playback track. */
684 static __inline bool
685 audio_track_is_playback(const audio_track_t *track)
686 {
687
688 return ((track->mode & AUMODE_PLAY) != 0);
689 }
690
691 /* Return true if this track is a recording track. */
692 static __inline bool
693 audio_track_is_record(const audio_track_t *track)
694 {
695
696 return ((track->mode & AUMODE_RECORD) != 0);
697 }
698
699 #if 0 /* XXX Not used yet */
700 /*
701 * Convert 0..255 volume used in userland to internal presentation 0..256.
702 */
703 static __inline u_int
704 audio_volume_to_inner(u_int v)
705 {
706
707 return v < 127 ? v : v + 1;
708 }
709
710 /*
711 * Convert 0..256 internal presentation to 0..255 volume used in userland.
712 */
713 static __inline u_int
714 audio_volume_to_outer(u_int v)
715 {
716
717 return v < 127 ? v : v - 1;
718 }
719 #endif /* 0 */
720
721 static dev_type_open(audioopen);
722 /* XXXMRG use more dev_type_xxx */
723
724 const struct cdevsw audio_cdevsw = {
725 .d_open = audioopen,
726 .d_close = noclose,
727 .d_read = noread,
728 .d_write = nowrite,
729 .d_ioctl = noioctl,
730 .d_stop = nostop,
731 .d_tty = notty,
732 .d_poll = nopoll,
733 .d_mmap = nommap,
734 .d_kqfilter = nokqfilter,
735 .d_discard = nodiscard,
736 .d_flag = D_OTHER | D_MPSAFE
737 };
738
739 const struct fileops audio_fileops = {
740 .fo_name = "audio",
741 .fo_read = audioread,
742 .fo_write = audiowrite,
743 .fo_ioctl = audioioctl,
744 .fo_fcntl = fnullop_fcntl,
745 .fo_stat = audiostat,
746 .fo_poll = audiopoll,
747 .fo_close = audioclose,
748 .fo_mmap = audiommap,
749 .fo_kqfilter = audiokqfilter,
750 .fo_restart = fnullop_restart
751 };
752
753 /* The default audio mode: 8 kHz mono mu-law */
754 static const struct audio_params audio_default = {
755 .sample_rate = 8000,
756 .encoding = AUDIO_ENCODING_ULAW,
757 .precision = 8,
758 .validbits = 8,
759 .channels = 1,
760 };
761
762 static const char *encoding_names[] = {
763 "none",
764 AudioEmulaw,
765 AudioEalaw,
766 "pcm16",
767 "pcm8",
768 AudioEadpcm,
769 AudioEslinear_le,
770 AudioEslinear_be,
771 AudioEulinear_le,
772 AudioEulinear_be,
773 AudioEslinear,
774 AudioEulinear,
775 AudioEmpeg_l1_stream,
776 AudioEmpeg_l1_packets,
777 AudioEmpeg_l1_system,
778 AudioEmpeg_l2_stream,
779 AudioEmpeg_l2_packets,
780 AudioEmpeg_l2_system,
781 AudioEac3,
782 };
783
784 /*
785 * Returns encoding name corresponding to AUDIO_ENCODING_*.
786 * Note that it may return a local buffer because it is mainly for debugging.
787 */
788 const char *
789 audio_encoding_name(int encoding)
790 {
791 static char buf[16];
792
793 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
794 return encoding_names[encoding];
795 } else {
796 snprintf(buf, sizeof(buf), "enc=%d", encoding);
797 return buf;
798 }
799 }
800
801 /*
802 * Supported encodings used by AUDIO_GETENC.
803 * index and flags are set by code.
804 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
805 */
806 static const audio_encoding_t audio_encodings[] = {
807 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
808 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
809 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
810 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
811 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
812 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
813 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
814 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
815 #if defined(AUDIO_SUPPORT_LINEAR24)
816 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
817 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
818 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
819 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
820 #endif
821 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
822 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
823 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
824 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
825 };
826
827 static const struct portname itable[] = {
828 { AudioNmicrophone, AUDIO_MICROPHONE },
829 { AudioNline, AUDIO_LINE_IN },
830 { AudioNcd, AUDIO_CD },
831 { 0, 0 }
832 };
833 static const struct portname otable[] = {
834 { AudioNspeaker, AUDIO_SPEAKER },
835 { AudioNheadphone, AUDIO_HEADPHONE },
836 { AudioNline, AUDIO_LINE_OUT },
837 { 0, 0 }
838 };
839
840 static struct psref_class *audio_psref_class __read_mostly;
841
842 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
843 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
844 audiochilddet, DVF_DETACH_SHUTDOWN);
845
846 static int
847 audiomatch(device_t parent, cfdata_t match, void *aux)
848 {
849 struct audio_attach_args *sa;
850
851 sa = aux;
852 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
853 __func__, sa->type, sa, sa->hwif);
854 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
855 }
856
857 static void
858 audioattach(device_t parent, device_t self, void *aux)
859 {
860 struct audio_softc *sc;
861 struct audio_attach_args *sa;
862 const struct audio_hw_if *hw_if;
863 audio_format2_t phwfmt;
864 audio_format2_t rhwfmt;
865 audio_filter_reg_t pfil;
866 audio_filter_reg_t rfil;
867 const struct sysctlnode *node;
868 void *hdlp;
869 bool has_playback;
870 bool has_capture;
871 bool has_indep;
872 bool has_fulldup;
873 int mode;
874 int error;
875
876 sc = device_private(self);
877 sc->sc_dev = self;
878 sa = (struct audio_attach_args *)aux;
879 hw_if = sa->hwif;
880 hdlp = sa->hdl;
881
882 if (hw_if == NULL || hw_if->get_locks == NULL) {
883 panic("audioattach: missing hw_if method");
884 }
885
886 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
887
888 #ifdef DIAGNOSTIC
889 if (hw_if->query_format == NULL ||
890 hw_if->set_format == NULL ||
891 (hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
892 (hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
893 hw_if->halt_output == NULL ||
894 hw_if->halt_input == NULL ||
895 hw_if->getdev == NULL ||
896 hw_if->set_port == NULL ||
897 hw_if->get_port == NULL ||
898 hw_if->query_devinfo == NULL ||
899 hw_if->get_props == NULL) {
900 aprint_error(": missing method\n");
901 return;
902 }
903 #endif
904
905 sc->hw_if = hw_if;
906 sc->hw_hdl = hdlp;
907 sc->hw_dev = parent;
908
909 sc->sc_exlock = 1;
910 sc->sc_blk_ms = AUDIO_BLK_MS;
911 SLIST_INIT(&sc->sc_files);
912 cv_init(&sc->sc_exlockcv, "audiolk");
913 sc->sc_am_capacity = 0;
914 sc->sc_am_used = 0;
915 sc->sc_am = NULL;
916
917 mutex_enter(sc->sc_lock);
918 sc->sc_props = hw_if->get_props(sc->hw_hdl);
919 mutex_exit(sc->sc_lock);
920
921 /* MMAP is now supported by upper layer. */
922 sc->sc_props |= AUDIO_PROP_MMAP;
923
924 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
925 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
926 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
927 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
928
929 KASSERT(has_playback || has_capture);
930 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
931 if (!has_playback || !has_capture) {
932 KASSERT(!has_indep);
933 KASSERT(!has_fulldup);
934 }
935
936 mode = 0;
937 if (has_playback) {
938 aprint_normal(": playback");
939 mode |= AUMODE_PLAY;
940 }
941 if (has_capture) {
942 aprint_normal("%c capture", has_playback ? ',' : ':');
943 mode |= AUMODE_RECORD;
944 }
945 if (has_playback && has_capture) {
946 if (has_fulldup)
947 aprint_normal(", full duplex");
948 else
949 aprint_normal(", half duplex");
950
951 if (has_indep)
952 aprint_normal(", independent");
953 }
954
955 aprint_naive("\n");
956 aprint_normal("\n");
957
958 /* probe hw params */
959 memset(&phwfmt, 0, sizeof(phwfmt));
960 memset(&rhwfmt, 0, sizeof(rhwfmt));
961 memset(&pfil, 0, sizeof(pfil));
962 memset(&rfil, 0, sizeof(rfil));
963 if (has_indep) {
964 int perror, rerror;
965
966 /* On independent devices, probe separately. */
967 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
968 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
969 if (perror && rerror) {
970 aprint_error_dev(self,
971 "audio_hw_probe failed: perror=%d, rerror=%d\n",
972 perror, rerror);
973 goto bad;
974 }
975 if (perror) {
976 mode &= ~AUMODE_PLAY;
977 aprint_error_dev(self, "audio_hw_probe failed: "
978 "errno=%d, playback disabled\n", perror);
979 }
980 if (rerror) {
981 mode &= ~AUMODE_RECORD;
982 aprint_error_dev(self, "audio_hw_probe failed: "
983 "errno=%d, capture disabled\n", rerror);
984 }
985 } else {
986 /*
987 * On non independent devices or uni-directional devices,
988 * probe once (simultaneously).
989 */
990 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
991 error = audio_hw_probe(sc, fmt, mode);
992 if (error) {
993 aprint_error_dev(self,
994 "audio_hw_probe failed: errno=%d\n", error);
995 goto bad;
996 }
997 if (has_playback && has_capture)
998 rhwfmt = phwfmt;
999 }
1000
1001 /* Init hardware. */
1002 /* hw_probe() also validates [pr]hwfmt. */
1003 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1004 if (error) {
1005 aprint_error_dev(self,
1006 "audio_hw_set_format failed: errno=%d\n", error);
1007 goto bad;
1008 }
1009
1010 /*
1011 * Init track mixers. If at least one direction is available on
1012 * attach time, we assume a success.
1013 */
1014 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1015 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1016 aprint_error_dev(self,
1017 "audio_mixers_init failed: errno=%d\n", error);
1018 goto bad;
1019 }
1020
1021 sc->sc_psz = pserialize_create();
1022 psref_target_init(&sc->sc_psref, audio_psref_class);
1023
1024 selinit(&sc->sc_wsel);
1025 selinit(&sc->sc_rsel);
1026
1027 /* Initial parameter of /dev/sound */
1028 sc->sc_sound_pparams = params_to_format2(&audio_default);
1029 sc->sc_sound_rparams = params_to_format2(&audio_default);
1030 sc->sc_sound_ppause = false;
1031 sc->sc_sound_rpause = false;
1032
1033 /* XXX TODO: consider about sc_ai */
1034
1035 mixer_init(sc);
1036 TRACE(2, "inputs ports=0x%x, input master=%d, "
1037 "output ports=0x%x, output master=%d",
1038 sc->sc_inports.allports, sc->sc_inports.master,
1039 sc->sc_outports.allports, sc->sc_outports.master);
1040
1041 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1042 0,
1043 CTLTYPE_NODE, device_xname(sc->sc_dev),
1044 SYSCTL_DESCR("audio test"),
1045 NULL, 0,
1046 NULL, 0,
1047 CTL_HW,
1048 CTL_CREATE, CTL_EOL);
1049
1050 if (node != NULL) {
1051 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1052 CTLFLAG_READWRITE,
1053 CTLTYPE_INT, "blk_ms",
1054 SYSCTL_DESCR("blocksize in msec"),
1055 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1056 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1057
1058 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1059 CTLFLAG_READWRITE,
1060 CTLTYPE_BOOL, "multiuser",
1061 SYSCTL_DESCR("allow multiple user access"),
1062 audio_sysctl_multiuser, 0, (void *)sc, 0,
1063 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1064
1065 #if defined(AUDIO_DEBUG)
1066 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1067 CTLFLAG_READWRITE,
1068 CTLTYPE_INT, "debug",
1069 SYSCTL_DESCR("debug level (0..4)"),
1070 audio_sysctl_debug, 0, (void *)sc, 0,
1071 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1072 #endif
1073 }
1074
1075 #ifdef AUDIO_PM_IDLE
1076 callout_init(&sc->sc_idle_counter, 0);
1077 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1078 #endif
1079
1080 if (!pmf_device_register(self, audio_suspend, audio_resume))
1081 aprint_error_dev(self, "couldn't establish power handler\n");
1082 #ifdef AUDIO_PM_IDLE
1083 if (!device_active_register(self, audio_activity))
1084 aprint_error_dev(self, "couldn't register activity handler\n");
1085 #endif
1086
1087 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1088 audio_volume_down, true))
1089 aprint_error_dev(self, "couldn't add volume down handler\n");
1090 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1091 audio_volume_up, true))
1092 aprint_error_dev(self, "couldn't add volume up handler\n");
1093 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1094 audio_volume_toggle, true))
1095 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1096
1097 #ifdef AUDIO_PM_IDLE
1098 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1099 #endif
1100
1101 #if defined(AUDIO_DEBUG)
1102 audio_mlog_init();
1103 #endif
1104
1105 audiorescan(self, "audio", NULL);
1106 sc->sc_exlock = 0;
1107 return;
1108
1109 bad:
1110 /* Clearing hw_if means that device is attached but disabled. */
1111 sc->hw_if = NULL;
1112 sc->sc_exlock = 0;
1113 aprint_error_dev(sc->sc_dev, "disabled\n");
1114 return;
1115 }
1116
1117 /*
1118 * Initialize hardware mixer.
1119 * This function is called from audioattach().
1120 */
1121 static void
1122 mixer_init(struct audio_softc *sc)
1123 {
1124 mixer_devinfo_t mi;
1125 int iclass, mclass, oclass, rclass;
1126 int record_master_found, record_source_found;
1127
1128 iclass = mclass = oclass = rclass = -1;
1129 sc->sc_inports.index = -1;
1130 sc->sc_inports.master = -1;
1131 sc->sc_inports.nports = 0;
1132 sc->sc_inports.isenum = false;
1133 sc->sc_inports.allports = 0;
1134 sc->sc_inports.isdual = false;
1135 sc->sc_inports.mixerout = -1;
1136 sc->sc_inports.cur_port = -1;
1137 sc->sc_outports.index = -1;
1138 sc->sc_outports.master = -1;
1139 sc->sc_outports.nports = 0;
1140 sc->sc_outports.isenum = false;
1141 sc->sc_outports.allports = 0;
1142 sc->sc_outports.isdual = false;
1143 sc->sc_outports.mixerout = -1;
1144 sc->sc_outports.cur_port = -1;
1145 sc->sc_monitor_port = -1;
1146 /*
1147 * Read through the underlying driver's list, picking out the class
1148 * names from the mixer descriptions. We'll need them to decode the
1149 * mixer descriptions on the next pass through the loop.
1150 */
1151 mutex_enter(sc->sc_lock);
1152 for(mi.index = 0; ; mi.index++) {
1153 if (audio_query_devinfo(sc, &mi) != 0)
1154 break;
1155 /*
1156 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1157 * All the other types describe an actual mixer.
1158 */
1159 if (mi.type == AUDIO_MIXER_CLASS) {
1160 if (strcmp(mi.label.name, AudioCinputs) == 0)
1161 iclass = mi.mixer_class;
1162 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1163 mclass = mi.mixer_class;
1164 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1165 oclass = mi.mixer_class;
1166 if (strcmp(mi.label.name, AudioCrecord) == 0)
1167 rclass = mi.mixer_class;
1168 }
1169 }
1170 mutex_exit(sc->sc_lock);
1171
1172 /* Allocate save area. Ensure non-zero allocation. */
1173 sc->sc_nmixer_states = mi.index;
1174 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1175 (sc->sc_nmixer_states + 1), KM_SLEEP);
1176
1177 /*
1178 * This is where we assign each control in the "audio" model, to the
1179 * underlying "mixer" control. We walk through the whole list once,
1180 * assigning likely candidates as we come across them.
1181 */
1182 record_master_found = 0;
1183 record_source_found = 0;
1184 mutex_enter(sc->sc_lock);
1185 for(mi.index = 0; ; mi.index++) {
1186 if (audio_query_devinfo(sc, &mi) != 0)
1187 break;
1188 KASSERT(mi.index < sc->sc_nmixer_states);
1189 if (mi.type == AUDIO_MIXER_CLASS)
1190 continue;
1191 if (mi.mixer_class == iclass) {
1192 /*
1193 * AudioCinputs is only a fallback, when we don't
1194 * find what we're looking for in AudioCrecord, so
1195 * check the flags before accepting one of these.
1196 */
1197 if (strcmp(mi.label.name, AudioNmaster) == 0
1198 && record_master_found == 0)
1199 sc->sc_inports.master = mi.index;
1200 if (strcmp(mi.label.name, AudioNsource) == 0
1201 && record_source_found == 0) {
1202 if (mi.type == AUDIO_MIXER_ENUM) {
1203 int i;
1204 for(i = 0; i < mi.un.e.num_mem; i++)
1205 if (strcmp(mi.un.e.member[i].label.name,
1206 AudioNmixerout) == 0)
1207 sc->sc_inports.mixerout =
1208 mi.un.e.member[i].ord;
1209 }
1210 au_setup_ports(sc, &sc->sc_inports, &mi,
1211 itable);
1212 }
1213 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1214 sc->sc_outports.master == -1)
1215 sc->sc_outports.master = mi.index;
1216 } else if (mi.mixer_class == mclass) {
1217 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1218 sc->sc_monitor_port = mi.index;
1219 } else if (mi.mixer_class == oclass) {
1220 if (strcmp(mi.label.name, AudioNmaster) == 0)
1221 sc->sc_outports.master = mi.index;
1222 if (strcmp(mi.label.name, AudioNselect) == 0)
1223 au_setup_ports(sc, &sc->sc_outports, &mi,
1224 otable);
1225 } else if (mi.mixer_class == rclass) {
1226 /*
1227 * These are the preferred mixers for the audio record
1228 * controls, so set the flags here, but don't check.
1229 */
1230 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1231 sc->sc_inports.master = mi.index;
1232 record_master_found = 1;
1233 }
1234 #if 1 /* Deprecated. Use AudioNmaster. */
1235 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1236 sc->sc_inports.master = mi.index;
1237 record_master_found = 1;
1238 }
1239 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1240 sc->sc_inports.master = mi.index;
1241 record_master_found = 1;
1242 }
1243 #endif
1244 if (strcmp(mi.label.name, AudioNsource) == 0) {
1245 if (mi.type == AUDIO_MIXER_ENUM) {
1246 int i;
1247 for(i = 0; i < mi.un.e.num_mem; i++)
1248 if (strcmp(mi.un.e.member[i].label.name,
1249 AudioNmixerout) == 0)
1250 sc->sc_inports.mixerout =
1251 mi.un.e.member[i].ord;
1252 }
1253 au_setup_ports(sc, &sc->sc_inports, &mi,
1254 itable);
1255 record_source_found = 1;
1256 }
1257 }
1258 }
1259 mutex_exit(sc->sc_lock);
1260 }
1261
1262 static int
1263 audioactivate(device_t self, enum devact act)
1264 {
1265 struct audio_softc *sc = device_private(self);
1266
1267 switch (act) {
1268 case DVACT_DEACTIVATE:
1269 mutex_enter(sc->sc_lock);
1270 sc->sc_dying = true;
1271 cv_broadcast(&sc->sc_exlockcv);
1272 mutex_exit(sc->sc_lock);
1273 return 0;
1274 default:
1275 return EOPNOTSUPP;
1276 }
1277 }
1278
1279 static int
1280 audiodetach(device_t self, int flags)
1281 {
1282 struct audio_softc *sc;
1283 struct audio_file *file;
1284 int error;
1285
1286 sc = device_private(self);
1287 TRACE(2, "flags=%d", flags);
1288
1289 /* device is not initialized */
1290 if (sc->hw_if == NULL)
1291 return 0;
1292
1293 /* Start draining existing accessors of the device. */
1294 error = config_detach_children(self, flags);
1295 if (error)
1296 return error;
1297
1298 /* delete sysctl nodes */
1299 sysctl_teardown(&sc->sc_log);
1300
1301 mutex_enter(sc->sc_lock);
1302 sc->sc_dying = true;
1303 cv_broadcast(&sc->sc_exlockcv);
1304 if (sc->sc_pmixer)
1305 cv_broadcast(&sc->sc_pmixer->outcv);
1306 if (sc->sc_rmixer)
1307 cv_broadcast(&sc->sc_rmixer->outcv);
1308
1309 /* Prevent new users */
1310 SLIST_FOREACH(file, &sc->sc_files, entry) {
1311 atomic_store_relaxed(&file->dying, true);
1312 }
1313
1314 /*
1315 * Wait for existing users to drain.
1316 * - pserialize_perform waits for all pserialize_read sections on
1317 * all CPUs; after this, no more new psref_acquire can happen.
1318 * - psref_target_destroy waits for all extant acquired psrefs to
1319 * be psref_released.
1320 */
1321 pserialize_perform(sc->sc_psz);
1322 mutex_exit(sc->sc_lock);
1323 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1324
1325 /*
1326 * We are now guaranteed that there are no calls to audio fileops
1327 * that hold sc, and any new calls with files that were for sc will
1328 * fail. Thus, we now have exclusive access to the softc.
1329 */
1330
1331 /*
1332 * Nuke all open instances.
1333 * Here, we no longer need any locks to traverse sc_files.
1334 */
1335 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1336 audio_unlink(sc, file);
1337 }
1338
1339 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1340 audio_volume_down, true);
1341 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1342 audio_volume_up, true);
1343 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1344 audio_volume_toggle, true);
1345
1346 #ifdef AUDIO_PM_IDLE
1347 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1348
1349 device_active_deregister(self, audio_activity);
1350 #endif
1351
1352 pmf_device_deregister(self);
1353
1354 /* Free resources */
1355 sc->sc_exlock = 1;
1356 if (sc->sc_pmixer) {
1357 audio_mixer_destroy(sc, sc->sc_pmixer);
1358 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1359 }
1360 if (sc->sc_rmixer) {
1361 audio_mixer_destroy(sc, sc->sc_rmixer);
1362 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1363 }
1364 if (sc->sc_am)
1365 kern_free(sc->sc_am);
1366
1367 seldestroy(&sc->sc_wsel);
1368 seldestroy(&sc->sc_rsel);
1369
1370 #ifdef AUDIO_PM_IDLE
1371 callout_destroy(&sc->sc_idle_counter);
1372 #endif
1373
1374 cv_destroy(&sc->sc_exlockcv);
1375
1376 #if defined(AUDIO_DEBUG)
1377 audio_mlog_free();
1378 #endif
1379
1380 return 0;
1381 }
1382
1383 static void
1384 audiochilddet(device_t self, device_t child)
1385 {
1386
1387 /* we hold no child references, so do nothing */
1388 }
1389
1390 static int
1391 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1392 {
1393
1394 if (config_match(parent, cf, aux))
1395 config_attach_loc(parent, cf, locs, aux, NULL);
1396
1397 return 0;
1398 }
1399
1400 static int
1401 audiorescan(device_t self, const char *ifattr, const int *flags)
1402 {
1403 struct audio_softc *sc = device_private(self);
1404
1405 if (!ifattr_match(ifattr, "audio"))
1406 return 0;
1407
1408 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1409
1410 return 0;
1411 }
1412
1413 /*
1414 * Called from hardware driver. This is where the MI audio driver gets
1415 * probed/attached to the hardware driver.
1416 */
1417 device_t
1418 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1419 {
1420 struct audio_attach_args arg;
1421
1422 #ifdef DIAGNOSTIC
1423 if (ahwp == NULL) {
1424 aprint_error("audio_attach_mi: NULL\n");
1425 return 0;
1426 }
1427 #endif
1428 arg.type = AUDIODEV_TYPE_AUDIO;
1429 arg.hwif = ahwp;
1430 arg.hdl = hdlp;
1431 return config_found(dev, &arg, audioprint);
1432 }
1433
1434 /*
1435 * audio_printf() outputs fmt... with the audio device name and MD device
1436 * name prefixed. If the message is considered to be related to the MD
1437 * driver, use this one instead of device_printf().
1438 */
1439 static void
1440 audio_printf(struct audio_softc *sc, const char *fmt, ...)
1441 {
1442 va_list ap;
1443
1444 printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
1445 va_start(ap, fmt);
1446 vprintf(fmt, ap);
1447 va_end(ap);
1448 }
1449
1450 /*
1451 * Enter critical section and also keep sc_lock.
1452 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1453 * Must be called without sc_lock held.
1454 */
1455 static int
1456 audio_exlock_mutex_enter(struct audio_softc *sc)
1457 {
1458 int error;
1459
1460 mutex_enter(sc->sc_lock);
1461 if (sc->sc_dying) {
1462 mutex_exit(sc->sc_lock);
1463 return EIO;
1464 }
1465
1466 while (__predict_false(sc->sc_exlock != 0)) {
1467 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1468 if (sc->sc_dying)
1469 error = EIO;
1470 if (error) {
1471 mutex_exit(sc->sc_lock);
1472 return error;
1473 }
1474 }
1475
1476 /* Acquire */
1477 sc->sc_exlock = 1;
1478 return 0;
1479 }
1480
1481 /*
1482 * Exit critical section and exit sc_lock.
1483 * Must be called with sc_lock held.
1484 */
1485 static void
1486 audio_exlock_mutex_exit(struct audio_softc *sc)
1487 {
1488
1489 KASSERT(mutex_owned(sc->sc_lock));
1490
1491 sc->sc_exlock = 0;
1492 cv_broadcast(&sc->sc_exlockcv);
1493 mutex_exit(sc->sc_lock);
1494 }
1495
1496 /*
1497 * Enter critical section.
1498 * If successful, it returns 0. Otherwise returns errno.
1499 * Must be called without sc_lock held.
1500 * This function returns without sc_lock held.
1501 */
1502 static int
1503 audio_exlock_enter(struct audio_softc *sc)
1504 {
1505 int error;
1506
1507 error = audio_exlock_mutex_enter(sc);
1508 if (error)
1509 return error;
1510 mutex_exit(sc->sc_lock);
1511 return 0;
1512 }
1513
1514 /*
1515 * Exit critical section.
1516 * Must be called without sc_lock held.
1517 */
1518 static void
1519 audio_exlock_exit(struct audio_softc *sc)
1520 {
1521
1522 mutex_enter(sc->sc_lock);
1523 audio_exlock_mutex_exit(sc);
1524 }
1525
1526 /*
1527 * Acquire sc from file, and increment the psref count.
1528 * If successful, returns sc. Otherwise returns NULL.
1529 */
1530 struct audio_softc *
1531 audio_file_enter(audio_file_t *file, struct psref *refp)
1532 {
1533 int s;
1534 bool dying;
1535
1536 /* psref(9) forbids to migrate CPUs */
1537 curlwp_bind();
1538
1539 /* Block audiodetach while we acquire a reference */
1540 s = pserialize_read_enter();
1541
1542 /* If close or audiodetach already ran, tough -- no more audio */
1543 dying = atomic_load_relaxed(&file->dying);
1544 if (dying) {
1545 pserialize_read_exit(s);
1546 return NULL;
1547 }
1548
1549 /* Acquire a reference */
1550 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1551
1552 /* Now sc won't go away until we drop the reference count */
1553 pserialize_read_exit(s);
1554
1555 return file->sc;
1556 }
1557
1558 /*
1559 * Decrement the psref count.
1560 */
1561 void
1562 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1563 {
1564
1565 psref_release(refp, &sc->sc_psref, audio_psref_class);
1566 }
1567
1568 /*
1569 * Wait for I/O to complete, releasing sc_lock.
1570 * Must be called with sc_lock held.
1571 */
1572 static int
1573 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1574 {
1575 int error;
1576
1577 KASSERT(track);
1578 KASSERT(mutex_owned(sc->sc_lock));
1579
1580 /* Wait for pending I/O to complete. */
1581 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1582 mstohz(AUDIO_TIMEOUT));
1583 if (sc->sc_suspending) {
1584 /* If it's about to suspend, ignore timeout error. */
1585 if (error == EWOULDBLOCK) {
1586 TRACET(2, track, "timeout (suspending)");
1587 return 0;
1588 }
1589 }
1590 if (sc->sc_dying) {
1591 error = EIO;
1592 }
1593 if (error) {
1594 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1595 if (error == EWOULDBLOCK)
1596 audio_printf(sc, "device timeout\n");
1597 } else {
1598 TRACET(3, track, "wakeup");
1599 }
1600 return error;
1601 }
1602
1603 /*
1604 * Try to acquire track lock.
1605 * It doesn't block if the track lock is already aquired.
1606 * Returns true if the track lock was acquired, or false if the track
1607 * lock was already acquired.
1608 */
1609 static __inline bool
1610 audio_track_lock_tryenter(audio_track_t *track)
1611 {
1612 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1613 }
1614
1615 /*
1616 * Acquire track lock.
1617 */
1618 static __inline void
1619 audio_track_lock_enter(audio_track_t *track)
1620 {
1621 /* Don't sleep here. */
1622 while (audio_track_lock_tryenter(track) == false)
1623 ;
1624 }
1625
1626 /*
1627 * Release track lock.
1628 */
1629 static __inline void
1630 audio_track_lock_exit(audio_track_t *track)
1631 {
1632 atomic_swap_uint(&track->lock, 0);
1633 }
1634
1635
1636 static int
1637 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1638 {
1639 struct audio_softc *sc;
1640 int error;
1641
1642 /* Find the device */
1643 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1644 if (sc == NULL || sc->hw_if == NULL)
1645 return ENXIO;
1646
1647 error = audio_exlock_enter(sc);
1648 if (error)
1649 return error;
1650
1651 device_active(sc->sc_dev, DVA_SYSTEM);
1652 switch (AUDIODEV(dev)) {
1653 case SOUND_DEVICE:
1654 case AUDIO_DEVICE:
1655 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1656 break;
1657 case AUDIOCTL_DEVICE:
1658 error = audioctl_open(dev, sc, flags, ifmt, l);
1659 break;
1660 case MIXER_DEVICE:
1661 error = mixer_open(dev, sc, flags, ifmt, l);
1662 break;
1663 default:
1664 error = ENXIO;
1665 break;
1666 }
1667 audio_exlock_exit(sc);
1668
1669 return error;
1670 }
1671
1672 static int
1673 audioclose(struct file *fp)
1674 {
1675 struct audio_softc *sc;
1676 struct psref sc_ref;
1677 audio_file_t *file;
1678 int error;
1679 dev_t dev;
1680
1681 KASSERT(fp->f_audioctx);
1682 file = fp->f_audioctx;
1683 dev = file->dev;
1684 error = 0;
1685
1686 /*
1687 * audioclose() must
1688 * - unplug track from the trackmixer (and unplug anything from softc),
1689 * if sc exists.
1690 * - free all memory objects, regardless of sc.
