audio.c revision 1.51 1 /* $NetBSD: audio.c,v 1.51 2020/02/22 08:03:19 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - + (*1)
122 * freem - - + (*1)
123 * round_buffersize - x
124 * get_props - x Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * *1 Note: Before 8.0, since these have been called only at attach time,
131 * neither lock were necessary. Currently, on the other hand, since
132 * these may be also called after attach, the thread lock is required.
133 *
134 * In addition, there is an additional lock.
135 *
136 * - track->lock. This is an atomic variable and is similar to the
137 * "interrupt lock". This is one for each track. If any thread context
138 * (and software interrupt context) and hardware interrupt context who
139 * want to access some variables on this track, they must acquire this
140 * lock before. It protects track's consistency between hardware
141 * interrupt context and others.
142 */
143
144 #include <sys/cdefs.h>
145 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.51 2020/02/22 08:03:19 isaki Exp $");
146
147 #ifdef _KERNEL_OPT
148 #include "audio.h"
149 #include "midi.h"
150 #endif
151
152 #if NAUDIO > 0
153
154 #include <sys/types.h>
155 #include <sys/param.h>
156 #include <sys/atomic.h>
157 #include <sys/audioio.h>
158 #include <sys/conf.h>
159 #include <sys/cpu.h>
160 #include <sys/device.h>
161 #include <sys/fcntl.h>
162 #include <sys/file.h>
163 #include <sys/filedesc.h>
164 #include <sys/intr.h>
165 #include <sys/ioctl.h>
166 #include <sys/kauth.h>
167 #include <sys/kernel.h>
168 #include <sys/kmem.h>
169 #include <sys/malloc.h>
170 #include <sys/mman.h>
171 #include <sys/module.h>
172 #include <sys/poll.h>
173 #include <sys/proc.h>
174 #include <sys/queue.h>
175 #include <sys/select.h>
176 #include <sys/signalvar.h>
177 #include <sys/stat.h>
178 #include <sys/sysctl.h>
179 #include <sys/systm.h>
180 #include <sys/syslog.h>
181 #include <sys/vnode.h>
182
183 #include <dev/audio/audio_if.h>
184 #include <dev/audio/audiovar.h>
185 #include <dev/audio/audiodef.h>
186 #include <dev/audio/linear.h>
187 #include <dev/audio/mulaw.h>
188
189 #include <machine/endian.h>
190
191 #include <uvm/uvm.h>
192
193 #include "ioconf.h"
194
195 /*
196 * 0: No debug logs
197 * 1: action changes like open/close/set_format...
198 * 2: + normal operations like read/write/ioctl...
199 * 3: + TRACEs except interrupt
200 * 4: + TRACEs including interrupt
201 */
202 //#define AUDIO_DEBUG 1
203
204 #if defined(AUDIO_DEBUG)
205
206 int audiodebug = AUDIO_DEBUG;
207 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
208 const char *, va_list);
209 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
210 __printflike(3, 4);
211 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
212 __printflike(3, 4);
213 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
214 __printflike(3, 4);
215
216 /* XXX sloppy memory logger */
217 static void audio_mlog_init(void);
218 static void audio_mlog_free(void);
219 static void audio_mlog_softintr(void *);
220 extern void audio_mlog_flush(void);
221 extern void audio_mlog_printf(const char *, ...);
222
223 static int mlog_refs; /* reference counter */
224 static char *mlog_buf[2]; /* double buffer */
225 static int mlog_buflen; /* buffer length */
226 static int mlog_used; /* used length */
227 static int mlog_full; /* number of dropped lines by buffer full */
228 static int mlog_drop; /* number of dropped lines by busy */
229 static volatile uint32_t mlog_inuse; /* in-use */
230 static int mlog_wpage; /* active page */
231 static void *mlog_sih; /* softint handle */
232
233 static void
234 audio_mlog_init(void)
235 {
236 mlog_refs++;
237 if (mlog_refs > 1)
238 return;
239 mlog_buflen = 4096;
240 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
241 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
242 mlog_used = 0;
243 mlog_full = 0;
244 mlog_drop = 0;
245 mlog_inuse = 0;
246 mlog_wpage = 0;
247 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
248 if (mlog_sih == NULL)
249 printf("%s: softint_establish failed\n", __func__);
250 }
251
252 static void
253 audio_mlog_free(void)
254 {
255 mlog_refs--;
256 if (mlog_refs > 0)
257 return;
258
259 audio_mlog_flush();
260 if (mlog_sih)
261 softint_disestablish(mlog_sih);
262 kmem_free(mlog_buf[0], mlog_buflen);
263 kmem_free(mlog_buf[1], mlog_buflen);
264 }
265
266 /*
267 * Flush memory buffer.
268 * It must not be called from hardware interrupt context.
269 */
270 void
271 audio_mlog_flush(void)
272 {
273 if (mlog_refs == 0)
274 return;
275
276 /* Nothing to do if already in use ? */
277 if (atomic_swap_32(&mlog_inuse, 1) == 1)
278 return;
279
280 int rpage = mlog_wpage;
281 mlog_wpage ^= 1;
282 mlog_buf[mlog_wpage][0] = '\0';
283 mlog_used = 0;
284
285 atomic_swap_32(&mlog_inuse, 0);
286
287 if (mlog_buf[rpage][0] != '\0') {
288 printf("%s", mlog_buf[rpage]);
289 if (mlog_drop > 0)
290 printf("mlog_drop %d\n", mlog_drop);
291 if (mlog_full > 0)
292 printf("mlog_full %d\n", mlog_full);
293 }
294 mlog_full = 0;
295 mlog_drop = 0;
296 }
297
298 static void
299 audio_mlog_softintr(void *cookie)
300 {
301 audio_mlog_flush();
302 }
303
304 void
305 audio_mlog_printf(const char *fmt, ...)
306 {
307 int len;
308 va_list ap;
309
310 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
311 /* already inuse */
312 mlog_drop++;
313 return;
314 }
315
316 va_start(ap, fmt);
317 len = vsnprintf(
318 mlog_buf[mlog_wpage] + mlog_used,
319 mlog_buflen - mlog_used,
320 fmt, ap);
321 va_end(ap);
322
323 mlog_used += len;
324 if (mlog_buflen - mlog_used <= 1) {
325 mlog_full++;
326 }
327
328 atomic_swap_32(&mlog_inuse, 0);
329
330 if (mlog_sih)
331 softint_schedule(mlog_sih);
332 }
333
334 /* trace functions */
335 static void
336 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
337 const char *fmt, va_list ap)
338 {
339 char buf[256];
340 int n;
341
342 n = 0;
343 buf[0] = '\0';
344 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
345 funcname, device_unit(sc->sc_dev), header);
346 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
347
348 if (cpu_intr_p()) {
349 audio_mlog_printf("%s\n", buf);
350 } else {
351 audio_mlog_flush();
352 printf("%s\n", buf);
353 }
354 }
355
356 static void
357 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
358 {
359 va_list ap;
360
361 va_start(ap, fmt);
362 audio_vtrace(sc, funcname, "", fmt, ap);
363 va_end(ap);
364 }
365
366 static void
367 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
368 {
369 char hdr[16];
370 va_list ap;
371
372 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
373 va_start(ap, fmt);
374 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
375 va_end(ap);
376 }
377
378 static void
379 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
380 {
381 char hdr[32];
382 char phdr[16], rhdr[16];
383 va_list ap;
384
385 phdr[0] = '\0';
386 rhdr[0] = '\0';
387 if (file->ptrack)
388 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
389 if (file->rtrack)
390 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
391 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
392
393 va_start(ap, fmt);
394 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
395 va_end(ap);
396 }
397
398 #define DPRINTF(n, fmt...) do { \
399 if (audiodebug >= (n)) { \
400 audio_mlog_flush(); \
401 printf(fmt); \
402 } \
403 } while (0)
404 #define TRACE(n, fmt...) do { \
405 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
406 } while (0)
407 #define TRACET(n, t, fmt...) do { \
408 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
409 } while (0)
410 #define TRACEF(n, f, fmt...) do { \
411 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
412 } while (0)
413
414 struct audio_track_debugbuf {
415 char usrbuf[32];
416 char codec[32];
417 char chvol[32];
418 char chmix[32];
419 char freq[32];
420 char outbuf[32];
421 };
422
423 static void
424 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
425 {
426
427 memset(buf, 0, sizeof(*buf));
428
429 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
430 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
431 if (track->freq.filter)
432 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
433 track->freq.srcbuf.head,
434 track->freq.srcbuf.used,
435 track->freq.srcbuf.capacity);
436 if (track->chmix.filter)
437 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
438 track->chmix.srcbuf.used);
439 if (track->chvol.filter)
440 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
441 track->chvol.srcbuf.used);
442 if (track->codec.filter)
443 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
444 track->codec.srcbuf.used);
445 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
446 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
447 }
448 #else
449 #define DPRINTF(n, fmt...) do { } while (0)
450 #define TRACE(n, fmt, ...) do { } while (0)
451 #define TRACET(n, t, fmt, ...) do { } while (0)
452 #define TRACEF(n, f, fmt, ...) do { } while (0)
453 #endif
454
455 #define SPECIFIED(x) ((x) != ~0)
456 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
457
458 /* Device timeout in msec */
459 #define AUDIO_TIMEOUT (3000)
460
461 /* #define AUDIO_PM_IDLE */
462 #ifdef AUDIO_PM_IDLE
463 int audio_idle_timeout = 30;
464 #endif
465
466 /* Number of elements of async mixer's pid */
467 #define AM_CAPACITY (4)
468
469 struct portname {
470 const char *name;
471 int mask;
472 };
473
474 static int audiomatch(device_t, cfdata_t, void *);
475 static void audioattach(device_t, device_t, void *);
476 static int audiodetach(device_t, int);
477 static int audioactivate(device_t, enum devact);
478 static void audiochilddet(device_t, device_t);
479 static int audiorescan(device_t, const char *, const int *);
480
481 static int audio_modcmd(modcmd_t, void *);
482
483 #ifdef AUDIO_PM_IDLE
484 static void audio_idle(void *);
485 static void audio_activity(device_t, devactive_t);
486 #endif
487
488 static bool audio_suspend(device_t dv, const pmf_qual_t *);
489 static bool audio_resume(device_t dv, const pmf_qual_t *);
490 static void audio_volume_down(device_t);
491 static void audio_volume_up(device_t);
492 static void audio_volume_toggle(device_t);
493
494 static void audio_mixer_capture(struct audio_softc *);
495 static void audio_mixer_restore(struct audio_softc *);
496
497 static void audio_softintr_rd(void *);
498 static void audio_softintr_wr(void *);
499
500 static int audio_enter_exclusive(struct audio_softc *);
501 static void audio_exit_exclusive(struct audio_softc *);
502 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
503
504 static int audioclose(struct file *);
505 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
506 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
507 static int audioioctl(struct file *, u_long, void *);
508 static int audiopoll(struct file *, int);
509 static int audiokqfilter(struct file *, struct knote *);
510 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
511 struct uvm_object **, int *);
512 static int audiostat(struct file *, struct stat *);
513
514 static void filt_audiowrite_detach(struct knote *);
515 static int filt_audiowrite_event(struct knote *, long);
516 static void filt_audioread_detach(struct knote *);
517 static int filt_audioread_event(struct knote *, long);
518
519 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
520 audio_file_t **);
521 static int audio_close(struct audio_softc *, audio_file_t *);
522 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
523 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
524 static void audio_file_clear(struct audio_softc *, audio_file_t *);
525 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
526 struct lwp *, audio_file_t *);
527 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
528 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
529 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
530 struct uvm_object **, int *, audio_file_t *);
531
532 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
533 static int audioctl_close(struct audio_softc *, audio_file_t *);
534
535 static void audio_pintr(void *);
536 static void audio_rintr(void *);
537
538 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
539
540 static __inline int audio_track_readablebytes(const audio_track_t *);
541 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
542 const struct audio_info *);
543 static int audio_track_setinfo_check(audio_format2_t *,
544 const struct audio_prinfo *, const audio_format2_t *);
545 static void audio_track_setinfo_water(audio_track_t *,
546 const struct audio_info *);
547 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
548 struct audio_info *);
549 static int audio_hw_set_format(struct audio_softc *, int,
550 const audio_format2_t *, const audio_format2_t *,
551 audio_filter_reg_t *, audio_filter_reg_t *);
552 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
553 audio_file_t *);
554 static bool audio_can_playback(struct audio_softc *);
555 static bool audio_can_capture(struct audio_softc *);
556 static int audio_check_params(audio_format2_t *);
557 static int audio_mixers_init(struct audio_softc *sc, int,
558 const audio_format2_t *, const audio_format2_t *,
559 const audio_filter_reg_t *, const audio_filter_reg_t *);
560 static int audio_select_freq(const struct audio_format *);
561 static int audio_hw_probe(struct audio_softc *, int, int *,
562 audio_format2_t *, audio_format2_t *);
563 static int audio_hw_probe_fmt(struct audio_softc *, audio_format2_t *, int);
564 static int audio_hw_validate_format(struct audio_softc *, int,
565 const audio_format2_t *);
566 static int audio_mixers_set_format(struct audio_softc *,
567 const struct audio_info *);
568 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
569 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
570 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
571 #if defined(AUDIO_DEBUG)
572 static int audio_sysctl_debug(SYSCTLFN_PROTO);
573 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
574 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
575 #endif
576
577 static void *audio_realloc(void *, size_t);
578 static int audio_realloc_usrbuf(audio_track_t *, int);
579 static void audio_free_usrbuf(audio_track_t *);
580
581 static audio_track_t *audio_track_create(struct audio_softc *,
582 audio_trackmixer_t *);
583 static void audio_track_destroy(audio_track_t *);
584 static audio_filter_t audio_track_get_codec(audio_track_t *,
585 const audio_format2_t *, const audio_format2_t *);
586 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
587 static void audio_track_play(audio_track_t *);
588 static int audio_track_drain(struct audio_softc *, audio_track_t *);
589 static void audio_track_record(audio_track_t *);
590 static void audio_track_clear(struct audio_softc *, audio_track_t *);
591
592 static int audio_mixer_init(struct audio_softc *, int,
593 const audio_format2_t *, const audio_filter_reg_t *);
594 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
595 static void audio_pmixer_start(struct audio_softc *, bool);
596 static void audio_pmixer_process(struct audio_softc *);
597 static void audio_pmixer_agc(audio_trackmixer_t *, int);
598 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
599 static void audio_pmixer_output(struct audio_softc *);
600 static int audio_pmixer_halt(struct audio_softc *);
601 static void audio_rmixer_start(struct audio_softc *);
602 static void audio_rmixer_process(struct audio_softc *);
603 static void audio_rmixer_input(struct audio_softc *);
604 static int audio_rmixer_halt(struct audio_softc *);
605
606 static void mixer_init(struct audio_softc *);
607 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
608 static int mixer_close(struct audio_softc *, audio_file_t *);
609 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
610 static void mixer_async_add(struct audio_softc *, pid_t);
611 static void mixer_async_remove(struct audio_softc *, pid_t);
612 static void mixer_signal(struct audio_softc *);
613
614 static int au_portof(struct audio_softc *, char *, int);
615
616 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
617 mixer_devinfo_t *, const struct portname *);
618 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
619 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
620 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
621 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
622 u_int *, u_char *);
623 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
624 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
625 static int au_set_monitor_gain(struct audio_softc *, int);
626 static int au_get_monitor_gain(struct audio_softc *);
627 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
628 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
629
630 static __inline struct audio_params
631 format2_to_params(const audio_format2_t *f2)
632 {
633 audio_params_t p;
634
635 /* validbits/precision <-> precision/stride */
636 p.sample_rate = f2->sample_rate;
637 p.channels = f2->channels;
638 p.encoding = f2->encoding;
639 p.validbits = f2->precision;
640 p.precision = f2->stride;
641 return p;
642 }
643
644 static __inline audio_format2_t
645 params_to_format2(const struct audio_params *p)
646 {
647 audio_format2_t f2;
648
649 /* precision/stride <-> validbits/precision */
650 f2.sample_rate = p->sample_rate;
651 f2.channels = p->channels;
652 f2.encoding = p->encoding;
653 f2.precision = p->validbits;
654 f2.stride = p->precision;
655 return f2;
656 }
657
658 /* Return true if this track is a playback track. */
659 static __inline bool
660 audio_track_is_playback(const audio_track_t *track)
661 {
662
663 return ((track->mode & AUMODE_PLAY) != 0);
664 }
665
666 /* Return true if this track is a recording track. */
667 static __inline bool
668 audio_track_is_record(const audio_track_t *track)
669 {
670
671 return ((track->mode & AUMODE_RECORD) != 0);
672 }
673
674 #if 0 /* XXX Not used yet */
675 /*
676 * Convert 0..255 volume used in userland to internal presentation 0..256.
677 */
678 static __inline u_int
679 audio_volume_to_inner(u_int v)
680 {
681
682 return v < 127 ? v : v + 1;
683 }
684
685 /*
686 * Convert 0..256 internal presentation to 0..255 volume used in userland.
687 */
688 static __inline u_int
689 audio_volume_to_outer(u_int v)
690 {
691
692 return v < 127 ? v : v - 1;
693 }
694 #endif /* 0 */
695
696 static dev_type_open(audioopen);
697 /* XXXMRG use more dev_type_xxx */
698
699 const struct cdevsw audio_cdevsw = {
700 .d_open = audioopen,
701 .d_close = noclose,
702 .d_read = noread,
703 .d_write = nowrite,
704 .d_ioctl = noioctl,
705 .d_stop = nostop,
706 .d_tty = notty,
707 .d_poll = nopoll,
708 .d_mmap = nommap,
709 .d_kqfilter = nokqfilter,
710 .d_discard = nodiscard,
711 .d_flag = D_OTHER | D_MPSAFE
712 };
713
714 const struct fileops audio_fileops = {
715 .fo_name = "audio",
716 .fo_read = audioread,
717 .fo_write = audiowrite,
718 .fo_ioctl = audioioctl,
719 .fo_fcntl = fnullop_fcntl,
720 .fo_stat = audiostat,
721 .fo_poll = audiopoll,
722 .fo_close = audioclose,
723 .fo_mmap = audiommap,
724 .fo_kqfilter = audiokqfilter,
725 .fo_restart = fnullop_restart
726 };
727
728 /* The default audio mode: 8 kHz mono mu-law */
729 static const struct audio_params audio_default = {
730 .sample_rate = 8000,
731 .encoding = AUDIO_ENCODING_ULAW,
732 .precision = 8,
733 .validbits = 8,
734 .channels = 1,
735 };
736
737 static const char *encoding_names[] = {
738 "none",
739 AudioEmulaw,
740 AudioEalaw,
741 "pcm16",
742 "pcm8",
743 AudioEadpcm,
744 AudioEslinear_le,
745 AudioEslinear_be,
746 AudioEulinear_le,
747 AudioEulinear_be,
748 AudioEslinear,
749 AudioEulinear,
750 AudioEmpeg_l1_stream,
751 AudioEmpeg_l1_packets,
752 AudioEmpeg_l1_system,
753 AudioEmpeg_l2_stream,
754 AudioEmpeg_l2_packets,
755 AudioEmpeg_l2_system,
756 AudioEac3,
757 };
758
759 /*
760 * Returns encoding name corresponding to AUDIO_ENCODING_*.
761 * Note that it may return a local buffer because it is mainly for debugging.
762 */
763 const char *
764 audio_encoding_name(int encoding)
765 {
766 static char buf[16];
767
768 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
769 return encoding_names[encoding];
770 } else {
771 snprintf(buf, sizeof(buf), "enc=%d", encoding);
772 return buf;
773 }
774 }
775
776 /*
777 * Supported encodings used by AUDIO_GETENC.
778 * index and flags are set by code.
779 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
780 */
781 static const audio_encoding_t audio_encodings[] = {
782 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
783 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
784 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
785 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
786 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
787 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
788 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
789 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
790 #if defined(AUDIO_SUPPORT_LINEAR24)
791 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
792 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
793 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
794 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
795 #endif
796 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
797 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
798 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
799 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
800 };
801
802 static const struct portname itable[] = {
803 { AudioNmicrophone, AUDIO_MICROPHONE },
804 { AudioNline, AUDIO_LINE_IN },
805 { AudioNcd, AUDIO_CD },
806 { 0, 0 }
807 };
808 static const struct portname otable[] = {
809 { AudioNspeaker, AUDIO_SPEAKER },
810 { AudioNheadphone, AUDIO_HEADPHONE },
811 { AudioNline, AUDIO_LINE_OUT },
812 { 0, 0 }
813 };
814
815 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
816 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
817 audiochilddet, DVF_DETACH_SHUTDOWN);
818
819 static int
820 audiomatch(device_t parent, cfdata_t match, void *aux)
821 {
822 struct audio_attach_args *sa;
823
824 sa = aux;
825 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
826 __func__, sa->type, sa, sa->hwif);
827 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
828 }
829
830 static void
831 audioattach(device_t parent, device_t self, void *aux)
832 {
833 struct audio_softc *sc;
834 struct audio_attach_args *sa;
835 const struct audio_hw_if *hw_if;
836 audio_format2_t phwfmt;
837 audio_format2_t rhwfmt;
838 audio_filter_reg_t pfil;
839 audio_filter_reg_t rfil;
840 const struct sysctlnode *node;
841 void *hdlp;
842 bool has_playback;
843 bool has_capture;
844 bool has_indep;
845 bool has_fulldup;
846 int mode;
847 int error;
848
849 sc = device_private(self);
850 sc->sc_dev = self;
851 sa = (struct audio_attach_args *)aux;
852 hw_if = sa->hwif;
853 hdlp = sa->hdl;
854
855 if (hw_if == NULL || hw_if->get_locks == NULL) {
856 panic("audioattach: missing hw_if method");
857 }
858
859 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
860
861 #ifdef DIAGNOSTIC
862 if (hw_if->query_format == NULL ||
863 hw_if->set_format == NULL ||
864 (hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
865 (hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
866 hw_if->halt_output == NULL ||
867 hw_if->halt_input == NULL ||
868 hw_if->getdev == NULL ||
869 hw_if->set_port == NULL ||
870 hw_if->get_port == NULL ||
871 hw_if->query_devinfo == NULL ||
872 hw_if->get_props == NULL) {
873 aprint_error(": missing method\n");
874 return;
875 }
876 #endif
877
878 sc->hw_if = hw_if;
879 sc->hw_hdl = hdlp;
880 sc->hw_dev = parent;
881
882 sc->sc_blk_ms = AUDIO_BLK_MS;
883 SLIST_INIT(&sc->sc_files);
884 cv_init(&sc->sc_exlockcv, "audiolk");
885 sc->sc_am_capacity = 0;
886 sc->sc_am_used = 0;
887 sc->sc_am = NULL;
888
889 mutex_enter(sc->sc_lock);
890 sc->sc_props = hw_if->get_props(sc->hw_hdl);
891 mutex_exit(sc->sc_lock);
892
893 /* MMAP is now supported by upper layer. */
894 sc->sc_props |= AUDIO_PROP_MMAP;
895
896 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
897 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
898 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
899 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
900
901 KASSERT(has_playback || has_capture);
902 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
903 if (!has_playback || !has_capture) {
904 KASSERT(!has_indep);
905 KASSERT(!has_fulldup);
906 }
907
908 mode = 0;
909 if (has_playback) {
910 aprint_normal(": playback");
911 mode |= AUMODE_PLAY;
912 }
913 if (has_capture) {
914 aprint_normal("%c capture", has_playback ? ',' : ':');
915 mode |= AUMODE_RECORD;
916 }
917 if (has_playback && has_capture) {
918 if (has_fulldup)
919 aprint_normal(", full duplex");
920 else
921 aprint_normal(", half duplex");
922
923 if (has_indep)
924 aprint_normal(", independent");
925 }
926
927 aprint_naive("\n");
928 aprint_normal("\n");
929
930 /* probe hw params */
931 memset(&phwfmt, 0, sizeof(phwfmt));
932 memset(&rhwfmt, 0, sizeof(rhwfmt));
933 memset(&pfil, 0, sizeof(pfil));
934 memset(&rfil, 0, sizeof(rfil));
935 mutex_enter(sc->sc_lock);
936 error = audio_hw_probe(sc, has_indep, &mode, &phwfmt, &rhwfmt);
937 if (error) {
938 mutex_exit(sc->sc_lock);
939 aprint_error_dev(self, "audio_hw_probe failed, "
940 "error = %d\n", error);
941 goto bad;
942 }
943 if (mode == 0) {
944 mutex_exit(sc->sc_lock);
945 aprint_error_dev(self, "audio_hw_probe failed, no mode\n");
946 goto bad;
947 }
948 /* Init hardware. */
949 /* hw_probe() also validates [pr]hwfmt. */
950 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
951 if (error) {
952 mutex_exit(sc->sc_lock);
953 aprint_error_dev(self, "audio_hw_set_format failed, "
954 "error = %d\n", error);
955 goto bad;
956 }
957
958 /*
959 * Init track mixers. If at least one direction is available on
960 * attach time, we assume a success.
961 */
962 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
963 mutex_exit(sc->sc_lock);
964 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
965 aprint_error_dev(self, "audio_mixers_init failed, "
966 "error = %d\n", error);
967 goto bad;
968 }
969
970 selinit(&sc->sc_wsel);
971 selinit(&sc->sc_rsel);
972
973 /* Initial parameter of /dev/sound */
974 sc->sc_sound_pparams = params_to_format2(&audio_default);
975 sc->sc_sound_rparams = params_to_format2(&audio_default);
976 sc->sc_sound_ppause = false;
977 sc->sc_sound_rpause = false;
978
979 /* XXX TODO: consider about sc_ai */
980
981 mixer_init(sc);
982 TRACE(2, "inputs ports=0x%x, input master=%d, "
983 "output ports=0x%x, output master=%d",
984 sc->sc_inports.allports, sc->sc_inports.master,
985 sc->sc_outports.allports, sc->sc_outports.master);
986
987 sysctl_createv(&sc->sc_log, 0, NULL, &node,
988 0,
989 CTLTYPE_NODE, device_xname(sc->sc_dev),
990 SYSCTL_DESCR("audio test"),
991 NULL, 0,
992 NULL, 0,
993 CTL_HW,
994 CTL_CREATE, CTL_EOL);
995
996 if (node != NULL) {
997 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
998 CTLFLAG_READWRITE,
999 CTLTYPE_INT, "blk_ms",
1000 SYSCTL_DESCR("blocksize in msec"),
1001 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1002 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1003
1004 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1005 CTLFLAG_READWRITE,
1006 CTLTYPE_BOOL, "multiuser",
1007 SYSCTL_DESCR("allow multiple user access"),
1008 audio_sysctl_multiuser, 0, (void *)sc, 0,
1009 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1010
1011 #if defined(AUDIO_DEBUG)
1012 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1013 CTLFLAG_READWRITE,
1014 CTLTYPE_INT, "debug",
1015 SYSCTL_DESCR("debug level (0..4)"),
1016 audio_sysctl_debug, 0, (void *)sc, 0,
1017 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1018 #endif
1019 }
1020
1021 #ifdef AUDIO_PM_IDLE
1022 callout_init(&sc->sc_idle_counter, 0);
1023 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1024 #endif
1025
1026 if (!pmf_device_register(self, audio_suspend, audio_resume))
1027 aprint_error_dev(self, "couldn't establish power handler\n");
1028 #ifdef AUDIO_PM_IDLE
1029 if (!device_active_register(self, audio_activity))
1030 aprint_error_dev(self, "couldn't register activity handler\n");
1031 #endif
1032
1033 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1034 audio_volume_down, true))
1035 aprint_error_dev(self, "couldn't add volume down handler\n");
1036 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1037 audio_volume_up, true))
1038 aprint_error_dev(self, "couldn't add volume up handler\n");
1039 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1040 audio_volume_toggle, true))
1041 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1042
1043 #ifdef AUDIO_PM_IDLE
1044 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1045 #endif
1046
1047 #if defined(AUDIO_DEBUG)
1048 audio_mlog_init();
1049 #endif
1050
1051 audiorescan(self, "audio", NULL);
1052 return;
1053
1054 bad:
1055 /* Clearing hw_if means that device is attached but disabled. */
1056 sc->hw_if = NULL;
1057 aprint_error_dev(sc->sc_dev, "disabled\n");
1058 return;
1059 }
1060
1061 /*
1062 * Initialize hardware mixer.
1063 * This function is called from audioattach().
1064 */
1065 static void
1066 mixer_init(struct audio_softc *sc)
1067 {
1068 mixer_devinfo_t mi;
1069 int iclass, mclass, oclass, rclass;
1070 int record_master_found, record_source_found;
1071
1072 iclass = mclass = oclass = rclass = -1;
1073 sc->sc_inports.index = -1;
1074 sc->sc_inports.master = -1;
1075 sc->sc_inports.nports = 0;
1076 sc->sc_inports.isenum = false;
1077 sc->sc_inports.allports = 0;
1078 sc->sc_inports.isdual = false;
1079 sc->sc_inports.mixerout = -1;
1080 sc->sc_inports.cur_port = -1;
1081 sc->sc_outports.index = -1;
1082 sc->sc_outports.master = -1;
1083 sc->sc_outports.nports = 0;
1084 sc->sc_outports.isenum = false;
1085 sc->sc_outports.allports = 0;
1086 sc->sc_outports.isdual = false;
1087 sc->sc_outports.mixerout = -1;
1088 sc->sc_outports.cur_port = -1;
1089 sc->sc_monitor_port = -1;
1090 /*
1091 * Read through the underlying driver's list, picking out the class
1092 * names from the mixer descriptions. We'll need them to decode the
1093 * mixer descriptions on the next pass through the loop.
1094 */
1095 mutex_enter(sc->sc_lock);
1096 for(mi.index = 0; ; mi.index++) {
1097 if (audio_query_devinfo(sc, &mi) != 0)
1098 break;
1099 /*
1100 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1101 * All the other types describe an actual mixer.
1102 */
1103 if (mi.type == AUDIO_MIXER_CLASS) {
1104 if (strcmp(mi.label.name, AudioCinputs) == 0)
1105 iclass = mi.mixer_class;
1106 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1107 mclass = mi.mixer_class;
1108 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1109 oclass = mi.mixer_class;
1110 if (strcmp(mi.label.name, AudioCrecord) == 0)
1111 rclass = mi.mixer_class;
1112 }
1113 }
1114 mutex_exit(sc->sc_lock);
1115
1116 /* Allocate save area. Ensure non-zero allocation. */
1117 sc->sc_nmixer_states = mi.index;
1118 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1119 (sc->sc_nmixer_states + 1), KM_SLEEP);
1120
1121 /*
1122 * This is where we assign each control in the "audio" model, to the
1123 * underlying "mixer" control. We walk through the whole list once,
1124 * assigning likely candidates as we come across them.
1125 */
1126 record_master_found = 0;
1127 record_source_found = 0;
1128 mutex_enter(sc->sc_lock);
1129 for(mi.index = 0; ; mi.index++) {
1130 if (audio_query_devinfo(sc, &mi) != 0)
1131 break;
1132 KASSERT(mi.index < sc->sc_nmixer_states);
1133 if (mi.type == AUDIO_MIXER_CLASS)
1134 continue;
1135 if (mi.mixer_class == iclass) {
1136 /*
1137 * AudioCinputs is only a fallback, when we don't
1138 * find what we're looking for in AudioCrecord, so
1139 * check the flags before accepting one of these.
