audio.c revision 1.41 1 /* $NetBSD: audio.c,v 1.41 2020/01/11 04:53:10 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - + (*1)
122 * freem - - + (*1)
123 * round_buffersize - x
124 * get_props - x Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * *1 Note: Before 8.0, since these have been called only at attach time,
131 * neither lock were necessary. Currently, on the other hand, since
132 * these may be also called after attach, the thread lock is required.
133 *
134 * In addition, there is an additional lock.
135 *
136 * - track->lock. This is an atomic variable and is similar to the
137 * "interrupt lock". This is one for each track. If any thread context
138 * (and software interrupt context) and hardware interrupt context who
139 * want to access some variables on this track, they must acquire this
140 * lock before. It protects track's consistency between hardware
141 * interrupt context and others.
142 */
143
144 #include <sys/cdefs.h>
145 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.41 2020/01/11 04:53:10 isaki Exp $");
146
147 #ifdef _KERNEL_OPT
148 #include "audio.h"
149 #include "midi.h"
150 #endif
151
152 #if NAUDIO > 0
153
154 #include <sys/types.h>
155 #include <sys/param.h>
156 #include <sys/atomic.h>
157 #include <sys/audioio.h>
158 #include <sys/conf.h>
159 #include <sys/cpu.h>
160 #include <sys/device.h>
161 #include <sys/fcntl.h>
162 #include <sys/file.h>
163 #include <sys/filedesc.h>
164 #include <sys/intr.h>
165 #include <sys/ioctl.h>
166 #include <sys/kauth.h>
167 #include <sys/kernel.h>
168 #include <sys/kmem.h>
169 #include <sys/malloc.h>
170 #include <sys/mman.h>
171 #include <sys/module.h>
172 #include <sys/poll.h>
173 #include <sys/proc.h>
174 #include <sys/queue.h>
175 #include <sys/select.h>
176 #include <sys/signalvar.h>
177 #include <sys/stat.h>
178 #include <sys/sysctl.h>
179 #include <sys/systm.h>
180 #include <sys/syslog.h>
181 #include <sys/vnode.h>
182
183 #include <dev/audio/audio_if.h>
184 #include <dev/audio/audiovar.h>
185 #include <dev/audio/audiodef.h>
186 #include <dev/audio/linear.h>
187 #include <dev/audio/mulaw.h>
188
189 #include <machine/endian.h>
190
191 #include <uvm/uvm.h>
192
193 #include "ioconf.h"
194
195 /*
196 * 0: No debug logs
197 * 1: action changes like open/close/set_format...
198 * 2: + normal operations like read/write/ioctl...
199 * 3: + TRACEs except interrupt
200 * 4: + TRACEs including interrupt
201 */
202 //#define AUDIO_DEBUG 1
203
204 #if defined(AUDIO_DEBUG)
205
206 int audiodebug = AUDIO_DEBUG;
207 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
208 const char *, va_list);
209 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
210 __printflike(3, 4);
211 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
212 __printflike(3, 4);
213 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
214 __printflike(3, 4);
215
216 /* XXX sloppy memory logger */
217 static void audio_mlog_init(void);
218 static void audio_mlog_free(void);
219 static void audio_mlog_softintr(void *);
220 extern void audio_mlog_flush(void);
221 extern void audio_mlog_printf(const char *, ...);
222
223 static int mlog_refs; /* reference counter */
224 static char *mlog_buf[2]; /* double buffer */
225 static int mlog_buflen; /* buffer length */
226 static int mlog_used; /* used length */
227 static int mlog_full; /* number of dropped lines by buffer full */
228 static int mlog_drop; /* number of dropped lines by busy */
229 static volatile uint32_t mlog_inuse; /* in-use */
230 static int mlog_wpage; /* active page */
231 static void *mlog_sih; /* softint handle */
232
233 static void
234 audio_mlog_init(void)
235 {
236 mlog_refs++;
237 if (mlog_refs > 1)
238 return;
239 mlog_buflen = 4096;
240 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
241 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
242 mlog_used = 0;
243 mlog_full = 0;
244 mlog_drop = 0;
245 mlog_inuse = 0;
246 mlog_wpage = 0;
247 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
248 if (mlog_sih == NULL)
249 printf("%s: softint_establish failed\n", __func__);
250 }
251
252 static void
253 audio_mlog_free(void)
254 {
255 mlog_refs--;
256 if (mlog_refs > 0)
257 return;
258
259 audio_mlog_flush();
260 if (mlog_sih)
261 softint_disestablish(mlog_sih);
262 kmem_free(mlog_buf[0], mlog_buflen);
263 kmem_free(mlog_buf[1], mlog_buflen);
264 }
265
266 /*
267 * Flush memory buffer.
268 * It must not be called from hardware interrupt context.
269 */
270 void
271 audio_mlog_flush(void)
272 {
273 if (mlog_refs == 0)
274 return;
275
276 /* Nothing to do if already in use ? */
277 if (atomic_swap_32(&mlog_inuse, 1) == 1)
278 return;
279
280 int rpage = mlog_wpage;
281 mlog_wpage ^= 1;
282 mlog_buf[mlog_wpage][0] = '\0';
283 mlog_used = 0;
284
285 atomic_swap_32(&mlog_inuse, 0);
286
287 if (mlog_buf[rpage][0] != '\0') {
288 printf("%s", mlog_buf[rpage]);
289 if (mlog_drop > 0)
290 printf("mlog_drop %d\n", mlog_drop);
291 if (mlog_full > 0)
292 printf("mlog_full %d\n", mlog_full);
293 }
294 mlog_full = 0;
295 mlog_drop = 0;
296 }
297
298 static void
299 audio_mlog_softintr(void *cookie)
300 {
301 audio_mlog_flush();
302 }
303
304 void
305 audio_mlog_printf(const char *fmt, ...)
306 {
307 int len;
308 va_list ap;
309
310 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
311 /* already inuse */
312 mlog_drop++;
313 return;
314 }
315
316 va_start(ap, fmt);
317 len = vsnprintf(
318 mlog_buf[mlog_wpage] + mlog_used,
319 mlog_buflen - mlog_used,
320 fmt, ap);
321 va_end(ap);
322
323 mlog_used += len;
324 if (mlog_buflen - mlog_used <= 1) {
325 mlog_full++;
326 }
327
328 atomic_swap_32(&mlog_inuse, 0);
329
330 if (mlog_sih)
331 softint_schedule(mlog_sih);
332 }
333
334 /* trace functions */
335 static void
336 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
337 const char *fmt, va_list ap)
338 {
339 char buf[256];
340 int n;
341
342 n = 0;
343 buf[0] = '\0';
344 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
345 funcname, device_unit(sc->sc_dev), header);
346 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
347
348 if (cpu_intr_p()) {
349 audio_mlog_printf("%s\n", buf);
350 } else {
351 audio_mlog_flush();
352 printf("%s\n", buf);
353 }
354 }
355
356 static void
357 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
358 {
359 va_list ap;
360
361 va_start(ap, fmt);
362 audio_vtrace(sc, funcname, "", fmt, ap);
363 va_end(ap);
364 }
365
366 static void
367 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
368 {
369 char hdr[16];
370 va_list ap;
371
372 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
373 va_start(ap, fmt);
374 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
375 va_end(ap);
376 }
377
378 static void
379 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
380 {
381 char hdr[32];
382 char phdr[16], rhdr[16];
383 va_list ap;
384
385 phdr[0] = '\0';
386 rhdr[0] = '\0';
387 if (file->ptrack)
388 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
389 if (file->rtrack)
390 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
391 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
392
393 va_start(ap, fmt);
394 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
395 va_end(ap);
396 }
397
398 #define DPRINTF(n, fmt...) do { \
399 if (audiodebug >= (n)) { \
400 audio_mlog_flush(); \
401 printf(fmt); \
402 } \
403 } while (0)
404 #define TRACE(n, fmt...) do { \
405 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
406 } while (0)
407 #define TRACET(n, t, fmt...) do { \
408 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
409 } while (0)
410 #define TRACEF(n, f, fmt...) do { \
411 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
412 } while (0)
413
414 struct audio_track_debugbuf {
415 char usrbuf[32];
416 char codec[32];
417 char chvol[32];
418 char chmix[32];
419 char freq[32];
420 char outbuf[32];
421 };
422
423 static void
424 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
425 {
426
427 memset(buf, 0, sizeof(*buf));
428
429 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
430 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
431 if (track->freq.filter)
432 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
433 track->freq.srcbuf.head,
434 track->freq.srcbuf.used,
435 track->freq.srcbuf.capacity);
436 if (track->chmix.filter)
437 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
438 track->chmix.srcbuf.used);
439 if (track->chvol.filter)
440 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
441 track->chvol.srcbuf.used);
442 if (track->codec.filter)
443 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
444 track->codec.srcbuf.used);
445 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
446 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
447 }
448 #else
449 #define DPRINTF(n, fmt...) do { } while (0)
450 #define TRACE(n, fmt, ...) do { } while (0)
451 #define TRACET(n, t, fmt, ...) do { } while (0)
452 #define TRACEF(n, f, fmt, ...) do { } while (0)
453 #endif
454
455 #define SPECIFIED(x) ((x) != ~0)
456 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
457
458 /* Device timeout in msec */
459 #define AUDIO_TIMEOUT (3000)
460
461 /* #define AUDIO_PM_IDLE */
462 #ifdef AUDIO_PM_IDLE
463 int audio_idle_timeout = 30;
464 #endif
465
466 /* Number of elements of async mixer's pid */
467 #define AM_CAPACITY (4)
468
469 struct portname {
470 const char *name;
471 int mask;
472 };
473
474 static int audiomatch(device_t, cfdata_t, void *);
475 static void audioattach(device_t, device_t, void *);
476 static int audiodetach(device_t, int);
477 static int audioactivate(device_t, enum devact);
478 static void audiochilddet(device_t, device_t);
479 static int audiorescan(device_t, const char *, const int *);
480
481 static int audio_modcmd(modcmd_t, void *);
482
483 #ifdef AUDIO_PM_IDLE
484 static void audio_idle(void *);
485 static void audio_activity(device_t, devactive_t);
486 #endif
487
488 static bool audio_suspend(device_t dv, const pmf_qual_t *);
489 static bool audio_resume(device_t dv, const pmf_qual_t *);
490 static void audio_volume_down(device_t);
491 static void audio_volume_up(device_t);
492 static void audio_volume_toggle(device_t);
493
494 static void audio_mixer_capture(struct audio_softc *);
495 static void audio_mixer_restore(struct audio_softc *);
496
497 static void audio_softintr_rd(void *);
498 static void audio_softintr_wr(void *);
499
500 static int audio_enter_exclusive(struct audio_softc *);
501 static void audio_exit_exclusive(struct audio_softc *);
502 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
503
504 static int audioclose(struct file *);
505 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
506 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
507 static int audioioctl(struct file *, u_long, void *);
508 static int audiopoll(struct file *, int);
509 static int audiokqfilter(struct file *, struct knote *);
510 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
511 struct uvm_object **, int *);
512 static int audiostat(struct file *, struct stat *);
513
514 static void filt_audiowrite_detach(struct knote *);
515 static int filt_audiowrite_event(struct knote *, long);
516 static void filt_audioread_detach(struct knote *);
517 static int filt_audioread_event(struct knote *, long);
518
519 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
520 audio_file_t **);
521 static int audio_close(struct audio_softc *, audio_file_t *);
522 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
523 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
524 static void audio_file_clear(struct audio_softc *, audio_file_t *);
525 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
526 struct lwp *, audio_file_t *);
527 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
528 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
529 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
530 struct uvm_object **, int *, audio_file_t *);
531
532 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
533 static int audioctl_close(struct audio_softc *, audio_file_t *);
534
535 static void audio_pintr(void *);
536 static void audio_rintr(void *);
537
538 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
539
540 static __inline int audio_track_readablebytes(const audio_track_t *);
541 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
542 const struct audio_info *);
543 static int audio_track_setinfo_check(audio_format2_t *,
544 const struct audio_prinfo *);
545 static void audio_track_setinfo_water(audio_track_t *,
546 const struct audio_info *);
547 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
548 struct audio_info *);
549 static int audio_hw_set_format(struct audio_softc *, int,
550 audio_format2_t *, audio_format2_t *,
551 audio_filter_reg_t *, audio_filter_reg_t *);
552 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
553 audio_file_t *);
554 static bool audio_can_playback(struct audio_softc *);
555 static bool audio_can_capture(struct audio_softc *);
556 static int audio_check_params(audio_format2_t *);
557 static int audio_mixers_init(struct audio_softc *sc, int,
558 const audio_format2_t *, const audio_format2_t *,
559 const audio_filter_reg_t *, const audio_filter_reg_t *);
560 static int audio_select_freq(const struct audio_format *);
561 static int audio_hw_probe(struct audio_softc *, int, int *,
562 audio_format2_t *, audio_format2_t *);
563 static int audio_hw_probe_fmt(struct audio_softc *, audio_format2_t *, int);
564 static int audio_hw_validate_format(struct audio_softc *, int,
565 const audio_format2_t *);
566 static int audio_mixers_set_format(struct audio_softc *,
567 const struct audio_info *);
568 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
569 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
570 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
571 #if defined(AUDIO_DEBUG)
572 static int audio_sysctl_debug(SYSCTLFN_PROTO);
573 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
574 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
575 #endif
576
577 static void *audio_realloc(void *, size_t);
578 static int audio_realloc_usrbuf(audio_track_t *, int);
579 static void audio_free_usrbuf(audio_track_t *);
580
581 static audio_track_t *audio_track_create(struct audio_softc *,
582 audio_trackmixer_t *);
583 static void audio_track_destroy(audio_track_t *);
584 static audio_filter_t audio_track_get_codec(audio_track_t *,
585 const audio_format2_t *, const audio_format2_t *);
586 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
587 static void audio_track_play(audio_track_t *);
588 static int audio_track_drain(struct audio_softc *, audio_track_t *);
589 static void audio_track_record(audio_track_t *);
590 static void audio_track_clear(struct audio_softc *, audio_track_t *);
591
592 static int audio_mixer_init(struct audio_softc *, int,
593 const audio_format2_t *, const audio_filter_reg_t *);
594 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
595 static void audio_pmixer_start(struct audio_softc *, bool);
596 static void audio_pmixer_process(struct audio_softc *);
597 static void audio_pmixer_agc(audio_trackmixer_t *, int);
598 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
599 static void audio_pmixer_output(struct audio_softc *);
600 static int audio_pmixer_halt(struct audio_softc *);
601 static void audio_rmixer_start(struct audio_softc *);
602 static void audio_rmixer_process(struct audio_softc *);
603 static void audio_rmixer_input(struct audio_softc *);
604 static int audio_rmixer_halt(struct audio_softc *);
605
606 static void mixer_init(struct audio_softc *);
607 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
608 static int mixer_close(struct audio_softc *, audio_file_t *);
609 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
610 static void mixer_async_add(struct audio_softc *, pid_t);
611 static void mixer_async_remove(struct audio_softc *, pid_t);
612 static void mixer_signal(struct audio_softc *);
613
614 static int au_portof(struct audio_softc *, char *, int);
615
616 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
617 mixer_devinfo_t *, const struct portname *);
618 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
619 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
620 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
621 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
622 u_int *, u_char *);
623 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
624 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
625 static int au_set_monitor_gain(struct audio_softc *, int);
626 static int au_get_monitor_gain(struct audio_softc *);
627 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
628 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
629
630 static __inline struct audio_params
631 format2_to_params(const audio_format2_t *f2)
632 {
633 audio_params_t p;
634
635 /* validbits/precision <-> precision/stride */
636 p.sample_rate = f2->sample_rate;
637 p.channels = f2->channels;
638 p.encoding = f2->encoding;
639 p.validbits = f2->precision;
640 p.precision = f2->stride;
641 return p;
642 }
643
644 static __inline audio_format2_t
645 params_to_format2(const struct audio_params *p)
646 {
647 audio_format2_t f2;
648
649 /* precision/stride <-> validbits/precision */
650 f2.sample_rate = p->sample_rate;
651 f2.channels = p->channels;
652 f2.encoding = p->encoding;
653 f2.precision = p->validbits;
654 f2.stride = p->precision;
655 return f2;
656 }
657
658 /* Return true if this track is a playback track. */
659 static __inline bool
660 audio_track_is_playback(const audio_track_t *track)
661 {
662
663 return ((track->mode & AUMODE_PLAY) != 0);
664 }
665
666 /* Return true if this track is a recording track. */
667 static __inline bool
668 audio_track_is_record(const audio_track_t *track)
669 {
670
671 return ((track->mode & AUMODE_RECORD) != 0);
672 }
673
674 #if 0 /* XXX Not used yet */
675 /*
676 * Convert 0..255 volume used in userland to internal presentation 0..256.
677 */
678 static __inline u_int
679 audio_volume_to_inner(u_int v)
680 {
681
682 return v < 127 ? v : v + 1;
683 }
684
685 /*
686 * Convert 0..256 internal presentation to 0..255 volume used in userland.
687 */
688 static __inline u_int
689 audio_volume_to_outer(u_int v)
690 {
691
692 return v < 127 ? v : v - 1;
693 }
694 #endif /* 0 */
695
696 static dev_type_open(audioopen);
697 /* XXXMRG use more dev_type_xxx */
698
699 const struct cdevsw audio_cdevsw = {
700 .d_open = audioopen,
701 .d_close = noclose,
702 .d_read = noread,
703 .d_write = nowrite,
704 .d_ioctl = noioctl,
705 .d_stop = nostop,
706 .d_tty = notty,
707 .d_poll = nopoll,
708 .d_mmap = nommap,
709 .d_kqfilter = nokqfilter,
710 .d_discard = nodiscard,
711 .d_flag = D_OTHER | D_MPSAFE
712 };
713
714 const struct fileops audio_fileops = {
715 .fo_name = "audio",
716 .fo_read = audioread,
717 .fo_write = audiowrite,
718 .fo_ioctl = audioioctl,
719 .fo_fcntl = fnullop_fcntl,
720 .fo_stat = audiostat,
721 .fo_poll = audiopoll,
722 .fo_close = audioclose,
723 .fo_mmap = audiommap,
724 .fo_kqfilter = audiokqfilter,
725 .fo_restart = fnullop_restart
726 };
727
728 /* The default audio mode: 8 kHz mono mu-law */
729 static const struct audio_params audio_default = {
730 .sample_rate = 8000,
731 .encoding = AUDIO_ENCODING_ULAW,
732 .precision = 8,
733 .validbits = 8,
734 .channels = 1,
735 };
736
737 static const char *encoding_names[] = {
738 "none",
739 AudioEmulaw,
740 AudioEalaw,
741 "pcm16",
742 "pcm8",
743 AudioEadpcm,
744 AudioEslinear_le,
745 AudioEslinear_be,
746 AudioEulinear_le,
747 AudioEulinear_be,
748 AudioEslinear,
749 AudioEulinear,
750 AudioEmpeg_l1_stream,
751 AudioEmpeg_l1_packets,
752 AudioEmpeg_l1_system,
753 AudioEmpeg_l2_stream,
754 AudioEmpeg_l2_packets,
755 AudioEmpeg_l2_system,
756 AudioEac3,
757 };
758
759 /*
760 * Returns encoding name corresponding to AUDIO_ENCODING_*.
761 * Note that it may return a local buffer because it is mainly for debugging.
762 */
763 const char *
764 audio_encoding_name(int encoding)
765 {
766 static char buf[16];
767
768 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
769 return encoding_names[encoding];
770 } else {
771 snprintf(buf, sizeof(buf), "enc=%d", encoding);
772 return buf;
773 }
774 }
775
776 /*
777 * Supported encodings used by AUDIO_GETENC.
778 * index and flags are set by code.
779 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
780 */
781 static const audio_encoding_t audio_encodings[] = {
782 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
783 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
784 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
785 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
786 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
787 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
788 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
789 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
790 #if defined(AUDIO_SUPPORT_LINEAR24)
791 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
792 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
793 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
794 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
795 #endif
796 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
797 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
798 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
799 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
800 };
801
802 static const struct portname itable[] = {
803 { AudioNmicrophone, AUDIO_MICROPHONE },
804 { AudioNline, AUDIO_LINE_IN },
805 { AudioNcd, AUDIO_CD },
806 { 0, 0 }
807 };
808 static const struct portname otable[] = {
809 { AudioNspeaker, AUDIO_SPEAKER },
810 { AudioNheadphone, AUDIO_HEADPHONE },
811 { AudioNline, AUDIO_LINE_OUT },
812 { 0, 0 }
813 };
814
815 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
816 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
817 audiochilddet, DVF_DETACH_SHUTDOWN);
818
819 static int
820 audiomatch(device_t parent, cfdata_t match, void *aux)
821 {
822 struct audio_attach_args *sa;
823
824 sa = aux;
825 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
826 __func__, sa->type, sa, sa->hwif);
827 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
828 }
829
830 static void
831 audioattach(device_t parent, device_t self, void *aux)
832 {
833 struct audio_softc *sc;
834 struct audio_attach_args *sa;
835 const struct audio_hw_if *hw_if;
836 audio_format2_t phwfmt;
837 audio_format2_t rhwfmt;
838 audio_filter_reg_t pfil;
839 audio_filter_reg_t rfil;
840 const struct sysctlnode *node;
841 void *hdlp;
842 bool has_playback;
843 bool has_capture;
844 bool has_indep;
845 bool has_fulldup;
846 int mode;
847 int error;
848
849 sc = device_private(self);
850 sc->sc_dev = self;
851 sa = (struct audio_attach_args *)aux;
852 hw_if = sa->hwif;
853 hdlp = sa->hdl;
854
855 if (hw_if == NULL || hw_if->get_locks == NULL) {
856 panic("audioattach: missing hw_if method");
857 }
858
859 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
860
861 #ifdef DIAGNOSTIC
862 if (hw_if->query_format == NULL ||
863 hw_if->set_format == NULL ||
864 (hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
865 (hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
866 hw_if->halt_output == NULL ||
867 hw_if->halt_input == NULL ||
868 hw_if->getdev == NULL ||
869 hw_if->set_port == NULL ||
870 hw_if->get_port == NULL ||
871 hw_if->query_devinfo == NULL ||
872 hw_if->get_props == NULL) {
873 aprint_error(": missing method\n");
874 return;
875 }
876 #endif
877
878 sc->hw_if = hw_if;
879 sc->hw_hdl = hdlp;
880 sc->hw_dev = parent;
881
882 sc->sc_blk_ms = AUDIO_BLK_MS;
883 SLIST_INIT(&sc->sc_files);
884 cv_init(&sc->sc_exlockcv, "audiolk");
885 sc->sc_am_capacity = 0;
886 sc->sc_am_used = 0;
887 sc->sc_am = NULL;
888
889 mutex_enter(sc->sc_lock);
890 sc->sc_props = hw_if->get_props(sc->hw_hdl);
891 mutex_exit(sc->sc_lock);
892
893 /* MMAP is now supported by upper layer. */
894 sc->sc_props |= AUDIO_PROP_MMAP;
895
896 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
897 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
898 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
899 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
900
901 KASSERT(has_playback || has_capture);
902 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
903 if (!has_playback || !has_capture) {
904 KASSERT(!has_indep);
905 KASSERT(!has_fulldup);
906 }
907
908 mode = 0;
909 if (has_playback) {
910 aprint_normal(": playback");
911 mode |= AUMODE_PLAY;
912 }
913 if (has_capture) {
914 aprint_normal("%c capture", has_playback ? ',' : ':');
915 mode |= AUMODE_RECORD;
916 }
917 if (has_playback && has_capture) {
918 if (has_fulldup)
919 aprint_normal(", full duplex");
920 else
921 aprint_normal(", half duplex");
922
923 if (has_indep)
924 aprint_normal(", independent");
925 }
926
927 aprint_naive("\n");
928 aprint_normal("\n");
929
930 /* probe hw params */
931 memset(&phwfmt, 0, sizeof(phwfmt));
932 memset(&rhwfmt, 0, sizeof(rhwfmt));
933 memset(&pfil, 0, sizeof(pfil));
934 memset(&rfil, 0, sizeof(rfil));
935 mutex_enter(sc->sc_lock);
936 error = audio_hw_probe(sc, has_indep, &mode, &phwfmt, &rhwfmt);
937 if (error) {
938 mutex_exit(sc->sc_lock);
939 aprint_error_dev(self, "audio_hw_probe failed, "
940 "error = %d\n", error);
941 goto bad;
942 }
943 if (mode == 0) {
944 mutex_exit(sc->sc_lock);
945 aprint_error_dev(self, "audio_hw_probe failed, no mode\n");
946 goto bad;
947 }
948 /* Init hardware. */
949 /* hw_probe() also validates [pr]hwfmt. */
950 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
951 if (error) {
952 mutex_exit(sc->sc_lock);
953 aprint_error_dev(self, "audio_hw_set_format failed, "
954 "error = %d\n", error);
955 goto bad;
956 }
957
958 /*
959 * Init track mixers. If at least one direction is available on
960 * attach time, we assume a success.
961 */
962 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
963 mutex_exit(sc->sc_lock);
964 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
965 aprint_error_dev(self, "audio_mixers_init failed, "
966 "error = %d\n", error);
967 goto bad;
968 }
969
970 selinit(&sc->sc_wsel);
971 selinit(&sc->sc_rsel);
972
973 /* Initial parameter of /dev/sound */
974 sc->sc_sound_pparams = params_to_format2(&audio_default);
975 sc->sc_sound_rparams = params_to_format2(&audio_default);
976 sc->sc_sound_ppause = false;
977 sc->sc_sound_rpause = false;
978
979 /* XXX TODO: consider about sc_ai */
980
981 mixer_init(sc);
982 TRACE(2, "inputs ports=0x%x, input master=%d, "
983 "output ports=0x%x, output master=%d",
984 sc->sc_inports.allports, sc->sc_inports.master,
985 sc->sc_outports.allports, sc->sc_outports.master);
986
987 sysctl_createv(&sc->sc_log, 0, NULL, &node,
988 0,
989 CTLTYPE_NODE, device_xname(sc->sc_dev),
990 SYSCTL_DESCR("audio test"),
991 NULL, 0,
992 NULL, 0,
993 CTL_HW,
994 CTL_CREATE, CTL_EOL);
995
996 if (node != NULL) {
997 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
998 CTLFLAG_READWRITE,
999 CTLTYPE_INT, "blk_ms",
1000 SYSCTL_DESCR("blocksize in msec"),
1001 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1002 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1003
1004 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1005 CTLFLAG_READWRITE,
1006 CTLTYPE_BOOL, "multiuser",
1007 SYSCTL_DESCR("allow multiple user access"),
1008 audio_sysctl_multiuser, 0, (void *)sc, 0,
1009 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1010
1011 #if defined(AUDIO_DEBUG)
1012 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1013 CTLFLAG_READWRITE,
1014 CTLTYPE_INT, "debug",
1015 SYSCTL_DESCR("debug level (0..4)"),
1016 audio_sysctl_debug, 0, (void *)sc, 0,
1017 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1018 #endif
1019 }
1020
1021 #ifdef AUDIO_PM_IDLE
1022 callout_init(&sc->sc_idle_counter, 0);
1023 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1024 #endif
1025
1026 if (!pmf_device_register(self, audio_suspend, audio_resume))
1027 aprint_error_dev(self, "couldn't establish power handler\n");
1028 #ifdef AUDIO_PM_IDLE
1029 if (!device_active_register(self, audio_activity))
1030 aprint_error_dev(self, "couldn't register activity handler\n");
1031 #endif
1032
1033 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1034 audio_volume_down, true))
1035 aprint_error_dev(self, "couldn't add volume down handler\n");
1036 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1037 audio_volume_up, true))
1038 aprint_error_dev(self, "couldn't add volume up handler\n");
1039 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1040 audio_volume_toggle, true))
1041 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1042
1043 #ifdef AUDIO_PM_IDLE
1044 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1045 #endif
1046
1047 #if defined(AUDIO_DEBUG)
1048 audio_mlog_init();
1049 #endif
1050
1051 audiorescan(self, "audio", NULL);
1052 return;
1053
1054 bad:
1055 /* Clearing hw_if means that device is attached but disabled. */
1056 sc->hw_if = NULL;
1057 aprint_error_dev(sc->sc_dev, "disabled\n");
1058 return;
1059 }
1060
1061 /*
1062 * Initialize hardware mixer.
1063 * This function is called from audioattach().
1064 */
1065 static void
1066 mixer_init(struct audio_softc *sc)
1067 {
1068 mixer_devinfo_t mi;
1069 int iclass, mclass, oclass, rclass;
1070 int record_master_found, record_source_found;
1071
1072 iclass = mclass = oclass = rclass = -1;
1073 sc->sc_inports.index = -1;
1074 sc->sc_inports.master = -1;
1075 sc->sc_inports.nports = 0;
1076 sc->sc_inports.isenum = false;
1077 sc->sc_inports.allports = 0;
1078 sc->sc_inports.isdual = false;
1079 sc->sc_inports.mixerout = -1;
1080 sc->sc_inports.cur_port = -1;
1081 sc->sc_outports.index = -1;
1082 sc->sc_outports.master = -1;
1083 sc->sc_outports.nports = 0;
1084 sc->sc_outports.isenum = false;
1085 sc->sc_outports.allports = 0;
1086 sc->sc_outports.isdual = false;
1087 sc->sc_outports.mixerout = -1;
1088 sc->sc_outports.cur_port = -1;
1089 sc->sc_monitor_port = -1;
1090 /*
1091 * Read through the underlying driver's list, picking out the class
1092 * names from the mixer descriptions. We'll need them to decode the
1093 * mixer descriptions on the next pass through the loop.
1094 */
1095 mutex_enter(sc->sc_lock);
1096 for(mi.index = 0; ; mi.index++) {
1097 if (audio_query_devinfo(sc, &mi) != 0)
1098 break;
1099 /*
1100 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1101 * All the other types describe an actual mixer.
1102 */
1103 if (mi.type == AUDIO_MIXER_CLASS) {
1104 if (strcmp(mi.label.name, AudioCinputs) == 0)
1105 iclass = mi.mixer_class;
1106 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1107 mclass = mi.mixer_class;
1108 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1109 oclass = mi.mixer_class;
1110 if (strcmp(mi.label.name, AudioCrecord) == 0)
1111 rclass = mi.mixer_class;
1112 }
1113 }
1114 mutex_exit(sc->sc_lock);
1115
1116 /* Allocate save area. Ensure non-zero allocation. */
1117 sc->sc_nmixer_states = mi.index;
1118 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1119 (sc->sc_nmixer_states + 1), KM_SLEEP);
1120
1121 /*
1122 * This is where we assign each control in the "audio" model, to the
1123 * underlying "mixer" control. We walk through the whole list once,
1124 * assigning likely candidates as we come across them.
1125 */
1126 record_master_found = 0;
1127 record_source_found = 0;
1128 mutex_enter(sc->sc_lock);
1129 for(mi.index = 0; ; mi.index++) {
1130 if (audio_query_devinfo(sc, &mi) != 0)
1131 break;
1132 KASSERT(mi.index < sc->sc_nmixer_states);
1133 if (mi.type == AUDIO_MIXER_CLASS)
1134 continue;
1135 if (mi.mixer_class == iclass) {
1136 /*
1137 * AudioCinputs is only a fallback, when we don't
1138 * find what we're looking for in AudioCrecord, so
1139 * check the flags before accepting one of these.