1691 */
1692
1693 sc = audio_file_enter(file, &sc_ref);
1694 if (sc) {
1695 switch (AUDIODEV(dev)) {
1696 case SOUND_DEVICE:
1697 case AUDIO_DEVICE:
1698 error = audio_close(sc, file);
1699 break;
1700 case AUDIOCTL_DEVICE:
1701 error = 0;
1702 break;
1703 case MIXER_DEVICE:
1704 error = mixer_close(sc, file);
1705 break;
1706 default:
1707 error = ENXIO;
1708 break;
1709 }
1710
1711 audio_file_exit(sc, &sc_ref);
1712 }
1713
1714 /* Free memory objects anyway */
1715 TRACEF(2, file, "free memory");
1716 if (file->ptrack)
1717 audio_track_destroy(file->ptrack);
1718 if (file->rtrack)
1719 audio_track_destroy(file->rtrack);
1720 kmem_free(file, sizeof(*file));
1721 fp->f_audioctx = NULL;
1722
1723 return error;
1724 }
1725
1726 static int
1727 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1728 int ioflag)
1729 {
1730 struct audio_softc *sc;
1731 struct psref sc_ref;
1732 audio_file_t *file;
1733 int error;
1734 dev_t dev;
1735
1736 KASSERT(fp->f_audioctx);
1737 file = fp->f_audioctx;
1738 dev = file->dev;
1739
1740 sc = audio_file_enter(file, &sc_ref);
1741 if (sc == NULL)
1742 return EIO;
1743
1744 if (fp->f_flag & O_NONBLOCK)
1745 ioflag |= IO_NDELAY;
1746
1747 switch (AUDIODEV(dev)) {
1748 case SOUND_DEVICE:
1749 case AUDIO_DEVICE:
1750 error = audio_read(sc, uio, ioflag, file);
1751 break;
1752 case AUDIOCTL_DEVICE:
1753 case MIXER_DEVICE:
1754 error = ENODEV;
1755 break;
1756 default:
1757 error = ENXIO;
1758 break;
1759 }
1760
1761 audio_file_exit(sc, &sc_ref);
1762 return error;
1763 }
1764
1765 static int
1766 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1767 int ioflag)
1768 {
1769 struct audio_softc *sc;
1770 struct psref sc_ref;
1771 audio_file_t *file;
1772 int error;
1773 dev_t dev;
1774
1775 KASSERT(fp->f_audioctx);
1776 file = fp->f_audioctx;
1777 dev = file->dev;
1778
1779 sc = audio_file_enter(file, &sc_ref);
1780 if (sc == NULL)
1781 return EIO;
1782
1783 if (fp->f_flag & O_NONBLOCK)
1784 ioflag |= IO_NDELAY;
1785
1786 switch (AUDIODEV(dev)) {
1787 case SOUND_DEVICE:
1788 case AUDIO_DEVICE:
1789 error = audio_write(sc, uio, ioflag, file);
1790 break;
1791 case AUDIOCTL_DEVICE:
1792 case MIXER_DEVICE:
1793 error = ENODEV;
1794 break;
1795 default:
1796 error = ENXIO;
1797 break;
1798 }
1799
1800 audio_file_exit(sc, &sc_ref);
1801 return error;
1802 }
1803
1804 static int
1805 audioioctl(struct file *fp, u_long cmd, void *addr)
1806 {
1807 struct audio_softc *sc;
1808 struct psref sc_ref;
1809 audio_file_t *file;
1810 struct lwp *l = curlwp;
1811 int error;
1812 dev_t dev;
1813
1814 KASSERT(fp->f_audioctx);
1815 file = fp->f_audioctx;
1816 dev = file->dev;
1817
1818 sc = audio_file_enter(file, &sc_ref);
1819 if (sc == NULL)
1820 return EIO;
1821
1822 switch (AUDIODEV(dev)) {
1823 case SOUND_DEVICE:
1824 case AUDIO_DEVICE:
1825 case AUDIOCTL_DEVICE:
1826 mutex_enter(sc->sc_lock);
1827 device_active(sc->sc_dev, DVA_SYSTEM);
1828 mutex_exit(sc->sc_lock);
1829 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1830 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1831 else
1832 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1833 file);
1834 break;
1835 case MIXER_DEVICE:
1836 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1837 break;
1838 default:
1839 error = ENXIO;
1840 break;
1841 }
1842
1843 audio_file_exit(sc, &sc_ref);
1844 return error;
1845 }
1846
1847 static int
1848 audiostat(struct file *fp, struct stat *st)
1849 {
1850 struct audio_softc *sc;
1851 struct psref sc_ref;
1852 audio_file_t *file;
1853
1854 KASSERT(fp->f_audioctx);
1855 file = fp->f_audioctx;
1856
1857 sc = audio_file_enter(file, &sc_ref);
1858 if (sc == NULL)
1859 return EIO;
1860
1861 memset(st, 0, sizeof(*st));
1862
1863 st->st_dev = file->dev;
1864 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1865 st->st_gid = kauth_cred_getegid(fp->f_cred);
1866 st->st_mode = S_IFCHR;
1867
1868 audio_file_exit(sc, &sc_ref);
1869 return 0;
1870 }
1871
1872 static int
1873 audiopoll(struct file *fp, int events)
1874 {
1875 struct audio_softc *sc;
1876 struct psref sc_ref;
1877 audio_file_t *file;
1878 struct lwp *l = curlwp;
1879 int revents;
1880 dev_t dev;
1881
1882 KASSERT(fp->f_audioctx);
1883 file = fp->f_audioctx;
1884 dev = file->dev;
1885
1886 sc = audio_file_enter(file, &sc_ref);
1887 if (sc == NULL)
1888 return EIO;
1889
1890 switch (AUDIODEV(dev)) {
1891 case SOUND_DEVICE:
1892 case AUDIO_DEVICE:
1893 revents = audio_poll(sc, events, l, file);
1894 break;
1895 case AUDIOCTL_DEVICE:
1896 case MIXER_DEVICE:
1897 revents = 0;
1898 break;
1899 default:
1900 revents = POLLERR;
1901 break;
1902 }
1903
1904 audio_file_exit(sc, &sc_ref);
1905 return revents;
1906 }
1907
1908 static int
1909 audiokqfilter(struct file *fp, struct knote *kn)
1910 {
1911 struct audio_softc *sc;
1912 struct psref sc_ref;
1913 audio_file_t *file;
1914 dev_t dev;
1915 int error;
1916
1917 KASSERT(fp->f_audioctx);
1918 file = fp->f_audioctx;
1919 dev = file->dev;
1920
1921 sc = audio_file_enter(file, &sc_ref);
1922 if (sc == NULL)
1923 return EIO;
1924
1925 switch (AUDIODEV(dev)) {
1926 case SOUND_DEVICE:
1927 case AUDIO_DEVICE:
1928 error = audio_kqfilter(sc, file, kn);
1929 break;
1930 case AUDIOCTL_DEVICE:
1931 case MIXER_DEVICE:
1932 error = ENODEV;
1933 break;
1934 default:
1935 error = ENXIO;
1936 break;
1937 }
1938
1939 audio_file_exit(sc, &sc_ref);
1940 return error;
1941 }
1942
1943 static int
1944 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1945 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1946 {
1947 struct audio_softc *sc;
1948 struct psref sc_ref;
1949 audio_file_t *file;
1950 dev_t dev;
1951 int error;
1952
1953 KASSERT(fp->f_audioctx);
1954 file = fp->f_audioctx;
1955 dev = file->dev;
1956
1957 sc = audio_file_enter(file, &sc_ref);
1958 if (sc == NULL)
1959 return EIO;
1960
1961 mutex_enter(sc->sc_lock);
1962 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1963 mutex_exit(sc->sc_lock);
1964
1965 switch (AUDIODEV(dev)) {
1966 case SOUND_DEVICE:
1967 case AUDIO_DEVICE:
1968 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1969 uobjp, maxprotp, file);
1970 break;
1971 case AUDIOCTL_DEVICE:
1972 case MIXER_DEVICE:
1973 default:
1974 error = ENOTSUP;
1975 break;
1976 }
1977
1978 audio_file_exit(sc, &sc_ref);
1979 return error;
1980 }
1981
1982
1983 /* Exported interfaces for audiobell. */
1984
1985 /*
1986 * Open for audiobell.
1987 * It stores allocated file to *filep.
1988 * If successful returns 0, otherwise errno.
1989 */
1990 int
1991 audiobellopen(dev_t dev, audio_file_t **filep)
1992 {
1993 struct audio_softc *sc;
1994 int error;
1995
1996 /* Find the device */
1997 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1998 if (sc == NULL || sc->hw_if == NULL)
1999 return ENXIO;
2000
2001 error = audio_exlock_enter(sc);
2002 if (error)
2003 return error;
2004
2005 device_active(sc->sc_dev, DVA_SYSTEM);
2006 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
2007
2008 audio_exlock_exit(sc);
2009 return error;
2010 }
2011
2012 /* Close for audiobell */
2013 int
2014 audiobellclose(audio_file_t *file)
2015 {
2016 struct audio_softc *sc;
2017 struct psref sc_ref;
2018 int error;
2019
2020 sc = audio_file_enter(file, &sc_ref);
2021 if (sc == NULL)
2022 return EIO;
2023
2024 error = audio_close(sc, file);
2025
2026 audio_file_exit(sc, &sc_ref);
2027
2028 KASSERT(file->ptrack);
2029 audio_track_destroy(file->ptrack);
2030 KASSERT(file->rtrack == NULL);
2031 kmem_free(file, sizeof(*file));
2032 return error;
2033 }
2034
2035 /* Set sample rate for audiobell */
2036 int
2037 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2038 {
2039 struct audio_softc *sc;
2040 struct psref sc_ref;
2041 struct audio_info ai;
2042 int error;
2043
2044 sc = audio_file_enter(file, &sc_ref);
2045 if (sc == NULL)
2046 return EIO;
2047
2048 AUDIO_INITINFO(&ai);
2049 ai.play.sample_rate = sample_rate;
2050
2051 error = audio_exlock_enter(sc);
2052 if (error)
2053 goto done;
2054 error = audio_file_setinfo(sc, file, &ai);
2055 audio_exlock_exit(sc);
2056
2057 done:
2058 audio_file_exit(sc, &sc_ref);
2059 return error;
2060 }
2061
2062 /* Playback for audiobell */
2063 int
2064 audiobellwrite(audio_file_t *file, struct uio *uio)
2065 {
2066 struct audio_softc *sc;
2067 struct psref sc_ref;
2068 int error;
2069
2070 sc = audio_file_enter(file, &sc_ref);
2071 if (sc == NULL)
2072 return EIO;
2073
2074 error = audio_write(sc, uio, 0, file);
2075
2076 audio_file_exit(sc, &sc_ref);
2077 return error;
2078 }
2079
2080
2081 /*
2082 * Audio driver
2083 */
2084
2085 /*
2086 * Must be called with sc_exlock held and without sc_lock held.
2087 */
2088 int
2089 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2090 struct lwp *l, audio_file_t **bellfile)
2091 {
2092 struct audio_info ai;
2093 struct file *fp;
2094 audio_file_t *af;
2095 audio_ring_t *hwbuf;
2096 bool fullduplex;
2097 bool cred_held;
2098 bool hw_opened;
2099 bool rmixer_started;
2100 int fd;
2101 int error;
2102
2103 KASSERT(sc->sc_exlock);
2104
2105 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2106 (audiodebug >= 3) ? "start " : "",
2107 ISDEVSOUND(dev) ? "sound" : "audio",
2108 flags, sc->sc_popens, sc->sc_ropens);
2109
2110 fp = NULL;
2111 cred_held = false;
2112 hw_opened = false;
2113 rmixer_started = false;
2114
2115 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2116 af->sc = sc;
2117 af->dev = dev;
2118 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2119 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2120 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2121 af->mode |= AUMODE_RECORD;
2122 if (af->mode == 0) {
2123 error = ENXIO;
2124 goto bad;
2125 }
2126
2127 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2128
2129 /*
2130 * On half duplex hardware,
2131 * 1. if mode is (PLAY | REC), let mode PLAY.
2132 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2133 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2134 */
2135 if (fullduplex == false) {
2136 if ((af->mode & AUMODE_PLAY)) {
2137 if (sc->sc_ropens != 0) {
2138 TRACE(1, "record track already exists");
2139 error = ENODEV;
2140 goto bad;
2141 }
2142 /* Play takes precedence */
2143 af->mode &= ~AUMODE_RECORD;
2144 }
2145 if ((af->mode & AUMODE_RECORD)) {
2146 if (sc->sc_popens != 0) {
2147 TRACE(1, "play track already exists");
2148 error = ENODEV;
2149 goto bad;
2150 }
2151 }
2152 }
2153
2154 /* Create tracks */
2155 if ((af->mode & AUMODE_PLAY))
2156 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2157 if ((af->mode & AUMODE_RECORD))
2158 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2159
2160 /* Set parameters */
2161 AUDIO_INITINFO(&ai);
2162 if (bellfile) {
2163 /* If audiobell, only sample_rate will be set later. */
2164 ai.play.sample_rate = audio_default.sample_rate;
2165 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2166 ai.play.channels = 1;
2167 ai.play.precision = 16;
2168 ai.play.pause = false;
2169 } else if (ISDEVAUDIO(dev)) {
2170 /* If /dev/audio, initialize everytime. */
2171 ai.play.sample_rate = audio_default.sample_rate;
2172 ai.play.encoding = audio_default.encoding;
2173 ai.play.channels = audio_default.channels;
2174 ai.play.precision = audio_default.precision;
2175 ai.play.pause = false;
2176 ai.record.sample_rate = audio_default.sample_rate;
2177 ai.record.encoding = audio_default.encoding;
2178 ai.record.channels = audio_default.channels;
2179 ai.record.precision = audio_default.precision;
2180 ai.record.pause = false;
2181 } else {
2182 /* If /dev/sound, take over the previous parameters. */
2183 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2184 ai.play.encoding = sc->sc_sound_pparams.encoding;
2185 ai.play.channels = sc->sc_sound_pparams.channels;
2186 ai.play.precision = sc->sc_sound_pparams.precision;
2187 ai.play.pause = sc->sc_sound_ppause;
2188 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2189 ai.record.encoding = sc->sc_sound_rparams.encoding;
2190 ai.record.channels = sc->sc_sound_rparams.channels;
2191 ai.record.precision = sc->sc_sound_rparams.precision;
2192 ai.record.pause = sc->sc_sound_rpause;
2193 }
2194 error = audio_file_setinfo(sc, af, &ai);
2195 if (error)
2196 goto bad;
2197
2198 if (sc->sc_popens + sc->sc_ropens == 0) {
2199 /* First open */
2200
2201 sc->sc_cred = kauth_cred_get();
2202 kauth_cred_hold(sc->sc_cred);
2203 cred_held = true;
2204
2205 if (sc->hw_if->open) {
2206 int hwflags;
2207
2208 /*
2209 * Call hw_if->open() only at first open of
2210 * combination of playback and recording.
2211 * On full duplex hardware, the flags passed to
2212 * hw_if->open() is always (FREAD | FWRITE)
2213 * regardless of this open()'s flags.
2214 * see also dev/isa/aria.c
2215 * On half duplex hardware, the flags passed to
2216 * hw_if->open() is either FREAD or FWRITE.
2217 * see also arch/evbarm/mini2440/audio_mini2440.c
2218 */
2219 if (fullduplex) {
2220 hwflags = FREAD | FWRITE;
2221 } else {
2222 /* Construct hwflags from af->mode. */
2223 hwflags = 0;
2224 if ((af->mode & AUMODE_PLAY) != 0)
2225 hwflags |= FWRITE;
2226 if ((af->mode & AUMODE_RECORD) != 0)
2227 hwflags |= FREAD;
2228 }
2229
2230 mutex_enter(sc->sc_lock);
2231 mutex_enter(sc->sc_intr_lock);
2232 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2233 mutex_exit(sc->sc_intr_lock);
2234 mutex_exit(sc->sc_lock);
2235 if (error)
2236 goto bad;
2237 }
2238 /*
2239 * Regardless of whether we called hw_if->open (whether
2240 * hw_if->open exists) or not, we move to the Opened phase
2241 * here. Therefore from this point, we have to call
2242 * hw_if->close (if exists) whenever abort.
2243 * Note that both of hw_if->{open,close} are optional.
2244 */
2245 hw_opened = true;
2246
2247 /*
2248 * Set speaker mode when a half duplex.
2249 * XXX I'm not sure this is correct.
2250 */
2251 if (1/*XXX*/) {
2252 if (sc->hw_if->speaker_ctl) {
2253 int on;
2254 if (af->ptrack) {
2255 on = 1;
2256 } else {
2257 on = 0;
2258 }
2259 mutex_enter(sc->sc_lock);
2260 mutex_enter(sc->sc_intr_lock);
2261 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2262 mutex_exit(sc->sc_intr_lock);
2263 mutex_exit(sc->sc_lock);
2264 if (error)
2265 goto bad;
2266 }
2267 }
2268 } else if (sc->sc_multiuser == false) {
2269 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2270 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2271 error = EPERM;
2272 goto bad;
2273 }
2274 }
2275
2276 /* Call init_output if this is the first playback open. */
2277 if (af->ptrack && sc->sc_popens == 0) {
2278 if (sc->hw_if->init_output) {
2279 hwbuf = &sc->sc_pmixer->hwbuf;
2280 mutex_enter(sc->sc_lock);
2281 mutex_enter(sc->sc_intr_lock);
2282 error = sc->hw_if->init_output(sc->hw_hdl,
2283 hwbuf->mem,
2284 hwbuf->capacity *
2285 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2286 mutex_exit(sc->sc_intr_lock);
2287 mutex_exit(sc->sc_lock);
2288 if (error)
2289 goto bad;
2290 }
2291 }
2292 /*
2293 * Call init_input and start rmixer, if this is the first recording
2294 * open. See pause consideration notes.
2295 */
2296 if (af->rtrack && sc->sc_ropens == 0) {
2297 if (sc->hw_if->init_input) {
2298 hwbuf = &sc->sc_rmixer->hwbuf;
2299 mutex_enter(sc->sc_lock);
2300 mutex_enter(sc->sc_intr_lock);
2301 error = sc->hw_if->init_input(sc->hw_hdl,
2302 hwbuf->mem,
2303 hwbuf->capacity *
2304 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2305 mutex_exit(sc->sc_intr_lock);
2306 mutex_exit(sc->sc_lock);
2307 if (error)
2308 goto bad;
2309 }
2310
2311 mutex_enter(sc->sc_lock);
2312 audio_rmixer_start(sc);
2313 mutex_exit(sc->sc_lock);
2314 rmixer_started = true;
2315 }
2316
2317 if (bellfile) {
2318 *bellfile = af;
2319 } else {
2320 error = fd_allocfile(&fp, &fd);
2321 if (error)
2322 goto bad;
2323
2324 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2325 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2326 }
2327
2328 /*
2329 * Count up finally.
2330 * Don't fail from here.
2331 */
2332 mutex_enter(sc->sc_lock);
2333 if (af->ptrack)
2334 sc->sc_popens++;
2335 if (af->rtrack)
2336 sc->sc_ropens++;
2337 mutex_enter(sc->sc_intr_lock);
2338 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2339 mutex_exit(sc->sc_intr_lock);
2340 mutex_exit(sc->sc_lock);
2341
2342 TRACEF(3, af, "done");
2343 return error;
2344
2345 bad:
2346 if (fp) {
2347 fd_abort(curproc, fp, fd);
2348 }
2349
2350 if (rmixer_started) {
2351 mutex_enter(sc->sc_lock);
2352 audio_rmixer_halt(sc);
2353 mutex_exit(sc->sc_lock);
2354 }
2355
2356 if (hw_opened) {
2357 if (sc->hw_if->close) {
2358 mutex_enter(sc->sc_lock);
2359 mutex_enter(sc->sc_intr_lock);
2360 sc->hw_if->close(sc->hw_hdl);
2361 mutex_exit(sc->sc_intr_lock);
2362 mutex_exit(sc->sc_lock);
2363 }
2364 }
2365 if (cred_held) {
2366 kauth_cred_free(sc->sc_cred);
2367 }
2368
2369 /*
2370 * Since track here is not yet linked to sc_files,
2371 * you can call track_destroy() without sc_intr_lock.
2372 */
2373 if (af->rtrack) {
2374 audio_track_destroy(af->rtrack);
2375 af->rtrack = NULL;
2376 }
2377 if (af->ptrack) {
2378 audio_track_destroy(af->ptrack);
2379 af->ptrack = NULL;
2380 }
2381
2382 kmem_free(af, sizeof(*af));
2383 return error;
2384 }
2385
2386 /*
2387 * Must be called without sc_lock nor sc_exlock held.
2388 */
2389 int
2390 audio_close(struct audio_softc *sc, audio_file_t *file)
2391 {
2392
2393 /* Protect entering new fileops to this file */
2394 atomic_store_relaxed(&file->dying, true);
2395
2396 /*
2397 * Drain first.
2398 * It must be done before unlinking(acquiring exlock).
2399 */
2400 if (file->ptrack) {
2401 mutex_enter(sc->sc_lock);
2402 audio_track_drain(sc, file->ptrack);
2403 mutex_exit(sc->sc_lock);
2404 }
2405
2406 return audio_unlink(sc, file);
2407 }
2408
2409 /*
2410 * Unlink this file, but not freeing memory here.
2411 * Must be called without sc_lock nor sc_exlock held.
2412 */
2413 int
2414 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2415 {
2416 int error;
2417
2418 mutex_enter(sc->sc_lock);
2419
2420 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2421 (audiodebug >= 3) ? "start " : "",
2422 (int)curproc->p_pid, (int)curlwp->l_lid,
2423 sc->sc_popens, sc->sc_ropens);
2424 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2425 "sc->sc_popens=%d, sc->sc_ropens=%d",
2426 sc->sc_popens, sc->sc_ropens);
2427
2428 /*
2429 * Acquire exlock to protect counters.
2430 * audio_exlock_enter() cannot be used here because we have to go
2431 * forward even if sc_dying is set.
2432 */
2433 while (__predict_false(sc->sc_exlock != 0)) {
2434 error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
2435 mstohz(AUDIO_TIMEOUT));
2436 /* XXX what should I do on error? */
2437 if (error == EWOULDBLOCK) {
2438 mutex_exit(sc->sc_lock);
2439 audio_printf(sc,
2440 "%s: cv_timedwait_sig failed: errno=%d\n",
2441 __func__, error);
2442 return error;
2443 }
2444 }
2445 sc->sc_exlock = 1;
2446
2447 device_active(sc->sc_dev, DVA_SYSTEM);
2448
2449 mutex_enter(sc->sc_intr_lock);
2450 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2451 mutex_exit(sc->sc_intr_lock);
2452
2453 if (file->ptrack) {
2454 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2455 file->ptrack->dropframes);
2456
2457 KASSERT(sc->sc_popens > 0);
2458 sc->sc_popens--;
2459
2460 /* Call hw halt_output if this is the last playback track. */
2461 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2462 error = audio_pmixer_halt(sc);
2463 if (error) {
2464 audio_printf(sc,
2465 "halt_output failed: errno=%d (ignored)\n",
2466 error);
2467 }
2468 }
2469
2470 /* Restore mixing volume if all tracks are gone. */
2471 if (sc->sc_popens == 0) {
2472 /* intr_lock is not necessary, but just manners. */
2473 mutex_enter(sc->sc_intr_lock);
2474 sc->sc_pmixer->volume = 256;
2475 sc->sc_pmixer->voltimer = 0;
2476 mutex_exit(sc->sc_intr_lock);
2477 }
2478 }
2479 if (file->rtrack) {
2480 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2481 file->rtrack->dropframes);
2482
2483 KASSERT(sc->sc_ropens > 0);
2484 sc->sc_ropens--;
2485
2486 /* Call hw halt_input if this is the last recording track. */
2487 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2488 error = audio_rmixer_halt(sc);
2489 if (error) {
2490 audio_printf(sc,
2491 "halt_input failed: errno=%d (ignored)\n",
2492 error);
2493 }
2494 }
2495
2496 }
2497
2498 /* Call hw close if this is the last track. */
2499 if (sc->sc_popens + sc->sc_ropens == 0) {
2500 if (sc->hw_if->close) {
2501 TRACE(2, "hw_if close");
2502 mutex_enter(sc->sc_intr_lock);
2503 sc->hw_if->close(sc->hw_hdl);
2504 mutex_exit(sc->sc_intr_lock);
2505 }
2506 }
2507
2508 mutex_exit(sc->sc_lock);
2509 if (sc->sc_popens + sc->sc_ropens == 0)
2510 kauth_cred_free(sc->sc_cred);
2511
2512 TRACE(3, "done");
2513 audio_exlock_exit(sc);
2514
2515 return 0;
2516 }
2517
2518 /*
2519 * Must be called without sc_lock nor sc_exlock held.
2520 */
2521 int
2522 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2523 audio_file_t *file)
2524 {
2525 audio_track_t *track;
2526 audio_ring_t *usrbuf;
2527 audio_ring_t *input;
2528 int error;
2529
2530 /*
2531 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2532 * However read() system call itself can be called because it's
2533 * opened with O_RDWR. So in this case, deny this read().
2534 */
2535 track = file->rtrack;
2536 if (track == NULL) {
2537 return EBADF;
2538 }
2539
2540 /* I think it's better than EINVAL. */
2541 if (track->mmapped)
2542 return EPERM;
2543
2544 TRACET(2, track, "resid=%zd", uio->uio_resid);
2545
2546 #ifdef AUDIO_PM_IDLE
2547 error = audio_exlock_mutex_enter(sc);
2548 if (error)
2549 return error;
2550
2551 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2552 device_active(&sc->sc_dev, DVA_SYSTEM);
2553
2554 /* In recording, unlike playback, read() never operates rmixer. */
2555
2556 audio_exlock_mutex_exit(sc);
2557 #endif
2558
2559 usrbuf = &track->usrbuf;
2560 input = track->input;
2561 error = 0;
2562
2563 while (uio->uio_resid > 0 && error == 0) {
2564 int bytes;
2565
2566 TRACET(3, track,
2567 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2568 uio->uio_resid,
2569 input->head, input->used, input->capacity,
2570 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2571
2572 /* Wait when buffers are empty. */
2573 mutex_enter(sc->sc_lock);
2574 for (;;) {
2575 bool empty;
2576 audio_track_lock_enter(track);
2577 empty = (input->used == 0 && usrbuf->used == 0);
2578 audio_track_lock_exit(track);
2579 if (!empty)
2580 break;
2581
2582 if ((ioflag & IO_NDELAY)) {
2583 mutex_exit(sc->sc_lock);
2584 return EWOULDBLOCK;
2585 }
2586
2587 TRACET(3, track, "sleep");
2588 error = audio_track_waitio(sc, track);
2589 if (error) {
2590 mutex_exit(sc->sc_lock);
2591 return error;
2592 }
2593 }
2594 mutex_exit(sc->sc_lock);
2595
2596 audio_track_lock_enter(track);
2597 audio_track_record(track);
2598
2599 /* uiomove from usrbuf as much as possible. */
2600 bytes = uimin(usrbuf->used, uio->uio_resid);
2601 while (bytes > 0) {
2602 int head = usrbuf->head;
2603 int len = uimin(bytes, usrbuf->capacity - head);
2604 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2605 uio);
2606 if (error) {
2607 audio_track_lock_exit(track);
2608 device_printf(sc->sc_dev,
2609 "%s: uiomove(%d) failed: errno=%d\n",
2610 __func__, len, error);
2611 goto abort;
2612 }
2613 auring_take(usrbuf, len);
2614 track->useriobytes += len;
2615 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2616 len,
2617 usrbuf->head, usrbuf->used, usrbuf->capacity);
2618 bytes -= len;
2619 }
2620
2621 audio_track_lock_exit(track);
2622 }
2623
2624 abort:
2625 return error;
2626 }
2627
2628
2629 /*
2630 * Clear file's playback and/or record track buffer immediately.
2631 */
2632 static void
2633 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2634 {
2635
2636 if (file->ptrack)
2637 audio_track_clear(sc, file->ptrack);
2638 if (file->rtrack)
2639 audio_track_clear(sc, file->rtrack);
2640 }
2641
2642 /*
2643 * Must be called without sc_lock nor sc_exlock held.
2644 */
2645 int
2646 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2647 audio_file_t *file)
2648 {
2649 audio_track_t *track;
2650 audio_ring_t *usrbuf;
2651 audio_ring_t *outbuf;
2652 int error;
2653
2654 track = file->ptrack;
2655 KASSERT(track);
2656
2657 /* I think it's better than EINVAL. */
2658 if (track->mmapped)
2659 return EPERM;
2660
2661 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2662 audiodebug >= 3 ? "begin " : "",
2663 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2664
2665 if (uio->uio_resid == 0) {
2666 track->eofcounter++;
2667 return 0;
2668 }
2669
2670 error = audio_exlock_mutex_enter(sc);
2671 if (error)
2672 return error;
2673
2674 #ifdef AUDIO_PM_IDLE
2675 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2676 device_active(&sc->sc_dev, DVA_SYSTEM);
2677 #endif
2678
2679 /*
2680 * The first write starts pmixer.
2681 */
2682 if (sc->sc_pbusy == false)
2683 audio_pmixer_start(sc, false);
2684 audio_exlock_mutex_exit(sc);
2685
2686 usrbuf = &track->usrbuf;
2687 outbuf = &track->outbuf;
2688 track->pstate = AUDIO_STATE_RUNNING;
2689 error = 0;
2690
2691 while (uio->uio_resid > 0 && error == 0) {
2692 int bytes;
2693
2694 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2695 uio->uio_resid,
2696 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2697
2698 /* Wait when buffers are full. */
2699 mutex_enter(sc->sc_lock);
2700 for (;;) {
2701 bool full;
2702 audio_track_lock_enter(track);
2703 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2704 outbuf->used >= outbuf->capacity);
2705 audio_track_lock_exit(track);
2706 if (!full)
2707 break;
2708
2709 if ((ioflag & IO_NDELAY)) {
2710 error = EWOULDBLOCK;
2711 mutex_exit(sc->sc_lock);
2712 goto abort;
2713 }
2714
2715 TRACET(3, track, "sleep usrbuf=%d/H%d",
2716 usrbuf->used, track->usrbuf_usedhigh);
2717 error = audio_track_waitio(sc, track);
2718 if (error) {
2719 mutex_exit(sc->sc_lock);
2720 goto abort;
2721 }
2722 }
2723 mutex_exit(sc->sc_lock);
2724
2725 audio_track_lock_enter(track);
2726
2727 /* uiomove to usrbuf as much as possible. */
2728 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2729 uio->uio_resid);
2730 while (bytes > 0) {
2731 int tail = auring_tail(usrbuf);
2732 int len = uimin(bytes, usrbuf->capacity - tail);
2733 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2734 uio);
2735 if (error) {
2736 audio_track_lock_exit(track);
2737 device_printf(sc->sc_dev,
2738 "%s: uiomove(%d) failed: errno=%d\n",
2739 __func__, len, error);
2740 goto abort;
2741 }
2742 auring_push(usrbuf, len);
2743 track->useriobytes += len;
2744 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2745 len,
2746 usrbuf->head, usrbuf->used, usrbuf->capacity);
2747 bytes -= len;
2748 }
2749
2750 /* Convert them as much as possible. */
2751 while (usrbuf->used >= track->usrbuf_blksize &&
2752 outbuf->used < outbuf->capacity) {
2753 audio_track_play(track);
2754 }
2755
2756 audio_track_lock_exit(track);
2757 }
2758
2759 abort:
2760 TRACET(3, track, "done error=%d", error);
2761 return error;
2762 }
2763
2764 /*
2765 * Must be called without sc_lock nor sc_exlock held.