1140 */
1141 if (strcmp(mi.label.name, AudioNmaster) == 0
1142 && record_master_found == 0)
1143 sc->sc_inports.master = mi.index;
1144 if (strcmp(mi.label.name, AudioNsource) == 0
1145 && record_source_found == 0) {
1146 if (mi.type == AUDIO_MIXER_ENUM) {
1147 int i;
1148 for(i = 0; i < mi.un.e.num_mem; i++)
1149 if (strcmp(mi.un.e.member[i].label.name,
1150 AudioNmixerout) == 0)
1151 sc->sc_inports.mixerout =
1152 mi.un.e.member[i].ord;
1153 }
1154 au_setup_ports(sc, &sc->sc_inports, &mi,
1155 itable);
1156 }
1157 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1158 sc->sc_outports.master == -1)
1159 sc->sc_outports.master = mi.index;
1160 } else if (mi.mixer_class == mclass) {
1161 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1162 sc->sc_monitor_port = mi.index;
1163 } else if (mi.mixer_class == oclass) {
1164 if (strcmp(mi.label.name, AudioNmaster) == 0)
1165 sc->sc_outports.master = mi.index;
1166 if (strcmp(mi.label.name, AudioNselect) == 0)
1167 au_setup_ports(sc, &sc->sc_outports, &mi,
1168 otable);
1169 } else if (mi.mixer_class == rclass) {
1170 /*
1171 * These are the preferred mixers for the audio record
1172 * controls, so set the flags here, but don't check.
1173 */
1174 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1175 sc->sc_inports.master = mi.index;
1176 record_master_found = 1;
1177 }
1178 #if 1 /* Deprecated. Use AudioNmaster. */
1179 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1180 sc->sc_inports.master = mi.index;
1181 record_master_found = 1;
1182 }
1183 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1184 sc->sc_inports.master = mi.index;
1185 record_master_found = 1;
1186 }
1187 #endif
1188 if (strcmp(mi.label.name, AudioNsource) == 0) {
1189 if (mi.type == AUDIO_MIXER_ENUM) {
1190 int i;
1191 for(i = 0; i < mi.un.e.num_mem; i++)
1192 if (strcmp(mi.un.e.member[i].label.name,
1193 AudioNmixerout) == 0)
1194 sc->sc_inports.mixerout =
1195 mi.un.e.member[i].ord;
1196 }
1197 au_setup_ports(sc, &sc->sc_inports, &mi,
1198 itable);
1199 record_source_found = 1;
1200 }
1201 }
1202 }
1203 mutex_exit(sc->sc_lock);
1204 }
1205
1206 static int
1207 audioactivate(device_t self, enum devact act)
1208 {
1209 struct audio_softc *sc = device_private(self);
1210
1211 switch (act) {
1212 case DVACT_DEACTIVATE:
1213 mutex_enter(sc->sc_lock);
1214 sc->sc_dying = true;
1215 cv_broadcast(&sc->sc_exlockcv);
1216 mutex_exit(sc->sc_lock);
1217 return 0;
1218 default:
1219 return EOPNOTSUPP;
1220 }
1221 }
1222
1223 static int
1224 audiodetach(device_t self, int flags)
1225 {
1226 struct audio_softc *sc;
1227 int maj, mn;
1228 int error;
1229
1230 sc = device_private(self);
1231 TRACE(2, "flags=%d", flags);
1232
1233 /* device is not initialized */
1234 if (sc->hw_if == NULL)
1235 return 0;
1236
1237 /* Start draining existing accessors of the device. */
1238 error = config_detach_children(self, flags);
1239 if (error)
1240 return error;
1241
1242 mutex_enter(sc->sc_lock);
1243 sc->sc_dying = true;
1244 cv_broadcast(&sc->sc_exlockcv);
1245 if (sc->sc_pmixer)
1246 cv_broadcast(&sc->sc_pmixer->outcv);
1247 if (sc->sc_rmixer)
1248 cv_broadcast(&sc->sc_rmixer->outcv);
1249 mutex_exit(sc->sc_lock);
1250
1251 /* delete sysctl nodes */
1252 sysctl_teardown(&sc->sc_log);
1253
1254 /* locate the major number */
1255 maj = cdevsw_lookup_major(&audio_cdevsw);
1256
1257 /*
1258 * Nuke the vnodes for any open instances (calls close).
1259 * Will wait until any activity on the device nodes has ceased.
1260 */
1261 mn = device_unit(self);
1262 vdevgone(maj, mn | SOUND_DEVICE, mn | SOUND_DEVICE, VCHR);
1263 vdevgone(maj, mn | AUDIO_DEVICE, mn | AUDIO_DEVICE, VCHR);
1264 vdevgone(maj, mn | AUDIOCTL_DEVICE, mn | AUDIOCTL_DEVICE, VCHR);
1265 vdevgone(maj, mn | MIXER_DEVICE, mn | MIXER_DEVICE, VCHR);
1266
1267 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1268 audio_volume_down, true);
1269 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1270 audio_volume_up, true);
1271 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1272 audio_volume_toggle, true);
1273
1274 #ifdef AUDIO_PM_IDLE
1275 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1276
1277 device_active_deregister(self, audio_activity);
1278 #endif
1279
1280 pmf_device_deregister(self);
1281
1282 /* Free resources */
1283 mutex_enter(sc->sc_lock);
1284 if (sc->sc_pmixer) {
1285 audio_mixer_destroy(sc, sc->sc_pmixer);
1286 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1287 }
1288 if (sc->sc_rmixer) {
1289 audio_mixer_destroy(sc, sc->sc_rmixer);
1290 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1291 }
1292 mutex_exit(sc->sc_lock);
1293 if (sc->sc_am)
1294 kern_free(sc->sc_am);
1295
1296 seldestroy(&sc->sc_wsel);
1297 seldestroy(&sc->sc_rsel);
1298
1299 #ifdef AUDIO_PM_IDLE
1300 callout_destroy(&sc->sc_idle_counter);
1301 #endif
1302
1303 cv_destroy(&sc->sc_exlockcv);
1304
1305 #if defined(AUDIO_DEBUG)
1306 audio_mlog_free();
1307 #endif
1308
1309 return 0;
1310 }
1311
1312 static void
1313 audiochilddet(device_t self, device_t child)
1314 {
1315
1316 /* we hold no child references, so do nothing */
1317 }
1318
1319 static int
1320 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1321 {
1322
1323 if (config_match(parent, cf, aux))
1324 config_attach_loc(parent, cf, locs, aux, NULL);
1325
1326 return 0;
1327 }
1328
1329 static int
1330 audiorescan(device_t self, const char *ifattr, const int *flags)
1331 {
1332 struct audio_softc *sc = device_private(self);
1333
1334 if (!ifattr_match(ifattr, "audio"))
1335 return 0;
1336
1337 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1338
1339 return 0;
1340 }
1341
1342 /*
1343 * Called from hardware driver. This is where the MI audio driver gets
1344 * probed/attached to the hardware driver.
1345 */
1346 device_t
1347 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1348 {
1349 struct audio_attach_args arg;
1350
1351 #ifdef DIAGNOSTIC
1352 if (ahwp == NULL) {
1353 aprint_error("audio_attach_mi: NULL\n");
1354 return 0;
1355 }
1356 #endif
1357 arg.type = AUDIODEV_TYPE_AUDIO;
1358 arg.hwif = ahwp;
1359 arg.hdl = hdlp;
1360 return config_found(dev, &arg, audioprint);
1361 }
1362
1363 /*
1364 * Acquire sc_lock and enter exlock critical section.
1365 * If successful, it returns 0. Otherwise returns errno.
1366 * Must be called without sc_lock held.
1367 */
1368 static int
1369 audio_enter_exclusive(struct audio_softc *sc)
1370 {
1371 int error;
1372
1373 mutex_enter(sc->sc_lock);
1374 if (sc->sc_dying) {
1375 mutex_exit(sc->sc_lock);
1376 return EIO;
1377 }
1378
1379 while (__predict_false(sc->sc_exlock != 0)) {
1380 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1381 if (sc->sc_dying)
1382 error = EIO;
1383 if (error) {
1384 mutex_exit(sc->sc_lock);
1385 return error;
1386 }
1387 }
1388
1389 /* Acquire */
1390 sc->sc_exlock = 1;
1391 return 0;
1392 }
1393
1394 /*
1395 * Leave exlock critical section and release sc_lock.
1396 * Must be called with sc_lock held.
1397 */
1398 static void
1399 audio_exit_exclusive(struct audio_softc *sc)
1400 {
1401
1402 KASSERT(mutex_owned(sc->sc_lock));
1403 KASSERT(sc->sc_exlock);
1404
1405 /* Leave critical section */
1406 sc->sc_exlock = 0;
1407 cv_broadcast(&sc->sc_exlockcv);
1408 mutex_exit(sc->sc_lock);
1409 }
1410
1411 /*
1412 * Wait for I/O to complete, releasing sc_lock.
1413 * Must be called with sc_lock held.
1414 */
1415 static int
1416 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1417 {
1418 int error;
1419
1420 KASSERT(track);
1421 KASSERT(mutex_owned(sc->sc_lock));
1422
1423 /* Wait for pending I/O to complete. */
1424 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1425 mstohz(AUDIO_TIMEOUT));
1426 if (sc->sc_dying) {
1427 error = EIO;
1428 }
1429 if (error) {
1430 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1431 if (error == EWOULDBLOCK)
1432 device_printf(sc->sc_dev, "device timeout\n");
1433 } else {
1434 TRACET(3, track, "wakeup");
1435 }
1436 return error;
1437 }
1438
1439 /*
1440 * Try to acquire track lock.
1441 * It doesn't block if the track lock is already aquired.
1442 * Returns true if the track lock was acquired, or false if the track
1443 * lock was already acquired.
1444 */
1445 static __inline bool
1446 audio_track_lock_tryenter(audio_track_t *track)
1447 {
1448 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1449 }
1450
1451 /*
1452 * Acquire track lock.
1453 */
1454 static __inline void
1455 audio_track_lock_enter(audio_track_t *track)
1456 {
1457 /* Don't sleep here. */
1458 while (audio_track_lock_tryenter(track) == false)
1459 ;
1460 }
1461
1462 /*
1463 * Release track lock.
1464 */
1465 static __inline void
1466 audio_track_lock_exit(audio_track_t *track)
1467 {
1468 atomic_swap_uint(&track->lock, 0);
1469 }
1470
1471
1472 static int
1473 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1474 {
1475 struct audio_softc *sc;
1476 int error;
1477
1478 /* Find the device */
1479 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1480 if (sc == NULL || sc->hw_if == NULL)
1481 return ENXIO;
1482
1483 error = audio_enter_exclusive(sc);
1484 if (error)
1485 return error;
1486
1487 device_active(sc->sc_dev, DVA_SYSTEM);
1488 switch (AUDIODEV(dev)) {
1489 case SOUND_DEVICE:
1490 case AUDIO_DEVICE:
1491 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1492 break;
1493 case AUDIOCTL_DEVICE:
1494 error = audioctl_open(dev, sc, flags, ifmt, l);
1495 break;
1496 case MIXER_DEVICE:
1497 error = mixer_open(dev, sc, flags, ifmt, l);
1498 break;
1499 default:
1500 error = ENXIO;
1501 break;
1502 }
1503 audio_exit_exclusive(sc);
1504
1505 return error;
1506 }
1507
1508 static int
1509 audioclose(struct file *fp)
1510 {
1511 struct audio_softc *sc;
1512 audio_file_t *file;
1513 int error;
1514 dev_t dev;
1515
1516 KASSERT(fp->f_audioctx);
1517 file = fp->f_audioctx;
1518 sc = file->sc;
1519 dev = file->dev;
1520
1521 /* audio_{enter,exit}_exclusive() is called by lower audio_close() */
1522
1523 device_active(sc->sc_dev, DVA_SYSTEM);
1524 switch (AUDIODEV(dev)) {
1525 case SOUND_DEVICE:
1526 case AUDIO_DEVICE:
1527 error = audio_close(sc, file);
1528 break;
1529 case AUDIOCTL_DEVICE:
1530 error = audioctl_close(sc, file);
1531 break;
1532 case MIXER_DEVICE:
1533 error = mixer_close(sc, file);
1534 break;
1535 default:
1536 error = ENXIO;
1537 break;
1538 }
1539 /* f_audioctx has already been freed in lower *_close() */
1540 fp->f_audioctx = NULL;
1541
1542 return error;
1543 }
1544
1545 static int
1546 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1547 int ioflag)
1548 {
1549 struct audio_softc *sc;
1550 audio_file_t *file;
1551 int error;
1552 dev_t dev;
1553
1554 KASSERT(fp->f_audioctx);
1555 file = fp->f_audioctx;
1556 sc = file->sc;
1557 dev = file->dev;
1558
1559 if (fp->f_flag & O_NONBLOCK)
1560 ioflag |= IO_NDELAY;
1561
1562 switch (AUDIODEV(dev)) {
1563 case SOUND_DEVICE:
1564 case AUDIO_DEVICE:
1565 error = audio_read(sc, uio, ioflag, file);
1566 break;
1567 case AUDIOCTL_DEVICE:
1568 case MIXER_DEVICE:
1569 error = ENODEV;
1570 break;
1571 default:
1572 error = ENXIO;
1573 break;
1574 }
1575
1576 return error;
1577 }
1578
1579 static int
1580 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1581 int ioflag)
1582 {
1583 struct audio_softc *sc;
1584 audio_file_t *file;
1585 int error;
1586 dev_t dev;
1587
1588 KASSERT(fp->f_audioctx);
1589 file = fp->f_audioctx;
1590 sc = file->sc;
1591 dev = file->dev;
1592
1593 if (fp->f_flag & O_NONBLOCK)
1594 ioflag |= IO_NDELAY;
1595
1596 switch (AUDIODEV(dev)) {
1597 case SOUND_DEVICE:
1598 case AUDIO_DEVICE:
1599 error = audio_write(sc, uio, ioflag, file);
1600 break;
1601 case AUDIOCTL_DEVICE:
1602 case MIXER_DEVICE:
1603 error = ENODEV;
1604 break;
1605 default:
1606 error = ENXIO;
1607 break;
1608 }
1609
1610 return error;
1611 }
1612
1613 static int
1614 audioioctl(struct file *fp, u_long cmd, void *addr)
1615 {
1616 struct audio_softc *sc;
1617 audio_file_t *file;
1618 struct lwp *l = curlwp;
1619 int error;
1620 dev_t dev;
1621
1622 KASSERT(fp->f_audioctx);
1623 file = fp->f_audioctx;
1624 sc = file->sc;
1625 dev = file->dev;
1626
1627 switch (AUDIODEV(dev)) {
1628 case SOUND_DEVICE:
1629 case AUDIO_DEVICE:
1630 case AUDIOCTL_DEVICE:
1631 mutex_enter(sc->sc_lock);
1632 device_active(sc->sc_dev, DVA_SYSTEM);
1633 mutex_exit(sc->sc_lock);
1634 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1635 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1636 else
1637 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1638 file);
1639 break;
1640 case MIXER_DEVICE:
1641 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1642 break;
1643 default:
1644 error = ENXIO;
1645 break;
1646 }
1647
1648 return error;
1649 }
1650
1651 static int
1652 audiostat(struct file *fp, struct stat *st)
1653 {
1654 audio_file_t *file;
1655
1656 KASSERT(fp->f_audioctx);
1657 file = fp->f_audioctx;
1658
1659 memset(st, 0, sizeof(*st));
1660
1661 st->st_dev = file->dev;
1662 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1663 st->st_gid = kauth_cred_getegid(fp->f_cred);
1664 st->st_mode = S_IFCHR;
1665 return 0;
1666 }
1667
1668 static int
1669 audiopoll(struct file *fp, int events)
1670 {
1671 struct audio_softc *sc;
1672 audio_file_t *file;
1673 struct lwp *l = curlwp;
1674 int revents;
1675 dev_t dev;
1676
1677 KASSERT(fp->f_audioctx);
1678 file = fp->f_audioctx;
1679 sc = file->sc;
1680 dev = file->dev;
1681
1682 switch (AUDIODEV(dev)) {
1683 case SOUND_DEVICE:
1684 case AUDIO_DEVICE:
1685 revents = audio_poll(sc, events, l, file);
1686 break;
1687 case AUDIOCTL_DEVICE:
1688 case MIXER_DEVICE:
1689 revents = 0;
1690 break;
1691 default:
1692 revents = POLLERR;
1693 break;
1694 }
1695
1696 return revents;
1697 }
1698
1699 static int
1700 audiokqfilter(struct file *fp, struct knote *kn)
1701 {
1702 struct audio_softc *sc;
1703 audio_file_t *file;
1704 dev_t dev;
1705 int error;
1706
1707 KASSERT(fp->f_audioctx);
1708 file = fp->f_audioctx;
1709 sc = file->sc;
1710 dev = file->dev;
1711
1712 switch (AUDIODEV(dev)) {
1713 case SOUND_DEVICE:
1714 case AUDIO_DEVICE:
1715 error = audio_kqfilter(sc, file, kn);
1716 break;
1717 case AUDIOCTL_DEVICE:
1718 case MIXER_DEVICE:
1719 error = ENODEV;
1720 break;
1721 default:
1722 error = ENXIO;
1723 break;
1724 }
1725
1726 return error;
1727 }
1728
1729 static int
1730 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1731 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1732 {
1733 struct audio_softc *sc;
1734 audio_file_t *file;
1735 dev_t dev;
1736 int error;
1737
1738 KASSERT(fp->f_audioctx);
1739 file = fp->f_audioctx;
1740 sc = file->sc;
1741 dev = file->dev;
1742
1743 mutex_enter(sc->sc_lock);
1744 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1745 mutex_exit(sc->sc_lock);
1746
1747 switch (AUDIODEV(dev)) {
1748 case SOUND_DEVICE:
1749 case AUDIO_DEVICE:
1750 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1751 uobjp, maxprotp, file);
1752 break;
1753 case AUDIOCTL_DEVICE:
1754 case MIXER_DEVICE:
1755 default:
1756 error = ENOTSUP;
1757 break;
1758 }
1759
1760 return error;
1761 }
1762
1763
1764 /* Exported interfaces for audiobell. */
1765
1766 /*
1767 * Open for audiobell.
1768 * It stores allocated file to *filep.
1769 * If successful returns 0, otherwise errno.
1770 */
1771 int
1772 audiobellopen(dev_t dev, audio_file_t **filep)
1773 {
1774 struct audio_softc *sc;
1775 int error;
1776
1777 /* Find the device */
1778 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1779 if (sc == NULL || sc->hw_if == NULL)
1780 return ENXIO;
1781
1782 error = audio_enter_exclusive(sc);
1783 if (error)
1784 return error;
1785
1786 device_active(sc->sc_dev, DVA_SYSTEM);
1787 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1788
1789 audio_exit_exclusive(sc);
1790 return error;
1791 }
1792
1793 /* Close for audiobell */
1794 int
1795 audiobellclose(audio_file_t *file)
1796 {
1797 struct audio_softc *sc;
1798 int error;
1799
1800 sc = file->sc;
1801
1802 device_active(sc->sc_dev, DVA_SYSTEM);
1803 error = audio_close(sc, file);
1804
1805 return error;
1806 }
1807
1808 /* Set sample rate for audiobell */
1809 int
1810 audiobellsetrate(audio_file_t *file, u_int sample_rate)
1811 {
1812 struct audio_softc *sc;
1813 struct audio_info ai;
1814 int error;
1815
1816 sc = file->sc;
1817
1818 AUDIO_INITINFO(&ai);
1819 ai.play.sample_rate = sample_rate;
1820
1821 error = audio_enter_exclusive(sc);
1822 if (error)
1823 return error;
1824 error = audio_file_setinfo(sc, file, &ai);
1825 audio_exit_exclusive(sc);
1826
1827 return error;
1828 }
1829
1830 /* Playback for audiobell */
1831 int
1832 audiobellwrite(audio_file_t *file, struct uio *uio)
1833 {
1834 struct audio_softc *sc;
1835 int error;
1836
1837 sc = file->sc;
1838 error = audio_write(sc, uio, 0, file);
1839 return error;
1840 }
1841
1842
1843 /*
1844 * Audio driver
1845 */
1846 int
1847 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
1848 struct lwp *l, audio_file_t **bellfile)
1849 {
1850 struct audio_info ai;
1851 struct file *fp;
1852 audio_file_t *af;
1853 audio_ring_t *hwbuf;
1854 bool fullduplex;
1855 int fd;
1856 int error;
1857
1858 KASSERT(mutex_owned(sc->sc_lock));
1859 KASSERT(sc->sc_exlock);
1860
1861 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
1862 (audiodebug >= 3) ? "start " : "",
1863 ISDEVSOUND(dev) ? "sound" : "audio",
1864 flags, sc->sc_popens, sc->sc_ropens);
1865
1866 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
1867 af->sc = sc;
1868 af->dev = dev;
1869 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
1870 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
1871 if ((flags & FREAD) != 0 && audio_can_capture(sc))
1872 af->mode |= AUMODE_RECORD;
1873 if (af->mode == 0) {
1874 error = ENXIO;
1875 goto bad1;
1876 }
1877
1878 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
1879
1880 /*
1881 * On half duplex hardware,
1882 * 1. if mode is (PLAY | REC), let mode PLAY.
1883 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
1884 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
1885 */
1886 if (fullduplex == false) {
1887 if ((af->mode & AUMODE_PLAY)) {
1888 if (sc->sc_ropens != 0) {
1889 TRACE(1, "record track already exists");
1890 error = ENODEV;
1891 goto bad1;
1892 }
1893 /* Play takes precedence */
1894 af->mode &= ~AUMODE_RECORD;
1895 }
1896 if ((af->mode & AUMODE_RECORD)) {
1897 if (sc->sc_popens != 0) {
1898 TRACE(1, "play track already exists");
1899 error = ENODEV;
1900 goto bad1;
1901 }
1902 }
1903 }
1904
1905 /* Create tracks */
1906 if ((af->mode & AUMODE_PLAY))
1907 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
1908 if ((af->mode & AUMODE_RECORD))
1909 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
1910
1911 /* Set parameters */
1912 AUDIO_INITINFO(&ai);
1913 if (bellfile) {
1914 /* If audiobell, only sample_rate will be set later. */
1915 ai.play.sample_rate = audio_default.sample_rate;
1916 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
1917 ai.play.channels = 1;
1918 ai.play.precision = 16;
1919 ai.play.pause = false;
1920 } else if (ISDEVAUDIO(dev)) {
1921 /* If /dev/audio, initialize everytime. */
1922 ai.play.sample_rate = audio_default.sample_rate;
1923 ai.play.encoding = audio_default.encoding;
1924 ai.play.channels = audio_default.channels;
1925 ai.play.precision = audio_default.precision;
1926 ai.play.pause = false;
1927 ai.record.sample_rate = audio_default.sample_rate;
1928 ai.record.encoding = audio_default.encoding;
1929 ai.record.channels = audio_default.channels;
1930 ai.record.precision = audio_default.precision;
1931 ai.record.pause = false;
1932 } else {
1933 /* If /dev/sound, take over the previous parameters. */
1934 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
1935 ai.play.encoding = sc->sc_sound_pparams.encoding;
1936 ai.play.channels = sc->sc_sound_pparams.channels;
1937 ai.play.precision = sc->sc_sound_pparams.precision;
1938 ai.play.pause = sc->sc_sound_ppause;
1939 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
1940 ai.record.encoding = sc->sc_sound_rparams.encoding;
1941 ai.record.channels = sc->sc_sound_rparams.channels;
1942 ai.record.precision = sc->sc_sound_rparams.precision;
1943 ai.record.pause = sc->sc_sound_rpause;
1944 }
1945 error = audio_file_setinfo(sc, af, &ai);
1946 if (error)
1947 goto bad2;
1948
1949 if (sc->sc_popens + sc->sc_ropens == 0) {
1950 /* First open */
1951
1952 sc->sc_cred = kauth_cred_get();
1953 kauth_cred_hold(sc->sc_cred);
1954
1955 if (sc->hw_if->open) {
1956 int hwflags;
1957
1958 /*
1959 * Call hw_if->open() only at first open of
1960 * combination of playback and recording.
1961 * On full duplex hardware, the flags passed to
1962 * hw_if->open() is always (FREAD | FWRITE)
1963 * regardless of this open()'s flags.
1964 * see also dev/isa/aria.c
1965 * On half duplex hardware, the flags passed to
1966 * hw_if->open() is either FREAD or FWRITE.
1967 * see also arch/evbarm/mini2440/audio_mini2440.c
1968 */
1969 if (fullduplex) {
1970 hwflags = FREAD | FWRITE;
1971 } else {
1972 /* Construct hwflags from af->mode. */
1973 hwflags = 0;
1974 if ((af->mode & AUMODE_PLAY) != 0)
1975 hwflags |= FWRITE;
1976 if ((af->mode & AUMODE_RECORD) != 0)
1977 hwflags |= FREAD;
1978 }
1979
1980 mutex_enter(sc->sc_intr_lock);
1981 error = sc->hw_if->open(sc->hw_hdl, hwflags);
1982 mutex_exit(sc->sc_intr_lock);
1983 if (error)
1984 goto bad2;
1985 }
1986
1987 /*
1988 * Set speaker mode when a half duplex.
1989 * XXX I'm not sure this is correct.
1990 */
1991 if (1/*XXX*/) {
1992 if (sc->hw_if->speaker_ctl) {
1993 int on;
1994 if (af->ptrack) {
1995 on = 1;
1996 } else {
1997 on = 0;
1998 }
1999 mutex_enter(sc->sc_intr_lock);
2000 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2001 mutex_exit(sc->sc_intr_lock);
2002 if (error)
2003 goto bad3;
2004 }
2005 }
2006 } else if (sc->sc_multiuser == false) {
2007 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2008 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2009 error = EPERM;
2010 goto bad2;
2011 }
2012 }
2013
2014 /* Call init_output if this is the first playback open. */
2015 if (af->ptrack && sc->sc_popens == 0) {
2016 if (sc->hw_if->init_output) {
2017 hwbuf = &sc->sc_pmixer->hwbuf;
2018 mutex_enter(sc->sc_intr_lock);
2019 error = sc->hw_if->init_output(sc->hw_hdl,
2020 hwbuf->mem,
2021 hwbuf->capacity *
2022 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2023 mutex_exit(sc->sc_intr_lock);
2024 if (error)
2025 goto bad3;
2026 }
2027 }
2028 /* Call init_input if this is the first recording open. */
2029 if (af->rtrack && sc->sc_ropens == 0) {
2030 if (sc->hw_if->init_input) {
2031 hwbuf = &sc->sc_rmixer->hwbuf;
2032 mutex_enter(sc->sc_intr_lock);
2033 error = sc->hw_if->init_input(sc->hw_hdl,
2034 hwbuf->mem,
2035 hwbuf->capacity *
2036 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2037 mutex_exit(sc->sc_intr_lock);
2038 if (error)
2039 goto bad3;
2040 }
2041 }
2042
2043 if (bellfile == NULL) {
2044 error = fd_allocfile(&fp, &fd);
2045 if (error)
2046 goto bad3;
2047 }
2048
2049 /*
2050 * Count up finally.
2051 * Don't fail from here.
2052 */
2053 if (af->ptrack)
2054 sc->sc_popens++;
2055 if (af->rtrack)
2056 sc->sc_ropens++;
2057 mutex_enter(sc->sc_intr_lock);
2058 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2059 mutex_exit(sc->sc_intr_lock);
2060
2061 if (bellfile) {
2062 *bellfile = af;
2063 } else {
2064 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2065 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2066 }
2067
2068 TRACEF(3, af, "done");
2069 return error;
2070
2071 /*
2072 * Since track here is not yet linked to sc_files,
2073 * you can call track_destroy() without sc_intr_lock.
2074 */
2075 bad3:
2076 if (sc->sc_popens + sc->sc_ropens == 0) {
2077 if (sc->hw_if->close) {
2078 mutex_enter(sc->sc_intr_lock);
2079 sc->hw_if->close(sc->hw_hdl);
2080 mutex_exit(sc->sc_intr_lock);
2081 }
2082 }
2083 bad2:
2084 if (af->rtrack) {
2085 audio_track_destroy(af->rtrack);
2086 af->rtrack = NULL;
2087 }
2088 if (af->ptrack) {
2089 audio_track_destroy(af->ptrack);
2090 af->ptrack = NULL;
2091 }
2092 bad1:
2093 kmem_free(af, sizeof(*af));
2094 return error;
2095 }
2096
2097 /*
2098 * Must be called without sc_lock nor sc_exlock held.
2099 */
2100 int
2101 audio_close(struct audio_softc *sc, audio_file_t *file)
2102 {
2103 audio_track_t *oldtrack;
2104 int error;
2105
2106 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2107 (audiodebug >= 3) ? "start " : "",
2108 (int)curproc->p_pid, (int)curlwp->l_lid,
2109 sc->sc_popens, sc->sc_ropens);
2110 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2111 "sc->sc_popens=%d, sc->sc_ropens=%d",
2112 sc->sc_popens, sc->sc_ropens);
2113
2114 /*
2115 * Drain first.
2116 * It must be done before acquiring exclusive lock.
2117 */
2118 if (file->ptrack) {
2119 mutex_enter(sc->sc_lock);
2120 audio_track_drain(sc, file->ptrack);
2121 mutex_exit(sc->sc_lock);
2122 }
2123
2124 /* Then, acquire exclusive lock to protect counters. */
2125 /* XXX what should I do when an error occurs? */
2126 error = audio_enter_exclusive(sc);
2127 if (error)
2128 return error;
2129
2130 if (file->ptrack) {
2131 /* Call hw halt_output if this is the last playback track. */
2132 if (sc->sc_popens == 1 && sc->sc_pbusy) {
2133 error = audio_pmixer_halt(sc);
2134 if (error) {
2135 device_printf(sc->sc_dev,
2136 "halt_output failed with %d\n", error);
2137 }
2138 }
2139
2140 /* Destroy the track. */
2141 oldtrack = file->ptrack;
2142 mutex_enter(sc->sc_intr_lock);
2143 file->ptrack = NULL;
2144 mutex_exit(sc->sc_intr_lock);
2145 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2146 oldtrack->dropframes);
2147 audio_track_destroy(oldtrack);
2148
2149 KASSERT(sc->sc_popens > 0);
2150 sc->sc_popens--;
2151
2152 /* Restore mixing volume if all tracks are gone. */
2153 if (sc->sc_popens == 0) {
2154 mutex_enter(sc->sc_intr_lock);
2155 sc->sc_pmixer->volume = 256;
2156 sc->sc_pmixer->voltimer = 0;
2157 mutex_exit(sc->sc_intr_lock);
2158 }
2159 }
2160 if (file->rtrack) {
2161 /* Call hw halt_input if this is the last recording track. */
2162 if (sc->sc_ropens == 1 && sc->sc_rbusy) {
2163 error = audio_rmixer_halt(sc);
2164 if (error) {
2165 device_printf(sc->sc_dev,
2166 "halt_input failed with %d\n", error);
2167 }
2168 }
2169
2170 /* Destroy the track. */
2171 oldtrack = file->rtrack;
2172 mutex_enter(sc->sc_intr_lock);
2173 file->rtrack = NULL;
2174 mutex_exit(sc->sc_intr_lock);
2175 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2176 oldtrack->dropframes);
2177 audio_track_destroy(oldtrack);
2178
2179 KASSERT(sc->sc_ropens > 0);
2180 sc->sc_ropens--;
2181 }
2182
2183 /* Call hw close if this is the last track. */
2184 if (sc->sc_popens + sc->sc_ropens == 0) {
2185 if (sc->hw_if->close) {
2186 TRACE(2, "hw_if close");
2187 mutex_enter(sc->sc_intr_lock);
2188 sc->hw_if->close(sc->hw_hdl);
2189 mutex_exit(sc->sc_intr_lock);
2190 }
2191
2192 kauth_cred_free(sc->sc_cred);
2193 }
2194
2195 mutex_enter(sc->sc_intr_lock);
2196 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2197 mutex_exit(sc->sc_intr_lock);
2198
2199 TRACE(3, "done");
2200 audio_exit_exclusive(sc);
2201
2202 kmem_free(file, sizeof(*file));
2203 return 0;
2204 }
2205
2206 /*
2207 * Must be called without sc_lock nor sc_exlock held.
2208 */
2209 int
2210 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2211 audio_file_t *file)
2212 {
2213 audio_track_t *track;
2214 audio_ring_t *usrbuf;
2215 audio_ring_t *input;
2216 int error;
2217
2218 /*
2219 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2220 * However read() system call itself can be called because it's
2221 * opened with O_RDWR. So in this case, deny this read().
