audio.c revision 1.68 1 /* $NetBSD: audio.c,v 1.68 2020/04/29 03:58:27 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - - Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.68 2020/04/29 03:58:27 isaki Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #include <sys/types.h>
151 #include <sys/param.h>
152 #include <sys/atomic.h>
153 #include <sys/audioio.h>
154 #include <sys/conf.h>
155 #include <sys/cpu.h>
156 #include <sys/device.h>
157 #include <sys/fcntl.h>
158 #include <sys/file.h>
159 #include <sys/filedesc.h>
160 #include <sys/intr.h>
161 #include <sys/ioctl.h>
162 #include <sys/kauth.h>
163 #include <sys/kernel.h>
164 #include <sys/kmem.h>
165 #include <sys/malloc.h>
166 #include <sys/mman.h>
167 #include <sys/module.h>
168 #include <sys/poll.h>
169 #include <sys/proc.h>
170 #include <sys/queue.h>
171 #include <sys/select.h>
172 #include <sys/signalvar.h>
173 #include <sys/stat.h>
174 #include <sys/sysctl.h>
175 #include <sys/systm.h>
176 #include <sys/syslog.h>
177 #include <sys/vnode.h>
178
179 #include <dev/audio/audio_if.h>
180 #include <dev/audio/audiovar.h>
181 #include <dev/audio/audiodef.h>
182 #include <dev/audio/linear.h>
183 #include <dev/audio/mulaw.h>
184
185 #include <machine/endian.h>
186
187 #include <uvm/uvm_extern.h>
188
189 #include "ioconf.h"
190
191 /*
192 * 0: No debug logs
193 * 1: action changes like open/close/set_format...
194 * 2: + normal operations like read/write/ioctl...
195 * 3: + TRACEs except interrupt
196 * 4: + TRACEs including interrupt
197 */
198 //#define AUDIO_DEBUG 1
199
200 #if defined(AUDIO_DEBUG)
201
202 int audiodebug = AUDIO_DEBUG;
203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
204 const char *, va_list);
205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
206 __printflike(3, 4);
207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
208 __printflike(3, 4);
209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
210 __printflike(3, 4);
211
212 /* XXX sloppy memory logger */
213 static void audio_mlog_init(void);
214 static void audio_mlog_free(void);
215 static void audio_mlog_softintr(void *);
216 extern void audio_mlog_flush(void);
217 extern void audio_mlog_printf(const char *, ...);
218
219 static int mlog_refs; /* reference counter */
220 static char *mlog_buf[2]; /* double buffer */
221 static int mlog_buflen; /* buffer length */
222 static int mlog_used; /* used length */
223 static int mlog_full; /* number of dropped lines by buffer full */
224 static int mlog_drop; /* number of dropped lines by busy */
225 static volatile uint32_t mlog_inuse; /* in-use */
226 static int mlog_wpage; /* active page */
227 static void *mlog_sih; /* softint handle */
228
229 static void
230 audio_mlog_init(void)
231 {
232 mlog_refs++;
233 if (mlog_refs > 1)
234 return;
235 mlog_buflen = 4096;
236 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
237 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
238 mlog_used = 0;
239 mlog_full = 0;
240 mlog_drop = 0;
241 mlog_inuse = 0;
242 mlog_wpage = 0;
243 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
244 if (mlog_sih == NULL)
245 printf("%s: softint_establish failed\n", __func__);
246 }
247
248 static void
249 audio_mlog_free(void)
250 {
251 mlog_refs--;
252 if (mlog_refs > 0)
253 return;
254
255 audio_mlog_flush();
256 if (mlog_sih)
257 softint_disestablish(mlog_sih);
258 kmem_free(mlog_buf[0], mlog_buflen);
259 kmem_free(mlog_buf[1], mlog_buflen);
260 }
261
262 /*
263 * Flush memory buffer.
264 * It must not be called from hardware interrupt context.
265 */
266 void
267 audio_mlog_flush(void)
268 {
269 if (mlog_refs == 0)
270 return;
271
272 /* Nothing to do if already in use ? */
273 if (atomic_swap_32(&mlog_inuse, 1) == 1)
274 return;
275
276 int rpage = mlog_wpage;
277 mlog_wpage ^= 1;
278 mlog_buf[mlog_wpage][0] = '\0';
279 mlog_used = 0;
280
281 atomic_swap_32(&mlog_inuse, 0);
282
283 if (mlog_buf[rpage][0] != '\0') {
284 printf("%s", mlog_buf[rpage]);
285 if (mlog_drop > 0)
286 printf("mlog_drop %d\n", mlog_drop);
287 if (mlog_full > 0)
288 printf("mlog_full %d\n", mlog_full);
289 }
290 mlog_full = 0;
291 mlog_drop = 0;
292 }
293
294 static void
295 audio_mlog_softintr(void *cookie)
296 {
297 audio_mlog_flush();
298 }
299
300 void
301 audio_mlog_printf(const char *fmt, ...)
302 {
303 int len;
304 va_list ap;
305
306 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
307 /* already inuse */
308 mlog_drop++;
309 return;
310 }
311
312 va_start(ap, fmt);
313 len = vsnprintf(
314 mlog_buf[mlog_wpage] + mlog_used,
315 mlog_buflen - mlog_used,
316 fmt, ap);
317 va_end(ap);
318
319 mlog_used += len;
320 if (mlog_buflen - mlog_used <= 1) {
321 mlog_full++;
322 }
323
324 atomic_swap_32(&mlog_inuse, 0);
325
326 if (mlog_sih)
327 softint_schedule(mlog_sih);
328 }
329
330 /* trace functions */
331 static void
332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
333 const char *fmt, va_list ap)
334 {
335 char buf[256];
336 int n;
337
338 n = 0;
339 buf[0] = '\0';
340 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
341 funcname, device_unit(sc->sc_dev), header);
342 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
343
344 if (cpu_intr_p()) {
345 audio_mlog_printf("%s\n", buf);
346 } else {
347 audio_mlog_flush();
348 printf("%s\n", buf);
349 }
350 }
351
352 static void
353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
354 {
355 va_list ap;
356
357 va_start(ap, fmt);
358 audio_vtrace(sc, funcname, "", fmt, ap);
359 va_end(ap);
360 }
361
362 static void
363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
364 {
365 char hdr[16];
366 va_list ap;
367
368 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
369 va_start(ap, fmt);
370 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
371 va_end(ap);
372 }
373
374 static void
375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
376 {
377 char hdr[32];
378 char phdr[16], rhdr[16];
379 va_list ap;
380
381 phdr[0] = '\0';
382 rhdr[0] = '\0';
383 if (file->ptrack)
384 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
385 if (file->rtrack)
386 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
387 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
388
389 va_start(ap, fmt);
390 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
391 va_end(ap);
392 }
393
394 #define DPRINTF(n, fmt...) do { \
395 if (audiodebug >= (n)) { \
396 audio_mlog_flush(); \
397 printf(fmt); \
398 } \
399 } while (0)
400 #define TRACE(n, fmt...) do { \
401 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
402 } while (0)
403 #define TRACET(n, t, fmt...) do { \
404 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
405 } while (0)
406 #define TRACEF(n, f, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
408 } while (0)
409
410 struct audio_track_debugbuf {
411 char usrbuf[32];
412 char codec[32];
413 char chvol[32];
414 char chmix[32];
415 char freq[32];
416 char outbuf[32];
417 };
418
419 static void
420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
421 {
422
423 memset(buf, 0, sizeof(*buf));
424
425 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
426 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
427 if (track->freq.filter)
428 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
429 track->freq.srcbuf.head,
430 track->freq.srcbuf.used,
431 track->freq.srcbuf.capacity);
432 if (track->chmix.filter)
433 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
434 track->chmix.srcbuf.used);
435 if (track->chvol.filter)
436 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
437 track->chvol.srcbuf.used);
438 if (track->codec.filter)
439 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
440 track->codec.srcbuf.used);
441 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
442 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
443 }
444 #else
445 #define DPRINTF(n, fmt...) do { } while (0)
446 #define TRACE(n, fmt, ...) do { } while (0)
447 #define TRACET(n, t, fmt, ...) do { } while (0)
448 #define TRACEF(n, f, fmt, ...) do { } while (0)
449 #endif
450
451 #define SPECIFIED(x) ((x) != ~0)
452 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
453
454 /*
455 * Default hardware blocksize in msec.
456 *
457 * We use 10 msec for most platforms. This period is good enough to play
458 * audio and video synchronizely.
459 * In contrast, for very old platforms, this is usually too short and too
460 * severe. Also such platforms usually can not play video confortably, so
461 * it's not so important to make the blocksize shorter.
462 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
463 * configuration file if you wish.
464 *
465 * 40 msec was initially choosen for the following reason:
466 * (1 / 40ms) = 25 = 5^2. Thus, the frequency is factored by 5.
467 * In this case, the number of frames in a block can be an integer
468 * even if the frequency is a multiple of 100 (44100, 48000, etc),
469 * or even if 15625Hz (vs(4)).
470 */
471 #if defined(__hppa__) || \
472 defined(__m68k__) || \
473 defined(__sh3__) || \
474 (defined(__sparc__) && !defined(__sparc64__)) || \
475 defined(__vax__)
476 #define AUDIO_TOO_SLOW_ARCHS 1
477 #endif
478
479 #if !defined(AUDIO_BLK_MS)
480 # if defined(AUDIO_TOO_SLOW_ARCHS)
481 # define AUDIO_BLK_MS 40
482 # else
483 # define AUDIO_BLK_MS 10
484 # endif
485 #endif
486
487 #undef AUDIO_TOO_SLOW_ARCHS
488
489 /* Device timeout in msec */
490 #define AUDIO_TIMEOUT (3000)
491
492 /* #define AUDIO_PM_IDLE */
493 #ifdef AUDIO_PM_IDLE
494 int audio_idle_timeout = 30;
495 #endif
496
497 /* Number of elements of async mixer's pid */
498 #define AM_CAPACITY (4)
499
500 struct portname {
501 const char *name;
502 int mask;
503 };
504
505 static int audiomatch(device_t, cfdata_t, void *);
506 static void audioattach(device_t, device_t, void *);
507 static int audiodetach(device_t, int);
508 static int audioactivate(device_t, enum devact);
509 static void audiochilddet(device_t, device_t);
510 static int audiorescan(device_t, const char *, const int *);
511
512 static int audio_modcmd(modcmd_t, void *);
513
514 #ifdef AUDIO_PM_IDLE
515 static void audio_idle(void *);
516 static void audio_activity(device_t, devactive_t);
517 #endif
518
519 static bool audio_suspend(device_t dv, const pmf_qual_t *);
520 static bool audio_resume(device_t dv, const pmf_qual_t *);
521 static void audio_volume_down(device_t);
522 static void audio_volume_up(device_t);
523 static void audio_volume_toggle(device_t);
524
525 static void audio_mixer_capture(struct audio_softc *);
526 static void audio_mixer_restore(struct audio_softc *);
527
528 static void audio_softintr_rd(void *);
529 static void audio_softintr_wr(void *);
530
531 static int audio_exlock_mutex_enter(struct audio_softc *);
532 static void audio_exlock_mutex_exit(struct audio_softc *);
533 static int audio_exlock_enter(struct audio_softc *);
534 static void audio_exlock_exit(struct audio_softc *);
535 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
536 static void audio_file_exit(struct audio_softc *, struct psref *);
537 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
538
539 static int audioclose(struct file *);
540 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
541 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
542 static int audioioctl(struct file *, u_long, void *);
543 static int audiopoll(struct file *, int);
544 static int audiokqfilter(struct file *, struct knote *);
545 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
546 struct uvm_object **, int *);
547 static int audiostat(struct file *, struct stat *);
548
549 static void filt_audiowrite_detach(struct knote *);
550 static int filt_audiowrite_event(struct knote *, long);
551 static void filt_audioread_detach(struct knote *);
552 static int filt_audioread_event(struct knote *, long);
553
554 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
555 audio_file_t **);
556 static int audio_close(struct audio_softc *, audio_file_t *);
557 static int audio_unlink(struct audio_softc *, audio_file_t *);
558 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
559 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
560 static void audio_file_clear(struct audio_softc *, audio_file_t *);
561 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
562 struct lwp *, audio_file_t *);
563 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
564 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
565 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
566 struct uvm_object **, int *, audio_file_t *);
567
568 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
569
570 static void audio_pintr(void *);
571 static void audio_rintr(void *);
572
573 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
574
575 static __inline int audio_track_readablebytes(const audio_track_t *);
576 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
577 const struct audio_info *);
578 static int audio_track_setinfo_check(audio_track_t *,
579 audio_format2_t *, const struct audio_prinfo *);
580 static void audio_track_setinfo_water(audio_track_t *,
581 const struct audio_info *);
582 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
583 struct audio_info *);
584 static int audio_hw_set_format(struct audio_softc *, int,
585 const audio_format2_t *, const audio_format2_t *,
586 audio_filter_reg_t *, audio_filter_reg_t *);
587 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
588 audio_file_t *);
589 static bool audio_can_playback(struct audio_softc *);
590 static bool audio_can_capture(struct audio_softc *);
591 static int audio_check_params(audio_format2_t *);
592 static int audio_mixers_init(struct audio_softc *sc, int,
593 const audio_format2_t *, const audio_format2_t *,
594 const audio_filter_reg_t *, const audio_filter_reg_t *);
595 static int audio_select_freq(const struct audio_format *);
596 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
597 static int audio_hw_validate_format(struct audio_softc *, int,
598 const audio_format2_t *);
599 static int audio_mixers_set_format(struct audio_softc *,
600 const struct audio_info *);
601 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
602 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
603 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
604 #if defined(AUDIO_DEBUG)
605 static int audio_sysctl_debug(SYSCTLFN_PROTO);
606 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
607 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
608 #endif
609
610 static void *audio_realloc(void *, size_t);
611 static int audio_realloc_usrbuf(audio_track_t *, int);
612 static void audio_free_usrbuf(audio_track_t *);
613
614 static audio_track_t *audio_track_create(struct audio_softc *,
615 audio_trackmixer_t *);
616 static void audio_track_destroy(audio_track_t *);
617 static audio_filter_t audio_track_get_codec(audio_track_t *,
618 const audio_format2_t *, const audio_format2_t *);
619 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
620 static void audio_track_play(audio_track_t *);
621 static int audio_track_drain(struct audio_softc *, audio_track_t *);
622 static void audio_track_record(audio_track_t *);
623 static void audio_track_clear(struct audio_softc *, audio_track_t *);
624
625 static int audio_mixer_init(struct audio_softc *, int,
626 const audio_format2_t *, const audio_filter_reg_t *);
627 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
628 static void audio_pmixer_start(struct audio_softc *, bool);
629 static void audio_pmixer_process(struct audio_softc *);
630 static void audio_pmixer_agc(audio_trackmixer_t *, int);
631 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
632 static void audio_pmixer_output(struct audio_softc *);
633 static int audio_pmixer_halt(struct audio_softc *);
634 static void audio_rmixer_start(struct audio_softc *);
635 static void audio_rmixer_process(struct audio_softc *);
636 static void audio_rmixer_input(struct audio_softc *);
637 static int audio_rmixer_halt(struct audio_softc *);
638
639 static void mixer_init(struct audio_softc *);
640 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
641 static int mixer_close(struct audio_softc *, audio_file_t *);
642 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
643 static void mixer_async_add(struct audio_softc *, pid_t);
644 static void mixer_async_remove(struct audio_softc *, pid_t);
645 static void mixer_signal(struct audio_softc *);
646
647 static int au_portof(struct audio_softc *, char *, int);
648
649 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
650 mixer_devinfo_t *, const struct portname *);
651 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
652 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
653 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
654 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
655 u_int *, u_char *);
656 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
657 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
658 static int au_set_monitor_gain(struct audio_softc *, int);
659 static int au_get_monitor_gain(struct audio_softc *);
660 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
661 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
662
663 static __inline struct audio_params
664 format2_to_params(const audio_format2_t *f2)
665 {
666 audio_params_t p;
667
668 /* validbits/precision <-> precision/stride */
669 p.sample_rate = f2->sample_rate;
670 p.channels = f2->channels;
671 p.encoding = f2->encoding;
672 p.validbits = f2->precision;
673 p.precision = f2->stride;
674 return p;
675 }
676
677 static __inline audio_format2_t
678 params_to_format2(const struct audio_params *p)
679 {
680 audio_format2_t f2;
681
682 /* precision/stride <-> validbits/precision */
683 f2.sample_rate = p->sample_rate;
684 f2.channels = p->channels;
685 f2.encoding = p->encoding;
686 f2.precision = p->validbits;
687 f2.stride = p->precision;
688 return f2;
689 }
690
691 /* Return true if this track is a playback track. */
692 static __inline bool
693 audio_track_is_playback(const audio_track_t *track)
694 {
695
696 return ((track->mode & AUMODE_PLAY) != 0);
697 }
698
699 /* Return true if this track is a recording track. */
700 static __inline bool
701 audio_track_is_record(const audio_track_t *track)
702 {
703
704 return ((track->mode & AUMODE_RECORD) != 0);
705 }
706
707 #if 0 /* XXX Not used yet */
708 /*
709 * Convert 0..255 volume used in userland to internal presentation 0..256.