1140 */
1141 if (strcmp(mi.label.name, AudioNmaster) == 0
1142 && record_master_found == 0)
1143 sc->sc_inports.master = mi.index;
1144 if (strcmp(mi.label.name, AudioNsource) == 0
1145 && record_source_found == 0) {
1146 if (mi.type == AUDIO_MIXER_ENUM) {
1147 int i;
1148 for(i = 0; i < mi.un.e.num_mem; i++)
1149 if (strcmp(mi.un.e.member[i].label.name,
1150 AudioNmixerout) == 0)
1151 sc->sc_inports.mixerout =
1152 mi.un.e.member[i].ord;
1153 }
1154 au_setup_ports(sc, &sc->sc_inports, &mi,
1155 itable);
1156 }
1157 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1158 sc->sc_outports.master == -1)
1159 sc->sc_outports.master = mi.index;
1160 } else if (mi.mixer_class == mclass) {
1161 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1162 sc->sc_monitor_port = mi.index;
1163 } else if (mi.mixer_class == oclass) {
1164 if (strcmp(mi.label.name, AudioNmaster) == 0)
1165 sc->sc_outports.master = mi.index;
1166 if (strcmp(mi.label.name, AudioNselect) == 0)
1167 au_setup_ports(sc, &sc->sc_outports, &mi,
1168 otable);
1169 } else if (mi.mixer_class == rclass) {
1170 /*
1171 * These are the preferred mixers for the audio record
1172 * controls, so set the flags here, but don't check.
1173 */
1174 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1175 sc->sc_inports.master = mi.index;
1176 record_master_found = 1;
1177 }
1178 #if 1 /* Deprecated. Use AudioNmaster. */
1179 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1180 sc->sc_inports.master = mi.index;
1181 record_master_found = 1;
1182 }
1183 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1184 sc->sc_inports.master = mi.index;
1185 record_master_found = 1;
1186 }
1187 #endif
1188 if (strcmp(mi.label.name, AudioNsource) == 0) {
1189 if (mi.type == AUDIO_MIXER_ENUM) {
1190 int i;
1191 for(i = 0; i < mi.un.e.num_mem; i++)
1192 if (strcmp(mi.un.e.member[i].label.name,
1193 AudioNmixerout) == 0)
1194 sc->sc_inports.mixerout =
1195 mi.un.e.member[i].ord;
1196 }
1197 au_setup_ports(sc, &sc->sc_inports, &mi,
1198 itable);
1199 record_source_found = 1;
1200 }
1201 }
1202 }
1203 mutex_exit(sc->sc_lock);
1204 }
1205
1206 static int
1207 audioactivate(device_t self, enum devact act)
1208 {
1209 struct audio_softc *sc = device_private(self);
1210
1211 switch (act) {
1212 case DVACT_DEACTIVATE:
1213 mutex_enter(sc->sc_lock);
1214 sc->sc_dying = true;
1215 cv_broadcast(&sc->sc_exlockcv);
1216 mutex_exit(sc->sc_lock);
1217 return 0;
1218 default:
1219 return EOPNOTSUPP;
1220 }
1221 }
1222
1223 static int
1224 audiodetach(device_t self, int flags)
1225 {
1226 struct audio_softc *sc;
1227 int maj, mn;
1228 int error;
1229
1230 sc = device_private(self);
1231 TRACE(2, "flags=%d", flags);
1232
1233 /* device is not initialized */
1234 if (sc->hw_if == NULL)
1235 return 0;
1236
1237 /* Start draining existing accessors of the device. */
1238 error = config_detach_children(self, flags);
1239 if (error)
1240 return error;
1241
1242 mutex_enter(sc->sc_lock);
1243 sc->sc_dying = true;
1244 cv_broadcast(&sc->sc_exlockcv);
1245 if (sc->sc_pmixer)
1246 cv_broadcast(&sc->sc_pmixer->outcv);
1247 if (sc->sc_rmixer)
1248 cv_broadcast(&sc->sc_rmixer->outcv);
1249 mutex_exit(sc->sc_lock);
1250
1251 /* delete sysctl nodes */
1252 sysctl_teardown(&sc->sc_log);
1253
1254 /* locate the major number */
1255 maj = cdevsw_lookup_major(&audio_cdevsw);
1256
1257 /*
1258 * Nuke the vnodes for any open instances (calls close).
1259 * Will wait until any activity on the device nodes has ceased.
1260 */
1261 mn = device_unit(self);
1262 vdevgone(maj, mn | SOUND_DEVICE, mn | SOUND_DEVICE, VCHR);
1263 vdevgone(maj, mn | AUDIO_DEVICE, mn | AUDIO_DEVICE, VCHR);
1264 vdevgone(maj, mn | AUDIOCTL_DEVICE, mn | AUDIOCTL_DEVICE, VCHR);
1265 vdevgone(maj, mn | MIXER_DEVICE, mn | MIXER_DEVICE, VCHR);
1266
1267 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1268 audio_volume_down, true);
1269 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1270 audio_volume_up, true);
1271 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1272 audio_volume_toggle, true);
1273
1274 #ifdef AUDIO_PM_IDLE
1275 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1276
1277 device_active_deregister(self, audio_activity);
1278 #endif
1279
1280 pmf_device_deregister(self);
1281
1282 /* Free resources */
1283 mutex_enter(sc->sc_lock);
1284 if (sc->sc_pmixer) {
1285 audio_mixer_destroy(sc, sc->sc_pmixer);
1286 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1287 }
1288 if (sc->sc_rmixer) {
1289 audio_mixer_destroy(sc, sc->sc_rmixer);
1290 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1291 }
1292 mutex_exit(sc->sc_lock);
1293 if (sc->sc_am)
1294 kern_free(sc->sc_am);
1295
1296 seldestroy(&sc->sc_wsel);
1297 seldestroy(&sc->sc_rsel);
1298
1299 #ifdef AUDIO_PM_IDLE
1300 callout_destroy(&sc->sc_idle_counter);
1301 #endif
1302
1303 cv_destroy(&sc->sc_exlockcv);
1304
1305 #if defined(AUDIO_DEBUG)
1306 audio_mlog_free();
1307 #endif
1308
1309 return 0;
1310 }
1311
1312 static void
1313 audiochilddet(device_t self, device_t child)
1314 {
1315
1316 /* we hold no child references, so do nothing */
1317 }
1318
1319 static int
1320 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1321 {
1322
1323 if (config_match(parent, cf, aux))
1324 config_attach_loc(parent, cf, locs, aux, NULL);
1325
1326 return 0;
1327 }
1328
1329 static int
1330 audiorescan(device_t self, const char *ifattr, const int *flags)
1331 {
1332 struct audio_softc *sc = device_private(self);
1333
1334 if (!ifattr_match(ifattr, "audio"))
1335 return 0;
1336
1337 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1338
1339 return 0;
1340 }
1341
1342 /*
1343 * Called from hardware driver. This is where the MI audio driver gets
1344 * probed/attached to the hardware driver.
1345 */
1346 device_t
1347 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1348 {
1349 struct audio_attach_args arg;
1350
1351 #ifdef DIAGNOSTIC
1352 if (ahwp == NULL) {
1353 aprint_error("audio_attach_mi: NULL\n");
1354 return 0;
1355 }
1356 #endif
1357 arg.type = AUDIODEV_TYPE_AUDIO;
1358 arg.hwif = ahwp;
1359 arg.hdl = hdlp;
1360 return config_found(dev, &arg, audioprint);
1361 }
1362
1363 /*
1364 * Acquire sc_lock and enter exlock critical section.
1365 * If successful, it returns 0. Otherwise returns errno.
1366 */
1367 static int
1368 audio_enter_exclusive(struct audio_softc *sc)
1369 {
1370 int error;
1371
1372 KASSERT(!mutex_owned(sc->sc_lock));
1373
1374 mutex_enter(sc->sc_lock);
1375 if (sc->sc_dying) {
1376 mutex_exit(sc->sc_lock);
1377 return EIO;
1378 }
1379
1380 while (__predict_false(sc->sc_exlock != 0)) {
1381 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1382 if (sc->sc_dying)
1383 error = EIO;
1384 if (error) {
1385 mutex_exit(sc->sc_lock);
1386 return error;
1387 }
1388 }
1389
1390 /* Acquire */
1391 sc->sc_exlock = 1;
1392 return 0;
1393 }
1394
1395 /*
1396 * Leave exlock critical section and release sc_lock.
1397 * Must be called with sc_lock held.
1398 */
1399 static void
1400 audio_exit_exclusive(struct audio_softc *sc)
1401 {
1402
1403 KASSERT(mutex_owned(sc->sc_lock));
1404 KASSERT(sc->sc_exlock);
1405
1406 /* Leave critical section */
1407 sc->sc_exlock = 0;
1408 cv_broadcast(&sc->sc_exlockcv);
1409 mutex_exit(sc->sc_lock);
1410 }
1411
1412 /*
1413 * Wait for I/O to complete, releasing sc_lock.
1414 * Must be called with sc_lock held.
1415 */
1416 static int
1417 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1418 {
1419 int error;
1420
1421 KASSERT(track);
1422 KASSERT(mutex_owned(sc->sc_lock));
1423
1424 /* Wait for pending I/O to complete. */
1425 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1426 mstohz(AUDIO_TIMEOUT));
1427 if (sc->sc_dying) {
1428 error = EIO;
1429 }
1430 if (error) {
1431 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1432 if (error == EWOULDBLOCK)
1433 device_printf(sc->sc_dev, "device timeout\n");
1434 } else {
1435 TRACET(3, track, "wakeup");
1436 }
1437 return error;
1438 }
1439
1440 /*
1441 * Try to acquire track lock.
1442 * It doesn't block if the track lock is already aquired.
1443 * Returns true if the track lock was acquired, or false if the track
1444 * lock was already acquired.
1445 */
1446 static __inline bool
1447 audio_track_lock_tryenter(audio_track_t *track)
1448 {
1449 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1450 }
1451
1452 /*
1453 * Acquire track lock.
1454 */
1455 static __inline void
1456 audio_track_lock_enter(audio_track_t *track)
1457 {
1458 /* Don't sleep here. */
1459 while (audio_track_lock_tryenter(track) == false)
1460 ;
1461 }
1462
1463 /*
1464 * Release track lock.
1465 */
1466 static __inline void
1467 audio_track_lock_exit(audio_track_t *track)
1468 {
1469 atomic_swap_uint(&track->lock, 0);
1470 }
1471
1472
1473 static int
1474 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1475 {
1476 struct audio_softc *sc;
1477 int error;
1478
1479 /* Find the device */
1480 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1481 if (sc == NULL || sc->hw_if == NULL)
1482 return ENXIO;
1483
1484 error = audio_enter_exclusive(sc);
1485 if (error)
1486 return error;
1487
1488 device_active(sc->sc_dev, DVA_SYSTEM);
1489 switch (AUDIODEV(dev)) {
1490 case SOUND_DEVICE:
1491 case AUDIO_DEVICE:
1492 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1493 break;
1494 case AUDIOCTL_DEVICE:
1495 error = audioctl_open(dev, sc, flags, ifmt, l);
1496 break;
1497 case MIXER_DEVICE:
1498 error = mixer_open(dev, sc, flags, ifmt, l);
1499 break;
1500 default:
1501 error = ENXIO;
1502 break;
1503 }
1504 audio_exit_exclusive(sc);
1505
1506 return error;
1507 }
1508
1509 static int
1510 audioclose(struct file *fp)
1511 {
1512 struct audio_softc *sc;
1513 audio_file_t *file;
1514 int error;
1515 dev_t dev;
1516
1517 KASSERT(fp->f_audioctx);
1518 file = fp->f_audioctx;
1519 sc = file->sc;
1520 dev = file->dev;
1521
1522 /* audio_{enter,exit}_exclusive() is called by lower audio_close() */
1523
1524 device_active(sc->sc_dev, DVA_SYSTEM);
1525 switch (AUDIODEV(dev)) {
1526 case SOUND_DEVICE:
1527 case AUDIO_DEVICE:
1528 error = audio_close(sc, file);
1529 break;
1530 case AUDIOCTL_DEVICE:
1531 error = audioctl_close(sc, file);
1532 break;
1533 case MIXER_DEVICE:
1534 error = mixer_close(sc, file);
1535 break;
1536 default:
1537 error = ENXIO;
1538 break;
1539 }
1540 /* f_audioctx has already been freed in lower *_close() */
1541 fp->f_audioctx = NULL;
1542
1543 return error;
1544 }
1545
1546 static int
1547 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1548 int ioflag)
1549 {
1550 struct audio_softc *sc;
1551 audio_file_t *file;
1552 int error;
1553 dev_t dev;
1554
1555 KASSERT(fp->f_audioctx);
1556 file = fp->f_audioctx;
1557 sc = file->sc;
1558 dev = file->dev;
1559
1560 if (fp->f_flag & O_NONBLOCK)
1561 ioflag |= IO_NDELAY;
1562
1563 switch (AUDIODEV(dev)) {
1564 case SOUND_DEVICE:
1565 case AUDIO_DEVICE:
1566 error = audio_read(sc, uio, ioflag, file);
1567 break;
1568 case AUDIOCTL_DEVICE:
1569 case MIXER_DEVICE:
1570 error = ENODEV;
1571 break;
1572 default:
1573 error = ENXIO;
1574 break;
1575 }
1576
1577 return error;
1578 }
1579
1580 static int
1581 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1582 int ioflag)
1583 {
1584 struct audio_softc *sc;
1585 audio_file_t *file;
1586 int error;
1587 dev_t dev;
1588
1589 KASSERT(fp->f_audioctx);
1590 file = fp->f_audioctx;
1591 sc = file->sc;
1592 dev = file->dev;
1593
1594 if (fp->f_flag & O_NONBLOCK)
1595 ioflag |= IO_NDELAY;
1596
1597 switch (AUDIODEV(dev)) {
1598 case SOUND_DEVICE:
1599 case AUDIO_DEVICE:
1600 error = audio_write(sc, uio, ioflag, file);
1601 break;
1602 case AUDIOCTL_DEVICE:
1603 case MIXER_DEVICE:
1604 error = ENODEV;
1605 break;
1606 default:
1607 error = ENXIO;
1608 break;
1609 }
1610
1611 return error;
1612 }
1613
1614 static int
1615 audioioctl(struct file *fp, u_long cmd, void *addr)
1616 {
1617 struct audio_softc *sc;
1618 audio_file_t *file;
1619 struct lwp *l = curlwp;
1620 int error;
1621 dev_t dev;
1622
1623 KASSERT(fp->f_audioctx);
1624 file = fp->f_audioctx;
1625 sc = file->sc;
1626 dev = file->dev;
1627
1628 switch (AUDIODEV(dev)) {
1629 case SOUND_DEVICE:
1630 case AUDIO_DEVICE:
1631 case AUDIOCTL_DEVICE:
1632 mutex_enter(sc->sc_lock);
1633 device_active(sc->sc_dev, DVA_SYSTEM);
1634 mutex_exit(sc->sc_lock);
1635 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1636 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1637 else
1638 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1639 file);
1640 break;
1641 case MIXER_DEVICE:
1642 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1643 break;
1644 default:
1645 error = ENXIO;
1646 break;
1647 }
1648
1649 return error;
1650 }
1651
1652 static int
1653 audiostat(struct file *fp, struct stat *st)
1654 {
1655 audio_file_t *file;
1656
1657 KASSERT(fp->f_audioctx);
1658 file = fp->f_audioctx;
1659
1660 memset(st, 0, sizeof(*st));
1661
1662 st->st_dev = file->dev;
1663 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1664 st->st_gid = kauth_cred_getegid(fp->f_cred);
1665 st->st_mode = S_IFCHR;
1666 return 0;
1667 }
1668
1669 static int
1670 audiopoll(struct file *fp, int events)
1671 {
1672 struct audio_softc *sc;
1673 audio_file_t *file;
1674 struct lwp *l = curlwp;
1675 int revents;
1676 dev_t dev;
1677
1678 KASSERT(fp->f_audioctx);
1679 file = fp->f_audioctx;
1680 sc = file->sc;
1681 dev = file->dev;
1682
1683 switch (AUDIODEV(dev)) {
1684 case SOUND_DEVICE:
1685 case AUDIO_DEVICE:
1686 revents = audio_poll(sc, events, l, file);
1687 break;
1688 case AUDIOCTL_DEVICE:
1689 case MIXER_DEVICE:
1690 revents = 0;
1691 break;
1692 default:
1693 revents = POLLERR;
1694 break;
1695 }
1696
1697 return revents;
1698 }
1699
1700 static int
1701 audiokqfilter(struct file *fp, struct knote *kn)
1702 {
1703 struct audio_softc *sc;
1704 audio_file_t *file;
1705 dev_t dev;
1706 int error;
1707
1708 KASSERT(fp->f_audioctx);
1709 file = fp->f_audioctx;
1710 sc = file->sc;
1711 dev = file->dev;
1712
1713 switch (AUDIODEV(dev)) {
1714 case SOUND_DEVICE:
1715 case AUDIO_DEVICE:
1716 error = audio_kqfilter(sc, file, kn);
1717 break;
1718 case AUDIOCTL_DEVICE:
1719 case MIXER_DEVICE:
1720 error = ENODEV;
1721 break;
1722 default:
1723 error = ENXIO;
1724 break;
1725 }
1726
1727 return error;
1728 }
1729
1730 static int
1731 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1732 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1733 {
1734 struct audio_softc *sc;
1735 audio_file_t *file;
1736 dev_t dev;
1737 int error;
1738
1739 KASSERT(fp->f_audioctx);
1740 file = fp->f_audioctx;
1741 sc = file->sc;
1742 dev = file->dev;
1743
1744 mutex_enter(sc->sc_lock);
1745 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1746 mutex_exit(sc->sc_lock);
1747
1748 switch (AUDIODEV(dev)) {
1749 case SOUND_DEVICE:
1750 case AUDIO_DEVICE:
1751 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1752 uobjp, maxprotp, file);
1753 break;
1754 case AUDIOCTL_DEVICE:
1755 case MIXER_DEVICE:
1756 default:
1757 error = ENOTSUP;
1758 break;
1759 }
1760
1761 return error;
1762 }
1763
1764
1765 /* Exported interfaces for audiobell. */
1766
1767 /*
1768 * Open for audiobell.
1769 * It stores allocated file to *filep.
1770 * If successful returns 0, otherwise errno.
1771 */
1772 int
1773 audiobellopen(dev_t dev, audio_file_t **filep)
1774 {
1775 struct audio_softc *sc;
1776 int error;
1777
1778 /* Find the device */
1779 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1780 if (sc == NULL || sc->hw_if == NULL)
1781 return ENXIO;
1782
1783 error = audio_enter_exclusive(sc);
1784 if (error)
1785 return error;
1786
1787 device_active(sc->sc_dev, DVA_SYSTEM);
1788 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1789
1790 audio_exit_exclusive(sc);
1791 return error;
1792 }
1793
1794 /* Close for audiobell */
1795 int
1796 audiobellclose(audio_file_t *file)
1797 {
1798 struct audio_softc *sc;
1799 int error;
1800
1801 sc = file->sc;
1802
1803 device_active(sc->sc_dev, DVA_SYSTEM);
1804 error = audio_close(sc, file);
1805
1806 return error;
1807 }
1808
1809 /* Set sample rate for audiobell */
1810 int
1811 audiobellsetrate(audio_file_t *file, u_int sample_rate)
1812 {
1813 struct audio_softc *sc;
1814 struct audio_info ai;
1815 int error;
1816
1817 sc = file->sc;
1818
1819 AUDIO_INITINFO(&ai);
1820 ai.play.sample_rate = sample_rate;
1821
1822 error = audio_enter_exclusive(sc);
1823 if (error)
1824 return error;
1825 error = audio_file_setinfo(sc, file, &ai);
1826 audio_exit_exclusive(sc);
1827
1828 return error;
1829 }
1830
1831 /* Playback for audiobell */
1832 int
1833 audiobellwrite(audio_file_t *file, struct uio *uio)
1834 {
1835 struct audio_softc *sc;
1836 int error;
1837
1838 sc = file->sc;
1839 error = audio_write(sc, uio, 0, file);
1840 return error;
1841 }
1842
1843
1844 /*
1845 * Audio driver
1846 */
1847 int
1848 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
1849 struct lwp *l, audio_file_t **bellfile)
1850 {
1851 struct audio_info ai;
1852 struct file *fp;
1853 audio_file_t *af;
1854 audio_ring_t *hwbuf;
1855 bool fullduplex;
1856 int fd;
1857 int error;
1858
1859 KASSERT(mutex_owned(sc->sc_lock));
1860 KASSERT(sc->sc_exlock);
1861
1862 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
1863 (audiodebug >= 3) ? "start " : "",
1864 ISDEVSOUND(dev) ? "sound" : "audio",
1865 flags, sc->sc_popens, sc->sc_ropens);
1866
1867 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
1868 af->sc = sc;
1869 af->dev = dev;
1870 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
1871 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
1872 if ((flags & FREAD) != 0 && audio_can_capture(sc))
1873 af->mode |= AUMODE_RECORD;
1874 if (af->mode == 0) {
1875 error = ENXIO;
1876 goto bad1;
1877 }
1878
1879 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
1880
1881 /*
1882 * On half duplex hardware,
1883 * 1. if mode is (PLAY | REC), let mode PLAY.
1884 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
1885 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
1886 */
1887 if (fullduplex == false) {
1888 if ((af->mode & AUMODE_PLAY)) {
1889 if (sc->sc_ropens != 0) {
1890 TRACE(1, "record track already exists");
1891 error = ENODEV;
1892 goto bad1;
1893 }
1894 /* Play takes precedence */
1895 af->mode &= ~AUMODE_RECORD;
1896 }
1897 if ((af->mode & AUMODE_RECORD)) {
1898 if (sc->sc_popens != 0) {
1899 TRACE(1, "play track already exists");
1900 error = ENODEV;
1901 goto bad1;
1902 }
1903 }
1904 }
1905
1906 /* Create tracks */
1907 if ((af->mode & AUMODE_PLAY))
1908 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
1909 if ((af->mode & AUMODE_RECORD))
1910 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
1911
1912 /* Set parameters */
1913 AUDIO_INITINFO(&ai);
1914 if (bellfile) {
1915 /* If audiobell, only sample_rate will be set later. */
1916 ai.play.sample_rate = audio_default.sample_rate;
1917 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
1918 ai.play.channels = 1;
1919 ai.play.precision = 16;
1920 ai.play.pause = false;
1921 } else if (ISDEVAUDIO(dev)) {
1922 /* If /dev/audio, initialize everytime. */
1923 ai.play.sample_rate = audio_default.sample_rate;
1924 ai.play.encoding = audio_default.encoding;
1925 ai.play.channels = audio_default.channels;
1926 ai.play.precision = audio_default.precision;
1927 ai.play.pause = false;
1928 ai.record.sample_rate = audio_default.sample_rate;
1929 ai.record.encoding = audio_default.encoding;
1930 ai.record.channels = audio_default.channels;
1931 ai.record.precision = audio_default.precision;
1932 ai.record.pause = false;
1933 } else {
1934 /* If /dev/sound, take over the previous parameters. */
1935 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
1936 ai.play.encoding = sc->sc_sound_pparams.encoding;
1937 ai.play.channels = sc->sc_sound_pparams.channels;
1938 ai.play.precision = sc->sc_sound_pparams.precision;
1939 ai.play.pause = sc->sc_sound_ppause;
1940 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
1941 ai.record.encoding = sc->sc_sound_rparams.encoding;
1942 ai.record.channels = sc->sc_sound_rparams.channels;
1943 ai.record.precision = sc->sc_sound_rparams.precision;
1944 ai.record.pause = sc->sc_sound_rpause;
1945 }
1946 error = audio_file_setinfo(sc, af, &ai);
1947 if (error)
1948 goto bad2;
1949
1950 if (sc->sc_popens + sc->sc_ropens == 0) {
1951 /* First open */
1952
1953 sc->sc_cred = kauth_cred_get();
1954 kauth_cred_hold(sc->sc_cred);
1955
1956 if (sc->hw_if->open) {
1957 int hwflags;
1958
1959 /*
1960 * Call hw_if->open() only at first open of
1961 * combination of playback and recording.
1962 * On full duplex hardware, the flags passed to
1963 * hw_if->open() is always (FREAD | FWRITE)
1964 * regardless of this open()'s flags.
1965 * see also dev/isa/aria.c
1966 * On half duplex hardware, the flags passed to
1967 * hw_if->open() is either FREAD or FWRITE.
1968 * see also arch/evbarm/mini2440/audio_mini2440.c
1969 */
1970 if (fullduplex) {
1971 hwflags = FREAD | FWRITE;
1972 } else {
1973 /* Construct hwflags from af->mode. */
1974 hwflags = 0;
1975 if ((af->mode & AUMODE_PLAY) != 0)
1976 hwflags |= FWRITE;
1977 if ((af->mode & AUMODE_RECORD) != 0)
1978 hwflags |= FREAD;
1979 }
1980
1981 mutex_enter(sc->sc_intr_lock);
1982 error = sc->hw_if->open(sc->hw_hdl, hwflags);
1983 mutex_exit(sc->sc_intr_lock);
1984 if (error)
1985 goto bad2;
1986 }
1987
1988 /*
1989 * Set speaker mode when a half duplex.
1990 * XXX I'm not sure this is correct.
1991 */
1992 if (1/*XXX*/) {
1993 if (sc->hw_if->speaker_ctl) {
1994 int on;
1995 if (af->ptrack) {
1996 on = 1;
1997 } else {
1998 on = 0;
1999 }
2000 mutex_enter(sc->sc_intr_lock);
2001 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2002 mutex_exit(sc->sc_intr_lock);
2003 if (error)
2004 goto bad3;
2005 }
2006 }
2007 } else if (sc->sc_multiuser == false) {
2008 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2009 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2010 error = EPERM;
2011 goto bad2;
2012 }
2013 }
2014
2015 /* Call init_output if this is the first playback open. */
2016 if (af->ptrack && sc->sc_popens == 0) {
2017 if (sc->hw_if->init_output) {
2018 hwbuf = &sc->sc_pmixer->hwbuf;
2019 mutex_enter(sc->sc_intr_lock);
2020 error = sc->hw_if->init_output(sc->hw_hdl,
2021 hwbuf->mem,
2022 hwbuf->capacity *
2023 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2024 mutex_exit(sc->sc_intr_lock);
2025 if (error)
2026 goto bad3;
2027 }
2028 }
2029 /* Call init_input if this is the first recording open. */
2030 if (af->rtrack && sc->sc_ropens == 0) {
2031 if (sc->hw_if->init_input) {
2032 hwbuf = &sc->sc_rmixer->hwbuf;
2033 mutex_enter(sc->sc_intr_lock);
2034 error = sc->hw_if->init_input(sc->hw_hdl,
2035 hwbuf->mem,
2036 hwbuf->capacity *
2037 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2038 mutex_exit(sc->sc_intr_lock);
2039 if (error)
2040 goto bad3;
2041 }
2042 }
2043
2044 if (bellfile == NULL) {
2045 error = fd_allocfile(&fp, &fd);
2046 if (error)
2047 goto bad3;
2048 }
2049
2050 /*
2051 * Count up finally.
2052 * Don't fail from here.
2053 */
2054 if (af->ptrack)
2055 sc->sc_popens++;
2056 if (af->rtrack)
2057 sc->sc_ropens++;
2058 mutex_enter(sc->sc_intr_lock);
2059 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2060 mutex_exit(sc->sc_intr_lock);
2061
2062 if (bellfile) {
2063 *bellfile = af;
2064 } else {
2065 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2066 KASSERT(error == EMOVEFD);
2067 }
2068
2069 TRACEF(3, af, "done");
2070 return error;
2071
2072 /*
2073 * Since track here is not yet linked to sc_files,
2074 * you can call track_destroy() without sc_intr_lock.
2075 */
2076 bad3:
2077 if (sc->sc_popens + sc->sc_ropens == 0) {
2078 if (sc->hw_if->close) {
2079 mutex_enter(sc->sc_intr_lock);
2080 sc->hw_if->close(sc->hw_hdl);
2081 mutex_exit(sc->sc_intr_lock);
2082 }
2083 }
2084 bad2:
2085 if (af->rtrack) {
2086 audio_track_destroy(af->rtrack);
2087 af->rtrack = NULL;
2088 }
2089 if (af->ptrack) {
2090 audio_track_destroy(af->ptrack);
2091 af->ptrack = NULL;
2092 }
2093 bad1:
2094 kmem_free(af, sizeof(*af));
2095 return error;
2096 }
2097
2098 /*
2099 * Must NOT called with sc_lock nor sc_exlock held.
2100 */
2101 int
2102 audio_close(struct audio_softc *sc, audio_file_t *file)
2103 {
2104 audio_track_t *oldtrack;
2105 int error;
2106
2107 KASSERT(!mutex_owned(sc->sc_lock));
2108
2109 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2110 (audiodebug >= 3) ? "start " : "",
2111 (int)curproc->p_pid, (int)curlwp->l_lid,
2112 sc->sc_popens, sc->sc_ropens);
2113 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2114 "sc->sc_popens=%d, sc->sc_ropens=%d",
2115 sc->sc_popens, sc->sc_ropens);
2116
2117 /*
2118 * Drain first.
2119 * It must be done before acquiring exclusive lock.
2120 */
2121 if (file->ptrack) {
2122 mutex_enter(sc->sc_lock);
2123 audio_track_drain(sc, file->ptrack);
2124 mutex_exit(sc->sc_lock);
2125 }
2126
2127 /* Then, acquire exclusive lock to protect counters. */
2128 /* XXX what should I do when an error occurs? */
2129 error = audio_enter_exclusive(sc);
2130 if (error)
2131 return error;
2132
2133 if (file->ptrack) {
2134 /* Call hw halt_output if this is the last playback track. */
2135 if (sc->sc_popens == 1 && sc->sc_pbusy) {
2136 error = audio_pmixer_halt(sc);
2137 if (error) {
2138 device_printf(sc->sc_dev,
2139 "halt_output failed with %d\n", error);
2140 }
2141 }
2142
2143 /* Destroy the track. */
2144 oldtrack = file->ptrack;
2145 mutex_enter(sc->sc_intr_lock);
2146 file->ptrack = NULL;
2147 mutex_exit(sc->sc_intr_lock);
2148 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2149 oldtrack->dropframes);
2150 audio_track_destroy(oldtrack);
2151
2152 KASSERT(sc->sc_popens > 0);
2153 sc->sc_popens--;
2154
2155 /* Restore mixing volume if all tracks are gone. */
2156 if (sc->sc_popens == 0) {
2157 mutex_enter(sc->sc_intr_lock);
2158 sc->sc_pmixer->volume = 256;
2159 sc->sc_pmixer->voltimer = 0;
2160 mutex_exit(sc->sc_intr_lock);
2161 }
2162 }
2163 if (file->rtrack) {
2164 /* Call hw halt_input if this is the last recording track. */
2165 if (sc->sc_ropens == 1 && sc->sc_rbusy) {
2166 error = audio_rmixer_halt(sc);
2167 if (error) {
2168 device_printf(sc->sc_dev,
2169 "halt_input failed with %d\n", error);
2170 }
2171 }
2172
2173 /* Destroy the track. */
2174 oldtrack = file->rtrack;
2175 mutex_enter(sc->sc_intr_lock);
2176 file->rtrack = NULL;
2177 mutex_exit(sc->sc_intr_lock);
2178 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2179 oldtrack->dropframes);
2180 audio_track_destroy(oldtrack);
2181
2182 KASSERT(sc->sc_ropens > 0);
2183 sc->sc_ropens--;
2184 }
2185
2186 /* Call hw close if this is the last track. */
2187 if (sc->sc_popens + sc->sc_ropens == 0) {
2188 if (sc->hw_if->close) {
2189 TRACE(2, "hw_if close");
2190 mutex_enter(sc->sc_intr_lock);
2191 sc->hw_if->close(sc->hw_hdl);
2192 mutex_exit(sc->sc_intr_lock);
2193 }
2194
2195 kauth_cred_free(sc->sc_cred);
2196 }
2197
2198 mutex_enter(sc->sc_intr_lock);
2199 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2200 mutex_exit(sc->sc_intr_lock);
2201
2202 TRACE(3, "done");
2203 audio_exit_exclusive(sc);
2204
2205 kmem_free(file, sizeof(*file));
2206 return 0;
2207 }
2208
2209 int
2210 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2211 audio_file_t *file)
2212 {
2213 audio_track_t *track;
2214 audio_ring_t *usrbuf;
2215 audio_ring_t *input;
2216 int error;
2217
2218 KASSERT(!mutex_owned(sc->sc_lock));
2219
2220 /*
2221 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2222 * However read() system call itself can be called because it's
2223 * opened with O_RDWR. So in this case, deny this read().