2222 */
2223 track = file->rtrack;
2224 if (track == NULL) {
2225 return EBADF;
2226 }
2227
2228 /* I think it's better than EINVAL. */
2229 if (track->mmapped)
2230 return EPERM;
2231
2232 TRACET(2, track, "resid=%zd", uio->uio_resid);
2233
2234 #ifdef AUDIO_PM_IDLE
2235 mutex_enter(sc->sc_lock);
2236 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2237 device_active(&sc->sc_dev, DVA_SYSTEM);
2238 mutex_exit(sc->sc_lock);
2239 #endif
2240
2241 usrbuf = &track->usrbuf;
2242 input = track->input;
2243
2244 /*
2245 * The first read starts rmixer.
2246 */
2247 error = audio_enter_exclusive(sc);
2248 if (error)
2249 return error;
2250 if (sc->sc_rbusy == false)
2251 audio_rmixer_start(sc);
2252 audio_exit_exclusive(sc);
2253
2254 error = 0;
2255 while (uio->uio_resid > 0 && error == 0) {
2256 int bytes;
2257
2258 TRACET(3, track,
2259 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2260 uio->uio_resid,
2261 input->head, input->used, input->capacity,
2262 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2263
2264 /* Wait when buffers are empty. */
2265 mutex_enter(sc->sc_lock);
2266 for (;;) {
2267 bool empty;
2268 audio_track_lock_enter(track);
2269 empty = (input->used == 0 && usrbuf->used == 0);
2270 audio_track_lock_exit(track);
2271 if (!empty)
2272 break;
2273
2274 if ((ioflag & IO_NDELAY)) {
2275 mutex_exit(sc->sc_lock);
2276 return EWOULDBLOCK;
2277 }
2278
2279 TRACET(3, track, "sleep");
2280 error = audio_track_waitio(sc, track);
2281 if (error) {
2282 mutex_exit(sc->sc_lock);
2283 return error;
2284 }
2285 }
2286 mutex_exit(sc->sc_lock);
2287
2288 audio_track_lock_enter(track);
2289 audio_track_record(track);
2290
2291 /* uiomove from usrbuf as much as possible. */
2292 bytes = uimin(usrbuf->used, uio->uio_resid);
2293 while (bytes > 0) {
2294 int head = usrbuf->head;
2295 int len = uimin(bytes, usrbuf->capacity - head);
2296 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2297 uio);
2298 if (error) {
2299 audio_track_lock_exit(track);
2300 device_printf(sc->sc_dev,
2301 "uiomove(len=%d) failed with %d\n",
2302 len, error);
2303 goto abort;
2304 }
2305 auring_take(usrbuf, len);
2306 track->useriobytes += len;
2307 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2308 len,
2309 usrbuf->head, usrbuf->used, usrbuf->capacity);
2310 bytes -= len;
2311 }
2312
2313 audio_track_lock_exit(track);
2314 }
2315
2316 abort:
2317 return error;
2318 }
2319
2320
2321 /*
2322 * Clear file's playback and/or record track buffer immediately.
2323 */
2324 static void
2325 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2326 {
2327
2328 if (file->ptrack)
2329 audio_track_clear(sc, file->ptrack);
2330 if (file->rtrack)
2331 audio_track_clear(sc, file->rtrack);
2332 }
2333
2334 /*
2335 * Must be called without sc_lock nor sc_exlock held.
2336 */
2337 int
2338 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2339 audio_file_t *file)
2340 {
2341 audio_track_t *track;
2342 audio_ring_t *usrbuf;
2343 audio_ring_t *outbuf;
2344 int error;
2345
2346 track = file->ptrack;
2347 KASSERT(track);
2348
2349 /* I think it's better than EINVAL. */
2350 if (track->mmapped)
2351 return EPERM;
2352
2353 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2354 audiodebug >= 3 ? "begin " : "",
2355 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2356
2357 if (uio->uio_resid == 0) {
2358 track->eofcounter++;
2359 return 0;
2360 }
2361
2362 #ifdef AUDIO_PM_IDLE
2363 mutex_enter(sc->sc_lock);
2364 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2365 device_active(&sc->sc_dev, DVA_SYSTEM);
2366 mutex_exit(sc->sc_lock);
2367 #endif
2368
2369 usrbuf = &track->usrbuf;
2370 outbuf = &track->outbuf;
2371
2372 /*
2373 * The first write starts pmixer.
2374 */
2375 error = audio_enter_exclusive(sc);
2376 if (error)
2377 return error;
2378 if (sc->sc_pbusy == false)
2379 audio_pmixer_start(sc, false);
2380 audio_exit_exclusive(sc);
2381
2382 track->pstate = AUDIO_STATE_RUNNING;
2383 error = 0;
2384 while (uio->uio_resid > 0 && error == 0) {
2385 int bytes;
2386
2387 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2388 uio->uio_resid,
2389 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2390
2391 /* Wait when buffers are full. */
2392 mutex_enter(sc->sc_lock);
2393 for (;;) {
2394 bool full;
2395 audio_track_lock_enter(track);
2396 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2397 outbuf->used >= outbuf->capacity);
2398 audio_track_lock_exit(track);
2399 if (!full)
2400 break;
2401
2402 if ((ioflag & IO_NDELAY)) {
2403 error = EWOULDBLOCK;
2404 mutex_exit(sc->sc_lock);
2405 goto abort;
2406 }
2407
2408 TRACET(3, track, "sleep usrbuf=%d/H%d",
2409 usrbuf->used, track->usrbuf_usedhigh);
2410 error = audio_track_waitio(sc, track);
2411 if (error) {
2412 mutex_exit(sc->sc_lock);
2413 goto abort;
2414 }
2415 }
2416 mutex_exit(sc->sc_lock);
2417
2418 audio_track_lock_enter(track);
2419
2420 /* uiomove to usrbuf as much as possible. */
2421 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2422 uio->uio_resid);
2423 while (bytes > 0) {
2424 int tail = auring_tail(usrbuf);
2425 int len = uimin(bytes, usrbuf->capacity - tail);
2426 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2427 uio);
2428 if (error) {
2429 audio_track_lock_exit(track);
2430 device_printf(sc->sc_dev,
2431 "uiomove(len=%d) failed with %d\n",
2432 len, error);
2433 goto abort;
2434 }
2435 auring_push(usrbuf, len);
2436 track->useriobytes += len;
2437 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2438 len,
2439 usrbuf->head, usrbuf->used, usrbuf->capacity);
2440 bytes -= len;
2441 }
2442
2443 /* Convert them as much as possible. */
2444 while (usrbuf->used >= track->usrbuf_blksize &&
2445 outbuf->used < outbuf->capacity) {
2446 audio_track_play(track);
2447 }
2448
2449 audio_track_lock_exit(track);
2450 }
2451
2452 abort:
2453 TRACET(3, track, "done error=%d", error);
2454 return error;
2455 }
2456
2457 /*
2458 * Must be called without sc_lock nor sc_exlock held.
2459 */
2460 int
2461 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2462 struct lwp *l, audio_file_t *file)
2463 {
2464 struct audio_offset *ao;
2465 struct audio_info ai;
2466 audio_track_t *track;
2467 audio_encoding_t *ae;
2468 audio_format_query_t *query;
2469 u_int stamp;
2470 u_int offs;
2471 int fd;
2472 int index;
2473 int error;
2474
2475 #if defined(AUDIO_DEBUG)
2476 const char *ioctlnames[] = {
2477 " AUDIO_GETINFO", /* 21 */
2478 " AUDIO_SETINFO", /* 22 */
2479 " AUDIO_DRAIN", /* 23 */
2480 " AUDIO_FLUSH", /* 24 */
2481 " AUDIO_WSEEK", /* 25 */
2482 " AUDIO_RERROR", /* 26 */
2483 " AUDIO_GETDEV", /* 27 */
2484 " AUDIO_GETENC", /* 28 */
2485 " AUDIO_GETFD", /* 29 */
2486 " AUDIO_SETFD", /* 30 */
2487 " AUDIO_PERROR", /* 31 */
2488 " AUDIO_GETIOFFS", /* 32 */
2489 " AUDIO_GETOOFFS", /* 33 */
2490 " AUDIO_GETPROPS", /* 34 */
2491 " AUDIO_GETBUFINFO", /* 35 */
2492 " AUDIO_SETCHAN", /* 36 */
2493 " AUDIO_GETCHAN", /* 37 */
2494 " AUDIO_QUERYFORMAT", /* 38 */
2495 " AUDIO_GETFORMAT", /* 39 */
2496 " AUDIO_SETFORMAT", /* 40 */
2497 };
2498 int nameidx = (cmd & 0xff);
2499 const char *ioctlname = "";
2500 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2501 ioctlname = ioctlnames[nameidx - 21];
2502 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2503 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2504 (int)curproc->p_pid, (int)l->l_lid);
2505 #endif
2506
2507 error = 0;
2508 switch (cmd) {
2509 case FIONBIO:
2510 /* All handled in the upper FS layer. */
2511 break;
2512
2513 case FIONREAD:
2514 /* Get the number of bytes that can be read. */
2515 if (file->rtrack) {
2516 *(int *)addr = audio_track_readablebytes(file->rtrack);
2517 } else {
2518 *(int *)addr = 0;
2519 }
2520 break;
2521
2522 case FIOASYNC:
2523 /* Set/Clear ASYNC I/O. */
2524 if (*(int *)addr) {
2525 file->async_audio = curproc->p_pid;
2526 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2527 } else {
2528 file->async_audio = 0;
2529 TRACEF(2, file, "FIOASYNC off");
2530 }
2531 break;
2532
2533 case AUDIO_FLUSH:
2534 /* XXX TODO: clear errors and restart? */
2535 audio_file_clear(sc, file);
2536 break;
2537
2538 case AUDIO_RERROR:
2539 /*
2540 * Number of read bytes dropped. We don't know where
2541 * or when they were dropped (including conversion stage).
2542 * Therefore, the number of accurate bytes or samples is
2543 * also unknown.
2544 */
2545 track = file->rtrack;
2546 if (track) {
2547 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2548 track->dropframes);
2549 }
2550 break;
2551
2552 case AUDIO_PERROR:
2553 /*
2554 * Number of write bytes dropped. We don't know where
2555 * or when they were dropped (including conversion stage).
2556 * Therefore, the number of accurate bytes or samples is
2557 * also unknown.
2558 */
2559 track = file->ptrack;
2560 if (track) {
2561 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2562 track->dropframes);
2563 }
2564 break;
2565
2566 case AUDIO_GETIOFFS:
2567 /* XXX TODO */
2568 ao = (struct audio_offset *)addr;
2569 ao->samples = 0;
2570 ao->deltablks = 0;
2571 ao->offset = 0;
2572 break;
2573
2574 case AUDIO_GETOOFFS:
2575 ao = (struct audio_offset *)addr;
2576 track = file->ptrack;
2577 if (track == NULL) {
2578 ao->samples = 0;
2579 ao->deltablks = 0;
2580 ao->offset = 0;
2581 break;
2582 }
2583 mutex_enter(sc->sc_lock);
2584 mutex_enter(sc->sc_intr_lock);
2585 /* figure out where next DMA will start */
2586 stamp = track->usrbuf_stamp;
2587 offs = track->usrbuf.head;
2588 mutex_exit(sc->sc_intr_lock);
2589 mutex_exit(sc->sc_lock);
2590
2591 ao->samples = stamp;
2592 ao->deltablks = (stamp / track->usrbuf_blksize) -
2593 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2594 track->usrbuf_stamp_last = stamp;
2595 offs = rounddown(offs, track->usrbuf_blksize)
2596 + track->usrbuf_blksize;
2597 if (offs >= track->usrbuf.capacity)
2598 offs -= track->usrbuf.capacity;
2599 ao->offset = offs;
2600
2601 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2602 ao->samples, ao->deltablks, ao->offset);
2603 break;
2604
2605 case AUDIO_WSEEK:
2606 /* XXX return value does not include outbuf one. */
2607 if (file->ptrack)
2608 *(u_long *)addr = file->ptrack->usrbuf.used;
2609 break;
2610
2611 case AUDIO_SETINFO:
2612 error = audio_enter_exclusive(sc);
2613 if (error)
2614 break;
2615 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2616 if (error) {
2617 audio_exit_exclusive(sc);
2618 break;
2619 }
2620 /* XXX TODO: update last_ai if /dev/sound ? */
2621 if (ISDEVSOUND(dev))
2622 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2623 audio_exit_exclusive(sc);
2624 break;
2625
2626 case AUDIO_GETINFO:
2627 error = audio_enter_exclusive(sc);
2628 if (error)
2629 break;
2630 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2631 audio_exit_exclusive(sc);
2632 break;
2633
2634 case AUDIO_GETBUFINFO:
2635 mutex_enter(sc->sc_lock);
2636 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2637 mutex_exit(sc->sc_lock);
2638 break;
2639
2640 case AUDIO_DRAIN:
2641 if (file->ptrack) {
2642 mutex_enter(sc->sc_lock);
2643 error = audio_track_drain(sc, file->ptrack);
2644 mutex_exit(sc->sc_lock);
2645 }
2646 break;
2647
2648 case AUDIO_GETDEV:
2649 mutex_enter(sc->sc_lock);
2650 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2651 mutex_exit(sc->sc_lock);
2652 break;
2653
2654 case AUDIO_GETENC:
2655 ae = (audio_encoding_t *)addr;
2656 index = ae->index;
2657 if (index < 0 || index >= __arraycount(audio_encodings)) {
2658 error = EINVAL;
2659 break;
2660 }
2661 *ae = audio_encodings[index];
2662 ae->index = index;
2663 /*
2664 * EMULATED always.
2665 * EMULATED flag at that time used to mean that it could
2666 * not be passed directly to the hardware as-is. But
2667 * currently, all formats including hardware native is not
2668 * passed directly to the hardware. So I set EMULATED
2669 * flag for all formats.
2670 */
2671 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2672 break;
2673
2674 case AUDIO_GETFD:
2675 /*
2676 * Returns the current setting of full duplex mode.
2677 * If HW has full duplex mode and there are two mixers,
2678 * it is full duplex. Otherwise half duplex.
2679 */
2680 mutex_enter(sc->sc_lock);
2681 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2682 && (sc->sc_pmixer && sc->sc_rmixer);
2683 mutex_exit(sc->sc_lock);
2684 *(int *)addr = fd;
2685 break;
2686
2687 case AUDIO_GETPROPS:
2688 *(int *)addr = sc->sc_props;
2689 break;
2690
2691 case AUDIO_QUERYFORMAT:
2692 query = (audio_format_query_t *)addr;
2693 mutex_enter(sc->sc_lock);
2694 error = sc->hw_if->query_format(sc->hw_hdl, query);
2695 mutex_exit(sc->sc_lock);
2696 /* Hide internal infomations */
2697 query->fmt.driver_data = NULL;
2698 break;
2699
2700 case AUDIO_GETFORMAT:
2701 audio_mixers_get_format(sc, (struct audio_info *)addr);
2702 break;
2703
2704 case AUDIO_SETFORMAT:
2705 mutex_enter(sc->sc_lock);
2706 audio_mixers_get_format(sc, &ai);
2707 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2708 if (error) {
2709 /* Rollback */
2710 audio_mixers_set_format(sc, &ai);
2711 }
2712 mutex_exit(sc->sc_lock);
2713 break;
2714
2715 case AUDIO_SETFD:
2716 case AUDIO_SETCHAN:
2717 case AUDIO_GETCHAN:
2718 /* Obsoleted */
2719 break;
2720
2721 default:
2722 if (sc->hw_if->dev_ioctl) {
2723 error = audio_enter_exclusive(sc);
2724 if (error)
2725 break;
2726 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2727 cmd, addr, flag, l);
2728 audio_exit_exclusive(sc);
2729 } else {
2730 TRACEF(2, file, "unknown ioctl");
2731 error = EINVAL;
2732 }
2733 break;
2734 }
2735 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2736 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2737 error);
2738 return error;
2739 }
2740
2741 /*
2742 * Returns the number of bytes that can be read on recording buffer.
2743 */
2744 static __inline int
2745 audio_track_readablebytes(const audio_track_t *track)
2746 {
2747 int bytes;
2748
2749 KASSERT(track);
2750 KASSERT(track->mode == AUMODE_RECORD);
2751
2752 /*
2753 * Although usrbuf is primarily readable data, recorded data
2754 * also stays in track->input until reading. So it is necessary
2755 * to add it. track->input is in frame, usrbuf is in byte.
2756 */
2757 bytes = track->usrbuf.used +
2758 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
2759 return bytes;
2760 }
2761
2762 /*
2763 * Must be called without sc_lock nor sc_exlock held.
2764 */
2765 int
2766 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
2767 audio_file_t *file)
2768 {
2769 audio_track_t *track;
2770 int revents;
2771 bool in_is_valid;
2772 bool out_is_valid;
2773
2774 #if defined(AUDIO_DEBUG)
2775 #define POLLEV_BITMAP "\177\020" \
2776 "b\10WRBAND\0" \
2777 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
2778 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
2779 char evbuf[64];
2780 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
2781 TRACEF(2, file, "pid=%d.%d events=%s",
2782 (int)curproc->p_pid, (int)l->l_lid, evbuf);
2783 #endif
2784
2785 revents = 0;
2786 in_is_valid = false;
2787 out_is_valid = false;
2788 if (events & (POLLIN | POLLRDNORM)) {
2789 track = file->rtrack;
2790 if (track) {
2791 int used;
2792 in_is_valid = true;
2793 used = audio_track_readablebytes(track);
2794 if (used > 0)
2795 revents |= events & (POLLIN | POLLRDNORM);
2796 }
2797 }
2798 if (events & (POLLOUT | POLLWRNORM)) {
2799 track = file->ptrack;
2800 if (track) {
2801 out_is_valid = true;
2802 if (track->usrbuf.used <= track->usrbuf_usedlow)
2803 revents |= events & (POLLOUT | POLLWRNORM);
2804 }
2805 }
2806
2807 if (revents == 0) {
2808 mutex_enter(sc->sc_lock);
2809 if (in_is_valid) {
2810 TRACEF(3, file, "selrecord rsel");
2811 selrecord(l, &sc->sc_rsel);
2812 }
2813 if (out_is_valid) {
2814 TRACEF(3, file, "selrecord wsel");
2815 selrecord(l, &sc->sc_wsel);
2816 }
2817 mutex_exit(sc->sc_lock);
2818 }
2819
2820 #if defined(AUDIO_DEBUG)
2821 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
2822 TRACEF(2, file, "revents=%s", evbuf);
2823 #endif
2824 return revents;
2825 }
2826
2827 static const struct filterops audioread_filtops = {
2828 .f_isfd = 1,
2829 .f_attach = NULL,
2830 .f_detach = filt_audioread_detach,
2831 .f_event = filt_audioread_event,
2832 };
2833
2834 static void
2835 filt_audioread_detach(struct knote *kn)
2836 {
2837 struct audio_softc *sc;
2838 audio_file_t *file;
2839
2840 file = kn->kn_hook;
2841 sc = file->sc;
2842 TRACEF(3, file, "");
2843
2844 mutex_enter(sc->sc_lock);
2845 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
2846 mutex_exit(sc->sc_lock);
2847 }
2848
2849 static int
2850 filt_audioread_event(struct knote *kn, long hint)
2851 {
2852 audio_file_t *file;
2853 audio_track_t *track;
2854
2855 file = kn->kn_hook;
2856 track = file->rtrack;
2857
2858 /*
2859 * kn_data must contain the number of bytes can be read.
2860 * The return value indicates whether the event occurs or not.
2861 */
2862
2863 if (track == NULL) {
2864 /* can not read with this descriptor. */
2865 kn->kn_data = 0;
2866 return 0;
2867 }
2868
2869 kn->kn_data = audio_track_readablebytes(track);
2870 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2871 return kn->kn_data > 0;
2872 }
2873
2874 static const struct filterops audiowrite_filtops = {
2875 .f_isfd = 1,
2876 .f_attach = NULL,
2877 .f_detach = filt_audiowrite_detach,
2878 .f_event = filt_audiowrite_event,
2879 };
2880
2881 static void
2882 filt_audiowrite_detach(struct knote *kn)
2883 {
2884 struct audio_softc *sc;
2885 audio_file_t *file;
2886
2887 file = kn->kn_hook;
2888 sc = file->sc;
2889 TRACEF(3, file, "");
2890
2891 mutex_enter(sc->sc_lock);
2892 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
2893 mutex_exit(sc->sc_lock);
2894 }
2895
2896 static int
2897 filt_audiowrite_event(struct knote *kn, long hint)
2898 {
2899 audio_file_t *file;
2900 audio_track_t *track;
2901
2902 file = kn->kn_hook;
2903 track = file->ptrack;
2904
2905 /*
2906 * kn_data must contain the number of bytes can be write.
2907 * The return value indicates whether the event occurs or not.
2908 */
2909
2910 if (track == NULL) {
2911 /* can not write with this descriptor. */
2912 kn->kn_data = 0;
2913 return 0;
2914 }
2915
2916 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
2917 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2918 return (track->usrbuf.used < track->usrbuf_usedlow);
2919 }
2920
2921 /*
2922 * Must be called without sc_lock nor sc_exlock held.
2923 */
2924 int
2925 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
2926 {
2927 struct klist *klist;
2928
2929 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
2930
2931 switch (kn->kn_filter) {
2932 case EVFILT_READ:
2933 klist = &sc->sc_rsel.sel_klist;
2934 kn->kn_fop = &audioread_filtops;
2935 break;
2936
2937 case EVFILT_WRITE:
2938 klist = &sc->sc_wsel.sel_klist;
2939 kn->kn_fop = &audiowrite_filtops;
2940 break;
2941
2942 default:
2943 return EINVAL;
2944 }
2945
2946 kn->kn_hook = file;
2947
2948 mutex_enter(sc->sc_lock);
2949 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
2950 mutex_exit(sc->sc_lock);
2951
2952 return 0;
2953 }
2954
2955 /*
2956 * Must be called without sc_lock nor sc_exlock held.
2957 */
2958 int
2959 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
2960 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
2961 audio_file_t *file)
2962 {
2963 audio_track_t *track;
2964 vsize_t vsize;
2965 int error;
2966
2967 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
2968
2969 if (*offp < 0)
2970 return EINVAL;
2971
2972 #if 0
2973 /* XXX
2974 * The idea here was to use the protection to determine if
2975 * we are mapping the read or write buffer, but it fails.
2976 * The VM system is broken in (at least) two ways.
2977 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
2978 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
2979 * has to be used for mmapping the play buffer.
2980 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
2981 * audio_mmap will get called at some point with VM_PROT_READ
2982 * only.
2983 * So, alas, we always map the play buffer for now.
2984 */
2985 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
2986 prot == VM_PROT_WRITE)
2987 track = file->ptrack;
2988 else if (prot == VM_PROT_READ)
2989 track = file->rtrack;
2990 else
2991 return EINVAL;
2992 #else
2993 track = file->ptrack;
2994 #endif
2995 if (track == NULL)
2996 return EACCES;
2997
2998 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
2999 if (len > vsize)
3000 return EOVERFLOW;
3001 if (*offp > (uint)(vsize - len))
3002 return EOVERFLOW;
3003
3004 /* XXX TODO: what happens when mmap twice. */
3005 if (!track->mmapped) {
3006 track->mmapped = true;
3007
3008 if (!track->is_pause) {
3009 error = audio_enter_exclusive(sc);
3010 if (error)
3011 return error;
3012 if (sc->sc_pbusy == false)
3013 audio_pmixer_start(sc, true);
3014 audio_exit_exclusive(sc);
3015 }
3016 /* XXX mmapping record buffer is not supported */
3017 }
3018
3019 /* get ringbuffer */
3020 *uobjp = track->uobj;
3021
3022 /* Acquire a reference for the mmap. munmap will release. */
3023 uao_reference(*uobjp);
3024 *maxprotp = prot;
3025 *advicep = UVM_ADV_RANDOM;
3026 *flagsp = MAP_SHARED;
3027 return 0;
3028 }
3029
3030 /*
3031 * /dev/audioctl has to be able to open at any time without interference
3032 * with any /dev/audio or /dev/sound.
3033 */
3034 static int
3035 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3036 struct lwp *l)
3037 {
3038 struct file *fp;
3039 audio_file_t *af;
3040 int fd;
3041 int error;
3042
3043 KASSERT(mutex_owned(sc->sc_lock));
3044 KASSERT(sc->sc_exlock);
3045
3046 TRACE(1, "");
3047
3048 error = fd_allocfile(&fp, &fd);
3049 if (error)
3050 return error;
3051
3052 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3053 af->sc = sc;
3054 af->dev = dev;
3055
3056 /* Not necessary to insert sc_files. */
3057
3058 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3059 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3060
3061 return error;
3062 }
3063
3064 static int
3065 audioctl_close(struct audio_softc *sc, audio_file_t *file)
3066 {
3067
3068 kmem_free(file, sizeof(*file));
3069 return 0;
3070 }
3071
3072 /*
3073 * Free 'mem' if available, and initialize the pointer.
3074 * For this reason, this is implemented as macro.
3075 */
3076 #define audio_free(mem) do { \
3077 if (mem != NULL) { \
3078 kern_free(mem); \
3079 mem = NULL; \
3080 } \
3081 } while (0)
3082
3083 /*
3084 * (Re)allocate 'memblock' with specified 'bytes'.
3085 * bytes must not be 0.
3086 * This function never returns NULL.
3087 */
3088 static void *
3089 audio_realloc(void *memblock, size_t bytes)
3090 {
3091
3092 KASSERT(bytes != 0);
3093 audio_free(memblock);
3094 return kern_malloc(bytes, M_WAITOK);
3095 }
3096
3097 /*
3098 * (Re)allocate usrbuf with 'newbufsize' bytes.
3099 * Use this function for usrbuf because only usrbuf can be mmapped.
3100 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3101 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3102 * and returns errno.
3103 * It must be called before updating usrbuf.capacity.
3104 */
3105 static int
3106 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3107 {
3108 struct audio_softc *sc;
3109 vaddr_t vstart;
3110 vsize_t oldvsize;
3111 vsize_t newvsize;
3112 int error;
3113
3114 KASSERT(newbufsize > 0);
3115 sc = track->mixer->sc;
3116
3117 /* Get a nonzero multiple of PAGE_SIZE */
3118 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3119
3120 if (track->usrbuf.mem != NULL) {
3121 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3122 PAGE_SIZE);
3123 if (oldvsize == newvsize) {
3124 track->usrbuf.capacity = newbufsize;
3125 return 0;
3126 }
3127 vstart = (vaddr_t)track->usrbuf.mem;
3128 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3129 /* uvm_unmap also detach uobj */
3130 track->uobj = NULL; /* paranoia */
3131 track->usrbuf.mem = NULL;
3132 }
3133
3134 /* Create a uvm anonymous object */
3135 track->uobj = uao_create(newvsize, 0);
3136
3137 /* Map it into the kernel virtual address space */
3138 vstart = 0;
3139 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3140 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3141 UVM_ADV_RANDOM, 0));
3142 if (error) {
3143 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3144 uao_detach(track->uobj); /* release reference */
3145 goto abort;
3146 }
3147
3148 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3149 false, 0);
3150 if (error) {
3151 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3152 error);
3153 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3154 /* uvm_unmap also detach uobj */
3155 goto abort;
3156 }
3157
3158 track->usrbuf.mem = (void *)vstart;
3159 track->usrbuf.capacity = newbufsize;
3160 memset(track->usrbuf.mem, 0, newvsize);
3161 return 0;
3162
3163 /* failure */
3164 abort:
3165 track->uobj = NULL; /* paranoia */
3166 track->usrbuf.mem = NULL;
3167 track->usrbuf.capacity = 0;
3168 return error;
3169 }
3170
3171 /*
3172 * Free usrbuf (if available).
3173 */
3174 static void
3175 audio_free_usrbuf(audio_track_t *track)
3176 {
3177 vaddr_t vstart;
3178 vsize_t vsize;
3179
3180 vstart = (vaddr_t)track->usrbuf.mem;
3181 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3182 if (track->usrbuf.mem != NULL) {
3183 /*
3184 * Unmap the kernel mapping. uvm_unmap releases the
3185 * reference to the uvm object, and this should be the
3186 * last virtual mapping of the uvm object, so no need
3187 * to explicitly release (`detach') the object.
3188 */
3189 uvm_unmap(kernel_map, vstart, vstart + vsize);
3190
3191 track->uobj = NULL;
3192 track->usrbuf.mem = NULL;
3193 track->usrbuf.capacity = 0;
3194 }
3195 }
3196
3197 /*
3198 * This filter changes the volume for each channel.
3199 * arg->context points track->ch_volume[].
3200 */
3201 static void
3202 audio_track_chvol(audio_filter_arg_t *arg)
3203 {
3204 int16_t *ch_volume;
3205 const aint_t *s;
3206 aint_t *d;
3207 u_int i;
3208 u_int ch;
3209 u_int channels;
3210
3211 DIAGNOSTIC_filter_arg(arg);
3212 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3213 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3214 arg->srcfmt->channels, arg->dstfmt->channels);
3215 KASSERT(arg->context != NULL);
3216 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3217 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3218
3219 s = arg->src;
3220 d = arg->dst;
3221 ch_volume = arg->context;
3222
3223 channels = arg->srcfmt->channels;
3224 for (i = 0; i < arg->count; i++) {
3225 for (ch = 0; ch < channels; ch++) {
3226 aint2_t val;
3227 val = *s++;
3228 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3229 *d++ = (aint_t)val;
3230 }
3231 }
3232 }
3233
3234 /*
3235 * This filter performs conversion from stereo (or more channels) to mono.
3236 */
3237 static void
3238 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3239 {
3240 const aint_t *s;
3241 aint_t *d;
3242 u_int i;
3243
3244 DIAGNOSTIC_filter_arg(arg);
3245
3246 s = arg->src;
3247 d = arg->dst;
3248
3249 for (i = 0; i < arg->count; i++) {
3250 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3251 s += arg->srcfmt->channels;
3252 }
3253 }
3254
3255 /*
3256 * This filter performs conversion from mono to stereo (or more channels).
3257 */
3258 static void
3259 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3260 {
3261 const aint_t *s;
3262 aint_t *d;
3263 u_int i;
3264 u_int ch;
3265 u_int dstchannels;
3266
3267 DIAGNOSTIC_filter_arg(arg);
3268
3269 s = arg->src;
3270 d = arg->dst;
3271 dstchannels = arg->dstfmt->channels;
3272
3273 for (i = 0; i < arg->count; i++) {
3274 d[0] = s[0];
3275 d[1] = s[0];
3276 s++;
3277 d += dstchannels;
3278 }
3279 if (dstchannels > 2) {
3280 d = arg->dst;
3281 for (i = 0; i < arg->count; i++) {
3282 for (ch = 2; ch < dstchannels; ch++) {
3283 d[ch] = 0;
3284 }
3285 d += dstchannels;
3286 }
3287 }
3288 }
3289
3290 /*
3291 * This filter shrinks M channels into N channels.
3292 * Extra channels are discarded.
3293 */
3294 static void
3295 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3296 {
3297 const aint_t *s;
3298 aint_t *d;
3299 u_int i;
3300 u_int ch;
3301
3302 DIAGNOSTIC_filter_arg(arg);
3303
3304 s = arg->src;
3305 d = arg->dst;
3306
3307 for (i = 0; i < arg->count; i++) {
3308 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3309 *d++ = s[ch];
3310 }
3311 s += arg->srcfmt->channels;
3312 }
3313 }
3314
3315 /*
3316 * This filter expands M channels into N channels.
3317 * Silence is inserted for missing channels.
