audio.c revision 1.61 1 /* $NetBSD: audio.c,v 1.61 2020/03/01 07:42:07 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - + (*1)
122 * freem - - + (*1)
123 * round_buffersize - x
124 * get_props - - Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * *1 Note: Before 8.0, since these have been called only at attach time,
131 * neither lock were necessary. Currently, on the other hand, since
132 * these may be also called after attach, the thread lock is required.
133 *
134 * In addition, there is an additional lock.
135 *
136 * - track->lock. This is an atomic variable and is similar to the
137 * "interrupt lock". This is one for each track. If any thread context
138 * (and software interrupt context) and hardware interrupt context who
139 * want to access some variables on this track, they must acquire this
140 * lock before. It protects track's consistency between hardware
141 * interrupt context and others.
142 */
143
144 #include <sys/cdefs.h>
145 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.61 2020/03/01 07:42:07 isaki Exp $");
146
147 #ifdef _KERNEL_OPT
148 #include "audio.h"
149 #include "midi.h"
150 #endif
151
152 #if NAUDIO > 0
153
154 #include <sys/types.h>
155 #include <sys/param.h>
156 #include <sys/atomic.h>
157 #include <sys/audioio.h>
158 #include <sys/conf.h>
159 #include <sys/cpu.h>
160 #include <sys/device.h>
161 #include <sys/fcntl.h>
162 #include <sys/file.h>
163 #include <sys/filedesc.h>
164 #include <sys/intr.h>
165 #include <sys/ioctl.h>
166 #include <sys/kauth.h>
167 #include <sys/kernel.h>
168 #include <sys/kmem.h>
169 #include <sys/malloc.h>
170 #include <sys/mman.h>
171 #include <sys/module.h>
172 #include <sys/poll.h>
173 #include <sys/proc.h>
174 #include <sys/queue.h>
175 #include <sys/select.h>
176 #include <sys/signalvar.h>
177 #include <sys/stat.h>
178 #include <sys/sysctl.h>
179 #include <sys/systm.h>
180 #include <sys/syslog.h>
181 #include <sys/vnode.h>
182
183 #include <dev/audio/audio_if.h>
184 #include <dev/audio/audiovar.h>
185 #include <dev/audio/audiodef.h>
186 #include <dev/audio/linear.h>
187 #include <dev/audio/mulaw.h>
188
189 #include <machine/endian.h>
190
191 #include <uvm/uvm_extern.h>
192
193 #include "ioconf.h"
194
195 /*
196 * 0: No debug logs
197 * 1: action changes like open/close/set_format...
198 * 2: + normal operations like read/write/ioctl...
199 * 3: + TRACEs except interrupt
200 * 4: + TRACEs including interrupt
201 */
202 //#define AUDIO_DEBUG 1
203
204 #if defined(AUDIO_DEBUG)
205
206 int audiodebug = AUDIO_DEBUG;
207 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
208 const char *, va_list);
209 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
210 __printflike(3, 4);
211 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
212 __printflike(3, 4);
213 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
214 __printflike(3, 4);
215
216 /* XXX sloppy memory logger */
217 static void audio_mlog_init(void);
218 static void audio_mlog_free(void);
219 static void audio_mlog_softintr(void *);
220 extern void audio_mlog_flush(void);
221 extern void audio_mlog_printf(const char *, ...);
222
223 static int mlog_refs; /* reference counter */
224 static char *mlog_buf[2]; /* double buffer */
225 static int mlog_buflen; /* buffer length */
226 static int mlog_used; /* used length */
227 static int mlog_full; /* number of dropped lines by buffer full */
228 static int mlog_drop; /* number of dropped lines by busy */
229 static volatile uint32_t mlog_inuse; /* in-use */
230 static int mlog_wpage; /* active page */
231 static void *mlog_sih; /* softint handle */
232
233 static void
234 audio_mlog_init(void)
235 {
236 mlog_refs++;
237 if (mlog_refs > 1)
238 return;
239 mlog_buflen = 4096;
240 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
241 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
242 mlog_used = 0;
243 mlog_full = 0;
244 mlog_drop = 0;
245 mlog_inuse = 0;
246 mlog_wpage = 0;
247 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
248 if (mlog_sih == NULL)
249 printf("%s: softint_establish failed\n", __func__);
250 }
251
252 static void
253 audio_mlog_free(void)
254 {
255 mlog_refs--;
256 if (mlog_refs > 0)
257 return;
258
259 audio_mlog_flush();
260 if (mlog_sih)
261 softint_disestablish(mlog_sih);
262 kmem_free(mlog_buf[0], mlog_buflen);
263 kmem_free(mlog_buf[1], mlog_buflen);
264 }
265
266 /*
267 * Flush memory buffer.
268 * It must not be called from hardware interrupt context.
269 */
270 void
271 audio_mlog_flush(void)
272 {
273 if (mlog_refs == 0)
274 return;
275
276 /* Nothing to do if already in use ? */
277 if (atomic_swap_32(&mlog_inuse, 1) == 1)
278 return;
279
280 int rpage = mlog_wpage;
281 mlog_wpage ^= 1;
282 mlog_buf[mlog_wpage][0] = '\0';
283 mlog_used = 0;
284
285 atomic_swap_32(&mlog_inuse, 0);
286
287 if (mlog_buf[rpage][0] != '\0') {
288 printf("%s", mlog_buf[rpage]);
289 if (mlog_drop > 0)
290 printf("mlog_drop %d\n", mlog_drop);
291 if (mlog_full > 0)
292 printf("mlog_full %d\n", mlog_full);
293 }
294 mlog_full = 0;
295 mlog_drop = 0;
296 }
297
298 static void
299 audio_mlog_softintr(void *cookie)
300 {
301 audio_mlog_flush();
302 }
303
304 void
305 audio_mlog_printf(const char *fmt, ...)
306 {
307 int len;
308 va_list ap;
309
310 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
311 /* already inuse */
312 mlog_drop++;
313 return;
314 }
315
316 va_start(ap, fmt);
317 len = vsnprintf(
318 mlog_buf[mlog_wpage] + mlog_used,
319 mlog_buflen - mlog_used,
320 fmt, ap);
321 va_end(ap);
322
323 mlog_used += len;
324 if (mlog_buflen - mlog_used <= 1) {
325 mlog_full++;
326 }
327
328 atomic_swap_32(&mlog_inuse, 0);
329
330 if (mlog_sih)
331 softint_schedule(mlog_sih);
332 }
333
334 /* trace functions */
335 static void
336 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
337 const char *fmt, va_list ap)
338 {
339 char buf[256];
340 int n;
341
342 n = 0;
343 buf[0] = '\0';
344 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
345 funcname, device_unit(sc->sc_dev), header);
346 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
347
348 if (cpu_intr_p()) {
349 audio_mlog_printf("%s\n", buf);
350 } else {
351 audio_mlog_flush();
352 printf("%s\n", buf);
353 }
354 }
355
356 static void
357 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
358 {
359 va_list ap;
360
361 va_start(ap, fmt);
362 audio_vtrace(sc, funcname, "", fmt, ap);
363 va_end(ap);
364 }
365
366 static void
367 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
368 {
369 char hdr[16];
370 va_list ap;
371
372 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
373 va_start(ap, fmt);
374 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
375 va_end(ap);
376 }
377
378 static void
379 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
380 {
381 char hdr[32];
382 char phdr[16], rhdr[16];
383 va_list ap;
384
385 phdr[0] = '\0';
386 rhdr[0] = '\0';
387 if (file->ptrack)
388 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
389 if (file->rtrack)
390 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
391 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
392
393 va_start(ap, fmt);
394 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
395 va_end(ap);
396 }
397
398 #define DPRINTF(n, fmt...) do { \
399 if (audiodebug >= (n)) { \
400 audio_mlog_flush(); \
401 printf(fmt); \
402 } \
403 } while (0)
404 #define TRACE(n, fmt...) do { \
405 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
406 } while (0)
407 #define TRACET(n, t, fmt...) do { \
408 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
409 } while (0)
410 #define TRACEF(n, f, fmt...) do { \
411 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
412 } while (0)
413
414 struct audio_track_debugbuf {
415 char usrbuf[32];
416 char codec[32];
417 char chvol[32];
418 char chmix[32];
419 char freq[32];
420 char outbuf[32];
421 };
422
423 static void
424 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
425 {
426
427 memset(buf, 0, sizeof(*buf));
428
429 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
430 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
431 if (track->freq.filter)
432 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
433 track->freq.srcbuf.head,
434 track->freq.srcbuf.used,
435 track->freq.srcbuf.capacity);
436 if (track->chmix.filter)
437 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
438 track->chmix.srcbuf.used);
439 if (track->chvol.filter)
440 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
441 track->chvol.srcbuf.used);
442 if (track->codec.filter)
443 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
444 track->codec.srcbuf.used);
445 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
446 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
447 }
448 #else
449 #define DPRINTF(n, fmt...) do { } while (0)
450 #define TRACE(n, fmt, ...) do { } while (0)
451 #define TRACET(n, t, fmt, ...) do { } while (0)
452 #define TRACEF(n, f, fmt, ...) do { } while (0)
453 #endif
454
455 #define SPECIFIED(x) ((x) != ~0)
456 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
457
458 /* Device timeout in msec */
459 #define AUDIO_TIMEOUT (3000)
460
461 /* #define AUDIO_PM_IDLE */
462 #ifdef AUDIO_PM_IDLE
463 int audio_idle_timeout = 30;
464 #endif
465
466 /* Number of elements of async mixer's pid */
467 #define AM_CAPACITY (4)
468
469 struct portname {
470 const char *name;
471 int mask;
472 };
473
474 static int audiomatch(device_t, cfdata_t, void *);
475 static void audioattach(device_t, device_t, void *);
476 static int audiodetach(device_t, int);
477 static int audioactivate(device_t, enum devact);
478 static void audiochilddet(device_t, device_t);
479 static int audiorescan(device_t, const char *, const int *);
480
481 static int audio_modcmd(modcmd_t, void *);
482
483 #ifdef AUDIO_PM_IDLE
484 static void audio_idle(void *);
485 static void audio_activity(device_t, devactive_t);
486 #endif
487
488 static bool audio_suspend(device_t dv, const pmf_qual_t *);
489 static bool audio_resume(device_t dv, const pmf_qual_t *);
490 static void audio_volume_down(device_t);
491 static void audio_volume_up(device_t);
492 static void audio_volume_toggle(device_t);
493
494 static void audio_mixer_capture(struct audio_softc *);
495 static void audio_mixer_restore(struct audio_softc *);
496
497 static void audio_softintr_rd(void *);
498 static void audio_softintr_wr(void *);
499
500 static int audio_enter_exclusive(struct audio_softc *);
501 static void audio_exit_exclusive(struct audio_softc *);
502 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
503 static void audio_file_exit(struct audio_softc *, struct psref *);
504 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
505
506 static int audioclose(struct file *);
507 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
508 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
509 static int audioioctl(struct file *, u_long, void *);
510 static int audiopoll(struct file *, int);
511 static int audiokqfilter(struct file *, struct knote *);
512 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
513 struct uvm_object **, int *);
514 static int audiostat(struct file *, struct stat *);
515
516 static void filt_audiowrite_detach(struct knote *);
517 static int filt_audiowrite_event(struct knote *, long);
518 static void filt_audioread_detach(struct knote *);
519 static int filt_audioread_event(struct knote *, long);
520
521 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
522 audio_file_t **);
523 static int audio_close(struct audio_softc *, audio_file_t *);
524 static int audio_unlink(struct audio_softc *, audio_file_t *);
525 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
526 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
527 static void audio_file_clear(struct audio_softc *, audio_file_t *);
528 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
529 struct lwp *, audio_file_t *);
530 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
531 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
532 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
533 struct uvm_object **, int *, audio_file_t *);
534
535 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
536
537 static void audio_pintr(void *);
538 static void audio_rintr(void *);
539
540 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
541
542 static __inline int audio_track_readablebytes(const audio_track_t *);
543 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
544 const struct audio_info *);
545 static int audio_track_setinfo_check(audio_format2_t *,
546 const struct audio_prinfo *, const audio_format2_t *);
547 static void audio_track_setinfo_water(audio_track_t *,
548 const struct audio_info *);
549 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
550 struct audio_info *);
551 static int audio_hw_set_format(struct audio_softc *, int,
552 const audio_format2_t *, const audio_format2_t *,
553 audio_filter_reg_t *, audio_filter_reg_t *);
554 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
555 audio_file_t *);
556 static bool audio_can_playback(struct audio_softc *);
557 static bool audio_can_capture(struct audio_softc *);
558 static int audio_check_params(audio_format2_t *);
559 static int audio_mixers_init(struct audio_softc *sc, int,
560 const audio_format2_t *, const audio_format2_t *,
561 const audio_filter_reg_t *, const audio_filter_reg_t *);
562 static int audio_select_freq(const struct audio_format *);
563 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
564 static int audio_hw_validate_format(struct audio_softc *, int,
565 const audio_format2_t *);
566 static int audio_mixers_set_format(struct audio_softc *,
567 const struct audio_info *);
568 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
569 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
570 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
571 #if defined(AUDIO_DEBUG)
572 static int audio_sysctl_debug(SYSCTLFN_PROTO);
573 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
574 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
575 #endif
576
577 static void *audio_realloc(void *, size_t);
578 static int audio_realloc_usrbuf(audio_track_t *, int);
579 static void audio_free_usrbuf(audio_track_t *);
580
581 static audio_track_t *audio_track_create(struct audio_softc *,
582 audio_trackmixer_t *);
583 static void audio_track_destroy(audio_track_t *);
584 static audio_filter_t audio_track_get_codec(audio_track_t *,
585 const audio_format2_t *, const audio_format2_t *);
586 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
587 static void audio_track_play(audio_track_t *);
588 static int audio_track_drain(struct audio_softc *, audio_track_t *);
589 static void audio_track_record(audio_track_t *);
590 static void audio_track_clear(struct audio_softc *, audio_track_t *);
591
592 static int audio_mixer_init(struct audio_softc *, int,
593 const audio_format2_t *, const audio_filter_reg_t *);
594 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
595 static void audio_pmixer_start(struct audio_softc *, bool);
596 static void audio_pmixer_process(struct audio_softc *);
597 static void audio_pmixer_agc(audio_trackmixer_t *, int);
598 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
599 static void audio_pmixer_output(struct audio_softc *);
600 static int audio_pmixer_halt(struct audio_softc *);
601 static void audio_rmixer_start(struct audio_softc *);
602 static void audio_rmixer_process(struct audio_softc *);
603 static void audio_rmixer_input(struct audio_softc *);
604 static int audio_rmixer_halt(struct audio_softc *);
605
606 static void mixer_init(struct audio_softc *);
607 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
608 static int mixer_close(struct audio_softc *, audio_file_t *);
609 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
610 static void mixer_async_add(struct audio_softc *, pid_t);
611 static void mixer_async_remove(struct audio_softc *, pid_t);
612 static void mixer_signal(struct audio_softc *);
613
614 static int au_portof(struct audio_softc *, char *, int);
615
616 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
617 mixer_devinfo_t *, const struct portname *);
618 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
619 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
620 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
621 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
622 u_int *, u_char *);
623 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
624 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
625 static int au_set_monitor_gain(struct audio_softc *, int);
626 static int au_get_monitor_gain(struct audio_softc *);
627 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
628 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
629
630 static __inline struct audio_params
631 format2_to_params(const audio_format2_t *f2)
632 {
633 audio_params_t p;
634
635 /* validbits/precision <-> precision/stride */
636 p.sample_rate = f2->sample_rate;
637 p.channels = f2->channels;
638 p.encoding = f2->encoding;
639 p.validbits = f2->precision;
640 p.precision = f2->stride;
641 return p;
642 }
643
644 static __inline audio_format2_t
645 params_to_format2(const struct audio_params *p)
646 {
647 audio_format2_t f2;
648
649 /* precision/stride <-> validbits/precision */
650 f2.sample_rate = p->sample_rate;
651 f2.channels = p->channels;
652 f2.encoding = p->encoding;
653 f2.precision = p->validbits;
654 f2.stride = p->precision;
655 return f2;
656 }
657
658 /* Return true if this track is a playback track. */
659 static __inline bool
660 audio_track_is_playback(const audio_track_t *track)
661 {
662
663 return ((track->mode & AUMODE_PLAY) != 0);
664 }
665
666 /* Return true if this track is a recording track. */
667 static __inline bool
668 audio_track_is_record(const audio_track_t *track)
669 {
670
671 return ((track->mode & AUMODE_RECORD) != 0);
672 }
673
674 #if 0 /* XXX Not used yet */
675 /*
676 * Convert 0..255 volume used in userland to internal presentation 0..256.
677 */
678 static __inline u_int
679 audio_volume_to_inner(u_int v)
680 {
681
682 return v < 127 ? v : v + 1;
683 }
684
685 /*
686 * Convert 0..256 internal presentation to 0..255 volume used in userland.
687 */
688 static __inline u_int
689 audio_volume_to_outer(u_int v)
690 {
691
692 return v < 127 ? v : v - 1;
693 }
694 #endif /* 0 */
695
696 static dev_type_open(audioopen);
697 /* XXXMRG use more dev_type_xxx */
698
699 const struct cdevsw audio_cdevsw = {
700 .d_open = audioopen,
701 .d_close = noclose,
702 .d_read = noread,
703 .d_write = nowrite,
704 .d_ioctl = noioctl,
705 .d_stop = nostop,
706 .d_tty = notty,
707 .d_poll = nopoll,
708 .d_mmap = nommap,
709 .d_kqfilter = nokqfilter,
710 .d_discard = nodiscard,
711 .d_flag = D_OTHER | D_MPSAFE
712 };
713
714 const struct fileops audio_fileops = {
715 .fo_name = "audio",
716 .fo_read = audioread,
717 .fo_write = audiowrite,
718 .fo_ioctl = audioioctl,
719 .fo_fcntl = fnullop_fcntl,
720 .fo_stat = audiostat,
721 .fo_poll = audiopoll,
722 .fo_close = audioclose,
723 .fo_mmap = audiommap,
724 .fo_kqfilter = audiokqfilter,
725 .fo_restart = fnullop_restart
726 };
727
728 /* The default audio mode: 8 kHz mono mu-law */
729 static const struct audio_params audio_default = {
730 .sample_rate = 8000,
731 .encoding = AUDIO_ENCODING_ULAW,
732 .precision = 8,
733 .validbits = 8,
734 .channels = 1,
735 };
736
737 static const char *encoding_names[] = {
738 "none",
739 AudioEmulaw,
740 AudioEalaw,
741 "pcm16",
742 "pcm8",
743 AudioEadpcm,
744 AudioEslinear_le,
745 AudioEslinear_be,
746 AudioEulinear_le,
747 AudioEulinear_be,
748 AudioEslinear,
749 AudioEulinear,
750 AudioEmpeg_l1_stream,
751 AudioEmpeg_l1_packets,
752 AudioEmpeg_l1_system,
753 AudioEmpeg_l2_stream,
754 AudioEmpeg_l2_packets,
755 AudioEmpeg_l2_system,
756 AudioEac3,
757 };
758
759 /*
760 * Returns encoding name corresponding to AUDIO_ENCODING_*.
761 * Note that it may return a local buffer because it is mainly for debugging.
762 */
763 const char *
764 audio_encoding_name(int encoding)
765 {
766 static char buf[16];
767
768 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
769 return encoding_names[encoding];
770 } else {
771 snprintf(buf, sizeof(buf), "enc=%d", encoding);
772 return buf;
773 }
774 }
775
776 /*
777 * Supported encodings used by AUDIO_GETENC.
778 * index and flags are set by code.
779 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
780 */
781 static const audio_encoding_t audio_encodings[] = {
782 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
783 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
784 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
785 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
786 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
787 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
788 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
789 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
790 #if defined(AUDIO_SUPPORT_LINEAR24)
791 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
792 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
793 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
794 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
795 #endif
796 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
797 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
798 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
799 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
800 };
801
802 static const struct portname itable[] = {
803 { AudioNmicrophone, AUDIO_MICROPHONE },
804 { AudioNline, AUDIO_LINE_IN },
805 { AudioNcd, AUDIO_CD },
806 { 0, 0 }
807 };
808 static const struct portname otable[] = {
809 { AudioNspeaker, AUDIO_SPEAKER },
810 { AudioNheadphone, AUDIO_HEADPHONE },
811 { AudioNline, AUDIO_LINE_OUT },
812 { 0, 0 }
813 };
814
815 static struct psref_class *audio_psref_class __read_mostly;
816
817 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
818 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
819 audiochilddet, DVF_DETACH_SHUTDOWN);
820
821 static int
822 audiomatch(device_t parent, cfdata_t match, void *aux)
823 {
824 struct audio_attach_args *sa;
825
826 sa = aux;
827 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
828 __func__, sa->type, sa, sa->hwif);
829 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
830 }
831
832 static void
833 audioattach(device_t parent, device_t self, void *aux)
834 {
835 struct audio_softc *sc;
836 struct audio_attach_args *sa;
837 const struct audio_hw_if *hw_if;
838 audio_format2_t phwfmt;
839 audio_format2_t rhwfmt;
840 audio_filter_reg_t pfil;
841 audio_filter_reg_t rfil;
842 const struct sysctlnode *node;
843 void *hdlp;
844 bool has_playback;
845 bool has_capture;
846 bool has_indep;
847 bool has_fulldup;
848 int mode;
849 int error;
850
851 sc = device_private(self);
852 sc->sc_dev = self;
853 sa = (struct audio_attach_args *)aux;
854 hw_if = sa->hwif;
855 hdlp = sa->hdl;
856
857 if (hw_if == NULL) {
858 panic("audioattach: missing hw_if method");
859 }
860 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
861 aprint_error(": missing mandatory method\n");
862 return;
863 }
864
865 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
866 sc->sc_props = hw_if->get_props(hdlp);
867
868 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
869 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
870 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
871 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
872
873 #ifdef DIAGNOSTIC
874 if (hw_if->query_format == NULL ||
875 hw_if->set_format == NULL ||
876 hw_if->getdev == NULL ||
877 hw_if->set_port == NULL ||
878 hw_if->get_port == NULL ||
879 hw_if->query_devinfo == NULL) {
880 aprint_error(": missing mandatory method\n");
881 return;
882 }
883 if (has_playback) {
884 if ((hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
885 hw_if->halt_output == NULL) {
886 aprint_error(": missing playback method\n");
887 }
888 }
889 if (has_capture) {
890 if ((hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
891 hw_if->halt_input == NULL) {
892 aprint_error(": missing capture method\n");
893 }
894 }
895 #endif
896
897 sc->hw_if = hw_if;
898 sc->hw_hdl = hdlp;
899 sc->hw_dev = parent;
900
901 sc->sc_blk_ms = AUDIO_BLK_MS;
902 SLIST_INIT(&sc->sc_files);
903 cv_init(&sc->sc_exlockcv, "audiolk");
904 sc->sc_am_capacity = 0;
905 sc->sc_am_used = 0;
906 sc->sc_am = NULL;
907
908 /* MMAP is now supported by upper layer. */
909 sc->sc_props |= AUDIO_PROP_MMAP;
910
911 KASSERT(has_playback || has_capture);
912 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
913 if (!has_playback || !has_capture) {
914 KASSERT(!has_indep);
915 KASSERT(!has_fulldup);
916 }
917
918 mode = 0;
919 if (has_playback) {
920 aprint_normal(": playback");
921 mode |= AUMODE_PLAY;
922 }
923 if (has_capture) {
924 aprint_normal("%c capture", has_playback ? ',' : ':');
925 mode |= AUMODE_RECORD;
926 }
927 if (has_playback && has_capture) {
928 if (has_fulldup)
929 aprint_normal(", full duplex");
930 else
931 aprint_normal(", half duplex");
932
933 if (has_indep)
934 aprint_normal(", independent");
935 }
936
937 aprint_naive("\n");
938 aprint_normal("\n");
939
940 /* probe hw params */
941 memset(&phwfmt, 0, sizeof(phwfmt));
942 memset(&rhwfmt, 0, sizeof(rhwfmt));
943 memset(&pfil, 0, sizeof(pfil));
944 memset(&rfil, 0, sizeof(rfil));
945 if (has_indep) {
946 int perror, rerror;
947
948 /* On independent devices, probe separately. */
949 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
950 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
951 if (perror && rerror) {
952 aprint_error_dev(self, "audio_hw_probe failed, "
953 "perror = %d, rerror = %d\n", perror, rerror);
954 goto bad;
955 }
956 if (perror) {
957 mode &= ~AUMODE_PLAY;
958 aprint_error_dev(self, "audio_hw_probe failed with "
959 "%d, playback disabled\n", perror);
960 }
961 if (rerror) {
962 mode &= ~AUMODE_RECORD;
963 aprint_error_dev(self, "audio_hw_probe failed with "
964 "%d, capture disabled\n", rerror);
965 }
966 } else {
967 /*
968 * On non independent devices or uni-directional devices,
969 * probe once (simultaneously).
970 */
971 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
972 error = audio_hw_probe(sc, fmt, mode);
973 if (error) {
974 aprint_error_dev(self, "audio_hw_probe failed, "
975 "error = %d\n", error);
976 goto bad;
977 }
978 if (has_playback && has_capture)
979 rhwfmt = phwfmt;
980 }
981
982 /* Init hardware. */
983 /* hw_probe() also validates [pr]hwfmt. */
984 mutex_enter(sc->sc_lock);
985 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
986 if (error) {
987 mutex_exit(sc->sc_lock);
988 aprint_error_dev(self, "audio_hw_set_format failed, "
989 "error = %d\n", error);
990 goto bad;
991 }
992
993 /*
994 * Init track mixers. If at least one direction is available on
995 * attach time, we assume a success.
996 */
997 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
998 mutex_exit(sc->sc_lock);
999 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1000 aprint_error_dev(self, "audio_mixers_init failed, "
1001 "error = %d\n", error);
1002 goto bad;
1003 }
1004
1005 sc->sc_psz = pserialize_create();
1006 psref_target_init(&sc->sc_psref, audio_psref_class);
1007
1008 selinit(&sc->sc_wsel);
1009 selinit(&sc->sc_rsel);
1010
1011 /* Initial parameter of /dev/sound */
1012 sc->sc_sound_pparams = params_to_format2(&audio_default);
1013 sc->sc_sound_rparams = params_to_format2(&audio_default);
1014 sc->sc_sound_ppause = false;
1015 sc->sc_sound_rpause = false;
1016
1017 /* XXX TODO: consider about sc_ai */
1018
1019 mixer_init(sc);
1020 TRACE(2, "inputs ports=0x%x, input master=%d, "
1021 "output ports=0x%x, output master=%d",
1022 sc->sc_inports.allports, sc->sc_inports.master,
1023 sc->sc_outports.allports, sc->sc_outports.master);
1024
1025 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1026 0,
1027 CTLTYPE_NODE, device_xname(sc->sc_dev),
1028 SYSCTL_DESCR("audio test"),
1029 NULL, 0,
1030 NULL, 0,
1031 CTL_HW,
1032 CTL_CREATE, CTL_EOL);
1033
1034 if (node != NULL) {
1035 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1036 CTLFLAG_READWRITE,
1037 CTLTYPE_INT, "blk_ms",
1038 SYSCTL_DESCR("blocksize in msec"),
1039 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1040 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1041
1042 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1043 CTLFLAG_READWRITE,
1044 CTLTYPE_BOOL, "multiuser",
1045 SYSCTL_DESCR("allow multiple user access"),
1046 audio_sysctl_multiuser, 0, (void *)sc, 0,
1047 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1048
1049 #if defined(AUDIO_DEBUG)
1050 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1051 CTLFLAG_READWRITE,
1052 CTLTYPE_INT, "debug",
1053 SYSCTL_DESCR("debug level (0..4)"),
1054 audio_sysctl_debug, 0, (void *)sc, 0,
1055 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1056 #endif
1057 }
1058
1059 #ifdef AUDIO_PM_IDLE
1060 callout_init(&sc->sc_idle_counter, 0);
1061 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1062 #endif
1063
1064 if (!pmf_device_register(self, audio_suspend, audio_resume))
1065 aprint_error_dev(self, "couldn't establish power handler\n");
1066 #ifdef AUDIO_PM_IDLE
1067 if (!device_active_register(self, audio_activity))
1068 aprint_error_dev(self, "couldn't register activity handler\n");
1069 #endif
1070
1071 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1072 audio_volume_down, true))
1073 aprint_error_dev(self, "couldn't add volume down handler\n");
1074 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1075 audio_volume_up, true))
1076 aprint_error_dev(self, "couldn't add volume up handler\n");
1077 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1078 audio_volume_toggle, true))
1079 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1080
1081 #ifdef AUDIO_PM_IDLE
1082 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1083 #endif
1084
1085 #if defined(AUDIO_DEBUG)
1086 audio_mlog_init();
1087 #endif
1088
1089 audiorescan(self, "audio", NULL);
1090 return;
1091
1092 bad:
1093 /* Clearing hw_if means that device is attached but disabled. */
1094 sc->hw_if = NULL;
1095 aprint_error_dev(sc->sc_dev, "disabled\n");
1096 return;
1097 }
1098
1099 /*
1100 * Initialize hardware mixer.
1101 * This function is called from audioattach().
1102 */
1103 static void
1104 mixer_init(struct audio_softc *sc)
1105 {
1106 mixer_devinfo_t mi;
1107 int iclass, mclass, oclass, rclass;
1108 int record_master_found, record_source_found;
1109
1110 iclass = mclass = oclass = rclass = -1;
1111 sc->sc_inports.index = -1;
1112 sc->sc_inports.master = -1;
1113 sc->sc_inports.nports = 0;
1114 sc->sc_inports.isenum = false;
1115 sc->sc_inports.allports = 0;
1116 sc->sc_inports.isdual = false;
1117 sc->sc_inports.mixerout = -1;
1118 sc->sc_inports.cur_port = -1;
1119 sc->sc_outports.index = -1;
1120 sc->sc_outports.master = -1;
1121 sc->sc_outports.nports = 0;
1122 sc->sc_outports.isenum = false;
1123 sc->sc_outports.allports = 0;
1124 sc->sc_outports.isdual = false;
1125 sc->sc_outports.mixerout = -1;
1126 sc->sc_outports.cur_port = -1;
1127 sc->sc_monitor_port = -1;
1128 /*
1129 * Read through the underlying driver's list, picking out the class
1130 * names from the mixer descriptions. We'll need them to decode the
1131 * mixer descriptions on the next pass through the loop.
1132 */
1133 mutex_enter(sc->sc_lock);
1134 for(mi.index = 0; ; mi.index++) {
1135 if (audio_query_devinfo(sc, &mi) != 0)
1136 break;
1137 /*
1138 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1139 * All the other types describe an actual mixer.
1140 */
1141 if (mi.type == AUDIO_MIXER_CLASS) {
1142 if (strcmp(mi.label.name, AudioCinputs) == 0)
1143 iclass = mi.mixer_class;
1144 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1145 mclass = mi.mixer_class;
1146 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1147 oclass = mi.mixer_class;
1148 if (strcmp(mi.label.name, AudioCrecord) == 0)
1149 rclass = mi.mixer_class;
1150 }
1151 }
1152 mutex_exit(sc->sc_lock);
1153
1154 /* Allocate save area. Ensure non-zero allocation. */
1155 sc->sc_nmixer_states = mi.index;
1156 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1157 (sc->sc_nmixer_states + 1), KM_SLEEP);
1158
1159 /*
1160 * This is where we assign each control in the "audio" model, to the
1161 * underlying "mixer" control. We walk through the whole list once,
1162 * assigning likely candidates as we come across them.
1163 */
1164 record_master_found = 0;
1165 record_source_found = 0;
1166 mutex_enter(sc->sc_lock);
1167 for(mi.index = 0; ; mi.index++) {
1168 if (audio_query_devinfo(sc, &mi) != 0)
1169 break;
1170 KASSERT(mi.index < sc->sc_nmixer_states);
1171 if (mi.type == AUDIO_MIXER_CLASS)
1172 continue;
1173 if (mi.mixer_class == iclass) {
1174 /*
1175 * AudioCinputs is only a fallback, when we don't
1176 * find what we're looking for in AudioCrecord, so
1177 * check the flags before accepting one of these.