2766 */
2767 int
2768 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2769 struct lwp *l, audio_file_t *file)
2770 {
2771 struct audio_offset *ao;
2772 struct audio_info ai;
2773 audio_track_t *track;
2774 audio_encoding_t *ae;
2775 audio_format_query_t *query;
2776 u_int stamp;
2777 u_int offs;
2778 int fd;
2779 int index;
2780 int error;
2781
2782 #if defined(AUDIO_DEBUG)
2783 const char *ioctlnames[] = {
2784 " AUDIO_GETINFO", /* 21 */
2785 " AUDIO_SETINFO", /* 22 */
2786 " AUDIO_DRAIN", /* 23 */
2787 " AUDIO_FLUSH", /* 24 */
2788 " AUDIO_WSEEK", /* 25 */
2789 " AUDIO_RERROR", /* 26 */
2790 " AUDIO_GETDEV", /* 27 */
2791 " AUDIO_GETENC", /* 28 */
2792 " AUDIO_GETFD", /* 29 */
2793 " AUDIO_SETFD", /* 30 */
2794 " AUDIO_PERROR", /* 31 */
2795 " AUDIO_GETIOFFS", /* 32 */
2796 " AUDIO_GETOOFFS", /* 33 */
2797 " AUDIO_GETPROPS", /* 34 */
2798 " AUDIO_GETBUFINFO", /* 35 */
2799 " AUDIO_SETCHAN", /* 36 */
2800 " AUDIO_GETCHAN", /* 37 */
2801 " AUDIO_QUERYFORMAT", /* 38 */
2802 " AUDIO_GETFORMAT", /* 39 */
2803 " AUDIO_SETFORMAT", /* 40 */
2804 };
2805 int nameidx = (cmd & 0xff);
2806 const char *ioctlname = "";
2807 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2808 ioctlname = ioctlnames[nameidx - 21];
2809 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2810 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2811 (int)curproc->p_pid, (int)l->l_lid);
2812 #endif
2813
2814 error = 0;
2815 switch (cmd) {
2816 case FIONBIO:
2817 /* All handled in the upper FS layer. */
2818 break;
2819
2820 case FIONREAD:
2821 /* Get the number of bytes that can be read. */
2822 if (file->rtrack) {
2823 *(int *)addr = audio_track_readablebytes(file->rtrack);
2824 } else {
2825 *(int *)addr = 0;
2826 }
2827 break;
2828
2829 case FIOASYNC:
2830 /* Set/Clear ASYNC I/O. */
2831 if (*(int *)addr) {
2832 file->async_audio = curproc->p_pid;
2833 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2834 } else {
2835 file->async_audio = 0;
2836 TRACEF(2, file, "FIOASYNC off");
2837 }
2838 break;
2839
2840 case AUDIO_FLUSH:
2841 /* XXX TODO: clear errors and restart? */
2842 audio_file_clear(sc, file);
2843 break;
2844
2845 case AUDIO_RERROR:
2846 /*
2847 * Number of read bytes dropped. We don't know where
2848 * or when they were dropped (including conversion stage).
2849 * Therefore, the number of accurate bytes or samples is
2850 * also unknown.
2851 */
2852 track = file->rtrack;
2853 if (track) {
2854 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2855 track->dropframes);
2856 }
2857 break;
2858
2859 case AUDIO_PERROR:
2860 /*
2861 * Number of write bytes dropped. We don't know where
2862 * or when they were dropped (including conversion stage).
2863 * Therefore, the number of accurate bytes or samples is
2864 * also unknown.
2865 */
2866 track = file->ptrack;
2867 if (track) {
2868 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2869 track->dropframes);
2870 }
2871 break;
2872
2873 case AUDIO_GETIOFFS:
2874 /* XXX TODO */
2875 ao = (struct audio_offset *)addr;
2876 ao->samples = 0;
2877 ao->deltablks = 0;
2878 ao->offset = 0;
2879 break;
2880
2881 case AUDIO_GETOOFFS:
2882 ao = (struct audio_offset *)addr;
2883 track = file->ptrack;
2884 if (track == NULL) {
2885 ao->samples = 0;
2886 ao->deltablks = 0;
2887 ao->offset = 0;
2888 break;
2889 }
2890 mutex_enter(sc->sc_lock);
2891 mutex_enter(sc->sc_intr_lock);
2892 /* figure out where next DMA will start */
2893 stamp = track->usrbuf_stamp;
2894 offs = track->usrbuf.head;
2895 mutex_exit(sc->sc_intr_lock);
2896 mutex_exit(sc->sc_lock);
2897
2898 ao->samples = stamp;
2899 ao->deltablks = (stamp / track->usrbuf_blksize) -
2900 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2901 track->usrbuf_stamp_last = stamp;
2902 offs = rounddown(offs, track->usrbuf_blksize)
2903 + track->usrbuf_blksize;
2904 if (offs >= track->usrbuf.capacity)
2905 offs -= track->usrbuf.capacity;
2906 ao->offset = offs;
2907
2908 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2909 ao->samples, ao->deltablks, ao->offset);
2910 break;
2911
2912 case AUDIO_WSEEK:
2913 /* XXX return value does not include outbuf one. */
2914 if (file->ptrack)
2915 *(u_long *)addr = file->ptrack->usrbuf.used;
2916 break;
2917
2918 case AUDIO_SETINFO:
2919 error = audio_exlock_enter(sc);
2920 if (error)
2921 break;
2922 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2923 if (error) {
2924 audio_exlock_exit(sc);
2925 break;
2926 }
2927 /* XXX TODO: update last_ai if /dev/sound ? */
2928 if (ISDEVSOUND(dev))
2929 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2930 audio_exlock_exit(sc);
2931 break;
2932
2933 case AUDIO_GETINFO:
2934 error = audio_exlock_enter(sc);
2935 if (error)
2936 break;
2937 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2938 audio_exlock_exit(sc);
2939 break;
2940
2941 case AUDIO_GETBUFINFO:
2942 error = audio_exlock_enter(sc);
2943 if (error)
2944 break;
2945 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2946 audio_exlock_exit(sc);
2947 break;
2948
2949 case AUDIO_DRAIN:
2950 if (file->ptrack) {
2951 mutex_enter(sc->sc_lock);
2952 error = audio_track_drain(sc, file->ptrack);
2953 mutex_exit(sc->sc_lock);
2954 }
2955 break;
2956
2957 case AUDIO_GETDEV:
2958 mutex_enter(sc->sc_lock);
2959 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2960 mutex_exit(sc->sc_lock);
2961 break;
2962
2963 case AUDIO_GETENC:
2964 ae = (audio_encoding_t *)addr;
2965 index = ae->index;
2966 if (index < 0 || index >= __arraycount(audio_encodings)) {
2967 error = EINVAL;
2968 break;
2969 }
2970 *ae = audio_encodings[index];
2971 ae->index = index;
2972 /*
2973 * EMULATED always.
2974 * EMULATED flag at that time used to mean that it could
2975 * not be passed directly to the hardware as-is. But
2976 * currently, all formats including hardware native is not
2977 * passed directly to the hardware. So I set EMULATED
2978 * flag for all formats.
2979 */
2980 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2981 break;
2982
2983 case AUDIO_GETFD:
2984 /*
2985 * Returns the current setting of full duplex mode.
2986 * If HW has full duplex mode and there are two mixers,
2987 * it is full duplex. Otherwise half duplex.
2988 */
2989 error = audio_exlock_enter(sc);
2990 if (error)
2991 break;
2992 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2993 && (sc->sc_pmixer && sc->sc_rmixer);
2994 audio_exlock_exit(sc);
2995 *(int *)addr = fd;
2996 break;
2997
2998 case AUDIO_GETPROPS:
2999 *(int *)addr = sc->sc_props;
3000 break;
3001
3002 case AUDIO_QUERYFORMAT:
3003 query = (audio_format_query_t *)addr;
3004 mutex_enter(sc->sc_lock);
3005 error = sc->hw_if->query_format(sc->hw_hdl, query);
3006 mutex_exit(sc->sc_lock);
3007 /* Hide internal infomations */
3008 query->fmt.driver_data = NULL;
3009 break;
3010
3011 case AUDIO_GETFORMAT:
3012 error = audio_exlock_enter(sc);
3013 if (error)
3014 break;
3015 audio_mixers_get_format(sc, (struct audio_info *)addr);
3016 audio_exlock_exit(sc);
3017 break;
3018
3019 case AUDIO_SETFORMAT:
3020 error = audio_exlock_enter(sc);
3021 audio_mixers_get_format(sc, &ai);
3022 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3023 if (error) {
3024 /* Rollback */
3025 audio_mixers_set_format(sc, &ai);
3026 }
3027 audio_exlock_exit(sc);
3028 break;
3029
3030 case AUDIO_SETFD:
3031 case AUDIO_SETCHAN:
3032 case AUDIO_GETCHAN:
3033 /* Obsoleted */
3034 break;
3035
3036 default:
3037 if (sc->hw_if->dev_ioctl) {
3038 mutex_enter(sc->sc_lock);
3039 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3040 cmd, addr, flag, l);
3041 mutex_exit(sc->sc_lock);
3042 } else {
3043 TRACEF(2, file, "unknown ioctl");
3044 error = EINVAL;
3045 }
3046 break;
3047 }
3048 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
3049 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
3050 error);
3051 return error;
3052 }
3053
3054 /*
3055 * Returns the number of bytes that can be read on recording buffer.
3056 */
3057 static __inline int
3058 audio_track_readablebytes(const audio_track_t *track)
3059 {
3060 int bytes;
3061
3062 KASSERT(track);
3063 KASSERT(track->mode == AUMODE_RECORD);
3064
3065 /*
3066 * Although usrbuf is primarily readable data, recorded data
3067 * also stays in track->input until reading. So it is necessary
3068 * to add it. track->input is in frame, usrbuf is in byte.
3069 */
3070 bytes = track->usrbuf.used +
3071 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3072 return bytes;
3073 }
3074
3075 /*
3076 * Must be called without sc_lock nor sc_exlock held.
3077 */
3078 int
3079 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3080 audio_file_t *file)
3081 {
3082 audio_track_t *track;
3083 int revents;
3084 bool in_is_valid;
3085 bool out_is_valid;
3086
3087 #if defined(AUDIO_DEBUG)
3088 #define POLLEV_BITMAP "\177\020" \
3089 "b\10WRBAND\0" \
3090 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3091 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3092 char evbuf[64];
3093 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3094 TRACEF(2, file, "pid=%d.%d events=%s",
3095 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3096 #endif
3097
3098 revents = 0;
3099 in_is_valid = false;
3100 out_is_valid = false;
3101 if (events & (POLLIN | POLLRDNORM)) {
3102 track = file->rtrack;
3103 if (track) {
3104 int used;
3105 in_is_valid = true;
3106 used = audio_track_readablebytes(track);
3107 if (used > 0)
3108 revents |= events & (POLLIN | POLLRDNORM);
3109 }
3110 }
3111 if (events & (POLLOUT | POLLWRNORM)) {
3112 track = file->ptrack;
3113 if (track) {
3114 out_is_valid = true;
3115 if (track->usrbuf.used <= track->usrbuf_usedlow)
3116 revents |= events & (POLLOUT | POLLWRNORM);
3117 }
3118 }
3119
3120 if (revents == 0) {
3121 mutex_enter(sc->sc_lock);
3122 if (in_is_valid) {
3123 TRACEF(3, file, "selrecord rsel");
3124 selrecord(l, &sc->sc_rsel);
3125 }
3126 if (out_is_valid) {
3127 TRACEF(3, file, "selrecord wsel");
3128 selrecord(l, &sc->sc_wsel);
3129 }
3130 mutex_exit(sc->sc_lock);
3131 }
3132
3133 #if defined(AUDIO_DEBUG)
3134 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3135 TRACEF(2, file, "revents=%s", evbuf);
3136 #endif
3137 return revents;
3138 }
3139
3140 static const struct filterops audioread_filtops = {
3141 .f_isfd = 1,
3142 .f_attach = NULL,
3143 .f_detach = filt_audioread_detach,
3144 .f_event = filt_audioread_event,
3145 };
3146
3147 static void
3148 filt_audioread_detach(struct knote *kn)
3149 {
3150 struct audio_softc *sc;
3151 audio_file_t *file;
3152
3153 file = kn->kn_hook;
3154 sc = file->sc;
3155 TRACEF(3, file, "called");
3156
3157 mutex_enter(sc->sc_lock);
3158 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
3159 mutex_exit(sc->sc_lock);
3160 }
3161
3162 static int
3163 filt_audioread_event(struct knote *kn, long hint)
3164 {
3165 audio_file_t *file;
3166 audio_track_t *track;
3167
3168 file = kn->kn_hook;
3169 track = file->rtrack;
3170
3171 /*
3172 * kn_data must contain the number of bytes can be read.
3173 * The return value indicates whether the event occurs or not.
3174 */
3175
3176 if (track == NULL) {
3177 /* can not read with this descriptor. */
3178 kn->kn_data = 0;
3179 return 0;
3180 }
3181
3182 kn->kn_data = audio_track_readablebytes(track);
3183 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3184 return kn->kn_data > 0;
3185 }
3186
3187 static const struct filterops audiowrite_filtops = {
3188 .f_isfd = 1,
3189 .f_attach = NULL,
3190 .f_detach = filt_audiowrite_detach,
3191 .f_event = filt_audiowrite_event,
3192 };
3193
3194 static void
3195 filt_audiowrite_detach(struct knote *kn)
3196 {
3197 struct audio_softc *sc;
3198 audio_file_t *file;
3199
3200 file = kn->kn_hook;
3201 sc = file->sc;
3202 TRACEF(3, file, "called");
3203
3204 mutex_enter(sc->sc_lock);
3205 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
3206 mutex_exit(sc->sc_lock);
3207 }
3208
3209 static int
3210 filt_audiowrite_event(struct knote *kn, long hint)
3211 {
3212 audio_file_t *file;
3213 audio_track_t *track;
3214
3215 file = kn->kn_hook;
3216 track = file->ptrack;
3217
3218 /*
3219 * kn_data must contain the number of bytes can be write.
3220 * The return value indicates whether the event occurs or not.
3221 */
3222
3223 if (track == NULL) {
3224 /* can not write with this descriptor. */
3225 kn->kn_data = 0;
3226 return 0;
3227 }
3228
3229 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3230 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3231 return (track->usrbuf.used < track->usrbuf_usedlow);
3232 }
3233
3234 /*
3235 * Must be called without sc_lock nor sc_exlock held.
3236 */
3237 int
3238 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3239 {
3240 struct klist *klist;
3241
3242 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3243
3244 mutex_enter(sc->sc_lock);
3245 switch (kn->kn_filter) {
3246 case EVFILT_READ:
3247 klist = &sc->sc_rsel.sel_klist;
3248 kn->kn_fop = &audioread_filtops;
3249 break;
3250
3251 case EVFILT_WRITE:
3252 klist = &sc->sc_wsel.sel_klist;
3253 kn->kn_fop = &audiowrite_filtops;
3254 break;
3255
3256 default:
3257 mutex_exit(sc->sc_lock);
3258 return EINVAL;
3259 }
3260
3261 kn->kn_hook = file;
3262
3263 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3264 mutex_exit(sc->sc_lock);
3265
3266 return 0;
3267 }
3268
3269 /*
3270 * Must be called without sc_lock nor sc_exlock held.
3271 */
3272 int
3273 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3274 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3275 audio_file_t *file)
3276 {
3277 audio_track_t *track;
3278 vsize_t vsize;
3279 int error;
3280
3281 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3282
3283 if (*offp < 0)
3284 return EINVAL;
3285
3286 #if 0
3287 /* XXX
3288 * The idea here was to use the protection to determine if
3289 * we are mapping the read or write buffer, but it fails.
3290 * The VM system is broken in (at least) two ways.
3291 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3292 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3293 * has to be used for mmapping the play buffer.
3294 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3295 * audio_mmap will get called at some point with VM_PROT_READ
3296 * only.
3297 * So, alas, we always map the play buffer for now.
3298 */
3299 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3300 prot == VM_PROT_WRITE)
3301 track = file->ptrack;
3302 else if (prot == VM_PROT_READ)
3303 track = file->rtrack;
3304 else
3305 return EINVAL;
3306 #else
3307 track = file->ptrack;
3308 #endif
3309 if (track == NULL)
3310 return EACCES;
3311
3312 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3313 if (len > vsize)
3314 return EOVERFLOW;
3315 if (*offp > (uint)(vsize - len))
3316 return EOVERFLOW;
3317
3318 /* XXX TODO: what happens when mmap twice. */
3319 if (!track->mmapped) {
3320 track->mmapped = true;
3321
3322 if (!track->is_pause) {
3323 error = audio_exlock_mutex_enter(sc);
3324 if (error)
3325 return error;
3326 if (sc->sc_pbusy == false)
3327 audio_pmixer_start(sc, true);
3328 audio_exlock_mutex_exit(sc);
3329 }
3330 /* XXX mmapping record buffer is not supported */
3331 }
3332
3333 /* get ringbuffer */
3334 *uobjp = track->uobj;
3335
3336 /* Acquire a reference for the mmap. munmap will release. */
3337 uao_reference(*uobjp);
3338 *maxprotp = prot;
3339 *advicep = UVM_ADV_RANDOM;
3340 *flagsp = MAP_SHARED;
3341 return 0;
3342 }
3343
3344 /*
3345 * /dev/audioctl has to be able to open at any time without interference
3346 * with any /dev/audio or /dev/sound.
3347 * Must be called with sc_exlock held and without sc_lock held.
3348 */
3349 static int
3350 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3351 struct lwp *l)
3352 {
3353 struct file *fp;
3354 audio_file_t *af;
3355 int fd;
3356 int error;
3357
3358 KASSERT(sc->sc_exlock);
3359
3360 TRACE(1, "called");
3361
3362 error = fd_allocfile(&fp, &fd);
3363 if (error)
3364 return error;
3365
3366 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3367 af->sc = sc;
3368 af->dev = dev;
3369
3370 /* Not necessary to insert sc_files. */
3371
3372 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3373 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3374
3375 return error;
3376 }
3377
3378 /*
3379 * Free 'mem' if available, and initialize the pointer.
3380 * For this reason, this is implemented as macro.
3381 */
3382 #define audio_free(mem) do { \
3383 if (mem != NULL) { \
3384 kern_free(mem); \
3385 mem = NULL; \
3386 } \
3387 } while (0)
3388
3389 /*
3390 * (Re)allocate 'memblock' with specified 'bytes'.
3391 * bytes must not be 0.
3392 * This function never returns NULL.
3393 */
3394 static void *
3395 audio_realloc(void *memblock, size_t bytes)
3396 {
3397
3398 KASSERT(bytes != 0);
3399 audio_free(memblock);
3400 return kern_malloc(bytes, M_WAITOK);
3401 }
3402
3403 /*
3404 * (Re)allocate usrbuf with 'newbufsize' bytes.
3405 * Use this function for usrbuf because only usrbuf can be mmapped.
3406 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3407 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3408 * and returns errno.
3409 * It must be called before updating usrbuf.capacity.
3410 */
3411 static int
3412 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3413 {
3414 struct audio_softc *sc;
3415 vaddr_t vstart;
3416 vsize_t oldvsize;
3417 vsize_t newvsize;
3418 int error;
3419
3420 KASSERT(newbufsize > 0);
3421 sc = track->mixer->sc;
3422
3423 /* Get a nonzero multiple of PAGE_SIZE */
3424 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3425
3426 if (track->usrbuf.mem != NULL) {
3427 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3428 PAGE_SIZE);
3429 if (oldvsize == newvsize) {
3430 track->usrbuf.capacity = newbufsize;
3431 return 0;
3432 }
3433 vstart = (vaddr_t)track->usrbuf.mem;
3434 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3435 /* uvm_unmap also detach uobj */
3436 track->uobj = NULL; /* paranoia */
3437 track->usrbuf.mem = NULL;
3438 }
3439
3440 /* Create a uvm anonymous object */
3441 track->uobj = uao_create(newvsize, 0);
3442
3443 /* Map it into the kernel virtual address space */
3444 vstart = 0;
3445 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3446 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3447 UVM_ADV_RANDOM, 0));
3448 if (error) {
3449 device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
3450 uao_detach(track->uobj); /* release reference */
3451 goto abort;
3452 }
3453
3454 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3455 false, 0);
3456 if (error) {
3457 device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
3458 error);
3459 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3460 /* uvm_unmap also detach uobj */
3461 goto abort;
3462 }
3463
3464 track->usrbuf.mem = (void *)vstart;
3465 track->usrbuf.capacity = newbufsize;
3466 memset(track->usrbuf.mem, 0, newvsize);
3467 return 0;
3468
3469 /* failure */
3470 abort:
3471 track->uobj = NULL; /* paranoia */
3472 track->usrbuf.mem = NULL;
3473 track->usrbuf.capacity = 0;
3474 return error;
3475 }
3476
3477 /*
3478 * Free usrbuf (if available).
3479 */
3480 static void
3481 audio_free_usrbuf(audio_track_t *track)
3482 {
3483 vaddr_t vstart;
3484 vsize_t vsize;
3485
3486 vstart = (vaddr_t)track->usrbuf.mem;
3487 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3488 if (track->usrbuf.mem != NULL) {
3489 /*
3490 * Unmap the kernel mapping. uvm_unmap releases the
3491 * reference to the uvm object, and this should be the
3492 * last virtual mapping of the uvm object, so no need
3493 * to explicitly release (`detach') the object.
3494 */
3495 uvm_unmap(kernel_map, vstart, vstart + vsize);
3496
3497 track->uobj = NULL;
3498 track->usrbuf.mem = NULL;
3499 track->usrbuf.capacity = 0;
3500 }
3501 }
3502
3503 /*
3504 * This filter changes the volume for each channel.
3505 * arg->context points track->ch_volume[].
3506 */
3507 static void
3508 audio_track_chvol(audio_filter_arg_t *arg)
3509 {
3510 int16_t *ch_volume;
3511 const aint_t *s;
3512 aint_t *d;
3513 u_int i;
3514 u_int ch;
3515 u_int channels;
3516
3517 DIAGNOSTIC_filter_arg(arg);
3518 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3519 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3520 arg->srcfmt->channels, arg->dstfmt->channels);
3521 KASSERT(arg->context != NULL);
3522 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3523 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3524
3525 s = arg->src;
3526 d = arg->dst;
3527 ch_volume = arg->context;
3528
3529 channels = arg->srcfmt->channels;
3530 for (i = 0; i < arg->count; i++) {
3531 for (ch = 0; ch < channels; ch++) {
3532 aint2_t val;
3533 val = *s++;
3534 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3535 *d++ = (aint_t)val;
3536 }
3537 }
3538 }
3539
3540 /*
3541 * This filter performs conversion from stereo (or more channels) to mono.
3542 */
3543 static void
3544 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3545 {
3546 const aint_t *s;
3547 aint_t *d;
3548 u_int i;
3549
3550 DIAGNOSTIC_filter_arg(arg);
3551
3552 s = arg->src;
3553 d = arg->dst;
3554
3555 for (i = 0; i < arg->count; i++) {
3556 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3557 s += arg->srcfmt->channels;
3558 }
3559 }
3560
3561 /*
3562 * This filter performs conversion from mono to stereo (or more channels).
3563 */
3564 static void
3565 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3566 {
3567 const aint_t *s;
3568 aint_t *d;
3569 u_int i;
3570 u_int ch;
3571 u_int dstchannels;
3572
3573 DIAGNOSTIC_filter_arg(arg);
3574
3575 s = arg->src;
3576 d = arg->dst;
3577 dstchannels = arg->dstfmt->channels;
3578
3579 for (i = 0; i < arg->count; i++) {
3580 d[0] = s[0];
3581 d[1] = s[0];
3582 s++;
3583 d += dstchannels;
3584 }
3585 if (dstchannels > 2) {
3586 d = arg->dst;
3587 for (i = 0; i < arg->count; i++) {
3588 for (ch = 2; ch < dstchannels; ch++) {
3589 d[ch] = 0;
3590 }
3591 d += dstchannels;
3592 }
3593 }
3594 }
3595
3596 /*
3597 * This filter shrinks M channels into N channels.
3598 * Extra channels are discarded.
3599 */
3600 static void
3601 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3602 {
3603 const aint_t *s;
3604 aint_t *d;
3605 u_int i;
3606 u_int ch;
3607
3608 DIAGNOSTIC_filter_arg(arg);
3609
3610 s = arg->src;
3611 d = arg->dst;
3612
3613 for (i = 0; i < arg->count; i++) {
3614 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3615 *d++ = s[ch];
3616 }
3617 s += arg->srcfmt->channels;
3618 }
3619 }
3620
3621 /*
3622 * This filter expands M channels into N channels.
3623 * Silence is inserted for missing channels.
3624 */
3625 static void
3626 audio_track_chmix_expand(audio_filter_arg_t *arg)
3627 {
3628 const aint_t *s;
3629 aint_t *d;
3630 u_int i;
3631 u_int ch;
3632 u_int srcchannels;
3633 u_int dstchannels;
3634
3635 DIAGNOSTIC_filter_arg(arg);
3636
3637 s = arg->src;
3638 d = arg->dst;
3639
3640 srcchannels = arg->srcfmt->channels;
3641 dstchannels = arg->dstfmt->channels;
3642 for (i = 0; i < arg->count; i++) {
3643 for (ch = 0; ch < srcchannels; ch++) {
3644 *d++ = *s++;
3645 }
3646 for (; ch < dstchannels; ch++) {
3647 *d++ = 0;
3648 }
3649 }
3650 }
3651
3652 /*
3653 * This filter performs frequency conversion (up sampling).
3654 * It uses linear interpolation.
3655 */
3656 static void
3657 audio_track_freq_up(audio_filter_arg_t *arg)
3658 {
3659 audio_track_t *track;
3660 audio_ring_t *src;
3661 audio_ring_t *dst;
3662 const aint_t *s;
3663 aint_t *d;
3664 aint_t prev[AUDIO_MAX_CHANNELS];
3665 aint_t curr[AUDIO_MAX_CHANNELS];
3666 aint_t grad[AUDIO_MAX_CHANNELS];
3667 u_int i;
3668 u_int t;
3669 u_int step;
3670 u_int channels;
3671 u_int ch;
3672 int srcused;
3673
3674 track = arg->context;
3675 KASSERT(track);
3676 src = &track->freq.srcbuf;
3677 dst = track->freq.dst;
3678 DIAGNOSTIC_ring(dst);
3679 DIAGNOSTIC_ring(src);
3680 KASSERT(src->used > 0);
3681 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3682 "src->fmt.channels=%d dst->fmt.channels=%d",
3683 src->fmt.channels, dst->fmt.channels);
3684 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3685 "src->head=%d track->mixer->frames_per_block=%d",
3686 src->head, track->mixer->frames_per_block);
3687
3688 s = arg->src;
3689 d = arg->dst;
3690
3691 /*
3692 * In order to faciliate interpolation for each block, slide (delay)
3693 * input by one sample. As a result, strictly speaking, the output
3694 * phase is delayed by 1/dstfreq. However, I believe there is no
3695 * observable impact.
3696 *
3697 * Example)
3698 * srcfreq:dstfreq = 1:3
3699 *
3700 * A - -
3701 * |
3702 * |
3703 * | B - -
3704 * +-----+-----> input timeframe
3705 * 0 1
3706 *
3707 * 0 1
3708 * +-----+-----> input timeframe
3709 * | A
3710 * | x x
3711 * | x x
3712 * x (B)
3713 * +-+-+-+-+-+-> output timeframe
3714 * 0 1 2 3 4 5
3715 */
3716
3717 /* Last samples in previous block */
3718 channels = src->fmt.channels;
3719 for (ch = 0; ch < channels; ch++) {
3720 prev[ch] = track->freq_prev[ch];
3721 curr[ch] = track->freq_curr[ch];
3722 grad[ch] = curr[ch] - prev[ch];
3723 }
3724
3725 step = track->freq_step;
3726 t = track->freq_current;
3727 //#define FREQ_DEBUG
3728 #if defined(FREQ_DEBUG)
3729 #define PRINTF(fmt...) printf(fmt)
3730 #else
3731 #define PRINTF(fmt...) do { } while (0)
3732 #endif
3733 srcused = src->used;
3734 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3735 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3736 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3737 PRINTF(" t=%d\n", t);
3738
3739 for (i = 0; i < arg->count; i++) {
3740 PRINTF("i=%d t=%5d", i, t);
3741 if (t >= 65536) {
3742 for (ch = 0; ch < channels; ch++) {
3743 prev[ch] = curr[ch];
3744 curr[ch] = *s++;
3745 grad[ch] = curr[ch] - prev[ch];
3746 }
3747 PRINTF(" prev=%d s[%d]=%d",
3748 prev[0], src->used - srcused, curr[0]);
3749
3750 /* Update */
3751 t -= 65536;
3752 srcused--;
3753 if (srcused < 0) {
3754 PRINTF(" break\n");
3755 break;
3756 }
3757 }
3758
3759 for (ch = 0; ch < channels; ch++) {
3760 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3761 #if defined(FREQ_DEBUG)
3762 if (ch == 0)
3763 printf(" t=%5d *d=%d", t, d[-1]);
3764 #endif
3765 }
3766 t += step;
3767
3768 PRINTF("\n");
3769 }
3770 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3771
3772 auring_take(src, src->used);
3773 auring_push(dst, i);
3774
3775 /* Adjust */
3776 t += track->freq_leap;
3777
3778 track->freq_current = t;
3779 for (ch = 0; ch < channels; ch++) {
3780 track->freq_prev[ch] = prev[ch];
3781 track->freq_curr[ch] = curr[ch];
3782 }
3783 }
3784
3785 /*
3786 * This filter performs frequency conversion (down sampling).
3787 * It uses simple thinning.