3318 */
3319 static void
3320 audio_track_chmix_expand(audio_filter_arg_t *arg)
3321 {
3322 const aint_t *s;
3323 aint_t *d;
3324 u_int i;
3325 u_int ch;
3326 u_int srcchannels;
3327 u_int dstchannels;
3328
3329 DIAGNOSTIC_filter_arg(arg);
3330
3331 s = arg->src;
3332 d = arg->dst;
3333
3334 srcchannels = arg->srcfmt->channels;
3335 dstchannels = arg->dstfmt->channels;
3336 for (i = 0; i < arg->count; i++) {
3337 for (ch = 0; ch < srcchannels; ch++) {
3338 *d++ = *s++;
3339 }
3340 for (; ch < dstchannels; ch++) {
3341 *d++ = 0;
3342 }
3343 }
3344 }
3345
3346 /*
3347 * This filter performs frequency conversion (up sampling).
3348 * It uses linear interpolation.
3349 */
3350 static void
3351 audio_track_freq_up(audio_filter_arg_t *arg)
3352 {
3353 audio_track_t *track;
3354 audio_ring_t *src;
3355 audio_ring_t *dst;
3356 const aint_t *s;
3357 aint_t *d;
3358 aint_t prev[AUDIO_MAX_CHANNELS];
3359 aint_t curr[AUDIO_MAX_CHANNELS];
3360 aint_t grad[AUDIO_MAX_CHANNELS];
3361 u_int i;
3362 u_int t;
3363 u_int step;
3364 u_int channels;
3365 u_int ch;
3366 int srcused;
3367
3368 track = arg->context;
3369 KASSERT(track);
3370 src = &track->freq.srcbuf;
3371 dst = track->freq.dst;
3372 DIAGNOSTIC_ring(dst);
3373 DIAGNOSTIC_ring(src);
3374 KASSERT(src->used > 0);
3375 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3376 "src->fmt.channels=%d dst->fmt.channels=%d",
3377 src->fmt.channels, dst->fmt.channels);
3378 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3379 "src->head=%d track->mixer->frames_per_block=%d",
3380 src->head, track->mixer->frames_per_block);
3381
3382 s = arg->src;
3383 d = arg->dst;
3384
3385 /*
3386 * In order to faciliate interpolation for each block, slide (delay)
3387 * input by one sample. As a result, strictly speaking, the output
3388 * phase is delayed by 1/dstfreq. However, I believe there is no
3389 * observable impact.
3390 *
3391 * Example)
3392 * srcfreq:dstfreq = 1:3
3393 *
3394 * A - -
3395 * |
3396 * |
3397 * | B - -
3398 * +-----+-----> input timeframe
3399 * 0 1
3400 *
3401 * 0 1
3402 * +-----+-----> input timeframe
3403 * | A
3404 * | x x
3405 * | x x
3406 * x (B)
3407 * +-+-+-+-+-+-> output timeframe
3408 * 0 1 2 3 4 5
3409 */
3410
3411 /* Last samples in previous block */
3412 channels = src->fmt.channels;
3413 for (ch = 0; ch < channels; ch++) {
3414 prev[ch] = track->freq_prev[ch];
3415 curr[ch] = track->freq_curr[ch];
3416 grad[ch] = curr[ch] - prev[ch];
3417 }
3418
3419 step = track->freq_step;
3420 t = track->freq_current;
3421 //#define FREQ_DEBUG
3422 #if defined(FREQ_DEBUG)
3423 #define PRINTF(fmt...) printf(fmt)
3424 #else
3425 #define PRINTF(fmt...) do { } while (0)
3426 #endif
3427 srcused = src->used;
3428 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3429 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3430 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3431 PRINTF(" t=%d\n", t);
3432
3433 for (i = 0; i < arg->count; i++) {
3434 PRINTF("i=%d t=%5d", i, t);
3435 if (t >= 65536) {
3436 for (ch = 0; ch < channels; ch++) {
3437 prev[ch] = curr[ch];
3438 curr[ch] = *s++;
3439 grad[ch] = curr[ch] - prev[ch];
3440 }
3441 PRINTF(" prev=%d s[%d]=%d",
3442 prev[0], src->used - srcused, curr[0]);
3443
3444 /* Update */
3445 t -= 65536;
3446 srcused--;
3447 if (srcused < 0) {
3448 PRINTF(" break\n");
3449 break;
3450 }
3451 }
3452
3453 for (ch = 0; ch < channels; ch++) {
3454 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3455 #if defined(FREQ_DEBUG)
3456 if (ch == 0)
3457 printf(" t=%5d *d=%d", t, d[-1]);
3458 #endif
3459 }
3460 t += step;
3461
3462 PRINTF("\n");
3463 }
3464 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3465
3466 auring_take(src, src->used);
3467 auring_push(dst, i);
3468
3469 /* Adjust */
3470 t += track->freq_leap;
3471
3472 track->freq_current = t;
3473 for (ch = 0; ch < channels; ch++) {
3474 track->freq_prev[ch] = prev[ch];
3475 track->freq_curr[ch] = curr[ch];
3476 }
3477 }
3478
3479 /*
3480 * This filter performs frequency conversion (down sampling).
3481 * It uses simple thinning.
3482 */
3483 static void
3484 audio_track_freq_down(audio_filter_arg_t *arg)
3485 {
3486 audio_track_t *track;
3487 audio_ring_t *src;
3488 audio_ring_t *dst;
3489 const aint_t *s0;
3490 aint_t *d;
3491 u_int i;
3492 u_int t;
3493 u_int step;
3494 u_int ch;
3495 u_int channels;
3496
3497 track = arg->context;
3498 KASSERT(track);
3499 src = &track->freq.srcbuf;
3500 dst = track->freq.dst;
3501
3502 DIAGNOSTIC_ring(dst);
3503 DIAGNOSTIC_ring(src);
3504 KASSERT(src->used > 0);
3505 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3506 "src->fmt.channels=%d dst->fmt.channels=%d",
3507 src->fmt.channels, dst->fmt.channels);
3508 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3509 "src->head=%d track->mixer->frames_per_block=%d",
3510 src->head, track->mixer->frames_per_block);
3511
3512 s0 = arg->src;
3513 d = arg->dst;
3514 t = track->freq_current;
3515 step = track->freq_step;
3516 channels = dst->fmt.channels;
3517 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3518 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3519 PRINTF(" t=%d\n", t);
3520
3521 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3522 const aint_t *s;
3523 PRINTF("i=%4d t=%10d", i, t);
3524 s = s0 + (t / 65536) * channels;
3525 PRINTF(" s=%5ld", (s - s0) / channels);
3526 for (ch = 0; ch < channels; ch++) {
3527 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3528 *d++ = s[ch];
3529 }
3530 PRINTF("\n");
3531 t += step;
3532 }
3533 t += track->freq_leap;
3534 PRINTF("end t=%d\n", t);
3535 auring_take(src, src->used);
3536 auring_push(dst, i);
3537 track->freq_current = t % 65536;
3538 }
3539
3540 /*
3541 * Creates track and returns it.
3542 */
3543 audio_track_t *
3544 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3545 {
3546 audio_track_t *track;
3547 static int newid = 0;
3548
3549 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3550
3551 track->id = newid++;
3552 track->mixer = mixer;
3553 track->mode = mixer->mode;
3554
3555 /* Do TRACE after id is assigned. */
3556 TRACET(3, track, "for %s",
3557 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3558
3559 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3560 track->volume = 256;
3561 #endif
3562 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3563 track->ch_volume[i] = 256;
3564 }
3565
3566 return track;
3567 }
3568
3569 /*
3570 * Release all resources of the track and track itself.
3571 * track must not be NULL. Don't specify the track within the file
3572 * structure linked from sc->sc_files.
3573 */
3574 static void
3575 audio_track_destroy(audio_track_t *track)
3576 {
3577
3578 KASSERT(track);
3579
3580 audio_free_usrbuf(track);
3581 audio_free(track->codec.srcbuf.mem);
3582 audio_free(track->chvol.srcbuf.mem);
3583 audio_free(track->chmix.srcbuf.mem);
3584 audio_free(track->freq.srcbuf.mem);
3585 audio_free(track->outbuf.mem);
3586
3587 kmem_free(track, sizeof(*track));
3588 }
3589
3590 /*
3591 * It returns encoding conversion filter according to src and dst format.
3592 * If it is not a convertible pair, it returns NULL. Either src or dst
3593 * must be internal format.
3594 */
3595 static audio_filter_t
3596 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3597 const audio_format2_t *dst)
3598 {
3599
3600 if (audio_format2_is_internal(src)) {
3601 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3602 return audio_internal_to_mulaw;
3603 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3604 return audio_internal_to_alaw;
3605 } else if (audio_format2_is_linear(dst)) {
3606 switch (dst->stride) {
3607 case 8:
3608 return audio_internal_to_linear8;
3609 case 16:
3610 return audio_internal_to_linear16;
3611 #if defined(AUDIO_SUPPORT_LINEAR24)
3612 case 24:
3613 return audio_internal_to_linear24;
3614 #endif
3615 case 32:
3616 return audio_internal_to_linear32;
3617 default:
3618 TRACET(1, track, "unsupported %s stride %d",
3619 "dst", dst->stride);
3620 goto abort;
3621 }
3622 }
3623 } else if (audio_format2_is_internal(dst)) {
3624 if (src->encoding == AUDIO_ENCODING_ULAW) {
3625 return audio_mulaw_to_internal;
3626 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3627 return audio_alaw_to_internal;
3628 } else if (audio_format2_is_linear(src)) {
3629 switch (src->stride) {
3630 case 8:
3631 return audio_linear8_to_internal;
3632 case 16:
3633 return audio_linear16_to_internal;
3634 #if defined(AUDIO_SUPPORT_LINEAR24)
3635 case 24:
3636 return audio_linear24_to_internal;
3637 #endif
3638 case 32:
3639 return audio_linear32_to_internal;
3640 default:
3641 TRACET(1, track, "unsupported %s stride %d",
3642 "src", src->stride);
3643 goto abort;
3644 }
3645 }
3646 }
3647
3648 TRACET(1, track, "unsupported encoding");
3649 abort:
3650 #if defined(AUDIO_DEBUG)
3651 if (audiodebug >= 2) {
3652 char buf[100];
3653 audio_format2_tostr(buf, sizeof(buf), src);
3654 TRACET(2, track, "src %s", buf);
3655 audio_format2_tostr(buf, sizeof(buf), dst);
3656 TRACET(2, track, "dst %s", buf);
3657 }
3658 #endif
3659 return NULL;
3660 }
3661
3662 /*
3663 * Initialize the codec stage of this track as necessary.
3664 * If successful, it initializes the codec stage as necessary, stores updated
3665 * last_dst in *last_dstp in any case, and returns 0.
3666 * Otherwise, it returns errno without modifying *last_dstp.
3667 */
3668 static int
3669 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3670 {
3671 audio_ring_t *last_dst;
3672 audio_ring_t *srcbuf;
3673 audio_format2_t *srcfmt;
3674 audio_format2_t *dstfmt;
3675 audio_filter_arg_t *arg;
3676 u_int len;
3677 int error;
3678
3679 KASSERT(track);
3680
3681 last_dst = *last_dstp;
3682 dstfmt = &last_dst->fmt;
3683 srcfmt = &track->inputfmt;
3684 srcbuf = &track->codec.srcbuf;
3685 error = 0;
3686
3687 if (srcfmt->encoding != dstfmt->encoding
3688 || srcfmt->precision != dstfmt->precision
3689 || srcfmt->stride != dstfmt->stride) {
3690 track->codec.dst = last_dst;
3691
3692 srcbuf->fmt = *dstfmt;
3693 srcbuf->fmt.encoding = srcfmt->encoding;
3694 srcbuf->fmt.precision = srcfmt->precision;
3695 srcbuf->fmt.stride = srcfmt->stride;
3696
3697 track->codec.filter = audio_track_get_codec(track,
3698 &srcbuf->fmt, dstfmt);
3699 if (track->codec.filter == NULL) {
3700 error = EINVAL;
3701 goto abort;
3702 }
3703
3704 srcbuf->head = 0;
3705 srcbuf->used = 0;
3706 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3707 len = auring_bytelen(srcbuf);
3708 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3709
3710 arg = &track->codec.arg;
3711 arg->srcfmt = &srcbuf->fmt;
3712 arg->dstfmt = dstfmt;
3713 arg->context = NULL;
3714
3715 *last_dstp = srcbuf;
3716 return 0;
3717 }
3718
3719 abort:
3720 track->codec.filter = NULL;
3721 audio_free(srcbuf->mem);
3722 return error;
3723 }
3724
3725 /*
3726 * Initialize the chvol stage of this track as necessary.
3727 * If successful, it initializes the chvol stage as necessary, stores updated
3728 * last_dst in *last_dstp in any case, and returns 0.
3729 * Otherwise, it returns errno without modifying *last_dstp.
3730 */
3731 static int
3732 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3733 {
3734 audio_ring_t *last_dst;
3735 audio_ring_t *srcbuf;
3736 audio_format2_t *srcfmt;
3737 audio_format2_t *dstfmt;
3738 audio_filter_arg_t *arg;
3739 u_int len;
3740 int error;
3741
3742 KASSERT(track);
3743
3744 last_dst = *last_dstp;
3745 dstfmt = &last_dst->fmt;
3746 srcfmt = &track->inputfmt;
3747 srcbuf = &track->chvol.srcbuf;
3748 error = 0;
3749
3750 /* Check whether channel volume conversion is necessary. */
3751 bool use_chvol = false;
3752 for (int ch = 0; ch < srcfmt->channels; ch++) {
3753 if (track->ch_volume[ch] != 256) {
3754 use_chvol = true;
3755 break;
3756 }
3757 }
3758
3759 if (use_chvol == true) {
3760 track->chvol.dst = last_dst;
3761 track->chvol.filter = audio_track_chvol;
3762
3763 srcbuf->fmt = *dstfmt;
3764 /* no format conversion occurs */
3765
3766 srcbuf->head = 0;
3767 srcbuf->used = 0;
3768 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3769 len = auring_bytelen(srcbuf);
3770 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3771
3772 arg = &track->chvol.arg;
3773 arg->srcfmt = &srcbuf->fmt;
3774 arg->dstfmt = dstfmt;
3775 arg->context = track->ch_volume;
3776
3777 *last_dstp = srcbuf;
3778 return 0;
3779 }
3780
3781 track->chvol.filter = NULL;
3782 audio_free(srcbuf->mem);
3783 return error;
3784 }
3785
3786 /*
3787 * Initialize the chmix stage of this track as necessary.
3788 * If successful, it initializes the chmix stage as necessary, stores updated
3789 * last_dst in *last_dstp in any case, and returns 0.
3790 * Otherwise, it returns errno without modifying *last_dstp.
3791 */
3792 static int
3793 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
3794 {
3795 audio_ring_t *last_dst;
3796 audio_ring_t *srcbuf;
3797 audio_format2_t *srcfmt;
3798 audio_format2_t *dstfmt;
3799 audio_filter_arg_t *arg;
3800 u_int srcch;
3801 u_int dstch;
3802 u_int len;
3803 int error;
3804
3805 KASSERT(track);
3806
3807 last_dst = *last_dstp;
3808 dstfmt = &last_dst->fmt;
3809 srcfmt = &track->inputfmt;
3810 srcbuf = &track->chmix.srcbuf;
3811 error = 0;
3812
3813 srcch = srcfmt->channels;
3814 dstch = dstfmt->channels;
3815 if (srcch != dstch) {
3816 track->chmix.dst = last_dst;
3817
3818 if (srcch >= 2 && dstch == 1) {
3819 track->chmix.filter = audio_track_chmix_mixLR;
3820 } else if (srcch == 1 && dstch >= 2) {
3821 track->chmix.filter = audio_track_chmix_dupLR;
3822 } else if (srcch > dstch) {
3823 track->chmix.filter = audio_track_chmix_shrink;
3824 } else {
3825 track->chmix.filter = audio_track_chmix_expand;
3826 }
3827
3828 srcbuf->fmt = *dstfmt;
3829 srcbuf->fmt.channels = srcch;
3830
3831 srcbuf->head = 0;
3832 srcbuf->used = 0;
3833 /* XXX The buffer size should be able to calculate. */
3834 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3835 len = auring_bytelen(srcbuf);
3836 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3837
3838 arg = &track->chmix.arg;
3839 arg->srcfmt = &srcbuf->fmt;
3840 arg->dstfmt = dstfmt;
3841 arg->context = NULL;
3842
3843 *last_dstp = srcbuf;
3844 return 0;
3845 }
3846
3847 track->chmix.filter = NULL;
3848 audio_free(srcbuf->mem);
3849 return error;
3850 }
3851
3852 /*
3853 * Initialize the freq stage of this track as necessary.
3854 * If successful, it initializes the freq stage as necessary, stores updated
3855 * last_dst in *last_dstp in any case, and returns 0.
3856 * Otherwise, it returns errno without modifying *last_dstp.
3857 */
3858 static int
3859 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
3860 {
3861 audio_ring_t *last_dst;
3862 audio_ring_t *srcbuf;
3863 audio_format2_t *srcfmt;
3864 audio_format2_t *dstfmt;
3865 audio_filter_arg_t *arg;
3866 uint32_t srcfreq;
3867 uint32_t dstfreq;
3868 u_int dst_capacity;
3869 u_int mod;
3870 u_int len;
3871 int error;
3872
3873 KASSERT(track);
3874
3875 last_dst = *last_dstp;
3876 dstfmt = &last_dst->fmt;
3877 srcfmt = &track->inputfmt;
3878 srcbuf = &track->freq.srcbuf;
3879 error = 0;
3880
3881 srcfreq = srcfmt->sample_rate;
3882 dstfreq = dstfmt->sample_rate;
3883 if (srcfreq != dstfreq) {
3884 track->freq.dst = last_dst;
3885
3886 memset(track->freq_prev, 0, sizeof(track->freq_prev));
3887 memset(track->freq_curr, 0, sizeof(track->freq_curr));
3888
3889 /* freq_step is the ratio of src/dst when let dst 65536. */
3890 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
3891
3892 dst_capacity = frame_per_block(track->mixer, dstfmt);
3893 mod = (uint64_t)srcfreq * 65536 % dstfreq;
3894 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
3895
3896 if (track->freq_step < 65536) {
3897 track->freq.filter = audio_track_freq_up;
3898 /* In order to carry at the first time. */
3899 track->freq_current = 65536;
3900 } else {
3901 track->freq.filter = audio_track_freq_down;
3902 track->freq_current = 0;
3903 }
3904
3905 srcbuf->fmt = *dstfmt;
3906 srcbuf->fmt.sample_rate = srcfreq;
3907
3908 srcbuf->head = 0;
3909 srcbuf->used = 0;
3910 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3911 len = auring_bytelen(srcbuf);
3912 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3913
3914 arg = &track->freq.arg;
3915 arg->srcfmt = &srcbuf->fmt;
3916 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
3917 arg->context = track;
3918
3919 *last_dstp = srcbuf;
3920 return 0;
3921 }
3922
3923 track->freq.filter = NULL;
3924 audio_free(srcbuf->mem);
3925 return error;
3926 }
3927
3928 /*
3929 * When playing back: (e.g. if codec and freq stage are valid)
3930 *
3931 * write
3932 * | uiomove
3933 * v
3934 * usrbuf [...............] byte ring buffer (mmap-able)
3935 * | memcpy
3936 * v
3937 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
3938 * .dst ----+
3939 * | convert
3940 * v
3941 * freq.srcbuf [....] 1 block (ring) buffer
3942 * .dst ----+
3943 * | convert
3944 * v
3945 * outbuf [...............] NBLKOUT blocks ring buffer
3946 *
3947 *
3948 * When recording:
3949 *
3950 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
3951 * .dst ----+
3952 * | convert
3953 * v
3954 * codec.srcbuf[.....] 1 block (ring) buffer
3955 * .dst ----+
3956 * | convert
3957 * v
3958 * outbuf [.....] 1 block (ring) buffer
3959 * | memcpy
3960 * v
3961 * usrbuf [...............] byte ring buffer (mmap-able *)
3962 * | uiomove
3963 * v
3964 * read
3965 *
3966 * *: usrbuf for recording is also mmap-able due to symmetry with
3967 * playback buffer, but for now mmap will never happen for recording.
3968 */
3969
3970 /*
3971 * Set the userland format of this track.
3972 * usrfmt argument should be parameter verified with audio_check_params().
3973 * It will release and reallocate all internal conversion buffers.
3974 * It returns 0 if successful. Otherwise it returns errno with clearing all
3975 * internal buffers.
3976 * It must be called without sc_intr_lock since uvm_* routines require non
3977 * intr_lock state.
3978 * It must be called with track lock held since it may release and reallocate
3979 * outbuf.
3980 */
3981 static int
3982 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
3983 {
3984 struct audio_softc *sc;
3985 u_int newbufsize;
3986 u_int oldblksize;
3987 u_int len;
3988 int error;
3989
3990 KASSERT(track);
3991 sc = track->mixer->sc;
3992
3993 /* usrbuf is the closest buffer to the userland. */
3994 track->usrbuf.fmt = *usrfmt;
3995
3996 /*
3997 * For references, one block size (in 40msec) is:
3998 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
3999 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4000 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4001 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4002 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4003 *
4004 * For example,
4005 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4006 * newbufsize = rounddown(65536 / 7056) = 63504
4007 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4008 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4009 *
4010 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4011 * newbufsize = rounddown(65536 / 7680) = 61440
4012 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4013 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4014 */
4015 oldblksize = track->usrbuf_blksize;
4016 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4017 frame_per_block(track->mixer, &track->usrbuf.fmt));
4018 track->usrbuf.head = 0;
4019 track->usrbuf.used = 0;
4020 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4021 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4022 error = audio_realloc_usrbuf(track, newbufsize);
4023 if (error) {
4024 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4025 newbufsize);
4026 goto error;
4027 }
4028
4029 /* Recalc water mark. */
4030 if (track->usrbuf_blksize != oldblksize) {
4031 if (audio_track_is_playback(track)) {
4032 /* Set high at 100%, low at 75%. */
4033 track->usrbuf_usedhigh = track->usrbuf.capacity;
4034 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4035 } else {
4036 /* Set high at 100% minus 1block(?), low at 0% */
4037 track->usrbuf_usedhigh = track->usrbuf.capacity -
4038 track->usrbuf_blksize;
4039 track->usrbuf_usedlow = 0;
4040 }
4041 }
4042
4043 /* Stage buffer */
4044 audio_ring_t *last_dst = &track->outbuf;
4045 if (audio_track_is_playback(track)) {
4046 /* On playback, initialize from the mixer side in order. */
4047 track->inputfmt = *usrfmt;
4048 track->outbuf.fmt = track->mixer->track_fmt;
4049
4050 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4051 goto error;
4052 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4053 goto error;
4054 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4055 goto error;
4056 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4057 goto error;
4058 } else {
4059 /* On recording, initialize from userland side in order. */
4060 track->inputfmt = track->mixer->track_fmt;
4061 track->outbuf.fmt = *usrfmt;
4062
4063 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4064 goto error;
4065 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4066 goto error;
4067 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4068 goto error;
4069 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4070 goto error;
4071 }
4072 #if 0
4073 /* debug */
4074 if (track->freq.filter) {
4075 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4076 audio_print_format2("freq dst", &track->freq.dst->fmt);
4077 }
4078 if (track->chmix.filter) {
4079 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4080 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4081 }
4082 if (track->chvol.filter) {
4083 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4084 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4085 }
4086 if (track->codec.filter) {
4087 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4088 audio_print_format2("codec dst", &track->codec.dst->fmt);
4089 }
4090 #endif
4091
4092 /* Stage input buffer */
4093 track->input = last_dst;
4094
4095 /*
4096 * On the recording track, make the first stage a ring buffer.
4097 * XXX is there a better way?
4098 */
4099 if (audio_track_is_record(track)) {
4100 track->input->capacity = NBLKOUT *
4101 frame_per_block(track->mixer, &track->input->fmt);
4102 len = auring_bytelen(track->input);
4103 track->input->mem = audio_realloc(track->input->mem, len);
4104 }
4105
4106 /*
4107 * Output buffer.
4108 * On the playback track, its capacity is NBLKOUT blocks.
4109 * On the recording track, its capacity is 1 block.
4110 */
4111 track->outbuf.head = 0;
4112 track->outbuf.used = 0;
4113 track->outbuf.capacity = frame_per_block(track->mixer,
4114 &track->outbuf.fmt);
4115 if (audio_track_is_playback(track))
4116 track->outbuf.capacity *= NBLKOUT;
4117 len = auring_bytelen(&track->outbuf);
4118 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4119 if (track->outbuf.mem == NULL) {
4120 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4121 error = ENOMEM;
4122 goto error;
4123 }
4124
4125 #if defined(AUDIO_DEBUG)
4126 if (audiodebug >= 3) {
4127 struct audio_track_debugbuf m;
4128
4129 memset(&m, 0, sizeof(m));
4130 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4131 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4132 if (track->freq.filter)
4133 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4134 track->freq.srcbuf.capacity *
4135 frametobyte(&track->freq.srcbuf.fmt, 1));
4136 if (track->chmix.filter)
4137 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4138 track->chmix.srcbuf.capacity *
4139 frametobyte(&track->chmix.srcbuf.fmt, 1));
4140 if (track->chvol.filter)
4141 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4142 track->chvol.srcbuf.capacity *
4143 frametobyte(&track->chvol.srcbuf.fmt, 1));
4144 if (track->codec.filter)
4145 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4146 track->codec.srcbuf.capacity *
4147 frametobyte(&track->codec.srcbuf.fmt, 1));
4148 snprintf(m.usrbuf, sizeof(m.usrbuf),
4149 " usr=%d", track->usrbuf.capacity);
4150
4151 if (audio_track_is_playback(track)) {
4152 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4153 m.outbuf, m.freq, m.chmix,
4154 m.chvol, m.codec, m.usrbuf);
4155 } else {
4156 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4157 m.freq, m.chmix, m.chvol,
4158 m.codec, m.outbuf, m.usrbuf);
4159 }
4160 }
4161 #endif
4162 return 0;
4163
4164 error:
4165 audio_free_usrbuf(track);
4166 audio_free(track->codec.srcbuf.mem);
4167 audio_free(track->chvol.srcbuf.mem);
4168 audio_free(track->chmix.srcbuf.mem);
4169 audio_free(track->freq.srcbuf.mem);
4170 audio_free(track->outbuf.mem);
4171 return error;
4172 }
4173
4174 /*
4175 * Fill silence frames (as the internal format) up to 1 block
4176 * if the ring is not empty and less than 1 block.
4177 * It returns the number of appended frames.
4178 */
4179 static int
4180 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4181 {
4182 int fpb;
4183 int n;
4184
4185 KASSERT(track);
4186 KASSERT(audio_format2_is_internal(&ring->fmt));
4187
4188 /* XXX is n correct? */
4189 /* XXX memset uses frametobyte()? */
4190
4191 if (ring->used == 0)
4192 return 0;
4193
4194 fpb = frame_per_block(track->mixer, &ring->fmt);
4195 if (ring->used >= fpb)
4196 return 0;
4197
4198 n = (ring->capacity - ring->used) % fpb;
4199
4200 KASSERTMSG(auring_get_contig_free(ring) >= n,
4201 "auring_get_contig_free(ring)=%d n=%d",
4202 auring_get_contig_free(ring), n);
4203
4204 memset(auring_tailptr_aint(ring), 0,
4205 n * ring->fmt.channels * sizeof(aint_t));
4206 auring_push(ring, n);
4207 return n;
4208 }
4209
4210 /*
4211 * Execute the conversion stage.
4212 * It prepares arg from this stage and executes stage->filter.
4213 * It must be called only if stage->filter is not NULL.
4214 *
4215 * For stages other than frequency conversion, the function increments
4216 * src and dst counters here. For frequency conversion stage, on the
4217 * other hand, the function does not touch src and dst counters and
4218 * filter side has to increment them.
4219 */
4220 static void
4221 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4222 {
4223 audio_filter_arg_t *arg;
4224 int srccount;
4225 int dstcount;
4226 int count;
4227
4228 KASSERT(track);
4229 KASSERT(stage->filter);
4230
4231 srccount = auring_get_contig_used(&stage->srcbuf);
4232 dstcount = auring_get_contig_free(stage->dst);
4233
4234 if (isfreq) {
4235 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4236 count = uimin(dstcount, track->mixer->frames_per_block);
4237 } else {
4238 count = uimin(srccount, dstcount);
4239 }
4240
4241 if (count > 0) {
4242 arg = &stage->arg;
4243 arg->src = auring_headptr(&stage->srcbuf);
4244 arg->dst = auring_tailptr(stage->dst);
4245 arg->count = count;
4246
4247 stage->filter(arg);
4248
4249 if (!isfreq) {
4250 auring_take(&stage->srcbuf, count);
4251 auring_push(stage->dst, count);
4252 }
4253 }
4254 }
4255
4256 /*
4257 * Produce output buffer for playback from user input buffer.
4258 * It must be called only if usrbuf is not empty and outbuf is
4259 * available at least one free block.
4260 */
4261 static void
4262 audio_track_play(audio_track_t *track)
4263 {
4264 audio_ring_t *usrbuf;
4265 audio_ring_t *input;
4266 int count;
4267 int framesize;
4268 int bytes;
4269
4270 KASSERT(track);
4271 KASSERT(track->lock);
4272 TRACET(4, track, "start pstate=%d", track->pstate);
4273
4274 /* At this point usrbuf must not be empty. */
4275 KASSERT(track->usrbuf.used > 0);
4276 /* Also, outbuf must be available at least one block. */
4277 count = auring_get_contig_free(&track->outbuf);
4278 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4279 "count=%d fpb=%d",
4280 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4281
4282 /* XXX TODO: is this necessary for now? */
4283 int track_count_0 = track->outbuf.used;
4284
4285 usrbuf = &track->usrbuf;
4286 input = track->input;
4287
4288 /*
4289 * framesize is always 1 byte or more since all formats supported as
4290 * usrfmt(=input) have 8bit or more stride.
4291 */
4292 framesize = frametobyte(&input->fmt, 1);
4293 KASSERT(framesize >= 1);
4294
4295 /* The next stage of usrbuf (=input) must be available. */
4296 KASSERT(auring_get_contig_free(input) > 0);
4297
4298 /*
4299 * Copy usrbuf up to 1block to input buffer.
4300 * count is the number of frames to copy from usrbuf.
4301 * bytes is the number of bytes to copy from usrbuf. However it is
4302 * not copied less than one frame.
4303 */
4304 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4305 bytes = count * framesize;
4306
4307 track->usrbuf_stamp += bytes;
4308
4309 if (usrbuf->head + bytes < usrbuf->capacity) {
4310 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4311 (uint8_t *)usrbuf->mem + usrbuf->head,
4312 bytes);
4313 auring_push(input, count);
4314 auring_take(usrbuf, bytes);
4315 } else {
4316 int bytes1;
4317 int bytes2;
4318
4319 bytes1 = auring_get_contig_used(usrbuf);
4320 KASSERTMSG(bytes1 % framesize == 0,
4321 "bytes1=%d framesize=%d", bytes1, framesize);
4322 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4323 (uint8_t *)usrbuf->mem + usrbuf->head,
4324 bytes1);
4325 auring_push(input, bytes1 / framesize);
4326 auring_take(usrbuf, bytes1);
4327
4328 bytes2 = bytes - bytes1;
4329 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4330 (uint8_t *)usrbuf->mem + usrbuf->head,
4331 bytes2);
4332 auring_push(input, bytes2 / framesize);
4333 auring_take(usrbuf, bytes2);
4334 }
4335
4336 /* Encoding conversion */
4337 if (track->codec.filter)
4338 audio_apply_stage(track, &track->codec, false);
4339
4340 /* Channel volume */
4341 if (track->chvol.filter)
4342 audio_apply_stage(track, &track->chvol, false);
4343
4344 /* Channel mix */
4345 if (track->chmix.filter)
4346 audio_apply_stage(track, &track->chmix, false);
4347
4348 /* Frequency conversion */
4349 /*
4350 * Since the frequency conversion needs correction for each block,
4351 * it rounds up to 1 block.
