audio.c revision 1.65 1 /* $NetBSD: audio.c,v 1.65 2020/03/26 13:32:03 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - - Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.65 2020/03/26 13:32:03 isaki Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #include <sys/types.h>
151 #include <sys/param.h>
152 #include <sys/atomic.h>
153 #include <sys/audioio.h>
154 #include <sys/conf.h>
155 #include <sys/cpu.h>
156 #include <sys/device.h>
157 #include <sys/fcntl.h>
158 #include <sys/file.h>
159 #include <sys/filedesc.h>
160 #include <sys/intr.h>
161 #include <sys/ioctl.h>
162 #include <sys/kauth.h>
163 #include <sys/kernel.h>
164 #include <sys/kmem.h>
165 #include <sys/malloc.h>
166 #include <sys/mman.h>
167 #include <sys/module.h>
168 #include <sys/poll.h>
169 #include <sys/proc.h>
170 #include <sys/queue.h>
171 #include <sys/select.h>
172 #include <sys/signalvar.h>
173 #include <sys/stat.h>
174 #include <sys/sysctl.h>
175 #include <sys/systm.h>
176 #include <sys/syslog.h>
177 #include <sys/vnode.h>
178
179 #include <dev/audio/audio_if.h>
180 #include <dev/audio/audiovar.h>
181 #include <dev/audio/audiodef.h>
182 #include <dev/audio/linear.h>
183 #include <dev/audio/mulaw.h>
184
185 #include <machine/endian.h>
186
187 #include <uvm/uvm_extern.h>
188
189 #include "ioconf.h"
190
191 /*
192 * 0: No debug logs
193 * 1: action changes like open/close/set_format...
194 * 2: + normal operations like read/write/ioctl...
195 * 3: + TRACEs except interrupt
196 * 4: + TRACEs including interrupt
197 */
198 //#define AUDIO_DEBUG 1
199
200 #if defined(AUDIO_DEBUG)
201
202 int audiodebug = AUDIO_DEBUG;
203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
204 const char *, va_list);
205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
206 __printflike(3, 4);
207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
208 __printflike(3, 4);
209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
210 __printflike(3, 4);
211
212 /* XXX sloppy memory logger */
213 static void audio_mlog_init(void);
214 static void audio_mlog_free(void);
215 static void audio_mlog_softintr(void *);
216 extern void audio_mlog_flush(void);
217 extern void audio_mlog_printf(const char *, ...);
218
219 static int mlog_refs; /* reference counter */
220 static char *mlog_buf[2]; /* double buffer */
221 static int mlog_buflen; /* buffer length */
222 static int mlog_used; /* used length */
223 static int mlog_full; /* number of dropped lines by buffer full */
224 static int mlog_drop; /* number of dropped lines by busy */
225 static volatile uint32_t mlog_inuse; /* in-use */
226 static int mlog_wpage; /* active page */
227 static void *mlog_sih; /* softint handle */
228
229 static void
230 audio_mlog_init(void)
231 {
232 mlog_refs++;
233 if (mlog_refs > 1)
234 return;
235 mlog_buflen = 4096;
236 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
237 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
238 mlog_used = 0;
239 mlog_full = 0;
240 mlog_drop = 0;
241 mlog_inuse = 0;
242 mlog_wpage = 0;
243 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
244 if (mlog_sih == NULL)
245 printf("%s: softint_establish failed\n", __func__);
246 }
247
248 static void
249 audio_mlog_free(void)
250 {
251 mlog_refs--;
252 if (mlog_refs > 0)
253 return;
254
255 audio_mlog_flush();
256 if (mlog_sih)
257 softint_disestablish(mlog_sih);
258 kmem_free(mlog_buf[0], mlog_buflen);
259 kmem_free(mlog_buf[1], mlog_buflen);
260 }
261
262 /*
263 * Flush memory buffer.
264 * It must not be called from hardware interrupt context.
265 */
266 void
267 audio_mlog_flush(void)
268 {
269 if (mlog_refs == 0)
270 return;
271
272 /* Nothing to do if already in use ? */
273 if (atomic_swap_32(&mlog_inuse, 1) == 1)
274 return;
275
276 int rpage = mlog_wpage;
277 mlog_wpage ^= 1;
278 mlog_buf[mlog_wpage][0] = '\0';
279 mlog_used = 0;
280
281 atomic_swap_32(&mlog_inuse, 0);
282
283 if (mlog_buf[rpage][0] != '\0') {
284 printf("%s", mlog_buf[rpage]);
285 if (mlog_drop > 0)
286 printf("mlog_drop %d\n", mlog_drop);
287 if (mlog_full > 0)
288 printf("mlog_full %d\n", mlog_full);
289 }
290 mlog_full = 0;
291 mlog_drop = 0;
292 }
293
294 static void
295 audio_mlog_softintr(void *cookie)
296 {
297 audio_mlog_flush();
298 }
299
300 void
301 audio_mlog_printf(const char *fmt, ...)
302 {
303 int len;
304 va_list ap;
305
306 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
307 /* already inuse */
308 mlog_drop++;
309 return;
310 }
311
312 va_start(ap, fmt);
313 len = vsnprintf(
314 mlog_buf[mlog_wpage] + mlog_used,
315 mlog_buflen - mlog_used,
316 fmt, ap);
317 va_end(ap);
318
319 mlog_used += len;
320 if (mlog_buflen - mlog_used <= 1) {
321 mlog_full++;
322 }
323
324 atomic_swap_32(&mlog_inuse, 0);
325
326 if (mlog_sih)
327 softint_schedule(mlog_sih);
328 }
329
330 /* trace functions */
331 static void
332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
333 const char *fmt, va_list ap)
334 {
335 char buf[256];
336 int n;
337
338 n = 0;
339 buf[0] = '\0';
340 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
341 funcname, device_unit(sc->sc_dev), header);
342 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
343
344 if (cpu_intr_p()) {
345 audio_mlog_printf("%s\n", buf);
346 } else {
347 audio_mlog_flush();
348 printf("%s\n", buf);
349 }
350 }
351
352 static void
353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
354 {
355 va_list ap;
356
357 va_start(ap, fmt);
358 audio_vtrace(sc, funcname, "", fmt, ap);
359 va_end(ap);
360 }
361
362 static void
363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
364 {
365 char hdr[16];
366 va_list ap;
367
368 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
369 va_start(ap, fmt);
370 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
371 va_end(ap);
372 }
373
374 static void
375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
376 {
377 char hdr[32];
378 char phdr[16], rhdr[16];
379 va_list ap;
380
381 phdr[0] = '\0';
382 rhdr[0] = '\0';
383 if (file->ptrack)
384 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
385 if (file->rtrack)
386 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
387 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
388
389 va_start(ap, fmt);
390 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
391 va_end(ap);
392 }
393
394 #define DPRINTF(n, fmt...) do { \
395 if (audiodebug >= (n)) { \
396 audio_mlog_flush(); \
397 printf(fmt); \
398 } \
399 } while (0)
400 #define TRACE(n, fmt...) do { \
401 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
402 } while (0)
403 #define TRACET(n, t, fmt...) do { \
404 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
405 } while (0)
406 #define TRACEF(n, f, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
408 } while (0)
409
410 struct audio_track_debugbuf {
411 char usrbuf[32];
412 char codec[32];
413 char chvol[32];
414 char chmix[32];
415 char freq[32];
416 char outbuf[32];
417 };
418
419 static void
420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
421 {
422
423 memset(buf, 0, sizeof(*buf));
424
425 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
426 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
427 if (track->freq.filter)
428 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
429 track->freq.srcbuf.head,
430 track->freq.srcbuf.used,
431 track->freq.srcbuf.capacity);
432 if (track->chmix.filter)
433 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
434 track->chmix.srcbuf.used);
435 if (track->chvol.filter)
436 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
437 track->chvol.srcbuf.used);
438 if (track->codec.filter)
439 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
440 track->codec.srcbuf.used);
441 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
442 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
443 }
444 #else
445 #define DPRINTF(n, fmt...) do { } while (0)
446 #define TRACE(n, fmt, ...) do { } while (0)
447 #define TRACET(n, t, fmt, ...) do { } while (0)
448 #define TRACEF(n, f, fmt, ...) do { } while (0)
449 #endif
450
451 #define SPECIFIED(x) ((x) != ~0)
452 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
453
454 /* Device timeout in msec */
455 #define AUDIO_TIMEOUT (3000)
456
457 /* #define AUDIO_PM_IDLE */
458 #ifdef AUDIO_PM_IDLE
459 int audio_idle_timeout = 30;
460 #endif
461
462 /* Number of elements of async mixer's pid */
463 #define AM_CAPACITY (4)
464
465 struct portname {
466 const char *name;
467 int mask;
468 };
469
470 static int audiomatch(device_t, cfdata_t, void *);
471 static void audioattach(device_t, device_t, void *);
472 static int audiodetach(device_t, int);
473 static int audioactivate(device_t, enum devact);
474 static void audiochilddet(device_t, device_t);
475 static int audiorescan(device_t, const char *, const int *);
476
477 static int audio_modcmd(modcmd_t, void *);
478
479 #ifdef AUDIO_PM_IDLE
480 static void audio_idle(void *);
481 static void audio_activity(device_t, devactive_t);
482 #endif
483
484 static bool audio_suspend(device_t dv, const pmf_qual_t *);
485 static bool audio_resume(device_t dv, const pmf_qual_t *);
486 static void audio_volume_down(device_t);
487 static void audio_volume_up(device_t);
488 static void audio_volume_toggle(device_t);
489
490 static void audio_mixer_capture(struct audio_softc *);
491 static void audio_mixer_restore(struct audio_softc *);
492
493 static void audio_softintr_rd(void *);
494 static void audio_softintr_wr(void *);
495
496 static int audio_exlock_mutex_enter(struct audio_softc *);
497 static void audio_exlock_mutex_exit(struct audio_softc *);
498 static int audio_exlock_enter(struct audio_softc *);
499 static void audio_exlock_exit(struct audio_softc *);
500 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
501 static void audio_file_exit(struct audio_softc *, struct psref *);
502 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
503
504 static int audioclose(struct file *);
505 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
506 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
507 static int audioioctl(struct file *, u_long, void *);
508 static int audiopoll(struct file *, int);
509 static int audiokqfilter(struct file *, struct knote *);
510 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
511 struct uvm_object **, int *);
512 static int audiostat(struct file *, struct stat *);
513
514 static void filt_audiowrite_detach(struct knote *);
515 static int filt_audiowrite_event(struct knote *, long);
516 static void filt_audioread_detach(struct knote *);
517 static int filt_audioread_event(struct knote *, long);
518
519 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
520 audio_file_t **);
521 static int audio_close(struct audio_softc *, audio_file_t *);
522 static int audio_unlink(struct audio_softc *, audio_file_t *);
523 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
524 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
525 static void audio_file_clear(struct audio_softc *, audio_file_t *);
526 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
527 struct lwp *, audio_file_t *);
528 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
529 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
530 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
531 struct uvm_object **, int *, audio_file_t *);
532
533 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
534
535 static void audio_pintr(void *);
536 static void audio_rintr(void *);
537
538 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
539
540 static __inline int audio_track_readablebytes(const audio_track_t *);
541 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
542 const struct audio_info *);
543 static int audio_track_setinfo_check(audio_track_t *,
544 audio_format2_t *, const struct audio_prinfo *);
545 static void audio_track_setinfo_water(audio_track_t *,
546 const struct audio_info *);
547 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
548 struct audio_info *);
549 static int audio_hw_set_format(struct audio_softc *, int,
550 const audio_format2_t *, const audio_format2_t *,
551 audio_filter_reg_t *, audio_filter_reg_t *);
552 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
553 audio_file_t *);
554 static bool audio_can_playback(struct audio_softc *);
555 static bool audio_can_capture(struct audio_softc *);
556 static int audio_check_params(audio_format2_t *);
557 static int audio_mixers_init(struct audio_softc *sc, int,
558 const audio_format2_t *, const audio_format2_t *,
559 const audio_filter_reg_t *, const audio_filter_reg_t *);
560 static int audio_select_freq(const struct audio_format *);
561 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
562 static int audio_hw_validate_format(struct audio_softc *, int,
563 const audio_format2_t *);
564 static int audio_mixers_set_format(struct audio_softc *,
565 const struct audio_info *);
566 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
567 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
568 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
569 #if defined(AUDIO_DEBUG)
570 static int audio_sysctl_debug(SYSCTLFN_PROTO);
571 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
572 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
573 #endif
574
575 static void *audio_realloc(void *, size_t);
576 static int audio_realloc_usrbuf(audio_track_t *, int);
577 static void audio_free_usrbuf(audio_track_t *);
578
579 static audio_track_t *audio_track_create(struct audio_softc *,
580 audio_trackmixer_t *);
581 static void audio_track_destroy(audio_track_t *);
582 static audio_filter_t audio_track_get_codec(audio_track_t *,
583 const audio_format2_t *, const audio_format2_t *);
584 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
585 static void audio_track_play(audio_track_t *);
586 static int audio_track_drain(struct audio_softc *, audio_track_t *);
587 static void audio_track_record(audio_track_t *);
588 static void audio_track_clear(struct audio_softc *, audio_track_t *);
589
590 static int audio_mixer_init(struct audio_softc *, int,
591 const audio_format2_t *, const audio_filter_reg_t *);
592 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
593 static void audio_pmixer_start(struct audio_softc *, bool);
594 static void audio_pmixer_process(struct audio_softc *);
595 static void audio_pmixer_agc(audio_trackmixer_t *, int);
596 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
597 static void audio_pmixer_output(struct audio_softc *);
598 static int audio_pmixer_halt(struct audio_softc *);
599 static void audio_rmixer_start(struct audio_softc *);
600 static void audio_rmixer_process(struct audio_softc *);
601 static void audio_rmixer_input(struct audio_softc *);
602 static int audio_rmixer_halt(struct audio_softc *);
603
604 static void mixer_init(struct audio_softc *);
605 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
606 static int mixer_close(struct audio_softc *, audio_file_t *);
607 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
608 static void mixer_async_add(struct audio_softc *, pid_t);
609 static void mixer_async_remove(struct audio_softc *, pid_t);
610 static void mixer_signal(struct audio_softc *);
611
612 static int au_portof(struct audio_softc *, char *, int);
613
614 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
615 mixer_devinfo_t *, const struct portname *);
616 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
617 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
618 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
619 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
620 u_int *, u_char *);
621 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
622 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
623 static int au_set_monitor_gain(struct audio_softc *, int);
624 static int au_get_monitor_gain(struct audio_softc *);
625 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
626 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
627
628 static __inline struct audio_params
629 format2_to_params(const audio_format2_t *f2)
630 {
631 audio_params_t p;
632
633 /* validbits/precision <-> precision/stride */
634 p.sample_rate = f2->sample_rate;
635 p.channels = f2->channels;
636 p.encoding = f2->encoding;
637 p.validbits = f2->precision;
638 p.precision = f2->stride;
639 return p;
640 }
641
642 static __inline audio_format2_t
643 params_to_format2(const struct audio_params *p)
644 {
645 audio_format2_t f2;
646
647 /* precision/stride <-> validbits/precision */
648 f2.sample_rate = p->sample_rate;
649 f2.channels = p->channels;
650 f2.encoding = p->encoding;
651 f2.precision = p->validbits;
652 f2.stride = p->precision;
653 return f2;
654 }
655
656 /* Return true if this track is a playback track. */
657 static __inline bool
658 audio_track_is_playback(const audio_track_t *track)
659 {
660
661 return ((track->mode & AUMODE_PLAY) != 0);
662 }
663
664 /* Return true if this track is a recording track. */
665 static __inline bool
666 audio_track_is_record(const audio_track_t *track)
667 {
668
669 return ((track->mode & AUMODE_RECORD) != 0);
670 }
671
672 #if 0 /* XXX Not used yet */
673 /*
674 * Convert 0..255 volume used in userland to internal presentation 0..256.
675 */
676 static __inline u_int
677 audio_volume_to_inner(u_int v)
678 {
679
680 return v < 127 ? v : v + 1;
681 }
682
683 /*
684 * Convert 0..256 internal presentation to 0..255 volume used in userland.
685 */
686 static __inline u_int
687 audio_volume_to_outer(u_int v)
688 {
689
690 return v < 127 ? v : v - 1;
691 }
692 #endif /* 0 */
693
694 static dev_type_open(audioopen);
695 /* XXXMRG use more dev_type_xxx */
696
697 const struct cdevsw audio_cdevsw = {
698 .d_open = audioopen,
699 .d_close = noclose,
700 .d_read = noread,
701 .d_write = nowrite,
702 .d_ioctl = noioctl,
703 .d_stop = nostop,
704 .d_tty = notty,
705 .d_poll = nopoll,
706 .d_mmap = nommap,
707 .d_kqfilter = nokqfilter,
708 .d_discard = nodiscard,
709 .d_flag = D_OTHER | D_MPSAFE
710 };
711
712 const struct fileops audio_fileops = {
713 .fo_name = "audio",
714 .fo_read = audioread,
715 .fo_write = audiowrite,
716 .fo_ioctl = audioioctl,
717 .fo_fcntl = fnullop_fcntl,
718 .fo_stat = audiostat,
719 .fo_poll = audiopoll,
720 .fo_close = audioclose,
721 .fo_mmap = audiommap,
722 .fo_kqfilter = audiokqfilter,
723 .fo_restart = fnullop_restart
724 };
725
726 /* The default audio mode: 8 kHz mono mu-law */
727 static const struct audio_params audio_default = {
728 .sample_rate = 8000,
729 .encoding = AUDIO_ENCODING_ULAW,
730 .precision = 8,
731 .validbits = 8,
732 .channels = 1,
733 };
734
735 static const char *encoding_names[] = {
736 "none",
737 AudioEmulaw,
738 AudioEalaw,
739 "pcm16",
740 "pcm8",
741 AudioEadpcm,
742 AudioEslinear_le,
743 AudioEslinear_be,
744 AudioEulinear_le,
745 AudioEulinear_be,
746 AudioEslinear,
747 AudioEulinear,
748 AudioEmpeg_l1_stream,
749 AudioEmpeg_l1_packets,
750 AudioEmpeg_l1_system,
751 AudioEmpeg_l2_stream,
752 AudioEmpeg_l2_packets,
753 AudioEmpeg_l2_system,
754 AudioEac3,
755 };
756
757 /*
758 * Returns encoding name corresponding to AUDIO_ENCODING_*.
759 * Note that it may return a local buffer because it is mainly for debugging.
760 */
761 const char *
762 audio_encoding_name(int encoding)
763 {
764 static char buf[16];
765
766 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
767 return encoding_names[encoding];
768 } else {
769 snprintf(buf, sizeof(buf), "enc=%d", encoding);
770 return buf;
771 }
772 }
773
774 /*
775 * Supported encodings used by AUDIO_GETENC.
776 * index and flags are set by code.
777 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
778 */
779 static const audio_encoding_t audio_encodings[] = {
780 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
781 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
782 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
783 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
784 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
785 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
786 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
787 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
788 #if defined(AUDIO_SUPPORT_LINEAR24)
789 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
790 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
791 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
792 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
793 #endif
794 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
795 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
796 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
797 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
798 };
799
800 static const struct portname itable[] = {
801 { AudioNmicrophone, AUDIO_MICROPHONE },
802 { AudioNline, AUDIO_LINE_IN },
803 { AudioNcd, AUDIO_CD },
804 { 0, 0 }
805 };
806 static const struct portname otable[] = {
807 { AudioNspeaker, AUDIO_SPEAKER },
808 { AudioNheadphone, AUDIO_HEADPHONE },
809 { AudioNline, AUDIO_LINE_OUT },
810 { 0, 0 }
811 };
812
813 static struct psref_class *audio_psref_class __read_mostly;
814
815 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
816 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
817 audiochilddet, DVF_DETACH_SHUTDOWN);
818
819 static int
820 audiomatch(device_t parent, cfdata_t match, void *aux)
821 {
822 struct audio_attach_args *sa;
823
824 sa = aux;
825 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
826 __func__, sa->type, sa, sa->hwif);
827 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
828 }
829
830 static void
831 audioattach(device_t parent, device_t self, void *aux)
832 {
833 struct audio_softc *sc;
834 struct audio_attach_args *sa;
835 const struct audio_hw_if *hw_if;
836 audio_format2_t phwfmt;
837 audio_format2_t rhwfmt;
838 audio_filter_reg_t pfil;
839 audio_filter_reg_t rfil;
840 const struct sysctlnode *node;
841 void *hdlp;
842 bool has_playback;
843 bool has_capture;
844 bool has_indep;
845 bool has_fulldup;
846 int mode;
847 int error;
848
849 sc = device_private(self);
850 sc->sc_dev = self;
851 sa = (struct audio_attach_args *)aux;
852 hw_if = sa->hwif;
853 hdlp = sa->hdl;
854
855 if (hw_if == NULL) {
856 panic("audioattach: missing hw_if method");
857 }
858 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
859 aprint_error(": missing mandatory method\n");
860 return;
861 }
862
863 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
864 sc->sc_props = hw_if->get_props(hdlp);
865
866 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
867 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
868 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
869 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
870
871 #ifdef DIAGNOSTIC
872 if (hw_if->query_format == NULL ||
873 hw_if->set_format == NULL ||
874 hw_if->getdev == NULL ||
875 hw_if->set_port == NULL ||
876 hw_if->get_port == NULL ||
877 hw_if->query_devinfo == NULL) {
878 aprint_error(": missing mandatory method\n");
879 return;
880 }
881 if (has_playback) {
882 if ((hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
883 hw_if->halt_output == NULL) {
884 aprint_error(": missing playback method\n");
885 }
886 }
887 if (has_capture) {
888 if ((hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
889 hw_if->halt_input == NULL) {
890 aprint_error(": missing capture method\n");
891 }
892 }
893 #endif
894
895 sc->hw_if = hw_if;
896 sc->hw_hdl = hdlp;
897 sc->hw_dev = parent;
898
899 sc->sc_exlock = 1;
900 sc->sc_blk_ms = AUDIO_BLK_MS;
901 SLIST_INIT(&sc->sc_files);
902 cv_init(&sc->sc_exlockcv, "audiolk");
903 sc->sc_am_capacity = 0;
904 sc->sc_am_used = 0;
905 sc->sc_am = NULL;
906
907 /* MMAP is now supported by upper layer. */
908 sc->sc_props |= AUDIO_PROP_MMAP;
909
910 KASSERT(has_playback || has_capture);
911 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
912 if (!has_playback || !has_capture) {
913 KASSERT(!has_indep);
914 KASSERT(!has_fulldup);
915 }
916
917 mode = 0;
918 if (has_playback) {
919 aprint_normal(": playback");
920 mode |= AUMODE_PLAY;
921 }
922 if (has_capture) {
923 aprint_normal("%c capture", has_playback ? ',' : ':');
924 mode |= AUMODE_RECORD;
925 }
926 if (has_playback && has_capture) {
927 if (has_fulldup)
928 aprint_normal(", full duplex");
929 else
930 aprint_normal(", half duplex");
931
932 if (has_indep)
933 aprint_normal(", independent");
934 }
935
936 aprint_naive("\n");
937 aprint_normal("\n");
938
939 /* probe hw params */
940 memset(&phwfmt, 0, sizeof(phwfmt));
941 memset(&rhwfmt, 0, sizeof(rhwfmt));
942 memset(&pfil, 0, sizeof(pfil));
943 memset(&rfil, 0, sizeof(rfil));
944 if (has_indep) {
945 int perror, rerror;
946
947 /* On independent devices, probe separately. */
948 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
949 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
950 if (perror && rerror) {
951 aprint_error_dev(self, "audio_hw_probe failed, "
952 "perror = %d, rerror = %d\n", perror, rerror);
953 goto bad;
954 }
955 if (perror) {
956 mode &= ~AUMODE_PLAY;
957 aprint_error_dev(self, "audio_hw_probe failed with "
958 "%d, playback disabled\n", perror);
959 }
960 if (rerror) {
961 mode &= ~AUMODE_RECORD;
962 aprint_error_dev(self, "audio_hw_probe failed with "
963 "%d, capture disabled\n", rerror);
964 }
965 } else {
966 /*
967 * On non independent devices or uni-directional devices,
968 * probe once (simultaneously).
969 */
970 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
971 error = audio_hw_probe(sc, fmt, mode);
972 if (error) {
973 aprint_error_dev(self, "audio_hw_probe failed, "
974 "error = %d\n", error);
975 goto bad;
976 }
977 if (has_playback && has_capture)
978 rhwfmt = phwfmt;
979 }
980
981 /* Init hardware. */
982 /* hw_probe() also validates [pr]hwfmt. */
983 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
984 if (error) {
985 aprint_error_dev(self, "audio_hw_set_format failed, "
986 "error = %d\n", error);
987 goto bad;
988 }
989
990 /*
991 * Init track mixers. If at least one direction is available on
992 * attach time, we assume a success.
993 */
994 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
995 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
996 aprint_error_dev(self, "audio_mixers_init failed, "
997 "error = %d\n", error);
998 goto bad;
999 }
1000
1001 sc->sc_psz = pserialize_create();
1002 psref_target_init(&sc->sc_psref, audio_psref_class);
1003
1004 selinit(&sc->sc_wsel);
1005 selinit(&sc->sc_rsel);
1006
1007 /* Initial parameter of /dev/sound */
1008 sc->sc_sound_pparams = params_to_format2(&audio_default);
1009 sc->sc_sound_rparams = params_to_format2(&audio_default);
1010 sc->sc_sound_ppause = false;
1011 sc->sc_sound_rpause = false;
1012
1013 /* XXX TODO: consider about sc_ai */
1014
1015 mixer_init(sc);
1016 TRACE(2, "inputs ports=0x%x, input master=%d, "
1017 "output ports=0x%x, output master=%d",
1018 sc->sc_inports.allports, sc->sc_inports.master,
1019 sc->sc_outports.allports, sc->sc_outports.master);
1020
1021 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1022 0,
1023 CTLTYPE_NODE, device_xname(sc->sc_dev),
1024 SYSCTL_DESCR("audio test"),
1025 NULL, 0,
1026 NULL, 0,
1027 CTL_HW,
1028 CTL_CREATE, CTL_EOL);
1029
1030 if (node != NULL) {
1031 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1032 CTLFLAG_READWRITE,
1033 CTLTYPE_INT, "blk_ms",
1034 SYSCTL_DESCR("blocksize in msec"),
1035 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1036 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1037
1038 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1039 CTLFLAG_READWRITE,
1040 CTLTYPE_BOOL, "multiuser",
1041 SYSCTL_DESCR("allow multiple user access"),
1042 audio_sysctl_multiuser, 0, (void *)sc, 0,
1043 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1044
1045 #if defined(AUDIO_DEBUG)
1046 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1047 CTLFLAG_READWRITE,
1048 CTLTYPE_INT, "debug",
1049 SYSCTL_DESCR("debug level (0..4)"),
1050 audio_sysctl_debug, 0, (void *)sc, 0,
1051 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1052 #endif
1053 }
1054
1055 #ifdef AUDIO_PM_IDLE
1056 callout_init(&sc->sc_idle_counter, 0);
1057 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1058 #endif
1059
1060 if (!pmf_device_register(self, audio_suspend, audio_resume))
1061 aprint_error_dev(self, "couldn't establish power handler\n");
1062 #ifdef AUDIO_PM_IDLE
1063 if (!device_active_register(self, audio_activity))
1064 aprint_error_dev(self, "couldn't register activity handler\n");
1065 #endif
1066
1067 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1068 audio_volume_down, true))
1069 aprint_error_dev(self, "couldn't add volume down handler\n");
1070 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1071 audio_volume_up, true))
1072 aprint_error_dev(self, "couldn't add volume up handler\n");
1073 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1074 audio_volume_toggle, true))
1075 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1076
1077 #ifdef AUDIO_PM_IDLE
1078 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1079 #endif
1080
1081 #if defined(AUDIO_DEBUG)
1082 audio_mlog_init();
1083 #endif
1084
1085 audiorescan(self, "audio", NULL);
1086 sc->sc_exlock = 0;
1087 return;
1088
1089 bad:
1090 /* Clearing hw_if means that device is attached but disabled. */
1091 sc->hw_if = NULL;
1092 sc->sc_exlock = 0;
1093 aprint_error_dev(sc->sc_dev, "disabled\n");
1094 return;
1095 }
1096
1097 /*
1098 * Initialize hardware mixer.
1099 * This function is called from audioattach().
1100 */
1101 static void
1102 mixer_init(struct audio_softc *sc)
1103 {
1104 mixer_devinfo_t mi;
1105 int iclass, mclass, oclass, rclass;
1106 int record_master_found, record_source_found;
1107
1108 iclass = mclass = oclass = rclass = -1;
1109 sc->sc_inports.index = -1;
1110 sc->sc_inports.master = -1;
1111 sc->sc_inports.nports = 0;
1112 sc->sc_inports.isenum = false;
1113 sc->sc_inports.allports = 0;
1114 sc->sc_inports.isdual = false;
1115 sc->sc_inports.mixerout = -1;
1116 sc->sc_inports.cur_port = -1;
1117 sc->sc_outports.index = -1;
1118 sc->sc_outports.master = -1;
1119 sc->sc_outports.nports = 0;
1120 sc->sc_outports.isenum = false;
1121 sc->sc_outports.allports = 0;
1122 sc->sc_outports.isdual = false;
1123 sc->sc_outports.mixerout = -1;
1124 sc->sc_outports.cur_port = -1;
1125 sc->sc_monitor_port = -1;
1126 /*
1127 * Read through the underlying driver's list, picking out the class
1128 * names from the mixer descriptions. We'll need them to decode the
1129 * mixer descriptions on the next pass through the loop.
1130 */
1131 mutex_enter(sc->sc_lock);
1132 for(mi.index = 0; ; mi.index++) {
1133 if (audio_query_devinfo(sc, &mi) != 0)
1134 break;
1135 /*
1136 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1137 * All the other types describe an actual mixer.
1138 */
1139 if (mi.type == AUDIO_MIXER_CLASS) {
1140 if (strcmp(mi.label.name, AudioCinputs) == 0)
1141 iclass = mi.mixer_class;
1142 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1143 mclass = mi.mixer_class;
1144 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1145 oclass = mi.mixer_class;
1146 if (strcmp(mi.label.name, AudioCrecord) == 0)
1147 rclass = mi.mixer_class;
1148 }
1149 }
1150 mutex_exit(sc->sc_lock);
1151
1152 /* Allocate save area. Ensure non-zero allocation. */
1153 sc->sc_nmixer_states = mi.index;
1154 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1155 (sc->sc_nmixer_states + 1), KM_SLEEP);
1156
1157 /*
1158 * This is where we assign each control in the "audio" model, to the
1159 * underlying "mixer" control. We walk through the whole list once,
1160 * assigning likely candidates as we come across them.
1161 */
1162 record_master_found = 0;
1163 record_source_found = 0;
1164 mutex_enter(sc->sc_lock);
1165 for(mi.index = 0; ; mi.index++) {
1166 if (audio_query_devinfo(sc, &mi) != 0)
1167 break;
1168 KASSERT(mi.index < sc->sc_nmixer_states);
1169 if (mi.type == AUDIO_MIXER_CLASS)
1170 continue;
1171 if (mi.mixer_class == iclass) {
1172 /*
1173 * AudioCinputs is only a fallback, when we don't
1174 * find what we're looking for in AudioCrecord, so
1175 * check the flags before accepting one of these.
1176 */
1177 if (strcmp(mi.label.name, AudioNmaster) == 0
1178 && record_master_found == 0)
1179 sc->sc_inports.master = mi.index;
1180 if (strcmp(mi.label.name, AudioNsource) == 0
1181 && record_source_found == 0) {
1182 if (mi.type == AUDIO_MIXER_ENUM) {
1183 int i;
1184 for(i = 0; i < mi.un.e.num_mem; i++)
1185 if (strcmp(mi.un.e.member[i].label.name,
1186 AudioNmixerout) == 0)
1187 sc->sc_inports.mixerout =
1188 mi.un.e.member[i].ord;
1189 }
1190 au_setup_ports(sc, &sc->sc_inports, &mi,
1191 itable);
1192 }
1193 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1194 sc->sc_outports.master == -1)
1195 sc->sc_outports.master = mi.index;
1196 } else if (mi.mixer_class == mclass) {
1197 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1198 sc->sc_monitor_port = mi.index;
1199 } else if (mi.mixer_class == oclass) {
1200 if (strcmp(mi.label.name, AudioNmaster) == 0)
1201 sc->sc_outports.master = mi.index;
1202 if (strcmp(mi.label.name, AudioNselect) == 0)
1203 au_setup_ports(sc, &sc->sc_outports, &mi,
1204 otable);
1205 } else if (mi.mixer_class == rclass) {
1206 /*
1207 * These are the preferred mixers for the audio record
1208 * controls, so set the flags here, but don't check.