3788 */
3789 static void
3790 audio_track_freq_down(audio_filter_arg_t *arg)
3791 {
3792 audio_track_t *track;
3793 audio_ring_t *src;
3794 audio_ring_t *dst;
3795 const aint_t *s0;
3796 aint_t *d;
3797 u_int i;
3798 u_int t;
3799 u_int step;
3800 u_int ch;
3801 u_int channels;
3802
3803 track = arg->context;
3804 KASSERT(track);
3805 src = &track->freq.srcbuf;
3806 dst = track->freq.dst;
3807
3808 DIAGNOSTIC_ring(dst);
3809 DIAGNOSTIC_ring(src);
3810 KASSERT(src->used > 0);
3811 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3812 "src->fmt.channels=%d dst->fmt.channels=%d",
3813 src->fmt.channels, dst->fmt.channels);
3814 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3815 "src->head=%d track->mixer->frames_per_block=%d",
3816 src->head, track->mixer->frames_per_block);
3817
3818 s0 = arg->src;
3819 d = arg->dst;
3820 t = track->freq_current;
3821 step = track->freq_step;
3822 channels = dst->fmt.channels;
3823 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3824 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3825 PRINTF(" t=%d\n", t);
3826
3827 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3828 const aint_t *s;
3829 PRINTF("i=%4d t=%10d", i, t);
3830 s = s0 + (t / 65536) * channels;
3831 PRINTF(" s=%5ld", (s - s0) / channels);
3832 for (ch = 0; ch < channels; ch++) {
3833 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3834 *d++ = s[ch];
3835 }
3836 PRINTF("\n");
3837 t += step;
3838 }
3839 t += track->freq_leap;
3840 PRINTF("end t=%d\n", t);
3841 auring_take(src, src->used);
3842 auring_push(dst, i);
3843 track->freq_current = t % 65536;
3844 }
3845
3846 /*
3847 * Creates track and returns it.
3848 * Must be called without sc_lock held.
3849 */
3850 audio_track_t *
3851 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3852 {
3853 audio_track_t *track;
3854 static int newid = 0;
3855
3856 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3857
3858 track->id = newid++;
3859 track->mixer = mixer;
3860 track->mode = mixer->mode;
3861
3862 /* Do TRACE after id is assigned. */
3863 TRACET(3, track, "for %s",
3864 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3865
3866 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3867 track->volume = 256;
3868 #endif
3869 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3870 track->ch_volume[i] = 256;
3871 }
3872
3873 return track;
3874 }
3875
3876 /*
3877 * Release all resources of the track and track itself.
3878 * track must not be NULL. Don't specify the track within the file
3879 * structure linked from sc->sc_files.
3880 */
3881 static void
3882 audio_track_destroy(audio_track_t *track)
3883 {
3884
3885 KASSERT(track);
3886
3887 audio_free_usrbuf(track);
3888 audio_free(track->codec.srcbuf.mem);
3889 audio_free(track->chvol.srcbuf.mem);
3890 audio_free(track->chmix.srcbuf.mem);
3891 audio_free(track->freq.srcbuf.mem);
3892 audio_free(track->outbuf.mem);
3893
3894 kmem_free(track, sizeof(*track));
3895 }
3896
3897 /*
3898 * It returns encoding conversion filter according to src and dst format.
3899 * If it is not a convertible pair, it returns NULL. Either src or dst
3900 * must be internal format.
3901 */
3902 static audio_filter_t
3903 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3904 const audio_format2_t *dst)
3905 {
3906
3907 if (audio_format2_is_internal(src)) {
3908 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3909 return audio_internal_to_mulaw;
3910 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3911 return audio_internal_to_alaw;
3912 } else if (audio_format2_is_linear(dst)) {
3913 switch (dst->stride) {
3914 case 8:
3915 return audio_internal_to_linear8;
3916 case 16:
3917 return audio_internal_to_linear16;
3918 #if defined(AUDIO_SUPPORT_LINEAR24)
3919 case 24:
3920 return audio_internal_to_linear24;
3921 #endif
3922 case 32:
3923 return audio_internal_to_linear32;
3924 default:
3925 TRACET(1, track, "unsupported %s stride %d",
3926 "dst", dst->stride);
3927 goto abort;
3928 }
3929 }
3930 } else if (audio_format2_is_internal(dst)) {
3931 if (src->encoding == AUDIO_ENCODING_ULAW) {
3932 return audio_mulaw_to_internal;
3933 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3934 return audio_alaw_to_internal;
3935 } else if (audio_format2_is_linear(src)) {
3936 switch (src->stride) {
3937 case 8:
3938 return audio_linear8_to_internal;
3939 case 16:
3940 return audio_linear16_to_internal;
3941 #if defined(AUDIO_SUPPORT_LINEAR24)
3942 case 24:
3943 return audio_linear24_to_internal;
3944 #endif
3945 case 32:
3946 return audio_linear32_to_internal;
3947 default:
3948 TRACET(1, track, "unsupported %s stride %d",
3949 "src", src->stride);
3950 goto abort;
3951 }
3952 }
3953 }
3954
3955 TRACET(1, track, "unsupported encoding");
3956 abort:
3957 #if defined(AUDIO_DEBUG)
3958 if (audiodebug >= 2) {
3959 char buf[100];
3960 audio_format2_tostr(buf, sizeof(buf), src);
3961 TRACET(2, track, "src %s", buf);
3962 audio_format2_tostr(buf, sizeof(buf), dst);
3963 TRACET(2, track, "dst %s", buf);
3964 }
3965 #endif
3966 return NULL;
3967 }
3968
3969 /*
3970 * Initialize the codec stage of this track as necessary.
3971 * If successful, it initializes the codec stage as necessary, stores updated
3972 * last_dst in *last_dstp in any case, and returns 0.
3973 * Otherwise, it returns errno without modifying *last_dstp.
3974 */
3975 static int
3976 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3977 {
3978 audio_ring_t *last_dst;
3979 audio_ring_t *srcbuf;
3980 audio_format2_t *srcfmt;
3981 audio_format2_t *dstfmt;
3982 audio_filter_arg_t *arg;
3983 u_int len;
3984 int error;
3985
3986 KASSERT(track);
3987
3988 last_dst = *last_dstp;
3989 dstfmt = &last_dst->fmt;
3990 srcfmt = &track->inputfmt;
3991 srcbuf = &track->codec.srcbuf;
3992 error = 0;
3993
3994 if (srcfmt->encoding != dstfmt->encoding
3995 || srcfmt->precision != dstfmt->precision
3996 || srcfmt->stride != dstfmt->stride) {
3997 track->codec.dst = last_dst;
3998
3999 srcbuf->fmt = *dstfmt;
4000 srcbuf->fmt.encoding = srcfmt->encoding;
4001 srcbuf->fmt.precision = srcfmt->precision;
4002 srcbuf->fmt.stride = srcfmt->stride;
4003
4004 track->codec.filter = audio_track_get_codec(track,
4005 &srcbuf->fmt, dstfmt);
4006 if (track->codec.filter == NULL) {
4007 error = EINVAL;
4008 goto abort;
4009 }
4010
4011 srcbuf->head = 0;
4012 srcbuf->used = 0;
4013 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4014 len = auring_bytelen(srcbuf);
4015 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4016
4017 arg = &track->codec.arg;
4018 arg->srcfmt = &srcbuf->fmt;
4019 arg->dstfmt = dstfmt;
4020 arg->context = NULL;
4021
4022 *last_dstp = srcbuf;
4023 return 0;
4024 }
4025
4026 abort:
4027 track->codec.filter = NULL;
4028 audio_free(srcbuf->mem);
4029 return error;
4030 }
4031
4032 /*
4033 * Initialize the chvol stage of this track as necessary.
4034 * If successful, it initializes the chvol stage as necessary, stores updated
4035 * last_dst in *last_dstp in any case, and returns 0.
4036 * Otherwise, it returns errno without modifying *last_dstp.
4037 */
4038 static int
4039 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4040 {
4041 audio_ring_t *last_dst;
4042 audio_ring_t *srcbuf;
4043 audio_format2_t *srcfmt;
4044 audio_format2_t *dstfmt;
4045 audio_filter_arg_t *arg;
4046 u_int len;
4047 int error;
4048
4049 KASSERT(track);
4050
4051 last_dst = *last_dstp;
4052 dstfmt = &last_dst->fmt;
4053 srcfmt = &track->inputfmt;
4054 srcbuf = &track->chvol.srcbuf;
4055 error = 0;
4056
4057 /* Check whether channel volume conversion is necessary. */
4058 bool use_chvol = false;
4059 for (int ch = 0; ch < srcfmt->channels; ch++) {
4060 if (track->ch_volume[ch] != 256) {
4061 use_chvol = true;
4062 break;
4063 }
4064 }
4065
4066 if (use_chvol == true) {
4067 track->chvol.dst = last_dst;
4068 track->chvol.filter = audio_track_chvol;
4069
4070 srcbuf->fmt = *dstfmt;
4071 /* no format conversion occurs */
4072
4073 srcbuf->head = 0;
4074 srcbuf->used = 0;
4075 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4076 len = auring_bytelen(srcbuf);
4077 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4078
4079 arg = &track->chvol.arg;
4080 arg->srcfmt = &srcbuf->fmt;
4081 arg->dstfmt = dstfmt;
4082 arg->context = track->ch_volume;
4083
4084 *last_dstp = srcbuf;
4085 return 0;
4086 }
4087
4088 track->chvol.filter = NULL;
4089 audio_free(srcbuf->mem);
4090 return error;
4091 }
4092
4093 /*
4094 * Initialize the chmix stage of this track as necessary.
4095 * If successful, it initializes the chmix stage as necessary, stores updated
4096 * last_dst in *last_dstp in any case, and returns 0.
4097 * Otherwise, it returns errno without modifying *last_dstp.
4098 */
4099 static int
4100 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4101 {
4102 audio_ring_t *last_dst;
4103 audio_ring_t *srcbuf;
4104 audio_format2_t *srcfmt;
4105 audio_format2_t *dstfmt;
4106 audio_filter_arg_t *arg;
4107 u_int srcch;
4108 u_int dstch;
4109 u_int len;
4110 int error;
4111
4112 KASSERT(track);
4113
4114 last_dst = *last_dstp;
4115 dstfmt = &last_dst->fmt;
4116 srcfmt = &track->inputfmt;
4117 srcbuf = &track->chmix.srcbuf;
4118 error = 0;
4119
4120 srcch = srcfmt->channels;
4121 dstch = dstfmt->channels;
4122 if (srcch != dstch) {
4123 track->chmix.dst = last_dst;
4124
4125 if (srcch >= 2 && dstch == 1) {
4126 track->chmix.filter = audio_track_chmix_mixLR;
4127 } else if (srcch == 1 && dstch >= 2) {
4128 track->chmix.filter = audio_track_chmix_dupLR;
4129 } else if (srcch > dstch) {
4130 track->chmix.filter = audio_track_chmix_shrink;
4131 } else {
4132 track->chmix.filter = audio_track_chmix_expand;
4133 }
4134
4135 srcbuf->fmt = *dstfmt;
4136 srcbuf->fmt.channels = srcch;
4137
4138 srcbuf->head = 0;
4139 srcbuf->used = 0;
4140 /* XXX The buffer size should be able to calculate. */
4141 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4142 len = auring_bytelen(srcbuf);
4143 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4144
4145 arg = &track->chmix.arg;
4146 arg->srcfmt = &srcbuf->fmt;
4147 arg->dstfmt = dstfmt;
4148 arg->context = NULL;
4149
4150 *last_dstp = srcbuf;
4151 return 0;
4152 }
4153
4154 track->chmix.filter = NULL;
4155 audio_free(srcbuf->mem);
4156 return error;
4157 }
4158
4159 /*
4160 * Initialize the freq stage of this track as necessary.
4161 * If successful, it initializes the freq stage as necessary, stores updated
4162 * last_dst in *last_dstp in any case, and returns 0.
4163 * Otherwise, it returns errno without modifying *last_dstp.
4164 */
4165 static int
4166 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4167 {
4168 audio_ring_t *last_dst;
4169 audio_ring_t *srcbuf;
4170 audio_format2_t *srcfmt;
4171 audio_format2_t *dstfmt;
4172 audio_filter_arg_t *arg;
4173 uint32_t srcfreq;
4174 uint32_t dstfreq;
4175 u_int dst_capacity;
4176 u_int mod;
4177 u_int len;
4178 int error;
4179
4180 KASSERT(track);
4181
4182 last_dst = *last_dstp;
4183 dstfmt = &last_dst->fmt;
4184 srcfmt = &track->inputfmt;
4185 srcbuf = &track->freq.srcbuf;
4186 error = 0;
4187
4188 srcfreq = srcfmt->sample_rate;
4189 dstfreq = dstfmt->sample_rate;
4190 if (srcfreq != dstfreq) {
4191 track->freq.dst = last_dst;
4192
4193 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4194 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4195
4196 /* freq_step is the ratio of src/dst when let dst 65536. */
4197 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4198
4199 dst_capacity = frame_per_block(track->mixer, dstfmt);
4200 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4201 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4202
4203 if (track->freq_step < 65536) {
4204 track->freq.filter = audio_track_freq_up;
4205 /* In order to carry at the first time. */
4206 track->freq_current = 65536;
4207 } else {
4208 track->freq.filter = audio_track_freq_down;
4209 track->freq_current = 0;
4210 }
4211
4212 srcbuf->fmt = *dstfmt;
4213 srcbuf->fmt.sample_rate = srcfreq;
4214
4215 srcbuf->head = 0;
4216 srcbuf->used = 0;
4217 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4218 len = auring_bytelen(srcbuf);
4219 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4220
4221 arg = &track->freq.arg;
4222 arg->srcfmt = &srcbuf->fmt;
4223 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4224 arg->context = track;
4225
4226 *last_dstp = srcbuf;
4227 return 0;
4228 }
4229
4230 track->freq.filter = NULL;
4231 audio_free(srcbuf->mem);
4232 return error;
4233 }
4234
4235 /*
4236 * When playing back: (e.g. if codec and freq stage are valid)
4237 *
4238 * write
4239 * | uiomove
4240 * v
4241 * usrbuf [...............] byte ring buffer (mmap-able)
4242 * | memcpy
4243 * v
4244 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4245 * .dst ----+
4246 * | convert
4247 * v
4248 * freq.srcbuf [....] 1 block (ring) buffer
4249 * .dst ----+
4250 * | convert
4251 * v
4252 * outbuf [...............] NBLKOUT blocks ring buffer
4253 *
4254 *
4255 * When recording:
4256 *
4257 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4258 * .dst ----+
4259 * | convert
4260 * v
4261 * codec.srcbuf[.....] 1 block (ring) buffer
4262 * .dst ----+
4263 * | convert
4264 * v
4265 * outbuf [.....] 1 block (ring) buffer
4266 * | memcpy
4267 * v
4268 * usrbuf [...............] byte ring buffer (mmap-able *)
4269 * | uiomove
4270 * v
4271 * read
4272 *
4273 * *: usrbuf for recording is also mmap-able due to symmetry with
4274 * playback buffer, but for now mmap will never happen for recording.
4275 */
4276
4277 /*
4278 * Set the userland format of this track.
4279 * usrfmt argument should be parameter verified with audio_check_params().
4280 * It will release and reallocate all internal conversion buffers.
4281 * It returns 0 if successful. Otherwise it returns errno with clearing all
4282 * internal buffers.
4283 * It must be called without sc_intr_lock since uvm_* routines require non
4284 * intr_lock state.
4285 * It must be called with track lock held since it may release and reallocate
4286 * outbuf.
4287 */
4288 static int
4289 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4290 {
4291 struct audio_softc *sc;
4292 u_int newbufsize;
4293 u_int oldblksize;
4294 u_int len;
4295 int error;
4296
4297 KASSERT(track);
4298 sc = track->mixer->sc;
4299
4300 /* usrbuf is the closest buffer to the userland. */
4301 track->usrbuf.fmt = *usrfmt;
4302
4303 /*
4304 * For references, one block size (in 40msec) is:
4305 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4306 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4307 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4308 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4309 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4310 *
4311 * For example,
4312 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4313 * newbufsize = rounddown(65536 / 7056) = 63504
4314 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4315 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4316 *
4317 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4318 * newbufsize = rounddown(65536 / 7680) = 61440
4319 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4320 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4321 */
4322 oldblksize = track->usrbuf_blksize;
4323 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4324 frame_per_block(track->mixer, &track->usrbuf.fmt));
4325 track->usrbuf.head = 0;
4326 track->usrbuf.used = 0;
4327 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4328 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4329 error = audio_realloc_usrbuf(track, newbufsize);
4330 if (error) {
4331 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4332 newbufsize);
4333 goto error;
4334 }
4335
4336 /* Recalc water mark. */
4337 if (track->usrbuf_blksize != oldblksize) {
4338 if (audio_track_is_playback(track)) {
4339 /* Set high at 100%, low at 75%. */
4340 track->usrbuf_usedhigh = track->usrbuf.capacity;
4341 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4342 } else {
4343 /* Set high at 100% minus 1block(?), low at 0% */
4344 track->usrbuf_usedhigh = track->usrbuf.capacity -
4345 track->usrbuf_blksize;
4346 track->usrbuf_usedlow = 0;
4347 }
4348 }
4349
4350 /* Stage buffer */
4351 audio_ring_t *last_dst = &track->outbuf;
4352 if (audio_track_is_playback(track)) {
4353 /* On playback, initialize from the mixer side in order. */
4354 track->inputfmt = *usrfmt;
4355 track->outbuf.fmt = track->mixer->track_fmt;
4356
4357 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4358 goto error;
4359 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4360 goto error;
4361 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4362 goto error;
4363 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4364 goto error;
4365 } else {
4366 /* On recording, initialize from userland side in order. */
4367 track->inputfmt = track->mixer->track_fmt;
4368 track->outbuf.fmt = *usrfmt;
4369
4370 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4371 goto error;
4372 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4373 goto error;
4374 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4375 goto error;
4376 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4377 goto error;
4378 }
4379 #if 0
4380 /* debug */
4381 if (track->freq.filter) {
4382 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4383 audio_print_format2("freq dst", &track->freq.dst->fmt);
4384 }
4385 if (track->chmix.filter) {
4386 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4387 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4388 }
4389 if (track->chvol.filter) {
4390 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4391 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4392 }
4393 if (track->codec.filter) {
4394 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4395 audio_print_format2("codec dst", &track->codec.dst->fmt);
4396 }
4397 #endif
4398
4399 /* Stage input buffer */
4400 track->input = last_dst;
4401
4402 /*
4403 * On the recording track, make the first stage a ring buffer.
4404 * XXX is there a better way?
4405 */
4406 if (audio_track_is_record(track)) {
4407 track->input->capacity = NBLKOUT *
4408 frame_per_block(track->mixer, &track->input->fmt);
4409 len = auring_bytelen(track->input);
4410 track->input->mem = audio_realloc(track->input->mem, len);
4411 }
4412
4413 /*
4414 * Output buffer.
4415 * On the playback track, its capacity is NBLKOUT blocks.
4416 * On the recording track, its capacity is 1 block.
4417 */
4418 track->outbuf.head = 0;
4419 track->outbuf.used = 0;
4420 track->outbuf.capacity = frame_per_block(track->mixer,
4421 &track->outbuf.fmt);
4422 if (audio_track_is_playback(track))
4423 track->outbuf.capacity *= NBLKOUT;
4424 len = auring_bytelen(&track->outbuf);
4425 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4426 if (track->outbuf.mem == NULL) {
4427 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4428 error = ENOMEM;
4429 goto error;
4430 }
4431
4432 #if defined(AUDIO_DEBUG)
4433 if (audiodebug >= 3) {
4434 struct audio_track_debugbuf m;
4435
4436 memset(&m, 0, sizeof(m));
4437 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4438 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4439 if (track->freq.filter)
4440 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4441 track->freq.srcbuf.capacity *
4442 frametobyte(&track->freq.srcbuf.fmt, 1));
4443 if (track->chmix.filter)
4444 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4445 track->chmix.srcbuf.capacity *
4446 frametobyte(&track->chmix.srcbuf.fmt, 1));
4447 if (track->chvol.filter)
4448 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4449 track->chvol.srcbuf.capacity *
4450 frametobyte(&track->chvol.srcbuf.fmt, 1));
4451 if (track->codec.filter)
4452 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4453 track->codec.srcbuf.capacity *
4454 frametobyte(&track->codec.srcbuf.fmt, 1));
4455 snprintf(m.usrbuf, sizeof(m.usrbuf),
4456 " usr=%d", track->usrbuf.capacity);
4457
4458 if (audio_track_is_playback(track)) {
4459 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4460 m.outbuf, m.freq, m.chmix,
4461 m.chvol, m.codec, m.usrbuf);
4462 } else {
4463 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4464 m.freq, m.chmix, m.chvol,
4465 m.codec, m.outbuf, m.usrbuf);
4466 }
4467 }
4468 #endif
4469 return 0;
4470
4471 error:
4472 audio_free_usrbuf(track);
4473 audio_free(track->codec.srcbuf.mem);
4474 audio_free(track->chvol.srcbuf.mem);
4475 audio_free(track->chmix.srcbuf.mem);
4476 audio_free(track->freq.srcbuf.mem);
4477 audio_free(track->outbuf.mem);
4478 return error;
4479 }
4480
4481 /*
4482 * Fill silence frames (as the internal format) up to 1 block
4483 * if the ring is not empty and less than 1 block.
4484 * It returns the number of appended frames.
4485 */
4486 static int
4487 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4488 {
4489 int fpb;
4490 int n;
4491
4492 KASSERT(track);
4493 KASSERT(audio_format2_is_internal(&ring->fmt));
4494
4495 /* XXX is n correct? */
4496 /* XXX memset uses frametobyte()? */
4497
4498 if (ring->used == 0)
4499 return 0;
4500
4501 fpb = frame_per_block(track->mixer, &ring->fmt);
4502 if (ring->used >= fpb)
4503 return 0;
4504
4505 n = (ring->capacity - ring->used) % fpb;
4506
4507 KASSERTMSG(auring_get_contig_free(ring) >= n,
4508 "auring_get_contig_free(ring)=%d n=%d",
4509 auring_get_contig_free(ring), n);
4510
4511 memset(auring_tailptr_aint(ring), 0,
4512 n * ring->fmt.channels * sizeof(aint_t));
4513 auring_push(ring, n);
4514 return n;
4515 }
4516
4517 /*
4518 * Execute the conversion stage.
4519 * It prepares arg from this stage and executes stage->filter.
4520 * It must be called only if stage->filter is not NULL.
4521 *
4522 * For stages other than frequency conversion, the function increments
4523 * src and dst counters here. For frequency conversion stage, on the
4524 * other hand, the function does not touch src and dst counters and
4525 * filter side has to increment them.
4526 */
4527 static void
4528 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4529 {
4530 audio_filter_arg_t *arg;
4531 int srccount;
4532 int dstcount;
4533 int count;
4534
4535 KASSERT(track);
4536 KASSERT(stage->filter);
4537
4538 srccount = auring_get_contig_used(&stage->srcbuf);
4539 dstcount = auring_get_contig_free(stage->dst);
4540
4541 if (isfreq) {
4542 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4543 count = uimin(dstcount, track->mixer->frames_per_block);
4544 } else {
4545 count = uimin(srccount, dstcount);
4546 }
4547
4548 if (count > 0) {
4549 arg = &stage->arg;
4550 arg->src = auring_headptr(&stage->srcbuf);
4551 arg->dst = auring_tailptr(stage->dst);
4552 arg->count = count;
4553
4554 stage->filter(arg);
4555
4556 if (!isfreq) {
4557 auring_take(&stage->srcbuf, count);
4558 auring_push(stage->dst, count);
4559 }
4560 }
4561 }
4562
4563 /*
4564 * Produce output buffer for playback from user input buffer.
4565 * It must be called only if usrbuf is not empty and outbuf is
4566 * available at least one free block.
4567 */
4568 static void
4569 audio_track_play(audio_track_t *track)
4570 {
4571 audio_ring_t *usrbuf;
4572 audio_ring_t *input;
4573 int count;
4574 int framesize;
4575 int bytes;
4576
4577 KASSERT(track);
4578 KASSERT(track->lock);
4579 TRACET(4, track, "start pstate=%d", track->pstate);
4580
4581 /* At this point usrbuf must not be empty. */
4582 KASSERT(track->usrbuf.used > 0);
4583 /* Also, outbuf must be available at least one block. */
4584 count = auring_get_contig_free(&track->outbuf);
4585 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4586 "count=%d fpb=%d",
4587 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4588
4589 /* XXX TODO: is this necessary for now? */
4590 int track_count_0 = track->outbuf.used;
4591
4592 usrbuf = &track->usrbuf;
4593 input = track->input;
4594
4595 /*
4596 * framesize is always 1 byte or more since all formats supported as
4597 * usrfmt(=input) have 8bit or more stride.
4598 */
4599 framesize = frametobyte(&input->fmt, 1);
4600 KASSERT(framesize >= 1);
4601
4602 /* The next stage of usrbuf (=input) must be available. */
4603 KASSERT(auring_get_contig_free(input) > 0);
4604
4605 /*
4606 * Copy usrbuf up to 1block to input buffer.
4607 * count is the number of frames to copy from usrbuf.
4608 * bytes is the number of bytes to copy from usrbuf. However it is
4609 * not copied less than one frame.
4610 */
4611 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4612 bytes = count * framesize;
4613
4614 track->usrbuf_stamp += bytes;
4615
4616 if (usrbuf->head + bytes < usrbuf->capacity) {
4617 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4618 (uint8_t *)usrbuf->mem + usrbuf->head,
4619 bytes);
4620 auring_push(input, count);
4621 auring_take(usrbuf, bytes);
4622 } else {
4623 int bytes1;
4624 int bytes2;
4625
4626 bytes1 = auring_get_contig_used(usrbuf);
4627 KASSERTMSG(bytes1 % framesize == 0,
4628 "bytes1=%d framesize=%d", bytes1, framesize);
4629 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4630 (uint8_t *)usrbuf->mem + usrbuf->head,
4631 bytes1);
4632 auring_push(input, bytes1 / framesize);
4633 auring_take(usrbuf, bytes1);
4634
4635 bytes2 = bytes - bytes1;
4636 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4637 (uint8_t *)usrbuf->mem + usrbuf->head,
4638 bytes2);
4639 auring_push(input, bytes2 / framesize);
4640 auring_take(usrbuf, bytes2);
4641 }
4642
4643 /* Encoding conversion */
4644 if (track->codec.filter)
4645 audio_apply_stage(track, &track->codec, false);
4646
4647 /* Channel volume */
4648 if (track->chvol.filter)
4649 audio_apply_stage(track, &track->chvol, false);
4650
4651 /* Channel mix */
4652 if (track->chmix.filter)
4653 audio_apply_stage(track, &track->chmix, false);
4654
4655 /* Frequency conversion */
4656 /*
4657 * Since the frequency conversion needs correction for each block,
4658 * it rounds up to 1 block.
4659 */
4660 if (track->freq.filter) {
4661 int n;
4662 n = audio_append_silence(track, &track->freq.srcbuf);
4663 if (n > 0) {
4664 TRACET(4, track,
4665 "freq.srcbuf add silence %d -> %d/%d/%d",
4666 n,
4667 track->freq.srcbuf.head,
4668 track->freq.srcbuf.used,
4669 track->freq.srcbuf.capacity);
4670 }
4671 if (track->freq.srcbuf.used > 0) {
4672 audio_apply_stage(track, &track->freq, true);
4673 }
4674 }
4675
4676 if (bytes < track->usrbuf_blksize) {
4677 /*
4678 * Clear all conversion buffer pointer if the conversion was
4679 * not exactly one block. These conversion stage buffers are
4680 * certainly circular buffers because of symmetry with the
4681 * previous and next stage buffer. However, since they are
4682 * treated as simple contiguous buffers in operation, so head
4683 * always should point 0. This may happen during drain-age.
4684 */
4685 TRACET(4, track, "reset stage");
4686 if (track->codec.filter) {
4687 KASSERT(track->codec.srcbuf.used == 0);
4688 track->codec.srcbuf.head = 0;
4689 }
4690 if (track->chvol.filter) {
4691 KASSERT(track->chvol.srcbuf.used == 0);
4692 track->chvol.srcbuf.head = 0;
4693 }
4694 if (track->chmix.filter) {
4695 KASSERT(track->chmix.srcbuf.used == 0);
4696 track->chmix.srcbuf.head = 0;
4697 }
4698 if (track->freq.filter) {
4699 KASSERT(track->freq.srcbuf.used == 0);
4700 track->freq.srcbuf.head = 0;
4701 }
4702 }
4703
4704 if (track->input == &track->outbuf) {
4705 track->outputcounter = track->inputcounter;
4706 } else {
4707 track->outputcounter += track->outbuf.used - track_count_0;
4708 }
4709
4710 #if defined(AUDIO_DEBUG)
4711 if (audiodebug >= 3) {
4712 struct audio_track_debugbuf m;
4713 audio_track_bufstat(track, &m);
4714 TRACET(0, track, "end%s%s%s%s%s%s",
4715 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4716 }
4717 #endif
4718 }
4719
4720 /*
4721 * Produce user output buffer for recording from input buffer.
4722 */
4723 static void
4724 audio_track_record(audio_track_t *track)
4725 {
4726 audio_ring_t *outbuf;
4727 audio_ring_t *usrbuf;
4728 int count;
4729 int bytes;
4730 int framesize;
4731
4732 KASSERT(track);
4733 KASSERT(track->lock);
4734
4735 /* Number of frames to process */
4736 count = auring_get_contig_used(track->input);
4737 count = uimin(count, track->mixer->frames_per_block);
4738 if (count == 0) {
4739 TRACET(4, track, "count == 0");
4740 return;
4741 }
4742
4743 /* Frequency conversion */
4744 if (track->freq.filter) {
4745 if (track->freq.srcbuf.used > 0) {
4746 audio_apply_stage(track, &track->freq, true);
4747 /* XXX should input of freq be from beginning of buf? */
4748 }
4749 }
4750
4751 /* Channel mix */
4752 if (track->chmix.filter)
4753 audio_apply_stage(track, &track->chmix, false);
4754
4755 /* Channel volume */
4756 if (track->chvol.filter)
4757 audio_apply_stage(track, &track->chvol, false);
4758
4759 /* Encoding conversion */
4760 if (track->codec.filter)
4761 audio_apply_stage(track, &track->codec, false);
4762
4763 /* Copy outbuf to usrbuf */
4764 outbuf = &track->outbuf;
4765 usrbuf = &track->usrbuf;
4766 /*
4767 * framesize is always 1 byte or more since all formats supported
4768 * as usrfmt(=output) have 8bit or more stride.
4769 */
4770 framesize = frametobyte(&outbuf->fmt, 1);
4771 KASSERT(framesize >= 1);
4772 /*
4773 * count is the number of frames to copy to usrbuf.
4774 * bytes is the number of bytes to copy to usrbuf.
4775 */
4776 count = outbuf->used;
4777 count = uimin(count,
4778 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4779 bytes = count * framesize;
4780 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4781 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4782 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4783 bytes);
4784 auring_push(usrbuf, bytes);
4785 auring_take(outbuf, count);
4786 } else {
4787 int bytes1;
4788 int bytes2;
4789
4790 bytes1 = auring_get_contig_free(usrbuf);
4791 KASSERTMSG(bytes1 % framesize == 0,
4792 "bytes1=%d framesize=%d", bytes1, framesize);
4793 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4794 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4795 bytes1);
4796 auring_push(usrbuf, bytes1);
4797 auring_take(outbuf, bytes1 / framesize);
4798
4799 bytes2 = bytes - bytes1;
4800 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4801 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4802 bytes2);
4803 auring_push(usrbuf, bytes2);
4804 auring_take(outbuf, bytes2 / framesize);
4805 }
4806
4807 /* XXX TODO: any counters here? */
4808
4809 #if defined(AUDIO_DEBUG)
4810 if (audiodebug >= 3) {
4811 struct audio_track_debugbuf m;
4812 audio_track_bufstat(track, &m);
4813 TRACET(0, track, "end%s%s%s%s%s%s",
4814 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4815 }
4816 #endif
4817 }
4818
4819 /*
4820 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4821 * Must be called with sc_exlock held.