710 */
711 static __inline u_int
712 audio_volume_to_inner(u_int v)
713 {
714
715 return v < 127 ? v : v + 1;
716 }
717
718 /*
719 * Convert 0..256 internal presentation to 0..255 volume used in userland.
720 */
721 static __inline u_int
722 audio_volume_to_outer(u_int v)
723 {
724
725 return v < 127 ? v : v - 1;
726 }
727 #endif /* 0 */
728
729 static dev_type_open(audioopen);
730 /* XXXMRG use more dev_type_xxx */
731
732 const struct cdevsw audio_cdevsw = {
733 .d_open = audioopen,
734 .d_close = noclose,
735 .d_read = noread,
736 .d_write = nowrite,
737 .d_ioctl = noioctl,
738 .d_stop = nostop,
739 .d_tty = notty,
740 .d_poll = nopoll,
741 .d_mmap = nommap,
742 .d_kqfilter = nokqfilter,
743 .d_discard = nodiscard,
744 .d_flag = D_OTHER | D_MPSAFE
745 };
746
747 const struct fileops audio_fileops = {
748 .fo_name = "audio",
749 .fo_read = audioread,
750 .fo_write = audiowrite,
751 .fo_ioctl = audioioctl,
752 .fo_fcntl = fnullop_fcntl,
753 .fo_stat = audiostat,
754 .fo_poll = audiopoll,
755 .fo_close = audioclose,
756 .fo_mmap = audiommap,
757 .fo_kqfilter = audiokqfilter,
758 .fo_restart = fnullop_restart
759 };
760
761 /* The default audio mode: 8 kHz mono mu-law */
762 static const struct audio_params audio_default = {
763 .sample_rate = 8000,
764 .encoding = AUDIO_ENCODING_ULAW,
765 .precision = 8,
766 .validbits = 8,
767 .channels = 1,
768 };
769
770 static const char *encoding_names[] = {
771 "none",
772 AudioEmulaw,
773 AudioEalaw,
774 "pcm16",
775 "pcm8",
776 AudioEadpcm,
777 AudioEslinear_le,
778 AudioEslinear_be,
779 AudioEulinear_le,
780 AudioEulinear_be,
781 AudioEslinear,
782 AudioEulinear,
783 AudioEmpeg_l1_stream,
784 AudioEmpeg_l1_packets,
785 AudioEmpeg_l1_system,
786 AudioEmpeg_l2_stream,
787 AudioEmpeg_l2_packets,
788 AudioEmpeg_l2_system,
789 AudioEac3,
790 };
791
792 /*
793 * Returns encoding name corresponding to AUDIO_ENCODING_*.
794 * Note that it may return a local buffer because it is mainly for debugging.
795 */
796 const char *
797 audio_encoding_name(int encoding)
798 {
799 static char buf[16];
800
801 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
802 return encoding_names[encoding];
803 } else {
804 snprintf(buf, sizeof(buf), "enc=%d", encoding);
805 return buf;
806 }
807 }
808
809 /*
810 * Supported encodings used by AUDIO_GETENC.
811 * index and flags are set by code.
812 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
813 */
814 static const audio_encoding_t audio_encodings[] = {
815 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
816 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
817 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
818 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
819 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
820 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
821 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
822 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
823 #if defined(AUDIO_SUPPORT_LINEAR24)
824 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
825 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
826 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
827 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
828 #endif
829 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
830 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
831 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
832 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
833 };
834
835 static const struct portname itable[] = {
836 { AudioNmicrophone, AUDIO_MICROPHONE },
837 { AudioNline, AUDIO_LINE_IN },
838 { AudioNcd, AUDIO_CD },
839 { 0, 0 }
840 };
841 static const struct portname otable[] = {
842 { AudioNspeaker, AUDIO_SPEAKER },
843 { AudioNheadphone, AUDIO_HEADPHONE },
844 { AudioNline, AUDIO_LINE_OUT },
845 { 0, 0 }
846 };
847
848 static struct psref_class *audio_psref_class __read_mostly;
849
850 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
851 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
852 audiochilddet, DVF_DETACH_SHUTDOWN);
853
854 static int
855 audiomatch(device_t parent, cfdata_t match, void *aux)
856 {
857 struct audio_attach_args *sa;
858
859 sa = aux;
860 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
861 __func__, sa->type, sa, sa->hwif);
862 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
863 }
864
865 static void
866 audioattach(device_t parent, device_t self, void *aux)
867 {
868 struct audio_softc *sc;
869 struct audio_attach_args *sa;
870 const struct audio_hw_if *hw_if;
871 audio_format2_t phwfmt;
872 audio_format2_t rhwfmt;
873 audio_filter_reg_t pfil;
874 audio_filter_reg_t rfil;
875 const struct sysctlnode *node;
876 void *hdlp;
877 bool has_playback;
878 bool has_capture;
879 bool has_indep;
880 bool has_fulldup;
881 int mode;
882 int error;
883
884 sc = device_private(self);
885 sc->sc_dev = self;
886 sa = (struct audio_attach_args *)aux;
887 hw_if = sa->hwif;
888 hdlp = sa->hdl;
889
890 if (hw_if == NULL) {
891 panic("audioattach: missing hw_if method");
892 }
893 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
894 aprint_error(": missing mandatory method\n");
895 return;
896 }
897
898 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
899 sc->sc_props = hw_if->get_props(hdlp);
900
901 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
902 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
903 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
904 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
905
906 #ifdef DIAGNOSTIC
907 if (hw_if->query_format == NULL ||
908 hw_if->set_format == NULL ||
909 hw_if->getdev == NULL ||
910 hw_if->set_port == NULL ||
911 hw_if->get_port == NULL ||
912 hw_if->query_devinfo == NULL) {
913 aprint_error(": missing mandatory method\n");
914 return;
915 }
916 if (has_playback) {
917 if ((hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
918 hw_if->halt_output == NULL) {
919 aprint_error(": missing playback method\n");
920 }
921 }
922 if (has_capture) {
923 if ((hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
924 hw_if->halt_input == NULL) {
925 aprint_error(": missing capture method\n");
926 }
927 }
928 #endif
929
930 sc->hw_if = hw_if;
931 sc->hw_hdl = hdlp;
932 sc->hw_dev = parent;
933
934 sc->sc_exlock = 1;
935 sc->sc_blk_ms = AUDIO_BLK_MS;
936 SLIST_INIT(&sc->sc_files);
937 cv_init(&sc->sc_exlockcv, "audiolk");
938 sc->sc_am_capacity = 0;
939 sc->sc_am_used = 0;
940 sc->sc_am = NULL;
941
942 /* MMAP is now supported by upper layer. */
943 sc->sc_props |= AUDIO_PROP_MMAP;
944
945 KASSERT(has_playback || has_capture);
946 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
947 if (!has_playback || !has_capture) {
948 KASSERT(!has_indep);
949 KASSERT(!has_fulldup);
950 }
951
952 mode = 0;
953 if (has_playback) {
954 aprint_normal(": playback");
955 mode |= AUMODE_PLAY;
956 }
957 if (has_capture) {
958 aprint_normal("%c capture", has_playback ? ',' : ':');
959 mode |= AUMODE_RECORD;
960 }
961 if (has_playback && has_capture) {
962 if (has_fulldup)
963 aprint_normal(", full duplex");
964 else
965 aprint_normal(", half duplex");
966
967 if (has_indep)
968 aprint_normal(", independent");
969 }
970
971 aprint_naive("\n");
972 aprint_normal("\n");
973
974 /* probe hw params */
975 memset(&phwfmt, 0, sizeof(phwfmt));
976 memset(&rhwfmt, 0, sizeof(rhwfmt));
977 memset(&pfil, 0, sizeof(pfil));
978 memset(&rfil, 0, sizeof(rfil));
979 if (has_indep) {
980 int perror, rerror;
981
982 /* On independent devices, probe separately. */
983 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
984 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
985 if (perror && rerror) {
986 aprint_error_dev(self, "audio_hw_probe failed, "
987 "perror = %d, rerror = %d\n", perror, rerror);
988 goto bad;
989 }
990 if (perror) {
991 mode &= ~AUMODE_PLAY;
992 aprint_error_dev(self, "audio_hw_probe failed with "
993 "%d, playback disabled\n", perror);
994 }
995 if (rerror) {
996 mode &= ~AUMODE_RECORD;
997 aprint_error_dev(self, "audio_hw_probe failed with "
998 "%d, capture disabled\n", rerror);
999 }
1000 } else {
1001 /*
1002 * On non independent devices or uni-directional devices,
1003 * probe once (simultaneously).
1004 */
1005 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
1006 error = audio_hw_probe(sc, fmt, mode);
1007 if (error) {
1008 aprint_error_dev(self, "audio_hw_probe failed, "
1009 "error = %d\n", error);
1010 goto bad;
1011 }
1012 if (has_playback && has_capture)
1013 rhwfmt = phwfmt;
1014 }
1015
1016 /* Init hardware. */
1017 /* hw_probe() also validates [pr]hwfmt. */
1018 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1019 if (error) {
1020 aprint_error_dev(self, "audio_hw_set_format failed, "
1021 "error = %d\n", error);
1022 goto bad;
1023 }
1024
1025 /*
1026 * Init track mixers. If at least one direction is available on
1027 * attach time, we assume a success.