1209 */
1210 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1211 sc->sc_inports.master = mi.index;
1212 record_master_found = 1;
1213 }
1214 #if 1 /* Deprecated. Use AudioNmaster. */
1215 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1216 sc->sc_inports.master = mi.index;
1217 record_master_found = 1;
1218 }
1219 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1220 sc->sc_inports.master = mi.index;
1221 record_master_found = 1;
1222 }
1223 #endif
1224 if (strcmp(mi.label.name, AudioNsource) == 0) {
1225 if (mi.type == AUDIO_MIXER_ENUM) {
1226 int i;
1227 for(i = 0; i < mi.un.e.num_mem; i++)
1228 if (strcmp(mi.un.e.member[i].label.name,
1229 AudioNmixerout) == 0)
1230 sc->sc_inports.mixerout =
1231 mi.un.e.member[i].ord;
1232 }
1233 au_setup_ports(sc, &sc->sc_inports, &mi,
1234 itable);
1235 record_source_found = 1;
1236 }
1237 }
1238 }
1239 mutex_exit(sc->sc_lock);
1240 }
1241
1242 static int
1243 audioactivate(device_t self, enum devact act)
1244 {
1245 struct audio_softc *sc = device_private(self);
1246
1247 switch (act) {
1248 case DVACT_DEACTIVATE:
1249 mutex_enter(sc->sc_lock);
1250 sc->sc_dying = true;
1251 cv_broadcast(&sc->sc_exlockcv);
1252 mutex_exit(sc->sc_lock);
1253 return 0;
1254 default:
1255 return EOPNOTSUPP;
1256 }
1257 }
1258
1259 static int
1260 audiodetach(device_t self, int flags)
1261 {
1262 struct audio_softc *sc;
1263 struct audio_file *file;
1264 int error;
1265
1266 sc = device_private(self);
1267 TRACE(2, "flags=%d", flags);
1268
1269 /* device is not initialized */
1270 if (sc->hw_if == NULL)
1271 return 0;
1272
1273 /* Start draining existing accessors of the device. */
1274 error = config_detach_children(self, flags);
1275 if (error)
1276 return error;
1277
1278 /* delete sysctl nodes */
1279 sysctl_teardown(&sc->sc_log);
1280
1281 mutex_enter(sc->sc_lock);
1282 sc->sc_dying = true;
1283 cv_broadcast(&sc->sc_exlockcv);
1284 if (sc->sc_pmixer)
1285 cv_broadcast(&sc->sc_pmixer->outcv);
1286 if (sc->sc_rmixer)
1287 cv_broadcast(&sc->sc_rmixer->outcv);
1288
1289 /* Prevent new users */
1290 SLIST_FOREACH(file, &sc->sc_files, entry) {
1291 atomic_store_relaxed(&file->dying, true);
1292 }
1293
1294 /*
1295 * Wait for existing users to drain.
1296 * - pserialize_perform waits for all pserialize_read sections on
1297 * all CPUs; after this, no more new psref_acquire can happen.
1298 * - psref_target_destroy waits for all extant acquired psrefs to
1299 * be psref_released.
1300 */
1301 pserialize_perform(sc->sc_psz);
1302 mutex_exit(sc->sc_lock);
1303 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1304
1305 /*
1306 * We are now guaranteed that there are no calls to audio fileops
1307 * that hold sc, and any new calls with files that were for sc will
1308 * fail. Thus, we now have exclusive access to the softc.
1309 */
1310 sc->sc_exlock = 1;
1311
1312 /*
1313 * Nuke all open instances.
1314 * Here, we no longer need any locks to traverse sc_files.
1315 */
1316 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1317 audio_unlink(sc, file);
1318 }
1319
1320 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1321 audio_volume_down, true);
1322 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1323 audio_volume_up, true);
1324 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1325 audio_volume_toggle, true);
1326
1327 #ifdef AUDIO_PM_IDLE
1328 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1329
1330 device_active_deregister(self, audio_activity);
1331 #endif
1332
1333 pmf_device_deregister(self);
1334
1335 /* Free resources */
1336 if (sc->sc_pmixer) {
1337 audio_mixer_destroy(sc, sc->sc_pmixer);
1338 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1339 }
1340 if (sc->sc_rmixer) {
1341 audio_mixer_destroy(sc, sc->sc_rmixer);
1342 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1343 }
1344 if (sc->sc_am)
1345 kern_free(sc->sc_am);
1346
1347 seldestroy(&sc->sc_wsel);
1348 seldestroy(&sc->sc_rsel);
1349
1350 #ifdef AUDIO_PM_IDLE
1351 callout_destroy(&sc->sc_idle_counter);
1352 #endif
1353
1354 cv_destroy(&sc->sc_exlockcv);
1355
1356 #if defined(AUDIO_DEBUG)
1357 audio_mlog_free();
1358 #endif
1359
1360 return 0;
1361 }
1362
1363 static void
1364 audiochilddet(device_t self, device_t child)
1365 {
1366
1367 /* we hold no child references, so do nothing */
1368 }
1369
1370 static int
1371 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1372 {
1373
1374 if (config_match(parent, cf, aux))
1375 config_attach_loc(parent, cf, locs, aux, NULL);
1376
1377 return 0;
1378 }
1379
1380 static int
1381 audiorescan(device_t self, const char *ifattr, const int *flags)
1382 {
1383 struct audio_softc *sc = device_private(self);
1384
1385 if (!ifattr_match(ifattr, "audio"))
1386 return 0;
1387
1388 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1389
1390 return 0;
1391 }
1392
1393 /*
1394 * Called from hardware driver. This is where the MI audio driver gets
1395 * probed/attached to the hardware driver.
1396 */
1397 device_t
1398 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1399 {
1400 struct audio_attach_args arg;
1401
1402 #ifdef DIAGNOSTIC
1403 if (ahwp == NULL) {
1404 aprint_error("audio_attach_mi: NULL\n");
1405 return 0;
1406 }
1407 #endif
1408 arg.type = AUDIODEV_TYPE_AUDIO;
1409 arg.hwif = ahwp;
1410 arg.hdl = hdlp;
1411 return config_found(dev, &arg, audioprint);
1412 }
1413
1414 /*
1415 * Enter critical section and also keep sc_lock.
1416 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1417 * Must be called without sc_lock held.
1418 */
1419 static int
1420 audio_exlock_mutex_enter(struct audio_softc *sc)
1421 {
1422 int error;
1423
1424 mutex_enter(sc->sc_lock);
1425 if (sc->sc_dying) {
1426 mutex_exit(sc->sc_lock);
1427 return EIO;
1428 }
1429
1430 while (__predict_false(sc->sc_exlock != 0)) {
1431 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1432 if (sc->sc_dying)
1433 error = EIO;
1434 if (error) {
1435 mutex_exit(sc->sc_lock);
1436 return error;
1437 }
1438 }
1439
1440 /* Acquire */
1441 sc->sc_exlock = 1;
1442 return 0;
1443 }
1444
1445 /*
1446 * Exit critical section and exit sc_lock.
1447 * Must be called with sc_lock held.
1448 */
1449 static void
1450 audio_exlock_mutex_exit(struct audio_softc *sc)
1451 {
1452
1453 KASSERT(mutex_owned(sc->sc_lock));
1454
1455 sc->sc_exlock = 0;
1456 cv_broadcast(&sc->sc_exlockcv);
1457 mutex_exit(sc->sc_lock);
1458 }
1459
1460 /*
1461 * Enter critical section.
1462 * If successful, it returns 0. Otherwise returns errno.
1463 * Must be called without sc_lock held.
1464 * This function returns without sc_lock held.
1465 */
1466 static int
1467 audio_exlock_enter(struct audio_softc *sc)
1468 {
1469 int error;
1470
1471 error = audio_exlock_mutex_enter(sc);
1472 if (error)
1473 return error;
1474 mutex_exit(sc->sc_lock);
1475 return 0;
1476 }
1477
1478 /*
1479 * Exit critical section.
1480 * Must be called without sc_lock held.
1481 */
1482 static void
1483 audio_exlock_exit(struct audio_softc *sc)
1484 {
1485
1486 mutex_enter(sc->sc_lock);
1487 audio_exlock_mutex_exit(sc);
1488 }
1489
1490 /*
1491 * Acquire sc from file, and increment the psref count.
1492 * If successful, returns sc. Otherwise returns NULL.
1493 */
1494 struct audio_softc *
1495 audio_file_enter(audio_file_t *file, struct psref *refp)
1496 {
1497 int s;
1498 bool dying;
1499
1500 /* psref(9) forbids to migrate CPUs */
1501 curlwp_bind();
1502
1503 /* Block audiodetach while we acquire a reference */
1504 s = pserialize_read_enter();
1505
1506 /* If close or audiodetach already ran, tough -- no more audio */
1507 dying = atomic_load_relaxed(&file->dying);
1508 if (dying) {
1509 pserialize_read_exit(s);
1510 return NULL;
1511 }
1512
1513 /* Acquire a reference */
1514 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1515
1516 /* Now sc won't go away until we drop the reference count */
1517 pserialize_read_exit(s);
1518
1519 return file->sc;
1520 }
1521
1522 /*
1523 * Decrement the psref count.
1524 */
1525 void
1526 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1527 {
1528
1529 psref_release(refp, &sc->sc_psref, audio_psref_class);
1530 }
1531
1532 /*
1533 * Wait for I/O to complete, releasing sc_lock.
1534 * Must be called with sc_lock held.
1535 */
1536 static int
1537 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1538 {
1539 int error;
1540
1541 KASSERT(track);
1542 KASSERT(mutex_owned(sc->sc_lock));
1543
1544 /* Wait for pending I/O to complete. */
1545 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1546 mstohz(AUDIO_TIMEOUT));
1547 if (sc->sc_dying) {
1548 error = EIO;
1549 }
1550 if (error) {
1551 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1552 if (error == EWOULDBLOCK)
1553 device_printf(sc->sc_dev, "device timeout\n");
1554 } else {
1555 TRACET(3, track, "wakeup");
1556 }
1557 return error;
1558 }
1559
1560 /*
1561 * Try to acquire track lock.
1562 * It doesn't block if the track lock is already aquired.
1563 * Returns true if the track lock was acquired, or false if the track
1564 * lock was already acquired.
1565 */
1566 static __inline bool
1567 audio_track_lock_tryenter(audio_track_t *track)
1568 {
1569 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1570 }
1571
1572 /*
1573 * Acquire track lock.
1574 */
1575 static __inline void
1576 audio_track_lock_enter(audio_track_t *track)
1577 {
1578 /* Don't sleep here. */
1579 while (audio_track_lock_tryenter(track) == false)
1580 ;
1581 }
1582
1583 /*
1584 * Release track lock.
1585 */
1586 static __inline void
1587 audio_track_lock_exit(audio_track_t *track)
1588 {
1589 atomic_swap_uint(&track->lock, 0);
1590 }
1591
1592
1593 static int
1594 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1595 {
1596 struct audio_softc *sc;
1597 int error;
1598
1599 /* Find the device */
1600 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1601 if (sc == NULL || sc->hw_if == NULL)
1602 return ENXIO;
1603
1604 error = audio_exlock_enter(sc);
1605 if (error)
1606 return error;
1607
1608 device_active(sc->sc_dev, DVA_SYSTEM);
1609 switch (AUDIODEV(dev)) {
1610 case SOUND_DEVICE:
1611 case AUDIO_DEVICE:
1612 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1613 break;
1614 case AUDIOCTL_DEVICE:
1615 error = audioctl_open(dev, sc, flags, ifmt, l);
1616 break;
1617 case MIXER_DEVICE:
1618 error = mixer_open(dev, sc, flags, ifmt, l);
1619 break;
1620 default:
1621 error = ENXIO;
1622 break;
1623 }
1624 audio_exlock_exit(sc);
1625
1626 return error;
1627 }
1628
1629 static int
1630 audioclose(struct file *fp)
1631 {
1632 struct audio_softc *sc;
1633 struct psref sc_ref;
1634 audio_file_t *file;
1635 int error;
1636 dev_t dev;
1637
1638 KASSERT(fp->f_audioctx);
1639 file = fp->f_audioctx;
1640 dev = file->dev;
1641 error = 0;
1642
1643 /*
1644 * audioclose() must
1645 * - unplug track from the trackmixer (and unplug anything from softc),
1646 * if sc exists.
1647 * - free all memory objects, regardless of sc.
1648 */
1649
1650 sc = audio_file_enter(file, &sc_ref);
1651 if (sc) {
1652 switch (AUDIODEV(dev)) {
1653 case SOUND_DEVICE:
1654 case AUDIO_DEVICE:
1655 error = audio_close(sc, file);
1656 break;
1657 case AUDIOCTL_DEVICE:
1658 error = 0;
1659 break;
1660 case MIXER_DEVICE:
1661 error = mixer_close(sc, file);
1662 break;
1663 default:
1664 error = ENXIO;
1665 break;
1666 }
1667
1668 audio_file_exit(sc, &sc_ref);
1669 }
1670
1671 /* Free memory objects anyway */
1672 TRACEF(2, file, "free memory");
1673 if (file->ptrack)
1674 audio_track_destroy(file->ptrack);
1675 if (file->rtrack)
1676 audio_track_destroy(file->rtrack);
1677 kmem_free(file, sizeof(*file));
1678 fp->f_audioctx = NULL;
1679
1680 return error;
1681 }
1682
1683 static int
1684 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1685 int ioflag)
1686 {
1687 struct audio_softc *sc;
1688 struct psref sc_ref;
1689 audio_file_t *file;
1690 int error;
1691 dev_t dev;
1692
1693 KASSERT(fp->f_audioctx);
1694 file = fp->f_audioctx;
1695 dev = file->dev;
1696
1697 sc = audio_file_enter(file, &sc_ref);
1698 if (sc == NULL)
1699 return EIO;
1700
1701 if (fp->f_flag & O_NONBLOCK)
1702 ioflag |= IO_NDELAY;
1703
1704 switch (AUDIODEV(dev)) {
1705 case SOUND_DEVICE:
1706 case AUDIO_DEVICE:
1707 error = audio_read(sc, uio, ioflag, file);
1708 break;
1709 case AUDIOCTL_DEVICE:
1710 case MIXER_DEVICE:
1711 error = ENODEV;
1712 break;
1713 default:
1714 error = ENXIO;
1715 break;
1716 }
1717
1718 audio_file_exit(sc, &sc_ref);
1719 return error;
1720 }
1721
1722 static int
1723 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1724 int ioflag)
1725 {
1726 struct audio_softc *sc;
1727 struct psref sc_ref;
1728 audio_file_t *file;
1729 int error;
1730 dev_t dev;
1731
1732 KASSERT(fp->f_audioctx);
1733 file = fp->f_audioctx;
1734 dev = file->dev;
1735
1736 sc = audio_file_enter(file, &sc_ref);
1737 if (sc == NULL)
1738 return EIO;
1739
1740 if (fp->f_flag & O_NONBLOCK)
1741 ioflag |= IO_NDELAY;
1742
1743 switch (AUDIODEV(dev)) {
1744 case SOUND_DEVICE:
1745 case AUDIO_DEVICE:
1746 error = audio_write(sc, uio, ioflag, file);
1747 break;
1748 case AUDIOCTL_DEVICE:
1749 case MIXER_DEVICE:
1750 error = ENODEV;
1751 break;
1752 default:
1753 error = ENXIO;
1754 break;
1755 }
1756
1757 audio_file_exit(sc, &sc_ref);
1758 return error;
1759 }
1760
1761 static int
1762 audioioctl(struct file *fp, u_long cmd, void *addr)
1763 {
1764 struct audio_softc *sc;
1765 struct psref sc_ref;
1766 audio_file_t *file;
1767 struct lwp *l = curlwp;
1768 int error;
1769 dev_t dev;
1770
1771 KASSERT(fp->f_audioctx);
1772 file = fp->f_audioctx;
1773 dev = file->dev;
1774
1775 sc = audio_file_enter(file, &sc_ref);
1776 if (sc == NULL)
1777 return EIO;
1778
1779 switch (AUDIODEV(dev)) {
1780 case SOUND_DEVICE:
1781 case AUDIO_DEVICE:
1782 case AUDIOCTL_DEVICE:
1783 mutex_enter(sc->sc_lock);
1784 device_active(sc->sc_dev, DVA_SYSTEM);
1785 mutex_exit(sc->sc_lock);
1786 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1787 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1788 else
1789 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1790 file);
1791 break;
1792 case MIXER_DEVICE:
1793 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1794 break;
1795 default:
1796 error = ENXIO;
1797 break;
1798 }
1799
1800 audio_file_exit(sc, &sc_ref);
1801 return error;
1802 }
1803
1804 static int
1805 audiostat(struct file *fp, struct stat *st)
1806 {
1807 struct audio_softc *sc;
1808 struct psref sc_ref;
1809 audio_file_t *file;
1810
1811 KASSERT(fp->f_audioctx);
1812 file = fp->f_audioctx;
1813
1814 sc = audio_file_enter(file, &sc_ref);
1815 if (sc == NULL)
1816 return EIO;
1817
1818 memset(st, 0, sizeof(*st));
1819
1820 st->st_dev = file->dev;
1821 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1822 st->st_gid = kauth_cred_getegid(fp->f_cred);
1823 st->st_mode = S_IFCHR;
1824
1825 audio_file_exit(sc, &sc_ref);
1826 return 0;
1827 }
1828
1829 static int
1830 audiopoll(struct file *fp, int events)
1831 {
1832 struct audio_softc *sc;
1833 struct psref sc_ref;
1834 audio_file_t *file;
1835 struct lwp *l = curlwp;
1836 int revents;
1837 dev_t dev;
1838
1839 KASSERT(fp->f_audioctx);
1840 file = fp->f_audioctx;
1841 dev = file->dev;
1842
1843 sc = audio_file_enter(file, &sc_ref);
1844 if (sc == NULL)
1845 return EIO;
1846
1847 switch (AUDIODEV(dev)) {
1848 case SOUND_DEVICE:
1849 case AUDIO_DEVICE:
1850 revents = audio_poll(sc, events, l, file);
1851 break;
1852 case AUDIOCTL_DEVICE:
1853 case MIXER_DEVICE:
1854 revents = 0;
1855 break;
1856 default:
1857 revents = POLLERR;
1858 break;
1859 }
1860
1861 audio_file_exit(sc, &sc_ref);
1862 return revents;
1863 }
1864
1865 static int
1866 audiokqfilter(struct file *fp, struct knote *kn)
1867 {
1868 struct audio_softc *sc;
1869 struct psref sc_ref;
1870 audio_file_t *file;
1871 dev_t dev;
1872 int error;
1873
1874 KASSERT(fp->f_audioctx);
1875 file = fp->f_audioctx;
1876 dev = file->dev;
1877
1878 sc = audio_file_enter(file, &sc_ref);
1879 if (sc == NULL)
1880 return EIO;
1881
1882 switch (AUDIODEV(dev)) {
1883 case SOUND_DEVICE:
1884 case AUDIO_DEVICE:
1885 error = audio_kqfilter(sc, file, kn);
1886 break;
1887 case AUDIOCTL_DEVICE:
1888 case MIXER_DEVICE:
1889 error = ENODEV;
1890 break;
1891 default:
1892 error = ENXIO;
1893 break;
1894 }
1895
1896 audio_file_exit(sc, &sc_ref);
1897 return error;
1898 }
1899
1900 static int
1901 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1902 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1903 {
1904 struct audio_softc *sc;
1905 struct psref sc_ref;
1906 audio_file_t *file;
1907 dev_t dev;
1908 int error;
1909
1910 KASSERT(fp->f_audioctx);
1911 file = fp->f_audioctx;
1912 dev = file->dev;
1913
1914 sc = audio_file_enter(file, &sc_ref);
1915 if (sc == NULL)
1916 return EIO;
1917
1918 mutex_enter(sc->sc_lock);
1919 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1920 mutex_exit(sc->sc_lock);
1921
1922 switch (AUDIODEV(dev)) {
1923 case SOUND_DEVICE:
1924 case AUDIO_DEVICE:
1925 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1926 uobjp, maxprotp, file);
1927 break;
1928 case AUDIOCTL_DEVICE:
1929 case MIXER_DEVICE:
1930 default:
1931 error = ENOTSUP;
1932 break;
1933 }
1934
1935 audio_file_exit(sc, &sc_ref);
1936 return error;
1937 }
1938
1939
1940 /* Exported interfaces for audiobell. */
1941
1942 /*
1943 * Open for audiobell.
1944 * It stores allocated file to *filep.
1945 * If successful returns 0, otherwise errno.
1946 */
1947 int
1948 audiobellopen(dev_t dev, audio_file_t **filep)
1949 {
1950 struct audio_softc *sc;
1951 int error;
1952
1953 /* Find the device */
1954 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1955 if (sc == NULL || sc->hw_if == NULL)
1956 return ENXIO;
1957
1958 error = audio_exlock_enter(sc);
1959 if (error)
1960 return error;
1961
1962 device_active(sc->sc_dev, DVA_SYSTEM);
1963 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1964
1965 audio_exlock_exit(sc);
1966 return error;
1967 }
1968
1969 /* Close for audiobell */
1970 int
1971 audiobellclose(audio_file_t *file)
1972 {
1973 struct audio_softc *sc;
1974 struct psref sc_ref;
1975 int error;
1976
1977 sc = audio_file_enter(file, &sc_ref);
1978 if (sc == NULL)
1979 return EIO;
1980
1981 error = audio_close(sc, file);
1982
1983 audio_file_exit(sc, &sc_ref);
1984
1985 KASSERT(file->ptrack);
1986 audio_track_destroy(file->ptrack);
1987 KASSERT(file->rtrack == NULL);
1988 kmem_free(file, sizeof(*file));
1989 return error;
1990 }
1991
1992 /* Set sample rate for audiobell */
1993 int
1994 audiobellsetrate(audio_file_t *file, u_int sample_rate)
1995 {
1996 struct audio_softc *sc;
1997 struct psref sc_ref;
1998 struct audio_info ai;
1999 int error;
2000
2001 sc = audio_file_enter(file, &sc_ref);
2002 if (sc == NULL)
2003 return EIO;
2004
2005 AUDIO_INITINFO(&ai);
2006 ai.play.sample_rate = sample_rate;
2007
2008 error = audio_exlock_enter(sc);
2009 if (error)
2010 goto done;
2011 error = audio_file_setinfo(sc, file, &ai);
2012 audio_exlock_exit(sc);
2013
2014 done:
2015 audio_file_exit(sc, &sc_ref);
2016 return error;
2017 }
2018
2019 /* Playback for audiobell */
2020 int
2021 audiobellwrite(audio_file_t *file, struct uio *uio)
2022 {
2023 struct audio_softc *sc;
2024 struct psref sc_ref;
2025 int error;
2026
2027 sc = audio_file_enter(file, &sc_ref);
2028 if (sc == NULL)
2029 return EIO;
2030
2031 error = audio_write(sc, uio, 0, file);
2032
2033 audio_file_exit(sc, &sc_ref);
2034 return error;
2035 }
2036
2037
2038 /*
2039 * Audio driver
2040 */
2041
2042 /*
2043 * Must be called with sc_exlock held and without sc_lock held.
2044 */
2045 int
2046 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2047 struct lwp *l, audio_file_t **bellfile)
2048 {
2049 struct audio_info ai;
2050 struct file *fp;
2051 audio_file_t *af;
2052 audio_ring_t *hwbuf;
2053 bool fullduplex;
2054 int fd;
2055 int error;
2056
2057 KASSERT(sc->sc_exlock);
2058
2059 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2060 (audiodebug >= 3) ? "start " : "",
2061 ISDEVSOUND(dev) ? "sound" : "audio",
2062 flags, sc->sc_popens, sc->sc_ropens);
2063
2064 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2065 af->sc = sc;
2066 af->dev = dev;
2067 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2068 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2069 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2070 af->mode |= AUMODE_RECORD;
2071 if (af->mode == 0) {
2072 error = ENXIO;
2073 goto bad1;
2074 }
2075
2076 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2077
2078 /*
2079 * On half duplex hardware,
2080 * 1. if mode is (PLAY | REC), let mode PLAY.
2081 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2082 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2083 */
2084 if (fullduplex == false) {
2085 if ((af->mode & AUMODE_PLAY)) {
2086 if (sc->sc_ropens != 0) {
2087 TRACE(1, "record track already exists");
2088 error = ENODEV;
2089 goto bad1;
2090 }
2091 /* Play takes precedence */
2092 af->mode &= ~AUMODE_RECORD;
2093 }
2094 if ((af->mode & AUMODE_RECORD)) {
2095 if (sc->sc_popens != 0) {
2096 TRACE(1, "play track already exists");
2097 error = ENODEV;
2098 goto bad1;
2099 }
2100 }
2101 }
2102
2103 /* Create tracks */
2104 if ((af->mode & AUMODE_PLAY))
2105 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2106 if ((af->mode & AUMODE_RECORD))
2107 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2108
2109 /* Set parameters */
2110 AUDIO_INITINFO(&ai);
2111 if (bellfile) {
2112 /* If audiobell, only sample_rate will be set later. */
2113 ai.play.sample_rate = audio_default.sample_rate;
2114 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2115 ai.play.channels = 1;
2116 ai.play.precision = 16;
2117 ai.play.pause = 0;
2118 } else if (ISDEVAUDIO(dev)) {
2119 /* If /dev/audio, initialize everytime. */
2120 ai.play.sample_rate = audio_default.sample_rate;
2121 ai.play.encoding = audio_default.encoding;
2122 ai.play.channels = audio_default.channels;
2123 ai.play.precision = audio_default.precision;
2124 ai.play.pause = 0;
2125 ai.record.sample_rate = audio_default.sample_rate;
2126 ai.record.encoding = audio_default.encoding;
2127 ai.record.channels = audio_default.channels;
2128 ai.record.precision = audio_default.precision;
2129 ai.record.pause = 0;
2130 } else {
2131 /* If /dev/sound, take over the previous parameters. */
2132 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2133 ai.play.encoding = sc->sc_sound_pparams.encoding;
2134 ai.play.channels = sc->sc_sound_pparams.channels;
2135 ai.play.precision = sc->sc_sound_pparams.precision;
2136 ai.play.pause = sc->sc_sound_ppause;
2137 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2138 ai.record.encoding = sc->sc_sound_rparams.encoding;
2139 ai.record.channels = sc->sc_sound_rparams.channels;
2140 ai.record.precision = sc->sc_sound_rparams.precision;
2141 ai.record.pause = sc->sc_sound_rpause;
2142 }
2143 error = audio_file_setinfo(sc, af, &ai);
2144 if (error)
2145 goto bad2;
2146
2147 if (sc->sc_popens + sc->sc_ropens == 0) {
2148 /* First open */
2149
2150 sc->sc_cred = kauth_cred_get();
2151 kauth_cred_hold(sc->sc_cred);
2152
2153 if (sc->hw_if->open) {
2154 int hwflags;
2155
2156 /*
2157 * Call hw_if->open() only at first open of
2158 * combination of playback and recording.
2159 * On full duplex hardware, the flags passed to
2160 * hw_if->open() is always (FREAD | FWRITE)
2161 * regardless of this open()'s flags.
2162 * see also dev/isa/aria.c
2163 * On half duplex hardware, the flags passed to
2164 * hw_if->open() is either FREAD or FWRITE.
2165 * see also arch/evbarm/mini2440/audio_mini2440.c
2166 */
2167 if (fullduplex) {
2168 hwflags = FREAD | FWRITE;
2169 } else {
2170 /* Construct hwflags from af->mode. */
2171 hwflags = 0;
2172 if ((af->mode & AUMODE_PLAY) != 0)
2173 hwflags |= FWRITE;
2174 if ((af->mode & AUMODE_RECORD) != 0)
2175 hwflags |= FREAD;
2176 }
2177
2178 mutex_enter(sc->sc_lock);
2179 mutex_enter(sc->sc_intr_lock);
2180 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2181 mutex_exit(sc->sc_intr_lock);
2182 mutex_exit(sc->sc_lock);
2183 if (error)
2184 goto bad2;
2185 }
2186
2187 /*
2188 * Set speaker mode when a half duplex.
2189 * XXX I'm not sure this is correct.
2190 */
2191 if (1/*XXX*/) {
2192 if (sc->hw_if->speaker_ctl) {
2193 int on;
2194 if (af->ptrack) {
2195 on = 1;
2196 } else {
2197 on = 0;
2198 }
2199 mutex_enter(sc->sc_lock);
2200 mutex_enter(sc->sc_intr_lock);
2201 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2202 mutex_exit(sc->sc_intr_lock);
2203 mutex_exit(sc->sc_lock);
2204 if (error)
2205 goto bad3;
2206 }
2207 }
2208 } else if (sc->sc_multiuser == false) {
2209 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2210 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2211 error = EPERM;
2212 goto bad2;
2213 }
2214 }
2215
2216 /* Call init_output if this is the first playback open. */
2217 if (af->ptrack && sc->sc_popens == 0) {
2218 if (sc->hw_if->init_output) {
2219 hwbuf = &sc->sc_pmixer->hwbuf;
2220 mutex_enter(sc->sc_lock);
2221 mutex_enter(sc->sc_intr_lock);
2222 error = sc->hw_if->init_output(sc->hw_hdl,
2223 hwbuf->mem,
2224 hwbuf->capacity *
2225 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2226 mutex_exit(sc->sc_intr_lock);
2227 mutex_exit(sc->sc_lock);
2228 if (error)
2229 goto bad3;
2230 }
2231 }
2232 /*
2233 * Call init_input and start rmixer, if this is the first recording
2234 * open. See pause consideration notes.
2235 */
2236 if (af->rtrack && sc->sc_ropens == 0) {
2237 if (sc->hw_if->init_input) {
2238 hwbuf = &sc->sc_rmixer->hwbuf;
2239 mutex_enter(sc->sc_lock);
2240 mutex_enter(sc->sc_intr_lock);
2241 error = sc->hw_if->init_input(sc->hw_hdl,
2242 hwbuf->mem,
2243 hwbuf->capacity *
2244 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2245 mutex_exit(sc->sc_intr_lock);
2246 mutex_exit(sc->sc_lock);
2247 if (error)
2248 goto bad3;
2249 }
2250
2251 mutex_enter(sc->sc_lock);
2252 audio_rmixer_start(sc);
2253 mutex_exit(sc->sc_lock);
2254 }
2255
2256 if (bellfile == NULL) {
2257 error = fd_allocfile(&fp, &fd);
2258 if (error)
2259 goto bad3;
2260 }
2261
2262 /*
2263 * Count up finally.
2264 * Don't fail from here.
2265 */
2266 mutex_enter(sc->sc_lock);
2267 if (af->ptrack)
2268 sc->sc_popens++;
2269 if (af->rtrack)
2270 sc->sc_ropens++;
2271 mutex_enter(sc->sc_intr_lock);
2272 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2273 mutex_exit(sc->sc_intr_lock);
2274 mutex_exit(sc->sc_lock);
2275
2276 if (bellfile) {
2277 *bellfile = af;
2278 } else {
2279 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2280 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2281 }
2282
2283 TRACEF(3, af, "done");
2284 return error;
2285
2286 /*
2287 * Since track here is not yet linked to sc_files,
2288 * you can call track_destroy() without sc_intr_lock.
2289 */
2290 bad3:
2291 if (sc->sc_popens + sc->sc_ropens == 0) {
2292 if (sc->hw_if->close) {
2293 mutex_enter(sc->sc_lock);
2294 mutex_enter(sc->sc_intr_lock);
2295 sc->hw_if->close(sc->hw_hdl);
2296 mutex_exit(sc->sc_intr_lock);
2297 mutex_exit(sc->sc_lock);
2298 }
2299 }
2300 bad2:
2301 if (af->rtrack) {
2302 audio_track_destroy(af->rtrack);
2303 af->rtrack = NULL;
2304 }
2305 if (af->ptrack) {
2306 audio_track_destroy(af->ptrack);
2307 af->ptrack = NULL;
2308 }
2309 bad1:
2310 kmem_free(af, sizeof(*af));
2311 return error;
2312 }
2313
2314 /*
2315 * Must be called without sc_lock nor sc_exlock held.
2316 */
2317 int
2318 audio_close(struct audio_softc *sc, audio_file_t *file)
2319 {
2320
2321 /* Protect entering new fileops to this file */
2322 atomic_store_relaxed(&file->dying, true);
2323
2324 /*
2325 * Drain first.
