audio.c revision 1.47 1 /* $NetBSD: audio.c,v 1.47 2020/02/22 06:58:39 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - + (*1)
122 * freem - - + (*1)
123 * round_buffersize - x
124 * get_props - x Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * *1 Note: Before 8.0, since these have been called only at attach time,
131 * neither lock were necessary. Currently, on the other hand, since
132 * these may be also called after attach, the thread lock is required.
133 *
134 * In addition, there is an additional lock.
135 *
136 * - track->lock. This is an atomic variable and is similar to the
137 * "interrupt lock". This is one for each track. If any thread context
138 * (and software interrupt context) and hardware interrupt context who
139 * want to access some variables on this track, they must acquire this
140 * lock before. It protects track's consistency between hardware
141 * interrupt context and others.
142 */
143
144 #include <sys/cdefs.h>
145 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.47 2020/02/22 06:58:39 isaki Exp $");
146
147 #ifdef _KERNEL_OPT
148 #include "audio.h"
149 #include "midi.h"
150 #endif
151
152 #if NAUDIO > 0
153
154 #include <sys/types.h>
155 #include <sys/param.h>
156 #include <sys/atomic.h>
157 #include <sys/audioio.h>
158 #include <sys/conf.h>
159 #include <sys/cpu.h>
160 #include <sys/device.h>
161 #include <sys/fcntl.h>
162 #include <sys/file.h>
163 #include <sys/filedesc.h>
164 #include <sys/intr.h>
165 #include <sys/ioctl.h>
166 #include <sys/kauth.h>
167 #include <sys/kernel.h>
168 #include <sys/kmem.h>
169 #include <sys/malloc.h>
170 #include <sys/mman.h>
171 #include <sys/module.h>
172 #include <sys/poll.h>
173 #include <sys/proc.h>
174 #include <sys/queue.h>
175 #include <sys/select.h>
176 #include <sys/signalvar.h>
177 #include <sys/stat.h>
178 #include <sys/sysctl.h>
179 #include <sys/systm.h>
180 #include <sys/syslog.h>
181 #include <sys/vnode.h>
182
183 #include <dev/audio/audio_if.h>
184 #include <dev/audio/audiovar.h>
185 #include <dev/audio/audiodef.h>
186 #include <dev/audio/linear.h>
187 #include <dev/audio/mulaw.h>
188
189 #include <machine/endian.h>
190
191 #include <uvm/uvm.h>
192
193 #include "ioconf.h"
194
195 /*
196 * 0: No debug logs
197 * 1: action changes like open/close/set_format...
198 * 2: + normal operations like read/write/ioctl...
199 * 3: + TRACEs except interrupt
200 * 4: + TRACEs including interrupt
201 */
202 //#define AUDIO_DEBUG 1
203
204 #if defined(AUDIO_DEBUG)
205
206 int audiodebug = AUDIO_DEBUG;
207 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
208 const char *, va_list);
209 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
210 __printflike(3, 4);
211 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
212 __printflike(3, 4);
213 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
214 __printflike(3, 4);
215
216 /* XXX sloppy memory logger */
217 static void audio_mlog_init(void);
218 static void audio_mlog_free(void);
219 static void audio_mlog_softintr(void *);
220 extern void audio_mlog_flush(void);
221 extern void audio_mlog_printf(const char *, ...);
222
223 static int mlog_refs; /* reference counter */
224 static char *mlog_buf[2]; /* double buffer */
225 static int mlog_buflen; /* buffer length */
226 static int mlog_used; /* used length */
227 static int mlog_full; /* number of dropped lines by buffer full */
228 static int mlog_drop; /* number of dropped lines by busy */
229 static volatile uint32_t mlog_inuse; /* in-use */
230 static int mlog_wpage; /* active page */
231 static void *mlog_sih; /* softint handle */
232
233 static void
234 audio_mlog_init(void)
235 {
236 mlog_refs++;
237 if (mlog_refs > 1)
238 return;
239 mlog_buflen = 4096;
240 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
241 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
242 mlog_used = 0;
243 mlog_full = 0;
244 mlog_drop = 0;
245 mlog_inuse = 0;
246 mlog_wpage = 0;
247 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
248 if (mlog_sih == NULL)
249 printf("%s: softint_establish failed\n", __func__);
250 }
251
252 static void
253 audio_mlog_free(void)
254 {
255 mlog_refs--;
256 if (mlog_refs > 0)
257 return;
258
259 audio_mlog_flush();
260 if (mlog_sih)
261 softint_disestablish(mlog_sih);
262 kmem_free(mlog_buf[0], mlog_buflen);
263 kmem_free(mlog_buf[1], mlog_buflen);
264 }
265
266 /*
267 * Flush memory buffer.
268 * It must not be called from hardware interrupt context.
269 */
270 void
271 audio_mlog_flush(void)
272 {
273 if (mlog_refs == 0)
274 return;
275
276 /* Nothing to do if already in use ? */
277 if (atomic_swap_32(&mlog_inuse, 1) == 1)
278 return;
279
280 int rpage = mlog_wpage;
281 mlog_wpage ^= 1;
282 mlog_buf[mlog_wpage][0] = '\0';
283 mlog_used = 0;
284
285 atomic_swap_32(&mlog_inuse, 0);
286
287 if (mlog_buf[rpage][0] != '\0') {
288 printf("%s", mlog_buf[rpage]);
289 if (mlog_drop > 0)
290 printf("mlog_drop %d\n", mlog_drop);
291 if (mlog_full > 0)
292 printf("mlog_full %d\n", mlog_full);
293 }
294 mlog_full = 0;
295 mlog_drop = 0;
296 }
297
298 static void
299 audio_mlog_softintr(void *cookie)
300 {
301 audio_mlog_flush();
302 }
303
304 void
305 audio_mlog_printf(const char *fmt, ...)
306 {
307 int len;
308 va_list ap;
309
310 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
311 /* already inuse */
312 mlog_drop++;
313 return;
314 }
315
316 va_start(ap, fmt);
317 len = vsnprintf(
318 mlog_buf[mlog_wpage] + mlog_used,
319 mlog_buflen - mlog_used,
320 fmt, ap);
321 va_end(ap);
322
323 mlog_used += len;
324 if (mlog_buflen - mlog_used <= 1) {
325 mlog_full++;
326 }
327
328 atomic_swap_32(&mlog_inuse, 0);
329
330 if (mlog_sih)
331 softint_schedule(mlog_sih);
332 }
333
334 /* trace functions */
335 static void
336 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
337 const char *fmt, va_list ap)
338 {
339 char buf[256];
340 int n;
341
342 n = 0;
343 buf[0] = '\0';
344 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
345 funcname, device_unit(sc->sc_dev), header);
346 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
347
348 if (cpu_intr_p()) {
349 audio_mlog_printf("%s\n", buf);
350 } else {
351 audio_mlog_flush();
352 printf("%s\n", buf);
353 }
354 }
355
356 static void
357 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
358 {
359 va_list ap;
360
361 va_start(ap, fmt);
362 audio_vtrace(sc, funcname, "", fmt, ap);
363 va_end(ap);
364 }
365
366 static void
367 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
368 {
369 char hdr[16];
370 va_list ap;
371
372 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
373 va_start(ap, fmt);
374 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
375 va_end(ap);
376 }
377
378 static void
379 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
380 {
381 char hdr[32];
382 char phdr[16], rhdr[16];
383 va_list ap;
384
385 phdr[0] = '\0';
386 rhdr[0] = '\0';
387 if (file->ptrack)
388 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
389 if (file->rtrack)
390 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
391 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
392
393 va_start(ap, fmt);
394 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
395 va_end(ap);
396 }
397
398 #define DPRINTF(n, fmt...) do { \
399 if (audiodebug >= (n)) { \
400 audio_mlog_flush(); \
401 printf(fmt); \
402 } \
403 } while (0)
404 #define TRACE(n, fmt...) do { \
405 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
406 } while (0)
407 #define TRACET(n, t, fmt...) do { \
408 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
409 } while (0)
410 #define TRACEF(n, f, fmt...) do { \
411 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
412 } while (0)
413
414 struct audio_track_debugbuf {
415 char usrbuf[32];
416 char codec[32];
417 char chvol[32];
418 char chmix[32];
419 char freq[32];
420 char outbuf[32];
421 };
422
423 static void
424 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
425 {
426
427 memset(buf, 0, sizeof(*buf));
428
429 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
430 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
431 if (track->freq.filter)
432 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
433 track->freq.srcbuf.head,
434 track->freq.srcbuf.used,
435 track->freq.srcbuf.capacity);
436 if (track->chmix.filter)
437 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
438 track->chmix.srcbuf.used);
439 if (track->chvol.filter)
440 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
441 track->chvol.srcbuf.used);
442 if (track->codec.filter)
443 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
444 track->codec.srcbuf.used);
445 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
446 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
447 }
448 #else
449 #define DPRINTF(n, fmt...) do { } while (0)
450 #define TRACE(n, fmt, ...) do { } while (0)
451 #define TRACET(n, t, fmt, ...) do { } while (0)
452 #define TRACEF(n, f, fmt, ...) do { } while (0)
453 #endif
454
455 #define SPECIFIED(x) ((x) != ~0)
456 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
457
458 /* Device timeout in msec */
459 #define AUDIO_TIMEOUT (3000)
460
461 /* #define AUDIO_PM_IDLE */
462 #ifdef AUDIO_PM_IDLE
463 int audio_idle_timeout = 30;
464 #endif
465
466 /* Number of elements of async mixer's pid */
467 #define AM_CAPACITY (4)
468
469 struct portname {
470 const char *name;
471 int mask;
472 };
473
474 static int audiomatch(device_t, cfdata_t, void *);
475 static void audioattach(device_t, device_t, void *);
476 static int audiodetach(device_t, int);
477 static int audioactivate(device_t, enum devact);
478 static void audiochilddet(device_t, device_t);
479 static int audiorescan(device_t, const char *, const int *);
480
481 static int audio_modcmd(modcmd_t, void *);
482
483 #ifdef AUDIO_PM_IDLE
484 static void audio_idle(void *);
485 static void audio_activity(device_t, devactive_t);
486 #endif
487
488 static bool audio_suspend(device_t dv, const pmf_qual_t *);
489 static bool audio_resume(device_t dv, const pmf_qual_t *);
490 static void audio_volume_down(device_t);
491 static void audio_volume_up(device_t);
492 static void audio_volume_toggle(device_t);
493
494 static void audio_mixer_capture(struct audio_softc *);
495 static void audio_mixer_restore(struct audio_softc *);
496
497 static void audio_softintr_rd(void *);
498 static void audio_softintr_wr(void *);
499
500 static int audio_enter_exclusive(struct audio_softc *);
501 static void audio_exit_exclusive(struct audio_softc *);
502 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
503
504 static int audioclose(struct file *);
505 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
506 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
507 static int audioioctl(struct file *, u_long, void *);
508 static int audiopoll(struct file *, int);
509 static int audiokqfilter(struct file *, struct knote *);
510 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
511 struct uvm_object **, int *);
512 static int audiostat(struct file *, struct stat *);
513
514 static void filt_audiowrite_detach(struct knote *);
515 static int filt_audiowrite_event(struct knote *, long);
516 static void filt_audioread_detach(struct knote *);
517 static int filt_audioread_event(struct knote *, long);
518
519 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
520 audio_file_t **);
521 static int audio_close(struct audio_softc *, audio_file_t *);
522 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
523 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
524 static void audio_file_clear(struct audio_softc *, audio_file_t *);
525 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
526 struct lwp *, audio_file_t *);
527 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
528 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
529 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
530 struct uvm_object **, int *, audio_file_t *);
531
532 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
533 static int audioctl_close(struct audio_softc *, audio_file_t *);
534
535 static void audio_pintr(void *);
536 static void audio_rintr(void *);
537
538 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
539
540 static __inline int audio_track_readablebytes(const audio_track_t *);
541 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
542 const struct audio_info *);
543 static int audio_track_setinfo_check(audio_format2_t *,
544 const struct audio_prinfo *, const audio_format2_t *);
545 static void audio_track_setinfo_water(audio_track_t *,
546 const struct audio_info *);
547 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
548 struct audio_info *);
549 static int audio_hw_set_format(struct audio_softc *, int,
550 const audio_format2_t *, const audio_format2_t *,
551 audio_filter_reg_t *, audio_filter_reg_t *);
552 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
553 audio_file_t *);
554 static bool audio_can_playback(struct audio_softc *);
555 static bool audio_can_capture(struct audio_softc *);
556 static int audio_check_params(audio_format2_t *);
557 static int audio_mixers_init(struct audio_softc *sc, int,
558 const audio_format2_t *, const audio_format2_t *,
559 const audio_filter_reg_t *, const audio_filter_reg_t *);
560 static int audio_select_freq(const struct audio_format *);
561 static int audio_hw_probe(struct audio_softc *, int, int *,
562 audio_format2_t *, audio_format2_t *);
563 static int audio_hw_probe_fmt(struct audio_softc *, audio_format2_t *, int);
564 static int audio_hw_validate_format(struct audio_softc *, int,
565 const audio_format2_t *);
566 static int audio_mixers_set_format(struct audio_softc *,
567 const struct audio_info *);
568 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
569 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
570 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
571 #if defined(AUDIO_DEBUG)
572 static int audio_sysctl_debug(SYSCTLFN_PROTO);
573 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
574 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
575 #endif
576
577 static void *audio_realloc(void *, size_t);
578 static int audio_realloc_usrbuf(audio_track_t *, int);
579 static void audio_free_usrbuf(audio_track_t *);
580
581 static audio_track_t *audio_track_create(struct audio_softc *,
582 audio_trackmixer_t *);
583 static void audio_track_destroy(audio_track_t *);
584 static audio_filter_t audio_track_get_codec(audio_track_t *,
585 const audio_format2_t *, const audio_format2_t *);
586 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
587 static void audio_track_play(audio_track_t *);
588 static int audio_track_drain(struct audio_softc *, audio_track_t *);
589 static void audio_track_record(audio_track_t *);
590 static void audio_track_clear(struct audio_softc *, audio_track_t *);
591
592 static int audio_mixer_init(struct audio_softc *, int,
593 const audio_format2_t *, const audio_filter_reg_t *);
594 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
595 static void audio_pmixer_start(struct audio_softc *, bool);
596 static void audio_pmixer_process(struct audio_softc *);
597 static void audio_pmixer_agc(audio_trackmixer_t *, int);
598 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
599 static void audio_pmixer_output(struct audio_softc *);
600 static int audio_pmixer_halt(struct audio_softc *);
601 static void audio_rmixer_start(struct audio_softc *);
602 static void audio_rmixer_process(struct audio_softc *);
603 static void audio_rmixer_input(struct audio_softc *);
604 static int audio_rmixer_halt(struct audio_softc *);
605
606 static void mixer_init(struct audio_softc *);
607 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
608 static int mixer_close(struct audio_softc *, audio_file_t *);
609 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
610 static void mixer_async_add(struct audio_softc *, pid_t);
611 static void mixer_async_remove(struct audio_softc *, pid_t);
612 static void mixer_signal(struct audio_softc *);
613
614 static int au_portof(struct audio_softc *, char *, int);
615
616 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
617 mixer_devinfo_t *, const struct portname *);
618 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
619 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
620 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
621 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
622 u_int *, u_char *);
623 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
624 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
625 static int au_set_monitor_gain(struct audio_softc *, int);
626 static int au_get_monitor_gain(struct audio_softc *);
627 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
628 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
629
630 static __inline struct audio_params
631 format2_to_params(const audio_format2_t *f2)
632 {
633 audio_params_t p;
634
635 /* validbits/precision <-> precision/stride */
636 p.sample_rate = f2->sample_rate;
637 p.channels = f2->channels;
638 p.encoding = f2->encoding;
639 p.validbits = f2->precision;
640 p.precision = f2->stride;
641 return p;
642 }
643
644 static __inline audio_format2_t
645 params_to_format2(const struct audio_params *p)
646 {
647 audio_format2_t f2;
648
649 /* precision/stride <-> validbits/precision */
650 f2.sample_rate = p->sample_rate;
651 f2.channels = p->channels;
652 f2.encoding = p->encoding;
653 f2.precision = p->validbits;
654 f2.stride = p->precision;
655 return f2;
656 }
657
658 /* Return true if this track is a playback track. */
659 static __inline bool
660 audio_track_is_playback(const audio_track_t *track)
661 {
662
663 return ((track->mode & AUMODE_PLAY) != 0);
664 }
665
666 /* Return true if this track is a recording track. */
667 static __inline bool
668 audio_track_is_record(const audio_track_t *track)
669 {
670
671 return ((track->mode & AUMODE_RECORD) != 0);
672 }
673
674 #if 0 /* XXX Not used yet */
675 /*
676 * Convert 0..255 volume used in userland to internal presentation 0..256.
677 */
678 static __inline u_int
679 audio_volume_to_inner(u_int v)
680 {
681
682 return v < 127 ? v : v + 1;
683 }
684
685 /*
686 * Convert 0..256 internal presentation to 0..255 volume used in userland.
687 */
688 static __inline u_int
689 audio_volume_to_outer(u_int v)
690 {
691
692 return v < 127 ? v : v - 1;
693 }
694 #endif /* 0 */
695
696 static dev_type_open(audioopen);
697 /* XXXMRG use more dev_type_xxx */
698
699 const struct cdevsw audio_cdevsw = {
700 .d_open = audioopen,
701 .d_close = noclose,
702 .d_read = noread,
703 .d_write = nowrite,
704 .d_ioctl = noioctl,
705 .d_stop = nostop,
706 .d_tty = notty,
707 .d_poll = nopoll,
708 .d_mmap = nommap,
709 .d_kqfilter = nokqfilter,
710 .d_discard = nodiscard,
711 .d_flag = D_OTHER | D_MPSAFE
712 };
713
714 const struct fileops audio_fileops = {
715 .fo_name = "audio",
716 .fo_read = audioread,
717 .fo_write = audiowrite,
718 .fo_ioctl = audioioctl,
719 .fo_fcntl = fnullop_fcntl,
720 .fo_stat = audiostat,
721 .fo_poll = audiopoll,
722 .fo_close = audioclose,
723 .fo_mmap = audiommap,
724 .fo_kqfilter = audiokqfilter,
725 .fo_restart = fnullop_restart
726 };
727
728 /* The default audio mode: 8 kHz mono mu-law */
729 static const struct audio_params audio_default = {
730 .sample_rate = 8000,
731 .encoding = AUDIO_ENCODING_ULAW,
732 .precision = 8,
733 .validbits = 8,
734 .channels = 1,
735 };
736
737 static const char *encoding_names[] = {
738 "none",
739 AudioEmulaw,
740 AudioEalaw,
741 "pcm16",
742 "pcm8",
743 AudioEadpcm,
744 AudioEslinear_le,
745 AudioEslinear_be,
746 AudioEulinear_le,
747 AudioEulinear_be,
748 AudioEslinear,
749 AudioEulinear,
750 AudioEmpeg_l1_stream,
751 AudioEmpeg_l1_packets,
752 AudioEmpeg_l1_system,
753 AudioEmpeg_l2_stream,
754 AudioEmpeg_l2_packets,
755 AudioEmpeg_l2_system,
756 AudioEac3,
757 };
758
759 /*
760 * Returns encoding name corresponding to AUDIO_ENCODING_*.
761 * Note that it may return a local buffer because it is mainly for debugging.
762 */
763 const char *
764 audio_encoding_name(int encoding)
765 {
766 static char buf[16];
767
768 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
769 return encoding_names[encoding];
770 } else {
771 snprintf(buf, sizeof(buf), "enc=%d", encoding);
772 return buf;
773 }
774 }
775
776 /*
777 * Supported encodings used by AUDIO_GETENC.
778 * index and flags are set by code.
779 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
780 */
781 static const audio_encoding_t audio_encodings[] = {
782 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
783 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
784 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
785 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
786 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
787 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
788 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
789 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
790 #if defined(AUDIO_SUPPORT_LINEAR24)
791 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
792 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
793 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
794 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
795 #endif
796 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
797 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
798 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
799 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
800 };
801
802 static const struct portname itable[] = {
803 { AudioNmicrophone, AUDIO_MICROPHONE },
804 { AudioNline, AUDIO_LINE_IN },
805 { AudioNcd, AUDIO_CD },
806 { 0, 0 }
807 };
808 static const struct portname otable[] = {
809 { AudioNspeaker, AUDIO_SPEAKER },
810 { AudioNheadphone, AUDIO_HEADPHONE },
811 { AudioNline, AUDIO_LINE_OUT },
812 { 0, 0 }
813 };
814
815 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
816 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
817 audiochilddet, DVF_DETACH_SHUTDOWN);
818
819 static int
820 audiomatch(device_t parent, cfdata_t match, void *aux)
821 {
822 struct audio_attach_args *sa;
823
824 sa = aux;
825 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
826 __func__, sa->type, sa, sa->hwif);
827 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
828 }
829
830 static void
831 audioattach(device_t parent, device_t self, void *aux)
832 {
833 struct audio_softc *sc;
834 struct audio_attach_args *sa;
835 const struct audio_hw_if *hw_if;
836 audio_format2_t phwfmt;
837 audio_format2_t rhwfmt;
838 audio_filter_reg_t pfil;
839 audio_filter_reg_t rfil;
840 const struct sysctlnode *node;
841 void *hdlp;
842 bool has_playback;
843 bool has_capture;
844 bool has_indep;
845 bool has_fulldup;
846 int mode;
847 int error;
848
849 sc = device_private(self);
850 sc->sc_dev = self;
851 sa = (struct audio_attach_args *)aux;
852 hw_if = sa->hwif;
853 hdlp = sa->hdl;
854
855 if (hw_if == NULL || hw_if->get_locks == NULL) {
856 panic("audioattach: missing hw_if method");
857 }
858
859 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
860
861 #ifdef DIAGNOSTIC
862 if (hw_if->query_format == NULL ||
863 hw_if->set_format == NULL ||
864 (hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
865 (hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
866 hw_if->halt_output == NULL ||
867 hw_if->halt_input == NULL ||
868 hw_if->getdev == NULL ||
869 hw_if->set_port == NULL ||
870 hw_if->get_port == NULL ||
871 hw_if->query_devinfo == NULL ||
872 hw_if->get_props == NULL) {
873 aprint_error(": missing method\n");
874 return;
875 }
876 #endif
877
878 sc->hw_if = hw_if;
879 sc->hw_hdl = hdlp;
880 sc->hw_dev = parent;
881
882 sc->sc_blk_ms = AUDIO_BLK_MS;
883 SLIST_INIT(&sc->sc_files);
884 cv_init(&sc->sc_exlockcv, "audiolk");
885 sc->sc_am_capacity = 0;
886 sc->sc_am_used = 0;
887 sc->sc_am = NULL;
888
889 mutex_enter(sc->sc_lock);
890 sc->sc_props = hw_if->get_props(sc->hw_hdl);
891 mutex_exit(sc->sc_lock);
892
893 /* MMAP is now supported by upper layer. */
894 sc->sc_props |= AUDIO_PROP_MMAP;
895
896 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
897 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
898 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
899 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
900
901 KASSERT(has_playback || has_capture);
902 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
903 if (!has_playback || !has_capture) {
904 KASSERT(!has_indep);
905 KASSERT(!has_fulldup);
906 }
907
908 mode = 0;
909 if (has_playback) {
910 aprint_normal(": playback");
911 mode |= AUMODE_PLAY;
912 }
913 if (has_capture) {
914 aprint_normal("%c capture", has_playback ? ',' : ':');
915 mode |= AUMODE_RECORD;
916 }
917 if (has_playback && has_capture) {
918 if (has_fulldup)
919 aprint_normal(", full duplex");
920 else
921 aprint_normal(", half duplex");
922
923 if (has_indep)
924 aprint_normal(", independent");
925 }
926
927 aprint_naive("\n");
928 aprint_normal("\n");
929
930 /* probe hw params */
931 memset(&phwfmt, 0, sizeof(phwfmt));
932 memset(&rhwfmt, 0, sizeof(rhwfmt));
933 memset(&pfil, 0, sizeof(pfil));
934 memset(&rfil, 0, sizeof(rfil));
935 mutex_enter(sc->sc_lock);
936 error = audio_hw_probe(sc, has_indep, &mode, &phwfmt, &rhwfmt);
937 if (error) {
938 mutex_exit(sc->sc_lock);
939 aprint_error_dev(self, "audio_hw_probe failed, "
940 "error = %d\n", error);
941 goto bad;
942 }
943 if (mode == 0) {
944 mutex_exit(sc->sc_lock);
945 aprint_error_dev(self, "audio_hw_probe failed, no mode\n");
946 goto bad;
947 }
948 /* Init hardware. */
949 /* hw_probe() also validates [pr]hwfmt. */
950 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
951 if (error) {
952 mutex_exit(sc->sc_lock);
953 aprint_error_dev(self, "audio_hw_set_format failed, "
954 "error = %d\n", error);
955 goto bad;
956 }
957
958 /*
959 * Init track mixers. If at least one direction is available on
960 * attach time, we assume a success.
961 */
962 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
963 mutex_exit(sc->sc_lock);
964 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
965 aprint_error_dev(self, "audio_mixers_init failed, "
966 "error = %d\n", error);
967 goto bad;
968 }
969
970 selinit(&sc->sc_wsel);
971 selinit(&sc->sc_rsel);
972
973 /* Initial parameter of /dev/sound */
974 sc->sc_sound_pparams = params_to_format2(&audio_default);
975 sc->sc_sound_rparams = params_to_format2(&audio_default);
976 sc->sc_sound_ppause = false;
977 sc->sc_sound_rpause = false;
978
979 /* XXX TODO: consider about sc_ai */
980
981 mixer_init(sc);
982 TRACE(2, "inputs ports=0x%x, input master=%d, "
983 "output ports=0x%x, output master=%d",
984 sc->sc_inports.allports, sc->sc_inports.master,
985 sc->sc_outports.allports, sc->sc_outports.master);
986
987 sysctl_createv(&sc->sc_log, 0, NULL, &node,
988 0,
989 CTLTYPE_NODE, device_xname(sc->sc_dev),
990 SYSCTL_DESCR("audio test"),
991 NULL, 0,
992 NULL, 0,
993 CTL_HW,
994 CTL_CREATE, CTL_EOL);
995
996 if (node != NULL) {
997 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
998 CTLFLAG_READWRITE,
999 CTLTYPE_INT, "blk_ms",
1000 SYSCTL_DESCR("blocksize in msec"),
1001 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1002 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1003
1004 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1005 CTLFLAG_READWRITE,
1006 CTLTYPE_BOOL, "multiuser",
1007 SYSCTL_DESCR("allow multiple user access"),
1008 audio_sysctl_multiuser, 0, (void *)sc, 0,
1009 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1010
1011 #if defined(AUDIO_DEBUG)
1012 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1013 CTLFLAG_READWRITE,
1014 CTLTYPE_INT, "debug",
1015 SYSCTL_DESCR("debug level (0..4)"),
1016 audio_sysctl_debug, 0, (void *)sc, 0,
1017 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1018 #endif
1019 }
1020
1021 #ifdef AUDIO_PM_IDLE
1022 callout_init(&sc->sc_idle_counter, 0);
1023 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1024 #endif
1025
1026 if (!pmf_device_register(self, audio_suspend, audio_resume))
1027 aprint_error_dev(self, "couldn't establish power handler\n");
1028 #ifdef AUDIO_PM_IDLE
1029 if (!device_active_register(self, audio_activity))
1030 aprint_error_dev(self, "couldn't register activity handler\n");
1031 #endif
1032
1033 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1034 audio_volume_down, true))
1035 aprint_error_dev(self, "couldn't add volume down handler\n");
1036 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1037 audio_volume_up, true))
1038 aprint_error_dev(self, "couldn't add volume up handler\n");
1039 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1040 audio_volume_toggle, true))
1041 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1042
1043 #ifdef AUDIO_PM_IDLE
1044 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1045 #endif
1046
1047 #if defined(AUDIO_DEBUG)
1048 audio_mlog_init();
1049 #endif
1050
1051 audiorescan(self, "audio", NULL);
1052 return;
1053
1054 bad:
1055 /* Clearing hw_if means that device is attached but disabled. */
1056 sc->hw_if = NULL;
1057 aprint_error_dev(sc->sc_dev, "disabled\n");
1058 return;
1059 }
1060
1061 /*
1062 * Initialize hardware mixer.
1063 * This function is called from audioattach().
1064 */
1065 static void
1066 mixer_init(struct audio_softc *sc)
1067 {
1068 mixer_devinfo_t mi;
1069 int iclass, mclass, oclass, rclass;
1070 int record_master_found, record_source_found;
1071
1072 iclass = mclass = oclass = rclass = -1;
1073 sc->sc_inports.index = -1;
1074 sc->sc_inports.master = -1;
1075 sc->sc_inports.nports = 0;
1076 sc->sc_inports.isenum = false;
1077 sc->sc_inports.allports = 0;
1078 sc->sc_inports.isdual = false;
1079 sc->sc_inports.mixerout = -1;
1080 sc->sc_inports.cur_port = -1;
1081 sc->sc_outports.index = -1;
1082 sc->sc_outports.master = -1;
1083 sc->sc_outports.nports = 0;
1084 sc->sc_outports.isenum = false;
1085 sc->sc_outports.allports = 0;
1086 sc->sc_outports.isdual = false;
1087 sc->sc_outports.mixerout = -1;
1088 sc->sc_outports.cur_port = -1;
1089 sc->sc_monitor_port = -1;
1090 /*
1091 * Read through the underlying driver's list, picking out the class
1092 * names from the mixer descriptions. We'll need them to decode the
1093 * mixer descriptions on the next pass through the loop.
1094 */
1095 mutex_enter(sc->sc_lock);
1096 for(mi.index = 0; ; mi.index++) {
1097 if (audio_query_devinfo(sc, &mi) != 0)
1098 break;
1099 /*
1100 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1101 * All the other types describe an actual mixer.
1102 */
1103 if (mi.type == AUDIO_MIXER_CLASS) {
1104 if (strcmp(mi.label.name, AudioCinputs) == 0)
1105 iclass = mi.mixer_class;
1106 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1107 mclass = mi.mixer_class;
1108 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1109 oclass = mi.mixer_class;
1110 if (strcmp(mi.label.name, AudioCrecord) == 0)
1111 rclass = mi.mixer_class;
1112 }
1113 }
1114 mutex_exit(sc->sc_lock);
1115
1116 /* Allocate save area. Ensure non-zero allocation. */
1117 sc->sc_nmixer_states = mi.index;
1118 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1119 (sc->sc_nmixer_states + 1), KM_SLEEP);
1120
1121 /*
1122 * This is where we assign each control in the "audio" model, to the
1123 * underlying "mixer" control. We walk through the whole list once,
1124 * assigning likely candidates as we come across them.
1125 */
1126 record_master_found = 0;
1127 record_source_found = 0;
1128 mutex_enter(sc->sc_lock);
1129 for(mi.index = 0; ; mi.index++) {
1130 if (audio_query_devinfo(sc, &mi) != 0)
1131 break;
1132 KASSERT(mi.index < sc->sc_nmixer_states);
1133 if (mi.type == AUDIO_MIXER_CLASS)
1134 continue;
1135 if (mi.mixer_class == iclass) {
1136 /*
1137 * AudioCinputs is only a fallback, when we don't
1138 * find what we're looking for in AudioCrecord, so
1139 * check the flags before accepting one of these.