4822 */
4823 static u_int
4824 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4825 {
4826 audio_format2_t *fmt;
4827 u_int blktime;
4828 u_int frames_per_block;
4829
4830 KASSERT(sc->sc_exlock);
4831
4832 fmt = &mixer->hwbuf.fmt;
4833 blktime = sc->sc_blk_ms;
4834
4835 /*
4836 * If stride is not multiples of 8, special treatment is necessary.
4837 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4838 */
4839 if (fmt->stride == 4) {
4840 frames_per_block = fmt->sample_rate * blktime / 1000;
4841 if ((frames_per_block & 1) != 0)
4842 blktime *= 2;
4843 }
4844 #ifdef DIAGNOSTIC
4845 else if (fmt->stride % NBBY != 0) {
4846 panic("unsupported HW stride %d", fmt->stride);
4847 }
4848 #endif
4849
4850 return blktime;
4851 }
4852
4853 /*
4854 * Initialize the mixer corresponding to the mode.
4855 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4856 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4857 * This function returns 0 on sucessful. Otherwise returns errno.
4858 * Must be called with sc_exlock held and without sc_lock held.
4859 */
4860 static int
4861 audio_mixer_init(struct audio_softc *sc, int mode,
4862 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4863 {
4864 char codecbuf[64];
4865 char blkdmsbuf[8];
4866 audio_trackmixer_t *mixer;
4867 void (*softint_handler)(void *);
4868 int len;
4869 int blksize;
4870 int capacity;
4871 size_t bufsize;
4872 int hwblks;
4873 int blkms;
4874 int blkdms;
4875 int error;
4876
4877 KASSERT(hwfmt != NULL);
4878 KASSERT(reg != NULL);
4879 KASSERT(sc->sc_exlock);
4880
4881 error = 0;
4882 if (mode == AUMODE_PLAY)
4883 mixer = sc->sc_pmixer;
4884 else
4885 mixer = sc->sc_rmixer;
4886
4887 mixer->sc = sc;
4888 mixer->mode = mode;
4889
4890 mixer->hwbuf.fmt = *hwfmt;
4891 mixer->volume = 256;
4892 mixer->blktime_d = 1000;
4893 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4894 sc->sc_blk_ms = mixer->blktime_n;
4895 hwblks = NBLKHW;
4896
4897 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4898 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4899 if (sc->hw_if->round_blocksize) {
4900 int rounded;
4901 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4902 mutex_enter(sc->sc_lock);
4903 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4904 mode, &p);
4905 mutex_exit(sc->sc_lock);
4906 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4907 if (rounded != blksize) {
4908 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4909 mixer->hwbuf.fmt.channels) != 0) {
4910 audio_printf(sc,
4911 "round_blocksize returned blocksize "
4912 "indivisible by framesize: "
4913 "blksize=%d rounded=%d "
4914 "stride=%ubit channels=%u\n",
4915 blksize, rounded,
4916 mixer->hwbuf.fmt.stride,
4917 mixer->hwbuf.fmt.channels);
4918 return EINVAL;
4919 }
4920 /* Recalculation */
4921 blksize = rounded;
4922 mixer->frames_per_block = blksize * NBBY /
4923 (mixer->hwbuf.fmt.stride *
4924 mixer->hwbuf.fmt.channels);
4925 }
4926 }
4927 mixer->blktime_n = mixer->frames_per_block;
4928 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4929
4930 capacity = mixer->frames_per_block * hwblks;
4931 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4932 if (sc->hw_if->round_buffersize) {
4933 size_t rounded;
4934 mutex_enter(sc->sc_lock);
4935 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4936 bufsize);
4937 mutex_exit(sc->sc_lock);
4938 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4939 if (rounded < bufsize) {
4940 /* buffersize needs NBLKHW blocks at least. */
4941 audio_printf(sc,
4942 "round_buffersize returned too small buffersize: "
4943 "buffersize=%zd blksize=%d\n",
4944 rounded, blksize);
4945 return EINVAL;
4946 }
4947 if (rounded % blksize != 0) {
4948 /* buffersize/blksize constraint mismatch? */
4949 audio_printf(sc,
4950 "round_buffersize returned buffersize indivisible "
4951 "by blksize: buffersize=%zu blksize=%d\n",
4952 rounded, blksize);
4953 return EINVAL;
4954 }
4955 if (rounded != bufsize) {
4956 /* Recalcuration */
4957 bufsize = rounded;
4958 hwblks = bufsize / blksize;
4959 capacity = mixer->frames_per_block * hwblks;
4960 }
4961 }
4962 TRACE(1, "buffersize for %s = %zu",
4963 (mode == AUMODE_PLAY) ? "playback" : "recording",
4964 bufsize);
4965 mixer->hwbuf.capacity = capacity;
4966
4967 if (sc->hw_if->allocm) {
4968 /* sc_lock is not necessary for allocm */
4969 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4970 if (mixer->hwbuf.mem == NULL) {
4971 audio_printf(sc, "allocm(%zu) failed\n", bufsize);
4972 return ENOMEM;
4973 }
4974 } else {
4975 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4976 }
4977
4978 /* From here, audio_mixer_destroy is necessary to exit. */
4979 if (mode == AUMODE_PLAY) {
4980 cv_init(&mixer->outcv, "audiowr");
4981 } else {
4982 cv_init(&mixer->outcv, "audiord");
4983 }
4984
4985 if (mode == AUMODE_PLAY) {
4986 softint_handler = audio_softintr_wr;
4987 } else {
4988 softint_handler = audio_softintr_rd;
4989 }
4990 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4991 softint_handler, sc);
4992 if (mixer->sih == NULL) {
4993 device_printf(sc->sc_dev, "softint_establish failed\n");
4994 goto abort;
4995 }
4996
4997 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4998 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4999 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
5000 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
5001 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
5002
5003 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
5004 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
5005 mixer->swap_endian = true;
5006 TRACE(1, "swap_endian");
5007 }
5008
5009 if (mode == AUMODE_PLAY) {
5010 /* Mixing buffer */
5011 mixer->mixfmt = mixer->track_fmt;
5012 mixer->mixfmt.precision *= 2;
5013 mixer->mixfmt.stride *= 2;
5014 /* XXX TODO: use some macros? */
5015 len = mixer->frames_per_block * mixer->mixfmt.channels *
5016 mixer->mixfmt.stride / NBBY;
5017 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5018 } else {
5019 /* No mixing buffer for recording */
5020 }
5021
5022 if (reg->codec) {
5023 mixer->codec = reg->codec;
5024 mixer->codecarg.context = reg->context;
5025 if (mode == AUMODE_PLAY) {
5026 mixer->codecarg.srcfmt = &mixer->track_fmt;
5027 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5028 } else {
5029 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5030 mixer->codecarg.dstfmt = &mixer->track_fmt;
5031 }
5032 mixer->codecbuf.fmt = mixer->track_fmt;
5033 mixer->codecbuf.capacity = mixer->frames_per_block;
5034 len = auring_bytelen(&mixer->codecbuf);
5035 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5036 if (mixer->codecbuf.mem == NULL) {
5037 device_printf(sc->sc_dev,
5038 "malloc codecbuf(%d) failed\n", len);
5039 error = ENOMEM;
5040 goto abort;
5041 }
5042 }
5043
5044 /* Succeeded so display it. */
5045 codecbuf[0] = '\0';
5046 if (mixer->codec || mixer->swap_endian) {
5047 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5048 (mode == AUMODE_PLAY) ? "->" : "<-",
5049 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5050 mixer->hwbuf.fmt.precision);
5051 }
5052 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5053 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5054 blkdmsbuf[0] = '\0';
5055 if (blkdms != 0) {
5056 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5057 }
5058 aprint_normal_dev(sc->sc_dev,
5059 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5060 audio_encoding_name(mixer->track_fmt.encoding),
5061 mixer->track_fmt.precision,
5062 codecbuf,
5063 mixer->track_fmt.channels,
5064 mixer->track_fmt.sample_rate,
5065 blksize,
5066 blkms, blkdmsbuf,
5067 (mode == AUMODE_PLAY) ? "playback" : "recording");
5068
5069 return 0;
5070
5071 abort:
5072 audio_mixer_destroy(sc, mixer);
5073 return error;
5074 }
5075
5076 /*
5077 * Releases all resources of 'mixer'.
5078 * Note that it does not release the memory area of 'mixer' itself.
5079 * Must be called with sc_exlock held and without sc_lock held.
5080 */
5081 static void
5082 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5083 {
5084 int bufsize;
5085
5086 KASSERT(sc->sc_exlock == 1);
5087
5088 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5089
5090 if (mixer->hwbuf.mem != NULL) {
5091 if (sc->hw_if->freem) {
5092 /* sc_lock is not necessary for freem */
5093 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5094 } else {
5095 kmem_free(mixer->hwbuf.mem, bufsize);
5096 }
5097 mixer->hwbuf.mem = NULL;
5098 }
5099
5100 audio_free(mixer->codecbuf.mem);
5101 audio_free(mixer->mixsample);
5102
5103 cv_destroy(&mixer->outcv);
5104
5105 if (mixer->sih) {
5106 softint_disestablish(mixer->sih);
5107 mixer->sih = NULL;
5108 }
5109 }
5110
5111 /*
5112 * Starts playback mixer.
5113 * Must be called only if sc_pbusy is false.
5114 * Must be called with sc_lock held.
5115 * Must not be called from the interrupt context.
5116 */
5117 static void
5118 audio_pmixer_start(struct audio_softc *sc, bool force)
5119 {
5120 audio_trackmixer_t *mixer;
5121 int minimum;
5122
5123 KASSERT(mutex_owned(sc->sc_lock));
5124 KASSERT(sc->sc_pbusy == false);
5125
5126 mutex_enter(sc->sc_intr_lock);
5127
5128 mixer = sc->sc_pmixer;
5129 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5130 (audiodebug >= 3) ? "begin " : "",
5131 (int)mixer->mixseq, (int)mixer->hwseq,
5132 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5133 force ? " force" : "");
5134
5135 /* Need two blocks to start normally. */
5136 minimum = (force) ? 1 : 2;
5137 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5138 audio_pmixer_process(sc);
5139 }
5140
5141 /* Start output */
5142 audio_pmixer_output(sc);
5143 sc->sc_pbusy = true;
5144
5145 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5146 (int)mixer->mixseq, (int)mixer->hwseq,
5147 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5148
5149 mutex_exit(sc->sc_intr_lock);
5150 }
5151
5152 /*
5153 * When playing back with MD filter:
5154 *
5155 * track track ...
5156 * v v
5157 * + mix (with aint2_t)
5158 * | master volume (with aint2_t)
5159 * v
5160 * mixsample [::::] wide-int 1 block (ring) buffer
5161 * |
5162 * | convert aint2_t -> aint_t
5163 * v
5164 * codecbuf [....] 1 block (ring) buffer
5165 * |
5166 * | convert to hw format
5167 * v
5168 * hwbuf [............] NBLKHW blocks ring buffer
5169 *
5170 * When playing back without MD filter:
5171 *
5172 * mixsample [::::] wide-int 1 block (ring) buffer
5173 * |
5174 * | convert aint2_t -> aint_t
5175 * | (with byte swap if necessary)
5176 * v
5177 * hwbuf [............] NBLKHW blocks ring buffer
5178 *
5179 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5180 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5181 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5182 */
5183
5184 /*
5185 * Performs track mixing and converts it to hwbuf.
5186 * Note that this function doesn't transfer hwbuf to hardware.
5187 * Must be called with sc_intr_lock held.
5188 */
5189 static void
5190 audio_pmixer_process(struct audio_softc *sc)
5191 {
5192 audio_trackmixer_t *mixer;
5193 audio_file_t *f;
5194 int frame_count;
5195 int sample_count;
5196 int mixed;
5197 int i;
5198 aint2_t *m;
5199 aint_t *h;
5200
5201 mixer = sc->sc_pmixer;
5202
5203 frame_count = mixer->frames_per_block;
5204 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5205 "auring_get_contig_free()=%d frame_count=%d",
5206 auring_get_contig_free(&mixer->hwbuf), frame_count);
5207 sample_count = frame_count * mixer->mixfmt.channels;
5208
5209 mixer->mixseq++;
5210
5211 /* Mix all tracks */
5212 mixed = 0;
5213 SLIST_FOREACH(f, &sc->sc_files, entry) {
5214 audio_track_t *track = f->ptrack;
5215
5216 if (track == NULL)
5217 continue;
5218
5219 if (track->is_pause) {
5220 TRACET(4, track, "skip; paused");
5221 continue;
5222 }
5223
5224 /* Skip if the track is used by process context. */
5225 if (audio_track_lock_tryenter(track) == false) {
5226 TRACET(4, track, "skip; in use");
5227 continue;
5228 }
5229
5230 /* Emulate mmap'ped track */
5231 if (track->mmapped) {
5232 auring_push(&track->usrbuf, track->usrbuf_blksize);
5233 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5234 track->usrbuf.head,
5235 track->usrbuf.used,
5236 track->usrbuf.capacity);
5237 }
5238
5239 if (track->outbuf.used < mixer->frames_per_block &&
5240 track->usrbuf.used > 0) {
5241 TRACET(4, track, "process");
5242 audio_track_play(track);
5243 }
5244
5245 if (track->outbuf.used > 0) {
5246 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5247 } else {
5248 TRACET(4, track, "skip; empty");
5249 }
5250
5251 audio_track_lock_exit(track);
5252 }
5253
5254 if (mixed == 0) {
5255 /* Silence */
5256 memset(mixer->mixsample, 0,
5257 frametobyte(&mixer->mixfmt, frame_count));
5258 } else {
5259 if (mixed > 1) {
5260 /* If there are multiple tracks, do auto gain control */
5261 audio_pmixer_agc(mixer, sample_count);
5262 }
5263
5264 /* Apply master volume */
5265 if (mixer->volume < 256) {
5266 m = mixer->mixsample;
5267 for (i = 0; i < sample_count; i++) {
5268 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5269 m++;
5270 }
5271
5272 /*
5273 * Recover the volume gradually at the pace of
5274 * several times per second. If it's too fast, you
5275 * can recognize that the volume changes up and down
5276 * quickly and it's not so comfortable.
5277 */
5278 mixer->voltimer += mixer->blktime_n;
5279 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5280 mixer->volume++;
5281 mixer->voltimer = 0;
5282 #if defined(AUDIO_DEBUG_AGC)
5283 TRACE(1, "volume recover: %d", mixer->volume);
5284 #endif
5285 }
5286 }
5287 }
5288
5289 /*
5290 * The rest is the hardware part.
5291 */
5292
5293 if (mixer->codec) {
5294 h = auring_tailptr_aint(&mixer->codecbuf);
5295 } else {
5296 h = auring_tailptr_aint(&mixer->hwbuf);
5297 }
5298
5299 m = mixer->mixsample;
5300 if (mixer->swap_endian) {
5301 for (i = 0; i < sample_count; i++) {
5302 *h++ = bswap16(*m++);
5303 }
5304 } else {
5305 for (i = 0; i < sample_count; i++) {
5306 *h++ = *m++;
5307 }
5308 }
5309
5310 /* Hardware driver's codec */
5311 if (mixer->codec) {
5312 auring_push(&mixer->codecbuf, frame_count);
5313 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5314 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5315 mixer->codecarg.count = frame_count;
5316 mixer->codec(&mixer->codecarg);
5317 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5318 }
5319
5320 auring_push(&mixer->hwbuf, frame_count);
5321
5322 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5323 (int)mixer->mixseq,
5324 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5325 (mixed == 0) ? " silent" : "");
5326 }
5327
5328 /*
5329 * Do auto gain control.
5330 * Must be called sc_intr_lock held.
5331 */
5332 static void
5333 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5334 {
5335 struct audio_softc *sc __unused;
5336 aint2_t val;
5337 aint2_t maxval;
5338 aint2_t minval;
5339 aint2_t over_plus;
5340 aint2_t over_minus;
5341 aint2_t *m;
5342 int newvol;
5343 int i;
5344
5345 sc = mixer->sc;
5346
5347 /* Overflow detection */
5348 maxval = AINT_T_MAX;
5349 minval = AINT_T_MIN;
5350 m = mixer->mixsample;
5351 for (i = 0; i < sample_count; i++) {
5352 val = *m++;
5353 if (val > maxval)
5354 maxval = val;
5355 else if (val < minval)
5356 minval = val;
5357 }
5358
5359 /* Absolute value of overflowed amount */
5360 over_plus = maxval - AINT_T_MAX;
5361 over_minus = AINT_T_MIN - minval;
5362
5363 if (over_plus > 0 || over_minus > 0) {
5364 if (over_plus > over_minus) {
5365 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5366 } else {
5367 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5368 }
5369
5370 /*
5371 * Change the volume only if new one is smaller.
5372 * Reset the timer even if the volume isn't changed.
5373 */
5374 if (newvol <= mixer->volume) {
5375 mixer->volume = newvol;
5376 mixer->voltimer = 0;
5377 #if defined(AUDIO_DEBUG_AGC)
5378 TRACE(1, "auto volume adjust: %d", mixer->volume);
5379 #endif
5380 }
5381 }
5382 }
5383
5384 /*
5385 * Mix one track.
5386 * 'mixed' specifies the number of tracks mixed so far.
5387 * It returns the number of tracks mixed. In other words, it returns
5388 * mixed + 1 if this track is mixed.
5389 */
5390 static int
5391 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5392 int mixed)
5393 {
5394 int count;
5395 int sample_count;
5396 int remain;
5397 int i;
5398 const aint_t *s;
5399 aint2_t *d;
5400
5401 /* XXX TODO: Is this necessary for now? */
5402 if (mixer->mixseq < track->seq)
5403 return mixed;
5404
5405 count = auring_get_contig_used(&track->outbuf);
5406 count = uimin(count, mixer->frames_per_block);
5407
5408 s = auring_headptr_aint(&track->outbuf);
5409 d = mixer->mixsample;
5410
5411 /*
5412 * Apply track volume with double-sized integer and perform
5413 * additive synthesis.
5414 *
5415 * XXX If you limit the track volume to 1.0 or less (<= 256),
5416 * it would be better to do this in the track conversion stage
5417 * rather than here. However, if you accept the volume to
5418 * be greater than 1.0 (> 256), it's better to do it here.
5419 * Because the operation here is done by double-sized integer.
5420 */
5421 sample_count = count * mixer->mixfmt.channels;
5422 if (mixed == 0) {
5423 /* If this is the first track, assignment can be used. */
5424 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5425 if (track->volume != 256) {
5426 for (i = 0; i < sample_count; i++) {
5427 aint2_t v;
5428 v = *s++;
5429 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5430 }
5431 } else
5432 #endif
5433 {
5434 for (i = 0; i < sample_count; i++) {
5435 *d++ = ((aint2_t)*s++);
5436 }
5437 }
5438 /* Fill silence if the first track is not filled. */
5439 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5440 *d++ = 0;
5441 } else {
5442 /* If this is the second or later, add it. */
5443 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5444 if (track->volume != 256) {
5445 for (i = 0; i < sample_count; i++) {
5446 aint2_t v;
5447 v = *s++;
5448 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5449 }
5450 } else
5451 #endif
5452 {
5453 for (i = 0; i < sample_count; i++) {
5454 *d++ += ((aint2_t)*s++);
5455 }
5456 }
5457 }
5458
5459 auring_take(&track->outbuf, count);
5460 /*
5461 * The counters have to align block even if outbuf is less than
5462 * one block. XXX Is this still necessary?
5463 */
5464 remain = mixer->frames_per_block - count;
5465 if (__predict_false(remain != 0)) {
5466 auring_push(&track->outbuf, remain);
5467 auring_take(&track->outbuf, remain);
5468 }
5469
5470 /*
5471 * Update track sequence.
5472 * mixseq has previous value yet at this point.
5473 */
5474 track->seq = mixer->mixseq + 1;
5475
5476 return mixed + 1;
5477 }
5478
5479 /*
5480 * Output one block from hwbuf to HW.
5481 * Must be called with sc_intr_lock held.
5482 */
5483 static void
5484 audio_pmixer_output(struct audio_softc *sc)
5485 {
5486 audio_trackmixer_t *mixer;
5487 audio_params_t params;
5488 void *start;
5489 void *end;
5490 int blksize;
5491 int error;
5492
5493 mixer = sc->sc_pmixer;
5494 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5495 sc->sc_pbusy,
5496 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5497 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5498 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5499 mixer->hwbuf.used, mixer->frames_per_block);
5500
5501 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5502
5503 if (sc->hw_if->trigger_output) {
5504 /* trigger (at once) */
5505 if (!sc->sc_pbusy) {
5506 start = mixer->hwbuf.mem;
5507 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5508 params = format2_to_params(&mixer->hwbuf.fmt);
5509
5510 error = sc->hw_if->trigger_output(sc->hw_hdl,
5511 start, end, blksize, audio_pintr, sc, ¶ms);
5512 if (error) {
5513 audio_printf(sc,
5514 "trigger_output failed: errno=%d\n",
5515 error);
5516 return;
5517 }
5518 }
5519 } else {
5520 /* start (everytime) */
5521 start = auring_headptr(&mixer->hwbuf);
5522
5523 error = sc->hw_if->start_output(sc->hw_hdl,
5524 start, blksize, audio_pintr, sc);
5525 if (error) {
5526 audio_printf(sc,
5527 "start_output failed: errno=%d\n", error);
5528 return;
5529 }
5530 }
5531 }
5532
5533 /*
5534 * This is an interrupt handler for playback.
5535 * It is called with sc_intr_lock held.
5536 *
5537 * It is usually called from hardware interrupt. However, note that
5538 * for some drivers (e.g. uaudio) it is called from software interrupt.
5539 */
5540 static void
5541 audio_pintr(void *arg)
5542 {
5543 struct audio_softc *sc;
5544 audio_trackmixer_t *mixer;
5545
5546 sc = arg;
5547 KASSERT(mutex_owned(sc->sc_intr_lock));
5548
5549 if (sc->sc_dying)
5550 return;
5551 if (sc->sc_pbusy == false) {
5552 #if defined(DIAGNOSTIC)
5553 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5554 device_xname(sc->hw_dev));
5555 #endif
5556 return;
5557 }
5558
5559 mixer = sc->sc_pmixer;
5560 mixer->hw_complete_counter += mixer->frames_per_block;
5561 mixer->hwseq++;
5562
5563 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5564
5565 TRACE(4,
5566 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5567 mixer->hwseq, mixer->hw_complete_counter,
5568 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5569
5570 #if !defined(_KERNEL)
5571 /* This is a debug code for userland test. */
5572 return;
5573 #endif
5574
5575 #if defined(AUDIO_HW_SINGLE_BUFFER)
5576 /*
5577 * Create a new block here and output it immediately.
5578 * It makes a latency lower but needs machine power.
5579 */
5580 audio_pmixer_process(sc);
5581 audio_pmixer_output(sc);
5582 #else
5583 /*
5584 * It is called when block N output is done.
5585 * Output immediately block N+1 created by the last interrupt.
5586 * And then create block N+2 for the next interrupt.
5587 * This method makes playback robust even on slower machines.
5588 * Instead the latency is increased by one block.
5589 */
5590
5591 /* At first, output ready block. */
5592 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5593 audio_pmixer_output(sc);
5594 }
5595
5596 bool later = false;
5597
5598 if (mixer->hwbuf.used < mixer->frames_per_block) {
5599 later = true;
5600 }
5601
5602 /* Then, process next block. */
5603 audio_pmixer_process(sc);
5604
5605 if (later) {
5606 audio_pmixer_output(sc);
5607 }
5608 #endif
5609
5610 /*
5611 * When this interrupt is the real hardware interrupt, disabling
5612 * preemption here is not necessary. But some drivers (e.g. uaudio)
5613 * emulate it by software interrupt, so kpreempt_disable is necessary.
5614 */
5615 kpreempt_disable();
5616 softint_schedule(mixer->sih);
5617 kpreempt_enable();
5618 }
5619
5620 /*
5621 * Starts record mixer.
5622 * Must be called only if sc_rbusy is false.
5623 * Must be called with sc_lock held.
5624 * Must not be called from the interrupt context.
5625 */
5626 static void
5627 audio_rmixer_start(struct audio_softc *sc)
5628 {
5629
5630 KASSERT(mutex_owned(sc->sc_lock));
5631 KASSERT(sc->sc_rbusy == false);
5632
5633 mutex_enter(sc->sc_intr_lock);
5634
5635 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5636 audio_rmixer_input(sc);
5637 sc->sc_rbusy = true;
5638 TRACE(3, "end");
5639
5640 mutex_exit(sc->sc_intr_lock);
5641 }
5642
5643 /*
5644 * When recording with MD filter:
5645 *
5646 * hwbuf [............] NBLKHW blocks ring buffer
5647 * |
5648 * | convert from hw format
5649 * v
5650 * codecbuf [....] 1 block (ring) buffer
5651 * | |
5652 * v v
5653 * track track ...
5654 *
5655 * When recording without MD filter:
5656 *
5657 * hwbuf [............] NBLKHW blocks ring buffer
5658 * | |
5659 * v v
5660 * track track ...
5661 *
5662 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5663 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5664 */
5665
5666 /*
5667 * Distribute a recorded block to all recording tracks.
5668 */
5669 static void
5670 audio_rmixer_process(struct audio_softc *sc)
5671 {
5672 audio_trackmixer_t *mixer;
5673 audio_ring_t *mixersrc;
5674 audio_file_t *f;
5675 aint_t *p;
5676 int count;
5677 int bytes;
5678 int i;
5679
5680 mixer = sc->sc_rmixer;
5681
5682 /*
5683 * count is the number of frames to be retrieved this time.
5684 * count should be one block.
5685 */
5686 count = auring_get_contig_used(&mixer->hwbuf);
5687 count = uimin(count, mixer->frames_per_block);
5688 if (count <= 0) {
5689 TRACE(4, "count %d: too short", count);
5690 return;
5691 }
5692 bytes = frametobyte(&mixer->track_fmt, count);
5693
5694 /* Hardware driver's codec */
5695 if (mixer->codec) {
5696 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5697 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5698 mixer->codecarg.count = count;
5699 mixer->codec(&mixer->codecarg);
5700 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5701 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5702 mixersrc = &mixer->codecbuf;
5703 } else {
5704 mixersrc = &mixer->hwbuf;
5705 }
5706
5707 if (mixer->swap_endian) {
5708 /* inplace conversion */
5709 p = auring_headptr_aint(mixersrc);
5710 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5711 *p = bswap16(*p);
5712 }
5713 }
5714
5715 /* Distribute to all tracks. */
5716 SLIST_FOREACH(f, &sc->sc_files, entry) {
5717 audio_track_t *track = f->rtrack;
5718 audio_ring_t *input;
5719
5720 if (track == NULL)
5721 continue;
5722
5723 if (track->is_pause) {
5724 TRACET(4, track, "skip; paused");
5725 continue;
5726 }
5727
5728 if (audio_track_lock_tryenter(track) == false) {
5729 TRACET(4, track, "skip; in use");
5730 continue;
5731 }
5732
5733 /* If the track buffer is full, discard the oldest one? */
5734 input = track->input;
5735 if (input->capacity - input->used < mixer->frames_per_block) {
5736 int drops = mixer->frames_per_block -
5737 (input->capacity - input->used);
5738 track->dropframes += drops;
5739 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5740 drops,
5741 input->head, input->used, input->capacity);
5742 auring_take(input, drops);
5743 }
5744 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5745 "input->used=%d mixer->frames_per_block=%d",
5746 input->used, mixer->frames_per_block);
5747
5748 memcpy(auring_tailptr_aint(input),
5749 auring_headptr_aint(mixersrc),
5750 bytes);
5751 auring_push(input, count);
5752
5753 /* XXX sequence counter? */
5754
5755 audio_track_lock_exit(track);
5756 }
5757
5758 auring_take(mixersrc, count);
5759 }
5760
5761 /*
5762 * Input one block from HW to hwbuf.
5763 * Must be called with sc_intr_lock held.
5764 */
5765 static void
5766 audio_rmixer_input(struct audio_softc *sc)
5767 {
5768 audio_trackmixer_t *mixer;
5769 audio_params_t params;
5770 void *start;
5771 void *end;
5772 int blksize;
5773 int error;
5774
5775 mixer = sc->sc_rmixer;
5776 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5777
5778 if (sc->hw_if->trigger_input) {
5779 /* trigger (at once) */
5780 if (!sc->sc_rbusy) {
5781 start = mixer->hwbuf.mem;
5782 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5783 params = format2_to_params(&mixer->hwbuf.fmt);
5784
5785 error = sc->hw_if->trigger_input(sc->hw_hdl,
5786 start, end, blksize, audio_rintr, sc, ¶ms);
5787 if (error) {
5788 audio_printf(sc,
5789 "trigger_input failed: errno=%d\n",
5790 error);
5791 return;
5792 }
5793 }
5794 } else {
5795 /* start (everytime) */
5796 start = auring_tailptr(&mixer->hwbuf);
5797
5798 error = sc->hw_if->start_input(sc->hw_hdl,
5799 start, blksize, audio_rintr, sc);
5800 if (error) {
5801 audio_printf(sc,
5802 "start_input failed: errno=%d\n", error);
5803 return;
5804 }
5805 }
5806 }
5807
5808 /*
5809 * This is an interrupt handler for recording.
5810 * It is called with sc_intr_lock.
5811 *
5812 * It is usually called from hardware interrupt. However, note that
5813 * for some drivers (e.g. uaudio) it is called from software interrupt.
5814 */
5815 static void
5816 audio_rintr(void *arg)
5817 {
5818 struct audio_softc *sc;
5819 audio_trackmixer_t *mixer;
5820
5821 sc = arg;
5822 KASSERT(mutex_owned(sc->sc_intr_lock));
5823
5824 if (sc->sc_dying)
5825 return;
5826 if (sc->sc_rbusy == false) {
5827 #if defined(DIAGNOSTIC)
5828 audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5829 device_xname(sc->hw_dev));
5830 #endif
5831 return;
5832 }
5833
5834 mixer = sc->sc_rmixer;
5835 mixer->hw_complete_counter += mixer->frames_per_block;
5836 mixer->hwseq++;
5837
5838 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5839
5840 TRACE(4,
5841 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5842 mixer->hwseq, mixer->hw_complete_counter,
5843 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5844
5845 /* Distrubute recorded block */
5846 audio_rmixer_process(sc);
5847
5848 /* Request next block */
5849 audio_rmixer_input(sc);
5850
5851 /*
5852 * When this interrupt is the real hardware interrupt, disabling
5853 * preemption here is not necessary. But some drivers (e.g. uaudio)
5854 * emulate it by software interrupt, so kpreempt_disable is necessary.