2326 * It must be done before unlinking(acquiring exlock).
2327 */
2328 if (file->ptrack) {
2329 mutex_enter(sc->sc_lock);
2330 audio_track_drain(sc, file->ptrack);
2331 mutex_exit(sc->sc_lock);
2332 }
2333
2334 return audio_unlink(sc, file);
2335 }
2336
2337 /*
2338 * Unlink this file, but not freeing memory here.
2339 * Must be called without sc_lock nor sc_exlock held.
2340 */
2341 int
2342 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2343 {
2344 int error;
2345
2346 mutex_enter(sc->sc_lock);
2347
2348 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2349 (audiodebug >= 3) ? "start " : "",
2350 (int)curproc->p_pid, (int)curlwp->l_lid,
2351 sc->sc_popens, sc->sc_ropens);
2352 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2353 "sc->sc_popens=%d, sc->sc_ropens=%d",
2354 sc->sc_popens, sc->sc_ropens);
2355
2356 /*
2357 * Acquire exlock to protect counters.
2358 * Does not use audio_exlock_enter() due to sc_dying.
2359 */
2360 while (__predict_false(sc->sc_exlock != 0)) {
2361 error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
2362 mstohz(AUDIO_TIMEOUT));
2363 /* XXX what should I do on error? */
2364 if (error == EWOULDBLOCK) {
2365 mutex_exit(sc->sc_lock);
2366 device_printf(sc->sc_dev,
2367 "%s: cv_timedwait_sig failed %d", __func__, error);
2368 return error;
2369 }
2370 }
2371 sc->sc_exlock = 1;
2372
2373 device_active(sc->sc_dev, DVA_SYSTEM);
2374
2375 mutex_enter(sc->sc_intr_lock);
2376 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2377 mutex_exit(sc->sc_intr_lock);
2378
2379 if (file->ptrack) {
2380 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2381 file->ptrack->dropframes);
2382
2383 KASSERT(sc->sc_popens > 0);
2384 sc->sc_popens--;
2385
2386 /* Call hw halt_output if this is the last playback track. */
2387 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2388 error = audio_pmixer_halt(sc);
2389 if (error) {
2390 device_printf(sc->sc_dev,
2391 "halt_output failed with %d (ignored)\n",
2392 error);
2393 }
2394 }
2395
2396 /* Restore mixing volume if all tracks are gone. */
2397 if (sc->sc_popens == 0) {
2398 /* intr_lock is not necessary, but just manners. */
2399 mutex_enter(sc->sc_intr_lock);
2400 sc->sc_pmixer->volume = 256;
2401 sc->sc_pmixer->voltimer = 0;
2402 mutex_exit(sc->sc_intr_lock);
2403 }
2404 }
2405 if (file->rtrack) {
2406 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2407 file->rtrack->dropframes);
2408
2409 KASSERT(sc->sc_ropens > 0);
2410 sc->sc_ropens--;
2411
2412 /* Call hw halt_input if this is the last recording track. */
2413 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2414 error = audio_rmixer_halt(sc);
2415 if (error) {
2416 device_printf(sc->sc_dev,
2417 "halt_input failed with %d (ignored)\n",
2418 error);
2419 }
2420 }
2421
2422 }
2423
2424 /* Call hw close if this is the last track. */
2425 if (sc->sc_popens + sc->sc_ropens == 0) {
2426 if (sc->hw_if->close) {
2427 TRACE(2, "hw_if close");
2428 mutex_enter(sc->sc_intr_lock);
2429 sc->hw_if->close(sc->hw_hdl);
2430 mutex_exit(sc->sc_intr_lock);
2431 }
2432 }
2433
2434 mutex_exit(sc->sc_lock);
2435 if (sc->sc_popens + sc->sc_ropens == 0)
2436 kauth_cred_free(sc->sc_cred);
2437
2438 TRACE(3, "done");
2439 audio_exlock_exit(sc);
2440
2441 return 0;
2442 }
2443
2444 /*
2445 * Must be called without sc_lock nor sc_exlock held.
2446 */
2447 int
2448 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2449 audio_file_t *file)
2450 {
2451 audio_track_t *track;
2452 audio_ring_t *usrbuf;
2453 audio_ring_t *input;
2454 int error;
2455
2456 /*
2457 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2458 * However read() system call itself can be called because it's
2459 * opened with O_RDWR. So in this case, deny this read().
2460 */
2461 track = file->rtrack;
2462 if (track == NULL) {
2463 return EBADF;
2464 }
2465
2466 /* I think it's better than EINVAL. */
2467 if (track->mmapped)
2468 return EPERM;
2469
2470 TRACET(2, track, "resid=%zd", uio->uio_resid);
2471
2472 #ifdef AUDIO_PM_IDLE
2473 error = audio_exlock_mutex_enter(sc);
2474 if (error)
2475 return error;
2476
2477 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2478 device_active(&sc->sc_dev, DVA_SYSTEM);
2479
2480 /* In recording, unlike playback, read() never operates rmixer. */
2481
2482 audio_exlock_mutex_exit(sc);
2483 #endif
2484
2485 usrbuf = &track->usrbuf;
2486 input = track->input;
2487 error = 0;
2488
2489 while (uio->uio_resid > 0 && error == 0) {
2490 int bytes;
2491
2492 TRACET(3, track,
2493 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2494 uio->uio_resid,
2495 input->head, input->used, input->capacity,
2496 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2497
2498 /* Wait when buffers are empty. */
2499 mutex_enter(sc->sc_lock);
2500 for (;;) {
2501 bool empty;
2502 audio_track_lock_enter(track);
2503 empty = (input->used == 0 && usrbuf->used == 0);
2504 audio_track_lock_exit(track);
2505 if (!empty)
2506 break;
2507
2508 if ((ioflag & IO_NDELAY)) {
2509 mutex_exit(sc->sc_lock);
2510 return EWOULDBLOCK;
2511 }
2512
2513 TRACET(3, track, "sleep");
2514 error = audio_track_waitio(sc, track);
2515 if (error) {
2516 mutex_exit(sc->sc_lock);
2517 return error;
2518 }
2519 }
2520 mutex_exit(sc->sc_lock);
2521
2522 audio_track_lock_enter(track);
2523 audio_track_record(track);
2524
2525 /* uiomove from usrbuf as much as possible. */
2526 bytes = uimin(usrbuf->used, uio->uio_resid);
2527 while (bytes > 0) {
2528 int head = usrbuf->head;
2529 int len = uimin(bytes, usrbuf->capacity - head);
2530 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2531 uio);
2532 if (error) {
2533 audio_track_lock_exit(track);
2534 device_printf(sc->sc_dev,
2535 "uiomove(len=%d) failed with %d\n",
2536 len, error);
2537 goto abort;
2538 }
2539 auring_take(usrbuf, len);
2540 track->useriobytes += len;
2541 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2542 len,
2543 usrbuf->head, usrbuf->used, usrbuf->capacity);
2544 bytes -= len;
2545 }
2546
2547 audio_track_lock_exit(track);
2548 }
2549
2550 abort:
2551 return error;
2552 }
2553
2554
2555 /*
2556 * Clear file's playback and/or record track buffer immediately.
2557 */
2558 static void
2559 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2560 {
2561
2562 if (file->ptrack)
2563 audio_track_clear(sc, file->ptrack);
2564 if (file->rtrack)
2565 audio_track_clear(sc, file->rtrack);
2566 }
2567
2568 /*
2569 * Must be called without sc_lock nor sc_exlock held.
2570 */
2571 int
2572 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2573 audio_file_t *file)
2574 {
2575 audio_track_t *track;
2576 audio_ring_t *usrbuf;
2577 audio_ring_t *outbuf;
2578 int error;
2579
2580 track = file->ptrack;
2581 KASSERT(track);
2582
2583 /* I think it's better than EINVAL. */
2584 if (track->mmapped)
2585 return EPERM;
2586
2587 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2588 audiodebug >= 3 ? "begin " : "",
2589 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2590
2591 if (uio->uio_resid == 0) {
2592 track->eofcounter++;
2593 return 0;
2594 }
2595
2596 error = audio_exlock_mutex_enter(sc);
2597 if (error)
2598 return error;
2599
2600 #ifdef AUDIO_PM_IDLE
2601 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2602 device_active(&sc->sc_dev, DVA_SYSTEM);
2603 #endif
2604
2605 /*
2606 * The first write starts pmixer.
2607 */
2608 if (sc->sc_pbusy == false)
2609 audio_pmixer_start(sc, false);
2610 audio_exlock_mutex_exit(sc);
2611
2612 usrbuf = &track->usrbuf;
2613 outbuf = &track->outbuf;
2614 track->pstate = AUDIO_STATE_RUNNING;
2615 error = 0;
2616
2617 while (uio->uio_resid > 0 && error == 0) {
2618 int bytes;
2619
2620 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2621 uio->uio_resid,
2622 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2623
2624 /* Wait when buffers are full. */
2625 mutex_enter(sc->sc_lock);
2626 for (;;) {
2627 bool full;
2628 audio_track_lock_enter(track);
2629 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2630 outbuf->used >= outbuf->capacity);
2631 audio_track_lock_exit(track);
2632 if (!full)
2633 break;
2634
2635 if ((ioflag & IO_NDELAY)) {
2636 error = EWOULDBLOCK;
2637 mutex_exit(sc->sc_lock);
2638 goto abort;
2639 }
2640
2641 TRACET(3, track, "sleep usrbuf=%d/H%d",
2642 usrbuf->used, track->usrbuf_usedhigh);
2643 error = audio_track_waitio(sc, track);
2644 if (error) {
2645 mutex_exit(sc->sc_lock);
2646 goto abort;
2647 }
2648 }
2649 mutex_exit(sc->sc_lock);
2650
2651 audio_track_lock_enter(track);
2652
2653 /* uiomove to usrbuf as much as possible. */
2654 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2655 uio->uio_resid);
2656 while (bytes > 0) {
2657 int tail = auring_tail(usrbuf);
2658 int len = uimin(bytes, usrbuf->capacity - tail);
2659 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2660 uio);
2661 if (error) {
2662 audio_track_lock_exit(track);
2663 device_printf(sc->sc_dev,
2664 "uiomove(len=%d) failed with %d\n",
2665 len, error);
2666 goto abort;
2667 }
2668 auring_push(usrbuf, len);
2669 track->useriobytes += len;
2670 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2671 len,
2672 usrbuf->head, usrbuf->used, usrbuf->capacity);
2673 bytes -= len;
2674 }
2675
2676 /* Convert them as much as possible. */
2677 while (usrbuf->used >= track->usrbuf_blksize &&
2678 outbuf->used < outbuf->capacity) {
2679 audio_track_play(track);
2680 }
2681
2682 audio_track_lock_exit(track);
2683 }
2684
2685 abort:
2686 TRACET(3, track, "done error=%d", error);
2687 return error;
2688 }
2689
2690 /*
2691 * Must be called without sc_lock nor sc_exlock held.
2692 */
2693 int
2694 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2695 struct lwp *l, audio_file_t *file)
2696 {
2697 struct audio_offset *ao;
2698 struct audio_info ai;
2699 audio_track_t *track;
2700 audio_encoding_t *ae;
2701 audio_format_query_t *query;
2702 u_int stamp;
2703 u_int offs;
2704 int fd;
2705 int index;
2706 int error;
2707
2708 #if defined(AUDIO_DEBUG)
2709 const char *ioctlnames[] = {
2710 " AUDIO_GETINFO", /* 21 */
2711 " AUDIO_SETINFO", /* 22 */
2712 " AUDIO_DRAIN", /* 23 */
2713 " AUDIO_FLUSH", /* 24 */
2714 " AUDIO_WSEEK", /* 25 */
2715 " AUDIO_RERROR", /* 26 */
2716 " AUDIO_GETDEV", /* 27 */
2717 " AUDIO_GETENC", /* 28 */
2718 " AUDIO_GETFD", /* 29 */
2719 " AUDIO_SETFD", /* 30 */
2720 " AUDIO_PERROR", /* 31 */
2721 " AUDIO_GETIOFFS", /* 32 */
2722 " AUDIO_GETOOFFS", /* 33 */
2723 " AUDIO_GETPROPS", /* 34 */
2724 " AUDIO_GETBUFINFO", /* 35 */
2725 " AUDIO_SETCHAN", /* 36 */
2726 " AUDIO_GETCHAN", /* 37 */
2727 " AUDIO_QUERYFORMAT", /* 38 */
2728 " AUDIO_GETFORMAT", /* 39 */
2729 " AUDIO_SETFORMAT", /* 40 */
2730 };
2731 int nameidx = (cmd & 0xff);
2732 const char *ioctlname = "";
2733 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2734 ioctlname = ioctlnames[nameidx - 21];
2735 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2736 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2737 (int)curproc->p_pid, (int)l->l_lid);
2738 #endif
2739
2740 error = 0;
2741 switch (cmd) {
2742 case FIONBIO:
2743 /* All handled in the upper FS layer. */
2744 break;
2745
2746 case FIONREAD:
2747 /* Get the number of bytes that can be read. */
2748 if (file->rtrack) {
2749 *(int *)addr = audio_track_readablebytes(file->rtrack);
2750 } else {
2751 *(int *)addr = 0;
2752 }
2753 break;
2754
2755 case FIOASYNC:
2756 /* Set/Clear ASYNC I/O. */
2757 if (*(int *)addr) {
2758 file->async_audio = curproc->p_pid;
2759 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2760 } else {
2761 file->async_audio = 0;
2762 TRACEF(2, file, "FIOASYNC off");
2763 }
2764 break;
2765
2766 case AUDIO_FLUSH:
2767 /* XXX TODO: clear errors and restart? */
2768 audio_file_clear(sc, file);
2769 break;
2770
2771 case AUDIO_RERROR:
2772 /*
2773 * Number of read bytes dropped. We don't know where
2774 * or when they were dropped (including conversion stage).
2775 * Therefore, the number of accurate bytes or samples is
2776 * also unknown.
2777 */
2778 track = file->rtrack;
2779 if (track) {
2780 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2781 track->dropframes);
2782 }
2783 break;
2784
2785 case AUDIO_PERROR:
2786 /*
2787 * Number of write bytes dropped. We don't know where
2788 * or when they were dropped (including conversion stage).
2789 * Therefore, the number of accurate bytes or samples is
2790 * also unknown.
2791 */
2792 track = file->ptrack;
2793 if (track) {
2794 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2795 track->dropframes);
2796 }
2797 break;
2798
2799 case AUDIO_GETIOFFS:
2800 /* XXX TODO */
2801 ao = (struct audio_offset *)addr;
2802 ao->samples = 0;
2803 ao->deltablks = 0;
2804 ao->offset = 0;
2805 break;
2806
2807 case AUDIO_GETOOFFS:
2808 ao = (struct audio_offset *)addr;
2809 track = file->ptrack;
2810 if (track == NULL) {
2811 ao->samples = 0;
2812 ao->deltablks = 0;
2813 ao->offset = 0;
2814 break;
2815 }
2816 mutex_enter(sc->sc_lock);
2817 mutex_enter(sc->sc_intr_lock);
2818 /* figure out where next DMA will start */
2819 stamp = track->usrbuf_stamp;
2820 offs = track->usrbuf.head;
2821 mutex_exit(sc->sc_intr_lock);
2822 mutex_exit(sc->sc_lock);
2823
2824 ao->samples = stamp;
2825 ao->deltablks = (stamp / track->usrbuf_blksize) -
2826 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2827 track->usrbuf_stamp_last = stamp;
2828 offs = rounddown(offs, track->usrbuf_blksize)
2829 + track->usrbuf_blksize;
2830 if (offs >= track->usrbuf.capacity)
2831 offs -= track->usrbuf.capacity;
2832 ao->offset = offs;
2833
2834 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2835 ao->samples, ao->deltablks, ao->offset);
2836 break;
2837
2838 case AUDIO_WSEEK:
2839 /* XXX return value does not include outbuf one. */
2840 if (file->ptrack)
2841 *(u_long *)addr = file->ptrack->usrbuf.used;
2842 break;
2843
2844 case AUDIO_SETINFO:
2845 error = audio_exlock_enter(sc);
2846 if (error)
2847 break;
2848 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2849 if (error) {
2850 audio_exlock_exit(sc);
2851 break;
2852 }
2853 /* XXX TODO: update last_ai if /dev/sound ? */
2854 if (ISDEVSOUND(dev))
2855 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2856 audio_exlock_exit(sc);
2857 break;
2858
2859 case AUDIO_GETINFO:
2860 error = audio_exlock_enter(sc);
2861 if (error)
2862 break;
2863 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2864 audio_exlock_exit(sc);
2865 break;
2866
2867 case AUDIO_GETBUFINFO:
2868 error = audio_exlock_enter(sc);
2869 if (error)
2870 break;
2871 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2872 audio_exlock_exit(sc);
2873 break;
2874
2875 case AUDIO_DRAIN:
2876 if (file->ptrack) {
2877 mutex_enter(sc->sc_lock);
2878 error = audio_track_drain(sc, file->ptrack);
2879 mutex_exit(sc->sc_lock);
2880 }
2881 break;
2882
2883 case AUDIO_GETDEV:
2884 mutex_enter(sc->sc_lock);
2885 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2886 mutex_exit(sc->sc_lock);
2887 break;
2888
2889 case AUDIO_GETENC:
2890 ae = (audio_encoding_t *)addr;
2891 index = ae->index;
2892 if (index < 0 || index >= __arraycount(audio_encodings)) {
2893 error = EINVAL;
2894 break;
2895 }
2896 *ae = audio_encodings[index];
2897 ae->index = index;
2898 /*
2899 * EMULATED always.
2900 * EMULATED flag at that time used to mean that it could
2901 * not be passed directly to the hardware as-is. But
2902 * currently, all formats including hardware native is not
2903 * passed directly to the hardware. So I set EMULATED
2904 * flag for all formats.
2905 */
2906 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2907 break;
2908
2909 case AUDIO_GETFD:
2910 /*
2911 * Returns the current setting of full duplex mode.
2912 * If HW has full duplex mode and there are two mixers,
2913 * it is full duplex. Otherwise half duplex.
2914 */
2915 error = audio_exlock_enter(sc);
2916 if (error)
2917 break;
2918 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2919 && (sc->sc_pmixer && sc->sc_rmixer);
2920 audio_exlock_exit(sc);
2921 *(int *)addr = fd;
2922 break;
2923
2924 case AUDIO_GETPROPS:
2925 *(int *)addr = sc->sc_props;
2926 break;
2927
2928 case AUDIO_QUERYFORMAT:
2929 query = (audio_format_query_t *)addr;
2930 mutex_enter(sc->sc_lock);
2931 error = sc->hw_if->query_format(sc->hw_hdl, query);
2932 mutex_exit(sc->sc_lock);
2933 /* Hide internal infomations */
2934 query->fmt.driver_data = NULL;
2935 break;
2936
2937 case AUDIO_GETFORMAT:
2938 error = audio_exlock_enter(sc);
2939 if (error)
2940 break;
2941 audio_mixers_get_format(sc, (struct audio_info *)addr);
2942 audio_exlock_exit(sc);
2943 break;
2944
2945 case AUDIO_SETFORMAT:
2946 error = audio_exlock_enter(sc);
2947 audio_mixers_get_format(sc, &ai);
2948 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2949 if (error) {
2950 /* Rollback */
2951 audio_mixers_set_format(sc, &ai);
2952 }
2953 audio_exlock_exit(sc);
2954 break;
2955
2956 case AUDIO_SETFD:
2957 case AUDIO_SETCHAN:
2958 case AUDIO_GETCHAN:
2959 /* Obsoleted */
2960 break;
2961
2962 default:
2963 if (sc->hw_if->dev_ioctl) {
2964 mutex_enter(sc->sc_lock);
2965 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2966 cmd, addr, flag, l);
2967 mutex_exit(sc->sc_lock);
2968 } else {
2969 TRACEF(2, file, "unknown ioctl");
2970 error = EINVAL;
2971 }
2972 break;
2973 }
2974 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2975 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2976 error);
2977 return error;
2978 }
2979
2980 /*
2981 * Returns the number of bytes that can be read on recording buffer.
2982 */
2983 static __inline int
2984 audio_track_readablebytes(const audio_track_t *track)
2985 {
2986 int bytes;
2987
2988 KASSERT(track);
2989 KASSERT(track->mode == AUMODE_RECORD);
2990
2991 /*
2992 * Although usrbuf is primarily readable data, recorded data
2993 * also stays in track->input until reading. So it is necessary
2994 * to add it. track->input is in frame, usrbuf is in byte.
2995 */
2996 bytes = track->usrbuf.used +
2997 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
2998 return bytes;
2999 }
3000
3001 /*
3002 * Must be called without sc_lock nor sc_exlock held.
3003 */
3004 int
3005 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3006 audio_file_t *file)
3007 {
3008 audio_track_t *track;
3009 int revents;
3010 bool in_is_valid;
3011 bool out_is_valid;
3012
3013 #if defined(AUDIO_DEBUG)
3014 #define POLLEV_BITMAP "\177\020" \
3015 "b\10WRBAND\0" \
3016 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3017 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3018 char evbuf[64];
3019 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3020 TRACEF(2, file, "pid=%d.%d events=%s",
3021 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3022 #endif
3023
3024 revents = 0;
3025 in_is_valid = false;
3026 out_is_valid = false;
3027 if (events & (POLLIN | POLLRDNORM)) {
3028 track = file->rtrack;
3029 if (track) {
3030 int used;
3031 in_is_valid = true;
3032 used = audio_track_readablebytes(track);
3033 if (used > 0)
3034 revents |= events & (POLLIN | POLLRDNORM);
3035 }
3036 }
3037 if (events & (POLLOUT | POLLWRNORM)) {
3038 track = file->ptrack;
3039 if (track) {
3040 out_is_valid = true;
3041 if (track->usrbuf.used <= track->usrbuf_usedlow)
3042 revents |= events & (POLLOUT | POLLWRNORM);
3043 }
3044 }
3045
3046 if (revents == 0) {
3047 mutex_enter(sc->sc_lock);
3048 if (in_is_valid) {
3049 TRACEF(3, file, "selrecord rsel");
3050 selrecord(l, &sc->sc_rsel);
3051 }
3052 if (out_is_valid) {
3053 TRACEF(3, file, "selrecord wsel");
3054 selrecord(l, &sc->sc_wsel);
3055 }
3056 mutex_exit(sc->sc_lock);
3057 }
3058
3059 #if defined(AUDIO_DEBUG)
3060 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3061 TRACEF(2, file, "revents=%s", evbuf);
3062 #endif
3063 return revents;
3064 }
3065
3066 static const struct filterops audioread_filtops = {
3067 .f_isfd = 1,
3068 .f_attach = NULL,
3069 .f_detach = filt_audioread_detach,
3070 .f_event = filt_audioread_event,
3071 };
3072
3073 static void
3074 filt_audioread_detach(struct knote *kn)
3075 {
3076 struct audio_softc *sc;
3077 audio_file_t *file;
3078
3079 file = kn->kn_hook;
3080 sc = file->sc;
3081 TRACEF(3, file, "");
3082
3083 mutex_enter(sc->sc_lock);
3084 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
3085 mutex_exit(sc->sc_lock);
3086 }
3087
3088 static int
3089 filt_audioread_event(struct knote *kn, long hint)
3090 {
3091 audio_file_t *file;
3092 audio_track_t *track;
3093
3094 file = kn->kn_hook;
3095 track = file->rtrack;
3096
3097 /*
3098 * kn_data must contain the number of bytes can be read.
3099 * The return value indicates whether the event occurs or not.
3100 */
3101
3102 if (track == NULL) {
3103 /* can not read with this descriptor. */
3104 kn->kn_data = 0;
3105 return 0;
3106 }
3107
3108 kn->kn_data = audio_track_readablebytes(track);
3109 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3110 return kn->kn_data > 0;
3111 }
3112
3113 static const struct filterops audiowrite_filtops = {
3114 .f_isfd = 1,
3115 .f_attach = NULL,
3116 .f_detach = filt_audiowrite_detach,
3117 .f_event = filt_audiowrite_event,
3118 };
3119
3120 static void
3121 filt_audiowrite_detach(struct knote *kn)
3122 {
3123 struct audio_softc *sc;
3124 audio_file_t *file;
3125
3126 file = kn->kn_hook;
3127 sc = file->sc;
3128 TRACEF(3, file, "");
3129
3130 mutex_enter(sc->sc_lock);
3131 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
3132 mutex_exit(sc->sc_lock);
3133 }
3134
3135 static int
3136 filt_audiowrite_event(struct knote *kn, long hint)
3137 {
3138 audio_file_t *file;
3139 audio_track_t *track;
3140
3141 file = kn->kn_hook;
3142 track = file->ptrack;
3143
3144 /*
3145 * kn_data must contain the number of bytes can be write.
3146 * The return value indicates whether the event occurs or not.
3147 */
3148
3149 if (track == NULL) {
3150 /* can not write with this descriptor. */
3151 kn->kn_data = 0;
3152 return 0;
3153 }
3154
3155 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3156 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3157 return (track->usrbuf.used < track->usrbuf_usedlow);
3158 }
3159
3160 /*
3161 * Must be called without sc_lock nor sc_exlock held.
3162 */
3163 int
3164 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3165 {
3166 struct klist *klist;
3167
3168 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3169
3170 mutex_enter(sc->sc_lock);
3171 switch (kn->kn_filter) {
3172 case EVFILT_READ:
3173 klist = &sc->sc_rsel.sel_klist;
3174 kn->kn_fop = &audioread_filtops;
3175 break;
3176
3177 case EVFILT_WRITE:
3178 klist = &sc->sc_wsel.sel_klist;
3179 kn->kn_fop = &audiowrite_filtops;
3180 break;
3181
3182 default:
3183 mutex_exit(sc->sc_lock);
3184 return EINVAL;
3185 }
3186
3187 kn->kn_hook = file;
3188
3189 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3190 mutex_exit(sc->sc_lock);
3191
3192 return 0;
3193 }
3194
3195 /*
3196 * Must be called without sc_lock nor sc_exlock held.
3197 */
3198 int
3199 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3200 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3201 audio_file_t *file)
3202 {
3203 audio_track_t *track;
3204 vsize_t vsize;
3205 int error;
3206
3207 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3208
3209 if (*offp < 0)
3210 return EINVAL;
3211
3212 #if 0
3213 /* XXX
3214 * The idea here was to use the protection to determine if
3215 * we are mapping the read or write buffer, but it fails.
3216 * The VM system is broken in (at least) two ways.
3217 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3218 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3219 * has to be used for mmapping the play buffer.
3220 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3221 * audio_mmap will get called at some point with VM_PROT_READ
3222 * only.
3223 * So, alas, we always map the play buffer for now.
3224 */
3225 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3226 prot == VM_PROT_WRITE)
3227 track = file->ptrack;
3228 else if (prot == VM_PROT_READ)
3229 track = file->rtrack;
3230 else
3231 return EINVAL;
3232 #else
3233 track = file->ptrack;
3234 #endif
3235 if (track == NULL)
3236 return EACCES;
3237
3238 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3239 if (len > vsize)
3240 return EOVERFLOW;
3241 if (*offp > (uint)(vsize - len))
3242 return EOVERFLOW;
3243
3244 /* XXX TODO: what happens when mmap twice. */
3245 if (!track->mmapped) {
3246 track->mmapped = true;
3247
3248 if (!track->is_pause) {
3249 error = audio_exlock_mutex_enter(sc);
3250 if (error)
3251 return error;
3252 if (sc->sc_pbusy == false)
3253 audio_pmixer_start(sc, true);
3254 audio_exlock_mutex_exit(sc);
3255 }
3256 /* XXX mmapping record buffer is not supported */
3257 }
3258
3259 /* get ringbuffer */
3260 *uobjp = track->uobj;
3261
3262 /* Acquire a reference for the mmap. munmap will release. */
3263 uao_reference(*uobjp);
3264 *maxprotp = prot;
3265 *advicep = UVM_ADV_RANDOM;
3266 *flagsp = MAP_SHARED;
3267 return 0;
3268 }
3269
3270 /*
3271 * /dev/audioctl has to be able to open at any time without interference
3272 * with any /dev/audio or /dev/sound.
3273 * Must be called with sc_exlock held and without sc_lock held.
3274 */
3275 static int
3276 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3277 struct lwp *l)
3278 {
3279 struct file *fp;
3280 audio_file_t *af;
3281 int fd;
3282 int error;
3283
3284 KASSERT(sc->sc_exlock);
3285
3286 TRACE(1, "");
3287
3288 error = fd_allocfile(&fp, &fd);
3289 if (error)
3290 return error;
3291
3292 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3293 af->sc = sc;
3294 af->dev = dev;
3295
3296 /* Not necessary to insert sc_files. */
3297
3298 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3299 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3300
3301 return error;
3302 }
3303
3304 /*
3305 * Free 'mem' if available, and initialize the pointer.
3306 * For this reason, this is implemented as macro.
3307 */
3308 #define audio_free(mem) do { \
3309 if (mem != NULL) { \
3310 kern_free(mem); \
3311 mem = NULL; \
3312 } \
3313 } while (0)
3314
3315 /*
3316 * (Re)allocate 'memblock' with specified 'bytes'.
3317 * bytes must not be 0.
3318 * This function never returns NULL.
3319 */
3320 static void *
3321 audio_realloc(void *memblock, size_t bytes)
3322 {
3323
3324 KASSERT(bytes != 0);
3325 audio_free(memblock);
3326 return kern_malloc(bytes, M_WAITOK);
3327 }
3328
3329 /*
3330 * (Re)allocate usrbuf with 'newbufsize' bytes.
3331 * Use this function for usrbuf because only usrbuf can be mmapped.
3332 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3333 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3334 * and returns errno.
3335 * It must be called before updating usrbuf.capacity.
3336 */
3337 static int
3338 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3339 {
3340 struct audio_softc *sc;
3341 vaddr_t vstart;
3342 vsize_t oldvsize;
3343 vsize_t newvsize;
3344 int error;
3345
3346 KASSERT(newbufsize > 0);
3347 sc = track->mixer->sc;
3348
3349 /* Get a nonzero multiple of PAGE_SIZE */
3350 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3351
3352 if (track->usrbuf.mem != NULL) {
3353 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3354 PAGE_SIZE);
3355 if (oldvsize == newvsize) {
3356 track->usrbuf.capacity = newbufsize;
3357 return 0;
3358 }
3359 vstart = (vaddr_t)track->usrbuf.mem;
3360 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3361 /* uvm_unmap also detach uobj */
3362 track->uobj = NULL; /* paranoia */
3363 track->usrbuf.mem = NULL;
3364 }
3365
3366 /* Create a uvm anonymous object */
3367 track->uobj = uao_create(newvsize, 0);
3368
3369 /* Map it into the kernel virtual address space */
3370 vstart = 0;
3371 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3372 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3373 UVM_ADV_RANDOM, 0));
3374 if (error) {
3375 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3376 uao_detach(track->uobj); /* release reference */
3377 goto abort;
3378 }
3379
3380 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3381 false, 0);
3382 if (error) {
3383 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3384 error);
3385 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3386 /* uvm_unmap also detach uobj */
3387 goto abort;
3388 }
3389
3390 track->usrbuf.mem = (void *)vstart;
3391 track->usrbuf.capacity = newbufsize;
3392 memset(track->usrbuf.mem, 0, newvsize);
3393 return 0;
3394
3395 /* failure */
3396 abort:
3397 track->uobj = NULL; /* paranoia */
3398 track->usrbuf.mem = NULL;
3399 track->usrbuf.capacity = 0;
3400 return error;
3401 }
3402
3403 /*
3404 * Free usrbuf (if available).
3405 */
3406 static void
3407 audio_free_usrbuf(audio_track_t *track)
3408 {
3409 vaddr_t vstart;
3410 vsize_t vsize;
3411
3412 vstart = (vaddr_t)track->usrbuf.mem;
3413 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3414 if (track->usrbuf.mem != NULL) {
3415 /*
3416 * Unmap the kernel mapping. uvm_unmap releases the
3417 * reference to the uvm object, and this should be the
3418 * last virtual mapping of the uvm object, so no need
3419 * to explicitly release (`detach') the object.
3420 */
3421 uvm_unmap(kernel_map, vstart, vstart + vsize);
3422
3423 track->uobj = NULL;
3424 track->usrbuf.mem = NULL;
3425 track->usrbuf.capacity = 0;
3426 }
3427 }
3428
3429 /*
3430 * This filter changes the volume for each channel.