1140 */
1141 if (strcmp(mi.label.name, AudioNmaster) == 0
1142 && record_master_found == 0)
1143 sc->sc_inports.master = mi.index;
1144 if (strcmp(mi.label.name, AudioNsource) == 0
1145 && record_source_found == 0) {
1146 if (mi.type == AUDIO_MIXER_ENUM) {
1147 int i;
1148 for(i = 0; i < mi.un.e.num_mem; i++)
1149 if (strcmp(mi.un.e.member[i].label.name,
1150 AudioNmixerout) == 0)
1151 sc->sc_inports.mixerout =
1152 mi.un.e.member[i].ord;
1153 }
1154 au_setup_ports(sc, &sc->sc_inports, &mi,
1155 itable);
1156 }
1157 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1158 sc->sc_outports.master == -1)
1159 sc->sc_outports.master = mi.index;
1160 } else if (mi.mixer_class == mclass) {
1161 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1162 sc->sc_monitor_port = mi.index;
1163 } else if (mi.mixer_class == oclass) {
1164 if (strcmp(mi.label.name, AudioNmaster) == 0)
1165 sc->sc_outports.master = mi.index;
1166 if (strcmp(mi.label.name, AudioNselect) == 0)
1167 au_setup_ports(sc, &sc->sc_outports, &mi,
1168 otable);
1169 } else if (mi.mixer_class == rclass) {
1170 /*
1171 * These are the preferred mixers for the audio record
1172 * controls, so set the flags here, but don't check.
1173 */
1174 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1175 sc->sc_inports.master = mi.index;
1176 record_master_found = 1;
1177 }
1178 #if 1 /* Deprecated. Use AudioNmaster. */
1179 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1180 sc->sc_inports.master = mi.index;
1181 record_master_found = 1;
1182 }
1183 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1184 sc->sc_inports.master = mi.index;
1185 record_master_found = 1;
1186 }
1187 #endif
1188 if (strcmp(mi.label.name, AudioNsource) == 0) {
1189 if (mi.type == AUDIO_MIXER_ENUM) {
1190 int i;
1191 for(i = 0; i < mi.un.e.num_mem; i++)
1192 if (strcmp(mi.un.e.member[i].label.name,
1193 AudioNmixerout) == 0)
1194 sc->sc_inports.mixerout =
1195 mi.un.e.member[i].ord;
1196 }
1197 au_setup_ports(sc, &sc->sc_inports, &mi,
1198 itable);
1199 record_source_found = 1;
1200 }
1201 }
1202 }
1203 mutex_exit(sc->sc_lock);
1204 }
1205
1206 static int
1207 audioactivate(device_t self, enum devact act)
1208 {
1209 struct audio_softc *sc = device_private(self);
1210
1211 switch (act) {
1212 case DVACT_DEACTIVATE:
1213 mutex_enter(sc->sc_lock);
1214 sc->sc_dying = true;
1215 cv_broadcast(&sc->sc_exlockcv);
1216 mutex_exit(sc->sc_lock);
1217 return 0;
1218 default:
1219 return EOPNOTSUPP;
1220 }
1221 }
1222
1223 static int
1224 audiodetach(device_t self, int flags)
1225 {
1226 struct audio_softc *sc;
1227 int maj, mn;
1228 int error;
1229
1230 sc = device_private(self);
1231 TRACE(2, "flags=%d", flags);
1232
1233 /* device is not initialized */
1234 if (sc->hw_if == NULL)
1235 return 0;
1236
1237 /* Start draining existing accessors of the device. */
1238 error = config_detach_children(self, flags);
1239 if (error)
1240 return error;
1241
1242 mutex_enter(sc->sc_lock);
1243 sc->sc_dying = true;
1244 cv_broadcast(&sc->sc_exlockcv);
1245 if (sc->sc_pmixer)
1246 cv_broadcast(&sc->sc_pmixer->outcv);
1247 if (sc->sc_rmixer)
1248 cv_broadcast(&sc->sc_rmixer->outcv);
1249 mutex_exit(sc->sc_lock);
1250
1251 /* delete sysctl nodes */
1252 sysctl_teardown(&sc->sc_log);
1253
1254 /* locate the major number */
1255 maj = cdevsw_lookup_major(&audio_cdevsw);
1256
1257 /*
1258 * Nuke the vnodes for any open instances (calls close).
1259 * Will wait until any activity on the device nodes has ceased.
1260 */
1261 mn = device_unit(self);
1262 vdevgone(maj, mn | SOUND_DEVICE, mn | SOUND_DEVICE, VCHR);
1263 vdevgone(maj, mn | AUDIO_DEVICE, mn | AUDIO_DEVICE, VCHR);
1264 vdevgone(maj, mn | AUDIOCTL_DEVICE, mn | AUDIOCTL_DEVICE, VCHR);
1265 vdevgone(maj, mn | MIXER_DEVICE, mn | MIXER_DEVICE, VCHR);
1266
1267 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1268 audio_volume_down, true);
1269 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1270 audio_volume_up, true);
1271 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1272 audio_volume_toggle, true);
1273
1274 #ifdef AUDIO_PM_IDLE
1275 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1276
1277 device_active_deregister(self, audio_activity);
1278 #endif
1279
1280 pmf_device_deregister(self);
1281
1282 /* Free resources */
1283 mutex_enter(sc->sc_lock);
1284 if (sc->sc_pmixer) {
1285 audio_mixer_destroy(sc, sc->sc_pmixer);
1286 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1287 }
1288 if (sc->sc_rmixer) {
1289 audio_mixer_destroy(sc, sc->sc_rmixer);
1290 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1291 }
1292 mutex_exit(sc->sc_lock);
1293 if (sc->sc_am)
1294 kern_free(sc->sc_am);
1295
1296 seldestroy(&sc->sc_wsel);
1297 seldestroy(&sc->sc_rsel);
1298
1299 #ifdef AUDIO_PM_IDLE
1300 callout_destroy(&sc->sc_idle_counter);
1301 #endif
1302
1303 cv_destroy(&sc->sc_exlockcv);
1304
1305 #if defined(AUDIO_DEBUG)
1306 audio_mlog_free();
1307 #endif
1308
1309 return 0;
1310 }
1311
1312 static void
1313 audiochilddet(device_t self, device_t child)
1314 {
1315
1316 /* we hold no child references, so do nothing */
1317 }
1318
1319 static int
1320 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1321 {
1322
1323 if (config_match(parent, cf, aux))
1324 config_attach_loc(parent, cf, locs, aux, NULL);
1325
1326 return 0;
1327 }
1328
1329 static int
1330 audiorescan(device_t self, const char *ifattr, const int *flags)
1331 {
1332 struct audio_softc *sc = device_private(self);
1333
1334 if (!ifattr_match(ifattr, "audio"))
1335 return 0;
1336
1337 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1338
1339 return 0;
1340 }
1341
1342 /*
1343 * Called from hardware driver. This is where the MI audio driver gets
1344 * probed/attached to the hardware driver.
1345 */
1346 device_t
1347 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1348 {
1349 struct audio_attach_args arg;
1350
1351 #ifdef DIAGNOSTIC
1352 if (ahwp == NULL) {
1353 aprint_error("audio_attach_mi: NULL\n");
1354 return 0;
1355 }
1356 #endif
1357 arg.type = AUDIODEV_TYPE_AUDIO;
1358 arg.hwif = ahwp;
1359 arg.hdl = hdlp;
1360 return config_found(dev, &arg, audioprint);
1361 }
1362
1363 /*
1364 * Acquire sc_lock and enter exlock critical section.
1365 * If successful, it returns 0. Otherwise returns errno.
1366 * Must be called without sc_lock held.
1367 */
1368 static int
1369 audio_enter_exclusive(struct audio_softc *sc)
1370 {
1371 int error;
1372
1373 mutex_enter(sc->sc_lock);
1374 if (sc->sc_dying) {
1375 mutex_exit(sc->sc_lock);
1376 return EIO;
1377 }
1378
1379 while (__predict_false(sc->sc_exlock != 0)) {
1380 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1381 if (sc->sc_dying)
1382 error = EIO;
1383 if (error) {
1384 mutex_exit(sc->sc_lock);
1385 return error;
1386 }
1387 }
1388
1389 /* Acquire */
1390 sc->sc_exlock = 1;
1391 return 0;
1392 }
1393
1394 /*
1395 * Leave exlock critical section and release sc_lock.
1396 * Must be called with sc_lock held.
1397 */
1398 static void
1399 audio_exit_exclusive(struct audio_softc *sc)
1400 {
1401
1402 KASSERT(mutex_owned(sc->sc_lock));
1403 KASSERT(sc->sc_exlock);
1404
1405 /* Leave critical section */
1406 sc->sc_exlock = 0;
1407 cv_broadcast(&sc->sc_exlockcv);
1408 mutex_exit(sc->sc_lock);
1409 }
1410
1411 /*
1412 * Wait for I/O to complete, releasing sc_lock.
1413 * Must be called with sc_lock held.
1414 */
1415 static int
1416 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1417 {
1418 int error;
1419
1420 KASSERT(track);
1421 KASSERT(mutex_owned(sc->sc_lock));
1422
1423 /* Wait for pending I/O to complete. */
1424 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1425 mstohz(AUDIO_TIMEOUT));
1426 if (sc->sc_dying) {
1427 error = EIO;
1428 }
1429 if (error) {
1430 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1431 if (error == EWOULDBLOCK)
1432 device_printf(sc->sc_dev, "device timeout\n");
1433 } else {
1434 TRACET(3, track, "wakeup");
1435 }
1436 return error;
1437 }
1438
1439 /*
1440 * Try to acquire track lock.
1441 * It doesn't block if the track lock is already aquired.
1442 * Returns true if the track lock was acquired, or false if the track
1443 * lock was already acquired.
1444 */
1445 static __inline bool
1446 audio_track_lock_tryenter(audio_track_t *track)
1447 {
1448 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1449 }
1450
1451 /*
1452 * Acquire track lock.
1453 */
1454 static __inline void
1455 audio_track_lock_enter(audio_track_t *track)
1456 {
1457 /* Don't sleep here. */
1458 while (audio_track_lock_tryenter(track) == false)
1459 ;
1460 }
1461
1462 /*
1463 * Release track lock.
1464 */
1465 static __inline void
1466 audio_track_lock_exit(audio_track_t *track)
1467 {
1468 atomic_swap_uint(&track->lock, 0);
1469 }
1470
1471
1472 static int
1473 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1474 {
1475 struct audio_softc *sc;
1476 int error;
1477
1478 /* Find the device */
1479 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1480 if (sc == NULL || sc->hw_if == NULL)
1481 return ENXIO;
1482
1483 error = audio_enter_exclusive(sc);
1484 if (error)
1485 return error;
1486
1487 device_active(sc->sc_dev, DVA_SYSTEM);
1488 switch (AUDIODEV(dev)) {
1489 case SOUND_DEVICE:
1490 case AUDIO_DEVICE:
1491 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1492 break;
1493 case AUDIOCTL_DEVICE:
1494 error = audioctl_open(dev, sc, flags, ifmt, l);
1495 break;
1496 case MIXER_DEVICE:
1497 error = mixer_open(dev, sc, flags, ifmt, l);
1498 break;
1499 default:
1500 error = ENXIO;
1501 break;
1502 }
1503 audio_exit_exclusive(sc);
1504
1505 return error;
1506 }
1507
1508 static int
1509 audioclose(struct file *fp)
1510 {
1511 struct audio_softc *sc;
1512 audio_file_t *file;
1513 int error;
1514 dev_t dev;
1515
1516 KASSERT(fp->f_audioctx);
1517 file = fp->f_audioctx;
1518 sc = file->sc;
1519 dev = file->dev;
1520
1521 /* audio_{enter,exit}_exclusive() is called by lower audio_close() */
1522
1523 device_active(sc->sc_dev, DVA_SYSTEM);
1524 switch (AUDIODEV(dev)) {
1525 case SOUND_DEVICE:
1526 case AUDIO_DEVICE:
1527 error = audio_close(sc, file);
1528 break;
1529 case AUDIOCTL_DEVICE:
1530 error = audioctl_close(sc, file);
1531 break;
1532 case MIXER_DEVICE:
1533 error = mixer_close(sc, file);
1534 break;
1535 default:
1536 error = ENXIO;
1537 break;
1538 }
1539 /* f_audioctx has already been freed in lower *_close() */
1540 fp->f_audioctx = NULL;
1541
1542 return error;
1543 }
1544
1545 static int
1546 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1547 int ioflag)
1548 {
1549 struct audio_softc *sc;
1550 audio_file_t *file;
1551 int error;
1552 dev_t dev;
1553
1554 KASSERT(fp->f_audioctx);
1555 file = fp->f_audioctx;
1556 sc = file->sc;
1557 dev = file->dev;
1558
1559 if (fp->f_flag & O_NONBLOCK)
1560 ioflag |= IO_NDELAY;
1561
1562 switch (AUDIODEV(dev)) {
1563 case SOUND_DEVICE:
1564 case AUDIO_DEVICE:
1565 error = audio_read(sc, uio, ioflag, file);
1566 break;
1567 case AUDIOCTL_DEVICE:
1568 case MIXER_DEVICE:
1569 error = ENODEV;
1570 break;
1571 default:
1572 error = ENXIO;
1573 break;
1574 }
1575
1576 return error;
1577 }
1578
1579 static int
1580 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1581 int ioflag)
1582 {
1583 struct audio_softc *sc;
1584 audio_file_t *file;
1585 int error;
1586 dev_t dev;
1587
1588 KASSERT(fp->f_audioctx);
1589 file = fp->f_audioctx;
1590 sc = file->sc;
1591 dev = file->dev;
1592
1593 if (fp->f_flag & O_NONBLOCK)
1594 ioflag |= IO_NDELAY;
1595
1596 switch (AUDIODEV(dev)) {
1597 case SOUND_DEVICE:
1598 case AUDIO_DEVICE:
1599 error = audio_write(sc, uio, ioflag, file);
1600 break;
1601 case AUDIOCTL_DEVICE:
1602 case MIXER_DEVICE:
1603 error = ENODEV;
1604 break;
1605 default:
1606 error = ENXIO;
1607 break;
1608 }
1609
1610 return error;
1611 }
1612
1613 static int
1614 audioioctl(struct file *fp, u_long cmd, void *addr)
1615 {
1616 struct audio_softc *sc;
1617 audio_file_t *file;
1618 struct lwp *l = curlwp;
1619 int error;
1620 dev_t dev;
1621
1622 KASSERT(fp->f_audioctx);
1623 file = fp->f_audioctx;
1624 sc = file->sc;
1625 dev = file->dev;
1626
1627 switch (AUDIODEV(dev)) {
1628 case SOUND_DEVICE:
1629 case AUDIO_DEVICE:
1630 case AUDIOCTL_DEVICE:
1631 mutex_enter(sc->sc_lock);
1632 device_active(sc->sc_dev, DVA_SYSTEM);
1633 mutex_exit(sc->sc_lock);
1634 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1635 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1636 else
1637 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1638 file);
1639 break;
1640 case MIXER_DEVICE:
1641 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1642 break;
1643 default:
1644 error = ENXIO;
1645 break;
1646 }
1647
1648 return error;
1649 }
1650
1651 static int
1652 audiostat(struct file *fp, struct stat *st)
1653 {
1654 audio_file_t *file;
1655
1656 KASSERT(fp->f_audioctx);
1657 file = fp->f_audioctx;
1658
1659 memset(st, 0, sizeof(*st));
1660
1661 st->st_dev = file->dev;
1662 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1663 st->st_gid = kauth_cred_getegid(fp->f_cred);
1664 st->st_mode = S_IFCHR;
1665 return 0;
1666 }
1667
1668 static int
1669 audiopoll(struct file *fp, int events)
1670 {
1671 struct audio_softc *sc;
1672 audio_file_t *file;
1673 struct lwp *l = curlwp;
1674 int revents;
1675 dev_t dev;
1676
1677 KASSERT(fp->f_audioctx);
1678 file = fp->f_audioctx;
1679 sc = file->sc;
1680 dev = file->dev;
1681
1682 switch (AUDIODEV(dev)) {
1683 case SOUND_DEVICE:
1684 case AUDIO_DEVICE:
1685 revents = audio_poll(sc, events, l, file);
1686 break;
1687 case AUDIOCTL_DEVICE:
1688 case MIXER_DEVICE:
1689 revents = 0;
1690 break;
1691 default:
1692 revents = POLLERR;
1693 break;
1694 }
1695
1696 return revents;
1697 }
1698
1699 static int
1700 audiokqfilter(struct file *fp, struct knote *kn)
1701 {
1702 struct audio_softc *sc;
1703 audio_file_t *file;
1704 dev_t dev;
1705 int error;
1706
1707 KASSERT(fp->f_audioctx);
1708 file = fp->f_audioctx;
1709 sc = file->sc;
1710 dev = file->dev;
1711
1712 switch (AUDIODEV(dev)) {
1713 case SOUND_DEVICE:
1714 case AUDIO_DEVICE:
1715 error = audio_kqfilter(sc, file, kn);
1716 break;
1717 case AUDIOCTL_DEVICE:
1718 case MIXER_DEVICE:
1719 error = ENODEV;
1720 break;
1721 default:
1722 error = ENXIO;
1723 break;
1724 }
1725
1726 return error;
1727 }
1728
1729 static int
1730 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1731 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1732 {
1733 struct audio_softc *sc;
1734 audio_file_t *file;
1735 dev_t dev;
1736 int error;
1737
1738 KASSERT(fp->f_audioctx);
1739 file = fp->f_audioctx;
1740 sc = file->sc;
1741 dev = file->dev;
1742
1743 mutex_enter(sc->sc_lock);
1744 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1745 mutex_exit(sc->sc_lock);
1746
1747 switch (AUDIODEV(dev)) {
1748 case SOUND_DEVICE:
1749 case AUDIO_DEVICE:
1750 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1751 uobjp, maxprotp, file);
1752 break;
1753 case AUDIOCTL_DEVICE:
1754 case MIXER_DEVICE:
1755 default:
1756 error = ENOTSUP;
1757 break;
1758 }
1759
1760 return error;
1761 }
1762
1763
1764 /* Exported interfaces for audiobell. */
1765
1766 /*
1767 * Open for audiobell.
1768 * It stores allocated file to *filep.
1769 * If successful returns 0, otherwise errno.
1770 */
1771 int
1772 audiobellopen(dev_t dev, audio_file_t **filep)
1773 {
1774 struct audio_softc *sc;
1775 int error;
1776
1777 /* Find the device */
1778 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1779 if (sc == NULL || sc->hw_if == NULL)
1780 return ENXIO;
1781
1782 error = audio_enter_exclusive(sc);
1783 if (error)
1784 return error;
1785
1786 device_active(sc->sc_dev, DVA_SYSTEM);
1787 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1788
1789 audio_exit_exclusive(sc);
1790 return error;
1791 }
1792
1793 /* Close for audiobell */
1794 int
1795 audiobellclose(audio_file_t *file)
1796 {
1797 struct audio_softc *sc;
1798 int error;
1799
1800 sc = file->sc;
1801
1802 device_active(sc->sc_dev, DVA_SYSTEM);
1803 error = audio_close(sc, file);
1804
1805 return error;
1806 }
1807
1808 /* Set sample rate for audiobell */
1809 int
1810 audiobellsetrate(audio_file_t *file, u_int sample_rate)
1811 {
1812 struct audio_softc *sc;
1813 struct audio_info ai;
1814 int error;
1815
1816 sc = file->sc;
1817
1818 AUDIO_INITINFO(&ai);
1819 ai.play.sample_rate = sample_rate;
1820
1821 error = audio_enter_exclusive(sc);
1822 if (error)
1823 return error;
1824 error = audio_file_setinfo(sc, file, &ai);
1825 audio_exit_exclusive(sc);
1826
1827 return error;
1828 }
1829
1830 /* Playback for audiobell */
1831 int
1832 audiobellwrite(audio_file_t *file, struct uio *uio)
1833 {
1834 struct audio_softc *sc;
1835 int error;
1836
1837 sc = file->sc;
1838 error = audio_write(sc, uio, 0, file);
1839 return error;
1840 }
1841
1842
1843 /*
1844 * Audio driver
1845 */
1846 int
1847 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
1848 struct lwp *l, audio_file_t **bellfile)
1849 {
1850 struct audio_info ai;
1851 struct file *fp;
1852 audio_file_t *af;
1853 audio_ring_t *hwbuf;
1854 bool fullduplex;
1855 int fd;
1856 int error;
1857
1858 KASSERT(mutex_owned(sc->sc_lock));
1859 KASSERT(sc->sc_exlock);
1860
1861 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
1862 (audiodebug >= 3) ? "start " : "",
1863 ISDEVSOUND(dev) ? "sound" : "audio",
1864 flags, sc->sc_popens, sc->sc_ropens);
1865
1866 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
1867 af->sc = sc;
1868 af->dev = dev;
1869 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
1870 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
1871 if ((flags & FREAD) != 0 && audio_can_capture(sc))
1872 af->mode |= AUMODE_RECORD;
1873 if (af->mode == 0) {
1874 error = ENXIO;
1875 goto bad1;
1876 }
1877
1878 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
1879
1880 /*
1881 * On half duplex hardware,
1882 * 1. if mode is (PLAY | REC), let mode PLAY.
1883 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
1884 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
1885 */
1886 if (fullduplex == false) {
1887 if ((af->mode & AUMODE_PLAY)) {
1888 if (sc->sc_ropens != 0) {
1889 TRACE(1, "record track already exists");
1890 error = ENODEV;
1891 goto bad1;
1892 }
1893 /* Play takes precedence */
1894 af->mode &= ~AUMODE_RECORD;
1895 }
1896 if ((af->mode & AUMODE_RECORD)) {
1897 if (sc->sc_popens != 0) {
1898 TRACE(1, "play track already exists");
1899 error = ENODEV;
1900 goto bad1;
1901 }
1902 }
1903 }
1904
1905 /* Create tracks */
1906 if ((af->mode & AUMODE_PLAY))
1907 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
1908 if ((af->mode & AUMODE_RECORD))
1909 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
1910
1911 /* Set parameters */
1912 AUDIO_INITINFO(&ai);
1913 if (bellfile) {
1914 /* If audiobell, only sample_rate will be set later. */
1915 ai.play.sample_rate = audio_default.sample_rate;
1916 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
1917 ai.play.channels = 1;
1918 ai.play.precision = 16;
1919 ai.play.pause = false;
1920 } else if (ISDEVAUDIO(dev)) {
1921 /* If /dev/audio, initialize everytime. */
1922 ai.play.sample_rate = audio_default.sample_rate;
1923 ai.play.encoding = audio_default.encoding;
1924 ai.play.channels = audio_default.channels;
1925 ai.play.precision = audio_default.precision;
1926 ai.play.pause = false;
1927 ai.record.sample_rate = audio_default.sample_rate;
1928 ai.record.encoding = audio_default.encoding;
1929 ai.record.channels = audio_default.channels;
1930 ai.record.precision = audio_default.precision;
1931 ai.record.pause = false;
1932 } else {
1933 /* If /dev/sound, take over the previous parameters. */
1934 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
1935 ai.play.encoding = sc->sc_sound_pparams.encoding;
1936 ai.play.channels = sc->sc_sound_pparams.channels;
1937 ai.play.precision = sc->sc_sound_pparams.precision;
1938 ai.play.pause = sc->sc_sound_ppause;
1939 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
1940 ai.record.encoding = sc->sc_sound_rparams.encoding;
1941 ai.record.channels = sc->sc_sound_rparams.channels;
1942 ai.record.precision = sc->sc_sound_rparams.precision;
1943 ai.record.pause = sc->sc_sound_rpause;
1944 }
1945 error = audio_file_setinfo(sc, af, &ai);
1946 if (error)
1947 goto bad2;
1948
1949 if (sc->sc_popens + sc->sc_ropens == 0) {
1950 /* First open */
1951
1952 sc->sc_cred = kauth_cred_get();
1953 kauth_cred_hold(sc->sc_cred);
1954
1955 if (sc->hw_if->open) {
1956 int hwflags;
1957
1958 /*
1959 * Call hw_if->open() only at first open of
1960 * combination of playback and recording.
1961 * On full duplex hardware, the flags passed to
1962 * hw_if->open() is always (FREAD | FWRITE)
1963 * regardless of this open()'s flags.
1964 * see also dev/isa/aria.c
1965 * On half duplex hardware, the flags passed to
1966 * hw_if->open() is either FREAD or FWRITE.
1967 * see also arch/evbarm/mini2440/audio_mini2440.c
1968 */
1969 if (fullduplex) {
1970 hwflags = FREAD | FWRITE;
1971 } else {
1972 /* Construct hwflags from af->mode. */
1973 hwflags = 0;
1974 if ((af->mode & AUMODE_PLAY) != 0)
1975 hwflags |= FWRITE;
1976 if ((af->mode & AUMODE_RECORD) != 0)
1977 hwflags |= FREAD;
1978 }
1979
1980 mutex_enter(sc->sc_intr_lock);
1981 error = sc->hw_if->open(sc->hw_hdl, hwflags);
1982 mutex_exit(sc->sc_intr_lock);
1983 if (error)
1984 goto bad2;
1985 }
1986
1987 /*
1988 * Set speaker mode when a half duplex.
1989 * XXX I'm not sure this is correct.
1990 */
1991 if (1/*XXX*/) {
1992 if (sc->hw_if->speaker_ctl) {
1993 int on;
1994 if (af->ptrack) {
1995 on = 1;
1996 } else {
1997 on = 0;
1998 }
1999 mutex_enter(sc->sc_intr_lock);
2000 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2001 mutex_exit(sc->sc_intr_lock);
2002 if (error)
2003 goto bad3;
2004 }
2005 }
2006 } else if (sc->sc_multiuser == false) {
2007 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2008 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2009 error = EPERM;
2010 goto bad2;
2011 }
2012 }
2013
2014 /* Call init_output if this is the first playback open. */
2015 if (af->ptrack && sc->sc_popens == 0) {
2016 if (sc->hw_if->init_output) {
2017 hwbuf = &sc->sc_pmixer->hwbuf;
2018 mutex_enter(sc->sc_intr_lock);
2019 error = sc->hw_if->init_output(sc->hw_hdl,
2020 hwbuf->mem,
2021 hwbuf->capacity *
2022 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2023 mutex_exit(sc->sc_intr_lock);
2024 if (error)
2025 goto bad3;
2026 }
2027 }
2028 /* Call init_input if this is the first recording open. */
2029 if (af->rtrack && sc->sc_ropens == 0) {
2030 if (sc->hw_if->init_input) {
2031 hwbuf = &sc->sc_rmixer->hwbuf;
2032 mutex_enter(sc->sc_intr_lock);
2033 error = sc->hw_if->init_input(sc->hw_hdl,
2034 hwbuf->mem,
2035 hwbuf->capacity *
2036 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2037 mutex_exit(sc->sc_intr_lock);
2038 if (error)
2039 goto bad3;
2040 }
2041 }
2042
2043 if (bellfile == NULL) {
2044 error = fd_allocfile(&fp, &fd);
2045 if (error)
2046 goto bad3;
2047 }
2048
2049 /*
2050 * Count up finally.
2051 * Don't fail from here.
2052 */
2053 if (af->ptrack)
2054 sc->sc_popens++;
2055 if (af->rtrack)
2056 sc->sc_ropens++;
2057 mutex_enter(sc->sc_intr_lock);
2058 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2059 mutex_exit(sc->sc_intr_lock);
2060
2061 if (bellfile) {
2062 *bellfile = af;
2063 } else {
2064 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2065 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2066 }
2067
2068 TRACEF(3, af, "done");
2069 return error;
2070
2071 /*
2072 * Since track here is not yet linked to sc_files,
2073 * you can call track_destroy() without sc_intr_lock.
2074 */
2075 bad3:
2076 if (sc->sc_popens + sc->sc_ropens == 0) {
2077 if (sc->hw_if->close) {
2078 mutex_enter(sc->sc_intr_lock);
2079 sc->hw_if->close(sc->hw_hdl);
2080 mutex_exit(sc->sc_intr_lock);
2081 }
2082 }
2083 bad2:
2084 if (af->rtrack) {
2085 audio_track_destroy(af->rtrack);
2086 af->rtrack = NULL;
2087 }
2088 if (af->ptrack) {
2089 audio_track_destroy(af->ptrack);
2090 af->ptrack = NULL;
2091 }
2092 bad1:
2093 kmem_free(af, sizeof(*af));
2094 return error;
2095 }
2096
2097 /*
2098 * Must be called without sc_lock nor sc_exlock held.
2099 */
2100 int
2101 audio_close(struct audio_softc *sc, audio_file_t *file)
2102 {
2103 audio_track_t *oldtrack;
2104 int error;
2105
2106 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2107 (audiodebug >= 3) ? "start " : "",
2108 (int)curproc->p_pid, (int)curlwp->l_lid,
2109 sc->sc_popens, sc->sc_ropens);
2110 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2111 "sc->sc_popens=%d, sc->sc_ropens=%d",
2112 sc->sc_popens, sc->sc_ropens);
2113
2114 /*
2115 * Drain first.
2116 * It must be done before acquiring exclusive lock.
2117 */
2118 if (file->ptrack) {
2119 mutex_enter(sc->sc_lock);
2120 audio_track_drain(sc, file->ptrack);
2121 mutex_exit(sc->sc_lock);
2122 }
2123
2124 /* Then, acquire exclusive lock to protect counters. */
2125 /* XXX what should I do when an error occurs? */
2126 error = audio_enter_exclusive(sc);
2127 if (error)
2128 return error;
2129
2130 if (file->ptrack) {
2131 /* Call hw halt_output if this is the last playback track. */
2132 if (sc->sc_popens == 1 && sc->sc_pbusy) {
2133 error = audio_pmixer_halt(sc);
2134 if (error) {
2135 device_printf(sc->sc_dev,
2136 "halt_output failed with %d\n", error);
2137 }
2138 }
2139
2140 /* Destroy the track. */
2141 oldtrack = file->ptrack;
2142 mutex_enter(sc->sc_intr_lock);
2143 file->ptrack = NULL;
2144 mutex_exit(sc->sc_intr_lock);
2145 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2146 oldtrack->dropframes);
2147 audio_track_destroy(oldtrack);
2148
2149 KASSERT(sc->sc_popens > 0);
2150 sc->sc_popens--;
2151
2152 /* Restore mixing volume if all tracks are gone. */
2153 if (sc->sc_popens == 0) {
2154 mutex_enter(sc->sc_intr_lock);
2155 sc->sc_pmixer->volume = 256;
2156 sc->sc_pmixer->voltimer = 0;
2157 mutex_exit(sc->sc_intr_lock);
2158 }
2159 }
2160 if (file->rtrack) {
2161 /* Call hw halt_input if this is the last recording track. */
2162 if (sc->sc_ropens == 1 && sc->sc_rbusy) {
2163 error = audio_rmixer_halt(sc);
2164 if (error) {
2165 device_printf(sc->sc_dev,
2166 "halt_input failed with %d\n", error);
2167 }
2168 }
2169
2170 /* Destroy the track. */
2171 oldtrack = file->rtrack;
2172 mutex_enter(sc->sc_intr_lock);
2173 file->rtrack = NULL;
2174 mutex_exit(sc->sc_intr_lock);
2175 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2176 oldtrack->dropframes);
2177 audio_track_destroy(oldtrack);
2178
2179 KASSERT(sc->sc_ropens > 0);
2180 sc->sc_ropens--;
2181 }
2182
2183 /* Call hw close if this is the last track. */
2184 if (sc->sc_popens + sc->sc_ropens == 0) {
2185 if (sc->hw_if->close) {
2186 TRACE(2, "hw_if close");
2187 mutex_enter(sc->sc_intr_lock);
2188 sc->hw_if->close(sc->hw_hdl);
2189 mutex_exit(sc->sc_intr_lock);
2190 }
2191
2192 kauth_cred_free(sc->sc_cred);
2193 }
2194
2195 mutex_enter(sc->sc_intr_lock);
2196 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2197 mutex_exit(sc->sc_intr_lock);
2198
2199 TRACE(3, "done");
2200 audio_exit_exclusive(sc);
2201
2202 kmem_free(file, sizeof(*file));
2203 return 0;
2204 }
2205
2206 /*
2207 * Must be called without sc_lock nor sc_exlock held.
2208 */
2209 int
2210 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2211 audio_file_t *file)
2212 {
2213 audio_track_t *track;
2214 audio_ring_t *usrbuf;
2215 audio_ring_t *input;
2216 int error;
2217
2218 /*
2219 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2220 * However read() system call itself can be called because it's
2221 * opened with O_RDWR. So in this case, deny this read().