5855 */
5856 kpreempt_disable();
5857 softint_schedule(mixer->sih);
5858 kpreempt_enable();
5859 }
5860
5861 /*
5862 * Halts playback mixer.
5863 * This function also clears related parameters, so call this function
5864 * instead of calling halt_output directly.
5865 * Must be called only if sc_pbusy is true.
5866 * Must be called with sc_lock && sc_exlock held.
5867 */
5868 static int
5869 audio_pmixer_halt(struct audio_softc *sc)
5870 {
5871 int error;
5872
5873 TRACE(2, "called");
5874 KASSERT(mutex_owned(sc->sc_lock));
5875 KASSERT(sc->sc_exlock);
5876
5877 mutex_enter(sc->sc_intr_lock);
5878 error = sc->hw_if->halt_output(sc->hw_hdl);
5879 mutex_exit(sc->sc_intr_lock);
5880
5881 /* Halts anyway even if some error has occurred. */
5882 sc->sc_pbusy = false;
5883 sc->sc_pmixer->hwbuf.head = 0;
5884 sc->sc_pmixer->hwbuf.used = 0;
5885 sc->sc_pmixer->mixseq = 0;
5886 sc->sc_pmixer->hwseq = 0;
5887
5888 return error;
5889 }
5890
5891 /*
5892 * Halts recording mixer.
5893 * This function also clears related parameters, so call this function
5894 * instead of calling halt_input directly.
5895 * Must be called only if sc_rbusy is true.
5896 * Must be called with sc_lock && sc_exlock held.
5897 */
5898 static int
5899 audio_rmixer_halt(struct audio_softc *sc)
5900 {
5901 int error;
5902
5903 TRACE(2, "called");
5904 KASSERT(mutex_owned(sc->sc_lock));
5905 KASSERT(sc->sc_exlock);
5906
5907 mutex_enter(sc->sc_intr_lock);
5908 error = sc->hw_if->halt_input(sc->hw_hdl);
5909 mutex_exit(sc->sc_intr_lock);
5910
5911 /* Halts anyway even if some error has occurred. */
5912 sc->sc_rbusy = false;
5913 sc->sc_rmixer->hwbuf.head = 0;
5914 sc->sc_rmixer->hwbuf.used = 0;
5915 sc->sc_rmixer->mixseq = 0;
5916 sc->sc_rmixer->hwseq = 0;
5917
5918 return error;
5919 }
5920
5921 /*
5922 * Flush this track.
5923 * Halts all operations, clears all buffers, reset error counters.
5924 * XXX I'm not sure...
5925 */
5926 static void
5927 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5928 {
5929
5930 KASSERT(track);
5931 TRACET(3, track, "clear");
5932
5933 audio_track_lock_enter(track);
5934
5935 track->usrbuf.used = 0;
5936 /* Clear all internal parameters. */
5937 if (track->codec.filter) {
5938 track->codec.srcbuf.used = 0;
5939 track->codec.srcbuf.head = 0;
5940 }
5941 if (track->chvol.filter) {
5942 track->chvol.srcbuf.used = 0;
5943 track->chvol.srcbuf.head = 0;
5944 }
5945 if (track->chmix.filter) {
5946 track->chmix.srcbuf.used = 0;
5947 track->chmix.srcbuf.head = 0;
5948 }
5949 if (track->freq.filter) {
5950 track->freq.srcbuf.used = 0;
5951 track->freq.srcbuf.head = 0;
5952 if (track->freq_step < 65536)
5953 track->freq_current = 65536;
5954 else
5955 track->freq_current = 0;
5956 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5957 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5958 }
5959 /* Clear buffer, then operation halts naturally. */
5960 track->outbuf.used = 0;
5961
5962 /* Clear counters. */
5963 track->dropframes = 0;
5964
5965 audio_track_lock_exit(track);
5966 }
5967
5968 /*
5969 * Drain the track.
5970 * track must be present and for playback.
5971 * If successful, it returns 0. Otherwise returns errno.
5972 * Must be called with sc_lock held.
5973 */
5974 static int
5975 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5976 {
5977 audio_trackmixer_t *mixer;
5978 int done;
5979 int error;
5980
5981 KASSERT(track);
5982 TRACET(3, track, "start");
5983 mixer = track->mixer;
5984 KASSERT(mutex_owned(sc->sc_lock));
5985
5986 /* Ignore them if pause. */
5987 if (track->is_pause) {
5988 TRACET(3, track, "pause -> clear");
5989 track->pstate = AUDIO_STATE_CLEAR;
5990 }
5991 /* Terminate early here if there is no data in the track. */
5992 if (track->pstate == AUDIO_STATE_CLEAR) {
5993 TRACET(3, track, "no need to drain");
5994 return 0;
5995 }
5996 track->pstate = AUDIO_STATE_DRAINING;
5997
5998 for (;;) {
5999 /* I want to display it before condition evaluation. */
6000 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
6001 (int)curproc->p_pid, (int)curlwp->l_lid,
6002 (int)track->seq, (int)mixer->hwseq,
6003 track->outbuf.head, track->outbuf.used,
6004 track->outbuf.capacity);
6005
6006 /* Condition to terminate */
6007 audio_track_lock_enter(track);
6008 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
6009 track->outbuf.used == 0 &&
6010 track->seq <= mixer->hwseq);
6011 audio_track_lock_exit(track);
6012 if (done)
6013 break;
6014
6015 TRACET(3, track, "sleep");
6016 error = audio_track_waitio(sc, track);
6017 if (error)
6018 return error;
6019
6020 /* XXX call audio_track_play here ? */
6021 }
6022
6023 track->pstate = AUDIO_STATE_CLEAR;
6024 TRACET(3, track, "done trk_inp=%d trk_out=%d",
6025 (int)track->inputcounter, (int)track->outputcounter);
6026 return 0;
6027 }
6028
6029 /*
6030 * Send signal to process.
6031 * This is intended to be called only from audio_softintr_{rd,wr}.
6032 * Must be called without sc_intr_lock held.
6033 */
6034 static inline void
6035 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6036 {
6037 proc_t *p;
6038
6039 KASSERT(pid != 0);
6040
6041 /*
6042 * psignal() must be called without spin lock held.
6043 */
6044
6045 mutex_enter(proc_lock);
6046 p = proc_find(pid);
6047 if (p)
6048 psignal(p, signum);
6049 mutex_exit(proc_lock);
6050 }
6051
6052 /*
6053 * This is software interrupt handler for record.
6054 * It is called from recording hardware interrupt everytime.
6055 * It does:
6056 * - Deliver SIGIO for all async processes.
6057 * - Notify to audio_read() that data has arrived.
6058 * - selnotify() for select/poll-ing processes.
6059 */
6060 /*
6061 * XXX If a process issues FIOASYNC between hardware interrupt and
6062 * software interrupt, (stray) SIGIO will be sent to the process
6063 * despite the fact that it has not receive recorded data yet.
6064 */
6065 static void
6066 audio_softintr_rd(void *cookie)
6067 {
6068 struct audio_softc *sc = cookie;
6069 audio_file_t *f;
6070 pid_t pid;
6071
6072 mutex_enter(sc->sc_lock);
6073
6074 SLIST_FOREACH(f, &sc->sc_files, entry) {
6075 audio_track_t *track = f->rtrack;
6076
6077 if (track == NULL)
6078 continue;
6079
6080 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6081 track->input->head,
6082 track->input->used,
6083 track->input->capacity);
6084
6085 pid = f->async_audio;
6086 if (pid != 0) {
6087 TRACEF(4, f, "sending SIGIO %d", pid);
6088 audio_psignal(sc, pid, SIGIO);
6089 }
6090 }
6091
6092 /* Notify that data has arrived. */
6093 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6094 KNOTE(&sc->sc_rsel.sel_klist, 0);
6095 cv_broadcast(&sc->sc_rmixer->outcv);
6096
6097 mutex_exit(sc->sc_lock);
6098 }
6099
6100 /*
6101 * This is software interrupt handler for playback.
6102 * It is called from playback hardware interrupt everytime.
6103 * It does:
6104 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6105 * - Notify to audio_write() that outbuf block available.
6106 * - selnotify() for select/poll-ing processes if there are any writable
6107 * (used < lowat) processes. Checking each descriptor will be done by
6108 * filt_audiowrite_event().
6109 */
6110 static void
6111 audio_softintr_wr(void *cookie)
6112 {
6113 struct audio_softc *sc = cookie;
6114 audio_file_t *f;
6115 bool found;
6116 pid_t pid;
6117
6118 TRACE(4, "called");
6119 found = false;
6120
6121 mutex_enter(sc->sc_lock);
6122
6123 SLIST_FOREACH(f, &sc->sc_files, entry) {
6124 audio_track_t *track = f->ptrack;
6125
6126 if (track == NULL)
6127 continue;
6128
6129 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
6130 (int)track->seq,
6131 track->outbuf.head,
6132 track->outbuf.used,
6133 track->outbuf.capacity);
6134
6135 /*
6136 * Send a signal if the process is async mode and
6137 * used is lower than lowat.
6138 */
6139 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6140 !track->is_pause) {
6141 /* For selnotify */
6142 found = true;
6143 /* For SIGIO */
6144 pid = f->async_audio;
6145 if (pid != 0) {
6146 TRACEF(4, f, "sending SIGIO %d", pid);
6147 audio_psignal(sc, pid, SIGIO);
6148 }
6149 }
6150 }
6151
6152 /*
6153 * Notify for select/poll when someone become writable.
6154 * It needs sc_lock (and not sc_intr_lock).
6155 */
6156 if (found) {
6157 TRACE(4, "selnotify");
6158 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6159 KNOTE(&sc->sc_wsel.sel_klist, 0);
6160 }
6161
6162 /* Notify to audio_write() that outbuf available. */
6163 cv_broadcast(&sc->sc_pmixer->outcv);
6164
6165 mutex_exit(sc->sc_lock);
6166 }
6167
6168 /*
6169 * Check (and convert) the format *p came from userland.
6170 * If successful, it writes back the converted format to *p if necessary and
6171 * returns 0. Otherwise returns errno (*p may be changed even in this case).
6172 */
6173 static int
6174 audio_check_params(audio_format2_t *p)
6175 {
6176
6177 /* Convert obsoleted AUDIO_ENCODING_PCM* */
6178 /* XXX Is this conversion right? */
6179 if (p->encoding == AUDIO_ENCODING_PCM16) {
6180 if (p->precision == 8)
6181 p->encoding = AUDIO_ENCODING_ULINEAR;
6182 else
6183 p->encoding = AUDIO_ENCODING_SLINEAR;
6184 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6185 if (p->precision == 8)
6186 p->encoding = AUDIO_ENCODING_ULINEAR;
6187 else
6188 return EINVAL;
6189 }
6190
6191 /*
6192 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6193 * suffix.
6194 */
6195 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6196 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6197 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6198 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6199
6200 switch (p->encoding) {
6201 case AUDIO_ENCODING_ULAW:
6202 case AUDIO_ENCODING_ALAW:
6203 if (p->precision != 8)
6204 return EINVAL;
6205 break;
6206 case AUDIO_ENCODING_ADPCM:
6207 if (p->precision != 4 && p->precision != 8)
6208 return EINVAL;
6209 break;
6210 case AUDIO_ENCODING_SLINEAR_LE:
6211 case AUDIO_ENCODING_SLINEAR_BE:
6212 case AUDIO_ENCODING_ULINEAR_LE:
6213 case AUDIO_ENCODING_ULINEAR_BE:
6214 if (p->precision != 8 && p->precision != 16 &&
6215 p->precision != 24 && p->precision != 32)
6216 return EINVAL;
6217
6218 /* 8bit format does not have endianness. */
6219 if (p->precision == 8) {
6220 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6221 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6222 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6223 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6224 }
6225
6226 if (p->precision > p->stride)
6227 return EINVAL;
6228 break;
6229 case AUDIO_ENCODING_MPEG_L1_STREAM:
6230 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6231 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6232 case AUDIO_ENCODING_MPEG_L2_STREAM:
6233 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6234 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6235 case AUDIO_ENCODING_AC3:
6236 break;
6237 default:
6238 return EINVAL;
6239 }
6240
6241 /* sanity check # of channels*/
6242 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6243 return EINVAL;
6244
6245 return 0;
6246 }
6247
6248 /*
6249 * Initialize playback and record mixers.
6250 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initalized.
6251 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6252 * the filter registration information. These four must not be NULL.
6253 * If successful returns 0. Otherwise returns errno.
6254 * Must be called with sc_exlock held and without sc_lock held.
6255 * Must not be called if there are any tracks.
6256 * Caller should check that the initialization succeed by whether
6257 * sc_[pr]mixer is not NULL.
6258 */
6259 static int
6260 audio_mixers_init(struct audio_softc *sc, int mode,
6261 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6262 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6263 {
6264 int error;
6265
6266 KASSERT(phwfmt != NULL);
6267 KASSERT(rhwfmt != NULL);
6268 KASSERT(pfil != NULL);
6269 KASSERT(rfil != NULL);
6270 KASSERT(sc->sc_exlock);
6271
6272 if ((mode & AUMODE_PLAY)) {
6273 if (sc->sc_pmixer == NULL) {
6274 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6275 KM_SLEEP);
6276 } else {
6277 /* destroy() doesn't free memory. */
6278 audio_mixer_destroy(sc, sc->sc_pmixer);
6279 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6280 }
6281 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6282 if (error) {
6283 /* audio_mixer_init already displayed error code */
6284 audio_printf(sc, "configuring playback mode failed\n");
6285 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6286 sc->sc_pmixer = NULL;
6287 return error;
6288 }
6289 }
6290 if ((mode & AUMODE_RECORD)) {
6291 if (sc->sc_rmixer == NULL) {
6292 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6293 KM_SLEEP);
6294 } else {
6295 /* destroy() doesn't free memory. */
6296 audio_mixer_destroy(sc, sc->sc_rmixer);
6297 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6298 }
6299 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6300 if (error) {
6301 /* audio_mixer_init already displayed error code */
6302 audio_printf(sc, "configuring record mode failed\n");
6303 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6304 sc->sc_rmixer = NULL;
6305 return error;
6306 }
6307 }
6308
6309 return 0;
6310 }
6311
6312 /*
6313 * Select a frequency.
6314 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6315 * XXX Better algorithm?
6316 */
6317 static int
6318 audio_select_freq(const struct audio_format *fmt)
6319 {
6320 int freq;
6321 int high;
6322 int low;
6323 int j;
6324
6325 if (fmt->frequency_type == 0) {
6326 low = fmt->frequency[0];
6327 high = fmt->frequency[1];
6328 freq = 48000;
6329 if (low <= freq && freq <= high) {
6330 return freq;
6331 }
6332 freq = 44100;
6333 if (low <= freq && freq <= high) {
6334 return freq;
6335 }
6336 return high;
6337 } else {
6338 for (j = 0; j < fmt->frequency_type; j++) {
6339 if (fmt->frequency[j] == 48000) {
6340 return fmt->frequency[j];
6341 }
6342 }
6343 high = 0;
6344 for (j = 0; j < fmt->frequency_type; j++) {
6345 if (fmt->frequency[j] == 44100) {
6346 return fmt->frequency[j];
6347 }
6348 if (fmt->frequency[j] > high) {
6349 high = fmt->frequency[j];
6350 }
6351 }
6352 return high;
6353 }
6354 }
6355
6356 /*
6357 * Choose the most preferred hardware format.
6358 * If successful, it will store the chosen format into *cand and return 0.
6359 * Otherwise, return errno.
6360 * Must be called without sc_lock held.
6361 */
6362 static int
6363 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6364 {
6365 audio_format_query_t query;
6366 int cand_score;
6367 int score;
6368 int i;
6369 int error;
6370
6371 /*
6372 * Score each formats and choose the highest one.
6373 *
6374 * +---- priority(0-3)
6375 * |+--- encoding/precision
6376 * ||+-- channels
6377 * score = 0x000000PEC
6378 */
6379
6380 cand_score = 0;
6381 for (i = 0; ; i++) {
6382 memset(&query, 0, sizeof(query));
6383 query.index = i;
6384
6385 mutex_enter(sc->sc_lock);
6386 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6387 mutex_exit(sc->sc_lock);
6388 if (error == EINVAL)
6389 break;
6390 if (error)
6391 return error;
6392
6393 #if defined(AUDIO_DEBUG)
6394 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6395 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6396 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6397 query.fmt.priority,
6398 audio_encoding_name(query.fmt.encoding),
6399 query.fmt.validbits,
6400 query.fmt.precision,
6401 query.fmt.channels);
6402 if (query.fmt.frequency_type == 0) {
6403 DPRINTF(1, "{%d-%d",
6404 query.fmt.frequency[0], query.fmt.frequency[1]);
6405 } else {
6406 int j;
6407 for (j = 0; j < query.fmt.frequency_type; j++) {
6408 DPRINTF(1, "%c%d",
6409 (j == 0) ? '{' : ',',
6410 query.fmt.frequency[j]);
6411 }
6412 }
6413 DPRINTF(1, "}\n");
6414 #endif
6415
6416 if ((query.fmt.mode & mode) == 0) {
6417 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6418 mode);
6419 continue;
6420 }
6421
6422 if (query.fmt.priority < 0) {
6423 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6424 continue;
6425 }
6426
6427 /* Score */
6428 score = (query.fmt.priority & 3) * 0x100;
6429 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6430 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6431 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6432 score += 0x20;
6433 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6434 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6435 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6436 score += 0x10;
6437 }
6438 score += query.fmt.channels;
6439
6440 if (score < cand_score) {
6441 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6442 score, cand_score);
6443 continue;
6444 }
6445
6446 /* Update candidate */
6447 cand_score = score;
6448 cand->encoding = query.fmt.encoding;
6449 cand->precision = query.fmt.validbits;
6450 cand->stride = query.fmt.precision;
6451 cand->channels = query.fmt.channels;
6452 cand->sample_rate = audio_select_freq(&query.fmt);
6453 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6454 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6455 cand_score, query.fmt.priority,
6456 audio_encoding_name(query.fmt.encoding),
6457 cand->precision, cand->stride,
6458 cand->channels, cand->sample_rate);
6459 }
6460
6461 if (cand_score == 0) {
6462 DPRINTF(1, "%s no fmt\n", __func__);
6463 return ENXIO;
6464 }
6465 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6466 audio_encoding_name(cand->encoding),
6467 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6468 return 0;
6469 }
6470
6471 /*
6472 * Validate fmt with query_format.
6473 * If fmt is included in the result of query_format, returns 0.
6474 * Otherwise returns EINVAL.
6475 * Must be called without sc_lock held.
6476 */
6477 static int
6478 audio_hw_validate_format(struct audio_softc *sc, int mode,
6479 const audio_format2_t *fmt)
6480 {
6481 audio_format_query_t query;
6482 struct audio_format *q;
6483 int index;
6484 int error;
6485 int j;
6486
6487 for (index = 0; ; index++) {
6488 query.index = index;
6489 mutex_enter(sc->sc_lock);
6490 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6491 mutex_exit(sc->sc_lock);
6492 if (error == EINVAL)
6493 break;
6494 if (error)
6495 return error;
6496
6497 q = &query.fmt;
6498 /*
6499 * Note that fmt is audio_format2_t (precision/stride) but
6500 * q is audio_format_t (validbits/precision).
6501 */
6502 if ((q->mode & mode) == 0) {
6503 continue;
6504 }
6505 if (fmt->encoding != q->encoding) {
6506 continue;
6507 }
6508 if (fmt->precision != q->validbits) {
6509 continue;
6510 }
6511 if (fmt->stride != q->precision) {
6512 continue;
6513 }
6514 if (fmt->channels != q->channels) {
6515 continue;
6516 }
6517 if (q->frequency_type == 0) {
6518 if (fmt->sample_rate < q->frequency[0] ||
6519 fmt->sample_rate > q->frequency[1]) {
6520 continue;
6521 }
6522 } else {
6523 for (j = 0; j < q->frequency_type; j++) {
6524 if (fmt->sample_rate == q->frequency[j])
6525 break;
6526 }
6527 if (j == query.fmt.frequency_type) {
6528 continue;
6529 }
6530 }
6531
6532 /* Matched. */
6533 return 0;
6534 }
6535
6536 return EINVAL;
6537 }
6538
6539 /*
6540 * Set track mixer's format depending on ai->mode.
6541 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6542 * with ai.play.{channels, sample_rate}.
6543 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6544 * with ai.record.{channels, sample_rate}.
6545 * All other fields in ai are ignored.
6546 * If successful returns 0. Otherwise returns errno.
6547 * This function does not roll back even if it fails.
6548 * Must be called with sc_exlock held and without sc_lock held.
6549 */
6550 static int
6551 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6552 {
6553 audio_format2_t phwfmt;
6554 audio_format2_t rhwfmt;
6555 audio_filter_reg_t pfil;
6556 audio_filter_reg_t rfil;
6557 int mode;
6558 int error;
6559
6560 KASSERT(sc->sc_exlock);
6561
6562 /*
6563 * Even when setting either one of playback and recording,
6564 * both must be halted.
6565 */
6566 if (sc->sc_popens + sc->sc_ropens > 0)
6567 return EBUSY;
6568
6569 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6570 return ENOTTY;
6571
6572 /* Only channels and sample_rate are changeable. */
6573 mode = ai->mode;
6574 if ((mode & AUMODE_PLAY)) {
6575 phwfmt.encoding = ai->play.encoding;
6576 phwfmt.precision = ai->play.precision;
6577 phwfmt.stride = ai->play.precision;
6578 phwfmt.channels = ai->play.channels;
6579 phwfmt.sample_rate = ai->play.sample_rate;
6580 }
6581 if ((mode & AUMODE_RECORD)) {
6582 rhwfmt.encoding = ai->record.encoding;
6583 rhwfmt.precision = ai->record.precision;
6584 rhwfmt.stride = ai->record.precision;
6585 rhwfmt.channels = ai->record.channels;
6586 rhwfmt.sample_rate = ai->record.sample_rate;
6587 }
6588
6589 /* On non-independent devices, use the same format for both. */
6590 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6591 if (mode == AUMODE_RECORD) {
6592 phwfmt = rhwfmt;
6593 } else {
6594 rhwfmt = phwfmt;
6595 }
6596 mode = AUMODE_PLAY | AUMODE_RECORD;
6597 }
6598
6599 /* Then, unset the direction not exist on the hardware. */
6600 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6601 mode &= ~AUMODE_PLAY;
6602 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6603 mode &= ~AUMODE_RECORD;
6604
6605 /* debug */
6606 if ((mode & AUMODE_PLAY)) {
6607 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6608 audio_encoding_name(phwfmt.encoding),
6609 phwfmt.precision,
6610 phwfmt.stride,
6611 phwfmt.channels,
6612 phwfmt.sample_rate);
6613 }
6614 if ((mode & AUMODE_RECORD)) {
6615 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6616 audio_encoding_name(rhwfmt.encoding),
6617 rhwfmt.precision,
6618 rhwfmt.stride,
6619 rhwfmt.channels,
6620 rhwfmt.sample_rate);
6621 }
6622
6623 /* Check the format */
6624 if ((mode & AUMODE_PLAY)) {
6625 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6626 TRACE(1, "invalid format");
6627 return EINVAL;
6628 }
6629 }
6630 if ((mode & AUMODE_RECORD)) {
6631 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6632 TRACE(1, "invalid format");
6633 return EINVAL;
6634 }
6635 }
6636
6637 /* Configure the mixers. */
6638 memset(&pfil, 0, sizeof(pfil));
6639 memset(&rfil, 0, sizeof(rfil));
6640 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6641 if (error)
6642 return error;
6643
6644 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6645 if (error)
6646 return error;
6647
6648 /*
6649 * Reinitialize the sticky parameters for /dev/sound.
6650 * If the number of the hardware channels becomes less than the number
6651 * of channels that sticky parameters remember, subsequent /dev/sound
6652 * open will fail. To prevent this, reinitialize the sticky
6653 * parameters whenever the hardware format is changed.
6654 */
6655 sc->sc_sound_pparams = params_to_format2(&audio_default);
6656 sc->sc_sound_rparams = params_to_format2(&audio_default);
6657 sc->sc_sound_ppause = false;
6658 sc->sc_sound_rpause = false;
6659
6660 return 0;
6661 }
6662
6663 /*
6664 * Store current mixers format into *ai.
6665 * Must be called with sc_exlock held.
6666 */
6667 static void
6668 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6669 {
6670
6671 KASSERT(sc->sc_exlock);
6672
6673 /*
6674 * There is no stride information in audio_info but it doesn't matter.
6675 * trackmixer always treats stride and precision as the same.
6676 */
6677 AUDIO_INITINFO(ai);
6678 ai->mode = 0;
6679 if (sc->sc_pmixer) {
6680 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6681 ai->play.encoding = fmt->encoding;
6682 ai->play.precision = fmt->precision;
6683 ai->play.channels = fmt->channels;
6684 ai->play.sample_rate = fmt->sample_rate;
6685 ai->mode |= AUMODE_PLAY;
6686 }
6687 if (sc->sc_rmixer) {
6688 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6689 ai->record.encoding = fmt->encoding;
6690 ai->record.precision = fmt->precision;
6691 ai->record.channels = fmt->channels;
6692 ai->record.sample_rate = fmt->sample_rate;
6693 ai->mode |= AUMODE_RECORD;
6694 }
6695 }
6696
6697 /*
6698 * audio_info details:
6699 *
6700 * ai.{play,record}.sample_rate (R/W)
6701 * ai.{play,record}.encoding (R/W)
6702 * ai.{play,record}.precision (R/W)
6703 * ai.{play,record}.channels (R/W)
6704 * These specify the playback or recording format.
6705 * Ignore members within an inactive track.
6706 *
6707 * ai.mode (R/W)
6708 * It specifies the playback or recording mode, AUMODE_*.
6709 * Currently, a mode change operation by ai.mode after opening is
6710 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6711 * However, it's possible to get or to set for backward compatibility.
6712 *
6713 * ai.{hiwat,lowat} (R/W)
6714 * These specify the high water mark and low water mark for playback
6715 * track. The unit is block.
6716 *
6717 * ai.{play,record}.gain (R/W)
6718 * It specifies the HW mixer volume in 0-255.
6719 * It is historical reason that the gain is connected to HW mixer.
6720 *
6721 * ai.{play,record}.balance (R/W)
6722 * It specifies the left-right balance of HW mixer in 0-64.
6723 * 32 means the center.
6724 * It is historical reason that the balance is connected to HW mixer.
6725 *
6726 * ai.{play,record}.port (R/W)
6727 * It specifies the input/output port of HW mixer.
6728 *
6729 * ai.monitor_gain (R/W)
6730 * It specifies the recording monitor gain(?) of HW mixer.
6731 *
6732 * ai.{play,record}.pause (R/W)
6733 * Non-zero means the track is paused.
6734 *
6735 * ai.play.seek (R/-)
6736 * It indicates the number of bytes written but not processed.
6737 * ai.record.seek (R/-)
6738 * It indicates the number of bytes to be able to read.
6739 *
6740 * ai.{play,record}.avail_ports (R/-)
6741 * Mixer info.
6742 *
6743 * ai.{play,record}.buffer_size (R/-)
6744 * It indicates the buffer size in bytes. Internally it means usrbuf.
6745 *
6746 * ai.{play,record}.samples (R/-)
6747 * It indicates the total number of bytes played or recorded.
6748 *
6749 * ai.{play,record}.eof (R/-)
6750 * It indicates the number of times reached EOF(?).
6751 *
6752 * ai.{play,record}.error (R/-)
6753 * Non-zero indicates overflow/underflow has occured.
6754 *
6755 * ai.{play,record}.waiting (R/-)
6756 * Non-zero indicates that other process waits to open.
6757 * It will never happen anymore.
6758 *
6759 * ai.{play,record}.open (R/-)
6760 * Non-zero indicates the direction is opened by this process(?).
6761 * XXX Is this better to indicate that "the device is opened by
6762 * at least one process"?
6763 *
6764 * ai.{play,record}.active (R/-)
6765 * Non-zero indicates that I/O is currently active.
6766 *
6767 * ai.blocksize (R/-)
6768 * It indicates the block size in bytes.
6769 * XXX The blocksize of playback and recording may be different.
6770 */
6771
6772 /*
6773 * Pause consideration:
6774 *
6775 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6776 * operation simple. Note that playback and recording are asymmetric.
6777 *
6778 * For playback,
6779 * 1. Any playback open doesn't start pmixer regardless of initial pause
6780 * state of this track.
6781 * 2. The first write access among playback tracks only starts pmixer
6782 * regardless of this track's pause state.
6783 * 3. Even a pause of the last playback track doesn't stop pmixer.
6784 * 4. The last close of all playback tracks only stops pmixer.
6785 *
6786 * For recording,
6787 * 1. The first recording open only starts rmixer regardless of initial
6788 * pause state of this track.
6789 * 2. Even a pause of the last track doesn't stop rmixer.
6790 * 3. The last close of all recording tracks only stops rmixer.
6791 */
6792
6793 /*
6794 * Set both track's parameters within a file depending on ai.
6795 * Update sc_sound_[pr]* if set.
6796 * Must be called with sc_exlock held and without sc_lock held.