3431 * arg->context points track->ch_volume[].
3432 */
3433 static void
3434 audio_track_chvol(audio_filter_arg_t *arg)
3435 {
3436 int16_t *ch_volume;
3437 const aint_t *s;
3438 aint_t *d;
3439 u_int i;
3440 u_int ch;
3441 u_int channels;
3442
3443 DIAGNOSTIC_filter_arg(arg);
3444 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3445 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3446 arg->srcfmt->channels, arg->dstfmt->channels);
3447 KASSERT(arg->context != NULL);
3448 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3449 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3450
3451 s = arg->src;
3452 d = arg->dst;
3453 ch_volume = arg->context;
3454
3455 channels = arg->srcfmt->channels;
3456 for (i = 0; i < arg->count; i++) {
3457 for (ch = 0; ch < channels; ch++) {
3458 aint2_t val;
3459 val = *s++;
3460 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3461 *d++ = (aint_t)val;
3462 }
3463 }
3464 }
3465
3466 /*
3467 * This filter performs conversion from stereo (or more channels) to mono.
3468 */
3469 static void
3470 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3471 {
3472 const aint_t *s;
3473 aint_t *d;
3474 u_int i;
3475
3476 DIAGNOSTIC_filter_arg(arg);
3477
3478 s = arg->src;
3479 d = arg->dst;
3480
3481 for (i = 0; i < arg->count; i++) {
3482 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3483 s += arg->srcfmt->channels;
3484 }
3485 }
3486
3487 /*
3488 * This filter performs conversion from mono to stereo (or more channels).
3489 */
3490 static void
3491 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3492 {
3493 const aint_t *s;
3494 aint_t *d;
3495 u_int i;
3496 u_int ch;
3497 u_int dstchannels;
3498
3499 DIAGNOSTIC_filter_arg(arg);
3500
3501 s = arg->src;
3502 d = arg->dst;
3503 dstchannels = arg->dstfmt->channels;
3504
3505 for (i = 0; i < arg->count; i++) {
3506 d[0] = s[0];
3507 d[1] = s[0];
3508 s++;
3509 d += dstchannels;
3510 }
3511 if (dstchannels > 2) {
3512 d = arg->dst;
3513 for (i = 0; i < arg->count; i++) {
3514 for (ch = 2; ch < dstchannels; ch++) {
3515 d[ch] = 0;
3516 }
3517 d += dstchannels;
3518 }
3519 }
3520 }
3521
3522 /*
3523 * This filter shrinks M channels into N channels.
3524 * Extra channels are discarded.
3525 */
3526 static void
3527 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3528 {
3529 const aint_t *s;
3530 aint_t *d;
3531 u_int i;
3532 u_int ch;
3533
3534 DIAGNOSTIC_filter_arg(arg);
3535
3536 s = arg->src;
3537 d = arg->dst;
3538
3539 for (i = 0; i < arg->count; i++) {
3540 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3541 *d++ = s[ch];
3542 }
3543 s += arg->srcfmt->channels;
3544 }
3545 }
3546
3547 /*
3548 * This filter expands M channels into N channels.
3549 * Silence is inserted for missing channels.
3550 */
3551 static void
3552 audio_track_chmix_expand(audio_filter_arg_t *arg)
3553 {
3554 const aint_t *s;
3555 aint_t *d;
3556 u_int i;
3557 u_int ch;
3558 u_int srcchannels;
3559 u_int dstchannels;
3560
3561 DIAGNOSTIC_filter_arg(arg);
3562
3563 s = arg->src;
3564 d = arg->dst;
3565
3566 srcchannels = arg->srcfmt->channels;
3567 dstchannels = arg->dstfmt->channels;
3568 for (i = 0; i < arg->count; i++) {
3569 for (ch = 0; ch < srcchannels; ch++) {
3570 *d++ = *s++;
3571 }
3572 for (; ch < dstchannels; ch++) {
3573 *d++ = 0;
3574 }
3575 }
3576 }
3577
3578 /*
3579 * This filter performs frequency conversion (up sampling).
3580 * It uses linear interpolation.
3581 */
3582 static void
3583 audio_track_freq_up(audio_filter_arg_t *arg)
3584 {
3585 audio_track_t *track;
3586 audio_ring_t *src;
3587 audio_ring_t *dst;
3588 const aint_t *s;
3589 aint_t *d;
3590 aint_t prev[AUDIO_MAX_CHANNELS];
3591 aint_t curr[AUDIO_MAX_CHANNELS];
3592 aint_t grad[AUDIO_MAX_CHANNELS];
3593 u_int i;
3594 u_int t;
3595 u_int step;
3596 u_int channels;
3597 u_int ch;
3598 int srcused;
3599
3600 track = arg->context;
3601 KASSERT(track);
3602 src = &track->freq.srcbuf;
3603 dst = track->freq.dst;
3604 DIAGNOSTIC_ring(dst);
3605 DIAGNOSTIC_ring(src);
3606 KASSERT(src->used > 0);
3607 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3608 "src->fmt.channels=%d dst->fmt.channels=%d",
3609 src->fmt.channels, dst->fmt.channels);
3610 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3611 "src->head=%d track->mixer->frames_per_block=%d",
3612 src->head, track->mixer->frames_per_block);
3613
3614 s = arg->src;
3615 d = arg->dst;
3616
3617 /*
3618 * In order to faciliate interpolation for each block, slide (delay)
3619 * input by one sample. As a result, strictly speaking, the output
3620 * phase is delayed by 1/dstfreq. However, I believe there is no
3621 * observable impact.
3622 *
3623 * Example)
3624 * srcfreq:dstfreq = 1:3
3625 *
3626 * A - -
3627 * |
3628 * |
3629 * | B - -
3630 * +-----+-----> input timeframe
3631 * 0 1
3632 *
3633 * 0 1
3634 * +-----+-----> input timeframe
3635 * | A
3636 * | x x
3637 * | x x
3638 * x (B)
3639 * +-+-+-+-+-+-> output timeframe
3640 * 0 1 2 3 4 5
3641 */
3642
3643 /* Last samples in previous block */
3644 channels = src->fmt.channels;
3645 for (ch = 0; ch < channels; ch++) {
3646 prev[ch] = track->freq_prev[ch];
3647 curr[ch] = track->freq_curr[ch];
3648 grad[ch] = curr[ch] - prev[ch];
3649 }
3650
3651 step = track->freq_step;
3652 t = track->freq_current;
3653 //#define FREQ_DEBUG
3654 #if defined(FREQ_DEBUG)
3655 #define PRINTF(fmt...) printf(fmt)
3656 #else
3657 #define PRINTF(fmt...) do { } while (0)
3658 #endif
3659 srcused = src->used;
3660 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3661 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3662 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3663 PRINTF(" t=%d\n", t);
3664
3665 for (i = 0; i < arg->count; i++) {
3666 PRINTF("i=%d t=%5d", i, t);
3667 if (t >= 65536) {
3668 for (ch = 0; ch < channels; ch++) {
3669 prev[ch] = curr[ch];
3670 curr[ch] = *s++;
3671 grad[ch] = curr[ch] - prev[ch];
3672 }
3673 PRINTF(" prev=%d s[%d]=%d",
3674 prev[0], src->used - srcused, curr[0]);
3675
3676 /* Update */
3677 t -= 65536;
3678 srcused--;
3679 if (srcused < 0) {
3680 PRINTF(" break\n");
3681 break;
3682 }
3683 }
3684
3685 for (ch = 0; ch < channels; ch++) {
3686 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3687 #if defined(FREQ_DEBUG)
3688 if (ch == 0)
3689 printf(" t=%5d *d=%d", t, d[-1]);
3690 #endif
3691 }
3692 t += step;
3693
3694 PRINTF("\n");
3695 }
3696 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3697
3698 auring_take(src, src->used);
3699 auring_push(dst, i);
3700
3701 /* Adjust */
3702 t += track->freq_leap;
3703
3704 track->freq_current = t;
3705 for (ch = 0; ch < channels; ch++) {
3706 track->freq_prev[ch] = prev[ch];
3707 track->freq_curr[ch] = curr[ch];
3708 }
3709 }
3710
3711 /*
3712 * This filter performs frequency conversion (down sampling).
3713 * It uses simple thinning.
3714 */
3715 static void
3716 audio_track_freq_down(audio_filter_arg_t *arg)
3717 {
3718 audio_track_t *track;
3719 audio_ring_t *src;
3720 audio_ring_t *dst;
3721 const aint_t *s0;
3722 aint_t *d;
3723 u_int i;
3724 u_int t;
3725 u_int step;
3726 u_int ch;
3727 u_int channels;
3728
3729 track = arg->context;
3730 KASSERT(track);
3731 src = &track->freq.srcbuf;
3732 dst = track->freq.dst;
3733
3734 DIAGNOSTIC_ring(dst);
3735 DIAGNOSTIC_ring(src);
3736 KASSERT(src->used > 0);
3737 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3738 "src->fmt.channels=%d dst->fmt.channels=%d",
3739 src->fmt.channels, dst->fmt.channels);
3740 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3741 "src->head=%d track->mixer->frames_per_block=%d",
3742 src->head, track->mixer->frames_per_block);
3743
3744 s0 = arg->src;
3745 d = arg->dst;
3746 t = track->freq_current;
3747 step = track->freq_step;
3748 channels = dst->fmt.channels;
3749 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3750 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3751 PRINTF(" t=%d\n", t);
3752
3753 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3754 const aint_t *s;
3755 PRINTF("i=%4d t=%10d", i, t);
3756 s = s0 + (t / 65536) * channels;
3757 PRINTF(" s=%5ld", (s - s0) / channels);
3758 for (ch = 0; ch < channels; ch++) {
3759 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3760 *d++ = s[ch];
3761 }
3762 PRINTF("\n");
3763 t += step;
3764 }
3765 t += track->freq_leap;
3766 PRINTF("end t=%d\n", t);
3767 auring_take(src, src->used);
3768 auring_push(dst, i);
3769 track->freq_current = t % 65536;
3770 }
3771
3772 /*
3773 * Creates track and returns it.
3774 * Must be called without sc_lock held.
3775 */
3776 audio_track_t *
3777 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3778 {
3779 audio_track_t *track;
3780 static int newid = 0;
3781
3782 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3783
3784 track->id = newid++;
3785 track->mixer = mixer;
3786 track->mode = mixer->mode;
3787
3788 /* Do TRACE after id is assigned. */
3789 TRACET(3, track, "for %s",
3790 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3791
3792 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3793 track->volume = 256;
3794 #endif
3795 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3796 track->ch_volume[i] = 256;
3797 }
3798
3799 return track;
3800 }
3801
3802 /*
3803 * Release all resources of the track and track itself.
3804 * track must not be NULL. Don't specify the track within the file
3805 * structure linked from sc->sc_files.
3806 */
3807 static void
3808 audio_track_destroy(audio_track_t *track)
3809 {
3810
3811 KASSERT(track);
3812
3813 audio_free_usrbuf(track);
3814 audio_free(track->codec.srcbuf.mem);
3815 audio_free(track->chvol.srcbuf.mem);
3816 audio_free(track->chmix.srcbuf.mem);
3817 audio_free(track->freq.srcbuf.mem);
3818 audio_free(track->outbuf.mem);
3819
3820 kmem_free(track, sizeof(*track));
3821 }
3822
3823 /*
3824 * It returns encoding conversion filter according to src and dst format.
3825 * If it is not a convertible pair, it returns NULL. Either src or dst
3826 * must be internal format.
3827 */
3828 static audio_filter_t
3829 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3830 const audio_format2_t *dst)
3831 {
3832
3833 if (audio_format2_is_internal(src)) {
3834 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3835 return audio_internal_to_mulaw;
3836 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3837 return audio_internal_to_alaw;
3838 } else if (audio_format2_is_linear(dst)) {
3839 switch (dst->stride) {
3840 case 8:
3841 return audio_internal_to_linear8;
3842 case 16:
3843 return audio_internal_to_linear16;
3844 #if defined(AUDIO_SUPPORT_LINEAR24)
3845 case 24:
3846 return audio_internal_to_linear24;
3847 #endif
3848 case 32:
3849 return audio_internal_to_linear32;
3850 default:
3851 TRACET(1, track, "unsupported %s stride %d",
3852 "dst", dst->stride);
3853 goto abort;
3854 }
3855 }
3856 } else if (audio_format2_is_internal(dst)) {
3857 if (src->encoding == AUDIO_ENCODING_ULAW) {
3858 return audio_mulaw_to_internal;
3859 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3860 return audio_alaw_to_internal;
3861 } else if (audio_format2_is_linear(src)) {
3862 switch (src->stride) {
3863 case 8:
3864 return audio_linear8_to_internal;
3865 case 16:
3866 return audio_linear16_to_internal;
3867 #if defined(AUDIO_SUPPORT_LINEAR24)
3868 case 24:
3869 return audio_linear24_to_internal;
3870 #endif
3871 case 32:
3872 return audio_linear32_to_internal;
3873 default:
3874 TRACET(1, track, "unsupported %s stride %d",
3875 "src", src->stride);
3876 goto abort;
3877 }
3878 }
3879 }
3880
3881 TRACET(1, track, "unsupported encoding");
3882 abort:
3883 #if defined(AUDIO_DEBUG)
3884 if (audiodebug >= 2) {
3885 char buf[100];
3886 audio_format2_tostr(buf, sizeof(buf), src);
3887 TRACET(2, track, "src %s", buf);
3888 audio_format2_tostr(buf, sizeof(buf), dst);
3889 TRACET(2, track, "dst %s", buf);
3890 }
3891 #endif
3892 return NULL;
3893 }
3894
3895 /*
3896 * Initialize the codec stage of this track as necessary.
3897 * If successful, it initializes the codec stage as necessary, stores updated
3898 * last_dst in *last_dstp in any case, and returns 0.
3899 * Otherwise, it returns errno without modifying *last_dstp.
3900 */
3901 static int
3902 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3903 {
3904 audio_ring_t *last_dst;
3905 audio_ring_t *srcbuf;
3906 audio_format2_t *srcfmt;
3907 audio_format2_t *dstfmt;
3908 audio_filter_arg_t *arg;
3909 u_int len;
3910 int error;
3911
3912 KASSERT(track);
3913
3914 last_dst = *last_dstp;
3915 dstfmt = &last_dst->fmt;
3916 srcfmt = &track->inputfmt;
3917 srcbuf = &track->codec.srcbuf;
3918 error = 0;
3919
3920 if (srcfmt->encoding != dstfmt->encoding
3921 || srcfmt->precision != dstfmt->precision
3922 || srcfmt->stride != dstfmt->stride) {
3923 track->codec.dst = last_dst;
3924
3925 srcbuf->fmt = *dstfmt;
3926 srcbuf->fmt.encoding = srcfmt->encoding;
3927 srcbuf->fmt.precision = srcfmt->precision;
3928 srcbuf->fmt.stride = srcfmt->stride;
3929
3930 track->codec.filter = audio_track_get_codec(track,
3931 &srcbuf->fmt, dstfmt);
3932 if (track->codec.filter == NULL) {
3933 error = EINVAL;
3934 goto abort;
3935 }
3936
3937 srcbuf->head = 0;
3938 srcbuf->used = 0;
3939 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3940 len = auring_bytelen(srcbuf);
3941 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3942
3943 arg = &track->codec.arg;
3944 arg->srcfmt = &srcbuf->fmt;
3945 arg->dstfmt = dstfmt;
3946 arg->context = NULL;
3947
3948 *last_dstp = srcbuf;
3949 return 0;
3950 }
3951
3952 abort:
3953 track->codec.filter = NULL;
3954 audio_free(srcbuf->mem);
3955 return error;
3956 }
3957
3958 /*
3959 * Initialize the chvol stage of this track as necessary.
3960 * If successful, it initializes the chvol stage as necessary, stores updated
3961 * last_dst in *last_dstp in any case, and returns 0.
3962 * Otherwise, it returns errno without modifying *last_dstp.
3963 */
3964 static int
3965 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3966 {
3967 audio_ring_t *last_dst;
3968 audio_ring_t *srcbuf;
3969 audio_format2_t *srcfmt;
3970 audio_format2_t *dstfmt;
3971 audio_filter_arg_t *arg;
3972 u_int len;
3973 int error;
3974
3975 KASSERT(track);
3976
3977 last_dst = *last_dstp;
3978 dstfmt = &last_dst->fmt;
3979 srcfmt = &track->inputfmt;
3980 srcbuf = &track->chvol.srcbuf;
3981 error = 0;
3982
3983 /* Check whether channel volume conversion is necessary. */
3984 bool use_chvol = false;
3985 for (int ch = 0; ch < srcfmt->channels; ch++) {
3986 if (track->ch_volume[ch] != 256) {
3987 use_chvol = true;
3988 break;
3989 }
3990 }
3991
3992 if (use_chvol == true) {
3993 track->chvol.dst = last_dst;
3994 track->chvol.filter = audio_track_chvol;
3995
3996 srcbuf->fmt = *dstfmt;
3997 /* no format conversion occurs */
3998
3999 srcbuf->head = 0;
4000 srcbuf->used = 0;
4001 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4002 len = auring_bytelen(srcbuf);
4003 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4004
4005 arg = &track->chvol.arg;
4006 arg->srcfmt = &srcbuf->fmt;
4007 arg->dstfmt = dstfmt;
4008 arg->context = track->ch_volume;
4009
4010 *last_dstp = srcbuf;
4011 return 0;
4012 }
4013
4014 track->chvol.filter = NULL;
4015 audio_free(srcbuf->mem);
4016 return error;
4017 }
4018
4019 /*
4020 * Initialize the chmix stage of this track as necessary.
4021 * If successful, it initializes the chmix stage as necessary, stores updated
4022 * last_dst in *last_dstp in any case, and returns 0.
4023 * Otherwise, it returns errno without modifying *last_dstp.
4024 */
4025 static int
4026 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4027 {
4028 audio_ring_t *last_dst;
4029 audio_ring_t *srcbuf;
4030 audio_format2_t *srcfmt;
4031 audio_format2_t *dstfmt;
4032 audio_filter_arg_t *arg;
4033 u_int srcch;
4034 u_int dstch;
4035 u_int len;
4036 int error;
4037
4038 KASSERT(track);
4039
4040 last_dst = *last_dstp;
4041 dstfmt = &last_dst->fmt;
4042 srcfmt = &track->inputfmt;
4043 srcbuf = &track->chmix.srcbuf;
4044 error = 0;
4045
4046 srcch = srcfmt->channels;
4047 dstch = dstfmt->channels;
4048 if (srcch != dstch) {
4049 track->chmix.dst = last_dst;
4050
4051 if (srcch >= 2 && dstch == 1) {
4052 track->chmix.filter = audio_track_chmix_mixLR;
4053 } else if (srcch == 1 && dstch >= 2) {
4054 track->chmix.filter = audio_track_chmix_dupLR;
4055 } else if (srcch > dstch) {
4056 track->chmix.filter = audio_track_chmix_shrink;
4057 } else {
4058 track->chmix.filter = audio_track_chmix_expand;
4059 }
4060
4061 srcbuf->fmt = *dstfmt;
4062 srcbuf->fmt.channels = srcch;
4063
4064 srcbuf->head = 0;
4065 srcbuf->used = 0;
4066 /* XXX The buffer size should be able to calculate. */
4067 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4068 len = auring_bytelen(srcbuf);
4069 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4070
4071 arg = &track->chmix.arg;
4072 arg->srcfmt = &srcbuf->fmt;
4073 arg->dstfmt = dstfmt;
4074 arg->context = NULL;
4075
4076 *last_dstp = srcbuf;
4077 return 0;
4078 }
4079
4080 track->chmix.filter = NULL;
4081 audio_free(srcbuf->mem);
4082 return error;
4083 }
4084
4085 /*
4086 * Initialize the freq stage of this track as necessary.
4087 * If successful, it initializes the freq stage as necessary, stores updated
4088 * last_dst in *last_dstp in any case, and returns 0.
4089 * Otherwise, it returns errno without modifying *last_dstp.
4090 */
4091 static int
4092 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4093 {
4094 audio_ring_t *last_dst;
4095 audio_ring_t *srcbuf;
4096 audio_format2_t *srcfmt;
4097 audio_format2_t *dstfmt;
4098 audio_filter_arg_t *arg;
4099 uint32_t srcfreq;
4100 uint32_t dstfreq;
4101 u_int dst_capacity;
4102 u_int mod;
4103 u_int len;
4104 int error;
4105
4106 KASSERT(track);
4107
4108 last_dst = *last_dstp;
4109 dstfmt = &last_dst->fmt;
4110 srcfmt = &track->inputfmt;
4111 srcbuf = &track->freq.srcbuf;
4112 error = 0;
4113
4114 srcfreq = srcfmt->sample_rate;
4115 dstfreq = dstfmt->sample_rate;
4116 if (srcfreq != dstfreq) {
4117 track->freq.dst = last_dst;
4118
4119 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4120 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4121
4122 /* freq_step is the ratio of src/dst when let dst 65536. */
4123 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4124
4125 dst_capacity = frame_per_block(track->mixer, dstfmt);
4126 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4127 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4128
4129 if (track->freq_step < 65536) {
4130 track->freq.filter = audio_track_freq_up;
4131 /* In order to carry at the first time. */
4132 track->freq_current = 65536;
4133 } else {
4134 track->freq.filter = audio_track_freq_down;
4135 track->freq_current = 0;
4136 }
4137
4138 srcbuf->fmt = *dstfmt;
4139 srcbuf->fmt.sample_rate = srcfreq;
4140
4141 srcbuf->head = 0;
4142 srcbuf->used = 0;
4143 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4144 len = auring_bytelen(srcbuf);
4145 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4146
4147 arg = &track->freq.arg;
4148 arg->srcfmt = &srcbuf->fmt;
4149 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4150 arg->context = track;
4151
4152 *last_dstp = srcbuf;
4153 return 0;
4154 }
4155
4156 track->freq.filter = NULL;
4157 audio_free(srcbuf->mem);
4158 return error;
4159 }
4160
4161 /*
4162 * When playing back: (e.g. if codec and freq stage are valid)
4163 *
4164 * write
4165 * | uiomove
4166 * v
4167 * usrbuf [...............] byte ring buffer (mmap-able)
4168 * | memcpy
4169 * v
4170 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4171 * .dst ----+
4172 * | convert
4173 * v
4174 * freq.srcbuf [....] 1 block (ring) buffer
4175 * .dst ----+
4176 * | convert
4177 * v
4178 * outbuf [...............] NBLKOUT blocks ring buffer
4179 *
4180 *
4181 * When recording:
4182 *
4183 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4184 * .dst ----+
4185 * | convert
4186 * v
4187 * codec.srcbuf[.....] 1 block (ring) buffer
4188 * .dst ----+
4189 * | convert
4190 * v
4191 * outbuf [.....] 1 block (ring) buffer
4192 * | memcpy
4193 * v
4194 * usrbuf [...............] byte ring buffer (mmap-able *)
4195 * | uiomove
4196 * v
4197 * read
4198 *
4199 * *: usrbuf for recording is also mmap-able due to symmetry with
4200 * playback buffer, but for now mmap will never happen for recording.
4201 */
4202
4203 /*
4204 * Set the userland format of this track.
4205 * usrfmt argument should be parameter verified with audio_check_params().
4206 * It will release and reallocate all internal conversion buffers.
4207 * It returns 0 if successful. Otherwise it returns errno with clearing all
4208 * internal buffers.
4209 * It must be called without sc_intr_lock since uvm_* routines require non
4210 * intr_lock state.
4211 * It must be called with track lock held since it may release and reallocate
4212 * outbuf.
4213 */
4214 static int
4215 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4216 {
4217 struct audio_softc *sc;
4218 u_int newbufsize;
4219 u_int oldblksize;
4220 u_int len;
4221 int error;
4222
4223 KASSERT(track);
4224 sc = track->mixer->sc;
4225
4226 /* usrbuf is the closest buffer to the userland. */
4227 track->usrbuf.fmt = *usrfmt;
4228
4229 /*
4230 * For references, one block size (in 40msec) is:
4231 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4232 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4233 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4234 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4235 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4236 *
4237 * For example,
4238 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4239 * newbufsize = rounddown(65536 / 7056) = 63504
4240 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4241 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4242 *
4243 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4244 * newbufsize = rounddown(65536 / 7680) = 61440
4245 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4246 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4247 */
4248 oldblksize = track->usrbuf_blksize;
4249 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4250 frame_per_block(track->mixer, &track->usrbuf.fmt));
4251 track->usrbuf.head = 0;
4252 track->usrbuf.used = 0;
4253 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4254 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4255 error = audio_realloc_usrbuf(track, newbufsize);
4256 if (error) {
4257 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4258 newbufsize);
4259 goto error;
4260 }
4261
4262 /* Recalc water mark. */
4263 if (track->usrbuf_blksize != oldblksize) {
4264 if (audio_track_is_playback(track)) {
4265 /* Set high at 100%, low at 75%. */
4266 track->usrbuf_usedhigh = track->usrbuf.capacity;
4267 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4268 } else {
4269 /* Set high at 100% minus 1block(?), low at 0% */
4270 track->usrbuf_usedhigh = track->usrbuf.capacity -
4271 track->usrbuf_blksize;
4272 track->usrbuf_usedlow = 0;
4273 }
4274 }
4275
4276 /* Stage buffer */
4277 audio_ring_t *last_dst = &track->outbuf;
4278 if (audio_track_is_playback(track)) {
4279 /* On playback, initialize from the mixer side in order. */
4280 track->inputfmt = *usrfmt;
4281 track->outbuf.fmt = track->mixer->track_fmt;
4282
4283 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4284 goto error;
4285 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4286 goto error;
4287 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4288 goto error;
4289 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4290 goto error;
4291 } else {
4292 /* On recording, initialize from userland side in order. */
4293 track->inputfmt = track->mixer->track_fmt;
4294 track->outbuf.fmt = *usrfmt;
4295
4296 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4297 goto error;
4298 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4299 goto error;
4300 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4301 goto error;
4302 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4303 goto error;
4304 }
4305 #if 0
4306 /* debug */
4307 if (track->freq.filter) {
4308 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4309 audio_print_format2("freq dst", &track->freq.dst->fmt);
4310 }
4311 if (track->chmix.filter) {
4312 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4313 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4314 }
4315 if (track->chvol.filter) {
4316 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4317 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4318 }
4319 if (track->codec.filter) {
4320 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4321 audio_print_format2("codec dst", &track->codec.dst->fmt);
4322 }
4323 #endif
4324
4325 /* Stage input buffer */
4326 track->input = last_dst;
4327
4328 /*
4329 * On the recording track, make the first stage a ring buffer.
4330 * XXX is there a better way?
4331 */
4332 if (audio_track_is_record(track)) {
4333 track->input->capacity = NBLKOUT *
4334 frame_per_block(track->mixer, &track->input->fmt);
4335 len = auring_bytelen(track->input);
4336 track->input->mem = audio_realloc(track->input->mem, len);
4337 }
4338
4339 /*
4340 * Output buffer.
4341 * On the playback track, its capacity is NBLKOUT blocks.
4342 * On the recording track, its capacity is 1 block.
4343 */
4344 track->outbuf.head = 0;
4345 track->outbuf.used = 0;
4346 track->outbuf.capacity = frame_per_block(track->mixer,
4347 &track->outbuf.fmt);
4348 if (audio_track_is_playback(track))
4349 track->outbuf.capacity *= NBLKOUT;
4350 len = auring_bytelen(&track->outbuf);
4351 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4352 if (track->outbuf.mem == NULL) {
4353 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4354 error = ENOMEM;
4355 goto error;
4356 }
4357
4358 #if defined(AUDIO_DEBUG)
4359 if (audiodebug >= 3) {
4360 struct audio_track_debugbuf m;
4361
4362 memset(&m, 0, sizeof(m));
4363 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4364 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4365 if (track->freq.filter)
4366 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4367 track->freq.srcbuf.capacity *
4368 frametobyte(&track->freq.srcbuf.fmt, 1));
4369 if (track->chmix.filter)
4370 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4371 track->chmix.srcbuf.capacity *
4372 frametobyte(&track->chmix.srcbuf.fmt, 1));
4373 if (track->chvol.filter)
4374 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4375 track->chvol.srcbuf.capacity *
4376 frametobyte(&track->chvol.srcbuf.fmt, 1));
4377 if (track->codec.filter)
4378 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4379 track->codec.srcbuf.capacity *
4380 frametobyte(&track->codec.srcbuf.fmt, 1));
4381 snprintf(m.usrbuf, sizeof(m.usrbuf),
4382 " usr=%d", track->usrbuf.capacity);
4383
4384 if (audio_track_is_playback(track)) {
4385 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4386 m.outbuf, m.freq, m.chmix,
4387 m.chvol, m.codec, m.usrbuf);
4388 } else {
4389 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4390 m.freq, m.chmix, m.chvol,
4391 m.codec, m.outbuf, m.usrbuf);
4392 }
4393 }
4394 #endif
4395 return 0;
4396
4397 error:
4398 audio_free_usrbuf(track);
4399 audio_free(track->codec.srcbuf.mem);
4400 audio_free(track->chvol.srcbuf.mem);
4401 audio_free(track->chmix.srcbuf.mem);
4402 audio_free(track->freq.srcbuf.mem);
4403 audio_free(track->outbuf.mem);
4404 return error;
4405 }
4406
4407 /*
4408 * Fill silence frames (as the internal format) up to 1 block
4409 * if the ring is not empty and less than 1 block.
4410 * It returns the number of appended frames.
4411 */
4412 static int
4413 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4414 {
4415 int fpb;
4416 int n;
4417
4418 KASSERT(track);
4419 KASSERT(audio_format2_is_internal(&ring->fmt));
4420
4421 /* XXX is n correct? */
4422 /* XXX memset uses frametobyte()? */
4423
4424 if (ring->used == 0)
4425 return 0;
4426
4427 fpb = frame_per_block(track->mixer, &ring->fmt);
4428 if (ring->used >= fpb)
4429 return 0;
4430
4431 n = (ring->capacity - ring->used) % fpb;
4432
4433 KASSERTMSG(auring_get_contig_free(ring) >= n,
4434 "auring_get_contig_free(ring)=%d n=%d",
4435 auring_get_contig_free(ring), n);
4436
4437 memset(auring_tailptr_aint(ring), 0,
4438 n * ring->fmt.channels * sizeof(aint_t));
4439 auring_push(ring, n);
4440 return n;
4441 }
4442
4443 /*
4444 * Execute the conversion stage.
4445 * It prepares arg from this stage and executes stage->filter.
4446 * It must be called only if stage->filter is not NULL.
4447 *
4448 * For stages other than frequency conversion, the function increments
4449 * src and dst counters here. For frequency conversion stage, on the
4450 * other hand, the function does not touch src and dst counters and
4451 * filter side has to increment them.
4452 */
4453 static void
4454 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4455 {
4456 audio_filter_arg_t *arg;
4457 int srccount;
4458 int dstcount;
4459 int count;
4460
4461 KASSERT(track);
4462 KASSERT(stage->filter);
4463
4464 srccount = auring_get_contig_used(&stage->srcbuf);
4465 dstcount = auring_get_contig_free(stage->dst);
4466
4467 if (isfreq) {
4468 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4469 count = uimin(dstcount, track->mixer->frames_per_block);
4470 } else {
4471 count = uimin(srccount, dstcount);
4472 }
4473
4474 if (count > 0) {
4475 arg = &stage->arg;
4476 arg->src = auring_headptr(&stage->srcbuf);
4477 arg->dst = auring_tailptr(stage->dst);
4478 arg->count = count;
4479
4480 stage->filter(arg);
4481
4482 if (!isfreq) {
4483 auring_take(&stage->srcbuf, count);
4484 auring_push(stage->dst, count);
4485 }
4486 }
4487 }
4488
4489 /*
4490 * Produce output buffer for playback from user input buffer.
4491 * It must be called only if usrbuf is not empty and outbuf is
4492 * available at least one free block.
4493 */
4494 static void
4495 audio_track_play(audio_track_t *track)
4496 {
4497 audio_ring_t *usrbuf;
4498 audio_ring_t *input;
4499 int count;
4500 int framesize;
4501 int bytes;
4502
4503 KASSERT(track);
4504 KASSERT(track->lock);
4505 TRACET(4, track, "start pstate=%d", track->pstate);
4506
4507 /* At this point usrbuf must not be empty. */
4508 KASSERT(track->usrbuf.used > 0);
4509 /* Also, outbuf must be available at least one block. */
4510 count = auring_get_contig_free(&track->outbuf);
4511 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4512 "count=%d fpb=%d",
4513 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4514
4515 /* XXX TODO: is this necessary for now? */
4516 int track_count_0 = track->outbuf.used;
4517
4518 usrbuf = &track->usrbuf;
4519 input = track->input;
4520
4521 /*
4522 * framesize is always 1 byte or more since all formats supported as
4523 * usrfmt(=input) have 8bit or more stride.