2222 */
2223 track = file->rtrack;
2224 if (track == NULL) {
2225 return EBADF;
2226 }
2227
2228 /* I think it's better than EINVAL. */
2229 if (track->mmapped)
2230 return EPERM;
2231
2232 TRACET(2, track, "resid=%zd", uio->uio_resid);
2233
2234 #ifdef AUDIO_PM_IDLE
2235 mutex_enter(sc->sc_lock);
2236 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2237 device_active(&sc->sc_dev, DVA_SYSTEM);
2238 mutex_exit(sc->sc_lock);
2239 #endif
2240
2241 usrbuf = &track->usrbuf;
2242 input = track->input;
2243
2244 /*
2245 * The first read starts rmixer.
2246 */
2247 error = audio_enter_exclusive(sc);
2248 if (error)
2249 return error;
2250 if (sc->sc_rbusy == false)
2251 audio_rmixer_start(sc);
2252 audio_exit_exclusive(sc);
2253
2254 error = 0;
2255 while (uio->uio_resid > 0 && error == 0) {
2256 int bytes;
2257
2258 TRACET(3, track,
2259 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2260 uio->uio_resid,
2261 input->head, input->used, input->capacity,
2262 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2263
2264 /* Wait when buffers are empty. */
2265 mutex_enter(sc->sc_lock);
2266 for (;;) {
2267 bool empty;
2268 audio_track_lock_enter(track);
2269 empty = (input->used == 0 && usrbuf->used == 0);
2270 audio_track_lock_exit(track);
2271 if (!empty)
2272 break;
2273
2274 if ((ioflag & IO_NDELAY)) {
2275 mutex_exit(sc->sc_lock);
2276 return EWOULDBLOCK;
2277 }
2278
2279 TRACET(3, track, "sleep");
2280 error = audio_track_waitio(sc, track);
2281 if (error) {
2282 mutex_exit(sc->sc_lock);
2283 return error;
2284 }
2285 }
2286 mutex_exit(sc->sc_lock);
2287
2288 audio_track_lock_enter(track);
2289 audio_track_record(track);
2290
2291 /* uiomove from usrbuf as much as possible. */
2292 bytes = uimin(usrbuf->used, uio->uio_resid);
2293 while (bytes > 0) {
2294 int head = usrbuf->head;
2295 int len = uimin(bytes, usrbuf->capacity - head);
2296 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2297 uio);
2298 if (error) {
2299 audio_track_lock_exit(track);
2300 device_printf(sc->sc_dev,
2301 "uiomove(len=%d) failed with %d\n",
2302 len, error);
2303 goto abort;
2304 }
2305 auring_take(usrbuf, len);
2306 track->useriobytes += len;
2307 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2308 len,
2309 usrbuf->head, usrbuf->used, usrbuf->capacity);
2310 bytes -= len;
2311 }
2312
2313 audio_track_lock_exit(track);
2314 }
2315
2316 abort:
2317 return error;
2318 }
2319
2320
2321 /*
2322 * Clear file's playback and/or record track buffer immediately.
2323 */
2324 static void
2325 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2326 {
2327
2328 if (file->ptrack)
2329 audio_track_clear(sc, file->ptrack);
2330 if (file->rtrack)
2331 audio_track_clear(sc, file->rtrack);
2332 }
2333
2334 /*
2335 * Must be called without sc_lock nor sc_exlock held.
2336 */
2337 int
2338 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2339 audio_file_t *file)
2340 {
2341 audio_track_t *track;
2342 audio_ring_t *usrbuf;
2343 audio_ring_t *outbuf;
2344 int error;
2345
2346 track = file->ptrack;
2347 KASSERT(track);
2348
2349 /* I think it's better than EINVAL. */
2350 if (track->mmapped)
2351 return EPERM;
2352
2353 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2354 audiodebug >= 3 ? "begin " : "",
2355 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2356
2357 if (uio->uio_resid == 0) {
2358 track->eofcounter++;
2359 return 0;
2360 }
2361
2362 #ifdef AUDIO_PM_IDLE
2363 mutex_enter(sc->sc_lock);
2364 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2365 device_active(&sc->sc_dev, DVA_SYSTEM);
2366 mutex_exit(sc->sc_lock);
2367 #endif
2368
2369 usrbuf = &track->usrbuf;
2370 outbuf = &track->outbuf;
2371
2372 /*
2373 * The first write starts pmixer.
2374 */
2375 error = audio_enter_exclusive(sc);
2376 if (error)
2377 return error;
2378 if (sc->sc_pbusy == false)
2379 audio_pmixer_start(sc, false);
2380 audio_exit_exclusive(sc);
2381
2382 track->pstate = AUDIO_STATE_RUNNING;
2383 error = 0;
2384 while (uio->uio_resid > 0 && error == 0) {
2385 int bytes;
2386
2387 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2388 uio->uio_resid,
2389 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2390
2391 /* Wait when buffers are full. */
2392 mutex_enter(sc->sc_lock);
2393 for (;;) {
2394 bool full;
2395 audio_track_lock_enter(track);
2396 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2397 outbuf->used >= outbuf->capacity);
2398 audio_track_lock_exit(track);
2399 if (!full)
2400 break;
2401
2402 if ((ioflag & IO_NDELAY)) {
2403 error = EWOULDBLOCK;
2404 mutex_exit(sc->sc_lock);
2405 goto abort;
2406 }
2407
2408 TRACET(3, track, "sleep usrbuf=%d/H%d",
2409 usrbuf->used, track->usrbuf_usedhigh);
2410 error = audio_track_waitio(sc, track);
2411 if (error) {
2412 mutex_exit(sc->sc_lock);
2413 goto abort;
2414 }
2415 }
2416 mutex_exit(sc->sc_lock);
2417
2418 audio_track_lock_enter(track);
2419
2420 /* uiomove to usrbuf as much as possible. */
2421 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2422 uio->uio_resid);
2423 while (bytes > 0) {
2424 int tail = auring_tail(usrbuf);
2425 int len = uimin(bytes, usrbuf->capacity - tail);
2426 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2427 uio);
2428 if (error) {
2429 audio_track_lock_exit(track);
2430 device_printf(sc->sc_dev,
2431 "uiomove(len=%d) failed with %d\n",
2432 len, error);
2433 goto abort;
2434 }
2435 auring_push(usrbuf, len);
2436 track->useriobytes += len;
2437 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2438 len,
2439 usrbuf->head, usrbuf->used, usrbuf->capacity);
2440 bytes -= len;
2441 }
2442
2443 /* Convert them as much as possible. */
2444 while (usrbuf->used >= track->usrbuf_blksize &&
2445 outbuf->used < outbuf->capacity) {
2446 audio_track_play(track);
2447 }
2448
2449 audio_track_lock_exit(track);
2450 }
2451
2452 abort:
2453 TRACET(3, track, "done error=%d", error);
2454 return error;
2455 }
2456
2457 /*
2458 * Must be called without sc_lock nor sc_exlock held.
2459 */
2460 int
2461 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2462 struct lwp *l, audio_file_t *file)
2463 {
2464 struct audio_offset *ao;
2465 struct audio_info ai;
2466 audio_track_t *track;
2467 audio_encoding_t *ae;
2468 audio_format_query_t *query;
2469 u_int stamp;
2470 u_int offs;
2471 int fd;
2472 int index;
2473 int error;
2474
2475 #if defined(AUDIO_DEBUG)
2476 const char *ioctlnames[] = {
2477 " AUDIO_GETINFO", /* 21 */
2478 " AUDIO_SETINFO", /* 22 */
2479 " AUDIO_DRAIN", /* 23 */
2480 " AUDIO_FLUSH", /* 24 */
2481 " AUDIO_WSEEK", /* 25 */
2482 " AUDIO_RERROR", /* 26 */
2483 " AUDIO_GETDEV", /* 27 */
2484 " AUDIO_GETENC", /* 28 */
2485 " AUDIO_GETFD", /* 29 */
2486 " AUDIO_SETFD", /* 30 */
2487 " AUDIO_PERROR", /* 31 */
2488 " AUDIO_GETIOFFS", /* 32 */
2489 " AUDIO_GETOOFFS", /* 33 */
2490 " AUDIO_GETPROPS", /* 34 */
2491 " AUDIO_GETBUFINFO", /* 35 */
2492 " AUDIO_SETCHAN", /* 36 */
2493 " AUDIO_GETCHAN", /* 37 */
2494 " AUDIO_QUERYFORMAT", /* 38 */
2495 " AUDIO_GETFORMAT", /* 39 */
2496 " AUDIO_SETFORMAT", /* 40 */
2497 };
2498 int nameidx = (cmd & 0xff);
2499 const char *ioctlname = "";
2500 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2501 ioctlname = ioctlnames[nameidx - 21];
2502 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2503 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2504 (int)curproc->p_pid, (int)l->l_lid);
2505 #endif
2506
2507 error = 0;
2508 switch (cmd) {
2509 case FIONBIO:
2510 /* All handled in the upper FS layer. */
2511 break;
2512
2513 case FIONREAD:
2514 /* Get the number of bytes that can be read. */
2515 if (file->rtrack) {
2516 *(int *)addr = audio_track_readablebytes(file->rtrack);
2517 } else {
2518 *(int *)addr = 0;
2519 }
2520 break;
2521
2522 case FIOASYNC:
2523 /* Set/Clear ASYNC I/O. */
2524 if (*(int *)addr) {
2525 file->async_audio = curproc->p_pid;
2526 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2527 } else {
2528 file->async_audio = 0;
2529 TRACEF(2, file, "FIOASYNC off");
2530 }
2531 break;
2532
2533 case AUDIO_FLUSH:
2534 /* XXX TODO: clear errors and restart? */
2535 audio_file_clear(sc, file);
2536 break;
2537
2538 case AUDIO_RERROR:
2539 /*
2540 * Number of read bytes dropped. We don't know where
2541 * or when they were dropped (including conversion stage).
2542 * Therefore, the number of accurate bytes or samples is
2543 * also unknown.
2544 */
2545 track = file->rtrack;
2546 if (track) {
2547 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2548 track->dropframes);
2549 }
2550 break;
2551
2552 case AUDIO_PERROR:
2553 /*
2554 * Number of write bytes dropped. We don't know where
2555 * or when they were dropped (including conversion stage).
2556 * Therefore, the number of accurate bytes or samples is
2557 * also unknown.
2558 */
2559 track = file->ptrack;
2560 if (track) {
2561 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2562 track->dropframes);
2563 }
2564 break;
2565
2566 case AUDIO_GETIOFFS:
2567 /* XXX TODO */
2568 ao = (struct audio_offset *)addr;
2569 ao->samples = 0;
2570 ao->deltablks = 0;
2571 ao->offset = 0;
2572 break;
2573
2574 case AUDIO_GETOOFFS:
2575 ao = (struct audio_offset *)addr;
2576 track = file->ptrack;
2577 if (track == NULL) {
2578 ao->samples = 0;
2579 ao->deltablks = 0;
2580 ao->offset = 0;
2581 break;
2582 }
2583 mutex_enter(sc->sc_lock);
2584 mutex_enter(sc->sc_intr_lock);
2585 /* figure out where next DMA will start */
2586 stamp = track->usrbuf_stamp;
2587 offs = track->usrbuf.head;
2588 mutex_exit(sc->sc_intr_lock);
2589 mutex_exit(sc->sc_lock);
2590
2591 ao->samples = stamp;
2592 ao->deltablks = (stamp / track->usrbuf_blksize) -
2593 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2594 track->usrbuf_stamp_last = stamp;
2595 offs = rounddown(offs, track->usrbuf_blksize)
2596 + track->usrbuf_blksize;
2597 if (offs >= track->usrbuf.capacity)
2598 offs -= track->usrbuf.capacity;
2599 ao->offset = offs;
2600
2601 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2602 ao->samples, ao->deltablks, ao->offset);
2603 break;
2604
2605 case AUDIO_WSEEK:
2606 /* XXX return value does not include outbuf one. */
2607 if (file->ptrack)
2608 *(u_long *)addr = file->ptrack->usrbuf.used;
2609 break;
2610
2611 case AUDIO_SETINFO:
2612 error = audio_enter_exclusive(sc);
2613 if (error)
2614 break;
2615 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2616 if (error) {
2617 audio_exit_exclusive(sc);
2618 break;
2619 }
2620 /* XXX TODO: update last_ai if /dev/sound ? */
2621 if (ISDEVSOUND(dev))
2622 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2623 audio_exit_exclusive(sc);
2624 break;
2625
2626 case AUDIO_GETINFO:
2627 error = audio_enter_exclusive(sc);
2628 if (error)
2629 break;
2630 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2631 audio_exit_exclusive(sc);
2632 break;
2633
2634 case AUDIO_GETBUFINFO:
2635 mutex_enter(sc->sc_lock);
2636 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2637 mutex_exit(sc->sc_lock);
2638 break;
2639
2640 case AUDIO_DRAIN:
2641 if (file->ptrack) {
2642 mutex_enter(sc->sc_lock);
2643 error = audio_track_drain(sc, file->ptrack);
2644 mutex_exit(sc->sc_lock);
2645 }
2646 break;
2647
2648 case AUDIO_GETDEV:
2649 mutex_enter(sc->sc_lock);
2650 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2651 mutex_exit(sc->sc_lock);
2652 break;
2653
2654 case AUDIO_GETENC:
2655 ae = (audio_encoding_t *)addr;
2656 index = ae->index;
2657 if (index < 0 || index >= __arraycount(audio_encodings)) {
2658 error = EINVAL;
2659 break;
2660 }
2661 *ae = audio_encodings[index];
2662 ae->index = index;
2663 /*
2664 * EMULATED always.
2665 * EMULATED flag at that time used to mean that it could
2666 * not be passed directly to the hardware as-is. But
2667 * currently, all formats including hardware native is not
2668 * passed directly to the hardware. So I set EMULATED
2669 * flag for all formats.
2670 */
2671 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2672 break;
2673
2674 case AUDIO_GETFD:
2675 /*
2676 * Returns the current setting of full duplex mode.
2677 * If HW has full duplex mode and there are two mixers,
2678 * it is full duplex. Otherwise half duplex.
2679 */
2680 mutex_enter(sc->sc_lock);
2681 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2682 && (sc->sc_pmixer && sc->sc_rmixer);
2683 mutex_exit(sc->sc_lock);
2684 *(int *)addr = fd;
2685 break;
2686
2687 case AUDIO_GETPROPS:
2688 *(int *)addr = sc->sc_props;
2689 break;
2690
2691 case AUDIO_QUERYFORMAT:
2692 query = (audio_format_query_t *)addr;
2693 if (sc->hw_if->query_format) {
2694 mutex_enter(sc->sc_lock);
2695 error = sc->hw_if->query_format(sc->hw_hdl, query);
2696 mutex_exit(sc->sc_lock);
2697 /* Hide internal infomations */
2698 query->fmt.driver_data = NULL;
2699 } else {
2700 error = ENODEV;
2701 }
2702 break;
2703
2704 case AUDIO_GETFORMAT:
2705 audio_mixers_get_format(sc, (struct audio_info *)addr);
2706 break;
2707
2708 case AUDIO_SETFORMAT:
2709 mutex_enter(sc->sc_lock);
2710 audio_mixers_get_format(sc, &ai);
2711 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2712 if (error) {
2713 /* Rollback */
2714 audio_mixers_set_format(sc, &ai);
2715 }
2716 mutex_exit(sc->sc_lock);
2717 break;
2718
2719 case AUDIO_SETFD:
2720 case AUDIO_SETCHAN:
2721 case AUDIO_GETCHAN:
2722 /* Obsoleted */
2723 break;
2724
2725 default:
2726 if (sc->hw_if->dev_ioctl) {
2727 error = audio_enter_exclusive(sc);
2728 if (error)
2729 break;
2730 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2731 cmd, addr, flag, l);
2732 audio_exit_exclusive(sc);
2733 } else {
2734 TRACEF(2, file, "unknown ioctl");
2735 error = EINVAL;
2736 }
2737 break;
2738 }
2739 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2740 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2741 error);
2742 return error;
2743 }
2744
2745 /*
2746 * Returns the number of bytes that can be read on recording buffer.
2747 */
2748 static __inline int
2749 audio_track_readablebytes(const audio_track_t *track)
2750 {
2751 int bytes;
2752
2753 KASSERT(track);
2754 KASSERT(track->mode == AUMODE_RECORD);
2755
2756 /*
2757 * Although usrbuf is primarily readable data, recorded data
2758 * also stays in track->input until reading. So it is necessary
2759 * to add it. track->input is in frame, usrbuf is in byte.
2760 */
2761 bytes = track->usrbuf.used +
2762 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
2763 return bytes;
2764 }
2765
2766 /*
2767 * Must be called without sc_lock nor sc_exlock held.
2768 */
2769 int
2770 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
2771 audio_file_t *file)
2772 {
2773 audio_track_t *track;
2774 int revents;
2775 bool in_is_valid;
2776 bool out_is_valid;
2777
2778 #if defined(AUDIO_DEBUG)
2779 #define POLLEV_BITMAP "\177\020" \
2780 "b\10WRBAND\0" \
2781 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
2782 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
2783 char evbuf[64];
2784 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
2785 TRACEF(2, file, "pid=%d.%d events=%s",
2786 (int)curproc->p_pid, (int)l->l_lid, evbuf);
2787 #endif
2788
2789 revents = 0;
2790 in_is_valid = false;
2791 out_is_valid = false;
2792 if (events & (POLLIN | POLLRDNORM)) {
2793 track = file->rtrack;
2794 if (track) {
2795 int used;
2796 in_is_valid = true;
2797 used = audio_track_readablebytes(track);
2798 if (used > 0)
2799 revents |= events & (POLLIN | POLLRDNORM);
2800 }
2801 }
2802 if (events & (POLLOUT | POLLWRNORM)) {
2803 track = file->ptrack;
2804 if (track) {
2805 out_is_valid = true;
2806 if (track->usrbuf.used <= track->usrbuf_usedlow)
2807 revents |= events & (POLLOUT | POLLWRNORM);
2808 }
2809 }
2810
2811 if (revents == 0) {
2812 mutex_enter(sc->sc_lock);
2813 if (in_is_valid) {
2814 TRACEF(3, file, "selrecord rsel");
2815 selrecord(l, &sc->sc_rsel);
2816 }
2817 if (out_is_valid) {
2818 TRACEF(3, file, "selrecord wsel");
2819 selrecord(l, &sc->sc_wsel);
2820 }
2821 mutex_exit(sc->sc_lock);
2822 }
2823
2824 #if defined(AUDIO_DEBUG)
2825 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
2826 TRACEF(2, file, "revents=%s", evbuf);
2827 #endif
2828 return revents;
2829 }
2830
2831 static const struct filterops audioread_filtops = {
2832 .f_isfd = 1,
2833 .f_attach = NULL,
2834 .f_detach = filt_audioread_detach,
2835 .f_event = filt_audioread_event,
2836 };
2837
2838 static void
2839 filt_audioread_detach(struct knote *kn)
2840 {
2841 struct audio_softc *sc;
2842 audio_file_t *file;
2843
2844 file = kn->kn_hook;
2845 sc = file->sc;
2846 TRACEF(3, file, "");
2847
2848 mutex_enter(sc->sc_lock);
2849 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
2850 mutex_exit(sc->sc_lock);
2851 }
2852
2853 static int
2854 filt_audioread_event(struct knote *kn, long hint)
2855 {
2856 audio_file_t *file;
2857 audio_track_t *track;
2858
2859 file = kn->kn_hook;
2860 track = file->rtrack;
2861
2862 /*
2863 * kn_data must contain the number of bytes can be read.
2864 * The return value indicates whether the event occurs or not.
2865 */
2866
2867 if (track == NULL) {
2868 /* can not read with this descriptor. */
2869 kn->kn_data = 0;
2870 return 0;
2871 }
2872
2873 kn->kn_data = audio_track_readablebytes(track);
2874 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2875 return kn->kn_data > 0;
2876 }
2877
2878 static const struct filterops audiowrite_filtops = {
2879 .f_isfd = 1,
2880 .f_attach = NULL,
2881 .f_detach = filt_audiowrite_detach,
2882 .f_event = filt_audiowrite_event,
2883 };
2884
2885 static void
2886 filt_audiowrite_detach(struct knote *kn)
2887 {
2888 struct audio_softc *sc;
2889 audio_file_t *file;
2890
2891 file = kn->kn_hook;
2892 sc = file->sc;
2893 TRACEF(3, file, "");
2894
2895 mutex_enter(sc->sc_lock);
2896 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
2897 mutex_exit(sc->sc_lock);
2898 }
2899
2900 static int
2901 filt_audiowrite_event(struct knote *kn, long hint)
2902 {
2903 audio_file_t *file;
2904 audio_track_t *track;
2905
2906 file = kn->kn_hook;
2907 track = file->ptrack;
2908
2909 /*
2910 * kn_data must contain the number of bytes can be write.
2911 * The return value indicates whether the event occurs or not.
2912 */
2913
2914 if (track == NULL) {
2915 /* can not write with this descriptor. */
2916 kn->kn_data = 0;
2917 return 0;
2918 }
2919
2920 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
2921 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2922 return (track->usrbuf.used < track->usrbuf_usedlow);
2923 }
2924
2925 /*
2926 * Must be called without sc_lock nor sc_exlock held.
2927 */
2928 int
2929 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
2930 {
2931 struct klist *klist;
2932
2933 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
2934
2935 switch (kn->kn_filter) {
2936 case EVFILT_READ:
2937 klist = &sc->sc_rsel.sel_klist;
2938 kn->kn_fop = &audioread_filtops;
2939 break;
2940
2941 case EVFILT_WRITE:
2942 klist = &sc->sc_wsel.sel_klist;
2943 kn->kn_fop = &audiowrite_filtops;
2944 break;
2945
2946 default:
2947 return EINVAL;
2948 }
2949
2950 kn->kn_hook = file;
2951
2952 mutex_enter(sc->sc_lock);
2953 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
2954 mutex_exit(sc->sc_lock);
2955
2956 return 0;
2957 }
2958
2959 /*
2960 * Must be called without sc_lock nor sc_exlock held.
2961 */
2962 int
2963 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
2964 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
2965 audio_file_t *file)
2966 {
2967 audio_track_t *track;
2968 vsize_t vsize;
2969 int error;
2970
2971 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
2972
2973 if (*offp < 0)
2974 return EINVAL;
2975
2976 #if 0
2977 /* XXX
2978 * The idea here was to use the protection to determine if
2979 * we are mapping the read or write buffer, but it fails.
2980 * The VM system is broken in (at least) two ways.
2981 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
2982 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
2983 * has to be used for mmapping the play buffer.
2984 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
2985 * audio_mmap will get called at some point with VM_PROT_READ
2986 * only.
2987 * So, alas, we always map the play buffer for now.
2988 */
2989 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
2990 prot == VM_PROT_WRITE)
2991 track = file->ptrack;
2992 else if (prot == VM_PROT_READ)
2993 track = file->rtrack;
2994 else
2995 return EINVAL;
2996 #else
2997 track = file->ptrack;
2998 #endif
2999 if (track == NULL)
3000 return EACCES;
3001
3002 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3003 if (len > vsize)
3004 return EOVERFLOW;
3005 if (*offp > (uint)(vsize - len))
3006 return EOVERFLOW;
3007
3008 /* XXX TODO: what happens when mmap twice. */
3009 if (!track->mmapped) {
3010 track->mmapped = true;
3011
3012 if (!track->is_pause) {
3013 error = audio_enter_exclusive(sc);
3014 if (error)
3015 return error;
3016 if (sc->sc_pbusy == false)
3017 audio_pmixer_start(sc, true);
3018 audio_exit_exclusive(sc);
3019 }
3020 /* XXX mmapping record buffer is not supported */
3021 }
3022
3023 /* get ringbuffer */
3024 *uobjp = track->uobj;
3025
3026 /* Acquire a reference for the mmap. munmap will release. */
3027 uao_reference(*uobjp);
3028 *maxprotp = prot;
3029 *advicep = UVM_ADV_RANDOM;
3030 *flagsp = MAP_SHARED;
3031 return 0;
3032 }
3033
3034 /*
3035 * /dev/audioctl has to be able to open at any time without interference
3036 * with any /dev/audio or /dev/sound.
3037 */
3038 static int
3039 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3040 struct lwp *l)
3041 {
3042 struct file *fp;
3043 audio_file_t *af;
3044 int fd;
3045 int error;
3046
3047 KASSERT(mutex_owned(sc->sc_lock));
3048 KASSERT(sc->sc_exlock);
3049
3050 TRACE(1, "");
3051
3052 error = fd_allocfile(&fp, &fd);
3053 if (error)
3054 return error;
3055
3056 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3057 af->sc = sc;
3058 af->dev = dev;
3059
3060 /* Not necessary to insert sc_files. */
3061
3062 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3063 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3064
3065 return error;
3066 }
3067
3068 static int
3069 audioctl_close(struct audio_softc *sc, audio_file_t *file)
3070 {
3071
3072 kmem_free(file, sizeof(*file));
3073 return 0;
3074 }
3075
3076 /*
3077 * Free 'mem' if available, and initialize the pointer.
3078 * For this reason, this is implemented as macro.
3079 */
3080 #define audio_free(mem) do { \
3081 if (mem != NULL) { \
3082 kern_free(mem); \
3083 mem = NULL; \
3084 } \
3085 } while (0)
3086
3087 /*
3088 * (Re)allocate 'memblock' with specified 'bytes'.
3089 * bytes must not be 0.
3090 * This function never returns NULL.
3091 */
3092 static void *
3093 audio_realloc(void *memblock, size_t bytes)
3094 {
3095
3096 KASSERT(bytes != 0);
3097 audio_free(memblock);
3098 return kern_malloc(bytes, M_WAITOK);
3099 }
3100
3101 /*
3102 * (Re)allocate usrbuf with 'newbufsize' bytes.
3103 * Use this function for usrbuf because only usrbuf can be mmapped.
3104 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3105 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3106 * and returns errno.
3107 * It must be called before updating usrbuf.capacity.
3108 */
3109 static int
3110 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3111 {
3112 struct audio_softc *sc;
3113 vaddr_t vstart;
3114 vsize_t oldvsize;
3115 vsize_t newvsize;
3116 int error;
3117
3118 KASSERT(newbufsize > 0);
3119 sc = track->mixer->sc;
3120
3121 /* Get a nonzero multiple of PAGE_SIZE */
3122 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3123
3124 if (track->usrbuf.mem != NULL) {
3125 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3126 PAGE_SIZE);
3127 if (oldvsize == newvsize) {
3128 track->usrbuf.capacity = newbufsize;
3129 return 0;
3130 }
3131 vstart = (vaddr_t)track->usrbuf.mem;
3132 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3133 /* uvm_unmap also detach uobj */
3134 track->uobj = NULL; /* paranoia */
3135 track->usrbuf.mem = NULL;
3136 }
3137
3138 /* Create a uvm anonymous object */
3139 track->uobj = uao_create(newvsize, 0);
3140
3141 /* Map it into the kernel virtual address space */
3142 vstart = 0;
3143 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3144 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3145 UVM_ADV_RANDOM, 0));
3146 if (error) {
3147 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3148 uao_detach(track->uobj); /* release reference */
3149 goto abort;
3150 }
3151
3152 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3153 false, 0);
3154 if (error) {
3155 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3156 error);
3157 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3158 /* uvm_unmap also detach uobj */
3159 goto abort;
3160 }
3161
3162 track->usrbuf.mem = (void *)vstart;
3163 track->usrbuf.capacity = newbufsize;
3164 memset(track->usrbuf.mem, 0, newvsize);
3165 return 0;
3166
3167 /* failure */
3168 abort:
3169 track->uobj = NULL; /* paranoia */
3170 track->usrbuf.mem = NULL;
3171 track->usrbuf.capacity = 0;
3172 return error;
3173 }
3174
3175 /*
3176 * Free usrbuf (if available).
3177 */
3178 static void
3179 audio_free_usrbuf(audio_track_t *track)
3180 {
3181 vaddr_t vstart;
3182 vsize_t vsize;
3183
3184 vstart = (vaddr_t)track->usrbuf.mem;
3185 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3186 if (track->usrbuf.mem != NULL) {
3187 /*
3188 * Unmap the kernel mapping. uvm_unmap releases the
3189 * reference to the uvm object, and this should be the
3190 * last virtual mapping of the uvm object, so no need
3191 * to explicitly release (`detach') the object.
3192 */
3193 uvm_unmap(kernel_map, vstart, vstart + vsize);
3194
3195 track->uobj = NULL;
3196 track->usrbuf.mem = NULL;
3197 track->usrbuf.capacity = 0;
3198 }
3199 }
3200
3201 /*
3202 * This filter changes the volume for each channel.
3203 * arg->context points track->ch_volume[].
3204 */
3205 static void
3206 audio_track_chvol(audio_filter_arg_t *arg)
3207 {
3208 int16_t *ch_volume;
3209 const aint_t *s;
3210 aint_t *d;
3211 u_int i;
3212 u_int ch;
3213 u_int channels;
3214
3215 DIAGNOSTIC_filter_arg(arg);
3216 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3217 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3218 arg->srcfmt->channels, arg->dstfmt->channels);
3219 KASSERT(arg->context != NULL);
3220 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3221 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3222
3223 s = arg->src;
3224 d = arg->dst;
3225 ch_volume = arg->context;
3226
3227 channels = arg->srcfmt->channels;
3228 for (i = 0; i < arg->count; i++) {
3229 for (ch = 0; ch < channels; ch++) {
3230 aint2_t val;
3231 val = *s++;
3232 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3233 *d++ = (aint_t)val;
3234 }
3235 }
3236 }
3237
3238 /*
3239 * This filter performs conversion from stereo (or more channels) to mono.
3240 */
3241 static void
3242 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3243 {
3244 const aint_t *s;
3245 aint_t *d;
3246 u_int i;
3247
3248 DIAGNOSTIC_filter_arg(arg);
3249
3250 s = arg->src;
3251 d = arg->dst;
3252
3253 for (i = 0; i < arg->count; i++) {
3254 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3255 s += arg->srcfmt->channels;
3256 }
3257 }
3258
3259 /*
3260 * This filter performs conversion from mono to stereo (or more channels).
3261 */
3262 static void
3263 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3264 {
3265 const aint_t *s;
3266 aint_t *d;
3267 u_int i;
3268 u_int ch;
3269 u_int dstchannels;
3270
3271 DIAGNOSTIC_filter_arg(arg);
3272
3273 s = arg->src;
3274 d = arg->dst;
3275 dstchannels = arg->dstfmt->channels;
3276
3277 for (i = 0; i < arg->count; i++) {
3278 d[0] = s[0];
3279 d[1] = s[0];
3280 s++;
3281 d += dstchannels;
3282 }
3283 if (dstchannels > 2) {
3284 d = arg->dst;
3285 for (i = 0; i < arg->count; i++) {
3286 for (ch = 2; ch < dstchannels; ch++) {
3287 d[ch] = 0;
3288 }
3289 d += dstchannels;
3290 }
3291 }
3292 }
3293
3294 /*
3295 * This filter shrinks M channels into N channels.
3296 * Extra channels are discarded.
3297 */
3298 static void
3299 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3300 {
3301 const aint_t *s;
3302 aint_t *d;
3303 u_int i;
3304 u_int ch;
3305
3306 DIAGNOSTIC_filter_arg(arg);
3307
3308 s = arg->src;
3309 d = arg->dst;
3310
3311 for (i = 0; i < arg->count; i++) {
3312 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3313 *d++ = s[ch];
3314 }
3315 s += arg->srcfmt->channels;
3316 }
3317 }
3318
3319 /*
3320 * This filter expands M channels into N channels.
3321 * Silence is inserted for missing channels.