6797 */
6798 static int
6799 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6800 const struct audio_info *ai)
6801 {
6802 const struct audio_prinfo *pi;
6803 const struct audio_prinfo *ri;
6804 audio_track_t *ptrack;
6805 audio_track_t *rtrack;
6806 audio_format2_t pfmt;
6807 audio_format2_t rfmt;
6808 int pchanges;
6809 int rchanges;
6810 int mode;
6811 struct audio_info saved_ai;
6812 audio_format2_t saved_pfmt;
6813 audio_format2_t saved_rfmt;
6814 int error;
6815
6816 KASSERT(sc->sc_exlock);
6817
6818 pi = &ai->play;
6819 ri = &ai->record;
6820 pchanges = 0;
6821 rchanges = 0;
6822
6823 ptrack = file->ptrack;
6824 rtrack = file->rtrack;
6825
6826 #if defined(AUDIO_DEBUG)
6827 if (audiodebug >= 2) {
6828 char buf[256];
6829 char p[64];
6830 int buflen;
6831 int plen;
6832 #define SPRINTF(var, fmt...) do { \
6833 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6834 } while (0)
6835
6836 buflen = 0;
6837 plen = 0;
6838 if (SPECIFIED(pi->encoding))
6839 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6840 if (SPECIFIED(pi->precision))
6841 SPRINTF(p, "/%dbit", pi->precision);
6842 if (SPECIFIED(pi->channels))
6843 SPRINTF(p, "/%dch", pi->channels);
6844 if (SPECIFIED(pi->sample_rate))
6845 SPRINTF(p, "/%dHz", pi->sample_rate);
6846 if (plen > 0)
6847 SPRINTF(buf, ",play.param=%s", p + 1);
6848
6849 plen = 0;
6850 if (SPECIFIED(ri->encoding))
6851 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6852 if (SPECIFIED(ri->precision))
6853 SPRINTF(p, "/%dbit", ri->precision);
6854 if (SPECIFIED(ri->channels))
6855 SPRINTF(p, "/%dch", ri->channels);
6856 if (SPECIFIED(ri->sample_rate))
6857 SPRINTF(p, "/%dHz", ri->sample_rate);
6858 if (plen > 0)
6859 SPRINTF(buf, ",record.param=%s", p + 1);
6860
6861 if (SPECIFIED(ai->mode))
6862 SPRINTF(buf, ",mode=%d", ai->mode);
6863 if (SPECIFIED(ai->hiwat))
6864 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6865 if (SPECIFIED(ai->lowat))
6866 SPRINTF(buf, ",lowat=%d", ai->lowat);
6867 if (SPECIFIED(ai->play.gain))
6868 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6869 if (SPECIFIED(ai->record.gain))
6870 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6871 if (SPECIFIED_CH(ai->play.balance))
6872 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6873 if (SPECIFIED_CH(ai->record.balance))
6874 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6875 if (SPECIFIED(ai->play.port))
6876 SPRINTF(buf, ",play.port=%d", ai->play.port);
6877 if (SPECIFIED(ai->record.port))
6878 SPRINTF(buf, ",record.port=%d", ai->record.port);
6879 if (SPECIFIED(ai->monitor_gain))
6880 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6881 if (SPECIFIED_CH(ai->play.pause))
6882 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6883 if (SPECIFIED_CH(ai->record.pause))
6884 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6885
6886 if (buflen > 0)
6887 TRACE(2, "specified %s", buf + 1);
6888 }
6889 #endif
6890
6891 AUDIO_INITINFO(&saved_ai);
6892 /* XXX shut up gcc */
6893 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6894 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6895
6896 /*
6897 * Set default value and save current parameters.
6898 * For backward compatibility, use sticky parameters for nonexistent
6899 * track.
6900 */
6901 if (ptrack) {
6902 pfmt = ptrack->usrbuf.fmt;
6903 saved_pfmt = ptrack->usrbuf.fmt;
6904 saved_ai.play.pause = ptrack->is_pause;
6905 } else {
6906 pfmt = sc->sc_sound_pparams;
6907 }
6908 if (rtrack) {
6909 rfmt = rtrack->usrbuf.fmt;
6910 saved_rfmt = rtrack->usrbuf.fmt;
6911 saved_ai.record.pause = rtrack->is_pause;
6912 } else {
6913 rfmt = sc->sc_sound_rparams;
6914 }
6915 saved_ai.mode = file->mode;
6916
6917 /*
6918 * Overwrite if specified.
6919 */
6920 mode = file->mode;
6921 if (SPECIFIED(ai->mode)) {
6922 /*
6923 * Setting ai->mode no longer does anything because it's
6924 * prohibited to change playback/recording mode after open
6925 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6926 * keeps the state of AUMODE_PLAY_ALL itself for backward
6927 * compatibility.
6928 * In the internal, only file->mode has the state of
6929 * AUMODE_PLAY_ALL flag and track->mode in both track does
6930 * not have.
6931 */
6932 if ((file->mode & AUMODE_PLAY)) {
6933 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6934 | (ai->mode & AUMODE_PLAY_ALL);
6935 }
6936 }
6937
6938 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
6939 if (pchanges == -1) {
6940 #if defined(AUDIO_DEBUG)
6941 TRACEF(1, file, "check play.params failed: "
6942 "%s %ubit %uch %uHz",
6943 audio_encoding_name(pi->encoding),
6944 pi->precision,
6945 pi->channels,
6946 pi->sample_rate);
6947 #endif
6948 return EINVAL;
6949 }
6950
6951 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
6952 if (rchanges == -1) {
6953 #if defined(AUDIO_DEBUG)
6954 TRACEF(1, file, "check record.params failed: "
6955 "%s %ubit %uch %uHz",
6956 audio_encoding_name(ri->encoding),
6957 ri->precision,
6958 ri->channels,
6959 ri->sample_rate);
6960 #endif
6961 return EINVAL;
6962 }
6963
6964 if (SPECIFIED(ai->mode)) {
6965 pchanges = 1;
6966 rchanges = 1;
6967 }
6968
6969 /*
6970 * Even when setting either one of playback and recording,
6971 * both track must be halted.
6972 */
6973 if (pchanges || rchanges) {
6974 audio_file_clear(sc, file);
6975 #if defined(AUDIO_DEBUG)
6976 char nbuf[16];
6977 char fmtbuf[64];
6978 if (pchanges) {
6979 if (ptrack) {
6980 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
6981 } else {
6982 snprintf(nbuf, sizeof(nbuf), "-");
6983 }
6984 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6985 DPRINTF(1, "audio track#%s play mode: %s\n",
6986 nbuf, fmtbuf);
6987 }
6988 if (rchanges) {
6989 if (rtrack) {
6990 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
6991 } else {
6992 snprintf(nbuf, sizeof(nbuf), "-");
6993 }
6994 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6995 DPRINTF(1, "audio track#%s rec mode: %s\n",
6996 nbuf, fmtbuf);
6997 }
6998 #endif
6999 }
7000
7001 /* Set mixer parameters */
7002 mutex_enter(sc->sc_lock);
7003 error = audio_hw_setinfo(sc, ai, &saved_ai);
7004 mutex_exit(sc->sc_lock);
7005 if (error)
7006 goto abort1;
7007
7008 /*
7009 * Set to track and update sticky parameters.
7010 */
7011 error = 0;
7012 file->mode = mode;
7013
7014 if (SPECIFIED_CH(pi->pause)) {
7015 if (ptrack)
7016 ptrack->is_pause = pi->pause;
7017 sc->sc_sound_ppause = pi->pause;
7018 }
7019 if (pchanges) {
7020 if (ptrack) {
7021 audio_track_lock_enter(ptrack);
7022 error = audio_track_set_format(ptrack, &pfmt);
7023 audio_track_lock_exit(ptrack);
7024 if (error) {
7025 TRACET(1, ptrack, "set play.params failed");
7026 goto abort2;
7027 }
7028 }
7029 sc->sc_sound_pparams = pfmt;
7030 }
7031 /* Change water marks after initializing the buffers. */
7032 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7033 if (ptrack)
7034 audio_track_setinfo_water(ptrack, ai);
7035 }
7036
7037 if (SPECIFIED_CH(ri->pause)) {
7038 if (rtrack)
7039 rtrack->is_pause = ri->pause;
7040 sc->sc_sound_rpause = ri->pause;
7041 }
7042 if (rchanges) {
7043 if (rtrack) {
7044 audio_track_lock_enter(rtrack);
7045 error = audio_track_set_format(rtrack, &rfmt);
7046 audio_track_lock_exit(rtrack);
7047 if (error) {
7048 TRACET(1, rtrack, "set record.params failed");
7049 goto abort3;
7050 }
7051 }
7052 sc->sc_sound_rparams = rfmt;
7053 }
7054
7055 return 0;
7056
7057 /* Rollback */
7058 abort3:
7059 if (error != ENOMEM) {
7060 rtrack->is_pause = saved_ai.record.pause;
7061 audio_track_lock_enter(rtrack);
7062 audio_track_set_format(rtrack, &saved_rfmt);
7063 audio_track_lock_exit(rtrack);
7064 }
7065 sc->sc_sound_rpause = saved_ai.record.pause;
7066 sc->sc_sound_rparams = saved_rfmt;
7067 abort2:
7068 if (ptrack && error != ENOMEM) {
7069 ptrack->is_pause = saved_ai.play.pause;
7070 audio_track_lock_enter(ptrack);
7071 audio_track_set_format(ptrack, &saved_pfmt);
7072 audio_track_lock_exit(ptrack);
7073 }
7074 sc->sc_sound_ppause = saved_ai.play.pause;
7075 sc->sc_sound_pparams = saved_pfmt;
7076 file->mode = saved_ai.mode;
7077 abort1:
7078 mutex_enter(sc->sc_lock);
7079 audio_hw_setinfo(sc, &saved_ai, NULL);
7080 mutex_exit(sc->sc_lock);
7081
7082 return error;
7083 }
7084
7085 /*
7086 * Write SPECIFIED() parameters within info back to fmt.
7087 * Note that track can be NULL here.
7088 * Return value of 1 indicates that fmt is modified.
7089 * Return value of 0 indicates that fmt is not modified.
7090 * Return value of -1 indicates that error EINVAL has occurred.
7091 */
7092 static int
7093 audio_track_setinfo_check(audio_track_t *track,
7094 audio_format2_t *fmt, const struct audio_prinfo *info)
7095 {
7096 const audio_format2_t *hwfmt;
7097 int changes;
7098
7099 changes = 0;
7100 if (SPECIFIED(info->sample_rate)) {
7101 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7102 return -1;
7103 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7104 return -1;
7105 fmt->sample_rate = info->sample_rate;
7106 changes = 1;
7107 }
7108 if (SPECIFIED(info->encoding)) {
7109 fmt->encoding = info->encoding;
7110 changes = 1;
7111 }
7112 if (SPECIFIED(info->precision)) {
7113 fmt->precision = info->precision;
7114 /* we don't have API to specify stride */
7115 fmt->stride = info->precision;
7116 changes = 1;
7117 }
7118 if (SPECIFIED(info->channels)) {
7119 /*
7120 * We can convert between monaural and stereo each other.
7121 * We can reduce than the number of channels that the hardware
7122 * supports.
7123 */
7124 if (info->channels > 2) {
7125 if (track) {
7126 hwfmt = &track->mixer->hwbuf.fmt;
7127 if (info->channels > hwfmt->channels)
7128 return -1;
7129 } else {
7130 /*
7131 * This should never happen.
7132 * If track == NULL, channels should be <= 2.
7133 */
7134 return -1;
7135 }
7136 }
7137 fmt->channels = info->channels;
7138 changes = 1;
7139 }
7140
7141 if (changes) {
7142 if (audio_check_params(fmt) != 0)
7143 return -1;
7144 }
7145
7146 return changes;
7147 }
7148
7149 /*
7150 * Change water marks for playback track if specfied.
7151 */
7152 static void
7153 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7154 {
7155 u_int blks;
7156 u_int maxblks;
7157 u_int blksize;
7158
7159 KASSERT(audio_track_is_playback(track));
7160
7161 blksize = track->usrbuf_blksize;
7162 maxblks = track->usrbuf.capacity / blksize;
7163
7164 if (SPECIFIED(ai->hiwat)) {
7165 blks = ai->hiwat;
7166 if (blks > maxblks)
7167 blks = maxblks;
7168 if (blks < 2)
7169 blks = 2;
7170 track->usrbuf_usedhigh = blks * blksize;
7171 }
7172 if (SPECIFIED(ai->lowat)) {
7173 blks = ai->lowat;
7174 if (blks > maxblks - 1)
7175 blks = maxblks - 1;
7176 track->usrbuf_usedlow = blks * blksize;
7177 }
7178 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7179 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7180 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7181 blksize;
7182 }
7183 }
7184 }
7185
7186 /*
7187 * Set hardware part of *ai.
7188 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7189 * If oldai is specified, previous parameters are stored.
7190 * This function itself does not roll back if error occurred.
7191 * Must be called with sc_lock && sc_exlock held.
7192 */
7193 static int
7194 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7195 struct audio_info *oldai)
7196 {
7197 const struct audio_prinfo *newpi;
7198 const struct audio_prinfo *newri;
7199 struct audio_prinfo *oldpi;
7200 struct audio_prinfo *oldri;
7201 u_int pgain;
7202 u_int rgain;
7203 u_char pbalance;
7204 u_char rbalance;
7205 int error;
7206
7207 KASSERT(mutex_owned(sc->sc_lock));
7208 KASSERT(sc->sc_exlock);
7209
7210 /* XXX shut up gcc */
7211 oldpi = NULL;
7212 oldri = NULL;
7213
7214 newpi = &newai->play;
7215 newri = &newai->record;
7216 if (oldai) {
7217 oldpi = &oldai->play;
7218 oldri = &oldai->record;
7219 }
7220 error = 0;
7221
7222 /*
7223 * It looks like unnecessary to halt HW mixers to set HW mixers.
7224 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7225 */
7226
7227 if (SPECIFIED(newpi->port)) {
7228 if (oldai)
7229 oldpi->port = au_get_port(sc, &sc->sc_outports);
7230 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7231 if (error) {
7232 audio_printf(sc,
7233 "setting play.port=%d failed: errno=%d\n",
7234 newpi->port, error);
7235 goto abort;
7236 }
7237 }
7238 if (SPECIFIED(newri->port)) {
7239 if (oldai)
7240 oldri->port = au_get_port(sc, &sc->sc_inports);
7241 error = au_set_port(sc, &sc->sc_inports, newri->port);
7242 if (error) {
7243 audio_printf(sc,
7244 "setting record.port=%d failed: errno=%d\n",
7245 newri->port, error);
7246 goto abort;
7247 }
7248 }
7249
7250 /* Backup play.{gain,balance} */
7251 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7252 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7253 if (oldai) {
7254 oldpi->gain = pgain;
7255 oldpi->balance = pbalance;
7256 }
7257 }
7258 /* Backup record.{gain,balance} */
7259 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7260 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7261 if (oldai) {
7262 oldri->gain = rgain;
7263 oldri->balance = rbalance;
7264 }
7265 }
7266 if (SPECIFIED(newpi->gain)) {
7267 error = au_set_gain(sc, &sc->sc_outports,
7268 newpi->gain, pbalance);
7269 if (error) {
7270 audio_printf(sc,
7271 "setting play.gain=%d failed: errno=%d\n",
7272 newpi->gain, error);
7273 goto abort;
7274 }
7275 }
7276 if (SPECIFIED(newri->gain)) {
7277 error = au_set_gain(sc, &sc->sc_inports,
7278 newri->gain, rbalance);
7279 if (error) {
7280 audio_printf(sc,
7281 "setting record.gain=%d failed: errno=%d\n",
7282 newri->gain, error);
7283 goto abort;
7284 }
7285 }
7286 if (SPECIFIED_CH(newpi->balance)) {
7287 error = au_set_gain(sc, &sc->sc_outports,
7288 pgain, newpi->balance);
7289 if (error) {
7290 audio_printf(sc,
7291 "setting play.balance=%d failed: errno=%d\n",
7292 newpi->balance, error);
7293 goto abort;
7294 }
7295 }
7296 if (SPECIFIED_CH(newri->balance)) {
7297 error = au_set_gain(sc, &sc->sc_inports,
7298 rgain, newri->balance);
7299 if (error) {
7300 audio_printf(sc,
7301 "setting record.balance=%d failed: errno=%d\n",
7302 newri->balance, error);
7303 goto abort;
7304 }
7305 }
7306
7307 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7308 if (oldai)
7309 oldai->monitor_gain = au_get_monitor_gain(sc);
7310 error = au_set_monitor_gain(sc, newai->monitor_gain);
7311 if (error) {
7312 audio_printf(sc,
7313 "setting monitor_gain=%d failed: errno=%d\n",
7314 newai->monitor_gain, error);
7315 goto abort;
7316 }
7317 }
7318
7319 /* XXX TODO */
7320 /* sc->sc_ai = *ai; */
7321
7322 error = 0;
7323 abort:
7324 return error;
7325 }
7326
7327 /*
7328 * Setup the hardware with mixer format phwfmt, rhwfmt.
7329 * The arguments have following restrictions:
7330 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7331 * or both.
7332 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7333 * - On non-independent devices, phwfmt and rhwfmt must have the same
7334 * parameters.
7335 * - pfil and rfil must be zero-filled.
7336 * If successful,
7337 * - phwfmt, rhwfmt will be overwritten by hardware format.
7338 * - pfil, rfil will be filled with filter information specified by the
7339 * hardware driver.
7340 * and then returns 0. Otherwise returns errno.
7341 * Must be called without sc_lock held.
7342 */
7343 static int
7344 audio_hw_set_format(struct audio_softc *sc, int setmode,
7345 audio_format2_t *phwfmt, audio_format2_t *rhwfmt,
7346 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7347 {
7348 audio_params_t pp, rp;
7349 int error;
7350
7351 KASSERT(phwfmt != NULL);
7352 KASSERT(rhwfmt != NULL);
7353
7354 pp = format2_to_params(phwfmt);
7355 rp = format2_to_params(rhwfmt);
7356
7357 mutex_enter(sc->sc_lock);
7358 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7359 &pp, &rp, pfil, rfil);
7360 if (error) {
7361 mutex_exit(sc->sc_lock);
7362 audio_printf(sc, "set_format failed: errno=%d\n", error);
7363 return error;
7364 }
7365
7366 if (sc->hw_if->commit_settings) {
7367 error = sc->hw_if->commit_settings(sc->hw_hdl);
7368 if (error) {
7369 mutex_exit(sc->sc_lock);
7370 audio_printf(sc,
7371 "commit_settings failed: errno=%d\n", error);
7372 return error;
7373 }
7374 }
7375 mutex_exit(sc->sc_lock);
7376
7377 return 0;
7378 }
7379
7380 /*
7381 * Fill audio_info structure. If need_mixerinfo is true, it will also
7382 * fill the hardware mixer information.
7383 * Must be called with sc_exlock held and without sc_lock held.
7384 */
7385 static int
7386 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7387 audio_file_t *file)
7388 {
7389 struct audio_prinfo *ri, *pi;
7390 audio_track_t *track;
7391 audio_track_t *ptrack;
7392 audio_track_t *rtrack;
7393 int gain;
7394
7395 KASSERT(sc->sc_exlock);
7396
7397 ri = &ai->record;
7398 pi = &ai->play;
7399 ptrack = file->ptrack;
7400 rtrack = file->rtrack;
7401
7402 memset(ai, 0, sizeof(*ai));
7403
7404 if (ptrack) {
7405 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7406 pi->channels = ptrack->usrbuf.fmt.channels;
7407 pi->precision = ptrack->usrbuf.fmt.precision;
7408 pi->encoding = ptrack->usrbuf.fmt.encoding;
7409 pi->pause = ptrack->is_pause;
7410 } else {
7411 /* Use sticky parameters if the track is not available. */
7412 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7413 pi->channels = sc->sc_sound_pparams.channels;
7414 pi->precision = sc->sc_sound_pparams.precision;
7415 pi->encoding = sc->sc_sound_pparams.encoding;
7416 pi->pause = sc->sc_sound_ppause;
7417 }
7418 if (rtrack) {
7419 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7420 ri->channels = rtrack->usrbuf.fmt.channels;
7421 ri->precision = rtrack->usrbuf.fmt.precision;
7422 ri->encoding = rtrack->usrbuf.fmt.encoding;
7423 ri->pause = rtrack->is_pause;
7424 } else {
7425 /* Use sticky parameters if the track is not available. */
7426 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7427 ri->channels = sc->sc_sound_rparams.channels;
7428 ri->precision = sc->sc_sound_rparams.precision;
7429 ri->encoding = sc->sc_sound_rparams.encoding;
7430 ri->pause = sc->sc_sound_rpause;
7431 }
7432
7433 if (ptrack) {
7434 pi->seek = ptrack->usrbuf.used;
7435 pi->samples = ptrack->usrbuf_stamp;
7436 pi->eof = ptrack->eofcounter;
7437 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7438 pi->open = 1;
7439 pi->buffer_size = ptrack->usrbuf.capacity;
7440 }
7441 pi->waiting = 0; /* open never hangs */
7442 pi->active = sc->sc_pbusy;
7443
7444 if (rtrack) {
7445 ri->seek = rtrack->usrbuf.used;
7446 ri->samples = rtrack->usrbuf_stamp;
7447 ri->eof = 0;
7448 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7449 ri->open = 1;
7450 ri->buffer_size = rtrack->usrbuf.capacity;
7451 }
7452 ri->waiting = 0; /* open never hangs */
7453 ri->active = sc->sc_rbusy;
7454
7455 /*
7456 * XXX There may be different number of channels between playback
7457 * and recording, so that blocksize also may be different.
7458 * But struct audio_info has an united blocksize...
7459 * Here, I use play info precedencely if ptrack is available,
7460 * otherwise record info.
7461 *
7462 * XXX hiwat/lowat is a playback-only parameter. What should I
7463 * return for a record-only descriptor?
7464 */
7465 track = ptrack ? ptrack : rtrack;
7466 if (track) {
7467 ai->blocksize = track->usrbuf_blksize;
7468 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7469 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7470 }
7471 ai->mode = file->mode;
7472
7473 /*
7474 * For backward compatibility, we have to pad these five fields
7475 * a fake non-zero value even if there are no tracks.
7476 */
7477 if (ptrack == NULL)
7478 pi->buffer_size = 65536;
7479 if (rtrack == NULL)
7480 ri->buffer_size = 65536;
7481 if (ptrack == NULL && rtrack == NULL) {
7482 ai->blocksize = 2048;
7483 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7484 ai->lowat = ai->hiwat * 3 / 4;
7485 }
7486
7487 if (need_mixerinfo) {
7488 mutex_enter(sc->sc_lock);
7489
7490 pi->port = au_get_port(sc, &sc->sc_outports);
7491 ri->port = au_get_port(sc, &sc->sc_inports);
7492
7493 pi->avail_ports = sc->sc_outports.allports;
7494 ri->avail_ports = sc->sc_inports.allports;
7495
7496 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7497 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7498
7499 if (sc->sc_monitor_port != -1) {
7500 gain = au_get_monitor_gain(sc);
7501 if (gain != -1)
7502 ai->monitor_gain = gain;
7503 }
7504 mutex_exit(sc->sc_lock);
7505 }
7506
7507 return 0;
7508 }
7509
7510 /*
7511 * Return true if playback is configured.
7512 * This function can be used after audioattach.
7513 */
7514 static bool
7515 audio_can_playback(struct audio_softc *sc)
7516 {
7517
7518 return (sc->sc_pmixer != NULL);
7519 }
7520
7521 /*
7522 * Return true if recording is configured.
7523 * This function can be used after audioattach.
7524 */
7525 static bool
7526 audio_can_capture(struct audio_softc *sc)
7527 {
7528
7529 return (sc->sc_rmixer != NULL);
7530 }
7531
7532 /*
7533 * Get the afp->index'th item from the valid one of format[].
7534 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7535 *
7536 * This is common routines for query_format.
7537 * If your hardware driver has struct audio_format[], the simplest case
7538 * you can write your query_format interface as follows:
7539 *
7540 * struct audio_format foo_format[] = { ... };
7541 *
7542 * int
7543 * foo_query_format(void *hdl, audio_format_query_t *afp)
7544 * {
7545 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7546 * }
7547 */
7548 int
7549 audio_query_format(const struct audio_format *format, int nformats,
7550 audio_format_query_t *afp)
7551 {
7552 const struct audio_format *f;
7553 int idx;
7554 int i;
7555
7556 idx = 0;
7557 for (i = 0; i < nformats; i++) {
7558 f = &format[i];
7559 if (!AUFMT_IS_VALID(f))
7560 continue;
7561 if (afp->index == idx) {
7562 afp->fmt = *f;
7563 return 0;
7564 }
7565 idx++;
7566 }
7567 return EINVAL;
7568 }
7569
7570 /*
7571 * This function is provided for the hardware driver's set_format() to
7572 * find index matches with 'param' from array of audio_format_t 'formats'.
7573 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7574 * It returns the matched index and never fails. Because param passed to
7575 * set_format() is selected from query_format().
7576 * This function will be an alternative to auconv_set_converter() to
7577 * find index.
7578 */
7579 int
7580 audio_indexof_format(const struct audio_format *formats, int nformats,
7581 int mode, const audio_params_t *param)
7582 {
7583 const struct audio_format *f;
7584 int index;
7585 int j;
7586
7587 for (index = 0; index < nformats; index++) {
7588 f = &formats[index];
7589
7590 if (!AUFMT_IS_VALID(f))
7591 continue;
7592 if ((f->mode & mode) == 0)
7593 continue;
7594 if (f->encoding != param->encoding)
7595 continue;
7596 if (f->validbits != param->precision)
7597 continue;
7598 if (f->channels != param->channels)
7599 continue;
7600
7601 if (f->frequency_type == 0) {
7602 if (param->sample_rate < f->frequency[0] ||
7603 param->sample_rate > f->frequency[1])
7604 continue;
7605 } else {
7606 for (j = 0; j < f->frequency_type; j++) {
7607 if (param->sample_rate == f->frequency[j])
7608 break;
7609 }
7610 if (j == f->frequency_type)
7611 continue;
7612 }
7613
7614 /* Then, matched */
7615 return index;
7616 }
7617
7618 /* Not matched. This should not be happened. */
7619 panic("%s: cannot find matched format\n", __func__);
7620 }
7621
7622 /*
7623 * Get or set hardware blocksize in msec.
7624 * XXX It's for debug.
7625 */
7626 static int
7627 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7628 {
7629 struct sysctlnode node;
7630 struct audio_softc *sc;
7631 audio_format2_t phwfmt;
7632 audio_format2_t rhwfmt;
7633 audio_filter_reg_t pfil;
7634 audio_filter_reg_t rfil;
7635 int t;
7636 int old_blk_ms;
7637 int mode;
7638 int error;
7639
7640 node = *rnode;
7641 sc = node.sysctl_data;
7642
7643 error = audio_exlock_enter(sc);
7644 if (error)
7645 return error;
7646
7647 old_blk_ms = sc->sc_blk_ms;
7648 t = old_blk_ms;
7649 node.sysctl_data = &t;
7650 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7651 if (error || newp == NULL)
7652 goto abort;
7653
7654 if (t < 0) {
7655 error = EINVAL;
7656 goto abort;
7657 }
7658
7659 if (sc->sc_popens + sc->sc_ropens > 0) {
7660 error = EBUSY;
7661 goto abort;
7662 }
7663 sc->sc_blk_ms = t;
7664 mode = 0;
7665 if (sc->sc_pmixer) {
7666 mode |= AUMODE_PLAY;
7667 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7668 }
7669 if (sc->sc_rmixer) {
7670 mode |= AUMODE_RECORD;
7671 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7672 }
7673
7674 /* re-init hardware */
7675 memset(&pfil, 0, sizeof(pfil));
7676 memset(&rfil, 0, sizeof(rfil));
7677 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7678 if (error) {
7679 goto abort;
7680 }
7681
7682 /* re-init track mixer */
7683 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7684 if (error) {
7685 /* Rollback */
7686 sc->sc_blk_ms = old_blk_ms;
7687 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7688 goto abort;
7689 }
7690 error = 0;
7691 abort:
7692 audio_exlock_exit(sc);
7693 return error;
7694 }
7695
7696 /*
7697 * Get or set multiuser mode.
7698 */
7699 static int
7700 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7701 {
7702 struct sysctlnode node;
7703 struct audio_softc *sc;
7704 bool t;
7705 int error;
7706
7707 node = *rnode;
7708 sc = node.sysctl_data;
7709
7710 error = audio_exlock_enter(sc);
7711 if (error)
7712 return error;
7713
7714 t = sc->sc_multiuser;
7715 node.sysctl_data = &t;
7716 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7717 if (error || newp == NULL)
7718 goto abort;
7719
7720 sc->sc_multiuser = t;
7721 error = 0;
7722 abort:
7723 audio_exlock_exit(sc);
7724 return error;
7725 }
7726
7727 #if defined(AUDIO_DEBUG)
7728 /*
7729 * Get or set debug verbose level. (0..4)
7730 * XXX It's for debug.
7731 * XXX It is not separated per device.
7732 */
7733 static int
7734 audio_sysctl_debug(SYSCTLFN_ARGS)
7735 {
7736 struct sysctlnode node;
7737 int t;
7738 int error;
7739
7740 node = *rnode;
7741 t = audiodebug;
7742 node.sysctl_data = &t;
7743 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7744 if (error || newp == NULL)
7745 return error;
7746
7747 if (t < 0 || t > 4)
7748 return EINVAL;
7749 audiodebug = t;
7750 printf("audio: audiodebug = %d\n", audiodebug);
7751 return 0;
7752 }
7753 #endif /* AUDIO_DEBUG */
7754
7755 #ifdef AUDIO_PM_IDLE
7756 static void
7757 audio_idle(void *arg)
7758 {
7759 device_t dv = arg;
7760 struct audio_softc *sc = device_private(dv);
7761
7762 #ifdef PNP_DEBUG
7763 extern int pnp_debug_idle;
7764 if (pnp_debug_idle)
7765 printf("%s: idle handler called\n", device_xname(dv));
7766 #endif
7767
7768 sc->sc_idle = true;
7769
7770 /* XXX joerg Make pmf_device_suspend handle children? */
7771 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7772 return;
7773
7774 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7775 pmf_device_resume(dv, PMF_Q_SELF);
7776 }
7777
7778 static void
7779 audio_activity(device_t dv, devactive_t type)
7780 {
7781 struct audio_softc *sc = device_private(dv);
7782
7783 if (type != DVA_SYSTEM)
7784 return;
7785
7786 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7787
7788 sc->sc_idle = false;
7789 if (!device_is_active(dv)) {
7790 /* XXX joerg How to deal with a failing resume... */
7791 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7792 pmf_device_resume(dv, PMF_Q_SELF);
7793 }
7794 }
7795 #endif
7796
7797 static bool
7798 audio_suspend(device_t dv, const pmf_qual_t *qual)
7799 {
7800 struct audio_softc *sc = device_private(dv);
7801 int error;
7802
7803 error = audio_exlock_mutex_enter(sc);
7804 if (error)
7805 return error;
7806 sc->sc_suspending = true;
7807 audio_mixer_capture(sc);
7808
7809 if (sc->sc_pbusy) {
7810 audio_pmixer_halt(sc);
7811 /* Reuse this as need-to-restart flag while suspending */
7812 sc->sc_pbusy = true;
7813 }
7814 if (sc->sc_rbusy) {
7815 audio_rmixer_halt(sc);
7816 /* Reuse this as need-to-restart flag while suspending */
7817 sc->sc_rbusy = true;
7818 }
7819
7820 #ifdef AUDIO_PM_IDLE
7821 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7822 #endif
7823 audio_exlock_mutex_exit(sc);
7824
7825 return true;
7826 }
7827
7828 static bool
7829 audio_resume(device_t dv, const pmf_qual_t *qual)
7830 {
7831 struct audio_softc *sc = device_private(dv);
7832 struct audio_info ai;
7833 int error;
7834
7835 error = audio_exlock_mutex_enter(sc);
7836 if (error)
7837 return error;
7838
7839 sc->sc_suspending = false;
7840 audio_mixer_restore(sc);
7841 /* XXX ? */
7842 AUDIO_INITINFO(&ai);
7843 audio_hw_setinfo(sc, &ai, NULL);
7844
7845 /*
7846 * During from suspend to resume here, sc_[pr]busy is used as
7847 * need-to-restart flag temporarily. After this point,
7848 * sc_[pr]busy is returned to its original usage (busy flag).