4524 */
4525 framesize = frametobyte(&input->fmt, 1);
4526 KASSERT(framesize >= 1);
4527
4528 /* The next stage of usrbuf (=input) must be available. */
4529 KASSERT(auring_get_contig_free(input) > 0);
4530
4531 /*
4532 * Copy usrbuf up to 1block to input buffer.
4533 * count is the number of frames to copy from usrbuf.
4534 * bytes is the number of bytes to copy from usrbuf. However it is
4535 * not copied less than one frame.
4536 */
4537 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4538 bytes = count * framesize;
4539
4540 track->usrbuf_stamp += bytes;
4541
4542 if (usrbuf->head + bytes < usrbuf->capacity) {
4543 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4544 (uint8_t *)usrbuf->mem + usrbuf->head,
4545 bytes);
4546 auring_push(input, count);
4547 auring_take(usrbuf, bytes);
4548 } else {
4549 int bytes1;
4550 int bytes2;
4551
4552 bytes1 = auring_get_contig_used(usrbuf);
4553 KASSERTMSG(bytes1 % framesize == 0,
4554 "bytes1=%d framesize=%d", bytes1, framesize);
4555 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4556 (uint8_t *)usrbuf->mem + usrbuf->head,
4557 bytes1);
4558 auring_push(input, bytes1 / framesize);
4559 auring_take(usrbuf, bytes1);
4560
4561 bytes2 = bytes - bytes1;
4562 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4563 (uint8_t *)usrbuf->mem + usrbuf->head,
4564 bytes2);
4565 auring_push(input, bytes2 / framesize);
4566 auring_take(usrbuf, bytes2);
4567 }
4568
4569 /* Encoding conversion */
4570 if (track->codec.filter)
4571 audio_apply_stage(track, &track->codec, false);
4572
4573 /* Channel volume */
4574 if (track->chvol.filter)
4575 audio_apply_stage(track, &track->chvol, false);
4576
4577 /* Channel mix */
4578 if (track->chmix.filter)
4579 audio_apply_stage(track, &track->chmix, false);
4580
4581 /* Frequency conversion */
4582 /*
4583 * Since the frequency conversion needs correction for each block,
4584 * it rounds up to 1 block.
4585 */
4586 if (track->freq.filter) {
4587 int n;
4588 n = audio_append_silence(track, &track->freq.srcbuf);
4589 if (n > 0) {
4590 TRACET(4, track,
4591 "freq.srcbuf add silence %d -> %d/%d/%d",
4592 n,
4593 track->freq.srcbuf.head,
4594 track->freq.srcbuf.used,
4595 track->freq.srcbuf.capacity);
4596 }
4597 if (track->freq.srcbuf.used > 0) {
4598 audio_apply_stage(track, &track->freq, true);
4599 }
4600 }
4601
4602 if (bytes < track->usrbuf_blksize) {
4603 /*
4604 * Clear all conversion buffer pointer if the conversion was
4605 * not exactly one block. These conversion stage buffers are
4606 * certainly circular buffers because of symmetry with the
4607 * previous and next stage buffer. However, since they are
4608 * treated as simple contiguous buffers in operation, so head
4609 * always should point 0. This may happen during drain-age.
4610 */
4611 TRACET(4, track, "reset stage");
4612 if (track->codec.filter) {
4613 KASSERT(track->codec.srcbuf.used == 0);
4614 track->codec.srcbuf.head = 0;
4615 }
4616 if (track->chvol.filter) {
4617 KASSERT(track->chvol.srcbuf.used == 0);
4618 track->chvol.srcbuf.head = 0;
4619 }
4620 if (track->chmix.filter) {
4621 KASSERT(track->chmix.srcbuf.used == 0);
4622 track->chmix.srcbuf.head = 0;
4623 }
4624 if (track->freq.filter) {
4625 KASSERT(track->freq.srcbuf.used == 0);
4626 track->freq.srcbuf.head = 0;
4627 }
4628 }
4629
4630 if (track->input == &track->outbuf) {
4631 track->outputcounter = track->inputcounter;
4632 } else {
4633 track->outputcounter += track->outbuf.used - track_count_0;
4634 }
4635
4636 #if defined(AUDIO_DEBUG)
4637 if (audiodebug >= 3) {
4638 struct audio_track_debugbuf m;
4639 audio_track_bufstat(track, &m);
4640 TRACET(0, track, "end%s%s%s%s%s%s",
4641 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4642 }
4643 #endif
4644 }
4645
4646 /*
4647 * Produce user output buffer for recording from input buffer.
4648 */
4649 static void
4650 audio_track_record(audio_track_t *track)
4651 {
4652 audio_ring_t *outbuf;
4653 audio_ring_t *usrbuf;
4654 int count;
4655 int bytes;
4656 int framesize;
4657
4658 KASSERT(track);
4659 KASSERT(track->lock);
4660
4661 /* Number of frames to process */
4662 count = auring_get_contig_used(track->input);
4663 count = uimin(count, track->mixer->frames_per_block);
4664 if (count == 0) {
4665 TRACET(4, track, "count == 0");
4666 return;
4667 }
4668
4669 /* Frequency conversion */
4670 if (track->freq.filter) {
4671 if (track->freq.srcbuf.used > 0) {
4672 audio_apply_stage(track, &track->freq, true);
4673 /* XXX should input of freq be from beginning of buf? */
4674 }
4675 }
4676
4677 /* Channel mix */
4678 if (track->chmix.filter)
4679 audio_apply_stage(track, &track->chmix, false);
4680
4681 /* Channel volume */
4682 if (track->chvol.filter)
4683 audio_apply_stage(track, &track->chvol, false);
4684
4685 /* Encoding conversion */
4686 if (track->codec.filter)
4687 audio_apply_stage(track, &track->codec, false);
4688
4689 /* Copy outbuf to usrbuf */
4690 outbuf = &track->outbuf;
4691 usrbuf = &track->usrbuf;
4692 /*
4693 * framesize is always 1 byte or more since all formats supported
4694 * as usrfmt(=output) have 8bit or more stride.
4695 */
4696 framesize = frametobyte(&outbuf->fmt, 1);
4697 KASSERT(framesize >= 1);
4698 /*
4699 * count is the number of frames to copy to usrbuf.
4700 * bytes is the number of bytes to copy to usrbuf.
4701 */
4702 count = outbuf->used;
4703 count = uimin(count,
4704 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4705 bytes = count * framesize;
4706 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4707 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4708 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4709 bytes);
4710 auring_push(usrbuf, bytes);
4711 auring_take(outbuf, count);
4712 } else {
4713 int bytes1;
4714 int bytes2;
4715
4716 bytes1 = auring_get_contig_free(usrbuf);
4717 KASSERTMSG(bytes1 % framesize == 0,
4718 "bytes1=%d framesize=%d", bytes1, framesize);
4719 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4720 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4721 bytes1);
4722 auring_push(usrbuf, bytes1);
4723 auring_take(outbuf, bytes1 / framesize);
4724
4725 bytes2 = bytes - bytes1;
4726 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4727 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4728 bytes2);
4729 auring_push(usrbuf, bytes2);
4730 auring_take(outbuf, bytes2 / framesize);
4731 }
4732
4733 /* XXX TODO: any counters here? */
4734
4735 #if defined(AUDIO_DEBUG)
4736 if (audiodebug >= 3) {
4737 struct audio_track_debugbuf m;
4738 audio_track_bufstat(track, &m);
4739 TRACET(0, track, "end%s%s%s%s%s%s",
4740 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4741 }
4742 #endif
4743 }
4744
4745 /*
4746 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4747 * Must be called with sc_exlock held.
4748 */
4749 static u_int
4750 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4751 {
4752 audio_format2_t *fmt;
4753 u_int blktime;
4754 u_int frames_per_block;
4755
4756 KASSERT(sc->sc_exlock);
4757
4758 fmt = &mixer->hwbuf.fmt;
4759 blktime = sc->sc_blk_ms;
4760
4761 /*
4762 * If stride is not multiples of 8, special treatment is necessary.
4763 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4764 */
4765 if (fmt->stride == 4) {
4766 frames_per_block = fmt->sample_rate * blktime / 1000;
4767 if ((frames_per_block & 1) != 0)
4768 blktime *= 2;
4769 }
4770 #ifdef DIAGNOSTIC
4771 else if (fmt->stride % NBBY != 0) {
4772 panic("unsupported HW stride %d", fmt->stride);
4773 }
4774 #endif
4775
4776 return blktime;
4777 }
4778
4779 /*
4780 * Initialize the mixer corresponding to the mode.
4781 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4782 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4783 * This function returns 0 on successful. Otherwise returns errno.
4784 * Must be called with sc_exlock held and without sc_lock held.
4785 */
4786 static int
4787 audio_mixer_init(struct audio_softc *sc, int mode,
4788 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4789 {
4790 char codecbuf[64];
4791 audio_trackmixer_t *mixer;
4792 void (*softint_handler)(void *);
4793 int len;
4794 int blksize;
4795 int capacity;
4796 size_t bufsize;
4797 int hwblks;
4798 int blkms;
4799 int error;
4800
4801 KASSERT(hwfmt != NULL);
4802 KASSERT(reg != NULL);
4803 KASSERT(sc->sc_exlock);
4804
4805 error = 0;
4806 if (mode == AUMODE_PLAY)
4807 mixer = sc->sc_pmixer;
4808 else
4809 mixer = sc->sc_rmixer;
4810
4811 mixer->sc = sc;
4812 mixer->mode = mode;
4813
4814 mixer->hwbuf.fmt = *hwfmt;
4815 mixer->volume = 256;
4816 mixer->blktime_d = 1000;
4817 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4818 sc->sc_blk_ms = mixer->blktime_n;
4819 hwblks = NBLKHW;
4820
4821 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4822 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4823 if (sc->hw_if->round_blocksize) {
4824 int rounded;
4825 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4826 mutex_enter(sc->sc_lock);
4827 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4828 mode, &p);
4829 mutex_exit(sc->sc_lock);
4830 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4831 if (rounded != blksize) {
4832 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4833 mixer->hwbuf.fmt.channels) != 0) {
4834 device_printf(sc->sc_dev,
4835 "round_blocksize must return blocksize "
4836 "divisible by framesize: "
4837 "blksize=%d rounded=%d "
4838 "stride=%ubit channels=%u\n",
4839 blksize, rounded,
4840 mixer->hwbuf.fmt.stride,
4841 mixer->hwbuf.fmt.channels);
4842 return EINVAL;
4843 }
4844 /* Recalculation */
4845 blksize = rounded;
4846 mixer->frames_per_block = blksize * NBBY /
4847 (mixer->hwbuf.fmt.stride *
4848 mixer->hwbuf.fmt.channels);
4849 }
4850 }
4851 mixer->blktime_n = mixer->frames_per_block;
4852 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4853
4854 capacity = mixer->frames_per_block * hwblks;
4855 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4856 if (sc->hw_if->round_buffersize) {
4857 size_t rounded;
4858 mutex_enter(sc->sc_lock);
4859 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4860 bufsize);
4861 mutex_exit(sc->sc_lock);
4862 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4863 if (rounded < bufsize) {
4864 /* buffersize needs NBLKHW blocks at least. */
4865 device_printf(sc->sc_dev,
4866 "buffersize too small: buffersize=%zd blksize=%d\n",
4867 rounded, blksize);
4868 return EINVAL;
4869 }
4870 if (rounded % blksize != 0) {
4871 /* buffersize/blksize constraint mismatch? */
4872 device_printf(sc->sc_dev,
4873 "buffersize must be multiple of blksize: "
4874 "buffersize=%zu blksize=%d\n",
4875 rounded, blksize);
4876 return EINVAL;
4877 }
4878 if (rounded != bufsize) {
4879 /* Recalcuration */
4880 bufsize = rounded;
4881 hwblks = bufsize / blksize;
4882 capacity = mixer->frames_per_block * hwblks;
4883 }
4884 }
4885 TRACE(1, "buffersize for %s = %zu",
4886 (mode == AUMODE_PLAY) ? "playback" : "recording",
4887 bufsize);
4888 mixer->hwbuf.capacity = capacity;
4889
4890 if (sc->hw_if->allocm) {
4891 /* sc_lock is not necessary for allocm */
4892 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4893 if (mixer->hwbuf.mem == NULL) {
4894 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4895 __func__, bufsize);
4896 return ENOMEM;
4897 }
4898 } else {
4899 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4900 }
4901
4902 /* From here, audio_mixer_destroy is necessary to exit. */
4903 if (mode == AUMODE_PLAY) {
4904 cv_init(&mixer->outcv, "audiowr");
4905 } else {
4906 cv_init(&mixer->outcv, "audiord");
4907 }
4908
4909 if (mode == AUMODE_PLAY) {
4910 softint_handler = audio_softintr_wr;
4911 } else {
4912 softint_handler = audio_softintr_rd;
4913 }
4914 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4915 softint_handler, sc);
4916 if (mixer->sih == NULL) {
4917 device_printf(sc->sc_dev, "softint_establish failed\n");
4918 goto abort;
4919 }
4920
4921 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4922 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4923 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4924 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4925 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4926
4927 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4928 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4929 mixer->swap_endian = true;
4930 TRACE(1, "swap_endian");
4931 }
4932
4933 if (mode == AUMODE_PLAY) {
4934 /* Mixing buffer */
4935 mixer->mixfmt = mixer->track_fmt;
4936 mixer->mixfmt.precision *= 2;
4937 mixer->mixfmt.stride *= 2;
4938 /* XXX TODO: use some macros? */
4939 len = mixer->frames_per_block * mixer->mixfmt.channels *
4940 mixer->mixfmt.stride / NBBY;
4941 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4942 } else {
4943 /* No mixing buffer for recording */
4944 }
4945
4946 if (reg->codec) {
4947 mixer->codec = reg->codec;
4948 mixer->codecarg.context = reg->context;
4949 if (mode == AUMODE_PLAY) {
4950 mixer->codecarg.srcfmt = &mixer->track_fmt;
4951 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4952 } else {
4953 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4954 mixer->codecarg.dstfmt = &mixer->track_fmt;
4955 }
4956 mixer->codecbuf.fmt = mixer->track_fmt;
4957 mixer->codecbuf.capacity = mixer->frames_per_block;
4958 len = auring_bytelen(&mixer->codecbuf);
4959 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4960 if (mixer->codecbuf.mem == NULL) {
4961 device_printf(sc->sc_dev,
4962 "%s: malloc codecbuf(%d) failed\n",
4963 __func__, len);
4964 error = ENOMEM;
4965 goto abort;
4966 }
4967 }
4968
4969 /* Succeeded so display it. */
4970 codecbuf[0] = '\0';
4971 if (mixer->codec || mixer->swap_endian) {
4972 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4973 (mode == AUMODE_PLAY) ? "->" : "<-",
4974 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4975 mixer->hwbuf.fmt.precision);
4976 }
4977 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
4978 aprint_normal_dev(sc->sc_dev, "%s:%d%s %dch %dHz, blk %dms for %s\n",
4979 audio_encoding_name(mixer->track_fmt.encoding),
4980 mixer->track_fmt.precision,
4981 codecbuf,
4982 mixer->track_fmt.channels,
4983 mixer->track_fmt.sample_rate,
4984 blkms,
4985 (mode == AUMODE_PLAY) ? "playback" : "recording");
4986
4987 return 0;
4988
4989 abort:
4990 audio_mixer_destroy(sc, mixer);
4991 return error;
4992 }
4993
4994 /*
4995 * Releases all resources of 'mixer'.
4996 * Note that it does not release the memory area of 'mixer' itself.
4997 * Must be called with sc_exlock held and without sc_lock held.
4998 */
4999 static void
5000 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5001 {
5002 int bufsize;
5003
5004 KASSERT(sc->sc_exlock == 1);
5005
5006 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5007
5008 if (mixer->hwbuf.mem != NULL) {
5009 if (sc->hw_if->freem) {
5010 /* sc_lock is not necessary for freem */
5011 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5012 } else {
5013 kmem_free(mixer->hwbuf.mem, bufsize);
5014 }
5015 mixer->hwbuf.mem = NULL;
5016 }
5017
5018 audio_free(mixer->codecbuf.mem);
5019 audio_free(mixer->mixsample);
5020
5021 cv_destroy(&mixer->outcv);
5022
5023 if (mixer->sih) {
5024 softint_disestablish(mixer->sih);
5025 mixer->sih = NULL;
5026 }
5027 }
5028
5029 /*
5030 * Starts playback mixer.
5031 * Must be called only if sc_pbusy is false.
5032 * Must be called with sc_lock && sc_exlock held.
5033 * Must not be called from the interrupt context.
5034 */
5035 static void
5036 audio_pmixer_start(struct audio_softc *sc, bool force)
5037 {
5038 audio_trackmixer_t *mixer;
5039 int minimum;
5040
5041 KASSERT(mutex_owned(sc->sc_lock));
5042 KASSERT(sc->sc_exlock);
5043 KASSERT(sc->sc_pbusy == false);
5044
5045 mutex_enter(sc->sc_intr_lock);
5046
5047 mixer = sc->sc_pmixer;
5048 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5049 (audiodebug >= 3) ? "begin " : "",
5050 (int)mixer->mixseq, (int)mixer->hwseq,
5051 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5052 force ? " force" : "");
5053
5054 /* Need two blocks to start normally. */
5055 minimum = (force) ? 1 : 2;
5056 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5057 audio_pmixer_process(sc);
5058 }
5059
5060 /* Start output */
5061 audio_pmixer_output(sc);
5062 sc->sc_pbusy = true;
5063
5064 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5065 (int)mixer->mixseq, (int)mixer->hwseq,
5066 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5067
5068 mutex_exit(sc->sc_intr_lock);
5069 }
5070
5071 /*
5072 * When playing back with MD filter:
5073 *
5074 * track track ...
5075 * v v
5076 * + mix (with aint2_t)
5077 * | master volume (with aint2_t)
5078 * v
5079 * mixsample [::::] wide-int 1 block (ring) buffer
5080 * |
5081 * | convert aint2_t -> aint_t
5082 * v
5083 * codecbuf [....] 1 block (ring) buffer
5084 * |
5085 * | convert to hw format
5086 * v
5087 * hwbuf [............] NBLKHW blocks ring buffer
5088 *
5089 * When playing back without MD filter:
5090 *
5091 * mixsample [::::] wide-int 1 block (ring) buffer
5092 * |
5093 * | convert aint2_t -> aint_t
5094 * | (with byte swap if necessary)
5095 * v
5096 * hwbuf [............] NBLKHW blocks ring buffer
5097 *
5098 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5099 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5100 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5101 */
5102
5103 /*
5104 * Performs track mixing and converts it to hwbuf.
5105 * Note that this function doesn't transfer hwbuf to hardware.
5106 * Must be called with sc_intr_lock held.
5107 */
5108 static void
5109 audio_pmixer_process(struct audio_softc *sc)
5110 {
5111 audio_trackmixer_t *mixer;
5112 audio_file_t *f;
5113 int frame_count;
5114 int sample_count;
5115 int mixed;
5116 int i;
5117 aint2_t *m;
5118 aint_t *h;
5119
5120 mixer = sc->sc_pmixer;
5121
5122 frame_count = mixer->frames_per_block;
5123 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5124 "auring_get_contig_free()=%d frame_count=%d",
5125 auring_get_contig_free(&mixer->hwbuf), frame_count);
5126 sample_count = frame_count * mixer->mixfmt.channels;
5127
5128 mixer->mixseq++;
5129
5130 /* Mix all tracks */
5131 mixed = 0;
5132 SLIST_FOREACH(f, &sc->sc_files, entry) {
5133 audio_track_t *track = f->ptrack;
5134
5135 if (track == NULL)
5136 continue;
5137
5138 if (track->is_pause) {
5139 TRACET(4, track, "skip; paused");
5140 continue;
5141 }
5142
5143 /* Skip if the track is used by process context. */
5144 if (audio_track_lock_tryenter(track) == false) {
5145 TRACET(4, track, "skip; in use");
5146 continue;
5147 }
5148
5149 /* Emulate mmap'ped track */
5150 if (track->mmapped) {
5151 auring_push(&track->usrbuf, track->usrbuf_blksize);
5152 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5153 track->usrbuf.head,
5154 track->usrbuf.used,
5155 track->usrbuf.capacity);
5156 }
5157
5158 if (track->outbuf.used < mixer->frames_per_block &&
5159 track->usrbuf.used > 0) {
5160 TRACET(4, track, "process");
5161 audio_track_play(track);
5162 }
5163
5164 if (track->outbuf.used > 0) {
5165 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5166 } else {
5167 TRACET(4, track, "skip; empty");
5168 }
5169
5170 audio_track_lock_exit(track);
5171 }
5172
5173 if (mixed == 0) {
5174 /* Silence */
5175 memset(mixer->mixsample, 0,
5176 frametobyte(&mixer->mixfmt, frame_count));
5177 } else {
5178 if (mixed > 1) {
5179 /* If there are multiple tracks, do auto gain control */
5180 audio_pmixer_agc(mixer, sample_count);
5181 }
5182
5183 /* Apply master volume */
5184 if (mixer->volume < 256) {
5185 m = mixer->mixsample;
5186 for (i = 0; i < sample_count; i++) {
5187 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5188 m++;
5189 }
5190
5191 /*
5192 * Recover the volume gradually at the pace of
5193 * several times per second. If it's too fast, you
5194 * can recognize that the volume changes up and down
5195 * quickly and it's not so comfortable.
5196 */
5197 mixer->voltimer += mixer->blktime_n;
5198 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5199 mixer->volume++;
5200 mixer->voltimer = 0;
5201 #if defined(AUDIO_DEBUG_AGC)
5202 TRACE(1, "volume recover: %d", mixer->volume);
5203 #endif
5204 }
5205 }
5206 }
5207
5208 /*
5209 * The rest is the hardware part.
5210 */
5211
5212 if (mixer->codec) {
5213 h = auring_tailptr_aint(&mixer->codecbuf);
5214 } else {
5215 h = auring_tailptr_aint(&mixer->hwbuf);
5216 }
5217
5218 m = mixer->mixsample;
5219 if (mixer->swap_endian) {
5220 for (i = 0; i < sample_count; i++) {
5221 *h++ = bswap16(*m++);
5222 }
5223 } else {
5224 for (i = 0; i < sample_count; i++) {
5225 *h++ = *m++;
5226 }
5227 }
5228
5229 /* Hardware driver's codec */
5230 if (mixer->codec) {
5231 auring_push(&mixer->codecbuf, frame_count);
5232 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5233 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5234 mixer->codecarg.count = frame_count;
5235 mixer->codec(&mixer->codecarg);
5236 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5237 }
5238
5239 auring_push(&mixer->hwbuf, frame_count);
5240
5241 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5242 (int)mixer->mixseq,
5243 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5244 (mixed == 0) ? " silent" : "");
5245 }
5246
5247 /*
5248 * Do auto gain control.
5249 * Must be called sc_intr_lock held.
5250 */
5251 static void
5252 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5253 {
5254 struct audio_softc *sc __unused;
5255 aint2_t val;
5256 aint2_t maxval;
5257 aint2_t minval;
5258 aint2_t over_plus;
5259 aint2_t over_minus;
5260 aint2_t *m;
5261 int newvol;
5262 int i;
5263
5264 sc = mixer->sc;
5265
5266 /* Overflow detection */
5267 maxval = AINT_T_MAX;
5268 minval = AINT_T_MIN;
5269 m = mixer->mixsample;
5270 for (i = 0; i < sample_count; i++) {
5271 val = *m++;
5272 if (val > maxval)
5273 maxval = val;
5274 else if (val < minval)
5275 minval = val;
5276 }
5277
5278 /* Absolute value of overflowed amount */
5279 over_plus = maxval - AINT_T_MAX;
5280 over_minus = AINT_T_MIN - minval;
5281
5282 if (over_plus > 0 || over_minus > 0) {
5283 if (over_plus > over_minus) {
5284 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5285 } else {
5286 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5287 }
5288
5289 /*
5290 * Change the volume only if new one is smaller.
5291 * Reset the timer even if the volume isn't changed.
5292 */
5293 if (newvol <= mixer->volume) {
5294 mixer->volume = newvol;
5295 mixer->voltimer = 0;
5296 #if defined(AUDIO_DEBUG_AGC)
5297 TRACE(1, "auto volume adjust: %d", mixer->volume);
5298 #endif
5299 }
5300 }
5301 }
5302
5303 /*
5304 * Mix one track.
5305 * 'mixed' specifies the number of tracks mixed so far.
5306 * It returns the number of tracks mixed. In other words, it returns
5307 * mixed + 1 if this track is mixed.
5308 */
5309 static int
5310 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5311 int mixed)
5312 {
5313 int count;
5314 int sample_count;
5315 int remain;
5316 int i;
5317 const aint_t *s;
5318 aint2_t *d;
5319
5320 /* XXX TODO: Is this necessary for now? */
5321 if (mixer->mixseq < track->seq)
5322 return mixed;
5323
5324 count = auring_get_contig_used(&track->outbuf);
5325 count = uimin(count, mixer->frames_per_block);
5326
5327 s = auring_headptr_aint(&track->outbuf);
5328 d = mixer->mixsample;
5329
5330 /*
5331 * Apply track volume with double-sized integer and perform
5332 * additive synthesis.
5333 *
5334 * XXX If you limit the track volume to 1.0 or less (<= 256),
5335 * it would be better to do this in the track conversion stage
5336 * rather than here. However, if you accept the volume to
5337 * be greater than 1.0 (> 256), it's better to do it here.
5338 * Because the operation here is done by double-sized integer.
5339 */
5340 sample_count = count * mixer->mixfmt.channels;
5341 if (mixed == 0) {
5342 /* If this is the first track, assignment can be used. */
5343 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5344 if (track->volume != 256) {
5345 for (i = 0; i < sample_count; i++) {
5346 aint2_t v;
5347 v = *s++;
5348 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5349 }
5350 } else
5351 #endif
5352 {
5353 for (i = 0; i < sample_count; i++) {
5354 *d++ = ((aint2_t)*s++);
5355 }
5356 }
5357 /* Fill silence if the first track is not filled. */
5358 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5359 *d++ = 0;
5360 } else {
5361 /* If this is the second or later, add it. */
5362 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5363 if (track->volume != 256) {
5364 for (i = 0; i < sample_count; i++) {
5365 aint2_t v;
5366 v = *s++;
5367 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5368 }
5369 } else
5370 #endif
5371 {
5372 for (i = 0; i < sample_count; i++) {
5373 *d++ += ((aint2_t)*s++);
5374 }
5375 }
5376 }
5377
5378 auring_take(&track->outbuf, count);
5379 /*
5380 * The counters have to align block even if outbuf is less than
5381 * one block. XXX Is this still necessary?
5382 */
5383 remain = mixer->frames_per_block - count;
5384 if (__predict_false(remain != 0)) {
5385 auring_push(&track->outbuf, remain);
5386 auring_take(&track->outbuf, remain);
5387 }
5388
5389 /*
5390 * Update track sequence.
5391 * mixseq has previous value yet at this point.
5392 */
5393 track->seq = mixer->mixseq + 1;
5394
5395 return mixed + 1;
5396 }
5397
5398 /*
5399 * Output one block from hwbuf to HW.
5400 * Must be called with sc_intr_lock held.
5401 */
5402 static void
5403 audio_pmixer_output(struct audio_softc *sc)
5404 {
5405 audio_trackmixer_t *mixer;
5406 audio_params_t params;
5407 void *start;
5408 void *end;
5409 int blksize;
5410 int error;
5411
5412 mixer = sc->sc_pmixer;
5413 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5414 sc->sc_pbusy,
5415 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5416 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5417 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5418 mixer->hwbuf.used, mixer->frames_per_block);
5419
5420 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5421
5422 if (sc->hw_if->trigger_output) {
5423 /* trigger (at once) */
5424 if (!sc->sc_pbusy) {
5425 start = mixer->hwbuf.mem;
5426 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5427 params = format2_to_params(&mixer->hwbuf.fmt);
5428
5429 error = sc->hw_if->trigger_output(sc->hw_hdl,
5430 start, end, blksize, audio_pintr, sc, ¶ms);
5431 if (error) {
5432 device_printf(sc->sc_dev,
5433 "trigger_output failed with %d\n", error);
5434 return;
5435 }
5436 }
5437 } else {
5438 /* start (everytime) */
5439 start = auring_headptr(&mixer->hwbuf);
5440
5441 error = sc->hw_if->start_output(sc->hw_hdl,
5442 start, blksize, audio_pintr, sc);
5443 if (error) {
5444 device_printf(sc->sc_dev,
5445 "start_output failed with %d\n", error);
5446 return;
5447 }
5448 }
5449 }
5450
5451 /*
5452 * This is an interrupt handler for playback.
5453 * It is called with sc_intr_lock held.
5454 *
5455 * It is usually called from hardware interrupt. However, note that
5456 * for some drivers (e.g. uaudio) it is called from software interrupt.
5457 */
5458 static void
5459 audio_pintr(void *arg)
5460 {
5461 struct audio_softc *sc;
5462 audio_trackmixer_t *mixer;
5463
5464 sc = arg;
5465 KASSERT(mutex_owned(sc->sc_intr_lock));
5466
5467 if (sc->sc_dying)
5468 return;
5469 if (sc->sc_pbusy == false) {
5470 #if defined(DIAGNOSTIC)
5471 device_printf(sc->sc_dev, "stray interrupt\n");
5472 #endif
5473 return;
5474 }
5475
5476 mixer = sc->sc_pmixer;
5477 mixer->hw_complete_counter += mixer->frames_per_block;
5478 mixer->hwseq++;
5479
5480 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5481
5482 TRACE(4,
5483 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5484 mixer->hwseq, mixer->hw_complete_counter,
5485 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5486
5487 #if defined(AUDIO_HW_SINGLE_BUFFER)
5488 /*
5489 * Create a new block here and output it immediately.
5490 * It makes a latency lower but needs machine power.
5491 */
5492 audio_pmixer_process(sc);
5493 audio_pmixer_output(sc);
5494 #else
5495 /*
5496 * It is called when block N output is done.
5497 * Output immediately block N+1 created by the last interrupt.
5498 * And then create block N+2 for the next interrupt.
5499 * This method makes playback robust even on slower machines.
5500 * Instead the latency is increased by one block.
5501 */
5502
5503 /* At first, output ready block. */
5504 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5505 audio_pmixer_output(sc);
5506 }
5507
5508 bool later = false;
5509
5510 if (mixer->hwbuf.used < mixer->frames_per_block) {
5511 later = true;
5512 }
5513
5514 /* Then, process next block. */
5515 audio_pmixer_process(sc);
5516
5517 if (later) {
5518 audio_pmixer_output(sc);
5519 }
5520 #endif
5521
5522 /*
5523 * When this interrupt is the real hardware interrupt, disabling
5524 * preemption here is not necessary. But some drivers (e.g. uaudio)
5525 * emulate it by software interrupt, so kpreempt_disable is necessary.
5526 */
5527 kpreempt_disable();
5528 softint_schedule(mixer->sih);
5529 kpreempt_enable();
5530 }
5531
5532 /*
5533 * Starts record mixer.
5534 * Must be called only if sc_rbusy is false.
5535 * Must be called with sc_lock && sc_exlock held.
5536 * Must not be called from the interrupt context.
5537 */
5538 static void
5539 audio_rmixer_start(struct audio_softc *sc)
5540 {
5541
5542 KASSERT(mutex_owned(sc->sc_lock));
5543 KASSERT(sc->sc_exlock);
5544 KASSERT(sc->sc_rbusy == false);
5545
5546 mutex_enter(sc->sc_intr_lock);
5547
5548 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5549 audio_rmixer_input(sc);
5550 sc->sc_rbusy = true;
5551 TRACE(3, "end");
5552
5553 mutex_exit(sc->sc_intr_lock);
5554 }
5555
5556 /*
5557 * When recording with MD filter:
5558 *
5559 * hwbuf [............] NBLKHW blocks ring buffer
5560 * |
5561 * | convert from hw format
5562 * v
5563 * codecbuf [....] 1 block (ring) buffer
5564 * | |
5565 * v v
5566 * track track ...
5567 *
5568 * When recording without MD filter:
5569 *
5570 * hwbuf [............] NBLKHW blocks ring buffer
5571 * | |
5572 * v v
5573 * track track ...