3322 */
3323 static void
3324 audio_track_chmix_expand(audio_filter_arg_t *arg)
3325 {
3326 const aint_t *s;
3327 aint_t *d;
3328 u_int i;
3329 u_int ch;
3330 u_int srcchannels;
3331 u_int dstchannels;
3332
3333 DIAGNOSTIC_filter_arg(arg);
3334
3335 s = arg->src;
3336 d = arg->dst;
3337
3338 srcchannels = arg->srcfmt->channels;
3339 dstchannels = arg->dstfmt->channels;
3340 for (i = 0; i < arg->count; i++) {
3341 for (ch = 0; ch < srcchannels; ch++) {
3342 *d++ = *s++;
3343 }
3344 for (; ch < dstchannels; ch++) {
3345 *d++ = 0;
3346 }
3347 }
3348 }
3349
3350 /*
3351 * This filter performs frequency conversion (up sampling).
3352 * It uses linear interpolation.
3353 */
3354 static void
3355 audio_track_freq_up(audio_filter_arg_t *arg)
3356 {
3357 audio_track_t *track;
3358 audio_ring_t *src;
3359 audio_ring_t *dst;
3360 const aint_t *s;
3361 aint_t *d;
3362 aint_t prev[AUDIO_MAX_CHANNELS];
3363 aint_t curr[AUDIO_MAX_CHANNELS];
3364 aint_t grad[AUDIO_MAX_CHANNELS];
3365 u_int i;
3366 u_int t;
3367 u_int step;
3368 u_int channels;
3369 u_int ch;
3370 int srcused;
3371
3372 track = arg->context;
3373 KASSERT(track);
3374 src = &track->freq.srcbuf;
3375 dst = track->freq.dst;
3376 DIAGNOSTIC_ring(dst);
3377 DIAGNOSTIC_ring(src);
3378 KASSERT(src->used > 0);
3379 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3380 "src->fmt.channels=%d dst->fmt.channels=%d",
3381 src->fmt.channels, dst->fmt.channels);
3382 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3383 "src->head=%d track->mixer->frames_per_block=%d",
3384 src->head, track->mixer->frames_per_block);
3385
3386 s = arg->src;
3387 d = arg->dst;
3388
3389 /*
3390 * In order to faciliate interpolation for each block, slide (delay)
3391 * input by one sample. As a result, strictly speaking, the output
3392 * phase is delayed by 1/dstfreq. However, I believe there is no
3393 * observable impact.
3394 *
3395 * Example)
3396 * srcfreq:dstfreq = 1:3
3397 *
3398 * A - -
3399 * |
3400 * |
3401 * | B - -
3402 * +-----+-----> input timeframe
3403 * 0 1
3404 *
3405 * 0 1
3406 * +-----+-----> input timeframe
3407 * | A
3408 * | x x
3409 * | x x
3410 * x (B)
3411 * +-+-+-+-+-+-> output timeframe
3412 * 0 1 2 3 4 5
3413 */
3414
3415 /* Last samples in previous block */
3416 channels = src->fmt.channels;
3417 for (ch = 0; ch < channels; ch++) {
3418 prev[ch] = track->freq_prev[ch];
3419 curr[ch] = track->freq_curr[ch];
3420 grad[ch] = curr[ch] - prev[ch];
3421 }
3422
3423 step = track->freq_step;
3424 t = track->freq_current;
3425 //#define FREQ_DEBUG
3426 #if defined(FREQ_DEBUG)
3427 #define PRINTF(fmt...) printf(fmt)
3428 #else
3429 #define PRINTF(fmt...) do { } while (0)
3430 #endif
3431 srcused = src->used;
3432 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3433 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3434 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3435 PRINTF(" t=%d\n", t);
3436
3437 for (i = 0; i < arg->count; i++) {
3438 PRINTF("i=%d t=%5d", i, t);
3439 if (t >= 65536) {
3440 for (ch = 0; ch < channels; ch++) {
3441 prev[ch] = curr[ch];
3442 curr[ch] = *s++;
3443 grad[ch] = curr[ch] - prev[ch];
3444 }
3445 PRINTF(" prev=%d s[%d]=%d",
3446 prev[0], src->used - srcused, curr[0]);
3447
3448 /* Update */
3449 t -= 65536;
3450 srcused--;
3451 if (srcused < 0) {
3452 PRINTF(" break\n");
3453 break;
3454 }
3455 }
3456
3457 for (ch = 0; ch < channels; ch++) {
3458 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3459 #if defined(FREQ_DEBUG)
3460 if (ch == 0)
3461 printf(" t=%5d *d=%d", t, d[-1]);
3462 #endif
3463 }
3464 t += step;
3465
3466 PRINTF("\n");
3467 }
3468 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3469
3470 auring_take(src, src->used);
3471 auring_push(dst, i);
3472
3473 /* Adjust */
3474 t += track->freq_leap;
3475
3476 track->freq_current = t;
3477 for (ch = 0; ch < channels; ch++) {
3478 track->freq_prev[ch] = prev[ch];
3479 track->freq_curr[ch] = curr[ch];
3480 }
3481 }
3482
3483 /*
3484 * This filter performs frequency conversion (down sampling).
3485 * It uses simple thinning.
3486 */
3487 static void
3488 audio_track_freq_down(audio_filter_arg_t *arg)
3489 {
3490 audio_track_t *track;
3491 audio_ring_t *src;
3492 audio_ring_t *dst;
3493 const aint_t *s0;
3494 aint_t *d;
3495 u_int i;
3496 u_int t;
3497 u_int step;
3498 u_int ch;
3499 u_int channels;
3500
3501 track = arg->context;
3502 KASSERT(track);
3503 src = &track->freq.srcbuf;
3504 dst = track->freq.dst;
3505
3506 DIAGNOSTIC_ring(dst);
3507 DIAGNOSTIC_ring(src);
3508 KASSERT(src->used > 0);
3509 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3510 "src->fmt.channels=%d dst->fmt.channels=%d",
3511 src->fmt.channels, dst->fmt.channels);
3512 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3513 "src->head=%d track->mixer->frames_per_block=%d",
3514 src->head, track->mixer->frames_per_block);
3515
3516 s0 = arg->src;
3517 d = arg->dst;
3518 t = track->freq_current;
3519 step = track->freq_step;
3520 channels = dst->fmt.channels;
3521 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3522 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3523 PRINTF(" t=%d\n", t);
3524
3525 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3526 const aint_t *s;
3527 PRINTF("i=%4d t=%10d", i, t);
3528 s = s0 + (t / 65536) * channels;
3529 PRINTF(" s=%5ld", (s - s0) / channels);
3530 for (ch = 0; ch < channels; ch++) {
3531 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3532 *d++ = s[ch];
3533 }
3534 PRINTF("\n");
3535 t += step;
3536 }
3537 t += track->freq_leap;
3538 PRINTF("end t=%d\n", t);
3539 auring_take(src, src->used);
3540 auring_push(dst, i);
3541 track->freq_current = t % 65536;
3542 }
3543
3544 /*
3545 * Creates track and returns it.
3546 */
3547 audio_track_t *
3548 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3549 {
3550 audio_track_t *track;
3551 static int newid = 0;
3552
3553 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3554
3555 track->id = newid++;
3556 track->mixer = mixer;
3557 track->mode = mixer->mode;
3558
3559 /* Do TRACE after id is assigned. */
3560 TRACET(3, track, "for %s",
3561 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3562
3563 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3564 track->volume = 256;
3565 #endif
3566 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3567 track->ch_volume[i] = 256;
3568 }
3569
3570 return track;
3571 }
3572
3573 /*
3574 * Release all resources of the track and track itself.
3575 * track must not be NULL. Don't specify the track within the file
3576 * structure linked from sc->sc_files.
3577 */
3578 static void
3579 audio_track_destroy(audio_track_t *track)
3580 {
3581
3582 KASSERT(track);
3583
3584 audio_free_usrbuf(track);
3585 audio_free(track->codec.srcbuf.mem);
3586 audio_free(track->chvol.srcbuf.mem);
3587 audio_free(track->chmix.srcbuf.mem);
3588 audio_free(track->freq.srcbuf.mem);
3589 audio_free(track->outbuf.mem);
3590
3591 kmem_free(track, sizeof(*track));
3592 }
3593
3594 /*
3595 * It returns encoding conversion filter according to src and dst format.
3596 * If it is not a convertible pair, it returns NULL. Either src or dst
3597 * must be internal format.
3598 */
3599 static audio_filter_t
3600 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3601 const audio_format2_t *dst)
3602 {
3603
3604 if (audio_format2_is_internal(src)) {
3605 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3606 return audio_internal_to_mulaw;
3607 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3608 return audio_internal_to_alaw;
3609 } else if (audio_format2_is_linear(dst)) {
3610 switch (dst->stride) {
3611 case 8:
3612 return audio_internal_to_linear8;
3613 case 16:
3614 return audio_internal_to_linear16;
3615 #if defined(AUDIO_SUPPORT_LINEAR24)
3616 case 24:
3617 return audio_internal_to_linear24;
3618 #endif
3619 case 32:
3620 return audio_internal_to_linear32;
3621 default:
3622 TRACET(1, track, "unsupported %s stride %d",
3623 "dst", dst->stride);
3624 goto abort;
3625 }
3626 }
3627 } else if (audio_format2_is_internal(dst)) {
3628 if (src->encoding == AUDIO_ENCODING_ULAW) {
3629 return audio_mulaw_to_internal;
3630 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3631 return audio_alaw_to_internal;
3632 } else if (audio_format2_is_linear(src)) {
3633 switch (src->stride) {
3634 case 8:
3635 return audio_linear8_to_internal;
3636 case 16:
3637 return audio_linear16_to_internal;
3638 #if defined(AUDIO_SUPPORT_LINEAR24)
3639 case 24:
3640 return audio_linear24_to_internal;
3641 #endif
3642 case 32:
3643 return audio_linear32_to_internal;
3644 default:
3645 TRACET(1, track, "unsupported %s stride %d",
3646 "src", src->stride);
3647 goto abort;
3648 }
3649 }
3650 }
3651
3652 TRACET(1, track, "unsupported encoding");
3653 abort:
3654 #if defined(AUDIO_DEBUG)
3655 if (audiodebug >= 2) {
3656 char buf[100];
3657 audio_format2_tostr(buf, sizeof(buf), src);
3658 TRACET(2, track, "src %s", buf);
3659 audio_format2_tostr(buf, sizeof(buf), dst);
3660 TRACET(2, track, "dst %s", buf);
3661 }
3662 #endif
3663 return NULL;
3664 }
3665
3666 /*
3667 * Initialize the codec stage of this track as necessary.
3668 * If successful, it initializes the codec stage as necessary, stores updated
3669 * last_dst in *last_dstp in any case, and returns 0.
3670 * Otherwise, it returns errno without modifying *last_dstp.
3671 */
3672 static int
3673 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3674 {
3675 audio_ring_t *last_dst;
3676 audio_ring_t *srcbuf;
3677 audio_format2_t *srcfmt;
3678 audio_format2_t *dstfmt;
3679 audio_filter_arg_t *arg;
3680 u_int len;
3681 int error;
3682
3683 KASSERT(track);
3684
3685 last_dst = *last_dstp;
3686 dstfmt = &last_dst->fmt;
3687 srcfmt = &track->inputfmt;
3688 srcbuf = &track->codec.srcbuf;
3689 error = 0;
3690
3691 if (srcfmt->encoding != dstfmt->encoding
3692 || srcfmt->precision != dstfmt->precision
3693 || srcfmt->stride != dstfmt->stride) {
3694 track->codec.dst = last_dst;
3695
3696 srcbuf->fmt = *dstfmt;
3697 srcbuf->fmt.encoding = srcfmt->encoding;
3698 srcbuf->fmt.precision = srcfmt->precision;
3699 srcbuf->fmt.stride = srcfmt->stride;
3700
3701 track->codec.filter = audio_track_get_codec(track,
3702 &srcbuf->fmt, dstfmt);
3703 if (track->codec.filter == NULL) {
3704 error = EINVAL;
3705 goto abort;
3706 }
3707
3708 srcbuf->head = 0;
3709 srcbuf->used = 0;
3710 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3711 len = auring_bytelen(srcbuf);
3712 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3713
3714 arg = &track->codec.arg;
3715 arg->srcfmt = &srcbuf->fmt;
3716 arg->dstfmt = dstfmt;
3717 arg->context = NULL;
3718
3719 *last_dstp = srcbuf;
3720 return 0;
3721 }
3722
3723 abort:
3724 track->codec.filter = NULL;
3725 audio_free(srcbuf->mem);
3726 return error;
3727 }
3728
3729 /*
3730 * Initialize the chvol stage of this track as necessary.
3731 * If successful, it initializes the chvol stage as necessary, stores updated
3732 * last_dst in *last_dstp in any case, and returns 0.
3733 * Otherwise, it returns errno without modifying *last_dstp.
3734 */
3735 static int
3736 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3737 {
3738 audio_ring_t *last_dst;
3739 audio_ring_t *srcbuf;
3740 audio_format2_t *srcfmt;
3741 audio_format2_t *dstfmt;
3742 audio_filter_arg_t *arg;
3743 u_int len;
3744 int error;
3745
3746 KASSERT(track);
3747
3748 last_dst = *last_dstp;
3749 dstfmt = &last_dst->fmt;
3750 srcfmt = &track->inputfmt;
3751 srcbuf = &track->chvol.srcbuf;
3752 error = 0;
3753
3754 /* Check whether channel volume conversion is necessary. */
3755 bool use_chvol = false;
3756 for (int ch = 0; ch < srcfmt->channels; ch++) {
3757 if (track->ch_volume[ch] != 256) {
3758 use_chvol = true;
3759 break;
3760 }
3761 }
3762
3763 if (use_chvol == true) {
3764 track->chvol.dst = last_dst;
3765 track->chvol.filter = audio_track_chvol;
3766
3767 srcbuf->fmt = *dstfmt;
3768 /* no format conversion occurs */
3769
3770 srcbuf->head = 0;
3771 srcbuf->used = 0;
3772 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3773 len = auring_bytelen(srcbuf);
3774 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3775
3776 arg = &track->chvol.arg;
3777 arg->srcfmt = &srcbuf->fmt;
3778 arg->dstfmt = dstfmt;
3779 arg->context = track->ch_volume;
3780
3781 *last_dstp = srcbuf;
3782 return 0;
3783 }
3784
3785 track->chvol.filter = NULL;
3786 audio_free(srcbuf->mem);
3787 return error;
3788 }
3789
3790 /*
3791 * Initialize the chmix stage of this track as necessary.
3792 * If successful, it initializes the chmix stage as necessary, stores updated
3793 * last_dst in *last_dstp in any case, and returns 0.
3794 * Otherwise, it returns errno without modifying *last_dstp.
3795 */
3796 static int
3797 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
3798 {
3799 audio_ring_t *last_dst;
3800 audio_ring_t *srcbuf;
3801 audio_format2_t *srcfmt;
3802 audio_format2_t *dstfmt;
3803 audio_filter_arg_t *arg;
3804 u_int srcch;
3805 u_int dstch;
3806 u_int len;
3807 int error;
3808
3809 KASSERT(track);
3810
3811 last_dst = *last_dstp;
3812 dstfmt = &last_dst->fmt;
3813 srcfmt = &track->inputfmt;
3814 srcbuf = &track->chmix.srcbuf;
3815 error = 0;
3816
3817 srcch = srcfmt->channels;
3818 dstch = dstfmt->channels;
3819 if (srcch != dstch) {
3820 track->chmix.dst = last_dst;
3821
3822 if (srcch >= 2 && dstch == 1) {
3823 track->chmix.filter = audio_track_chmix_mixLR;
3824 } else if (srcch == 1 && dstch >= 2) {
3825 track->chmix.filter = audio_track_chmix_dupLR;
3826 } else if (srcch > dstch) {
3827 track->chmix.filter = audio_track_chmix_shrink;
3828 } else {
3829 track->chmix.filter = audio_track_chmix_expand;
3830 }
3831
3832 srcbuf->fmt = *dstfmt;
3833 srcbuf->fmt.channels = srcch;
3834
3835 srcbuf->head = 0;
3836 srcbuf->used = 0;
3837 /* XXX The buffer size should be able to calculate. */
3838 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3839 len = auring_bytelen(srcbuf);
3840 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3841
3842 arg = &track->chmix.arg;
3843 arg->srcfmt = &srcbuf->fmt;
3844 arg->dstfmt = dstfmt;
3845 arg->context = NULL;
3846
3847 *last_dstp = srcbuf;
3848 return 0;
3849 }
3850
3851 track->chmix.filter = NULL;
3852 audio_free(srcbuf->mem);
3853 return error;
3854 }
3855
3856 /*
3857 * Initialize the freq stage of this track as necessary.
3858 * If successful, it initializes the freq stage as necessary, stores updated
3859 * last_dst in *last_dstp in any case, and returns 0.
3860 * Otherwise, it returns errno without modifying *last_dstp.
3861 */
3862 static int
3863 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
3864 {
3865 audio_ring_t *last_dst;
3866 audio_ring_t *srcbuf;
3867 audio_format2_t *srcfmt;
3868 audio_format2_t *dstfmt;
3869 audio_filter_arg_t *arg;
3870 uint32_t srcfreq;
3871 uint32_t dstfreq;
3872 u_int dst_capacity;
3873 u_int mod;
3874 u_int len;
3875 int error;
3876
3877 KASSERT(track);
3878
3879 last_dst = *last_dstp;
3880 dstfmt = &last_dst->fmt;
3881 srcfmt = &track->inputfmt;
3882 srcbuf = &track->freq.srcbuf;
3883 error = 0;
3884
3885 srcfreq = srcfmt->sample_rate;
3886 dstfreq = dstfmt->sample_rate;
3887 if (srcfreq != dstfreq) {
3888 track->freq.dst = last_dst;
3889
3890 memset(track->freq_prev, 0, sizeof(track->freq_prev));
3891 memset(track->freq_curr, 0, sizeof(track->freq_curr));
3892
3893 /* freq_step is the ratio of src/dst when let dst 65536. */
3894 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
3895
3896 dst_capacity = frame_per_block(track->mixer, dstfmt);
3897 mod = (uint64_t)srcfreq * 65536 % dstfreq;
3898 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
3899
3900 if (track->freq_step < 65536) {
3901 track->freq.filter = audio_track_freq_up;
3902 /* In order to carry at the first time. */
3903 track->freq_current = 65536;
3904 } else {
3905 track->freq.filter = audio_track_freq_down;
3906 track->freq_current = 0;
3907 }
3908
3909 srcbuf->fmt = *dstfmt;
3910 srcbuf->fmt.sample_rate = srcfreq;
3911
3912 srcbuf->head = 0;
3913 srcbuf->used = 0;
3914 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3915 len = auring_bytelen(srcbuf);
3916 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3917
3918 arg = &track->freq.arg;
3919 arg->srcfmt = &srcbuf->fmt;
3920 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
3921 arg->context = track;
3922
3923 *last_dstp = srcbuf;
3924 return 0;
3925 }
3926
3927 track->freq.filter = NULL;
3928 audio_free(srcbuf->mem);
3929 return error;
3930 }
3931
3932 /*
3933 * When playing back: (e.g. if codec and freq stage are valid)
3934 *
3935 * write
3936 * | uiomove
3937 * v
3938 * usrbuf [...............] byte ring buffer (mmap-able)
3939 * | memcpy
3940 * v
3941 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
3942 * .dst ----+
3943 * | convert
3944 * v
3945 * freq.srcbuf [....] 1 block (ring) buffer
3946 * .dst ----+
3947 * | convert
3948 * v
3949 * outbuf [...............] NBLKOUT blocks ring buffer
3950 *
3951 *
3952 * When recording:
3953 *
3954 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
3955 * .dst ----+
3956 * | convert
3957 * v
3958 * codec.srcbuf[.....] 1 block (ring) buffer
3959 * .dst ----+
3960 * | convert
3961 * v
3962 * outbuf [.....] 1 block (ring) buffer
3963 * | memcpy
3964 * v
3965 * usrbuf [...............] byte ring buffer (mmap-able *)
3966 * | uiomove
3967 * v
3968 * read
3969 *
3970 * *: usrbuf for recording is also mmap-able due to symmetry with
3971 * playback buffer, but for now mmap will never happen for recording.
3972 */
3973
3974 /*
3975 * Set the userland format of this track.
3976 * usrfmt argument should be parameter verified with audio_check_params().
3977 * It will release and reallocate all internal conversion buffers.
3978 * It returns 0 if successful. Otherwise it returns errno with clearing all
3979 * internal buffers.
3980 * It must be called without sc_intr_lock since uvm_* routines require non
3981 * intr_lock state.
3982 * It must be called with track lock held since it may release and reallocate
3983 * outbuf.
3984 */
3985 static int
3986 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
3987 {
3988 struct audio_softc *sc;
3989 u_int newbufsize;
3990 u_int oldblksize;
3991 u_int len;
3992 int error;
3993
3994 KASSERT(track);
3995 sc = track->mixer->sc;
3996
3997 /* usrbuf is the closest buffer to the userland. */
3998 track->usrbuf.fmt = *usrfmt;
3999
4000 /*
4001 * For references, one block size (in 40msec) is:
4002 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4003 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4004 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4005 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4006 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4007 *
4008 * For example,
4009 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4010 * newbufsize = rounddown(65536 / 7056) = 63504
4011 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4012 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4013 *
4014 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4015 * newbufsize = rounddown(65536 / 7680) = 61440
4016 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4017 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4018 */
4019 oldblksize = track->usrbuf_blksize;
4020 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4021 frame_per_block(track->mixer, &track->usrbuf.fmt));
4022 track->usrbuf.head = 0;
4023 track->usrbuf.used = 0;
4024 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4025 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4026 error = audio_realloc_usrbuf(track, newbufsize);
4027 if (error) {
4028 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4029 newbufsize);
4030 goto error;
4031 }
4032
4033 /* Recalc water mark. */
4034 if (track->usrbuf_blksize != oldblksize) {
4035 if (audio_track_is_playback(track)) {
4036 /* Set high at 100%, low at 75%. */
4037 track->usrbuf_usedhigh = track->usrbuf.capacity;
4038 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4039 } else {
4040 /* Set high at 100% minus 1block(?), low at 0% */
4041 track->usrbuf_usedhigh = track->usrbuf.capacity -
4042 track->usrbuf_blksize;
4043 track->usrbuf_usedlow = 0;
4044 }
4045 }
4046
4047 /* Stage buffer */
4048 audio_ring_t *last_dst = &track->outbuf;
4049 if (audio_track_is_playback(track)) {
4050 /* On playback, initialize from the mixer side in order. */
4051 track->inputfmt = *usrfmt;
4052 track->outbuf.fmt = track->mixer->track_fmt;
4053
4054 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4055 goto error;
4056 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4057 goto error;
4058 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4059 goto error;
4060 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4061 goto error;
4062 } else {
4063 /* On recording, initialize from userland side in order. */
4064 track->inputfmt = track->mixer->track_fmt;
4065 track->outbuf.fmt = *usrfmt;
4066
4067 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4068 goto error;
4069 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4070 goto error;
4071 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4072 goto error;
4073 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4074 goto error;
4075 }
4076 #if 0
4077 /* debug */
4078 if (track->freq.filter) {
4079 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4080 audio_print_format2("freq dst", &track->freq.dst->fmt);
4081 }
4082 if (track->chmix.filter) {
4083 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4084 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4085 }
4086 if (track->chvol.filter) {
4087 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4088 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4089 }
4090 if (track->codec.filter) {
4091 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4092 audio_print_format2("codec dst", &track->codec.dst->fmt);
4093 }
4094 #endif
4095
4096 /* Stage input buffer */
4097 track->input = last_dst;
4098
4099 /*
4100 * On the recording track, make the first stage a ring buffer.
4101 * XXX is there a better way?
4102 */
4103 if (audio_track_is_record(track)) {
4104 track->input->capacity = NBLKOUT *
4105 frame_per_block(track->mixer, &track->input->fmt);
4106 len = auring_bytelen(track->input);
4107 track->input->mem = audio_realloc(track->input->mem, len);
4108 }
4109
4110 /*
4111 * Output buffer.
4112 * On the playback track, its capacity is NBLKOUT blocks.
4113 * On the recording track, its capacity is 1 block.
4114 */
4115 track->outbuf.head = 0;
4116 track->outbuf.used = 0;
4117 track->outbuf.capacity = frame_per_block(track->mixer,
4118 &track->outbuf.fmt);
4119 if (audio_track_is_playback(track))
4120 track->outbuf.capacity *= NBLKOUT;
4121 len = auring_bytelen(&track->outbuf);
4122 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4123 if (track->outbuf.mem == NULL) {
4124 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4125 error = ENOMEM;
4126 goto error;
4127 }
4128
4129 #if defined(AUDIO_DEBUG)
4130 if (audiodebug >= 3) {
4131 struct audio_track_debugbuf m;
4132
4133 memset(&m, 0, sizeof(m));
4134 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4135 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4136 if (track->freq.filter)
4137 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4138 track->freq.srcbuf.capacity *
4139 frametobyte(&track->freq.srcbuf.fmt, 1));
4140 if (track->chmix.filter)
4141 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4142 track->chmix.srcbuf.capacity *
4143 frametobyte(&track->chmix.srcbuf.fmt, 1));
4144 if (track->chvol.filter)
4145 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4146 track->chvol.srcbuf.capacity *
4147 frametobyte(&track->chvol.srcbuf.fmt, 1));
4148 if (track->codec.filter)
4149 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4150 track->codec.srcbuf.capacity *
4151 frametobyte(&track->codec.srcbuf.fmt, 1));
4152 snprintf(m.usrbuf, sizeof(m.usrbuf),
4153 " usr=%d", track->usrbuf.capacity);
4154
4155 if (audio_track_is_playback(track)) {
4156 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4157 m.outbuf, m.freq, m.chmix,
4158 m.chvol, m.codec, m.usrbuf);
4159 } else {
4160 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4161 m.freq, m.chmix, m.chvol,
4162 m.codec, m.outbuf, m.usrbuf);
4163 }
4164 }
4165 #endif
4166 return 0;
4167
4168 error:
4169 audio_free_usrbuf(track);
4170 audio_free(track->codec.srcbuf.mem);
4171 audio_free(track->chvol.srcbuf.mem);
4172 audio_free(track->chmix.srcbuf.mem);
4173 audio_free(track->freq.srcbuf.mem);
4174 audio_free(track->outbuf.mem);
4175 return error;
4176 }
4177
4178 /*
4179 * Fill silence frames (as the internal format) up to 1 block
4180 * if the ring is not empty and less than 1 block.
4181 * It returns the number of appended frames.
4182 */
4183 static int
4184 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4185 {
4186 int fpb;
4187 int n;
4188
4189 KASSERT(track);
4190 KASSERT(audio_format2_is_internal(&ring->fmt));
4191
4192 /* XXX is n correct? */
4193 /* XXX memset uses frametobyte()? */
4194
4195 if (ring->used == 0)
4196 return 0;
4197
4198 fpb = frame_per_block(track->mixer, &ring->fmt);
4199 if (ring->used >= fpb)
4200 return 0;
4201
4202 n = (ring->capacity - ring->used) % fpb;
4203
4204 KASSERTMSG(auring_get_contig_free(ring) >= n,
4205 "auring_get_contig_free(ring)=%d n=%d",
4206 auring_get_contig_free(ring), n);
4207
4208 memset(auring_tailptr_aint(ring), 0,
4209 n * ring->fmt.channels * sizeof(aint_t));
4210 auring_push(ring, n);
4211 return n;
4212 }
4213
4214 /*
4215 * Execute the conversion stage.
4216 * It prepares arg from this stage and executes stage->filter.
4217 * It must be called only if stage->filter is not NULL.
4218 *
4219 * For stages other than frequency conversion, the function increments
4220 * src and dst counters here. For frequency conversion stage, on the
4221 * other hand, the function does not touch src and dst counters and
4222 * filter side has to increment them.
4223 */
4224 static void
4225 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4226 {
4227 audio_filter_arg_t *arg;
4228 int srccount;
4229 int dstcount;
4230 int count;
4231
4232 KASSERT(track);
4233 KASSERT(stage->filter);
4234
4235 srccount = auring_get_contig_used(&stage->srcbuf);
4236 dstcount = auring_get_contig_free(stage->dst);
4237
4238 if (isfreq) {
4239 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4240 count = uimin(dstcount, track->mixer->frames_per_block);
4241 } else {
4242 count = uimin(srccount, dstcount);
4243 }
4244
4245 if (count > 0) {
4246 arg = &stage->arg;
4247 arg->src = auring_headptr(&stage->srcbuf);
4248 arg->dst = auring_tailptr(stage->dst);
4249 arg->count = count;
4250
4251 stage->filter(arg);
4252
4253 if (!isfreq) {
4254 auring_take(&stage->srcbuf, count);
4255 auring_push(stage->dst, count);
4256 }
4257 }
4258 }
4259
4260 /*
4261 * Produce output buffer for playback from user input buffer.
4262 * It must be called only if usrbuf is not empty and outbuf is
4263 * available at least one free block.
4264 */
4265 static void
4266 audio_track_play(audio_track_t *track)
4267 {
4268 audio_ring_t *usrbuf;
4269 audio_ring_t *input;
4270 int count;
4271 int framesize;
4272 int bytes;
4273
4274 KASSERT(track);
4275 KASSERT(track->lock);
4276 TRACET(4, track, "start pstate=%d", track->pstate);
4277
4278 /* At this point usrbuf must not be empty. */
4279 KASSERT(track->usrbuf.used > 0);
4280 /* Also, outbuf must be available at least one block. */
4281 count = auring_get_contig_free(&track->outbuf);
4282 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4283 "count=%d fpb=%d",
4284 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4285
4286 /* XXX TODO: is this necessary for now? */
4287 int track_count_0 = track->outbuf.used;
4288
4289 usrbuf = &track->usrbuf;
4290 input = track->input;
4291
4292 /*
4293 * framesize is always 1 byte or more since all formats supported as
4294 * usrfmt(=input) have 8bit or more stride.
4295 */
4296 framesize = frametobyte(&input->fmt, 1);
4297 KASSERT(framesize >= 1);
4298
4299 /* The next stage of usrbuf (=input) must be available. */
4300 KASSERT(auring_get_contig_free(input) > 0);
4301
4302 /*
4303 * Copy usrbuf up to 1block to input buffer.
4304 * count is the number of frames to copy from usrbuf.
4305 * bytes is the number of bytes to copy from usrbuf. However it is
4306 * not copied less than one frame.
4307 */
4308 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4309 bytes = count * framesize;
4310
4311 track->usrbuf_stamp += bytes;
4312
4313 if (usrbuf->head + bytes < usrbuf->capacity) {
4314 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4315 (uint8_t *)usrbuf->mem + usrbuf->head,
4316 bytes);
4317 auring_push(input, count);
4318 auring_take(usrbuf, bytes);
4319 } else {
4320 int bytes1;
4321 int bytes2;
4322
4323 bytes1 = auring_get_contig_used(usrbuf);
4324 KASSERTMSG(bytes1 % framesize == 0,
4325 "bytes1=%d framesize=%d", bytes1, framesize);
4326 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4327 (uint8_t *)usrbuf->mem + usrbuf->head,
4328 bytes1);
4329 auring_push(input, bytes1 / framesize);
4330 auring_take(usrbuf, bytes1);
4331
4332 bytes2 = bytes - bytes1;
4333 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4334 (uint8_t *)usrbuf->mem + usrbuf->head,
4335 bytes2);
4336 auring_push(input, bytes2 / framesize);
4337 auring_take(usrbuf, bytes2);
4338 }
4339
4340 /* Encoding conversion */
4341 if (track->codec.filter)
4342 audio_apply_stage(track, &track->codec, false);
4343
4344 /* Channel volume */
4345 if (track->chvol.filter)
4346 audio_apply_stage(track, &track->chvol, false);
4347
4348 /* Channel mix */
4349 if (track->chmix.filter)
4350 audio_apply_stage(track, &track->chmix, false);
4351
4352 /* Frequency conversion */
4353 /*
4354 * Since the frequency conversion needs correction for each block,
4355 * it rounds up to 1 block.