2224 */
2225 track = file->rtrack;
2226 if (track == NULL) {
2227 return EBADF;
2228 }
2229
2230 /* I think it's better than EINVAL. */
2231 if (track->mmapped)
2232 return EPERM;
2233
2234 TRACET(2, track, "resid=%zd", uio->uio_resid);
2235
2236 #ifdef AUDIO_PM_IDLE
2237 mutex_enter(sc->sc_lock);
2238 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2239 device_active(&sc->sc_dev, DVA_SYSTEM);
2240 mutex_exit(sc->sc_lock);
2241 #endif
2242
2243 usrbuf = &track->usrbuf;
2244 input = track->input;
2245
2246 /*
2247 * The first read starts rmixer.
2248 */
2249 error = audio_enter_exclusive(sc);
2250 if (error)
2251 return error;
2252 if (sc->sc_rbusy == false)
2253 audio_rmixer_start(sc);
2254 audio_exit_exclusive(sc);
2255
2256 error = 0;
2257 while (uio->uio_resid > 0 && error == 0) {
2258 int bytes;
2259
2260 TRACET(3, track,
2261 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2262 uio->uio_resid,
2263 input->head, input->used, input->capacity,
2264 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2265
2266 /* Wait when buffers are empty. */
2267 mutex_enter(sc->sc_lock);
2268 for (;;) {
2269 bool empty;
2270 audio_track_lock_enter(track);
2271 empty = (input->used == 0 && usrbuf->used == 0);
2272 audio_track_lock_exit(track);
2273 if (!empty)
2274 break;
2275
2276 if ((ioflag & IO_NDELAY)) {
2277 mutex_exit(sc->sc_lock);
2278 return EWOULDBLOCK;
2279 }
2280
2281 TRACET(3, track, "sleep");
2282 error = audio_track_waitio(sc, track);
2283 if (error) {
2284 mutex_exit(sc->sc_lock);
2285 return error;
2286 }
2287 }
2288 mutex_exit(sc->sc_lock);
2289
2290 audio_track_lock_enter(track);
2291 audio_track_record(track);
2292
2293 /* uiomove from usrbuf as much as possible. */
2294 bytes = uimin(usrbuf->used, uio->uio_resid);
2295 while (bytes > 0) {
2296 int head = usrbuf->head;
2297 int len = uimin(bytes, usrbuf->capacity - head);
2298 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2299 uio);
2300 if (error) {
2301 audio_track_lock_exit(track);
2302 device_printf(sc->sc_dev,
2303 "uiomove(len=%d) failed with %d\n",
2304 len, error);
2305 goto abort;
2306 }
2307 auring_take(usrbuf, len);
2308 track->useriobytes += len;
2309 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2310 len,
2311 usrbuf->head, usrbuf->used, usrbuf->capacity);
2312 bytes -= len;
2313 }
2314
2315 audio_track_lock_exit(track);
2316 }
2317
2318 abort:
2319 return error;
2320 }
2321
2322
2323 /*
2324 * Clear file's playback and/or record track buffer immediately.
2325 */
2326 static void
2327 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2328 {
2329
2330 if (file->ptrack)
2331 audio_track_clear(sc, file->ptrack);
2332 if (file->rtrack)
2333 audio_track_clear(sc, file->rtrack);
2334 }
2335
2336 int
2337 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2338 audio_file_t *file)
2339 {
2340 audio_track_t *track;
2341 audio_ring_t *usrbuf;
2342 audio_ring_t *outbuf;
2343 int error;
2344
2345 KASSERT(!mutex_owned(sc->sc_lock));
2346
2347 track = file->ptrack;
2348 KASSERT(track);
2349
2350 /* I think it's better than EINVAL. */
2351 if (track->mmapped)
2352 return EPERM;
2353
2354 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2355 audiodebug >= 3 ? "begin " : "",
2356 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2357
2358 if (uio->uio_resid == 0) {
2359 track->eofcounter++;
2360 return 0;
2361 }
2362
2363 #ifdef AUDIO_PM_IDLE
2364 mutex_enter(sc->sc_lock);
2365 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2366 device_active(&sc->sc_dev, DVA_SYSTEM);
2367 mutex_exit(sc->sc_lock);
2368 #endif
2369
2370 usrbuf = &track->usrbuf;
2371 outbuf = &track->outbuf;
2372
2373 /*
2374 * The first write starts pmixer.
2375 */
2376 error = audio_enter_exclusive(sc);
2377 if (error)
2378 return error;
2379 if (sc->sc_pbusy == false)
2380 audio_pmixer_start(sc, false);
2381 audio_exit_exclusive(sc);
2382
2383 track->pstate = AUDIO_STATE_RUNNING;
2384 error = 0;
2385 while (uio->uio_resid > 0 && error == 0) {
2386 int bytes;
2387
2388 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2389 uio->uio_resid,
2390 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2391
2392 /* Wait when buffers are full. */
2393 mutex_enter(sc->sc_lock);
2394 for (;;) {
2395 bool full;
2396 audio_track_lock_enter(track);
2397 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2398 outbuf->used >= outbuf->capacity);
2399 audio_track_lock_exit(track);
2400 if (!full)
2401 break;
2402
2403 if ((ioflag & IO_NDELAY)) {
2404 error = EWOULDBLOCK;
2405 mutex_exit(sc->sc_lock);
2406 goto abort;
2407 }
2408
2409 TRACET(3, track, "sleep usrbuf=%d/H%d",
2410 usrbuf->used, track->usrbuf_usedhigh);
2411 error = audio_track_waitio(sc, track);
2412 if (error) {
2413 mutex_exit(sc->sc_lock);
2414 goto abort;
2415 }
2416 }
2417 mutex_exit(sc->sc_lock);
2418
2419 audio_track_lock_enter(track);
2420
2421 /* uiomove to usrbuf as much as possible. */
2422 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2423 uio->uio_resid);
2424 while (bytes > 0) {
2425 int tail = auring_tail(usrbuf);
2426 int len = uimin(bytes, usrbuf->capacity - tail);
2427 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2428 uio);
2429 if (error) {
2430 audio_track_lock_exit(track);
2431 device_printf(sc->sc_dev,
2432 "uiomove(len=%d) failed with %d\n",
2433 len, error);
2434 goto abort;
2435 }
2436 auring_push(usrbuf, len);
2437 track->useriobytes += len;
2438 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2439 len,
2440 usrbuf->head, usrbuf->used, usrbuf->capacity);
2441 bytes -= len;
2442 }
2443
2444 /* Convert them as much as possible. */
2445 while (usrbuf->used >= track->usrbuf_blksize &&
2446 outbuf->used < outbuf->capacity) {
2447 audio_track_play(track);
2448 }
2449
2450 audio_track_lock_exit(track);
2451 }
2452
2453 abort:
2454 TRACET(3, track, "done error=%d", error);
2455 return error;
2456 }
2457
2458 int
2459 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2460 struct lwp *l, audio_file_t *file)
2461 {
2462 struct audio_offset *ao;
2463 struct audio_info ai;
2464 audio_track_t *track;
2465 audio_encoding_t *ae;
2466 audio_format_query_t *query;
2467 u_int stamp;
2468 u_int offs;
2469 int fd;
2470 int index;
2471 int error;
2472
2473 KASSERT(!mutex_owned(sc->sc_lock));
2474
2475 #if defined(AUDIO_DEBUG)
2476 const char *ioctlnames[] = {
2477 " AUDIO_GETINFO", /* 21 */
2478 " AUDIO_SETINFO", /* 22 */
2479 " AUDIO_DRAIN", /* 23 */
2480 " AUDIO_FLUSH", /* 24 */
2481 " AUDIO_WSEEK", /* 25 */
2482 " AUDIO_RERROR", /* 26 */
2483 " AUDIO_GETDEV", /* 27 */
2484 " AUDIO_GETENC", /* 28 */
2485 " AUDIO_GETFD", /* 29 */
2486 " AUDIO_SETFD", /* 30 */
2487 " AUDIO_PERROR", /* 31 */
2488 " AUDIO_GETIOFFS", /* 32 */
2489 " AUDIO_GETOOFFS", /* 33 */
2490 " AUDIO_GETPROPS", /* 34 */
2491 " AUDIO_GETBUFINFO", /* 35 */
2492 " AUDIO_SETCHAN", /* 36 */
2493 " AUDIO_GETCHAN", /* 37 */
2494 " AUDIO_QUERYFORMAT", /* 38 */
2495 " AUDIO_GETFORMAT", /* 39 */
2496 " AUDIO_SETFORMAT", /* 40 */
2497 };
2498 int nameidx = (cmd & 0xff);
2499 const char *ioctlname = "";
2500 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2501 ioctlname = ioctlnames[nameidx - 21];
2502 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2503 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2504 (int)curproc->p_pid, (int)l->l_lid);
2505 #endif
2506
2507 error = 0;
2508 switch (cmd) {
2509 case FIONBIO:
2510 /* All handled in the upper FS layer. */
2511 break;
2512
2513 case FIONREAD:
2514 /* Get the number of bytes that can be read. */
2515 if (file->rtrack) {
2516 *(int *)addr = audio_track_readablebytes(file->rtrack);
2517 } else {
2518 *(int *)addr = 0;
2519 }
2520 break;
2521
2522 case FIOASYNC:
2523 /* Set/Clear ASYNC I/O. */
2524 if (*(int *)addr) {
2525 file->async_audio = curproc->p_pid;
2526 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2527 } else {
2528 file->async_audio = 0;
2529 TRACEF(2, file, "FIOASYNC off");
2530 }
2531 break;
2532
2533 case AUDIO_FLUSH:
2534 /* XXX TODO: clear errors and restart? */
2535 audio_file_clear(sc, file);
2536 break;
2537
2538 case AUDIO_RERROR:
2539 /*
2540 * Number of read bytes dropped. We don't know where
2541 * or when they were dropped (including conversion stage).
2542 * Therefore, the number of accurate bytes or samples is
2543 * also unknown.
2544 */
2545 track = file->rtrack;
2546 if (track) {
2547 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2548 track->dropframes);
2549 }
2550 break;
2551
2552 case AUDIO_PERROR:
2553 /*
2554 * Number of write bytes dropped. We don't know where
2555 * or when they were dropped (including conversion stage).
2556 * Therefore, the number of accurate bytes or samples is
2557 * also unknown.
2558 */
2559 track = file->ptrack;
2560 if (track) {
2561 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2562 track->dropframes);
2563 }
2564 break;
2565
2566 case AUDIO_GETIOFFS:
2567 /* XXX TODO */
2568 ao = (struct audio_offset *)addr;
2569 ao->samples = 0;
2570 ao->deltablks = 0;
2571 ao->offset = 0;
2572 break;
2573
2574 case AUDIO_GETOOFFS:
2575 ao = (struct audio_offset *)addr;
2576 track = file->ptrack;
2577 if (track == NULL) {
2578 ao->samples = 0;
2579 ao->deltablks = 0;
2580 ao->offset = 0;
2581 break;
2582 }
2583 mutex_enter(sc->sc_lock);
2584 mutex_enter(sc->sc_intr_lock);
2585 /* figure out where next DMA will start */
2586 stamp = track->usrbuf_stamp;
2587 offs = track->usrbuf.head;
2588 mutex_exit(sc->sc_intr_lock);
2589 mutex_exit(sc->sc_lock);
2590
2591 ao->samples = stamp;
2592 ao->deltablks = (stamp / track->usrbuf_blksize) -
2593 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2594 track->usrbuf_stamp_last = stamp;
2595 offs = rounddown(offs, track->usrbuf_blksize)
2596 + track->usrbuf_blksize;
2597 if (offs >= track->usrbuf.capacity)
2598 offs -= track->usrbuf.capacity;
2599 ao->offset = offs;
2600
2601 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2602 ao->samples, ao->deltablks, ao->offset);
2603 break;
2604
2605 case AUDIO_WSEEK:
2606 /* XXX return value does not include outbuf one. */
2607 if (file->ptrack)
2608 *(u_long *)addr = file->ptrack->usrbuf.used;
2609 break;
2610
2611 case AUDIO_SETINFO:
2612 error = audio_enter_exclusive(sc);
2613 if (error)
2614 break;
2615 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2616 if (error) {
2617 audio_exit_exclusive(sc);
2618 break;
2619 }
2620 /* XXX TODO: update last_ai if /dev/sound ? */
2621 if (ISDEVSOUND(dev))
2622 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2623 audio_exit_exclusive(sc);
2624 break;
2625
2626 case AUDIO_GETINFO:
2627 error = audio_enter_exclusive(sc);
2628 if (error)
2629 break;
2630 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2631 audio_exit_exclusive(sc);
2632 break;
2633
2634 case AUDIO_GETBUFINFO:
2635 mutex_enter(sc->sc_lock);
2636 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2637 mutex_exit(sc->sc_lock);
2638 break;
2639
2640 case AUDIO_DRAIN:
2641 if (file->ptrack) {
2642 mutex_enter(sc->sc_lock);
2643 error = audio_track_drain(sc, file->ptrack);
2644 mutex_exit(sc->sc_lock);
2645 }
2646 break;
2647
2648 case AUDIO_GETDEV:
2649 mutex_enter(sc->sc_lock);
2650 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2651 mutex_exit(sc->sc_lock);
2652 break;
2653
2654 case AUDIO_GETENC:
2655 ae = (audio_encoding_t *)addr;
2656 index = ae->index;
2657 if (index < 0 || index >= __arraycount(audio_encodings)) {
2658 error = EINVAL;
2659 break;
2660 }
2661 *ae = audio_encodings[index];
2662 ae->index = index;
2663 /*
2664 * EMULATED always.
2665 * EMULATED flag at that time used to mean that it could
2666 * not be passed directly to the hardware as-is. But
2667 * currently, all formats including hardware native is not
2668 * passed directly to the hardware. So I set EMULATED
2669 * flag for all formats.
2670 */
2671 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2672 break;
2673
2674 case AUDIO_GETFD:
2675 /*
2676 * Returns the current setting of full duplex mode.
2677 * If HW has full duplex mode and there are two mixers,
2678 * it is full duplex. Otherwise half duplex.
2679 */
2680 mutex_enter(sc->sc_lock);
2681 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2682 && (sc->sc_pmixer && sc->sc_rmixer);
2683 mutex_exit(sc->sc_lock);
2684 *(int *)addr = fd;
2685 break;
2686
2687 case AUDIO_GETPROPS:
2688 *(int *)addr = sc->sc_props;
2689 break;
2690
2691 case AUDIO_QUERYFORMAT:
2692 query = (audio_format_query_t *)addr;
2693 if (sc->hw_if->query_format) {
2694 mutex_enter(sc->sc_lock);
2695 error = sc->hw_if->query_format(sc->hw_hdl, query);
2696 mutex_exit(sc->sc_lock);
2697 /* Hide internal infomations */
2698 query->fmt.driver_data = NULL;
2699 } else {
2700 error = ENODEV;
2701 }
2702 break;
2703
2704 case AUDIO_GETFORMAT:
2705 audio_mixers_get_format(sc, (struct audio_info *)addr);
2706 break;
2707
2708 case AUDIO_SETFORMAT:
2709 mutex_enter(sc->sc_lock);
2710 audio_mixers_get_format(sc, &ai);
2711 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2712 if (error) {
2713 /* Rollback */
2714 audio_mixers_set_format(sc, &ai);
2715 }
2716 mutex_exit(sc->sc_lock);
2717 break;
2718
2719 case AUDIO_SETFD:
2720 case AUDIO_SETCHAN:
2721 case AUDIO_GETCHAN:
2722 /* Obsoleted */
2723 break;
2724
2725 default:
2726 if (sc->hw_if->dev_ioctl) {
2727 error = audio_enter_exclusive(sc);
2728 if (error)
2729 break;
2730 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2731 cmd, addr, flag, l);
2732 audio_exit_exclusive(sc);
2733 } else {
2734 TRACEF(2, file, "unknown ioctl");
2735 error = EINVAL;
2736 }
2737 break;
2738 }
2739 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2740 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2741 error);
2742 return error;
2743 }
2744
2745 /*
2746 * Returns the number of bytes that can be read on recording buffer.
2747 */
2748 static __inline int
2749 audio_track_readablebytes(const audio_track_t *track)
2750 {
2751 int bytes;
2752
2753 KASSERT(track);
2754 KASSERT(track->mode == AUMODE_RECORD);
2755
2756 /*
2757 * Although usrbuf is primarily readable data, recorded data
2758 * also stays in track->input until reading. So it is necessary
2759 * to add it. track->input is in frame, usrbuf is in byte.
2760 */
2761 bytes = track->usrbuf.used +
2762 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
2763 return bytes;
2764 }
2765
2766 int
2767 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
2768 audio_file_t *file)
2769 {
2770 audio_track_t *track;
2771 int revents;
2772 bool in_is_valid;
2773 bool out_is_valid;
2774
2775 KASSERT(!mutex_owned(sc->sc_lock));
2776
2777 #if defined(AUDIO_DEBUG)
2778 #define POLLEV_BITMAP "\177\020" \
2779 "b\10WRBAND\0" \
2780 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
2781 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
2782 char evbuf[64];
2783 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
2784 TRACEF(2, file, "pid=%d.%d events=%s",
2785 (int)curproc->p_pid, (int)l->l_lid, evbuf);
2786 #endif
2787
2788 revents = 0;
2789 in_is_valid = false;
2790 out_is_valid = false;
2791 if (events & (POLLIN | POLLRDNORM)) {
2792 track = file->rtrack;
2793 if (track) {
2794 int used;
2795 in_is_valid = true;
2796 used = audio_track_readablebytes(track);
2797 if (used > 0)
2798 revents |= events & (POLLIN | POLLRDNORM);
2799 }
2800 }
2801 if (events & (POLLOUT | POLLWRNORM)) {
2802 track = file->ptrack;
2803 if (track) {
2804 out_is_valid = true;
2805 if (track->usrbuf.used <= track->usrbuf_usedlow)
2806 revents |= events & (POLLOUT | POLLWRNORM);
2807 }
2808 }
2809
2810 if (revents == 0) {
2811 mutex_enter(sc->sc_lock);
2812 if (in_is_valid) {
2813 TRACEF(3, file, "selrecord rsel");
2814 selrecord(l, &sc->sc_rsel);
2815 }
2816 if (out_is_valid) {
2817 TRACEF(3, file, "selrecord wsel");
2818 selrecord(l, &sc->sc_wsel);
2819 }
2820 mutex_exit(sc->sc_lock);
2821 }
2822
2823 #if defined(AUDIO_DEBUG)
2824 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
2825 TRACEF(2, file, "revents=%s", evbuf);
2826 #endif
2827 return revents;
2828 }
2829
2830 static const struct filterops audioread_filtops = {
2831 .f_isfd = 1,
2832 .f_attach = NULL,
2833 .f_detach = filt_audioread_detach,
2834 .f_event = filt_audioread_event,
2835 };
2836
2837 static void
2838 filt_audioread_detach(struct knote *kn)
2839 {
2840 struct audio_softc *sc;
2841 audio_file_t *file;
2842
2843 file = kn->kn_hook;
2844 sc = file->sc;
2845 TRACEF(3, file, "");
2846
2847 mutex_enter(sc->sc_lock);
2848 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
2849 mutex_exit(sc->sc_lock);
2850 }
2851
2852 static int
2853 filt_audioread_event(struct knote *kn, long hint)
2854 {
2855 audio_file_t *file;
2856 audio_track_t *track;
2857
2858 file = kn->kn_hook;
2859 track = file->rtrack;
2860
2861 /*
2862 * kn_data must contain the number of bytes can be read.
2863 * The return value indicates whether the event occurs or not.
2864 */
2865
2866 if (track == NULL) {
2867 /* can not read with this descriptor. */
2868 kn->kn_data = 0;
2869 return 0;
2870 }
2871
2872 kn->kn_data = audio_track_readablebytes(track);
2873 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2874 return kn->kn_data > 0;
2875 }
2876
2877 static const struct filterops audiowrite_filtops = {
2878 .f_isfd = 1,
2879 .f_attach = NULL,
2880 .f_detach = filt_audiowrite_detach,
2881 .f_event = filt_audiowrite_event,
2882 };
2883
2884 static void
2885 filt_audiowrite_detach(struct knote *kn)
2886 {
2887 struct audio_softc *sc;
2888 audio_file_t *file;
2889
2890 file = kn->kn_hook;
2891 sc = file->sc;
2892 TRACEF(3, file, "");
2893
2894 mutex_enter(sc->sc_lock);
2895 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
2896 mutex_exit(sc->sc_lock);
2897 }
2898
2899 static int
2900 filt_audiowrite_event(struct knote *kn, long hint)
2901 {
2902 audio_file_t *file;
2903 audio_track_t *track;
2904
2905 file = kn->kn_hook;
2906 track = file->ptrack;
2907
2908 /*
2909 * kn_data must contain the number of bytes can be write.
2910 * The return value indicates whether the event occurs or not.
2911 */
2912
2913 if (track == NULL) {
2914 /* can not write with this descriptor. */
2915 kn->kn_data = 0;
2916 return 0;
2917 }
2918
2919 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
2920 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2921 return (track->usrbuf.used < track->usrbuf_usedlow);
2922 }
2923
2924 int
2925 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
2926 {
2927 struct klist *klist;
2928
2929 KASSERT(!mutex_owned(sc->sc_lock));
2930
2931 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
2932
2933 switch (kn->kn_filter) {
2934 case EVFILT_READ:
2935 klist = &sc->sc_rsel.sel_klist;
2936 kn->kn_fop = &audioread_filtops;
2937 break;
2938
2939 case EVFILT_WRITE:
2940 klist = &sc->sc_wsel.sel_klist;
2941 kn->kn_fop = &audiowrite_filtops;
2942 break;
2943
2944 default:
2945 return EINVAL;
2946 }
2947
2948 kn->kn_hook = file;
2949
2950 mutex_enter(sc->sc_lock);
2951 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
2952 mutex_exit(sc->sc_lock);
2953
2954 return 0;
2955 }
2956
2957 int
2958 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
2959 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
2960 audio_file_t *file)
2961 {
2962 audio_track_t *track;
2963 vsize_t vsize;
2964 int error;
2965
2966 KASSERT(!mutex_owned(sc->sc_lock));
2967
2968 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
2969
2970 if (*offp < 0)
2971 return EINVAL;
2972
2973 #if 0
2974 /* XXX
2975 * The idea here was to use the protection to determine if
2976 * we are mapping the read or write buffer, but it fails.
2977 * The VM system is broken in (at least) two ways.
2978 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
2979 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
2980 * has to be used for mmapping the play buffer.
2981 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
2982 * audio_mmap will get called at some point with VM_PROT_READ
2983 * only.
2984 * So, alas, we always map the play buffer for now.
2985 */
2986 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
2987 prot == VM_PROT_WRITE)
2988 track = file->ptrack;
2989 else if (prot == VM_PROT_READ)
2990 track = file->rtrack;
2991 else
2992 return EINVAL;
2993 #else
2994 track = file->ptrack;
2995 #endif
2996 if (track == NULL)
2997 return EACCES;
2998
2999 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3000 if (len > vsize)
3001 return EOVERFLOW;
3002 if (*offp > (uint)(vsize - len))
3003 return EOVERFLOW;
3004
3005 /* XXX TODO: what happens when mmap twice. */
3006 if (!track->mmapped) {
3007 track->mmapped = true;
3008
3009 if (!track->is_pause) {
3010 error = audio_enter_exclusive(sc);
3011 if (error)
3012 return error;
3013 if (sc->sc_pbusy == false)
3014 audio_pmixer_start(sc, true);
3015 audio_exit_exclusive(sc);
3016 }
3017 /* XXX mmapping record buffer is not supported */
3018 }
3019
3020 /* get ringbuffer */
3021 *uobjp = track->uobj;
3022
3023 /* Acquire a reference for the mmap. munmap will release. */
3024 uao_reference(*uobjp);
3025 *maxprotp = prot;
3026 *advicep = UVM_ADV_RANDOM;
3027 *flagsp = MAP_SHARED;
3028 return 0;
3029 }
3030
3031 /*
3032 * /dev/audioctl has to be able to open at any time without interference
3033 * with any /dev/audio or /dev/sound.
3034 */
3035 static int
3036 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3037 struct lwp *l)
3038 {
3039 struct file *fp;
3040 audio_file_t *af;
3041 int fd;
3042 int error;
3043
3044 KASSERT(mutex_owned(sc->sc_lock));
3045 KASSERT(sc->sc_exlock);
3046
3047 TRACE(1, "");
3048
3049 error = fd_allocfile(&fp, &fd);
3050 if (error)
3051 return error;
3052
3053 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3054 af->sc = sc;
3055 af->dev = dev;
3056
3057 /* Not necessary to insert sc_files. */
3058
3059 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3060 KASSERT(error == EMOVEFD);
3061
3062 return error;
3063 }
3064
3065 static int
3066 audioctl_close(struct audio_softc *sc, audio_file_t *file)
3067 {
3068
3069 kmem_free(file, sizeof(*file));
3070 return 0;
3071 }
3072
3073 /*
3074 * Free 'mem' if available, and initialize the pointer.
3075 * For this reason, this is implemented as macro.
3076 */
3077 #define audio_free(mem) do { \
3078 if (mem != NULL) { \
3079 kern_free(mem); \
3080 mem = NULL; \
3081 } \
3082 } while (0)
3083
3084 /*
3085 * (Re)allocate 'memblock' with specified 'bytes'.
3086 * bytes must not be 0.
3087 * This function never returns NULL.
3088 */
3089 static void *
3090 audio_realloc(void *memblock, size_t bytes)
3091 {
3092
3093 KASSERT(bytes != 0);
3094 audio_free(memblock);
3095 return kern_malloc(bytes, M_WAITOK);
3096 }
3097
3098 /*
3099 * (Re)allocate usrbuf with 'newbufsize' bytes.
3100 * Use this function for usrbuf because only usrbuf can be mmapped.
3101 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3102 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3103 * and returns errno.
3104 * It must be called before updating usrbuf.capacity.
3105 */
3106 static int
3107 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3108 {
3109 struct audio_softc *sc;
3110 vaddr_t vstart;
3111 vsize_t oldvsize;
3112 vsize_t newvsize;
3113 int error;
3114
3115 KASSERT(newbufsize > 0);
3116 sc = track->mixer->sc;
3117
3118 /* Get a nonzero multiple of PAGE_SIZE */
3119 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3120
3121 if (track->usrbuf.mem != NULL) {
3122 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3123 PAGE_SIZE);
3124 if (oldvsize == newvsize) {
3125 track->usrbuf.capacity = newbufsize;
3126 return 0;
3127 }
3128 vstart = (vaddr_t)track->usrbuf.mem;
3129 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3130 /* uvm_unmap also detach uobj */
3131 track->uobj = NULL; /* paranoia */
3132 track->usrbuf.mem = NULL;
3133 }
3134
3135 /* Create a uvm anonymous object */
3136 track->uobj = uao_create(newvsize, 0);
3137
3138 /* Map it into the kernel virtual address space */
3139 vstart = 0;
3140 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3141 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3142 UVM_ADV_RANDOM, 0));
3143 if (error) {
3144 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3145 uao_detach(track->uobj); /* release reference */
3146 goto abort;
3147 }
3148
3149 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3150 false, 0);
3151 if (error) {
3152 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3153 error);
3154 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3155 /* uvm_unmap also detach uobj */
3156 goto abort;
3157 }
3158
3159 track->usrbuf.mem = (void *)vstart;
3160 track->usrbuf.capacity = newbufsize;
3161 memset(track->usrbuf.mem, 0, newvsize);
3162 return 0;
3163
3164 /* failure */
3165 abort:
3166 track->uobj = NULL; /* paranoia */
3167 track->usrbuf.mem = NULL;
3168 track->usrbuf.capacity = 0;
3169 return error;
3170 }
3171
3172 /*
3173 * Free usrbuf (if available).
3174 */
3175 static void
3176 audio_free_usrbuf(audio_track_t *track)
3177 {
3178 vaddr_t vstart;
3179 vsize_t vsize;
3180
3181 vstart = (vaddr_t)track->usrbuf.mem;
3182 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3183 if (track->usrbuf.mem != NULL) {
3184 /*
3185 * Unmap the kernel mapping. uvm_unmap releases the
3186 * reference to the uvm object, and this should be the
3187 * last virtual mapping of the uvm object, so no need
3188 * to explicitly release (`detach') the object.
3189 */
3190 uvm_unmap(kernel_map, vstart, vstart + vsize);
3191
3192 track->uobj = NULL;
3193 track->usrbuf.mem = NULL;
3194 track->usrbuf.capacity = 0;
3195 }
3196 }
3197
3198 /*
3199 * This filter changes the volume for each channel.
3200 * arg->context points track->ch_volume[].
3201 */
3202 static void
3203 audio_track_chvol(audio_filter_arg_t *arg)
3204 {
3205 int16_t *ch_volume;
3206 const aint_t *s;
3207 aint_t *d;
3208 u_int i;
3209 u_int ch;
3210 u_int channels;
3211
3212 DIAGNOSTIC_filter_arg(arg);
3213 KASSERT(arg->srcfmt->channels == arg->dstfmt->channels);
3214 KASSERT(arg->context != NULL);
3215 KASSERT(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS);
3216
3217 s = arg->src;
3218 d = arg->dst;
3219 ch_volume = arg->context;
3220
3221 channels = arg->srcfmt->channels;
3222 for (i = 0; i < arg->count; i++) {
3223 for (ch = 0; ch < channels; ch++) {
3224 aint2_t val;
3225 val = *s++;
3226 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3227 *d++ = (aint_t)val;
3228 }
3229 }
3230 }
3231
3232 /*
3233 * This filter performs conversion from stereo (or more channels) to mono.
3234 */
3235 static void
3236 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3237 {
3238 const aint_t *s;
3239 aint_t *d;
3240 u_int i;
3241
3242 DIAGNOSTIC_filter_arg(arg);
3243
3244 s = arg->src;
3245 d = arg->dst;
3246
3247 for (i = 0; i < arg->count; i++) {
3248 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3249 s += arg->srcfmt->channels;
3250 }
3251 }
3252
3253 /*
3254 * This filter performs conversion from mono to stereo (or more channels).
3255 */
3256 static void
3257 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3258 {
3259 const aint_t *s;
3260 aint_t *d;
3261 u_int i;
3262 u_int ch;
3263 u_int dstchannels;
3264
3265 DIAGNOSTIC_filter_arg(arg);
3266
3267 s = arg->src;
3268 d = arg->dst;
3269 dstchannels = arg->dstfmt->channels;
3270
3271 for (i = 0; i < arg->count; i++) {
3272 d[0] = s[0];
3273 d[1] = s[0];
3274 s++;
3275 d += dstchannels;
3276 }
3277 if (dstchannels > 2) {
3278 d = arg->dst;
3279 for (i = 0; i < arg->count; i++) {
3280 for (ch = 2; ch < dstchannels; ch++) {
3281 d[ch] = 0;
3282 }
3283 d += dstchannels;
3284 }
3285 }
3286 }
3287
3288 /*
3289 * This filter shrinks M channels into N channels.
3290 * Extra channels are discarded.
3291 */
3292 static void
3293 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3294 {
3295 const aint_t *s;
3296 aint_t *d;
3297 u_int i;
3298 u_int ch;
3299
3300 DIAGNOSTIC_filter_arg(arg);
3301
3302 s = arg->src;
3303 d = arg->dst;
3304
3305 for (i = 0; i < arg->count; i++) {
3306 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3307 *d++ = s[ch];
3308 }
3309 s += arg->srcfmt->channels;
3310 }
3311 }
3312
3313 /*
3314 * This filter expands M channels into N channels.
3315 * Silence is inserted for missing channels.