5574 *
5575 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5576 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5577 */
5578
5579 /*
5580 * Distribute a recorded block to all recording tracks.
5581 */
5582 static void
5583 audio_rmixer_process(struct audio_softc *sc)
5584 {
5585 audio_trackmixer_t *mixer;
5586 audio_ring_t *mixersrc;
5587 audio_file_t *f;
5588 aint_t *p;
5589 int count;
5590 int bytes;
5591 int i;
5592
5593 mixer = sc->sc_rmixer;
5594
5595 /*
5596 * count is the number of frames to be retrieved this time.
5597 * count should be one block.
5598 */
5599 count = auring_get_contig_used(&mixer->hwbuf);
5600 count = uimin(count, mixer->frames_per_block);
5601 if (count <= 0) {
5602 TRACE(4, "count %d: too short", count);
5603 return;
5604 }
5605 bytes = frametobyte(&mixer->track_fmt, count);
5606
5607 /* Hardware driver's codec */
5608 if (mixer->codec) {
5609 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5610 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5611 mixer->codecarg.count = count;
5612 mixer->codec(&mixer->codecarg);
5613 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5614 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5615 mixersrc = &mixer->codecbuf;
5616 } else {
5617 mixersrc = &mixer->hwbuf;
5618 }
5619
5620 if (mixer->swap_endian) {
5621 /* inplace conversion */
5622 p = auring_headptr_aint(mixersrc);
5623 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5624 *p = bswap16(*p);
5625 }
5626 }
5627
5628 /* Distribute to all tracks. */
5629 SLIST_FOREACH(f, &sc->sc_files, entry) {
5630 audio_track_t *track = f->rtrack;
5631 audio_ring_t *input;
5632
5633 if (track == NULL)
5634 continue;
5635
5636 if (track->is_pause) {
5637 TRACET(4, track, "skip; paused");
5638 continue;
5639 }
5640
5641 if (audio_track_lock_tryenter(track) == false) {
5642 TRACET(4, track, "skip; in use");
5643 continue;
5644 }
5645
5646 /* If the track buffer is full, discard the oldest one? */
5647 input = track->input;
5648 if (input->capacity - input->used < mixer->frames_per_block) {
5649 int drops = mixer->frames_per_block -
5650 (input->capacity - input->used);
5651 track->dropframes += drops;
5652 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5653 drops,
5654 input->head, input->used, input->capacity);
5655 auring_take(input, drops);
5656 }
5657 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5658 "input->used=%d mixer->frames_per_block=%d",
5659 input->used, mixer->frames_per_block);
5660
5661 memcpy(auring_tailptr_aint(input),
5662 auring_headptr_aint(mixersrc),
5663 bytes);
5664 auring_push(input, count);
5665
5666 /* XXX sequence counter? */
5667
5668 audio_track_lock_exit(track);
5669 }
5670
5671 auring_take(mixersrc, count);
5672 }
5673
5674 /*
5675 * Input one block from HW to hwbuf.
5676 * Must be called with sc_intr_lock held.
5677 */
5678 static void
5679 audio_rmixer_input(struct audio_softc *sc)
5680 {
5681 audio_trackmixer_t *mixer;
5682 audio_params_t params;
5683 void *start;
5684 void *end;
5685 int blksize;
5686 int error;
5687
5688 mixer = sc->sc_rmixer;
5689 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5690
5691 if (sc->hw_if->trigger_input) {
5692 /* trigger (at once) */
5693 if (!sc->sc_rbusy) {
5694 start = mixer->hwbuf.mem;
5695 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5696 params = format2_to_params(&mixer->hwbuf.fmt);
5697
5698 error = sc->hw_if->trigger_input(sc->hw_hdl,
5699 start, end, blksize, audio_rintr, sc, ¶ms);
5700 if (error) {
5701 device_printf(sc->sc_dev,
5702 "trigger_input failed with %d\n", error);
5703 return;
5704 }
5705 }
5706 } else {
5707 /* start (everytime) */
5708 start = auring_tailptr(&mixer->hwbuf);
5709
5710 error = sc->hw_if->start_input(sc->hw_hdl,
5711 start, blksize, audio_rintr, sc);
5712 if (error) {
5713 device_printf(sc->sc_dev,
5714 "start_input failed with %d\n", error);
5715 return;
5716 }
5717 }
5718 }
5719
5720 /*
5721 * This is an interrupt handler for recording.
5722 * It is called with sc_intr_lock.
5723 *
5724 * It is usually called from hardware interrupt. However, note that
5725 * for some drivers (e.g. uaudio) it is called from software interrupt.
5726 */
5727 static void
5728 audio_rintr(void *arg)
5729 {
5730 struct audio_softc *sc;
5731 audio_trackmixer_t *mixer;
5732
5733 sc = arg;
5734 KASSERT(mutex_owned(sc->sc_intr_lock));
5735
5736 if (sc->sc_dying)
5737 return;
5738 if (sc->sc_rbusy == false) {
5739 #if defined(DIAGNOSTIC)
5740 device_printf(sc->sc_dev, "stray interrupt\n");
5741 #endif
5742 return;
5743 }
5744
5745 mixer = sc->sc_rmixer;
5746 mixer->hw_complete_counter += mixer->frames_per_block;
5747 mixer->hwseq++;
5748
5749 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5750
5751 TRACE(4,
5752 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5753 mixer->hwseq, mixer->hw_complete_counter,
5754 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5755
5756 /* Distrubute recorded block */
5757 audio_rmixer_process(sc);
5758
5759 /* Request next block */
5760 audio_rmixer_input(sc);
5761
5762 /*
5763 * When this interrupt is the real hardware interrupt, disabling
5764 * preemption here is not necessary. But some drivers (e.g. uaudio)
5765 * emulate it by software interrupt, so kpreempt_disable is necessary.
5766 */
5767 kpreempt_disable();
5768 softint_schedule(mixer->sih);
5769 kpreempt_enable();
5770 }
5771
5772 /*
5773 * Halts playback mixer.
5774 * This function also clears related parameters, so call this function
5775 * instead of calling halt_output directly.
5776 * Must be called only if sc_pbusy is true.
5777 * Must be called with sc_lock && sc_exlock held.
5778 */
5779 static int
5780 audio_pmixer_halt(struct audio_softc *sc)
5781 {
5782 int error;
5783
5784 TRACE(2, "");
5785 KASSERT(mutex_owned(sc->sc_lock));
5786 KASSERT(sc->sc_exlock);
5787
5788 mutex_enter(sc->sc_intr_lock);
5789 error = sc->hw_if->halt_output(sc->hw_hdl);
5790
5791 /* Halts anyway even if some error has occurred. */
5792 sc->sc_pbusy = false;
5793 sc->sc_pmixer->hwbuf.head = 0;
5794 sc->sc_pmixer->hwbuf.used = 0;
5795 sc->sc_pmixer->mixseq = 0;
5796 sc->sc_pmixer->hwseq = 0;
5797 mutex_exit(sc->sc_intr_lock);
5798
5799 return error;
5800 }
5801
5802 /*
5803 * Halts recording mixer.
5804 * This function also clears related parameters, so call this function
5805 * instead of calling halt_input directly.
5806 * Must be called only if sc_rbusy is true.
5807 * Must be called with sc_lock && sc_exlock held.
5808 */
5809 static int
5810 audio_rmixer_halt(struct audio_softc *sc)
5811 {
5812 int error;
5813
5814 TRACE(2, "");
5815 KASSERT(mutex_owned(sc->sc_lock));
5816 KASSERT(sc->sc_exlock);
5817
5818 mutex_enter(sc->sc_intr_lock);
5819 error = sc->hw_if->halt_input(sc->hw_hdl);
5820
5821 /* Halts anyway even if some error has occurred. */
5822 sc->sc_rbusy = false;
5823 sc->sc_rmixer->hwbuf.head = 0;
5824 sc->sc_rmixer->hwbuf.used = 0;
5825 sc->sc_rmixer->mixseq = 0;
5826 sc->sc_rmixer->hwseq = 0;
5827 mutex_exit(sc->sc_intr_lock);
5828
5829 return error;
5830 }
5831
5832 /*
5833 * Flush this track.
5834 * Halts all operations, clears all buffers, reset error counters.
5835 * XXX I'm not sure...
5836 */
5837 static void
5838 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5839 {
5840
5841 KASSERT(track);
5842 TRACET(3, track, "clear");
5843
5844 audio_track_lock_enter(track);
5845
5846 track->usrbuf.used = 0;
5847 /* Clear all internal parameters. */
5848 if (track->codec.filter) {
5849 track->codec.srcbuf.used = 0;
5850 track->codec.srcbuf.head = 0;
5851 }
5852 if (track->chvol.filter) {
5853 track->chvol.srcbuf.used = 0;
5854 track->chvol.srcbuf.head = 0;
5855 }
5856 if (track->chmix.filter) {
5857 track->chmix.srcbuf.used = 0;
5858 track->chmix.srcbuf.head = 0;
5859 }
5860 if (track->freq.filter) {
5861 track->freq.srcbuf.used = 0;
5862 track->freq.srcbuf.head = 0;
5863 if (track->freq_step < 65536)
5864 track->freq_current = 65536;
5865 else
5866 track->freq_current = 0;
5867 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5868 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5869 }
5870 /* Clear buffer, then operation halts naturally. */
5871 track->outbuf.used = 0;
5872
5873 /* Clear counters. */
5874 track->dropframes = 0;
5875
5876 audio_track_lock_exit(track);
5877 }
5878
5879 /*
5880 * Drain the track.
5881 * track must be present and for playback.
5882 * If successful, it returns 0. Otherwise returns errno.
5883 * Must be called with sc_lock held.
5884 */
5885 static int
5886 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5887 {
5888 audio_trackmixer_t *mixer;
5889 int done;
5890 int error;
5891
5892 KASSERT(track);
5893 TRACET(3, track, "start");
5894 mixer = track->mixer;
5895 KASSERT(mutex_owned(sc->sc_lock));
5896
5897 /* Ignore them if pause. */
5898 if (track->is_pause) {
5899 TRACET(3, track, "pause -> clear");
5900 track->pstate = AUDIO_STATE_CLEAR;
5901 }
5902 /* Terminate early here if there is no data in the track. */
5903 if (track->pstate == AUDIO_STATE_CLEAR) {
5904 TRACET(3, track, "no need to drain");
5905 return 0;
5906 }
5907 track->pstate = AUDIO_STATE_DRAINING;
5908
5909 for (;;) {
5910 /* I want to display it before condition evaluation. */
5911 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5912 (int)curproc->p_pid, (int)curlwp->l_lid,
5913 (int)track->seq, (int)mixer->hwseq,
5914 track->outbuf.head, track->outbuf.used,
5915 track->outbuf.capacity);
5916
5917 /* Condition to terminate */
5918 audio_track_lock_enter(track);
5919 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5920 track->outbuf.used == 0 &&
5921 track->seq <= mixer->hwseq);
5922 audio_track_lock_exit(track);
5923 if (done)
5924 break;
5925
5926 TRACET(3, track, "sleep");
5927 error = audio_track_waitio(sc, track);
5928 if (error)
5929 return error;
5930
5931 /* XXX call audio_track_play here ? */
5932 }
5933
5934 track->pstate = AUDIO_STATE_CLEAR;
5935 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5936 (int)track->inputcounter, (int)track->outputcounter);
5937 return 0;
5938 }
5939
5940 /*
5941 * Send signal to process.
5942 * This is intended to be called only from audio_softintr_{rd,wr}.
5943 * Must be called without sc_intr_lock held.
5944 */
5945 static inline void
5946 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
5947 {
5948 proc_t *p;
5949
5950 KASSERT(pid != 0);
5951
5952 /*
5953 * psignal() must be called without spin lock held.
5954 */
5955
5956 mutex_enter(proc_lock);
5957 p = proc_find(pid);
5958 if (p)
5959 psignal(p, signum);
5960 mutex_exit(proc_lock);
5961 }
5962
5963 /*
5964 * This is software interrupt handler for record.
5965 * It is called from recording hardware interrupt everytime.
5966 * It does:
5967 * - Deliver SIGIO for all async processes.
5968 * - Notify to audio_read() that data has arrived.
5969 * - selnotify() for select/poll-ing processes.
5970 */
5971 /*
5972 * XXX If a process issues FIOASYNC between hardware interrupt and
5973 * software interrupt, (stray) SIGIO will be sent to the process
5974 * despite the fact that it has not receive recorded data yet.
5975 */
5976 static void
5977 audio_softintr_rd(void *cookie)
5978 {
5979 struct audio_softc *sc = cookie;
5980 audio_file_t *f;
5981 pid_t pid;
5982
5983 mutex_enter(sc->sc_lock);
5984
5985 SLIST_FOREACH(f, &sc->sc_files, entry) {
5986 audio_track_t *track = f->rtrack;
5987
5988 if (track == NULL)
5989 continue;
5990
5991 TRACET(4, track, "broadcast; inp=%d/%d/%d",
5992 track->input->head,
5993 track->input->used,
5994 track->input->capacity);
5995
5996 pid = f->async_audio;
5997 if (pid != 0) {
5998 TRACEF(4, f, "sending SIGIO %d", pid);
5999 audio_psignal(sc, pid, SIGIO);
6000 }
6001 }
6002
6003 /* Notify that data has arrived. */
6004 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6005 KNOTE(&sc->sc_rsel.sel_klist, 0);
6006 cv_broadcast(&sc->sc_rmixer->outcv);
6007
6008 mutex_exit(sc->sc_lock);
6009 }
6010
6011 /*
6012 * This is software interrupt handler for playback.
6013 * It is called from playback hardware interrupt everytime.
6014 * It does:
6015 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6016 * - Notify to audio_write() that outbuf block available.
6017 * - selnotify() for select/poll-ing processes if there are any writable
6018 * (used < lowat) processes. Checking each descriptor will be done by
6019 * filt_audiowrite_event().
6020 */
6021 static void
6022 audio_softintr_wr(void *cookie)
6023 {
6024 struct audio_softc *sc = cookie;
6025 audio_file_t *f;
6026 bool found;
6027 pid_t pid;
6028
6029 TRACE(4, "called");
6030 found = false;
6031
6032 mutex_enter(sc->sc_lock);
6033
6034 SLIST_FOREACH(f, &sc->sc_files, entry) {
6035 audio_track_t *track = f->ptrack;
6036
6037 if (track == NULL)
6038 continue;
6039
6040 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
6041 (int)track->seq,
6042 track->outbuf.head,
6043 track->outbuf.used,
6044 track->outbuf.capacity);
6045
6046 /*
6047 * Send a signal if the process is async mode and
6048 * used is lower than lowat.
6049 */
6050 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6051 !track->is_pause) {
6052 /* For selnotify */
6053 found = true;
6054 /* For SIGIO */
6055 pid = f->async_audio;
6056 if (pid != 0) {
6057 TRACEF(4, f, "sending SIGIO %d", pid);
6058 audio_psignal(sc, pid, SIGIO);
6059 }
6060 }
6061 }
6062
6063 /*
6064 * Notify for select/poll when someone become writable.
6065 * It needs sc_lock (and not sc_intr_lock).
6066 */
6067 if (found) {
6068 TRACE(4, "selnotify");
6069 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6070 KNOTE(&sc->sc_wsel.sel_klist, 0);
6071 }
6072
6073 /* Notify to audio_write() that outbuf available. */
6074 cv_broadcast(&sc->sc_pmixer->outcv);
6075
6076 mutex_exit(sc->sc_lock);
6077 }
6078
6079 /*
6080 * Check (and convert) the format *p came from userland.
6081 * If successful, it writes back the converted format to *p if necessary
6082 * and returns 0. Otherwise returns errno (*p may change even this case).
6083 */
6084 static int
6085 audio_check_params(audio_format2_t *p)
6086 {
6087
6088 /* Convert obsoleted AUDIO_ENCODING_PCM* */
6089 /* XXX Is this conversion right? */
6090 if (p->encoding == AUDIO_ENCODING_PCM16) {
6091 if (p->precision == 8)
6092 p->encoding = AUDIO_ENCODING_ULINEAR;
6093 else
6094 p->encoding = AUDIO_ENCODING_SLINEAR;
6095 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6096 if (p->precision == 8)
6097 p->encoding = AUDIO_ENCODING_ULINEAR;
6098 else
6099 return EINVAL;
6100 }
6101
6102 /*
6103 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6104 * suffix.
6105 */
6106 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6107 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6108 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6109 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6110
6111 switch (p->encoding) {
6112 case AUDIO_ENCODING_ULAW:
6113 case AUDIO_ENCODING_ALAW:
6114 if (p->precision != 8)
6115 return EINVAL;
6116 break;
6117 case AUDIO_ENCODING_ADPCM:
6118 if (p->precision != 4 && p->precision != 8)
6119 return EINVAL;
6120 break;
6121 case AUDIO_ENCODING_SLINEAR_LE:
6122 case AUDIO_ENCODING_SLINEAR_BE:
6123 case AUDIO_ENCODING_ULINEAR_LE:
6124 case AUDIO_ENCODING_ULINEAR_BE:
6125 if (p->precision != 8 && p->precision != 16 &&
6126 p->precision != 24 && p->precision != 32)
6127 return EINVAL;
6128
6129 /* 8bit format does not have endianness. */
6130 if (p->precision == 8) {
6131 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6132 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6133 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6134 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6135 }
6136
6137 if (p->precision > p->stride)
6138 return EINVAL;
6139 break;
6140 case AUDIO_ENCODING_MPEG_L1_STREAM:
6141 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6142 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6143 case AUDIO_ENCODING_MPEG_L2_STREAM:
6144 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6145 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6146 case AUDIO_ENCODING_AC3:
6147 break;
6148 default:
6149 return EINVAL;
6150 }
6151
6152 /* sanity check # of channels*/
6153 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6154 return EINVAL;
6155
6156 return 0;
6157 }
6158
6159 /*
6160 * Initialize playback and record mixers.
6161 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6162 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6163 * the filter registration information. These four must not be NULL.
6164 * If successful returns 0. Otherwise returns errno.
6165 * Must be called with sc_exlock held and without sc_lock held.
6166 * Must not be called if there are any tracks.
6167 * Caller should check that the initialization succeed by whether
6168 * sc_[pr]mixer is not NULL.
6169 */
6170 static int
6171 audio_mixers_init(struct audio_softc *sc, int mode,
6172 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6173 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6174 {
6175 int error;
6176
6177 KASSERT(phwfmt != NULL);
6178 KASSERT(rhwfmt != NULL);
6179 KASSERT(pfil != NULL);
6180 KASSERT(rfil != NULL);
6181 KASSERT(sc->sc_exlock);
6182
6183 if ((mode & AUMODE_PLAY)) {
6184 if (sc->sc_pmixer == NULL) {
6185 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6186 KM_SLEEP);
6187 } else {
6188 /* destroy() doesn't free memory. */
6189 audio_mixer_destroy(sc, sc->sc_pmixer);
6190 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6191 }
6192 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6193 if (error) {
6194 device_printf(sc->sc_dev,
6195 "configuring playback mode failed with %d\n",
6196 error);
6197 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6198 sc->sc_pmixer = NULL;
6199 return error;
6200 }
6201 }
6202 if ((mode & AUMODE_RECORD)) {
6203 if (sc->sc_rmixer == NULL) {
6204 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6205 KM_SLEEP);
6206 } else {
6207 /* destroy() doesn't free memory. */
6208 audio_mixer_destroy(sc, sc->sc_rmixer);
6209 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6210 }
6211 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6212 if (error) {
6213 device_printf(sc->sc_dev,
6214 "configuring record mode failed with %d\n",
6215 error);
6216 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6217 sc->sc_rmixer = NULL;
6218 return error;
6219 }
6220 }
6221
6222 return 0;
6223 }
6224
6225 /*
6226 * Select a frequency.
6227 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6228 * XXX Better algorithm?
6229 */
6230 static int
6231 audio_select_freq(const struct audio_format *fmt)
6232 {
6233 int freq;
6234 int high;
6235 int low;
6236 int j;
6237
6238 if (fmt->frequency_type == 0) {
6239 low = fmt->frequency[0];
6240 high = fmt->frequency[1];
6241 freq = 48000;
6242 if (low <= freq && freq <= high) {
6243 return freq;
6244 }
6245 freq = 44100;
6246 if (low <= freq && freq <= high) {
6247 return freq;
6248 }
6249 return high;
6250 } else {
6251 for (j = 0; j < fmt->frequency_type; j++) {
6252 if (fmt->frequency[j] == 48000) {
6253 return fmt->frequency[j];
6254 }
6255 }
6256 high = 0;
6257 for (j = 0; j < fmt->frequency_type; j++) {
6258 if (fmt->frequency[j] == 44100) {
6259 return fmt->frequency[j];
6260 }
6261 if (fmt->frequency[j] > high) {
6262 high = fmt->frequency[j];
6263 }
6264 }
6265 return high;
6266 }
6267 }
6268
6269 /*
6270 * Choose the most preferred hardware format.
6271 * If successful, it will store the chosen format into *cand and return 0.
6272 * Otherwise, return errno.
6273 * Must be called without sc_lock held.
6274 */
6275 static int
6276 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6277 {
6278 audio_format_query_t query;
6279 int cand_score;
6280 int score;
6281 int i;
6282 int error;
6283
6284 /*
6285 * Score each formats and choose the highest one.
6286 *
6287 * +---- priority(0-3)
6288 * |+--- encoding/precision
6289 * ||+-- channels
6290 * score = 0x000000PEC
6291 */
6292
6293 cand_score = 0;
6294 for (i = 0; ; i++) {
6295 memset(&query, 0, sizeof(query));
6296 query.index = i;
6297
6298 mutex_enter(sc->sc_lock);
6299 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6300 mutex_exit(sc->sc_lock);
6301 if (error == EINVAL)
6302 break;
6303 if (error)
6304 return error;
6305
6306 #if defined(AUDIO_DEBUG)
6307 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6308 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6309 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6310 query.fmt.priority,
6311 audio_encoding_name(query.fmt.encoding),
6312 query.fmt.validbits,
6313 query.fmt.precision,
6314 query.fmt.channels);
6315 if (query.fmt.frequency_type == 0) {
6316 DPRINTF(1, "{%d-%d",
6317 query.fmt.frequency[0], query.fmt.frequency[1]);
6318 } else {
6319 int j;
6320 for (j = 0; j < query.fmt.frequency_type; j++) {
6321 DPRINTF(1, "%c%d",
6322 (j == 0) ? '{' : ',',
6323 query.fmt.frequency[j]);
6324 }
6325 }
6326 DPRINTF(1, "}\n");
6327 #endif
6328
6329 if ((query.fmt.mode & mode) == 0) {
6330 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6331 mode);
6332 continue;
6333 }
6334
6335 if (query.fmt.priority < 0) {
6336 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6337 continue;
6338 }
6339
6340 /* Score */
6341 score = (query.fmt.priority & 3) * 0x100;
6342 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6343 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6344 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6345 score += 0x20;
6346 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6347 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6348 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6349 score += 0x10;
6350 }
6351 score += query.fmt.channels;
6352
6353 if (score < cand_score) {
6354 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6355 score, cand_score);
6356 continue;
6357 }
6358
6359 /* Update candidate */
6360 cand_score = score;
6361 cand->encoding = query.fmt.encoding;
6362 cand->precision = query.fmt.validbits;
6363 cand->stride = query.fmt.precision;
6364 cand->channels = query.fmt.channels;
6365 cand->sample_rate = audio_select_freq(&query.fmt);
6366 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6367 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6368 cand_score, query.fmt.priority,
6369 audio_encoding_name(query.fmt.encoding),
6370 cand->precision, cand->stride,
6371 cand->channels, cand->sample_rate);
6372 }
6373
6374 if (cand_score == 0) {
6375 DPRINTF(1, "%s no fmt\n", __func__);
6376 return ENXIO;
6377 }
6378 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6379 audio_encoding_name(cand->encoding),
6380 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6381 return 0;
6382 }
6383
6384 /*
6385 * Validate fmt with query_format.
6386 * If fmt is included in the result of query_format, returns 0.
6387 * Otherwise returns EINVAL.
6388 * Must be called without sc_lock held.
6389 */
6390 static int
6391 audio_hw_validate_format(struct audio_softc *sc, int mode,
6392 const audio_format2_t *fmt)
6393 {
6394 audio_format_query_t query;
6395 struct audio_format *q;
6396 int index;
6397 int error;
6398 int j;
6399
6400 for (index = 0; ; index++) {
6401 query.index = index;
6402 mutex_enter(sc->sc_lock);
6403 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6404 mutex_exit(sc->sc_lock);
6405 if (error == EINVAL)
6406 break;
6407 if (error)
6408 return error;
6409
6410 q = &query.fmt;
6411 /*
6412 * Note that fmt is audio_format2_t (precision/stride) but
6413 * q is audio_format_t (validbits/precision).
6414 */
6415 if ((q->mode & mode) == 0) {
6416 continue;
6417 }
6418 if (fmt->encoding != q->encoding) {
6419 continue;
6420 }
6421 if (fmt->precision != q->validbits) {
6422 continue;
6423 }
6424 if (fmt->stride != q->precision) {
6425 continue;
6426 }
6427 if (fmt->channels != q->channels) {
6428 continue;
6429 }
6430 if (q->frequency_type == 0) {
6431 if (fmt->sample_rate < q->frequency[0] ||
6432 fmt->sample_rate > q->frequency[1]) {
6433 continue;
6434 }
6435 } else {
6436 for (j = 0; j < q->frequency_type; j++) {
6437 if (fmt->sample_rate == q->frequency[j])
6438 break;
6439 }
6440 if (j == query.fmt.frequency_type) {
6441 continue;
6442 }
6443 }
6444
6445 /* Matched. */
6446 return 0;
6447 }
6448
6449 return EINVAL;
6450 }
6451
6452 /*
6453 * Set track mixer's format depending on ai->mode.
6454 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6455 * with ai.play.*.
6456 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6457 * with ai.record.*.
6458 * All other fields in ai are ignored.
6459 * If successful returns 0. Otherwise returns errno.
6460 * This function does not roll back even if it fails.
6461 * Must be called with sc_exlock held and without sc_lock held.
6462 */
6463 static int
6464 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6465 {
6466 audio_format2_t phwfmt;
6467 audio_format2_t rhwfmt;
6468 audio_filter_reg_t pfil;
6469 audio_filter_reg_t rfil;
6470 int mode;
6471 int error;
6472
6473 KASSERT(sc->sc_exlock);
6474
6475 /*
6476 * Even when setting either one of playback and recording,
6477 * both must be halted.
6478 */
6479 if (sc->sc_popens + sc->sc_ropens > 0)
6480 return EBUSY;
6481
6482 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6483 return ENOTTY;
6484
6485 mode = ai->mode;
6486 if ((mode & AUMODE_PLAY)) {
6487 phwfmt.encoding = ai->play.encoding;
6488 phwfmt.precision = ai->play.precision;
6489 phwfmt.stride = ai->play.precision;
6490 phwfmt.channels = ai->play.channels;
6491 phwfmt.sample_rate = ai->play.sample_rate;
6492 }
6493 if ((mode & AUMODE_RECORD)) {
6494 rhwfmt.encoding = ai->record.encoding;
6495 rhwfmt.precision = ai->record.precision;
6496 rhwfmt.stride = ai->record.precision;
6497 rhwfmt.channels = ai->record.channels;
6498 rhwfmt.sample_rate = ai->record.sample_rate;
6499 }
6500
6501 /* On non-independent devices, use the same format for both. */
6502 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6503 if (mode == AUMODE_RECORD) {
6504 phwfmt = rhwfmt;
6505 } else {
6506 rhwfmt = phwfmt;
6507 }
6508 mode = AUMODE_PLAY | AUMODE_RECORD;
6509 }
6510
6511 /* Then, unset the direction not exist on the hardware. */
6512 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6513 mode &= ~AUMODE_PLAY;
6514 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6515 mode &= ~AUMODE_RECORD;
6516
6517 /* debug */
6518 if ((mode & AUMODE_PLAY)) {
6519 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6520 audio_encoding_name(phwfmt.encoding),
6521 phwfmt.precision,
6522 phwfmt.stride,
6523 phwfmt.channels,
6524 phwfmt.sample_rate);
6525 }
6526 if ((mode & AUMODE_RECORD)) {
6527 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6528 audio_encoding_name(rhwfmt.encoding),
6529 rhwfmt.precision,
6530 rhwfmt.stride,
6531 rhwfmt.channels,
6532 rhwfmt.sample_rate);
6533 }
6534
6535 /* Check the format */
6536 if ((mode & AUMODE_PLAY)) {
6537 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6538 TRACE(1, "invalid format");
6539 return EINVAL;
6540 }
6541 }
6542 if ((mode & AUMODE_RECORD)) {
6543 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6544 TRACE(1, "invalid format");
6545 return EINVAL;
6546 }
6547 }
6548
6549 /* Configure the mixers. */
6550 memset(&pfil, 0, sizeof(pfil));
6551 memset(&rfil, 0, sizeof(rfil));
6552 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6553 if (error)
6554 return error;
6555
6556 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6557 if (error)
6558 return error;
6559
6560 /*
6561 * Reinitialize the sticky parameters for /dev/sound.
6562 * If the number of the hardware channels becomes less than the number
6563 * of channels that sticky parameters remember, subsequent /dev/sound
6564 * open will fail. To prevent this, reinitialize the sticky
6565 * parameters whenever the hardware format is changed.
6566 */
6567 sc->sc_sound_pparams = params_to_format2(&audio_default);
6568 sc->sc_sound_rparams = params_to_format2(&audio_default);
6569 sc->sc_sound_ppause = false;
6570 sc->sc_sound_rpause = false;
6571
6572 return 0;
6573 }
6574
6575 /*
6576 * Store current mixers format into *ai.
6577 * Must be called with sc_exlock held.
6578 */
6579 static void
6580 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6581 {
6582
6583 KASSERT(sc->sc_exlock);
6584
6585 /*
6586 * There is no stride information in audio_info but it doesn't matter.
6587 * trackmixer always treats stride and precision as the same.
6588 */
6589 AUDIO_INITINFO(ai);
6590 ai->mode = 0;
6591 if (sc->sc_pmixer) {
6592 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6593 ai->play.encoding = fmt->encoding;
6594 ai->play.precision = fmt->precision;
6595 ai->play.channels = fmt->channels;
6596 ai->play.sample_rate = fmt->sample_rate;
6597 ai->mode |= AUMODE_PLAY;
6598 }
6599 if (sc->sc_rmixer) {
6600 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6601 ai->record.encoding = fmt->encoding;
6602 ai->record.precision = fmt->precision;
6603 ai->record.channels = fmt->channels;
6604 ai->record.sample_rate = fmt->sample_rate;
6605 ai->mode |= AUMODE_RECORD;
6606 }
6607 }
6608
6609 /*
6610 * audio_info details:
6611 *
6612 * ai.{play,record}.sample_rate (R/W)
6613 * ai.{play,record}.encoding (R/W)
6614 * ai.{play,record}.precision (R/W)
6615 * ai.{play,record}.channels (R/W)
6616 * These specify the playback or recording format.
6617 * Ignore members within an inactive track.
6618 *
6619 * ai.mode (R/W)
6620 * It specifies the playback or recording mode, AUMODE_*.
6621 * Currently, a mode change operation by ai.mode after opening is
6622 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6623 * However, it's possible to get or to set for backward compatibility.
6624 *
6625 * ai.{hiwat,lowat} (R/W)
6626 * These specify the high water mark and low water mark for playback
6627 * track. The unit is block.
6628 *
6629 * ai.{play,record}.gain (R/W)
6630 * It specifies the HW mixer volume in 0-255.
6631 * It is historical reason that the gain is connected to HW mixer.
6632 *
6633 * ai.{play,record}.balance (R/W)
6634 * It specifies the left-right balance of HW mixer in 0-64.
6635 * 32 means the center.
6636 * It is historical reason that the balance is connected to HW mixer.
6637 *
6638 * ai.{play,record}.port (R/W)
6639 * It specifies the input/output port of HW mixer.
6640 *
6641 * ai.monitor_gain (R/W)
6642 * It specifies the recording monitor gain(?) of HW mixer.
6643 *
6644 * ai.{play,record}.pause (R/W)
6645 * Non-zero means the track is paused.
6646 *
6647 * ai.play.seek (R/-)
6648 * It indicates the number of bytes written but not processed.
6649 * ai.record.seek (R/-)
6650 * It indicates the number of bytes to be able to read.