1178 */
1179 if (strcmp(mi.label.name, AudioNmaster) == 0
1180 && record_master_found == 0)
1181 sc->sc_inports.master = mi.index;
1182 if (strcmp(mi.label.name, AudioNsource) == 0
1183 && record_source_found == 0) {
1184 if (mi.type == AUDIO_MIXER_ENUM) {
1185 int i;
1186 for(i = 0; i < mi.un.e.num_mem; i++)
1187 if (strcmp(mi.un.e.member[i].label.name,
1188 AudioNmixerout) == 0)
1189 sc->sc_inports.mixerout =
1190 mi.un.e.member[i].ord;
1191 }
1192 au_setup_ports(sc, &sc->sc_inports, &mi,
1193 itable);
1194 }
1195 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1196 sc->sc_outports.master == -1)
1197 sc->sc_outports.master = mi.index;
1198 } else if (mi.mixer_class == mclass) {
1199 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1200 sc->sc_monitor_port = mi.index;
1201 } else if (mi.mixer_class == oclass) {
1202 if (strcmp(mi.label.name, AudioNmaster) == 0)
1203 sc->sc_outports.master = mi.index;
1204 if (strcmp(mi.label.name, AudioNselect) == 0)
1205 au_setup_ports(sc, &sc->sc_outports, &mi,
1206 otable);
1207 } else if (mi.mixer_class == rclass) {
1208 /*
1209 * These are the preferred mixers for the audio record
1210 * controls, so set the flags here, but don't check.
1211 */
1212 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1213 sc->sc_inports.master = mi.index;
1214 record_master_found = 1;
1215 }
1216 #if 1 /* Deprecated. Use AudioNmaster. */
1217 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1218 sc->sc_inports.master = mi.index;
1219 record_master_found = 1;
1220 }
1221 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1222 sc->sc_inports.master = mi.index;
1223 record_master_found = 1;
1224 }
1225 #endif
1226 if (strcmp(mi.label.name, AudioNsource) == 0) {
1227 if (mi.type == AUDIO_MIXER_ENUM) {
1228 int i;
1229 for(i = 0; i < mi.un.e.num_mem; i++)
1230 if (strcmp(mi.un.e.member[i].label.name,
1231 AudioNmixerout) == 0)
1232 sc->sc_inports.mixerout =
1233 mi.un.e.member[i].ord;
1234 }
1235 au_setup_ports(sc, &sc->sc_inports, &mi,
1236 itable);
1237 record_source_found = 1;
1238 }
1239 }
1240 }
1241 mutex_exit(sc->sc_lock);
1242 }
1243
1244 static int
1245 audioactivate(device_t self, enum devact act)
1246 {
1247 struct audio_softc *sc = device_private(self);
1248
1249 switch (act) {
1250 case DVACT_DEACTIVATE:
1251 mutex_enter(sc->sc_lock);
1252 sc->sc_dying = true;
1253 cv_broadcast(&sc->sc_exlockcv);
1254 mutex_exit(sc->sc_lock);
1255 return 0;
1256 default:
1257 return EOPNOTSUPP;
1258 }
1259 }
1260
1261 static int
1262 audiodetach(device_t self, int flags)
1263 {
1264 struct audio_softc *sc;
1265 struct audio_file *file;
1266 int error;
1267
1268 sc = device_private(self);
1269 TRACE(2, "flags=%d", flags);
1270
1271 /* device is not initialized */
1272 if (sc->hw_if == NULL)
1273 return 0;
1274
1275 /* Start draining existing accessors of the device. */
1276 error = config_detach_children(self, flags);
1277 if (error)
1278 return error;
1279
1280 /* delete sysctl nodes */
1281 sysctl_teardown(&sc->sc_log);
1282
1283 mutex_enter(sc->sc_lock);
1284 sc->sc_dying = true;
1285 cv_broadcast(&sc->sc_exlockcv);
1286 if (sc->sc_pmixer)
1287 cv_broadcast(&sc->sc_pmixer->outcv);
1288 if (sc->sc_rmixer)
1289 cv_broadcast(&sc->sc_rmixer->outcv);
1290
1291 /* Prevent new users */
1292 SLIST_FOREACH(file, &sc->sc_files, entry) {
1293 atomic_store_relaxed(&file->dying, true);
1294 }
1295
1296 /*
1297 * Wait for existing users to drain.
1298 * - pserialize_perform waits for all pserialize_read sections on
1299 * all CPUs; after this, no more new psref_acquire can happen.
1300 * - psref_target_destroy waits for all extant acquired psrefs to
1301 * be psref_released.
1302 */
1303 pserialize_perform(sc->sc_psz);
1304 mutex_exit(sc->sc_lock);
1305 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1306
1307 /*
1308 * We are now guaranteed that there are no calls to audio fileops
1309 * that hold sc, and any new calls with files that were for sc will
1310 * fail. Thus, we now have exclusive access to the softc.
1311 */
1312
1313 /*
1314 * Nuke all open instances.
1315 * Here, we no longer need any locks to traverse sc_files.
1316 */
1317 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1318 audio_unlink(sc, file);
1319 }
1320
1321 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1322 audio_volume_down, true);
1323 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1324 audio_volume_up, true);
1325 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1326 audio_volume_toggle, true);
1327
1328 #ifdef AUDIO_PM_IDLE
1329 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1330
1331 device_active_deregister(self, audio_activity);
1332 #endif
1333
1334 pmf_device_deregister(self);
1335
1336 /* Free resources */
1337 mutex_enter(sc->sc_lock);
1338 if (sc->sc_pmixer) {
1339 audio_mixer_destroy(sc, sc->sc_pmixer);
1340 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1341 }
1342 if (sc->sc_rmixer) {
1343 audio_mixer_destroy(sc, sc->sc_rmixer);
1344 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1345 }
1346 mutex_exit(sc->sc_lock);
1347 if (sc->sc_am)
1348 kern_free(sc->sc_am);
1349
1350 seldestroy(&sc->sc_wsel);
1351 seldestroy(&sc->sc_rsel);
1352
1353 #ifdef AUDIO_PM_IDLE
1354 callout_destroy(&sc->sc_idle_counter);
1355 #endif
1356
1357 cv_destroy(&sc->sc_exlockcv);
1358
1359 #if defined(AUDIO_DEBUG)
1360 audio_mlog_free();
1361 #endif
1362
1363 return 0;
1364 }
1365
1366 static void
1367 audiochilddet(device_t self, device_t child)
1368 {
1369
1370 /* we hold no child references, so do nothing */
1371 }
1372
1373 static int
1374 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1375 {
1376
1377 if (config_match(parent, cf, aux))
1378 config_attach_loc(parent, cf, locs, aux, NULL);
1379
1380 return 0;
1381 }
1382
1383 static int
1384 audiorescan(device_t self, const char *ifattr, const int *flags)
1385 {
1386 struct audio_softc *sc = device_private(self);
1387
1388 if (!ifattr_match(ifattr, "audio"))
1389 return 0;
1390
1391 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1392
1393 return 0;
1394 }
1395
1396 /*
1397 * Called from hardware driver. This is where the MI audio driver gets
1398 * probed/attached to the hardware driver.
1399 */
1400 device_t
1401 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1402 {
1403 struct audio_attach_args arg;
1404
1405 #ifdef DIAGNOSTIC
1406 if (ahwp == NULL) {
1407 aprint_error("audio_attach_mi: NULL\n");
1408 return 0;
1409 }
1410 #endif
1411 arg.type = AUDIODEV_TYPE_AUDIO;
1412 arg.hwif = ahwp;
1413 arg.hdl = hdlp;
1414 return config_found(dev, &arg, audioprint);
1415 }
1416
1417 /*
1418 * Acquire sc_lock and enter exlock critical section.
1419 * If successful, it returns 0. Otherwise returns errno.
1420 * Must be called without sc_lock held.
1421 */
1422 static int
1423 audio_enter_exclusive(struct audio_softc *sc)
1424 {
1425 int error;
1426
1427 mutex_enter(sc->sc_lock);
1428 if (sc->sc_dying) {
1429 mutex_exit(sc->sc_lock);
1430 return EIO;
1431 }
1432
1433 while (__predict_false(sc->sc_exlock != 0)) {
1434 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1435 if (sc->sc_dying)
1436 error = EIO;
1437 if (error) {
1438 mutex_exit(sc->sc_lock);
1439 return error;
1440 }
1441 }
1442
1443 /* Acquire */
1444 sc->sc_exlock = 1;
1445 return 0;
1446 }
1447
1448 /*
1449 * Leave exlock critical section and release sc_lock.
1450 * Must be called with sc_lock held.
1451 */
1452 static void
1453 audio_exit_exclusive(struct audio_softc *sc)
1454 {
1455
1456 KASSERT(mutex_owned(sc->sc_lock));
1457 KASSERT(sc->sc_exlock);
1458
1459 /* Leave critical section */
1460 sc->sc_exlock = 0;
1461 cv_broadcast(&sc->sc_exlockcv);
1462 mutex_exit(sc->sc_lock);
1463 }
1464
1465 /*
1466 * Acquire sc from file, and increment the psref count.
1467 * If successful, returns sc. Otherwise returns NULL.
1468 */
1469 struct audio_softc *
1470 audio_file_enter(audio_file_t *file, struct psref *refp)
1471 {
1472 int s;
1473 bool dying;
1474
1475 /* psref(9) forbids to migrate CPUs */
1476 curlwp_bind();
1477
1478 /* Block audiodetach while we acquire a reference */
1479 s = pserialize_read_enter();
1480
1481 /* If close or audiodetach already ran, tough -- no more audio */
1482 dying = atomic_load_relaxed(&file->dying);
1483 if (dying) {
1484 pserialize_read_exit(s);
1485 return NULL;
1486 }
1487
1488 /* Acquire a reference */
1489 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1490
1491 /* Now sc won't go away until we drop the reference count */
1492 pserialize_read_exit(s);
1493
1494 return file->sc;
1495 }
1496
1497 /*
1498 * Decrement the psref count.
1499 */
1500 void
1501 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1502 {
1503
1504 psref_release(refp, &sc->sc_psref, audio_psref_class);
1505 }
1506
1507 /*
1508 * Wait for I/O to complete, releasing sc_lock.
1509 * Must be called with sc_lock held.
1510 */
1511 static int
1512 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1513 {
1514 int error;
1515
1516 KASSERT(track);
1517 KASSERT(mutex_owned(sc->sc_lock));
1518
1519 /* Wait for pending I/O to complete. */
1520 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1521 mstohz(AUDIO_TIMEOUT));
1522 if (sc->sc_dying) {
1523 error = EIO;
1524 }
1525 if (error) {
1526 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1527 if (error == EWOULDBLOCK)
1528 device_printf(sc->sc_dev, "device timeout\n");
1529 } else {
1530 TRACET(3, track, "wakeup");
1531 }
1532 return error;
1533 }
1534
1535 /*
1536 * Try to acquire track lock.
1537 * It doesn't block if the track lock is already aquired.
1538 * Returns true if the track lock was acquired, or false if the track
1539 * lock was already acquired.
1540 */
1541 static __inline bool
1542 audio_track_lock_tryenter(audio_track_t *track)
1543 {
1544 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1545 }
1546
1547 /*
1548 * Acquire track lock.
1549 */
1550 static __inline void
1551 audio_track_lock_enter(audio_track_t *track)
1552 {
1553 /* Don't sleep here. */
1554 while (audio_track_lock_tryenter(track) == false)
1555 ;
1556 }
1557
1558 /*
1559 * Release track lock.
1560 */
1561 static __inline void
1562 audio_track_lock_exit(audio_track_t *track)
1563 {
1564 atomic_swap_uint(&track->lock, 0);
1565 }
1566
1567
1568 static int
1569 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1570 {
1571 struct audio_softc *sc;
1572 int error;
1573
1574 /* Find the device */
1575 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1576 if (sc == NULL || sc->hw_if == NULL)
1577 return ENXIO;
1578
1579 error = audio_enter_exclusive(sc);
1580 if (error)
1581 return error;
1582
1583 device_active(sc->sc_dev, DVA_SYSTEM);
1584 switch (AUDIODEV(dev)) {
1585 case SOUND_DEVICE:
1586 case AUDIO_DEVICE:
1587 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1588 break;
1589 case AUDIOCTL_DEVICE:
1590 error = audioctl_open(dev, sc, flags, ifmt, l);
1591 break;
1592 case MIXER_DEVICE:
1593 error = mixer_open(dev, sc, flags, ifmt, l);
1594 break;
1595 default:
1596 error = ENXIO;
1597 break;
1598 }
1599 audio_exit_exclusive(sc);
1600
1601 return error;
1602 }
1603
1604 static int
1605 audioclose(struct file *fp)
1606 {
1607 struct audio_softc *sc;
1608 struct psref sc_ref;
1609 audio_file_t *file;
1610 int error;
1611 dev_t dev;
1612
1613 KASSERT(fp->f_audioctx);
1614 file = fp->f_audioctx;
1615 dev = file->dev;
1616 error = 0;
1617
1618 /*
1619 * audioclose() must
1620 * - unplug track from the trackmixer (and unplug anything from softc),
1621 * if sc exists.
1622 * - free all memory objects, regardless of sc.
1623 */
1624
1625 sc = audio_file_enter(file, &sc_ref);
1626 if (sc) {
1627 switch (AUDIODEV(dev)) {
1628 case SOUND_DEVICE:
1629 case AUDIO_DEVICE:
1630 error = audio_close(sc, file);
1631 break;
1632 case AUDIOCTL_DEVICE:
1633 error = 0;
1634 break;
1635 case MIXER_DEVICE:
1636 error = mixer_close(sc, file);
1637 break;
1638 default:
1639 error = ENXIO;
1640 break;
1641 }
1642
1643 audio_file_exit(sc, &sc_ref);
1644 }
1645
1646 /* Free memory objects anyway */
1647 TRACEF(2, file, "free memory");
1648 if (file->ptrack)
1649 audio_track_destroy(file->ptrack);
1650 if (file->rtrack)
1651 audio_track_destroy(file->rtrack);
1652 kmem_free(file, sizeof(*file));
1653 fp->f_audioctx = NULL;
1654
1655 return error;
1656 }
1657
1658 static int
1659 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1660 int ioflag)
1661 {
1662 struct audio_softc *sc;
1663 struct psref sc_ref;
1664 audio_file_t *file;
1665 int error;
1666 dev_t dev;
1667
1668 KASSERT(fp->f_audioctx);
1669 file = fp->f_audioctx;
1670 dev = file->dev;
1671
1672 sc = audio_file_enter(file, &sc_ref);
1673 if (sc == NULL)
1674 return EIO;
1675
1676 if (fp->f_flag & O_NONBLOCK)
1677 ioflag |= IO_NDELAY;
1678
1679 switch (AUDIODEV(dev)) {
1680 case SOUND_DEVICE:
1681 case AUDIO_DEVICE:
1682 error = audio_read(sc, uio, ioflag, file);
1683 break;
1684 case AUDIOCTL_DEVICE:
1685 case MIXER_DEVICE:
1686 error = ENODEV;
1687 break;
1688 default:
1689 error = ENXIO;
1690 break;
1691 }
1692
1693 audio_file_exit(sc, &sc_ref);
1694 return error;
1695 }
1696
1697 static int
1698 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1699 int ioflag)
1700 {
1701 struct audio_softc *sc;
1702 struct psref sc_ref;
1703 audio_file_t *file;
1704 int error;
1705 dev_t dev;
1706
1707 KASSERT(fp->f_audioctx);
1708 file = fp->f_audioctx;
1709 dev = file->dev;
1710
1711 sc = audio_file_enter(file, &sc_ref);
1712 if (sc == NULL)
1713 return EIO;
1714
1715 if (fp->f_flag & O_NONBLOCK)
1716 ioflag |= IO_NDELAY;
1717
1718 switch (AUDIODEV(dev)) {
1719 case SOUND_DEVICE:
1720 case AUDIO_DEVICE:
1721 error = audio_write(sc, uio, ioflag, file);
1722 break;
1723 case AUDIOCTL_DEVICE:
1724 case MIXER_DEVICE:
1725 error = ENODEV;
1726 break;
1727 default:
1728 error = ENXIO;
1729 break;
1730 }
1731
1732 audio_file_exit(sc, &sc_ref);
1733 return error;
1734 }
1735
1736 static int
1737 audioioctl(struct file *fp, u_long cmd, void *addr)
1738 {
1739 struct audio_softc *sc;
1740 struct psref sc_ref;
1741 audio_file_t *file;
1742 struct lwp *l = curlwp;
1743 int error;
1744 dev_t dev;
1745
1746 KASSERT(fp->f_audioctx);
1747 file = fp->f_audioctx;
1748 dev = file->dev;
1749
1750 sc = audio_file_enter(file, &sc_ref);
1751 if (sc == NULL)
1752 return EIO;
1753
1754 switch (AUDIODEV(dev)) {
1755 case SOUND_DEVICE:
1756 case AUDIO_DEVICE:
1757 case AUDIOCTL_DEVICE:
1758 mutex_enter(sc->sc_lock);
1759 device_active(sc->sc_dev, DVA_SYSTEM);
1760 mutex_exit(sc->sc_lock);
1761 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1762 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1763 else
1764 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1765 file);
1766 break;
1767 case MIXER_DEVICE:
1768 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1769 break;
1770 default:
1771 error = ENXIO;
1772 break;
1773 }
1774
1775 audio_file_exit(sc, &sc_ref);
1776 return error;
1777 }
1778
1779 static int
1780 audiostat(struct file *fp, struct stat *st)
1781 {
1782 struct audio_softc *sc;
1783 struct psref sc_ref;
1784 audio_file_t *file;
1785
1786 KASSERT(fp->f_audioctx);
1787 file = fp->f_audioctx;
1788
1789 sc = audio_file_enter(file, &sc_ref);
1790 if (sc == NULL)
1791 return EIO;
1792
1793 memset(st, 0, sizeof(*st));
1794
1795 st->st_dev = file->dev;
1796 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1797 st->st_gid = kauth_cred_getegid(fp->f_cred);
1798 st->st_mode = S_IFCHR;
1799
1800 audio_file_exit(sc, &sc_ref);
1801 return 0;
1802 }
1803
1804 static int
1805 audiopoll(struct file *fp, int events)
1806 {
1807 struct audio_softc *sc;
1808 struct psref sc_ref;
1809 audio_file_t *file;
1810 struct lwp *l = curlwp;
1811 int revents;
1812 dev_t dev;
1813
1814 KASSERT(fp->f_audioctx);
1815 file = fp->f_audioctx;
1816 dev = file->dev;
1817
1818 sc = audio_file_enter(file, &sc_ref);
1819 if (sc == NULL)
1820 return EIO;
1821
1822 switch (AUDIODEV(dev)) {
1823 case SOUND_DEVICE:
1824 case AUDIO_DEVICE:
1825 revents = audio_poll(sc, events, l, file);
1826 break;
1827 case AUDIOCTL_DEVICE:
1828 case MIXER_DEVICE:
1829 revents = 0;
1830 break;
1831 default:
1832 revents = POLLERR;
1833 break;
1834 }
1835
1836 audio_file_exit(sc, &sc_ref);
1837 return revents;
1838 }
1839
1840 static int
1841 audiokqfilter(struct file *fp, struct knote *kn)
1842 {
1843 struct audio_softc *sc;
1844 struct psref sc_ref;
1845 audio_file_t *file;
1846 dev_t dev;
1847 int error;
1848
1849 KASSERT(fp->f_audioctx);
1850 file = fp->f_audioctx;
1851 dev = file->dev;
1852
1853 sc = audio_file_enter(file, &sc_ref);
1854 if (sc == NULL)
1855 return EIO;
1856
1857 switch (AUDIODEV(dev)) {
1858 case SOUND_DEVICE:
1859 case AUDIO_DEVICE:
1860 error = audio_kqfilter(sc, file, kn);
1861 break;
1862 case AUDIOCTL_DEVICE:
1863 case MIXER_DEVICE:
1864 error = ENODEV;
1865 break;
1866 default:
1867 error = ENXIO;
1868 break;
1869 }
1870
1871 audio_file_exit(sc, &sc_ref);
1872 return error;
1873 }
1874
1875 static int
1876 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1877 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1878 {
1879 struct audio_softc *sc;
1880 struct psref sc_ref;
1881 audio_file_t *file;
1882 dev_t dev;
1883 int error;
1884
1885 KASSERT(fp->f_audioctx);
1886 file = fp->f_audioctx;
1887 dev = file->dev;
1888
1889 sc = audio_file_enter(file, &sc_ref);
1890 if (sc == NULL)
1891 return EIO;
1892
1893 mutex_enter(sc->sc_lock);
1894 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1895 mutex_exit(sc->sc_lock);
1896
1897 switch (AUDIODEV(dev)) {
1898 case SOUND_DEVICE:
1899 case AUDIO_DEVICE:
1900 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1901 uobjp, maxprotp, file);
1902 break;
1903 case AUDIOCTL_DEVICE:
1904 case MIXER_DEVICE:
1905 default:
1906 error = ENOTSUP;
1907 break;
1908 }
1909
1910 audio_file_exit(sc, &sc_ref);
1911 return error;
1912 }
1913
1914
1915 /* Exported interfaces for audiobell. */
1916
1917 /*
1918 * Open for audiobell.
1919 * It stores allocated file to *filep.
1920 * If successful returns 0, otherwise errno.
1921 */
1922 int
1923 audiobellopen(dev_t dev, audio_file_t **filep)
1924 {
1925 struct audio_softc *sc;
1926 int error;
1927
1928 /* Find the device */
1929 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1930 if (sc == NULL || sc->hw_if == NULL)
1931 return ENXIO;
1932
1933 error = audio_enter_exclusive(sc);
1934 if (error)
1935 return error;
1936
1937 device_active(sc->sc_dev, DVA_SYSTEM);
1938 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1939
1940 audio_exit_exclusive(sc);
1941 return error;
1942 }
1943
1944 /* Close for audiobell */
1945 int
1946 audiobellclose(audio_file_t *file)
1947 {
1948 struct audio_softc *sc;
1949 struct psref sc_ref;
1950 int error;
1951
1952 sc = audio_file_enter(file, &sc_ref);
1953 if (sc == NULL)
1954 return EIO;
1955
1956 error = audio_close(sc, file);
1957
1958 audio_file_exit(sc, &sc_ref);
1959
1960 KASSERT(file->ptrack);
1961 audio_track_destroy(file->ptrack);
1962 KASSERT(file->rtrack == NULL);
1963 kmem_free(file, sizeof(*file));
1964 return error;
1965 }
1966
1967 /* Set sample rate for audiobell */
1968 int
1969 audiobellsetrate(audio_file_t *file, u_int sample_rate)
1970 {
1971 struct audio_softc *sc;
1972 struct psref sc_ref;
1973 struct audio_info ai;
1974 int error;
1975
1976 sc = audio_file_enter(file, &sc_ref);
1977 if (sc == NULL)
1978 return EIO;
1979
1980 AUDIO_INITINFO(&ai);
1981 ai.play.sample_rate = sample_rate;
1982
1983 error = audio_enter_exclusive(sc);
1984 if (error)
1985 goto done;
1986 error = audio_file_setinfo(sc, file, &ai);
1987 audio_exit_exclusive(sc);
1988
1989 done:
1990 audio_file_exit(sc, &sc_ref);
1991 return error;
1992 }
1993
1994 /* Playback for audiobell */
1995 int
1996 audiobellwrite(audio_file_t *file, struct uio *uio)
1997 {
1998 struct audio_softc *sc;
1999 struct psref sc_ref;
2000 int error;
2001
2002 sc = audio_file_enter(file, &sc_ref);
2003 if (sc == NULL)
2004 return EIO;
2005
2006 error = audio_write(sc, uio, 0, file);
2007
2008 audio_file_exit(sc, &sc_ref);
2009 return error;
2010 }
2011
2012
2013 /*
2014 * Audio driver
2015 */
2016 int
2017 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2018 struct lwp *l, audio_file_t **bellfile)
2019 {
2020 struct audio_info ai;
2021 struct file *fp;
2022 audio_file_t *af;
2023 audio_ring_t *hwbuf;
2024 bool fullduplex;
2025 int fd;
2026 int error;
2027
2028 KASSERT(mutex_owned(sc->sc_lock));
2029 KASSERT(sc->sc_exlock);
2030
2031 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2032 (audiodebug >= 3) ? "start " : "",
2033 ISDEVSOUND(dev) ? "sound" : "audio",
2034 flags, sc->sc_popens, sc->sc_ropens);
2035
2036 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2037 af->sc = sc;
2038 af->dev = dev;
2039 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2040 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2041 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2042 af->mode |= AUMODE_RECORD;
2043 if (af->mode == 0) {
2044 error = ENXIO;
2045 goto bad1;
2046 }
2047
2048 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2049
2050 /*
2051 * On half duplex hardware,
2052 * 1. if mode is (PLAY | REC), let mode PLAY.
2053 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2054 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2055 */
2056 if (fullduplex == false) {
2057 if ((af->mode & AUMODE_PLAY)) {
2058 if (sc->sc_ropens != 0) {
2059 TRACE(1, "record track already exists");
2060 error = ENODEV;
2061 goto bad1;
2062 }
2063 /* Play takes precedence */
2064 af->mode &= ~AUMODE_RECORD;
2065 }
2066 if ((af->mode & AUMODE_RECORD)) {
2067 if (sc->sc_popens != 0) {
2068 TRACE(1, "play track already exists");
2069 error = ENODEV;
2070 goto bad1;
2071 }
2072 }
2073 }
2074
2075 /* Create tracks */
2076 if ((af->mode & AUMODE_PLAY))
2077 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2078 if ((af->mode & AUMODE_RECORD))
2079 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2080
2081 /* Set parameters */
2082 AUDIO_INITINFO(&ai);
2083 if (bellfile) {
2084 /* If audiobell, only sample_rate will be set later. */
2085 ai.play.sample_rate = audio_default.sample_rate;
2086 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2087 ai.play.channels = 1;
2088 ai.play.precision = 16;
2089 ai.play.pause = 0;
2090 } else if (ISDEVAUDIO(dev)) {
2091 /* If /dev/audio, initialize everytime. */
2092 ai.play.sample_rate = audio_default.sample_rate;
2093 ai.play.encoding = audio_default.encoding;
2094 ai.play.channels = audio_default.channels;
2095 ai.play.precision = audio_default.precision;
2096 ai.play.pause = 0;
2097 ai.record.sample_rate = audio_default.sample_rate;
2098 ai.record.encoding = audio_default.encoding;
2099 ai.record.channels = audio_default.channels;
2100 ai.record.precision = audio_default.precision;
2101 ai.record.pause = 0;
2102 } else {
2103 /* If /dev/sound, take over the previous parameters. */
2104 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2105 ai.play.encoding = sc->sc_sound_pparams.encoding;
2106 ai.play.channels = sc->sc_sound_pparams.channels;
2107 ai.play.precision = sc->sc_sound_pparams.precision;
2108 ai.play.pause = sc->sc_sound_ppause;
2109 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2110 ai.record.encoding = sc->sc_sound_rparams.encoding;
2111 ai.record.channels = sc->sc_sound_rparams.channels;
2112 ai.record.precision = sc->sc_sound_rparams.precision;
2113 ai.record.pause = sc->sc_sound_rpause;
2114 }
2115 error = audio_file_setinfo(sc, af, &ai);
2116 if (error)
2117 goto bad2;
2118
2119 if (sc->sc_popens + sc->sc_ropens == 0) {
2120 /* First open */
2121
2122 sc->sc_cred = kauth_cred_get();
2123 kauth_cred_hold(sc->sc_cred);
2124
2125 if (sc->hw_if->open) {
2126 int hwflags;
2127
2128 /*
2129 * Call hw_if->open() only at first open of
2130 * combination of playback and recording.
2131 * On full duplex hardware, the flags passed to
2132 * hw_if->open() is always (FREAD | FWRITE)
2133 * regardless of this open()'s flags.
2134 * see also dev/isa/aria.c
2135 * On half duplex hardware, the flags passed to
2136 * hw_if->open() is either FREAD or FWRITE.
2137 * see also arch/evbarm/mini2440/audio_mini2440.c
2138 */
2139 if (fullduplex) {
2140 hwflags = FREAD | FWRITE;
2141 } else {
2142 /* Construct hwflags from af->mode. */
2143 hwflags = 0;
2144 if ((af->mode & AUMODE_PLAY) != 0)
2145 hwflags |= FWRITE;
2146 if ((af->mode & AUMODE_RECORD) != 0)
2147 hwflags |= FREAD;
2148 }
2149
2150 mutex_enter(sc->sc_intr_lock);
2151 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2152 mutex_exit(sc->sc_intr_lock);
2153 if (error)
2154 goto bad2;
2155 }
2156
2157 /*
2158 * Set speaker mode when a half duplex.
2159 * XXX I'm not sure this is correct.
2160 */
2161 if (1/*XXX*/) {
2162 if (sc->hw_if->speaker_ctl) {
2163 int on;
2164 if (af->ptrack) {
2165 on = 1;
2166 } else {
2167 on = 0;
2168 }
2169 mutex_enter(sc->sc_intr_lock);
2170 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2171 mutex_exit(sc->sc_intr_lock);
2172 if (error)
2173 goto bad3;
2174 }
2175 }
2176 } else if (sc->sc_multiuser == false) {
2177 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2178 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2179 error = EPERM;
2180 goto bad2;
2181 }
2182 }
2183
2184 /* Call init_output if this is the first playback open. */
2185 if (af->ptrack && sc->sc_popens == 0) {
2186 if (sc->hw_if->init_output) {
2187 hwbuf = &sc->sc_pmixer->hwbuf;
2188 mutex_enter(sc->sc_intr_lock);
2189 error = sc->hw_if->init_output(sc->hw_hdl,
2190 hwbuf->mem,
2191 hwbuf->capacity *
2192 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2193 mutex_exit(sc->sc_intr_lock);
2194 if (error)
2195 goto bad3;
2196 }
2197 }
2198 /* Call init_input if this is the first recording open. */
2199 if (af->rtrack && sc->sc_ropens == 0) {
2200 if (sc->hw_if->init_input) {
2201 hwbuf = &sc->sc_rmixer->hwbuf;
2202 mutex_enter(sc->sc_intr_lock);
2203 error = sc->hw_if->init_input(sc->hw_hdl,
2204 hwbuf->mem,
2205 hwbuf->capacity *
2206 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2207 mutex_exit(sc->sc_intr_lock);
2208 if (error)
2209 goto bad3;
2210 }
2211 }
2212
2213 if (bellfile == NULL) {
2214 error = fd_allocfile(&fp, &fd);
2215 if (error)
2216 goto bad3;
2217 }
2218
2219 /*
2220 * Count up finally.
2221 * Don't fail from here.
2222 */
2223 if (af->ptrack)
2224 sc->sc_popens++;
2225 if (af->rtrack)
2226 sc->sc_ropens++;
2227 mutex_enter(sc->sc_intr_lock);
2228 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2229 mutex_exit(sc->sc_intr_lock);
2230
2231 if (bellfile) {
2232 *bellfile = af;
2233 } else {
2234 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2235 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2236 }
2237
2238 TRACEF(3, af, "done");
2239 return error;
2240
2241 /*
2242 * Since track here is not yet linked to sc_files,
2243 * you can call track_destroy() without sc_intr_lock.
2244 */
2245 bad3:
2246 if (sc->sc_popens + sc->sc_ropens == 0) {
2247 if (sc->hw_if->close) {
2248 mutex_enter(sc->sc_intr_lock);
2249 sc->hw_if->close(sc->hw_hdl);
2250 mutex_exit(sc->sc_intr_lock);
2251 }
2252 }
2253 bad2:
2254 if (af->rtrack) {
2255 audio_track_destroy(af->rtrack);
2256 af->rtrack = NULL;
2257 }
2258 if (af->ptrack) {
2259 audio_track_destroy(af->ptrack);
2260 af->ptrack = NULL;
2261 }
2262 bad1:
2263 kmem_free(af, sizeof(*af));
2264 return error;
2265 }
2266
2267 /*
2268 * Must be called without sc_lock nor sc_exlock held.
2269 */
2270 int
2271 audio_close(struct audio_softc *sc, audio_file_t *file)
2272 {
2273
2274 /* Protect entering new fileops to this file */
2275 atomic_store_relaxed(&file->dying, true);
2276
2277 /*
2278 * Drain first.