4352 */
4353 if (track->freq.filter) {
4354 int n;
4355 n = audio_append_silence(track, &track->freq.srcbuf);
4356 if (n > 0) {
4357 TRACET(4, track,
4358 "freq.srcbuf add silence %d -> %d/%d/%d",
4359 n,
4360 track->freq.srcbuf.head,
4361 track->freq.srcbuf.used,
4362 track->freq.srcbuf.capacity);
4363 }
4364 if (track->freq.srcbuf.used > 0) {
4365 audio_apply_stage(track, &track->freq, true);
4366 }
4367 }
4368
4369 if (bytes < track->usrbuf_blksize) {
4370 /*
4371 * Clear all conversion buffer pointer if the conversion was
4372 * not exactly one block. These conversion stage buffers are
4373 * certainly circular buffers because of symmetry with the
4374 * previous and next stage buffer. However, since they are
4375 * treated as simple contiguous buffers in operation, so head
4376 * always should point 0. This may happen during drain-age.
4377 */
4378 TRACET(4, track, "reset stage");
4379 if (track->codec.filter) {
4380 KASSERT(track->codec.srcbuf.used == 0);
4381 track->codec.srcbuf.head = 0;
4382 }
4383 if (track->chvol.filter) {
4384 KASSERT(track->chvol.srcbuf.used == 0);
4385 track->chvol.srcbuf.head = 0;
4386 }
4387 if (track->chmix.filter) {
4388 KASSERT(track->chmix.srcbuf.used == 0);
4389 track->chmix.srcbuf.head = 0;
4390 }
4391 if (track->freq.filter) {
4392 KASSERT(track->freq.srcbuf.used == 0);
4393 track->freq.srcbuf.head = 0;
4394 }
4395 }
4396
4397 if (track->input == &track->outbuf) {
4398 track->outputcounter = track->inputcounter;
4399 } else {
4400 track->outputcounter += track->outbuf.used - track_count_0;
4401 }
4402
4403 #if defined(AUDIO_DEBUG)
4404 if (audiodebug >= 3) {
4405 struct audio_track_debugbuf m;
4406 audio_track_bufstat(track, &m);
4407 TRACET(0, track, "end%s%s%s%s%s%s",
4408 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4409 }
4410 #endif
4411 }
4412
4413 /*
4414 * Produce user output buffer for recording from input buffer.
4415 */
4416 static void
4417 audio_track_record(audio_track_t *track)
4418 {
4419 audio_ring_t *outbuf;
4420 audio_ring_t *usrbuf;
4421 int count;
4422 int bytes;
4423 int framesize;
4424
4425 KASSERT(track);
4426 KASSERT(track->lock);
4427
4428 /* Number of frames to process */
4429 count = auring_get_contig_used(track->input);
4430 count = uimin(count, track->mixer->frames_per_block);
4431 if (count == 0) {
4432 TRACET(4, track, "count == 0");
4433 return;
4434 }
4435
4436 /* Frequency conversion */
4437 if (track->freq.filter) {
4438 if (track->freq.srcbuf.used > 0) {
4439 audio_apply_stage(track, &track->freq, true);
4440 /* XXX should input of freq be from beginning of buf? */
4441 }
4442 }
4443
4444 /* Channel mix */
4445 if (track->chmix.filter)
4446 audio_apply_stage(track, &track->chmix, false);
4447
4448 /* Channel volume */
4449 if (track->chvol.filter)
4450 audio_apply_stage(track, &track->chvol, false);
4451
4452 /* Encoding conversion */
4453 if (track->codec.filter)
4454 audio_apply_stage(track, &track->codec, false);
4455
4456 /* Copy outbuf to usrbuf */
4457 outbuf = &track->outbuf;
4458 usrbuf = &track->usrbuf;
4459 /*
4460 * framesize is always 1 byte or more since all formats supported
4461 * as usrfmt(=output) have 8bit or more stride.
4462 */
4463 framesize = frametobyte(&outbuf->fmt, 1);
4464 KASSERT(framesize >= 1);
4465 /*
4466 * count is the number of frames to copy to usrbuf.
4467 * bytes is the number of bytes to copy to usrbuf.
4468 */
4469 count = outbuf->used;
4470 count = uimin(count,
4471 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4472 bytes = count * framesize;
4473 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4474 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4475 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4476 bytes);
4477 auring_push(usrbuf, bytes);
4478 auring_take(outbuf, count);
4479 } else {
4480 int bytes1;
4481 int bytes2;
4482
4483 bytes1 = auring_get_contig_free(usrbuf);
4484 KASSERTMSG(bytes1 % framesize == 0,
4485 "bytes1=%d framesize=%d", bytes1, framesize);
4486 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4487 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4488 bytes1);
4489 auring_push(usrbuf, bytes1);
4490 auring_take(outbuf, bytes1 / framesize);
4491
4492 bytes2 = bytes - bytes1;
4493 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4494 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4495 bytes2);
4496 auring_push(usrbuf, bytes2);
4497 auring_take(outbuf, bytes2 / framesize);
4498 }
4499
4500 /* XXX TODO: any counters here? */
4501
4502 #if defined(AUDIO_DEBUG)
4503 if (audiodebug >= 3) {
4504 struct audio_track_debugbuf m;
4505 audio_track_bufstat(track, &m);
4506 TRACET(0, track, "end%s%s%s%s%s%s",
4507 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4508 }
4509 #endif
4510 }
4511
4512 /*
4513 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4514 * Must be called with sc_lock held.
4515 */
4516 static u_int
4517 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4518 {
4519 audio_format2_t *fmt;
4520 u_int blktime;
4521 u_int frames_per_block;
4522
4523 KASSERT(mutex_owned(sc->sc_lock));
4524
4525 fmt = &mixer->hwbuf.fmt;
4526 blktime = sc->sc_blk_ms;
4527
4528 /*
4529 * If stride is not multiples of 8, special treatment is necessary.
4530 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4531 */
4532 if (fmt->stride == 4) {
4533 frames_per_block = fmt->sample_rate * blktime / 1000;
4534 if ((frames_per_block & 1) != 0)
4535 blktime *= 2;
4536 }
4537 #ifdef DIAGNOSTIC
4538 else if (fmt->stride % NBBY != 0) {
4539 panic("unsupported HW stride %d", fmt->stride);
4540 }
4541 #endif
4542
4543 return blktime;
4544 }
4545
4546 /*
4547 * Initialize the mixer corresponding to the mode.
4548 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4549 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4550 * This function returns 0 on successful. Otherwise returns errno.
4551 * Must be called with sc_lock held.
4552 */
4553 static int
4554 audio_mixer_init(struct audio_softc *sc, int mode,
4555 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4556 {
4557 char codecbuf[64];
4558 audio_trackmixer_t *mixer;
4559 void (*softint_handler)(void *);
4560 int len;
4561 int blksize;
4562 int capacity;
4563 size_t bufsize;
4564 int hwblks;
4565 int blkms;
4566 int error;
4567
4568 KASSERT(hwfmt != NULL);
4569 KASSERT(reg != NULL);
4570 KASSERT(mutex_owned(sc->sc_lock));
4571
4572 error = 0;
4573 if (mode == AUMODE_PLAY)
4574 mixer = sc->sc_pmixer;
4575 else
4576 mixer = sc->sc_rmixer;
4577
4578 mixer->sc = sc;
4579 mixer->mode = mode;
4580
4581 mixer->hwbuf.fmt = *hwfmt;
4582 mixer->volume = 256;
4583 mixer->blktime_d = 1000;
4584 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4585 sc->sc_blk_ms = mixer->blktime_n;
4586 hwblks = NBLKHW;
4587
4588 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4589 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4590 if (sc->hw_if->round_blocksize) {
4591 int rounded;
4592 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4593 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4594 mode, &p);
4595 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4596 if (rounded != blksize) {
4597 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4598 mixer->hwbuf.fmt.channels) != 0) {
4599 device_printf(sc->sc_dev,
4600 "blksize not configured %d -> %d\n",
4601 blksize, rounded);
4602 return EINVAL;
4603 }
4604 /* Recalculation */
4605 blksize = rounded;
4606 mixer->frames_per_block = blksize * NBBY /
4607 (mixer->hwbuf.fmt.stride *
4608 mixer->hwbuf.fmt.channels);
4609 }
4610 }
4611 mixer->blktime_n = mixer->frames_per_block;
4612 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4613
4614 capacity = mixer->frames_per_block * hwblks;
4615 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4616 if (sc->hw_if->round_buffersize) {
4617 size_t rounded;
4618 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4619 bufsize);
4620 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4621 if (rounded < bufsize) {
4622 /* buffersize needs NBLKHW blocks at least. */
4623 device_printf(sc->sc_dev,
4624 "buffersize too small: buffersize=%zd blksize=%d\n",
4625 rounded, blksize);
4626 return EINVAL;
4627 }
4628 if (rounded % blksize != 0) {
4629 /* buffersize/blksize constraint mismatch? */
4630 device_printf(sc->sc_dev,
4631 "buffersize must be multiple of blksize: "
4632 "buffersize=%zu blksize=%d\n",
4633 rounded, blksize);
4634 return EINVAL;
4635 }
4636 if (rounded != bufsize) {
4637 /* Recalcuration */
4638 bufsize = rounded;
4639 hwblks = bufsize / blksize;
4640 capacity = mixer->frames_per_block * hwblks;
4641 }
4642 }
4643 TRACE(1, "buffersize for %s = %zu",
4644 (mode == AUMODE_PLAY) ? "playback" : "recording",
4645 bufsize);
4646 mixer->hwbuf.capacity = capacity;
4647
4648 /*
4649 * XXX need to release sc_lock for compatibility?
4650 */
4651 if (sc->hw_if->allocm) {
4652 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4653 if (mixer->hwbuf.mem == NULL) {
4654 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4655 __func__, bufsize);
4656 return ENOMEM;
4657 }
4658 } else {
4659 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4660 }
4661
4662 /* From here, audio_mixer_destroy is necessary to exit. */
4663 if (mode == AUMODE_PLAY) {
4664 cv_init(&mixer->outcv, "audiowr");
4665 } else {
4666 cv_init(&mixer->outcv, "audiord");
4667 }
4668
4669 if (mode == AUMODE_PLAY) {
4670 softint_handler = audio_softintr_wr;
4671 } else {
4672 softint_handler = audio_softintr_rd;
4673 }
4674 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4675 softint_handler, sc);
4676 if (mixer->sih == NULL) {
4677 device_printf(sc->sc_dev, "softint_establish failed\n");
4678 goto abort;
4679 }
4680
4681 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4682 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4683 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4684 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4685 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4686
4687 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4688 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4689 mixer->swap_endian = true;
4690 TRACE(1, "swap_endian");
4691 }
4692
4693 if (mode == AUMODE_PLAY) {
4694 /* Mixing buffer */
4695 mixer->mixfmt = mixer->track_fmt;
4696 mixer->mixfmt.precision *= 2;
4697 mixer->mixfmt.stride *= 2;
4698 /* XXX TODO: use some macros? */
4699 len = mixer->frames_per_block * mixer->mixfmt.channels *
4700 mixer->mixfmt.stride / NBBY;
4701 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4702 } else {
4703 /* No mixing buffer for recording */
4704 }
4705
4706 if (reg->codec) {
4707 mixer->codec = reg->codec;
4708 mixer->codecarg.context = reg->context;
4709 if (mode == AUMODE_PLAY) {
4710 mixer->codecarg.srcfmt = &mixer->track_fmt;
4711 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4712 } else {
4713 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4714 mixer->codecarg.dstfmt = &mixer->track_fmt;
4715 }
4716 mixer->codecbuf.fmt = mixer->track_fmt;
4717 mixer->codecbuf.capacity = mixer->frames_per_block;
4718 len = auring_bytelen(&mixer->codecbuf);
4719 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4720 if (mixer->codecbuf.mem == NULL) {
4721 device_printf(sc->sc_dev,
4722 "%s: malloc codecbuf(%d) failed\n",
4723 __func__, len);
4724 error = ENOMEM;
4725 goto abort;
4726 }
4727 }
4728
4729 /* Succeeded so display it. */
4730 codecbuf[0] = '\0';
4731 if (mixer->codec || mixer->swap_endian) {
4732 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4733 (mode == AUMODE_PLAY) ? "->" : "<-",
4734 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4735 mixer->hwbuf.fmt.precision);
4736 }
4737 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
4738 aprint_normal_dev(sc->sc_dev, "%s:%d%s %dch %dHz, blk %dms for %s\n",
4739 audio_encoding_name(mixer->track_fmt.encoding),
4740 mixer->track_fmt.precision,
4741 codecbuf,
4742 mixer->track_fmt.channels,
4743 mixer->track_fmt.sample_rate,
4744 blkms,
4745 (mode == AUMODE_PLAY) ? "playback" : "recording");
4746
4747 return 0;
4748
4749 abort:
4750 audio_mixer_destroy(sc, mixer);
4751 return error;
4752 }
4753
4754 /*
4755 * Releases all resources of 'mixer'.
4756 * Note that it does not release the memory area of 'mixer' itself.
4757 * Must be called with sc_lock held.
4758 */
4759 static void
4760 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
4761 {
4762 int bufsize;
4763
4764 KASSERT(mutex_owned(sc->sc_lock));
4765
4766 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
4767
4768 if (mixer->hwbuf.mem != NULL) {
4769 if (sc->hw_if->freem) {
4770 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
4771 } else {
4772 kmem_free(mixer->hwbuf.mem, bufsize);
4773 }
4774 mixer->hwbuf.mem = NULL;
4775 }
4776
4777 audio_free(mixer->codecbuf.mem);
4778 audio_free(mixer->mixsample);
4779
4780 cv_destroy(&mixer->outcv);
4781
4782 if (mixer->sih) {
4783 softint_disestablish(mixer->sih);
4784 mixer->sih = NULL;
4785 }
4786 }
4787
4788 /*
4789 * Starts playback mixer.
4790 * Must be called only if sc_pbusy is false.
4791 * Must be called with sc_lock && sc_exlock held.
4792 * Must not be called from the interrupt context.
4793 */
4794 static void
4795 audio_pmixer_start(struct audio_softc *sc, bool force)
4796 {
4797 audio_trackmixer_t *mixer;
4798 int minimum;
4799
4800 KASSERT(mutex_owned(sc->sc_lock));
4801 KASSERT(sc->sc_exlock);
4802 KASSERT(sc->sc_pbusy == false);
4803
4804 mutex_enter(sc->sc_intr_lock);
4805
4806 mixer = sc->sc_pmixer;
4807 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
4808 (audiodebug >= 3) ? "begin " : "",
4809 (int)mixer->mixseq, (int)mixer->hwseq,
4810 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
4811 force ? " force" : "");
4812
4813 /* Need two blocks to start normally. */
4814 minimum = (force) ? 1 : 2;
4815 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
4816 audio_pmixer_process(sc);
4817 }
4818
4819 /* Start output */
4820 audio_pmixer_output(sc);
4821 sc->sc_pbusy = true;
4822
4823 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
4824 (int)mixer->mixseq, (int)mixer->hwseq,
4825 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
4826
4827 mutex_exit(sc->sc_intr_lock);
4828 }
4829
4830 /*
4831 * When playing back with MD filter:
4832 *
4833 * track track ...
4834 * v v
4835 * + mix (with aint2_t)
4836 * | master volume (with aint2_t)
4837 * v
4838 * mixsample [::::] wide-int 1 block (ring) buffer
4839 * |
4840 * | convert aint2_t -> aint_t
4841 * v
4842 * codecbuf [....] 1 block (ring) buffer
4843 * |
4844 * | convert to hw format
4845 * v
4846 * hwbuf [............] NBLKHW blocks ring buffer
4847 *
4848 * When playing back without MD filter:
4849 *
4850 * mixsample [::::] wide-int 1 block (ring) buffer
4851 * |
4852 * | convert aint2_t -> aint_t
4853 * | (with byte swap if necessary)
4854 * v
4855 * hwbuf [............] NBLKHW blocks ring buffer
4856 *
4857 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
4858 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
4859 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
4860 */
4861
4862 /*
4863 * Performs track mixing and converts it to hwbuf.
4864 * Note that this function doesn't transfer hwbuf to hardware.
4865 * Must be called with sc_intr_lock held.
4866 */
4867 static void
4868 audio_pmixer_process(struct audio_softc *sc)
4869 {
4870 audio_trackmixer_t *mixer;
4871 audio_file_t *f;
4872 int frame_count;
4873 int sample_count;
4874 int mixed;
4875 int i;
4876 aint2_t *m;
4877 aint_t *h;
4878
4879 mixer = sc->sc_pmixer;
4880
4881 frame_count = mixer->frames_per_block;
4882 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
4883 "auring_get_contig_free()=%d frame_count=%d",
4884 auring_get_contig_free(&mixer->hwbuf), frame_count);
4885 sample_count = frame_count * mixer->mixfmt.channels;
4886
4887 mixer->mixseq++;
4888
4889 /* Mix all tracks */
4890 mixed = 0;
4891 SLIST_FOREACH(f, &sc->sc_files, entry) {
4892 audio_track_t *track = f->ptrack;
4893
4894 if (track == NULL)
4895 continue;
4896
4897 if (track->is_pause) {
4898 TRACET(4, track, "skip; paused");
4899 continue;
4900 }
4901
4902 /* Skip if the track is used by process context. */
4903 if (audio_track_lock_tryenter(track) == false) {
4904 TRACET(4, track, "skip; in use");
4905 continue;
4906 }
4907
4908 /* Emulate mmap'ped track */
4909 if (track->mmapped) {
4910 auring_push(&track->usrbuf, track->usrbuf_blksize);
4911 TRACET(4, track, "mmap; usr=%d/%d/C%d",
4912 track->usrbuf.head,
4913 track->usrbuf.used,
4914 track->usrbuf.capacity);
4915 }
4916
4917 if (track->outbuf.used < mixer->frames_per_block &&
4918 track->usrbuf.used > 0) {
4919 TRACET(4, track, "process");
4920 audio_track_play(track);
4921 }
4922
4923 if (track->outbuf.used > 0) {
4924 mixed = audio_pmixer_mix_track(mixer, track, mixed);
4925 } else {
4926 TRACET(4, track, "skip; empty");
4927 }
4928
4929 audio_track_lock_exit(track);
4930 }
4931
4932 if (mixed == 0) {
4933 /* Silence */
4934 memset(mixer->mixsample, 0,
4935 frametobyte(&mixer->mixfmt, frame_count));
4936 } else {
4937 if (mixed > 1) {
4938 /* If there are multiple tracks, do auto gain control */
4939 audio_pmixer_agc(mixer, sample_count);
4940 }
4941
4942 /* Apply master volume */
4943 if (mixer->volume < 256) {
4944 m = mixer->mixsample;
4945 for (i = 0; i < sample_count; i++) {
4946 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
4947 m++;
4948 }
4949
4950 /*
4951 * Recover the volume gradually at the pace of
4952 * several times per second. If it's too fast, you
4953 * can recognize that the volume changes up and down
4954 * quickly and it's not so comfortable.
4955 */
4956 mixer->voltimer += mixer->blktime_n;
4957 if (mixer->voltimer * 4 >= mixer->blktime_d) {
4958 mixer->volume++;
4959 mixer->voltimer = 0;
4960 #if defined(AUDIO_DEBUG_AGC)
4961 TRACE(1, "volume recover: %d", mixer->volume);
4962 #endif
4963 }
4964 }
4965 }
4966
4967 /*
4968 * The rest is the hardware part.
4969 */
4970
4971 if (mixer->codec) {
4972 h = auring_tailptr_aint(&mixer->codecbuf);
4973 } else {
4974 h = auring_tailptr_aint(&mixer->hwbuf);
4975 }
4976
4977 m = mixer->mixsample;
4978 if (mixer->swap_endian) {
4979 for (i = 0; i < sample_count; i++) {
4980 *h++ = bswap16(*m++);
4981 }
4982 } else {
4983 for (i = 0; i < sample_count; i++) {
4984 *h++ = *m++;
4985 }
4986 }
4987
4988 /* Hardware driver's codec */
4989 if (mixer->codec) {
4990 auring_push(&mixer->codecbuf, frame_count);
4991 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
4992 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
4993 mixer->codecarg.count = frame_count;
4994 mixer->codec(&mixer->codecarg);
4995 auring_take(&mixer->codecbuf, mixer->codecarg.count);
4996 }
4997
4998 auring_push(&mixer->hwbuf, frame_count);
4999
5000 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5001 (int)mixer->mixseq,
5002 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5003 (mixed == 0) ? " silent" : "");
5004 }
5005
5006 /*
5007 * Do auto gain control.
5008 * Must be called sc_intr_lock held.
5009 */
5010 static void
5011 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5012 {
5013 struct audio_softc *sc __unused;
5014 aint2_t val;
5015 aint2_t maxval;
5016 aint2_t minval;
5017 aint2_t over_plus;
5018 aint2_t over_minus;
5019 aint2_t *m;
5020 int newvol;
5021 int i;
5022
5023 sc = mixer->sc;
5024
5025 /* Overflow detection */
5026 maxval = AINT_T_MAX;
5027 minval = AINT_T_MIN;
5028 m = mixer->mixsample;
5029 for (i = 0; i < sample_count; i++) {
5030 val = *m++;
5031 if (val > maxval)
5032 maxval = val;
5033 else if (val < minval)
5034 minval = val;
5035 }
5036
5037 /* Absolute value of overflowed amount */
5038 over_plus = maxval - AINT_T_MAX;
5039 over_minus = AINT_T_MIN - minval;
5040
5041 if (over_plus > 0 || over_minus > 0) {
5042 if (over_plus > over_minus) {
5043 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5044 } else {
5045 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5046 }
5047
5048 /*
5049 * Change the volume only if new one is smaller.
5050 * Reset the timer even if the volume isn't changed.
5051 */
5052 if (newvol <= mixer->volume) {
5053 mixer->volume = newvol;
5054 mixer->voltimer = 0;
5055 #if defined(AUDIO_DEBUG_AGC)
5056 TRACE(1, "auto volume adjust: %d", mixer->volume);
5057 #endif
5058 }
5059 }
5060 }
5061
5062 /*
5063 * Mix one track.
5064 * 'mixed' specifies the number of tracks mixed so far.
5065 * It returns the number of tracks mixed. In other words, it returns
5066 * mixed + 1 if this track is mixed.
5067 */
5068 static int
5069 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5070 int mixed)
5071 {
5072 int count;
5073 int sample_count;
5074 int remain;
5075 int i;
5076 const aint_t *s;
5077 aint2_t *d;
5078
5079 /* XXX TODO: Is this necessary for now? */
5080 if (mixer->mixseq < track->seq)
5081 return mixed;
5082
5083 count = auring_get_contig_used(&track->outbuf);
5084 count = uimin(count, mixer->frames_per_block);
5085
5086 s = auring_headptr_aint(&track->outbuf);
5087 d = mixer->mixsample;
5088
5089 /*
5090 * Apply track volume with double-sized integer and perform
5091 * additive synthesis.
5092 *
5093 * XXX If you limit the track volume to 1.0 or less (<= 256),
5094 * it would be better to do this in the track conversion stage
5095 * rather than here. However, if you accept the volume to
5096 * be greater than 1.0 (> 256), it's better to do it here.
5097 * Because the operation here is done by double-sized integer.
5098 */
5099 sample_count = count * mixer->mixfmt.channels;
5100 if (mixed == 0) {
5101 /* If this is the first track, assignment can be used. */
5102 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5103 if (track->volume != 256) {
5104 for (i = 0; i < sample_count; i++) {
5105 aint2_t v;
5106 v = *s++;
5107 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5108 }
5109 } else
5110 #endif
5111 {
5112 for (i = 0; i < sample_count; i++) {
5113 *d++ = ((aint2_t)*s++);
5114 }
5115 }
5116 /* Fill silence if the first track is not filled. */
5117 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5118 *d++ = 0;
5119 } else {
5120 /* If this is the second or later, add it. */
5121 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5122 if (track->volume != 256) {
5123 for (i = 0; i < sample_count; i++) {
5124 aint2_t v;
5125 v = *s++;
5126 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5127 }
5128 } else
5129 #endif
5130 {
5131 for (i = 0; i < sample_count; i++) {
5132 *d++ += ((aint2_t)*s++);
5133 }
5134 }
5135 }
5136
5137 auring_take(&track->outbuf, count);
5138 /*
5139 * The counters have to align block even if outbuf is less than
5140 * one block. XXX Is this still necessary?
5141 */
5142 remain = mixer->frames_per_block - count;
5143 if (__predict_false(remain != 0)) {
5144 auring_push(&track->outbuf, remain);
5145 auring_take(&track->outbuf, remain);
5146 }
5147
5148 /*
5149 * Update track sequence.
5150 * mixseq has previous value yet at this point.
5151 */
5152 track->seq = mixer->mixseq + 1;
5153
5154 return mixed + 1;
5155 }
5156
5157 /*
5158 * Output one block from hwbuf to HW.
5159 * Must be called with sc_intr_lock held.
5160 */
5161 static void
5162 audio_pmixer_output(struct audio_softc *sc)
5163 {
5164 audio_trackmixer_t *mixer;
5165 audio_params_t params;
5166 void *start;
5167 void *end;
5168 int blksize;
5169 int error;
5170
5171 mixer = sc->sc_pmixer;
5172 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5173 sc->sc_pbusy,
5174 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5175 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5176 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5177 mixer->hwbuf.used, mixer->frames_per_block);
5178
5179 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5180
5181 if (sc->hw_if->trigger_output) {
5182 /* trigger (at once) */
5183 if (!sc->sc_pbusy) {
5184 start = mixer->hwbuf.mem;
5185 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5186 params = format2_to_params(&mixer->hwbuf.fmt);
5187
5188 error = sc->hw_if->trigger_output(sc->hw_hdl,
5189 start, end, blksize, audio_pintr, sc, ¶ms);
5190 if (error) {
5191 device_printf(sc->sc_dev,
5192 "trigger_output failed with %d\n", error);
5193 return;
5194 }
5195 }
5196 } else {
5197 /* start (everytime) */
5198 start = auring_headptr(&mixer->hwbuf);
5199
5200 error = sc->hw_if->start_output(sc->hw_hdl,
5201 start, blksize, audio_pintr, sc);
5202 if (error) {
5203 device_printf(sc->sc_dev,
5204 "start_output failed with %d\n", error);
5205 return;
5206 }
5207 }
5208 }
5209
5210 /*
5211 * This is an interrupt handler for playback.
5212 * It is called with sc_intr_lock held.
5213 *
5214 * It is usually called from hardware interrupt. However, note that
5215 * for some drivers (e.g. uaudio) it is called from software interrupt.
5216 */
5217 static void
5218 audio_pintr(void *arg)
5219 {
5220 struct audio_softc *sc;
5221 audio_trackmixer_t *mixer;
5222
5223 sc = arg;
5224 KASSERT(mutex_owned(sc->sc_intr_lock));
5225
5226 if (sc->sc_dying)
5227 return;
5228 if (sc->sc_pbusy == false) {
5229 #if defined(DIAGNOSTIC)
5230 device_printf(sc->sc_dev, "stray interrupt\n");
5231 #endif
5232 return;
5233 }
5234
5235 mixer = sc->sc_pmixer;
5236 mixer->hw_complete_counter += mixer->frames_per_block;
5237 mixer->hwseq++;
5238
5239 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5240
5241 TRACE(4,
5242 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5243 mixer->hwseq, mixer->hw_complete_counter,
5244 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5245
5246 #if defined(AUDIO_HW_SINGLE_BUFFER)
5247 /*
5248 * Create a new block here and output it immediately.
5249 * It makes a latency lower but needs machine power.
5250 */
5251 audio_pmixer_process(sc);
5252 audio_pmixer_output(sc);
5253 #else
5254 /*
5255 * It is called when block N output is done.
5256 * Output immediately block N+1 created by the last interrupt.
5257 * And then create block N+2 for the next interrupt.
5258 * This method makes playback robust even on slower machines.
5259 * Instead the latency is increased by one block.
5260 */
5261
5262 /* At first, output ready block. */
5263 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5264 audio_pmixer_output(sc);
5265 }
5266
5267 bool later = false;
5268
5269 if (mixer->hwbuf.used < mixer->frames_per_block) {
5270 later = true;
5271 }
5272
5273 /* Then, process next block. */
5274 audio_pmixer_process(sc);
5275
5276 if (later) {
5277 audio_pmixer_output(sc);
5278 }
5279 #endif
5280
5281 /*
5282 * When this interrupt is the real hardware interrupt, disabling
5283 * preemption here is not necessary. But some drivers (e.g. uaudio)
5284 * emulate it by software interrupt, so kpreempt_disable is necessary.
5285 */
5286 kpreempt_disable();
5287 softint_schedule(mixer->sih);
5288 kpreempt_enable();
5289 }
5290
5291 /*
5292 * Starts record mixer.
5293 * Must be called only if sc_rbusy is false.
5294 * Must be called with sc_lock && sc_exlock held.
5295 * Must not be called from the interrupt context.
5296 */
5297 static void
5298 audio_rmixer_start(struct audio_softc *sc)
5299 {
5300
5301 KASSERT(mutex_owned(sc->sc_lock));
5302 KASSERT(sc->sc_exlock);
5303 KASSERT(sc->sc_rbusy == false);
5304
5305 mutex_enter(sc->sc_intr_lock);
5306
5307 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5308 audio_rmixer_input(sc);
5309 sc->sc_rbusy = true;
5310 TRACE(3, "end");
5311
5312 mutex_exit(sc->sc_intr_lock);
5313 }
5314
5315 /*
5316 * When recording with MD filter:
5317 *
5318 * hwbuf [............] NBLKHW blocks ring buffer
5319 * |
5320 * | convert from hw format
5321 * v
5322 * codecbuf [....] 1 block (ring) buffer
5323 * | |
5324 * v v
5325 * track track ...
5326 *
5327 * When recording without MD filter:
5328 *
5329 * hwbuf [............] NBLKHW blocks ring buffer
5330 * | |
5331 * v v
5332 * track track ...
5333 *
5334 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5335 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5336 */
5337
5338 /*
5339 * Distribute a recorded block to all recording tracks.
5340 */
5341 static void
5342 audio_rmixer_process(struct audio_softc *sc)
5343 {
5344 audio_trackmixer_t *mixer;
5345 audio_ring_t *mixersrc;
5346 audio_file_t *f;
5347 aint_t *p;
5348 int count;
5349 int bytes;
5350 int i;
5351
5352 mixer = sc->sc_rmixer;
5353
5354 /*
5355 * count is the number of frames to be retrieved this time.
5356 * count should be one block.
5357 */
5358 count = auring_get_contig_used(&mixer->hwbuf);
5359 count = uimin(count, mixer->frames_per_block);
5360 if (count <= 0) {
5361 TRACE(4, "count %d: too short", count);
5362 return;
5363 }
5364 bytes = frametobyte(&mixer->track_fmt, count);
5365
5366 /* Hardware driver's codec */
5367 if (mixer->codec) {
5368 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5369 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5370 mixer->codecarg.count = count;
5371 mixer->codec(&mixer->codecarg);
5372 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5373 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5374 mixersrc = &mixer->codecbuf;
5375 } else {
5376 mixersrc = &mixer->hwbuf;
5377 }
5378
5379 if (mixer->swap_endian) {
5380 /* inplace conversion */
5381 p = auring_headptr_aint(mixersrc);
5382 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5383 *p = bswap16(*p);
5384 }
5385 }
5386
5387 /* Distribute to all tracks. */
5388 SLIST_FOREACH(f, &sc->sc_files, entry) {
5389 audio_track_t *track = f->rtrack;
5390 audio_ring_t *input;
5391
5392 if (track == NULL)
5393 continue;
5394
5395 if (track->is_pause) {
5396 TRACET(4, track, "skip; paused");
5397 continue;
5398 }
5399
5400 if (audio_track_lock_tryenter(track) == false) {
5401 TRACET(4, track, "skip; in use");
5402 continue;
5403 }
5404
5405 /* If the track buffer is full, discard the oldest one? */
5406 input = track->input;
5407 if (input->capacity - input->used < mixer->frames_per_block) {
5408 int drops = mixer->frames_per_block -
5409 (input->capacity - input->used);
5410 track->dropframes += drops;
5411 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5412 drops,
5413 input->head, input->used, input->capacity);
5414 auring_take(input, drops);
5415 }
5416 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5417 "input->used=%d mixer->frames_per_block=%d",
5418 input->used, mixer->frames_per_block);
5419
5420 memcpy(auring_tailptr_aint(input),
5421 auring_headptr_aint(mixersrc),
5422 bytes);
5423 auring_push(input, count);
5424
5425 /* XXX sequence counter? */
5426
5427 audio_track_lock_exit(track);
5428 }
5429
5430 auring_take(mixersrc, count);
5431 }
5432
5433 /*
5434 * Input one block from HW to hwbuf.