1028 */
1029 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1030 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1031 aprint_error_dev(self, "audio_mixers_init failed, "
1032 "error = %d\n", error);
1033 goto bad;
1034 }
1035
1036 sc->sc_psz = pserialize_create();
1037 psref_target_init(&sc->sc_psref, audio_psref_class);
1038
1039 selinit(&sc->sc_wsel);
1040 selinit(&sc->sc_rsel);
1041
1042 /* Initial parameter of /dev/sound */
1043 sc->sc_sound_pparams = params_to_format2(&audio_default);
1044 sc->sc_sound_rparams = params_to_format2(&audio_default);
1045 sc->sc_sound_ppause = false;
1046 sc->sc_sound_rpause = false;
1047
1048 /* XXX TODO: consider about sc_ai */
1049
1050 mixer_init(sc);
1051 TRACE(2, "inputs ports=0x%x, input master=%d, "
1052 "output ports=0x%x, output master=%d",
1053 sc->sc_inports.allports, sc->sc_inports.master,
1054 sc->sc_outports.allports, sc->sc_outports.master);
1055
1056 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1057 0,
1058 CTLTYPE_NODE, device_xname(sc->sc_dev),
1059 SYSCTL_DESCR("audio test"),
1060 NULL, 0,
1061 NULL, 0,
1062 CTL_HW,
1063 CTL_CREATE, CTL_EOL);
1064
1065 if (node != NULL) {
1066 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1067 CTLFLAG_READWRITE,
1068 CTLTYPE_INT, "blk_ms",
1069 SYSCTL_DESCR("blocksize in msec"),
1070 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1071 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1072
1073 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1074 CTLFLAG_READWRITE,
1075 CTLTYPE_BOOL, "multiuser",
1076 SYSCTL_DESCR("allow multiple user access"),
1077 audio_sysctl_multiuser, 0, (void *)sc, 0,
1078 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1079
1080 #if defined(AUDIO_DEBUG)
1081 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1082 CTLFLAG_READWRITE,
1083 CTLTYPE_INT, "debug",
1084 SYSCTL_DESCR("debug level (0..4)"),
1085 audio_sysctl_debug, 0, (void *)sc, 0,
1086 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1087 #endif
1088 }
1089
1090 #ifdef AUDIO_PM_IDLE
1091 callout_init(&sc->sc_idle_counter, 0);
1092 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1093 #endif
1094
1095 if (!pmf_device_register(self, audio_suspend, audio_resume))
1096 aprint_error_dev(self, "couldn't establish power handler\n");
1097 #ifdef AUDIO_PM_IDLE
1098 if (!device_active_register(self, audio_activity))
1099 aprint_error_dev(self, "couldn't register activity handler\n");
1100 #endif
1101
1102 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1103 audio_volume_down, true))
1104 aprint_error_dev(self, "couldn't add volume down handler\n");
1105 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1106 audio_volume_up, true))
1107 aprint_error_dev(self, "couldn't add volume up handler\n");
1108 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1109 audio_volume_toggle, true))
1110 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1111
1112 #ifdef AUDIO_PM_IDLE
1113 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1114 #endif
1115
1116 #if defined(AUDIO_DEBUG)
1117 audio_mlog_init();
1118 #endif
1119
1120 audiorescan(self, "audio", NULL);
1121 sc->sc_exlock = 0;
1122 return;
1123
1124 bad:
1125 /* Clearing hw_if means that device is attached but disabled. */
1126 sc->hw_if = NULL;
1127 sc->sc_exlock = 0;
1128 aprint_error_dev(sc->sc_dev, "disabled\n");
1129 return;
1130 }
1131
1132 /*
1133 * Initialize hardware mixer.
1134 * This function is called from audioattach().
1135 */
1136 static void
1137 mixer_init(struct audio_softc *sc)
1138 {
1139 mixer_devinfo_t mi;
1140 int iclass, mclass, oclass, rclass;
1141 int record_master_found, record_source_found;
1142
1143 iclass = mclass = oclass = rclass = -1;
1144 sc->sc_inports.index = -1;
1145 sc->sc_inports.master = -1;
1146 sc->sc_inports.nports = 0;
1147 sc->sc_inports.isenum = false;
1148 sc->sc_inports.allports = 0;
1149 sc->sc_inports.isdual = false;
1150 sc->sc_inports.mixerout = -1;
1151 sc->sc_inports.cur_port = -1;
1152 sc->sc_outports.index = -1;
1153 sc->sc_outports.master = -1;
1154 sc->sc_outports.nports = 0;
1155 sc->sc_outports.isenum = false;
1156 sc->sc_outports.allports = 0;
1157 sc->sc_outports.isdual = false;
1158 sc->sc_outports.mixerout = -1;
1159 sc->sc_outports.cur_port = -1;
1160 sc->sc_monitor_port = -1;
1161 /*
1162 * Read through the underlying driver's list, picking out the class
1163 * names from the mixer descriptions. We'll need them to decode the
1164 * mixer descriptions on the next pass through the loop.
1165 */
1166 mutex_enter(sc->sc_lock);
1167 for(mi.index = 0; ; mi.index++) {
1168 if (audio_query_devinfo(sc, &mi) != 0)
1169 break;
1170 /*
1171 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1172 * All the other types describe an actual mixer.
1173 */
1174 if (mi.type == AUDIO_MIXER_CLASS) {
1175 if (strcmp(mi.label.name, AudioCinputs) == 0)
1176 iclass = mi.mixer_class;
1177 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1178 mclass = mi.mixer_class;
1179 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1180 oclass = mi.mixer_class;
1181 if (strcmp(mi.label.name, AudioCrecord) == 0)
1182 rclass = mi.mixer_class;
1183 }
1184 }
1185 mutex_exit(sc->sc_lock);
1186
1187 /* Allocate save area. Ensure non-zero allocation. */
1188 sc->sc_nmixer_states = mi.index;
1189 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1190 (sc->sc_nmixer_states + 1), KM_SLEEP);
1191
1192 /*
1193 * This is where we assign each control in the "audio" model, to the
1194 * underlying "mixer" control. We walk through the whole list once,
1195 * assigning likely candidates as we come across them.
1196 */
1197 record_master_found = 0;
1198 record_source_found = 0;
1199 mutex_enter(sc->sc_lock);
1200 for(mi.index = 0; ; mi.index++) {
1201 if (audio_query_devinfo(sc, &mi) != 0)
1202 break;
1203 KASSERT(mi.index < sc->sc_nmixer_states);
1204 if (mi.type == AUDIO_MIXER_CLASS)
1205 continue;
1206 if (mi.mixer_class == iclass) {
1207 /*
1208 * AudioCinputs is only a fallback, when we don't
1209 * find what we're looking for in AudioCrecord, so
1210 * check the flags before accepting one of these.
1211 */
1212 if (strcmp(mi.label.name, AudioNmaster) == 0
1213 && record_master_found == 0)
1214 sc->sc_inports.master = mi.index;
1215 if (strcmp(mi.label.name, AudioNsource) == 0
1216 && record_source_found == 0) {
1217 if (mi.type == AUDIO_MIXER_ENUM) {
1218 int i;
1219 for(i = 0; i < mi.un.e.num_mem; i++)
1220 if (strcmp(mi.un.e.member[i].label.name,
1221 AudioNmixerout) == 0)
1222 sc->sc_inports.mixerout =
1223 mi.un.e.member[i].ord;
1224 }
1225 au_setup_ports(sc, &sc->sc_inports, &mi,
1226 itable);
1227 }
1228 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1229 sc->sc_outports.master == -1)
1230 sc->sc_outports.master = mi.index;
1231 } else if (mi.mixer_class == mclass) {
1232 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1233 sc->sc_monitor_port = mi.index;
1234 } else if (mi.mixer_class == oclass) {
1235 if (strcmp(mi.label.name, AudioNmaster) == 0)
1236 sc->sc_outports.master = mi.index;
1237 if (strcmp(mi.label.name, AudioNselect) == 0)
1238 au_setup_ports(sc, &sc->sc_outports, &mi,
1239 otable);
1240 } else if (mi.mixer_class == rclass) {
1241 /*
1242 * These are the preferred mixers for the audio record
1243 * controls, so set the flags here, but don't check.
1244 */
1245 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1246 sc->sc_inports.master = mi.index;
1247 record_master_found = 1;
1248 }
1249 #if 1 /* Deprecated. Use AudioNmaster. */
1250 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1251 sc->sc_inports.master = mi.index;
1252 record_master_found = 1;
1253 }
1254 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1255 sc->sc_inports.master = mi.index;
1256 record_master_found = 1;
1257 }
1258 #endif
1259 if (strcmp(mi.label.name, AudioNsource) == 0) {
1260 if (mi.type == AUDIO_MIXER_ENUM) {
1261 int i;
1262 for(i = 0; i < mi.un.e.num_mem; i++)
1263 if (strcmp(mi.un.e.member[i].label.name,
1264 AudioNmixerout) == 0)
1265 sc->sc_inports.mixerout =
1266 mi.un.e.member[i].ord;
1267 }
1268 au_setup_ports(sc, &sc->sc_inports, &mi,
1269 itable);
1270 record_source_found = 1;
1271 }
1272 }
1273 }
1274 mutex_exit(sc->sc_lock);
1275 }
1276
1277 static int
1278 audioactivate(device_t self, enum devact act)
1279 {
1280 struct audio_softc *sc = device_private(self);
1281
1282 switch (act) {
1283 case DVACT_DEACTIVATE:
1284 mutex_enter(sc->sc_lock);
1285 sc->sc_dying = true;
1286 cv_broadcast(&sc->sc_exlockcv);
1287 mutex_exit(sc->sc_lock);
1288 return 0;
1289 default:
1290 return EOPNOTSUPP;
1291 }
1292 }
1293
1294 static int
1295 audiodetach(device_t self, int flags)
1296 {
1297 struct audio_softc *sc;
1298 struct audio_file *file;
1299 int error;
1300
1301 sc = device_private(self);
1302 TRACE(2, "flags=%d", flags);
1303
1304 /* device is not initialized */
1305 if (sc->hw_if == NULL)
1306 return 0;
1307
1308 /* Start draining existing accessors of the device. */
1309 error = config_detach_children(self, flags);
1310 if (error)
1311 return error;
1312
1313 /* delete sysctl nodes */
1314 sysctl_teardown(&sc->sc_log);
1315
1316 mutex_enter(sc->sc_lock);
1317 sc->sc_dying = true;
1318 cv_broadcast(&sc->sc_exlockcv);
1319 if (sc->sc_pmixer)
1320 cv_broadcast(&sc->sc_pmixer->outcv);
1321 if (sc->sc_rmixer)
1322 cv_broadcast(&sc->sc_rmixer->outcv);
1323
1324 /* Prevent new users */
1325 SLIST_FOREACH(file, &sc->sc_files, entry) {
1326 atomic_store_relaxed(&file->dying, true);
1327 }
1328
1329 /*
1330 * Wait for existing users to drain.
1331 * - pserialize_perform waits for all pserialize_read sections on
1332 * all CPUs; after this, no more new psref_acquire can happen.
1333 * - psref_target_destroy waits for all extant acquired psrefs to
1334 * be psref_released.
1335 */
1336 pserialize_perform(sc->sc_psz);
1337 mutex_exit(sc->sc_lock);
1338 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1339
1340 /*
1341 * We are now guaranteed that there are no calls to audio fileops
1342 * that hold sc, and any new calls with files that were for sc will
1343 * fail. Thus, we now have exclusive access to the softc.
1344 */
1345 sc->sc_exlock = 1;
1346
1347 /*
1348 * Nuke all open instances.
1349 * Here, we no longer need any locks to traverse sc_files.
1350 */
1351 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1352 audio_unlink(sc, file);
1353 }
1354
1355 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1356 audio_volume_down, true);
1357 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1358 audio_volume_up, true);
1359 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1360 audio_volume_toggle, true);
1361
1362 #ifdef AUDIO_PM_IDLE
1363 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1364
1365 device_active_deregister(self, audio_activity);
1366 #endif
1367
1368 pmf_device_deregister(self);
1369
1370 /* Free resources */
1371 if (sc->sc_pmixer) {
1372 audio_mixer_destroy(sc, sc->sc_pmixer);
1373 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1374 }
1375 if (sc->sc_rmixer) {
1376 audio_mixer_destroy(sc, sc->sc_rmixer);
1377 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1378 }
1379 if (sc->sc_am)
1380 kern_free(sc->sc_am);
1381
1382 seldestroy(&sc->sc_wsel);
1383 seldestroy(&sc->sc_rsel);
1384
1385 #ifdef AUDIO_PM_IDLE
1386 callout_destroy(&sc->sc_idle_counter);
1387 #endif
1388
1389 cv_destroy(&sc->sc_exlockcv);
1390
1391 #if defined(AUDIO_DEBUG)
1392 audio_mlog_free();
1393 #endif
1394
1395 return 0;
1396 }
1397
1398 static void
1399 audiochilddet(device_t self, device_t child)
1400 {
1401
1402 /* we hold no child references, so do nothing */
1403 }
1404
1405 static int
1406 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1407 {
1408
1409 if (config_match(parent, cf, aux))
1410 config_attach_loc(parent, cf, locs, aux, NULL);
1411
1412 return 0;
1413 }
1414
1415 static int
1416 audiorescan(device_t self, const char *ifattr, const int *flags)
1417 {
1418 struct audio_softc *sc = device_private(self);
1419
1420 if (!ifattr_match(ifattr, "audio"))
1421 return 0;
1422
1423 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1424
1425 return 0;
1426 }
1427
1428 /*
1429 * Called from hardware driver. This is where the MI audio driver gets
1430 * probed/attached to the hardware driver.
1431 */
1432 device_t
1433 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1434 {
1435 struct audio_attach_args arg;
1436
1437 #ifdef DIAGNOSTIC
1438 if (ahwp == NULL) {
1439 aprint_error("audio_attach_mi: NULL\n");
1440 return 0;
1441 }
1442 #endif
1443 arg.type = AUDIODEV_TYPE_AUDIO;
1444 arg.hwif = ahwp;
1445 arg.hdl = hdlp;
1446 return config_found(dev, &arg, audioprint);
1447 }
1448
1449 /*
1450 * Enter critical section and also keep sc_lock.