2279 * It must be done before unlinking(acquiring exclusive lock).
2280 */
2281 if (file->ptrack) {
2282 mutex_enter(sc->sc_lock);
2283 audio_track_drain(sc, file->ptrack);
2284 mutex_exit(sc->sc_lock);
2285 }
2286
2287 return audio_unlink(sc, file);
2288 }
2289
2290 /*
2291 * Unlink this file, but not freeing memory here.
2292 * Must be called without sc_lock nor sc_exlock held.
2293 */
2294 int
2295 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2296 {
2297 int error;
2298
2299 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2300 (audiodebug >= 3) ? "start " : "",
2301 (int)curproc->p_pid, (int)curlwp->l_lid,
2302 sc->sc_popens, sc->sc_ropens);
2303 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2304 "sc->sc_popens=%d, sc->sc_ropens=%d",
2305 sc->sc_popens, sc->sc_ropens);
2306
2307 mutex_enter(sc->sc_lock);
2308 /*
2309 * Acquire exclusive lock to protect counters.
2310 * Does not use audio_enter_exclusive() due to sc_dying.
2311 */
2312 while (__predict_false(sc->sc_exlock != 0)) {
2313 error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
2314 mstohz(AUDIO_TIMEOUT));
2315 /* XXX what should I do on error? */
2316 if (error == EWOULDBLOCK) {
2317 mutex_exit(sc->sc_lock);
2318 device_printf(sc->sc_dev,
2319 "%s: cv_timedwait_sig failed %d", __func__, error);
2320 return error;
2321 }
2322 }
2323 sc->sc_exlock = 1;
2324
2325 device_active(sc->sc_dev, DVA_SYSTEM);
2326
2327 mutex_enter(sc->sc_intr_lock);
2328 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2329 mutex_exit(sc->sc_intr_lock);
2330
2331 if (file->ptrack) {
2332 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2333 file->ptrack->dropframes);
2334
2335 KASSERT(sc->sc_popens > 0);
2336 sc->sc_popens--;
2337
2338 /* Call hw halt_output if this is the last playback track. */
2339 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2340 error = audio_pmixer_halt(sc);
2341 if (error) {
2342 device_printf(sc->sc_dev,
2343 "halt_output failed with %d (ignored)\n",
2344 error);
2345 }
2346 }
2347
2348 /* Restore mixing volume if all tracks are gone. */
2349 if (sc->sc_popens == 0) {
2350 /* intr_lock is not necessary, but just manners. */
2351 mutex_enter(sc->sc_intr_lock);
2352 sc->sc_pmixer->volume = 256;
2353 sc->sc_pmixer->voltimer = 0;
2354 mutex_exit(sc->sc_intr_lock);
2355 }
2356 }
2357 if (file->rtrack) {
2358 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2359 file->rtrack->dropframes);
2360
2361 KASSERT(sc->sc_ropens > 0);
2362 sc->sc_ropens--;
2363
2364 /* Call hw halt_input if this is the last recording track. */
2365 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2366 error = audio_rmixer_halt(sc);
2367 if (error) {
2368 device_printf(sc->sc_dev,
2369 "halt_input failed with %d (ignored)\n",
2370 error);
2371 }
2372 }
2373
2374 }
2375
2376 /* Call hw close if this is the last track. */
2377 if (sc->sc_popens + sc->sc_ropens == 0) {
2378 if (sc->hw_if->close) {
2379 TRACE(2, "hw_if close");
2380 mutex_enter(sc->sc_intr_lock);
2381 sc->hw_if->close(sc->hw_hdl);
2382 mutex_exit(sc->sc_intr_lock);
2383 }
2384
2385 kauth_cred_free(sc->sc_cred);
2386 }
2387
2388 TRACE(3, "done");
2389 audio_exit_exclusive(sc);
2390
2391 return 0;
2392 }
2393
2394 /*
2395 * Must be called without sc_lock nor sc_exlock held.
2396 */
2397 int
2398 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2399 audio_file_t *file)
2400 {
2401 audio_track_t *track;
2402 audio_ring_t *usrbuf;
2403 audio_ring_t *input;
2404 int error;
2405
2406 /*
2407 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2408 * However read() system call itself can be called because it's
2409 * opened with O_RDWR. So in this case, deny this read().
2410 */
2411 track = file->rtrack;
2412 if (track == NULL) {
2413 return EBADF;
2414 }
2415
2416 /* I think it's better than EINVAL. */
2417 if (track->mmapped)
2418 return EPERM;
2419
2420 TRACET(2, track, "resid=%zd", uio->uio_resid);
2421
2422 #ifdef AUDIO_PM_IDLE
2423 mutex_enter(sc->sc_lock);
2424 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2425 device_active(&sc->sc_dev, DVA_SYSTEM);
2426 mutex_exit(sc->sc_lock);
2427 #endif
2428
2429 usrbuf = &track->usrbuf;
2430 input = track->input;
2431
2432 /*
2433 * The first read starts rmixer.
2434 */
2435 error = audio_enter_exclusive(sc);
2436 if (error)
2437 return error;
2438 if (sc->sc_rbusy == false)
2439 audio_rmixer_start(sc);
2440 audio_exit_exclusive(sc);
2441
2442 error = 0;
2443 while (uio->uio_resid > 0 && error == 0) {
2444 int bytes;
2445
2446 TRACET(3, track,
2447 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2448 uio->uio_resid,
2449 input->head, input->used, input->capacity,
2450 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2451
2452 /* Wait when buffers are empty. */
2453 mutex_enter(sc->sc_lock);
2454 for (;;) {
2455 bool empty;
2456 audio_track_lock_enter(track);
2457 empty = (input->used == 0 && usrbuf->used == 0);
2458 audio_track_lock_exit(track);
2459 if (!empty)
2460 break;
2461
2462 if ((ioflag & IO_NDELAY)) {
2463 mutex_exit(sc->sc_lock);
2464 return EWOULDBLOCK;
2465 }
2466
2467 TRACET(3, track, "sleep");
2468 error = audio_track_waitio(sc, track);
2469 if (error) {
2470 mutex_exit(sc->sc_lock);
2471 return error;
2472 }
2473 }
2474 mutex_exit(sc->sc_lock);
2475
2476 audio_track_lock_enter(track);
2477 audio_track_record(track);
2478
2479 /* uiomove from usrbuf as much as possible. */
2480 bytes = uimin(usrbuf->used, uio->uio_resid);
2481 while (bytes > 0) {
2482 int head = usrbuf->head;
2483 int len = uimin(bytes, usrbuf->capacity - head);
2484 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2485 uio);
2486 if (error) {
2487 audio_track_lock_exit(track);
2488 device_printf(sc->sc_dev,
2489 "uiomove(len=%d) failed with %d\n",
2490 len, error);
2491 goto abort;
2492 }
2493 auring_take(usrbuf, len);
2494 track->useriobytes += len;
2495 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2496 len,
2497 usrbuf->head, usrbuf->used, usrbuf->capacity);
2498 bytes -= len;
2499 }
2500
2501 audio_track_lock_exit(track);
2502 }
2503
2504 abort:
2505 return error;
2506 }
2507
2508
2509 /*
2510 * Clear file's playback and/or record track buffer immediately.
2511 */
2512 static void
2513 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2514 {
2515
2516 if (file->ptrack)
2517 audio_track_clear(sc, file->ptrack);
2518 if (file->rtrack)
2519 audio_track_clear(sc, file->rtrack);
2520 }
2521
2522 /*
2523 * Must be called without sc_lock nor sc_exlock held.
2524 */
2525 int
2526 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2527 audio_file_t *file)
2528 {
2529 audio_track_t *track;
2530 audio_ring_t *usrbuf;
2531 audio_ring_t *outbuf;
2532 int error;
2533
2534 track = file->ptrack;
2535 KASSERT(track);
2536
2537 /* I think it's better than EINVAL. */
2538 if (track->mmapped)
2539 return EPERM;
2540
2541 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2542 audiodebug >= 3 ? "begin " : "",
2543 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2544
2545 if (uio->uio_resid == 0) {
2546 track->eofcounter++;
2547 return 0;
2548 }
2549
2550 #ifdef AUDIO_PM_IDLE
2551 mutex_enter(sc->sc_lock);
2552 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2553 device_active(&sc->sc_dev, DVA_SYSTEM);
2554 mutex_exit(sc->sc_lock);
2555 #endif
2556
2557 usrbuf = &track->usrbuf;
2558 outbuf = &track->outbuf;
2559
2560 /*
2561 * The first write starts pmixer.
2562 */
2563 error = audio_enter_exclusive(sc);
2564 if (error)
2565 return error;
2566 if (sc->sc_pbusy == false)
2567 audio_pmixer_start(sc, false);
2568 audio_exit_exclusive(sc);
2569
2570 track->pstate = AUDIO_STATE_RUNNING;
2571 error = 0;
2572 while (uio->uio_resid > 0 && error == 0) {
2573 int bytes;
2574
2575 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2576 uio->uio_resid,
2577 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2578
2579 /* Wait when buffers are full. */
2580 mutex_enter(sc->sc_lock);
2581 for (;;) {
2582 bool full;
2583 audio_track_lock_enter(track);
2584 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2585 outbuf->used >= outbuf->capacity);
2586 audio_track_lock_exit(track);
2587 if (!full)
2588 break;
2589
2590 if ((ioflag & IO_NDELAY)) {
2591 error = EWOULDBLOCK;
2592 mutex_exit(sc->sc_lock);
2593 goto abort;
2594 }
2595
2596 TRACET(3, track, "sleep usrbuf=%d/H%d",
2597 usrbuf->used, track->usrbuf_usedhigh);
2598 error = audio_track_waitio(sc, track);
2599 if (error) {
2600 mutex_exit(sc->sc_lock);
2601 goto abort;
2602 }
2603 }
2604 mutex_exit(sc->sc_lock);
2605
2606 audio_track_lock_enter(track);
2607
2608 /* uiomove to usrbuf as much as possible. */
2609 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2610 uio->uio_resid);
2611 while (bytes > 0) {
2612 int tail = auring_tail(usrbuf);
2613 int len = uimin(bytes, usrbuf->capacity - tail);
2614 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2615 uio);
2616 if (error) {
2617 audio_track_lock_exit(track);
2618 device_printf(sc->sc_dev,
2619 "uiomove(len=%d) failed with %d\n",
2620 len, error);
2621 goto abort;
2622 }
2623 auring_push(usrbuf, len);
2624 track->useriobytes += len;
2625 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2626 len,
2627 usrbuf->head, usrbuf->used, usrbuf->capacity);
2628 bytes -= len;
2629 }
2630
2631 /* Convert them as much as possible. */
2632 while (usrbuf->used >= track->usrbuf_blksize &&
2633 outbuf->used < outbuf->capacity) {
2634 audio_track_play(track);
2635 }
2636
2637 audio_track_lock_exit(track);
2638 }
2639
2640 abort:
2641 TRACET(3, track, "done error=%d", error);
2642 return error;
2643 }
2644
2645 /*
2646 * Must be called without sc_lock nor sc_exlock held.
2647 */
2648 int
2649 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2650 struct lwp *l, audio_file_t *file)
2651 {
2652 struct audio_offset *ao;
2653 struct audio_info ai;
2654 audio_track_t *track;
2655 audio_encoding_t *ae;
2656 audio_format_query_t *query;
2657 u_int stamp;
2658 u_int offs;
2659 int fd;
2660 int index;
2661 int error;
2662
2663 #if defined(AUDIO_DEBUG)
2664 const char *ioctlnames[] = {
2665 " AUDIO_GETINFO", /* 21 */
2666 " AUDIO_SETINFO", /* 22 */
2667 " AUDIO_DRAIN", /* 23 */
2668 " AUDIO_FLUSH", /* 24 */
2669 " AUDIO_WSEEK", /* 25 */
2670 " AUDIO_RERROR", /* 26 */
2671 " AUDIO_GETDEV", /* 27 */
2672 " AUDIO_GETENC", /* 28 */
2673 " AUDIO_GETFD", /* 29 */
2674 " AUDIO_SETFD", /* 30 */
2675 " AUDIO_PERROR", /* 31 */
2676 " AUDIO_GETIOFFS", /* 32 */
2677 " AUDIO_GETOOFFS", /* 33 */
2678 " AUDIO_GETPROPS", /* 34 */
2679 " AUDIO_GETBUFINFO", /* 35 */
2680 " AUDIO_SETCHAN", /* 36 */
2681 " AUDIO_GETCHAN", /* 37 */
2682 " AUDIO_QUERYFORMAT", /* 38 */
2683 " AUDIO_GETFORMAT", /* 39 */
2684 " AUDIO_SETFORMAT", /* 40 */
2685 };
2686 int nameidx = (cmd & 0xff);
2687 const char *ioctlname = "";
2688 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2689 ioctlname = ioctlnames[nameidx - 21];
2690 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2691 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2692 (int)curproc->p_pid, (int)l->l_lid);
2693 #endif
2694
2695 error = 0;
2696 switch (cmd) {
2697 case FIONBIO:
2698 /* All handled in the upper FS layer. */
2699 break;
2700
2701 case FIONREAD:
2702 /* Get the number of bytes that can be read. */
2703 if (file->rtrack) {
2704 *(int *)addr = audio_track_readablebytes(file->rtrack);
2705 } else {
2706 *(int *)addr = 0;
2707 }
2708 break;
2709
2710 case FIOASYNC:
2711 /* Set/Clear ASYNC I/O. */
2712 if (*(int *)addr) {
2713 file->async_audio = curproc->p_pid;
2714 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2715 } else {
2716 file->async_audio = 0;
2717 TRACEF(2, file, "FIOASYNC off");
2718 }
2719 break;
2720
2721 case AUDIO_FLUSH:
2722 /* XXX TODO: clear errors and restart? */
2723 audio_file_clear(sc, file);
2724 break;
2725
2726 case AUDIO_RERROR:
2727 /*
2728 * Number of read bytes dropped. We don't know where
2729 * or when they were dropped (including conversion stage).
2730 * Therefore, the number of accurate bytes or samples is
2731 * also unknown.
2732 */
2733 track = file->rtrack;
2734 if (track) {
2735 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2736 track->dropframes);
2737 }
2738 break;
2739
2740 case AUDIO_PERROR:
2741 /*
2742 * Number of write bytes dropped. We don't know where
2743 * or when they were dropped (including conversion stage).
2744 * Therefore, the number of accurate bytes or samples is
2745 * also unknown.
2746 */
2747 track = file->ptrack;
2748 if (track) {
2749 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2750 track->dropframes);
2751 }
2752 break;
2753
2754 case AUDIO_GETIOFFS:
2755 /* XXX TODO */
2756 ao = (struct audio_offset *)addr;
2757 ao->samples = 0;
2758 ao->deltablks = 0;
2759 ao->offset = 0;
2760 break;
2761
2762 case AUDIO_GETOOFFS:
2763 ao = (struct audio_offset *)addr;
2764 track = file->ptrack;
2765 if (track == NULL) {
2766 ao->samples = 0;
2767 ao->deltablks = 0;
2768 ao->offset = 0;
2769 break;
2770 }
2771 mutex_enter(sc->sc_lock);
2772 mutex_enter(sc->sc_intr_lock);
2773 /* figure out where next DMA will start */
2774 stamp = track->usrbuf_stamp;
2775 offs = track->usrbuf.head;
2776 mutex_exit(sc->sc_intr_lock);
2777 mutex_exit(sc->sc_lock);
2778
2779 ao->samples = stamp;
2780 ao->deltablks = (stamp / track->usrbuf_blksize) -
2781 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2782 track->usrbuf_stamp_last = stamp;
2783 offs = rounddown(offs, track->usrbuf_blksize)
2784 + track->usrbuf_blksize;
2785 if (offs >= track->usrbuf.capacity)
2786 offs -= track->usrbuf.capacity;
2787 ao->offset = offs;
2788
2789 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2790 ao->samples, ao->deltablks, ao->offset);
2791 break;
2792
2793 case AUDIO_WSEEK:
2794 /* XXX return value does not include outbuf one. */
2795 if (file->ptrack)
2796 *(u_long *)addr = file->ptrack->usrbuf.used;
2797 break;
2798
2799 case AUDIO_SETINFO:
2800 error = audio_enter_exclusive(sc);
2801 if (error)
2802 break;
2803 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2804 if (error) {
2805 audio_exit_exclusive(sc);
2806 break;
2807 }
2808 /* XXX TODO: update last_ai if /dev/sound ? */
2809 if (ISDEVSOUND(dev))
2810 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2811 audio_exit_exclusive(sc);
2812 break;
2813
2814 case AUDIO_GETINFO:
2815 error = audio_enter_exclusive(sc);
2816 if (error)
2817 break;
2818 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2819 audio_exit_exclusive(sc);
2820 break;
2821
2822 case AUDIO_GETBUFINFO:
2823 mutex_enter(sc->sc_lock);
2824 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2825 mutex_exit(sc->sc_lock);
2826 break;
2827
2828 case AUDIO_DRAIN:
2829 if (file->ptrack) {
2830 mutex_enter(sc->sc_lock);
2831 error = audio_track_drain(sc, file->ptrack);
2832 mutex_exit(sc->sc_lock);
2833 }
2834 break;
2835
2836 case AUDIO_GETDEV:
2837 mutex_enter(sc->sc_lock);
2838 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2839 mutex_exit(sc->sc_lock);
2840 break;
2841
2842 case AUDIO_GETENC:
2843 ae = (audio_encoding_t *)addr;
2844 index = ae->index;
2845 if (index < 0 || index >= __arraycount(audio_encodings)) {
2846 error = EINVAL;
2847 break;
2848 }
2849 *ae = audio_encodings[index];
2850 ae->index = index;
2851 /*
2852 * EMULATED always.
2853 * EMULATED flag at that time used to mean that it could
2854 * not be passed directly to the hardware as-is. But
2855 * currently, all formats including hardware native is not
2856 * passed directly to the hardware. So I set EMULATED
2857 * flag for all formats.
2858 */
2859 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2860 break;
2861
2862 case AUDIO_GETFD:
2863 /*
2864 * Returns the current setting of full duplex mode.
2865 * If HW has full duplex mode and there are two mixers,
2866 * it is full duplex. Otherwise half duplex.
2867 */
2868 mutex_enter(sc->sc_lock);
2869 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2870 && (sc->sc_pmixer && sc->sc_rmixer);
2871 mutex_exit(sc->sc_lock);
2872 *(int *)addr = fd;
2873 break;
2874
2875 case AUDIO_GETPROPS:
2876 *(int *)addr = sc->sc_props;
2877 break;
2878
2879 case AUDIO_QUERYFORMAT:
2880 query = (audio_format_query_t *)addr;
2881 mutex_enter(sc->sc_lock);
2882 error = sc->hw_if->query_format(sc->hw_hdl, query);
2883 mutex_exit(sc->sc_lock);
2884 /* Hide internal infomations */
2885 query->fmt.driver_data = NULL;
2886 break;
2887
2888 case AUDIO_GETFORMAT:
2889 audio_mixers_get_format(sc, (struct audio_info *)addr);
2890 break;
2891
2892 case AUDIO_SETFORMAT:
2893 mutex_enter(sc->sc_lock);
2894 audio_mixers_get_format(sc, &ai);
2895 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2896 if (error) {
2897 /* Rollback */
2898 audio_mixers_set_format(sc, &ai);
2899 }
2900 mutex_exit(sc->sc_lock);
2901 break;
2902
2903 case AUDIO_SETFD:
2904 case AUDIO_SETCHAN:
2905 case AUDIO_GETCHAN:
2906 /* Obsoleted */
2907 break;
2908
2909 default:
2910 if (sc->hw_if->dev_ioctl) {
2911 error = audio_enter_exclusive(sc);
2912 if (error)
2913 break;
2914 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2915 cmd, addr, flag, l);
2916 audio_exit_exclusive(sc);
2917 } else {
2918 TRACEF(2, file, "unknown ioctl");
2919 error = EINVAL;
2920 }
2921 break;
2922 }
2923 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2924 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2925 error);
2926 return error;
2927 }
2928
2929 /*
2930 * Returns the number of bytes that can be read on recording buffer.
2931 */
2932 static __inline int
2933 audio_track_readablebytes(const audio_track_t *track)
2934 {
2935 int bytes;
2936
2937 KASSERT(track);
2938 KASSERT(track->mode == AUMODE_RECORD);
2939
2940 /*
2941 * Although usrbuf is primarily readable data, recorded data
2942 * also stays in track->input until reading. So it is necessary
2943 * to add it. track->input is in frame, usrbuf is in byte.
2944 */
2945 bytes = track->usrbuf.used +
2946 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
2947 return bytes;
2948 }
2949
2950 /*
2951 * Must be called without sc_lock nor sc_exlock held.
2952 */
2953 int
2954 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
2955 audio_file_t *file)
2956 {
2957 audio_track_t *track;
2958 int revents;
2959 bool in_is_valid;
2960 bool out_is_valid;
2961
2962 #if defined(AUDIO_DEBUG)
2963 #define POLLEV_BITMAP "\177\020" \
2964 "b\10WRBAND\0" \
2965 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
2966 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
2967 char evbuf[64];
2968 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
2969 TRACEF(2, file, "pid=%d.%d events=%s",
2970 (int)curproc->p_pid, (int)l->l_lid, evbuf);
2971 #endif
2972
2973 revents = 0;
2974 in_is_valid = false;
2975 out_is_valid = false;
2976 if (events & (POLLIN | POLLRDNORM)) {
2977 track = file->rtrack;
2978 if (track) {
2979 int used;
2980 in_is_valid = true;
2981 used = audio_track_readablebytes(track);
2982 if (used > 0)
2983 revents |= events & (POLLIN | POLLRDNORM);
2984 }
2985 }
2986 if (events & (POLLOUT | POLLWRNORM)) {
2987 track = file->ptrack;
2988 if (track) {
2989 out_is_valid = true;
2990 if (track->usrbuf.used <= track->usrbuf_usedlow)
2991 revents |= events & (POLLOUT | POLLWRNORM);
2992 }
2993 }
2994
2995 if (revents == 0) {
2996 mutex_enter(sc->sc_lock);
2997 if (in_is_valid) {
2998 TRACEF(3, file, "selrecord rsel");
2999 selrecord(l, &sc->sc_rsel);
3000 }
3001 if (out_is_valid) {
3002 TRACEF(3, file, "selrecord wsel");
3003 selrecord(l, &sc->sc_wsel);
3004 }
3005 mutex_exit(sc->sc_lock);
3006 }
3007
3008 #if defined(AUDIO_DEBUG)
3009 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3010 TRACEF(2, file, "revents=%s", evbuf);
3011 #endif
3012 return revents;
3013 }
3014
3015 static const struct filterops audioread_filtops = {
3016 .f_isfd = 1,
3017 .f_attach = NULL,
3018 .f_detach = filt_audioread_detach,
3019 .f_event = filt_audioread_event,
3020 };
3021
3022 static void
3023 filt_audioread_detach(struct knote *kn)
3024 {
3025 struct audio_softc *sc;
3026 audio_file_t *file;
3027
3028 file = kn->kn_hook;
3029 sc = file->sc;
3030 TRACEF(3, file, "");
3031
3032 mutex_enter(sc->sc_lock);
3033 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
3034 mutex_exit(sc->sc_lock);
3035 }
3036
3037 static int
3038 filt_audioread_event(struct knote *kn, long hint)
3039 {
3040 audio_file_t *file;
3041 audio_track_t *track;
3042
3043 file = kn->kn_hook;
3044 track = file->rtrack;
3045
3046 /*
3047 * kn_data must contain the number of bytes can be read.
3048 * The return value indicates whether the event occurs or not.
3049 */
3050
3051 if (track == NULL) {
3052 /* can not read with this descriptor. */
3053 kn->kn_data = 0;
3054 return 0;
3055 }
3056
3057 kn->kn_data = audio_track_readablebytes(track);
3058 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3059 return kn->kn_data > 0;
3060 }
3061
3062 static const struct filterops audiowrite_filtops = {
3063 .f_isfd = 1,
3064 .f_attach = NULL,
3065 .f_detach = filt_audiowrite_detach,
3066 .f_event = filt_audiowrite_event,
3067 };
3068
3069 static void
3070 filt_audiowrite_detach(struct knote *kn)
3071 {
3072 struct audio_softc *sc;
3073 audio_file_t *file;
3074
3075 file = kn->kn_hook;
3076 sc = file->sc;
3077 TRACEF(3, file, "");
3078
3079 mutex_enter(sc->sc_lock);
3080 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
3081 mutex_exit(sc->sc_lock);
3082 }
3083
3084 static int
3085 filt_audiowrite_event(struct knote *kn, long hint)
3086 {
3087 audio_file_t *file;
3088 audio_track_t *track;
3089
3090 file = kn->kn_hook;
3091 track = file->ptrack;
3092
3093 /*
3094 * kn_data must contain the number of bytes can be write.
3095 * The return value indicates whether the event occurs or not.
3096 */
3097
3098 if (track == NULL) {
3099 /* can not write with this descriptor. */
3100 kn->kn_data = 0;
3101 return 0;
3102 }
3103
3104 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3105 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3106 return (track->usrbuf.used < track->usrbuf_usedlow);
3107 }
3108
3109 /*
3110 * Must be called without sc_lock nor sc_exlock held.
3111 */
3112 int
3113 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3114 {
3115 struct klist *klist;
3116
3117 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3118
3119 switch (kn->kn_filter) {
3120 case EVFILT_READ:
3121 klist = &sc->sc_rsel.sel_klist;
3122 kn->kn_fop = &audioread_filtops;
3123 break;
3124
3125 case EVFILT_WRITE:
3126 klist = &sc->sc_wsel.sel_klist;
3127 kn->kn_fop = &audiowrite_filtops;
3128 break;
3129
3130 default:
3131 return EINVAL;
3132 }
3133
3134 kn->kn_hook = file;
3135
3136 mutex_enter(sc->sc_lock);
3137 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3138 mutex_exit(sc->sc_lock);
3139
3140 return 0;
3141 }
3142
3143 /*
3144 * Must be called without sc_lock nor sc_exlock held.
3145 */
3146 int
3147 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3148 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3149 audio_file_t *file)
3150 {
3151 audio_track_t *track;
3152 vsize_t vsize;
3153 int error;
3154
3155 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3156
3157 if (*offp < 0)
3158 return EINVAL;
3159
3160 #if 0
3161 /* XXX
3162 * The idea here was to use the protection to determine if
3163 * we are mapping the read or write buffer, but it fails.
3164 * The VM system is broken in (at least) two ways.
3165 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3166 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3167 * has to be used for mmapping the play buffer.
3168 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3169 * audio_mmap will get called at some point with VM_PROT_READ
3170 * only.
3171 * So, alas, we always map the play buffer for now.
3172 */
3173 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3174 prot == VM_PROT_WRITE)
3175 track = file->ptrack;
3176 else if (prot == VM_PROT_READ)
3177 track = file->rtrack;
3178 else
3179 return EINVAL;
3180 #else
3181 track = file->ptrack;
3182 #endif
3183 if (track == NULL)
3184 return EACCES;
3185
3186 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3187 if (len > vsize)
3188 return EOVERFLOW;
3189 if (*offp > (uint)(vsize - len))
3190 return EOVERFLOW;
3191
3192 /* XXX TODO: what happens when mmap twice. */
3193 if (!track->mmapped) {
3194 track->mmapped = true;
3195
3196 if (!track->is_pause) {
3197 error = audio_enter_exclusive(sc);
3198 if (error)
3199 return error;
3200 if (sc->sc_pbusy == false)
3201 audio_pmixer_start(sc, true);
3202 audio_exit_exclusive(sc);
3203 }
3204 /* XXX mmapping record buffer is not supported */
3205 }
3206
3207 /* get ringbuffer */
3208 *uobjp = track->uobj;
3209
3210 /* Acquire a reference for the mmap. munmap will release. */
3211 uao_reference(*uobjp);
3212 *maxprotp = prot;
3213 *advicep = UVM_ADV_RANDOM;
3214 *flagsp = MAP_SHARED;
3215 return 0;
3216 }
3217
3218 /*
3219 * /dev/audioctl has to be able to open at any time without interference
3220 * with any /dev/audio or /dev/sound.
3221 */
3222 static int
3223 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3224 struct lwp *l)
3225 {
3226 struct file *fp;
3227 audio_file_t *af;
3228 int fd;
3229 int error;
3230
3231 KASSERT(mutex_owned(sc->sc_lock));
3232 KASSERT(sc->sc_exlock);
3233
3234 TRACE(1, "");
3235
3236 error = fd_allocfile(&fp, &fd);
3237 if (error)
3238 return error;
3239
3240 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3241 af->sc = sc;
3242 af->dev = dev;
3243
3244 /* Not necessary to insert sc_files. */
3245
3246 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3247 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3248
3249 return error;
3250 }
3251
3252 /*
3253 * Free 'mem' if available, and initialize the pointer.
3254 * For this reason, this is implemented as macro.
3255 */
3256 #define audio_free(mem) do { \
3257 if (mem != NULL) { \
3258 kern_free(mem); \
3259 mem = NULL; \
3260 } \
3261 } while (0)
3262
3263 /*
3264 * (Re)allocate 'memblock' with specified 'bytes'.
3265 * bytes must not be 0.
3266 * This function never returns NULL.
3267 */
3268 static void *
3269 audio_realloc(void *memblock, size_t bytes)
3270 {
3271
3272 KASSERT(bytes != 0);
3273 audio_free(memblock);
3274 return kern_malloc(bytes, M_WAITOK);
3275 }
3276
3277 /*
3278 * (Re)allocate usrbuf with 'newbufsize' bytes.
3279 * Use this function for usrbuf because only usrbuf can be mmapped.
3280 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3281 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3282 * and returns errno.
3283 * It must be called before updating usrbuf.capacity.
3284 */
3285 static int
3286 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3287 {
3288 struct audio_softc *sc;
3289 vaddr_t vstart;
3290 vsize_t oldvsize;
3291 vsize_t newvsize;
3292 int error;
3293
3294 KASSERT(newbufsize > 0);
3295 sc = track->mixer->sc;
3296
3297 /* Get a nonzero multiple of PAGE_SIZE */
3298 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3299
3300 if (track->usrbuf.mem != NULL) {
3301 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3302 PAGE_SIZE);
3303 if (oldvsize == newvsize) {
3304 track->usrbuf.capacity = newbufsize;
3305 return 0;
3306 }
3307 vstart = (vaddr_t)track->usrbuf.mem;
3308 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3309 /* uvm_unmap also detach uobj */
3310 track->uobj = NULL; /* paranoia */
3311 track->usrbuf.mem = NULL;
3312 }
3313
3314 /* Create a uvm anonymous object */
3315 track->uobj = uao_create(newvsize, 0);
3316
3317 /* Map it into the kernel virtual address space */
3318 vstart = 0;
3319 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3320 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3321 UVM_ADV_RANDOM, 0));
3322 if (error) {
3323 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3324 uao_detach(track->uobj); /* release reference */
3325 goto abort;
3326 }
3327
3328 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3329 false, 0);
3330 if (error) {
3331 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3332 error);
3333 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3334 /* uvm_unmap also detach uobj */
3335 goto abort;
3336 }
3337
3338 track->usrbuf.mem = (void *)vstart;
3339 track->usrbuf.capacity = newbufsize;
3340 memset(track->usrbuf.mem, 0, newvsize);
3341 return 0;
3342
3343 /* failure */
3344 abort:
3345 track->uobj = NULL; /* paranoia */
3346 track->usrbuf.mem = NULL;
3347 track->usrbuf.capacity = 0;
3348 return error;
3349 }
3350
3351 /*
3352 * Free usrbuf (if available).
3353 */
3354 static void
3355 audio_free_usrbuf(audio_track_t *track)
3356 {
3357 vaddr_t vstart;
3358 vsize_t vsize;
3359
3360 vstart = (vaddr_t)track->usrbuf.mem;
3361 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3362 if (track->usrbuf.mem != NULL) {
3363 /*
3364 * Unmap the kernel mapping. uvm_unmap releases the
3365 * reference to the uvm object, and this should be the
3366 * last virtual mapping of the uvm object, so no need
3367 * to explicitly release (`detach') the object.