4356 */
4357 if (track->freq.filter) {
4358 int n;
4359 n = audio_append_silence(track, &track->freq.srcbuf);
4360 if (n > 0) {
4361 TRACET(4, track,
4362 "freq.srcbuf add silence %d -> %d/%d/%d",
4363 n,
4364 track->freq.srcbuf.head,
4365 track->freq.srcbuf.used,
4366 track->freq.srcbuf.capacity);
4367 }
4368 if (track->freq.srcbuf.used > 0) {
4369 audio_apply_stage(track, &track->freq, true);
4370 }
4371 }
4372
4373 if (bytes < track->usrbuf_blksize) {
4374 /*
4375 * Clear all conversion buffer pointer if the conversion was
4376 * not exactly one block. These conversion stage buffers are
4377 * certainly circular buffers because of symmetry with the
4378 * previous and next stage buffer. However, since they are
4379 * treated as simple contiguous buffers in operation, so head
4380 * always should point 0. This may happen during drain-age.
4381 */
4382 TRACET(4, track, "reset stage");
4383 if (track->codec.filter) {
4384 KASSERT(track->codec.srcbuf.used == 0);
4385 track->codec.srcbuf.head = 0;
4386 }
4387 if (track->chvol.filter) {
4388 KASSERT(track->chvol.srcbuf.used == 0);
4389 track->chvol.srcbuf.head = 0;
4390 }
4391 if (track->chmix.filter) {
4392 KASSERT(track->chmix.srcbuf.used == 0);
4393 track->chmix.srcbuf.head = 0;
4394 }
4395 if (track->freq.filter) {
4396 KASSERT(track->freq.srcbuf.used == 0);
4397 track->freq.srcbuf.head = 0;
4398 }
4399 }
4400
4401 if (track->input == &track->outbuf) {
4402 track->outputcounter = track->inputcounter;
4403 } else {
4404 track->outputcounter += track->outbuf.used - track_count_0;
4405 }
4406
4407 #if defined(AUDIO_DEBUG)
4408 if (audiodebug >= 3) {
4409 struct audio_track_debugbuf m;
4410 audio_track_bufstat(track, &m);
4411 TRACET(0, track, "end%s%s%s%s%s%s",
4412 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4413 }
4414 #endif
4415 }
4416
4417 /*
4418 * Produce user output buffer for recording from input buffer.
4419 */
4420 static void
4421 audio_track_record(audio_track_t *track)
4422 {
4423 audio_ring_t *outbuf;
4424 audio_ring_t *usrbuf;
4425 int count;
4426 int bytes;
4427 int framesize;
4428
4429 KASSERT(track);
4430 KASSERT(track->lock);
4431
4432 /* Number of frames to process */
4433 count = auring_get_contig_used(track->input);
4434 count = uimin(count, track->mixer->frames_per_block);
4435 if (count == 0) {
4436 TRACET(4, track, "count == 0");
4437 return;
4438 }
4439
4440 /* Frequency conversion */
4441 if (track->freq.filter) {
4442 if (track->freq.srcbuf.used > 0) {
4443 audio_apply_stage(track, &track->freq, true);
4444 /* XXX should input of freq be from beginning of buf? */
4445 }
4446 }
4447
4448 /* Channel mix */
4449 if (track->chmix.filter)
4450 audio_apply_stage(track, &track->chmix, false);
4451
4452 /* Channel volume */
4453 if (track->chvol.filter)
4454 audio_apply_stage(track, &track->chvol, false);
4455
4456 /* Encoding conversion */
4457 if (track->codec.filter)
4458 audio_apply_stage(track, &track->codec, false);
4459
4460 /* Copy outbuf to usrbuf */
4461 outbuf = &track->outbuf;
4462 usrbuf = &track->usrbuf;
4463 /*
4464 * framesize is always 1 byte or more since all formats supported
4465 * as usrfmt(=output) have 8bit or more stride.
4466 */
4467 framesize = frametobyte(&outbuf->fmt, 1);
4468 KASSERT(framesize >= 1);
4469 /*
4470 * count is the number of frames to copy to usrbuf.
4471 * bytes is the number of bytes to copy to usrbuf.
4472 */
4473 count = outbuf->used;
4474 count = uimin(count,
4475 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4476 bytes = count * framesize;
4477 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4478 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4479 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4480 bytes);
4481 auring_push(usrbuf, bytes);
4482 auring_take(outbuf, count);
4483 } else {
4484 int bytes1;
4485 int bytes2;
4486
4487 bytes1 = auring_get_contig_free(usrbuf);
4488 KASSERTMSG(bytes1 % framesize == 0,
4489 "bytes1=%d framesize=%d", bytes1, framesize);
4490 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4491 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4492 bytes1);
4493 auring_push(usrbuf, bytes1);
4494 auring_take(outbuf, bytes1 / framesize);
4495
4496 bytes2 = bytes - bytes1;
4497 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4498 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4499 bytes2);
4500 auring_push(usrbuf, bytes2);
4501 auring_take(outbuf, bytes2 / framesize);
4502 }
4503
4504 /* XXX TODO: any counters here? */
4505
4506 #if defined(AUDIO_DEBUG)
4507 if (audiodebug >= 3) {
4508 struct audio_track_debugbuf m;
4509 audio_track_bufstat(track, &m);
4510 TRACET(0, track, "end%s%s%s%s%s%s",
4511 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4512 }
4513 #endif
4514 }
4515
4516 /*
4517 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4518 * Must be called with sc_lock held.
4519 */
4520 static u_int
4521 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4522 {
4523 audio_format2_t *fmt;
4524 u_int blktime;
4525 u_int frames_per_block;
4526
4527 KASSERT(mutex_owned(sc->sc_lock));
4528
4529 fmt = &mixer->hwbuf.fmt;
4530 blktime = sc->sc_blk_ms;
4531
4532 /*
4533 * If stride is not multiples of 8, special treatment is necessary.
4534 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4535 */
4536 if (fmt->stride == 4) {
4537 frames_per_block = fmt->sample_rate * blktime / 1000;
4538 if ((frames_per_block & 1) != 0)
4539 blktime *= 2;
4540 }
4541 #ifdef DIAGNOSTIC
4542 else if (fmt->stride % NBBY != 0) {
4543 panic("unsupported HW stride %d", fmt->stride);
4544 }
4545 #endif
4546
4547 return blktime;
4548 }
4549
4550 /*
4551 * Initialize the mixer corresponding to the mode.
4552 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4553 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4554 * This function returns 0 on successful. Otherwise returns errno.
4555 * Must be called with sc_lock held.
4556 */
4557 static int
4558 audio_mixer_init(struct audio_softc *sc, int mode,
4559 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4560 {
4561 char codecbuf[64];
4562 audio_trackmixer_t *mixer;
4563 void (*softint_handler)(void *);
4564 int len;
4565 int blksize;
4566 int capacity;
4567 size_t bufsize;
4568 int hwblks;
4569 int blkms;
4570 int error;
4571
4572 KASSERT(hwfmt != NULL);
4573 KASSERT(reg != NULL);
4574 KASSERT(mutex_owned(sc->sc_lock));
4575
4576 error = 0;
4577 if (mode == AUMODE_PLAY)
4578 mixer = sc->sc_pmixer;
4579 else
4580 mixer = sc->sc_rmixer;
4581
4582 mixer->sc = sc;
4583 mixer->mode = mode;
4584
4585 mixer->hwbuf.fmt = *hwfmt;
4586 mixer->volume = 256;
4587 mixer->blktime_d = 1000;
4588 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4589 sc->sc_blk_ms = mixer->blktime_n;
4590 hwblks = NBLKHW;
4591
4592 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4593 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4594 if (sc->hw_if->round_blocksize) {
4595 int rounded;
4596 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4597 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4598 mode, &p);
4599 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4600 if (rounded != blksize) {
4601 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4602 mixer->hwbuf.fmt.channels) != 0) {
4603 device_printf(sc->sc_dev,
4604 "blksize not configured %d -> %d\n",
4605 blksize, rounded);
4606 return EINVAL;
4607 }
4608 /* Recalculation */
4609 blksize = rounded;
4610 mixer->frames_per_block = blksize * NBBY /
4611 (mixer->hwbuf.fmt.stride *
4612 mixer->hwbuf.fmt.channels);
4613 }
4614 }
4615 mixer->blktime_n = mixer->frames_per_block;
4616 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4617
4618 capacity = mixer->frames_per_block * hwblks;
4619 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4620 if (sc->hw_if->round_buffersize) {
4621 size_t rounded;
4622 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4623 bufsize);
4624 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4625 if (rounded < bufsize) {
4626 /* buffersize needs NBLKHW blocks at least. */
4627 device_printf(sc->sc_dev,
4628 "buffersize too small: buffersize=%zd blksize=%d\n",
4629 rounded, blksize);
4630 return EINVAL;
4631 }
4632 if (rounded % blksize != 0) {
4633 /* buffersize/blksize constraint mismatch? */
4634 device_printf(sc->sc_dev,
4635 "buffersize must be multiple of blksize: "
4636 "buffersize=%zu blksize=%d\n",
4637 rounded, blksize);
4638 return EINVAL;
4639 }
4640 if (rounded != bufsize) {
4641 /* Recalcuration */
4642 bufsize = rounded;
4643 hwblks = bufsize / blksize;
4644 capacity = mixer->frames_per_block * hwblks;
4645 }
4646 }
4647 TRACE(1, "buffersize for %s = %zu",
4648 (mode == AUMODE_PLAY) ? "playback" : "recording",
4649 bufsize);
4650 mixer->hwbuf.capacity = capacity;
4651
4652 /*
4653 * XXX need to release sc_lock for compatibility?
4654 */
4655 if (sc->hw_if->allocm) {
4656 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4657 if (mixer->hwbuf.mem == NULL) {
4658 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4659 __func__, bufsize);
4660 return ENOMEM;
4661 }
4662 } else {
4663 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4664 }
4665
4666 /* From here, audio_mixer_destroy is necessary to exit. */
4667 if (mode == AUMODE_PLAY) {
4668 cv_init(&mixer->outcv, "audiowr");
4669 } else {
4670 cv_init(&mixer->outcv, "audiord");
4671 }
4672
4673 if (mode == AUMODE_PLAY) {
4674 softint_handler = audio_softintr_wr;
4675 } else {
4676 softint_handler = audio_softintr_rd;
4677 }
4678 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4679 softint_handler, sc);
4680 if (mixer->sih == NULL) {
4681 device_printf(sc->sc_dev, "softint_establish failed\n");
4682 goto abort;
4683 }
4684
4685 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4686 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4687 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4688 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4689 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4690
4691 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4692 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4693 mixer->swap_endian = true;
4694 TRACE(1, "swap_endian");
4695 }
4696
4697 if (mode == AUMODE_PLAY) {
4698 /* Mixing buffer */
4699 mixer->mixfmt = mixer->track_fmt;
4700 mixer->mixfmt.precision *= 2;
4701 mixer->mixfmt.stride *= 2;
4702 /* XXX TODO: use some macros? */
4703 len = mixer->frames_per_block * mixer->mixfmt.channels *
4704 mixer->mixfmt.stride / NBBY;
4705 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4706 } else {
4707 /* No mixing buffer for recording */
4708 }
4709
4710 if (reg->codec) {
4711 mixer->codec = reg->codec;
4712 mixer->codecarg.context = reg->context;
4713 if (mode == AUMODE_PLAY) {
4714 mixer->codecarg.srcfmt = &mixer->track_fmt;
4715 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4716 } else {
4717 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4718 mixer->codecarg.dstfmt = &mixer->track_fmt;
4719 }
4720 mixer->codecbuf.fmt = mixer->track_fmt;
4721 mixer->codecbuf.capacity = mixer->frames_per_block;
4722 len = auring_bytelen(&mixer->codecbuf);
4723 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4724 if (mixer->codecbuf.mem == NULL) {
4725 device_printf(sc->sc_dev,
4726 "%s: malloc codecbuf(%d) failed\n",
4727 __func__, len);
4728 error = ENOMEM;
4729 goto abort;
4730 }
4731 }
4732
4733 /* Succeeded so display it. */
4734 codecbuf[0] = '\0';
4735 if (mixer->codec || mixer->swap_endian) {
4736 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4737 (mode == AUMODE_PLAY) ? "->" : "<-",
4738 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4739 mixer->hwbuf.fmt.precision);
4740 }
4741 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
4742 aprint_normal_dev(sc->sc_dev, "%s:%d%s %dch %dHz, blk %dms for %s\n",
4743 audio_encoding_name(mixer->track_fmt.encoding),
4744 mixer->track_fmt.precision,
4745 codecbuf,
4746 mixer->track_fmt.channels,
4747 mixer->track_fmt.sample_rate,
4748 blkms,
4749 (mode == AUMODE_PLAY) ? "playback" : "recording");
4750
4751 return 0;
4752
4753 abort:
4754 audio_mixer_destroy(sc, mixer);
4755 return error;
4756 }
4757
4758 /*
4759 * Releases all resources of 'mixer'.
4760 * Note that it does not release the memory area of 'mixer' itself.
4761 * Must be called with sc_lock held.
4762 */
4763 static void
4764 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
4765 {
4766 int bufsize;
4767
4768 KASSERT(mutex_owned(sc->sc_lock));
4769
4770 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
4771
4772 if (mixer->hwbuf.mem != NULL) {
4773 if (sc->hw_if->freem) {
4774 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
4775 } else {
4776 kmem_free(mixer->hwbuf.mem, bufsize);
4777 }
4778 mixer->hwbuf.mem = NULL;
4779 }
4780
4781 audio_free(mixer->codecbuf.mem);
4782 audio_free(mixer->mixsample);
4783
4784 cv_destroy(&mixer->outcv);
4785
4786 if (mixer->sih) {
4787 softint_disestablish(mixer->sih);
4788 mixer->sih = NULL;
4789 }
4790 }
4791
4792 /*
4793 * Starts playback mixer.
4794 * Must be called only if sc_pbusy is false.
4795 * Must be called with sc_lock held.
4796 * Must not be called from the interrupt context.
4797 */
4798 static void
4799 audio_pmixer_start(struct audio_softc *sc, bool force)
4800 {
4801 audio_trackmixer_t *mixer;
4802 int minimum;
4803
4804 KASSERT(mutex_owned(sc->sc_lock));
4805 KASSERT(sc->sc_pbusy == false);
4806
4807 mutex_enter(sc->sc_intr_lock);
4808
4809 mixer = sc->sc_pmixer;
4810 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
4811 (audiodebug >= 3) ? "begin " : "",
4812 (int)mixer->mixseq, (int)mixer->hwseq,
4813 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
4814 force ? " force" : "");
4815
4816 /* Need two blocks to start normally. */
4817 minimum = (force) ? 1 : 2;
4818 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
4819 audio_pmixer_process(sc);
4820 }
4821
4822 /* Start output */
4823 audio_pmixer_output(sc);
4824 sc->sc_pbusy = true;
4825
4826 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
4827 (int)mixer->mixseq, (int)mixer->hwseq,
4828 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
4829
4830 mutex_exit(sc->sc_intr_lock);
4831 }
4832
4833 /*
4834 * When playing back with MD filter:
4835 *
4836 * track track ...
4837 * v v
4838 * + mix (with aint2_t)
4839 * | master volume (with aint2_t)
4840 * v
4841 * mixsample [::::] wide-int 1 block (ring) buffer
4842 * |
4843 * | convert aint2_t -> aint_t
4844 * v
4845 * codecbuf [....] 1 block (ring) buffer
4846 * |
4847 * | convert to hw format
4848 * v
4849 * hwbuf [............] NBLKHW blocks ring buffer
4850 *
4851 * When playing back without MD filter:
4852 *
4853 * mixsample [::::] wide-int 1 block (ring) buffer
4854 * |
4855 * | convert aint2_t -> aint_t
4856 * | (with byte swap if necessary)
4857 * v
4858 * hwbuf [............] NBLKHW blocks ring buffer
4859 *
4860 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
4861 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
4862 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
4863 */
4864
4865 /*
4866 * Performs track mixing and converts it to hwbuf.
4867 * Note that this function doesn't transfer hwbuf to hardware.
4868 * Must be called with sc_intr_lock held.
4869 */
4870 static void
4871 audio_pmixer_process(struct audio_softc *sc)
4872 {
4873 audio_trackmixer_t *mixer;
4874 audio_file_t *f;
4875 int frame_count;
4876 int sample_count;
4877 int mixed;
4878 int i;
4879 aint2_t *m;
4880 aint_t *h;
4881
4882 mixer = sc->sc_pmixer;
4883
4884 frame_count = mixer->frames_per_block;
4885 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
4886 "auring_get_contig_free()=%d frame_count=%d",
4887 auring_get_contig_free(&mixer->hwbuf), frame_count);
4888 sample_count = frame_count * mixer->mixfmt.channels;
4889
4890 mixer->mixseq++;
4891
4892 /* Mix all tracks */
4893 mixed = 0;
4894 SLIST_FOREACH(f, &sc->sc_files, entry) {
4895 audio_track_t *track = f->ptrack;
4896
4897 if (track == NULL)
4898 continue;
4899
4900 if (track->is_pause) {
4901 TRACET(4, track, "skip; paused");
4902 continue;
4903 }
4904
4905 /* Skip if the track is used by process context. */
4906 if (audio_track_lock_tryenter(track) == false) {
4907 TRACET(4, track, "skip; in use");
4908 continue;
4909 }
4910
4911 /* Emulate mmap'ped track */
4912 if (track->mmapped) {
4913 auring_push(&track->usrbuf, track->usrbuf_blksize);
4914 TRACET(4, track, "mmap; usr=%d/%d/C%d",
4915 track->usrbuf.head,
4916 track->usrbuf.used,
4917 track->usrbuf.capacity);
4918 }
4919
4920 if (track->outbuf.used < mixer->frames_per_block &&
4921 track->usrbuf.used > 0) {
4922 TRACET(4, track, "process");
4923 audio_track_play(track);
4924 }
4925
4926 if (track->outbuf.used > 0) {
4927 mixed = audio_pmixer_mix_track(mixer, track, mixed);
4928 } else {
4929 TRACET(4, track, "skip; empty");
4930 }
4931
4932 audio_track_lock_exit(track);
4933 }
4934
4935 if (mixed == 0) {
4936 /* Silence */
4937 memset(mixer->mixsample, 0,
4938 frametobyte(&mixer->mixfmt, frame_count));
4939 } else {
4940 if (mixed > 1) {
4941 /* If there are multiple tracks, do auto gain control */
4942 audio_pmixer_agc(mixer, sample_count);
4943 }
4944
4945 /* Apply master volume */
4946 if (mixer->volume < 256) {
4947 m = mixer->mixsample;
4948 for (i = 0; i < sample_count; i++) {
4949 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
4950 m++;
4951 }
4952
4953 /*
4954 * Recover the volume gradually at the pace of
4955 * several times per second. If it's too fast, you
4956 * can recognize that the volume changes up and down
4957 * quickly and it's not so comfortable.
4958 */
4959 mixer->voltimer += mixer->blktime_n;
4960 if (mixer->voltimer * 4 >= mixer->blktime_d) {
4961 mixer->volume++;
4962 mixer->voltimer = 0;
4963 #if defined(AUDIO_DEBUG_AGC)
4964 TRACE(1, "volume recover: %d", mixer->volume);
4965 #endif
4966 }
4967 }
4968 }
4969
4970 /*
4971 * The rest is the hardware part.
4972 */
4973
4974 if (mixer->codec) {
4975 h = auring_tailptr_aint(&mixer->codecbuf);
4976 } else {
4977 h = auring_tailptr_aint(&mixer->hwbuf);
4978 }
4979
4980 m = mixer->mixsample;
4981 if (mixer->swap_endian) {
4982 for (i = 0; i < sample_count; i++) {
4983 *h++ = bswap16(*m++);
4984 }
4985 } else {
4986 for (i = 0; i < sample_count; i++) {
4987 *h++ = *m++;
4988 }
4989 }
4990
4991 /* Hardware driver's codec */
4992 if (mixer->codec) {
4993 auring_push(&mixer->codecbuf, frame_count);
4994 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
4995 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
4996 mixer->codecarg.count = frame_count;
4997 mixer->codec(&mixer->codecarg);
4998 auring_take(&mixer->codecbuf, mixer->codecarg.count);
4999 }
5000
5001 auring_push(&mixer->hwbuf, frame_count);
5002
5003 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5004 (int)mixer->mixseq,
5005 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5006 (mixed == 0) ? " silent" : "");
5007 }
5008
5009 /*
5010 * Do auto gain control.
5011 * Must be called sc_intr_lock held.
5012 */
5013 static void
5014 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5015 {
5016 struct audio_softc *sc __unused;
5017 aint2_t val;
5018 aint2_t maxval;
5019 aint2_t minval;
5020 aint2_t over_plus;
5021 aint2_t over_minus;
5022 aint2_t *m;
5023 int newvol;
5024 int i;
5025
5026 sc = mixer->sc;
5027
5028 /* Overflow detection */
5029 maxval = AINT_T_MAX;
5030 minval = AINT_T_MIN;
5031 m = mixer->mixsample;
5032 for (i = 0; i < sample_count; i++) {
5033 val = *m++;
5034 if (val > maxval)
5035 maxval = val;
5036 else if (val < minval)
5037 minval = val;
5038 }
5039
5040 /* Absolute value of overflowed amount */
5041 over_plus = maxval - AINT_T_MAX;
5042 over_minus = AINT_T_MIN - minval;
5043
5044 if (over_plus > 0 || over_minus > 0) {
5045 if (over_plus > over_minus) {
5046 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5047 } else {
5048 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5049 }
5050
5051 /*
5052 * Change the volume only if new one is smaller.
5053 * Reset the timer even if the volume isn't changed.
5054 */
5055 if (newvol <= mixer->volume) {
5056 mixer->volume = newvol;
5057 mixer->voltimer = 0;
5058 #if defined(AUDIO_DEBUG_AGC)
5059 TRACE(1, "auto volume adjust: %d", mixer->volume);
5060 #endif
5061 }
5062 }
5063 }
5064
5065 /*
5066 * Mix one track.
5067 * 'mixed' specifies the number of tracks mixed so far.
5068 * It returns the number of tracks mixed. In other words, it returns
5069 * mixed + 1 if this track is mixed.
5070 */
5071 static int
5072 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5073 int mixed)
5074 {
5075 int count;
5076 int sample_count;
5077 int remain;
5078 int i;
5079 const aint_t *s;
5080 aint2_t *d;
5081
5082 /* XXX TODO: Is this necessary for now? */
5083 if (mixer->mixseq < track->seq)
5084 return mixed;
5085
5086 count = auring_get_contig_used(&track->outbuf);
5087 count = uimin(count, mixer->frames_per_block);
5088
5089 s = auring_headptr_aint(&track->outbuf);
5090 d = mixer->mixsample;
5091
5092 /*
5093 * Apply track volume with double-sized integer and perform
5094 * additive synthesis.
5095 *
5096 * XXX If you limit the track volume to 1.0 or less (<= 256),
5097 * it would be better to do this in the track conversion stage
5098 * rather than here. However, if you accept the volume to
5099 * be greater than 1.0 (> 256), it's better to do it here.
5100 * Because the operation here is done by double-sized integer.
5101 */
5102 sample_count = count * mixer->mixfmt.channels;
5103 if (mixed == 0) {
5104 /* If this is the first track, assignment can be used. */
5105 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5106 if (track->volume != 256) {
5107 for (i = 0; i < sample_count; i++) {
5108 aint2_t v;
5109 v = *s++;
5110 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5111 }
5112 } else
5113 #endif
5114 {
5115 for (i = 0; i < sample_count; i++) {
5116 *d++ = ((aint2_t)*s++);
5117 }
5118 }
5119 /* Fill silence if the first track is not filled. */
5120 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5121 *d++ = 0;
5122 } else {
5123 /* If this is the second or later, add it. */
5124 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5125 if (track->volume != 256) {
5126 for (i = 0; i < sample_count; i++) {
5127 aint2_t v;
5128 v = *s++;
5129 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5130 }
5131 } else
5132 #endif
5133 {
5134 for (i = 0; i < sample_count; i++) {
5135 *d++ += ((aint2_t)*s++);
5136 }
5137 }
5138 }
5139
5140 auring_take(&track->outbuf, count);
5141 /*
5142 * The counters have to align block even if outbuf is less than
5143 * one block. XXX Is this still necessary?
5144 */
5145 remain = mixer->frames_per_block - count;
5146 if (__predict_false(remain != 0)) {
5147 auring_push(&track->outbuf, remain);
5148 auring_take(&track->outbuf, remain);
5149 }
5150
5151 /*
5152 * Update track sequence.
5153 * mixseq has previous value yet at this point.
5154 */
5155 track->seq = mixer->mixseq + 1;
5156
5157 return mixed + 1;
5158 }
5159
5160 /*
5161 * Output one block from hwbuf to HW.
5162 * Must be called with sc_intr_lock held.
5163 */
5164 static void
5165 audio_pmixer_output(struct audio_softc *sc)
5166 {
5167 audio_trackmixer_t *mixer;
5168 audio_params_t params;
5169 void *start;
5170 void *end;
5171 int blksize;
5172 int error;
5173
5174 mixer = sc->sc_pmixer;
5175 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5176 sc->sc_pbusy,
5177 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5178 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5179 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5180 mixer->hwbuf.used, mixer->frames_per_block);
5181
5182 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5183
5184 if (sc->hw_if->trigger_output) {
5185 /* trigger (at once) */
5186 if (!sc->sc_pbusy) {
5187 start = mixer->hwbuf.mem;
5188 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5189 params = format2_to_params(&mixer->hwbuf.fmt);
5190
5191 error = sc->hw_if->trigger_output(sc->hw_hdl,
5192 start, end, blksize, audio_pintr, sc, ¶ms);
5193 if (error) {
5194 device_printf(sc->sc_dev,
5195 "trigger_output failed with %d\n", error);
5196 return;
5197 }
5198 }
5199 } else {
5200 /* start (everytime) */
5201 start = auring_headptr(&mixer->hwbuf);
5202
5203 error = sc->hw_if->start_output(sc->hw_hdl,
5204 start, blksize, audio_pintr, sc);
5205 if (error) {
5206 device_printf(sc->sc_dev,
5207 "start_output failed with %d\n", error);
5208 return;
5209 }
5210 }
5211 }
5212
5213 /*
5214 * This is an interrupt handler for playback.
5215 * It is called with sc_intr_lock held.
5216 *
5217 * It is usually called from hardware interrupt. However, note that
5218 * for some drivers (e.g. uaudio) it is called from software interrupt.
5219 */
5220 static void
5221 audio_pintr(void *arg)
5222 {
5223 struct audio_softc *sc;
5224 audio_trackmixer_t *mixer;
5225
5226 sc = arg;
5227 KASSERT(mutex_owned(sc->sc_intr_lock));
5228
5229 if (sc->sc_dying)
5230 return;
5231 #if defined(DIAGNOSTIC)
5232 if (sc->sc_pbusy == false) {
5233 device_printf(sc->sc_dev, "stray interrupt\n");
5234 return;
5235 }
5236 #endif
5237
5238 mixer = sc->sc_pmixer;
5239 mixer->hw_complete_counter += mixer->frames_per_block;
5240 mixer->hwseq++;
5241
5242 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5243
5244 TRACE(4,
5245 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5246 mixer->hwseq, mixer->hw_complete_counter,
5247 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5248
5249 #if defined(AUDIO_HW_SINGLE_BUFFER)
5250 /*
5251 * Create a new block here and output it immediately.
5252 * It makes a latency lower but needs machine power.
5253 */
5254 audio_pmixer_process(sc);
5255 audio_pmixer_output(sc);
5256 #else
5257 /*
5258 * It is called when block N output is done.
5259 * Output immediately block N+1 created by the last interrupt.
5260 * And then create block N+2 for the next interrupt.
5261 * This method makes playback robust even on slower machines.
5262 * Instead the latency is increased by one block.
5263 */
5264
5265 /* At first, output ready block. */
5266 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5267 audio_pmixer_output(sc);
5268 }
5269
5270 bool later = false;
5271
5272 if (mixer->hwbuf.used < mixer->frames_per_block) {
5273 later = true;
5274 }
5275
5276 /* Then, process next block. */
5277 audio_pmixer_process(sc);
5278
5279 if (later) {
5280 audio_pmixer_output(sc);
5281 }
5282 #endif
5283
5284 /*
5285 * When this interrupt is the real hardware interrupt, disabling
5286 * preemption here is not necessary. But some drivers (e.g. uaudio)
5287 * emulate it by software interrupt, so kpreempt_disable is necessary.
5288 */
5289 kpreempt_disable();
5290 softint_schedule(mixer->sih);
5291 kpreempt_enable();
5292 }
5293
5294 /*
5295 * Starts record mixer.
5296 * Must be called only if sc_rbusy is false.
5297 * Must be called with sc_lock held.
5298 * Must not be called from the interrupt context.
5299 */
5300 static void
5301 audio_rmixer_start(struct audio_softc *sc)
5302 {
5303
5304 KASSERT(mutex_owned(sc->sc_lock));
5305 KASSERT(sc->sc_rbusy == false);
5306
5307 mutex_enter(sc->sc_intr_lock);
5308
5309 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5310 audio_rmixer_input(sc);
5311 sc->sc_rbusy = true;
5312 TRACE(3, "end");
5313
5314 mutex_exit(sc->sc_intr_lock);
5315 }
5316
5317 /*
5318 * When recording with MD filter:
5319 *
5320 * hwbuf [............] NBLKHW blocks ring buffer
5321 * |
5322 * | convert from hw format
5323 * v
5324 * codecbuf [....] 1 block (ring) buffer
5325 * | |
5326 * v v
5327 * track track ...
5328 *
5329 * When recording without MD filter:
5330 *
5331 * hwbuf [............] NBLKHW blocks ring buffer
5332 * | |
5333 * v v
5334 * track track ...
5335 *
5336 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5337 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5338 */
5339
5340 /*
5341 * Distribute a recorded block to all recording tracks.
5342 */
5343 static void
5344 audio_rmixer_process(struct audio_softc *sc)
5345 {
5346 audio_trackmixer_t *mixer;
5347 audio_ring_t *mixersrc;
5348 audio_file_t *f;
5349 aint_t *p;
5350 int count;
5351 int bytes;
5352 int i;
5353
5354 mixer = sc->sc_rmixer;
5355
5356 /*
5357 * count is the number of frames to be retrieved this time.
5358 * count should be one block.
5359 */
5360 count = auring_get_contig_used(&mixer->hwbuf);
5361 count = uimin(count, mixer->frames_per_block);
5362 if (count <= 0) {
5363 TRACE(4, "count %d: too short", count);
5364 return;
5365 }
5366 bytes = frametobyte(&mixer->track_fmt, count);
5367
5368 /* Hardware driver's codec */
5369 if (mixer->codec) {
5370 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5371 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5372 mixer->codecarg.count = count;
5373 mixer->codec(&mixer->codecarg);
5374 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5375 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5376 mixersrc = &mixer->codecbuf;
5377 } else {
5378 mixersrc = &mixer->hwbuf;
5379 }
5380
5381 if (mixer->swap_endian) {
5382 /* inplace conversion */
5383 p = auring_headptr_aint(mixersrc);
5384 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5385 *p = bswap16(*p);
5386 }
5387 }
5388
5389 /* Distribute to all tracks. */
5390 SLIST_FOREACH(f, &sc->sc_files, entry) {
5391 audio_track_t *track = f->rtrack;
5392 audio_ring_t *input;
5393
5394 if (track == NULL)
5395 continue;
5396
5397 if (track->is_pause) {
5398 TRACET(4, track, "skip; paused");
5399 continue;
5400 }
5401
5402 if (audio_track_lock_tryenter(track) == false) {
5403 TRACET(4, track, "skip; in use");
5404 continue;
5405 }
5406
5407 /* If the track buffer is full, discard the oldest one? */
5408 input = track->input;
5409 if (input->capacity - input->used < mixer->frames_per_block) {
5410 int drops = mixer->frames_per_block -
5411 (input->capacity - input->used);
5412 track->dropframes += drops;
5413 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5414 drops,
5415 input->head, input->used, input->capacity);
5416 auring_take(input, drops);
5417 }
5418 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5419 "input->used=%d mixer->frames_per_block=%d",
5420 input->used, mixer->frames_per_block);
5421
5422 memcpy(auring_tailptr_aint(input),
5423 auring_headptr_aint(mixersrc),
5424 bytes);
5425 auring_push(input, count);
5426
5427 /* XXX sequence counter? */
5428
5429 audio_track_lock_exit(track);
5430 }
5431
5432 auring_take(mixersrc, count);
5433 }
5434
5435 /*
5436 * Input one block from HW to hwbuf.