1451 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1452 * Must be called without sc_lock held.
1453 */
1454 static int
1455 audio_exlock_mutex_enter(struct audio_softc *sc)
1456 {
1457 int error;
1458
1459 mutex_enter(sc->sc_lock);
1460 if (sc->sc_dying) {
1461 mutex_exit(sc->sc_lock);
1462 return EIO;
1463 }
1464
1465 while (__predict_false(sc->sc_exlock != 0)) {
1466 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1467 if (sc->sc_dying)
1468 error = EIO;
1469 if (error) {
1470 mutex_exit(sc->sc_lock);
1471 return error;
1472 }
1473 }
1474
1475 /* Acquire */
1476 sc->sc_exlock = 1;
1477 return 0;
1478 }
1479
1480 /*
1481 * Exit critical section and exit sc_lock.
1482 * Must be called with sc_lock held.
1483 */
1484 static void
1485 audio_exlock_mutex_exit(struct audio_softc *sc)
1486 {
1487
1488 KASSERT(mutex_owned(sc->sc_lock));
1489
1490 sc->sc_exlock = 0;
1491 cv_broadcast(&sc->sc_exlockcv);
1492 mutex_exit(sc->sc_lock);
1493 }
1494
1495 /*
1496 * Enter critical section.
1497 * If successful, it returns 0. Otherwise returns errno.
1498 * Must be called without sc_lock held.
1499 * This function returns without sc_lock held.
1500 */
1501 static int
1502 audio_exlock_enter(struct audio_softc *sc)
1503 {
1504 int error;
1505
1506 error = audio_exlock_mutex_enter(sc);
1507 if (error)
1508 return error;
1509 mutex_exit(sc->sc_lock);
1510 return 0;
1511 }
1512
1513 /*
1514 * Exit critical section.
1515 * Must be called without sc_lock held.
1516 */
1517 static void
1518 audio_exlock_exit(struct audio_softc *sc)
1519 {
1520
1521 mutex_enter(sc->sc_lock);
1522 audio_exlock_mutex_exit(sc);
1523 }
1524
1525 /*
1526 * Acquire sc from file, and increment the psref count.
1527 * If successful, returns sc. Otherwise returns NULL.
1528 */
1529 struct audio_softc *
1530 audio_file_enter(audio_file_t *file, struct psref *refp)
1531 {
1532 int s;
1533 bool dying;
1534
1535 /* psref(9) forbids to migrate CPUs */
1536 curlwp_bind();
1537
1538 /* Block audiodetach while we acquire a reference */
1539 s = pserialize_read_enter();
1540
1541 /* If close or audiodetach already ran, tough -- no more audio */
1542 dying = atomic_load_relaxed(&file->dying);
1543 if (dying) {
1544 pserialize_read_exit(s);
1545 return NULL;
1546 }
1547
1548 /* Acquire a reference */
1549 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1550
1551 /* Now sc won't go away until we drop the reference count */
1552 pserialize_read_exit(s);
1553
1554 return file->sc;
1555 }
1556
1557 /*
1558 * Decrement the psref count.
1559 */
1560 void
1561 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1562 {
1563
1564 psref_release(refp, &sc->sc_psref, audio_psref_class);
1565 }
1566
1567 /*
1568 * Wait for I/O to complete, releasing sc_lock.
1569 * Must be called with sc_lock held.
1570 */
1571 static int
1572 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1573 {
1574 int error;
1575
1576 KASSERT(track);
1577 KASSERT(mutex_owned(sc->sc_lock));
1578
1579 /* Wait for pending I/O to complete. */
1580 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1581 mstohz(AUDIO_TIMEOUT));
1582 if (sc->sc_dying) {
1583 error = EIO;
1584 }
1585 if (error) {
1586 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1587 if (error == EWOULDBLOCK)
1588 device_printf(sc->sc_dev, "device timeout\n");
1589 } else {
1590 TRACET(3, track, "wakeup");
1591 }
1592 return error;
1593 }
1594
1595 /*
1596 * Try to acquire track lock.
1597 * It doesn't block if the track lock is already aquired.
1598 * Returns true if the track lock was acquired, or false if the track
1599 * lock was already acquired.
1600 */
1601 static __inline bool
1602 audio_track_lock_tryenter(audio_track_t *track)
1603 {
1604 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1605 }
1606
1607 /*
1608 * Acquire track lock.
1609 */
1610 static __inline void
1611 audio_track_lock_enter(audio_track_t *track)
1612 {
1613 /* Don't sleep here. */
1614 while (audio_track_lock_tryenter(track) == false)
1615 ;
1616 }
1617
1618 /*
1619 * Release track lock.
1620 */
1621 static __inline void
1622 audio_track_lock_exit(audio_track_t *track)
1623 {
1624 atomic_swap_uint(&track->lock, 0);
1625 }
1626
1627
1628 static int
1629 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1630 {
1631 struct audio_softc *sc;
1632 int error;
1633
1634 /* Find the device */
1635 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1636 if (sc == NULL || sc->hw_if == NULL)
1637 return ENXIO;
1638
1639 error = audio_exlock_enter(sc);
1640 if (error)
1641 return error;
1642
1643 device_active(sc->sc_dev, DVA_SYSTEM);
1644 switch (AUDIODEV(dev)) {
1645 case SOUND_DEVICE:
1646 case AUDIO_DEVICE:
1647 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1648 break;
1649 case AUDIOCTL_DEVICE:
1650 error = audioctl_open(dev, sc, flags, ifmt, l);
1651 break;
1652 case MIXER_DEVICE:
1653 error = mixer_open(dev, sc, flags, ifmt, l);
1654 break;
1655 default:
1656 error = ENXIO;
1657 break;
1658 }
1659 audio_exlock_exit(sc);
1660
1661 return error;
1662 }
1663
1664 static int
1665 audioclose(struct file *fp)
1666 {
1667 struct audio_softc *sc;
1668 struct psref sc_ref;
1669 audio_file_t *file;
1670 int error;
1671 dev_t dev;
1672
1673 KASSERT(fp->f_audioctx);
1674 file = fp->f_audioctx;
1675 dev = file->dev;
1676 error = 0;
1677
1678 /*
1679 * audioclose() must
1680 * - unplug track from the trackmixer (and unplug anything from softc),
1681 * if sc exists.
1682 * - free all memory objects, regardless of sc.
1683 */
1684
1685 sc = audio_file_enter(file, &sc_ref);
1686 if (sc) {
1687 switch (AUDIODEV(dev)) {
1688 case SOUND_DEVICE:
1689 case AUDIO_DEVICE:
1690 error = audio_close(sc, file);
1691 break;
1692 case AUDIOCTL_DEVICE:
1693 error = 0;
1694 break;
1695 case MIXER_DEVICE:
1696 error = mixer_close(sc, file);
1697 break;
1698 default:
1699 error = ENXIO;
1700 break;
1701 }
1702
1703 audio_file_exit(sc, &sc_ref);
1704 }
1705
1706 /* Free memory objects anyway */
1707 TRACEF(2, file, "free memory");
1708 if (file->ptrack)
1709 audio_track_destroy(file->ptrack);
1710 if (file->rtrack)
1711 audio_track_destroy(file->rtrack);
1712 kmem_free(file, sizeof(*file));
1713 fp->f_audioctx = NULL;
1714
1715 return error;
1716 }
1717
1718 static int
1719 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1720 int ioflag)
1721 {
1722 struct audio_softc *sc;
1723 struct psref sc_ref;
1724 audio_file_t *file;
1725 int error;
1726 dev_t dev;
1727
1728 KASSERT(fp->f_audioctx);
1729 file = fp->f_audioctx;
1730 dev = file->dev;
1731
1732 sc = audio_file_enter(file, &sc_ref);
1733 if (sc == NULL)
1734 return EIO;
1735
1736 if (fp->f_flag & O_NONBLOCK)
1737 ioflag |= IO_NDELAY;
1738
1739 switch (AUDIODEV(dev)) {
1740 case SOUND_DEVICE:
1741 case AUDIO_DEVICE:
1742 error = audio_read(sc, uio, ioflag, file);
1743 break;
1744 case AUDIOCTL_DEVICE:
1745 case MIXER_DEVICE:
1746 error = ENODEV;
1747 break;
1748 default:
1749 error = ENXIO;
1750 break;
1751 }
1752
1753 audio_file_exit(sc, &sc_ref);
1754 return error;
1755 }
1756
1757 static int
1758 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1759 int ioflag)
1760 {
1761 struct audio_softc *sc;
1762 struct psref sc_ref;
1763 audio_file_t *file;
1764 int error;
1765 dev_t dev;
1766
1767 KASSERT(fp->f_audioctx);
1768 file = fp->f_audioctx;
1769 dev = file->dev;
1770
1771 sc = audio_file_enter(file, &sc_ref);
1772 if (sc == NULL)
1773 return EIO;
1774
1775 if (fp->f_flag & O_NONBLOCK)
1776 ioflag |= IO_NDELAY;
1777
1778 switch (AUDIODEV(dev)) {
1779 case SOUND_DEVICE:
1780 case AUDIO_DEVICE:
1781 error = audio_write(sc, uio, ioflag, file);
1782 break;
1783 case AUDIOCTL_DEVICE:
1784 case MIXER_DEVICE:
1785 error = ENODEV;
1786 break;
1787 default:
1788 error = ENXIO;
1789 break;
1790 }
1791
1792 audio_file_exit(sc, &sc_ref);
1793 return error;
1794 }
1795
1796 static int
1797 audioioctl(struct file *fp, u_long cmd, void *addr)
1798 {
1799 struct audio_softc *sc;
1800 struct psref sc_ref;
1801 audio_file_t *file;
1802 struct lwp *l = curlwp;
1803 int error;
1804 dev_t dev;
1805
1806 KASSERT(fp->f_audioctx);
1807 file = fp->f_audioctx;
1808 dev = file->dev;
1809
1810 sc = audio_file_enter(file, &sc_ref);
1811 if (sc == NULL)
1812 return EIO;
1813
1814 switch (AUDIODEV(dev)) {
1815 case SOUND_DEVICE:
1816 case AUDIO_DEVICE:
1817 case AUDIOCTL_DEVICE:
1818 mutex_enter(sc->sc_lock);
1819 device_active(sc->sc_dev, DVA_SYSTEM);
1820 mutex_exit(sc->sc_lock);
1821 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1822 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1823 else
1824 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1825 file);
1826 break;
1827 case MIXER_DEVICE:
1828 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1829 break;
1830 default:
1831 error = ENXIO;
1832 break;
1833 }
1834
1835 audio_file_exit(sc, &sc_ref);
1836 return error;
1837 }
1838
1839 static int
1840 audiostat(struct file *fp, struct stat *st)
1841 {
1842 struct audio_softc *sc;
1843 struct psref sc_ref;
1844 audio_file_t *file;
1845
1846 KASSERT(fp->f_audioctx);
1847 file = fp->f_audioctx;
1848
1849 sc = audio_file_enter(file, &sc_ref);
1850 if (sc == NULL)
1851 return EIO;
1852
1853 memset(st, 0, sizeof(*st));
1854
1855 st->st_dev = file->dev;
1856 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1857 st->st_gid = kauth_cred_getegid(fp->f_cred);
1858 st->st_mode = S_IFCHR;
1859
1860 audio_file_exit(sc, &sc_ref);
1861 return 0;
1862 }
1863
1864 static int
1865 audiopoll(struct file *fp, int events)
1866 {
1867 struct audio_softc *sc;
1868 struct psref sc_ref;
1869 audio_file_t *file;
1870 struct lwp *l = curlwp;
1871 int revents;
1872 dev_t dev;
1873
1874 KASSERT(fp->f_audioctx);
1875 file = fp->f_audioctx;
1876 dev = file->dev;
1877
1878 sc = audio_file_enter(file, &sc_ref);
1879 if (sc == NULL)
1880 return EIO;
1881
1882 switch (AUDIODEV(dev)) {
1883 case SOUND_DEVICE:
1884 case AUDIO_DEVICE:
1885 revents = audio_poll(sc, events, l, file);
1886 break;
1887 case AUDIOCTL_DEVICE:
1888 case MIXER_DEVICE:
1889 revents = 0;
1890 break;
1891 default:
1892 revents = POLLERR;
1893 break;
1894 }
1895
1896 audio_file_exit(sc, &sc_ref);
1897 return revents;
1898 }
1899
1900 static int
1901 audiokqfilter(struct file *fp, struct knote *kn)
1902 {
1903 struct audio_softc *sc;
1904 struct psref sc_ref;
1905 audio_file_t *file;
1906 dev_t dev;
1907 int error;
1908
1909 KASSERT(fp->f_audioctx);
1910 file = fp->f_audioctx;
1911 dev = file->dev;
1912
1913 sc = audio_file_enter(file, &sc_ref);
1914 if (sc == NULL)
1915 return EIO;
1916
1917 switch (AUDIODEV(dev)) {
1918 case SOUND_DEVICE:
1919 case AUDIO_DEVICE:
1920 error = audio_kqfilter(sc, file, kn);
1921 break;
1922 case AUDIOCTL_DEVICE:
1923 case MIXER_DEVICE:
1924 error = ENODEV;
1925 break;
1926 default:
1927 error = ENXIO;
1928 break;
1929 }
1930
1931 audio_file_exit(sc, &sc_ref);
1932 return error;
1933 }
1934
1935 static int
1936 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1937 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1938 {
1939 struct audio_softc *sc;
1940 struct psref sc_ref;
1941 audio_file_t *file;
1942 dev_t dev;
1943 int error;
1944
1945 KASSERT(fp->f_audioctx);
1946 file = fp->f_audioctx;
1947 dev = file->dev;
1948
1949 sc = audio_file_enter(file, &sc_ref);
1950 if (sc == NULL)
1951 return EIO;
1952
1953 mutex_enter(sc->sc_lock);
1954 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1955 mutex_exit(sc->sc_lock);
1956
1957 switch (AUDIODEV(dev)) {
1958 case SOUND_DEVICE:
1959 case AUDIO_DEVICE:
1960 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1961 uobjp, maxprotp, file);
1962 break;
1963 case AUDIOCTL_DEVICE:
1964 case MIXER_DEVICE:
1965 default:
1966 error = ENOTSUP;
1967 break;
1968 }
1969
1970 audio_file_exit(sc, &sc_ref);
1971 return error;
1972 }
1973
1974
1975 /* Exported interfaces for audiobell. */
1976
1977 /*
1978 * Open for audiobell.