6651 *
6652 * ai.{play,record}.avail_ports (R/-)
6653 * Mixer info.
6654 *
6655 * ai.{play,record}.buffer_size (R/-)
6656 * It indicates the buffer size in bytes. Internally it means usrbuf.
6657 *
6658 * ai.{play,record}.samples (R/-)
6659 * It indicates the total number of bytes played or recorded.
6660 *
6661 * ai.{play,record}.eof (R/-)
6662 * It indicates the number of times reached EOF(?).
6663 *
6664 * ai.{play,record}.error (R/-)
6665 * Non-zero indicates overflow/underflow has occured.
6666 *
6667 * ai.{play,record}.waiting (R/-)
6668 * Non-zero indicates that other process waits to open.
6669 * It will never happen anymore.
6670 *
6671 * ai.{play,record}.open (R/-)
6672 * Non-zero indicates the direction is opened by this process(?).
6673 * XXX Is this better to indicate that "the device is opened by
6674 * at least one process"?
6675 *
6676 * ai.{play,record}.active (R/-)
6677 * Non-zero indicates that I/O is currently active.
6678 *
6679 * ai.blocksize (R/-)
6680 * It indicates the block size in bytes.
6681 * XXX The blocksize of playback and recording may be different.
6682 */
6683
6684 /*
6685 * Pause consideration:
6686 *
6687 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6688 * operation simple. Note that playback and recording are asymmetric.
6689 *
6690 * For playback,
6691 * 1. Any playback open doesn't start pmixer regardless of initial pause
6692 * state of this track.
6693 * 2. The first write access among playback tracks only starts pmixer
6694 * regardless of this track's pause state.
6695 * 3. Even a pause of the last playback track doesn't stop pmixer.
6696 * 4. The last close of all playback tracks only stops pmixer.
6697 *
6698 * For recording,
6699 * 1. The first recording open only starts rmixer regardless of initial
6700 * pause state of this track.
6701 * 2. Even a pause of the last track doesn't stop rmixer.
6702 * 3. The last close of all recording tracks only stops rmixer.
6703 */
6704
6705 /*
6706 * Set both track's parameters within a file depending on ai.
6707 * Update sc_sound_[pr]* if set.
6708 * Must be called with sc_exlock held and without sc_lock held.
6709 */
6710 static int
6711 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6712 const struct audio_info *ai)
6713 {
6714 const struct audio_prinfo *pi;
6715 const struct audio_prinfo *ri;
6716 audio_track_t *ptrack;
6717 audio_track_t *rtrack;
6718 audio_format2_t pfmt;
6719 audio_format2_t rfmt;
6720 int pchanges;
6721 int rchanges;
6722 int mode;
6723 struct audio_info saved_ai;
6724 audio_format2_t saved_pfmt;
6725 audio_format2_t saved_rfmt;
6726 int error;
6727
6728 KASSERT(sc->sc_exlock);
6729
6730 pi = &ai->play;
6731 ri = &ai->record;
6732 pchanges = 0;
6733 rchanges = 0;
6734
6735 ptrack = file->ptrack;
6736 rtrack = file->rtrack;
6737
6738 #if defined(AUDIO_DEBUG)
6739 if (audiodebug >= 2) {
6740 char buf[256];
6741 char p[64];
6742 int buflen;
6743 int plen;
6744 #define SPRINTF(var, fmt...) do { \
6745 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6746 } while (0)
6747
6748 buflen = 0;
6749 plen = 0;
6750 if (SPECIFIED(pi->encoding))
6751 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6752 if (SPECIFIED(pi->precision))
6753 SPRINTF(p, "/%dbit", pi->precision);
6754 if (SPECIFIED(pi->channels))
6755 SPRINTF(p, "/%dch", pi->channels);
6756 if (SPECIFIED(pi->sample_rate))
6757 SPRINTF(p, "/%dHz", pi->sample_rate);
6758 if (plen > 0)
6759 SPRINTF(buf, ",play.param=%s", p + 1);
6760
6761 plen = 0;
6762 if (SPECIFIED(ri->encoding))
6763 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6764 if (SPECIFIED(ri->precision))
6765 SPRINTF(p, "/%dbit", ri->precision);
6766 if (SPECIFIED(ri->channels))
6767 SPRINTF(p, "/%dch", ri->channels);
6768 if (SPECIFIED(ri->sample_rate))
6769 SPRINTF(p, "/%dHz", ri->sample_rate);
6770 if (plen > 0)
6771 SPRINTF(buf, ",record.param=%s", p + 1);
6772
6773 if (SPECIFIED(ai->mode))
6774 SPRINTF(buf, ",mode=%d", ai->mode);
6775 if (SPECIFIED(ai->hiwat))
6776 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6777 if (SPECIFIED(ai->lowat))
6778 SPRINTF(buf, ",lowat=%d", ai->lowat);
6779 if (SPECIFIED(ai->play.gain))
6780 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6781 if (SPECIFIED(ai->record.gain))
6782 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6783 if (SPECIFIED_CH(ai->play.balance))
6784 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6785 if (SPECIFIED_CH(ai->record.balance))
6786 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6787 if (SPECIFIED(ai->play.port))
6788 SPRINTF(buf, ",play.port=%d", ai->play.port);
6789 if (SPECIFIED(ai->record.port))
6790 SPRINTF(buf, ",record.port=%d", ai->record.port);
6791 if (SPECIFIED(ai->monitor_gain))
6792 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6793 if (SPECIFIED_CH(ai->play.pause))
6794 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6795 if (SPECIFIED_CH(ai->record.pause))
6796 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6797
6798 if (buflen > 0)
6799 TRACE(2, "specified %s", buf + 1);
6800 }
6801 #endif
6802
6803 AUDIO_INITINFO(&saved_ai);
6804 /* XXX shut up gcc */
6805 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6806 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6807
6808 /*
6809 * Set default value and save current parameters.
6810 * For backward compatibility, use sticky parameters for nonexistent
6811 * track.
6812 */
6813 if (ptrack) {
6814 pfmt = ptrack->usrbuf.fmt;
6815 saved_pfmt = ptrack->usrbuf.fmt;
6816 saved_ai.play.pause = ptrack->is_pause;
6817 } else {
6818 pfmt = sc->sc_sound_pparams;
6819 }
6820 if (rtrack) {
6821 rfmt = rtrack->usrbuf.fmt;
6822 saved_rfmt = rtrack->usrbuf.fmt;
6823 saved_ai.record.pause = rtrack->is_pause;
6824 } else {
6825 rfmt = sc->sc_sound_rparams;
6826 }
6827 saved_ai.mode = file->mode;
6828
6829 /*
6830 * Overwrite if specified.
6831 */
6832 mode = file->mode;
6833 if (SPECIFIED(ai->mode)) {
6834 /*
6835 * Setting ai->mode no longer does anything because it's
6836 * prohibited to change playback/recording mode after open
6837 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6838 * keeps the state of AUMODE_PLAY_ALL itself for backward
6839 * compatibility.
6840 * In the internal, only file->mode has the state of
6841 * AUMODE_PLAY_ALL flag and track->mode in both track does
6842 * not have.
6843 */
6844 if ((file->mode & AUMODE_PLAY)) {
6845 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6846 | (ai->mode & AUMODE_PLAY_ALL);
6847 }
6848 }
6849
6850 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
6851 if (pchanges == -1) {
6852 #if defined(AUDIO_DEBUG)
6853 TRACEF(1, file, "check play.params failed: "
6854 "%s %ubit %uch %uHz",
6855 audio_encoding_name(pi->encoding),
6856 pi->precision,
6857 pi->channels,
6858 pi->sample_rate);
6859 #endif
6860 return EINVAL;
6861 }
6862
6863 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
6864 if (rchanges == -1) {
6865 #if defined(AUDIO_DEBUG)
6866 TRACEF(1, file, "check record.params failed: "
6867 "%s %ubit %uch %uHz",
6868 audio_encoding_name(ri->encoding),
6869 ri->precision,
6870 ri->channels,
6871 ri->sample_rate);
6872 #endif
6873 return EINVAL;
6874 }
6875
6876 if (SPECIFIED(ai->mode)) {
6877 pchanges = 1;
6878 rchanges = 1;
6879 }
6880
6881 /*
6882 * Even when setting either one of playback and recording,
6883 * both track must be halted.
6884 */
6885 if (pchanges || rchanges) {
6886 audio_file_clear(sc, file);
6887 #if defined(AUDIO_DEBUG)
6888 char nbuf[16];
6889 char fmtbuf[64];
6890 if (pchanges) {
6891 if (ptrack) {
6892 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
6893 } else {
6894 snprintf(nbuf, sizeof(nbuf), "-");
6895 }
6896 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6897 DPRINTF(1, "audio track#%s play mode: %s\n",
6898 nbuf, fmtbuf);
6899 }
6900 if (rchanges) {
6901 if (rtrack) {
6902 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
6903 } else {
6904 snprintf(nbuf, sizeof(nbuf), "-");
6905 }
6906 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6907 DPRINTF(1, "audio track#%s rec mode: %s\n",
6908 nbuf, fmtbuf);
6909 }
6910 #endif
6911 }
6912
6913 /* Set mixer parameters */
6914 mutex_enter(sc->sc_lock);
6915 error = audio_hw_setinfo(sc, ai, &saved_ai);
6916 mutex_exit(sc->sc_lock);
6917 if (error)
6918 goto abort1;
6919
6920 /*
6921 * Set to track and update sticky parameters.
6922 */
6923 error = 0;
6924 file->mode = mode;
6925
6926 if (SPECIFIED_CH(pi->pause)) {
6927 if (ptrack)
6928 ptrack->is_pause = pi->pause;
6929 sc->sc_sound_ppause = pi->pause;
6930 }
6931 if (pchanges) {
6932 if (ptrack) {
6933 audio_track_lock_enter(ptrack);
6934 error = audio_track_set_format(ptrack, &pfmt);
6935 audio_track_lock_exit(ptrack);
6936 if (error) {
6937 TRACET(1, ptrack, "set play.params failed");
6938 goto abort2;
6939 }
6940 }
6941 sc->sc_sound_pparams = pfmt;
6942 }
6943 /* Change water marks after initializing the buffers. */
6944 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6945 if (ptrack)
6946 audio_track_setinfo_water(ptrack, ai);
6947 }
6948
6949 if (SPECIFIED_CH(ri->pause)) {
6950 if (rtrack)
6951 rtrack->is_pause = ri->pause;
6952 sc->sc_sound_rpause = ri->pause;
6953 }
6954 if (rchanges) {
6955 if (rtrack) {
6956 audio_track_lock_enter(rtrack);
6957 error = audio_track_set_format(rtrack, &rfmt);
6958 audio_track_lock_exit(rtrack);
6959 if (error) {
6960 TRACET(1, rtrack, "set record.params failed");
6961 goto abort3;
6962 }
6963 }
6964 sc->sc_sound_rparams = rfmt;
6965 }
6966
6967 return 0;
6968
6969 /* Rollback */
6970 abort3:
6971 if (error != ENOMEM) {
6972 rtrack->is_pause = saved_ai.record.pause;
6973 audio_track_lock_enter(rtrack);
6974 audio_track_set_format(rtrack, &saved_rfmt);
6975 audio_track_lock_exit(rtrack);
6976 }
6977 sc->sc_sound_rpause = saved_ai.record.pause;
6978 sc->sc_sound_rparams = saved_rfmt;
6979 abort2:
6980 if (ptrack && error != ENOMEM) {
6981 ptrack->is_pause = saved_ai.play.pause;
6982 audio_track_lock_enter(ptrack);
6983 audio_track_set_format(ptrack, &saved_pfmt);
6984 audio_track_lock_exit(ptrack);
6985 }
6986 sc->sc_sound_ppause = saved_ai.play.pause;
6987 sc->sc_sound_pparams = saved_pfmt;
6988 file->mode = saved_ai.mode;
6989 abort1:
6990 mutex_enter(sc->sc_lock);
6991 audio_hw_setinfo(sc, &saved_ai, NULL);
6992 mutex_exit(sc->sc_lock);
6993
6994 return error;
6995 }
6996
6997 /*
6998 * Write SPECIFIED() parameters within info back to fmt.
6999 * Note that track can be NULL here.
7000 * Return value of 1 indicates that fmt is modified.
7001 * Return value of 0 indicates that fmt is not modified.
7002 * Return value of -1 indicates that error EINVAL has occurred.
7003 */
7004 static int
7005 audio_track_setinfo_check(audio_track_t *track,
7006 audio_format2_t *fmt, const struct audio_prinfo *info)
7007 {
7008 const audio_format2_t *hwfmt;
7009 int changes;
7010
7011 changes = 0;
7012 if (SPECIFIED(info->sample_rate)) {
7013 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7014 return -1;
7015 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7016 return -1;
7017 fmt->sample_rate = info->sample_rate;
7018 changes = 1;
7019 }
7020 if (SPECIFIED(info->encoding)) {
7021 fmt->encoding = info->encoding;
7022 changes = 1;
7023 }
7024 if (SPECIFIED(info->precision)) {
7025 fmt->precision = info->precision;
7026 /* we don't have API to specify stride */
7027 fmt->stride = info->precision;
7028 changes = 1;
7029 }
7030 if (SPECIFIED(info->channels)) {
7031 /*
7032 * We can convert between monaural and stereo each other.
7033 * We can reduce than the number of channels that the hardware
7034 * supports.
7035 */
7036 if (info->channels > 2) {
7037 if (track) {
7038 hwfmt = &track->mixer->hwbuf.fmt;
7039 if (info->channels > hwfmt->channels)
7040 return -1;
7041 } else {
7042 /*
7043 * This should never happen.
7044 * If track == NULL, channels should be <= 2.
7045 */
7046 return -1;
7047 }
7048 }
7049 fmt->channels = info->channels;
7050 changes = 1;
7051 }
7052
7053 if (changes) {
7054 if (audio_check_params(fmt) != 0)
7055 return -1;
7056 }
7057
7058 return changes;
7059 }
7060
7061 /*
7062 * Change water marks for playback track if specfied.
7063 */
7064 static void
7065 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7066 {
7067 u_int blks;
7068 u_int maxblks;
7069 u_int blksize;
7070
7071 KASSERT(audio_track_is_playback(track));
7072
7073 blksize = track->usrbuf_blksize;
7074 maxblks = track->usrbuf.capacity / blksize;
7075
7076 if (SPECIFIED(ai->hiwat)) {
7077 blks = ai->hiwat;
7078 if (blks > maxblks)
7079 blks = maxblks;
7080 if (blks < 2)
7081 blks = 2;
7082 track->usrbuf_usedhigh = blks * blksize;
7083 }
7084 if (SPECIFIED(ai->lowat)) {
7085 blks = ai->lowat;
7086 if (blks > maxblks - 1)
7087 blks = maxblks - 1;
7088 track->usrbuf_usedlow = blks * blksize;
7089 }
7090 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7091 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7092 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7093 blksize;
7094 }
7095 }
7096 }
7097
7098 /*
7099 * Set hardware part of *newai.
7100 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7101 * If oldai is specified, previous parameters are stored.
7102 * This function itself does not roll back if error occurred.
7103 * Must be called with sc_lock && sc_exlock held.
7104 */
7105 static int
7106 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7107 struct audio_info *oldai)
7108 {
7109 const struct audio_prinfo *newpi;
7110 const struct audio_prinfo *newri;
7111 struct audio_prinfo *oldpi;
7112 struct audio_prinfo *oldri;
7113 u_int pgain;
7114 u_int rgain;
7115 u_char pbalance;
7116 u_char rbalance;
7117 int error;
7118
7119 KASSERT(mutex_owned(sc->sc_lock));
7120 KASSERT(sc->sc_exlock);
7121
7122 /* XXX shut up gcc */
7123 oldpi = NULL;
7124 oldri = NULL;
7125
7126 newpi = &newai->play;
7127 newri = &newai->record;
7128 if (oldai) {
7129 oldpi = &oldai->play;
7130 oldri = &oldai->record;
7131 }
7132 error = 0;
7133
7134 /*
7135 * It looks like unnecessary to halt HW mixers to set HW mixers.
7136 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7137 */
7138
7139 if (SPECIFIED(newpi->port)) {
7140 if (oldai)
7141 oldpi->port = au_get_port(sc, &sc->sc_outports);
7142 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7143 if (error) {
7144 device_printf(sc->sc_dev,
7145 "setting play.port=%d failed with %d\n",
7146 newpi->port, error);
7147 goto abort;
7148 }
7149 }
7150 if (SPECIFIED(newri->port)) {
7151 if (oldai)
7152 oldri->port = au_get_port(sc, &sc->sc_inports);
7153 error = au_set_port(sc, &sc->sc_inports, newri->port);
7154 if (error) {
7155 device_printf(sc->sc_dev,
7156 "setting record.port=%d failed with %d\n",
7157 newri->port, error);
7158 goto abort;
7159 }
7160 }
7161
7162 /* Backup play.{gain,balance} */
7163 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7164 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7165 if (oldai) {
7166 oldpi->gain = pgain;
7167 oldpi->balance = pbalance;
7168 }
7169 }
7170 /* Backup record.{gain,balance} */
7171 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7172 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7173 if (oldai) {
7174 oldri->gain = rgain;
7175 oldri->balance = rbalance;
7176 }
7177 }
7178 if (SPECIFIED(newpi->gain)) {
7179 error = au_set_gain(sc, &sc->sc_outports,
7180 newpi->gain, pbalance);
7181 if (error) {
7182 device_printf(sc->sc_dev,
7183 "setting play.gain=%d failed with %d\n",
7184 newpi->gain, error);
7185 goto abort;
7186 }
7187 }
7188 if (SPECIFIED(newri->gain)) {
7189 error = au_set_gain(sc, &sc->sc_inports,
7190 newri->gain, rbalance);
7191 if (error) {
7192 device_printf(sc->sc_dev,
7193 "setting record.gain=%d failed with %d\n",
7194 newri->gain, error);
7195 goto abort;
7196 }
7197 }
7198 if (SPECIFIED_CH(newpi->balance)) {
7199 error = au_set_gain(sc, &sc->sc_outports,
7200 pgain, newpi->balance);
7201 if (error) {
7202 device_printf(sc->sc_dev,
7203 "setting play.balance=%d failed with %d\n",
7204 newpi->balance, error);
7205 goto abort;
7206 }
7207 }
7208 if (SPECIFIED_CH(newri->balance)) {
7209 error = au_set_gain(sc, &sc->sc_inports,
7210 rgain, newri->balance);
7211 if (error) {
7212 device_printf(sc->sc_dev,
7213 "setting record.balance=%d failed with %d\n",
7214 newri->balance, error);
7215 goto abort;
7216 }
7217 }
7218
7219 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7220 if (oldai)
7221 oldai->monitor_gain = au_get_monitor_gain(sc);
7222 error = au_set_monitor_gain(sc, newai->monitor_gain);
7223 if (error) {
7224 device_printf(sc->sc_dev,
7225 "setting monitor_gain=%d failed with %d\n",
7226 newai->monitor_gain, error);
7227 goto abort;
7228 }
7229 }
7230
7231 /* XXX TODO */
7232 /* sc->sc_ai = *ai; */
7233
7234 error = 0;
7235 abort:
7236 return error;
7237 }
7238
7239 /*
7240 * Setup the hardware with mixer format phwfmt, rhwfmt.
7241 * The arguments have following restrictions:
7242 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7243 * or both.
7244 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7245 * - On non-independent devices, phwfmt and rhwfmt must have the same
7246 * parameters.
7247 * - pfil and rfil must be zero-filled.
7248 * If successful,
7249 * - pfil, rfil will be filled with filter information specified by the
7250 * hardware driver.
7251 * and then returns 0. Otherwise returns errno.
7252 * Must be called without sc_lock held.
7253 */
7254 static int
7255 audio_hw_set_format(struct audio_softc *sc, int setmode,
7256 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7257 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7258 {
7259 audio_params_t pp, rp;
7260 int error;
7261
7262 KASSERT(phwfmt != NULL);
7263 KASSERT(rhwfmt != NULL);
7264
7265 pp = format2_to_params(phwfmt);
7266 rp = format2_to_params(rhwfmt);
7267
7268 mutex_enter(sc->sc_lock);
7269 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7270 &pp, &rp, pfil, rfil);
7271 if (error) {
7272 mutex_exit(sc->sc_lock);
7273 device_printf(sc->sc_dev,
7274 "set_format failed with %d\n", error);
7275 return error;
7276 }
7277
7278 if (sc->hw_if->commit_settings) {
7279 error = sc->hw_if->commit_settings(sc->hw_hdl);
7280 if (error) {
7281 mutex_exit(sc->sc_lock);
7282 device_printf(sc->sc_dev,
7283 "commit_settings failed with %d\n", error);
7284 return error;
7285 }
7286 }
7287 mutex_exit(sc->sc_lock);
7288
7289 return 0;
7290 }
7291
7292 /*
7293 * Fill audio_info structure. If need_mixerinfo is true, it will also
7294 * fill the hardware mixer information.
7295 * Must be called with sc_exlock held and without sc_lock held.
7296 */
7297 static int
7298 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7299 audio_file_t *file)
7300 {
7301 struct audio_prinfo *ri, *pi;
7302 audio_track_t *track;
7303 audio_track_t *ptrack;
7304 audio_track_t *rtrack;
7305 int gain;
7306
7307 KASSERT(sc->sc_exlock);
7308
7309 ri = &ai->record;
7310 pi = &ai->play;
7311 ptrack = file->ptrack;
7312 rtrack = file->rtrack;
7313
7314 memset(ai, 0, sizeof(*ai));
7315
7316 if (ptrack) {
7317 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7318 pi->channels = ptrack->usrbuf.fmt.channels;
7319 pi->precision = ptrack->usrbuf.fmt.precision;
7320 pi->encoding = ptrack->usrbuf.fmt.encoding;
7321 pi->pause = ptrack->is_pause;
7322 } else {
7323 /* Use sticky parameters if the track is not available. */
7324 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7325 pi->channels = sc->sc_sound_pparams.channels;
7326 pi->precision = sc->sc_sound_pparams.precision;
7327 pi->encoding = sc->sc_sound_pparams.encoding;
7328 pi->pause = sc->sc_sound_ppause;
7329 }
7330 if (rtrack) {
7331 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7332 ri->channels = rtrack->usrbuf.fmt.channels;
7333 ri->precision = rtrack->usrbuf.fmt.precision;
7334 ri->encoding = rtrack->usrbuf.fmt.encoding;
7335 ri->pause = rtrack->is_pause;
7336 } else {
7337 /* Use sticky parameters if the track is not available. */
7338 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7339 ri->channels = sc->sc_sound_rparams.channels;
7340 ri->precision = sc->sc_sound_rparams.precision;
7341 ri->encoding = sc->sc_sound_rparams.encoding;
7342 ri->pause = sc->sc_sound_rpause;
7343 }
7344
7345 if (ptrack) {
7346 pi->seek = ptrack->usrbuf.used;
7347 pi->samples = ptrack->usrbuf_stamp;
7348 pi->eof = ptrack->eofcounter;
7349 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7350 pi->open = 1;
7351 pi->buffer_size = ptrack->usrbuf.capacity;
7352 }
7353 pi->waiting = 0; /* open never hangs */
7354 pi->active = sc->sc_pbusy;
7355
7356 if (rtrack) {
7357 ri->seek = rtrack->usrbuf.used;
7358 ri->samples = rtrack->usrbuf_stamp;
7359 ri->eof = 0;
7360 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7361 ri->open = 1;
7362 ri->buffer_size = rtrack->usrbuf.capacity;
7363 }
7364 ri->waiting = 0; /* open never hangs */
7365 ri->active = sc->sc_rbusy;
7366
7367 /*
7368 * XXX There may be different number of channels between playback
7369 * and recording, so that blocksize also may be different.
7370 * But struct audio_info has an united blocksize...
7371 * Here, I use play info precedencely if ptrack is available,
7372 * otherwise record info.
7373 *
7374 * XXX hiwat/lowat is a playback-only parameter. What should I
7375 * return for a record-only descriptor?
7376 */
7377 track = ptrack ? ptrack : rtrack;
7378 if (track) {
7379 ai->blocksize = track->usrbuf_blksize;
7380 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7381 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7382 }
7383 ai->mode = file->mode;
7384
7385 /*
7386 * For backward compatibility, we have to pad these five fields
7387 * a fake non-zero value even if there are no tracks.
7388 */
7389 if (ptrack == NULL)
7390 pi->buffer_size = 65536;
7391 if (rtrack == NULL)
7392 ri->buffer_size = 65536;
7393 if (ptrack == NULL && rtrack == NULL) {
7394 ai->blocksize = 2048;
7395 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7396 ai->lowat = ai->hiwat * 3 / 4;
7397 }
7398
7399 if (need_mixerinfo) {
7400 mutex_enter(sc->sc_lock);
7401
7402 pi->port = au_get_port(sc, &sc->sc_outports);
7403 ri->port = au_get_port(sc, &sc->sc_inports);
7404
7405 pi->avail_ports = sc->sc_outports.allports;
7406 ri->avail_ports = sc->sc_inports.allports;
7407
7408 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7409 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7410
7411 if (sc->sc_monitor_port != -1) {
7412 gain = au_get_monitor_gain(sc);
7413 if (gain != -1)
7414 ai->monitor_gain = gain;
7415 }
7416 mutex_exit(sc->sc_lock);
7417 }
7418
7419 return 0;
7420 }
7421
7422 /*
7423 * Return true if playback is configured.
7424 * This function can be used after audioattach.
7425 */
7426 static bool
7427 audio_can_playback(struct audio_softc *sc)
7428 {
7429
7430 return (sc->sc_pmixer != NULL);
7431 }
7432
7433 /*
7434 * Return true if recording is configured.
7435 * This function can be used after audioattach.
7436 */
7437 static bool
7438 audio_can_capture(struct audio_softc *sc)
7439 {
7440
7441 return (sc->sc_rmixer != NULL);
7442 }
7443
7444 /*
7445 * Get the afp->index'th item from the valid one of format[].
7446 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7447 *
7448 * This is common routines for query_format.
7449 * If your hardware driver has struct audio_format[], the simplest case
7450 * you can write your query_format interface as follows:
7451 *
7452 * struct audio_format foo_format[] = { ... };
7453 *
7454 * int
7455 * foo_query_format(void *hdl, audio_format_query_t *afp)
7456 * {
7457 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7458 * }
7459 */
7460 int
7461 audio_query_format(const struct audio_format *format, int nformats,
7462 audio_format_query_t *afp)
7463 {
7464 const struct audio_format *f;
7465 int idx;
7466 int i;
7467
7468 idx = 0;
7469 for (i = 0; i < nformats; i++) {
7470 f = &format[i];
7471 if (!AUFMT_IS_VALID(f))
7472 continue;
7473 if (afp->index == idx) {
7474 afp->fmt = *f;
7475 return 0;
7476 }
7477 idx++;
7478 }
7479 return EINVAL;
7480 }
7481
7482 /*
7483 * This function is provided for the hardware driver's set_format() to
7484 * find index matches with 'param' from array of audio_format_t 'formats'.
7485 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7486 * It returns the matched index and never fails. Because param passed to
7487 * set_format() is selected from query_format().
7488 * This function will be an alternative to auconv_set_converter() to
7489 * find index.
7490 */
7491 int
7492 audio_indexof_format(const struct audio_format *formats, int nformats,
7493 int mode, const audio_params_t *param)
7494 {
7495 const struct audio_format *f;
7496 int index;
7497 int j;
7498
7499 for (index = 0; index < nformats; index++) {
7500 f = &formats[index];
7501
7502 if (!AUFMT_IS_VALID(f))
7503 continue;
7504 if ((f->mode & mode) == 0)
7505 continue;
7506 if (f->encoding != param->encoding)
7507 continue;
7508 if (f->validbits != param->precision)
7509 continue;
7510 if (f->channels != param->channels)
7511 continue;
7512
7513 if (f->frequency_type == 0) {
7514 if (param->sample_rate < f->frequency[0] ||
7515 param->sample_rate > f->frequency[1])
7516 continue;
7517 } else {
7518 for (j = 0; j < f->frequency_type; j++) {
7519 if (param->sample_rate == f->frequency[j])
7520 break;
7521 }
7522 if (j == f->frequency_type)
7523 continue;
7524 }
7525
7526 /* Then, matched */
7527 return index;
7528 }
7529
7530 /* Not matched. This should not be happened. */
7531 panic("%s: cannot find matched format\n", __func__);
7532 }
7533
7534 /*
7535 * Get or set hardware blocksize in msec.
7536 * XXX It's for debug.
7537 */
7538 static int
7539 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7540 {
7541 struct sysctlnode node;
7542 struct audio_softc *sc;
7543 audio_format2_t phwfmt;
7544 audio_format2_t rhwfmt;
7545 audio_filter_reg_t pfil;
7546 audio_filter_reg_t rfil;
7547 int t;
7548 int old_blk_ms;
7549 int mode;
7550 int error;
7551
7552 node = *rnode;
7553 sc = node.sysctl_data;
7554
7555 error = audio_exlock_enter(sc);
7556 if (error)
7557 return error;
7558
7559 old_blk_ms = sc->sc_blk_ms;
7560 t = old_blk_ms;
7561 node.sysctl_data = &t;
7562 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7563 if (error || newp == NULL)
7564 goto abort;
7565
7566 if (t < 0) {
7567 error = EINVAL;
7568 goto abort;
7569 }
7570
7571 if (sc->sc_popens + sc->sc_ropens > 0) {
7572 error = EBUSY;
7573 goto abort;
7574 }
7575 sc->sc_blk_ms = t;
7576 mode = 0;
7577 if (sc->sc_pmixer) {
7578 mode |= AUMODE_PLAY;
7579 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7580 }
7581 if (sc->sc_rmixer) {
7582 mode |= AUMODE_RECORD;
7583 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7584 }
7585
7586 /* re-init hardware */
7587 memset(&pfil, 0, sizeof(pfil));
7588 memset(&rfil, 0, sizeof(rfil));
7589 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7590 if (error) {
7591 goto abort;
7592 }
7593
7594 /* re-init track mixer */
7595 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7596 if (error) {
7597 /* Rollback */
7598 sc->sc_blk_ms = old_blk_ms;
7599 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7600 goto abort;
7601 }
7602 error = 0;
7603 abort:
7604 audio_exlock_exit(sc);
7605 return error;
7606 }
7607
7608 /*
7609 * Get or set multiuser mode.
7610 */
7611 static int
7612 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7613 {
7614 struct sysctlnode node;
7615 struct audio_softc *sc;
7616 bool t;
7617 int error;
7618
7619 node = *rnode;
7620 sc = node.sysctl_data;
7621
7622 error = audio_exlock_enter(sc);
7623 if (error)
7624 return error;
7625
7626 t = sc->sc_multiuser;
7627 node.sysctl_data = &t;
7628 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7629 if (error || newp == NULL)
7630 goto abort;
7631
7632 sc->sc_multiuser = t;
7633 error = 0;
7634 abort:
7635 audio_exlock_exit(sc);
7636 return error;
7637 }
7638
7639 #if defined(AUDIO_DEBUG)
7640 /*
7641 * Get or set debug verbose level. (0..4)
7642 * XXX It's for debug.
7643 * XXX It is not separated per device.