3368 */
3369 uvm_unmap(kernel_map, vstart, vstart + vsize);
3370
3371 track->uobj = NULL;
3372 track->usrbuf.mem = NULL;
3373 track->usrbuf.capacity = 0;
3374 }
3375 }
3376
3377 /*
3378 * This filter changes the volume for each channel.
3379 * arg->context points track->ch_volume[].
3380 */
3381 static void
3382 audio_track_chvol(audio_filter_arg_t *arg)
3383 {
3384 int16_t *ch_volume;
3385 const aint_t *s;
3386 aint_t *d;
3387 u_int i;
3388 u_int ch;
3389 u_int channels;
3390
3391 DIAGNOSTIC_filter_arg(arg);
3392 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3393 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3394 arg->srcfmt->channels, arg->dstfmt->channels);
3395 KASSERT(arg->context != NULL);
3396 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3397 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3398
3399 s = arg->src;
3400 d = arg->dst;
3401 ch_volume = arg->context;
3402
3403 channels = arg->srcfmt->channels;
3404 for (i = 0; i < arg->count; i++) {
3405 for (ch = 0; ch < channels; ch++) {
3406 aint2_t val;
3407 val = *s++;
3408 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3409 *d++ = (aint_t)val;
3410 }
3411 }
3412 }
3413
3414 /*
3415 * This filter performs conversion from stereo (or more channels) to mono.
3416 */
3417 static void
3418 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3419 {
3420 const aint_t *s;
3421 aint_t *d;
3422 u_int i;
3423
3424 DIAGNOSTIC_filter_arg(arg);
3425
3426 s = arg->src;
3427 d = arg->dst;
3428
3429 for (i = 0; i < arg->count; i++) {
3430 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3431 s += arg->srcfmt->channels;
3432 }
3433 }
3434
3435 /*
3436 * This filter performs conversion from mono to stereo (or more channels).
3437 */
3438 static void
3439 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3440 {
3441 const aint_t *s;
3442 aint_t *d;
3443 u_int i;
3444 u_int ch;
3445 u_int dstchannels;
3446
3447 DIAGNOSTIC_filter_arg(arg);
3448
3449 s = arg->src;
3450 d = arg->dst;
3451 dstchannels = arg->dstfmt->channels;
3452
3453 for (i = 0; i < arg->count; i++) {
3454 d[0] = s[0];
3455 d[1] = s[0];
3456 s++;
3457 d += dstchannels;
3458 }
3459 if (dstchannels > 2) {
3460 d = arg->dst;
3461 for (i = 0; i < arg->count; i++) {
3462 for (ch = 2; ch < dstchannels; ch++) {
3463 d[ch] = 0;
3464 }
3465 d += dstchannels;
3466 }
3467 }
3468 }
3469
3470 /*
3471 * This filter shrinks M channels into N channels.
3472 * Extra channels are discarded.
3473 */
3474 static void
3475 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3476 {
3477 const aint_t *s;
3478 aint_t *d;
3479 u_int i;
3480 u_int ch;
3481
3482 DIAGNOSTIC_filter_arg(arg);
3483
3484 s = arg->src;
3485 d = arg->dst;
3486
3487 for (i = 0; i < arg->count; i++) {
3488 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3489 *d++ = s[ch];
3490 }
3491 s += arg->srcfmt->channels;
3492 }
3493 }
3494
3495 /*
3496 * This filter expands M channels into N channels.
3497 * Silence is inserted for missing channels.
3498 */
3499 static void
3500 audio_track_chmix_expand(audio_filter_arg_t *arg)
3501 {
3502 const aint_t *s;
3503 aint_t *d;
3504 u_int i;
3505 u_int ch;
3506 u_int srcchannels;
3507 u_int dstchannels;
3508
3509 DIAGNOSTIC_filter_arg(arg);
3510
3511 s = arg->src;
3512 d = arg->dst;
3513
3514 srcchannels = arg->srcfmt->channels;
3515 dstchannels = arg->dstfmt->channels;
3516 for (i = 0; i < arg->count; i++) {
3517 for (ch = 0; ch < srcchannels; ch++) {
3518 *d++ = *s++;
3519 }
3520 for (; ch < dstchannels; ch++) {
3521 *d++ = 0;
3522 }
3523 }
3524 }
3525
3526 /*
3527 * This filter performs frequency conversion (up sampling).
3528 * It uses linear interpolation.
3529 */
3530 static void
3531 audio_track_freq_up(audio_filter_arg_t *arg)
3532 {
3533 audio_track_t *track;
3534 audio_ring_t *src;
3535 audio_ring_t *dst;
3536 const aint_t *s;
3537 aint_t *d;
3538 aint_t prev[AUDIO_MAX_CHANNELS];
3539 aint_t curr[AUDIO_MAX_CHANNELS];
3540 aint_t grad[AUDIO_MAX_CHANNELS];
3541 u_int i;
3542 u_int t;
3543 u_int step;
3544 u_int channels;
3545 u_int ch;
3546 int srcused;
3547
3548 track = arg->context;
3549 KASSERT(track);
3550 src = &track->freq.srcbuf;
3551 dst = track->freq.dst;
3552 DIAGNOSTIC_ring(dst);
3553 DIAGNOSTIC_ring(src);
3554 KASSERT(src->used > 0);
3555 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3556 "src->fmt.channels=%d dst->fmt.channels=%d",
3557 src->fmt.channels, dst->fmt.channels);
3558 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3559 "src->head=%d track->mixer->frames_per_block=%d",
3560 src->head, track->mixer->frames_per_block);
3561
3562 s = arg->src;
3563 d = arg->dst;
3564
3565 /*
3566 * In order to faciliate interpolation for each block, slide (delay)
3567 * input by one sample. As a result, strictly speaking, the output
3568 * phase is delayed by 1/dstfreq. However, I believe there is no
3569 * observable impact.
3570 *
3571 * Example)
3572 * srcfreq:dstfreq = 1:3
3573 *
3574 * A - -
3575 * |
3576 * |
3577 * | B - -
3578 * +-----+-----> input timeframe
3579 * 0 1
3580 *
3581 * 0 1
3582 * +-----+-----> input timeframe
3583 * | A
3584 * | x x
3585 * | x x
3586 * x (B)
3587 * +-+-+-+-+-+-> output timeframe
3588 * 0 1 2 3 4 5
3589 */
3590
3591 /* Last samples in previous block */
3592 channels = src->fmt.channels;
3593 for (ch = 0; ch < channels; ch++) {
3594 prev[ch] = track->freq_prev[ch];
3595 curr[ch] = track->freq_curr[ch];
3596 grad[ch] = curr[ch] - prev[ch];
3597 }
3598
3599 step = track->freq_step;
3600 t = track->freq_current;
3601 //#define FREQ_DEBUG
3602 #if defined(FREQ_DEBUG)
3603 #define PRINTF(fmt...) printf(fmt)
3604 #else
3605 #define PRINTF(fmt...) do { } while (0)
3606 #endif
3607 srcused = src->used;
3608 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3609 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3610 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3611 PRINTF(" t=%d\n", t);
3612
3613 for (i = 0; i < arg->count; i++) {
3614 PRINTF("i=%d t=%5d", i, t);
3615 if (t >= 65536) {
3616 for (ch = 0; ch < channels; ch++) {
3617 prev[ch] = curr[ch];
3618 curr[ch] = *s++;
3619 grad[ch] = curr[ch] - prev[ch];
3620 }
3621 PRINTF(" prev=%d s[%d]=%d",
3622 prev[0], src->used - srcused, curr[0]);
3623
3624 /* Update */
3625 t -= 65536;
3626 srcused--;
3627 if (srcused < 0) {
3628 PRINTF(" break\n");
3629 break;
3630 }
3631 }
3632
3633 for (ch = 0; ch < channels; ch++) {
3634 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3635 #if defined(FREQ_DEBUG)
3636 if (ch == 0)
3637 printf(" t=%5d *d=%d", t, d[-1]);
3638 #endif
3639 }
3640 t += step;
3641
3642 PRINTF("\n");
3643 }
3644 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3645
3646 auring_take(src, src->used);
3647 auring_push(dst, i);
3648
3649 /* Adjust */
3650 t += track->freq_leap;
3651
3652 track->freq_current = t;
3653 for (ch = 0; ch < channels; ch++) {
3654 track->freq_prev[ch] = prev[ch];
3655 track->freq_curr[ch] = curr[ch];
3656 }
3657 }
3658
3659 /*
3660 * This filter performs frequency conversion (down sampling).
3661 * It uses simple thinning.
3662 */
3663 static void
3664 audio_track_freq_down(audio_filter_arg_t *arg)
3665 {
3666 audio_track_t *track;
3667 audio_ring_t *src;
3668 audio_ring_t *dst;
3669 const aint_t *s0;
3670 aint_t *d;
3671 u_int i;
3672 u_int t;
3673 u_int step;
3674 u_int ch;
3675 u_int channels;
3676
3677 track = arg->context;
3678 KASSERT(track);
3679 src = &track->freq.srcbuf;
3680 dst = track->freq.dst;
3681
3682 DIAGNOSTIC_ring(dst);
3683 DIAGNOSTIC_ring(src);
3684 KASSERT(src->used > 0);
3685 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3686 "src->fmt.channels=%d dst->fmt.channels=%d",
3687 src->fmt.channels, dst->fmt.channels);
3688 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3689 "src->head=%d track->mixer->frames_per_block=%d",
3690 src->head, track->mixer->frames_per_block);
3691
3692 s0 = arg->src;
3693 d = arg->dst;
3694 t = track->freq_current;
3695 step = track->freq_step;
3696 channels = dst->fmt.channels;
3697 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3698 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3699 PRINTF(" t=%d\n", t);
3700
3701 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3702 const aint_t *s;
3703 PRINTF("i=%4d t=%10d", i, t);
3704 s = s0 + (t / 65536) * channels;
3705 PRINTF(" s=%5ld", (s - s0) / channels);
3706 for (ch = 0; ch < channels; ch++) {
3707 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3708 *d++ = s[ch];
3709 }
3710 PRINTF("\n");
3711 t += step;
3712 }
3713 t += track->freq_leap;
3714 PRINTF("end t=%d\n", t);
3715 auring_take(src, src->used);
3716 auring_push(dst, i);
3717 track->freq_current = t % 65536;
3718 }
3719
3720 /*
3721 * Creates track and returns it.
3722 */
3723 audio_track_t *
3724 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3725 {
3726 audio_track_t *track;
3727 static int newid = 0;
3728
3729 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3730
3731 track->id = newid++;
3732 track->mixer = mixer;
3733 track->mode = mixer->mode;
3734
3735 /* Do TRACE after id is assigned. */
3736 TRACET(3, track, "for %s",
3737 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3738
3739 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3740 track->volume = 256;
3741 #endif
3742 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3743 track->ch_volume[i] = 256;
3744 }
3745
3746 return track;
3747 }
3748
3749 /*
3750 * Release all resources of the track and track itself.
3751 * track must not be NULL. Don't specify the track within the file
3752 * structure linked from sc->sc_files.
3753 */
3754 static void
3755 audio_track_destroy(audio_track_t *track)
3756 {
3757
3758 KASSERT(track);
3759
3760 audio_free_usrbuf(track);
3761 audio_free(track->codec.srcbuf.mem);
3762 audio_free(track->chvol.srcbuf.mem);
3763 audio_free(track->chmix.srcbuf.mem);
3764 audio_free(track->freq.srcbuf.mem);
3765 audio_free(track->outbuf.mem);
3766
3767 kmem_free(track, sizeof(*track));
3768 }
3769
3770 /*
3771 * It returns encoding conversion filter according to src and dst format.
3772 * If it is not a convertible pair, it returns NULL. Either src or dst
3773 * must be internal format.
3774 */
3775 static audio_filter_t
3776 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3777 const audio_format2_t *dst)
3778 {
3779
3780 if (audio_format2_is_internal(src)) {
3781 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3782 return audio_internal_to_mulaw;
3783 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3784 return audio_internal_to_alaw;
3785 } else if (audio_format2_is_linear(dst)) {
3786 switch (dst->stride) {
3787 case 8:
3788 return audio_internal_to_linear8;
3789 case 16:
3790 return audio_internal_to_linear16;
3791 #if defined(AUDIO_SUPPORT_LINEAR24)
3792 case 24:
3793 return audio_internal_to_linear24;
3794 #endif
3795 case 32:
3796 return audio_internal_to_linear32;
3797 default:
3798 TRACET(1, track, "unsupported %s stride %d",
3799 "dst", dst->stride);
3800 goto abort;
3801 }
3802 }
3803 } else if (audio_format2_is_internal(dst)) {
3804 if (src->encoding == AUDIO_ENCODING_ULAW) {
3805 return audio_mulaw_to_internal;
3806 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3807 return audio_alaw_to_internal;
3808 } else if (audio_format2_is_linear(src)) {
3809 switch (src->stride) {
3810 case 8:
3811 return audio_linear8_to_internal;
3812 case 16:
3813 return audio_linear16_to_internal;
3814 #if defined(AUDIO_SUPPORT_LINEAR24)
3815 case 24:
3816 return audio_linear24_to_internal;
3817 #endif
3818 case 32:
3819 return audio_linear32_to_internal;
3820 default:
3821 TRACET(1, track, "unsupported %s stride %d",
3822 "src", src->stride);
3823 goto abort;
3824 }
3825 }
3826 }
3827
3828 TRACET(1, track, "unsupported encoding");
3829 abort:
3830 #if defined(AUDIO_DEBUG)
3831 if (audiodebug >= 2) {
3832 char buf[100];
3833 audio_format2_tostr(buf, sizeof(buf), src);
3834 TRACET(2, track, "src %s", buf);
3835 audio_format2_tostr(buf, sizeof(buf), dst);
3836 TRACET(2, track, "dst %s", buf);
3837 }
3838 #endif
3839 return NULL;
3840 }
3841
3842 /*
3843 * Initialize the codec stage of this track as necessary.
3844 * If successful, it initializes the codec stage as necessary, stores updated
3845 * last_dst in *last_dstp in any case, and returns 0.
3846 * Otherwise, it returns errno without modifying *last_dstp.
3847 */
3848 static int
3849 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3850 {
3851 audio_ring_t *last_dst;
3852 audio_ring_t *srcbuf;
3853 audio_format2_t *srcfmt;
3854 audio_format2_t *dstfmt;
3855 audio_filter_arg_t *arg;
3856 u_int len;
3857 int error;
3858
3859 KASSERT(track);
3860
3861 last_dst = *last_dstp;
3862 dstfmt = &last_dst->fmt;
3863 srcfmt = &track->inputfmt;
3864 srcbuf = &track->codec.srcbuf;
3865 error = 0;
3866
3867 if (srcfmt->encoding != dstfmt->encoding
3868 || srcfmt->precision != dstfmt->precision
3869 || srcfmt->stride != dstfmt->stride) {
3870 track->codec.dst = last_dst;
3871
3872 srcbuf->fmt = *dstfmt;
3873 srcbuf->fmt.encoding = srcfmt->encoding;
3874 srcbuf->fmt.precision = srcfmt->precision;
3875 srcbuf->fmt.stride = srcfmt->stride;
3876
3877 track->codec.filter = audio_track_get_codec(track,
3878 &srcbuf->fmt, dstfmt);
3879 if (track->codec.filter == NULL) {
3880 error = EINVAL;
3881 goto abort;
3882 }
3883
3884 srcbuf->head = 0;
3885 srcbuf->used = 0;
3886 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3887 len = auring_bytelen(srcbuf);
3888 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3889
3890 arg = &track->codec.arg;
3891 arg->srcfmt = &srcbuf->fmt;
3892 arg->dstfmt = dstfmt;
3893 arg->context = NULL;
3894
3895 *last_dstp = srcbuf;
3896 return 0;
3897 }
3898
3899 abort:
3900 track->codec.filter = NULL;
3901 audio_free(srcbuf->mem);
3902 return error;
3903 }
3904
3905 /*
3906 * Initialize the chvol stage of this track as necessary.
3907 * If successful, it initializes the chvol stage as necessary, stores updated
3908 * last_dst in *last_dstp in any case, and returns 0.
3909 * Otherwise, it returns errno without modifying *last_dstp.
3910 */
3911 static int
3912 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3913 {
3914 audio_ring_t *last_dst;
3915 audio_ring_t *srcbuf;
3916 audio_format2_t *srcfmt;
3917 audio_format2_t *dstfmt;
3918 audio_filter_arg_t *arg;
3919 u_int len;
3920 int error;
3921
3922 KASSERT(track);
3923
3924 last_dst = *last_dstp;
3925 dstfmt = &last_dst->fmt;
3926 srcfmt = &track->inputfmt;
3927 srcbuf = &track->chvol.srcbuf;
3928 error = 0;
3929
3930 /* Check whether channel volume conversion is necessary. */
3931 bool use_chvol = false;
3932 for (int ch = 0; ch < srcfmt->channels; ch++) {
3933 if (track->ch_volume[ch] != 256) {
3934 use_chvol = true;
3935 break;
3936 }
3937 }
3938
3939 if (use_chvol == true) {
3940 track->chvol.dst = last_dst;
3941 track->chvol.filter = audio_track_chvol;
3942
3943 srcbuf->fmt = *dstfmt;
3944 /* no format conversion occurs */
3945
3946 srcbuf->head = 0;
3947 srcbuf->used = 0;
3948 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3949 len = auring_bytelen(srcbuf);
3950 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3951
3952 arg = &track->chvol.arg;
3953 arg->srcfmt = &srcbuf->fmt;
3954 arg->dstfmt = dstfmt;
3955 arg->context = track->ch_volume;
3956
3957 *last_dstp = srcbuf;
3958 return 0;
3959 }
3960
3961 track->chvol.filter = NULL;
3962 audio_free(srcbuf->mem);
3963 return error;
3964 }
3965
3966 /*
3967 * Initialize the chmix stage of this track as necessary.
3968 * If successful, it initializes the chmix stage as necessary, stores updated
3969 * last_dst in *last_dstp in any case, and returns 0.
3970 * Otherwise, it returns errno without modifying *last_dstp.
3971 */
3972 static int
3973 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
3974 {
3975 audio_ring_t *last_dst;
3976 audio_ring_t *srcbuf;
3977 audio_format2_t *srcfmt;
3978 audio_format2_t *dstfmt;
3979 audio_filter_arg_t *arg;
3980 u_int srcch;
3981 u_int dstch;
3982 u_int len;
3983 int error;
3984
3985 KASSERT(track);
3986
3987 last_dst = *last_dstp;
3988 dstfmt = &last_dst->fmt;
3989 srcfmt = &track->inputfmt;
3990 srcbuf = &track->chmix.srcbuf;
3991 error = 0;
3992
3993 srcch = srcfmt->channels;
3994 dstch = dstfmt->channels;
3995 if (srcch != dstch) {
3996 track->chmix.dst = last_dst;
3997
3998 if (srcch >= 2 && dstch == 1) {
3999 track->chmix.filter = audio_track_chmix_mixLR;
4000 } else if (srcch == 1 && dstch >= 2) {
4001 track->chmix.filter = audio_track_chmix_dupLR;
4002 } else if (srcch > dstch) {
4003 track->chmix.filter = audio_track_chmix_shrink;
4004 } else {
4005 track->chmix.filter = audio_track_chmix_expand;
4006 }
4007
4008 srcbuf->fmt = *dstfmt;
4009 srcbuf->fmt.channels = srcch;
4010
4011 srcbuf->head = 0;
4012 srcbuf->used = 0;
4013 /* XXX The buffer size should be able to calculate. */
4014 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4015 len = auring_bytelen(srcbuf);
4016 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4017
4018 arg = &track->chmix.arg;
4019 arg->srcfmt = &srcbuf->fmt;
4020 arg->dstfmt = dstfmt;
4021 arg->context = NULL;
4022
4023 *last_dstp = srcbuf;
4024 return 0;
4025 }
4026
4027 track->chmix.filter = NULL;
4028 audio_free(srcbuf->mem);
4029 return error;
4030 }
4031
4032 /*
4033 * Initialize the freq stage of this track as necessary.
4034 * If successful, it initializes the freq stage as necessary, stores updated
4035 * last_dst in *last_dstp in any case, and returns 0.
4036 * Otherwise, it returns errno without modifying *last_dstp.
4037 */
4038 static int
4039 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4040 {
4041 audio_ring_t *last_dst;
4042 audio_ring_t *srcbuf;
4043 audio_format2_t *srcfmt;
4044 audio_format2_t *dstfmt;
4045 audio_filter_arg_t *arg;
4046 uint32_t srcfreq;
4047 uint32_t dstfreq;
4048 u_int dst_capacity;
4049 u_int mod;
4050 u_int len;
4051 int error;
4052
4053 KASSERT(track);
4054
4055 last_dst = *last_dstp;
4056 dstfmt = &last_dst->fmt;
4057 srcfmt = &track->inputfmt;
4058 srcbuf = &track->freq.srcbuf;
4059 error = 0;
4060
4061 srcfreq = srcfmt->sample_rate;
4062 dstfreq = dstfmt->sample_rate;
4063 if (srcfreq != dstfreq) {
4064 track->freq.dst = last_dst;
4065
4066 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4067 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4068
4069 /* freq_step is the ratio of src/dst when let dst 65536. */
4070 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4071
4072 dst_capacity = frame_per_block(track->mixer, dstfmt);
4073 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4074 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4075
4076 if (track->freq_step < 65536) {
4077 track->freq.filter = audio_track_freq_up;
4078 /* In order to carry at the first time. */
4079 track->freq_current = 65536;
4080 } else {
4081 track->freq.filter = audio_track_freq_down;
4082 track->freq_current = 0;
4083 }
4084
4085 srcbuf->fmt = *dstfmt;
4086 srcbuf->fmt.sample_rate = srcfreq;
4087
4088 srcbuf->head = 0;
4089 srcbuf->used = 0;
4090 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4091 len = auring_bytelen(srcbuf);
4092 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4093
4094 arg = &track->freq.arg;
4095 arg->srcfmt = &srcbuf->fmt;
4096 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4097 arg->context = track;
4098
4099 *last_dstp = srcbuf;
4100 return 0;
4101 }
4102
4103 track->freq.filter = NULL;
4104 audio_free(srcbuf->mem);
4105 return error;
4106 }
4107
4108 /*
4109 * When playing back: (e.g. if codec and freq stage are valid)
4110 *
4111 * write
4112 * | uiomove
4113 * v
4114 * usrbuf [...............] byte ring buffer (mmap-able)
4115 * | memcpy
4116 * v
4117 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4118 * .dst ----+
4119 * | convert
4120 * v
4121 * freq.srcbuf [....] 1 block (ring) buffer
4122 * .dst ----+
4123 * | convert
4124 * v
4125 * outbuf [...............] NBLKOUT blocks ring buffer
4126 *
4127 *
4128 * When recording:
4129 *
4130 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4131 * .dst ----+
4132 * | convert
4133 * v
4134 * codec.srcbuf[.....] 1 block (ring) buffer
4135 * .dst ----+
4136 * | convert
4137 * v
4138 * outbuf [.....] 1 block (ring) buffer
4139 * | memcpy
4140 * v
4141 * usrbuf [...............] byte ring buffer (mmap-able *)
4142 * | uiomove
4143 * v
4144 * read
4145 *
4146 * *: usrbuf for recording is also mmap-able due to symmetry with
4147 * playback buffer, but for now mmap will never happen for recording.
4148 */
4149
4150 /*
4151 * Set the userland format of this track.
4152 * usrfmt argument should be parameter verified with audio_check_params().
4153 * It will release and reallocate all internal conversion buffers.
4154 * It returns 0 if successful. Otherwise it returns errno with clearing all
4155 * internal buffers.
4156 * It must be called without sc_intr_lock since uvm_* routines require non
4157 * intr_lock state.
4158 * It must be called with track lock held since it may release and reallocate
4159 * outbuf.
4160 */
4161 static int
4162 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4163 {
4164 struct audio_softc *sc;
4165 u_int newbufsize;
4166 u_int oldblksize;
4167 u_int len;
4168 int error;
4169
4170 KASSERT(track);
4171 sc = track->mixer->sc;
4172
4173 /* usrbuf is the closest buffer to the userland. */
4174 track->usrbuf.fmt = *usrfmt;
4175
4176 /*
4177 * For references, one block size (in 40msec) is:
4178 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4179 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4180 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4181 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4182 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4183 *
4184 * For example,
4185 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4186 * newbufsize = rounddown(65536 / 7056) = 63504
4187 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4188 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4189 *
4190 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4191 * newbufsize = rounddown(65536 / 7680) = 61440
4192 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4193 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4194 */
4195 oldblksize = track->usrbuf_blksize;
4196 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4197 frame_per_block(track->mixer, &track->usrbuf.fmt));
4198 track->usrbuf.head = 0;
4199 track->usrbuf.used = 0;
4200 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4201 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4202 error = audio_realloc_usrbuf(track, newbufsize);
4203 if (error) {
4204 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4205 newbufsize);
4206 goto error;
4207 }
4208
4209 /* Recalc water mark. */
4210 if (track->usrbuf_blksize != oldblksize) {
4211 if (audio_track_is_playback(track)) {
4212 /* Set high at 100%, low at 75%. */
4213 track->usrbuf_usedhigh = track->usrbuf.capacity;
4214 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4215 } else {
4216 /* Set high at 100% minus 1block(?), low at 0% */
4217 track->usrbuf_usedhigh = track->usrbuf.capacity -
4218 track->usrbuf_blksize;
4219 track->usrbuf_usedlow = 0;
4220 }
4221 }
4222
4223 /* Stage buffer */
4224 audio_ring_t *last_dst = &track->outbuf;
4225 if (audio_track_is_playback(track)) {
4226 /* On playback, initialize from the mixer side in order. */
4227 track->inputfmt = *usrfmt;
4228 track->outbuf.fmt = track->mixer->track_fmt;
4229
4230 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4231 goto error;
4232 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4233 goto error;
4234 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4235 goto error;
4236 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4237 goto error;
4238 } else {
4239 /* On recording, initialize from userland side in order. */
4240 track->inputfmt = track->mixer->track_fmt;
4241 track->outbuf.fmt = *usrfmt;
4242
4243 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4244 goto error;
4245 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4246 goto error;
4247 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4248 goto error;
4249 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4250 goto error;
4251 }
4252 #if 0
4253 /* debug */
4254 if (track->freq.filter) {
4255 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4256 audio_print_format2("freq dst", &track->freq.dst->fmt);
4257 }
4258 if (track->chmix.filter) {
4259 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4260 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4261 }
4262 if (track->chvol.filter) {
4263 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4264 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4265 }
4266 if (track->codec.filter) {
4267 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4268 audio_print_format2("codec dst", &track->codec.dst->fmt);
4269 }
4270 #endif
4271
4272 /* Stage input buffer */
4273 track->input = last_dst;
4274
4275 /*
4276 * On the recording track, make the first stage a ring buffer.
4277 * XXX is there a better way?
4278 */
4279 if (audio_track_is_record(track)) {
4280 track->input->capacity = NBLKOUT *
4281 frame_per_block(track->mixer, &track->input->fmt);
4282 len = auring_bytelen(track->input);
4283 track->input->mem = audio_realloc(track->input->mem, len);
4284 }
4285
4286 /*
4287 * Output buffer.
4288 * On the playback track, its capacity is NBLKOUT blocks.
4289 * On the recording track, its capacity is 1 block.
4290 */
4291 track->outbuf.head = 0;
4292 track->outbuf.used = 0;
4293 track->outbuf.capacity = frame_per_block(track->mixer,
4294 &track->outbuf.fmt);
4295 if (audio_track_is_playback(track))
4296 track->outbuf.capacity *= NBLKOUT;
4297 len = auring_bytelen(&track->outbuf);
4298 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4299 if (track->outbuf.mem == NULL) {
4300 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4301 error = ENOMEM;
4302 goto error;
4303 }
4304
4305 #if defined(AUDIO_DEBUG)
4306 if (audiodebug >= 3) {
4307 struct audio_track_debugbuf m;
4308
4309 memset(&m, 0, sizeof(m));
4310 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4311 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4312 if (track->freq.filter)
4313 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4314 track->freq.srcbuf.capacity *
4315 frametobyte(&track->freq.srcbuf.fmt, 1));
4316 if (track->chmix.filter)
4317 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4318 track->chmix.srcbuf.capacity *
4319 frametobyte(&track->chmix.srcbuf.fmt, 1));
4320 if (track->chvol.filter)
4321 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4322 track->chvol.srcbuf.capacity *
4323 frametobyte(&track->chvol.srcbuf.fmt, 1));
4324 if (track->codec.filter)
4325 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4326 track->codec.srcbuf.capacity *
4327 frametobyte(&track->codec.srcbuf.fmt, 1));
4328 snprintf(m.usrbuf, sizeof(m.usrbuf),
4329 " usr=%d", track->usrbuf.capacity);
4330
4331 if (audio_track_is_playback(track)) {
4332 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4333 m.outbuf, m.freq, m.chmix,
4334 m.chvol, m.codec, m.usrbuf);
4335 } else {
4336 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4337 m.freq, m.chmix, m.chvol,
4338 m.codec, m.outbuf, m.usrbuf);
4339 }
4340 }
4341 #endif
4342 return 0;
4343
4344 error:
4345 audio_free_usrbuf(track);
4346 audio_free(track->codec.srcbuf.mem);
4347 audio_free(track->chvol.srcbuf.mem);
4348 audio_free(track->chmix.srcbuf.mem);
4349 audio_free(track->freq.srcbuf.mem);
4350 audio_free(track->outbuf.mem);
4351 return error;
4352 }
4353
4354 /*
4355 * Fill silence frames (as the internal format) up to 1 block
4356 * if the ring is not empty and less than 1 block.
4357 * It returns the number of appended frames.
4358 */
4359 static int
4360 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4361 {
4362 int fpb;
4363 int n;
4364
4365 KASSERT(track);
4366 KASSERT(audio_format2_is_internal(&ring->fmt));
4367
4368 /* XXX is n correct? */
4369 /* XXX memset uses frametobyte()? */
4370
4371 if (ring->used == 0)
4372 return 0;
4373
4374 fpb = frame_per_block(track->mixer, &ring->fmt);
4375 if (ring->used >= fpb)
4376 return 0;
4377
4378 n = (ring->capacity - ring->used) % fpb;
4379
4380 KASSERTMSG(auring_get_contig_free(ring) >= n,
4381 "auring_get_contig_free(ring)=%d n=%d",
4382 auring_get_contig_free(ring), n);
4383
4384 memset(auring_tailptr_aint(ring), 0,
4385 n * ring->fmt.channels * sizeof(aint_t));
4386 auring_push(ring, n);
4387 return n;
4388 }
4389
4390 /*
4391 * Execute the conversion stage.
4392 * It prepares arg from this stage and executes stage->filter.
4393 * It must be called only if stage->filter is not NULL.
4394 *
4395 * For stages other than frequency conversion, the function increments
4396 * src and dst counters here. For frequency conversion stage, on the
4397 * other hand, the function does not touch src and dst counters and
4398 * filter side has to increment them.
4399 */
4400 static void
4401 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4402 {
4403 audio_filter_arg_t *arg;
4404 int srccount;
4405 int dstcount;
4406 int count;
4407
4408 KASSERT(track);
4409 KASSERT(stage->filter);
4410
4411 srccount = auring_get_contig_used(&stage->srcbuf);
4412 dstcount = auring_get_contig_free(stage->dst);
4413
4414 if (isfreq) {
4415 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4416 count = uimin(dstcount, track->mixer->frames_per_block);
4417 } else {
4418 count = uimin(srccount, dstcount);
4419 }
4420
4421 if (count > 0) {
4422 arg = &stage->arg;
4423 arg->src = auring_headptr(&stage->srcbuf);
4424 arg->dst = auring_tailptr(stage->dst);
4425 arg->count = count;
4426
4427 stage->filter(arg);
4428
4429 if (!isfreq) {
4430 auring_take(&stage->srcbuf, count);
4431 auring_push(stage->dst, count);
4432 }
4433 }
4434 }
4435
4436 /*
4437 * Produce output buffer for playback from user input buffer.
4438 * It must be called only if usrbuf is not empty and outbuf is
4439 * available at least one free block.