1979 * It stores allocated file to *filep.
1980 * If successful returns 0, otherwise errno.
1981 */
1982 int
1983 audiobellopen(dev_t dev, audio_file_t **filep)
1984 {
1985 struct audio_softc *sc;
1986 int error;
1987
1988 /* Find the device */
1989 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1990 if (sc == NULL || sc->hw_if == NULL)
1991 return ENXIO;
1992
1993 error = audio_exlock_enter(sc);
1994 if (error)
1995 return error;
1996
1997 device_active(sc->sc_dev, DVA_SYSTEM);
1998 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1999
2000 audio_exlock_exit(sc);
2001 return error;
2002 }
2003
2004 /* Close for audiobell */
2005 int
2006 audiobellclose(audio_file_t *file)
2007 {
2008 struct audio_softc *sc;
2009 struct psref sc_ref;
2010 int error;
2011
2012 sc = audio_file_enter(file, &sc_ref);
2013 if (sc == NULL)
2014 return EIO;
2015
2016 error = audio_close(sc, file);
2017
2018 audio_file_exit(sc, &sc_ref);
2019
2020 KASSERT(file->ptrack);
2021 audio_track_destroy(file->ptrack);
2022 KASSERT(file->rtrack == NULL);
2023 kmem_free(file, sizeof(*file));
2024 return error;
2025 }
2026
2027 /* Set sample rate for audiobell */
2028 int
2029 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2030 {
2031 struct audio_softc *sc;
2032 struct psref sc_ref;
2033 struct audio_info ai;
2034 int error;
2035
2036 sc = audio_file_enter(file, &sc_ref);
2037 if (sc == NULL)
2038 return EIO;
2039
2040 AUDIO_INITINFO(&ai);
2041 ai.play.sample_rate = sample_rate;
2042
2043 error = audio_exlock_enter(sc);
2044 if (error)
2045 goto done;
2046 error = audio_file_setinfo(sc, file, &ai);
2047 audio_exlock_exit(sc);
2048
2049 done:
2050 audio_file_exit(sc, &sc_ref);
2051 return error;
2052 }
2053
2054 /* Playback for audiobell */
2055 int
2056 audiobellwrite(audio_file_t *file, struct uio *uio)
2057 {
2058 struct audio_softc *sc;
2059 struct psref sc_ref;
2060 int error;
2061
2062 sc = audio_file_enter(file, &sc_ref);
2063 if (sc == NULL)
2064 return EIO;
2065
2066 error = audio_write(sc, uio, 0, file);
2067
2068 audio_file_exit(sc, &sc_ref);
2069 return error;
2070 }
2071
2072
2073 /*
2074 * Audio driver
2075 */
2076
2077 /*
2078 * Must be called with sc_exlock held and without sc_lock held.
2079 */
2080 int
2081 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2082 struct lwp *l, audio_file_t **bellfile)
2083 {
2084 struct audio_info ai;
2085 struct file *fp;
2086 audio_file_t *af;
2087 audio_ring_t *hwbuf;
2088 bool fullduplex;
2089 int fd;
2090 int error;
2091
2092 KASSERT(sc->sc_exlock);
2093
2094 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2095 (audiodebug >= 3) ? "start " : "",
2096 ISDEVSOUND(dev) ? "sound" : "audio",
2097 flags, sc->sc_popens, sc->sc_ropens);
2098
2099 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2100 af->sc = sc;
2101 af->dev = dev;
2102 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2103 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2104 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2105 af->mode |= AUMODE_RECORD;
2106 if (af->mode == 0) {
2107 error = ENXIO;
2108 goto bad1;
2109 }
2110
2111 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2112
2113 /*
2114 * On half duplex hardware,
2115 * 1. if mode is (PLAY | REC), let mode PLAY.
2116 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2117 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2118 */
2119 if (fullduplex == false) {
2120 if ((af->mode & AUMODE_PLAY)) {
2121 if (sc->sc_ropens != 0) {
2122 TRACE(1, "record track already exists");
2123 error = ENODEV;
2124 goto bad1;
2125 }
2126 /* Play takes precedence */
2127 af->mode &= ~AUMODE_RECORD;
2128 }
2129 if ((af->mode & AUMODE_RECORD)) {
2130 if (sc->sc_popens != 0) {
2131 TRACE(1, "play track already exists");
2132 error = ENODEV;
2133 goto bad1;
2134 }
2135 }
2136 }
2137
2138 /* Create tracks */
2139 if ((af->mode & AUMODE_PLAY))
2140 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2141 if ((af->mode & AUMODE_RECORD))
2142 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2143
2144 /* Set parameters */
2145 AUDIO_INITINFO(&ai);
2146 if (bellfile) {
2147 /* If audiobell, only sample_rate will be set later. */
2148 ai.play.sample_rate = audio_default.sample_rate;
2149 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2150 ai.play.channels = 1;
2151 ai.play.precision = 16;
2152 ai.play.pause = 0;
2153 } else if (ISDEVAUDIO(dev)) {
2154 /* If /dev/audio, initialize everytime. */
2155 ai.play.sample_rate = audio_default.sample_rate;
2156 ai.play.encoding = audio_default.encoding;
2157 ai.play.channels = audio_default.channels;
2158 ai.play.precision = audio_default.precision;
2159 ai.play.pause = 0;
2160 ai.record.sample_rate = audio_default.sample_rate;
2161 ai.record.encoding = audio_default.encoding;
2162 ai.record.channels = audio_default.channels;
2163 ai.record.precision = audio_default.precision;
2164 ai.record.pause = 0;
2165 } else {
2166 /* If /dev/sound, take over the previous parameters. */
2167 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2168 ai.play.encoding = sc->sc_sound_pparams.encoding;
2169 ai.play.channels = sc->sc_sound_pparams.channels;
2170 ai.play.precision = sc->sc_sound_pparams.precision;
2171 ai.play.pause = sc->sc_sound_ppause;
2172 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2173 ai.record.encoding = sc->sc_sound_rparams.encoding;
2174 ai.record.channels = sc->sc_sound_rparams.channels;
2175 ai.record.precision = sc->sc_sound_rparams.precision;
2176 ai.record.pause = sc->sc_sound_rpause;
2177 }
2178 error = audio_file_setinfo(sc, af, &ai);
2179 if (error)
2180 goto bad2;
2181
2182 if (sc->sc_popens + sc->sc_ropens == 0) {
2183 /* First open */
2184
2185 sc->sc_cred = kauth_cred_get();
2186 kauth_cred_hold(sc->sc_cred);
2187
2188 if (sc->hw_if->open) {
2189 int hwflags;
2190
2191 /*
2192 * Call hw_if->open() only at first open of
2193 * combination of playback and recording.
2194 * On full duplex hardware, the flags passed to
2195 * hw_if->open() is always (FREAD | FWRITE)
2196 * regardless of this open()'s flags.
2197 * see also dev/isa/aria.c
2198 * On half duplex hardware, the flags passed to
2199 * hw_if->open() is either FREAD or FWRITE.
2200 * see also arch/evbarm/mini2440/audio_mini2440.c
2201 */
2202 if (fullduplex) {
2203 hwflags = FREAD | FWRITE;
2204 } else {
2205 /* Construct hwflags from af->mode. */
2206 hwflags = 0;
2207 if ((af->mode & AUMODE_PLAY) != 0)
2208 hwflags |= FWRITE;
2209 if ((af->mode & AUMODE_RECORD) != 0)
2210 hwflags |= FREAD;
2211 }
2212
2213 mutex_enter(sc->sc_lock);
2214 mutex_enter(sc->sc_intr_lock);
2215 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2216 mutex_exit(sc->sc_intr_lock);
2217 mutex_exit(sc->sc_lock);
2218 if (error)
2219 goto bad2;
2220 }
2221
2222 /*
2223 * Set speaker mode when a half duplex.
2224 * XXX I'm not sure this is correct.
2225 */
2226 if (1/*XXX*/) {
2227 if (sc->hw_if->speaker_ctl) {
2228 int on;
2229 if (af->ptrack) {
2230 on = 1;
2231 } else {
2232 on = 0;
2233 }
2234 mutex_enter(sc->sc_lock);
2235 mutex_enter(sc->sc_intr_lock);
2236 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2237 mutex_exit(sc->sc_intr_lock);
2238 mutex_exit(sc->sc_lock);
2239 if (error)
2240 goto bad3;
2241 }
2242 }
2243 } else if (sc->sc_multiuser == false) {
2244 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2245 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2246 error = EPERM;
2247 goto bad2;
2248 }
2249 }
2250
2251 /* Call init_output if this is the first playback open. */
2252 if (af->ptrack && sc->sc_popens == 0) {
2253 if (sc->hw_if->init_output) {
2254 hwbuf = &sc->sc_pmixer->hwbuf;
2255 mutex_enter(sc->sc_lock);
2256 mutex_enter(sc->sc_intr_lock);
2257 error = sc->hw_if->init_output(sc->hw_hdl,
2258 hwbuf->mem,
2259 hwbuf->capacity *
2260 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2261 mutex_exit(sc->sc_intr_lock);
2262 mutex_exit(sc->sc_lock);
2263 if (error)
2264 goto bad3;
2265 }
2266 }
2267 /*
2268 * Call init_input and start rmixer, if this is the first recording
2269 * open. See pause consideration notes.
2270 */
2271 if (af->rtrack && sc->sc_ropens == 0) {
2272 if (sc->hw_if->init_input) {
2273 hwbuf = &sc->sc_rmixer->hwbuf;
2274 mutex_enter(sc->sc_lock);
2275 mutex_enter(sc->sc_intr_lock);
2276 error = sc->hw_if->init_input(sc->hw_hdl,
2277 hwbuf->mem,
2278 hwbuf->capacity *
2279 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2280 mutex_exit(sc->sc_intr_lock);
2281 mutex_exit(sc->sc_lock);
2282 if (error)
2283 goto bad3;
2284 }
2285
2286 mutex_enter(sc->sc_lock);
2287 audio_rmixer_start(sc);
2288 mutex_exit(sc->sc_lock);
2289 }
2290
2291 if (bellfile == NULL) {
2292 error = fd_allocfile(&fp, &fd);
2293 if (error)
2294 goto bad3;
2295 }
2296
2297 /*
2298 * Count up finally.
2299 * Don't fail from here.
2300 */
2301 mutex_enter(sc->sc_lock);
2302 if (af->ptrack)
2303 sc->sc_popens++;
2304 if (af->rtrack)
2305 sc->sc_ropens++;
2306 mutex_enter(sc->sc_intr_lock);
2307 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2308 mutex_exit(sc->sc_intr_lock);
2309 mutex_exit(sc->sc_lock);
2310
2311 if (bellfile) {
2312 *bellfile = af;
2313 } else {
2314 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2315 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2316 }
2317
2318 TRACEF(3, af, "done");
2319 return error;
2320
2321 /*
2322 * Since track here is not yet linked to sc_files,
2323 * you can call track_destroy() without sc_intr_lock.
2324 */
2325 bad3:
2326 if (sc->sc_popens + sc->sc_ropens == 0) {
2327 if (sc->hw_if->close) {
2328 mutex_enter(sc->sc_lock);
2329 mutex_enter(sc->sc_intr_lock);
2330 sc->hw_if->close(sc->hw_hdl);
2331 mutex_exit(sc->sc_intr_lock);
2332 mutex_exit(sc->sc_lock);
2333 }
2334 }
2335 bad2:
2336 if (af->rtrack) {
2337 audio_track_destroy(af->rtrack);
2338 af->rtrack = NULL;
2339 }
2340 if (af->ptrack) {
2341 audio_track_destroy(af->ptrack);
2342 af->ptrack = NULL;
2343 }
2344 bad1:
2345 kmem_free(af, sizeof(*af));
2346 return error;
2347 }
2348
2349 /*
2350 * Must be called without sc_lock nor sc_exlock held.
2351 */
2352 int
2353 audio_close(struct audio_softc *sc, audio_file_t *file)
2354 {
2355
2356 /* Protect entering new fileops to this file */
2357 atomic_store_relaxed(&file->dying, true);
2358
2359 /*
2360 * Drain first.
2361 * It must be done before unlinking(acquiring exlock).
2362 */
2363 if (file->ptrack) {
2364 mutex_enter(sc->sc_lock);
2365 audio_track_drain(sc, file->ptrack);
2366 mutex_exit(sc->sc_lock);
2367 }
2368
2369 return audio_unlink(sc, file);
2370 }
2371
2372 /*
2373 * Unlink this file, but not freeing memory here.