5437 * Must be called with sc_intr_lock held.
5438 */
5439 static void
5440 audio_rmixer_input(struct audio_softc *sc)
5441 {
5442 audio_trackmixer_t *mixer;
5443 audio_params_t params;
5444 void *start;
5445 void *end;
5446 int blksize;
5447 int error;
5448
5449 mixer = sc->sc_rmixer;
5450 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5451
5452 if (sc->hw_if->trigger_input) {
5453 /* trigger (at once) */
5454 if (!sc->sc_rbusy) {
5455 start = mixer->hwbuf.mem;
5456 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5457 params = format2_to_params(&mixer->hwbuf.fmt);
5458
5459 error = sc->hw_if->trigger_input(sc->hw_hdl,
5460 start, end, blksize, audio_rintr, sc, ¶ms);
5461 if (error) {
5462 device_printf(sc->sc_dev,
5463 "trigger_input failed with %d\n", error);
5464 return;
5465 }
5466 }
5467 } else {
5468 /* start (everytime) */
5469 start = auring_tailptr(&mixer->hwbuf);
5470
5471 error = sc->hw_if->start_input(sc->hw_hdl,
5472 start, blksize, audio_rintr, sc);
5473 if (error) {
5474 device_printf(sc->sc_dev,
5475 "start_input failed with %d\n", error);
5476 return;
5477 }
5478 }
5479 }
5480
5481 /*
5482 * This is an interrupt handler for recording.
5483 * It is called with sc_intr_lock.
5484 *
5485 * It is usually called from hardware interrupt. However, note that
5486 * for some drivers (e.g. uaudio) it is called from software interrupt.
5487 */
5488 static void
5489 audio_rintr(void *arg)
5490 {
5491 struct audio_softc *sc;
5492 audio_trackmixer_t *mixer;
5493
5494 sc = arg;
5495 KASSERT(mutex_owned(sc->sc_intr_lock));
5496
5497 if (sc->sc_dying)
5498 return;
5499 #if defined(DIAGNOSTIC)
5500 if (sc->sc_rbusy == false) {
5501 device_printf(sc->sc_dev, "stray interrupt\n");
5502 return;
5503 }
5504 #endif
5505
5506 mixer = sc->sc_rmixer;
5507 mixer->hw_complete_counter += mixer->frames_per_block;
5508 mixer->hwseq++;
5509
5510 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5511
5512 TRACE(4,
5513 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5514 mixer->hwseq, mixer->hw_complete_counter,
5515 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5516
5517 /* Distrubute recorded block */
5518 audio_rmixer_process(sc);
5519
5520 /* Request next block */
5521 audio_rmixer_input(sc);
5522
5523 /*
5524 * When this interrupt is the real hardware interrupt, disabling
5525 * preemption here is not necessary. But some drivers (e.g. uaudio)
5526 * emulate it by software interrupt, so kpreempt_disable is necessary.
5527 */
5528 kpreempt_disable();
5529 softint_schedule(mixer->sih);
5530 kpreempt_enable();
5531 }
5532
5533 /*
5534 * Halts playback mixer.
5535 * This function also clears related parameters, so call this function
5536 * instead of calling halt_output directly.
5537 * Must be called only if sc_pbusy is true.
5538 * Must be called with sc_lock && sc_exlock held.
5539 */
5540 static int
5541 audio_pmixer_halt(struct audio_softc *sc)
5542 {
5543 int error;
5544
5545 TRACE(2, "");
5546 KASSERT(mutex_owned(sc->sc_lock));
5547 KASSERT(sc->sc_exlock);
5548
5549 mutex_enter(sc->sc_intr_lock);
5550 error = sc->hw_if->halt_output(sc->hw_hdl);
5551 mutex_exit(sc->sc_intr_lock);
5552
5553 /* Halts anyway even if some error has occurred. */
5554 sc->sc_pbusy = false;
5555 sc->sc_pmixer->hwbuf.head = 0;
5556 sc->sc_pmixer->hwbuf.used = 0;
5557 sc->sc_pmixer->mixseq = 0;
5558 sc->sc_pmixer->hwseq = 0;
5559
5560 return error;
5561 }
5562
5563 /*
5564 * Halts recording mixer.
5565 * This function also clears related parameters, so call this function
5566 * instead of calling halt_input directly.
5567 * Must be called only if sc_rbusy is true.
5568 * Must be called with sc_lock && sc_exlock held.
5569 */
5570 static int
5571 audio_rmixer_halt(struct audio_softc *sc)
5572 {
5573 int error;
5574
5575 TRACE(2, "");
5576 KASSERT(mutex_owned(sc->sc_lock));
5577 KASSERT(sc->sc_exlock);
5578
5579 mutex_enter(sc->sc_intr_lock);
5580 error = sc->hw_if->halt_input(sc->hw_hdl);
5581 mutex_exit(sc->sc_intr_lock);
5582
5583 /* Halts anyway even if some error has occurred. */
5584 sc->sc_rbusy = false;
5585 sc->sc_rmixer->hwbuf.head = 0;
5586 sc->sc_rmixer->hwbuf.used = 0;
5587 sc->sc_rmixer->mixseq = 0;
5588 sc->sc_rmixer->hwseq = 0;
5589
5590 return error;
5591 }
5592
5593 /*
5594 * Flush this track.
5595 * Halts all operations, clears all buffers, reset error counters.
5596 * XXX I'm not sure...
5597 */
5598 static void
5599 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5600 {
5601
5602 KASSERT(track);
5603 TRACET(3, track, "clear");
5604
5605 audio_track_lock_enter(track);
5606
5607 track->usrbuf.used = 0;
5608 /* Clear all internal parameters. */
5609 if (track->codec.filter) {
5610 track->codec.srcbuf.used = 0;
5611 track->codec.srcbuf.head = 0;
5612 }
5613 if (track->chvol.filter) {
5614 track->chvol.srcbuf.used = 0;
5615 track->chvol.srcbuf.head = 0;
5616 }
5617 if (track->chmix.filter) {
5618 track->chmix.srcbuf.used = 0;
5619 track->chmix.srcbuf.head = 0;
5620 }
5621 if (track->freq.filter) {
5622 track->freq.srcbuf.used = 0;
5623 track->freq.srcbuf.head = 0;
5624 if (track->freq_step < 65536)
5625 track->freq_current = 65536;
5626 else
5627 track->freq_current = 0;
5628 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5629 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5630 }
5631 /* Clear buffer, then operation halts naturally. */
5632 track->outbuf.used = 0;
5633
5634 /* Clear counters. */
5635 track->dropframes = 0;
5636
5637 audio_track_lock_exit(track);
5638 }
5639
5640 /*
5641 * Drain the track.
5642 * track must be present and for playback.
5643 * If successful, it returns 0. Otherwise returns errno.
5644 * Must be called with sc_lock held.
5645 */
5646 static int
5647 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5648 {
5649 audio_trackmixer_t *mixer;
5650 int done;
5651 int error;
5652
5653 KASSERT(track);
5654 TRACET(3, track, "start");
5655 mixer = track->mixer;
5656 KASSERT(mutex_owned(sc->sc_lock));
5657
5658 /* Ignore them if pause. */
5659 if (track->is_pause) {
5660 TRACET(3, track, "pause -> clear");
5661 track->pstate = AUDIO_STATE_CLEAR;
5662 }
5663 /* Terminate early here if there is no data in the track. */
5664 if (track->pstate == AUDIO_STATE_CLEAR) {
5665 TRACET(3, track, "no need to drain");
5666 return 0;
5667 }
5668 track->pstate = AUDIO_STATE_DRAINING;
5669
5670 for (;;) {
5671 /* I want to display it before condition evaluation. */
5672 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5673 (int)curproc->p_pid, (int)curlwp->l_lid,
5674 (int)track->seq, (int)mixer->hwseq,
5675 track->outbuf.head, track->outbuf.used,
5676 track->outbuf.capacity);
5677
5678 /* Condition to terminate */
5679 audio_track_lock_enter(track);
5680 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5681 track->outbuf.used == 0 &&
5682 track->seq <= mixer->hwseq);
5683 audio_track_lock_exit(track);
5684 if (done)
5685 break;
5686
5687 TRACET(3, track, "sleep");
5688 error = audio_track_waitio(sc, track);
5689 if (error)
5690 return error;
5691
5692 /* XXX call audio_track_play here ? */
5693 }
5694
5695 track->pstate = AUDIO_STATE_CLEAR;
5696 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5697 (int)track->inputcounter, (int)track->outputcounter);
5698 return 0;
5699 }
5700
5701 /*
5702 * Send signal to process.
5703 * This is intended to be called only from audio_softintr_{rd,wr}.
5704 * Must be called with sc_lock && sc_intr_lock held.
5705 */
5706 static inline void
5707 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
5708 {
5709 proc_t *p;
5710
5711 KASSERT(mutex_owned(sc->sc_lock));
5712 KASSERT(mutex_owned(sc->sc_intr_lock));
5713 KASSERT(pid != 0);
5714
5715 /*
5716 * psignal() must be called without spin lock held.
5717 * So leave intr_lock temporarily here.
5718 */
5719 mutex_exit(sc->sc_intr_lock);
5720
5721 mutex_enter(proc_lock);
5722 p = proc_find(pid);
5723 if (p)
5724 psignal(p, signum);
5725 mutex_exit(proc_lock);
5726
5727 /* Enter intr_lock again */
5728 mutex_enter(sc->sc_intr_lock);
5729 }
5730
5731 /*
5732 * This is software interrupt handler for record.
5733 * It is called from recording hardware interrupt everytime.
5734 * It does:
5735 * - Deliver SIGIO for all async processes.
5736 * - Notify to audio_read() that data has arrived.
5737 * - selnotify() for select/poll-ing processes.
5738 */
5739 /*
5740 * XXX If a process issues FIOASYNC between hardware interrupt and
5741 * software interrupt, (stray) SIGIO will be sent to the process
5742 * despite the fact that it has not receive recorded data yet.
5743 */
5744 static void
5745 audio_softintr_rd(void *cookie)
5746 {
5747 struct audio_softc *sc = cookie;
5748 audio_file_t *f;
5749 pid_t pid;
5750
5751 mutex_enter(sc->sc_lock);
5752 mutex_enter(sc->sc_intr_lock);
5753
5754 SLIST_FOREACH(f, &sc->sc_files, entry) {
5755 audio_track_t *track = f->rtrack;
5756
5757 if (track == NULL)
5758 continue;
5759
5760 TRACET(4, track, "broadcast; inp=%d/%d/%d",
5761 track->input->head,
5762 track->input->used,
5763 track->input->capacity);
5764
5765 pid = f->async_audio;
5766 if (pid != 0) {
5767 TRACEF(4, f, "sending SIGIO %d", pid);
5768 audio_psignal(sc, pid, SIGIO);
5769 }
5770 }
5771 mutex_exit(sc->sc_intr_lock);
5772
5773 /* Notify that data has arrived. */
5774 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
5775 KNOTE(&sc->sc_rsel.sel_klist, 0);
5776 cv_broadcast(&sc->sc_rmixer->outcv);
5777
5778 mutex_exit(sc->sc_lock);
5779 }
5780
5781 /*
5782 * This is software interrupt handler for playback.
5783 * It is called from playback hardware interrupt everytime.
5784 * It does:
5785 * - Deliver SIGIO for all async and writable (used < lowat) processes.
5786 * - Notify to audio_write() that outbuf block available.
5787 * - selnotify() for select/poll-ing processes if there are any writable
5788 * (used < lowat) processes. Checking each descriptor will be done by
5789 * filt_audiowrite_event().
5790 */
5791 static void
5792 audio_softintr_wr(void *cookie)
5793 {
5794 struct audio_softc *sc = cookie;
5795 audio_file_t *f;
5796 bool found;
5797 pid_t pid;
5798
5799 TRACE(4, "called");
5800 found = false;
5801
5802 mutex_enter(sc->sc_lock);
5803 mutex_enter(sc->sc_intr_lock);
5804
5805 SLIST_FOREACH(f, &sc->sc_files, entry) {
5806 audio_track_t *track = f->ptrack;
5807
5808 if (track == NULL)
5809 continue;
5810
5811 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
5812 (int)track->seq,
5813 track->outbuf.head,
5814 track->outbuf.used,
5815 track->outbuf.capacity);
5816
5817 /*
5818 * Send a signal if the process is async mode and
5819 * used is lower than lowat.
5820 */
5821 if (track->usrbuf.used <= track->usrbuf_usedlow &&
5822 !track->is_pause) {
5823 /* For selnotify */
5824 found = true;
5825 /* For SIGIO */
5826 pid = f->async_audio;
5827 if (pid != 0) {
5828 TRACEF(4, f, "sending SIGIO %d", pid);
5829 audio_psignal(sc, pid, SIGIO);
5830 }
5831 }
5832 }
5833 mutex_exit(sc->sc_intr_lock);
5834
5835 /*
5836 * Notify for select/poll when someone become writable.
5837 * It needs sc_lock (and not sc_intr_lock).
5838 */
5839 if (found) {
5840 TRACE(4, "selnotify");
5841 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
5842 KNOTE(&sc->sc_wsel.sel_klist, 0);
5843 }
5844
5845 /* Notify to audio_write() that outbuf available. */
5846 cv_broadcast(&sc->sc_pmixer->outcv);
5847
5848 mutex_exit(sc->sc_lock);
5849 }
5850
5851 /*
5852 * Check (and convert) the format *p came from userland.
5853 * If successful, it writes back the converted format to *p if necessary
5854 * and returns 0. Otherwise returns errno (*p may change even this case).
5855 */
5856 static int
5857 audio_check_params(audio_format2_t *p)
5858 {
5859
5860 /* Convert obsoleted AUDIO_ENCODING_PCM* */
5861 /* XXX Is this conversion right? */
5862 if (p->encoding == AUDIO_ENCODING_PCM16) {
5863 if (p->precision == 8)
5864 p->encoding = AUDIO_ENCODING_ULINEAR;
5865 else
5866 p->encoding = AUDIO_ENCODING_SLINEAR;
5867 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
5868 if (p->precision == 8)
5869 p->encoding = AUDIO_ENCODING_ULINEAR;
5870 else
5871 return EINVAL;
5872 }
5873
5874 /*
5875 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
5876 * suffix.
5877 */
5878 if (p->encoding == AUDIO_ENCODING_SLINEAR)
5879 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5880 if (p->encoding == AUDIO_ENCODING_ULINEAR)
5881 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5882
5883 switch (p->encoding) {
5884 case AUDIO_ENCODING_ULAW:
5885 case AUDIO_ENCODING_ALAW:
5886 if (p->precision != 8)
5887 return EINVAL;
5888 break;
5889 case AUDIO_ENCODING_ADPCM:
5890 if (p->precision != 4 && p->precision != 8)
5891 return EINVAL;
5892 break;
5893 case AUDIO_ENCODING_SLINEAR_LE:
5894 case AUDIO_ENCODING_SLINEAR_BE:
5895 case AUDIO_ENCODING_ULINEAR_LE:
5896 case AUDIO_ENCODING_ULINEAR_BE:
5897 if (p->precision != 8 && p->precision != 16 &&
5898 p->precision != 24 && p->precision != 32)
5899 return EINVAL;
5900
5901 /* 8bit format does not have endianness. */
5902 if (p->precision == 8) {
5903 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
5904 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5905 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
5906 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5907 }
5908
5909 if (p->precision > p->stride)
5910 return EINVAL;
5911 break;
5912 case AUDIO_ENCODING_MPEG_L1_STREAM:
5913 case AUDIO_ENCODING_MPEG_L1_PACKETS:
5914 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
5915 case AUDIO_ENCODING_MPEG_L2_STREAM:
5916 case AUDIO_ENCODING_MPEG_L2_PACKETS:
5917 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
5918 case AUDIO_ENCODING_AC3:
5919 break;
5920 default:
5921 return EINVAL;
5922 }
5923
5924 /* sanity check # of channels*/
5925 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
5926 return EINVAL;
5927
5928 return 0;
5929 }
5930
5931 /*
5932 * Initialize playback and record mixers.
5933 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
5934 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
5935 * the filter registration information. These four must not be NULL.
5936 * If successful returns 0. Otherwise returns errno.
5937 * Must be called with sc_lock held.
5938 * Must not be called if there are any tracks.
5939 * Caller should check that the initialization succeed by whether
5940 * sc_[pr]mixer is not NULL.
5941 */
5942 static int
5943 audio_mixers_init(struct audio_softc *sc, int mode,
5944 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
5945 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
5946 {
5947 int error;
5948
5949 KASSERT(phwfmt != NULL);
5950 KASSERT(rhwfmt != NULL);
5951 KASSERT(pfil != NULL);
5952 KASSERT(rfil != NULL);
5953 KASSERT(mutex_owned(sc->sc_lock));
5954
5955 if ((mode & AUMODE_PLAY)) {
5956 if (sc->sc_pmixer == NULL) {
5957 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
5958 KM_SLEEP);
5959 } else {
5960 /* destroy() doesn't free memory. */
5961 audio_mixer_destroy(sc, sc->sc_pmixer);
5962 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
5963 }
5964 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
5965 if (error) {
5966 device_printf(sc->sc_dev,
5967 "configuring playback mode failed with %d\n",
5968 error);
5969 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
5970 sc->sc_pmixer = NULL;
5971 return error;
5972 }
5973 }
5974 if ((mode & AUMODE_RECORD)) {
5975 if (sc->sc_rmixer == NULL) {
5976 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
5977 KM_SLEEP);
5978 } else {
5979 /* destroy() doesn't free memory. */
5980 audio_mixer_destroy(sc, sc->sc_rmixer);
5981 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
5982 }
5983 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
5984 if (error) {
5985 device_printf(sc->sc_dev,
5986 "configuring record mode failed with %d\n",
5987 error);
5988 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
5989 sc->sc_rmixer = NULL;
5990 return error;
5991 }
5992 }
5993
5994 return 0;
5995 }
5996
5997 /*
5998 * Select a frequency.
5999 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6000 * XXX Better algorithm?
6001 */
6002 static int
6003 audio_select_freq(const struct audio_format *fmt)
6004 {
6005 int freq;
6006 int high;
6007 int low;
6008 int j;
6009
6010 if (fmt->frequency_type == 0) {
6011 low = fmt->frequency[0];
6012 high = fmt->frequency[1];
6013 freq = 48000;
6014 if (low <= freq && freq <= high) {
6015 return freq;
6016 }
6017 freq = 44100;
6018 if (low <= freq && freq <= high) {
6019 return freq;
6020 }
6021 return high;
6022 } else {
6023 for (j = 0; j < fmt->frequency_type; j++) {
6024 if (fmt->frequency[j] == 48000) {
6025 return fmt->frequency[j];
6026 }
6027 }
6028 high = 0;
6029 for (j = 0; j < fmt->frequency_type; j++) {
6030 if (fmt->frequency[j] == 44100) {
6031 return fmt->frequency[j];
6032 }
6033 if (fmt->frequency[j] > high) {
6034 high = fmt->frequency[j];
6035 }
6036 }
6037 return high;
6038 }
6039 }
6040
6041 /*
6042 * Probe playback and/or recording format (depending on *modep).
6043 * *modep is an in-out parameter. It indicates the direction to configure
6044 * as an argument, and the direction configured is written back as out
6045 * parameter.
6046 * If successful, probed hardware format is stored into *phwfmt, *rhwfmt
6047 * depending on *modep, and return 0. Otherwise it returns errno.
6048 * Must be called with sc_lock held.
6049 */
6050 static int
6051 audio_hw_probe(struct audio_softc *sc, int is_indep, int *modep,
6052 audio_format2_t *phwfmt, audio_format2_t *rhwfmt)
6053 {
6054 audio_format2_t fmt;
6055 int mode;
6056 int error = 0;
6057
6058 KASSERT(mutex_owned(sc->sc_lock));
6059
6060 mode = *modep;
6061 KASSERTMSG((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0, "mode=0x%x", mode);
6062
6063 if (is_indep) {
6064 int errorp = 0, errorr = 0;
6065
6066 /* On independent devices, probe separately. */
6067 if ((mode & AUMODE_PLAY) != 0) {
6068 errorp = audio_hw_probe_fmt(sc, phwfmt, AUMODE_PLAY);
6069 if (errorp)
6070 mode &= ~AUMODE_PLAY;
6071 }
6072 if ((mode & AUMODE_RECORD) != 0) {
6073 errorr = audio_hw_probe_fmt(sc, rhwfmt, AUMODE_RECORD);
6074 if (errorr)
6075 mode &= ~AUMODE_RECORD;
6076 }
6077
6078 /* Return error if both play and record probes failed. */
6079 if (errorp && errorr)
6080 error = errorp;
6081 } else {
6082 /* On non independent devices, probe simultaneously. */
6083 error = audio_hw_probe_fmt(sc, &fmt, mode);
6084 if (error) {
6085 mode = 0;
6086 } else {
6087 *phwfmt = fmt;
6088 *rhwfmt = fmt;
6089 }
6090 }
6091
6092 *modep = mode;
6093 return error;
6094 }
6095
6096 /*
6097 * Choose the most preferred hardware format.
6098 * If successful, it will store the chosen format into *cand and return 0.
6099 * Otherwise, return errno.
6100 * Must be called with sc_lock held.
6101 */
6102 static int
6103 audio_hw_probe_fmt(struct audio_softc *sc, audio_format2_t *cand, int mode)
6104 {
6105 audio_format_query_t query;
6106 int cand_score;
6107 int score;
6108 int i;
6109 int error;
6110
6111 KASSERT(mutex_owned(sc->sc_lock));
6112
6113 /*
6114 * Score each formats and choose the highest one.
6115 *
6116 * +---- priority(0-3)
6117 * |+--- encoding/precision
6118 * ||+-- channels
6119 * score = 0x000000PEC
6120 */
6121
6122 cand_score = 0;
6123 for (i = 0; ; i++) {
6124 memset(&query, 0, sizeof(query));
6125 query.index = i;
6126
6127 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6128 if (error == EINVAL)
6129 break;
6130 if (error)
6131 return error;
6132
6133 #if defined(AUDIO_DEBUG)
6134 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6135 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6136 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6137 query.fmt.priority,
6138 audio_encoding_name(query.fmt.encoding),
6139 query.fmt.validbits,
6140 query.fmt.precision,
6141 query.fmt.channels);
6142 if (query.fmt.frequency_type == 0) {
6143 DPRINTF(1, "{%d-%d",
6144 query.fmt.frequency[0], query.fmt.frequency[1]);
6145 } else {
6146 int j;
6147 for (j = 0; j < query.fmt.frequency_type; j++) {
6148 DPRINTF(1, "%c%d",
6149 (j == 0) ? '{' : ',',
6150 query.fmt.frequency[j]);
6151 }
6152 }
6153 DPRINTF(1, "}\n");
6154 #endif
6155
6156 if ((query.fmt.mode & mode) == 0) {
6157 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6158 mode);
6159 continue;
6160 }
6161
6162 if (query.fmt.priority < 0) {
6163 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6164 continue;
6165 }
6166
6167 /* Score */
6168 score = (query.fmt.priority & 3) * 0x100;
6169 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6170 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6171 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6172 score += 0x20;
6173 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6174 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6175 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6176 score += 0x10;
6177 }
6178 score += query.fmt.channels;
6179
6180 if (score < cand_score) {
6181 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6182 score, cand_score);
6183 continue;
6184 }
6185
6186 /* Update candidate */
6187 cand_score = score;
6188 cand->encoding = query.fmt.encoding;
6189 cand->precision = query.fmt.validbits;
6190 cand->stride = query.fmt.precision;
6191 cand->channels = query.fmt.channels;
6192 cand->sample_rate = audio_select_freq(&query.fmt);
6193 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6194 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6195 cand_score, query.fmt.priority,
6196 audio_encoding_name(query.fmt.encoding),
6197 cand->precision, cand->stride,
6198 cand->channels, cand->sample_rate);
6199 }
6200
6201 if (cand_score == 0) {
6202 DPRINTF(1, "%s no fmt\n", __func__);
6203 return ENXIO;
6204 }
6205 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6206 audio_encoding_name(cand->encoding),
6207 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6208 return 0;
6209 }
6210
6211 /*
6212 * Validate fmt with query_format.
6213 * If fmt is included in the result of query_format, returns 0.
6214 * Otherwise returns EINVAL.
6215 * Must be called with sc_lock held.
6216 */
6217 static int
6218 audio_hw_validate_format(struct audio_softc *sc, int mode,
6219 const audio_format2_t *fmt)
6220 {
6221 audio_format_query_t query;
6222 struct audio_format *q;
6223 int index;
6224 int error;
6225 int j;
6226
6227 KASSERT(mutex_owned(sc->sc_lock));
6228
6229 /*
6230 * If query_format is not supported by hardware driver,
6231 * a rough check instead will be performed.
6232 * XXX This will gone in the future.
6233 */
6234 if (sc->hw_if->query_format == NULL) {
6235 if (fmt->encoding != AUDIO_ENCODING_SLINEAR_NE)
6236 return EINVAL;
6237 if (fmt->precision != AUDIO_INTERNAL_BITS)
6238 return EINVAL;
6239 if (fmt->stride != AUDIO_INTERNAL_BITS)
6240 return EINVAL;
6241 return 0;
6242 }
6243
6244 for (index = 0; ; index++) {
6245 query.index = index;
6246 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6247 if (error == EINVAL)
6248 break;
6249 if (error)
6250 return error;
6251
6252 q = &query.fmt;
6253 /*
6254 * Note that fmt is audio_format2_t (precision/stride) but
6255 * q is audio_format_t (validbits/precision).
6256 */
6257 if ((q->mode & mode) == 0) {
6258 continue;
6259 }
6260 if (fmt->encoding != q->encoding) {
6261 continue;
6262 }
6263 if (fmt->precision != q->validbits) {
6264 continue;
6265 }
6266 if (fmt->stride != q->precision) {
6267 continue;
6268 }
6269 if (fmt->channels != q->channels) {
6270 continue;
6271 }
6272 if (q->frequency_type == 0) {
6273 if (fmt->sample_rate < q->frequency[0] ||
6274 fmt->sample_rate > q->frequency[1]) {
6275 continue;
6276 }
6277 } else {
6278 for (j = 0; j < q->frequency_type; j++) {
6279 if (fmt->sample_rate == q->frequency[j])
6280 break;
6281 }
6282 if (j == query.fmt.frequency_type) {
6283 continue;
6284 }
6285 }
6286
6287 /* Matched. */
6288 return 0;
6289 }
6290
6291 return EINVAL;
6292 }
6293
6294 /*
6295 * Set track mixer's format depending on ai->mode.
6296 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6297 * with ai.play.*.
6298 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6299 * with ai.record.*.
6300 * All other fields in ai are ignored.
6301 * If successful returns 0. Otherwise returns errno.
6302 * This function does not roll back even if it fails.
6303 * Must be called with sc_lock held.
6304 */
6305 static int
6306 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6307 {
6308 audio_format2_t phwfmt;
6309 audio_format2_t rhwfmt;
6310 audio_filter_reg_t pfil;
6311 audio_filter_reg_t rfil;
6312 int mode;
6313 int error;
6314
6315 KASSERT(mutex_owned(sc->sc_lock));
6316
6317 /*
6318 * Even when setting either one of playback and recording,
6319 * both must be halted.
6320 */
6321 if (sc->sc_popens + sc->sc_ropens > 0)
6322 return EBUSY;
6323
6324 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6325 return ENOTTY;
6326
6327 mode = ai->mode;
6328 if ((mode & AUMODE_PLAY)) {
6329 phwfmt.encoding = ai->play.encoding;
6330 phwfmt.precision = ai->play.precision;
6331 phwfmt.stride = ai->play.precision;
6332 phwfmt.channels = ai->play.channels;
6333 phwfmt.sample_rate = ai->play.sample_rate;
6334 }
6335 if ((mode & AUMODE_RECORD)) {
6336 rhwfmt.encoding = ai->record.encoding;
6337 rhwfmt.precision = ai->record.precision;
6338 rhwfmt.stride = ai->record.precision;
6339 rhwfmt.channels = ai->record.channels;
6340 rhwfmt.sample_rate = ai->record.sample_rate;
6341 }
6342
6343 /* On non-independent devices, use the same format for both. */
6344 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6345 if (mode == AUMODE_RECORD) {
6346 phwfmt = rhwfmt;
6347 } else {
6348 rhwfmt = phwfmt;
6349 }
6350 mode = AUMODE_PLAY | AUMODE_RECORD;
6351 }
6352
6353 /* Then, unset the direction not exist on the hardware. */
6354 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6355 mode &= ~AUMODE_PLAY;
6356 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6357 mode &= ~AUMODE_RECORD;
6358
6359 /* debug */
6360 if ((mode & AUMODE_PLAY)) {
6361 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6362 audio_encoding_name(phwfmt.encoding),
6363 phwfmt.precision,
6364 phwfmt.stride,
6365 phwfmt.channels,
6366 phwfmt.sample_rate);
6367 }
6368 if ((mode & AUMODE_RECORD)) {
6369 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6370 audio_encoding_name(rhwfmt.encoding),
6371 rhwfmt.precision,
6372 rhwfmt.stride,
6373 rhwfmt.channels,
6374 rhwfmt.sample_rate);
6375 }
6376
6377 /* Check the format */
6378 if ((mode & AUMODE_PLAY)) {
6379 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6380 TRACE(1, "invalid format");
6381 return EINVAL;
6382 }
6383 }
6384 if ((mode & AUMODE_RECORD)) {
6385 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6386 TRACE(1, "invalid format");
6387 return EINVAL;
6388 }
6389 }
6390
6391 /* Configure the mixers. */
6392 memset(&pfil, 0, sizeof(pfil));
6393 memset(&rfil, 0, sizeof(rfil));
6394 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6395 if (error)
6396 return error;
6397
6398 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6399 if (error)
6400 return error;
6401
6402 return 0;
6403 }
6404
6405 /*
6406 * Store current mixers format into *ai.
6407 */
6408 static void
6409 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6410 {
6411 /*
6412 * There is no stride information in audio_info but it doesn't matter.
6413 * trackmixer always treats stride and precision as the same.
6414 */
6415 AUDIO_INITINFO(ai);
6416 ai->mode = 0;
6417 if (sc->sc_pmixer) {
6418 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6419 ai->play.encoding = fmt->encoding;
6420 ai->play.precision = fmt->precision;
6421 ai->play.channels = fmt->channels;
6422 ai->play.sample_rate = fmt->sample_rate;
6423 ai->mode |= AUMODE_PLAY;
6424 }
6425 if (sc->sc_rmixer) {
6426 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6427 ai->record.encoding = fmt->encoding;
6428 ai->record.precision = fmt->precision;
6429 ai->record.channels = fmt->channels;
6430 ai->record.sample_rate = fmt->sample_rate;
6431 ai->mode |= AUMODE_RECORD;
6432 }
6433 }
6434
6435 /*
6436 * audio_info details:
6437 *
6438 * ai.{play,record}.sample_rate (R/W)
6439 * ai.{play,record}.encoding (R/W)
6440 * ai.{play,record}.precision (R/W)
6441 * ai.{play,record}.channels (R/W)
6442 * These specify the playback or recording format.
6443 * Ignore members within an inactive track.
6444 *
6445 * ai.mode (R/W)
6446 * It specifies the playback or recording mode, AUMODE_*.
6447 * Currently, a mode change operation by ai.mode after opening is
6448 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6449 * However, it's possible to get or to set for backward compatibility.
6450 *
6451 * ai.{hiwat,lowat} (R/W)
6452 * These specify the high water mark and low water mark for playback
6453 * track. The unit is block.
6454 *
6455 * ai.{play,record}.gain (R/W)
6456 * It specifies the HW mixer volume in 0-255.