3316 */
3317 static void
3318 audio_track_chmix_expand(audio_filter_arg_t *arg)
3319 {
3320 const aint_t *s;
3321 aint_t *d;
3322 u_int i;
3323 u_int ch;
3324 u_int srcchannels;
3325 u_int dstchannels;
3326
3327 DIAGNOSTIC_filter_arg(arg);
3328
3329 s = arg->src;
3330 d = arg->dst;
3331
3332 srcchannels = arg->srcfmt->channels;
3333 dstchannels = arg->dstfmt->channels;
3334 for (i = 0; i < arg->count; i++) {
3335 for (ch = 0; ch < srcchannels; ch++) {
3336 *d++ = *s++;
3337 }
3338 for (; ch < dstchannels; ch++) {
3339 *d++ = 0;
3340 }
3341 }
3342 }
3343
3344 /*
3345 * This filter performs frequency conversion (up sampling).
3346 * It uses linear interpolation.
3347 */
3348 static void
3349 audio_track_freq_up(audio_filter_arg_t *arg)
3350 {
3351 audio_track_t *track;
3352 audio_ring_t *src;
3353 audio_ring_t *dst;
3354 const aint_t *s;
3355 aint_t *d;
3356 aint_t prev[AUDIO_MAX_CHANNELS];
3357 aint_t curr[AUDIO_MAX_CHANNELS];
3358 aint_t grad[AUDIO_MAX_CHANNELS];
3359 u_int i;
3360 u_int t;
3361 u_int step;
3362 u_int channels;
3363 u_int ch;
3364 int srcused;
3365
3366 track = arg->context;
3367 KASSERT(track);
3368 src = &track->freq.srcbuf;
3369 dst = track->freq.dst;
3370 DIAGNOSTIC_ring(dst);
3371 DIAGNOSTIC_ring(src);
3372 KASSERT(src->used > 0);
3373 KASSERT(src->fmt.channels == dst->fmt.channels);
3374 KASSERT(src->head % track->mixer->frames_per_block == 0);
3375
3376 s = arg->src;
3377 d = arg->dst;
3378
3379 /*
3380 * In order to faciliate interpolation for each block, slide (delay)
3381 * input by one sample. As a result, strictly speaking, the output
3382 * phase is delayed by 1/dstfreq. However, I believe there is no
3383 * observable impact.
3384 *
3385 * Example)
3386 * srcfreq:dstfreq = 1:3
3387 *
3388 * A - -
3389 * |
3390 * |
3391 * | B - -
3392 * +-----+-----> input timeframe
3393 * 0 1
3394 *
3395 * 0 1
3396 * +-----+-----> input timeframe
3397 * | A
3398 * | x x
3399 * | x x
3400 * x (B)
3401 * +-+-+-+-+-+-> output timeframe
3402 * 0 1 2 3 4 5
3403 */
3404
3405 /* Last samples in previous block */
3406 channels = src->fmt.channels;
3407 for (ch = 0; ch < channels; ch++) {
3408 prev[ch] = track->freq_prev[ch];
3409 curr[ch] = track->freq_curr[ch];
3410 grad[ch] = curr[ch] - prev[ch];
3411 }
3412
3413 step = track->freq_step;
3414 t = track->freq_current;
3415 //#define FREQ_DEBUG
3416 #if defined(FREQ_DEBUG)
3417 #define PRINTF(fmt...) printf(fmt)
3418 #else
3419 #define PRINTF(fmt...) do { } while (0)
3420 #endif
3421 srcused = src->used;
3422 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3423 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3424 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3425 PRINTF(" t=%d\n", t);
3426
3427 for (i = 0; i < arg->count; i++) {
3428 PRINTF("i=%d t=%5d", i, t);
3429 if (t >= 65536) {
3430 for (ch = 0; ch < channels; ch++) {
3431 prev[ch] = curr[ch];
3432 curr[ch] = *s++;
3433 grad[ch] = curr[ch] - prev[ch];
3434 }
3435 PRINTF(" prev=%d s[%d]=%d",
3436 prev[0], src->used - srcused, curr[0]);
3437
3438 /* Update */
3439 t -= 65536;
3440 srcused--;
3441 if (srcused < 0) {
3442 PRINTF(" break\n");
3443 break;
3444 }
3445 }
3446
3447 for (ch = 0; ch < channels; ch++) {
3448 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3449 #if defined(FREQ_DEBUG)
3450 if (ch == 0)
3451 printf(" t=%5d *d=%d", t, d[-1]);
3452 #endif
3453 }
3454 t += step;
3455
3456 PRINTF("\n");
3457 }
3458 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3459
3460 auring_take(src, src->used);
3461 auring_push(dst, i);
3462
3463 /* Adjust */
3464 t += track->freq_leap;
3465
3466 track->freq_current = t;
3467 for (ch = 0; ch < channels; ch++) {
3468 track->freq_prev[ch] = prev[ch];
3469 track->freq_curr[ch] = curr[ch];
3470 }
3471 }
3472
3473 /*
3474 * This filter performs frequency conversion (down sampling).
3475 * It uses simple thinning.
3476 */
3477 static void
3478 audio_track_freq_down(audio_filter_arg_t *arg)
3479 {
3480 audio_track_t *track;
3481 audio_ring_t *src;
3482 audio_ring_t *dst;
3483 const aint_t *s0;
3484 aint_t *d;
3485 u_int i;
3486 u_int t;
3487 u_int step;
3488 u_int ch;
3489 u_int channels;
3490
3491 track = arg->context;
3492 KASSERT(track);
3493 src = &track->freq.srcbuf;
3494 dst = track->freq.dst;
3495
3496 DIAGNOSTIC_ring(dst);
3497 DIAGNOSTIC_ring(src);
3498 KASSERT(src->used > 0);
3499 KASSERT(src->fmt.channels == dst->fmt.channels);
3500 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3501 "src->head=%d fpb=%d",
3502 src->head, track->mixer->frames_per_block);
3503
3504 s0 = arg->src;
3505 d = arg->dst;
3506 t = track->freq_current;
3507 step = track->freq_step;
3508 channels = dst->fmt.channels;
3509 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3510 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3511 PRINTF(" t=%d\n", t);
3512
3513 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3514 const aint_t *s;
3515 PRINTF("i=%4d t=%10d", i, t);
3516 s = s0 + (t / 65536) * channels;
3517 PRINTF(" s=%5ld", (s - s0) / channels);
3518 for (ch = 0; ch < channels; ch++) {
3519 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3520 *d++ = s[ch];
3521 }
3522 PRINTF("\n");
3523 t += step;
3524 }
3525 t += track->freq_leap;
3526 PRINTF("end t=%d\n", t);
3527 auring_take(src, src->used);
3528 auring_push(dst, i);
3529 track->freq_current = t % 65536;
3530 }
3531
3532 /*
3533 * Creates track and returns it.
3534 */
3535 audio_track_t *
3536 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3537 {
3538 audio_track_t *track;
3539 static int newid = 0;
3540
3541 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3542
3543 track->id = newid++;
3544 track->mixer = mixer;
3545 track->mode = mixer->mode;
3546
3547 /* Do TRACE after id is assigned. */
3548 TRACET(3, track, "for %s",
3549 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3550
3551 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3552 track->volume = 256;
3553 #endif
3554 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3555 track->ch_volume[i] = 256;
3556 }
3557
3558 return track;
3559 }
3560
3561 /*
3562 * Release all resources of the track and track itself.
3563 * track must not be NULL. Don't specify the track within the file
3564 * structure linked from sc->sc_files.
3565 */
3566 static void
3567 audio_track_destroy(audio_track_t *track)
3568 {
3569
3570 KASSERT(track);
3571
3572 audio_free_usrbuf(track);
3573 audio_free(track->codec.srcbuf.mem);
3574 audio_free(track->chvol.srcbuf.mem);
3575 audio_free(track->chmix.srcbuf.mem);
3576 audio_free(track->freq.srcbuf.mem);
3577 audio_free(track->outbuf.mem);
3578
3579 kmem_free(track, sizeof(*track));
3580 }
3581
3582 /*
3583 * It returns encoding conversion filter according to src and dst format.
3584 * If it is not a convertible pair, it returns NULL. Either src or dst
3585 * must be internal format.
3586 */
3587 static audio_filter_t
3588 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3589 const audio_format2_t *dst)
3590 {
3591
3592 if (audio_format2_is_internal(src)) {
3593 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3594 return audio_internal_to_mulaw;
3595 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3596 return audio_internal_to_alaw;
3597 } else if (audio_format2_is_linear(dst)) {
3598 switch (dst->stride) {
3599 case 8:
3600 return audio_internal_to_linear8;
3601 case 16:
3602 return audio_internal_to_linear16;
3603 #if defined(AUDIO_SUPPORT_LINEAR24)
3604 case 24:
3605 return audio_internal_to_linear24;
3606 #endif
3607 case 32:
3608 return audio_internal_to_linear32;
3609 default:
3610 TRACET(1, track, "unsupported %s stride %d",
3611 "dst", dst->stride);
3612 goto abort;
3613 }
3614 }
3615 } else if (audio_format2_is_internal(dst)) {
3616 if (src->encoding == AUDIO_ENCODING_ULAW) {
3617 return audio_mulaw_to_internal;
3618 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3619 return audio_alaw_to_internal;
3620 } else if (audio_format2_is_linear(src)) {
3621 switch (src->stride) {
3622 case 8:
3623 return audio_linear8_to_internal;
3624 case 16:
3625 return audio_linear16_to_internal;
3626 #if defined(AUDIO_SUPPORT_LINEAR24)
3627 case 24:
3628 return audio_linear24_to_internal;
3629 #endif
3630 case 32:
3631 return audio_linear32_to_internal;
3632 default:
3633 TRACET(1, track, "unsupported %s stride %d",
3634 "src", src->stride);
3635 goto abort;
3636 }
3637 }
3638 }
3639
3640 TRACET(1, track, "unsupported encoding");
3641 abort:
3642 #if defined(AUDIO_DEBUG)
3643 if (audiodebug >= 2) {
3644 char buf[100];
3645 audio_format2_tostr(buf, sizeof(buf), src);
3646 TRACET(2, track, "src %s", buf);
3647 audio_format2_tostr(buf, sizeof(buf), dst);
3648 TRACET(2, track, "dst %s", buf);
3649 }
3650 #endif
3651 return NULL;
3652 }
3653
3654 /*
3655 * Initialize the codec stage of this track as necessary.
3656 * If successful, it initializes the codec stage as necessary, stores updated
3657 * last_dst in *last_dstp in any case, and returns 0.
3658 * Otherwise, it returns errno without modifying *last_dstp.
3659 */
3660 static int
3661 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3662 {
3663 audio_ring_t *last_dst;
3664 audio_ring_t *srcbuf;
3665 audio_format2_t *srcfmt;
3666 audio_format2_t *dstfmt;
3667 audio_filter_arg_t *arg;
3668 u_int len;
3669 int error;
3670
3671 KASSERT(track);
3672
3673 last_dst = *last_dstp;
3674 dstfmt = &last_dst->fmt;
3675 srcfmt = &track->inputfmt;
3676 srcbuf = &track->codec.srcbuf;
3677 error = 0;
3678
3679 if (srcfmt->encoding != dstfmt->encoding
3680 || srcfmt->precision != dstfmt->precision
3681 || srcfmt->stride != dstfmt->stride) {
3682 track->codec.dst = last_dst;
3683
3684 srcbuf->fmt = *dstfmt;
3685 srcbuf->fmt.encoding = srcfmt->encoding;
3686 srcbuf->fmt.precision = srcfmt->precision;
3687 srcbuf->fmt.stride = srcfmt->stride;
3688
3689 track->codec.filter = audio_track_get_codec(track,
3690 &srcbuf->fmt, dstfmt);
3691 if (track->codec.filter == NULL) {
3692 error = EINVAL;
3693 goto abort;
3694 }
3695
3696 srcbuf->head = 0;
3697 srcbuf->used = 0;
3698 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3699 len = auring_bytelen(srcbuf);
3700 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3701
3702 arg = &track->codec.arg;
3703 arg->srcfmt = &srcbuf->fmt;
3704 arg->dstfmt = dstfmt;
3705 arg->context = NULL;
3706
3707 *last_dstp = srcbuf;
3708 return 0;
3709 }
3710
3711 abort:
3712 track->codec.filter = NULL;
3713 audio_free(srcbuf->mem);
3714 return error;
3715 }
3716
3717 /*
3718 * Initialize the chvol stage of this track as necessary.
3719 * If successful, it initializes the chvol stage as necessary, stores updated
3720 * last_dst in *last_dstp in any case, and returns 0.
3721 * Otherwise, it returns errno without modifying *last_dstp.
3722 */
3723 static int
3724 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3725 {
3726 audio_ring_t *last_dst;
3727 audio_ring_t *srcbuf;
3728 audio_format2_t *srcfmt;
3729 audio_format2_t *dstfmt;
3730 audio_filter_arg_t *arg;
3731 u_int len;
3732 int error;
3733
3734 KASSERT(track);
3735
3736 last_dst = *last_dstp;
3737 dstfmt = &last_dst->fmt;
3738 srcfmt = &track->inputfmt;
3739 srcbuf = &track->chvol.srcbuf;
3740 error = 0;
3741
3742 /* Check whether channel volume conversion is necessary. */
3743 bool use_chvol = false;
3744 for (int ch = 0; ch < srcfmt->channels; ch++) {
3745 if (track->ch_volume[ch] != 256) {
3746 use_chvol = true;
3747 break;
3748 }
3749 }
3750
3751 if (use_chvol == true) {
3752 track->chvol.dst = last_dst;
3753 track->chvol.filter = audio_track_chvol;
3754
3755 srcbuf->fmt = *dstfmt;
3756 /* no format conversion occurs */
3757
3758 srcbuf->head = 0;
3759 srcbuf->used = 0;
3760 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3761 len = auring_bytelen(srcbuf);
3762 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3763
3764 arg = &track->chvol.arg;
3765 arg->srcfmt = &srcbuf->fmt;
3766 arg->dstfmt = dstfmt;
3767 arg->context = track->ch_volume;
3768
3769 *last_dstp = srcbuf;
3770 return 0;
3771 }
3772
3773 track->chvol.filter = NULL;
3774 audio_free(srcbuf->mem);
3775 return error;
3776 }
3777
3778 /*
3779 * Initialize the chmix stage of this track as necessary.
3780 * If successful, it initializes the chmix stage as necessary, stores updated
3781 * last_dst in *last_dstp in any case, and returns 0.
3782 * Otherwise, it returns errno without modifying *last_dstp.
3783 */
3784 static int
3785 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
3786 {
3787 audio_ring_t *last_dst;
3788 audio_ring_t *srcbuf;
3789 audio_format2_t *srcfmt;
3790 audio_format2_t *dstfmt;
3791 audio_filter_arg_t *arg;
3792 u_int srcch;
3793 u_int dstch;
3794 u_int len;
3795 int error;
3796
3797 KASSERT(track);
3798
3799 last_dst = *last_dstp;
3800 dstfmt = &last_dst->fmt;
3801 srcfmt = &track->inputfmt;
3802 srcbuf = &track->chmix.srcbuf;
3803 error = 0;
3804
3805 srcch = srcfmt->channels;
3806 dstch = dstfmt->channels;
3807 if (srcch != dstch) {
3808 track->chmix.dst = last_dst;
3809
3810 if (srcch >= 2 && dstch == 1) {
3811 track->chmix.filter = audio_track_chmix_mixLR;
3812 } else if (srcch == 1 && dstch >= 2) {
3813 track->chmix.filter = audio_track_chmix_dupLR;
3814 } else if (srcch > dstch) {
3815 track->chmix.filter = audio_track_chmix_shrink;
3816 } else {
3817 track->chmix.filter = audio_track_chmix_expand;
3818 }
3819
3820 srcbuf->fmt = *dstfmt;
3821 srcbuf->fmt.channels = srcch;
3822
3823 srcbuf->head = 0;
3824 srcbuf->used = 0;
3825 /* XXX The buffer size should be able to calculate. */
3826 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3827 len = auring_bytelen(srcbuf);
3828 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3829
3830 arg = &track->chmix.arg;
3831 arg->srcfmt = &srcbuf->fmt;
3832 arg->dstfmt = dstfmt;
3833 arg->context = NULL;
3834
3835 *last_dstp = srcbuf;
3836 return 0;
3837 }
3838
3839 track->chmix.filter = NULL;
3840 audio_free(srcbuf->mem);
3841 return error;
3842 }
3843
3844 /*
3845 * Initialize the freq stage of this track as necessary.
3846 * If successful, it initializes the freq stage as necessary, stores updated
3847 * last_dst in *last_dstp in any case, and returns 0.
3848 * Otherwise, it returns errno without modifying *last_dstp.
3849 */
3850 static int
3851 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
3852 {
3853 audio_ring_t *last_dst;
3854 audio_ring_t *srcbuf;
3855 audio_format2_t *srcfmt;
3856 audio_format2_t *dstfmt;
3857 audio_filter_arg_t *arg;
3858 uint32_t srcfreq;
3859 uint32_t dstfreq;
3860 u_int dst_capacity;
3861 u_int mod;
3862 u_int len;
3863 int error;
3864
3865 KASSERT(track);
3866
3867 last_dst = *last_dstp;
3868 dstfmt = &last_dst->fmt;
3869 srcfmt = &track->inputfmt;
3870 srcbuf = &track->freq.srcbuf;
3871 error = 0;
3872
3873 srcfreq = srcfmt->sample_rate;
3874 dstfreq = dstfmt->sample_rate;
3875 if (srcfreq != dstfreq) {
3876 track->freq.dst = last_dst;
3877
3878 memset(track->freq_prev, 0, sizeof(track->freq_prev));
3879 memset(track->freq_curr, 0, sizeof(track->freq_curr));
3880
3881 /* freq_step is the ratio of src/dst when let dst 65536. */
3882 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
3883
3884 dst_capacity = frame_per_block(track->mixer, dstfmt);
3885 mod = (uint64_t)srcfreq * 65536 % dstfreq;
3886 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
3887
3888 if (track->freq_step < 65536) {
3889 track->freq.filter = audio_track_freq_up;
3890 /* In order to carry at the first time. */
3891 track->freq_current = 65536;
3892 } else {
3893 track->freq.filter = audio_track_freq_down;
3894 track->freq_current = 0;
3895 }
3896
3897 srcbuf->fmt = *dstfmt;
3898 srcbuf->fmt.sample_rate = srcfreq;
3899
3900 srcbuf->head = 0;
3901 srcbuf->used = 0;
3902 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3903 len = auring_bytelen(srcbuf);
3904 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3905
3906 arg = &track->freq.arg;
3907 arg->srcfmt = &srcbuf->fmt;
3908 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
3909 arg->context = track;
3910
3911 *last_dstp = srcbuf;
3912 return 0;
3913 }
3914
3915 track->freq.filter = NULL;
3916 audio_free(srcbuf->mem);
3917 return error;
3918 }
3919
3920 /*
3921 * When playing back: (e.g. if codec and freq stage are valid)
3922 *
3923 * write
3924 * | uiomove
3925 * v
3926 * usrbuf [...............] byte ring buffer (mmap-able)
3927 * | memcpy
3928 * v
3929 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
3930 * .dst ----+
3931 * | convert
3932 * v
3933 * freq.srcbuf [....] 1 block (ring) buffer
3934 * .dst ----+
3935 * | convert
3936 * v
3937 * outbuf [...............] NBLKOUT blocks ring buffer
3938 *
3939 *
3940 * When recording:
3941 *
3942 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
3943 * .dst ----+
3944 * | convert
3945 * v
3946 * codec.srcbuf[.....] 1 block (ring) buffer
3947 * .dst ----+
3948 * | convert
3949 * v
3950 * outbuf [.....] 1 block (ring) buffer
3951 * | memcpy
3952 * v
3953 * usrbuf [...............] byte ring buffer (mmap-able *)
3954 * | uiomove
3955 * v
3956 * read
3957 *
3958 * *: usrbuf for recording is also mmap-able due to symmetry with
3959 * playback buffer, but for now mmap will never happen for recording.
3960 */
3961
3962 /*
3963 * Set the userland format of this track.
3964 * usrfmt argument should be parameter verified with audio_check_params().
3965 * It will release and reallocate all internal conversion buffers.
3966 * It returns 0 if successful. Otherwise it returns errno with clearing all
3967 * internal buffers.
3968 * It must be called without sc_intr_lock since uvm_* routines require non
3969 * intr_lock state.
3970 * It must be called with track lock held since it may release and reallocate
3971 * outbuf.
3972 */
3973 static int
3974 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
3975 {
3976 struct audio_softc *sc;
3977 u_int newbufsize;
3978 u_int oldblksize;
3979 u_int len;
3980 int error;
3981
3982 KASSERT(track);
3983 sc = track->mixer->sc;
3984
3985 /* usrbuf is the closest buffer to the userland. */
3986 track->usrbuf.fmt = *usrfmt;
3987
3988 /*
3989 * For references, one block size (in 40msec) is:
3990 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
3991 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
3992 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
3993 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
3994 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
3995 *
3996 * For example,
3997 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
3998 * newbufsize = rounddown(65536 / 7056) = 63504
3999 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4000 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4001 *
4002 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4003 * newbufsize = rounddown(65536 / 7680) = 61440
4004 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4005 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4006 */
4007 oldblksize = track->usrbuf_blksize;
4008 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4009 frame_per_block(track->mixer, &track->usrbuf.fmt));
4010 track->usrbuf.head = 0;
4011 track->usrbuf.used = 0;
4012 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4013 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4014 error = audio_realloc_usrbuf(track, newbufsize);
4015 if (error) {
4016 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4017 newbufsize);
4018 goto error;
4019 }
4020
4021 /* Recalc water mark. */
4022 if (track->usrbuf_blksize != oldblksize) {
4023 if (audio_track_is_playback(track)) {
4024 /* Set high at 100%, low at 75%. */
4025 track->usrbuf_usedhigh = track->usrbuf.capacity;
4026 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4027 } else {
4028 /* Set high at 100% minus 1block(?), low at 0% */
4029 track->usrbuf_usedhigh = track->usrbuf.capacity -
4030 track->usrbuf_blksize;
4031 track->usrbuf_usedlow = 0;
4032 }
4033 }
4034
4035 /* Stage buffer */
4036 audio_ring_t *last_dst = &track->outbuf;
4037 if (audio_track_is_playback(track)) {
4038 /* On playback, initialize from the mixer side in order. */
4039 track->inputfmt = *usrfmt;
4040 track->outbuf.fmt = track->mixer->track_fmt;
4041
4042 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4043 goto error;
4044 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4045 goto error;
4046 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4047 goto error;
4048 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4049 goto error;
4050 } else {
4051 /* On recording, initialize from userland side in order. */
4052 track->inputfmt = track->mixer->track_fmt;
4053 track->outbuf.fmt = *usrfmt;
4054
4055 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4056 goto error;
4057 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4058 goto error;
4059 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4060 goto error;
4061 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4062 goto error;
4063 }
4064 #if 0
4065 /* debug */
4066 if (track->freq.filter) {
4067 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4068 audio_print_format2("freq dst", &track->freq.dst->fmt);
4069 }
4070 if (track->chmix.filter) {
4071 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4072 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4073 }
4074 if (track->chvol.filter) {
4075 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4076 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4077 }
4078 if (track->codec.filter) {
4079 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4080 audio_print_format2("codec dst", &track->codec.dst->fmt);
4081 }
4082 #endif
4083
4084 /* Stage input buffer */
4085 track->input = last_dst;
4086
4087 /*
4088 * On the recording track, make the first stage a ring buffer.
4089 * XXX is there a better way?
4090 */
4091 if (audio_track_is_record(track)) {
4092 track->input->capacity = NBLKOUT *
4093 frame_per_block(track->mixer, &track->input->fmt);
4094 len = auring_bytelen(track->input);
4095 track->input->mem = audio_realloc(track->input->mem, len);
4096 }
4097
4098 /*
4099 * Output buffer.
4100 * On the playback track, its capacity is NBLKOUT blocks.
4101 * On the recording track, its capacity is 1 block.
4102 */
4103 track->outbuf.head = 0;
4104 track->outbuf.used = 0;
4105 track->outbuf.capacity = frame_per_block(track->mixer,
4106 &track->outbuf.fmt);
4107 if (audio_track_is_playback(track))
4108 track->outbuf.capacity *= NBLKOUT;
4109 len = auring_bytelen(&track->outbuf);
4110 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4111 if (track->outbuf.mem == NULL) {
4112 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4113 error = ENOMEM;
4114 goto error;
4115 }
4116
4117 #if defined(AUDIO_DEBUG)
4118 if (audiodebug >= 3) {
4119 struct audio_track_debugbuf m;
4120
4121 memset(&m, 0, sizeof(m));
4122 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4123 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4124 if (track->freq.filter)
4125 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4126 track->freq.srcbuf.capacity *
4127 frametobyte(&track->freq.srcbuf.fmt, 1));
4128 if (track->chmix.filter)
4129 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4130 track->chmix.srcbuf.capacity *
4131 frametobyte(&track->chmix.srcbuf.fmt, 1));
4132 if (track->chvol.filter)
4133 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4134 track->chvol.srcbuf.capacity *
4135 frametobyte(&track->chvol.srcbuf.fmt, 1));
4136 if (track->codec.filter)
4137 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4138 track->codec.srcbuf.capacity *
4139 frametobyte(&track->codec.srcbuf.fmt, 1));
4140 snprintf(m.usrbuf, sizeof(m.usrbuf),
4141 " usr=%d", track->usrbuf.capacity);
4142
4143 if (audio_track_is_playback(track)) {
4144 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4145 m.outbuf, m.freq, m.chmix,
4146 m.chvol, m.codec, m.usrbuf);
4147 } else {
4148 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4149 m.freq, m.chmix, m.chvol,
4150 m.codec, m.outbuf, m.usrbuf);
4151 }
4152 }
4153 #endif
4154 return 0;
4155
4156 error:
4157 audio_free_usrbuf(track);
4158 audio_free(track->codec.srcbuf.mem);
4159 audio_free(track->chvol.srcbuf.mem);
4160 audio_free(track->chmix.srcbuf.mem);
4161 audio_free(track->freq.srcbuf.mem);
4162 audio_free(track->outbuf.mem);
4163 return error;
4164 }
4165
4166 /*
4167 * Fill silence frames (as the internal format) up to 1 block
4168 * if the ring is not empty and less than 1 block.
4169 * It returns the number of appended frames.
4170 */
4171 static int
4172 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4173 {
4174 int fpb;
4175 int n;
4176
4177 KASSERT(track);
4178 KASSERT(audio_format2_is_internal(&ring->fmt));
4179
4180 /* XXX is n correct? */
4181 /* XXX memset uses frametobyte()? */
4182
4183 if (ring->used == 0)
4184 return 0;
4185
4186 fpb = frame_per_block(track->mixer, &ring->fmt);
4187 if (ring->used >= fpb)
4188 return 0;
4189
4190 n = (ring->capacity - ring->used) % fpb;
4191
4192 KASSERT(auring_get_contig_free(ring) >= n);
4193
4194 memset(auring_tailptr_aint(ring), 0,
4195 n * ring->fmt.channels * sizeof(aint_t));
4196 auring_push(ring, n);
4197 return n;
4198 }
4199
4200 /*
4201 * Execute the conversion stage.
4202 * It prepares arg from this stage and executes stage->filter.
4203 * It must be called only if stage->filter is not NULL.
4204 *
4205 * For stages other than frequency conversion, the function increments
4206 * src and dst counters here. For frequency conversion stage, on the
4207 * other hand, the function does not touch src and dst counters and
4208 * filter side has to increment them.
4209 */
4210 static void
4211 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4212 {
4213 audio_filter_arg_t *arg;
4214 int srccount;
4215 int dstcount;
4216 int count;
4217
4218 KASSERT(track);
4219 KASSERT(stage->filter);
4220
4221 srccount = auring_get_contig_used(&stage->srcbuf);
4222 dstcount = auring_get_contig_free(stage->dst);
4223
4224 if (isfreq) {
4225 KASSERTMSG(srccount > 0, "freq but srccount == %d", srccount);
4226 count = uimin(dstcount, track->mixer->frames_per_block);
4227 } else {
4228 count = uimin(srccount, dstcount);
4229 }
4230
4231 if (count > 0) {
4232 arg = &stage->arg;
4233 arg->src = auring_headptr(&stage->srcbuf);
4234 arg->dst = auring_tailptr(stage->dst);
4235 arg->count = count;
4236
4237 stage->filter(arg);
4238
4239 if (!isfreq) {
4240 auring_take(&stage->srcbuf, count);
4241 auring_push(stage->dst, count);
4242 }
4243 }
4244 }
4245
4246 /*
4247 * Produce output buffer for playback from user input buffer.
4248 * It must be called only if usrbuf is not empty and outbuf is
4249 * available at least one free block.
4250 */
4251 static void
4252 audio_track_play(audio_track_t *track)
4253 {
4254 audio_ring_t *usrbuf;
4255 audio_ring_t *input;
4256 int count;
4257 int framesize;
4258 int bytes;
4259
4260 KASSERT(track);
4261 KASSERT(track->lock);
4262 TRACET(4, track, "start pstate=%d", track->pstate);
4263
4264 /* At this point usrbuf must not be empty. */
4265 KASSERT(track->usrbuf.used > 0);
4266 /* Also, outbuf must be available at least one block. */
4267 count = auring_get_contig_free(&track->outbuf);
4268 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4269 "count=%d fpb=%d",
4270 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4271
4272 /* XXX TODO: is this necessary for now? */
4273 int track_count_0 = track->outbuf.used;
4274
4275 usrbuf = &track->usrbuf;
4276 input = track->input;
4277
4278 /*
4279 * framesize is always 1 byte or more since all formats supported as
4280 * usrfmt(=input) have 8bit or more stride.
4281 */
4282 framesize = frametobyte(&input->fmt, 1);
4283 KASSERT(framesize >= 1);
4284
4285 /* The next stage of usrbuf (=input) must be available. */
4286 KASSERT(auring_get_contig_free(input) > 0);
4287
4288 /*
4289 * Copy usrbuf up to 1block to input buffer.
4290 * count is the number of frames to copy from usrbuf.
4291 * bytes is the number of bytes to copy from usrbuf. However it is
4292 * not copied less than one frame.
4293 */
4294 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4295 bytes = count * framesize;
4296
4297 track->usrbuf_stamp += bytes;
4298
4299 if (usrbuf->head + bytes < usrbuf->capacity) {
4300 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4301 (uint8_t *)usrbuf->mem + usrbuf->head,
4302 bytes);
4303 auring_push(input, count);
4304 auring_take(usrbuf, bytes);
4305 } else {
4306 int bytes1;
4307 int bytes2;
4308
4309 bytes1 = auring_get_contig_used(usrbuf);
4310 KASSERT(bytes1 % framesize == 0);
4311 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4312 (uint8_t *)usrbuf->mem + usrbuf->head,
4313 bytes1);
4314 auring_push(input, bytes1 / framesize);
4315 auring_take(usrbuf, bytes1);
4316
4317 bytes2 = bytes - bytes1;
4318 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4319 (uint8_t *)usrbuf->mem + usrbuf->head,
4320 bytes2);
4321 auring_push(input, bytes2 / framesize);
4322 auring_take(usrbuf, bytes2);
4323 }
4324
4325 /* Encoding conversion */
4326 if (track->codec.filter)
4327 audio_apply_stage(track, &track->codec, false);
4328
4329 /* Channel volume */
4330 if (track->chvol.filter)
4331 audio_apply_stage(track, &track->chvol, false);
4332
4333 /* Channel mix */
4334 if (track->chmix.filter)
4335 audio_apply_stage(track, &track->chmix, false);
4336
4337 /* Frequency conversion */
4338 /*
4339 * Since the frequency conversion needs correction for each block,
4340 * it rounds up to 1 block.