2374 * Must be called without sc_lock nor sc_exlock held.
2375 */
2376 int
2377 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2378 {
2379 int error;
2380
2381 mutex_enter(sc->sc_lock);
2382
2383 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2384 (audiodebug >= 3) ? "start " : "",
2385 (int)curproc->p_pid, (int)curlwp->l_lid,
2386 sc->sc_popens, sc->sc_ropens);
2387 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2388 "sc->sc_popens=%d, sc->sc_ropens=%d",
2389 sc->sc_popens, sc->sc_ropens);
2390
2391 /*
2392 * Acquire exlock to protect counters.
2393 * Does not use audio_exlock_enter() due to sc_dying.
2394 */
2395 while (__predict_false(sc->sc_exlock != 0)) {
2396 error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
2397 mstohz(AUDIO_TIMEOUT));
2398 /* XXX what should I do on error? */
2399 if (error == EWOULDBLOCK) {
2400 mutex_exit(sc->sc_lock);
2401 device_printf(sc->sc_dev,
2402 "%s: cv_timedwait_sig failed %d", __func__, error);
2403 return error;
2404 }
2405 }
2406 sc->sc_exlock = 1;
2407
2408 device_active(sc->sc_dev, DVA_SYSTEM);
2409
2410 mutex_enter(sc->sc_intr_lock);
2411 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2412 mutex_exit(sc->sc_intr_lock);
2413
2414 if (file->ptrack) {
2415 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2416 file->ptrack->dropframes);
2417
2418 KASSERT(sc->sc_popens > 0);
2419 sc->sc_popens--;
2420
2421 /* Call hw halt_output if this is the last playback track. */
2422 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2423 error = audio_pmixer_halt(sc);
2424 if (error) {
2425 device_printf(sc->sc_dev,
2426 "halt_output failed with %d (ignored)\n",
2427 error);
2428 }
2429 }
2430
2431 /* Restore mixing volume if all tracks are gone. */
2432 if (sc->sc_popens == 0) {
2433 /* intr_lock is not necessary, but just manners. */
2434 mutex_enter(sc->sc_intr_lock);
2435 sc->sc_pmixer->volume = 256;
2436 sc->sc_pmixer->voltimer = 0;
2437 mutex_exit(sc->sc_intr_lock);
2438 }
2439 }
2440 if (file->rtrack) {
2441 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2442 file->rtrack->dropframes);
2443
2444 KASSERT(sc->sc_ropens > 0);
2445 sc->sc_ropens--;
2446
2447 /* Call hw halt_input if this is the last recording track. */
2448 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2449 error = audio_rmixer_halt(sc);
2450 if (error) {
2451 device_printf(sc->sc_dev,
2452 "halt_input failed with %d (ignored)\n",
2453 error);
2454 }
2455 }
2456
2457 }
2458
2459 /* Call hw close if this is the last track. */
2460 if (sc->sc_popens + sc->sc_ropens == 0) {
2461 if (sc->hw_if->close) {
2462 TRACE(2, "hw_if close");
2463 mutex_enter(sc->sc_intr_lock);
2464 sc->hw_if->close(sc->hw_hdl);
2465 mutex_exit(sc->sc_intr_lock);
2466 }
2467 }
2468
2469 mutex_exit(sc->sc_lock);
2470 if (sc->sc_popens + sc->sc_ropens == 0)
2471 kauth_cred_free(sc->sc_cred);
2472
2473 TRACE(3, "done");
2474 audio_exlock_exit(sc);
2475
2476 return 0;
2477 }
2478
2479 /*
2480 * Must be called without sc_lock nor sc_exlock held.
2481 */
2482 int
2483 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2484 audio_file_t *file)
2485 {
2486 audio_track_t *track;
2487 audio_ring_t *usrbuf;
2488 audio_ring_t *input;
2489 int error;
2490
2491 /*
2492 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2493 * However read() system call itself can be called because it's
2494 * opened with O_RDWR. So in this case, deny this read().
2495 */
2496 track = file->rtrack;
2497 if (track == NULL) {
2498 return EBADF;
2499 }
2500
2501 /* I think it's better than EINVAL. */
2502 if (track->mmapped)
2503 return EPERM;
2504
2505 TRACET(2, track, "resid=%zd", uio->uio_resid);
2506
2507 #ifdef AUDIO_PM_IDLE
2508 error = audio_exlock_mutex_enter(sc);
2509 if (error)
2510 return error;
2511
2512 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2513 device_active(&sc->sc_dev, DVA_SYSTEM);
2514
2515 /* In recording, unlike playback, read() never operates rmixer. */
2516
2517 audio_exlock_mutex_exit(sc);
2518 #endif
2519
2520 usrbuf = &track->usrbuf;
2521 input = track->input;
2522 error = 0;
2523
2524 while (uio->uio_resid > 0 && error == 0) {
2525 int bytes;
2526
2527 TRACET(3, track,
2528 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2529 uio->uio_resid,
2530 input->head, input->used, input->capacity,
2531 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2532
2533 /* Wait when buffers are empty. */
2534 mutex_enter(sc->sc_lock);
2535 for (;;) {
2536 bool empty;
2537 audio_track_lock_enter(track);
2538 empty = (input->used == 0 && usrbuf->used == 0);
2539 audio_track_lock_exit(track);
2540 if (!empty)
2541 break;
2542
2543 if ((ioflag & IO_NDELAY)) {
2544 mutex_exit(sc->sc_lock);
2545 return EWOULDBLOCK;
2546 }
2547
2548 TRACET(3, track, "sleep");
2549 error = audio_track_waitio(sc, track);
2550 if (error) {
2551 mutex_exit(sc->sc_lock);
2552 return error;
2553 }
2554 }
2555 mutex_exit(sc->sc_lock);
2556
2557 audio_track_lock_enter(track);
2558 audio_track_record(track);
2559
2560 /* uiomove from usrbuf as much as possible. */
2561 bytes = uimin(usrbuf->used, uio->uio_resid);
2562 while (bytes > 0) {
2563 int head = usrbuf->head;
2564 int len = uimin(bytes, usrbuf->capacity - head);
2565 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2566 uio);
2567 if (error) {
2568 audio_track_lock_exit(track);
2569 device_printf(sc->sc_dev,
2570 "uiomove(len=%d) failed with %d\n",
2571 len, error);
2572 goto abort;
2573 }
2574 auring_take(usrbuf, len);
2575 track->useriobytes += len;
2576 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2577 len,
2578 usrbuf->head, usrbuf->used, usrbuf->capacity);
2579 bytes -= len;
2580 }
2581
2582 audio_track_lock_exit(track);
2583 }
2584
2585 abort:
2586 return error;
2587 }
2588
2589
2590 /*
2591 * Clear file's playback and/or record track buffer immediately.
2592 */
2593 static void
2594 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2595 {
2596
2597 if (file->ptrack)
2598 audio_track_clear(sc, file->ptrack);
2599 if (file->rtrack)
2600 audio_track_clear(sc, file->rtrack);
2601 }
2602
2603 /*
2604 * Must be called without sc_lock nor sc_exlock held.
2605 */
2606 int
2607 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2608 audio_file_t *file)
2609 {
2610 audio_track_t *track;
2611 audio_ring_t *usrbuf;
2612 audio_ring_t *outbuf;
2613 int error;
2614
2615 track = file->ptrack;
2616 KASSERT(track);
2617
2618 /* I think it's better than EINVAL. */
2619 if (track->mmapped)
2620 return EPERM;
2621
2622 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2623 audiodebug >= 3 ? "begin " : "",
2624 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2625
2626 if (uio->uio_resid == 0) {
2627 track->eofcounter++;
2628 return 0;
2629 }
2630
2631 error = audio_exlock_mutex_enter(sc);
2632 if (error)
2633 return error;
2634
2635 #ifdef AUDIO_PM_IDLE
2636 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2637 device_active(&sc->sc_dev, DVA_SYSTEM);
2638 #endif
2639
2640 /*
2641 * The first write starts pmixer.
2642 */
2643 if (sc->sc_pbusy == false)
2644 audio_pmixer_start(sc, false);
2645 audio_exlock_mutex_exit(sc);
2646
2647 usrbuf = &track->usrbuf;
2648 outbuf = &track->outbuf;
2649 track->pstate = AUDIO_STATE_RUNNING;
2650 error = 0;
2651
2652 while (uio->uio_resid > 0 && error == 0) {
2653 int bytes;
2654
2655 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2656 uio->uio_resid,
2657 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2658
2659 /* Wait when buffers are full. */
2660 mutex_enter(sc->sc_lock);
2661 for (;;) {
2662 bool full;
2663 audio_track_lock_enter(track);
2664 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2665 outbuf->used >= outbuf->capacity);
2666 audio_track_lock_exit(track);
2667 if (!full)
2668 break;
2669
2670 if ((ioflag & IO_NDELAY)) {
2671 error = EWOULDBLOCK;
2672 mutex_exit(sc->sc_lock);
2673 goto abort;
2674 }
2675
2676 TRACET(3, track, "sleep usrbuf=%d/H%d",
2677 usrbuf->used, track->usrbuf_usedhigh);
2678 error = audio_track_waitio(sc, track);
2679 if (error) {
2680 mutex_exit(sc->sc_lock);
2681 goto abort;
2682 }
2683 }
2684 mutex_exit(sc->sc_lock);
2685
2686 audio_track_lock_enter(track);
2687
2688 /* uiomove to usrbuf as much as possible. */
2689 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2690 uio->uio_resid);
2691 while (bytes > 0) {
2692 int tail = auring_tail(usrbuf);
2693 int len = uimin(bytes, usrbuf->capacity - tail);
2694 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2695 uio);
2696 if (error) {
2697 audio_track_lock_exit(track);
2698 device_printf(sc->sc_dev,
2699 "uiomove(len=%d) failed with %d\n",
2700 len, error);
2701 goto abort;
2702 }
2703 auring_push(usrbuf, len);
2704 track->useriobytes += len;
2705 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2706 len,
2707 usrbuf->head, usrbuf->used, usrbuf->capacity);
2708 bytes -= len;
2709 }
2710
2711 /* Convert them as much as possible. */
2712 while (usrbuf->used >= track->usrbuf_blksize &&
2713 outbuf->used < outbuf->capacity) {
2714 audio_track_play(track);
2715 }
2716
2717 audio_track_lock_exit(track);
2718 }
2719
2720 abort:
2721 TRACET(3, track, "done error=%d", error);
2722 return error;
2723 }
2724
2725 /*
2726 * Must be called without sc_lock nor sc_exlock held.
2727 */
2728 int
2729 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2730 struct lwp *l, audio_file_t *file)
2731 {
2732 struct audio_offset *ao;
2733 struct audio_info ai;
2734 audio_track_t *track;
2735 audio_encoding_t *ae;
2736 audio_format_query_t *query;
2737 u_int stamp;
2738 u_int offs;
2739 int fd;
2740 int index;
2741 int error;
2742
2743 #if defined(AUDIO_DEBUG)
2744 const char *ioctlnames[] = {
2745 " AUDIO_GETINFO", /* 21 */
2746 " AUDIO_SETINFO", /* 22 */
2747 " AUDIO_DRAIN", /* 23 */
2748 " AUDIO_FLUSH", /* 24 */
2749 " AUDIO_WSEEK", /* 25 */
2750 " AUDIO_RERROR", /* 26 */
2751 " AUDIO_GETDEV", /* 27 */
2752 " AUDIO_GETENC", /* 28 */
2753 " AUDIO_GETFD", /* 29 */
2754 " AUDIO_SETFD", /* 30 */
2755 " AUDIO_PERROR", /* 31 */
2756 " AUDIO_GETIOFFS", /* 32 */
2757 " AUDIO_GETOOFFS", /* 33 */
2758 " AUDIO_GETPROPS", /* 34 */
2759 " AUDIO_GETBUFINFO", /* 35 */
2760 " AUDIO_SETCHAN", /* 36 */
2761 " AUDIO_GETCHAN", /* 37 */
2762 " AUDIO_QUERYFORMAT", /* 38 */
2763 " AUDIO_GETFORMAT", /* 39 */
2764 " AUDIO_SETFORMAT", /* 40 */
2765 };
2766 int nameidx = (cmd & 0xff);
2767 const char *ioctlname = "";
2768 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2769 ioctlname = ioctlnames[nameidx - 21];
2770 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2771 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2772 (int)curproc->p_pid, (int)l->l_lid);
2773 #endif
2774
2775 error = 0;
2776 switch (cmd) {
2777 case FIONBIO:
2778 /* All handled in the upper FS layer. */
2779 break;
2780
2781 case FIONREAD:
2782 /* Get the number of bytes that can be read. */
2783 if (file->rtrack) {
2784 *(int *)addr = audio_track_readablebytes(file->rtrack);
2785 } else {
2786 *(int *)addr = 0;
2787 }
2788 break;
2789
2790 case FIOASYNC:
2791 /* Set/Clear ASYNC I/O. */
2792 if (*(int *)addr) {
2793 file->async_audio = curproc->p_pid;
2794 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2795 } else {
2796 file->async_audio = 0;
2797 TRACEF(2, file, "FIOASYNC off");
2798 }
2799 break;
2800
2801 case AUDIO_FLUSH:
2802 /* XXX TODO: clear errors and restart? */
2803 audio_file_clear(sc, file);
2804 break;
2805
2806 case AUDIO_RERROR:
2807 /*
2808 * Number of read bytes dropped. We don't know where
2809 * or when they were dropped (including conversion stage).