4440 */
4441 static void
4442 audio_track_play(audio_track_t *track)
4443 {
4444 audio_ring_t *usrbuf;
4445 audio_ring_t *input;
4446 int count;
4447 int framesize;
4448 int bytes;
4449
4450 KASSERT(track);
4451 KASSERT(track->lock);
4452 TRACET(4, track, "start pstate=%d", track->pstate);
4453
4454 /* At this point usrbuf must not be empty. */
4455 KASSERT(track->usrbuf.used > 0);
4456 /* Also, outbuf must be available at least one block. */
4457 count = auring_get_contig_free(&track->outbuf);
4458 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4459 "count=%d fpb=%d",
4460 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4461
4462 /* XXX TODO: is this necessary for now? */
4463 int track_count_0 = track->outbuf.used;
4464
4465 usrbuf = &track->usrbuf;
4466 input = track->input;
4467
4468 /*
4469 * framesize is always 1 byte or more since all formats supported as
4470 * usrfmt(=input) have 8bit or more stride.
4471 */
4472 framesize = frametobyte(&input->fmt, 1);
4473 KASSERT(framesize >= 1);
4474
4475 /* The next stage of usrbuf (=input) must be available. */
4476 KASSERT(auring_get_contig_free(input) > 0);
4477
4478 /*
4479 * Copy usrbuf up to 1block to input buffer.
4480 * count is the number of frames to copy from usrbuf.
4481 * bytes is the number of bytes to copy from usrbuf. However it is
4482 * not copied less than one frame.
4483 */
4484 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4485 bytes = count * framesize;
4486
4487 track->usrbuf_stamp += bytes;
4488
4489 if (usrbuf->head + bytes < usrbuf->capacity) {
4490 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4491 (uint8_t *)usrbuf->mem + usrbuf->head,
4492 bytes);
4493 auring_push(input, count);
4494 auring_take(usrbuf, bytes);
4495 } else {
4496 int bytes1;
4497 int bytes2;
4498
4499 bytes1 = auring_get_contig_used(usrbuf);
4500 KASSERTMSG(bytes1 % framesize == 0,
4501 "bytes1=%d framesize=%d", bytes1, framesize);
4502 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4503 (uint8_t *)usrbuf->mem + usrbuf->head,
4504 bytes1);
4505 auring_push(input, bytes1 / framesize);
4506 auring_take(usrbuf, bytes1);
4507
4508 bytes2 = bytes - bytes1;
4509 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4510 (uint8_t *)usrbuf->mem + usrbuf->head,
4511 bytes2);
4512 auring_push(input, bytes2 / framesize);
4513 auring_take(usrbuf, bytes2);
4514 }
4515
4516 /* Encoding conversion */
4517 if (track->codec.filter)
4518 audio_apply_stage(track, &track->codec, false);
4519
4520 /* Channel volume */
4521 if (track->chvol.filter)
4522 audio_apply_stage(track, &track->chvol, false);
4523
4524 /* Channel mix */
4525 if (track->chmix.filter)
4526 audio_apply_stage(track, &track->chmix, false);
4527
4528 /* Frequency conversion */
4529 /*
4530 * Since the frequency conversion needs correction for each block,
4531 * it rounds up to 1 block.
4532 */
4533 if (track->freq.filter) {
4534 int n;
4535 n = audio_append_silence(track, &track->freq.srcbuf);
4536 if (n > 0) {
4537 TRACET(4, track,
4538 "freq.srcbuf add silence %d -> %d/%d/%d",
4539 n,
4540 track->freq.srcbuf.head,
4541 track->freq.srcbuf.used,
4542 track->freq.srcbuf.capacity);
4543 }
4544 if (track->freq.srcbuf.used > 0) {
4545 audio_apply_stage(track, &track->freq, true);
4546 }
4547 }
4548
4549 if (bytes < track->usrbuf_blksize) {
4550 /*
4551 * Clear all conversion buffer pointer if the conversion was
4552 * not exactly one block. These conversion stage buffers are
4553 * certainly circular buffers because of symmetry with the
4554 * previous and next stage buffer. However, since they are
4555 * treated as simple contiguous buffers in operation, so head
4556 * always should point 0. This may happen during drain-age.
4557 */
4558 TRACET(4, track, "reset stage");
4559 if (track->codec.filter) {
4560 KASSERT(track->codec.srcbuf.used == 0);
4561 track->codec.srcbuf.head = 0;
4562 }
4563 if (track->chvol.filter) {
4564 KASSERT(track->chvol.srcbuf.used == 0);
4565 track->chvol.srcbuf.head = 0;
4566 }
4567 if (track->chmix.filter) {
4568 KASSERT(track->chmix.srcbuf.used == 0);
4569 track->chmix.srcbuf.head = 0;
4570 }
4571 if (track->freq.filter) {
4572 KASSERT(track->freq.srcbuf.used == 0);
4573 track->freq.srcbuf.head = 0;
4574 }
4575 }
4576
4577 if (track->input == &track->outbuf) {
4578 track->outputcounter = track->inputcounter;
4579 } else {
4580 track->outputcounter += track->outbuf.used - track_count_0;
4581 }
4582
4583 #if defined(AUDIO_DEBUG)
4584 if (audiodebug >= 3) {
4585 struct audio_track_debugbuf m;
4586 audio_track_bufstat(track, &m);
4587 TRACET(0, track, "end%s%s%s%s%s%s",
4588 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4589 }
4590 #endif
4591 }
4592
4593 /*
4594 * Produce user output buffer for recording from input buffer.
4595 */
4596 static void
4597 audio_track_record(audio_track_t *track)
4598 {
4599 audio_ring_t *outbuf;
4600 audio_ring_t *usrbuf;
4601 int count;
4602 int bytes;
4603 int framesize;
4604
4605 KASSERT(track);
4606 KASSERT(track->lock);
4607
4608 /* Number of frames to process */
4609 count = auring_get_contig_used(track->input);
4610 count = uimin(count, track->mixer->frames_per_block);
4611 if (count == 0) {
4612 TRACET(4, track, "count == 0");
4613 return;
4614 }
4615
4616 /* Frequency conversion */
4617 if (track->freq.filter) {
4618 if (track->freq.srcbuf.used > 0) {
4619 audio_apply_stage(track, &track->freq, true);
4620 /* XXX should input of freq be from beginning of buf? */
4621 }
4622 }
4623
4624 /* Channel mix */
4625 if (track->chmix.filter)
4626 audio_apply_stage(track, &track->chmix, false);
4627
4628 /* Channel volume */
4629 if (track->chvol.filter)
4630 audio_apply_stage(track, &track->chvol, false);
4631
4632 /* Encoding conversion */
4633 if (track->codec.filter)
4634 audio_apply_stage(track, &track->codec, false);
4635
4636 /* Copy outbuf to usrbuf */
4637 outbuf = &track->outbuf;
4638 usrbuf = &track->usrbuf;
4639 /*
4640 * framesize is always 1 byte or more since all formats supported
4641 * as usrfmt(=output) have 8bit or more stride.
4642 */
4643 framesize = frametobyte(&outbuf->fmt, 1);
4644 KASSERT(framesize >= 1);
4645 /*
4646 * count is the number of frames to copy to usrbuf.
4647 * bytes is the number of bytes to copy to usrbuf.
4648 */
4649 count = outbuf->used;
4650 count = uimin(count,
4651 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4652 bytes = count * framesize;
4653 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4654 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4655 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4656 bytes);
4657 auring_push(usrbuf, bytes);
4658 auring_take(outbuf, count);
4659 } else {
4660 int bytes1;
4661 int bytes2;
4662
4663 bytes1 = auring_get_contig_free(usrbuf);
4664 KASSERTMSG(bytes1 % framesize == 0,
4665 "bytes1=%d framesize=%d", bytes1, framesize);
4666 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4667 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4668 bytes1);
4669 auring_push(usrbuf, bytes1);
4670 auring_take(outbuf, bytes1 / framesize);
4671
4672 bytes2 = bytes - bytes1;
4673 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4674 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4675 bytes2);
4676 auring_push(usrbuf, bytes2);
4677 auring_take(outbuf, bytes2 / framesize);
4678 }
4679
4680 /* XXX TODO: any counters here? */
4681
4682 #if defined(AUDIO_DEBUG)
4683 if (audiodebug >= 3) {
4684 struct audio_track_debugbuf m;
4685 audio_track_bufstat(track, &m);
4686 TRACET(0, track, "end%s%s%s%s%s%s",
4687 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4688 }
4689 #endif
4690 }
4691
4692 /*
4693 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4694 * Must be called with sc_lock held.
4695 */
4696 static u_int
4697 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4698 {
4699 audio_format2_t *fmt;
4700 u_int blktime;
4701 u_int frames_per_block;
4702
4703 KASSERT(mutex_owned(sc->sc_lock));
4704
4705 fmt = &mixer->hwbuf.fmt;
4706 blktime = sc->sc_blk_ms;
4707
4708 /*
4709 * If stride is not multiples of 8, special treatment is necessary.
4710 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4711 */
4712 if (fmt->stride == 4) {
4713 frames_per_block = fmt->sample_rate * blktime / 1000;
4714 if ((frames_per_block & 1) != 0)
4715 blktime *= 2;
4716 }
4717 #ifdef DIAGNOSTIC
4718 else if (fmt->stride % NBBY != 0) {
4719 panic("unsupported HW stride %d", fmt->stride);
4720 }
4721 #endif
4722
4723 return blktime;
4724 }
4725
4726 /*
4727 * Initialize the mixer corresponding to the mode.
4728 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4729 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4730 * This function returns 0 on successful. Otherwise returns errno.
4731 * Must be called with sc_lock held.
4732 */
4733 static int
4734 audio_mixer_init(struct audio_softc *sc, int mode,
4735 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4736 {
4737 char codecbuf[64];
4738 audio_trackmixer_t *mixer;
4739 void (*softint_handler)(void *);
4740 int len;
4741 int blksize;
4742 int capacity;
4743 size_t bufsize;
4744 int hwblks;
4745 int blkms;
4746 int error;
4747
4748 KASSERT(hwfmt != NULL);
4749 KASSERT(reg != NULL);
4750 KASSERT(mutex_owned(sc->sc_lock));
4751
4752 error = 0;
4753 if (mode == AUMODE_PLAY)
4754 mixer = sc->sc_pmixer;
4755 else
4756 mixer = sc->sc_rmixer;
4757
4758 mixer->sc = sc;
4759 mixer->mode = mode;
4760
4761 mixer->hwbuf.fmt = *hwfmt;
4762 mixer->volume = 256;
4763 mixer->blktime_d = 1000;
4764 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4765 sc->sc_blk_ms = mixer->blktime_n;
4766 hwblks = NBLKHW;
4767
4768 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4769 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4770 if (sc->hw_if->round_blocksize) {
4771 int rounded;
4772 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4773 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4774 mode, &p);
4775 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4776 if (rounded != blksize) {
4777 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4778 mixer->hwbuf.fmt.channels) != 0) {
4779 device_printf(sc->sc_dev,
4780 "round_blocksize must return blocksize "
4781 "divisible by framesize: "
4782 "blksize=%d rounded=%d "
4783 "stride=%ubit channels=%u\n",
4784 blksize, rounded,
4785 mixer->hwbuf.fmt.stride,
4786 mixer->hwbuf.fmt.channels);
4787 return EINVAL;
4788 }
4789 /* Recalculation */
4790 blksize = rounded;
4791 mixer->frames_per_block = blksize * NBBY /
4792 (mixer->hwbuf.fmt.stride *
4793 mixer->hwbuf.fmt.channels);
4794 }
4795 }
4796 mixer->blktime_n = mixer->frames_per_block;
4797 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4798
4799 capacity = mixer->frames_per_block * hwblks;
4800 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4801 if (sc->hw_if->round_buffersize) {
4802 size_t rounded;
4803 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4804 bufsize);
4805 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4806 if (rounded < bufsize) {
4807 /* buffersize needs NBLKHW blocks at least. */
4808 device_printf(sc->sc_dev,
4809 "buffersize too small: buffersize=%zd blksize=%d\n",
4810 rounded, blksize);
4811 return EINVAL;
4812 }
4813 if (rounded % blksize != 0) {
4814 /* buffersize/blksize constraint mismatch? */
4815 device_printf(sc->sc_dev,
4816 "buffersize must be multiple of blksize: "
4817 "buffersize=%zu blksize=%d\n",
4818 rounded, blksize);
4819 return EINVAL;
4820 }
4821 if (rounded != bufsize) {
4822 /* Recalcuration */
4823 bufsize = rounded;
4824 hwblks = bufsize / blksize;
4825 capacity = mixer->frames_per_block * hwblks;
4826 }
4827 }
4828 TRACE(1, "buffersize for %s = %zu",
4829 (mode == AUMODE_PLAY) ? "playback" : "recording",
4830 bufsize);
4831 mixer->hwbuf.capacity = capacity;
4832
4833 /*
4834 * XXX need to release sc_lock for compatibility?
4835 */
4836 if (sc->hw_if->allocm) {
4837 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4838 if (mixer->hwbuf.mem == NULL) {
4839 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4840 __func__, bufsize);
4841 return ENOMEM;
4842 }
4843 } else {
4844 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4845 }
4846
4847 /* From here, audio_mixer_destroy is necessary to exit. */
4848 if (mode == AUMODE_PLAY) {
4849 cv_init(&mixer->outcv, "audiowr");
4850 } else {
4851 cv_init(&mixer->outcv, "audiord");
4852 }
4853
4854 if (mode == AUMODE_PLAY) {
4855 softint_handler = audio_softintr_wr;
4856 } else {
4857 softint_handler = audio_softintr_rd;
4858 }
4859 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4860 softint_handler, sc);
4861 if (mixer->sih == NULL) {
4862 device_printf(sc->sc_dev, "softint_establish failed\n");
4863 goto abort;
4864 }
4865
4866 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4867 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4868 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4869 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4870 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4871
4872 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4873 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4874 mixer->swap_endian = true;
4875 TRACE(1, "swap_endian");
4876 }
4877
4878 if (mode == AUMODE_PLAY) {
4879 /* Mixing buffer */
4880 mixer->mixfmt = mixer->track_fmt;
4881 mixer->mixfmt.precision *= 2;
4882 mixer->mixfmt.stride *= 2;
4883 /* XXX TODO: use some macros? */
4884 len = mixer->frames_per_block * mixer->mixfmt.channels *
4885 mixer->mixfmt.stride / NBBY;
4886 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4887 } else {
4888 /* No mixing buffer for recording */
4889 }
4890
4891 if (reg->codec) {
4892 mixer->codec = reg->codec;
4893 mixer->codecarg.context = reg->context;
4894 if (mode == AUMODE_PLAY) {
4895 mixer->codecarg.srcfmt = &mixer->track_fmt;
4896 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4897 } else {
4898 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4899 mixer->codecarg.dstfmt = &mixer->track_fmt;
4900 }
4901 mixer->codecbuf.fmt = mixer->track_fmt;
4902 mixer->codecbuf.capacity = mixer->frames_per_block;
4903 len = auring_bytelen(&mixer->codecbuf);
4904 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4905 if (mixer->codecbuf.mem == NULL) {
4906 device_printf(sc->sc_dev,
4907 "%s: malloc codecbuf(%d) failed\n",
4908 __func__, len);
4909 error = ENOMEM;
4910 goto abort;
4911 }
4912 }
4913
4914 /* Succeeded so display it. */
4915 codecbuf[0] = '\0';
4916 if (mixer->codec || mixer->swap_endian) {
4917 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4918 (mode == AUMODE_PLAY) ? "->" : "<-",
4919 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4920 mixer->hwbuf.fmt.precision);
4921 }
4922 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
4923 aprint_normal_dev(sc->sc_dev, "%s:%d%s %dch %dHz, blk %dms for %s\n",
4924 audio_encoding_name(mixer->track_fmt.encoding),
4925 mixer->track_fmt.precision,
4926 codecbuf,
4927 mixer->track_fmt.channels,
4928 mixer->track_fmt.sample_rate,
4929 blkms,
4930 (mode == AUMODE_PLAY) ? "playback" : "recording");
4931
4932 return 0;
4933
4934 abort:
4935 audio_mixer_destroy(sc, mixer);
4936 return error;
4937 }
4938
4939 /*
4940 * Releases all resources of 'mixer'.
4941 * Note that it does not release the memory area of 'mixer' itself.
4942 * Must be called with sc_lock held.
4943 */
4944 static void
4945 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
4946 {
4947 int bufsize;
4948
4949 KASSERT(mutex_owned(sc->sc_lock));
4950
4951 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
4952
4953 if (mixer->hwbuf.mem != NULL) {
4954 if (sc->hw_if->freem) {
4955 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
4956 } else {
4957 kmem_free(mixer->hwbuf.mem, bufsize);
4958 }
4959 mixer->hwbuf.mem = NULL;
4960 }
4961
4962 audio_free(mixer->codecbuf.mem);
4963 audio_free(mixer->mixsample);
4964
4965 cv_destroy(&mixer->outcv);
4966
4967 if (mixer->sih) {
4968 softint_disestablish(mixer->sih);
4969 mixer->sih = NULL;
4970 }
4971 }
4972
4973 /*
4974 * Starts playback mixer.
4975 * Must be called only if sc_pbusy is false.
4976 * Must be called with sc_lock && sc_exlock held.
4977 * Must not be called from the interrupt context.
4978 */
4979 static void
4980 audio_pmixer_start(struct audio_softc *sc, bool force)
4981 {
4982 audio_trackmixer_t *mixer;
4983 int minimum;
4984
4985 KASSERT(mutex_owned(sc->sc_lock));
4986 KASSERT(sc->sc_exlock);
4987 KASSERT(sc->sc_pbusy == false);
4988
4989 mutex_enter(sc->sc_intr_lock);
4990
4991 mixer = sc->sc_pmixer;
4992 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
4993 (audiodebug >= 3) ? "begin " : "",
4994 (int)mixer->mixseq, (int)mixer->hwseq,
4995 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
4996 force ? " force" : "");
4997
4998 /* Need two blocks to start normally. */
4999 minimum = (force) ? 1 : 2;
5000 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5001 audio_pmixer_process(sc);
5002 }
5003
5004 /* Start output */
5005 audio_pmixer_output(sc);
5006 sc->sc_pbusy = true;
5007
5008 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5009 (int)mixer->mixseq, (int)mixer->hwseq,
5010 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5011
5012 mutex_exit(sc->sc_intr_lock);
5013 }
5014
5015 /*
5016 * When playing back with MD filter:
5017 *
5018 * track track ...
5019 * v v
5020 * + mix (with aint2_t)
5021 * | master volume (with aint2_t)
5022 * v
5023 * mixsample [::::] wide-int 1 block (ring) buffer
5024 * |
5025 * | convert aint2_t -> aint_t
5026 * v
5027 * codecbuf [....] 1 block (ring) buffer
5028 * |
5029 * | convert to hw format
5030 * v
5031 * hwbuf [............] NBLKHW blocks ring buffer
5032 *
5033 * When playing back without MD filter:
5034 *
5035 * mixsample [::::] wide-int 1 block (ring) buffer
5036 * |
5037 * | convert aint2_t -> aint_t
5038 * | (with byte swap if necessary)
5039 * v
5040 * hwbuf [............] NBLKHW blocks ring buffer
5041 *
5042 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5043 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5044 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5045 */
5046
5047 /*
5048 * Performs track mixing and converts it to hwbuf.
5049 * Note that this function doesn't transfer hwbuf to hardware.
5050 * Must be called with sc_intr_lock held.
5051 */
5052 static void
5053 audio_pmixer_process(struct audio_softc *sc)
5054 {
5055 audio_trackmixer_t *mixer;
5056 audio_file_t *f;
5057 int frame_count;
5058 int sample_count;
5059 int mixed;
5060 int i;
5061 aint2_t *m;
5062 aint_t *h;
5063
5064 mixer = sc->sc_pmixer;
5065
5066 frame_count = mixer->frames_per_block;
5067 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5068 "auring_get_contig_free()=%d frame_count=%d",
5069 auring_get_contig_free(&mixer->hwbuf), frame_count);
5070 sample_count = frame_count * mixer->mixfmt.channels;
5071
5072 mixer->mixseq++;
5073
5074 /* Mix all tracks */
5075 mixed = 0;
5076 SLIST_FOREACH(f, &sc->sc_files, entry) {
5077 audio_track_t *track = f->ptrack;
5078
5079 if (track == NULL)
5080 continue;
5081
5082 if (track->is_pause) {
5083 TRACET(4, track, "skip; paused");
5084 continue;
5085 }
5086
5087 /* Skip if the track is used by process context. */
5088 if (audio_track_lock_tryenter(track) == false) {
5089 TRACET(4, track, "skip; in use");
5090 continue;
5091 }
5092
5093 /* Emulate mmap'ped track */
5094 if (track->mmapped) {
5095 auring_push(&track->usrbuf, track->usrbuf_blksize);
5096 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5097 track->usrbuf.head,
5098 track->usrbuf.used,
5099 track->usrbuf.capacity);
5100 }
5101
5102 if (track->outbuf.used < mixer->frames_per_block &&
5103 track->usrbuf.used > 0) {
5104 TRACET(4, track, "process");
5105 audio_track_play(track);
5106 }
5107
5108 if (track->outbuf.used > 0) {
5109 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5110 } else {
5111 TRACET(4, track, "skip; empty");
5112 }
5113
5114 audio_track_lock_exit(track);
5115 }
5116
5117 if (mixed == 0) {
5118 /* Silence */
5119 memset(mixer->mixsample, 0,
5120 frametobyte(&mixer->mixfmt, frame_count));
5121 } else {
5122 if (mixed > 1) {
5123 /* If there are multiple tracks, do auto gain control */
5124 audio_pmixer_agc(mixer, sample_count);
5125 }
5126
5127 /* Apply master volume */
5128 if (mixer->volume < 256) {
5129 m = mixer->mixsample;
5130 for (i = 0; i < sample_count; i++) {
5131 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5132 m++;
5133 }
5134
5135 /*
5136 * Recover the volume gradually at the pace of
5137 * several times per second. If it's too fast, you
5138 * can recognize that the volume changes up and down
5139 * quickly and it's not so comfortable.
5140 */
5141 mixer->voltimer += mixer->blktime_n;
5142 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5143 mixer->volume++;
5144 mixer->voltimer = 0;
5145 #if defined(AUDIO_DEBUG_AGC)
5146 TRACE(1, "volume recover: %d", mixer->volume);
5147 #endif
5148 }
5149 }
5150 }
5151
5152 /*
5153 * The rest is the hardware part.
5154 */
5155
5156 if (mixer->codec) {
5157 h = auring_tailptr_aint(&mixer->codecbuf);
5158 } else {
5159 h = auring_tailptr_aint(&mixer->hwbuf);
5160 }
5161
5162 m = mixer->mixsample;
5163 if (mixer->swap_endian) {
5164 for (i = 0; i < sample_count; i++) {
5165 *h++ = bswap16(*m++);
5166 }
5167 } else {
5168 for (i = 0; i < sample_count; i++) {
5169 *h++ = *m++;
5170 }
5171 }
5172
5173 /* Hardware driver's codec */
5174 if (mixer->codec) {
5175 auring_push(&mixer->codecbuf, frame_count);
5176 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5177 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5178 mixer->codecarg.count = frame_count;
5179 mixer->codec(&mixer->codecarg);
5180 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5181 }
5182
5183 auring_push(&mixer->hwbuf, frame_count);
5184
5185 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5186 (int)mixer->mixseq,
5187 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5188 (mixed == 0) ? " silent" : "");
5189 }
5190
5191 /*
5192 * Do auto gain control.
5193 * Must be called sc_intr_lock held.
5194 */
5195 static void
5196 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5197 {
5198 struct audio_softc *sc __unused;
5199 aint2_t val;
5200 aint2_t maxval;
5201 aint2_t minval;
5202 aint2_t over_plus;
5203 aint2_t over_minus;
5204 aint2_t *m;
5205 int newvol;
5206 int i;
5207
5208 sc = mixer->sc;
5209
5210 /* Overflow detection */
5211 maxval = AINT_T_MAX;
5212 minval = AINT_T_MIN;
5213 m = mixer->mixsample;
5214 for (i = 0; i < sample_count; i++) {
5215 val = *m++;
5216 if (val > maxval)
5217 maxval = val;
5218 else if (val < minval)
5219 minval = val;
5220 }
5221
5222 /* Absolute value of overflowed amount */
5223 over_plus = maxval - AINT_T_MAX;
5224 over_minus = AINT_T_MIN - minval;
5225
5226 if (over_plus > 0 || over_minus > 0) {
5227 if (over_plus > over_minus) {
5228 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5229 } else {
5230 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5231 }
5232
5233 /*
5234 * Change the volume only if new one is smaller.
5235 * Reset the timer even if the volume isn't changed.
5236 */
5237 if (newvol <= mixer->volume) {
5238 mixer->volume = newvol;
5239 mixer->voltimer = 0;
5240 #if defined(AUDIO_DEBUG_AGC)
5241 TRACE(1, "auto volume adjust: %d", mixer->volume);
5242 #endif
5243 }
5244 }
5245 }
5246
5247 /*
5248 * Mix one track.
5249 * 'mixed' specifies the number of tracks mixed so far.
5250 * It returns the number of tracks mixed. In other words, it returns
5251 * mixed + 1 if this track is mixed.
5252 */
5253 static int
5254 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5255 int mixed)
5256 {
5257 int count;
5258 int sample_count;
5259 int remain;
5260 int i;
5261 const aint_t *s;
5262 aint2_t *d;
5263
5264 /* XXX TODO: Is this necessary for now? */
5265 if (mixer->mixseq < track->seq)
5266 return mixed;
5267
5268 count = auring_get_contig_used(&track->outbuf);
5269 count = uimin(count, mixer->frames_per_block);
5270
5271 s = auring_headptr_aint(&track->outbuf);
5272 d = mixer->mixsample;
5273
5274 /*
5275 * Apply track volume with double-sized integer and perform
5276 * additive synthesis.
5277 *
5278 * XXX If you limit the track volume to 1.0 or less (<= 256),
5279 * it would be better to do this in the track conversion stage
5280 * rather than here. However, if you accept the volume to
5281 * be greater than 1.0 (> 256), it's better to do it here.
5282 * Because the operation here is done by double-sized integer.
5283 */
5284 sample_count = count * mixer->mixfmt.channels;
5285 if (mixed == 0) {
5286 /* If this is the first track, assignment can be used. */
5287 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5288 if (track->volume != 256) {
5289 for (i = 0; i < sample_count; i++) {
5290 aint2_t v;
5291 v = *s++;
5292 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5293 }
5294 } else
5295 #endif
5296 {
5297 for (i = 0; i < sample_count; i++) {
5298 *d++ = ((aint2_t)*s++);
5299 }
5300 }
5301 /* Fill silence if the first track is not filled. */
5302 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5303 *d++ = 0;
5304 } else {
5305 /* If this is the second or later, add it. */
5306 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5307 if (track->volume != 256) {
5308 for (i = 0; i < sample_count; i++) {
5309 aint2_t v;
5310 v = *s++;
5311 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5312 }
5313 } else
5314 #endif
5315 {
5316 for (i = 0; i < sample_count; i++) {
5317 *d++ += ((aint2_t)*s++);
5318 }
5319 }
5320 }
5321
5322 auring_take(&track->outbuf, count);
5323 /*
5324 * The counters have to align block even if outbuf is less than
5325 * one block. XXX Is this still necessary?
5326 */
5327 remain = mixer->frames_per_block - count;
5328 if (__predict_false(remain != 0)) {
5329 auring_push(&track->outbuf, remain);
5330 auring_take(&track->outbuf, remain);
5331 }
5332
5333 /*
5334 * Update track sequence.
5335 * mixseq has previous value yet at this point.
5336 */
5337 track->seq = mixer->mixseq + 1;
5338
5339 return mixed + 1;
5340 }
5341
5342 /*
5343 * Output one block from hwbuf to HW.
5344 * Must be called with sc_intr_lock held.
5345 */
5346 static void
5347 audio_pmixer_output(struct audio_softc *sc)
5348 {
5349 audio_trackmixer_t *mixer;
5350 audio_params_t params;
5351 void *start;
5352 void *end;
5353 int blksize;
5354 int error;
5355
5356 mixer = sc->sc_pmixer;
5357 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5358 sc->sc_pbusy,
5359 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5360 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5361 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5362 mixer->hwbuf.used, mixer->frames_per_block);
5363
5364 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5365
5366 if (sc->hw_if->trigger_output) {
5367 /* trigger (at once) */
5368 if (!sc->sc_pbusy) {
5369 start = mixer->hwbuf.mem;
5370 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5371 params = format2_to_params(&mixer->hwbuf.fmt);
5372
5373 error = sc->hw_if->trigger_output(sc->hw_hdl,
5374 start, end, blksize, audio_pintr, sc, ¶ms);
5375 if (error) {
5376 device_printf(sc->sc_dev,
5377 "trigger_output failed with %d\n", error);
5378 return;
5379 }
5380 }
5381 } else {
5382 /* start (everytime) */
5383 start = auring_headptr(&mixer->hwbuf);
5384
5385 error = sc->hw_if->start_output(sc->hw_hdl,
5386 start, blksize, audio_pintr, sc);
5387 if (error) {
5388 device_printf(sc->sc_dev,
5389 "start_output failed with %d\n", error);
5390 return;
5391 }
5392 }
5393 }
5394
5395 /*
5396 * This is an interrupt handler for playback.
5397 * It is called with sc_intr_lock held.
5398 *
5399 * It is usually called from hardware interrupt. However, note that
5400 * for some drivers (e.g. uaudio) it is called from software interrupt.
5401 */
5402 static void
5403 audio_pintr(void *arg)
5404 {
5405 struct audio_softc *sc;
5406 audio_trackmixer_t *mixer;
5407
5408 sc = arg;
5409 KASSERT(mutex_owned(sc->sc_intr_lock));
5410
5411 if (sc->sc_dying)
5412 return;
5413 if (sc->sc_pbusy == false) {
5414 #if defined(DIAGNOSTIC)
5415 device_printf(sc->sc_dev, "stray interrupt\n");
5416 #endif
5417 return;
5418 }
5419
5420 mixer = sc->sc_pmixer;
5421 mixer->hw_complete_counter += mixer->frames_per_block;
5422 mixer->hwseq++;
5423
5424 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5425
5426 TRACE(4,
5427 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5428 mixer->hwseq, mixer->hw_complete_counter,
5429 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5430
5431 #if defined(AUDIO_HW_SINGLE_BUFFER)
5432 /*
5433 * Create a new block here and output it immediately.
5434 * It makes a latency lower but needs machine power.
5435 */
5436 audio_pmixer_process(sc);
5437 audio_pmixer_output(sc);
5438 #else
5439 /*
5440 * It is called when block N output is done.
5441 * Output immediately block N+1 created by the last interrupt.
5442 * And then create block N+2 for the next interrupt.
5443 * This method makes playback robust even on slower machines.
5444 * Instead the latency is increased by one block.
5445 */
5446
5447 /* At first, output ready block. */
5448 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5449 audio_pmixer_output(sc);
5450 }
5451
5452 bool later = false;
5453
5454 if (mixer->hwbuf.used < mixer->frames_per_block) {
5455 later = true;
5456 }
5457
5458 /* Then, process next block. */
5459 audio_pmixer_process(sc);
5460
5461 if (later) {
5462 audio_pmixer_output(sc);
5463 }
5464 #endif
5465
5466 /*
5467 * When this interrupt is the real hardware interrupt, disabling
5468 * preemption here is not necessary. But some drivers (e.g. uaudio)
5469 * emulate it by software interrupt, so kpreempt_disable is necessary.
5470 */
5471 kpreempt_disable();
5472 softint_schedule(mixer->sih);
5473 kpreempt_enable();
5474 }
5475
5476 /*
5477 * Starts record mixer.
5478 * Must be called only if sc_rbusy is false.
5479 * Must be called with sc_lock && sc_exlock held.
5480 * Must not be called from the interrupt context.
5481 */
5482 static void
5483 audio_rmixer_start(struct audio_softc *sc)
5484 {
5485
5486 KASSERT(mutex_owned(sc->sc_lock));
5487 KASSERT(sc->sc_exlock);
5488 KASSERT(sc->sc_rbusy == false);
5489
5490 mutex_enter(sc->sc_intr_lock);
5491
5492 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5493 audio_rmixer_input(sc);
5494 sc->sc_rbusy = true;
5495 TRACE(3, "end");
5496
5497 mutex_exit(sc->sc_intr_lock);
5498 }
5499
5500 /*
5501 * When recording with MD filter:
5502 *
5503 * hwbuf [............] NBLKHW blocks ring buffer
5504 * |
5505 * | convert from hw format
5506 * v
5507 * codecbuf [....] 1 block (ring) buffer
5508 * | |
5509 * v v
5510 * track track ...