4341 */
4342 if (track->freq.filter) {
4343 int n;
4344 n = audio_append_silence(track, &track->freq.srcbuf);
4345 if (n > 0) {
4346 TRACET(4, track,
4347 "freq.srcbuf add silence %d -> %d/%d/%d",
4348 n,
4349 track->freq.srcbuf.head,
4350 track->freq.srcbuf.used,
4351 track->freq.srcbuf.capacity);
4352 }
4353 if (track->freq.srcbuf.used > 0) {
4354 audio_apply_stage(track, &track->freq, true);
4355 }
4356 }
4357
4358 if (bytes < track->usrbuf_blksize) {
4359 /*
4360 * Clear all conversion buffer pointer if the conversion was
4361 * not exactly one block. These conversion stage buffers are
4362 * certainly circular buffers because of symmetry with the
4363 * previous and next stage buffer. However, since they are
4364 * treated as simple contiguous buffers in operation, so head
4365 * always should point 0. This may happen during drain-age.
4366 */
4367 TRACET(4, track, "reset stage");
4368 if (track->codec.filter) {
4369 KASSERT(track->codec.srcbuf.used == 0);
4370 track->codec.srcbuf.head = 0;
4371 }
4372 if (track->chvol.filter) {
4373 KASSERT(track->chvol.srcbuf.used == 0);
4374 track->chvol.srcbuf.head = 0;
4375 }
4376 if (track->chmix.filter) {
4377 KASSERT(track->chmix.srcbuf.used == 0);
4378 track->chmix.srcbuf.head = 0;
4379 }
4380 if (track->freq.filter) {
4381 KASSERT(track->freq.srcbuf.used == 0);
4382 track->freq.srcbuf.head = 0;
4383 }
4384 }
4385
4386 if (track->input == &track->outbuf) {
4387 track->outputcounter = track->inputcounter;
4388 } else {
4389 track->outputcounter += track->outbuf.used - track_count_0;
4390 }
4391
4392 #if defined(AUDIO_DEBUG)
4393 if (audiodebug >= 3) {
4394 struct audio_track_debugbuf m;
4395 audio_track_bufstat(track, &m);
4396 TRACET(0, track, "end%s%s%s%s%s%s",
4397 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4398 }
4399 #endif
4400 }
4401
4402 /*
4403 * Produce user output buffer for recording from input buffer.
4404 */
4405 static void
4406 audio_track_record(audio_track_t *track)
4407 {
4408 audio_ring_t *outbuf;
4409 audio_ring_t *usrbuf;
4410 int count;
4411 int bytes;
4412 int framesize;
4413
4414 KASSERT(track);
4415 KASSERT(track->lock);
4416
4417 /* Number of frames to process */
4418 count = auring_get_contig_used(track->input);
4419 count = uimin(count, track->mixer->frames_per_block);
4420 if (count == 0) {
4421 TRACET(4, track, "count == 0");
4422 return;
4423 }
4424
4425 /* Frequency conversion */
4426 if (track->freq.filter) {
4427 if (track->freq.srcbuf.used > 0) {
4428 audio_apply_stage(track, &track->freq, true);
4429 /* XXX should input of freq be from beginning of buf? */
4430 }
4431 }
4432
4433 /* Channel mix */
4434 if (track->chmix.filter)
4435 audio_apply_stage(track, &track->chmix, false);
4436
4437 /* Channel volume */
4438 if (track->chvol.filter)
4439 audio_apply_stage(track, &track->chvol, false);
4440
4441 /* Encoding conversion */
4442 if (track->codec.filter)
4443 audio_apply_stage(track, &track->codec, false);
4444
4445 /* Copy outbuf to usrbuf */
4446 outbuf = &track->outbuf;
4447 usrbuf = &track->usrbuf;
4448 /*
4449 * framesize is always 1 byte or more since all formats supported
4450 * as usrfmt(=output) have 8bit or more stride.
4451 */
4452 framesize = frametobyte(&outbuf->fmt, 1);
4453 KASSERT(framesize >= 1);
4454 /*
4455 * count is the number of frames to copy to usrbuf.
4456 * bytes is the number of bytes to copy to usrbuf.
4457 */
4458 count = outbuf->used;
4459 count = uimin(count,
4460 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4461 bytes = count * framesize;
4462 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4463 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4464 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4465 bytes);
4466 auring_push(usrbuf, bytes);
4467 auring_take(outbuf, count);
4468 } else {
4469 int bytes1;
4470 int bytes2;
4471
4472 bytes1 = auring_get_contig_free(usrbuf);
4473 KASSERT(bytes1 % framesize == 0);
4474 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4475 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4476 bytes1);
4477 auring_push(usrbuf, bytes1);
4478 auring_take(outbuf, bytes1 / framesize);
4479
4480 bytes2 = bytes - bytes1;
4481 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4482 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4483 bytes2);
4484 auring_push(usrbuf, bytes2);
4485 auring_take(outbuf, bytes2 / framesize);
4486 }
4487
4488 /* XXX TODO: any counters here? */
4489
4490 #if defined(AUDIO_DEBUG)
4491 if (audiodebug >= 3) {
4492 struct audio_track_debugbuf m;
4493 audio_track_bufstat(track, &m);
4494 TRACET(0, track, "end%s%s%s%s%s%s",
4495 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4496 }
4497 #endif
4498 }
4499
4500 /*
4501 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4502 * Must be called with sc_lock held.
4503 */
4504 static u_int
4505 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4506 {
4507 audio_format2_t *fmt;
4508 u_int blktime;
4509 u_int frames_per_block;
4510
4511 KASSERT(mutex_owned(sc->sc_lock));
4512
4513 fmt = &mixer->hwbuf.fmt;
4514 blktime = sc->sc_blk_ms;
4515
4516 /*
4517 * If stride is not multiples of 8, special treatment is necessary.
4518 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4519 */
4520 if (fmt->stride == 4) {
4521 frames_per_block = fmt->sample_rate * blktime / 1000;
4522 if ((frames_per_block & 1) != 0)
4523 blktime *= 2;
4524 }
4525 #ifdef DIAGNOSTIC
4526 else if (fmt->stride % NBBY != 0) {
4527 panic("unsupported HW stride %d", fmt->stride);
4528 }
4529 #endif
4530
4531 return blktime;
4532 }
4533
4534 /*
4535 * Initialize the mixer corresponding to the mode.
4536 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4537 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4538 * This function returns 0 on successful. Otherwise returns errno.
4539 * Must be called with sc_lock held.
4540 */
4541 static int
4542 audio_mixer_init(struct audio_softc *sc, int mode,
4543 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4544 {
4545 char codecbuf[64];
4546 audio_trackmixer_t *mixer;
4547 void (*softint_handler)(void *);
4548 int len;
4549 int blksize;
4550 int capacity;
4551 size_t bufsize;
4552 int hwblks;
4553 int blkms;
4554 int error;
4555
4556 KASSERT(hwfmt != NULL);
4557 KASSERT(reg != NULL);
4558 KASSERT(mutex_owned(sc->sc_lock));
4559
4560 error = 0;
4561 if (mode == AUMODE_PLAY)
4562 mixer = sc->sc_pmixer;
4563 else
4564 mixer = sc->sc_rmixer;
4565
4566 mixer->sc = sc;
4567 mixer->mode = mode;
4568
4569 mixer->hwbuf.fmt = *hwfmt;
4570 mixer->volume = 256;
4571 mixer->blktime_d = 1000;
4572 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4573 sc->sc_blk_ms = mixer->blktime_n;
4574 hwblks = NBLKHW;
4575
4576 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4577 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4578 if (sc->hw_if->round_blocksize) {
4579 int rounded;
4580 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4581 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4582 mode, &p);
4583 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4584 if (rounded != blksize) {
4585 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4586 mixer->hwbuf.fmt.channels) != 0) {
4587 device_printf(sc->sc_dev,
4588 "blksize not configured %d -> %d\n",
4589 blksize, rounded);
4590 return EINVAL;
4591 }
4592 /* Recalculation */
4593 blksize = rounded;
4594 mixer->frames_per_block = blksize * NBBY /
4595 (mixer->hwbuf.fmt.stride *
4596 mixer->hwbuf.fmt.channels);
4597 }
4598 }
4599 mixer->blktime_n = mixer->frames_per_block;
4600 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4601
4602 capacity = mixer->frames_per_block * hwblks;
4603 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4604 if (sc->hw_if->round_buffersize) {
4605 size_t rounded;
4606 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4607 bufsize);
4608 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4609 if (rounded < bufsize) {
4610 /* buffersize needs NBLKHW blocks at least. */
4611 device_printf(sc->sc_dev,
4612 "buffersize too small: buffersize=%zd blksize=%d\n",
4613 rounded, blksize);
4614 return EINVAL;
4615 }
4616 if (rounded % blksize != 0) {
4617 /* buffersize/blksize constraint mismatch? */
4618 device_printf(sc->sc_dev,
4619 "buffersize must be multiple of blksize: "
4620 "buffersize=%zu blksize=%d\n",
4621 rounded, blksize);
4622 return EINVAL;
4623 }
4624 if (rounded != bufsize) {
4625 /* Recalcuration */
4626 bufsize = rounded;
4627 hwblks = bufsize / blksize;
4628 capacity = mixer->frames_per_block * hwblks;
4629 }
4630 }
4631 TRACE(1, "buffersize for %s = %zu",
4632 (mode == AUMODE_PLAY) ? "playback" : "recording",
4633 bufsize);
4634 mixer->hwbuf.capacity = capacity;
4635
4636 /*
4637 * XXX need to release sc_lock for compatibility?
4638 */
4639 if (sc->hw_if->allocm) {
4640 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4641 if (mixer->hwbuf.mem == NULL) {
4642 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4643 __func__, bufsize);
4644 return ENOMEM;
4645 }
4646 } else {
4647 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4648 }
4649
4650 /* From here, audio_mixer_destroy is necessary to exit. */
4651 if (mode == AUMODE_PLAY) {
4652 cv_init(&mixer->outcv, "audiowr");
4653 } else {
4654 cv_init(&mixer->outcv, "audiord");
4655 }
4656
4657 if (mode == AUMODE_PLAY) {
4658 softint_handler = audio_softintr_wr;
4659 } else {
4660 softint_handler = audio_softintr_rd;
4661 }
4662 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4663 softint_handler, sc);
4664 if (mixer->sih == NULL) {
4665 device_printf(sc->sc_dev, "softint_establish failed\n");
4666 goto abort;
4667 }
4668
4669 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4670 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4671 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4672 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4673 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4674
4675 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4676 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4677 mixer->swap_endian = true;
4678 TRACE(1, "swap_endian");
4679 }
4680
4681 if (mode == AUMODE_PLAY) {
4682 /* Mixing buffer */
4683 mixer->mixfmt = mixer->track_fmt;
4684 mixer->mixfmt.precision *= 2;
4685 mixer->mixfmt.stride *= 2;
4686 /* XXX TODO: use some macros? */
4687 len = mixer->frames_per_block * mixer->mixfmt.channels *
4688 mixer->mixfmt.stride / NBBY;
4689 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4690 } else {
4691 /* No mixing buffer for recording */
4692 }
4693
4694 if (reg->codec) {
4695 mixer->codec = reg->codec;
4696 mixer->codecarg.context = reg->context;
4697 if (mode == AUMODE_PLAY) {
4698 mixer->codecarg.srcfmt = &mixer->track_fmt;
4699 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4700 } else {
4701 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4702 mixer->codecarg.dstfmt = &mixer->track_fmt;
4703 }
4704 mixer->codecbuf.fmt = mixer->track_fmt;
4705 mixer->codecbuf.capacity = mixer->frames_per_block;
4706 len = auring_bytelen(&mixer->codecbuf);
4707 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4708 if (mixer->codecbuf.mem == NULL) {
4709 device_printf(sc->sc_dev,
4710 "%s: malloc codecbuf(%d) failed\n",
4711 __func__, len);
4712 error = ENOMEM;
4713 goto abort;
4714 }
4715 }
4716
4717 /* Succeeded so display it. */
4718 codecbuf[0] = '\0';
4719 if (mixer->codec || mixer->swap_endian) {
4720 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4721 (mode == AUMODE_PLAY) ? "->" : "<-",
4722 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4723 mixer->hwbuf.fmt.precision);
4724 }
4725 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
4726 aprint_normal_dev(sc->sc_dev, "%s:%d%s %dch %dHz, blk %dms for %s\n",
4727 audio_encoding_name(mixer->track_fmt.encoding),
4728 mixer->track_fmt.precision,
4729 codecbuf,
4730 mixer->track_fmt.channels,
4731 mixer->track_fmt.sample_rate,
4732 blkms,
4733 (mode == AUMODE_PLAY) ? "playback" : "recording");
4734
4735 return 0;
4736
4737 abort:
4738 audio_mixer_destroy(sc, mixer);
4739 return error;
4740 }
4741
4742 /*
4743 * Releases all resources of 'mixer'.
4744 * Note that it does not release the memory area of 'mixer' itself.
4745 * Must be called with sc_lock held.
4746 */
4747 static void
4748 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
4749 {
4750 int bufsize;
4751
4752 KASSERT(mutex_owned(sc->sc_lock));
4753
4754 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
4755
4756 if (mixer->hwbuf.mem != NULL) {
4757 if (sc->hw_if->freem) {
4758 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
4759 } else {
4760 kmem_free(mixer->hwbuf.mem, bufsize);
4761 }
4762 mixer->hwbuf.mem = NULL;
4763 }
4764
4765 audio_free(mixer->codecbuf.mem);
4766 audio_free(mixer->mixsample);
4767
4768 cv_destroy(&mixer->outcv);
4769
4770 if (mixer->sih) {
4771 softint_disestablish(mixer->sih);
4772 mixer->sih = NULL;
4773 }
4774 }
4775
4776 /*
4777 * Starts playback mixer.
4778 * Must be called only if sc_pbusy is false.
4779 * Must be called with sc_lock held.
4780 * Must not be called from the interrupt context.
4781 */
4782 static void
4783 audio_pmixer_start(struct audio_softc *sc, bool force)
4784 {
4785 audio_trackmixer_t *mixer;
4786 int minimum;
4787
4788 KASSERT(mutex_owned(sc->sc_lock));
4789 KASSERT(sc->sc_pbusy == false);
4790
4791 mutex_enter(sc->sc_intr_lock);
4792
4793 mixer = sc->sc_pmixer;
4794 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
4795 (audiodebug >= 3) ? "begin " : "",
4796 (int)mixer->mixseq, (int)mixer->hwseq,
4797 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
4798 force ? " force" : "");
4799
4800 /* Need two blocks to start normally. */
4801 minimum = (force) ? 1 : 2;
4802 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
4803 audio_pmixer_process(sc);
4804 }
4805
4806 /* Start output */
4807 audio_pmixer_output(sc);
4808 sc->sc_pbusy = true;
4809
4810 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
4811 (int)mixer->mixseq, (int)mixer->hwseq,
4812 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
4813
4814 mutex_exit(sc->sc_intr_lock);
4815 }
4816
4817 /*
4818 * When playing back with MD filter:
4819 *
4820 * track track ...
4821 * v v
4822 * + mix (with aint2_t)
4823 * | master volume (with aint2_t)
4824 * v
4825 * mixsample [::::] wide-int 1 block (ring) buffer
4826 * |
4827 * | convert aint2_t -> aint_t
4828 * v
4829 * codecbuf [....] 1 block (ring) buffer
4830 * |
4831 * | convert to hw format
4832 * v
4833 * hwbuf [............] NBLKHW blocks ring buffer
4834 *
4835 * When playing back without MD filter:
4836 *
4837 * mixsample [::::] wide-int 1 block (ring) buffer
4838 * |
4839 * | convert aint2_t -> aint_t
4840 * | (with byte swap if necessary)
4841 * v
4842 * hwbuf [............] NBLKHW blocks ring buffer
4843 *
4844 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
4845 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
4846 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
4847 */
4848
4849 /*
4850 * Performs track mixing and converts it to hwbuf.
4851 * Note that this function doesn't transfer hwbuf to hardware.
4852 * Must be called with sc_intr_lock held.
4853 */
4854 static void
4855 audio_pmixer_process(struct audio_softc *sc)
4856 {
4857 audio_trackmixer_t *mixer;
4858 audio_file_t *f;
4859 int frame_count;
4860 int sample_count;
4861 int mixed;
4862 int i;
4863 aint2_t *m;
4864 aint_t *h;
4865
4866 mixer = sc->sc_pmixer;
4867
4868 frame_count = mixer->frames_per_block;
4869 KASSERT(auring_get_contig_free(&mixer->hwbuf) >= frame_count);
4870 sample_count = frame_count * mixer->mixfmt.channels;
4871
4872 mixer->mixseq++;
4873
4874 /* Mix all tracks */
4875 mixed = 0;
4876 SLIST_FOREACH(f, &sc->sc_files, entry) {
4877 audio_track_t *track = f->ptrack;
4878
4879 if (track == NULL)
4880 continue;
4881
4882 if (track->is_pause) {
4883 TRACET(4, track, "skip; paused");
4884 continue;
4885 }
4886
4887 /* Skip if the track is used by process context. */
4888 if (audio_track_lock_tryenter(track) == false) {
4889 TRACET(4, track, "skip; in use");
4890 continue;
4891 }
4892
4893 /* Emulate mmap'ped track */
4894 if (track->mmapped) {
4895 auring_push(&track->usrbuf, track->usrbuf_blksize);
4896 TRACET(4, track, "mmap; usr=%d/%d/C%d",
4897 track->usrbuf.head,
4898 track->usrbuf.used,
4899 track->usrbuf.capacity);
4900 }
4901
4902 if (track->outbuf.used < mixer->frames_per_block &&
4903 track->usrbuf.used > 0) {
4904 TRACET(4, track, "process");
4905 audio_track_play(track);
4906 }
4907
4908 if (track->outbuf.used > 0) {
4909 mixed = audio_pmixer_mix_track(mixer, track, mixed);
4910 } else {
4911 TRACET(4, track, "skip; empty");
4912 }
4913
4914 audio_track_lock_exit(track);
4915 }
4916
4917 if (mixed == 0) {
4918 /* Silence */
4919 memset(mixer->mixsample, 0,
4920 frametobyte(&mixer->mixfmt, frame_count));
4921 } else {
4922 if (mixed > 1) {
4923 /* If there are multiple tracks, do auto gain control */
4924 audio_pmixer_agc(mixer, sample_count);
4925 }
4926
4927 /* Apply master volume */
4928 if (mixer->volume < 256) {
4929 m = mixer->mixsample;
4930 for (i = 0; i < sample_count; i++) {
4931 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
4932 m++;
4933 }
4934
4935 /*
4936 * Recover the volume gradually at the pace of
4937 * several times per second. If it's too fast, you
4938 * can recognize that the volume changes up and down
4939 * quickly and it's not so comfortable.
4940 */
4941 mixer->voltimer += mixer->blktime_n;
4942 if (mixer->voltimer * 4 >= mixer->blktime_d) {
4943 mixer->volume++;
4944 mixer->voltimer = 0;
4945 #if defined(AUDIO_DEBUG_AGC)
4946 TRACE(1, "volume recover: %d", mixer->volume);
4947 #endif
4948 }
4949 }
4950 }
4951
4952 /*
4953 * The rest is the hardware part.
4954 */
4955
4956 if (mixer->codec) {
4957 h = auring_tailptr_aint(&mixer->codecbuf);
4958 } else {
4959 h = auring_tailptr_aint(&mixer->hwbuf);
4960 }
4961
4962 m = mixer->mixsample;
4963 if (mixer->swap_endian) {
4964 for (i = 0; i < sample_count; i++) {
4965 *h++ = bswap16(*m++);
4966 }
4967 } else {
4968 for (i = 0; i < sample_count; i++) {
4969 *h++ = *m++;
4970 }
4971 }
4972
4973 /* Hardware driver's codec */
4974 if (mixer->codec) {
4975 auring_push(&mixer->codecbuf, frame_count);
4976 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
4977 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
4978 mixer->codecarg.count = frame_count;
4979 mixer->codec(&mixer->codecarg);
4980 auring_take(&mixer->codecbuf, mixer->codecarg.count);
4981 }
4982
4983 auring_push(&mixer->hwbuf, frame_count);
4984
4985 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
4986 (int)mixer->mixseq,
4987 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
4988 (mixed == 0) ? " silent" : "");
4989 }
4990
4991 /*
4992 * Do auto gain control.
4993 * Must be called sc_intr_lock held.
4994 */
4995 static void
4996 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
4997 {
4998 struct audio_softc *sc __unused;
4999 aint2_t val;
5000 aint2_t maxval;
5001 aint2_t minval;
5002 aint2_t over_plus;
5003 aint2_t over_minus;
5004 aint2_t *m;
5005 int newvol;
5006 int i;
5007
5008 sc = mixer->sc;
5009
5010 /* Overflow detection */
5011 maxval = AINT_T_MAX;
5012 minval = AINT_T_MIN;
5013 m = mixer->mixsample;
5014 for (i = 0; i < sample_count; i++) {
5015 val = *m++;
5016 if (val > maxval)
5017 maxval = val;
5018 else if (val < minval)
5019 minval = val;
5020 }
5021
5022 /* Absolute value of overflowed amount */
5023 over_plus = maxval - AINT_T_MAX;
5024 over_minus = AINT_T_MIN - minval;
5025
5026 if (over_plus > 0 || over_minus > 0) {
5027 if (over_plus > over_minus) {
5028 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5029 } else {
5030 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5031 }
5032
5033 /*
5034 * Change the volume only if new one is smaller.
5035 * Reset the timer even if the volume isn't changed.
5036 */
5037 if (newvol <= mixer->volume) {
5038 mixer->volume = newvol;
5039 mixer->voltimer = 0;
5040 #if defined(AUDIO_DEBUG_AGC)
5041 TRACE(1, "auto volume adjust: %d", mixer->volume);
5042 #endif
5043 }
5044 }
5045 }
5046
5047 /*
5048 * Mix one track.
5049 * 'mixed' specifies the number of tracks mixed so far.
5050 * It returns the number of tracks mixed. In other words, it returns
5051 * mixed + 1 if this track is mixed.
5052 */
5053 static int
5054 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5055 int mixed)
5056 {
5057 int count;
5058 int sample_count;
5059 int remain;
5060 int i;
5061 const aint_t *s;
5062 aint2_t *d;
5063
5064 /* XXX TODO: Is this necessary for now? */
5065 if (mixer->mixseq < track->seq)
5066 return mixed;
5067
5068 count = auring_get_contig_used(&track->outbuf);
5069 count = uimin(count, mixer->frames_per_block);
5070
5071 s = auring_headptr_aint(&track->outbuf);
5072 d = mixer->mixsample;
5073
5074 /*
5075 * Apply track volume with double-sized integer and perform
5076 * additive synthesis.
5077 *
5078 * XXX If you limit the track volume to 1.0 or less (<= 256),
5079 * it would be better to do this in the track conversion stage
5080 * rather than here. However, if you accept the volume to
5081 * be greater than 1.0 (> 256), it's better to do it here.
5082 * Because the operation here is done by double-sized integer.
5083 */
5084 sample_count = count * mixer->mixfmt.channels;
5085 if (mixed == 0) {
5086 /* If this is the first track, assignment can be used. */
5087 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5088 if (track->volume != 256) {
5089 for (i = 0; i < sample_count; i++) {
5090 aint2_t v;
5091 v = *s++;
5092 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5093 }
5094 } else
5095 #endif
5096 {
5097 for (i = 0; i < sample_count; i++) {
5098 *d++ = ((aint2_t)*s++);
5099 }
5100 }
5101 /* Fill silence if the first track is not filled. */
5102 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5103 *d++ = 0;
5104 } else {
5105 /* If this is the second or later, add it. */
5106 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5107 if (track->volume != 256) {
5108 for (i = 0; i < sample_count; i++) {
5109 aint2_t v;
5110 v = *s++;
5111 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5112 }
5113 } else
5114 #endif
5115 {
5116 for (i = 0; i < sample_count; i++) {
5117 *d++ += ((aint2_t)*s++);
5118 }
5119 }
5120 }
5121
5122 auring_take(&track->outbuf, count);
5123 /*
5124 * The counters have to align block even if outbuf is less than
5125 * one block. XXX Is this still necessary?
5126 */
5127 remain = mixer->frames_per_block - count;
5128 if (__predict_false(remain != 0)) {
5129 auring_push(&track->outbuf, remain);
5130 auring_take(&track->outbuf, remain);
5131 }
5132
5133 /*
5134 * Update track sequence.
5135 * mixseq has previous value yet at this point.
5136 */
5137 track->seq = mixer->mixseq + 1;
5138
5139 return mixed + 1;
5140 }
5141
5142 /*
5143 * Output one block from hwbuf to HW.
5144 * Must be called with sc_intr_lock held.
5145 */
5146 static void
5147 audio_pmixer_output(struct audio_softc *sc)
5148 {
5149 audio_trackmixer_t *mixer;
5150 audio_params_t params;
5151 void *start;
5152 void *end;
5153 int blksize;
5154 int error;
5155
5156 mixer = sc->sc_pmixer;
5157 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5158 sc->sc_pbusy,
5159 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5160 KASSERT(mixer->hwbuf.used >= mixer->frames_per_block);
5161
5162 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5163
5164 if (sc->hw_if->trigger_output) {
5165 /* trigger (at once) */
5166 if (!sc->sc_pbusy) {
5167 start = mixer->hwbuf.mem;
5168 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5169 params = format2_to_params(&mixer->hwbuf.fmt);
5170
5171 error = sc->hw_if->trigger_output(sc->hw_hdl,
5172 start, end, blksize, audio_pintr, sc, ¶ms);
5173 if (error) {
5174 device_printf(sc->sc_dev,
5175 "trigger_output failed with %d\n", error);
5176 return;
5177 }
5178 }
5179 } else {
5180 /* start (everytime) */
5181 start = auring_headptr(&mixer->hwbuf);
5182
5183 error = sc->hw_if->start_output(sc->hw_hdl,
5184 start, blksize, audio_pintr, sc);
5185 if (error) {
5186 device_printf(sc->sc_dev,
5187 "start_output failed with %d\n", error);
5188 return;
5189 }
5190 }
5191 }
5192
5193 /*
5194 * This is an interrupt handler for playback.
5195 * It is called with sc_intr_lock held.
5196 *
5197 * It is usually called from hardware interrupt. However, note that
5198 * for some drivers (e.g. uaudio) it is called from software interrupt.
5199 */
5200 static void
5201 audio_pintr(void *arg)
5202 {
5203 struct audio_softc *sc;
5204 audio_trackmixer_t *mixer;
5205
5206 sc = arg;
5207 KASSERT(mutex_owned(sc->sc_intr_lock));
5208
5209 if (sc->sc_dying)
5210 return;
5211 #if defined(DIAGNOSTIC)
5212 if (sc->sc_pbusy == false) {
5213 device_printf(sc->sc_dev, "stray interrupt\n");
5214 return;
5215 }
5216 #endif
5217
5218 mixer = sc->sc_pmixer;
5219 mixer->hw_complete_counter += mixer->frames_per_block;
5220 mixer->hwseq++;
5221
5222 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5223
5224 TRACE(4,
5225 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5226 mixer->hwseq, mixer->hw_complete_counter,
5227 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5228
5229 #if defined(AUDIO_HW_SINGLE_BUFFER)
5230 /*
5231 * Create a new block here and output it immediately.
5232 * It makes a latency lower but needs machine power.
5233 */
5234 audio_pmixer_process(sc);
5235 audio_pmixer_output(sc);
5236 #else
5237 /*
5238 * It is called when block N output is done.
5239 * Output immediately block N+1 created by the last interrupt.
5240 * And then create block N+2 for the next interrupt.
5241 * This method makes playback robust even on slower machines.
5242 * Instead the latency is increased by one block.
5243 */
5244
5245 /* At first, output ready block. */
5246 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5247 audio_pmixer_output(sc);
5248 }
5249
5250 bool later = false;
5251
5252 if (mixer->hwbuf.used < mixer->frames_per_block) {
5253 later = true;
5254 }
5255
5256 /* Then, process next block. */
5257 audio_pmixer_process(sc);
5258
5259 if (later) {
5260 audio_pmixer_output(sc);
5261 }
5262 #endif
5263
5264 /*
5265 * When this interrupt is the real hardware interrupt, disabling
5266 * preemption here is not necessary. But some drivers (e.g. uaudio)
5267 * emulate it by software interrupt, so kpreempt_disable is necessary.
5268 */
5269 kpreempt_disable();
5270 softint_schedule(mixer->sih);
5271 kpreempt_enable();
5272 }
5273
5274 /*
5275 * Starts record mixer.
5276 * Must be called only if sc_rbusy is false.
5277 * Must be called with sc_lock held.
5278 * Must not be called from the interrupt context.
5279 */
5280 static void
5281 audio_rmixer_start(struct audio_softc *sc)
5282 {
5283
5284 KASSERT(mutex_owned(sc->sc_lock));
5285 KASSERT(sc->sc_rbusy == false);
5286
5287 mutex_enter(sc->sc_intr_lock);
5288
5289 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5290 audio_rmixer_input(sc);
5291 sc->sc_rbusy = true;
5292 TRACE(3, "end");
5293
5294 mutex_exit(sc->sc_intr_lock);
5295 }
5296
5297 /*
5298 * When recording with MD filter:
5299 *
5300 * hwbuf [............] NBLKHW blocks ring buffer
5301 * |
5302 * | convert from hw format
5303 * v
5304 * codecbuf [....] 1 block (ring) buffer
5305 * | |
5306 * v v
5307 * track track ...
5308 *
5309 * When recording without MD filter:
5310 *
5311 * hwbuf [............] NBLKHW blocks ring buffer
5312 * | |
5313 * v v
5314 * track track ...
5315 *
5316 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5317 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5318 */
5319
5320 /*
5321 * Distribute a recorded block to all recording tracks.
5322 */
5323 static void
5324 audio_rmixer_process(struct audio_softc *sc)
5325 {
5326 audio_trackmixer_t *mixer;
5327 audio_ring_t *mixersrc;
5328 audio_file_t *f;
5329 aint_t *p;
5330 int count;
5331 int bytes;
5332 int i;
5333
5334 mixer = sc->sc_rmixer;
5335
5336 /*
5337 * count is the number of frames to be retrieved this time.
5338 * count should be one block.
5339 */
5340 count = auring_get_contig_used(&mixer->hwbuf);
5341 count = uimin(count, mixer->frames_per_block);
5342 if (count <= 0) {
5343 TRACE(4, "count %d: too short", count);
5344 return;
5345 }
5346 bytes = frametobyte(&mixer->track_fmt, count);
5347
5348 /* Hardware driver's codec */
5349 if (mixer->codec) {
5350 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5351 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5352 mixer->codecarg.count = count;
5353 mixer->codec(&mixer->codecarg);
5354 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5355 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5356 mixersrc = &mixer->codecbuf;
5357 } else {
5358 mixersrc = &mixer->hwbuf;
5359 }
5360
5361 if (mixer->swap_endian) {
5362 /* inplace conversion */
5363 p = auring_headptr_aint(mixersrc);
5364 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5365 *p = bswap16(*p);
5366 }
5367 }
5368
5369 /* Distribute to all tracks. */
5370 SLIST_FOREACH(f, &sc->sc_files, entry) {
5371 audio_track_t *track = f->rtrack;
5372 audio_ring_t *input;
5373
5374 if (track == NULL)
5375 continue;
5376
5377 if (track->is_pause) {
5378 TRACET(4, track, "skip; paused");
5379 continue;
5380 }
5381
5382 if (audio_track_lock_tryenter(track) == false) {
5383 TRACET(4, track, "skip; in use");
5384 continue;
5385 }
5386
5387 /* If the track buffer is full, discard the oldest one? */
5388 input = track->input;
5389 if (input->capacity - input->used < mixer->frames_per_block) {
5390 int drops = mixer->frames_per_block -
5391 (input->capacity - input->used);
5392 track->dropframes += drops;
5393 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5394 drops,
5395 input->head, input->used, input->capacity);
5396 auring_take(input, drops);
5397 }
5398 KASSERT(input->used % mixer->frames_per_block == 0);
5399
5400 memcpy(auring_tailptr_aint(input),
5401 auring_headptr_aint(mixersrc),
5402 bytes);
5403 auring_push(input, count);
5404
5405 /* XXX sequence counter? */
5406
5407 audio_track_lock_exit(track);
5408 }
5409
5410 auring_take(mixersrc, count);
5411 }
5412
5413 /*
5414 * Input one block from HW to hwbuf.