7849 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
7850 */
7851 if (sc->sc_pbusy) {
7852 /* pmixer_start() requires pbusy is false */
7853 sc->sc_pbusy = false;
7854 audio_pmixer_start(sc, true);
7855 }
7856 if (sc->sc_rbusy) {
7857 /* rmixer_start() requires rbusy is false */
7858 sc->sc_rbusy = false;
7859 audio_rmixer_start(sc);
7860 }
7861
7862 audio_exlock_mutex_exit(sc);
7863
7864 return true;
7865 }
7866
7867 #if defined(AUDIO_DEBUG)
7868 static void
7869 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7870 {
7871 int n;
7872
7873 n = 0;
7874 n += snprintf(buf + n, bufsize - n, "%s",
7875 audio_encoding_name(fmt->encoding));
7876 if (fmt->precision == fmt->stride) {
7877 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7878 } else {
7879 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7880 fmt->precision, fmt->stride);
7881 }
7882
7883 snprintf(buf + n, bufsize - n, " %uch %uHz",
7884 fmt->channels, fmt->sample_rate);
7885 }
7886 #endif
7887
7888 #if defined(AUDIO_DEBUG)
7889 static void
7890 audio_print_format2(const char *s, const audio_format2_t *fmt)
7891 {
7892 char fmtstr[64];
7893
7894 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7895 printf("%s %s\n", s, fmtstr);
7896 }
7897 #endif
7898
7899 #ifdef DIAGNOSTIC
7900 void
7901 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7902 {
7903
7904 KASSERTMSG(fmt, "called from %s", where);
7905
7906 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7907 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7908 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7909 "called from %s: fmt->stride=%d", where, fmt->stride);
7910 } else {
7911 KASSERTMSG(fmt->stride % NBBY == 0,
7912 "called from %s: fmt->stride=%d", where, fmt->stride);
7913 }
7914 KASSERTMSG(fmt->precision <= fmt->stride,
7915 "called from %s: fmt->precision=%d fmt->stride=%d",
7916 where, fmt->precision, fmt->stride);
7917 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7918 "called from %s: fmt->channels=%d", where, fmt->channels);
7919
7920 /* XXX No check for encodings? */
7921 }
7922
7923 void
7924 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7925 {
7926
7927 KASSERT(arg != NULL);
7928 KASSERT(arg->src != NULL);
7929 KASSERT(arg->dst != NULL);
7930 audio_diagnostic_format2(where, arg->srcfmt);
7931 audio_diagnostic_format2(where, arg->dstfmt);
7932 KASSERT(arg->count > 0);
7933 }
7934
7935 void
7936 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7937 {
7938
7939 KASSERTMSG(ring, "called from %s", where);
7940 audio_diagnostic_format2(where, &ring->fmt);
7941 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7942 "called from %s: ring->capacity=%d", where, ring->capacity);
7943 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7944 "called from %s: ring->used=%d ring->capacity=%d",
7945 where, ring->used, ring->capacity);
7946 if (ring->capacity == 0) {
7947 KASSERTMSG(ring->mem == NULL,
7948 "called from %s: capacity == 0 but mem != NULL", where);
7949 } else {
7950 KASSERTMSG(ring->mem != NULL,
7951 "called from %s: capacity != 0 but mem == NULL", where);
7952 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7953 "called from %s: ring->head=%d ring->capacity=%d",
7954 where, ring->head, ring->capacity);
7955 }
7956 }
7957 #endif /* DIAGNOSTIC */
7958
7959
7960 /*
7961 * Mixer driver
7962 */
7963
7964 /*
7965 * Must be called without sc_lock held.
7966 */
7967 int
7968 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7969 struct lwp *l)
7970 {
7971 struct file *fp;
7972 audio_file_t *af;
7973 int error, fd;
7974
7975 TRACE(1, "flags=0x%x", flags);
7976
7977 error = fd_allocfile(&fp, &fd);
7978 if (error)
7979 return error;
7980
7981 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7982 af->sc = sc;
7983 af->dev = dev;
7984
7985 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7986 KASSERT(error == EMOVEFD);
7987
7988 return error;
7989 }
7990
7991 /*
7992 * Add a process to those to be signalled on mixer activity.
7993 * If the process has already been added, do nothing.
7994 * Must be called with sc_exlock held and without sc_lock held.
7995 */
7996 static void
7997 mixer_async_add(struct audio_softc *sc, pid_t pid)
7998 {
7999 int i;
8000
8001 KASSERT(sc->sc_exlock);
8002
8003 /* If already exists, returns without doing anything. */
8004 for (i = 0; i < sc->sc_am_used; i++) {
8005 if (sc->sc_am[i] == pid)
8006 return;
8007 }
8008
8009 /* Extend array if necessary. */
8010 if (sc->sc_am_used >= sc->sc_am_capacity) {
8011 sc->sc_am_capacity += AM_CAPACITY;
8012 sc->sc_am = kern_realloc(sc->sc_am,
8013 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8014 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8015 }
8016
8017 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8018 sc->sc_am[sc->sc_am_used++] = pid;
8019 }
8020
8021 /*
8022 * Remove a process from those to be signalled on mixer activity.
8023 * If the process has not been added, do nothing.
8024 * Must be called with sc_exlock held and without sc_lock held.
8025 */
8026 static void
8027 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8028 {
8029 int i;
8030
8031 KASSERT(sc->sc_exlock);
8032
8033 for (i = 0; i < sc->sc_am_used; i++) {
8034 if (sc->sc_am[i] == pid) {
8035 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8036 TRACE(2, "am[%d](%d) removed, used=%d",
8037 i, (int)pid, sc->sc_am_used);
8038
8039 /* Empty array if no longer necessary. */
8040 if (sc->sc_am_used == 0) {
8041 kern_free(sc->sc_am);
8042 sc->sc_am = NULL;
8043 sc->sc_am_capacity = 0;
8044 TRACE(2, "released");
8045 }
8046 return;
8047 }
8048 }
8049 }
8050
8051 /*
8052 * Signal all processes waiting for the mixer.
8053 * Must be called with sc_exlock held.
8054 */
8055 static void
8056 mixer_signal(struct audio_softc *sc)
8057 {
8058 proc_t *p;
8059 int i;
8060
8061 KASSERT(sc->sc_exlock);
8062
8063 for (i = 0; i < sc->sc_am_used; i++) {
8064 mutex_enter(proc_lock);
8065 p = proc_find(sc->sc_am[i]);
8066 if (p)
8067 psignal(p, SIGIO);
8068 mutex_exit(proc_lock);
8069 }
8070 }
8071
8072 /*
8073 * Close a mixer device
8074 */
8075 int
8076 mixer_close(struct audio_softc *sc, audio_file_t *file)
8077 {
8078 int error;
8079
8080 error = audio_exlock_enter(sc);
8081 if (error)
8082 return error;
8083 TRACE(1, "called");
8084 mixer_async_remove(sc, curproc->p_pid);
8085 audio_exlock_exit(sc);
8086
8087 return 0;
8088 }
8089
8090 /*
8091 * Must be called without sc_lock nor sc_exlock held.
8092 */
8093 int
8094 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8095 struct lwp *l)
8096 {
8097 mixer_devinfo_t *mi;
8098 mixer_ctrl_t *mc;
8099 int error;
8100
8101 TRACE(2, "(%lu,'%c',%lu)",
8102 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8103 error = EINVAL;
8104
8105 /* we can return cached values if we are sleeping */
8106 if (cmd != AUDIO_MIXER_READ) {
8107 mutex_enter(sc->sc_lock);
8108 device_active(sc->sc_dev, DVA_SYSTEM);
8109 mutex_exit(sc->sc_lock);
8110 }
8111
8112 switch (cmd) {
8113 case FIOASYNC:
8114 error = audio_exlock_enter(sc);
8115 if (error)
8116 break;
8117 if (*(int *)addr) {
8118 mixer_async_add(sc, curproc->p_pid);
8119 } else {
8120 mixer_async_remove(sc, curproc->p_pid);
8121 }
8122 audio_exlock_exit(sc);
8123 break;
8124
8125 case AUDIO_GETDEV:
8126 TRACE(2, "AUDIO_GETDEV");
8127 mutex_enter(sc->sc_lock);
8128 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8129 mutex_exit(sc->sc_lock);
8130 break;
8131
8132 case AUDIO_MIXER_DEVINFO:
8133 TRACE(2, "AUDIO_MIXER_DEVINFO");
8134 mi = (mixer_devinfo_t *)addr;
8135
8136 mi->un.v.delta = 0; /* default */
8137 mutex_enter(sc->sc_lock);
8138 error = audio_query_devinfo(sc, mi);
8139 mutex_exit(sc->sc_lock);
8140 break;
8141
8142 case AUDIO_MIXER_READ:
8143 TRACE(2, "AUDIO_MIXER_READ");
8144 mc = (mixer_ctrl_t *)addr;
8145
8146 error = audio_exlock_mutex_enter(sc);
8147 if (error)
8148 break;
8149 if (device_is_active(sc->hw_dev))
8150 error = audio_get_port(sc, mc);
8151 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8152 error = ENXIO;
8153 else {
8154 int dev = mc->dev;
8155 memcpy(mc, &sc->sc_mixer_state[dev],
8156 sizeof(mixer_ctrl_t));
8157 error = 0;
8158 }
8159 audio_exlock_mutex_exit(sc);
8160 break;
8161
8162 case AUDIO_MIXER_WRITE:
8163 TRACE(2, "AUDIO_MIXER_WRITE");
8164 error = audio_exlock_mutex_enter(sc);
8165 if (error)
8166 break;
8167 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8168 if (error) {
8169 audio_exlock_mutex_exit(sc);
8170 break;
8171 }
8172
8173 if (sc->hw_if->commit_settings) {
8174 error = sc->hw_if->commit_settings(sc->hw_hdl);
8175 if (error) {
8176 audio_exlock_mutex_exit(sc);
8177 break;
8178 }
8179 }
8180 mutex_exit(sc->sc_lock);
8181 mixer_signal(sc);
8182 audio_exlock_exit(sc);
8183 break;
8184
8185 default:
8186 if (sc->hw_if->dev_ioctl) {
8187 mutex_enter(sc->sc_lock);
8188 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8189 cmd, addr, flag, l);
8190 mutex_exit(sc->sc_lock);
8191 } else
8192 error = EINVAL;
8193 break;
8194 }
8195 TRACE(2, "(%lu,'%c',%lu) result %d",
8196 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8197 return error;
8198 }
8199
8200 /*
8201 * Must be called with sc_lock held.
8202 */
8203 int
8204 au_portof(struct audio_softc *sc, char *name, int class)
8205 {
8206 mixer_devinfo_t mi;
8207
8208 KASSERT(mutex_owned(sc->sc_lock));
8209
8210 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8211 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8212 return mi.index;
8213 }
8214 return -1;
8215 }
8216
8217 /*
8218 * Must be called with sc_lock held.
8219 */
8220 void
8221 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8222 mixer_devinfo_t *mi, const struct portname *tbl)
8223 {
8224 int i, j;
8225
8226 KASSERT(mutex_owned(sc->sc_lock));
8227
8228 ports->index = mi->index;
8229 if (mi->type == AUDIO_MIXER_ENUM) {
8230 ports->isenum = true;
8231 for(i = 0; tbl[i].name; i++)
8232 for(j = 0; j < mi->un.e.num_mem; j++)
8233 if (strcmp(mi->un.e.member[j].label.name,
8234 tbl[i].name) == 0) {
8235 ports->allports |= tbl[i].mask;
8236 ports->aumask[ports->nports] = tbl[i].mask;
8237 ports->misel[ports->nports] =
8238 mi->un.e.member[j].ord;
8239 ports->miport[ports->nports] =
8240 au_portof(sc, mi->un.e.member[j].label.name,
8241 mi->mixer_class);
8242 if (ports->mixerout != -1 &&
8243 ports->miport[ports->nports] != -1)
8244 ports->isdual = true;
8245 ++ports->nports;
8246 }
8247 } else if (mi->type == AUDIO_MIXER_SET) {
8248 for(i = 0; tbl[i].name; i++)
8249 for(j = 0; j < mi->un.s.num_mem; j++)
8250 if (strcmp(mi->un.s.member[j].label.name,
8251 tbl[i].name) == 0) {
8252 ports->allports |= tbl[i].mask;
8253 ports->aumask[ports->nports] = tbl[i].mask;
8254 ports->misel[ports->nports] =
8255 mi->un.s.member[j].mask;
8256 ports->miport[ports->nports] =
8257 au_portof(sc, mi->un.s.member[j].label.name,
8258 mi->mixer_class);
8259 ++ports->nports;
8260 }
8261 }
8262 }
8263
8264 /*
8265 * Must be called with sc_lock && sc_exlock held.
8266 */
8267 int
8268 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8269 {
8270
8271 KASSERT(mutex_owned(sc->sc_lock));
8272 KASSERT(sc->sc_exlock);
8273
8274 ct->type = AUDIO_MIXER_VALUE;
8275 ct->un.value.num_channels = 2;
8276 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8277 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8278 if (audio_set_port(sc, ct) == 0)
8279 return 0;
8280 ct->un.value.num_channels = 1;
8281 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8282 return audio_set_port(sc, ct);
8283 }
8284
8285 /*
8286 * Must be called with sc_lock && sc_exlock held.
8287 */
8288 int
8289 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8290 {
8291 int error;
8292
8293 KASSERT(mutex_owned(sc->sc_lock));
8294 KASSERT(sc->sc_exlock);
8295
8296 ct->un.value.num_channels = 2;
8297 if (audio_get_port(sc, ct) == 0) {
8298 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8299 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8300 } else {
8301 ct->un.value.num_channels = 1;
8302 error = audio_get_port(sc, ct);
8303 if (error)
8304 return error;
8305 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8306 }
8307 return 0;
8308 }
8309
8310 /*
8311 * Must be called with sc_lock && sc_exlock held.
8312 */
8313 int
8314 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8315 int gain, int balance)
8316 {
8317 mixer_ctrl_t ct;
8318 int i, error;
8319 int l, r;
8320 u_int mask;
8321 int nset;
8322
8323 KASSERT(mutex_owned(sc->sc_lock));
8324 KASSERT(sc->sc_exlock);
8325
8326 if (balance == AUDIO_MID_BALANCE) {
8327 l = r = gain;
8328 } else if (balance < AUDIO_MID_BALANCE) {
8329 l = gain;
8330 r = (balance * gain) / AUDIO_MID_BALANCE;
8331 } else {
8332 r = gain;
8333 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8334 / AUDIO_MID_BALANCE;
8335 }
8336 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8337
8338 if (ports->index == -1) {
8339 usemaster:
8340 if (ports->master == -1)
8341 return 0; /* just ignore it silently */
8342 ct.dev = ports->master;
8343 error = au_set_lr_value(sc, &ct, l, r);
8344 } else {
8345 ct.dev = ports->index;
8346 if (ports->isenum) {
8347 ct.type = AUDIO_MIXER_ENUM;
8348 error = audio_get_port(sc, &ct);
8349 if (error)
8350 return error;
8351 if (ports->isdual) {
8352 if (ports->cur_port == -1)
8353 ct.dev = ports->master;
8354 else
8355 ct.dev = ports->miport[ports->cur_port];
8356 error = au_set_lr_value(sc, &ct, l, r);
8357 } else {
8358 for(i = 0; i < ports->nports; i++)
8359 if (ports->misel[i] == ct.un.ord) {
8360 ct.dev = ports->miport[i];
8361 if (ct.dev == -1 ||
8362 au_set_lr_value(sc, &ct, l, r))
8363 goto usemaster;
8364 else
8365 break;
8366 }
8367 }
8368 } else {
8369 ct.type = AUDIO_MIXER_SET;
8370 error = audio_get_port(sc, &ct);
8371 if (error)
8372 return error;
8373 mask = ct.un.mask;
8374 nset = 0;
8375 for(i = 0; i < ports->nports; i++) {
8376 if (ports->misel[i] & mask) {
8377 ct.dev = ports->miport[i];
8378 if (ct.dev != -1 &&
8379 au_set_lr_value(sc, &ct, l, r) == 0)
8380 nset++;
8381 }
8382 }
8383 if (nset == 0)
8384 goto usemaster;
8385 }
8386 }
8387 if (!error)
8388 mixer_signal(sc);
8389 return error;
8390 }
8391
8392 /*
8393 * Must be called with sc_lock && sc_exlock held.
8394 */
8395 void
8396 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8397 u_int *pgain, u_char *pbalance)
8398 {
8399 mixer_ctrl_t ct;
8400 int i, l, r, n;
8401 int lgain, rgain;
8402
8403 KASSERT(mutex_owned(sc->sc_lock));
8404 KASSERT(sc->sc_exlock);
8405
8406 lgain = AUDIO_MAX_GAIN / 2;
8407 rgain = AUDIO_MAX_GAIN / 2;
8408 if (ports->index == -1) {
8409 usemaster:
8410 if (ports->master == -1)
8411 goto bad;
8412 ct.dev = ports->master;
8413 ct.type = AUDIO_MIXER_VALUE;
8414 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8415 goto bad;
8416 } else {
8417 ct.dev = ports->index;
8418 if (ports->isenum) {
8419 ct.type = AUDIO_MIXER_ENUM;
8420 if (audio_get_port(sc, &ct))
8421 goto bad;
8422 ct.type = AUDIO_MIXER_VALUE;
8423 if (ports->isdual) {
8424 if (ports->cur_port == -1)
8425 ct.dev = ports->master;
8426 else
8427 ct.dev = ports->miport[ports->cur_port];
8428 au_get_lr_value(sc, &ct, &lgain, &rgain);
8429 } else {
8430 for(i = 0; i < ports->nports; i++)
8431 if (ports->misel[i] == ct.un.ord) {
8432 ct.dev = ports->miport[i];
8433 if (ct.dev == -1 ||
8434 au_get_lr_value(sc, &ct,
8435 &lgain, &rgain))
8436 goto usemaster;
8437 else
8438 break;
8439 }
8440 }
8441 } else {
8442 ct.type = AUDIO_MIXER_SET;
8443 if (audio_get_port(sc, &ct))
8444 goto bad;
8445 ct.type = AUDIO_MIXER_VALUE;
8446 lgain = rgain = n = 0;
8447 for(i = 0; i < ports->nports; i++) {
8448 if (ports->misel[i] & ct.un.mask) {
8449 ct.dev = ports->miport[i];
8450 if (ct.dev == -1 ||
8451 au_get_lr_value(sc, &ct, &l, &r))
8452 goto usemaster;
8453 else {
8454 lgain += l;
8455 rgain += r;
8456 n++;
8457 }
8458 }
8459 }
8460 if (n != 0) {
8461 lgain /= n;
8462 rgain /= n;
8463 }
8464 }
8465 }
8466 bad:
8467 if (lgain == rgain) { /* handles lgain==rgain==0 */
8468 *pgain = lgain;
8469 *pbalance = AUDIO_MID_BALANCE;
8470 } else if (lgain < rgain) {
8471 *pgain = rgain;
8472 /* balance should be > AUDIO_MID_BALANCE */
8473 *pbalance = AUDIO_RIGHT_BALANCE -
8474 (AUDIO_MID_BALANCE * lgain) / rgain;
8475 } else /* lgain > rgain */ {
8476 *pgain = lgain;
8477 /* balance should be < AUDIO_MID_BALANCE */
8478 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8479 }
8480 }
8481
8482 /*
8483 * Must be called with sc_lock && sc_exlock held.
8484 */
8485 int
8486 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8487 {
8488 mixer_ctrl_t ct;
8489 int i, error, use_mixerout;
8490
8491 KASSERT(mutex_owned(sc->sc_lock));
8492 KASSERT(sc->sc_exlock);
8493
8494 use_mixerout = 1;
8495 if (port == 0) {
8496 if (ports->allports == 0)
8497 return 0; /* Allow this special case. */
8498 else if (ports->isdual) {
8499 if (ports->cur_port == -1) {
8500 return 0;
8501 } else {
8502 port = ports->aumask[ports->cur_port];
8503 ports->cur_port = -1;
8504 use_mixerout = 0;
8505 }
8506 }
8507 }
8508 if (ports->index == -1)
8509 return EINVAL;
8510 ct.dev = ports->index;
8511 if (ports->isenum) {
8512 if (port & (port-1))
8513 return EINVAL; /* Only one port allowed */
8514 ct.type = AUDIO_MIXER_ENUM;
8515 error = EINVAL;
8516 for(i = 0; i < ports->nports; i++)
8517 if (ports->aumask[i] == port) {
8518 if (ports->isdual && use_mixerout) {
8519 ct.un.ord = ports->mixerout;
8520 ports->cur_port = i;
8521 } else {
8522 ct.un.ord = ports->misel[i];
8523 }
8524 error = audio_set_port(sc, &ct);
8525 break;
8526 }
8527 } else {
8528 ct.type = AUDIO_MIXER_SET;
8529 ct.un.mask = 0;
8530 for(i = 0; i < ports->nports; i++)
8531 if (ports->aumask[i] & port)
8532 ct.un.mask |= ports->misel[i];
8533 if (port != 0 && ct.un.mask == 0)
8534 error = EINVAL;
8535 else
8536 error = audio_set_port(sc, &ct);
8537 }
8538 if (!error)
8539 mixer_signal(sc);
8540 return error;
8541 }
8542
8543 /*
8544 * Must be called with sc_lock && sc_exlock held.
8545 */
8546 int
8547 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8548 {
8549 mixer_ctrl_t ct;
8550 int i, aumask;
8551
8552 KASSERT(mutex_owned(sc->sc_lock));
8553 KASSERT(sc->sc_exlock);
8554
8555 if (ports->index == -1)
8556 return 0;
8557 ct.dev = ports->index;
8558 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8559 if (audio_get_port(sc, &ct))
8560 return 0;
8561 aumask = 0;
8562 if (ports->isenum) {
8563 if (ports->isdual && ports->cur_port != -1) {
8564 if (ports->mixerout == ct.un.ord)
8565 aumask = ports->aumask[ports->cur_port];
8566 else
8567 ports->cur_port = -1;
8568 }
8569 if (aumask == 0)
8570 for(i = 0; i < ports->nports; i++)
8571 if (ports->misel[i] == ct.un.ord)
8572 aumask = ports->aumask[i];
8573 } else {
8574 for(i = 0; i < ports->nports; i++)
8575 if (ct.un.mask & ports->misel[i])
8576 aumask |= ports->aumask[i];
8577 }
8578 return aumask;
8579 }
8580
8581 /*
8582 * It returns 0 if success, otherwise errno.
8583 * Must be called only if sc->sc_monitor_port != -1.
8584 * Must be called with sc_lock && sc_exlock held.
8585 */
8586 static int
8587 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8588 {
8589 mixer_ctrl_t ct;
8590
8591 KASSERT(mutex_owned(sc->sc_lock));
8592 KASSERT(sc->sc_exlock);
8593
8594 ct.dev = sc->sc_monitor_port;
8595 ct.type = AUDIO_MIXER_VALUE;
8596 ct.un.value.num_channels = 1;
8597 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8598 return audio_set_port(sc, &ct);
8599 }
8600
8601 /*
8602 * It returns monitor gain if success, otherwise -1.
8603 * Must be called only if sc->sc_monitor_port != -1.
8604 * Must be called with sc_lock && sc_exlock held.
8605 */
8606 static int
8607 au_get_monitor_gain(struct audio_softc *sc)
8608 {
8609 mixer_ctrl_t ct;
8610
8611 KASSERT(mutex_owned(sc->sc_lock));
8612 KASSERT(sc->sc_exlock);
8613
8614 ct.dev = sc->sc_monitor_port;
8615 ct.type = AUDIO_MIXER_VALUE;
8616 ct.un.value.num_channels = 1;
8617 if (audio_get_port(sc, &ct))
8618 return -1;
8619 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8620 }
8621
8622 /*
8623 * Must be called with sc_lock && sc_exlock held.
8624 */
8625 static int
8626 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8627 {
8628
8629 KASSERT(mutex_owned(sc->sc_lock));
8630 KASSERT(sc->sc_exlock);
8631
8632 return sc->hw_if->set_port(sc->hw_hdl, mc);
8633 }
8634
8635 /*
8636 * Must be called with sc_lock && sc_exlock held.
8637 */
8638 static int
8639 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8640 {
8641
8642 KASSERT(mutex_owned(sc->sc_lock));
8643 KASSERT(sc->sc_exlock);
8644
8645 return sc->hw_if->get_port(sc->hw_hdl, mc);
8646 }
8647
8648 /*
8649 * Must be called with sc_lock && sc_exlock held.
8650 */
8651 static void
8652 audio_mixer_capture(struct audio_softc *sc)
8653 {
8654 mixer_devinfo_t mi;
8655 mixer_ctrl_t *mc;
8656
8657 KASSERT(mutex_owned(sc->sc_lock));
8658 KASSERT(sc->sc_exlock);
8659
8660 for (mi.index = 0;; mi.index++) {
8661 if (audio_query_devinfo(sc, &mi) != 0)
8662 break;
8663 KASSERT(mi.index < sc->sc_nmixer_states);
8664 if (mi.type == AUDIO_MIXER_CLASS)
8665 continue;
8666 mc = &sc->sc_mixer_state[mi.index];
8667 mc->dev = mi.index;
8668 mc->type = mi.type;
8669 mc->un.value.num_channels = mi.un.v.num_channels;
8670 (void)audio_get_port(sc, mc);
8671 }
8672
8673 return;
8674 }
8675
8676 /*
8677 * Must be called with sc_lock && sc_exlock held.
8678 */
8679 static void
8680 audio_mixer_restore(struct audio_softc *sc)
8681 {
8682 mixer_devinfo_t mi;
8683 mixer_ctrl_t *mc;
8684
8685 KASSERT(mutex_owned(sc->sc_lock));
8686 KASSERT(sc->sc_exlock);
8687
8688 for (mi.index = 0; ; mi.index++) {
8689 if (audio_query_devinfo(sc, &mi) != 0)
8690 break;
8691 if (mi.type == AUDIO_MIXER_CLASS)
8692 continue;
8693 mc = &sc->sc_mixer_state[mi.index];
8694 (void)audio_set_port(sc, mc);
8695 }
8696 if (sc->hw_if->commit_settings)
8697 sc->hw_if->commit_settings(sc->hw_hdl);
8698
8699 return;
8700 }
8701
8702 static void
8703 audio_volume_down(device_t dv)
8704 {
8705 struct audio_softc *sc = device_private(dv);
8706 mixer_devinfo_t mi;
8707 int newgain;
8708 u_int gain;
8709 u_char balance;
8710
8711 if (audio_exlock_mutex_enter(sc) != 0)
8712 return;
8713 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8714 mi.index = sc->sc_outports.master;
8715 mi.un.v.delta = 0;
8716 if (audio_query_devinfo(sc, &mi) == 0) {
8717 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8718 newgain = gain - mi.un.v.delta;
8719 if (newgain < AUDIO_MIN_GAIN)
8720 newgain = AUDIO_MIN_GAIN;
8721 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8722 }
8723 }
8724 audio_exlock_mutex_exit(sc);
8725 }
8726
8727 static void
8728 audio_volume_up(device_t dv)
8729 {
8730 struct audio_softc *sc = device_private(dv);
8731 mixer_devinfo_t mi;
8732 u_int gain, newgain;
8733 u_char balance;
8734
8735 if (audio_exlock_mutex_enter(sc) != 0)
8736 return;
8737 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8738 mi.index = sc->sc_outports.master;
8739 mi.un.v.delta = 0;
8740 if (audio_query_devinfo(sc, &mi) == 0) {
8741 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8742 newgain = gain + mi.un.v.delta;
8743 if (newgain > AUDIO_MAX_GAIN)
8744 newgain = AUDIO_MAX_GAIN;
8745 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8746 }
8747 }
8748 audio_exlock_mutex_exit(sc);
8749 }
8750
8751 static void
8752 audio_volume_toggle(device_t dv)
8753 {
8754 struct audio_softc *sc = device_private(dv);
8755 u_int gain, newgain;
8756 u_char balance;
8757
8758 if (audio_exlock_mutex_enter(sc) != 0)
8759 return;
8760 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8761 if (gain != 0) {
8762 sc->sc_lastgain = gain;
8763 newgain = 0;
8764 } else
8765 newgain = sc->sc_lastgain;
8766 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8767 audio_exlock_mutex_exit(sc);
8768 }
8769
8770 /*
8771 * Must be called with sc_lock held.
8772 */
8773 static int
8774 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8775 {
8776
8777 KASSERT(mutex_owned(sc->sc_lock));
8778
8779 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8780 }
8781
8782 #endif /* NAUDIO > 0 */
8783
8784 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8785 #include <sys/param.h>
8786 #include <sys/systm.h>
8787 #include <sys/device.h>
8788 #include <sys/audioio.h>
8789 #include <dev/audio/audio_if.h>
8790 #endif
8791
8792 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8793 int
8794 audioprint(void *aux, const char *pnp)
8795 {
8796 struct audio_attach_args *arg;
8797 const char *type;
8798
8799 if (pnp != NULL) {
8800 arg = aux;
8801 switch (arg->type) {
8802 case AUDIODEV_TYPE_AUDIO:
8803 type = "audio";
8804 break;
8805 case AUDIODEV_TYPE_MIDI:
8806 type = "midi";
8807 break;
8808 case AUDIODEV_TYPE_OPL:
8809 type = "opl";
8810 break;
8811 case AUDIODEV_TYPE_MPU:
8812 type = "mpu";
8813 break;
8814 default:
8815 panic("audioprint: unknown type %d", arg->type);
8816 }
8817 aprint_normal("%s at %s", type, pnp);
8818 }
8819 return UNCONF;
8820 }
8821
8822 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8823
8824 #ifdef _MODULE
8825
8826 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8827
8828 #include "ioconf.c"
8829
8830 #endif
8831
8832 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8833
8834 static int
8835 audio_modcmd(modcmd_t cmd, void *arg)
8836 {
8837 int error = 0;
8838
8839 switch (cmd) {
8840 case MODULE_CMD_INIT:
8841 /* XXX interrupt level? */
8842 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8843 #ifdef _MODULE
8844 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8845 &audio_cdevsw, &audio_cmajor);
8846 if (error)
8847 break;
8848
8849 error = config_init_component(cfdriver_ioconf_audio,
8850 cfattach_ioconf_audio, cfdata_ioconf_audio);
8851 if (error) {
8852 devsw_detach(NULL, &audio_cdevsw);
8853 }
8854 #endif
8855 break;
8856 case MODULE_CMD_FINI:
8857 #ifdef _MODULE
8858 devsw_detach(NULL, &audio_cdevsw);
8859 error = config_fini_component(cfdriver_ioconf_audio,
8860 cfattach_ioconf_audio, cfdata_ioconf_audio);
8861 if (error)
8862 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8863 &audio_cdevsw, &audio_cmajor);
8864 #endif
8865 psref_class_destroy(audio_psref_class);
8866 break;
8867 default:
8868 error = ENOTTY;
8869 break;
8870 }
8871
8872 return error;
8873 }
8874