7644 */
7645 static int
7646 audio_sysctl_debug(SYSCTLFN_ARGS)
7647 {
7648 struct sysctlnode node;
7649 int t;
7650 int error;
7651
7652 node = *rnode;
7653 t = audiodebug;
7654 node.sysctl_data = &t;
7655 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7656 if (error || newp == NULL)
7657 return error;
7658
7659 if (t < 0 || t > 4)
7660 return EINVAL;
7661 audiodebug = t;
7662 printf("audio: audiodebug = %d\n", audiodebug);
7663 return 0;
7664 }
7665 #endif /* AUDIO_DEBUG */
7666
7667 #ifdef AUDIO_PM_IDLE
7668 static void
7669 audio_idle(void *arg)
7670 {
7671 device_t dv = arg;
7672 struct audio_softc *sc = device_private(dv);
7673
7674 #ifdef PNP_DEBUG
7675 extern int pnp_debug_idle;
7676 if (pnp_debug_idle)
7677 printf("%s: idle handler called\n", device_xname(dv));
7678 #endif
7679
7680 sc->sc_idle = true;
7681
7682 /* XXX joerg Make pmf_device_suspend handle children? */
7683 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7684 return;
7685
7686 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7687 pmf_device_resume(dv, PMF_Q_SELF);
7688 }
7689
7690 static void
7691 audio_activity(device_t dv, devactive_t type)
7692 {
7693 struct audio_softc *sc = device_private(dv);
7694
7695 if (type != DVA_SYSTEM)
7696 return;
7697
7698 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7699
7700 sc->sc_idle = false;
7701 if (!device_is_active(dv)) {
7702 /* XXX joerg How to deal with a failing resume... */
7703 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7704 pmf_device_resume(dv, PMF_Q_SELF);
7705 }
7706 }
7707 #endif
7708
7709 static bool
7710 audio_suspend(device_t dv, const pmf_qual_t *qual)
7711 {
7712 struct audio_softc *sc = device_private(dv);
7713 int error;
7714
7715 error = audio_exlock_mutex_enter(sc);
7716 if (error)
7717 return error;
7718 audio_mixer_capture(sc);
7719
7720 /* Halts mixers but don't clear busy flag for resume */
7721 if (sc->sc_pbusy) {
7722 audio_pmixer_halt(sc);
7723 sc->sc_pbusy = true;
7724 }
7725 if (sc->sc_rbusy) {
7726 audio_rmixer_halt(sc);
7727 sc->sc_rbusy = true;
7728 }
7729
7730 #ifdef AUDIO_PM_IDLE
7731 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7732 #endif
7733 audio_exlock_mutex_exit(sc);
7734
7735 return true;
7736 }
7737
7738 static bool
7739 audio_resume(device_t dv, const pmf_qual_t *qual)
7740 {
7741 struct audio_softc *sc = device_private(dv);
7742 struct audio_info ai;
7743 int error;
7744
7745 error = audio_exlock_mutex_enter(sc);
7746 if (error)
7747 return error;
7748
7749 audio_mixer_restore(sc);
7750 /* XXX ? */
7751 AUDIO_INITINFO(&ai);
7752 audio_hw_setinfo(sc, &ai, NULL);
7753
7754 if (sc->sc_pbusy)
7755 audio_pmixer_start(sc, true);
7756 if (sc->sc_rbusy)
7757 audio_rmixer_start(sc);
7758
7759 audio_exlock_mutex_exit(sc);
7760
7761 return true;
7762 }
7763
7764 #if defined(AUDIO_DEBUG)
7765 static void
7766 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7767 {
7768 int n;
7769
7770 n = 0;
7771 n += snprintf(buf + n, bufsize - n, "%s",
7772 audio_encoding_name(fmt->encoding));
7773 if (fmt->precision == fmt->stride) {
7774 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7775 } else {
7776 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7777 fmt->precision, fmt->stride);
7778 }
7779
7780 snprintf(buf + n, bufsize - n, " %uch %uHz",
7781 fmt->channels, fmt->sample_rate);
7782 }
7783 #endif
7784
7785 #if defined(AUDIO_DEBUG)
7786 static void
7787 audio_print_format2(const char *s, const audio_format2_t *fmt)
7788 {
7789 char fmtstr[64];
7790
7791 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7792 printf("%s %s\n", s, fmtstr);
7793 }
7794 #endif
7795
7796 #ifdef DIAGNOSTIC
7797 void
7798 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7799 {
7800
7801 KASSERTMSG(fmt, "called from %s", where);
7802
7803 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7804 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7805 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7806 "called from %s: fmt->stride=%d", where, fmt->stride);
7807 } else {
7808 KASSERTMSG(fmt->stride % NBBY == 0,
7809 "called from %s: fmt->stride=%d", where, fmt->stride);
7810 }
7811 KASSERTMSG(fmt->precision <= fmt->stride,
7812 "called from %s: fmt->precision=%d fmt->stride=%d",
7813 where, fmt->precision, fmt->stride);
7814 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7815 "called from %s: fmt->channels=%d", where, fmt->channels);
7816
7817 /* XXX No check for encodings? */
7818 }
7819
7820 void
7821 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7822 {
7823
7824 KASSERT(arg != NULL);
7825 KASSERT(arg->src != NULL);
7826 KASSERT(arg->dst != NULL);
7827 audio_diagnostic_format2(where, arg->srcfmt);
7828 audio_diagnostic_format2(where, arg->dstfmt);
7829 KASSERT(arg->count > 0);
7830 }
7831
7832 void
7833 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7834 {
7835
7836 KASSERTMSG(ring, "called from %s", where);
7837 audio_diagnostic_format2(where, &ring->fmt);
7838 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7839 "called from %s: ring->capacity=%d", where, ring->capacity);
7840 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7841 "called from %s: ring->used=%d ring->capacity=%d",
7842 where, ring->used, ring->capacity);
7843 if (ring->capacity == 0) {
7844 KASSERTMSG(ring->mem == NULL,
7845 "called from %s: capacity == 0 but mem != NULL", where);
7846 } else {
7847 KASSERTMSG(ring->mem != NULL,
7848 "called from %s: capacity != 0 but mem == NULL", where);
7849 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7850 "called from %s: ring->head=%d ring->capacity=%d",
7851 where, ring->head, ring->capacity);
7852 }
7853 }
7854 #endif /* DIAGNOSTIC */
7855
7856
7857 /*
7858 * Mixer driver
7859 */
7860
7861 /*
7862 * Must be called without sc_lock held.
7863 */
7864 int
7865 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7866 struct lwp *l)
7867 {
7868 struct file *fp;
7869 audio_file_t *af;
7870 int error, fd;
7871
7872 TRACE(1, "flags=0x%x", flags);
7873
7874 error = fd_allocfile(&fp, &fd);
7875 if (error)
7876 return error;
7877
7878 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7879 af->sc = sc;
7880 af->dev = dev;
7881
7882 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7883 KASSERT(error == EMOVEFD);
7884
7885 return error;
7886 }
7887
7888 /*
7889 * Add a process to those to be signalled on mixer activity.
7890 * If the process has already been added, do nothing.
7891 * Must be called with sc_exlock held and without sc_lock held.
7892 */
7893 static void
7894 mixer_async_add(struct audio_softc *sc, pid_t pid)
7895 {
7896 int i;
7897
7898 KASSERT(sc->sc_exlock);
7899
7900 /* If already exists, returns without doing anything. */
7901 for (i = 0; i < sc->sc_am_used; i++) {
7902 if (sc->sc_am[i] == pid)
7903 return;
7904 }
7905
7906 /* Extend array if necessary. */
7907 if (sc->sc_am_used >= sc->sc_am_capacity) {
7908 sc->sc_am_capacity += AM_CAPACITY;
7909 sc->sc_am = kern_realloc(sc->sc_am,
7910 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
7911 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
7912 }
7913
7914 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
7915 sc->sc_am[sc->sc_am_used++] = pid;
7916 }
7917
7918 /*
7919 * Remove a process from those to be signalled on mixer activity.
7920 * If the process has not been added, do nothing.
7921 * Must be called with sc_exlock held and without sc_lock held.
7922 */
7923 static void
7924 mixer_async_remove(struct audio_softc *sc, pid_t pid)
7925 {
7926 int i;
7927
7928 KASSERT(sc->sc_exlock);
7929
7930 for (i = 0; i < sc->sc_am_used; i++) {
7931 if (sc->sc_am[i] == pid) {
7932 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
7933 TRACE(2, "am[%d](%d) removed, used=%d",
7934 i, (int)pid, sc->sc_am_used);
7935
7936 /* Empty array if no longer necessary. */
7937 if (sc->sc_am_used == 0) {
7938 kern_free(sc->sc_am);
7939 sc->sc_am = NULL;
7940 sc->sc_am_capacity = 0;
7941 TRACE(2, "released");
7942 }
7943 return;
7944 }
7945 }
7946 }
7947
7948 /*
7949 * Signal all processes waiting for the mixer.
7950 * Must be called with sc_exlock held.
7951 */
7952 static void
7953 mixer_signal(struct audio_softc *sc)
7954 {
7955 proc_t *p;
7956 int i;
7957
7958 KASSERT(sc->sc_exlock);
7959
7960 for (i = 0; i < sc->sc_am_used; i++) {
7961 mutex_enter(proc_lock);
7962 p = proc_find(sc->sc_am[i]);
7963 if (p)
7964 psignal(p, SIGIO);
7965 mutex_exit(proc_lock);
7966 }
7967 }
7968
7969 /*
7970 * Close a mixer device
7971 */
7972 int
7973 mixer_close(struct audio_softc *sc, audio_file_t *file)
7974 {
7975 int error;
7976
7977 error = audio_exlock_enter(sc);
7978 if (error)
7979 return error;
7980 TRACE(1, "");
7981 mixer_async_remove(sc, curproc->p_pid);
7982 audio_exlock_exit(sc);
7983
7984 return 0;
7985 }
7986
7987 /*
7988 * Must be called without sc_lock nor sc_exlock held.
7989 */
7990 int
7991 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
7992 struct lwp *l)
7993 {
7994 mixer_devinfo_t *mi;
7995 mixer_ctrl_t *mc;
7996 int error;
7997
7998 TRACE(2, "(%lu,'%c',%lu)",
7999 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8000 error = EINVAL;
8001
8002 /* we can return cached values if we are sleeping */
8003 if (cmd != AUDIO_MIXER_READ) {
8004 mutex_enter(sc->sc_lock);
8005 device_active(sc->sc_dev, DVA_SYSTEM);
8006 mutex_exit(sc->sc_lock);
8007 }
8008
8009 switch (cmd) {
8010 case FIOASYNC:
8011 error = audio_exlock_enter(sc);
8012 if (error)
8013 break;
8014 if (*(int *)addr) {
8015 mixer_async_add(sc, curproc->p_pid);
8016 } else {
8017 mixer_async_remove(sc, curproc->p_pid);
8018 }
8019 audio_exlock_exit(sc);
8020 break;
8021
8022 case AUDIO_GETDEV:
8023 TRACE(2, "AUDIO_GETDEV");
8024 mutex_enter(sc->sc_lock);
8025 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8026 mutex_exit(sc->sc_lock);
8027 break;
8028
8029 case AUDIO_MIXER_DEVINFO:
8030 TRACE(2, "AUDIO_MIXER_DEVINFO");
8031 mi = (mixer_devinfo_t *)addr;
8032
8033 mi->un.v.delta = 0; /* default */
8034 mutex_enter(sc->sc_lock);
8035 error = audio_query_devinfo(sc, mi);
8036 mutex_exit(sc->sc_lock);
8037 break;
8038
8039 case AUDIO_MIXER_READ:
8040 TRACE(2, "AUDIO_MIXER_READ");
8041 mc = (mixer_ctrl_t *)addr;
8042
8043 error = audio_exlock_mutex_enter(sc);
8044 if (error)
8045 break;
8046 if (device_is_active(sc->hw_dev))
8047 error = audio_get_port(sc, mc);
8048 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8049 error = ENXIO;
8050 else {
8051 int dev = mc->dev;
8052 memcpy(mc, &sc->sc_mixer_state[dev],
8053 sizeof(mixer_ctrl_t));
8054 error = 0;
8055 }
8056 audio_exlock_mutex_exit(sc);
8057 break;
8058
8059 case AUDIO_MIXER_WRITE:
8060 TRACE(2, "AUDIO_MIXER_WRITE");
8061 error = audio_exlock_mutex_enter(sc);
8062 if (error)
8063 break;
8064 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8065 if (error) {
8066 audio_exlock_mutex_exit(sc);
8067 break;
8068 }
8069
8070 if (sc->hw_if->commit_settings) {
8071 error = sc->hw_if->commit_settings(sc->hw_hdl);
8072 if (error) {
8073 audio_exlock_mutex_exit(sc);
8074 break;
8075 }
8076 }
8077 mutex_exit(sc->sc_lock);
8078 mixer_signal(sc);
8079 audio_exlock_exit(sc);
8080 break;
8081
8082 default:
8083 if (sc->hw_if->dev_ioctl) {
8084 mutex_enter(sc->sc_lock);
8085 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8086 cmd, addr, flag, l);
8087 mutex_exit(sc->sc_lock);
8088 } else
8089 error = EINVAL;
8090 break;
8091 }
8092 TRACE(2, "(%lu,'%c',%lu) result %d",
8093 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8094 return error;
8095 }
8096
8097 /*
8098 * Must be called with sc_lock held.
8099 */
8100 int
8101 au_portof(struct audio_softc *sc, char *name, int class)
8102 {
8103 mixer_devinfo_t mi;
8104
8105 KASSERT(mutex_owned(sc->sc_lock));
8106
8107 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8108 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8109 return mi.index;
8110 }
8111 return -1;
8112 }
8113
8114 /*
8115 * Must be called with sc_lock held.
8116 */
8117 void
8118 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8119 mixer_devinfo_t *mi, const struct portname *tbl)
8120 {
8121 int i, j;
8122
8123 KASSERT(mutex_owned(sc->sc_lock));
8124
8125 ports->index = mi->index;
8126 if (mi->type == AUDIO_MIXER_ENUM) {
8127 ports->isenum = true;
8128 for(i = 0; tbl[i].name; i++)
8129 for(j = 0; j < mi->un.e.num_mem; j++)
8130 if (strcmp(mi->un.e.member[j].label.name,
8131 tbl[i].name) == 0) {
8132 ports->allports |= tbl[i].mask;
8133 ports->aumask[ports->nports] = tbl[i].mask;
8134 ports->misel[ports->nports] =
8135 mi->un.e.member[j].ord;
8136 ports->miport[ports->nports] =
8137 au_portof(sc, mi->un.e.member[j].label.name,
8138 mi->mixer_class);
8139 if (ports->mixerout != -1 &&
8140 ports->miport[ports->nports] != -1)
8141 ports->isdual = true;
8142 ++ports->nports;
8143 }
8144 } else if (mi->type == AUDIO_MIXER_SET) {
8145 for(i = 0; tbl[i].name; i++)
8146 for(j = 0; j < mi->un.s.num_mem; j++)
8147 if (strcmp(mi->un.s.member[j].label.name,
8148 tbl[i].name) == 0) {
8149 ports->allports |= tbl[i].mask;
8150 ports->aumask[ports->nports] = tbl[i].mask;
8151 ports->misel[ports->nports] =
8152 mi->un.s.member[j].mask;
8153 ports->miport[ports->nports] =
8154 au_portof(sc, mi->un.s.member[j].label.name,
8155 mi->mixer_class);
8156 ++ports->nports;
8157 }
8158 }
8159 }
8160
8161 /*
8162 * Must be called with sc_lock && sc_exlock held.
8163 */
8164 int
8165 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8166 {
8167
8168 KASSERT(mutex_owned(sc->sc_lock));
8169 KASSERT(sc->sc_exlock);
8170
8171 ct->type = AUDIO_MIXER_VALUE;
8172 ct->un.value.num_channels = 2;
8173 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8174 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8175 if (audio_set_port(sc, ct) == 0)
8176 return 0;
8177 ct->un.value.num_channels = 1;
8178 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8179 return audio_set_port(sc, ct);
8180 }
8181
8182 /*
8183 * Must be called with sc_lock && sc_exlock held.
8184 */
8185 int
8186 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8187 {
8188 int error;
8189
8190 KASSERT(mutex_owned(sc->sc_lock));
8191 KASSERT(sc->sc_exlock);
8192
8193 ct->un.value.num_channels = 2;
8194 if (audio_get_port(sc, ct) == 0) {
8195 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8196 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8197 } else {
8198 ct->un.value.num_channels = 1;
8199 error = audio_get_port(sc, ct);
8200 if (error)
8201 return error;
8202 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8203 }
8204 return 0;
8205 }
8206
8207 /*
8208 * Must be called with sc_lock && sc_exlock held.
8209 */
8210 int
8211 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8212 int gain, int balance)
8213 {
8214 mixer_ctrl_t ct;
8215 int i, error;
8216 int l, r;
8217 u_int mask;
8218 int nset;
8219
8220 KASSERT(mutex_owned(sc->sc_lock));
8221 KASSERT(sc->sc_exlock);
8222
8223 if (balance == AUDIO_MID_BALANCE) {
8224 l = r = gain;
8225 } else if (balance < AUDIO_MID_BALANCE) {
8226 l = gain;
8227 r = (balance * gain) / AUDIO_MID_BALANCE;
8228 } else {
8229 r = gain;
8230 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8231 / AUDIO_MID_BALANCE;
8232 }
8233 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8234
8235 if (ports->index == -1) {
8236 usemaster:
8237 if (ports->master == -1)
8238 return 0; /* just ignore it silently */
8239 ct.dev = ports->master;
8240 error = au_set_lr_value(sc, &ct, l, r);
8241 } else {
8242 ct.dev = ports->index;
8243 if (ports->isenum) {
8244 ct.type = AUDIO_MIXER_ENUM;
8245 error = audio_get_port(sc, &ct);
8246 if (error)
8247 return error;
8248 if (ports->isdual) {
8249 if (ports->cur_port == -1)
8250 ct.dev = ports->master;
8251 else
8252 ct.dev = ports->miport[ports->cur_port];
8253 error = au_set_lr_value(sc, &ct, l, r);
8254 } else {
8255 for(i = 0; i < ports->nports; i++)
8256 if (ports->misel[i] == ct.un.ord) {
8257 ct.dev = ports->miport[i];
8258 if (ct.dev == -1 ||
8259 au_set_lr_value(sc, &ct, l, r))
8260 goto usemaster;
8261 else
8262 break;
8263 }
8264 }
8265 } else {
8266 ct.type = AUDIO_MIXER_SET;
8267 error = audio_get_port(sc, &ct);
8268 if (error)
8269 return error;
8270 mask = ct.un.mask;
8271 nset = 0;
8272 for(i = 0; i < ports->nports; i++) {
8273 if (ports->misel[i] & mask) {
8274 ct.dev = ports->miport[i];
8275 if (ct.dev != -1 &&
8276 au_set_lr_value(sc, &ct, l, r) == 0)
8277 nset++;
8278 }
8279 }
8280 if (nset == 0)
8281 goto usemaster;
8282 }
8283 }
8284 if (!error)
8285 mixer_signal(sc);
8286 return error;
8287 }
8288
8289 /*
8290 * Must be called with sc_lock && sc_exlock held.
8291 */
8292 void
8293 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8294 u_int *pgain, u_char *pbalance)
8295 {
8296 mixer_ctrl_t ct;
8297 int i, l, r, n;
8298 int lgain, rgain;
8299
8300 KASSERT(mutex_owned(sc->sc_lock));
8301 KASSERT(sc->sc_exlock);
8302
8303 lgain = AUDIO_MAX_GAIN / 2;
8304 rgain = AUDIO_MAX_GAIN / 2;
8305 if (ports->index == -1) {
8306 usemaster:
8307 if (ports->master == -1)
8308 goto bad;
8309 ct.dev = ports->master;
8310 ct.type = AUDIO_MIXER_VALUE;
8311 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8312 goto bad;
8313 } else {
8314 ct.dev = ports->index;
8315 if (ports->isenum) {
8316 ct.type = AUDIO_MIXER_ENUM;
8317 if (audio_get_port(sc, &ct))
8318 goto bad;
8319 ct.type = AUDIO_MIXER_VALUE;
8320 if (ports->isdual) {
8321 if (ports->cur_port == -1)
8322 ct.dev = ports->master;
8323 else
8324 ct.dev = ports->miport[ports->cur_port];
8325 au_get_lr_value(sc, &ct, &lgain, &rgain);
8326 } else {
8327 for(i = 0; i < ports->nports; i++)
8328 if (ports->misel[i] == ct.un.ord) {
8329 ct.dev = ports->miport[i];
8330 if (ct.dev == -1 ||
8331 au_get_lr_value(sc, &ct,
8332 &lgain, &rgain))
8333 goto usemaster;
8334 else
8335 break;
8336 }
8337 }
8338 } else {
8339 ct.type = AUDIO_MIXER_SET;
8340 if (audio_get_port(sc, &ct))
8341 goto bad;
8342 ct.type = AUDIO_MIXER_VALUE;
8343 lgain = rgain = n = 0;
8344 for(i = 0; i < ports->nports; i++) {
8345 if (ports->misel[i] & ct.un.mask) {
8346 ct.dev = ports->miport[i];
8347 if (ct.dev == -1 ||
8348 au_get_lr_value(sc, &ct, &l, &r))
8349 goto usemaster;
8350 else {
8351 lgain += l;
8352 rgain += r;
8353 n++;
8354 }
8355 }
8356 }
8357 if (n != 0) {
8358 lgain /= n;
8359 rgain /= n;
8360 }
8361 }
8362 }
8363 bad:
8364 if (lgain == rgain) { /* handles lgain==rgain==0 */
8365 *pgain = lgain;
8366 *pbalance = AUDIO_MID_BALANCE;
8367 } else if (lgain < rgain) {
8368 *pgain = rgain;
8369 /* balance should be > AUDIO_MID_BALANCE */
8370 *pbalance = AUDIO_RIGHT_BALANCE -
8371 (AUDIO_MID_BALANCE * lgain) / rgain;
8372 } else /* lgain > rgain */ {
8373 *pgain = lgain;
8374 /* balance should be < AUDIO_MID_BALANCE */
8375 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8376 }
8377 }
8378
8379 /*
8380 * Must be called with sc_lock && sc_exlock held.
8381 */
8382 int
8383 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8384 {
8385 mixer_ctrl_t ct;
8386 int i, error, use_mixerout;
8387
8388 KASSERT(mutex_owned(sc->sc_lock));
8389 KASSERT(sc->sc_exlock);
8390
8391 use_mixerout = 1;
8392 if (port == 0) {
8393 if (ports->allports == 0)
8394 return 0; /* Allow this special case. */
8395 else if (ports->isdual) {
8396 if (ports->cur_port == -1) {
8397 return 0;
8398 } else {
8399 port = ports->aumask[ports->cur_port];
8400 ports->cur_port = -1;
8401 use_mixerout = 0;
8402 }
8403 }
8404 }
8405 if (ports->index == -1)
8406 return EINVAL;
8407 ct.dev = ports->index;
8408 if (ports->isenum) {
8409 if (port & (port-1))
8410 return EINVAL; /* Only one port allowed */
8411 ct.type = AUDIO_MIXER_ENUM;
8412 error = EINVAL;
8413 for(i = 0; i < ports->nports; i++)
8414 if (ports->aumask[i] == port) {
8415 if (ports->isdual && use_mixerout) {
8416 ct.un.ord = ports->mixerout;
8417 ports->cur_port = i;
8418 } else {
8419 ct.un.ord = ports->misel[i];
8420 }
8421 error = audio_set_port(sc, &ct);
8422 break;
8423 }
8424 } else {
8425 ct.type = AUDIO_MIXER_SET;
8426 ct.un.mask = 0;
8427 for(i = 0; i < ports->nports; i++)
8428 if (ports->aumask[i] & port)
8429 ct.un.mask |= ports->misel[i];
8430 if (port != 0 && ct.un.mask == 0)
8431 error = EINVAL;
8432 else
8433 error = audio_set_port(sc, &ct);
8434 }
8435 if (!error)
8436 mixer_signal(sc);
8437 return error;
8438 }
8439
8440 /*
8441 * Must be called with sc_lock && sc_exlock held.
8442 */
8443 int
8444 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8445 {
8446 mixer_ctrl_t ct;
8447 int i, aumask;
8448
8449 KASSERT(mutex_owned(sc->sc_lock));
8450 KASSERT(sc->sc_exlock);
8451
8452 if (ports->index == -1)
8453 return 0;
8454 ct.dev = ports->index;
8455 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8456 if (audio_get_port(sc, &ct))
8457 return 0;
8458 aumask = 0;
8459 if (ports->isenum) {
8460 if (ports->isdual && ports->cur_port != -1) {
8461 if (ports->mixerout == ct.un.ord)
8462 aumask = ports->aumask[ports->cur_port];
8463 else
8464 ports->cur_port = -1;
8465 }
8466 if (aumask == 0)
8467 for(i = 0; i < ports->nports; i++)
8468 if (ports->misel[i] == ct.un.ord)
8469 aumask = ports->aumask[i];
8470 } else {
8471 for(i = 0; i < ports->nports; i++)
8472 if (ct.un.mask & ports->misel[i])
8473 aumask |= ports->aumask[i];
8474 }
8475 return aumask;
8476 }
8477
8478 /*
8479 * It returns 0 if success, otherwise errno.
8480 * Must be called only if sc->sc_monitor_port != -1.
8481 * Must be called with sc_lock && sc_exlock held.
8482 */
8483 static int
8484 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8485 {
8486 mixer_ctrl_t ct;
8487
8488 KASSERT(mutex_owned(sc->sc_lock));
8489 KASSERT(sc->sc_exlock);
8490
8491 ct.dev = sc->sc_monitor_port;
8492 ct.type = AUDIO_MIXER_VALUE;
8493 ct.un.value.num_channels = 1;
8494 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8495 return audio_set_port(sc, &ct);
8496 }
8497
8498 /*
8499 * It returns monitor gain if success, otherwise -1.
8500 * Must be called only if sc->sc_monitor_port != -1.
8501 * Must be called with sc_lock && sc_exlock held.
8502 */
8503 static int
8504 au_get_monitor_gain(struct audio_softc *sc)
8505 {
8506 mixer_ctrl_t ct;
8507
8508 KASSERT(mutex_owned(sc->sc_lock));
8509 KASSERT(sc->sc_exlock);
8510
8511 ct.dev = sc->sc_monitor_port;
8512 ct.type = AUDIO_MIXER_VALUE;
8513 ct.un.value.num_channels = 1;
8514 if (audio_get_port(sc, &ct))
8515 return -1;
8516 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8517 }
8518
8519 /*
8520 * Must be called with sc_lock && sc_exlock held.
8521 */
8522 static int
8523 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8524 {
8525
8526 KASSERT(mutex_owned(sc->sc_lock));
8527 KASSERT(sc->sc_exlock);
8528
8529 return sc->hw_if->set_port(sc->hw_hdl, mc);
8530 }
8531
8532 /*
8533 * Must be called with sc_lock && sc_exlock held.
8534 */
8535 static int
8536 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8537 {
8538
8539 KASSERT(mutex_owned(sc->sc_lock));
8540 KASSERT(sc->sc_exlock);
8541
8542 return sc->hw_if->get_port(sc->hw_hdl, mc);
8543 }
8544
8545 /*
8546 * Must be called with sc_lock && sc_exlock held.
8547 */
8548 static void
8549 audio_mixer_capture(struct audio_softc *sc)
8550 {
8551 mixer_devinfo_t mi;
8552 mixer_ctrl_t *mc;
8553
8554 KASSERT(mutex_owned(sc->sc_lock));
8555 KASSERT(sc->sc_exlock);
8556
8557 for (mi.index = 0;; mi.index++) {
8558 if (audio_query_devinfo(sc, &mi) != 0)
8559 break;
8560 KASSERT(mi.index < sc->sc_nmixer_states);
8561 if (mi.type == AUDIO_MIXER_CLASS)
8562 continue;
8563 mc = &sc->sc_mixer_state[mi.index];
8564 mc->dev = mi.index;
8565 mc->type = mi.type;
8566 mc->un.value.num_channels = mi.un.v.num_channels;
8567 (void)audio_get_port(sc, mc);
8568 }
8569
8570 return;
8571 }
8572
8573 /*
8574 * Must be called with sc_lock && sc_exlock held.
8575 */
8576 static void
8577 audio_mixer_restore(struct audio_softc *sc)
8578 {
8579 mixer_devinfo_t mi;
8580 mixer_ctrl_t *mc;
8581
8582 KASSERT(mutex_owned(sc->sc_lock));
8583 KASSERT(sc->sc_exlock);
8584
8585 for (mi.index = 0; ; mi.index++) {
8586 if (audio_query_devinfo(sc, &mi) != 0)
8587 break;
8588 if (mi.type == AUDIO_MIXER_CLASS)
8589 continue;
8590 mc = &sc->sc_mixer_state[mi.index];
8591 (void)audio_set_port(sc, mc);
8592 }
8593 if (sc->hw_if->commit_settings)
8594 sc->hw_if->commit_settings(sc->hw_hdl);
8595
8596 return;
8597 }
8598
8599 static void
8600 audio_volume_down(device_t dv)
8601 {
8602 struct audio_softc *sc = device_private(dv);
8603 mixer_devinfo_t mi;
8604 int newgain;
8605 u_int gain;
8606 u_char balance;
8607
8608 if (audio_exlock_mutex_enter(sc) != 0)
8609 return;
8610 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8611 mi.index = sc->sc_outports.master;
8612 mi.un.v.delta = 0;
8613 if (audio_query_devinfo(sc, &mi) == 0) {
8614 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8615 newgain = gain - mi.un.v.delta;
8616 if (newgain < AUDIO_MIN_GAIN)
8617 newgain = AUDIO_MIN_GAIN;
8618 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8619 }
8620 }
8621 audio_exlock_mutex_exit(sc);
8622 }
8623
8624 static void
8625 audio_volume_up(device_t dv)
8626 {
8627 struct audio_softc *sc = device_private(dv);
8628 mixer_devinfo_t mi;
8629 u_int gain, newgain;
8630 u_char balance;
8631
8632 if (audio_exlock_mutex_enter(sc) != 0)
8633 return;
8634 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8635 mi.index = sc->sc_outports.master;
8636 mi.un.v.delta = 0;
8637 if (audio_query_devinfo(sc, &mi) == 0) {
8638 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8639 newgain = gain + mi.un.v.delta;
8640 if (newgain > AUDIO_MAX_GAIN)
8641 newgain = AUDIO_MAX_GAIN;
8642 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8643 }
8644 }
8645 audio_exlock_mutex_exit(sc);
8646 }
8647
8648 static void
8649 audio_volume_toggle(device_t dv)
8650 {
8651 struct audio_softc *sc = device_private(dv);
8652 u_int gain, newgain;
8653 u_char balance;
8654
8655 if (audio_exlock_mutex_enter(sc) != 0)
8656 return;
8657 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8658 if (gain != 0) {
8659 sc->sc_lastgain = gain;
8660 newgain = 0;
8661 } else
8662 newgain = sc->sc_lastgain;
8663 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8664 audio_exlock_mutex_exit(sc);
8665 }
8666
8667 /*
8668 * Must be called with sc_lock held.
8669 */
8670 static int
8671 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8672 {
8673
8674 KASSERT(mutex_owned(sc->sc_lock));
8675
8676 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8677 }
8678
8679 #endif /* NAUDIO > 0 */
8680
8681 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8682 #include <sys/param.h>
8683 #include <sys/systm.h>
8684 #include <sys/device.h>
8685 #include <sys/audioio.h>
8686 #include <dev/audio/audio_if.h>
8687 #endif
8688
8689 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8690 int
8691 audioprint(void *aux, const char *pnp)
8692 {
8693 struct audio_attach_args *arg;
8694 const char *type;
8695
8696 if (pnp != NULL) {
8697 arg = aux;
8698 switch (arg->type) {
8699 case AUDIODEV_TYPE_AUDIO:
8700 type = "audio";
8701 break;
8702 case AUDIODEV_TYPE_MIDI:
8703 type = "midi";
8704 break;
8705 case AUDIODEV_TYPE_OPL:
8706 type = "opl";
8707 break;
8708 case AUDIODEV_TYPE_MPU:
8709 type = "mpu";
8710 break;
8711 default:
8712 panic("audioprint: unknown type %d", arg->type);
8713 }
8714 aprint_normal("%s at %s", type, pnp);
8715 }
8716 return UNCONF;
8717 }
8718
8719 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8720
8721 #ifdef _MODULE
8722
8723 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8724
8725 #include "ioconf.c"
8726
8727 #endif
8728
8729 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8730
8731 static int
8732 audio_modcmd(modcmd_t cmd, void *arg)
8733 {
8734 int error = 0;
8735
8736 switch (cmd) {
8737 case MODULE_CMD_INIT:
8738 /* XXX interrupt level? */
8739 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8740 #ifdef _MODULE
8741 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8742 &audio_cdevsw, &audio_cmajor);
8743 if (error)
8744 break;
8745
8746 error = config_init_component(cfdriver_ioconf_audio,
8747 cfattach_ioconf_audio, cfdata_ioconf_audio);
8748 if (error) {
8749 devsw_detach(NULL, &audio_cdevsw);
8750 }
8751 #endif
8752 break;
8753 case MODULE_CMD_FINI:
8754 #ifdef _MODULE
8755 devsw_detach(NULL, &audio_cdevsw);
8756 error = config_fini_component(cfdriver_ioconf_audio,
8757 cfattach_ioconf_audio, cfdata_ioconf_audio);
8758 if (error)
8759 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8760 &audio_cdevsw, &audio_cmajor);
8761 #endif
8762 psref_class_destroy(audio_psref_class);
8763 break;
8764 default:
8765 error = ENOTTY;
8766 break;
8767 }
8768
8769 return error;
8770 }
8771