5415 * Must be called with sc_intr_lock held.
5416 */
5417 static void
5418 audio_rmixer_input(struct audio_softc *sc)
5419 {
5420 audio_trackmixer_t *mixer;
5421 audio_params_t params;
5422 void *start;
5423 void *end;
5424 int blksize;
5425 int error;
5426
5427 mixer = sc->sc_rmixer;
5428 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5429
5430 if (sc->hw_if->trigger_input) {
5431 /* trigger (at once) */
5432 if (!sc->sc_rbusy) {
5433 start = mixer->hwbuf.mem;
5434 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5435 params = format2_to_params(&mixer->hwbuf.fmt);
5436
5437 error = sc->hw_if->trigger_input(sc->hw_hdl,
5438 start, end, blksize, audio_rintr, sc, ¶ms);
5439 if (error) {
5440 device_printf(sc->sc_dev,
5441 "trigger_input failed with %d\n", error);
5442 return;
5443 }
5444 }
5445 } else {
5446 /* start (everytime) */
5447 start = auring_tailptr(&mixer->hwbuf);
5448
5449 error = sc->hw_if->start_input(sc->hw_hdl,
5450 start, blksize, audio_rintr, sc);
5451 if (error) {
5452 device_printf(sc->sc_dev,
5453 "start_input failed with %d\n", error);
5454 return;
5455 }
5456 }
5457 }
5458
5459 /*
5460 * This is an interrupt handler for recording.
5461 * It is called with sc_intr_lock.
5462 *
5463 * It is usually called from hardware interrupt. However, note that
5464 * for some drivers (e.g. uaudio) it is called from software interrupt.
5465 */
5466 static void
5467 audio_rintr(void *arg)
5468 {
5469 struct audio_softc *sc;
5470 audio_trackmixer_t *mixer;
5471
5472 sc = arg;
5473 KASSERT(mutex_owned(sc->sc_intr_lock));
5474
5475 if (sc->sc_dying)
5476 return;
5477 #if defined(DIAGNOSTIC)
5478 if (sc->sc_rbusy == false) {
5479 device_printf(sc->sc_dev, "stray interrupt\n");
5480 return;
5481 }
5482 #endif
5483
5484 mixer = sc->sc_rmixer;
5485 mixer->hw_complete_counter += mixer->frames_per_block;
5486 mixer->hwseq++;
5487
5488 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5489
5490 TRACE(4,
5491 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5492 mixer->hwseq, mixer->hw_complete_counter,
5493 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5494
5495 /* Distrubute recorded block */
5496 audio_rmixer_process(sc);
5497
5498 /* Request next block */
5499 audio_rmixer_input(sc);
5500
5501 /*
5502 * When this interrupt is the real hardware interrupt, disabling
5503 * preemption here is not necessary. But some drivers (e.g. uaudio)
5504 * emulate it by software interrupt, so kpreempt_disable is necessary.
5505 */
5506 kpreempt_disable();
5507 softint_schedule(mixer->sih);
5508 kpreempt_enable();
5509 }
5510
5511 /*
5512 * Halts playback mixer.
5513 * This function also clears related parameters, so call this function
5514 * instead of calling halt_output directly.
5515 * Must be called only if sc_pbusy is true.
5516 * Must be called with sc_lock && sc_exlock held.
5517 */
5518 static int
5519 audio_pmixer_halt(struct audio_softc *sc)
5520 {
5521 int error;
5522
5523 TRACE(2, "");
5524 KASSERT(mutex_owned(sc->sc_lock));
5525 KASSERT(sc->sc_exlock);
5526
5527 mutex_enter(sc->sc_intr_lock);
5528 error = sc->hw_if->halt_output(sc->hw_hdl);
5529 mutex_exit(sc->sc_intr_lock);
5530
5531 /* Halts anyway even if some error has occurred. */
5532 sc->sc_pbusy = false;
5533 sc->sc_pmixer->hwbuf.head = 0;
5534 sc->sc_pmixer->hwbuf.used = 0;
5535 sc->sc_pmixer->mixseq = 0;
5536 sc->sc_pmixer->hwseq = 0;
5537
5538 return error;
5539 }
5540
5541 /*
5542 * Halts recording mixer.
5543 * This function also clears related parameters, so call this function
5544 * instead of calling halt_input directly.
5545 * Must be called only if sc_rbusy is true.
5546 * Must be called with sc_lock && sc_exlock held.
5547 */
5548 static int
5549 audio_rmixer_halt(struct audio_softc *sc)
5550 {
5551 int error;
5552
5553 TRACE(2, "");
5554 KASSERT(mutex_owned(sc->sc_lock));
5555 KASSERT(sc->sc_exlock);
5556
5557 mutex_enter(sc->sc_intr_lock);
5558 error = sc->hw_if->halt_input(sc->hw_hdl);
5559 mutex_exit(sc->sc_intr_lock);
5560
5561 /* Halts anyway even if some error has occurred. */
5562 sc->sc_rbusy = false;
5563 sc->sc_rmixer->hwbuf.head = 0;
5564 sc->sc_rmixer->hwbuf.used = 0;
5565 sc->sc_rmixer->mixseq = 0;
5566 sc->sc_rmixer->hwseq = 0;
5567
5568 return error;
5569 }
5570
5571 /*
5572 * Flush this track.
5573 * Halts all operations, clears all buffers, reset error counters.
5574 * XXX I'm not sure...
5575 */
5576 static void
5577 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5578 {
5579
5580 KASSERT(track);
5581 TRACET(3, track, "clear");
5582
5583 audio_track_lock_enter(track);
5584
5585 track->usrbuf.used = 0;
5586 /* Clear all internal parameters. */
5587 if (track->codec.filter) {
5588 track->codec.srcbuf.used = 0;
5589 track->codec.srcbuf.head = 0;
5590 }
5591 if (track->chvol.filter) {
5592 track->chvol.srcbuf.used = 0;
5593 track->chvol.srcbuf.head = 0;
5594 }
5595 if (track->chmix.filter) {
5596 track->chmix.srcbuf.used = 0;
5597 track->chmix.srcbuf.head = 0;
5598 }
5599 if (track->freq.filter) {
5600 track->freq.srcbuf.used = 0;
5601 track->freq.srcbuf.head = 0;
5602 if (track->freq_step < 65536)
5603 track->freq_current = 65536;
5604 else
5605 track->freq_current = 0;
5606 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5607 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5608 }
5609 /* Clear buffer, then operation halts naturally. */
5610 track->outbuf.used = 0;
5611
5612 /* Clear counters. */
5613 track->dropframes = 0;
5614
5615 audio_track_lock_exit(track);
5616 }
5617
5618 /*
5619 * Drain the track.
5620 * track must be present and for playback.
5621 * If successful, it returns 0. Otherwise returns errno.
5622 * Must be called with sc_lock held.
5623 */
5624 static int
5625 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5626 {
5627 audio_trackmixer_t *mixer;
5628 int done;
5629 int error;
5630
5631 KASSERT(track);
5632 TRACET(3, track, "start");
5633 mixer = track->mixer;
5634 KASSERT(mutex_owned(sc->sc_lock));
5635
5636 /* Ignore them if pause. */
5637 if (track->is_pause) {
5638 TRACET(3, track, "pause -> clear");
5639 track->pstate = AUDIO_STATE_CLEAR;
5640 }
5641 /* Terminate early here if there is no data in the track. */
5642 if (track->pstate == AUDIO_STATE_CLEAR) {
5643 TRACET(3, track, "no need to drain");
5644 return 0;
5645 }
5646 track->pstate = AUDIO_STATE_DRAINING;
5647
5648 for (;;) {
5649 /* I want to display it before condition evaluation. */
5650 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5651 (int)curproc->p_pid, (int)curlwp->l_lid,
5652 (int)track->seq, (int)mixer->hwseq,
5653 track->outbuf.head, track->outbuf.used,
5654 track->outbuf.capacity);
5655
5656 /* Condition to terminate */
5657 audio_track_lock_enter(track);
5658 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5659 track->outbuf.used == 0 &&
5660 track->seq <= mixer->hwseq);
5661 audio_track_lock_exit(track);
5662 if (done)
5663 break;
5664
5665 TRACET(3, track, "sleep");
5666 error = audio_track_waitio(sc, track);
5667 if (error)
5668 return error;
5669
5670 /* XXX call audio_track_play here ? */
5671 }
5672
5673 track->pstate = AUDIO_STATE_CLEAR;
5674 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5675 (int)track->inputcounter, (int)track->outputcounter);
5676 return 0;
5677 }
5678
5679 /*
5680 * Send signal to process.
5681 * This is intended to be called only from audio_softintr_{rd,wr}.
5682 * Must be called with sc_lock && sc_intr_lock held.
5683 */
5684 static inline void
5685 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
5686 {
5687 proc_t *p;
5688
5689 KASSERT(mutex_owned(sc->sc_lock));
5690 KASSERT(mutex_owned(sc->sc_intr_lock));
5691 KASSERT(pid != 0);
5692
5693 /*
5694 * psignal() must be called without spin lock held.
5695 * So leave intr_lock temporarily here.
5696 */
5697 mutex_exit(sc->sc_intr_lock);
5698
5699 mutex_enter(proc_lock);
5700 p = proc_find(pid);
5701 if (p)
5702 psignal(p, signum);
5703 mutex_exit(proc_lock);
5704
5705 /* Enter intr_lock again */
5706 mutex_enter(sc->sc_intr_lock);
5707 }
5708
5709 /*
5710 * This is software interrupt handler for record.
5711 * It is called from recording hardware interrupt everytime.
5712 * It does:
5713 * - Deliver SIGIO for all async processes.
5714 * - Notify to audio_read() that data has arrived.
5715 * - selnotify() for select/poll-ing processes.
5716 */
5717 /*
5718 * XXX If a process issues FIOASYNC between hardware interrupt and
5719 * software interrupt, (stray) SIGIO will be sent to the process
5720 * despite the fact that it has not receive recorded data yet.
5721 */
5722 static void
5723 audio_softintr_rd(void *cookie)
5724 {
5725 struct audio_softc *sc = cookie;
5726 audio_file_t *f;
5727 pid_t pid;
5728
5729 mutex_enter(sc->sc_lock);
5730 mutex_enter(sc->sc_intr_lock);
5731
5732 SLIST_FOREACH(f, &sc->sc_files, entry) {
5733 audio_track_t *track = f->rtrack;
5734
5735 if (track == NULL)
5736 continue;
5737
5738 TRACET(4, track, "broadcast; inp=%d/%d/%d",
5739 track->input->head,
5740 track->input->used,
5741 track->input->capacity);
5742
5743 pid = f->async_audio;
5744 if (pid != 0) {
5745 TRACEF(4, f, "sending SIGIO %d", pid);
5746 audio_psignal(sc, pid, SIGIO);
5747 }
5748 }
5749 mutex_exit(sc->sc_intr_lock);
5750
5751 /* Notify that data has arrived. */
5752 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
5753 KNOTE(&sc->sc_rsel.sel_klist, 0);
5754 cv_broadcast(&sc->sc_rmixer->outcv);
5755
5756 mutex_exit(sc->sc_lock);
5757 }
5758
5759 /*
5760 * This is software interrupt handler for playback.
5761 * It is called from playback hardware interrupt everytime.
5762 * It does:
5763 * - Deliver SIGIO for all async and writable (used < lowat) processes.
5764 * - Notify to audio_write() that outbuf block available.
5765 * - selnotify() for select/poll-ing processes if there are any writable
5766 * (used < lowat) processes. Checking each descriptor will be done by
5767 * filt_audiowrite_event().
5768 */
5769 static void
5770 audio_softintr_wr(void *cookie)
5771 {
5772 struct audio_softc *sc = cookie;
5773 audio_file_t *f;
5774 bool found;
5775 pid_t pid;
5776
5777 TRACE(4, "called");
5778 found = false;
5779
5780 mutex_enter(sc->sc_lock);
5781 mutex_enter(sc->sc_intr_lock);
5782
5783 SLIST_FOREACH(f, &sc->sc_files, entry) {
5784 audio_track_t *track = f->ptrack;
5785
5786 if (track == NULL)
5787 continue;
5788
5789 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
5790 (int)track->seq,
5791 track->outbuf.head,
5792 track->outbuf.used,
5793 track->outbuf.capacity);
5794
5795 /*
5796 * Send a signal if the process is async mode and
5797 * used is lower than lowat.
5798 */
5799 if (track->usrbuf.used <= track->usrbuf_usedlow &&
5800 !track->is_pause) {
5801 /* For selnotify */
5802 found = true;
5803 /* For SIGIO */
5804 pid = f->async_audio;
5805 if (pid != 0) {
5806 TRACEF(4, f, "sending SIGIO %d", pid);
5807 audio_psignal(sc, pid, SIGIO);
5808 }
5809 }
5810 }
5811 mutex_exit(sc->sc_intr_lock);
5812
5813 /*
5814 * Notify for select/poll when someone become writable.
5815 * It needs sc_lock (and not sc_intr_lock).
5816 */
5817 if (found) {
5818 TRACE(4, "selnotify");
5819 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
5820 KNOTE(&sc->sc_wsel.sel_klist, 0);
5821 }
5822
5823 /* Notify to audio_write() that outbuf available. */
5824 cv_broadcast(&sc->sc_pmixer->outcv);
5825
5826 mutex_exit(sc->sc_lock);
5827 }
5828
5829 /*
5830 * Check (and convert) the format *p came from userland.
5831 * If successful, it writes back the converted format to *p if necessary
5832 * and returns 0. Otherwise returns errno (*p may change even this case).
5833 */
5834 static int
5835 audio_check_params(audio_format2_t *p)
5836 {
5837
5838 /* Convert obsoleted AUDIO_ENCODING_PCM* */
5839 /* XXX Is this conversion right? */
5840 if (p->encoding == AUDIO_ENCODING_PCM16) {
5841 if (p->precision == 8)
5842 p->encoding = AUDIO_ENCODING_ULINEAR;
5843 else
5844 p->encoding = AUDIO_ENCODING_SLINEAR;
5845 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
5846 if (p->precision == 8)
5847 p->encoding = AUDIO_ENCODING_ULINEAR;
5848 else
5849 return EINVAL;
5850 }
5851
5852 /*
5853 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
5854 * suffix.
5855 */
5856 if (p->encoding == AUDIO_ENCODING_SLINEAR)
5857 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5858 if (p->encoding == AUDIO_ENCODING_ULINEAR)
5859 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5860
5861 switch (p->encoding) {
5862 case AUDIO_ENCODING_ULAW:
5863 case AUDIO_ENCODING_ALAW:
5864 if (p->precision != 8)
5865 return EINVAL;
5866 break;
5867 case AUDIO_ENCODING_ADPCM:
5868 if (p->precision != 4 && p->precision != 8)
5869 return EINVAL;
5870 break;
5871 case AUDIO_ENCODING_SLINEAR_LE:
5872 case AUDIO_ENCODING_SLINEAR_BE:
5873 case AUDIO_ENCODING_ULINEAR_LE:
5874 case AUDIO_ENCODING_ULINEAR_BE:
5875 if (p->precision != 8 && p->precision != 16 &&
5876 p->precision != 24 && p->precision != 32)
5877 return EINVAL;
5878
5879 /* 8bit format does not have endianness. */
5880 if (p->precision == 8) {
5881 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
5882 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5883 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
5884 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5885 }
5886
5887 if (p->precision > p->stride)
5888 return EINVAL;
5889 break;
5890 case AUDIO_ENCODING_MPEG_L1_STREAM:
5891 case AUDIO_ENCODING_MPEG_L1_PACKETS:
5892 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
5893 case AUDIO_ENCODING_MPEG_L2_STREAM:
5894 case AUDIO_ENCODING_MPEG_L2_PACKETS:
5895 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
5896 case AUDIO_ENCODING_AC3:
5897 break;
5898 default:
5899 return EINVAL;
5900 }
5901
5902 /* sanity check # of channels*/
5903 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
5904 return EINVAL;
5905
5906 return 0;
5907 }
5908
5909 /*
5910 * Initialize playback and record mixers.
5911 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
5912 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
5913 * the filter registration information. These four must not be NULL.
5914 * If successful returns 0. Otherwise returns errno.
5915 * Must be called with sc_lock held.
5916 * Must not be called if there are any tracks.
5917 * Caller should check that the initialization succeed by whether
5918 * sc_[pr]mixer is not NULL.
5919 */
5920 static int
5921 audio_mixers_init(struct audio_softc *sc, int mode,
5922 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
5923 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
5924 {
5925 int error;
5926
5927 KASSERT(phwfmt != NULL);
5928 KASSERT(rhwfmt != NULL);
5929 KASSERT(pfil != NULL);
5930 KASSERT(rfil != NULL);
5931 KASSERT(mutex_owned(sc->sc_lock));
5932
5933 if ((mode & AUMODE_PLAY)) {
5934 if (sc->sc_pmixer == NULL) {
5935 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
5936 KM_SLEEP);
5937 } else {
5938 /* destroy() doesn't free memory. */
5939 audio_mixer_destroy(sc, sc->sc_pmixer);
5940 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
5941 }
5942 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
5943 if (error) {
5944 aprint_error_dev(sc->sc_dev,
5945 "configuring playback mode failed\n");
5946 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
5947 sc->sc_pmixer = NULL;
5948 return error;
5949 }
5950 }
5951 if ((mode & AUMODE_RECORD)) {
5952 if (sc->sc_rmixer == NULL) {
5953 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
5954 KM_SLEEP);
5955 } else {
5956 /* destroy() doesn't free memory. */
5957 audio_mixer_destroy(sc, sc->sc_rmixer);
5958 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
5959 }
5960 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
5961 if (error) {
5962 aprint_error_dev(sc->sc_dev,
5963 "configuring record mode failed\n");
5964 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
5965 sc->sc_rmixer = NULL;
5966 return error;
5967 }
5968 }
5969
5970 return 0;
5971 }
5972
5973 /*
5974 * Select a frequency.
5975 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
5976 * XXX Better algorithm?
5977 */
5978 static int
5979 audio_select_freq(const struct audio_format *fmt)
5980 {
5981 int freq;
5982 int high;
5983 int low;
5984 int j;
5985
5986 if (fmt->frequency_type == 0) {
5987 low = fmt->frequency[0];
5988 high = fmt->frequency[1];
5989 freq = 48000;
5990 if (low <= freq && freq <= high) {
5991 return freq;
5992 }
5993 freq = 44100;
5994 if (low <= freq && freq <= high) {
5995 return freq;
5996 }
5997 return high;
5998 } else {
5999 for (j = 0; j < fmt->frequency_type; j++) {
6000 if (fmt->frequency[j] == 48000) {
6001 return fmt->frequency[j];
6002 }
6003 }
6004 high = 0;
6005 for (j = 0; j < fmt->frequency_type; j++) {
6006 if (fmt->frequency[j] == 44100) {
6007 return fmt->frequency[j];
6008 }
6009 if (fmt->frequency[j] > high) {
6010 high = fmt->frequency[j];
6011 }
6012 }
6013 return high;
6014 }
6015 }
6016
6017 /*
6018 * Probe playback and/or recording format (depending on *modep).
6019 * *modep is an in-out parameter. It indicates the direction to configure
6020 * as an argument, and the direction configured is written back as out
6021 * parameter.
6022 * If successful, probed hardware format is stored into *phwfmt, *rhwfmt
6023 * depending on *modep, and return 0. Otherwise it returns errno.
6024 * Must be called with sc_lock held.
6025 */
6026 static int
6027 audio_hw_probe(struct audio_softc *sc, int is_indep, int *modep,
6028 audio_format2_t *phwfmt, audio_format2_t *rhwfmt)
6029 {
6030 audio_format2_t fmt;
6031 int mode;
6032 int error = 0;
6033
6034 KASSERT(mutex_owned(sc->sc_lock));
6035
6036 mode = *modep;
6037 KASSERTMSG((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0,
6038 "invalid mode = %x", mode);
6039
6040 if (is_indep) {
6041 int errorp = 0, errorr = 0;
6042
6043 /* On independent devices, probe separately. */
6044 if ((mode & AUMODE_PLAY) != 0) {
6045 errorp = audio_hw_probe_fmt(sc, phwfmt, AUMODE_PLAY);
6046 if (errorp)
6047 mode &= ~AUMODE_PLAY;
6048 }
6049 if ((mode & AUMODE_RECORD) != 0) {
6050 errorr = audio_hw_probe_fmt(sc, rhwfmt, AUMODE_RECORD);
6051 if (errorr)
6052 mode &= ~AUMODE_RECORD;
6053 }
6054
6055 /* Return error if both play and record probes failed. */
6056 if (errorp && errorr)
6057 error = errorp;
6058 } else {
6059 /* On non independent devices, probe simultaneously. */
6060 error = audio_hw_probe_fmt(sc, &fmt, mode);
6061 if (error) {
6062 mode = 0;
6063 } else {
6064 *phwfmt = fmt;
6065 *rhwfmt = fmt;
6066 }
6067 }
6068
6069 *modep = mode;
6070 return error;
6071 }
6072
6073 /*
6074 * Choose the most preferred hardware format.
6075 * If successful, it will store the chosen format into *cand and return 0.
6076 * Otherwise, return errno.
6077 * Must be called with sc_lock held.
6078 */
6079 static int
6080 audio_hw_probe_fmt(struct audio_softc *sc, audio_format2_t *cand, int mode)
6081 {
6082 audio_format_query_t query;
6083 int cand_score;
6084 int score;
6085 int i;
6086 int error;
6087
6088 KASSERT(mutex_owned(sc->sc_lock));
6089
6090 /*
6091 * Score each formats and choose the highest one.
6092 *
6093 * +---- priority(0-3)
6094 * |+--- encoding/precision
6095 * ||+-- channels
6096 * score = 0x000000PEC
6097 */
6098
6099 cand_score = 0;
6100 for (i = 0; ; i++) {
6101 memset(&query, 0, sizeof(query));
6102 query.index = i;
6103
6104 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6105 if (error == EINVAL)
6106 break;
6107 if (error)
6108 return error;
6109
6110 #if defined(AUDIO_DEBUG)
6111 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6112 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6113 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6114 query.fmt.priority,
6115 audio_encoding_name(query.fmt.encoding),
6116 query.fmt.validbits,
6117 query.fmt.precision,
6118 query.fmt.channels);
6119 if (query.fmt.frequency_type == 0) {
6120 DPRINTF(1, "{%d-%d",
6121 query.fmt.frequency[0], query.fmt.frequency[1]);
6122 } else {
6123 int j;
6124 for (j = 0; j < query.fmt.frequency_type; j++) {
6125 DPRINTF(1, "%c%d",
6126 (j == 0) ? '{' : ',',
6127 query.fmt.frequency[j]);
6128 }
6129 }
6130 DPRINTF(1, "}\n");
6131 #endif
6132
6133 if ((query.fmt.mode & mode) == 0) {
6134 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6135 mode);
6136 continue;
6137 }
6138
6139 if (query.fmt.priority < 0) {
6140 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6141 continue;
6142 }
6143
6144 /* Score */
6145 score = (query.fmt.priority & 3) * 0x100;
6146 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6147 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6148 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6149 score += 0x20;
6150 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6151 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6152 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6153 score += 0x10;
6154 }
6155 score += query.fmt.channels;
6156
6157 if (score < cand_score) {
6158 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6159 score, cand_score);
6160 continue;
6161 }
6162
6163 /* Update candidate */
6164 cand_score = score;
6165 cand->encoding = query.fmt.encoding;
6166 cand->precision = query.fmt.validbits;
6167 cand->stride = query.fmt.precision;
6168 cand->channels = query.fmt.channels;
6169 cand->sample_rate = audio_select_freq(&query.fmt);
6170 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6171 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6172 cand_score, query.fmt.priority,
6173 audio_encoding_name(query.fmt.encoding),
6174 cand->precision, cand->stride,
6175 cand->channels, cand->sample_rate);
6176 }
6177
6178 if (cand_score == 0) {
6179 DPRINTF(1, "%s no fmt\n", __func__);
6180 return ENXIO;
6181 }
6182 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6183 audio_encoding_name(cand->encoding),
6184 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6185 return 0;
6186 }
6187
6188 /*
6189 * Validate fmt with query_format.
6190 * If fmt is included in the result of query_format, returns 0.
6191 * Otherwise returns EINVAL.
6192 * Must be called with sc_lock held.
6193 */
6194 static int
6195 audio_hw_validate_format(struct audio_softc *sc, int mode,
6196 const audio_format2_t *fmt)
6197 {
6198 audio_format_query_t query;
6199 struct audio_format *q;
6200 int index;
6201 int error;
6202 int j;
6203
6204 KASSERT(mutex_owned(sc->sc_lock));
6205
6206 /*
6207 * If query_format is not supported by hardware driver,
6208 * a rough check instead will be performed.
6209 * XXX This will gone in the future.
6210 */
6211 if (sc->hw_if->query_format == NULL) {
6212 if (fmt->encoding != AUDIO_ENCODING_SLINEAR_NE)
6213 return EINVAL;
6214 if (fmt->precision != AUDIO_INTERNAL_BITS)
6215 return EINVAL;
6216 if (fmt->stride != AUDIO_INTERNAL_BITS)
6217 return EINVAL;
6218 return 0;
6219 }
6220
6221 for (index = 0; ; index++) {
6222 query.index = index;
6223 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6224 if (error == EINVAL)
6225 break;
6226 if (error)
6227 return error;
6228
6229 q = &query.fmt;
6230 /*
6231 * Note that fmt is audio_format2_t (precision/stride) but
6232 * q is audio_format_t (validbits/precision).
6233 */
6234 if ((q->mode & mode) == 0) {
6235 continue;
6236 }
6237 if (fmt->encoding != q->encoding) {
6238 continue;
6239 }
6240 if (fmt->precision != q->validbits) {
6241 continue;
6242 }
6243 if (fmt->stride != q->precision) {
6244 continue;
6245 }
6246 if (fmt->channels != q->channels) {
6247 continue;
6248 }
6249 if (q->frequency_type == 0) {
6250 if (fmt->sample_rate < q->frequency[0] ||
6251 fmt->sample_rate > q->frequency[1]) {
6252 continue;
6253 }
6254 } else {
6255 for (j = 0; j < q->frequency_type; j++) {
6256 if (fmt->sample_rate == q->frequency[j])
6257 break;
6258 }
6259 if (j == query.fmt.frequency_type) {
6260 continue;
6261 }
6262 }
6263
6264 /* Matched. */
6265 return 0;
6266 }
6267
6268 return EINVAL;
6269 }
6270
6271 /*
6272 * Set track mixer's format depending on ai->mode.
6273 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6274 * with ai.play.{channels, sample_rate}.
6275 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6276 * with ai.record.{channels, sample_rate}.
6277 * All other fields in ai are ignored.
6278 * If successful returns 0. Otherwise returns errno.
6279 * This function does not roll back even if it fails.
6280 * Must be called with sc_lock held.
6281 */
6282 static int
6283 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6284 {
6285 audio_format2_t phwfmt;
6286 audio_format2_t rhwfmt;
6287 audio_filter_reg_t pfil;
6288 audio_filter_reg_t rfil;
6289 int mode;
6290 int error;
6291
6292 KASSERT(mutex_owned(sc->sc_lock));
6293
6294 /*
6295 * Even when setting either one of playback and recording,
6296 * both must be halted.
6297 */
6298 if (sc->sc_popens + sc->sc_ropens > 0)
6299 return EBUSY;
6300
6301 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6302 return ENOTTY;
6303
6304 /* Only channels and sample_rate are changeable. */
6305 mode = ai->mode;
6306 if ((mode & AUMODE_PLAY)) {
6307 phwfmt.encoding = ai->play.encoding;
6308 phwfmt.precision = ai->play.precision;
6309 phwfmt.stride = ai->play.precision;
6310 phwfmt.channels = ai->play.channels;
6311 phwfmt.sample_rate = ai->play.sample_rate;
6312 }
6313 if ((mode & AUMODE_RECORD)) {
6314 rhwfmt.encoding = ai->record.encoding;
6315 rhwfmt.precision = ai->record.precision;
6316 rhwfmt.stride = ai->record.precision;
6317 rhwfmt.channels = ai->record.channels;
6318 rhwfmt.sample_rate = ai->record.sample_rate;
6319 }
6320
6321 /* On non-independent devices, use the same format for both. */
6322 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6323 if (mode == AUMODE_RECORD) {
6324 phwfmt = rhwfmt;
6325 } else {
6326 rhwfmt = phwfmt;
6327 }
6328 mode = AUMODE_PLAY | AUMODE_RECORD;
6329 }
6330
6331 /* Then, unset the direction not exist on the hardware. */
6332 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6333 mode &= ~AUMODE_PLAY;
6334 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6335 mode &= ~AUMODE_RECORD;
6336
6337 /* debug */
6338 if ((mode & AUMODE_PLAY)) {
6339 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6340 audio_encoding_name(phwfmt.encoding),
6341 phwfmt.precision,
6342 phwfmt.stride,
6343 phwfmt.channels,
6344 phwfmt.sample_rate);
6345 }
6346 if ((mode & AUMODE_RECORD)) {
6347 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6348 audio_encoding_name(rhwfmt.encoding),
6349 rhwfmt.precision,
6350 rhwfmt.stride,
6351 rhwfmt.channels,
6352 rhwfmt.sample_rate);
6353 }
6354
6355 /* Check the format */
6356 if ((mode & AUMODE_PLAY)) {
6357 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6358 TRACE(1, "invalid format");
6359 return EINVAL;
6360 }
6361 }
6362 if ((mode & AUMODE_RECORD)) {
6363 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6364 TRACE(1, "invalid format");
6365 return EINVAL;
6366 }
6367 }
6368
6369 /* Configure the mixers. */
6370 memset(&pfil, 0, sizeof(pfil));
6371 memset(&rfil, 0, sizeof(rfil));
6372 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6373 if (error)
6374 return error;
6375
6376 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6377 if (error)
6378 return error;
6379
6380 return 0;
6381 }
6382
6383 /*
6384 * Store current mixers format into *ai.
6385 */
6386 static void
6387 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6388 {
6389 /*
6390 * There is no stride information in audio_info but it doesn't matter.
6391 * trackmixer always treats stride and precision as the same.
6392 */
6393 AUDIO_INITINFO(ai);
6394 ai->mode = 0;
6395 if (sc->sc_pmixer) {
6396 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6397 ai->play.encoding = fmt->encoding;
6398 ai->play.precision = fmt->precision;
6399 ai->play.channels = fmt->channels;
6400 ai->play.sample_rate = fmt->sample_rate;
6401 ai->mode |= AUMODE_PLAY;
6402 }
6403 if (sc->sc_rmixer) {
6404 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6405 ai->record.encoding = fmt->encoding;
6406 ai->record.precision = fmt->precision;
6407 ai->record.channels = fmt->channels;
6408 ai->record.sample_rate = fmt->sample_rate;
6409 ai->mode |= AUMODE_RECORD;
6410 }
6411 }
6412
6413 /*
6414 * audio_info details:
6415 *
6416 * ai.{play,record}.sample_rate (R/W)
6417 * ai.{play,record}.encoding (R/W)
6418 * ai.{play,record}.precision (R/W)
6419 * ai.{play,record}.channels (R/W)
6420 * These specify the playback or recording format.
6421 * Ignore members within an inactive track.
6422 *
6423 * ai.mode (R/W)
6424 * It specifies the playback or recording mode, AUMODE_*.
6425 * Currently, a mode change operation by ai.mode after opening is
6426 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6427 * However, it's possible to get or to set for backward compatibility.
6428 *
6429 * ai.{hiwat,lowat} (R/W)
6430 * These specify the high water mark and low water mark for playback
6431 * track. The unit is block.
6432 *
6433 * ai.{play,record}.gain (R/W)
6434 * It specifies the HW mixer volume in 0-255.
6435 * It is historical reason that the gain is connected to HW mixer.