5511 *
5512 * When recording without MD filter:
5513 *
5514 * hwbuf [............] NBLKHW blocks ring buffer
5515 * | |
5516 * v v
5517 * track track ...
5518 *
5519 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5520 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5521 */
5522
5523 /*
5524 * Distribute a recorded block to all recording tracks.
5525 */
5526 static void
5527 audio_rmixer_process(struct audio_softc *sc)
5528 {
5529 audio_trackmixer_t *mixer;
5530 audio_ring_t *mixersrc;
5531 audio_file_t *f;
5532 aint_t *p;
5533 int count;
5534 int bytes;
5535 int i;
5536
5537 mixer = sc->sc_rmixer;
5538
5539 /*
5540 * count is the number of frames to be retrieved this time.
5541 * count should be one block.
5542 */
5543 count = auring_get_contig_used(&mixer->hwbuf);
5544 count = uimin(count, mixer->frames_per_block);
5545 if (count <= 0) {
5546 TRACE(4, "count %d: too short", count);
5547 return;
5548 }
5549 bytes = frametobyte(&mixer->track_fmt, count);
5550
5551 /* Hardware driver's codec */
5552 if (mixer->codec) {
5553 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5554 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5555 mixer->codecarg.count = count;
5556 mixer->codec(&mixer->codecarg);
5557 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5558 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5559 mixersrc = &mixer->codecbuf;
5560 } else {
5561 mixersrc = &mixer->hwbuf;
5562 }
5563
5564 if (mixer->swap_endian) {
5565 /* inplace conversion */
5566 p = auring_headptr_aint(mixersrc);
5567 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5568 *p = bswap16(*p);
5569 }
5570 }
5571
5572 /* Distribute to all tracks. */
5573 SLIST_FOREACH(f, &sc->sc_files, entry) {
5574 audio_track_t *track = f->rtrack;
5575 audio_ring_t *input;
5576
5577 if (track == NULL)
5578 continue;
5579
5580 if (track->is_pause) {
5581 TRACET(4, track, "skip; paused");
5582 continue;
5583 }
5584
5585 if (audio_track_lock_tryenter(track) == false) {
5586 TRACET(4, track, "skip; in use");
5587 continue;
5588 }
5589
5590 /* If the track buffer is full, discard the oldest one? */
5591 input = track->input;
5592 if (input->capacity - input->used < mixer->frames_per_block) {
5593 int drops = mixer->frames_per_block -
5594 (input->capacity - input->used);
5595 track->dropframes += drops;
5596 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5597 drops,
5598 input->head, input->used, input->capacity);
5599 auring_take(input, drops);
5600 }
5601 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5602 "input->used=%d mixer->frames_per_block=%d",
5603 input->used, mixer->frames_per_block);
5604
5605 memcpy(auring_tailptr_aint(input),
5606 auring_headptr_aint(mixersrc),
5607 bytes);
5608 auring_push(input, count);
5609
5610 /* XXX sequence counter? */
5611
5612 audio_track_lock_exit(track);
5613 }
5614
5615 auring_take(mixersrc, count);
5616 }
5617
5618 /*
5619 * Input one block from HW to hwbuf.
5620 * Must be called with sc_intr_lock held.
5621 */
5622 static void
5623 audio_rmixer_input(struct audio_softc *sc)
5624 {
5625 audio_trackmixer_t *mixer;
5626 audio_params_t params;
5627 void *start;
5628 void *end;
5629 int blksize;
5630 int error;
5631
5632 mixer = sc->sc_rmixer;
5633 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5634
5635 if (sc->hw_if->trigger_input) {
5636 /* trigger (at once) */
5637 if (!sc->sc_rbusy) {
5638 start = mixer->hwbuf.mem;
5639 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5640 params = format2_to_params(&mixer->hwbuf.fmt);
5641
5642 error = sc->hw_if->trigger_input(sc->hw_hdl,
5643 start, end, blksize, audio_rintr, sc, ¶ms);
5644 if (error) {
5645 device_printf(sc->sc_dev,
5646 "trigger_input failed with %d\n", error);
5647 return;
5648 }
5649 }
5650 } else {
5651 /* start (everytime) */
5652 start = auring_tailptr(&mixer->hwbuf);
5653
5654 error = sc->hw_if->start_input(sc->hw_hdl,
5655 start, blksize, audio_rintr, sc);
5656 if (error) {
5657 device_printf(sc->sc_dev,
5658 "start_input failed with %d\n", error);
5659 return;
5660 }
5661 }
5662 }
5663
5664 /*
5665 * This is an interrupt handler for recording.
5666 * It is called with sc_intr_lock.
5667 *
5668 * It is usually called from hardware interrupt. However, note that
5669 * for some drivers (e.g. uaudio) it is called from software interrupt.
5670 */
5671 static void
5672 audio_rintr(void *arg)
5673 {
5674 struct audio_softc *sc;
5675 audio_trackmixer_t *mixer;
5676
5677 sc = arg;
5678 KASSERT(mutex_owned(sc->sc_intr_lock));
5679
5680 if (sc->sc_dying)
5681 return;
5682 if (sc->sc_rbusy == false) {
5683 #if defined(DIAGNOSTIC)
5684 device_printf(sc->sc_dev, "stray interrupt\n");
5685 #endif
5686 return;
5687 }
5688
5689 mixer = sc->sc_rmixer;
5690 mixer->hw_complete_counter += mixer->frames_per_block;
5691 mixer->hwseq++;
5692
5693 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5694
5695 TRACE(4,
5696 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5697 mixer->hwseq, mixer->hw_complete_counter,
5698 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5699
5700 /* Distrubute recorded block */
5701 audio_rmixer_process(sc);
5702
5703 /* Request next block */
5704 audio_rmixer_input(sc);
5705
5706 /*
5707 * When this interrupt is the real hardware interrupt, disabling
5708 * preemption here is not necessary. But some drivers (e.g. uaudio)
5709 * emulate it by software interrupt, so kpreempt_disable is necessary.
5710 */
5711 kpreempt_disable();
5712 softint_schedule(mixer->sih);
5713 kpreempt_enable();
5714 }
5715
5716 /*
5717 * Halts playback mixer.
5718 * This function also clears related parameters, so call this function
5719 * instead of calling halt_output directly.
5720 * Must be called only if sc_pbusy is true.
5721 * Must be called with sc_lock && sc_exlock held.
5722 */
5723 static int
5724 audio_pmixer_halt(struct audio_softc *sc)
5725 {
5726 int error;
5727
5728 TRACE(2, "");
5729 KASSERT(mutex_owned(sc->sc_lock));
5730 KASSERT(sc->sc_exlock);
5731
5732 mutex_enter(sc->sc_intr_lock);
5733 error = sc->hw_if->halt_output(sc->hw_hdl);
5734
5735 /* Halts anyway even if some error has occurred. */
5736 sc->sc_pbusy = false;
5737 sc->sc_pmixer->hwbuf.head = 0;
5738 sc->sc_pmixer->hwbuf.used = 0;
5739 sc->sc_pmixer->mixseq = 0;
5740 sc->sc_pmixer->hwseq = 0;
5741 mutex_exit(sc->sc_intr_lock);
5742
5743 return error;
5744 }
5745
5746 /*
5747 * Halts recording mixer.
5748 * This function also clears related parameters, so call this function
5749 * instead of calling halt_input directly.
5750 * Must be called only if sc_rbusy is true.
5751 * Must be called with sc_lock && sc_exlock held.
5752 */
5753 static int
5754 audio_rmixer_halt(struct audio_softc *sc)
5755 {
5756 int error;
5757
5758 TRACE(2, "");
5759 KASSERT(mutex_owned(sc->sc_lock));
5760 KASSERT(sc->sc_exlock);
5761
5762 mutex_enter(sc->sc_intr_lock);
5763 error = sc->hw_if->halt_input(sc->hw_hdl);
5764
5765 /* Halts anyway even if some error has occurred. */
5766 sc->sc_rbusy = false;
5767 sc->sc_rmixer->hwbuf.head = 0;
5768 sc->sc_rmixer->hwbuf.used = 0;
5769 sc->sc_rmixer->mixseq = 0;
5770 sc->sc_rmixer->hwseq = 0;
5771 mutex_exit(sc->sc_intr_lock);
5772
5773 return error;
5774 }
5775
5776 /*
5777 * Flush this track.
5778 * Halts all operations, clears all buffers, reset error counters.
5779 * XXX I'm not sure...
5780 */
5781 static void
5782 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5783 {
5784
5785 KASSERT(track);
5786 TRACET(3, track, "clear");
5787
5788 audio_track_lock_enter(track);
5789
5790 track->usrbuf.used = 0;
5791 /* Clear all internal parameters. */
5792 if (track->codec.filter) {
5793 track->codec.srcbuf.used = 0;
5794 track->codec.srcbuf.head = 0;
5795 }
5796 if (track->chvol.filter) {
5797 track->chvol.srcbuf.used = 0;
5798 track->chvol.srcbuf.head = 0;
5799 }
5800 if (track->chmix.filter) {
5801 track->chmix.srcbuf.used = 0;
5802 track->chmix.srcbuf.head = 0;
5803 }
5804 if (track->freq.filter) {
5805 track->freq.srcbuf.used = 0;
5806 track->freq.srcbuf.head = 0;
5807 if (track->freq_step < 65536)
5808 track->freq_current = 65536;
5809 else
5810 track->freq_current = 0;
5811 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5812 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5813 }
5814 /* Clear buffer, then operation halts naturally. */
5815 track->outbuf.used = 0;
5816
5817 /* Clear counters. */
5818 track->dropframes = 0;
5819
5820 audio_track_lock_exit(track);
5821 }
5822
5823 /*
5824 * Drain the track.
5825 * track must be present and for playback.
5826 * If successful, it returns 0. Otherwise returns errno.
5827 * Must be called with sc_lock held.
5828 */
5829 static int
5830 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5831 {
5832 audio_trackmixer_t *mixer;
5833 int done;
5834 int error;
5835
5836 KASSERT(track);
5837 TRACET(3, track, "start");
5838 mixer = track->mixer;
5839 KASSERT(mutex_owned(sc->sc_lock));
5840
5841 /* Ignore them if pause. */
5842 if (track->is_pause) {
5843 TRACET(3, track, "pause -> clear");
5844 track->pstate = AUDIO_STATE_CLEAR;
5845 }
5846 /* Terminate early here if there is no data in the track. */
5847 if (track->pstate == AUDIO_STATE_CLEAR) {
5848 TRACET(3, track, "no need to drain");
5849 return 0;
5850 }
5851 track->pstate = AUDIO_STATE_DRAINING;
5852
5853 for (;;) {
5854 /* I want to display it before condition evaluation. */
5855 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5856 (int)curproc->p_pid, (int)curlwp->l_lid,
5857 (int)track->seq, (int)mixer->hwseq,
5858 track->outbuf.head, track->outbuf.used,
5859 track->outbuf.capacity);
5860
5861 /* Condition to terminate */
5862 audio_track_lock_enter(track);
5863 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5864 track->outbuf.used == 0 &&
5865 track->seq <= mixer->hwseq);
5866 audio_track_lock_exit(track);
5867 if (done)
5868 break;
5869
5870 TRACET(3, track, "sleep");
5871 error = audio_track_waitio(sc, track);
5872 if (error)
5873 return error;
5874
5875 /* XXX call audio_track_play here ? */
5876 }
5877
5878 track->pstate = AUDIO_STATE_CLEAR;
5879 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5880 (int)track->inputcounter, (int)track->outputcounter);
5881 return 0;
5882 }
5883
5884 /*
5885 * Send signal to process.
5886 * This is intended to be called only from audio_softintr_{rd,wr}.
5887 * Must be called with sc_lock && sc_intr_lock held.
5888 */
5889 static inline void
5890 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
5891 {
5892 proc_t *p;
5893
5894 KASSERT(mutex_owned(sc->sc_lock));
5895 KASSERT(mutex_owned(sc->sc_intr_lock));
5896 KASSERT(pid != 0);
5897
5898 /*
5899 * psignal() must be called without spin lock held.
5900 * So leave intr_lock temporarily here.
5901 */
5902 mutex_exit(sc->sc_intr_lock);
5903
5904 mutex_enter(proc_lock);
5905 p = proc_find(pid);
5906 if (p)
5907 psignal(p, signum);
5908 mutex_exit(proc_lock);
5909
5910 /* Enter intr_lock again */
5911 mutex_enter(sc->sc_intr_lock);
5912 }
5913
5914 /*
5915 * This is software interrupt handler for record.
5916 * It is called from recording hardware interrupt everytime.
5917 * It does:
5918 * - Deliver SIGIO for all async processes.
5919 * - Notify to audio_read() that data has arrived.
5920 * - selnotify() for select/poll-ing processes.
5921 */
5922 /*
5923 * XXX If a process issues FIOASYNC between hardware interrupt and
5924 * software interrupt, (stray) SIGIO will be sent to the process
5925 * despite the fact that it has not receive recorded data yet.
5926 */
5927 static void
5928 audio_softintr_rd(void *cookie)
5929 {
5930 struct audio_softc *sc = cookie;
5931 audio_file_t *f;
5932 pid_t pid;
5933
5934 mutex_enter(sc->sc_lock);
5935 mutex_enter(sc->sc_intr_lock);
5936
5937 SLIST_FOREACH(f, &sc->sc_files, entry) {
5938 audio_track_t *track = f->rtrack;
5939
5940 if (track == NULL)
5941 continue;
5942
5943 TRACET(4, track, "broadcast; inp=%d/%d/%d",
5944 track->input->head,
5945 track->input->used,
5946 track->input->capacity);
5947
5948 pid = f->async_audio;
5949 if (pid != 0) {
5950 TRACEF(4, f, "sending SIGIO %d", pid);
5951 audio_psignal(sc, pid, SIGIO);
5952 }
5953 }
5954 mutex_exit(sc->sc_intr_lock);
5955
5956 /* Notify that data has arrived. */
5957 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
5958 KNOTE(&sc->sc_rsel.sel_klist, 0);
5959 cv_broadcast(&sc->sc_rmixer->outcv);
5960
5961 mutex_exit(sc->sc_lock);
5962 }
5963
5964 /*
5965 * This is software interrupt handler for playback.
5966 * It is called from playback hardware interrupt everytime.
5967 * It does:
5968 * - Deliver SIGIO for all async and writable (used < lowat) processes.
5969 * - Notify to audio_write() that outbuf block available.
5970 * - selnotify() for select/poll-ing processes if there are any writable
5971 * (used < lowat) processes. Checking each descriptor will be done by
5972 * filt_audiowrite_event().
5973 */
5974 static void
5975 audio_softintr_wr(void *cookie)
5976 {
5977 struct audio_softc *sc = cookie;
5978 audio_file_t *f;
5979 bool found;
5980 pid_t pid;
5981
5982 TRACE(4, "called");
5983 found = false;
5984
5985 mutex_enter(sc->sc_lock);
5986 mutex_enter(sc->sc_intr_lock);
5987
5988 SLIST_FOREACH(f, &sc->sc_files, entry) {
5989 audio_track_t *track = f->ptrack;
5990
5991 if (track == NULL)
5992 continue;
5993
5994 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
5995 (int)track->seq,
5996 track->outbuf.head,
5997 track->outbuf.used,
5998 track->outbuf.capacity);
5999
6000 /*
6001 * Send a signal if the process is async mode and
6002 * used is lower than lowat.
6003 */
6004 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6005 !track->is_pause) {
6006 /* For selnotify */
6007 found = true;
6008 /* For SIGIO */
6009 pid = f->async_audio;
6010 if (pid != 0) {
6011 TRACEF(4, f, "sending SIGIO %d", pid);
6012 audio_psignal(sc, pid, SIGIO);
6013 }
6014 }
6015 }
6016 mutex_exit(sc->sc_intr_lock);
6017
6018 /*
6019 * Notify for select/poll when someone become writable.
6020 * It needs sc_lock (and not sc_intr_lock).
6021 */
6022 if (found) {
6023 TRACE(4, "selnotify");
6024 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6025 KNOTE(&sc->sc_wsel.sel_klist, 0);
6026 }
6027
6028 /* Notify to audio_write() that outbuf available. */
6029 cv_broadcast(&sc->sc_pmixer->outcv);
6030
6031 mutex_exit(sc->sc_lock);
6032 }
6033
6034 /*
6035 * Check (and convert) the format *p came from userland.
6036 * If successful, it writes back the converted format to *p if necessary
6037 * and returns 0. Otherwise returns errno (*p may change even this case).
6038 */
6039 static int
6040 audio_check_params(audio_format2_t *p)
6041 {
6042
6043 /* Convert obsoleted AUDIO_ENCODING_PCM* */
6044 /* XXX Is this conversion right? */
6045 if (p->encoding == AUDIO_ENCODING_PCM16) {
6046 if (p->precision == 8)
6047 p->encoding = AUDIO_ENCODING_ULINEAR;
6048 else
6049 p->encoding = AUDIO_ENCODING_SLINEAR;
6050 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6051 if (p->precision == 8)
6052 p->encoding = AUDIO_ENCODING_ULINEAR;
6053 else
6054 return EINVAL;
6055 }
6056
6057 /*
6058 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6059 * suffix.
6060 */
6061 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6062 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6063 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6064 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6065
6066 switch (p->encoding) {
6067 case AUDIO_ENCODING_ULAW:
6068 case AUDIO_ENCODING_ALAW:
6069 if (p->precision != 8)
6070 return EINVAL;
6071 break;
6072 case AUDIO_ENCODING_ADPCM:
6073 if (p->precision != 4 && p->precision != 8)
6074 return EINVAL;
6075 break;
6076 case AUDIO_ENCODING_SLINEAR_LE:
6077 case AUDIO_ENCODING_SLINEAR_BE:
6078 case AUDIO_ENCODING_ULINEAR_LE:
6079 case AUDIO_ENCODING_ULINEAR_BE:
6080 if (p->precision != 8 && p->precision != 16 &&
6081 p->precision != 24 && p->precision != 32)
6082 return EINVAL;
6083
6084 /* 8bit format does not have endianness. */
6085 if (p->precision == 8) {
6086 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6087 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6088 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6089 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6090 }
6091
6092 if (p->precision > p->stride)
6093 return EINVAL;
6094 break;
6095 case AUDIO_ENCODING_MPEG_L1_STREAM:
6096 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6097 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6098 case AUDIO_ENCODING_MPEG_L2_STREAM:
6099 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6100 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6101 case AUDIO_ENCODING_AC3:
6102 break;
6103 default:
6104 return EINVAL;
6105 }
6106
6107 /* sanity check # of channels*/
6108 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6109 return EINVAL;
6110
6111 return 0;
6112 }
6113
6114 /*
6115 * Initialize playback and record mixers.
6116 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6117 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6118 * the filter registration information. These four must not be NULL.
6119 * If successful returns 0. Otherwise returns errno.
6120 * Must be called with sc_lock held.
6121 * Must not be called if there are any tracks.
6122 * Caller should check that the initialization succeed by whether
6123 * sc_[pr]mixer is not NULL.
6124 */
6125 static int
6126 audio_mixers_init(struct audio_softc *sc, int mode,
6127 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6128 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6129 {
6130 int error;
6131
6132 KASSERT(phwfmt != NULL);
6133 KASSERT(rhwfmt != NULL);
6134 KASSERT(pfil != NULL);
6135 KASSERT(rfil != NULL);
6136 KASSERT(mutex_owned(sc->sc_lock));
6137
6138 if ((mode & AUMODE_PLAY)) {
6139 if (sc->sc_pmixer == NULL) {
6140 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6141 KM_SLEEP);
6142 } else {
6143 /* destroy() doesn't free memory. */
6144 audio_mixer_destroy(sc, sc->sc_pmixer);
6145 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6146 }
6147 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6148 if (error) {
6149 device_printf(sc->sc_dev,
6150 "configuring playback mode failed with %d\n",
6151 error);
6152 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6153 sc->sc_pmixer = NULL;
6154 return error;
6155 }
6156 }
6157 if ((mode & AUMODE_RECORD)) {
6158 if (sc->sc_rmixer == NULL) {
6159 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6160 KM_SLEEP);
6161 } else {
6162 /* destroy() doesn't free memory. */
6163 audio_mixer_destroy(sc, sc->sc_rmixer);
6164 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6165 }
6166 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6167 if (error) {
6168 device_printf(sc->sc_dev,
6169 "configuring record mode failed with %d\n",
6170 error);
6171 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6172 sc->sc_rmixer = NULL;
6173 return error;
6174 }
6175 }
6176
6177 return 0;
6178 }
6179
6180 /*
6181 * Select a frequency.
6182 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6183 * XXX Better algorithm?
6184 */
6185 static int
6186 audio_select_freq(const struct audio_format *fmt)
6187 {
6188 int freq;
6189 int high;
6190 int low;
6191 int j;
6192
6193 if (fmt->frequency_type == 0) {
6194 low = fmt->frequency[0];
6195 high = fmt->frequency[1];
6196 freq = 48000;
6197 if (low <= freq && freq <= high) {
6198 return freq;
6199 }
6200 freq = 44100;
6201 if (low <= freq && freq <= high) {
6202 return freq;
6203 }
6204 return high;
6205 } else {
6206 for (j = 0; j < fmt->frequency_type; j++) {
6207 if (fmt->frequency[j] == 48000) {
6208 return fmt->frequency[j];
6209 }
6210 }
6211 high = 0;
6212 for (j = 0; j < fmt->frequency_type; j++) {
6213 if (fmt->frequency[j] == 44100) {
6214 return fmt->frequency[j];
6215 }
6216 if (fmt->frequency[j] > high) {
6217 high = fmt->frequency[j];
6218 }
6219 }
6220 return high;
6221 }
6222 }
6223
6224 /*
6225 * Choose the most preferred hardware format.
6226 * If successful, it will store the chosen format into *cand and return 0.
6227 * Otherwise, return errno.
6228 * Must be called without sc_lock held.
6229 */
6230 static int
6231 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6232 {
6233 audio_format_query_t query;
6234 int cand_score;
6235 int score;
6236 int i;
6237 int error;
6238
6239 /*
6240 * Score each formats and choose the highest one.
6241 *
6242 * +---- priority(0-3)
6243 * |+--- encoding/precision
6244 * ||+-- channels
6245 * score = 0x000000PEC
6246 */
6247
6248 cand_score = 0;
6249 for (i = 0; ; i++) {
6250 memset(&query, 0, sizeof(query));
6251 query.index = i;
6252
6253 mutex_enter(sc->sc_lock);
6254 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6255 mutex_exit(sc->sc_lock);
6256 if (error == EINVAL)
6257 break;
6258 if (error)
6259 return error;
6260
6261 #if defined(AUDIO_DEBUG)
6262 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6263 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6264 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6265 query.fmt.priority,
6266 audio_encoding_name(query.fmt.encoding),
6267 query.fmt.validbits,
6268 query.fmt.precision,
6269 query.fmt.channels);
6270 if (query.fmt.frequency_type == 0) {
6271 DPRINTF(1, "{%d-%d",
6272 query.fmt.frequency[0], query.fmt.frequency[1]);
6273 } else {
6274 int j;
6275 for (j = 0; j < query.fmt.frequency_type; j++) {
6276 DPRINTF(1, "%c%d",
6277 (j == 0) ? '{' : ',',
6278 query.fmt.frequency[j]);
6279 }
6280 }
6281 DPRINTF(1, "}\n");
6282 #endif
6283
6284 if ((query.fmt.mode & mode) == 0) {
6285 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6286 mode);
6287 continue;
6288 }
6289
6290 if (query.fmt.priority < 0) {
6291 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6292 continue;
6293 }
6294
6295 /* Score */
6296 score = (query.fmt.priority & 3) * 0x100;
6297 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6298 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6299 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6300 score += 0x20;
6301 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6302 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6303 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6304 score += 0x10;
6305 }
6306 score += query.fmt.channels;
6307
6308 if (score < cand_score) {
6309 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6310 score, cand_score);
6311 continue;
6312 }
6313
6314 /* Update candidate */
6315 cand_score = score;
6316 cand->encoding = query.fmt.encoding;
6317 cand->precision = query.fmt.validbits;
6318 cand->stride = query.fmt.precision;
6319 cand->channels = query.fmt.channels;
6320 cand->sample_rate = audio_select_freq(&query.fmt);
6321 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6322 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6323 cand_score, query.fmt.priority,
6324 audio_encoding_name(query.fmt.encoding),
6325 cand->precision, cand->stride,
6326 cand->channels, cand->sample_rate);
6327 }
6328
6329 if (cand_score == 0) {
6330 DPRINTF(1, "%s no fmt\n", __func__);
6331 return ENXIO;
6332 }
6333 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6334 audio_encoding_name(cand->encoding),
6335 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6336 return 0;
6337 }
6338
6339 /*
6340 * Validate fmt with query_format.
6341 * If fmt is included in the result of query_format, returns 0.
6342 * Otherwise returns EINVAL.
6343 * Must be called with sc_lock held.
6344 */
6345 static int
6346 audio_hw_validate_format(struct audio_softc *sc, int mode,
6347 const audio_format2_t *fmt)
6348 {
6349 audio_format_query_t query;
6350 struct audio_format *q;
6351 int index;
6352 int error;
6353 int j;
6354
6355 KASSERT(mutex_owned(sc->sc_lock));
6356
6357 for (index = 0; ; index++) {
6358 query.index = index;
6359 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6360 if (error == EINVAL)
6361 break;
6362 if (error)
6363 return error;
6364
6365 q = &query.fmt;
6366 /*
6367 * Note that fmt is audio_format2_t (precision/stride) but
6368 * q is audio_format_t (validbits/precision).
6369 */
6370 if ((q->mode & mode) == 0) {
6371 continue;
6372 }
6373 if (fmt->encoding != q->encoding) {
6374 continue;
6375 }
6376 if (fmt->precision != q->validbits) {
6377 continue;
6378 }
6379 if (fmt->stride != q->precision) {
6380 continue;
6381 }
6382 if (fmt->channels != q->channels) {
6383 continue;
6384 }
6385 if (q->frequency_type == 0) {
6386 if (fmt->sample_rate < q->frequency[0] ||
6387 fmt->sample_rate > q->frequency[1]) {
6388 continue;
6389 }
6390 } else {
6391 for (j = 0; j < q->frequency_type; j++) {
6392 if (fmt->sample_rate == q->frequency[j])
6393 break;
6394 }
6395 if (j == query.fmt.frequency_type) {
6396 continue;
6397 }
6398 }
6399
6400 /* Matched. */
6401 return 0;
6402 }
6403
6404 return EINVAL;
6405 }
6406
6407 /*
6408 * Set track mixer's format depending on ai->mode.
6409 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6410 * with ai.play.*.
6411 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6412 * with ai.record.*.
6413 * All other fields in ai are ignored.
6414 * If successful returns 0. Otherwise returns errno.
6415 * This function does not roll back even if it fails.
6416 * Must be called with sc_lock held.
6417 */
6418 static int
6419 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6420 {
6421 audio_format2_t phwfmt;
6422 audio_format2_t rhwfmt;
6423 audio_filter_reg_t pfil;
6424 audio_filter_reg_t rfil;
6425 int mode;
6426 int error;
6427
6428 KASSERT(mutex_owned(sc->sc_lock));
6429
6430 /*
6431 * Even when setting either one of playback and recording,
6432 * both must be halted.
6433 */
6434 if (sc->sc_popens + sc->sc_ropens > 0)
6435 return EBUSY;
6436
6437 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6438 return ENOTTY;
6439
6440 mode = ai->mode;
6441 if ((mode & AUMODE_PLAY)) {
6442 phwfmt.encoding = ai->play.encoding;
6443 phwfmt.precision = ai->play.precision;
6444 phwfmt.stride = ai->play.precision;
6445 phwfmt.channels = ai->play.channels;
6446 phwfmt.sample_rate = ai->play.sample_rate;
6447 }
6448 if ((mode & AUMODE_RECORD)) {
6449 rhwfmt.encoding = ai->record.encoding;
6450 rhwfmt.precision = ai->record.precision;
6451 rhwfmt.stride = ai->record.precision;
6452 rhwfmt.channels = ai->record.channels;
6453 rhwfmt.sample_rate = ai->record.sample_rate;
6454 }
6455
6456 /* On non-independent devices, use the same format for both. */
6457 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6458 if (mode == AUMODE_RECORD) {
6459 phwfmt = rhwfmt;
6460 } else {
6461 rhwfmt = phwfmt;
6462 }
6463 mode = AUMODE_PLAY | AUMODE_RECORD;
6464 }
6465
6466 /* Then, unset the direction not exist on the hardware. */
6467 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6468 mode &= ~AUMODE_PLAY;
6469 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6470 mode &= ~AUMODE_RECORD;
6471
6472 /* debug */
6473 if ((mode & AUMODE_PLAY)) {
6474 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6475 audio_encoding_name(phwfmt.encoding),
6476 phwfmt.precision,
6477 phwfmt.stride,
6478 phwfmt.channels,
6479 phwfmt.sample_rate);
6480 }
6481 if ((mode & AUMODE_RECORD)) {
6482 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6483 audio_encoding_name(rhwfmt.encoding),
6484 rhwfmt.precision,
6485 rhwfmt.stride,
6486 rhwfmt.channels,
6487 rhwfmt.sample_rate);
6488 }
6489
6490 /* Check the format */
6491 if ((mode & AUMODE_PLAY)) {
6492 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6493 TRACE(1, "invalid format");
6494 return EINVAL;
6495 }
6496 }
6497 if ((mode & AUMODE_RECORD)) {
6498 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6499 TRACE(1, "invalid format");
6500 return EINVAL;
6501 }
6502 }
6503
6504 /* Configure the mixers. */
6505 memset(&pfil, 0, sizeof(pfil));
6506 memset(&rfil, 0, sizeof(rfil));
6507 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6508 if (error)
6509 return error;
6510
6511 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6512 if (error)
6513 return error;
6514
6515 /*
6516 * Reinitialize the sticky parameters for /dev/sound.
6517 * If the number of the hardware channels becomes less than the number
6518 * of channels that sticky parameters remember, subsequent /dev/sound
6519 * open will fail. To prevent this, reinitialize the sticky
6520 * parameters whenever the hardware format is changed.
6521 */
6522 sc->sc_sound_pparams = params_to_format2(&audio_default);
6523 sc->sc_sound_rparams = params_to_format2(&audio_default);
6524 sc->sc_sound_ppause = false;
6525 sc->sc_sound_rpause = false;
6526
6527 return 0;
6528 }
6529
6530 /*
6531 * Store current mixers format into *ai.
6532 */
6533 static void
6534 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6535 {
6536 /*
6537 * There is no stride information in audio_info but it doesn't matter.
6538 * trackmixer always treats stride and precision as the same.
6539 */
6540 AUDIO_INITINFO(ai);
6541 ai->mode = 0;
6542 if (sc->sc_pmixer) {
6543 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6544 ai->play.encoding = fmt->encoding;
6545 ai->play.precision = fmt->precision;
6546 ai->play.channels = fmt->channels;
6547 ai->play.sample_rate = fmt->sample_rate;
6548 ai->mode |= AUMODE_PLAY;
6549 }
6550 if (sc->sc_rmixer) {
6551 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6552 ai->record.encoding = fmt->encoding;
6553 ai->record.precision = fmt->precision;
6554 ai->record.channels = fmt->channels;
6555 ai->record.sample_rate = fmt->sample_rate;
6556 ai->mode |= AUMODE_RECORD;
6557 }
6558 }
6559
6560 /*
6561 * audio_info details:
6562 *
6563 * ai.{play,record}.sample_rate (R/W)
6564 * ai.{play,record}.encoding (R/W)
6565 * ai.{play,record}.precision (R/W)
6566 * ai.{play,record}.channels (R/W)
6567 * These specify the playback or recording format.
6568 * Ignore members within an inactive track.
6569 *
6570 * ai.mode (R/W)
6571 * It specifies the playback or recording mode, AUMODE_*.