6457 * It is historical reason that the gain is connected to HW mixer.
6458 *
6459 * ai.{play,record}.balance (R/W)
6460 * It specifies the left-right balance of HW mixer in 0-64.
6461 * 32 means the center.
6462 * It is historical reason that the balance is connected to HW mixer.
6463 *
6464 * ai.{play,record}.port (R/W)
6465 * It specifies the input/output port of HW mixer.
6466 *
6467 * ai.monitor_gain (R/W)
6468 * It specifies the recording monitor gain(?) of HW mixer.
6469 *
6470 * ai.{play,record}.pause (R/W)
6471 * Non-zero means the track is paused.
6472 *
6473 * ai.play.seek (R/-)
6474 * It indicates the number of bytes written but not processed.
6475 * ai.record.seek (R/-)
6476 * It indicates the number of bytes to be able to read.
6477 *
6478 * ai.{play,record}.avail_ports (R/-)
6479 * Mixer info.
6480 *
6481 * ai.{play,record}.buffer_size (R/-)
6482 * It indicates the buffer size in bytes. Internally it means usrbuf.
6483 *
6484 * ai.{play,record}.samples (R/-)
6485 * It indicates the total number of bytes played or recorded.
6486 *
6487 * ai.{play,record}.eof (R/-)
6488 * It indicates the number of times reached EOF(?).
6489 *
6490 * ai.{play,record}.error (R/-)
6491 * Non-zero indicates overflow/underflow has occured.
6492 *
6493 * ai.{play,record}.waiting (R/-)
6494 * Non-zero indicates that other process waits to open.
6495 * It will never happen anymore.
6496 *
6497 * ai.{play,record}.open (R/-)
6498 * Non-zero indicates the direction is opened by this process(?).
6499 * XXX Is this better to indicate that "the device is opened by
6500 * at least one process"?
6501 *
6502 * ai.{play,record}.active (R/-)
6503 * Non-zero indicates that I/O is currently active.
6504 *
6505 * ai.blocksize (R/-)
6506 * It indicates the block size in bytes.
6507 * XXX The blocksize of playback and recording may be different.
6508 */
6509
6510 /*
6511 * Pause consideration:
6512 *
6513 * The introduction of these two behavior makes pause/unpause operation
6514 * simple.
6515 * 1. The first read/write access of the first track makes mixer start.
6516 * 2. A pause of the last track doesn't make mixer stop.
6517 */
6518
6519 /*
6520 * Set both track's parameters within a file depending on ai.
6521 * Update sc_sound_[pr]* if set.
6522 * Must be called with sc_lock and sc_exlock held.
6523 */
6524 static int
6525 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6526 const struct audio_info *ai)
6527 {
6528 const struct audio_prinfo *pi;
6529 const struct audio_prinfo *ri;
6530 audio_track_t *ptrack;
6531 audio_track_t *rtrack;
6532 audio_format2_t pfmt;
6533 audio_format2_t rfmt;
6534 int pchanges;
6535 int rchanges;
6536 int mode;
6537 struct audio_info saved_ai;
6538 audio_format2_t saved_pfmt;
6539 audio_format2_t saved_rfmt;
6540 int error;
6541
6542 KASSERT(mutex_owned(sc->sc_lock));
6543 KASSERT(sc->sc_exlock);
6544
6545 pi = &ai->play;
6546 ri = &ai->record;
6547 pchanges = 0;
6548 rchanges = 0;
6549
6550 ptrack = file->ptrack;
6551 rtrack = file->rtrack;
6552
6553 #if defined(AUDIO_DEBUG)
6554 if (audiodebug >= 2) {
6555 char buf[256];
6556 char p[64];
6557 int buflen;
6558 int plen;
6559 #define SPRINTF(var, fmt...) do { \
6560 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6561 } while (0)
6562
6563 buflen = 0;
6564 plen = 0;
6565 if (SPECIFIED(pi->encoding))
6566 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6567 if (SPECIFIED(pi->precision))
6568 SPRINTF(p, "/%dbit", pi->precision);
6569 if (SPECIFIED(pi->channels))
6570 SPRINTF(p, "/%dch", pi->channels);
6571 if (SPECIFIED(pi->sample_rate))
6572 SPRINTF(p, "/%dHz", pi->sample_rate);
6573 if (plen > 0)
6574 SPRINTF(buf, ",play.param=%s", p + 1);
6575
6576 plen = 0;
6577 if (SPECIFIED(ri->encoding))
6578 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6579 if (SPECIFIED(ri->precision))
6580 SPRINTF(p, "/%dbit", ri->precision);
6581 if (SPECIFIED(ri->channels))
6582 SPRINTF(p, "/%dch", ri->channels);
6583 if (SPECIFIED(ri->sample_rate))
6584 SPRINTF(p, "/%dHz", ri->sample_rate);
6585 if (plen > 0)
6586 SPRINTF(buf, ",record.param=%s", p + 1);
6587
6588 if (SPECIFIED(ai->mode))
6589 SPRINTF(buf, ",mode=%d", ai->mode);
6590 if (SPECIFIED(ai->hiwat))
6591 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6592 if (SPECIFIED(ai->lowat))
6593 SPRINTF(buf, ",lowat=%d", ai->lowat);
6594 if (SPECIFIED(ai->play.gain))
6595 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6596 if (SPECIFIED(ai->record.gain))
6597 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6598 if (SPECIFIED_CH(ai->play.balance))
6599 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6600 if (SPECIFIED_CH(ai->record.balance))
6601 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6602 if (SPECIFIED(ai->play.port))
6603 SPRINTF(buf, ",play.port=%d", ai->play.port);
6604 if (SPECIFIED(ai->record.port))
6605 SPRINTF(buf, ",record.port=%d", ai->record.port);
6606 if (SPECIFIED(ai->monitor_gain))
6607 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6608 if (SPECIFIED_CH(ai->play.pause))
6609 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6610 if (SPECIFIED_CH(ai->record.pause))
6611 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6612
6613 if (buflen > 0)
6614 TRACE(2, "specified %s", buf + 1);
6615 }
6616 #endif
6617
6618 AUDIO_INITINFO(&saved_ai);
6619 /* XXX shut up gcc */
6620 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6621 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6622
6623 /* Set default value and save current parameters */
6624 if (ptrack) {
6625 pfmt = ptrack->usrbuf.fmt;
6626 saved_pfmt = ptrack->usrbuf.fmt;
6627 saved_ai.play.pause = ptrack->is_pause;
6628 }
6629 if (rtrack) {
6630 rfmt = rtrack->usrbuf.fmt;
6631 saved_rfmt = rtrack->usrbuf.fmt;
6632 saved_ai.record.pause = rtrack->is_pause;
6633 }
6634 saved_ai.mode = file->mode;
6635
6636 /* Overwrite if specified */
6637 mode = file->mode;
6638 if (SPECIFIED(ai->mode)) {
6639 /*
6640 * Setting ai->mode no longer does anything because it's
6641 * prohibited to change playback/recording mode after open
6642 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6643 * keeps the state of AUMODE_PLAY_ALL itself for backward
6644 * compatibility.
6645 * In the internal, only file->mode has the state of
6646 * AUMODE_PLAY_ALL flag and track->mode in both track does
6647 * not have.
6648 */
6649 if ((file->mode & AUMODE_PLAY)) {
6650 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6651 | (ai->mode & AUMODE_PLAY_ALL);
6652 }
6653 }
6654
6655 if (ptrack) {
6656 pchanges = audio_track_setinfo_check(&pfmt, pi,
6657 &sc->sc_pmixer->hwbuf.fmt);
6658 if (pchanges == -1) {
6659 #if defined(AUDIO_DEBUG)
6660 char fmtbuf[64];
6661 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6662 TRACET(1, ptrack, "check play.params failed: %s",
6663 fmtbuf);
6664 #endif
6665 return EINVAL;
6666 }
6667 if (SPECIFIED(ai->mode))
6668 pchanges = 1;
6669 }
6670 if (rtrack) {
6671 rchanges = audio_track_setinfo_check(&rfmt, ri,
6672 &sc->sc_rmixer->hwbuf.fmt);
6673 if (rchanges == -1) {
6674 #if defined(AUDIO_DEBUG)
6675 char fmtbuf[64];
6676 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6677 TRACET(1, rtrack, "check record.params failed: %s",
6678 fmtbuf);
6679 #endif
6680 return EINVAL;
6681 }
6682 if (SPECIFIED(ai->mode))
6683 rchanges = 1;
6684 }
6685
6686 /*
6687 * Even when setting either one of playback and recording,
6688 * both track must be halted.
6689 */
6690 if (pchanges || rchanges) {
6691 audio_file_clear(sc, file);
6692 #if defined(AUDIO_DEBUG)
6693 char fmtbuf[64];
6694 if (pchanges) {
6695 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6696 DPRINTF(1, "audio track#%d play mode: %s\n",
6697 ptrack->id, fmtbuf);
6698 }
6699 if (rchanges) {
6700 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6701 DPRINTF(1, "audio track#%d rec mode: %s\n",
6702 rtrack->id, fmtbuf);
6703 }
6704 #endif
6705 }
6706
6707 /* Set mixer parameters */
6708 error = audio_hw_setinfo(sc, ai, &saved_ai);
6709 if (error)
6710 goto abort1;
6711
6712 /* Set to track and update sticky parameters */
6713 error = 0;
6714 file->mode = mode;
6715 if (ptrack) {
6716 if (SPECIFIED_CH(pi->pause)) {
6717 ptrack->is_pause = pi->pause;
6718 sc->sc_sound_ppause = pi->pause;
6719 }
6720 if (pchanges) {
6721 audio_track_lock_enter(ptrack);
6722 error = audio_track_set_format(ptrack, &pfmt);
6723 audio_track_lock_exit(ptrack);
6724 if (error) {
6725 TRACET(1, ptrack, "set play.params failed");
6726 goto abort2;
6727 }
6728 sc->sc_sound_pparams = pfmt;
6729 }
6730 /* Change water marks after initializing the buffers. */
6731 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat))
6732 audio_track_setinfo_water(ptrack, ai);
6733 }
6734 if (rtrack) {
6735 if (SPECIFIED_CH(ri->pause)) {
6736 rtrack->is_pause = ri->pause;
6737 sc->sc_sound_rpause = ri->pause;
6738 }
6739 if (rchanges) {
6740 audio_track_lock_enter(rtrack);
6741 error = audio_track_set_format(rtrack, &rfmt);
6742 audio_track_lock_exit(rtrack);
6743 if (error) {
6744 TRACET(1, rtrack, "set record.params failed");
6745 goto abort3;
6746 }
6747 sc->sc_sound_rparams = rfmt;
6748 }
6749 }
6750
6751 return 0;
6752
6753 /* Rollback */
6754 abort3:
6755 if (error != ENOMEM) {
6756 rtrack->is_pause = saved_ai.record.pause;
6757 audio_track_lock_enter(rtrack);
6758 audio_track_set_format(rtrack, &saved_rfmt);
6759 audio_track_lock_exit(rtrack);
6760 }
6761 abort2:
6762 if (ptrack && error != ENOMEM) {
6763 ptrack->is_pause = saved_ai.play.pause;
6764 audio_track_lock_enter(ptrack);
6765 audio_track_set_format(ptrack, &saved_pfmt);
6766 audio_track_lock_exit(ptrack);
6767 sc->sc_sound_pparams = saved_pfmt;
6768 sc->sc_sound_ppause = saved_ai.play.pause;
6769 }
6770 file->mode = saved_ai.mode;
6771 abort1:
6772 audio_hw_setinfo(sc, &saved_ai, NULL);
6773
6774 return error;
6775 }
6776
6777 /*
6778 * Write SPECIFIED() parameters within info back to fmt.
6779 * Return value of 1 indicates that fmt is modified.
6780 * Return value of 0 indicates that fmt is not modified.
6781 * Return value of -1 indicates that error EINVAL has occurred.
6782 */
6783 static int
6784 audio_track_setinfo_check(audio_format2_t *fmt, const struct audio_prinfo *info,
6785 const audio_format2_t *hwfmt)
6786 {
6787 int changes;
6788
6789 changes = 0;
6790 if (SPECIFIED(info->sample_rate)) {
6791 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
6792 return -1;
6793 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
6794 return -1;
6795 fmt->sample_rate = info->sample_rate;
6796 changes = 1;
6797 }
6798 if (SPECIFIED(info->encoding)) {
6799 fmt->encoding = info->encoding;
6800 changes = 1;
6801 }
6802 if (SPECIFIED(info->precision)) {
6803 fmt->precision = info->precision;
6804 /* we don't have API to specify stride */
6805 fmt->stride = info->precision;
6806 changes = 1;
6807 }
6808 if (SPECIFIED(info->channels)) {
6809 /*
6810 * We can convert between monaural and stereo each other.
6811 * We can reduce than the number of channels that the hardware
6812 * supports.
6813 */
6814 if (info->channels > 2 && info->channels > hwfmt->channels)
6815 return -1;
6816 fmt->channels = info->channels;
6817 changes = 1;
6818 }
6819
6820 if (changes) {
6821 if (audio_check_params(fmt) != 0)
6822 return -1;
6823 }
6824
6825 return changes;
6826 }
6827
6828 /*
6829 * Change water marks for playback track if specfied.
6830 */
6831 static void
6832 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
6833 {
6834 u_int blks;
6835 u_int maxblks;
6836 u_int blksize;
6837
6838 KASSERT(audio_track_is_playback(track));
6839
6840 blksize = track->usrbuf_blksize;
6841 maxblks = track->usrbuf.capacity / blksize;
6842
6843 if (SPECIFIED(ai->hiwat)) {
6844 blks = ai->hiwat;
6845 if (blks > maxblks)
6846 blks = maxblks;
6847 if (blks < 2)
6848 blks = 2;
6849 track->usrbuf_usedhigh = blks * blksize;
6850 }
6851 if (SPECIFIED(ai->lowat)) {
6852 blks = ai->lowat;
6853 if (blks > maxblks - 1)
6854 blks = maxblks - 1;
6855 track->usrbuf_usedlow = blks * blksize;
6856 }
6857 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6858 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
6859 track->usrbuf_usedlow = track->usrbuf_usedhigh -
6860 blksize;
6861 }
6862 }
6863 }
6864
6865 /*
6866 * Set hardware part of *newai.
6867 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
6868 * If oldai is specified, previous parameters are stored.
6869 * This function itself does not roll back if error occurred.
6870 * Must be called with sc_lock and sc_exlock held.
6871 */
6872 static int
6873 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
6874 struct audio_info *oldai)
6875 {
6876 const struct audio_prinfo *newpi;
6877 const struct audio_prinfo *newri;
6878 struct audio_prinfo *oldpi;
6879 struct audio_prinfo *oldri;
6880 u_int pgain;
6881 u_int rgain;
6882 u_char pbalance;
6883 u_char rbalance;
6884 int error;
6885
6886 KASSERT(mutex_owned(sc->sc_lock));
6887 KASSERT(sc->sc_exlock);
6888
6889 /* XXX shut up gcc */
6890 oldpi = NULL;
6891 oldri = NULL;
6892
6893 newpi = &newai->play;
6894 newri = &newai->record;
6895 if (oldai) {
6896 oldpi = &oldai->play;
6897 oldri = &oldai->record;
6898 }
6899 error = 0;
6900
6901 /*
6902 * It looks like unnecessary to halt HW mixers to set HW mixers.
6903 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
6904 */
6905
6906 if (SPECIFIED(newpi->port)) {
6907 if (oldai)
6908 oldpi->port = au_get_port(sc, &sc->sc_outports);
6909 error = au_set_port(sc, &sc->sc_outports, newpi->port);
6910 if (error) {
6911 device_printf(sc->sc_dev,
6912 "setting play.port=%d failed with %d\n",
6913 newpi->port, error);
6914 goto abort;
6915 }
6916 }
6917 if (SPECIFIED(newri->port)) {
6918 if (oldai)
6919 oldri->port = au_get_port(sc, &sc->sc_inports);
6920 error = au_set_port(sc, &sc->sc_inports, newri->port);
6921 if (error) {
6922 device_printf(sc->sc_dev,
6923 "setting record.port=%d failed with %d\n",
6924 newri->port, error);
6925 goto abort;
6926 }
6927 }
6928
6929 /* Backup play.{gain,balance} */
6930 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
6931 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
6932 if (oldai) {
6933 oldpi->gain = pgain;
6934 oldpi->balance = pbalance;
6935 }
6936 }
6937 /* Backup record.{gain,balance} */
6938 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
6939 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
6940 if (oldai) {
6941 oldri->gain = rgain;
6942 oldri->balance = rbalance;
6943 }
6944 }
6945 if (SPECIFIED(newpi->gain)) {
6946 error = au_set_gain(sc, &sc->sc_outports,
6947 newpi->gain, pbalance);
6948 if (error) {
6949 device_printf(sc->sc_dev,
6950 "setting play.gain=%d failed with %d\n",
6951 newpi->gain, error);
6952 goto abort;
6953 }
6954 }
6955 if (SPECIFIED(newri->gain)) {
6956 error = au_set_gain(sc, &sc->sc_inports,
6957 newri->gain, rbalance);
6958 if (error) {
6959 device_printf(sc->sc_dev,
6960 "setting record.gain=%d failed with %d\n",
6961 newri->gain, error);
6962 goto abort;
6963 }
6964 }
6965 if (SPECIFIED_CH(newpi->balance)) {
6966 error = au_set_gain(sc, &sc->sc_outports,
6967 pgain, newpi->balance);
6968 if (error) {
6969 device_printf(sc->sc_dev,
6970 "setting play.balance=%d failed with %d\n",
6971 newpi->balance, error);
6972 goto abort;
6973 }
6974 }
6975 if (SPECIFIED_CH(newri->balance)) {
6976 error = au_set_gain(sc, &sc->sc_inports,
6977 rgain, newri->balance);
6978 if (error) {
6979 device_printf(sc->sc_dev,
6980 "setting record.balance=%d failed with %d\n",
6981 newri->balance, error);
6982 goto abort;
6983 }
6984 }
6985
6986 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
6987 if (oldai)
6988 oldai->monitor_gain = au_get_monitor_gain(sc);
6989 error = au_set_monitor_gain(sc, newai->monitor_gain);
6990 if (error) {
6991 device_printf(sc->sc_dev,
6992 "setting monitor_gain=%d failed with %d\n",
6993 newai->monitor_gain, error);
6994 goto abort;
6995 }
6996 }
6997
6998 /* XXX TODO */
6999 /* sc->sc_ai = *ai; */
7000
7001 error = 0;
7002 abort:
7003 return error;
7004 }
7005
7006 /*
7007 * Setup the hardware with mixer format phwfmt, rhwfmt.
7008 * The arguments have following restrictions:
7009 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7010 * or both.
7011 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7012 * - On non-independent devices, phwfmt and rhwfmt must have the same
7013 * parameters.
7014 * - pfil and rfil must be zero-filled.
7015 * If successful,
7016 * - pfil, rfil will be filled with filter information specified by the
7017 * hardware driver.
7018 * and then returns 0. Otherwise returns errno.
7019 * Must be called with sc_lock held.
7020 */
7021 static int
7022 audio_hw_set_format(struct audio_softc *sc, int setmode,
7023 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7024 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7025 {
7026 audio_params_t pp, rp;
7027 int error;
7028
7029 KASSERT(mutex_owned(sc->sc_lock));
7030 KASSERT(phwfmt != NULL);
7031 KASSERT(rhwfmt != NULL);
7032
7033 pp = format2_to_params(phwfmt);
7034 rp = format2_to_params(rhwfmt);
7035
7036 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7037 &pp, &rp, pfil, rfil);
7038 if (error) {
7039 device_printf(sc->sc_dev,
7040 "set_format failed with %d\n", error);
7041 return error;
7042 }
7043
7044 if (sc->hw_if->commit_settings) {
7045 error = sc->hw_if->commit_settings(sc->hw_hdl);
7046 if (error) {
7047 device_printf(sc->sc_dev,
7048 "commit_settings failed with %d\n", error);
7049 return error;
7050 }
7051 }
7052
7053 return 0;
7054 }
7055
7056 /*
7057 * Fill audio_info structure. If need_mixerinfo is true, it will also
7058 * fill the hardware mixer information.
7059 * Must be called with sc_lock held.
7060 * Must be called with sc_exlock held, in addition, if need_mixerinfo is
7061 * true.
7062 */
7063 static int
7064 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7065 audio_file_t *file)
7066 {
7067 struct audio_prinfo *ri, *pi;
7068 audio_track_t *track;
7069 audio_track_t *ptrack;
7070 audio_track_t *rtrack;
7071 int gain;
7072
7073 KASSERT(mutex_owned(sc->sc_lock));
7074
7075 ri = &ai->record;
7076 pi = &ai->play;
7077 ptrack = file->ptrack;
7078 rtrack = file->rtrack;
7079
7080 memset(ai, 0, sizeof(*ai));
7081
7082 if (ptrack) {
7083 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7084 pi->channels = ptrack->usrbuf.fmt.channels;
7085 pi->precision = ptrack->usrbuf.fmt.precision;
7086 pi->encoding = ptrack->usrbuf.fmt.encoding;
7087 } else {
7088 /* Set default parameters if the track is not available. */
7089 if (ISDEVAUDIO(file->dev)) {
7090 pi->sample_rate = audio_default.sample_rate;
7091 pi->channels = audio_default.channels;
7092 pi->precision = audio_default.precision;
7093 pi->encoding = audio_default.encoding;
7094 } else {
7095 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7096 pi->channels = sc->sc_sound_pparams.channels;
7097 pi->precision = sc->sc_sound_pparams.precision;
7098 pi->encoding = sc->sc_sound_pparams.encoding;
7099 }
7100 }
7101 if (rtrack) {
7102 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7103 ri->channels = rtrack->usrbuf.fmt.channels;
7104 ri->precision = rtrack->usrbuf.fmt.precision;
7105 ri->encoding = rtrack->usrbuf.fmt.encoding;
7106 } else {
7107 /* Set default parameters if the track is not available. */
7108 if (ISDEVAUDIO(file->dev)) {
7109 ri->sample_rate = audio_default.sample_rate;
7110 ri->channels = audio_default.channels;
7111 ri->precision = audio_default.precision;
7112 ri->encoding = audio_default.encoding;
7113 } else {
7114 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7115 ri->channels = sc->sc_sound_rparams.channels;
7116 ri->precision = sc->sc_sound_rparams.precision;
7117 ri->encoding = sc->sc_sound_rparams.encoding;
7118 }
7119 }
7120
7121 if (ptrack) {
7122 pi->seek = ptrack->usrbuf.used;
7123 pi->samples = ptrack->usrbuf_stamp;
7124 pi->eof = ptrack->eofcounter;
7125 pi->pause = ptrack->is_pause;
7126 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7127 pi->waiting = 0; /* open never hangs */
7128 pi->open = 1;
7129 pi->active = sc->sc_pbusy;
7130 pi->buffer_size = ptrack->usrbuf.capacity;
7131 }
7132 if (rtrack) {
7133 ri->seek = rtrack->usrbuf.used;
7134 ri->samples = rtrack->usrbuf_stamp;
7135 ri->eof = 0;
7136 ri->pause = rtrack->is_pause;
7137 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7138 ri->waiting = 0; /* open never hangs */
7139 ri->open = 1;
7140 ri->active = sc->sc_rbusy;
7141 ri->buffer_size = rtrack->usrbuf.capacity;
7142 }
7143
7144 /*
7145 * XXX There may be different number of channels between playback
7146 * and recording, so that blocksize also may be different.
7147 * But struct audio_info has an united blocksize...
7148 * Here, I use play info precedencely if ptrack is available,
7149 * otherwise record info.
7150 *
7151 * XXX hiwat/lowat is a playback-only parameter. What should I
7152 * return for a record-only descriptor?
7153 */
7154 track = ptrack ? ptrack : rtrack;
7155 if (track) {
7156 ai->blocksize = track->usrbuf_blksize;
7157 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7158 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7159 }
7160 ai->mode = file->mode;
7161
7162 if (need_mixerinfo) {
7163 KASSERT(sc->sc_exlock);
7164
7165 pi->port = au_get_port(sc, &sc->sc_outports);
7166 ri->port = au_get_port(sc, &sc->sc_inports);
7167
7168 pi->avail_ports = sc->sc_outports.allports;
7169 ri->avail_ports = sc->sc_inports.allports;
7170
7171 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7172 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7173
7174 if (sc->sc_monitor_port != -1) {
7175 gain = au_get_monitor_gain(sc);
7176 if (gain != -1)
7177 ai->monitor_gain = gain;
7178 }
7179 }
7180
7181 return 0;
7182 }
7183
7184 /*
7185 * Return true if playback is configured.
7186 * This function can be used after audioattach.
7187 */
7188 static bool
7189 audio_can_playback(struct audio_softc *sc)
7190 {
7191
7192 return (sc->sc_pmixer != NULL);
7193 }
7194
7195 /*
7196 * Return true if recording is configured.
7197 * This function can be used after audioattach.
7198 */
7199 static bool
7200 audio_can_capture(struct audio_softc *sc)
7201 {
7202
7203 return (sc->sc_rmixer != NULL);
7204 }
7205
7206 /*
7207 * Get the afp->index'th item from the valid one of format[].
7208 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7209 *
7210 * This is common routines for query_format.
7211 * If your hardware driver has struct audio_format[], the simplest case
7212 * you can write your query_format interface as follows:
7213 *
7214 * struct audio_format foo_format[] = { ... };
7215 *
7216 * int
7217 * foo_query_format(void *hdl, audio_format_query_t *afp)
7218 * {
7219 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7220 * }
7221 */
7222 int
7223 audio_query_format(const struct audio_format *format, int nformats,
7224 audio_format_query_t *afp)
7225 {
7226 const struct audio_format *f;
7227 int idx;
7228 int i;
7229
7230 idx = 0;
7231 for (i = 0; i < nformats; i++) {
7232 f = &format[i];
7233 if (!AUFMT_IS_VALID(f))
7234 continue;
7235 if (afp->index == idx) {
7236 afp->fmt = *f;
7237 return 0;
7238 }
7239 idx++;
7240 }
7241 return EINVAL;
7242 }
7243
7244 /*
7245 * This function is provided for the hardware driver's set_format() to
7246 * find index matches with 'param' from array of audio_format_t 'formats'.
7247 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7248 * It returns the matched index and never fails. Because param passed to
7249 * set_format() is selected from query_format().
7250 * This function will be an alternative to auconv_set_converter() to
7251 * find index.
7252 */
7253 int
7254 audio_indexof_format(const struct audio_format *formats, int nformats,
7255 int mode, const audio_params_t *param)
7256 {
7257 const struct audio_format *f;
7258 int index;
7259 int j;
7260
7261 for (index = 0; index < nformats; index++) {
7262 f = &formats[index];
7263
7264 if (!AUFMT_IS_VALID(f))
7265 continue;
7266 if ((f->mode & mode) == 0)
7267 continue;
7268 if (f->encoding != param->encoding)
7269 continue;
7270 if (f->validbits != param->precision)
7271 continue;
7272 if (f->channels != param->channels)
7273 continue;
7274
7275 if (f->frequency_type == 0) {
7276 if (param->sample_rate < f->frequency[0] ||
7277 param->sample_rate > f->frequency[1])
7278 continue;
7279 } else {
7280 for (j = 0; j < f->frequency_type; j++) {
7281 if (param->sample_rate == f->frequency[j])
7282 break;
7283 }
7284 if (j == f->frequency_type)
7285 continue;
7286 }
7287
7288 /* Then, matched */
7289 return index;
7290 }
7291
7292 /* Not matched. This should not be happened. */
7293 panic("%s: cannot find matched format\n", __func__);
7294 }
7295
7296 /*
7297 * Get or set hardware blocksize in msec.
7298 * XXX It's for debug.
7299 */
7300 static int
7301 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7302 {
7303 struct sysctlnode node;
7304 struct audio_softc *sc;
7305 audio_format2_t phwfmt;
7306 audio_format2_t rhwfmt;
7307 audio_filter_reg_t pfil;
7308 audio_filter_reg_t rfil;
7309 int t;
7310 int old_blk_ms;
7311 int mode;
7312 int error;
7313
7314 node = *rnode;
7315 sc = node.sysctl_data;
7316
7317 mutex_enter(sc->sc_lock);
7318
7319 old_blk_ms = sc->sc_blk_ms;
7320 t = old_blk_ms;
7321 node.sysctl_data = &t;
7322 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7323 if (error || newp == NULL)
7324 goto abort;
7325
7326 if (t < 0) {
7327 error = EINVAL;
7328 goto abort;
7329 }
7330
7331 if (sc->sc_popens + sc->sc_ropens > 0) {
7332 error = EBUSY;
7333 goto abort;
7334 }
7335 sc->sc_blk_ms = t;
7336 mode = 0;
7337 if (sc->sc_pmixer) {
7338 mode |= AUMODE_PLAY;
7339 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7340 }
7341 if (sc->sc_rmixer) {
7342 mode |= AUMODE_RECORD;
7343 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7344 }
7345
7346 /* re-init hardware */
7347 memset(&pfil, 0, sizeof(pfil));
7348 memset(&rfil, 0, sizeof(rfil));
7349 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7350 if (error) {
7351 goto abort;
7352 }
7353
7354 /* re-init track mixer */
7355 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7356 if (error) {
7357 /* Rollback */
7358 sc->sc_blk_ms = old_blk_ms;
7359 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7360 goto abort;
7361 }
7362 error = 0;
7363 abort:
7364 mutex_exit(sc->sc_lock);
7365 return error;
7366 }
7367
7368 /*
7369 * Get or set multiuser mode.
7370 */
7371 static int
7372 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7373 {
7374 struct sysctlnode node;
7375 struct audio_softc *sc;
7376 bool t;
7377 int error;
7378
7379 node = *rnode;
7380 sc = node.sysctl_data;
7381
7382 mutex_enter(sc->sc_lock);
7383
7384 t = sc->sc_multiuser;
7385 node.sysctl_data = &t;
7386 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7387 if (error || newp == NULL)
7388 goto abort;
7389
7390 sc->sc_multiuser = t;
7391 error = 0;
7392 abort:
7393 mutex_exit(sc->sc_lock);
7394 return error;
7395 }
7396
7397 #if defined(AUDIO_DEBUG)
7398 /*
7399 * Get or set debug verbose level. (0..4)
7400 * XXX It's for debug.
7401 * XXX It is not separated per device.