5435 * Must be called with sc_intr_lock held.
5436 */
5437 static void
5438 audio_rmixer_input(struct audio_softc *sc)
5439 {
5440 audio_trackmixer_t *mixer;
5441 audio_params_t params;
5442 void *start;
5443 void *end;
5444 int blksize;
5445 int error;
5446
5447 mixer = sc->sc_rmixer;
5448 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5449
5450 if (sc->hw_if->trigger_input) {
5451 /* trigger (at once) */
5452 if (!sc->sc_rbusy) {
5453 start = mixer->hwbuf.mem;
5454 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5455 params = format2_to_params(&mixer->hwbuf.fmt);
5456
5457 error = sc->hw_if->trigger_input(sc->hw_hdl,
5458 start, end, blksize, audio_rintr, sc, ¶ms);
5459 if (error) {
5460 device_printf(sc->sc_dev,
5461 "trigger_input failed with %d\n", error);
5462 return;
5463 }
5464 }
5465 } else {
5466 /* start (everytime) */
5467 start = auring_tailptr(&mixer->hwbuf);
5468
5469 error = sc->hw_if->start_input(sc->hw_hdl,
5470 start, blksize, audio_rintr, sc);
5471 if (error) {
5472 device_printf(sc->sc_dev,
5473 "start_input failed with %d\n", error);
5474 return;
5475 }
5476 }
5477 }
5478
5479 /*
5480 * This is an interrupt handler for recording.
5481 * It is called with sc_intr_lock.
5482 *
5483 * It is usually called from hardware interrupt. However, note that
5484 * for some drivers (e.g. uaudio) it is called from software interrupt.
5485 */
5486 static void
5487 audio_rintr(void *arg)
5488 {
5489 struct audio_softc *sc;
5490 audio_trackmixer_t *mixer;
5491
5492 sc = arg;
5493 KASSERT(mutex_owned(sc->sc_intr_lock));
5494
5495 if (sc->sc_dying)
5496 return;
5497 if (sc->sc_rbusy == false) {
5498 #if defined(DIAGNOSTIC)
5499 device_printf(sc->sc_dev, "stray interrupt\n");
5500 #endif
5501 return;
5502 }
5503
5504 mixer = sc->sc_rmixer;
5505 mixer->hw_complete_counter += mixer->frames_per_block;
5506 mixer->hwseq++;
5507
5508 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5509
5510 TRACE(4,
5511 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5512 mixer->hwseq, mixer->hw_complete_counter,
5513 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5514
5515 /* Distrubute recorded block */
5516 audio_rmixer_process(sc);
5517
5518 /* Request next block */
5519 audio_rmixer_input(sc);
5520
5521 /*
5522 * When this interrupt is the real hardware interrupt, disabling
5523 * preemption here is not necessary. But some drivers (e.g. uaudio)
5524 * emulate it by software interrupt, so kpreempt_disable is necessary.
5525 */
5526 kpreempt_disable();
5527 softint_schedule(mixer->sih);
5528 kpreempt_enable();
5529 }
5530
5531 /*
5532 * Halts playback mixer.
5533 * This function also clears related parameters, so call this function
5534 * instead of calling halt_output directly.
5535 * Must be called only if sc_pbusy is true.
5536 * Must be called with sc_lock && sc_exlock held.
5537 */
5538 static int
5539 audio_pmixer_halt(struct audio_softc *sc)
5540 {
5541 int error;
5542
5543 TRACE(2, "");
5544 KASSERT(mutex_owned(sc->sc_lock));
5545 KASSERT(sc->sc_exlock);
5546
5547 mutex_enter(sc->sc_intr_lock);
5548 error = sc->hw_if->halt_output(sc->hw_hdl);
5549
5550 /* Halts anyway even if some error has occurred. */
5551 sc->sc_pbusy = false;
5552 sc->sc_pmixer->hwbuf.head = 0;
5553 sc->sc_pmixer->hwbuf.used = 0;
5554 sc->sc_pmixer->mixseq = 0;
5555 sc->sc_pmixer->hwseq = 0;
5556 mutex_exit(sc->sc_intr_lock);
5557
5558 return error;
5559 }
5560
5561 /*
5562 * Halts recording mixer.
5563 * This function also clears related parameters, so call this function
5564 * instead of calling halt_input directly.
5565 * Must be called only if sc_rbusy is true.
5566 * Must be called with sc_lock && sc_exlock held.
5567 */
5568 static int
5569 audio_rmixer_halt(struct audio_softc *sc)
5570 {
5571 int error;
5572
5573 TRACE(2, "");
5574 KASSERT(mutex_owned(sc->sc_lock));
5575 KASSERT(sc->sc_exlock);
5576
5577 mutex_enter(sc->sc_intr_lock);
5578 error = sc->hw_if->halt_input(sc->hw_hdl);
5579
5580 /* Halts anyway even if some error has occurred. */
5581 sc->sc_rbusy = false;
5582 sc->sc_rmixer->hwbuf.head = 0;
5583 sc->sc_rmixer->hwbuf.used = 0;
5584 sc->sc_rmixer->mixseq = 0;
5585 sc->sc_rmixer->hwseq = 0;
5586 mutex_exit(sc->sc_intr_lock);
5587
5588 return error;
5589 }
5590
5591 /*
5592 * Flush this track.
5593 * Halts all operations, clears all buffers, reset error counters.
5594 * XXX I'm not sure...
5595 */
5596 static void
5597 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5598 {
5599
5600 KASSERT(track);
5601 TRACET(3, track, "clear");
5602
5603 audio_track_lock_enter(track);
5604
5605 track->usrbuf.used = 0;
5606 /* Clear all internal parameters. */
5607 if (track->codec.filter) {
5608 track->codec.srcbuf.used = 0;
5609 track->codec.srcbuf.head = 0;
5610 }
5611 if (track->chvol.filter) {
5612 track->chvol.srcbuf.used = 0;
5613 track->chvol.srcbuf.head = 0;
5614 }
5615 if (track->chmix.filter) {
5616 track->chmix.srcbuf.used = 0;
5617 track->chmix.srcbuf.head = 0;
5618 }
5619 if (track->freq.filter) {
5620 track->freq.srcbuf.used = 0;
5621 track->freq.srcbuf.head = 0;
5622 if (track->freq_step < 65536)
5623 track->freq_current = 65536;
5624 else
5625 track->freq_current = 0;
5626 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5627 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5628 }
5629 /* Clear buffer, then operation halts naturally. */
5630 track->outbuf.used = 0;
5631
5632 /* Clear counters. */
5633 track->dropframes = 0;
5634
5635 audio_track_lock_exit(track);
5636 }
5637
5638 /*
5639 * Drain the track.
5640 * track must be present and for playback.
5641 * If successful, it returns 0. Otherwise returns errno.
5642 * Must be called with sc_lock held.
5643 */
5644 static int
5645 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5646 {
5647 audio_trackmixer_t *mixer;
5648 int done;
5649 int error;
5650
5651 KASSERT(track);
5652 TRACET(3, track, "start");
5653 mixer = track->mixer;
5654 KASSERT(mutex_owned(sc->sc_lock));
5655
5656 /* Ignore them if pause. */
5657 if (track->is_pause) {
5658 TRACET(3, track, "pause -> clear");
5659 track->pstate = AUDIO_STATE_CLEAR;
5660 }
5661 /* Terminate early here if there is no data in the track. */
5662 if (track->pstate == AUDIO_STATE_CLEAR) {
5663 TRACET(3, track, "no need to drain");
5664 return 0;
5665 }
5666 track->pstate = AUDIO_STATE_DRAINING;
5667
5668 for (;;) {
5669 /* I want to display it before condition evaluation. */
5670 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5671 (int)curproc->p_pid, (int)curlwp->l_lid,
5672 (int)track->seq, (int)mixer->hwseq,
5673 track->outbuf.head, track->outbuf.used,
5674 track->outbuf.capacity);
5675
5676 /* Condition to terminate */
5677 audio_track_lock_enter(track);
5678 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5679 track->outbuf.used == 0 &&
5680 track->seq <= mixer->hwseq);
5681 audio_track_lock_exit(track);
5682 if (done)
5683 break;
5684
5685 TRACET(3, track, "sleep");
5686 error = audio_track_waitio(sc, track);
5687 if (error)
5688 return error;
5689
5690 /* XXX call audio_track_play here ? */
5691 }
5692
5693 track->pstate = AUDIO_STATE_CLEAR;
5694 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5695 (int)track->inputcounter, (int)track->outputcounter);
5696 return 0;
5697 }
5698
5699 /*
5700 * Send signal to process.
5701 * This is intended to be called only from audio_softintr_{rd,wr}.
5702 * Must be called with sc_lock && sc_intr_lock held.
5703 */
5704 static inline void
5705 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
5706 {
5707 proc_t *p;
5708
5709 KASSERT(mutex_owned(sc->sc_lock));
5710 KASSERT(mutex_owned(sc->sc_intr_lock));
5711 KASSERT(pid != 0);
5712
5713 /*
5714 * psignal() must be called without spin lock held.
5715 * So leave intr_lock temporarily here.
5716 */
5717 mutex_exit(sc->sc_intr_lock);
5718
5719 mutex_enter(proc_lock);
5720 p = proc_find(pid);
5721 if (p)
5722 psignal(p, signum);
5723 mutex_exit(proc_lock);
5724
5725 /* Enter intr_lock again */
5726 mutex_enter(sc->sc_intr_lock);
5727 }
5728
5729 /*
5730 * This is software interrupt handler for record.
5731 * It is called from recording hardware interrupt everytime.
5732 * It does:
5733 * - Deliver SIGIO for all async processes.
5734 * - Notify to audio_read() that data has arrived.
5735 * - selnotify() for select/poll-ing processes.
5736 */
5737 /*
5738 * XXX If a process issues FIOASYNC between hardware interrupt and
5739 * software interrupt, (stray) SIGIO will be sent to the process
5740 * despite the fact that it has not receive recorded data yet.
5741 */
5742 static void
5743 audio_softintr_rd(void *cookie)
5744 {
5745 struct audio_softc *sc = cookie;
5746 audio_file_t *f;
5747 pid_t pid;
5748
5749 mutex_enter(sc->sc_lock);
5750 mutex_enter(sc->sc_intr_lock);
5751
5752 SLIST_FOREACH(f, &sc->sc_files, entry) {
5753 audio_track_t *track = f->rtrack;
5754
5755 if (track == NULL)
5756 continue;
5757
5758 TRACET(4, track, "broadcast; inp=%d/%d/%d",
5759 track->input->head,
5760 track->input->used,
5761 track->input->capacity);
5762
5763 pid = f->async_audio;
5764 if (pid != 0) {
5765 TRACEF(4, f, "sending SIGIO %d", pid);
5766 audio_psignal(sc, pid, SIGIO);
5767 }
5768 }
5769 mutex_exit(sc->sc_intr_lock);
5770
5771 /* Notify that data has arrived. */
5772 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
5773 KNOTE(&sc->sc_rsel.sel_klist, 0);
5774 cv_broadcast(&sc->sc_rmixer->outcv);
5775
5776 mutex_exit(sc->sc_lock);
5777 }
5778
5779 /*
5780 * This is software interrupt handler for playback.
5781 * It is called from playback hardware interrupt everytime.
5782 * It does:
5783 * - Deliver SIGIO for all async and writable (used < lowat) processes.
5784 * - Notify to audio_write() that outbuf block available.
5785 * - selnotify() for select/poll-ing processes if there are any writable
5786 * (used < lowat) processes. Checking each descriptor will be done by
5787 * filt_audiowrite_event().
5788 */
5789 static void
5790 audio_softintr_wr(void *cookie)
5791 {
5792 struct audio_softc *sc = cookie;
5793 audio_file_t *f;
5794 bool found;
5795 pid_t pid;
5796
5797 TRACE(4, "called");
5798 found = false;
5799
5800 mutex_enter(sc->sc_lock);
5801 mutex_enter(sc->sc_intr_lock);
5802
5803 SLIST_FOREACH(f, &sc->sc_files, entry) {
5804 audio_track_t *track = f->ptrack;
5805
5806 if (track == NULL)
5807 continue;
5808
5809 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
5810 (int)track->seq,
5811 track->outbuf.head,
5812 track->outbuf.used,
5813 track->outbuf.capacity);
5814
5815 /*
5816 * Send a signal if the process is async mode and
5817 * used is lower than lowat.
5818 */
5819 if (track->usrbuf.used <= track->usrbuf_usedlow &&
5820 !track->is_pause) {
5821 /* For selnotify */
5822 found = true;
5823 /* For SIGIO */
5824 pid = f->async_audio;
5825 if (pid != 0) {
5826 TRACEF(4, f, "sending SIGIO %d", pid);
5827 audio_psignal(sc, pid, SIGIO);
5828 }
5829 }
5830 }
5831 mutex_exit(sc->sc_intr_lock);
5832
5833 /*
5834 * Notify for select/poll when someone become writable.
5835 * It needs sc_lock (and not sc_intr_lock).
5836 */
5837 if (found) {
5838 TRACE(4, "selnotify");
5839 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
5840 KNOTE(&sc->sc_wsel.sel_klist, 0);
5841 }
5842
5843 /* Notify to audio_write() that outbuf available. */
5844 cv_broadcast(&sc->sc_pmixer->outcv);
5845
5846 mutex_exit(sc->sc_lock);
5847 }
5848
5849 /*
5850 * Check (and convert) the format *p came from userland.
5851 * If successful, it writes back the converted format to *p if necessary
5852 * and returns 0. Otherwise returns errno (*p may change even this case).
5853 */
5854 static int
5855 audio_check_params(audio_format2_t *p)
5856 {
5857
5858 /* Convert obsoleted AUDIO_ENCODING_PCM* */
5859 /* XXX Is this conversion right? */
5860 if (p->encoding == AUDIO_ENCODING_PCM16) {
5861 if (p->precision == 8)
5862 p->encoding = AUDIO_ENCODING_ULINEAR;
5863 else
5864 p->encoding = AUDIO_ENCODING_SLINEAR;
5865 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
5866 if (p->precision == 8)
5867 p->encoding = AUDIO_ENCODING_ULINEAR;
5868 else
5869 return EINVAL;
5870 }
5871
5872 /*
5873 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
5874 * suffix.
5875 */
5876 if (p->encoding == AUDIO_ENCODING_SLINEAR)
5877 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5878 if (p->encoding == AUDIO_ENCODING_ULINEAR)
5879 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5880
5881 switch (p->encoding) {
5882 case AUDIO_ENCODING_ULAW:
5883 case AUDIO_ENCODING_ALAW:
5884 if (p->precision != 8)
5885 return EINVAL;
5886 break;
5887 case AUDIO_ENCODING_ADPCM:
5888 if (p->precision != 4 && p->precision != 8)
5889 return EINVAL;
5890 break;
5891 case AUDIO_ENCODING_SLINEAR_LE:
5892 case AUDIO_ENCODING_SLINEAR_BE:
5893 case AUDIO_ENCODING_ULINEAR_LE:
5894 case AUDIO_ENCODING_ULINEAR_BE:
5895 if (p->precision != 8 && p->precision != 16 &&
5896 p->precision != 24 && p->precision != 32)
5897 return EINVAL;
5898
5899 /* 8bit format does not have endianness. */
5900 if (p->precision == 8) {
5901 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
5902 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5903 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
5904 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5905 }
5906
5907 if (p->precision > p->stride)
5908 return EINVAL;
5909 break;
5910 case AUDIO_ENCODING_MPEG_L1_STREAM:
5911 case AUDIO_ENCODING_MPEG_L1_PACKETS:
5912 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
5913 case AUDIO_ENCODING_MPEG_L2_STREAM:
5914 case AUDIO_ENCODING_MPEG_L2_PACKETS:
5915 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
5916 case AUDIO_ENCODING_AC3:
5917 break;
5918 default:
5919 return EINVAL;
5920 }
5921
5922 /* sanity check # of channels*/
5923 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
5924 return EINVAL;
5925
5926 return 0;
5927 }
5928
5929 /*
5930 * Initialize playback and record mixers.
5931 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
5932 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
5933 * the filter registration information. These four must not be NULL.
5934 * If successful returns 0. Otherwise returns errno.
5935 * Must be called with sc_lock held.
5936 * Must not be called if there are any tracks.
5937 * Caller should check that the initialization succeed by whether
5938 * sc_[pr]mixer is not NULL.
5939 */
5940 static int
5941 audio_mixers_init(struct audio_softc *sc, int mode,
5942 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
5943 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
5944 {
5945 int error;
5946
5947 KASSERT(phwfmt != NULL);
5948 KASSERT(rhwfmt != NULL);
5949 KASSERT(pfil != NULL);
5950 KASSERT(rfil != NULL);
5951 KASSERT(mutex_owned(sc->sc_lock));
5952
5953 if ((mode & AUMODE_PLAY)) {
5954 if (sc->sc_pmixer == NULL) {
5955 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
5956 KM_SLEEP);
5957 } else {
5958 /* destroy() doesn't free memory. */
5959 audio_mixer_destroy(sc, sc->sc_pmixer);
5960 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
5961 }
5962 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
5963 if (error) {
5964 device_printf(sc->sc_dev,
5965 "configuring playback mode failed with %d\n",
5966 error);
5967 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
5968 sc->sc_pmixer = NULL;
5969 return error;
5970 }
5971 }
5972 if ((mode & AUMODE_RECORD)) {
5973 if (sc->sc_rmixer == NULL) {
5974 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
5975 KM_SLEEP);
5976 } else {
5977 /* destroy() doesn't free memory. */
5978 audio_mixer_destroy(sc, sc->sc_rmixer);
5979 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
5980 }
5981 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
5982 if (error) {
5983 device_printf(sc->sc_dev,
5984 "configuring record mode failed with %d\n",
5985 error);
5986 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
5987 sc->sc_rmixer = NULL;
5988 return error;
5989 }
5990 }
5991
5992 return 0;
5993 }
5994
5995 /*
5996 * Select a frequency.
5997 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
5998 * XXX Better algorithm?
5999 */
6000 static int
6001 audio_select_freq(const struct audio_format *fmt)
6002 {
6003 int freq;
6004 int high;
6005 int low;
6006 int j;
6007
6008 if (fmt->frequency_type == 0) {
6009 low = fmt->frequency[0];
6010 high = fmt->frequency[1];
6011 freq = 48000;
6012 if (low <= freq && freq <= high) {
6013 return freq;
6014 }
6015 freq = 44100;
6016 if (low <= freq && freq <= high) {
6017 return freq;
6018 }
6019 return high;
6020 } else {
6021 for (j = 0; j < fmt->frequency_type; j++) {
6022 if (fmt->frequency[j] == 48000) {
6023 return fmt->frequency[j];
6024 }
6025 }
6026 high = 0;
6027 for (j = 0; j < fmt->frequency_type; j++) {
6028 if (fmt->frequency[j] == 44100) {
6029 return fmt->frequency[j];
6030 }
6031 if (fmt->frequency[j] > high) {
6032 high = fmt->frequency[j];
6033 }
6034 }
6035 return high;
6036 }
6037 }
6038
6039 /*
6040 * Probe playback and/or recording format (depending on *modep).
6041 * *modep is an in-out parameter. It indicates the direction to configure
6042 * as an argument, and the direction configured is written back as out
6043 * parameter.
6044 * If successful, probed hardware format is stored into *phwfmt, *rhwfmt
6045 * depending on *modep, and return 0. Otherwise it returns errno.
6046 * Must be called with sc_lock held.
6047 */
6048 static int
6049 audio_hw_probe(struct audio_softc *sc, int is_indep, int *modep,
6050 audio_format2_t *phwfmt, audio_format2_t *rhwfmt)
6051 {
6052 audio_format2_t fmt;
6053 int mode;
6054 int error = 0;
6055
6056 KASSERT(mutex_owned(sc->sc_lock));
6057
6058 mode = *modep;
6059 KASSERTMSG((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0, "mode=0x%x", mode);
6060
6061 if (is_indep) {
6062 int errorp = 0, errorr = 0;
6063
6064 /* On independent devices, probe separately. */
6065 if ((mode & AUMODE_PLAY) != 0) {
6066 errorp = audio_hw_probe_fmt(sc, phwfmt, AUMODE_PLAY);
6067 if (errorp)
6068 mode &= ~AUMODE_PLAY;
6069 }
6070 if ((mode & AUMODE_RECORD) != 0) {
6071 errorr = audio_hw_probe_fmt(sc, rhwfmt, AUMODE_RECORD);
6072 if (errorr)
6073 mode &= ~AUMODE_RECORD;
6074 }
6075
6076 /* Return error if both play and record probes failed. */
6077 if (errorp && errorr)
6078 error = errorp;
6079 } else {
6080 /* On non independent devices, probe simultaneously. */
6081 error = audio_hw_probe_fmt(sc, &fmt, mode);
6082 if (error) {
6083 mode = 0;
6084 } else {
6085 *phwfmt = fmt;
6086 *rhwfmt = fmt;
6087 }
6088 }
6089
6090 *modep = mode;
6091 return error;
6092 }
6093
6094 /*
6095 * Choose the most preferred hardware format.
6096 * If successful, it will store the chosen format into *cand and return 0.
6097 * Otherwise, return errno.
6098 * Must be called with sc_lock held.
6099 */
6100 static int
6101 audio_hw_probe_fmt(struct audio_softc *sc, audio_format2_t *cand, int mode)
6102 {
6103 audio_format_query_t query;
6104 int cand_score;
6105 int score;
6106 int i;
6107 int error;
6108
6109 KASSERT(mutex_owned(sc->sc_lock));
6110
6111 /*
6112 * Score each formats and choose the highest one.
6113 *
6114 * +---- priority(0-3)
6115 * |+--- encoding/precision
6116 * ||+-- channels
6117 * score = 0x000000PEC
6118 */
6119
6120 cand_score = 0;
6121 for (i = 0; ; i++) {
6122 memset(&query, 0, sizeof(query));
6123 query.index = i;
6124
6125 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6126 if (error == EINVAL)
6127 break;
6128 if (error)
6129 return error;
6130
6131 #if defined(AUDIO_DEBUG)
6132 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6133 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6134 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6135 query.fmt.priority,
6136 audio_encoding_name(query.fmt.encoding),
6137 query.fmt.validbits,
6138 query.fmt.precision,
6139 query.fmt.channels);
6140 if (query.fmt.frequency_type == 0) {
6141 DPRINTF(1, "{%d-%d",
6142 query.fmt.frequency[0], query.fmt.frequency[1]);
6143 } else {
6144 int j;
6145 for (j = 0; j < query.fmt.frequency_type; j++) {
6146 DPRINTF(1, "%c%d",
6147 (j == 0) ? '{' : ',',
6148 query.fmt.frequency[j]);
6149 }
6150 }
6151 DPRINTF(1, "}\n");
6152 #endif
6153
6154 if ((query.fmt.mode & mode) == 0) {
6155 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6156 mode);
6157 continue;
6158 }
6159
6160 if (query.fmt.priority < 0) {
6161 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6162 continue;
6163 }
6164
6165 /* Score */
6166 score = (query.fmt.priority & 3) * 0x100;
6167 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6168 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6169 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6170 score += 0x20;
6171 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6172 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6173 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6174 score += 0x10;
6175 }
6176 score += query.fmt.channels;
6177
6178 if (score < cand_score) {
6179 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6180 score, cand_score);
6181 continue;
6182 }
6183
6184 /* Update candidate */
6185 cand_score = score;
6186 cand->encoding = query.fmt.encoding;
6187 cand->precision = query.fmt.validbits;
6188 cand->stride = query.fmt.precision;
6189 cand->channels = query.fmt.channels;
6190 cand->sample_rate = audio_select_freq(&query.fmt);
6191 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6192 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6193 cand_score, query.fmt.priority,
6194 audio_encoding_name(query.fmt.encoding),
6195 cand->precision, cand->stride,
6196 cand->channels, cand->sample_rate);
6197 }
6198
6199 if (cand_score == 0) {
6200 DPRINTF(1, "%s no fmt\n", __func__);
6201 return ENXIO;
6202 }
6203 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6204 audio_encoding_name(cand->encoding),
6205 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6206 return 0;
6207 }
6208
6209 /*
6210 * Validate fmt with query_format.
6211 * If fmt is included in the result of query_format, returns 0.
6212 * Otherwise returns EINVAL.
6213 * Must be called with sc_lock held.
6214 */
6215 static int
6216 audio_hw_validate_format(struct audio_softc *sc, int mode,
6217 const audio_format2_t *fmt)
6218 {
6219 audio_format_query_t query;
6220 struct audio_format *q;
6221 int index;
6222 int error;
6223 int j;
6224
6225 KASSERT(mutex_owned(sc->sc_lock));
6226
6227 for (index = 0; ; index++) {
6228 query.index = index;
6229 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6230 if (error == EINVAL)
6231 break;
6232 if (error)
6233 return error;
6234
6235 q = &query.fmt;
6236 /*
6237 * Note that fmt is audio_format2_t (precision/stride) but
6238 * q is audio_format_t (validbits/precision).
6239 */
6240 if ((q->mode & mode) == 0) {
6241 continue;
6242 }
6243 if (fmt->encoding != q->encoding) {
6244 continue;
6245 }
6246 if (fmt->precision != q->validbits) {
6247 continue;
6248 }
6249 if (fmt->stride != q->precision) {
6250 continue;
6251 }
6252 if (fmt->channels != q->channels) {
6253 continue;
6254 }
6255 if (q->frequency_type == 0) {
6256 if (fmt->sample_rate < q->frequency[0] ||
6257 fmt->sample_rate > q->frequency[1]) {
6258 continue;
6259 }
6260 } else {
6261 for (j = 0; j < q->frequency_type; j++) {
6262 if (fmt->sample_rate == q->frequency[j])
6263 break;
6264 }
6265 if (j == query.fmt.frequency_type) {
6266 continue;
6267 }
6268 }
6269
6270 /* Matched. */
6271 return 0;
6272 }
6273
6274 return EINVAL;
6275 }
6276
6277 /*
6278 * Set track mixer's format depending on ai->mode.
6279 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6280 * with ai.play.*.
6281 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6282 * with ai.record.*.
6283 * All other fields in ai are ignored.
6284 * If successful returns 0. Otherwise returns errno.
6285 * This function does not roll back even if it fails.
6286 * Must be called with sc_lock held.
6287 */
6288 static int
6289 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6290 {
6291 audio_format2_t phwfmt;
6292 audio_format2_t rhwfmt;
6293 audio_filter_reg_t pfil;
6294 audio_filter_reg_t rfil;
6295 int mode;
6296 int error;
6297
6298 KASSERT(mutex_owned(sc->sc_lock));
6299
6300 /*
6301 * Even when setting either one of playback and recording,
6302 * both must be halted.
6303 */
6304 if (sc->sc_popens + sc->sc_ropens > 0)
6305 return EBUSY;
6306
6307 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6308 return ENOTTY;
6309
6310 mode = ai->mode;
6311 if ((mode & AUMODE_PLAY)) {
6312 phwfmt.encoding = ai->play.encoding;
6313 phwfmt.precision = ai->play.precision;
6314 phwfmt.stride = ai->play.precision;
6315 phwfmt.channels = ai->play.channels;
6316 phwfmt.sample_rate = ai->play.sample_rate;
6317 }
6318 if ((mode & AUMODE_RECORD)) {
6319 rhwfmt.encoding = ai->record.encoding;
6320 rhwfmt.precision = ai->record.precision;
6321 rhwfmt.stride = ai->record.precision;
6322 rhwfmt.channels = ai->record.channels;
6323 rhwfmt.sample_rate = ai->record.sample_rate;
6324 }
6325
6326 /* On non-independent devices, use the same format for both. */
6327 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6328 if (mode == AUMODE_RECORD) {
6329 phwfmt = rhwfmt;
6330 } else {
6331 rhwfmt = phwfmt;
6332 }
6333 mode = AUMODE_PLAY | AUMODE_RECORD;
6334 }
6335
6336 /* Then, unset the direction not exist on the hardware. */
6337 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6338 mode &= ~AUMODE_PLAY;
6339 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6340 mode &= ~AUMODE_RECORD;
6341
6342 /* debug */
6343 if ((mode & AUMODE_PLAY)) {
6344 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6345 audio_encoding_name(phwfmt.encoding),
6346 phwfmt.precision,
6347 phwfmt.stride,
6348 phwfmt.channels,
6349 phwfmt.sample_rate);
6350 }
6351 if ((mode & AUMODE_RECORD)) {
6352 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6353 audio_encoding_name(rhwfmt.encoding),
6354 rhwfmt.precision,
6355 rhwfmt.stride,
6356 rhwfmt.channels,
6357 rhwfmt.sample_rate);
6358 }
6359
6360 /* Check the format */
6361 if ((mode & AUMODE_PLAY)) {
6362 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6363 TRACE(1, "invalid format");
6364 return EINVAL;
6365 }
6366 }
6367 if ((mode & AUMODE_RECORD)) {
6368 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6369 TRACE(1, "invalid format");
6370 return EINVAL;
6371 }
6372 }
6373
6374 /* Configure the mixers. */
6375 memset(&pfil, 0, sizeof(pfil));
6376 memset(&rfil, 0, sizeof(rfil));
6377 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6378 if (error)
6379 return error;
6380
6381 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6382 if (error)
6383 return error;
6384
6385 return 0;
6386 }
6387
6388 /*
6389 * Store current mixers format into *ai.
6390 */
6391 static void
6392 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6393 {
6394 /*
6395 * There is no stride information in audio_info but it doesn't matter.
6396 * trackmixer always treats stride and precision as the same.
6397 */
6398 AUDIO_INITINFO(ai);
6399 ai->mode = 0;
6400 if (sc->sc_pmixer) {
6401 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6402 ai->play.encoding = fmt->encoding;
6403 ai->play.precision = fmt->precision;
6404 ai->play.channels = fmt->channels;
6405 ai->play.sample_rate = fmt->sample_rate;
6406 ai->mode |= AUMODE_PLAY;
6407 }
6408 if (sc->sc_rmixer) {
6409 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6410 ai->record.encoding = fmt->encoding;
6411 ai->record.precision = fmt->precision;
6412 ai->record.channels = fmt->channels;
6413 ai->record.sample_rate = fmt->sample_rate;
6414 ai->mode |= AUMODE_RECORD;
6415 }
6416 }
6417
6418 /*
6419 * audio_info details:
6420 *
6421 * ai.{play,record}.sample_rate (R/W)
6422 * ai.{play,record}.encoding (R/W)
6423 * ai.{play,record}.precision (R/W)
6424 * ai.{play,record}.channels (R/W)
6425 * These specify the playback or recording format.
6426 * Ignore members within an inactive track.
6427 *
6428 * ai.mode (R/W)
6429 * It specifies the playback or recording mode, AUMODE_*.
6430 * Currently, a mode change operation by ai.mode after opening is
6431 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6432 * However, it's possible to get or to set for backward compatibility.
6433 *
6434 * ai.{hiwat,lowat} (R/W)
6435 * These specify the high water mark and low water mark for playback
6436 * track. The unit is block.
6437 *
6438 * ai.{play,record}.gain (R/W)
6439 * It specifies the HW mixer volume in 0-255.
6440 * It is historical reason that the gain is connected to HW mixer.