6572 * Currently, a mode change operation by ai.mode after opening is
6573 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6574 * However, it's possible to get or to set for backward compatibility.
6575 *
6576 * ai.{hiwat,lowat} (R/W)
6577 * These specify the high water mark and low water mark for playback
6578 * track. The unit is block.
6579 *
6580 * ai.{play,record}.gain (R/W)
6581 * It specifies the HW mixer volume in 0-255.
6582 * It is historical reason that the gain is connected to HW mixer.
6583 *
6584 * ai.{play,record}.balance (R/W)
6585 * It specifies the left-right balance of HW mixer in 0-64.
6586 * 32 means the center.
6587 * It is historical reason that the balance is connected to HW mixer.
6588 *
6589 * ai.{play,record}.port (R/W)
6590 * It specifies the input/output port of HW mixer.
6591 *
6592 * ai.monitor_gain (R/W)
6593 * It specifies the recording monitor gain(?) of HW mixer.
6594 *
6595 * ai.{play,record}.pause (R/W)
6596 * Non-zero means the track is paused.
6597 *
6598 * ai.play.seek (R/-)
6599 * It indicates the number of bytes written but not processed.
6600 * ai.record.seek (R/-)
6601 * It indicates the number of bytes to be able to read.
6602 *
6603 * ai.{play,record}.avail_ports (R/-)
6604 * Mixer info.
6605 *
6606 * ai.{play,record}.buffer_size (R/-)
6607 * It indicates the buffer size in bytes. Internally it means usrbuf.
6608 *
6609 * ai.{play,record}.samples (R/-)
6610 * It indicates the total number of bytes played or recorded.
6611 *
6612 * ai.{play,record}.eof (R/-)
6613 * It indicates the number of times reached EOF(?).
6614 *
6615 * ai.{play,record}.error (R/-)
6616 * Non-zero indicates overflow/underflow has occured.
6617 *
6618 * ai.{play,record}.waiting (R/-)
6619 * Non-zero indicates that other process waits to open.
6620 * It will never happen anymore.
6621 *
6622 * ai.{play,record}.open (R/-)
6623 * Non-zero indicates the direction is opened by this process(?).
6624 * XXX Is this better to indicate that "the device is opened by
6625 * at least one process"?
6626 *
6627 * ai.{play,record}.active (R/-)
6628 * Non-zero indicates that I/O is currently active.
6629 *
6630 * ai.blocksize (R/-)
6631 * It indicates the block size in bytes.
6632 * XXX The blocksize of playback and recording may be different.
6633 */
6634
6635 /*
6636 * Pause consideration:
6637 *
6638 * The introduction of these two behavior makes pause/unpause operation
6639 * simple.
6640 * 1. The first read/write access of the first track makes mixer start.
6641 * 2. A pause of the last track doesn't make mixer stop.
6642 */
6643
6644 /*
6645 * Set both track's parameters within a file depending on ai.
6646 * Update sc_sound_[pr]* if set.
6647 * Must be called with sc_lock and sc_exlock held.
6648 */
6649 static int
6650 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6651 const struct audio_info *ai)
6652 {
6653 const struct audio_prinfo *pi;
6654 const struct audio_prinfo *ri;
6655 audio_track_t *ptrack;
6656 audio_track_t *rtrack;
6657 audio_format2_t pfmt;
6658 audio_format2_t rfmt;
6659 int pchanges;
6660 int rchanges;
6661 int mode;
6662 struct audio_info saved_ai;
6663 audio_format2_t saved_pfmt;
6664 audio_format2_t saved_rfmt;
6665 int error;
6666
6667 KASSERT(mutex_owned(sc->sc_lock));
6668 KASSERT(sc->sc_exlock);
6669
6670 pi = &ai->play;
6671 ri = &ai->record;
6672 pchanges = 0;
6673 rchanges = 0;
6674
6675 ptrack = file->ptrack;
6676 rtrack = file->rtrack;
6677
6678 #if defined(AUDIO_DEBUG)
6679 if (audiodebug >= 2) {
6680 char buf[256];
6681 char p[64];
6682 int buflen;
6683 int plen;
6684 #define SPRINTF(var, fmt...) do { \
6685 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6686 } while (0)
6687
6688 buflen = 0;
6689 plen = 0;
6690 if (SPECIFIED(pi->encoding))
6691 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6692 if (SPECIFIED(pi->precision))
6693 SPRINTF(p, "/%dbit", pi->precision);
6694 if (SPECIFIED(pi->channels))
6695 SPRINTF(p, "/%dch", pi->channels);
6696 if (SPECIFIED(pi->sample_rate))
6697 SPRINTF(p, "/%dHz", pi->sample_rate);
6698 if (plen > 0)
6699 SPRINTF(buf, ",play.param=%s", p + 1);
6700
6701 plen = 0;
6702 if (SPECIFIED(ri->encoding))
6703 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6704 if (SPECIFIED(ri->precision))
6705 SPRINTF(p, "/%dbit", ri->precision);
6706 if (SPECIFIED(ri->channels))
6707 SPRINTF(p, "/%dch", ri->channels);
6708 if (SPECIFIED(ri->sample_rate))
6709 SPRINTF(p, "/%dHz", ri->sample_rate);
6710 if (plen > 0)
6711 SPRINTF(buf, ",record.param=%s", p + 1);
6712
6713 if (SPECIFIED(ai->mode))
6714 SPRINTF(buf, ",mode=%d", ai->mode);
6715 if (SPECIFIED(ai->hiwat))
6716 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6717 if (SPECIFIED(ai->lowat))
6718 SPRINTF(buf, ",lowat=%d", ai->lowat);
6719 if (SPECIFIED(ai->play.gain))
6720 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6721 if (SPECIFIED(ai->record.gain))
6722 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6723 if (SPECIFIED_CH(ai->play.balance))
6724 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6725 if (SPECIFIED_CH(ai->record.balance))
6726 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6727 if (SPECIFIED(ai->play.port))
6728 SPRINTF(buf, ",play.port=%d", ai->play.port);
6729 if (SPECIFIED(ai->record.port))
6730 SPRINTF(buf, ",record.port=%d", ai->record.port);
6731 if (SPECIFIED(ai->monitor_gain))
6732 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6733 if (SPECIFIED_CH(ai->play.pause))
6734 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6735 if (SPECIFIED_CH(ai->record.pause))
6736 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6737
6738 if (buflen > 0)
6739 TRACE(2, "specified %s", buf + 1);
6740 }
6741 #endif
6742
6743 AUDIO_INITINFO(&saved_ai);
6744 /* XXX shut up gcc */
6745 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6746 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6747
6748 /* Set default value and save current parameters */
6749 if (ptrack) {
6750 pfmt = ptrack->usrbuf.fmt;
6751 saved_pfmt = ptrack->usrbuf.fmt;
6752 saved_ai.play.pause = ptrack->is_pause;
6753 }
6754 if (rtrack) {
6755 rfmt = rtrack->usrbuf.fmt;
6756 saved_rfmt = rtrack->usrbuf.fmt;
6757 saved_ai.record.pause = rtrack->is_pause;
6758 }
6759 saved_ai.mode = file->mode;
6760
6761 /* Overwrite if specified */
6762 mode = file->mode;
6763 if (SPECIFIED(ai->mode)) {
6764 /*
6765 * Setting ai->mode no longer does anything because it's
6766 * prohibited to change playback/recording mode after open
6767 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6768 * keeps the state of AUMODE_PLAY_ALL itself for backward
6769 * compatibility.
6770 * In the internal, only file->mode has the state of
6771 * AUMODE_PLAY_ALL flag and track->mode in both track does
6772 * not have.
6773 */
6774 if ((file->mode & AUMODE_PLAY)) {
6775 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6776 | (ai->mode & AUMODE_PLAY_ALL);
6777 }
6778 }
6779
6780 if (ptrack) {
6781 pchanges = audio_track_setinfo_check(&pfmt, pi,
6782 &sc->sc_pmixer->hwbuf.fmt);
6783 if (pchanges == -1) {
6784 #if defined(AUDIO_DEBUG)
6785 TRACET(1, ptrack, "check play.params failed: "
6786 "%s %ubit %uch %uHz",
6787 audio_encoding_name(pi->encoding),
6788 pi->precision,
6789 pi->channels,
6790 pi->sample_rate);
6791 #endif
6792 return EINVAL;
6793 }
6794 if (SPECIFIED(ai->mode))
6795 pchanges = 1;
6796 }
6797 if (rtrack) {
6798 rchanges = audio_track_setinfo_check(&rfmt, ri,
6799 &sc->sc_rmixer->hwbuf.fmt);
6800 if (rchanges == -1) {
6801 #if defined(AUDIO_DEBUG)
6802 TRACET(1, rtrack, "check record.params failed: "
6803 "%s %ubit %uch %uHz",
6804 audio_encoding_name(ri->encoding),
6805 ri->precision,
6806 ri->channels,
6807 ri->sample_rate);
6808 #endif
6809 return EINVAL;
6810 }
6811 if (SPECIFIED(ai->mode))
6812 rchanges = 1;
6813 }
6814
6815 /*
6816 * Even when setting either one of playback and recording,
6817 * both track must be halted.
6818 */
6819 if (pchanges || rchanges) {
6820 audio_file_clear(sc, file);
6821 #if defined(AUDIO_DEBUG)
6822 char fmtbuf[64];
6823 if (pchanges) {
6824 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6825 DPRINTF(1, "audio track#%d play mode: %s\n",
6826 ptrack->id, fmtbuf);
6827 }
6828 if (rchanges) {
6829 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6830 DPRINTF(1, "audio track#%d rec mode: %s\n",
6831 rtrack->id, fmtbuf);
6832 }
6833 #endif
6834 }
6835
6836 /* Set mixer parameters */
6837 error = audio_hw_setinfo(sc, ai, &saved_ai);
6838 if (error)
6839 goto abort1;
6840
6841 /* Set to track and update sticky parameters */
6842 error = 0;
6843 file->mode = mode;
6844 if (ptrack) {
6845 if (SPECIFIED_CH(pi->pause)) {
6846 ptrack->is_pause = pi->pause;
6847 sc->sc_sound_ppause = pi->pause;
6848 }
6849 if (pchanges) {
6850 audio_track_lock_enter(ptrack);
6851 error = audio_track_set_format(ptrack, &pfmt);
6852 audio_track_lock_exit(ptrack);
6853 if (error) {
6854 TRACET(1, ptrack, "set play.params failed");
6855 goto abort2;
6856 }
6857 sc->sc_sound_pparams = pfmt;
6858 }
6859 /* Change water marks after initializing the buffers. */
6860 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat))
6861 audio_track_setinfo_water(ptrack, ai);
6862 }
6863 if (rtrack) {
6864 if (SPECIFIED_CH(ri->pause)) {
6865 rtrack->is_pause = ri->pause;
6866 sc->sc_sound_rpause = ri->pause;
6867 }
6868 if (rchanges) {
6869 audio_track_lock_enter(rtrack);
6870 error = audio_track_set_format(rtrack, &rfmt);
6871 audio_track_lock_exit(rtrack);
6872 if (error) {
6873 TRACET(1, rtrack, "set record.params failed");
6874 goto abort3;
6875 }
6876 sc->sc_sound_rparams = rfmt;
6877 }
6878 }
6879
6880 return 0;
6881
6882 /* Rollback */
6883 abort3:
6884 if (error != ENOMEM) {
6885 rtrack->is_pause = saved_ai.record.pause;
6886 audio_track_lock_enter(rtrack);
6887 audio_track_set_format(rtrack, &saved_rfmt);
6888 audio_track_lock_exit(rtrack);
6889 }
6890 abort2:
6891 if (ptrack && error != ENOMEM) {
6892 ptrack->is_pause = saved_ai.play.pause;
6893 audio_track_lock_enter(ptrack);
6894 audio_track_set_format(ptrack, &saved_pfmt);
6895 audio_track_lock_exit(ptrack);
6896 sc->sc_sound_pparams = saved_pfmt;
6897 sc->sc_sound_ppause = saved_ai.play.pause;
6898 }
6899 file->mode = saved_ai.mode;
6900 abort1:
6901 audio_hw_setinfo(sc, &saved_ai, NULL);
6902
6903 return error;
6904 }
6905
6906 /*
6907 * Write SPECIFIED() parameters within info back to fmt.
6908 * Return value of 1 indicates that fmt is modified.
6909 * Return value of 0 indicates that fmt is not modified.
6910 * Return value of -1 indicates that error EINVAL has occurred.
6911 */
6912 static int
6913 audio_track_setinfo_check(audio_format2_t *fmt, const struct audio_prinfo *info,
6914 const audio_format2_t *hwfmt)
6915 {
6916 int changes;
6917
6918 changes = 0;
6919 if (SPECIFIED(info->sample_rate)) {
6920 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
6921 return -1;
6922 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
6923 return -1;
6924 fmt->sample_rate = info->sample_rate;
6925 changes = 1;
6926 }
6927 if (SPECIFIED(info->encoding)) {
6928 fmt->encoding = info->encoding;
6929 changes = 1;
6930 }
6931 if (SPECIFIED(info->precision)) {
6932 fmt->precision = info->precision;
6933 /* we don't have API to specify stride */
6934 fmt->stride = info->precision;
6935 changes = 1;
6936 }
6937 if (SPECIFIED(info->channels)) {
6938 /*
6939 * We can convert between monaural and stereo each other.
6940 * We can reduce than the number of channels that the hardware
6941 * supports.
6942 */
6943 if (info->channels > 2 && info->channels > hwfmt->channels)
6944 return -1;
6945 fmt->channels = info->channels;
6946 changes = 1;
6947 }
6948
6949 if (changes) {
6950 if (audio_check_params(fmt) != 0)
6951 return -1;
6952 }
6953
6954 return changes;
6955 }
6956
6957 /*
6958 * Change water marks for playback track if specfied.
6959 */
6960 static void
6961 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
6962 {
6963 u_int blks;
6964 u_int maxblks;
6965 u_int blksize;
6966
6967 KASSERT(audio_track_is_playback(track));
6968
6969 blksize = track->usrbuf_blksize;
6970 maxblks = track->usrbuf.capacity / blksize;
6971
6972 if (SPECIFIED(ai->hiwat)) {
6973 blks = ai->hiwat;
6974 if (blks > maxblks)
6975 blks = maxblks;
6976 if (blks < 2)
6977 blks = 2;
6978 track->usrbuf_usedhigh = blks * blksize;
6979 }
6980 if (SPECIFIED(ai->lowat)) {
6981 blks = ai->lowat;
6982 if (blks > maxblks - 1)
6983 blks = maxblks - 1;
6984 track->usrbuf_usedlow = blks * blksize;
6985 }
6986 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6987 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
6988 track->usrbuf_usedlow = track->usrbuf_usedhigh -
6989 blksize;
6990 }
6991 }
6992 }
6993
6994 /*
6995 * Set hardware part of *newai.
6996 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
6997 * If oldai is specified, previous parameters are stored.
6998 * This function itself does not roll back if error occurred.
6999 * Must be called with sc_lock and sc_exlock held.
7000 */
7001 static int
7002 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7003 struct audio_info *oldai)
7004 {
7005 const struct audio_prinfo *newpi;
7006 const struct audio_prinfo *newri;
7007 struct audio_prinfo *oldpi;
7008 struct audio_prinfo *oldri;
7009 u_int pgain;
7010 u_int rgain;
7011 u_char pbalance;
7012 u_char rbalance;
7013 int error;
7014
7015 KASSERT(mutex_owned(sc->sc_lock));
7016 KASSERT(sc->sc_exlock);
7017
7018 /* XXX shut up gcc */
7019 oldpi = NULL;
7020 oldri = NULL;
7021
7022 newpi = &newai->play;
7023 newri = &newai->record;
7024 if (oldai) {
7025 oldpi = &oldai->play;
7026 oldri = &oldai->record;
7027 }
7028 error = 0;
7029
7030 /*
7031 * It looks like unnecessary to halt HW mixers to set HW mixers.
7032 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7033 */
7034
7035 if (SPECIFIED(newpi->port)) {
7036 if (oldai)
7037 oldpi->port = au_get_port(sc, &sc->sc_outports);
7038 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7039 if (error) {
7040 device_printf(sc->sc_dev,
7041 "setting play.port=%d failed with %d\n",
7042 newpi->port, error);
7043 goto abort;
7044 }
7045 }
7046 if (SPECIFIED(newri->port)) {
7047 if (oldai)
7048 oldri->port = au_get_port(sc, &sc->sc_inports);
7049 error = au_set_port(sc, &sc->sc_inports, newri->port);
7050 if (error) {
7051 device_printf(sc->sc_dev,
7052 "setting record.port=%d failed with %d\n",
7053 newri->port, error);
7054 goto abort;
7055 }
7056 }
7057
7058 /* Backup play.{gain,balance} */
7059 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7060 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7061 if (oldai) {
7062 oldpi->gain = pgain;
7063 oldpi->balance = pbalance;
7064 }
7065 }
7066 /* Backup record.{gain,balance} */
7067 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7068 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7069 if (oldai) {
7070 oldri->gain = rgain;
7071 oldri->balance = rbalance;
7072 }
7073 }
7074 if (SPECIFIED(newpi->gain)) {
7075 error = au_set_gain(sc, &sc->sc_outports,
7076 newpi->gain, pbalance);
7077 if (error) {
7078 device_printf(sc->sc_dev,
7079 "setting play.gain=%d failed with %d\n",
7080 newpi->gain, error);
7081 goto abort;
7082 }
7083 }
7084 if (SPECIFIED(newri->gain)) {
7085 error = au_set_gain(sc, &sc->sc_inports,
7086 newri->gain, rbalance);
7087 if (error) {
7088 device_printf(sc->sc_dev,
7089 "setting record.gain=%d failed with %d\n",
7090 newri->gain, error);
7091 goto abort;
7092 }
7093 }
7094 if (SPECIFIED_CH(newpi->balance)) {
7095 error = au_set_gain(sc, &sc->sc_outports,
7096 pgain, newpi->balance);
7097 if (error) {
7098 device_printf(sc->sc_dev,
7099 "setting play.balance=%d failed with %d\n",
7100 newpi->balance, error);
7101 goto abort;
7102 }
7103 }
7104 if (SPECIFIED_CH(newri->balance)) {
7105 error = au_set_gain(sc, &sc->sc_inports,
7106 rgain, newri->balance);
7107 if (error) {
7108 device_printf(sc->sc_dev,
7109 "setting record.balance=%d failed with %d\n",
7110 newri->balance, error);
7111 goto abort;
7112 }
7113 }
7114
7115 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7116 if (oldai)
7117 oldai->monitor_gain = au_get_monitor_gain(sc);
7118 error = au_set_monitor_gain(sc, newai->monitor_gain);
7119 if (error) {
7120 device_printf(sc->sc_dev,
7121 "setting monitor_gain=%d failed with %d\n",
7122 newai->monitor_gain, error);
7123 goto abort;
7124 }
7125 }
7126
7127 /* XXX TODO */
7128 /* sc->sc_ai = *ai; */
7129
7130 error = 0;
7131 abort:
7132 return error;
7133 }
7134
7135 /*
7136 * Setup the hardware with mixer format phwfmt, rhwfmt.
7137 * The arguments have following restrictions:
7138 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7139 * or both.
7140 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7141 * - On non-independent devices, phwfmt and rhwfmt must have the same
7142 * parameters.
7143 * - pfil and rfil must be zero-filled.
7144 * If successful,
7145 * - pfil, rfil will be filled with filter information specified by the
7146 * hardware driver.
7147 * and then returns 0. Otherwise returns errno.
7148 * Must be called with sc_lock held.
7149 */
7150 static int
7151 audio_hw_set_format(struct audio_softc *sc, int setmode,
7152 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7153 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7154 {
7155 audio_params_t pp, rp;
7156 int error;
7157
7158 KASSERT(mutex_owned(sc->sc_lock));
7159 KASSERT(phwfmt != NULL);
7160 KASSERT(rhwfmt != NULL);
7161
7162 pp = format2_to_params(phwfmt);
7163 rp = format2_to_params(rhwfmt);
7164
7165 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7166 &pp, &rp, pfil, rfil);
7167 if (error) {
7168 device_printf(sc->sc_dev,
7169 "set_format failed with %d\n", error);
7170 return error;
7171 }
7172
7173 if (sc->hw_if->commit_settings) {
7174 error = sc->hw_if->commit_settings(sc->hw_hdl);
7175 if (error) {
7176 device_printf(sc->sc_dev,
7177 "commit_settings failed with %d\n", error);
7178 return error;
7179 }
7180 }
7181
7182 return 0;
7183 }
7184
7185 /*
7186 * Fill audio_info structure. If need_mixerinfo is true, it will also
7187 * fill the hardware mixer information.
7188 * Must be called with sc_lock held.
7189 * Must be called with sc_exlock held, in addition, if need_mixerinfo is
7190 * true.
7191 */
7192 static int
7193 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7194 audio_file_t *file)
7195 {
7196 struct audio_prinfo *ri, *pi;
7197 audio_track_t *track;
7198 audio_track_t *ptrack;
7199 audio_track_t *rtrack;
7200 int gain;
7201
7202 KASSERT(mutex_owned(sc->sc_lock));
7203
7204 ri = &ai->record;
7205 pi = &ai->play;
7206 ptrack = file->ptrack;
7207 rtrack = file->rtrack;
7208
7209 memset(ai, 0, sizeof(*ai));
7210
7211 if (ptrack) {
7212 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7213 pi->channels = ptrack->usrbuf.fmt.channels;
7214 pi->precision = ptrack->usrbuf.fmt.precision;
7215 pi->encoding = ptrack->usrbuf.fmt.encoding;
7216 } else {
7217 /* Set default parameters if the track is not available. */
7218 if (ISDEVAUDIO(file->dev)) {
7219 pi->sample_rate = audio_default.sample_rate;
7220 pi->channels = audio_default.channels;
7221 pi->precision = audio_default.precision;
7222 pi->encoding = audio_default.encoding;
7223 } else {
7224 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7225 pi->channels = sc->sc_sound_pparams.channels;
7226 pi->precision = sc->sc_sound_pparams.precision;
7227 pi->encoding = sc->sc_sound_pparams.encoding;
7228 }
7229 }
7230 if (rtrack) {
7231 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7232 ri->channels = rtrack->usrbuf.fmt.channels;
7233 ri->precision = rtrack->usrbuf.fmt.precision;
7234 ri->encoding = rtrack->usrbuf.fmt.encoding;
7235 } else {
7236 /* Set default parameters if the track is not available. */
7237 if (ISDEVAUDIO(file->dev)) {
7238 ri->sample_rate = audio_default.sample_rate;
7239 ri->channels = audio_default.channels;
7240 ri->precision = audio_default.precision;
7241 ri->encoding = audio_default.encoding;
7242 } else {
7243 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7244 ri->channels = sc->sc_sound_rparams.channels;
7245 ri->precision = sc->sc_sound_rparams.precision;
7246 ri->encoding = sc->sc_sound_rparams.encoding;
7247 }
7248 }
7249
7250 if (ptrack) {
7251 pi->seek = ptrack->usrbuf.used;
7252 pi->samples = ptrack->usrbuf_stamp;
7253 pi->eof = ptrack->eofcounter;
7254 pi->pause = ptrack->is_pause;
7255 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7256 pi->waiting = 0; /* open never hangs */
7257 pi->open = 1;
7258 pi->active = sc->sc_pbusy;
7259 pi->buffer_size = ptrack->usrbuf.capacity;
7260 }
7261 if (rtrack) {
7262 ri->seek = rtrack->usrbuf.used;
7263 ri->samples = rtrack->usrbuf_stamp;
7264 ri->eof = 0;
7265 ri->pause = rtrack->is_pause;
7266 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7267 ri->waiting = 0; /* open never hangs */
7268 ri->open = 1;
7269 ri->active = sc->sc_rbusy;
7270 ri->buffer_size = rtrack->usrbuf.capacity;
7271 }
7272
7273 /*
7274 * XXX There may be different number of channels between playback
7275 * and recording, so that blocksize also may be different.
7276 * But struct audio_info has an united blocksize...
7277 * Here, I use play info precedencely if ptrack is available,
7278 * otherwise record info.
7279 *
7280 * XXX hiwat/lowat is a playback-only parameter. What should I
7281 * return for a record-only descriptor?
7282 */
7283 track = ptrack ? ptrack : rtrack;
7284 if (track) {
7285 ai->blocksize = track->usrbuf_blksize;
7286 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7287 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7288 }
7289 ai->mode = file->mode;
7290
7291 if (need_mixerinfo) {
7292 KASSERT(sc->sc_exlock);
7293
7294 pi->port = au_get_port(sc, &sc->sc_outports);
7295 ri->port = au_get_port(sc, &sc->sc_inports);
7296
7297 pi->avail_ports = sc->sc_outports.allports;
7298 ri->avail_ports = sc->sc_inports.allports;
7299
7300 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7301 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7302
7303 if (sc->sc_monitor_port != -1) {
7304 gain = au_get_monitor_gain(sc);
7305 if (gain != -1)
7306 ai->monitor_gain = gain;
7307 }
7308 }
7309
7310 return 0;
7311 }
7312
7313 /*
7314 * Return true if playback is configured.
7315 * This function can be used after audioattach.
7316 */
7317 static bool
7318 audio_can_playback(struct audio_softc *sc)
7319 {
7320
7321 return (sc->sc_pmixer != NULL);
7322 }
7323
7324 /*
7325 * Return true if recording is configured.
7326 * This function can be used after audioattach.
7327 */
7328 static bool
7329 audio_can_capture(struct audio_softc *sc)
7330 {
7331
7332 return (sc->sc_rmixer != NULL);
7333 }
7334
7335 /*
7336 * Get the afp->index'th item from the valid one of format[].
7337 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7338 *
7339 * This is common routines for query_format.
7340 * If your hardware driver has struct audio_format[], the simplest case
7341 * you can write your query_format interface as follows:
7342 *
7343 * struct audio_format foo_format[] = { ... };
7344 *
7345 * int
7346 * foo_query_format(void *hdl, audio_format_query_t *afp)
7347 * {
7348 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7349 * }
7350 */
7351 int
7352 audio_query_format(const struct audio_format *format, int nformats,
7353 audio_format_query_t *afp)
7354 {
7355 const struct audio_format *f;
7356 int idx;
7357 int i;
7358
7359 idx = 0;
7360 for (i = 0; i < nformats; i++) {
7361 f = &format[i];
7362 if (!AUFMT_IS_VALID(f))
7363 continue;
7364 if (afp->index == idx) {
7365 afp->fmt = *f;
7366 return 0;
7367 }
7368 idx++;
7369 }
7370 return EINVAL;
7371 }
7372
7373 /*
7374 * This function is provided for the hardware driver's set_format() to
7375 * find index matches with 'param' from array of audio_format_t 'formats'.
7376 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7377 * It returns the matched index and never fails. Because param passed to
7378 * set_format() is selected from query_format().
7379 * This function will be an alternative to auconv_set_converter() to
7380 * find index.
7381 */
7382 int
7383 audio_indexof_format(const struct audio_format *formats, int nformats,
7384 int mode, const audio_params_t *param)
7385 {
7386 const struct audio_format *f;
7387 int index;
7388 int j;
7389
7390 for (index = 0; index < nformats; index++) {
7391 f = &formats[index];
7392
7393 if (!AUFMT_IS_VALID(f))
7394 continue;
7395 if ((f->mode & mode) == 0)
7396 continue;
7397 if (f->encoding != param->encoding)
7398 continue;
7399 if (f->validbits != param->precision)
7400 continue;
7401 if (f->channels != param->channels)
7402 continue;
7403
7404 if (f->frequency_type == 0) {
7405 if (param->sample_rate < f->frequency[0] ||
7406 param->sample_rate > f->frequency[1])
7407 continue;
7408 } else {
7409 for (j = 0; j < f->frequency_type; j++) {
7410 if (param->sample_rate == f->frequency[j])
7411 break;
7412 }
7413 if (j == f->frequency_type)
7414 continue;
7415 }
7416
7417 /* Then, matched */
7418 return index;
7419 }
7420
7421 /* Not matched. This should not be happened. */
7422 panic("%s: cannot find matched format\n", __func__);
7423 }
7424
7425 /*
7426 * Get or set hardware blocksize in msec.
7427 * XXX It's for debug.
7428 */
7429 static int
7430 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7431 {
7432 struct sysctlnode node;
7433 struct audio_softc *sc;
7434 audio_format2_t phwfmt;
7435 audio_format2_t rhwfmt;
7436 audio_filter_reg_t pfil;
7437 audio_filter_reg_t rfil;
7438 int t;
7439 int old_blk_ms;
7440 int mode;
7441 int error;
7442
7443 node = *rnode;
7444 sc = node.sysctl_data;
7445
7446 mutex_enter(sc->sc_lock);
7447
7448 old_blk_ms = sc->sc_blk_ms;
7449 t = old_blk_ms;
7450 node.sysctl_data = &t;
7451 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7452 if (error || newp == NULL)
7453 goto abort;
7454
7455 if (t < 0) {
7456 error = EINVAL;
7457 goto abort;
7458 }
7459
7460 if (sc->sc_popens + sc->sc_ropens > 0) {
7461 error = EBUSY;
7462 goto abort;
7463 }
7464 sc->sc_blk_ms = t;
7465 mode = 0;
7466 if (sc->sc_pmixer) {
7467 mode |= AUMODE_PLAY;
7468 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7469 }
7470 if (sc->sc_rmixer) {
7471 mode |= AUMODE_RECORD;
7472 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7473 }
7474
7475 /* re-init hardware */
7476 memset(&pfil, 0, sizeof(pfil));
7477 memset(&rfil, 0, sizeof(rfil));
7478 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7479 if (error) {
7480 goto abort;
7481 }
7482
7483 /* re-init track mixer */
7484 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7485 if (error) {
7486 /* Rollback */
7487 sc->sc_blk_ms = old_blk_ms;
7488 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7489 goto abort;
7490 }
7491 error = 0;
7492 abort:
7493 mutex_exit(sc->sc_lock);
7494 return error;
7495 }
7496
7497 /*
7498 * Get or set multiuser mode.
7499 */
7500 static int
7501 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7502 {
7503 struct sysctlnode node;
7504 struct audio_softc *sc;
7505 bool t;
7506 int error;
7507
7508 node = *rnode;
7509 sc = node.sysctl_data;
7510
7511 mutex_enter(sc->sc_lock);
7512
7513 t = sc->sc_multiuser;
7514 node.sysctl_data = &t;
7515 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7516 if (error || newp == NULL)
7517 goto abort;
7518
7519 sc->sc_multiuser = t;
7520 error = 0;
7521 abort:
7522 mutex_exit(sc->sc_lock);
7523 return error;
7524 }
7525
7526 #if defined(AUDIO_DEBUG)
7527 /*
7528 * Get or set debug verbose level. (0..4)
7529 * XXX It's for debug.
7530 * XXX It is not separated per device.