7402 */
7403 static int
7404 audio_sysctl_debug(SYSCTLFN_ARGS)
7405 {
7406 struct sysctlnode node;
7407 int t;
7408 int error;
7409
7410 node = *rnode;
7411 t = audiodebug;
7412 node.sysctl_data = &t;
7413 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7414 if (error || newp == NULL)
7415 return error;
7416
7417 if (t < 0 || t > 4)
7418 return EINVAL;
7419 audiodebug = t;
7420 printf("audio: audiodebug = %d\n", audiodebug);
7421 return 0;
7422 }
7423 #endif /* AUDIO_DEBUG */
7424
7425 #ifdef AUDIO_PM_IDLE
7426 static void
7427 audio_idle(void *arg)
7428 {
7429 device_t dv = arg;
7430 struct audio_softc *sc = device_private(dv);
7431
7432 #ifdef PNP_DEBUG
7433 extern int pnp_debug_idle;
7434 if (pnp_debug_idle)
7435 printf("%s: idle handler called\n", device_xname(dv));
7436 #endif
7437
7438 sc->sc_idle = true;
7439
7440 /* XXX joerg Make pmf_device_suspend handle children? */
7441 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7442 return;
7443
7444 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7445 pmf_device_resume(dv, PMF_Q_SELF);
7446 }
7447
7448 static void
7449 audio_activity(device_t dv, devactive_t type)
7450 {
7451 struct audio_softc *sc = device_private(dv);
7452
7453 if (type != DVA_SYSTEM)
7454 return;
7455
7456 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7457
7458 sc->sc_idle = false;
7459 if (!device_is_active(dv)) {
7460 /* XXX joerg How to deal with a failing resume... */
7461 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7462 pmf_device_resume(dv, PMF_Q_SELF);
7463 }
7464 }
7465 #endif
7466
7467 static bool
7468 audio_suspend(device_t dv, const pmf_qual_t *qual)
7469 {
7470 struct audio_softc *sc = device_private(dv);
7471 int error;
7472
7473 error = audio_enter_exclusive(sc);
7474 if (error)
7475 return error;
7476 audio_mixer_capture(sc);
7477
7478 /* Halts mixers but don't clear busy flag for resume */
7479 if (sc->sc_pbusy) {
7480 audio_pmixer_halt(sc);
7481 sc->sc_pbusy = true;
7482 }
7483 if (sc->sc_rbusy) {
7484 audio_rmixer_halt(sc);
7485 sc->sc_rbusy = true;
7486 }
7487
7488 #ifdef AUDIO_PM_IDLE
7489 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7490 #endif
7491 audio_exit_exclusive(sc);
7492
7493 return true;
7494 }
7495
7496 static bool
7497 audio_resume(device_t dv, const pmf_qual_t *qual)
7498 {
7499 struct audio_softc *sc = device_private(dv);
7500 struct audio_info ai;
7501 int error;
7502
7503 error = audio_enter_exclusive(sc);
7504 if (error)
7505 return error;
7506
7507 audio_mixer_restore(sc);
7508 /* XXX ? */
7509 AUDIO_INITINFO(&ai);
7510 audio_hw_setinfo(sc, &ai, NULL);
7511
7512 if (sc->sc_pbusy)
7513 audio_pmixer_start(sc, true);
7514 if (sc->sc_rbusy)
7515 audio_rmixer_start(sc);
7516
7517 audio_exit_exclusive(sc);
7518
7519 return true;
7520 }
7521
7522 #if defined(AUDIO_DEBUG)
7523 static void
7524 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7525 {
7526 int n;
7527
7528 n = 0;
7529 n += snprintf(buf + n, bufsize - n, "%s",
7530 audio_encoding_name(fmt->encoding));
7531 if (fmt->precision == fmt->stride) {
7532 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7533 } else {
7534 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7535 fmt->precision, fmt->stride);
7536 }
7537
7538 snprintf(buf + n, bufsize - n, " %uch %uHz",
7539 fmt->channels, fmt->sample_rate);
7540 }
7541 #endif
7542
7543 #if defined(AUDIO_DEBUG)
7544 static void
7545 audio_print_format2(const char *s, const audio_format2_t *fmt)
7546 {
7547 char fmtstr[64];
7548
7549 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7550 printf("%s %s\n", s, fmtstr);
7551 }
7552 #endif
7553
7554 #ifdef DIAGNOSTIC
7555 void
7556 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7557 {
7558
7559 KASSERTMSG(fmt, "called from %s", where);
7560
7561 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7562 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7563 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7564 "called from %s: fmt->stride=%d", where, fmt->stride);
7565 } else {
7566 KASSERTMSG(fmt->stride % NBBY == 0,
7567 "called from %s: fmt->stride=%d", where, fmt->stride);
7568 }
7569 KASSERTMSG(fmt->precision <= fmt->stride,
7570 "called from %s: fmt->precision=%d fmt->stride=%d",
7571 where, fmt->precision, fmt->stride);
7572 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7573 "called from %s: fmt->channels=%d", where, fmt->channels);
7574
7575 /* XXX No check for encodings? */
7576 }
7577
7578 void
7579 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7580 {
7581
7582 KASSERT(arg != NULL);
7583 KASSERT(arg->src != NULL);
7584 KASSERT(arg->dst != NULL);
7585 audio_diagnostic_format2(where, arg->srcfmt);
7586 audio_diagnostic_format2(where, arg->dstfmt);
7587 KASSERT(arg->count > 0);
7588 }
7589
7590 void
7591 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7592 {
7593
7594 KASSERTMSG(ring, "called from %s", where);
7595 audio_diagnostic_format2(where, &ring->fmt);
7596 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7597 "called from %s: ring->capacity=%d", where, ring->capacity);
7598 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7599 "called from %s: ring->used=%d ring->capacity=%d",
7600 where, ring->used, ring->capacity);
7601 if (ring->capacity == 0) {
7602 KASSERTMSG(ring->mem == NULL,
7603 "called from %s: capacity == 0 but mem != NULL", where);
7604 } else {
7605 KASSERTMSG(ring->mem != NULL,
7606 "called from %s: capacity != 0 but mem == NULL", where);
7607 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7608 "called from %s: ring->head=%d ring->capacity=%d",
7609 where, ring->head, ring->capacity);
7610 }
7611 }
7612 #endif /* DIAGNOSTIC */
7613
7614
7615 /*
7616 * Mixer driver
7617 */
7618 int
7619 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7620 struct lwp *l)
7621 {
7622 struct file *fp;
7623 audio_file_t *af;
7624 int error, fd;
7625
7626 KASSERT(mutex_owned(sc->sc_lock));
7627
7628 TRACE(1, "flags=0x%x", flags);
7629
7630 error = fd_allocfile(&fp, &fd);
7631 if (error)
7632 return error;
7633
7634 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7635 af->sc = sc;
7636 af->dev = dev;
7637
7638 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7639 KASSERT(error == EMOVEFD);
7640
7641 return error;
7642 }
7643
7644 /*
7645 * Add a process to those to be signalled on mixer activity.
7646 * If the process has already been added, do nothing.
7647 * Must be called with sc_lock held.
7648 */
7649 static void
7650 mixer_async_add(struct audio_softc *sc, pid_t pid)
7651 {
7652 int i;
7653
7654 KASSERT(mutex_owned(sc->sc_lock));
7655
7656 /* If already exists, returns without doing anything. */
7657 for (i = 0; i < sc->sc_am_used; i++) {
7658 if (sc->sc_am[i] == pid)
7659 return;
7660 }
7661
7662 /* Extend array if necessary. */
7663 if (sc->sc_am_used >= sc->sc_am_capacity) {
7664 sc->sc_am_capacity += AM_CAPACITY;
7665 sc->sc_am = kern_realloc(sc->sc_am,
7666 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
7667 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
7668 }
7669
7670 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
7671 sc->sc_am[sc->sc_am_used++] = pid;
7672 }
7673
7674 /*
7675 * Remove a process from those to be signalled on mixer activity.
7676 * If the process has not been added, do nothing.
7677 * Must be called with sc_lock held.
7678 */
7679 static void
7680 mixer_async_remove(struct audio_softc *sc, pid_t pid)
7681 {
7682 int i;
7683
7684 KASSERT(mutex_owned(sc->sc_lock));
7685
7686 for (i = 0; i < sc->sc_am_used; i++) {
7687 if (sc->sc_am[i] == pid) {
7688 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
7689 TRACE(2, "am[%d](%d) removed, used=%d",
7690 i, (int)pid, sc->sc_am_used);
7691
7692 /* Empty array if no longer necessary. */
7693 if (sc->sc_am_used == 0) {
7694 kern_free(sc->sc_am);
7695 sc->sc_am = NULL;
7696 sc->sc_am_capacity = 0;
7697 TRACE(2, "released");
7698 }
7699 return;
7700 }
7701 }
7702 }
7703
7704 /*
7705 * Signal all processes waiting for the mixer.
7706 * Must be called with sc_lock held.
7707 */
7708 static void
7709 mixer_signal(struct audio_softc *sc)
7710 {
7711 proc_t *p;
7712 int i;
7713
7714 KASSERT(mutex_owned(sc->sc_lock));
7715
7716 for (i = 0; i < sc->sc_am_used; i++) {
7717 mutex_enter(proc_lock);
7718 p = proc_find(sc->sc_am[i]);
7719 if (p)
7720 psignal(p, SIGIO);
7721 mutex_exit(proc_lock);
7722 }
7723 }
7724
7725 /*
7726 * Close a mixer device
7727 */
7728 int
7729 mixer_close(struct audio_softc *sc, audio_file_t *file)
7730 {
7731
7732 mutex_enter(sc->sc_lock);
7733 TRACE(1, "");
7734 mixer_async_remove(sc, curproc->p_pid);
7735 mutex_exit(sc->sc_lock);
7736
7737 kmem_free(file, sizeof(*file));
7738 return 0;
7739 }
7740
7741 /*
7742 * Must be called without sc_lock nor sc_exlock held.
7743 */
7744 int
7745 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
7746 struct lwp *l)
7747 {
7748 mixer_devinfo_t *mi;
7749 mixer_ctrl_t *mc;
7750 int error;
7751
7752 TRACE(2, "(%lu,'%c',%lu)",
7753 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
7754 error = EINVAL;
7755
7756 /* we can return cached values if we are sleeping */
7757 if (cmd != AUDIO_MIXER_READ) {
7758 mutex_enter(sc->sc_lock);
7759 device_active(sc->sc_dev, DVA_SYSTEM);
7760 mutex_exit(sc->sc_lock);
7761 }
7762
7763 switch (cmd) {
7764 case FIOASYNC:
7765 mutex_enter(sc->sc_lock);
7766 if (*(int *)addr) {
7767 mixer_async_add(sc, curproc->p_pid);
7768 } else {
7769 mixer_async_remove(sc, curproc->p_pid);
7770 }
7771 mutex_exit(sc->sc_lock);
7772 error = 0;
7773 break;
7774
7775 case AUDIO_GETDEV:
7776 TRACE(2, "AUDIO_GETDEV");
7777 error = audio_enter_exclusive(sc);
7778 if (error)
7779 break;
7780 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
7781 audio_exit_exclusive(sc);
7782 break;
7783
7784 case AUDIO_MIXER_DEVINFO:
7785 TRACE(2, "AUDIO_MIXER_DEVINFO");
7786 mi = (mixer_devinfo_t *)addr;
7787
7788 mi->un.v.delta = 0; /* default */
7789 mutex_enter(sc->sc_lock);
7790 error = audio_query_devinfo(sc, mi);
7791 mutex_exit(sc->sc_lock);
7792 break;
7793
7794 case AUDIO_MIXER_READ:
7795 TRACE(2, "AUDIO_MIXER_READ");
7796 mc = (mixer_ctrl_t *)addr;
7797
7798 error = audio_enter_exclusive(sc);
7799 if (error)
7800 break;
7801 if (device_is_active(sc->hw_dev))
7802 error = audio_get_port(sc, mc);
7803 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
7804 error = ENXIO;
7805 else {
7806 int dev = mc->dev;
7807 memcpy(mc, &sc->sc_mixer_state[dev],
7808 sizeof(mixer_ctrl_t));
7809 error = 0;
7810 }
7811 audio_exit_exclusive(sc);
7812 break;
7813
7814 case AUDIO_MIXER_WRITE:
7815 TRACE(2, "AUDIO_MIXER_WRITE");
7816 error = audio_enter_exclusive(sc);
7817 if (error)
7818 break;
7819 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
7820 if (error) {
7821 audio_exit_exclusive(sc);
7822 break;
7823 }
7824
7825 if (sc->hw_if->commit_settings) {
7826 error = sc->hw_if->commit_settings(sc->hw_hdl);
7827 if (error) {
7828 audio_exit_exclusive(sc);
7829 break;
7830 }
7831 }
7832 mixer_signal(sc);
7833 audio_exit_exclusive(sc);
7834 break;
7835
7836 default:
7837 if (sc->hw_if->dev_ioctl) {
7838 error = audio_enter_exclusive(sc);
7839 if (error)
7840 break;
7841 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
7842 cmd, addr, flag, l);
7843 audio_exit_exclusive(sc);
7844 } else
7845 error = EINVAL;
7846 break;
7847 }
7848 TRACE(2, "(%lu,'%c',%lu) result %d",
7849 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
7850 return error;
7851 }
7852
7853 /*
7854 * Must be called with sc_lock held.
7855 */
7856 int
7857 au_portof(struct audio_softc *sc, char *name, int class)
7858 {
7859 mixer_devinfo_t mi;
7860
7861 KASSERT(mutex_owned(sc->sc_lock));
7862
7863 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
7864 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
7865 return mi.index;
7866 }
7867 return -1;
7868 }
7869
7870 /*
7871 * Must be called with sc_lock held.
7872 */
7873 void
7874 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
7875 mixer_devinfo_t *mi, const struct portname *tbl)
7876 {
7877 int i, j;
7878
7879 KASSERT(mutex_owned(sc->sc_lock));
7880
7881 ports->index = mi->index;
7882 if (mi->type == AUDIO_MIXER_ENUM) {
7883 ports->isenum = true;
7884 for(i = 0; tbl[i].name; i++)
7885 for(j = 0; j < mi->un.e.num_mem; j++)
7886 if (strcmp(mi->un.e.member[j].label.name,
7887 tbl[i].name) == 0) {
7888 ports->allports |= tbl[i].mask;
7889 ports->aumask[ports->nports] = tbl[i].mask;
7890 ports->misel[ports->nports] =
7891 mi->un.e.member[j].ord;
7892 ports->miport[ports->nports] =
7893 au_portof(sc, mi->un.e.member[j].label.name,
7894 mi->mixer_class);
7895 if (ports->mixerout != -1 &&
7896 ports->miport[ports->nports] != -1)
7897 ports->isdual = true;
7898 ++ports->nports;
7899 }
7900 } else if (mi->type == AUDIO_MIXER_SET) {
7901 for(i = 0; tbl[i].name; i++)
7902 for(j = 0; j < mi->un.s.num_mem; j++)
7903 if (strcmp(mi->un.s.member[j].label.name,
7904 tbl[i].name) == 0) {
7905 ports->allports |= tbl[i].mask;
7906 ports->aumask[ports->nports] = tbl[i].mask;
7907 ports->misel[ports->nports] =
7908 mi->un.s.member[j].mask;
7909 ports->miport[ports->nports] =
7910 au_portof(sc, mi->un.s.member[j].label.name,
7911 mi->mixer_class);
7912 ++ports->nports;
7913 }
7914 }
7915 }
7916
7917 /*
7918 * Must be called with sc_lock && sc_exlock held.
7919 */
7920 int
7921 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
7922 {
7923
7924 KASSERT(mutex_owned(sc->sc_lock));
7925 KASSERT(sc->sc_exlock);
7926
7927 ct->type = AUDIO_MIXER_VALUE;
7928 ct->un.value.num_channels = 2;
7929 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
7930 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
7931 if (audio_set_port(sc, ct) == 0)
7932 return 0;
7933 ct->un.value.num_channels = 1;
7934 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
7935 return audio_set_port(sc, ct);
7936 }
7937
7938 /*
7939 * Must be called with sc_lock && sc_exlock held.
7940 */
7941 int
7942 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
7943 {
7944 int error;
7945
7946 KASSERT(mutex_owned(sc->sc_lock));
7947 KASSERT(sc->sc_exlock);
7948
7949 ct->un.value.num_channels = 2;
7950 if (audio_get_port(sc, ct) == 0) {
7951 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
7952 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
7953 } else {
7954 ct->un.value.num_channels = 1;
7955 error = audio_get_port(sc, ct);
7956 if (error)
7957 return error;
7958 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
7959 }
7960 return 0;
7961 }
7962
7963 /*
7964 * Must be called with sc_lock && sc_exlock held.
7965 */
7966 int
7967 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
7968 int gain, int balance)
7969 {
7970 mixer_ctrl_t ct;
7971 int i, error;
7972 int l, r;
7973 u_int mask;
7974 int nset;
7975
7976 KASSERT(mutex_owned(sc->sc_lock));
7977 KASSERT(sc->sc_exlock);
7978
7979 if (balance == AUDIO_MID_BALANCE) {
7980 l = r = gain;
7981 } else if (balance < AUDIO_MID_BALANCE) {
7982 l = gain;
7983 r = (balance * gain) / AUDIO_MID_BALANCE;
7984 } else {
7985 r = gain;
7986 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
7987 / AUDIO_MID_BALANCE;
7988 }
7989 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
7990
7991 if (ports->index == -1) {
7992 usemaster:
7993 if (ports->master == -1)
7994 return 0; /* just ignore it silently */
7995 ct.dev = ports->master;
7996 error = au_set_lr_value(sc, &ct, l, r);
7997 } else {
7998 ct.dev = ports->index;
7999 if (ports->isenum) {
8000 ct.type = AUDIO_MIXER_ENUM;
8001 error = audio_get_port(sc, &ct);
8002 if (error)
8003 return error;
8004 if (ports->isdual) {
8005 if (ports->cur_port == -1)
8006 ct.dev = ports->master;
8007 else
8008 ct.dev = ports->miport[ports->cur_port];
8009 error = au_set_lr_value(sc, &ct, l, r);
8010 } else {
8011 for(i = 0; i < ports->nports; i++)
8012 if (ports->misel[i] == ct.un.ord) {
8013 ct.dev = ports->miport[i];
8014 if (ct.dev == -1 ||
8015 au_set_lr_value(sc, &ct, l, r))
8016 goto usemaster;
8017 else
8018 break;
8019 }
8020 }
8021 } else {
8022 ct.type = AUDIO_MIXER_SET;
8023 error = audio_get_port(sc, &ct);
8024 if (error)
8025 return error;
8026 mask = ct.un.mask;
8027 nset = 0;
8028 for(i = 0; i < ports->nports; i++) {
8029 if (ports->misel[i] & mask) {
8030 ct.dev = ports->miport[i];
8031 if (ct.dev != -1 &&
8032 au_set_lr_value(sc, &ct, l, r) == 0)
8033 nset++;
8034 }
8035 }
8036 if (nset == 0)
8037 goto usemaster;
8038 }
8039 }
8040 if (!error)
8041 mixer_signal(sc);
8042 return error;
8043 }
8044
8045 /*
8046 * Must be called with sc_lock && sc_exlock held.
8047 */
8048 void
8049 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8050 u_int *pgain, u_char *pbalance)
8051 {
8052 mixer_ctrl_t ct;
8053 int i, l, r, n;
8054 int lgain, rgain;
8055
8056 KASSERT(mutex_owned(sc->sc_lock));
8057 KASSERT(sc->sc_exlock);
8058
8059 lgain = AUDIO_MAX_GAIN / 2;
8060 rgain = AUDIO_MAX_GAIN / 2;
8061 if (ports->index == -1) {
8062 usemaster:
8063 if (ports->master == -1)
8064 goto bad;
8065 ct.dev = ports->master;
8066 ct.type = AUDIO_MIXER_VALUE;
8067 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8068 goto bad;
8069 } else {
8070 ct.dev = ports->index;
8071 if (ports->isenum) {
8072 ct.type = AUDIO_MIXER_ENUM;
8073 if (audio_get_port(sc, &ct))
8074 goto bad;
8075 ct.type = AUDIO_MIXER_VALUE;
8076 if (ports->isdual) {
8077 if (ports->cur_port == -1)
8078 ct.dev = ports->master;
8079 else
8080 ct.dev = ports->miport[ports->cur_port];
8081 au_get_lr_value(sc, &ct, &lgain, &rgain);
8082 } else {
8083 for(i = 0; i < ports->nports; i++)
8084 if (ports->misel[i] == ct.un.ord) {
8085 ct.dev = ports->miport[i];
8086 if (ct.dev == -1 ||
8087 au_get_lr_value(sc, &ct,
8088 &lgain, &rgain))
8089 goto usemaster;
8090 else
8091 break;
8092 }
8093 }
8094 } else {
8095 ct.type = AUDIO_MIXER_SET;
8096 if (audio_get_port(sc, &ct))
8097 goto bad;
8098 ct.type = AUDIO_MIXER_VALUE;
8099 lgain = rgain = n = 0;
8100 for(i = 0; i < ports->nports; i++) {
8101 if (ports->misel[i] & ct.un.mask) {
8102 ct.dev = ports->miport[i];
8103 if (ct.dev == -1 ||
8104 au_get_lr_value(sc, &ct, &l, &r))
8105 goto usemaster;
8106 else {
8107 lgain += l;
8108 rgain += r;
8109 n++;
8110 }
8111 }
8112 }
8113 if (n != 0) {
8114 lgain /= n;
8115 rgain /= n;
8116 }
8117 }
8118 }
8119 bad:
8120 if (lgain == rgain) { /* handles lgain==rgain==0 */
8121 *pgain = lgain;
8122 *pbalance = AUDIO_MID_BALANCE;
8123 } else if (lgain < rgain) {
8124 *pgain = rgain;
8125 /* balance should be > AUDIO_MID_BALANCE */
8126 *pbalance = AUDIO_RIGHT_BALANCE -
8127 (AUDIO_MID_BALANCE * lgain) / rgain;
8128 } else /* lgain > rgain */ {
8129 *pgain = lgain;
8130 /* balance should be < AUDIO_MID_BALANCE */
8131 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8132 }
8133 }
8134
8135 /*
8136 * Must be called with sc_lock && sc_exlock held.
8137 */
8138 int
8139 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8140 {
8141 mixer_ctrl_t ct;
8142 int i, error, use_mixerout;
8143
8144 KASSERT(mutex_owned(sc->sc_lock));
8145 KASSERT(sc->sc_exlock);
8146
8147 use_mixerout = 1;
8148 if (port == 0) {
8149 if (ports->allports == 0)
8150 return 0; /* Allow this special case. */
8151 else if (ports->isdual) {
8152 if (ports->cur_port == -1) {
8153 return 0;
8154 } else {
8155 port = ports->aumask[ports->cur_port];
8156 ports->cur_port = -1;
8157 use_mixerout = 0;
8158 }
8159 }
8160 }
8161 if (ports->index == -1)
8162 return EINVAL;
8163 ct.dev = ports->index;
8164 if (ports->isenum) {
8165 if (port & (port-1))
8166 return EINVAL; /* Only one port allowed */
8167 ct.type = AUDIO_MIXER_ENUM;
8168 error = EINVAL;
8169 for(i = 0; i < ports->nports; i++)
8170 if (ports->aumask[i] == port) {
8171 if (ports->isdual && use_mixerout) {
8172 ct.un.ord = ports->mixerout;
8173 ports->cur_port = i;
8174 } else {
8175 ct.un.ord = ports->misel[i];
8176 }
8177 error = audio_set_port(sc, &ct);
8178 break;
8179 }
8180 } else {
8181 ct.type = AUDIO_MIXER_SET;
8182 ct.un.mask = 0;
8183 for(i = 0; i < ports->nports; i++)
8184 if (ports->aumask[i] & port)
8185 ct.un.mask |= ports->misel[i];
8186 if (port != 0 && ct.un.mask == 0)
8187 error = EINVAL;
8188 else
8189 error = audio_set_port(sc, &ct);
8190 }
8191 if (!error)
8192 mixer_signal(sc);
8193 return error;
8194 }
8195
8196 /*
8197 * Must be called with sc_lock && sc_exlock held.
8198 */
8199 int
8200 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8201 {
8202 mixer_ctrl_t ct;
8203 int i, aumask;
8204
8205 KASSERT(mutex_owned(sc->sc_lock));
8206 KASSERT(sc->sc_exlock);
8207
8208 if (ports->index == -1)
8209 return 0;
8210 ct.dev = ports->index;
8211 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8212 if (audio_get_port(sc, &ct))
8213 return 0;
8214 aumask = 0;
8215 if (ports->isenum) {
8216 if (ports->isdual && ports->cur_port != -1) {
8217 if (ports->mixerout == ct.un.ord)
8218 aumask = ports->aumask[ports->cur_port];
8219 else
8220 ports->cur_port = -1;
8221 }
8222 if (aumask == 0)
8223 for(i = 0; i < ports->nports; i++)
8224 if (ports->misel[i] == ct.un.ord)
8225 aumask = ports->aumask[i];
8226 } else {
8227 for(i = 0; i < ports->nports; i++)
8228 if (ct.un.mask & ports->misel[i])
8229 aumask |= ports->aumask[i];
8230 }
8231 return aumask;
8232 }
8233
8234 /*
8235 * It returns 0 if success, otherwise errno.
8236 * Must be called only if sc->sc_monitor_port != -1.
8237 * Must be called with sc_lock && sc_exlock held.
8238 */
8239 static int
8240 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8241 {
8242 mixer_ctrl_t ct;
8243
8244 KASSERT(mutex_owned(sc->sc_lock));
8245 KASSERT(sc->sc_exlock);
8246
8247 ct.dev = sc->sc_monitor_port;
8248 ct.type = AUDIO_MIXER_VALUE;
8249 ct.un.value.num_channels = 1;
8250 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8251 return audio_set_port(sc, &ct);
8252 }
8253
8254 /*
8255 * It returns monitor gain if success, otherwise -1.
8256 * Must be called only if sc->sc_monitor_port != -1.
8257 * Must be called with sc_lock && sc_exlock held.
8258 */
8259 static int
8260 au_get_monitor_gain(struct audio_softc *sc)
8261 {
8262 mixer_ctrl_t ct;
8263
8264 KASSERT(mutex_owned(sc->sc_lock));
8265 KASSERT(sc->sc_exlock);
8266
8267 ct.dev = sc->sc_monitor_port;
8268 ct.type = AUDIO_MIXER_VALUE;
8269 ct.un.value.num_channels = 1;
8270 if (audio_get_port(sc, &ct))
8271 return -1;
8272 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8273 }
8274
8275 /*
8276 * Must be called with sc_lock && sc_exlock held.
8277 */
8278 static int
8279 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8280 {
8281
8282 KASSERT(mutex_owned(sc->sc_lock));
8283 KASSERT(sc->sc_exlock);
8284
8285 return sc->hw_if->set_port(sc->hw_hdl, mc);
8286 }
8287
8288 /*
8289 * Must be called with sc_lock && sc_exlock held.
8290 */
8291 static int
8292 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8293 {
8294
8295 KASSERT(mutex_owned(sc->sc_lock));
8296 KASSERT(sc->sc_exlock);
8297
8298 return sc->hw_if->get_port(sc->hw_hdl, mc);
8299 }
8300
8301 /*
8302 * Must be called with sc_lock && sc_exlock held.
8303 */
8304 static void
8305 audio_mixer_capture(struct audio_softc *sc)
8306 {
8307 mixer_devinfo_t mi;
8308 mixer_ctrl_t *mc;
8309
8310 KASSERT(mutex_owned(sc->sc_lock));
8311 KASSERT(sc->sc_exlock);
8312
8313 for (mi.index = 0;; mi.index++) {
8314 if (audio_query_devinfo(sc, &mi) != 0)
8315 break;
8316 KASSERT(mi.index < sc->sc_nmixer_states);
8317 if (mi.type == AUDIO_MIXER_CLASS)
8318 continue;
8319 mc = &sc->sc_mixer_state[mi.index];
8320 mc->dev = mi.index;
8321 mc->type = mi.type;
8322 mc->un.value.num_channels = mi.un.v.num_channels;
8323 (void)audio_get_port(sc, mc);
8324 }
8325
8326 return;
8327 }
8328
8329 /*
8330 * Must be called with sc_lock && sc_exlock held.
8331 */
8332 static void
8333 audio_mixer_restore(struct audio_softc *sc)
8334 {
8335 mixer_devinfo_t mi;
8336 mixer_ctrl_t *mc;
8337
8338 KASSERT(mutex_owned(sc->sc_lock));
8339 KASSERT(sc->sc_exlock);
8340
8341 for (mi.index = 0; ; mi.index++) {
8342 if (audio_query_devinfo(sc, &mi) != 0)
8343 break;
8344 if (mi.type == AUDIO_MIXER_CLASS)
8345 continue;
8346 mc = &sc->sc_mixer_state[mi.index];
8347 (void)audio_set_port(sc, mc);
8348 }
8349 if (sc->hw_if->commit_settings)
8350 sc->hw_if->commit_settings(sc->hw_hdl);
8351
8352 return;
8353 }
8354
8355 static void
8356 audio_volume_down(device_t dv)
8357 {
8358 struct audio_softc *sc = device_private(dv);
8359 mixer_devinfo_t mi;
8360 int newgain;
8361 u_int gain;
8362 u_char balance;
8363
8364 if (audio_enter_exclusive(sc) != 0)
8365 return;
8366 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8367 mi.index = sc->sc_outports.master;
8368 mi.un.v.delta = 0;
8369 if (audio_query_devinfo(sc, &mi) == 0) {
8370 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8371 newgain = gain - mi.un.v.delta;
8372 if (newgain < AUDIO_MIN_GAIN)
8373 newgain = AUDIO_MIN_GAIN;
8374 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8375 }
8376 }
8377 audio_exit_exclusive(sc);
8378 }
8379
8380 static void
8381 audio_volume_up(device_t dv)
8382 {
8383 struct audio_softc *sc = device_private(dv);
8384 mixer_devinfo_t mi;
8385 u_int gain, newgain;
8386 u_char balance;
8387
8388 if (audio_enter_exclusive(sc) != 0)
8389 return;
8390 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8391 mi.index = sc->sc_outports.master;
8392 mi.un.v.delta = 0;
8393 if (audio_query_devinfo(sc, &mi) == 0) {
8394 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8395 newgain = gain + mi.un.v.delta;
8396 if (newgain > AUDIO_MAX_GAIN)
8397 newgain = AUDIO_MAX_GAIN;
8398 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8399 }
8400 }
8401 audio_exit_exclusive(sc);
8402 }
8403
8404 static void
8405 audio_volume_toggle(device_t dv)
8406 {
8407 struct audio_softc *sc = device_private(dv);
8408 u_int gain, newgain;
8409 u_char balance;
8410
8411 if (audio_enter_exclusive(sc) != 0)
8412 return;
8413 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8414 if (gain != 0) {
8415 sc->sc_lastgain = gain;
8416 newgain = 0;
8417 } else
8418 newgain = sc->sc_lastgain;
8419 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8420 audio_exit_exclusive(sc);
8421 }
8422
8423 static int
8424 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8425 {
8426
8427 KASSERT(mutex_owned(sc->sc_lock));
8428
8429 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8430 }
8431
8432 #endif /* NAUDIO > 0 */
8433
8434 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8435 #include <sys/param.h>
8436 #include <sys/systm.h>
8437 #include <sys/device.h>
8438 #include <sys/audioio.h>
8439 #include <dev/audio/audio_if.h>
8440 #endif
8441
8442 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8443 int
8444 audioprint(void *aux, const char *pnp)
8445 {
8446 struct audio_attach_args *arg;
8447 const char *type;
8448
8449 if (pnp != NULL) {
8450 arg = aux;
8451 switch (arg->type) {
8452 case AUDIODEV_TYPE_AUDIO:
8453 type = "audio";
8454 break;
8455 case AUDIODEV_TYPE_MIDI:
8456 type = "midi";
8457 break;
8458 case AUDIODEV_TYPE_OPL:
8459 type = "opl";
8460 break;
8461 case AUDIODEV_TYPE_MPU:
8462 type = "mpu";
8463 break;
8464 default:
8465 panic("audioprint: unknown type %d", arg->type);
8466 }
8467 aprint_normal("%s at %s", type, pnp);
8468 }
8469 return UNCONF;
8470 }
8471
8472 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8473
8474 #ifdef _MODULE
8475
8476 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8477
8478 #include "ioconf.c"
8479
8480 #endif
8481
8482 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8483
8484 static int
8485 audio_modcmd(modcmd_t cmd, void *arg)
8486 {
8487 int error = 0;
8488
8489 #ifdef _MODULE
8490 switch (cmd) {
8491 case MODULE_CMD_INIT:
8492 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8493 &audio_cdevsw, &audio_cmajor);
8494 if (error)
8495 break;
8496
8497 error = config_init_component(cfdriver_ioconf_audio,
8498 cfattach_ioconf_audio, cfdata_ioconf_audio);
8499 if (error) {
8500 devsw_detach(NULL, &audio_cdevsw);
8501 }
8502 break;
8503 case MODULE_CMD_FINI:
8504 devsw_detach(NULL, &audio_cdevsw);
8505 error = config_fini_component(cfdriver_ioconf_audio,
8506 cfattach_ioconf_audio, cfdata_ioconf_audio);
8507 if (error)
8508 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8509 &audio_cdevsw, &audio_cmajor);
8510 break;
8511 default:
8512 error = ENOTTY;
8513 break;
8514 }
8515 #endif
8516
8517 return error;
8518 }
8519