6441 *
6442 * ai.{play,record}.balance (R/W)
6443 * It specifies the left-right balance of HW mixer in 0-64.
6444 * 32 means the center.
6445 * It is historical reason that the balance is connected to HW mixer.
6446 *
6447 * ai.{play,record}.port (R/W)
6448 * It specifies the input/output port of HW mixer.
6449 *
6450 * ai.monitor_gain (R/W)
6451 * It specifies the recording monitor gain(?) of HW mixer.
6452 *
6453 * ai.{play,record}.pause (R/W)
6454 * Non-zero means the track is paused.
6455 *
6456 * ai.play.seek (R/-)
6457 * It indicates the number of bytes written but not processed.
6458 * ai.record.seek (R/-)
6459 * It indicates the number of bytes to be able to read.
6460 *
6461 * ai.{play,record}.avail_ports (R/-)
6462 * Mixer info.
6463 *
6464 * ai.{play,record}.buffer_size (R/-)
6465 * It indicates the buffer size in bytes. Internally it means usrbuf.
6466 *
6467 * ai.{play,record}.samples (R/-)
6468 * It indicates the total number of bytes played or recorded.
6469 *
6470 * ai.{play,record}.eof (R/-)
6471 * It indicates the number of times reached EOF(?).
6472 *
6473 * ai.{play,record}.error (R/-)
6474 * Non-zero indicates overflow/underflow has occured.
6475 *
6476 * ai.{play,record}.waiting (R/-)
6477 * Non-zero indicates that other process waits to open.
6478 * It will never happen anymore.
6479 *
6480 * ai.{play,record}.open (R/-)
6481 * Non-zero indicates the direction is opened by this process(?).
6482 * XXX Is this better to indicate that "the device is opened by
6483 * at least one process"?
6484 *
6485 * ai.{play,record}.active (R/-)
6486 * Non-zero indicates that I/O is currently active.
6487 *
6488 * ai.blocksize (R/-)
6489 * It indicates the block size in bytes.
6490 * XXX The blocksize of playback and recording may be different.
6491 */
6492
6493 /*
6494 * Pause consideration:
6495 *
6496 * The introduction of these two behavior makes pause/unpause operation
6497 * simple.
6498 * 1. The first read/write access of the first track makes mixer start.
6499 * 2. A pause of the last track doesn't make mixer stop.
6500 */
6501
6502 /*
6503 * Set both track's parameters within a file depending on ai.
6504 * Update sc_sound_[pr]* if set.
6505 * Must be called with sc_lock and sc_exlock held.
6506 */
6507 static int
6508 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6509 const struct audio_info *ai)
6510 {
6511 const struct audio_prinfo *pi;
6512 const struct audio_prinfo *ri;
6513 audio_track_t *ptrack;
6514 audio_track_t *rtrack;
6515 audio_format2_t pfmt;
6516 audio_format2_t rfmt;
6517 int pchanges;
6518 int rchanges;
6519 int mode;
6520 struct audio_info saved_ai;
6521 audio_format2_t saved_pfmt;
6522 audio_format2_t saved_rfmt;
6523 int error;
6524
6525 KASSERT(mutex_owned(sc->sc_lock));
6526 KASSERT(sc->sc_exlock);
6527
6528 pi = &ai->play;
6529 ri = &ai->record;
6530 pchanges = 0;
6531 rchanges = 0;
6532
6533 ptrack = file->ptrack;
6534 rtrack = file->rtrack;
6535
6536 #if defined(AUDIO_DEBUG)
6537 if (audiodebug >= 2) {
6538 char buf[256];
6539 char p[64];
6540 int buflen;
6541 int plen;
6542 #define SPRINTF(var, fmt...) do { \
6543 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6544 } while (0)
6545
6546 buflen = 0;
6547 plen = 0;
6548 if (SPECIFIED(pi->encoding))
6549 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6550 if (SPECIFIED(pi->precision))
6551 SPRINTF(p, "/%dbit", pi->precision);
6552 if (SPECIFIED(pi->channels))
6553 SPRINTF(p, "/%dch", pi->channels);
6554 if (SPECIFIED(pi->sample_rate))
6555 SPRINTF(p, "/%dHz", pi->sample_rate);
6556 if (plen > 0)
6557 SPRINTF(buf, ",play.param=%s", p + 1);
6558
6559 plen = 0;
6560 if (SPECIFIED(ri->encoding))
6561 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6562 if (SPECIFIED(ri->precision))
6563 SPRINTF(p, "/%dbit", ri->precision);
6564 if (SPECIFIED(ri->channels))
6565 SPRINTF(p, "/%dch", ri->channels);
6566 if (SPECIFIED(ri->sample_rate))
6567 SPRINTF(p, "/%dHz", ri->sample_rate);
6568 if (plen > 0)
6569 SPRINTF(buf, ",record.param=%s", p + 1);
6570
6571 if (SPECIFIED(ai->mode))
6572 SPRINTF(buf, ",mode=%d", ai->mode);
6573 if (SPECIFIED(ai->hiwat))
6574 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6575 if (SPECIFIED(ai->lowat))
6576 SPRINTF(buf, ",lowat=%d", ai->lowat);
6577 if (SPECIFIED(ai->play.gain))
6578 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6579 if (SPECIFIED(ai->record.gain))
6580 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6581 if (SPECIFIED_CH(ai->play.balance))
6582 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6583 if (SPECIFIED_CH(ai->record.balance))
6584 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6585 if (SPECIFIED(ai->play.port))
6586 SPRINTF(buf, ",play.port=%d", ai->play.port);
6587 if (SPECIFIED(ai->record.port))
6588 SPRINTF(buf, ",record.port=%d", ai->record.port);
6589 if (SPECIFIED(ai->monitor_gain))
6590 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6591 if (SPECIFIED_CH(ai->play.pause))
6592 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6593 if (SPECIFIED_CH(ai->record.pause))
6594 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6595
6596 if (buflen > 0)
6597 TRACE(2, "specified %s", buf + 1);
6598 }
6599 #endif
6600
6601 AUDIO_INITINFO(&saved_ai);
6602 /* XXX shut up gcc */
6603 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6604 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6605
6606 /* Set default value and save current parameters */
6607 if (ptrack) {
6608 pfmt = ptrack->usrbuf.fmt;
6609 saved_pfmt = ptrack->usrbuf.fmt;
6610 saved_ai.play.pause = ptrack->is_pause;
6611 }
6612 if (rtrack) {
6613 rfmt = rtrack->usrbuf.fmt;
6614 saved_rfmt = rtrack->usrbuf.fmt;
6615 saved_ai.record.pause = rtrack->is_pause;
6616 }
6617 saved_ai.mode = file->mode;
6618
6619 /* Overwrite if specified */
6620 mode = file->mode;
6621 if (SPECIFIED(ai->mode)) {
6622 /*
6623 * Setting ai->mode no longer does anything because it's
6624 * prohibited to change playback/recording mode after open
6625 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6626 * keeps the state of AUMODE_PLAY_ALL itself for backward
6627 * compatibility.
6628 * In the internal, only file->mode has the state of
6629 * AUMODE_PLAY_ALL flag and track->mode in both track does
6630 * not have.
6631 */
6632 if ((file->mode & AUMODE_PLAY)) {
6633 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6634 | (ai->mode & AUMODE_PLAY_ALL);
6635 }
6636 }
6637
6638 if (ptrack) {
6639 pchanges = audio_track_setinfo_check(&pfmt, pi,
6640 &sc->sc_pmixer->hwbuf.fmt);
6641 if (pchanges == -1) {
6642 #if defined(AUDIO_DEBUG)
6643 char fmtbuf[64];
6644 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6645 TRACET(1, ptrack, "check play.params failed: %s",
6646 fmtbuf);
6647 #endif
6648 return EINVAL;
6649 }
6650 if (SPECIFIED(ai->mode))
6651 pchanges = 1;
6652 }
6653 if (rtrack) {
6654 rchanges = audio_track_setinfo_check(&rfmt, ri,
6655 &sc->sc_rmixer->hwbuf.fmt);
6656 if (rchanges == -1) {
6657 #if defined(AUDIO_DEBUG)
6658 char fmtbuf[64];
6659 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6660 TRACET(1, rtrack, "check record.params failed: %s",
6661 fmtbuf);
6662 #endif
6663 return EINVAL;
6664 }
6665 if (SPECIFIED(ai->mode))
6666 rchanges = 1;
6667 }
6668
6669 /*
6670 * Even when setting either one of playback and recording,
6671 * both track must be halted.
6672 */
6673 if (pchanges || rchanges) {
6674 audio_file_clear(sc, file);
6675 #if defined(AUDIO_DEBUG)
6676 char fmtbuf[64];
6677 if (pchanges) {
6678 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6679 DPRINTF(1, "audio track#%d play mode: %s\n",
6680 ptrack->id, fmtbuf);
6681 }
6682 if (rchanges) {
6683 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6684 DPRINTF(1, "audio track#%d rec mode: %s\n",
6685 rtrack->id, fmtbuf);
6686 }
6687 #endif
6688 }
6689
6690 /* Set mixer parameters */
6691 error = audio_hw_setinfo(sc, ai, &saved_ai);
6692 if (error)
6693 goto abort1;
6694
6695 /* Set to track and update sticky parameters */
6696 error = 0;
6697 file->mode = mode;
6698 if (ptrack) {
6699 if (SPECIFIED_CH(pi->pause)) {
6700 ptrack->is_pause = pi->pause;
6701 sc->sc_sound_ppause = pi->pause;
6702 }
6703 if (pchanges) {
6704 audio_track_lock_enter(ptrack);
6705 error = audio_track_set_format(ptrack, &pfmt);
6706 audio_track_lock_exit(ptrack);
6707 if (error) {
6708 TRACET(1, ptrack, "set play.params failed");
6709 goto abort2;
6710 }
6711 sc->sc_sound_pparams = pfmt;
6712 }
6713 /* Change water marks after initializing the buffers. */
6714 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat))
6715 audio_track_setinfo_water(ptrack, ai);
6716 }
6717 if (rtrack) {
6718 if (SPECIFIED_CH(ri->pause)) {
6719 rtrack->is_pause = ri->pause;
6720 sc->sc_sound_rpause = ri->pause;
6721 }
6722 if (rchanges) {
6723 audio_track_lock_enter(rtrack);
6724 error = audio_track_set_format(rtrack, &rfmt);
6725 audio_track_lock_exit(rtrack);
6726 if (error) {
6727 TRACET(1, rtrack, "set record.params failed");
6728 goto abort3;
6729 }
6730 sc->sc_sound_rparams = rfmt;
6731 }
6732 }
6733
6734 return 0;
6735
6736 /* Rollback */
6737 abort3:
6738 if (error != ENOMEM) {
6739 rtrack->is_pause = saved_ai.record.pause;
6740 audio_track_lock_enter(rtrack);
6741 audio_track_set_format(rtrack, &saved_rfmt);
6742 audio_track_lock_exit(rtrack);
6743 }
6744 abort2:
6745 if (ptrack && error != ENOMEM) {
6746 ptrack->is_pause = saved_ai.play.pause;
6747 audio_track_lock_enter(ptrack);
6748 audio_track_set_format(ptrack, &saved_pfmt);
6749 audio_track_lock_exit(ptrack);
6750 sc->sc_sound_pparams = saved_pfmt;
6751 sc->sc_sound_ppause = saved_ai.play.pause;
6752 }
6753 file->mode = saved_ai.mode;
6754 abort1:
6755 audio_hw_setinfo(sc, &saved_ai, NULL);
6756
6757 return error;
6758 }
6759
6760 /*
6761 * Write SPECIFIED() parameters within info back to fmt.
6762 * Return value of 1 indicates that fmt is modified.
6763 * Return value of 0 indicates that fmt is not modified.
6764 * Return value of -1 indicates that error EINVAL has occurred.
6765 */
6766 static int
6767 audio_track_setinfo_check(audio_format2_t *fmt, const struct audio_prinfo *info,
6768 const audio_format2_t *hwfmt)
6769 {
6770 int changes;
6771
6772 changes = 0;
6773 if (SPECIFIED(info->sample_rate)) {
6774 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
6775 return -1;
6776 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
6777 return -1;
6778 fmt->sample_rate = info->sample_rate;
6779 changes = 1;
6780 }
6781 if (SPECIFIED(info->encoding)) {
6782 fmt->encoding = info->encoding;
6783 changes = 1;
6784 }
6785 if (SPECIFIED(info->precision)) {
6786 fmt->precision = info->precision;
6787 /* we don't have API to specify stride */
6788 fmt->stride = info->precision;
6789 changes = 1;
6790 }
6791 if (SPECIFIED(info->channels)) {
6792 /*
6793 * We can convert between monaural and stereo each other.
6794 * We can reduce than the number of channels that the hardware
6795 * supports.
6796 */
6797 if (info->channels > 2 && info->channels > hwfmt->channels)
6798 return -1;
6799 fmt->channels = info->channels;
6800 changes = 1;
6801 }
6802
6803 if (changes) {
6804 if (audio_check_params(fmt) != 0)
6805 return -1;
6806 }
6807
6808 return changes;
6809 }
6810
6811 /*
6812 * Change water marks for playback track if specfied.
6813 */
6814 static void
6815 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
6816 {
6817 u_int blks;
6818 u_int maxblks;
6819 u_int blksize;
6820
6821 KASSERT(audio_track_is_playback(track));
6822
6823 blksize = track->usrbuf_blksize;
6824 maxblks = track->usrbuf.capacity / blksize;
6825
6826 if (SPECIFIED(ai->hiwat)) {
6827 blks = ai->hiwat;
6828 if (blks > maxblks)
6829 blks = maxblks;
6830 if (blks < 2)
6831 blks = 2;
6832 track->usrbuf_usedhigh = blks * blksize;
6833 }
6834 if (SPECIFIED(ai->lowat)) {
6835 blks = ai->lowat;
6836 if (blks > maxblks - 1)
6837 blks = maxblks - 1;
6838 track->usrbuf_usedlow = blks * blksize;
6839 }
6840 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6841 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
6842 track->usrbuf_usedlow = track->usrbuf_usedhigh -
6843 blksize;
6844 }
6845 }
6846 }
6847
6848 /*
6849 * Set hardware part of *newai.
6850 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
6851 * If oldai is specified, previous parameters are stored.
6852 * This function itself does not roll back if error occurred.
6853 * Must be called with sc_lock and sc_exlock held.
6854 */
6855 static int
6856 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
6857 struct audio_info *oldai)
6858 {
6859 const struct audio_prinfo *newpi;
6860 const struct audio_prinfo *newri;
6861 struct audio_prinfo *oldpi;
6862 struct audio_prinfo *oldri;
6863 u_int pgain;
6864 u_int rgain;
6865 u_char pbalance;
6866 u_char rbalance;
6867 int error;
6868
6869 KASSERT(mutex_owned(sc->sc_lock));
6870 KASSERT(sc->sc_exlock);
6871
6872 /* XXX shut up gcc */
6873 oldpi = NULL;
6874 oldri = NULL;
6875
6876 newpi = &newai->play;
6877 newri = &newai->record;
6878 if (oldai) {
6879 oldpi = &oldai->play;
6880 oldri = &oldai->record;
6881 }
6882 error = 0;
6883
6884 /*
6885 * It looks like unnecessary to halt HW mixers to set HW mixers.
6886 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
6887 */
6888
6889 if (SPECIFIED(newpi->port)) {
6890 if (oldai)
6891 oldpi->port = au_get_port(sc, &sc->sc_outports);
6892 error = au_set_port(sc, &sc->sc_outports, newpi->port);
6893 if (error) {
6894 device_printf(sc->sc_dev,
6895 "setting play.port=%d failed with %d\n",
6896 newpi->port, error);
6897 goto abort;
6898 }
6899 }
6900 if (SPECIFIED(newri->port)) {
6901 if (oldai)
6902 oldri->port = au_get_port(sc, &sc->sc_inports);
6903 error = au_set_port(sc, &sc->sc_inports, newri->port);
6904 if (error) {
6905 device_printf(sc->sc_dev,
6906 "setting record.port=%d failed with %d\n",
6907 newri->port, error);
6908 goto abort;
6909 }
6910 }
6911
6912 /* Backup play.{gain,balance} */
6913 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
6914 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
6915 if (oldai) {
6916 oldpi->gain = pgain;
6917 oldpi->balance = pbalance;
6918 }
6919 }
6920 /* Backup record.{gain,balance} */
6921 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
6922 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
6923 if (oldai) {
6924 oldri->gain = rgain;
6925 oldri->balance = rbalance;
6926 }
6927 }
6928 if (SPECIFIED(newpi->gain)) {
6929 error = au_set_gain(sc, &sc->sc_outports,
6930 newpi->gain, pbalance);
6931 if (error) {
6932 device_printf(sc->sc_dev,
6933 "setting play.gain=%d failed with %d\n",
6934 newpi->gain, error);
6935 goto abort;
6936 }
6937 }
6938 if (SPECIFIED(newri->gain)) {
6939 error = au_set_gain(sc, &sc->sc_inports,
6940 newri->gain, rbalance);
6941 if (error) {
6942 device_printf(sc->sc_dev,
6943 "setting record.gain=%d failed with %d\n",
6944 newri->gain, error);
6945 goto abort;
6946 }
6947 }
6948 if (SPECIFIED_CH(newpi->balance)) {
6949 error = au_set_gain(sc, &sc->sc_outports,
6950 pgain, newpi->balance);
6951 if (error) {
6952 device_printf(sc->sc_dev,
6953 "setting play.balance=%d failed with %d\n",
6954 newpi->balance, error);
6955 goto abort;
6956 }
6957 }
6958 if (SPECIFIED_CH(newri->balance)) {
6959 error = au_set_gain(sc, &sc->sc_inports,
6960 rgain, newri->balance);
6961 if (error) {
6962 device_printf(sc->sc_dev,
6963 "setting record.balance=%d failed with %d\n",
6964 newri->balance, error);
6965 goto abort;
6966 }
6967 }
6968
6969 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
6970 if (oldai)
6971 oldai->monitor_gain = au_get_monitor_gain(sc);
6972 error = au_set_monitor_gain(sc, newai->monitor_gain);
6973 if (error) {
6974 device_printf(sc->sc_dev,
6975 "setting monitor_gain=%d failed with %d\n",
6976 newai->monitor_gain, error);
6977 goto abort;
6978 }
6979 }
6980
6981 /* XXX TODO */
6982 /* sc->sc_ai = *ai; */
6983
6984 error = 0;
6985 abort:
6986 return error;
6987 }
6988
6989 /*
6990 * Setup the hardware with mixer format phwfmt, rhwfmt.
6991 * The arguments have following restrictions:
6992 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
6993 * or both.
6994 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
6995 * - On non-independent devices, phwfmt and rhwfmt must have the same
6996 * parameters.
6997 * - pfil and rfil must be zero-filled.
6998 * If successful,
6999 * - pfil, rfil will be filled with filter information specified by the
7000 * hardware driver.
7001 * and then returns 0. Otherwise returns errno.
7002 * Must be called with sc_lock held.
7003 */
7004 static int
7005 audio_hw_set_format(struct audio_softc *sc, int setmode,
7006 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7007 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7008 {
7009 audio_params_t pp, rp;
7010 int error;
7011
7012 KASSERT(mutex_owned(sc->sc_lock));
7013 KASSERT(phwfmt != NULL);
7014 KASSERT(rhwfmt != NULL);
7015
7016 pp = format2_to_params(phwfmt);
7017 rp = format2_to_params(rhwfmt);
7018
7019 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7020 &pp, &rp, pfil, rfil);
7021 if (error) {
7022 device_printf(sc->sc_dev,
7023 "set_format failed with %d\n", error);
7024 return error;
7025 }
7026
7027 if (sc->hw_if->commit_settings) {
7028 error = sc->hw_if->commit_settings(sc->hw_hdl);
7029 if (error) {
7030 device_printf(sc->sc_dev,
7031 "commit_settings failed with %d\n", error);
7032 return error;
7033 }
7034 }
7035
7036 return 0;
7037 }
7038
7039 /*
7040 * Fill audio_info structure. If need_mixerinfo is true, it will also
7041 * fill the hardware mixer information.
7042 * Must be called with sc_lock held.
7043 * Must be called with sc_exlock held, in addition, if need_mixerinfo is
7044 * true.
7045 */
7046 static int
7047 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7048 audio_file_t *file)
7049 {
7050 struct audio_prinfo *ri, *pi;
7051 audio_track_t *track;
7052 audio_track_t *ptrack;
7053 audio_track_t *rtrack;
7054 int gain;
7055
7056 KASSERT(mutex_owned(sc->sc_lock));
7057
7058 ri = &ai->record;
7059 pi = &ai->play;
7060 ptrack = file->ptrack;
7061 rtrack = file->rtrack;
7062
7063 memset(ai, 0, sizeof(*ai));
7064
7065 if (ptrack) {
7066 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7067 pi->channels = ptrack->usrbuf.fmt.channels;
7068 pi->precision = ptrack->usrbuf.fmt.precision;
7069 pi->encoding = ptrack->usrbuf.fmt.encoding;
7070 } else {
7071 /* Set default parameters if the track is not available. */
7072 if (ISDEVAUDIO(file->dev)) {
7073 pi->sample_rate = audio_default.sample_rate;
7074 pi->channels = audio_default.channels;
7075 pi->precision = audio_default.precision;
7076 pi->encoding = audio_default.encoding;
7077 } else {
7078 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7079 pi->channels = sc->sc_sound_pparams.channels;
7080 pi->precision = sc->sc_sound_pparams.precision;
7081 pi->encoding = sc->sc_sound_pparams.encoding;
7082 }
7083 }
7084 if (rtrack) {
7085 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7086 ri->channels = rtrack->usrbuf.fmt.channels;
7087 ri->precision = rtrack->usrbuf.fmt.precision;
7088 ri->encoding = rtrack->usrbuf.fmt.encoding;
7089 } else {
7090 /* Set default parameters if the track is not available. */
7091 if (ISDEVAUDIO(file->dev)) {
7092 ri->sample_rate = audio_default.sample_rate;
7093 ri->channels = audio_default.channels;
7094 ri->precision = audio_default.precision;
7095 ri->encoding = audio_default.encoding;
7096 } else {
7097 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7098 ri->channels = sc->sc_sound_rparams.channels;
7099 ri->precision = sc->sc_sound_rparams.precision;
7100 ri->encoding = sc->sc_sound_rparams.encoding;
7101 }
7102 }
7103
7104 if (ptrack) {
7105 pi->seek = ptrack->usrbuf.used;
7106 pi->samples = ptrack->usrbuf_stamp;
7107 pi->eof = ptrack->eofcounter;
7108 pi->pause = ptrack->is_pause;
7109 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7110 pi->waiting = 0; /* open never hangs */
7111 pi->open = 1;
7112 pi->active = sc->sc_pbusy;
7113 pi->buffer_size = ptrack->usrbuf.capacity;
7114 }
7115 if (rtrack) {
7116 ri->seek = rtrack->usrbuf.used;
7117 ri->samples = rtrack->usrbuf_stamp;
7118 ri->eof = 0;
7119 ri->pause = rtrack->is_pause;
7120 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7121 ri->waiting = 0; /* open never hangs */
7122 ri->open = 1;
7123 ri->active = sc->sc_rbusy;
7124 ri->buffer_size = rtrack->usrbuf.capacity;
7125 }
7126
7127 /*
7128 * XXX There may be different number of channels between playback
7129 * and recording, so that blocksize also may be different.
7130 * But struct audio_info has an united blocksize...
7131 * Here, I use play info precedencely if ptrack is available,
7132 * otherwise record info.
7133 *
7134 * XXX hiwat/lowat is a playback-only parameter. What should I
7135 * return for a record-only descriptor?
7136 */
7137 track = ptrack ? ptrack : rtrack;
7138 if (track) {
7139 ai->blocksize = track->usrbuf_blksize;
7140 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7141 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7142 }
7143 ai->mode = file->mode;
7144
7145 if (need_mixerinfo) {
7146 KASSERT(sc->sc_exlock);
7147
7148 pi->port = au_get_port(sc, &sc->sc_outports);
7149 ri->port = au_get_port(sc, &sc->sc_inports);
7150
7151 pi->avail_ports = sc->sc_outports.allports;
7152 ri->avail_ports = sc->sc_inports.allports;
7153
7154 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7155 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7156
7157 if (sc->sc_monitor_port != -1) {
7158 gain = au_get_monitor_gain(sc);
7159 if (gain != -1)
7160 ai->monitor_gain = gain;
7161 }
7162 }
7163
7164 return 0;
7165 }
7166
7167 /*
7168 * Return true if playback is configured.
7169 * This function can be used after audioattach.
7170 */
7171 static bool
7172 audio_can_playback(struct audio_softc *sc)
7173 {
7174
7175 return (sc->sc_pmixer != NULL);
7176 }
7177
7178 /*
7179 * Return true if recording is configured.
7180 * This function can be used after audioattach.
7181 */
7182 static bool
7183 audio_can_capture(struct audio_softc *sc)
7184 {
7185
7186 return (sc->sc_rmixer != NULL);
7187 }
7188
7189 /*
7190 * Get the afp->index'th item from the valid one of format[].
7191 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7192 *
7193 * This is common routines for query_format.
7194 * If your hardware driver has struct audio_format[], the simplest case
7195 * you can write your query_format interface as follows:
7196 *
7197 * struct audio_format foo_format[] = { ... };
7198 *
7199 * int
7200 * foo_query_format(void *hdl, audio_format_query_t *afp)
7201 * {
7202 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7203 * }
7204 */
7205 int
7206 audio_query_format(const struct audio_format *format, int nformats,
7207 audio_format_query_t *afp)
7208 {
7209 const struct audio_format *f;
7210 int idx;
7211 int i;
7212
7213 idx = 0;
7214 for (i = 0; i < nformats; i++) {
7215 f = &format[i];
7216 if (!AUFMT_IS_VALID(f))
7217 continue;
7218 if (afp->index == idx) {
7219 afp->fmt = *f;
7220 return 0;
7221 }
7222 idx++;
7223 }
7224 return EINVAL;
7225 }
7226
7227 /*
7228 * This function is provided for the hardware driver's set_format() to
7229 * find index matches with 'param' from array of audio_format_t 'formats'.
7230 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7231 * It returns the matched index and never fails. Because param passed to
7232 * set_format() is selected from query_format().
7233 * This function will be an alternative to auconv_set_converter() to
7234 * find index.
7235 */
7236 int
7237 audio_indexof_format(const struct audio_format *formats, int nformats,
7238 int mode, const audio_params_t *param)
7239 {
7240 const struct audio_format *f;
7241 int index;
7242 int j;
7243
7244 for (index = 0; index < nformats; index++) {
7245 f = &formats[index];
7246
7247 if (!AUFMT_IS_VALID(f))
7248 continue;
7249 if ((f->mode & mode) == 0)
7250 continue;
7251 if (f->encoding != param->encoding)
7252 continue;
7253 if (f->validbits != param->precision)
7254 continue;
7255 if (f->channels != param->channels)
7256 continue;
7257
7258 if (f->frequency_type == 0) {
7259 if (param->sample_rate < f->frequency[0] ||
7260 param->sample_rate > f->frequency[1])
7261 continue;
7262 } else {
7263 for (j = 0; j < f->frequency_type; j++) {
7264 if (param->sample_rate == f->frequency[j])
7265 break;
7266 }
7267 if (j == f->frequency_type)
7268 continue;
7269 }
7270
7271 /* Then, matched */
7272 return index;
7273 }
7274
7275 /* Not matched. This should not be happened. */
7276 panic("%s: cannot find matched format\n", __func__);
7277 }
7278
7279 /*
7280 * Get or set hardware blocksize in msec.
7281 * XXX It's for debug.
7282 */
7283 static int
7284 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7285 {
7286 struct sysctlnode node;
7287 struct audio_softc *sc;
7288 audio_format2_t phwfmt;
7289 audio_format2_t rhwfmt;
7290 audio_filter_reg_t pfil;
7291 audio_filter_reg_t rfil;
7292 int t;
7293 int old_blk_ms;
7294 int mode;
7295 int error;
7296
7297 node = *rnode;
7298 sc = node.sysctl_data;
7299
7300 mutex_enter(sc->sc_lock);
7301
7302 old_blk_ms = sc->sc_blk_ms;
7303 t = old_blk_ms;
7304 node.sysctl_data = &t;
7305 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7306 if (error || newp == NULL)
7307 goto abort;
7308
7309 if (t < 0) {
7310 error = EINVAL;
7311 goto abort;
7312 }
7313
7314 if (sc->sc_popens + sc->sc_ropens > 0) {
7315 error = EBUSY;
7316 goto abort;
7317 }
7318 sc->sc_blk_ms = t;
7319 mode = 0;
7320 if (sc->sc_pmixer) {
7321 mode |= AUMODE_PLAY;
7322 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7323 }
7324 if (sc->sc_rmixer) {
7325 mode |= AUMODE_RECORD;
7326 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7327 }
7328
7329 /* re-init hardware */
7330 memset(&pfil, 0, sizeof(pfil));
7331 memset(&rfil, 0, sizeof(rfil));
7332 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7333 if (error) {
7334 goto abort;
7335 }
7336
7337 /* re-init track mixer */
7338 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7339 if (error) {
7340 /* Rollback */
7341 sc->sc_blk_ms = old_blk_ms;
7342 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7343 goto abort;
7344 }
7345 error = 0;
7346 abort:
7347 mutex_exit(sc->sc_lock);
7348 return error;
7349 }
7350
7351 /*
7352 * Get or set multiuser mode.
7353 */
7354 static int
7355 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7356 {
7357 struct sysctlnode node;
7358 struct audio_softc *sc;
7359 bool t;
7360 int error;
7361
7362 node = *rnode;
7363 sc = node.sysctl_data;
7364
7365 mutex_enter(sc->sc_lock);
7366
7367 t = sc->sc_multiuser;
7368 node.sysctl_data = &t;
7369 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7370 if (error || newp == NULL)
7371 goto abort;
7372
7373 sc->sc_multiuser = t;
7374 error = 0;
7375 abort:
7376 mutex_exit(sc->sc_lock);
7377 return error;
7378 }
7379
7380 #if defined(AUDIO_DEBUG)
7381 /*
7382 * Get or set debug verbose level. (0..4)
7383 * XXX It's for debug.
7384 * XXX It is not separated per device.