7531 */
7532 static int
7533 audio_sysctl_debug(SYSCTLFN_ARGS)
7534 {
7535 struct sysctlnode node;
7536 int t;
7537 int error;
7538
7539 node = *rnode;
7540 t = audiodebug;
7541 node.sysctl_data = &t;
7542 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7543 if (error || newp == NULL)
7544 return error;
7545
7546 if (t < 0 || t > 4)
7547 return EINVAL;
7548 audiodebug = t;
7549 printf("audio: audiodebug = %d\n", audiodebug);
7550 return 0;
7551 }
7552 #endif /* AUDIO_DEBUG */
7553
7554 #ifdef AUDIO_PM_IDLE
7555 static void
7556 audio_idle(void *arg)
7557 {
7558 device_t dv = arg;
7559 struct audio_softc *sc = device_private(dv);
7560
7561 #ifdef PNP_DEBUG
7562 extern int pnp_debug_idle;
7563 if (pnp_debug_idle)
7564 printf("%s: idle handler called\n", device_xname(dv));
7565 #endif
7566
7567 sc->sc_idle = true;
7568
7569 /* XXX joerg Make pmf_device_suspend handle children? */
7570 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7571 return;
7572
7573 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7574 pmf_device_resume(dv, PMF_Q_SELF);
7575 }
7576
7577 static void
7578 audio_activity(device_t dv, devactive_t type)
7579 {
7580 struct audio_softc *sc = device_private(dv);
7581
7582 if (type != DVA_SYSTEM)
7583 return;
7584
7585 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7586
7587 sc->sc_idle = false;
7588 if (!device_is_active(dv)) {
7589 /* XXX joerg How to deal with a failing resume... */
7590 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7591 pmf_device_resume(dv, PMF_Q_SELF);
7592 }
7593 }
7594 #endif
7595
7596 static bool
7597 audio_suspend(device_t dv, const pmf_qual_t *qual)
7598 {
7599 struct audio_softc *sc = device_private(dv);
7600 int error;
7601
7602 error = audio_enter_exclusive(sc);
7603 if (error)
7604 return error;
7605 audio_mixer_capture(sc);
7606
7607 /* Halts mixers but don't clear busy flag for resume */
7608 if (sc->sc_pbusy) {
7609 audio_pmixer_halt(sc);
7610 sc->sc_pbusy = true;
7611 }
7612 if (sc->sc_rbusy) {
7613 audio_rmixer_halt(sc);
7614 sc->sc_rbusy = true;
7615 }
7616
7617 #ifdef AUDIO_PM_IDLE
7618 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7619 #endif
7620 audio_exit_exclusive(sc);
7621
7622 return true;
7623 }
7624
7625 static bool
7626 audio_resume(device_t dv, const pmf_qual_t *qual)
7627 {
7628 struct audio_softc *sc = device_private(dv);
7629 struct audio_info ai;
7630 int error;
7631
7632 error = audio_enter_exclusive(sc);
7633 if (error)
7634 return error;
7635
7636 audio_mixer_restore(sc);
7637 /* XXX ? */
7638 AUDIO_INITINFO(&ai);
7639 audio_hw_setinfo(sc, &ai, NULL);
7640
7641 if (sc->sc_pbusy)
7642 audio_pmixer_start(sc, true);
7643 if (sc->sc_rbusy)
7644 audio_rmixer_start(sc);
7645
7646 audio_exit_exclusive(sc);
7647
7648 return true;
7649 }
7650
7651 #if defined(AUDIO_DEBUG)
7652 static void
7653 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7654 {
7655 int n;
7656
7657 n = 0;
7658 n += snprintf(buf + n, bufsize - n, "%s",
7659 audio_encoding_name(fmt->encoding));
7660 if (fmt->precision == fmt->stride) {
7661 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7662 } else {
7663 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7664 fmt->precision, fmt->stride);
7665 }
7666
7667 snprintf(buf + n, bufsize - n, " %uch %uHz",
7668 fmt->channels, fmt->sample_rate);
7669 }
7670 #endif
7671
7672 #if defined(AUDIO_DEBUG)
7673 static void
7674 audio_print_format2(const char *s, const audio_format2_t *fmt)
7675 {
7676 char fmtstr[64];
7677
7678 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7679 printf("%s %s\n", s, fmtstr);
7680 }
7681 #endif
7682
7683 #ifdef DIAGNOSTIC
7684 void
7685 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7686 {
7687
7688 KASSERTMSG(fmt, "called from %s", where);
7689
7690 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7691 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7692 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7693 "called from %s: fmt->stride=%d", where, fmt->stride);
7694 } else {
7695 KASSERTMSG(fmt->stride % NBBY == 0,
7696 "called from %s: fmt->stride=%d", where, fmt->stride);
7697 }
7698 KASSERTMSG(fmt->precision <= fmt->stride,
7699 "called from %s: fmt->precision=%d fmt->stride=%d",
7700 where, fmt->precision, fmt->stride);
7701 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7702 "called from %s: fmt->channels=%d", where, fmt->channels);
7703
7704 /* XXX No check for encodings? */
7705 }
7706
7707 void
7708 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7709 {
7710
7711 KASSERT(arg != NULL);
7712 KASSERT(arg->src != NULL);
7713 KASSERT(arg->dst != NULL);
7714 audio_diagnostic_format2(where, arg->srcfmt);
7715 audio_diagnostic_format2(where, arg->dstfmt);
7716 KASSERT(arg->count > 0);
7717 }
7718
7719 void
7720 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7721 {
7722
7723 KASSERTMSG(ring, "called from %s", where);
7724 audio_diagnostic_format2(where, &ring->fmt);
7725 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7726 "called from %s: ring->capacity=%d", where, ring->capacity);
7727 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7728 "called from %s: ring->used=%d ring->capacity=%d",
7729 where, ring->used, ring->capacity);
7730 if (ring->capacity == 0) {
7731 KASSERTMSG(ring->mem == NULL,
7732 "called from %s: capacity == 0 but mem != NULL", where);
7733 } else {
7734 KASSERTMSG(ring->mem != NULL,
7735 "called from %s: capacity != 0 but mem == NULL", where);
7736 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7737 "called from %s: ring->head=%d ring->capacity=%d",
7738 where, ring->head, ring->capacity);
7739 }
7740 }
7741 #endif /* DIAGNOSTIC */
7742
7743
7744 /*
7745 * Mixer driver
7746 */
7747 int
7748 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7749 struct lwp *l)
7750 {
7751 struct file *fp;
7752 audio_file_t *af;
7753 int error, fd;
7754
7755 KASSERT(mutex_owned(sc->sc_lock));
7756
7757 TRACE(1, "flags=0x%x", flags);
7758
7759 error = fd_allocfile(&fp, &fd);
7760 if (error)
7761 return error;
7762
7763 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7764 af->sc = sc;
7765 af->dev = dev;
7766
7767 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7768 KASSERT(error == EMOVEFD);
7769
7770 return error;
7771 }
7772
7773 /*
7774 * Add a process to those to be signalled on mixer activity.
7775 * If the process has already been added, do nothing.
7776 * Must be called with sc_lock held.
7777 */
7778 static void
7779 mixer_async_add(struct audio_softc *sc, pid_t pid)
7780 {
7781 int i;
7782
7783 KASSERT(mutex_owned(sc->sc_lock));
7784
7785 /* If already exists, returns without doing anything. */
7786 for (i = 0; i < sc->sc_am_used; i++) {
7787 if (sc->sc_am[i] == pid)
7788 return;
7789 }
7790
7791 /* Extend array if necessary. */
7792 if (sc->sc_am_used >= sc->sc_am_capacity) {
7793 sc->sc_am_capacity += AM_CAPACITY;
7794 sc->sc_am = kern_realloc(sc->sc_am,
7795 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
7796 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
7797 }
7798
7799 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
7800 sc->sc_am[sc->sc_am_used++] = pid;
7801 }
7802
7803 /*
7804 * Remove a process from those to be signalled on mixer activity.
7805 * If the process has not been added, do nothing.
7806 * Must be called with sc_lock held.
7807 */
7808 static void
7809 mixer_async_remove(struct audio_softc *sc, pid_t pid)
7810 {
7811 int i;
7812
7813 KASSERT(mutex_owned(sc->sc_lock));
7814
7815 for (i = 0; i < sc->sc_am_used; i++) {
7816 if (sc->sc_am[i] == pid) {
7817 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
7818 TRACE(2, "am[%d](%d) removed, used=%d",
7819 i, (int)pid, sc->sc_am_used);
7820
7821 /* Empty array if no longer necessary. */
7822 if (sc->sc_am_used == 0) {
7823 kern_free(sc->sc_am);
7824 sc->sc_am = NULL;
7825 sc->sc_am_capacity = 0;
7826 TRACE(2, "released");
7827 }
7828 return;
7829 }
7830 }
7831 }
7832
7833 /*
7834 * Signal all processes waiting for the mixer.
7835 * Must be called with sc_lock held.
7836 */
7837 static void
7838 mixer_signal(struct audio_softc *sc)
7839 {
7840 proc_t *p;
7841 int i;
7842
7843 KASSERT(mutex_owned(sc->sc_lock));
7844
7845 for (i = 0; i < sc->sc_am_used; i++) {
7846 mutex_enter(proc_lock);
7847 p = proc_find(sc->sc_am[i]);
7848 if (p)
7849 psignal(p, SIGIO);
7850 mutex_exit(proc_lock);
7851 }
7852 }
7853
7854 /*
7855 * Close a mixer device
7856 */
7857 int
7858 mixer_close(struct audio_softc *sc, audio_file_t *file)
7859 {
7860
7861 mutex_enter(sc->sc_lock);
7862 TRACE(1, "");
7863 mixer_async_remove(sc, curproc->p_pid);
7864 mutex_exit(sc->sc_lock);
7865
7866 return 0;
7867 }
7868
7869 /*
7870 * Must be called without sc_lock nor sc_exlock held.
7871 */
7872 int
7873 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
7874 struct lwp *l)
7875 {
7876 mixer_devinfo_t *mi;
7877 mixer_ctrl_t *mc;
7878 int error;
7879
7880 TRACE(2, "(%lu,'%c',%lu)",
7881 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
7882 error = EINVAL;
7883
7884 /* we can return cached values if we are sleeping */
7885 if (cmd != AUDIO_MIXER_READ) {
7886 mutex_enter(sc->sc_lock);
7887 device_active(sc->sc_dev, DVA_SYSTEM);
7888 mutex_exit(sc->sc_lock);
7889 }
7890
7891 switch (cmd) {
7892 case FIOASYNC:
7893 mutex_enter(sc->sc_lock);
7894 if (*(int *)addr) {
7895 mixer_async_add(sc, curproc->p_pid);
7896 } else {
7897 mixer_async_remove(sc, curproc->p_pid);
7898 }
7899 mutex_exit(sc->sc_lock);
7900 error = 0;
7901 break;
7902
7903 case AUDIO_GETDEV:
7904 TRACE(2, "AUDIO_GETDEV");
7905 error = audio_enter_exclusive(sc);
7906 if (error)
7907 break;
7908 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
7909 audio_exit_exclusive(sc);
7910 break;
7911
7912 case AUDIO_MIXER_DEVINFO:
7913 TRACE(2, "AUDIO_MIXER_DEVINFO");
7914 mi = (mixer_devinfo_t *)addr;
7915
7916 mi->un.v.delta = 0; /* default */
7917 mutex_enter(sc->sc_lock);
7918 error = audio_query_devinfo(sc, mi);
7919 mutex_exit(sc->sc_lock);
7920 break;
7921
7922 case AUDIO_MIXER_READ:
7923 TRACE(2, "AUDIO_MIXER_READ");
7924 mc = (mixer_ctrl_t *)addr;
7925
7926 error = audio_enter_exclusive(sc);
7927 if (error)
7928 break;
7929 if (device_is_active(sc->hw_dev))
7930 error = audio_get_port(sc, mc);
7931 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
7932 error = ENXIO;
7933 else {
7934 int dev = mc->dev;
7935 memcpy(mc, &sc->sc_mixer_state[dev],
7936 sizeof(mixer_ctrl_t));
7937 error = 0;
7938 }
7939 audio_exit_exclusive(sc);
7940 break;
7941
7942 case AUDIO_MIXER_WRITE:
7943 TRACE(2, "AUDIO_MIXER_WRITE");
7944 error = audio_enter_exclusive(sc);
7945 if (error)
7946 break;
7947 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
7948 if (error) {
7949 audio_exit_exclusive(sc);
7950 break;
7951 }
7952
7953 if (sc->hw_if->commit_settings) {
7954 error = sc->hw_if->commit_settings(sc->hw_hdl);
7955 if (error) {
7956 audio_exit_exclusive(sc);
7957 break;
7958 }
7959 }
7960 mixer_signal(sc);
7961 audio_exit_exclusive(sc);
7962 break;
7963
7964 default:
7965 if (sc->hw_if->dev_ioctl) {
7966 error = audio_enter_exclusive(sc);
7967 if (error)
7968 break;
7969 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
7970 cmd, addr, flag, l);
7971 audio_exit_exclusive(sc);
7972 } else
7973 error = EINVAL;
7974 break;
7975 }
7976 TRACE(2, "(%lu,'%c',%lu) result %d",
7977 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
7978 return error;
7979 }
7980
7981 /*
7982 * Must be called with sc_lock held.
7983 */
7984 int
7985 au_portof(struct audio_softc *sc, char *name, int class)
7986 {
7987 mixer_devinfo_t mi;
7988
7989 KASSERT(mutex_owned(sc->sc_lock));
7990
7991 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
7992 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
7993 return mi.index;
7994 }
7995 return -1;
7996 }
7997
7998 /*
7999 * Must be called with sc_lock held.
8000 */
8001 void
8002 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8003 mixer_devinfo_t *mi, const struct portname *tbl)
8004 {
8005 int i, j;
8006
8007 KASSERT(mutex_owned(sc->sc_lock));
8008
8009 ports->index = mi->index;
8010 if (mi->type == AUDIO_MIXER_ENUM) {
8011 ports->isenum = true;
8012 for(i = 0; tbl[i].name; i++)
8013 for(j = 0; j < mi->un.e.num_mem; j++)
8014 if (strcmp(mi->un.e.member[j].label.name,
8015 tbl[i].name) == 0) {
8016 ports->allports |= tbl[i].mask;
8017 ports->aumask[ports->nports] = tbl[i].mask;
8018 ports->misel[ports->nports] =
8019 mi->un.e.member[j].ord;
8020 ports->miport[ports->nports] =
8021 au_portof(sc, mi->un.e.member[j].label.name,
8022 mi->mixer_class);
8023 if (ports->mixerout != -1 &&
8024 ports->miport[ports->nports] != -1)
8025 ports->isdual = true;
8026 ++ports->nports;
8027 }
8028 } else if (mi->type == AUDIO_MIXER_SET) {
8029 for(i = 0; tbl[i].name; i++)
8030 for(j = 0; j < mi->un.s.num_mem; j++)
8031 if (strcmp(mi->un.s.member[j].label.name,
8032 tbl[i].name) == 0) {
8033 ports->allports |= tbl[i].mask;
8034 ports->aumask[ports->nports] = tbl[i].mask;
8035 ports->misel[ports->nports] =
8036 mi->un.s.member[j].mask;
8037 ports->miport[ports->nports] =
8038 au_portof(sc, mi->un.s.member[j].label.name,
8039 mi->mixer_class);
8040 ++ports->nports;
8041 }
8042 }
8043 }
8044
8045 /*
8046 * Must be called with sc_lock && sc_exlock held.
8047 */
8048 int
8049 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8050 {
8051
8052 KASSERT(mutex_owned(sc->sc_lock));
8053 KASSERT(sc->sc_exlock);
8054
8055 ct->type = AUDIO_MIXER_VALUE;
8056 ct->un.value.num_channels = 2;
8057 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8058 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8059 if (audio_set_port(sc, ct) == 0)
8060 return 0;
8061 ct->un.value.num_channels = 1;
8062 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8063 return audio_set_port(sc, ct);
8064 }
8065
8066 /*
8067 * Must be called with sc_lock && sc_exlock held.
8068 */
8069 int
8070 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8071 {
8072 int error;
8073
8074 KASSERT(mutex_owned(sc->sc_lock));
8075 KASSERT(sc->sc_exlock);
8076
8077 ct->un.value.num_channels = 2;
8078 if (audio_get_port(sc, ct) == 0) {
8079 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8080 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8081 } else {
8082 ct->un.value.num_channels = 1;
8083 error = audio_get_port(sc, ct);
8084 if (error)
8085 return error;
8086 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8087 }
8088 return 0;
8089 }
8090
8091 /*
8092 * Must be called with sc_lock && sc_exlock held.
8093 */
8094 int
8095 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8096 int gain, int balance)
8097 {
8098 mixer_ctrl_t ct;
8099 int i, error;
8100 int l, r;
8101 u_int mask;
8102 int nset;
8103
8104 KASSERT(mutex_owned(sc->sc_lock));
8105 KASSERT(sc->sc_exlock);
8106
8107 if (balance == AUDIO_MID_BALANCE) {
8108 l = r = gain;
8109 } else if (balance < AUDIO_MID_BALANCE) {
8110 l = gain;
8111 r = (balance * gain) / AUDIO_MID_BALANCE;
8112 } else {
8113 r = gain;
8114 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8115 / AUDIO_MID_BALANCE;
8116 }
8117 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8118
8119 if (ports->index == -1) {
8120 usemaster:
8121 if (ports->master == -1)
8122 return 0; /* just ignore it silently */
8123 ct.dev = ports->master;
8124 error = au_set_lr_value(sc, &ct, l, r);
8125 } else {
8126 ct.dev = ports->index;
8127 if (ports->isenum) {
8128 ct.type = AUDIO_MIXER_ENUM;
8129 error = audio_get_port(sc, &ct);
8130 if (error)
8131 return error;
8132 if (ports->isdual) {
8133 if (ports->cur_port == -1)
8134 ct.dev = ports->master;
8135 else
8136 ct.dev = ports->miport[ports->cur_port];
8137 error = au_set_lr_value(sc, &ct, l, r);
8138 } else {
8139 for(i = 0; i < ports->nports; i++)
8140 if (ports->misel[i] == ct.un.ord) {
8141 ct.dev = ports->miport[i];
8142 if (ct.dev == -1 ||
8143 au_set_lr_value(sc, &ct, l, r))
8144 goto usemaster;
8145 else
8146 break;
8147 }
8148 }
8149 } else {
8150 ct.type = AUDIO_MIXER_SET;
8151 error = audio_get_port(sc, &ct);
8152 if (error)
8153 return error;
8154 mask = ct.un.mask;
8155 nset = 0;
8156 for(i = 0; i < ports->nports; i++) {
8157 if (ports->misel[i] & mask) {
8158 ct.dev = ports->miport[i];
8159 if (ct.dev != -1 &&
8160 au_set_lr_value(sc, &ct, l, r) == 0)
8161 nset++;
8162 }
8163 }
8164 if (nset == 0)
8165 goto usemaster;
8166 }
8167 }
8168 if (!error)
8169 mixer_signal(sc);
8170 return error;
8171 }
8172
8173 /*
8174 * Must be called with sc_lock && sc_exlock held.
8175 */
8176 void
8177 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8178 u_int *pgain, u_char *pbalance)
8179 {
8180 mixer_ctrl_t ct;
8181 int i, l, r, n;
8182 int lgain, rgain;
8183
8184 KASSERT(mutex_owned(sc->sc_lock));
8185 KASSERT(sc->sc_exlock);
8186
8187 lgain = AUDIO_MAX_GAIN / 2;
8188 rgain = AUDIO_MAX_GAIN / 2;
8189 if (ports->index == -1) {
8190 usemaster:
8191 if (ports->master == -1)
8192 goto bad;
8193 ct.dev = ports->master;
8194 ct.type = AUDIO_MIXER_VALUE;
8195 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8196 goto bad;
8197 } else {
8198 ct.dev = ports->index;
8199 if (ports->isenum) {
8200 ct.type = AUDIO_MIXER_ENUM;
8201 if (audio_get_port(sc, &ct))
8202 goto bad;
8203 ct.type = AUDIO_MIXER_VALUE;
8204 if (ports->isdual) {
8205 if (ports->cur_port == -1)
8206 ct.dev = ports->master;
8207 else
8208 ct.dev = ports->miport[ports->cur_port];
8209 au_get_lr_value(sc, &ct, &lgain, &rgain);
8210 } else {
8211 for(i = 0; i < ports->nports; i++)
8212 if (ports->misel[i] == ct.un.ord) {
8213 ct.dev = ports->miport[i];
8214 if (ct.dev == -1 ||
8215 au_get_lr_value(sc, &ct,
8216 &lgain, &rgain))
8217 goto usemaster;
8218 else
8219 break;
8220 }
8221 }
8222 } else {
8223 ct.type = AUDIO_MIXER_SET;
8224 if (audio_get_port(sc, &ct))
8225 goto bad;
8226 ct.type = AUDIO_MIXER_VALUE;
8227 lgain = rgain = n = 0;
8228 for(i = 0; i < ports->nports; i++) {
8229 if (ports->misel[i] & ct.un.mask) {
8230 ct.dev = ports->miport[i];
8231 if (ct.dev == -1 ||
8232 au_get_lr_value(sc, &ct, &l, &r))
8233 goto usemaster;
8234 else {
8235 lgain += l;
8236 rgain += r;
8237 n++;
8238 }
8239 }
8240 }
8241 if (n != 0) {
8242 lgain /= n;
8243 rgain /= n;
8244 }
8245 }
8246 }
8247 bad:
8248 if (lgain == rgain) { /* handles lgain==rgain==0 */
8249 *pgain = lgain;
8250 *pbalance = AUDIO_MID_BALANCE;
8251 } else if (lgain < rgain) {
8252 *pgain = rgain;
8253 /* balance should be > AUDIO_MID_BALANCE */
8254 *pbalance = AUDIO_RIGHT_BALANCE -
8255 (AUDIO_MID_BALANCE * lgain) / rgain;
8256 } else /* lgain > rgain */ {
8257 *pgain = lgain;
8258 /* balance should be < AUDIO_MID_BALANCE */
8259 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8260 }
8261 }
8262
8263 /*
8264 * Must be called with sc_lock && sc_exlock held.
8265 */
8266 int
8267 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8268 {
8269 mixer_ctrl_t ct;
8270 int i, error, use_mixerout;
8271
8272 KASSERT(mutex_owned(sc->sc_lock));
8273 KASSERT(sc->sc_exlock);
8274
8275 use_mixerout = 1;
8276 if (port == 0) {
8277 if (ports->allports == 0)
8278 return 0; /* Allow this special case. */
8279 else if (ports->isdual) {
8280 if (ports->cur_port == -1) {
8281 return 0;
8282 } else {
8283 port = ports->aumask[ports->cur_port];
8284 ports->cur_port = -1;
8285 use_mixerout = 0;
8286 }
8287 }
8288 }
8289 if (ports->index == -1)
8290 return EINVAL;
8291 ct.dev = ports->index;
8292 if (ports->isenum) {
8293 if (port & (port-1))
8294 return EINVAL; /* Only one port allowed */
8295 ct.type = AUDIO_MIXER_ENUM;
8296 error = EINVAL;
8297 for(i = 0; i < ports->nports; i++)
8298 if (ports->aumask[i] == port) {
8299 if (ports->isdual && use_mixerout) {
8300 ct.un.ord = ports->mixerout;
8301 ports->cur_port = i;
8302 } else {
8303 ct.un.ord = ports->misel[i];
8304 }
8305 error = audio_set_port(sc, &ct);
8306 break;
8307 }
8308 } else {
8309 ct.type = AUDIO_MIXER_SET;
8310 ct.un.mask = 0;
8311 for(i = 0; i < ports->nports; i++)
8312 if (ports->aumask[i] & port)
8313 ct.un.mask |= ports->misel[i];
8314 if (port != 0 && ct.un.mask == 0)
8315 error = EINVAL;
8316 else
8317 error = audio_set_port(sc, &ct);
8318 }
8319 if (!error)
8320 mixer_signal(sc);
8321 return error;
8322 }
8323
8324 /*
8325 * Must be called with sc_lock && sc_exlock held.
8326 */
8327 int
8328 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8329 {
8330 mixer_ctrl_t ct;
8331 int i, aumask;
8332
8333 KASSERT(mutex_owned(sc->sc_lock));
8334 KASSERT(sc->sc_exlock);
8335
8336 if (ports->index == -1)
8337 return 0;
8338 ct.dev = ports->index;
8339 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8340 if (audio_get_port(sc, &ct))
8341 return 0;
8342 aumask = 0;
8343 if (ports->isenum) {
8344 if (ports->isdual && ports->cur_port != -1) {
8345 if (ports->mixerout == ct.un.ord)
8346 aumask = ports->aumask[ports->cur_port];
8347 else
8348 ports->cur_port = -1;
8349 }
8350 if (aumask == 0)
8351 for(i = 0; i < ports->nports; i++)
8352 if (ports->misel[i] == ct.un.ord)
8353 aumask = ports->aumask[i];
8354 } else {
8355 for(i = 0; i < ports->nports; i++)
8356 if (ct.un.mask & ports->misel[i])
8357 aumask |= ports->aumask[i];
8358 }
8359 return aumask;
8360 }
8361
8362 /*
8363 * It returns 0 if success, otherwise errno.
8364 * Must be called only if sc->sc_monitor_port != -1.
8365 * Must be called with sc_lock && sc_exlock held.
8366 */
8367 static int
8368 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8369 {
8370 mixer_ctrl_t ct;
8371
8372 KASSERT(mutex_owned(sc->sc_lock));
8373 KASSERT(sc->sc_exlock);
8374
8375 ct.dev = sc->sc_monitor_port;
8376 ct.type = AUDIO_MIXER_VALUE;
8377 ct.un.value.num_channels = 1;
8378 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8379 return audio_set_port(sc, &ct);
8380 }
8381
8382 /*
8383 * It returns monitor gain if success, otherwise -1.
8384 * Must be called only if sc->sc_monitor_port != -1.
8385 * Must be called with sc_lock && sc_exlock held.
8386 */
8387 static int
8388 au_get_monitor_gain(struct audio_softc *sc)
8389 {
8390 mixer_ctrl_t ct;
8391
8392 KASSERT(mutex_owned(sc->sc_lock));
8393 KASSERT(sc->sc_exlock);
8394
8395 ct.dev = sc->sc_monitor_port;
8396 ct.type = AUDIO_MIXER_VALUE;
8397 ct.un.value.num_channels = 1;
8398 if (audio_get_port(sc, &ct))
8399 return -1;
8400 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8401 }
8402
8403 /*
8404 * Must be called with sc_lock && sc_exlock held.
8405 */
8406 static int
8407 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8408 {
8409
8410 KASSERT(mutex_owned(sc->sc_lock));
8411 KASSERT(sc->sc_exlock);
8412
8413 return sc->hw_if->set_port(sc->hw_hdl, mc);
8414 }
8415
8416 /*
8417 * Must be called with sc_lock && sc_exlock held.
8418 */
8419 static int
8420 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8421 {
8422
8423 KASSERT(mutex_owned(sc->sc_lock));
8424 KASSERT(sc->sc_exlock);
8425
8426 return sc->hw_if->get_port(sc->hw_hdl, mc);
8427 }
8428
8429 /*
8430 * Must be called with sc_lock && sc_exlock held.
8431 */
8432 static void
8433 audio_mixer_capture(struct audio_softc *sc)
8434 {
8435 mixer_devinfo_t mi;
8436 mixer_ctrl_t *mc;
8437
8438 KASSERT(mutex_owned(sc->sc_lock));
8439 KASSERT(sc->sc_exlock);
8440
8441 for (mi.index = 0;; mi.index++) {
8442 if (audio_query_devinfo(sc, &mi) != 0)
8443 break;
8444 KASSERT(mi.index < sc->sc_nmixer_states);
8445 if (mi.type == AUDIO_MIXER_CLASS)
8446 continue;
8447 mc = &sc->sc_mixer_state[mi.index];
8448 mc->dev = mi.index;
8449 mc->type = mi.type;
8450 mc->un.value.num_channels = mi.un.v.num_channels;
8451 (void)audio_get_port(sc, mc);
8452 }
8453
8454 return;
8455 }
8456
8457 /*
8458 * Must be called with sc_lock && sc_exlock held.
8459 */
8460 static void
8461 audio_mixer_restore(struct audio_softc *sc)
8462 {
8463 mixer_devinfo_t mi;
8464 mixer_ctrl_t *mc;
8465
8466 KASSERT(mutex_owned(sc->sc_lock));
8467 KASSERT(sc->sc_exlock);
8468
8469 for (mi.index = 0; ; mi.index++) {
8470 if (audio_query_devinfo(sc, &mi) != 0)
8471 break;
8472 if (mi.type == AUDIO_MIXER_CLASS)
8473 continue;
8474 mc = &sc->sc_mixer_state[mi.index];
8475 (void)audio_set_port(sc, mc);
8476 }
8477 if (sc->hw_if->commit_settings)
8478 sc->hw_if->commit_settings(sc->hw_hdl);
8479
8480 return;
8481 }
8482
8483 static void
8484 audio_volume_down(device_t dv)
8485 {
8486 struct audio_softc *sc = device_private(dv);
8487 mixer_devinfo_t mi;
8488 int newgain;
8489 u_int gain;
8490 u_char balance;
8491
8492 if (audio_enter_exclusive(sc) != 0)
8493 return;
8494 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8495 mi.index = sc->sc_outports.master;
8496 mi.un.v.delta = 0;
8497 if (audio_query_devinfo(sc, &mi) == 0) {
8498 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8499 newgain = gain - mi.un.v.delta;
8500 if (newgain < AUDIO_MIN_GAIN)
8501 newgain = AUDIO_MIN_GAIN;
8502 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8503 }
8504 }
8505 audio_exit_exclusive(sc);
8506 }
8507
8508 static void
8509 audio_volume_up(device_t dv)
8510 {
8511 struct audio_softc *sc = device_private(dv);
8512 mixer_devinfo_t mi;
8513 u_int gain, newgain;
8514 u_char balance;
8515
8516 if (audio_enter_exclusive(sc) != 0)
8517 return;
8518 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8519 mi.index = sc->sc_outports.master;
8520 mi.un.v.delta = 0;
8521 if (audio_query_devinfo(sc, &mi) == 0) {
8522 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8523 newgain = gain + mi.un.v.delta;
8524 if (newgain > AUDIO_MAX_GAIN)
8525 newgain = AUDIO_MAX_GAIN;
8526 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8527 }
8528 }
8529 audio_exit_exclusive(sc);
8530 }
8531
8532 static void
8533 audio_volume_toggle(device_t dv)
8534 {
8535 struct audio_softc *sc = device_private(dv);
8536 u_int gain, newgain;
8537 u_char balance;
8538
8539 if (audio_enter_exclusive(sc) != 0)
8540 return;
8541 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8542 if (gain != 0) {
8543 sc->sc_lastgain = gain;
8544 newgain = 0;
8545 } else
8546 newgain = sc->sc_lastgain;
8547 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8548 audio_exit_exclusive(sc);
8549 }
8550
8551 static int
8552 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8553 {
8554
8555 KASSERT(mutex_owned(sc->sc_lock));
8556
8557 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8558 }
8559
8560 #endif /* NAUDIO > 0 */
8561
8562 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8563 #include <sys/param.h>
8564 #include <sys/systm.h>
8565 #include <sys/device.h>
8566 #include <sys/audioio.h>
8567 #include <dev/audio/audio_if.h>
8568 #endif
8569
8570 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8571 int
8572 audioprint(void *aux, const char *pnp)
8573 {
8574 struct audio_attach_args *arg;
8575 const char *type;
8576
8577 if (pnp != NULL) {
8578 arg = aux;
8579 switch (arg->type) {
8580 case AUDIODEV_TYPE_AUDIO:
8581 type = "audio";
8582 break;
8583 case AUDIODEV_TYPE_MIDI:
8584 type = "midi";
8585 break;
8586 case AUDIODEV_TYPE_OPL:
8587 type = "opl";
8588 break;
8589 case AUDIODEV_TYPE_MPU:
8590 type = "mpu";
8591 break;
8592 default:
8593 panic("audioprint: unknown type %d", arg->type);
8594 }
8595 aprint_normal("%s at %s", type, pnp);
8596 }
8597 return UNCONF;
8598 }
8599
8600 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8601
8602 #ifdef _MODULE
8603
8604 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8605
8606 #include "ioconf.c"
8607
8608 #endif
8609
8610 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8611
8612 static int
8613 audio_modcmd(modcmd_t cmd, void *arg)
8614 {
8615 int error = 0;
8616
8617 switch (cmd) {
8618 case MODULE_CMD_INIT:
8619 /* XXX interrupt level? */
8620 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8621 #ifdef _MODULE
8622 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8623 &audio_cdevsw, &audio_cmajor);
8624 if (error)
8625 break;
8626
8627 error = config_init_component(cfdriver_ioconf_audio,
8628 cfattach_ioconf_audio, cfdata_ioconf_audio);
8629 if (error) {
8630 devsw_detach(NULL, &audio_cdevsw);
8631 }
8632 #endif
8633 break;
8634 case MODULE_CMD_FINI:
8635 #ifdef _MODULE
8636 devsw_detach(NULL, &audio_cdevsw);
8637 error = config_fini_component(cfdriver_ioconf_audio,
8638 cfattach_ioconf_audio, cfdata_ioconf_audio);
8639 if (error)
8640 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8641 &audio_cdevsw, &audio_cmajor);
8642 #endif
8643 psref_class_destroy(audio_psref_class);
8644 break;
8645 default:
8646 error = ENOTTY;
8647 break;
8648 }
8649
8650 return error;
8651 }
8652