6436 *
6437 * ai.{play,record}.balance (R/W)
6438 * It specifies the left-right balance of HW mixer in 0-64.
6439 * 32 means the center.
6440 * It is historical reason that the balance is connected to HW mixer.
6441 *
6442 * ai.{play,record}.port (R/W)
6443 * It specifies the input/output port of HW mixer.
6444 *
6445 * ai.monitor_gain (R/W)
6446 * It specifies the recording monitor gain(?) of HW mixer.
6447 *
6448 * ai.{play,record}.pause (R/W)
6449 * Non-zero means the track is paused.
6450 *
6451 * ai.play.seek (R/-)
6452 * It indicates the number of bytes written but not processed.
6453 * ai.record.seek (R/-)
6454 * It indicates the number of bytes to be able to read.
6455 *
6456 * ai.{play,record}.avail_ports (R/-)
6457 * Mixer info.
6458 *
6459 * ai.{play,record}.buffer_size (R/-)
6460 * It indicates the buffer size in bytes. Internally it means usrbuf.
6461 *
6462 * ai.{play,record}.samples (R/-)
6463 * It indicates the total number of bytes played or recorded.
6464 *
6465 * ai.{play,record}.eof (R/-)
6466 * It indicates the number of times reached EOF(?).
6467 *
6468 * ai.{play,record}.error (R/-)
6469 * Non-zero indicates overflow/underflow has occured.
6470 *
6471 * ai.{play,record}.waiting (R/-)
6472 * Non-zero indicates that other process waits to open.
6473 * It will never happen anymore.
6474 *
6475 * ai.{play,record}.open (R/-)
6476 * Non-zero indicates the direction is opened by this process(?).
6477 * XXX Is this better to indicate that "the device is opened by
6478 * at least one process"?
6479 *
6480 * ai.{play,record}.active (R/-)
6481 * Non-zero indicates that I/O is currently active.
6482 *
6483 * ai.blocksize (R/-)
6484 * It indicates the block size in bytes.
6485 * XXX The blocksize of playback and recording may be different.
6486 */
6487
6488 /*
6489 * Pause consideration:
6490 *
6491 * The introduction of these two behavior makes pause/unpause operation
6492 * simple.
6493 * 1. The first read/write access of the first track makes mixer start.
6494 * 2. A pause of the last track doesn't make mixer stop.
6495 */
6496
6497 /*
6498 * Set both track's parameters within a file depending on ai.
6499 * Update sc_sound_[pr]* if set.
6500 * Must be called with sc_lock and sc_exlock held.
6501 */
6502 static int
6503 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6504 const struct audio_info *ai)
6505 {
6506 const struct audio_prinfo *pi;
6507 const struct audio_prinfo *ri;
6508 audio_track_t *ptrack;
6509 audio_track_t *rtrack;
6510 audio_format2_t pfmt;
6511 audio_format2_t rfmt;
6512 int pchanges;
6513 int rchanges;
6514 int mode;
6515 struct audio_info saved_ai;
6516 audio_format2_t saved_pfmt;
6517 audio_format2_t saved_rfmt;
6518 int error;
6519
6520 KASSERT(mutex_owned(sc->sc_lock));
6521 KASSERT(sc->sc_exlock);
6522
6523 pi = &ai->play;
6524 ri = &ai->record;
6525 pchanges = 0;
6526 rchanges = 0;
6527
6528 ptrack = file->ptrack;
6529 rtrack = file->rtrack;
6530
6531 #if defined(AUDIO_DEBUG)
6532 if (audiodebug >= 2) {
6533 char buf[256];
6534 char p[64];
6535 int buflen;
6536 int plen;
6537 #define SPRINTF(var, fmt...) do { \
6538 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6539 } while (0)
6540
6541 buflen = 0;
6542 plen = 0;
6543 if (SPECIFIED(pi->encoding))
6544 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6545 if (SPECIFIED(pi->precision))
6546 SPRINTF(p, "/%dbit", pi->precision);
6547 if (SPECIFIED(pi->channels))
6548 SPRINTF(p, "/%dch", pi->channels);
6549 if (SPECIFIED(pi->sample_rate))
6550 SPRINTF(p, "/%dHz", pi->sample_rate);
6551 if (plen > 0)
6552 SPRINTF(buf, ",play.param=%s", p + 1);
6553
6554 plen = 0;
6555 if (SPECIFIED(ri->encoding))
6556 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6557 if (SPECIFIED(ri->precision))
6558 SPRINTF(p, "/%dbit", ri->precision);
6559 if (SPECIFIED(ri->channels))
6560 SPRINTF(p, "/%dch", ri->channels);
6561 if (SPECIFIED(ri->sample_rate))
6562 SPRINTF(p, "/%dHz", ri->sample_rate);
6563 if (plen > 0)
6564 SPRINTF(buf, ",record.param=%s", p + 1);
6565
6566 if (SPECIFIED(ai->mode))
6567 SPRINTF(buf, ",mode=%d", ai->mode);
6568 if (SPECIFIED(ai->hiwat))
6569 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6570 if (SPECIFIED(ai->lowat))
6571 SPRINTF(buf, ",lowat=%d", ai->lowat);
6572 if (SPECIFIED(ai->play.gain))
6573 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6574 if (SPECIFIED(ai->record.gain))
6575 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6576 if (SPECIFIED_CH(ai->play.balance))
6577 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6578 if (SPECIFIED_CH(ai->record.balance))
6579 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6580 if (SPECIFIED(ai->play.port))
6581 SPRINTF(buf, ",play.port=%d", ai->play.port);
6582 if (SPECIFIED(ai->record.port))
6583 SPRINTF(buf, ",record.port=%d", ai->record.port);
6584 if (SPECIFIED(ai->monitor_gain))
6585 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6586 if (SPECIFIED_CH(ai->play.pause))
6587 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6588 if (SPECIFIED_CH(ai->record.pause))
6589 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6590
6591 if (buflen > 0)
6592 TRACE(2, "specified %s", buf + 1);
6593 }
6594 #endif
6595
6596 AUDIO_INITINFO(&saved_ai);
6597 /* XXX shut up gcc */
6598 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6599 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6600
6601 /* Set default value and save current parameters */
6602 if (ptrack) {
6603 pfmt = ptrack->usrbuf.fmt;
6604 saved_pfmt = ptrack->usrbuf.fmt;
6605 saved_ai.play.pause = ptrack->is_pause;
6606 }
6607 if (rtrack) {
6608 rfmt = rtrack->usrbuf.fmt;
6609 saved_rfmt = rtrack->usrbuf.fmt;
6610 saved_ai.record.pause = rtrack->is_pause;
6611 }
6612 saved_ai.mode = file->mode;
6613
6614 /* Overwrite if specified */
6615 mode = file->mode;
6616 if (SPECIFIED(ai->mode)) {
6617 /*
6618 * Setting ai->mode no longer does anything because it's
6619 * prohibited to change playback/recording mode after open
6620 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6621 * keeps the state of AUMODE_PLAY_ALL itself for backward
6622 * compatibility.
6623 * In the internal, only file->mode has the state of
6624 * AUMODE_PLAY_ALL flag and track->mode in both track does
6625 * not have.
6626 */
6627 if ((file->mode & AUMODE_PLAY)) {
6628 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6629 | (ai->mode & AUMODE_PLAY_ALL);
6630 }
6631 }
6632
6633 if (ptrack) {
6634 pchanges = audio_track_setinfo_check(&pfmt, pi);
6635 if (pchanges == -1) {
6636 #if defined(AUDIO_DEBUG)
6637 char fmtbuf[64];
6638 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6639 TRACET(1, ptrack, "check play.params failed: %s",
6640 fmtbuf);
6641 #endif
6642 return EINVAL;
6643 }
6644 if (SPECIFIED(ai->mode))
6645 pchanges = 1;
6646 }
6647 if (rtrack) {
6648 rchanges = audio_track_setinfo_check(&rfmt, ri);
6649 if (rchanges == -1) {
6650 #if defined(AUDIO_DEBUG)
6651 char fmtbuf[64];
6652 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6653 TRACET(1, rtrack, "check record.params failed: %s",
6654 fmtbuf);
6655 #endif
6656 return EINVAL;
6657 }
6658 if (SPECIFIED(ai->mode))
6659 rchanges = 1;
6660 }
6661
6662 /*
6663 * Even when setting either one of playback and recording,
6664 * both track must be halted.
6665 */
6666 if (pchanges || rchanges) {
6667 audio_file_clear(sc, file);
6668 #if defined(AUDIO_DEBUG)
6669 char fmtbuf[64];
6670 if (pchanges) {
6671 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6672 DPRINTF(1, "audio track#%d play mode: %s\n",
6673 ptrack->id, fmtbuf);
6674 }
6675 if (rchanges) {
6676 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6677 DPRINTF(1, "audio track#%d rec mode: %s\n",
6678 rtrack->id, fmtbuf);
6679 }
6680 #endif
6681 }
6682
6683 /* Set mixer parameters */
6684 error = audio_hw_setinfo(sc, ai, &saved_ai);
6685 if (error)
6686 goto abort1;
6687
6688 /* Set to track and update sticky parameters */
6689 error = 0;
6690 file->mode = mode;
6691 if (ptrack) {
6692 if (SPECIFIED_CH(pi->pause)) {
6693 ptrack->is_pause = pi->pause;
6694 sc->sc_sound_ppause = pi->pause;
6695 }
6696 if (pchanges) {
6697 audio_track_lock_enter(ptrack);
6698 error = audio_track_set_format(ptrack, &pfmt);
6699 audio_track_lock_exit(ptrack);
6700 if (error) {
6701 TRACET(1, ptrack, "set play.params failed");
6702 goto abort2;
6703 }
6704 sc->sc_sound_pparams = pfmt;
6705 }
6706 /* Change water marks after initializing the buffers. */
6707 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat))
6708 audio_track_setinfo_water(ptrack, ai);
6709 }
6710 if (rtrack) {
6711 if (SPECIFIED_CH(ri->pause)) {
6712 rtrack->is_pause = ri->pause;
6713 sc->sc_sound_rpause = ri->pause;
6714 }
6715 if (rchanges) {
6716 audio_track_lock_enter(rtrack);
6717 error = audio_track_set_format(rtrack, &rfmt);
6718 audio_track_lock_exit(rtrack);
6719 if (error) {
6720 TRACET(1, rtrack, "set record.params failed");
6721 goto abort3;
6722 }
6723 sc->sc_sound_rparams = rfmt;
6724 }
6725 }
6726
6727 return 0;
6728
6729 /* Rollback */
6730 abort3:
6731 if (error != ENOMEM) {
6732 rtrack->is_pause = saved_ai.record.pause;
6733 audio_track_lock_enter(rtrack);
6734 audio_track_set_format(rtrack, &saved_rfmt);
6735 audio_track_lock_exit(rtrack);
6736 }
6737 abort2:
6738 if (ptrack && error != ENOMEM) {
6739 ptrack->is_pause = saved_ai.play.pause;
6740 audio_track_lock_enter(ptrack);
6741 audio_track_set_format(ptrack, &saved_pfmt);
6742 audio_track_lock_exit(ptrack);
6743 sc->sc_sound_pparams = saved_pfmt;
6744 sc->sc_sound_ppause = saved_ai.play.pause;
6745 }
6746 file->mode = saved_ai.mode;
6747 abort1:
6748 audio_hw_setinfo(sc, &saved_ai, NULL);
6749
6750 return error;
6751 }
6752
6753 /*
6754 * Write SPECIFIED() parameters within info back to fmt.
6755 * Return value of 1 indicates that fmt is modified.
6756 * Return value of 0 indicates that fmt is not modified.
6757 * Return value of -1 indicates that error EINVAL has occurred.
6758 */
6759 static int
6760 audio_track_setinfo_check(audio_format2_t *fmt, const struct audio_prinfo *info)
6761 {
6762 int changes;
6763
6764 changes = 0;
6765 if (SPECIFIED(info->sample_rate)) {
6766 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
6767 return -1;
6768 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
6769 return -1;
6770 fmt->sample_rate = info->sample_rate;
6771 changes = 1;
6772 }
6773 if (SPECIFIED(info->encoding)) {
6774 fmt->encoding = info->encoding;
6775 changes = 1;
6776 }
6777 if (SPECIFIED(info->precision)) {
6778 fmt->precision = info->precision;
6779 /* we don't have API to specify stride */
6780 fmt->stride = info->precision;
6781 changes = 1;
6782 }
6783 if (SPECIFIED(info->channels)) {
6784 fmt->channels = info->channels;
6785 changes = 1;
6786 }
6787
6788 if (changes) {
6789 if (audio_check_params(fmt) != 0)
6790 return -1;
6791 }
6792
6793 return changes;
6794 }
6795
6796 /*
6797 * Change water marks for playback track if specfied.
6798 */
6799 static void
6800 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
6801 {
6802 u_int blks;
6803 u_int maxblks;
6804 u_int blksize;
6805
6806 KASSERT(audio_track_is_playback(track));
6807
6808 blksize = track->usrbuf_blksize;
6809 maxblks = track->usrbuf.capacity / blksize;
6810
6811 if (SPECIFIED(ai->hiwat)) {
6812 blks = ai->hiwat;
6813 if (blks > maxblks)
6814 blks = maxblks;
6815 if (blks < 2)
6816 blks = 2;
6817 track->usrbuf_usedhigh = blks * blksize;
6818 }
6819 if (SPECIFIED(ai->lowat)) {
6820 blks = ai->lowat;
6821 if (blks > maxblks - 1)
6822 blks = maxblks - 1;
6823 track->usrbuf_usedlow = blks * blksize;
6824 }
6825 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6826 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
6827 track->usrbuf_usedlow = track->usrbuf_usedhigh -
6828 blksize;
6829 }
6830 }
6831 }
6832
6833 /*
6834 * Set hardware part of *ai.
6835 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
6836 * If oldai is specified, previous parameters are stored.
6837 * This function itself does not roll back if error occurred.
6838 * Must be called with sc_lock and sc_exlock held.
6839 */
6840 static int
6841 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
6842 struct audio_info *oldai)
6843 {
6844 const struct audio_prinfo *newpi;
6845 const struct audio_prinfo *newri;
6846 struct audio_prinfo *oldpi;
6847 struct audio_prinfo *oldri;
6848 u_int pgain;
6849 u_int rgain;
6850 u_char pbalance;
6851 u_char rbalance;
6852 int error;
6853
6854 KASSERT(mutex_owned(sc->sc_lock));
6855 KASSERT(sc->sc_exlock);
6856
6857 /* XXX shut up gcc */
6858 oldpi = NULL;
6859 oldri = NULL;
6860
6861 newpi = &newai->play;
6862 newri = &newai->record;
6863 if (oldai) {
6864 oldpi = &oldai->play;
6865 oldri = &oldai->record;
6866 }
6867 error = 0;
6868
6869 /*
6870 * It looks like unnecessary to halt HW mixers to set HW mixers.
6871 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
6872 */
6873
6874 if (SPECIFIED(newpi->port)) {
6875 if (oldai)
6876 oldpi->port = au_get_port(sc, &sc->sc_outports);
6877 error = au_set_port(sc, &sc->sc_outports, newpi->port);
6878 if (error) {
6879 device_printf(sc->sc_dev,
6880 "setting play.port=%d failed with %d\n",
6881 newpi->port, error);
6882 goto abort;
6883 }
6884 }
6885 if (SPECIFIED(newri->port)) {
6886 if (oldai)
6887 oldri->port = au_get_port(sc, &sc->sc_inports);
6888 error = au_set_port(sc, &sc->sc_inports, newri->port);
6889 if (error) {
6890 device_printf(sc->sc_dev,
6891 "setting record.port=%d failed with %d\n",
6892 newri->port, error);
6893 goto abort;
6894 }
6895 }
6896
6897 /* Backup play.{gain,balance} */
6898 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
6899 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
6900 if (oldai) {
6901 oldpi->gain = pgain;
6902 oldpi->balance = pbalance;
6903 }
6904 }
6905 /* Backup record.{gain,balance} */
6906 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
6907 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
6908 if (oldai) {
6909 oldri->gain = rgain;
6910 oldri->balance = rbalance;
6911 }
6912 }
6913 if (SPECIFIED(newpi->gain)) {
6914 error = au_set_gain(sc, &sc->sc_outports,
6915 newpi->gain, pbalance);
6916 if (error) {
6917 device_printf(sc->sc_dev,
6918 "setting play.gain=%d failed with %d\n",
6919 newpi->gain, error);
6920 goto abort;
6921 }
6922 }
6923 if (SPECIFIED(newri->gain)) {
6924 error = au_set_gain(sc, &sc->sc_inports,
6925 newri->gain, rbalance);
6926 if (error) {
6927 device_printf(sc->sc_dev,
6928 "setting record.gain=%d failed with %d\n",
6929 newri->gain, error);
6930 goto abort;
6931 }
6932 }
6933 if (SPECIFIED_CH(newpi->balance)) {
6934 error = au_set_gain(sc, &sc->sc_outports,
6935 pgain, newpi->balance);
6936 if (error) {
6937 device_printf(sc->sc_dev,
6938 "setting play.balance=%d failed with %d\n",
6939 newpi->balance, error);
6940 goto abort;
6941 }
6942 }
6943 if (SPECIFIED_CH(newri->balance)) {
6944 error = au_set_gain(sc, &sc->sc_inports,
6945 rgain, newri->balance);
6946 if (error) {
6947 device_printf(sc->sc_dev,
6948 "setting record.balance=%d failed with %d\n",
6949 newri->balance, error);
6950 goto abort;
6951 }
6952 }
6953
6954 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
6955 if (oldai)
6956 oldai->monitor_gain = au_get_monitor_gain(sc);
6957 error = au_set_monitor_gain(sc, newai->monitor_gain);
6958 if (error) {
6959 device_printf(sc->sc_dev,
6960 "setting monitor_gain=%d failed with %d\n",
6961 newai->monitor_gain, error);
6962 goto abort;
6963 }
6964 }
6965
6966 /* XXX TODO */
6967 /* sc->sc_ai = *ai; */
6968
6969 error = 0;
6970 abort:
6971 return error;
6972 }
6973
6974 /*
6975 * Setup the hardware with mixer format phwfmt, rhwfmt.
6976 * The arguments have following restrictions:
6977 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
6978 * or both.
6979 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
6980 * - On non-independent devices, phwfmt and rhwfmt must have the same
6981 * parameters.
6982 * - pfil and rfil must be zero-filled.
6983 * If successful,
6984 * - phwfmt, rhwfmt will be overwritten by hardware format.
6985 * - pfil, rfil will be filled with filter information specified by the
6986 * hardware driver.
6987 * and then returns 0. Otherwise returns errno.
6988 * Must be called with sc_lock held.
6989 */
6990 static int
6991 audio_hw_set_format(struct audio_softc *sc, int setmode,
6992 audio_format2_t *phwfmt, audio_format2_t *rhwfmt,
6993 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
6994 {
6995 audio_params_t pp, rp;
6996 int error;
6997
6998 KASSERT(mutex_owned(sc->sc_lock));
6999 KASSERT(phwfmt != NULL);
7000 KASSERT(rhwfmt != NULL);
7001
7002 pp = format2_to_params(phwfmt);
7003 rp = format2_to_params(rhwfmt);
7004
7005 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7006 &pp, &rp, pfil, rfil);
7007 if (error) {
7008 device_printf(sc->sc_dev,
7009 "set_format failed with %d\n", error);
7010 return error;
7011 }
7012
7013 if (sc->hw_if->commit_settings) {
7014 error = sc->hw_if->commit_settings(sc->hw_hdl);
7015 if (error) {
7016 device_printf(sc->sc_dev,
7017 "commit_settings failed with %d\n", error);
7018 return error;
7019 }
7020 }
7021
7022 return 0;
7023 }
7024
7025 /*
7026 * Fill audio_info structure. If need_mixerinfo is true, it will also
7027 * fill the hardware mixer information.
7028 * Must be called with sc_lock held.
7029 * Must be called with sc_exlock held, in addition, if need_mixerinfo is
7030 * true.
7031 */
7032 static int
7033 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7034 audio_file_t *file)
7035 {
7036 struct audio_prinfo *ri, *pi;
7037 audio_track_t *track;
7038 audio_track_t *ptrack;
7039 audio_track_t *rtrack;
7040 int gain;
7041
7042 KASSERT(mutex_owned(sc->sc_lock));
7043
7044 ri = &ai->record;
7045 pi = &ai->play;
7046 ptrack = file->ptrack;
7047 rtrack = file->rtrack;
7048
7049 memset(ai, 0, sizeof(*ai));
7050
7051 if (ptrack) {
7052 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7053 pi->channels = ptrack->usrbuf.fmt.channels;
7054 pi->precision = ptrack->usrbuf.fmt.precision;
7055 pi->encoding = ptrack->usrbuf.fmt.encoding;
7056 } else {
7057 /* Set default parameters if the track is not available. */
7058 if (ISDEVAUDIO(file->dev)) {
7059 pi->sample_rate = audio_default.sample_rate;
7060 pi->channels = audio_default.channels;
7061 pi->precision = audio_default.precision;
7062 pi->encoding = audio_default.encoding;
7063 } else {
7064 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7065 pi->channels = sc->sc_sound_pparams.channels;
7066 pi->precision = sc->sc_sound_pparams.precision;
7067 pi->encoding = sc->sc_sound_pparams.encoding;
7068 }
7069 }
7070 if (rtrack) {
7071 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7072 ri->channels = rtrack->usrbuf.fmt.channels;
7073 ri->precision = rtrack->usrbuf.fmt.precision;
7074 ri->encoding = rtrack->usrbuf.fmt.encoding;
7075 } else {
7076 /* Set default parameters if the track is not available. */
7077 if (ISDEVAUDIO(file->dev)) {
7078 ri->sample_rate = audio_default.sample_rate;
7079 ri->channels = audio_default.channels;
7080 ri->precision = audio_default.precision;
7081 ri->encoding = audio_default.encoding;
7082 } else {
7083 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7084 ri->channels = sc->sc_sound_rparams.channels;
7085 ri->precision = sc->sc_sound_rparams.precision;
7086 ri->encoding = sc->sc_sound_rparams.encoding;
7087 }
7088 }
7089
7090 if (ptrack) {
7091 pi->seek = ptrack->usrbuf.used;
7092 pi->samples = ptrack->usrbuf_stamp;
7093 pi->eof = ptrack->eofcounter;
7094 pi->pause = ptrack->is_pause;
7095 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7096 pi->waiting = 0; /* open never hangs */
7097 pi->open = 1;
7098 pi->active = sc->sc_pbusy;
7099 pi->buffer_size = ptrack->usrbuf.capacity;
7100 }
7101 if (rtrack) {
7102 ri->seek = rtrack->usrbuf.used;
7103 ri->samples = rtrack->usrbuf_stamp;
7104 ri->eof = 0;
7105 ri->pause = rtrack->is_pause;
7106 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7107 ri->waiting = 0; /* open never hangs */
7108 ri->open = 1;
7109 ri->active = sc->sc_rbusy;
7110 ri->buffer_size = rtrack->usrbuf.capacity;
7111 }
7112
7113 /*
7114 * XXX There may be different number of channels between playback
7115 * and recording, so that blocksize also may be different.
7116 * But struct audio_info has an united blocksize...
7117 * Here, I use play info precedencely if ptrack is available,
7118 * otherwise record info.
7119 *
7120 * XXX hiwat/lowat is a playback-only parameter. What should I
7121 * return for a record-only descriptor?
7122 */
7123 track = ptrack ? ptrack : rtrack;
7124 if (track) {
7125 ai->blocksize = track->usrbuf_blksize;
7126 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7127 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7128 }
7129 ai->mode = file->mode;
7130
7131 if (need_mixerinfo) {
7132 KASSERT(sc->sc_exlock);
7133
7134 pi->port = au_get_port(sc, &sc->sc_outports);
7135 ri->port = au_get_port(sc, &sc->sc_inports);
7136
7137 pi->avail_ports = sc->sc_outports.allports;
7138 ri->avail_ports = sc->sc_inports.allports;
7139
7140 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7141 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7142
7143 if (sc->sc_monitor_port != -1) {
7144 gain = au_get_monitor_gain(sc);
7145 if (gain != -1)
7146 ai->monitor_gain = gain;
7147 }
7148 }
7149
7150 return 0;
7151 }
7152
7153 /*
7154 * Return true if playback is configured.
7155 * This function can be used after audioattach.
7156 */
7157 static bool
7158 audio_can_playback(struct audio_softc *sc)
7159 {
7160
7161 return (sc->sc_pmixer != NULL);
7162 }
7163
7164 /*
7165 * Return true if recording is configured.
7166 * This function can be used after audioattach.
7167 */
7168 static bool
7169 audio_can_capture(struct audio_softc *sc)
7170 {
7171
7172 return (sc->sc_rmixer != NULL);
7173 }
7174
7175 /*
7176 * Get the afp->index'th item from the valid one of format[].
7177 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7178 *
7179 * This is common routines for query_format.
7180 * If your hardware driver has struct audio_format[], the simplest case
7181 * you can write your query_format interface as follows:
7182 *
7183 * struct audio_format foo_format[] = { ... };
7184 *
7185 * int
7186 * foo_query_format(void *hdl, audio_format_query_t *afp)
7187 * {
7188 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7189 * }
7190 */
7191 int
7192 audio_query_format(const struct audio_format *format, int nformats,
7193 audio_format_query_t *afp)
7194 {
7195 const struct audio_format *f;
7196 int idx;
7197 int i;
7198
7199 idx = 0;
7200 for (i = 0; i < nformats; i++) {
7201 f = &format[i];
7202 if (!AUFMT_IS_VALID(f))
7203 continue;
7204 if (afp->index == idx) {
7205 afp->fmt = *f;
7206 return 0;
7207 }
7208 idx++;
7209 }
7210 return EINVAL;
7211 }
7212
7213 /*
7214 * This function is provided for the hardware driver's set_format() to
7215 * find index matches with 'param' from array of audio_format_t 'formats'.
7216 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7217 * It returns the matched index and never fails. Because param passed to
7218 * set_format() is selected from query_format().
7219 * This function will be an alternative to auconv_set_converter() to
7220 * find index.
7221 */
7222 int
7223 audio_indexof_format(const struct audio_format *formats, int nformats,
7224 int mode, const audio_params_t *param)
7225 {
7226 const struct audio_format *f;
7227 int index;
7228 int j;
7229
7230 for (index = 0; index < nformats; index++) {
7231 f = &formats[index];
7232
7233 if (!AUFMT_IS_VALID(f))
7234 continue;
7235 if ((f->mode & mode) == 0)
7236 continue;
7237 if (f->encoding != param->encoding)
7238 continue;
7239 if (f->validbits != param->precision)
7240 continue;
7241 if (f->channels != param->channels)
7242 continue;
7243
7244 if (f->frequency_type == 0) {
7245 if (param->sample_rate < f->frequency[0] ||
7246 param->sample_rate > f->frequency[1])
7247 continue;
7248 } else {
7249 for (j = 0; j < f->frequency_type; j++) {
7250 if (param->sample_rate == f->frequency[j])
7251 break;
7252 }
7253 if (j == f->frequency_type)
7254 continue;
7255 }
7256
7257 /* Then, matched */
7258 return index;
7259 }
7260
7261 /* Not matched. This should not be happened. */
7262 panic("%s: cannot find matched format\n", __func__);
7263 }
7264
7265 /*
7266 * Get or set hardware blocksize in msec.
7267 * XXX It's for debug.
7268 */
7269 static int
7270 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7271 {
7272 struct sysctlnode node;
7273 struct audio_softc *sc;
7274 audio_format2_t phwfmt;
7275 audio_format2_t rhwfmt;
7276 audio_filter_reg_t pfil;
7277 audio_filter_reg_t rfil;
7278 int t;
7279 int old_blk_ms;
7280 int mode;
7281 int error;
7282
7283 node = *rnode;
7284 sc = node.sysctl_data;
7285
7286 mutex_enter(sc->sc_lock);
7287
7288 old_blk_ms = sc->sc_blk_ms;
7289 t = old_blk_ms;
7290 node.sysctl_data = &t;
7291 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7292 if (error || newp == NULL)
7293 goto abort;
7294
7295 if (t < 0) {
7296 error = EINVAL;
7297 goto abort;
7298 }
7299
7300 if (sc->sc_popens + sc->sc_ropens > 0) {
7301 error = EBUSY;
7302 goto abort;
7303 }
7304 sc->sc_blk_ms = t;
7305 mode = 0;
7306 if (sc->sc_pmixer) {
7307 mode |= AUMODE_PLAY;
7308 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7309 }
7310 if (sc->sc_rmixer) {
7311 mode |= AUMODE_RECORD;
7312 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7313 }
7314
7315 /* re-init hardware */
7316 memset(&pfil, 0, sizeof(pfil));
7317 memset(&rfil, 0, sizeof(rfil));
7318 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7319 if (error) {
7320 goto abort;
7321 }
7322
7323 /* re-init track mixer */
7324 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7325 if (error) {
7326 /* Rollback */
7327 sc->sc_blk_ms = old_blk_ms;
7328 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7329 goto abort;
7330 }
7331 error = 0;
7332 abort:
7333 mutex_exit(sc->sc_lock);
7334 return error;
7335 }
7336
7337 /*
7338 * Get or set multiuser mode.
7339 */
7340 static int
7341 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7342 {
7343 struct sysctlnode node;
7344 struct audio_softc *sc;
7345 bool t;
7346 int error;
7347
7348 node = *rnode;
7349 sc = node.sysctl_data;
7350
7351 mutex_enter(sc->sc_lock);
7352
7353 t = sc->sc_multiuser;
7354 node.sysctl_data = &t;
7355 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7356 if (error || newp == NULL)
7357 goto abort;
7358
7359 sc->sc_multiuser = t;
7360 error = 0;
7361 abort:
7362 mutex_exit(sc->sc_lock);
7363 return error;
7364 }
7365
7366 #if defined(AUDIO_DEBUG)
7367 /*
7368 * Get or set debug verbose level. (0..4)
7369 * XXX It's for debug.
7370 * XXX It is not separated per device.