2810 * Therefore, the number of accurate bytes or samples is
2811 * also unknown.
2812 */
2813 track = file->rtrack;
2814 if (track) {
2815 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2816 track->dropframes);
2817 }
2818 break;
2819
2820 case AUDIO_PERROR:
2821 /*
2822 * Number of write bytes dropped. We don't know where
2823 * or when they were dropped (including conversion stage).
2824 * Therefore, the number of accurate bytes or samples is
2825 * also unknown.
2826 */
2827 track = file->ptrack;
2828 if (track) {
2829 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2830 track->dropframes);
2831 }
2832 break;
2833
2834 case AUDIO_GETIOFFS:
2835 /* XXX TODO */
2836 ao = (struct audio_offset *)addr;
2837 ao->samples = 0;
2838 ao->deltablks = 0;
2839 ao->offset = 0;
2840 break;
2841
2842 case AUDIO_GETOOFFS:
2843 ao = (struct audio_offset *)addr;
2844 track = file->ptrack;
2845 if (track == NULL) {
2846 ao->samples = 0;
2847 ao->deltablks = 0;
2848 ao->offset = 0;
2849 break;
2850 }
2851 mutex_enter(sc->sc_lock);
2852 mutex_enter(sc->sc_intr_lock);
2853 /* figure out where next DMA will start */
2854 stamp = track->usrbuf_stamp;
2855 offs = track->usrbuf.head;
2856 mutex_exit(sc->sc_intr_lock);
2857 mutex_exit(sc->sc_lock);
2858
2859 ao->samples = stamp;
2860 ao->deltablks = (stamp / track->usrbuf_blksize) -
2861 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2862 track->usrbuf_stamp_last = stamp;
2863 offs = rounddown(offs, track->usrbuf_blksize)
2864 + track->usrbuf_blksize;
2865 if (offs >= track->usrbuf.capacity)
2866 offs -= track->usrbuf.capacity;
2867 ao->offset = offs;
2868
2869 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2870 ao->samples, ao->deltablks, ao->offset);
2871 break;
2872
2873 case AUDIO_WSEEK:
2874 /* XXX return value does not include outbuf one. */
2875 if (file->ptrack)
2876 *(u_long *)addr = file->ptrack->usrbuf.used;
2877 break;
2878
2879 case AUDIO_SETINFO:
2880 error = audio_exlock_enter(sc);
2881 if (error)
2882 break;
2883 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2884 if (error) {
2885 audio_exlock_exit(sc);
2886 break;
2887 }
2888 /* XXX TODO: update last_ai if /dev/sound ? */
2889 if (ISDEVSOUND(dev))
2890 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2891 audio_exlock_exit(sc);
2892 break;
2893
2894 case AUDIO_GETINFO:
2895 error = audio_exlock_enter(sc);
2896 if (error)
2897 break;
2898 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2899 audio_exlock_exit(sc);
2900 break;
2901
2902 case AUDIO_GETBUFINFO:
2903 error = audio_exlock_enter(sc);
2904 if (error)
2905 break;
2906 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2907 audio_exlock_exit(sc);
2908 break;
2909
2910 case AUDIO_DRAIN:
2911 if (file->ptrack) {
2912 mutex_enter(sc->sc_lock);
2913 error = audio_track_drain(sc, file->ptrack);
2914 mutex_exit(sc->sc_lock);
2915 }
2916 break;
2917
2918 case AUDIO_GETDEV:
2919 mutex_enter(sc->sc_lock);
2920 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2921 mutex_exit(sc->sc_lock);
2922 break;
2923
2924 case AUDIO_GETENC:
2925 ae = (audio_encoding_t *)addr;
2926 index = ae->index;
2927 if (index < 0 || index >= __arraycount(audio_encodings)) {
2928 error = EINVAL;
2929 break;
2930 }
2931 *ae = audio_encodings[index];
2932 ae->index = index;
2933 /*
2934 * EMULATED always.
2935 * EMULATED flag at that time used to mean that it could
2936 * not be passed directly to the hardware as-is. But
2937 * currently, all formats including hardware native is not
2938 * passed directly to the hardware. So I set EMULATED
2939 * flag for all formats.
2940 */
2941 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2942 break;
2943
2944 case AUDIO_GETFD:
2945 /*
2946 * Returns the current setting of full duplex mode.
2947 * If HW has full duplex mode and there are two mixers,
2948 * it is full duplex. Otherwise half duplex.
2949 */
2950 error = audio_exlock_enter(sc);
2951 if (error)
2952 break;
2953 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2954 && (sc->sc_pmixer && sc->sc_rmixer);
2955 audio_exlock_exit(sc);
2956 *(int *)addr = fd;
2957 break;
2958
2959 case AUDIO_GETPROPS:
2960 *(int *)addr = sc->sc_props;
2961 break;
2962
2963 case AUDIO_QUERYFORMAT:
2964 query = (audio_format_query_t *)addr;
2965 mutex_enter(sc->sc_lock);
2966 error = sc->hw_if->query_format(sc->hw_hdl, query);
2967 mutex_exit(sc->sc_lock);
2968 /* Hide internal infomations */
2969 query->fmt.driver_data = NULL;
2970 break;
2971
2972 case AUDIO_GETFORMAT:
2973 error = audio_exlock_enter(sc);
2974 if (error)
2975 break;
2976 audio_mixers_get_format(sc, (struct audio_info *)addr);
2977 audio_exlock_exit(sc);
2978 break;
2979
2980 case AUDIO_SETFORMAT:
2981 error = audio_exlock_enter(sc);
2982 audio_mixers_get_format(sc, &ai);
2983 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2984 if (error) {
2985 /* Rollback */
2986 audio_mixers_set_format(sc, &ai);
2987 }
2988 audio_exlock_exit(sc);
2989 break;
2990
2991 case AUDIO_SETFD:
2992 case AUDIO_SETCHAN:
2993 case AUDIO_GETCHAN:
2994 /* Obsoleted */
2995 break;
2996
2997 default:
2998 if (sc->hw_if->dev_ioctl) {
2999 mutex_enter(sc->sc_lock);
3000 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3001 cmd, addr, flag, l);
3002 mutex_exit(sc->sc_lock);
3003 } else {
3004 TRACEF(2, file, "unknown ioctl");
3005 error = EINVAL;
3006 }
3007 break;
3008 }
3009 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
3010 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
3011 error);
3012 return error;
3013 }
3014
3015 /*
3016 * Returns the number of bytes that can be read on recording buffer.
3017 */
3018 static __inline int
3019 audio_track_readablebytes(const audio_track_t *track)
3020 {
3021 int bytes;
3022
3023 KASSERT(track);
3024 KASSERT(track->mode == AUMODE_RECORD);
3025
3026 /*
3027 * Although usrbuf is primarily readable data, recorded data
3028 * also stays in track->input until reading. So it is necessary
3029 * to add it. track->input is in frame, usrbuf is in byte.
3030 */
3031 bytes = track->usrbuf.used +
3032 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3033 return bytes;
3034 }
3035
3036 /*
3037 * Must be called without sc_lock nor sc_exlock held.
3038 */
3039 int
3040 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3041 audio_file_t *file)
3042 {
3043 audio_track_t *track;
3044 int revents;
3045 bool in_is_valid;
3046 bool out_is_valid;
3047
3048 #if defined(AUDIO_DEBUG)
3049 #define POLLEV_BITMAP "\177\020" \
3050 "b\10WRBAND\0" \
3051 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3052 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3053 char evbuf[64];
3054 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3055 TRACEF(2, file, "pid=%d.%d events=%s",
3056 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3057 #endif
3058
3059 revents = 0;
3060 in_is_valid = false;
3061 out_is_valid = false;
3062 if (events & (POLLIN | POLLRDNORM)) {
3063 track = file->rtrack;
3064 if (track) {
3065 int used;
3066 in_is_valid = true;
3067 used = audio_track_readablebytes(track);
3068 if (used > 0)
3069 revents |= events & (POLLIN | POLLRDNORM);
3070 }
3071 }
3072 if (events & (POLLOUT | POLLWRNORM)) {
3073 track = file->ptrack;
3074 if (track) {
3075 out_is_valid = true;
3076 if (track->usrbuf.used <= track->usrbuf_usedlow)
3077 revents |= events & (POLLOUT | POLLWRNORM);
3078 }
3079 }
3080
3081 if (revents == 0) {
3082 mutex_enter(sc->sc_lock);
3083 if (in_is_valid) {
3084 TRACEF(3, file, "selrecord rsel");
3085 selrecord(l, &sc->sc_rsel);
3086 }
3087 if (out_is_valid) {
3088 TRACEF(3, file, "selrecord wsel");
3089 selrecord(l, &sc->sc_wsel);
3090 }
3091 mutex_exit(sc->sc_lock);
3092 }
3093
3094 #if defined(AUDIO_DEBUG)
3095 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3096 TRACEF(2, file, "revents=%s", evbuf);
3097 #endif
3098 return revents;
3099 }
3100
3101 static const struct filterops audioread_filtops = {
3102 .f_isfd = 1,
3103 .f_attach = NULL,
3104 .f_detach = filt_audioread_detach,
3105 .f_event = filt_audioread_event,
3106 };
3107
3108 static void
3109 filt_audioread_detach(struct knote *kn)
3110 {
3111 struct audio_softc *sc;
3112 audio_file_t *file;
3113
3114 file = kn->kn_hook;
3115 sc = file->sc;
3116 TRACEF(3, file, "");
3117
3118 mutex_enter(sc->sc_lock);
3119 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
3120 mutex_exit(sc->sc_lock);
3121 }
3122
3123 static int
3124 filt_audioread_event(struct knote *kn, long hint)
3125 {
3126 audio_file_t *file;
3127 audio_track_t *track;
3128
3129 file = kn->kn_hook;
3130 track = file->rtrack;
3131
3132 /*
3133 * kn_data must contain the number of bytes can be read.
3134 * The return value indicates whether the event occurs or not.
3135 */
3136
3137 if (track == NULL) {
3138 /* can not read with this descriptor. */
3139 kn->kn_data = 0;
3140 return 0;
3141 }
3142
3143 kn->kn_data = audio_track_readablebytes(track);
3144 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3145 return kn->kn_data > 0;
3146 }
3147
3148 static const struct filterops audiowrite_filtops = {
3149 .f_isfd = 1,
3150 .f_attach = NULL,
3151 .f_detach = filt_audiowrite_detach,
3152 .f_event = filt_audiowrite_event,
3153 };
3154
3155 static void
3156 filt_audiowrite_detach(struct knote *kn)
3157 {
3158 struct audio_softc *sc;
3159 audio_file_t *file;
3160
3161 file = kn->kn_hook;
3162 sc = file->sc;
3163 TRACEF(3, file, "");
3164
3165 mutex_enter(sc->sc_lock);
3166 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
3167 mutex_exit(sc->sc_lock);
3168 }
3169
3170 static int
3171 filt_audiowrite_event(struct knote *kn, long hint)
3172 {
3173 audio_file_t *file;
3174 audio_track_t *track;
3175
3176 file = kn->kn_hook;
3177 track = file->ptrack;
3178
3179 /*
3180 * kn_data must contain the number of bytes can be write.
3181 * The return value indicates whether the event occurs or not.
3182 */
3183
3184 if (track == NULL) {
3185 /* can not write with this descriptor. */
3186 kn->kn_data = 0;
3187 return 0;
3188 }
3189
3190 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3191 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3192 return (track->usrbuf.used < track->usrbuf_usedlow);
3193 }
3194
3195 /*
3196 * Must be called without sc_lock nor sc_exlock held.
3197 */
3198 int
3199 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3200 {
3201 struct klist *klist;
3202
3203 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3204
3205 mutex_enter(sc->sc_lock);
3206 switch (kn->kn_filter) {
3207 case EVFILT_READ:
3208 klist = &sc->sc_rsel.sel_klist;
3209 kn->kn_fop = &audioread_filtops;
3210 break;
3211
3212 case EVFILT_WRITE:
3213 klist = &sc->sc_wsel.sel_klist;
3214 kn->kn_fop = &audiowrite_filtops;
3215 break;
3216
3217 default:
3218 mutex_exit(sc->sc_lock);
3219 return EINVAL;
3220 }
3221
3222 kn->kn_hook = file;
3223
3224 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3225 mutex_exit(sc->sc_lock);
3226
3227 return 0;
3228 }
3229
3230 /*
3231 * Must be called without sc_lock nor sc_exlock held.
3232 */
3233 int
3234 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3235 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3236 audio_file_t *file)
3237 {
3238 audio_track_t *track;
3239 vsize_t vsize;
3240 int error;
3241
3242 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3243
3244 if (*offp < 0)
3245 return EINVAL;
3246
3247 #if 0
3248 /* XXX
3249 * The idea here was to use the protection to determine if
3250 * we are mapping the read or write buffer, but it fails.
3251 * The VM system is broken in (at least) two ways.
3252 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3253 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3254 * has to be used for mmapping the play buffer.
3255 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3256 * audio_mmap will get called at some point with VM_PROT_READ
3257 * only.
3258 * So, alas, we always map the play buffer for now.