7385 */
7386 static int
7387 audio_sysctl_debug(SYSCTLFN_ARGS)
7388 {
7389 struct sysctlnode node;
7390 int t;
7391 int error;
7392
7393 node = *rnode;
7394 t = audiodebug;
7395 node.sysctl_data = &t;
7396 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7397 if (error || newp == NULL)
7398 return error;
7399
7400 if (t < 0 || t > 4)
7401 return EINVAL;
7402 audiodebug = t;
7403 printf("audio: audiodebug = %d\n", audiodebug);
7404 return 0;
7405 }
7406 #endif /* AUDIO_DEBUG */
7407
7408 #ifdef AUDIO_PM_IDLE
7409 static void
7410 audio_idle(void *arg)
7411 {
7412 device_t dv = arg;
7413 struct audio_softc *sc = device_private(dv);
7414
7415 #ifdef PNP_DEBUG
7416 extern int pnp_debug_idle;
7417 if (pnp_debug_idle)
7418 printf("%s: idle handler called\n", device_xname(dv));
7419 #endif
7420
7421 sc->sc_idle = true;
7422
7423 /* XXX joerg Make pmf_device_suspend handle children? */
7424 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7425 return;
7426
7427 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7428 pmf_device_resume(dv, PMF_Q_SELF);
7429 }
7430
7431 static void
7432 audio_activity(device_t dv, devactive_t type)
7433 {
7434 struct audio_softc *sc = device_private(dv);
7435
7436 if (type != DVA_SYSTEM)
7437 return;
7438
7439 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7440
7441 sc->sc_idle = false;
7442 if (!device_is_active(dv)) {
7443 /* XXX joerg How to deal with a failing resume... */
7444 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7445 pmf_device_resume(dv, PMF_Q_SELF);
7446 }
7447 }
7448 #endif
7449
7450 static bool
7451 audio_suspend(device_t dv, const pmf_qual_t *qual)
7452 {
7453 struct audio_softc *sc = device_private(dv);
7454 int error;
7455
7456 error = audio_enter_exclusive(sc);
7457 if (error)
7458 return error;
7459 audio_mixer_capture(sc);
7460
7461 /* Halts mixers but don't clear busy flag for resume */
7462 if (sc->sc_pbusy) {
7463 audio_pmixer_halt(sc);
7464 sc->sc_pbusy = true;
7465 }
7466 if (sc->sc_rbusy) {
7467 audio_rmixer_halt(sc);
7468 sc->sc_rbusy = true;
7469 }
7470
7471 #ifdef AUDIO_PM_IDLE
7472 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7473 #endif
7474 audio_exit_exclusive(sc);
7475
7476 return true;
7477 }
7478
7479 static bool
7480 audio_resume(device_t dv, const pmf_qual_t *qual)
7481 {
7482 struct audio_softc *sc = device_private(dv);
7483 struct audio_info ai;
7484 int error;
7485
7486 error = audio_enter_exclusive(sc);
7487 if (error)
7488 return error;
7489
7490 audio_mixer_restore(sc);
7491 /* XXX ? */
7492 AUDIO_INITINFO(&ai);
7493 audio_hw_setinfo(sc, &ai, NULL);
7494
7495 if (sc->sc_pbusy)
7496 audio_pmixer_start(sc, true);
7497 if (sc->sc_rbusy)
7498 audio_rmixer_start(sc);
7499
7500 audio_exit_exclusive(sc);
7501
7502 return true;
7503 }
7504
7505 #if defined(AUDIO_DEBUG)
7506 static void
7507 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7508 {
7509 int n;
7510
7511 n = 0;
7512 n += snprintf(buf + n, bufsize - n, "%s",
7513 audio_encoding_name(fmt->encoding));
7514 if (fmt->precision == fmt->stride) {
7515 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7516 } else {
7517 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7518 fmt->precision, fmt->stride);
7519 }
7520
7521 snprintf(buf + n, bufsize - n, " %uch %uHz",
7522 fmt->channels, fmt->sample_rate);
7523 }
7524 #endif
7525
7526 #if defined(AUDIO_DEBUG)
7527 static void
7528 audio_print_format2(const char *s, const audio_format2_t *fmt)
7529 {
7530 char fmtstr[64];
7531
7532 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7533 printf("%s %s\n", s, fmtstr);
7534 }
7535 #endif
7536
7537 #ifdef DIAGNOSTIC
7538 void
7539 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7540 {
7541
7542 KASSERTMSG(fmt, "called from %s", where);
7543
7544 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7545 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7546 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7547 "called from %s: fmt->stride=%d", where, fmt->stride);
7548 } else {
7549 KASSERTMSG(fmt->stride % NBBY == 0,
7550 "called from %s: fmt->stride=%d", where, fmt->stride);
7551 }
7552 KASSERTMSG(fmt->precision <= fmt->stride,
7553 "called from %s: fmt->precision=%d fmt->stride=%d",
7554 where, fmt->precision, fmt->stride);
7555 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7556 "called from %s: fmt->channels=%d", where, fmt->channels);
7557
7558 /* XXX No check for encodings? */
7559 }
7560
7561 void
7562 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7563 {
7564
7565 KASSERT(arg != NULL);
7566 KASSERT(arg->src != NULL);
7567 KASSERT(arg->dst != NULL);
7568 audio_diagnostic_format2(where, arg->srcfmt);
7569 audio_diagnostic_format2(where, arg->dstfmt);
7570 KASSERT(arg->count > 0);
7571 }
7572
7573 void
7574 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7575 {
7576
7577 KASSERTMSG(ring, "called from %s", where);
7578 audio_diagnostic_format2(where, &ring->fmt);
7579 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7580 "called from %s: ring->capacity=%d", where, ring->capacity);
7581 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7582 "called from %s: ring->used=%d ring->capacity=%d",
7583 where, ring->used, ring->capacity);
7584 if (ring->capacity == 0) {
7585 KASSERTMSG(ring->mem == NULL,
7586 "called from %s: capacity == 0 but mem != NULL", where);
7587 } else {
7588 KASSERTMSG(ring->mem != NULL,
7589 "called from %s: capacity != 0 but mem == NULL", where);
7590 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7591 "called from %s: ring->head=%d ring->capacity=%d",
7592 where, ring->head, ring->capacity);
7593 }
7594 }
7595 #endif /* DIAGNOSTIC */
7596
7597
7598 /*
7599 * Mixer driver
7600 */
7601 int
7602 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7603 struct lwp *l)
7604 {
7605 struct file *fp;
7606 audio_file_t *af;
7607 int error, fd;
7608
7609 KASSERT(mutex_owned(sc->sc_lock));
7610
7611 TRACE(1, "flags=0x%x", flags);
7612
7613 error = fd_allocfile(&fp, &fd);
7614 if (error)
7615 return error;
7616
7617 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7618 af->sc = sc;
7619 af->dev = dev;
7620
7621 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7622 KASSERT(error == EMOVEFD);
7623
7624 return error;
7625 }
7626
7627 /*
7628 * Add a process to those to be signalled on mixer activity.
7629 * If the process has already been added, do nothing.
7630 * Must be called with sc_lock held.
7631 */
7632 static void
7633 mixer_async_add(struct audio_softc *sc, pid_t pid)
7634 {
7635 int i;
7636
7637 KASSERT(mutex_owned(sc->sc_lock));
7638
7639 /* If already exists, returns without doing anything. */
7640 for (i = 0; i < sc->sc_am_used; i++) {
7641 if (sc->sc_am[i] == pid)
7642 return;
7643 }
7644
7645 /* Extend array if necessary. */
7646 if (sc->sc_am_used >= sc->sc_am_capacity) {
7647 sc->sc_am_capacity += AM_CAPACITY;
7648 sc->sc_am = kern_realloc(sc->sc_am,
7649 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
7650 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
7651 }
7652
7653 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
7654 sc->sc_am[sc->sc_am_used++] = pid;
7655 }
7656
7657 /*
7658 * Remove a process from those to be signalled on mixer activity.
7659 * If the process has not been added, do nothing.
7660 * Must be called with sc_lock held.
7661 */
7662 static void
7663 mixer_async_remove(struct audio_softc *sc, pid_t pid)
7664 {
7665 int i;
7666
7667 KASSERT(mutex_owned(sc->sc_lock));
7668
7669 for (i = 0; i < sc->sc_am_used; i++) {
7670 if (sc->sc_am[i] == pid) {
7671 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
7672 TRACE(2, "am[%d](%d) removed, used=%d",
7673 i, (int)pid, sc->sc_am_used);
7674
7675 /* Empty array if no longer necessary. */
7676 if (sc->sc_am_used == 0) {
7677 kern_free(sc->sc_am);
7678 sc->sc_am = NULL;
7679 sc->sc_am_capacity = 0;
7680 TRACE(2, "released");
7681 }
7682 return;
7683 }
7684 }
7685 }
7686
7687 /*
7688 * Signal all processes waiting for the mixer.
7689 * Must be called with sc_lock held.
7690 */
7691 static void
7692 mixer_signal(struct audio_softc *sc)
7693 {
7694 proc_t *p;
7695 int i;
7696
7697 KASSERT(mutex_owned(sc->sc_lock));
7698
7699 for (i = 0; i < sc->sc_am_used; i++) {
7700 mutex_enter(proc_lock);
7701 p = proc_find(sc->sc_am[i]);
7702 if (p)
7703 psignal(p, SIGIO);
7704 mutex_exit(proc_lock);
7705 }
7706 }
7707
7708 /*
7709 * Close a mixer device
7710 */
7711 int
7712 mixer_close(struct audio_softc *sc, audio_file_t *file)
7713 {
7714
7715 mutex_enter(sc->sc_lock);
7716 TRACE(1, "");
7717 mixer_async_remove(sc, curproc->p_pid);
7718 mutex_exit(sc->sc_lock);
7719
7720 kmem_free(file, sizeof(*file));
7721 return 0;
7722 }
7723
7724 /*
7725 * Must be called without sc_lock nor sc_exlock held.
7726 */
7727 int
7728 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
7729 struct lwp *l)
7730 {
7731 mixer_devinfo_t *mi;
7732 mixer_ctrl_t *mc;
7733 int error;
7734
7735 TRACE(2, "(%lu,'%c',%lu)",
7736 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
7737 error = EINVAL;
7738
7739 /* we can return cached values if we are sleeping */
7740 if (cmd != AUDIO_MIXER_READ) {
7741 mutex_enter(sc->sc_lock);
7742 device_active(sc->sc_dev, DVA_SYSTEM);
7743 mutex_exit(sc->sc_lock);
7744 }
7745
7746 switch (cmd) {
7747 case FIOASYNC:
7748 mutex_enter(sc->sc_lock);
7749 if (*(int *)addr) {
7750 mixer_async_add(sc, curproc->p_pid);
7751 } else {
7752 mixer_async_remove(sc, curproc->p_pid);
7753 }
7754 mutex_exit(sc->sc_lock);
7755 error = 0;
7756 break;
7757
7758 case AUDIO_GETDEV:
7759 TRACE(2, "AUDIO_GETDEV");
7760 error = audio_enter_exclusive(sc);
7761 if (error)
7762 break;
7763 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
7764 audio_exit_exclusive(sc);
7765 break;
7766
7767 case AUDIO_MIXER_DEVINFO:
7768 TRACE(2, "AUDIO_MIXER_DEVINFO");
7769 mi = (mixer_devinfo_t *)addr;
7770
7771 mi->un.v.delta = 0; /* default */
7772 mutex_enter(sc->sc_lock);
7773 error = audio_query_devinfo(sc, mi);
7774 mutex_exit(sc->sc_lock);
7775 break;
7776
7777 case AUDIO_MIXER_READ:
7778 TRACE(2, "AUDIO_MIXER_READ");
7779 mc = (mixer_ctrl_t *)addr;
7780
7781 error = audio_enter_exclusive(sc);
7782 if (error)
7783 break;
7784 if (device_is_active(sc->hw_dev))
7785 error = audio_get_port(sc, mc);
7786 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
7787 error = ENXIO;
7788 else {
7789 int dev = mc->dev;
7790 memcpy(mc, &sc->sc_mixer_state[dev],
7791 sizeof(mixer_ctrl_t));
7792 error = 0;
7793 }
7794 audio_exit_exclusive(sc);
7795 break;
7796
7797 case AUDIO_MIXER_WRITE:
7798 TRACE(2, "AUDIO_MIXER_WRITE");
7799 error = audio_enter_exclusive(sc);
7800 if (error)
7801 break;
7802 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
7803 if (error) {
7804 audio_exit_exclusive(sc);
7805 break;
7806 }
7807
7808 if (sc->hw_if->commit_settings) {
7809 error = sc->hw_if->commit_settings(sc->hw_hdl);
7810 if (error) {
7811 audio_exit_exclusive(sc);
7812 break;
7813 }
7814 }
7815 mixer_signal(sc);
7816 audio_exit_exclusive(sc);
7817 break;
7818
7819 default:
7820 if (sc->hw_if->dev_ioctl) {
7821 error = audio_enter_exclusive(sc);
7822 if (error)
7823 break;
7824 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
7825 cmd, addr, flag, l);
7826 audio_exit_exclusive(sc);
7827 } else
7828 error = EINVAL;
7829 break;
7830 }
7831 TRACE(2, "(%lu,'%c',%lu) result %d",
7832 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
7833 return error;
7834 }
7835
7836 /*
7837 * Must be called with sc_lock held.
7838 */
7839 int
7840 au_portof(struct audio_softc *sc, char *name, int class)
7841 {
7842 mixer_devinfo_t mi;
7843
7844 KASSERT(mutex_owned(sc->sc_lock));
7845
7846 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
7847 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
7848 return mi.index;
7849 }
7850 return -1;
7851 }
7852
7853 /*
7854 * Must be called with sc_lock held.
7855 */
7856 void
7857 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
7858 mixer_devinfo_t *mi, const struct portname *tbl)
7859 {
7860 int i, j;
7861
7862 KASSERT(mutex_owned(sc->sc_lock));
7863
7864 ports->index = mi->index;
7865 if (mi->type == AUDIO_MIXER_ENUM) {
7866 ports->isenum = true;
7867 for(i = 0; tbl[i].name; i++)
7868 for(j = 0; j < mi->un.e.num_mem; j++)
7869 if (strcmp(mi->un.e.member[j].label.name,
7870 tbl[i].name) == 0) {
7871 ports->allports |= tbl[i].mask;
7872 ports->aumask[ports->nports] = tbl[i].mask;
7873 ports->misel[ports->nports] =
7874 mi->un.e.member[j].ord;
7875 ports->miport[ports->nports] =
7876 au_portof(sc, mi->un.e.member[j].label.name,
7877 mi->mixer_class);
7878 if (ports->mixerout != -1 &&
7879 ports->miport[ports->nports] != -1)
7880 ports->isdual = true;
7881 ++ports->nports;
7882 }
7883 } else if (mi->type == AUDIO_MIXER_SET) {
7884 for(i = 0; tbl[i].name; i++)
7885 for(j = 0; j < mi->un.s.num_mem; j++)
7886 if (strcmp(mi->un.s.member[j].label.name,
7887 tbl[i].name) == 0) {
7888 ports->allports |= tbl[i].mask;
7889 ports->aumask[ports->nports] = tbl[i].mask;
7890 ports->misel[ports->nports] =
7891 mi->un.s.member[j].mask;
7892 ports->miport[ports->nports] =
7893 au_portof(sc, mi->un.s.member[j].label.name,
7894 mi->mixer_class);
7895 ++ports->nports;
7896 }
7897 }
7898 }
7899
7900 /*
7901 * Must be called with sc_lock && sc_exlock held.
7902 */
7903 int
7904 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
7905 {
7906
7907 KASSERT(mutex_owned(sc->sc_lock));
7908 KASSERT(sc->sc_exlock);
7909
7910 ct->type = AUDIO_MIXER_VALUE;
7911 ct->un.value.num_channels = 2;
7912 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
7913 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
7914 if (audio_set_port(sc, ct) == 0)
7915 return 0;
7916 ct->un.value.num_channels = 1;
7917 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
7918 return audio_set_port(sc, ct);
7919 }
7920
7921 /*
7922 * Must be called with sc_lock && sc_exlock held.
7923 */
7924 int
7925 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
7926 {
7927 int error;
7928
7929 KASSERT(mutex_owned(sc->sc_lock));
7930 KASSERT(sc->sc_exlock);
7931
7932 ct->un.value.num_channels = 2;
7933 if (audio_get_port(sc, ct) == 0) {
7934 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
7935 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
7936 } else {
7937 ct->un.value.num_channels = 1;
7938 error = audio_get_port(sc, ct);
7939 if (error)
7940 return error;
7941 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
7942 }
7943 return 0;
7944 }
7945
7946 /*
7947 * Must be called with sc_lock && sc_exlock held.
7948 */
7949 int
7950 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
7951 int gain, int balance)
7952 {
7953 mixer_ctrl_t ct;
7954 int i, error;
7955 int l, r;
7956 u_int mask;
7957 int nset;
7958
7959 KASSERT(mutex_owned(sc->sc_lock));
7960 KASSERT(sc->sc_exlock);
7961
7962 if (balance == AUDIO_MID_BALANCE) {
7963 l = r = gain;
7964 } else if (balance < AUDIO_MID_BALANCE) {
7965 l = gain;
7966 r = (balance * gain) / AUDIO_MID_BALANCE;
7967 } else {
7968 r = gain;
7969 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
7970 / AUDIO_MID_BALANCE;
7971 }
7972 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
7973
7974 if (ports->index == -1) {
7975 usemaster:
7976 if (ports->master == -1)
7977 return 0; /* just ignore it silently */
7978 ct.dev = ports->master;
7979 error = au_set_lr_value(sc, &ct, l, r);
7980 } else {
7981 ct.dev = ports->index;
7982 if (ports->isenum) {
7983 ct.type = AUDIO_MIXER_ENUM;
7984 error = audio_get_port(sc, &ct);
7985 if (error)
7986 return error;
7987 if (ports->isdual) {
7988 if (ports->cur_port == -1)
7989 ct.dev = ports->master;
7990 else
7991 ct.dev = ports->miport[ports->cur_port];
7992 error = au_set_lr_value(sc, &ct, l, r);
7993 } else {
7994 for(i = 0; i < ports->nports; i++)
7995 if (ports->misel[i] == ct.un.ord) {
7996 ct.dev = ports->miport[i];
7997 if (ct.dev == -1 ||
7998 au_set_lr_value(sc, &ct, l, r))
7999 goto usemaster;
8000 else
8001 break;
8002 }
8003 }
8004 } else {
8005 ct.type = AUDIO_MIXER_SET;
8006 error = audio_get_port(sc, &ct);
8007 if (error)
8008 return error;
8009 mask = ct.un.mask;
8010 nset = 0;
8011 for(i = 0; i < ports->nports; i++) {
8012 if (ports->misel[i] & mask) {
8013 ct.dev = ports->miport[i];
8014 if (ct.dev != -1 &&
8015 au_set_lr_value(sc, &ct, l, r) == 0)
8016 nset++;
8017 }
8018 }
8019 if (nset == 0)
8020 goto usemaster;
8021 }
8022 }
8023 if (!error)
8024 mixer_signal(sc);
8025 return error;
8026 }
8027
8028 /*
8029 * Must be called with sc_lock && sc_exlock held.
8030 */
8031 void
8032 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8033 u_int *pgain, u_char *pbalance)
8034 {
8035 mixer_ctrl_t ct;
8036 int i, l, r, n;
8037 int lgain, rgain;
8038
8039 KASSERT(mutex_owned(sc->sc_lock));
8040 KASSERT(sc->sc_exlock);
8041
8042 lgain = AUDIO_MAX_GAIN / 2;
8043 rgain = AUDIO_MAX_GAIN / 2;
8044 if (ports->index == -1) {
8045 usemaster:
8046 if (ports->master == -1)
8047 goto bad;
8048 ct.dev = ports->master;
8049 ct.type = AUDIO_MIXER_VALUE;
8050 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8051 goto bad;
8052 } else {
8053 ct.dev = ports->index;
8054 if (ports->isenum) {
8055 ct.type = AUDIO_MIXER_ENUM;
8056 if (audio_get_port(sc, &ct))
8057 goto bad;
8058 ct.type = AUDIO_MIXER_VALUE;
8059 if (ports->isdual) {
8060 if (ports->cur_port == -1)
8061 ct.dev = ports->master;
8062 else
8063 ct.dev = ports->miport[ports->cur_port];
8064 au_get_lr_value(sc, &ct, &lgain, &rgain);
8065 } else {
8066 for(i = 0; i < ports->nports; i++)
8067 if (ports->misel[i] == ct.un.ord) {
8068 ct.dev = ports->miport[i];
8069 if (ct.dev == -1 ||
8070 au_get_lr_value(sc, &ct,
8071 &lgain, &rgain))
8072 goto usemaster;
8073 else
8074 break;
8075 }
8076 }
8077 } else {
8078 ct.type = AUDIO_MIXER_SET;
8079 if (audio_get_port(sc, &ct))
8080 goto bad;
8081 ct.type = AUDIO_MIXER_VALUE;
8082 lgain = rgain = n = 0;
8083 for(i = 0; i < ports->nports; i++) {
8084 if (ports->misel[i] & ct.un.mask) {
8085 ct.dev = ports->miport[i];
8086 if (ct.dev == -1 ||
8087 au_get_lr_value(sc, &ct, &l, &r))
8088 goto usemaster;
8089 else {
8090 lgain += l;
8091 rgain += r;
8092 n++;
8093 }
8094 }
8095 }
8096 if (n != 0) {
8097 lgain /= n;
8098 rgain /= n;
8099 }
8100 }
8101 }
8102 bad:
8103 if (lgain == rgain) { /* handles lgain==rgain==0 */
8104 *pgain = lgain;
8105 *pbalance = AUDIO_MID_BALANCE;
8106 } else if (lgain < rgain) {
8107 *pgain = rgain;
8108 /* balance should be > AUDIO_MID_BALANCE */
8109 *pbalance = AUDIO_RIGHT_BALANCE -
8110 (AUDIO_MID_BALANCE * lgain) / rgain;
8111 } else /* lgain > rgain */ {
8112 *pgain = lgain;
8113 /* balance should be < AUDIO_MID_BALANCE */
8114 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8115 }
8116 }
8117
8118 /*
8119 * Must be called with sc_lock && sc_exlock held.
8120 */
8121 int
8122 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8123 {
8124 mixer_ctrl_t ct;
8125 int i, error, use_mixerout;
8126
8127 KASSERT(mutex_owned(sc->sc_lock));
8128 KASSERT(sc->sc_exlock);
8129
8130 use_mixerout = 1;
8131 if (port == 0) {
8132 if (ports->allports == 0)
8133 return 0; /* Allow this special case. */
8134 else if (ports->isdual) {
8135 if (ports->cur_port == -1) {
8136 return 0;
8137 } else {
8138 port = ports->aumask[ports->cur_port];
8139 ports->cur_port = -1;
8140 use_mixerout = 0;
8141 }
8142 }
8143 }
8144 if (ports->index == -1)
8145 return EINVAL;
8146 ct.dev = ports->index;
8147 if (ports->isenum) {
8148 if (port & (port-1))
8149 return EINVAL; /* Only one port allowed */
8150 ct.type = AUDIO_MIXER_ENUM;
8151 error = EINVAL;
8152 for(i = 0; i < ports->nports; i++)
8153 if (ports->aumask[i] == port) {
8154 if (ports->isdual && use_mixerout) {
8155 ct.un.ord = ports->mixerout;
8156 ports->cur_port = i;
8157 } else {
8158 ct.un.ord = ports->misel[i];
8159 }
8160 error = audio_set_port(sc, &ct);
8161 break;
8162 }
8163 } else {
8164 ct.type = AUDIO_MIXER_SET;
8165 ct.un.mask = 0;
8166 for(i = 0; i < ports->nports; i++)
8167 if (ports->aumask[i] & port)
8168 ct.un.mask |= ports->misel[i];
8169 if (port != 0 && ct.un.mask == 0)
8170 error = EINVAL;
8171 else
8172 error = audio_set_port(sc, &ct);
8173 }
8174 if (!error)
8175 mixer_signal(sc);
8176 return error;
8177 }
8178
8179 /*
8180 * Must be called with sc_lock && sc_exlock held.
8181 */
8182 int
8183 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8184 {
8185 mixer_ctrl_t ct;
8186 int i, aumask;
8187
8188 KASSERT(mutex_owned(sc->sc_lock));
8189 KASSERT(sc->sc_exlock);
8190
8191 if (ports->index == -1)
8192 return 0;
8193 ct.dev = ports->index;
8194 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8195 if (audio_get_port(sc, &ct))
8196 return 0;
8197 aumask = 0;
8198 if (ports->isenum) {
8199 if (ports->isdual && ports->cur_port != -1) {
8200 if (ports->mixerout == ct.un.ord)
8201 aumask = ports->aumask[ports->cur_port];
8202 else
8203 ports->cur_port = -1;
8204 }
8205 if (aumask == 0)
8206 for(i = 0; i < ports->nports; i++)
8207 if (ports->misel[i] == ct.un.ord)
8208 aumask = ports->aumask[i];
8209 } else {
8210 for(i = 0; i < ports->nports; i++)
8211 if (ct.un.mask & ports->misel[i])
8212 aumask |= ports->aumask[i];
8213 }
8214 return aumask;
8215 }
8216
8217 /*
8218 * It returns 0 if success, otherwise errno.
8219 * Must be called only if sc->sc_monitor_port != -1.
8220 * Must be called with sc_lock && sc_exlock held.
8221 */
8222 static int
8223 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8224 {
8225 mixer_ctrl_t ct;
8226
8227 KASSERT(mutex_owned(sc->sc_lock));
8228 KASSERT(sc->sc_exlock);
8229
8230 ct.dev = sc->sc_monitor_port;
8231 ct.type = AUDIO_MIXER_VALUE;
8232 ct.un.value.num_channels = 1;
8233 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8234 return audio_set_port(sc, &ct);
8235 }
8236
8237 /*
8238 * It returns monitor gain if success, otherwise -1.
8239 * Must be called only if sc->sc_monitor_port != -1.
8240 * Must be called with sc_lock && sc_exlock held.
8241 */
8242 static int
8243 au_get_monitor_gain(struct audio_softc *sc)
8244 {
8245 mixer_ctrl_t ct;
8246
8247 KASSERT(mutex_owned(sc->sc_lock));
8248 KASSERT(sc->sc_exlock);
8249
8250 ct.dev = sc->sc_monitor_port;
8251 ct.type = AUDIO_MIXER_VALUE;
8252 ct.un.value.num_channels = 1;
8253 if (audio_get_port(sc, &ct))
8254 return -1;
8255 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8256 }
8257
8258 /*
8259 * Must be called with sc_lock && sc_exlock held.
8260 */
8261 static int
8262 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8263 {
8264
8265 KASSERT(mutex_owned(sc->sc_lock));
8266 KASSERT(sc->sc_exlock);
8267
8268 return sc->hw_if->set_port(sc->hw_hdl, mc);
8269 }
8270
8271 /*
8272 * Must be called with sc_lock && sc_exlock held.
8273 */
8274 static int
8275 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8276 {
8277
8278 KASSERT(mutex_owned(sc->sc_lock));
8279 KASSERT(sc->sc_exlock);
8280
8281 return sc->hw_if->get_port(sc->hw_hdl, mc);
8282 }
8283
8284 /*
8285 * Must be called with sc_lock && sc_exlock held.
8286 */
8287 static void
8288 audio_mixer_capture(struct audio_softc *sc)
8289 {
8290 mixer_devinfo_t mi;
8291 mixer_ctrl_t *mc;
8292
8293 KASSERT(mutex_owned(sc->sc_lock));
8294 KASSERT(sc->sc_exlock);
8295
8296 for (mi.index = 0;; mi.index++) {
8297 if (audio_query_devinfo(sc, &mi) != 0)
8298 break;
8299 KASSERT(mi.index < sc->sc_nmixer_states);
8300 if (mi.type == AUDIO_MIXER_CLASS)
8301 continue;
8302 mc = &sc->sc_mixer_state[mi.index];
8303 mc->dev = mi.index;
8304 mc->type = mi.type;
8305 mc->un.value.num_channels = mi.un.v.num_channels;
8306 (void)audio_get_port(sc, mc);
8307 }
8308
8309 return;
8310 }
8311
8312 /*
8313 * Must be called with sc_lock && sc_exlock held.
8314 */
8315 static void
8316 audio_mixer_restore(struct audio_softc *sc)
8317 {
8318 mixer_devinfo_t mi;
8319 mixer_ctrl_t *mc;
8320
8321 KASSERT(mutex_owned(sc->sc_lock));
8322 KASSERT(sc->sc_exlock);
8323
8324 for (mi.index = 0; ; mi.index++) {
8325 if (audio_query_devinfo(sc, &mi) != 0)
8326 break;
8327 if (mi.type == AUDIO_MIXER_CLASS)
8328 continue;
8329 mc = &sc->sc_mixer_state[mi.index];
8330 (void)audio_set_port(sc, mc);
8331 }
8332 if (sc->hw_if->commit_settings)
8333 sc->hw_if->commit_settings(sc->hw_hdl);
8334
8335 return;
8336 }
8337
8338 static void
8339 audio_volume_down(device_t dv)
8340 {
8341 struct audio_softc *sc = device_private(dv);
8342 mixer_devinfo_t mi;
8343 int newgain;
8344 u_int gain;
8345 u_char balance;
8346
8347 if (audio_enter_exclusive(sc) != 0)
8348 return;
8349 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8350 mi.index = sc->sc_outports.master;
8351 mi.un.v.delta = 0;
8352 if (audio_query_devinfo(sc, &mi) == 0) {
8353 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8354 newgain = gain - mi.un.v.delta;
8355 if (newgain < AUDIO_MIN_GAIN)
8356 newgain = AUDIO_MIN_GAIN;
8357 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8358 }
8359 }
8360 audio_exit_exclusive(sc);
8361 }
8362
8363 static void
8364 audio_volume_up(device_t dv)
8365 {
8366 struct audio_softc *sc = device_private(dv);
8367 mixer_devinfo_t mi;
8368 u_int gain, newgain;
8369 u_char balance;
8370
8371 if (audio_enter_exclusive(sc) != 0)
8372 return;
8373 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8374 mi.index = sc->sc_outports.master;
8375 mi.un.v.delta = 0;
8376 if (audio_query_devinfo(sc, &mi) == 0) {
8377 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8378 newgain = gain + mi.un.v.delta;
8379 if (newgain > AUDIO_MAX_GAIN)
8380 newgain = AUDIO_MAX_GAIN;
8381 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8382 }
8383 }
8384 audio_exit_exclusive(sc);
8385 }
8386
8387 static void
8388 audio_volume_toggle(device_t dv)
8389 {
8390 struct audio_softc *sc = device_private(dv);
8391 u_int gain, newgain;
8392 u_char balance;
8393
8394 if (audio_enter_exclusive(sc) != 0)
8395 return;
8396 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8397 if (gain != 0) {
8398 sc->sc_lastgain = gain;
8399 newgain = 0;
8400 } else
8401 newgain = sc->sc_lastgain;
8402 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8403 audio_exit_exclusive(sc);
8404 }
8405
8406 static int
8407 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8408 {
8409
8410 KASSERT(mutex_owned(sc->sc_lock));
8411
8412 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8413 }
8414
8415 #endif /* NAUDIO > 0 */
8416
8417 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8418 #include <sys/param.h>
8419 #include <sys/systm.h>
8420 #include <sys/device.h>
8421 #include <sys/audioio.h>
8422 #include <dev/audio/audio_if.h>
8423 #endif
8424
8425 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8426 int
8427 audioprint(void *aux, const char *pnp)
8428 {
8429 struct audio_attach_args *arg;
8430 const char *type;
8431
8432 if (pnp != NULL) {
8433 arg = aux;
8434 switch (arg->type) {
8435 case AUDIODEV_TYPE_AUDIO:
8436 type = "audio";
8437 break;
8438 case AUDIODEV_TYPE_MIDI:
8439 type = "midi";
8440 break;
8441 case AUDIODEV_TYPE_OPL:
8442 type = "opl";
8443 break;
8444 case AUDIODEV_TYPE_MPU:
8445 type = "mpu";
8446 break;
8447 default:
8448 panic("audioprint: unknown type %d", arg->type);
8449 }
8450 aprint_normal("%s at %s", type, pnp);
8451 }
8452 return UNCONF;
8453 }
8454
8455 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8456
8457 #ifdef _MODULE
8458
8459 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8460
8461 #include "ioconf.c"
8462
8463 #endif
8464
8465 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8466
8467 static int
8468 audio_modcmd(modcmd_t cmd, void *arg)
8469 {
8470 int error = 0;
8471
8472 #ifdef _MODULE
8473 switch (cmd) {
8474 case MODULE_CMD_INIT:
8475 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8476 &audio_cdevsw, &audio_cmajor);
8477 if (error)
8478 break;
8479
8480 error = config_init_component(cfdriver_ioconf_audio,
8481 cfattach_ioconf_audio, cfdata_ioconf_audio);
8482 if (error) {
8483 devsw_detach(NULL, &audio_cdevsw);
8484 }
8485 break;
8486 case MODULE_CMD_FINI:
8487 devsw_detach(NULL, &audio_cdevsw);
8488 error = config_fini_component(cfdriver_ioconf_audio,
8489 cfattach_ioconf_audio, cfdata_ioconf_audio);
8490 if (error)
8491 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8492 &audio_cdevsw, &audio_cmajor);
8493 break;
8494 default:
8495 error = ENOTTY;
8496 break;
8497 }
8498 #endif
8499
8500 return error;
8501 }
8502