7371 */
7372 static int
7373 audio_sysctl_debug(SYSCTLFN_ARGS)
7374 {
7375 struct sysctlnode node;
7376 int t;
7377 int error;
7378
7379 node = *rnode;
7380 t = audiodebug;
7381 node.sysctl_data = &t;
7382 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7383 if (error || newp == NULL)
7384 return error;
7385
7386 if (t < 0 || t > 4)
7387 return EINVAL;
7388 audiodebug = t;
7389 printf("audio: audiodebug = %d\n", audiodebug);
7390 return 0;
7391 }
7392 #endif /* AUDIO_DEBUG */
7393
7394 #ifdef AUDIO_PM_IDLE
7395 static void
7396 audio_idle(void *arg)
7397 {
7398 device_t dv = arg;
7399 struct audio_softc *sc = device_private(dv);
7400
7401 #ifdef PNP_DEBUG
7402 extern int pnp_debug_idle;
7403 if (pnp_debug_idle)
7404 printf("%s: idle handler called\n", device_xname(dv));
7405 #endif
7406
7407 sc->sc_idle = true;
7408
7409 /* XXX joerg Make pmf_device_suspend handle children? */
7410 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7411 return;
7412
7413 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7414 pmf_device_resume(dv, PMF_Q_SELF);
7415 }
7416
7417 static void
7418 audio_activity(device_t dv, devactive_t type)
7419 {
7420 struct audio_softc *sc = device_private(dv);
7421
7422 if (type != DVA_SYSTEM)
7423 return;
7424
7425 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7426
7427 sc->sc_idle = false;
7428 if (!device_is_active(dv)) {
7429 /* XXX joerg How to deal with a failing resume... */
7430 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7431 pmf_device_resume(dv, PMF_Q_SELF);
7432 }
7433 }
7434 #endif
7435
7436 static bool
7437 audio_suspend(device_t dv, const pmf_qual_t *qual)
7438 {
7439 struct audio_softc *sc = device_private(dv);
7440 int error;
7441
7442 error = audio_enter_exclusive(sc);
7443 if (error)
7444 return error;
7445 audio_mixer_capture(sc);
7446
7447 /* Halts mixers but don't clear busy flag for resume */
7448 if (sc->sc_pbusy) {
7449 audio_pmixer_halt(sc);
7450 sc->sc_pbusy = true;
7451 }
7452 if (sc->sc_rbusy) {
7453 audio_rmixer_halt(sc);
7454 sc->sc_rbusy = true;
7455 }
7456
7457 #ifdef AUDIO_PM_IDLE
7458 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7459 #endif
7460 audio_exit_exclusive(sc);
7461
7462 return true;
7463 }
7464
7465 static bool
7466 audio_resume(device_t dv, const pmf_qual_t *qual)
7467 {
7468 struct audio_softc *sc = device_private(dv);
7469 struct audio_info ai;
7470 int error;
7471
7472 error = audio_enter_exclusive(sc);
7473 if (error)
7474 return error;
7475
7476 audio_mixer_restore(sc);
7477 /* XXX ? */
7478 AUDIO_INITINFO(&ai);
7479 audio_hw_setinfo(sc, &ai, NULL);
7480
7481 if (sc->sc_pbusy)
7482 audio_pmixer_start(sc, true);
7483 if (sc->sc_rbusy)
7484 audio_rmixer_start(sc);
7485
7486 audio_exit_exclusive(sc);
7487
7488 return true;
7489 }
7490
7491 #if defined(AUDIO_DEBUG)
7492 static void
7493 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7494 {
7495 int n;
7496
7497 n = 0;
7498 n += snprintf(buf + n, bufsize - n, "%s",
7499 audio_encoding_name(fmt->encoding));
7500 if (fmt->precision == fmt->stride) {
7501 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7502 } else {
7503 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7504 fmt->precision, fmt->stride);
7505 }
7506
7507 snprintf(buf + n, bufsize - n, " %uch %uHz",
7508 fmt->channels, fmt->sample_rate);
7509 }
7510 #endif
7511
7512 #if defined(AUDIO_DEBUG)
7513 static void
7514 audio_print_format2(const char *s, const audio_format2_t *fmt)
7515 {
7516 char fmtstr[64];
7517
7518 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7519 printf("%s %s\n", s, fmtstr);
7520 }
7521 #endif
7522
7523 #ifdef DIAGNOSTIC
7524 void
7525 audio_diagnostic_format2(const char *func, const audio_format2_t *fmt)
7526 {
7527
7528 KASSERTMSG(fmt, "%s: fmt == NULL", func);
7529
7530 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7531 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7532 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7533 "%s: stride(%d) is invalid", func, fmt->stride);
7534 } else {
7535 KASSERTMSG(fmt->stride % NBBY == 0,
7536 "%s: stride(%d) is invalid", func, fmt->stride);
7537 }
7538 KASSERTMSG(fmt->precision <= fmt->stride,
7539 "%s: precision(%d) <= stride(%d)",
7540 func, fmt->precision, fmt->stride);
7541 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7542 "%s: channels(%d) is out of range",
7543 func, fmt->channels);
7544
7545 /* XXX No check for encodings? */
7546 }
7547
7548 void
7549 audio_diagnostic_filter_arg(const char *func, const audio_filter_arg_t *arg)
7550 {
7551
7552 KASSERT(arg != NULL);
7553 KASSERT(arg->src != NULL);
7554 KASSERT(arg->dst != NULL);
7555 DIAGNOSTIC_format2(arg->srcfmt);
7556 DIAGNOSTIC_format2(arg->dstfmt);
7557 KASSERTMSG(arg->count > 0,
7558 "%s: count(%d) is out of range", func, arg->count);
7559 }
7560
7561 void
7562 audio_diagnostic_ring(const char *func, const audio_ring_t *ring)
7563 {
7564
7565 KASSERTMSG(ring, "%s: ring == NULL", func);
7566 DIAGNOSTIC_format2(&ring->fmt);
7567 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7568 "%s: capacity(%d) is out of range", func, ring->capacity);
7569 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7570 "%s: used(%d) is out of range (capacity:%d)",
7571 func, ring->used, ring->capacity);
7572 if (ring->capacity == 0) {
7573 KASSERTMSG(ring->mem == NULL,
7574 "%s: capacity == 0 but mem != NULL", func);
7575 } else {
7576 KASSERTMSG(ring->mem != NULL,
7577 "%s: capacity != 0 but mem == NULL", func);
7578 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7579 "%s: head(%d) is out of range (capacity:%d)",
7580 func, ring->head, ring->capacity);
7581 }
7582 }
7583 #endif /* DIAGNOSTIC */
7584
7585
7586 /*
7587 * Mixer driver
7588 */
7589 int
7590 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7591 struct lwp *l)
7592 {
7593 struct file *fp;
7594 audio_file_t *af;
7595 int error, fd;
7596
7597 KASSERT(mutex_owned(sc->sc_lock));
7598
7599 TRACE(1, "flags=0x%x", flags);
7600
7601 error = fd_allocfile(&fp, &fd);
7602 if (error)
7603 return error;
7604
7605 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7606 af->sc = sc;
7607 af->dev = dev;
7608
7609 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7610 KASSERT(error == EMOVEFD);
7611
7612 return error;
7613 }
7614
7615 /*
7616 * Add a process to those to be signalled on mixer activity.
7617 * If the process has already been added, do nothing.
7618 * Must be called with sc_lock held.
7619 */
7620 static void
7621 mixer_async_add(struct audio_softc *sc, pid_t pid)
7622 {
7623 int i;
7624
7625 KASSERT(mutex_owned(sc->sc_lock));
7626
7627 /* If already exists, returns without doing anything. */
7628 for (i = 0; i < sc->sc_am_used; i++) {
7629 if (sc->sc_am[i] == pid)
7630 return;
7631 }
7632
7633 /* Extend array if necessary. */
7634 if (sc->sc_am_used >= sc->sc_am_capacity) {
7635 sc->sc_am_capacity += AM_CAPACITY;
7636 sc->sc_am = kern_realloc(sc->sc_am,
7637 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
7638 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
7639 }
7640
7641 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
7642 sc->sc_am[sc->sc_am_used++] = pid;
7643 }
7644
7645 /*
7646 * Remove a process from those to be signalled on mixer activity.
7647 * If the process has not been added, do nothing.
7648 * Must be called with sc_lock held.
7649 */
7650 static void
7651 mixer_async_remove(struct audio_softc *sc, pid_t pid)
7652 {
7653 int i;
7654
7655 KASSERT(mutex_owned(sc->sc_lock));
7656
7657 for (i = 0; i < sc->sc_am_used; i++) {
7658 if (sc->sc_am[i] == pid) {
7659 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
7660 TRACE(2, "am[%d](%d) removed, used=%d",
7661 i, (int)pid, sc->sc_am_used);
7662
7663 /* Empty array if no longer necessary. */
7664 if (sc->sc_am_used == 0) {
7665 kern_free(sc->sc_am);
7666 sc->sc_am = NULL;
7667 sc->sc_am_capacity = 0;
7668 TRACE(2, "released");
7669 }
7670 return;
7671 }
7672 }
7673 }
7674
7675 /*
7676 * Signal all processes waiting for the mixer.
7677 * Must be called with sc_lock held.
7678 */
7679 static void
7680 mixer_signal(struct audio_softc *sc)
7681 {
7682 proc_t *p;
7683 int i;
7684
7685 KASSERT(mutex_owned(sc->sc_lock));
7686
7687 for (i = 0; i < sc->sc_am_used; i++) {
7688 mutex_enter(proc_lock);
7689 p = proc_find(sc->sc_am[i]);
7690 if (p)
7691 psignal(p, SIGIO);
7692 mutex_exit(proc_lock);
7693 }
7694 }
7695
7696 /*
7697 * Close a mixer device
7698 */
7699 int
7700 mixer_close(struct audio_softc *sc, audio_file_t *file)
7701 {
7702
7703 mutex_enter(sc->sc_lock);
7704 TRACE(1, "");
7705 mixer_async_remove(sc, curproc->p_pid);
7706 mutex_exit(sc->sc_lock);
7707
7708 kmem_free(file, sizeof(*file));
7709 return 0;
7710 }
7711
7712 int
7713 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
7714 struct lwp *l)
7715 {
7716 mixer_devinfo_t *mi;
7717 mixer_ctrl_t *mc;
7718 int error;
7719
7720 KASSERT(!mutex_owned(sc->sc_lock));
7721
7722 TRACE(2, "(%lu,'%c',%lu)",
7723 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
7724 error = EINVAL;
7725
7726 /* we can return cached values if we are sleeping */
7727 if (cmd != AUDIO_MIXER_READ) {
7728 mutex_enter(sc->sc_lock);
7729 device_active(sc->sc_dev, DVA_SYSTEM);
7730 mutex_exit(sc->sc_lock);
7731 }
7732
7733 switch (cmd) {
7734 case FIOASYNC:
7735 mutex_enter(sc->sc_lock);
7736 if (*(int *)addr) {
7737 mixer_async_add(sc, curproc->p_pid);
7738 } else {
7739 mixer_async_remove(sc, curproc->p_pid);
7740 }
7741 mutex_exit(sc->sc_lock);
7742 error = 0;
7743 break;
7744
7745 case AUDIO_GETDEV:
7746 TRACE(2, "AUDIO_GETDEV");
7747 error = audio_enter_exclusive(sc);
7748 if (error)
7749 break;
7750 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
7751 audio_exit_exclusive(sc);
7752 break;
7753
7754 case AUDIO_MIXER_DEVINFO:
7755 TRACE(2, "AUDIO_MIXER_DEVINFO");
7756 mi = (mixer_devinfo_t *)addr;
7757
7758 mi->un.v.delta = 0; /* default */
7759 mutex_enter(sc->sc_lock);
7760 error = audio_query_devinfo(sc, mi);
7761 mutex_exit(sc->sc_lock);
7762 break;
7763
7764 case AUDIO_MIXER_READ:
7765 TRACE(2, "AUDIO_MIXER_READ");
7766 mc = (mixer_ctrl_t *)addr;
7767
7768 error = audio_enter_exclusive(sc);
7769 if (error)
7770 break;
7771 if (device_is_active(sc->hw_dev))
7772 error = audio_get_port(sc, mc);
7773 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
7774 error = ENXIO;
7775 else {
7776 int dev = mc->dev;
7777 memcpy(mc, &sc->sc_mixer_state[dev],
7778 sizeof(mixer_ctrl_t));
7779 error = 0;
7780 }
7781 audio_exit_exclusive(sc);
7782 break;
7783
7784 case AUDIO_MIXER_WRITE:
7785 TRACE(2, "AUDIO_MIXER_WRITE");
7786 error = audio_enter_exclusive(sc);
7787 if (error)
7788 break;
7789 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
7790 if (error) {
7791 audio_exit_exclusive(sc);
7792 break;
7793 }
7794
7795 if (sc->hw_if->commit_settings) {
7796 error = sc->hw_if->commit_settings(sc->hw_hdl);
7797 if (error) {
7798 audio_exit_exclusive(sc);
7799 break;
7800 }
7801 }
7802 mixer_signal(sc);
7803 audio_exit_exclusive(sc);
7804 break;
7805
7806 default:
7807 if (sc->hw_if->dev_ioctl) {
7808 error = audio_enter_exclusive(sc);
7809 if (error)
7810 break;
7811 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
7812 cmd, addr, flag, l);
7813 audio_exit_exclusive(sc);
7814 } else
7815 error = EINVAL;
7816 break;
7817 }
7818 TRACE(2, "(%lu,'%c',%lu) result %d",
7819 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
7820 return error;
7821 }
7822
7823 /*
7824 * Must be called with sc_lock held.
7825 */
7826 int
7827 au_portof(struct audio_softc *sc, char *name, int class)
7828 {
7829 mixer_devinfo_t mi;
7830
7831 KASSERT(mutex_owned(sc->sc_lock));
7832
7833 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
7834 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
7835 return mi.index;
7836 }
7837 return -1;
7838 }
7839
7840 /*
7841 * Must be called with sc_lock held.
7842 */
7843 void
7844 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
7845 mixer_devinfo_t *mi, const struct portname *tbl)
7846 {
7847 int i, j;
7848
7849 KASSERT(mutex_owned(sc->sc_lock));
7850
7851 ports->index = mi->index;
7852 if (mi->type == AUDIO_MIXER_ENUM) {
7853 ports->isenum = true;
7854 for(i = 0; tbl[i].name; i++)
7855 for(j = 0; j < mi->un.e.num_mem; j++)
7856 if (strcmp(mi->un.e.member[j].label.name,
7857 tbl[i].name) == 0) {
7858 ports->allports |= tbl[i].mask;
7859 ports->aumask[ports->nports] = tbl[i].mask;
7860 ports->misel[ports->nports] =
7861 mi->un.e.member[j].ord;
7862 ports->miport[ports->nports] =
7863 au_portof(sc, mi->un.e.member[j].label.name,
7864 mi->mixer_class);
7865 if (ports->mixerout != -1 &&
7866 ports->miport[ports->nports] != -1)
7867 ports->isdual = true;
7868 ++ports->nports;
7869 }
7870 } else if (mi->type == AUDIO_MIXER_SET) {
7871 for(i = 0; tbl[i].name; i++)
7872 for(j = 0; j < mi->un.s.num_mem; j++)
7873 if (strcmp(mi->un.s.member[j].label.name,
7874 tbl[i].name) == 0) {
7875 ports->allports |= tbl[i].mask;
7876 ports->aumask[ports->nports] = tbl[i].mask;
7877 ports->misel[ports->nports] =
7878 mi->un.s.member[j].mask;
7879 ports->miport[ports->nports] =
7880 au_portof(sc, mi->un.s.member[j].label.name,
7881 mi->mixer_class);
7882 ++ports->nports;
7883 }
7884 }
7885 }
7886
7887 /*
7888 * Must be called with sc_lock && sc_exlock held.
7889 */
7890 int
7891 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
7892 {
7893
7894 KASSERT(mutex_owned(sc->sc_lock));
7895 KASSERT(sc->sc_exlock);
7896
7897 ct->type = AUDIO_MIXER_VALUE;
7898 ct->un.value.num_channels = 2;
7899 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
7900 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
7901 if (audio_set_port(sc, ct) == 0)
7902 return 0;
7903 ct->un.value.num_channels = 1;
7904 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
7905 return audio_set_port(sc, ct);
7906 }
7907
7908 /*
7909 * Must be called with sc_lock && sc_exlock held.
7910 */
7911 int
7912 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
7913 {
7914 int error;
7915
7916 KASSERT(mutex_owned(sc->sc_lock));
7917 KASSERT(sc->sc_exlock);
7918
7919 ct->un.value.num_channels = 2;
7920 if (audio_get_port(sc, ct) == 0) {
7921 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
7922 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
7923 } else {
7924 ct->un.value.num_channels = 1;
7925 error = audio_get_port(sc, ct);
7926 if (error)
7927 return error;
7928 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
7929 }
7930 return 0;
7931 }
7932
7933 /*
7934 * Must be called with sc_lock && sc_exlock held.
7935 */
7936 int
7937 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
7938 int gain, int balance)
7939 {
7940 mixer_ctrl_t ct;
7941 int i, error;
7942 int l, r;
7943 u_int mask;
7944 int nset;
7945
7946 KASSERT(mutex_owned(sc->sc_lock));
7947 KASSERT(sc->sc_exlock);
7948
7949 if (balance == AUDIO_MID_BALANCE) {
7950 l = r = gain;
7951 } else if (balance < AUDIO_MID_BALANCE) {
7952 l = gain;
7953 r = (balance * gain) / AUDIO_MID_BALANCE;
7954 } else {
7955 r = gain;
7956 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
7957 / AUDIO_MID_BALANCE;
7958 }
7959 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
7960
7961 if (ports->index == -1) {
7962 usemaster:
7963 if (ports->master == -1)
7964 return 0; /* just ignore it silently */
7965 ct.dev = ports->master;
7966 error = au_set_lr_value(sc, &ct, l, r);
7967 } else {
7968 ct.dev = ports->index;
7969 if (ports->isenum) {
7970 ct.type = AUDIO_MIXER_ENUM;
7971 error = audio_get_port(sc, &ct);
7972 if (error)
7973 return error;
7974 if (ports->isdual) {
7975 if (ports->cur_port == -1)
7976 ct.dev = ports->master;
7977 else
7978 ct.dev = ports->miport[ports->cur_port];
7979 error = au_set_lr_value(sc, &ct, l, r);
7980 } else {
7981 for(i = 0; i < ports->nports; i++)
7982 if (ports->misel[i] == ct.un.ord) {
7983 ct.dev = ports->miport[i];
7984 if (ct.dev == -1 ||
7985 au_set_lr_value(sc, &ct, l, r))
7986 goto usemaster;
7987 else
7988 break;
7989 }
7990 }
7991 } else {
7992 ct.type = AUDIO_MIXER_SET;
7993 error = audio_get_port(sc, &ct);
7994 if (error)
7995 return error;
7996 mask = ct.un.mask;
7997 nset = 0;
7998 for(i = 0; i < ports->nports; i++) {
7999 if (ports->misel[i] & mask) {
8000 ct.dev = ports->miport[i];
8001 if (ct.dev != -1 &&
8002 au_set_lr_value(sc, &ct, l, r) == 0)
8003 nset++;
8004 }
8005 }
8006 if (nset == 0)
8007 goto usemaster;
8008 }
8009 }
8010 if (!error)
8011 mixer_signal(sc);
8012 return error;
8013 }
8014
8015 /*
8016 * Must be called with sc_lock && sc_exlock held.
8017 */
8018 void
8019 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8020 u_int *pgain, u_char *pbalance)
8021 {
8022 mixer_ctrl_t ct;
8023 int i, l, r, n;
8024 int lgain, rgain;
8025
8026 KASSERT(mutex_owned(sc->sc_lock));
8027 KASSERT(sc->sc_exlock);
8028
8029 lgain = AUDIO_MAX_GAIN / 2;
8030 rgain = AUDIO_MAX_GAIN / 2;
8031 if (ports->index == -1) {
8032 usemaster:
8033 if (ports->master == -1)
8034 goto bad;
8035 ct.dev = ports->master;
8036 ct.type = AUDIO_MIXER_VALUE;
8037 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8038 goto bad;
8039 } else {
8040 ct.dev = ports->index;
8041 if (ports->isenum) {
8042 ct.type = AUDIO_MIXER_ENUM;
8043 if (audio_get_port(sc, &ct))
8044 goto bad;
8045 ct.type = AUDIO_MIXER_VALUE;
8046 if (ports->isdual) {
8047 if (ports->cur_port == -1)
8048 ct.dev = ports->master;
8049 else
8050 ct.dev = ports->miport[ports->cur_port];
8051 au_get_lr_value(sc, &ct, &lgain, &rgain);
8052 } else {
8053 for(i = 0; i < ports->nports; i++)
8054 if (ports->misel[i] == ct.un.ord) {
8055 ct.dev = ports->miport[i];
8056 if (ct.dev == -1 ||
8057 au_get_lr_value(sc, &ct,
8058 &lgain, &rgain))
8059 goto usemaster;
8060 else
8061 break;
8062 }
8063 }
8064 } else {
8065 ct.type = AUDIO_MIXER_SET;
8066 if (audio_get_port(sc, &ct))
8067 goto bad;
8068 ct.type = AUDIO_MIXER_VALUE;
8069 lgain = rgain = n = 0;
8070 for(i = 0; i < ports->nports; i++) {
8071 if (ports->misel[i] & ct.un.mask) {
8072 ct.dev = ports->miport[i];
8073 if (ct.dev == -1 ||
8074 au_get_lr_value(sc, &ct, &l, &r))
8075 goto usemaster;
8076 else {
8077 lgain += l;
8078 rgain += r;
8079 n++;
8080 }
8081 }
8082 }
8083 if (n != 0) {
8084 lgain /= n;
8085 rgain /= n;
8086 }
8087 }
8088 }
8089 bad:
8090 if (lgain == rgain) { /* handles lgain==rgain==0 */
8091 *pgain = lgain;
8092 *pbalance = AUDIO_MID_BALANCE;
8093 } else if (lgain < rgain) {
8094 *pgain = rgain;
8095 /* balance should be > AUDIO_MID_BALANCE */
8096 *pbalance = AUDIO_RIGHT_BALANCE -
8097 (AUDIO_MID_BALANCE * lgain) / rgain;
8098 } else /* lgain > rgain */ {
8099 *pgain = lgain;
8100 /* balance should be < AUDIO_MID_BALANCE */
8101 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8102 }
8103 }
8104
8105 /*
8106 * Must be called with sc_lock && sc_exlock held.
8107 */
8108 int
8109 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8110 {
8111 mixer_ctrl_t ct;
8112 int i, error, use_mixerout;
8113
8114 KASSERT(mutex_owned(sc->sc_lock));
8115 KASSERT(sc->sc_exlock);
8116
8117 use_mixerout = 1;
8118 if (port == 0) {
8119 if (ports->allports == 0)
8120 return 0; /* Allow this special case. */
8121 else if (ports->isdual) {
8122 if (ports->cur_port == -1) {
8123 return 0;
8124 } else {
8125 port = ports->aumask[ports->cur_port];
8126 ports->cur_port = -1;
8127 use_mixerout = 0;
8128 }
8129 }
8130 }
8131 if (ports->index == -1)
8132 return EINVAL;
8133 ct.dev = ports->index;
8134 if (ports->isenum) {
8135 if (port & (port-1))
8136 return EINVAL; /* Only one port allowed */
8137 ct.type = AUDIO_MIXER_ENUM;
8138 error = EINVAL;
8139 for(i = 0; i < ports->nports; i++)
8140 if (ports->aumask[i] == port) {
8141 if (ports->isdual && use_mixerout) {
8142 ct.un.ord = ports->mixerout;
8143 ports->cur_port = i;
8144 } else {
8145 ct.un.ord = ports->misel[i];
8146 }
8147 error = audio_set_port(sc, &ct);
8148 break;
8149 }
8150 } else {
8151 ct.type = AUDIO_MIXER_SET;
8152 ct.un.mask = 0;
8153 for(i = 0; i < ports->nports; i++)
8154 if (ports->aumask[i] & port)
8155 ct.un.mask |= ports->misel[i];
8156 if (port != 0 && ct.un.mask == 0)
8157 error = EINVAL;
8158 else
8159 error = audio_set_port(sc, &ct);
8160 }
8161 if (!error)
8162 mixer_signal(sc);
8163 return error;
8164 }
8165
8166 /*
8167 * Must be called with sc_lock && sc_exlock held.
8168 */
8169 int
8170 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8171 {
8172 mixer_ctrl_t ct;
8173 int i, aumask;
8174
8175 KASSERT(mutex_owned(sc->sc_lock));
8176 KASSERT(sc->sc_exlock);
8177
8178 if (ports->index == -1)
8179 return 0;
8180 ct.dev = ports->index;
8181 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8182 if (audio_get_port(sc, &ct))
8183 return 0;
8184 aumask = 0;
8185 if (ports->isenum) {
8186 if (ports->isdual && ports->cur_port != -1) {
8187 if (ports->mixerout == ct.un.ord)
8188 aumask = ports->aumask[ports->cur_port];
8189 else
8190 ports->cur_port = -1;
8191 }
8192 if (aumask == 0)
8193 for(i = 0; i < ports->nports; i++)
8194 if (ports->misel[i] == ct.un.ord)
8195 aumask = ports->aumask[i];
8196 } else {
8197 for(i = 0; i < ports->nports; i++)
8198 if (ct.un.mask & ports->misel[i])
8199 aumask |= ports->aumask[i];
8200 }
8201 return aumask;
8202 }
8203
8204 /*
8205 * It returns 0 if success, otherwise errno.
8206 * Must be called only if sc->sc_monitor_port != -1.
8207 * Must be called with sc_lock && sc_exlock held.
8208 */
8209 static int
8210 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8211 {
8212 mixer_ctrl_t ct;
8213
8214 KASSERT(mutex_owned(sc->sc_lock));
8215 KASSERT(sc->sc_exlock);
8216
8217 ct.dev = sc->sc_monitor_port;
8218 ct.type = AUDIO_MIXER_VALUE;
8219 ct.un.value.num_channels = 1;
8220 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8221 return audio_set_port(sc, &ct);
8222 }
8223
8224 /*
8225 * It returns monitor gain if success, otherwise -1.
8226 * Must be called only if sc->sc_monitor_port != -1.
8227 * Must be called with sc_lock && sc_exlock held.
8228 */
8229 static int
8230 au_get_monitor_gain(struct audio_softc *sc)
8231 {
8232 mixer_ctrl_t ct;
8233
8234 KASSERT(mutex_owned(sc->sc_lock));
8235 KASSERT(sc->sc_exlock);
8236
8237 ct.dev = sc->sc_monitor_port;
8238 ct.type = AUDIO_MIXER_VALUE;
8239 ct.un.value.num_channels = 1;
8240 if (audio_get_port(sc, &ct))
8241 return -1;
8242 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8243 }
8244
8245 /*
8246 * Must be called with sc_lock && sc_exlock held.
8247 */
8248 static int
8249 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8250 {
8251
8252 KASSERT(mutex_owned(sc->sc_lock));
8253 KASSERT(sc->sc_exlock);
8254
8255 return sc->hw_if->set_port(sc->hw_hdl, mc);
8256 }
8257
8258 /*
8259 * Must be called with sc_lock && sc_exlock held.
8260 */
8261 static int
8262 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8263 {
8264
8265 KASSERT(mutex_owned(sc->sc_lock));
8266 KASSERT(sc->sc_exlock);
8267
8268 return sc->hw_if->get_port(sc->hw_hdl, mc);
8269 }
8270
8271 /*
8272 * Must be called with sc_lock && sc_exlock held.
8273 */
8274 static void
8275 audio_mixer_capture(struct audio_softc *sc)
8276 {
8277 mixer_devinfo_t mi;
8278 mixer_ctrl_t *mc;
8279
8280 KASSERT(mutex_owned(sc->sc_lock));
8281 KASSERT(sc->sc_exlock);
8282
8283 for (mi.index = 0;; mi.index++) {
8284 if (audio_query_devinfo(sc, &mi) != 0)
8285 break;
8286 KASSERT(mi.index < sc->sc_nmixer_states);
8287 if (mi.type == AUDIO_MIXER_CLASS)
8288 continue;
8289 mc = &sc->sc_mixer_state[mi.index];
8290 mc->dev = mi.index;
8291 mc->type = mi.type;
8292 mc->un.value.num_channels = mi.un.v.num_channels;
8293 (void)audio_get_port(sc, mc);
8294 }
8295
8296 return;
8297 }
8298
8299 /*
8300 * Must be called with sc_lock && sc_exlock held.
8301 */
8302 static void
8303 audio_mixer_restore(struct audio_softc *sc)
8304 {
8305 mixer_devinfo_t mi;
8306 mixer_ctrl_t *mc;
8307
8308 KASSERT(mutex_owned(sc->sc_lock));
8309 KASSERT(sc->sc_exlock);
8310
8311 for (mi.index = 0; ; mi.index++) {
8312 if (audio_query_devinfo(sc, &mi) != 0)
8313 break;
8314 if (mi.type == AUDIO_MIXER_CLASS)
8315 continue;
8316 mc = &sc->sc_mixer_state[mi.index];
8317 (void)audio_set_port(sc, mc);
8318 }
8319 if (sc->hw_if->commit_settings)
8320 sc->hw_if->commit_settings(sc->hw_hdl);
8321
8322 return;
8323 }
8324
8325 static void
8326 audio_volume_down(device_t dv)
8327 {
8328 struct audio_softc *sc = device_private(dv);
8329 mixer_devinfo_t mi;
8330 int newgain;
8331 u_int gain;
8332 u_char balance;
8333
8334 if (audio_enter_exclusive(sc) != 0)
8335 return;
8336 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8337 mi.index = sc->sc_outports.master;
8338 mi.un.v.delta = 0;
8339 if (audio_query_devinfo(sc, &mi) == 0) {
8340 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8341 newgain = gain - mi.un.v.delta;
8342 if (newgain < AUDIO_MIN_GAIN)
8343 newgain = AUDIO_MIN_GAIN;
8344 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8345 }
8346 }
8347 audio_exit_exclusive(sc);
8348 }
8349
8350 static void
8351 audio_volume_up(device_t dv)
8352 {
8353 struct audio_softc *sc = device_private(dv);
8354 mixer_devinfo_t mi;
8355 u_int gain, newgain;
8356 u_char balance;
8357
8358 if (audio_enter_exclusive(sc) != 0)
8359 return;
8360 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8361 mi.index = sc->sc_outports.master;
8362 mi.un.v.delta = 0;
8363 if (audio_query_devinfo(sc, &mi) == 0) {
8364 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8365 newgain = gain + mi.un.v.delta;
8366 if (newgain > AUDIO_MAX_GAIN)
8367 newgain = AUDIO_MAX_GAIN;
8368 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8369 }
8370 }
8371 audio_exit_exclusive(sc);
8372 }
8373
8374 static void
8375 audio_volume_toggle(device_t dv)
8376 {
8377 struct audio_softc *sc = device_private(dv);
8378 u_int gain, newgain;
8379 u_char balance;
8380
8381 if (audio_enter_exclusive(sc) != 0)
8382 return;
8383 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8384 if (gain != 0) {
8385 sc->sc_lastgain = gain;
8386 newgain = 0;
8387 } else
8388 newgain = sc->sc_lastgain;
8389 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8390 audio_exit_exclusive(sc);
8391 }
8392
8393 static int
8394 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8395 {
8396
8397 KASSERT(mutex_owned(sc->sc_lock));
8398
8399 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8400 }
8401
8402 #endif /* NAUDIO > 0 */
8403
8404 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8405 #include <sys/param.h>
8406 #include <sys/systm.h>
8407 #include <sys/device.h>
8408 #include <sys/audioio.h>
8409 #include <dev/audio/audio_if.h>
8410 #endif
8411
8412 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8413 int
8414 audioprint(void *aux, const char *pnp)
8415 {
8416 struct audio_attach_args *arg;
8417 const char *type;
8418
8419 if (pnp != NULL) {
8420 arg = aux;
8421 switch (arg->type) {
8422 case AUDIODEV_TYPE_AUDIO:
8423 type = "audio";
8424 break;
8425 case AUDIODEV_TYPE_MIDI:
8426 type = "midi";
8427 break;
8428 case AUDIODEV_TYPE_OPL:
8429 type = "opl";
8430 break;
8431 case AUDIODEV_TYPE_MPU:
8432 type = "mpu";
8433 break;
8434 default:
8435 panic("audioprint: unknown type %d", arg->type);
8436 }
8437 aprint_normal("%s at %s", type, pnp);
8438 }
8439 return UNCONF;
8440 }
8441
8442 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8443
8444 #ifdef _MODULE
8445
8446 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8447
8448 #include "ioconf.c"
8449
8450 #endif
8451
8452 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8453
8454 static int
8455 audio_modcmd(modcmd_t cmd, void *arg)
8456 {
8457 int error = 0;
8458
8459 #ifdef _MODULE
8460 switch (cmd) {
8461 case MODULE_CMD_INIT:
8462 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8463 &audio_cdevsw, &audio_cmajor);
8464 if (error)
8465 break;
8466
8467 error = config_init_component(cfdriver_ioconf_audio,
8468 cfattach_ioconf_audio, cfdata_ioconf_audio);
8469 if (error) {
8470 devsw_detach(NULL, &audio_cdevsw);
8471 }
8472 break;
8473 case MODULE_CMD_FINI:
8474 devsw_detach(NULL, &audio_cdevsw);
8475 error = config_fini_component(cfdriver_ioconf_audio,
8476 cfattach_ioconf_audio, cfdata_ioconf_audio);
8477 if (error)
8478 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8479 &audio_cdevsw, &audio_cmajor);
8480 break;
8481 default:
8482 error = ENOTTY;
8483 break;
8484 }
8485 #endif
8486
8487 return error;
8488 }
8489