3259 */
3260 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3261 prot == VM_PROT_WRITE)
3262 track = file->ptrack;
3263 else if (prot == VM_PROT_READ)
3264 track = file->rtrack;
3265 else
3266 return EINVAL;
3267 #else
3268 track = file->ptrack;
3269 #endif
3270 if (track == NULL)
3271 return EACCES;
3272
3273 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3274 if (len > vsize)
3275 return EOVERFLOW;
3276 if (*offp > (uint)(vsize - len))
3277 return EOVERFLOW;
3278
3279 /* XXX TODO: what happens when mmap twice. */
3280 if (!track->mmapped) {
3281 track->mmapped = true;
3282
3283 if (!track->is_pause) {
3284 error = audio_exlock_mutex_enter(sc);
3285 if (error)
3286 return error;
3287 if (sc->sc_pbusy == false)
3288 audio_pmixer_start(sc, true);
3289 audio_exlock_mutex_exit(sc);
3290 }
3291 /* XXX mmapping record buffer is not supported */
3292 }
3293
3294 /* get ringbuffer */
3295 *uobjp = track->uobj;
3296
3297 /* Acquire a reference for the mmap. munmap will release. */
3298 uao_reference(*uobjp);
3299 *maxprotp = prot;
3300 *advicep = UVM_ADV_RANDOM;
3301 *flagsp = MAP_SHARED;
3302 return 0;
3303 }
3304
3305 /*
3306 * /dev/audioctl has to be able to open at any time without interference
3307 * with any /dev/audio or /dev/sound.
3308 * Must be called with sc_exlock held and without sc_lock held.
3309 */
3310 static int
3311 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3312 struct lwp *l)
3313 {
3314 struct file *fp;
3315 audio_file_t *af;
3316 int fd;
3317 int error;
3318
3319 KASSERT(sc->sc_exlock);
3320
3321 TRACE(1, "");
3322
3323 error = fd_allocfile(&fp, &fd);
3324 if (error)
3325 return error;
3326
3327 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3328 af->sc = sc;
3329 af->dev = dev;
3330
3331 /* Not necessary to insert sc_files. */
3332
3333 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3334 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3335
3336 return error;
3337 }
3338
3339 /*
3340 * Free 'mem' if available, and initialize the pointer.
3341 * For this reason, this is implemented as macro.
3342 */
3343 #define audio_free(mem) do { \
3344 if (mem != NULL) { \
3345 kern_free(mem); \
3346 mem = NULL; \
3347 } \
3348 } while (0)
3349
3350 /*
3351 * (Re)allocate 'memblock' with specified 'bytes'.
3352 * bytes must not be 0.
3353 * This function never returns NULL.
3354 */
3355 static void *
3356 audio_realloc(void *memblock, size_t bytes)
3357 {
3358
3359 KASSERT(bytes != 0);
3360 audio_free(memblock);
3361 return kern_malloc(bytes, M_WAITOK);
3362 }
3363
3364 /*
3365 * (Re)allocate usrbuf with 'newbufsize' bytes.
3366 * Use this function for usrbuf because only usrbuf can be mmapped.
3367 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3368 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3369 * and returns errno.
3370 * It must be called before updating usrbuf.capacity.
3371 */
3372 static int
3373 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3374 {
3375 struct audio_softc *sc;
3376 vaddr_t vstart;
3377 vsize_t oldvsize;
3378 vsize_t newvsize;
3379 int error;
3380
3381 KASSERT(newbufsize > 0);
3382 sc = track->mixer->sc;
3383
3384 /* Get a nonzero multiple of PAGE_SIZE */
3385 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3386
3387 if (track->usrbuf.mem != NULL) {
3388 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3389 PAGE_SIZE);
3390 if (oldvsize == newvsize) {
3391 track->usrbuf.capacity = newbufsize;
3392 return 0;
3393 }
3394 vstart = (vaddr_t)track->usrbuf.mem;
3395 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3396 /* uvm_unmap also detach uobj */
3397 track->uobj = NULL; /* paranoia */
3398 track->usrbuf.mem = NULL;
3399 }
3400
3401 /* Create a uvm anonymous object */
3402 track->uobj = uao_create(newvsize, 0);
3403
3404 /* Map it into the kernel virtual address space */
3405 vstart = 0;
3406 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3407 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3408 UVM_ADV_RANDOM, 0));
3409 if (error) {
3410 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3411 uao_detach(track->uobj); /* release reference */
3412 goto abort;
3413 }
3414
3415 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3416 false, 0);
3417 if (error) {
3418 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3419 error);
3420 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3421 /* uvm_unmap also detach uobj */
3422 goto abort;
3423 }
3424
3425 track->usrbuf.mem = (void *)vstart;
3426 track->usrbuf.capacity = newbufsize;
3427 memset(track->usrbuf.mem, 0, newvsize);
3428 return 0;
3429
3430 /* failure */
3431 abort:
3432 track->uobj = NULL; /* paranoia */
3433 track->usrbuf.mem = NULL;
3434 track->usrbuf.capacity = 0;
3435 return error;
3436 }
3437
3438 /*
3439 * Free usrbuf (if available).
3440 */
3441 static void
3442 audio_free_usrbuf(audio_track_t *track)
3443 {
3444 vaddr_t vstart;
3445 vsize_t vsize;
3446
3447 vstart = (vaddr_t)track->usrbuf.mem;
3448 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3449 if (track->usrbuf.mem != NULL) {
3450 /*
3451 * Unmap the kernel mapping. uvm_unmap releases the
3452 * reference to the uvm object, and this should be the
3453 * last virtual mapping of the uvm object, so no need
3454 * to explicitly release (`detach') the object.
3455 */
3456 uvm_unmap(kernel_map, vstart, vstart + vsize);
3457
3458 track->uobj = NULL;
3459 track->usrbuf.mem = NULL;
3460 track->usrbuf.capacity = 0;
3461 }
3462 }
3463
3464 /*
3465 * This filter changes the volume for each channel.
3466 * arg->context points track->ch_volume[].
3467 */
3468 static void
3469 audio_track_chvol(audio_filter_arg_t *arg)
3470 {
3471 int16_t *ch_volume;
3472 const aint_t *s;
3473 aint_t *d;
3474 u_int i;
3475 u_int ch;
3476 u_int channels;
3477
3478 DIAGNOSTIC_filter_arg(arg);
3479 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3480 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3481 arg->srcfmt->channels, arg->dstfmt->channels);
3482 KASSERT(arg->context != NULL);
3483 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3484 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3485
3486 s = arg->src;
3487 d = arg->dst;
3488 ch_volume = arg->context;
3489
3490 channels = arg->srcfmt->channels;
3491 for (i = 0; i < arg->count; i++) {
3492 for (ch = 0; ch < channels; ch++) {
3493 aint2_t val;
3494 val = *s++;
3495 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3496 *d++ = (aint_t)val;
3497 }
3498 }
3499 }
3500
3501 /*
3502 * This filter performs conversion from stereo (or more channels) to mono.
3503 */
3504 static void
3505 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3506 {
3507 const aint_t *s;
3508 aint_t *d;
3509 u_int i;
3510
3511 DIAGNOSTIC_filter_arg(arg);
3512
3513 s = arg->src;
3514 d = arg->dst;
3515
3516 for (i = 0; i < arg->count; i++) {
3517 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3518 s += arg->srcfmt->channels;
3519 }
3520 }
3521
3522 /*
3523 * This filter performs conversion from mono to stereo (or more channels).
3524 */
3525 static void
3526 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3527 {
3528 const aint_t *s;
3529 aint_t *d;
3530 u_int i;
3531 u_int ch;
3532 u_int dstchannels;
3533
3534 DIAGNOSTIC_filter_arg(arg);
3535
3536 s = arg->src;
3537 d = arg->dst;
3538 dstchannels = arg->dstfmt->channels;
3539
3540 for (i = 0; i < arg->count; i++) {
3541 d[0] = s[0];
3542 d[1] = s[0];
3543 s++;
3544 d += dstchannels;
3545 }
3546 if (dstchannels > 2) {
3547 d = arg->dst;
3548 for (i = 0; i < arg->count; i++) {
3549 for (ch = 2; ch < dstchannels; ch++) {
3550 d[ch] = 0;
3551 }
3552 d += dstchannels;
3553 }
3554 }
3555 }
3556
3557 /*
3558 * This filter shrinks M channels into N channels.
3559 * Extra channels are discarded.
3560 */
3561 static void
3562 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3563 {
3564 const aint_t *s;
3565 aint_t *d;
3566 u_int i;
3567 u_int ch;
3568
3569 DIAGNOSTIC_filter_arg(arg);
3570
3571 s = arg->src;
3572 d = arg->dst;
3573
3574 for (i = 0; i < arg->count; i++) {
3575 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3576 *d++ = s[ch];
3577 }
3578 s += arg->srcfmt->channels;
3579 }
3580 }
3581
3582 /*
3583 * This filter expands M channels into N channels.
3584 * Silence is inserted for missing channels.
3585 */
3586 static void
3587 audio_track_chmix_expand(audio_filter_arg_t *arg)
3588 {
3589 const aint_t *s;
3590 aint_t *d;
3591 u_int i;
3592 u_int ch;
3593 u_int srcchannels;
3594 u_int dstchannels;
3595
3596 DIAGNOSTIC_filter_arg(arg);
3597
3598 s = arg->src;
3599 d = arg->dst;
3600
3601 srcchannels = arg->srcfmt->channels;
3602 dstchannels = arg->dstfmt->channels;
3603 for (i = 0; i < arg->count; i++) {
3604 for (ch = 0; ch < srcchannels; ch++) {
3605 *d++ = *s++;
3606 }
3607 for (; ch < dstchannels; ch++) {
3608 *d++ = 0;
3609 }
3610 }
3611 }
3612
3613 /*
3614 * This filter performs frequency conversion (up sampling).
3615 * It uses linear interpolation.
3616 */
3617 static void
3618 audio_track_freq_up(audio_filter_arg_t *arg)
3619 {
3620 audio_track_t *track;
3621 audio_ring_t *src;
3622 audio_ring_t *dst;
3623 const aint_t *s;
3624 aint_t *d;
3625 aint_t prev[AUDIO_MAX_CHANNELS];
3626 aint_t curr[AUDIO_MAX_CHANNELS];
3627 aint_t grad[AUDIO_MAX_CHANNELS];
3628 u_int i;
3629 u_int t;
3630 u_int step;
3631 u_int channels;
3632 u_int ch;
3633 int srcused;
3634
3635 track = arg->context;
3636 KASSERT(track);
3637 src = &track->freq.srcbuf;
3638 dst = track->freq.dst;
3639 DIAGNOSTIC_ring(dst);
3640 DIAGNOSTIC_ring(src);
3641 KASSERT(src->used > 0);
3642 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3643 "src->fmt.channels=%d dst->fmt.channels=%d",
3644 src->fmt.channels, dst->fmt.channels);
3645 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3646 "src->head=%d track->mixer->frames_per_block=%d",
3647 src->head, track->mixer->frames_per_block);
3648
3649 s = arg->src;
3650 d = arg->dst;
3651
3652 /*
3653 * In order to faciliate interpolation for each block, slide (delay)
3654 * input by one sample. As a result, strictly speaking, the output
3655 * phase is delayed by 1/dstfreq. However, I believe there is no
3656 * observable impact.
3657 *
3658 * Example)
3659 * srcfreq:dstfreq = 1:3
3660 *
3661 * A - -
3662 * |
3663 * |
3664 * | B - -
3665 * +-----+-----> input timeframe
3666 * 0 1
3667 *
3668 * 0 1
3669 * +-----+-----> input timeframe
3670 * | A
3671 * | x x
3672 * | x x
3673 * x (B)
3674 * +-+-+-+-+-+-> output timeframe
3675 * 0 1 2 3 4 5
3676 */
3677
3678 /* Last samples in previous block */
3679 channels = src->fmt.channels;
3680 for (ch = 0; ch < channels; ch++) {
3681 prev[ch] = track->freq_prev[ch];
3682 curr[ch] = track->freq_curr[ch];
3683 grad[ch] = curr[ch] - prev[ch];
3684 }
3685
3686 step = track->freq_step;
3687 t = track->freq_current;
3688 //#define FREQ_DEBUG
3689 #if defined(FREQ_DEBUG)
3690 #define PRINTF(fmt...) printf(fmt)
3691 #else
3692 #define PRINTF(fmt...) do { } while (0)
3693 #endif
3694 srcused = src->used;
3695 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3696 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3697 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3698 PRINTF(" t=%d\n", t);
3699
3700 for (i = 0; i < arg->count; i++) {
3701 PRINTF("i=%d t=%5d", i, t);
3702 if (t >= 65536) {
3703 for (ch = 0; ch < channels; ch++) {
3704 prev[ch] = curr[ch];
3705 curr[ch] = *s++;
3706 grad[ch] = curr[ch] - prev[ch];
3707 }
3708 PRINTF(" prev=%d s[%d]=%d",
3709 prev[0], src->used - srcused, curr[0]);
3710
3711 /* Update */
3712 t -= 65536;
3713 srcused--;
3714 if (srcused < 0) {
3715 PRINTF(" break\n");
3716 break;
3717 }
3718 }
3719
3720 for (ch = 0; ch < channels; ch++) {
3721 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3722 #if defined(FREQ_DEBUG)
3723 if (ch == 0)
3724 printf(" t=%5d *d=%d", t, d[-1]);
3725 #endif
3726 }
3727 t += step;
3728
3729 PRINTF("\n");
3730 }
3731 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3732
3733 auring_take(src, src->used);
3734 auring_push(dst, i);
3735
3736 /* Adjust */
3737 t += track->freq_leap;
3738
3739 track->freq_current = t;
3740 for (ch = 0; ch < channels; ch++) {
3741 track->freq_prev[ch] = prev[ch];
3742 track->freq_curr[ch] = curr[ch];
3743 }
3744 }
3745
3746 /*
3747 * This filter performs frequency conversion (down sampling).
3748 * It uses simple thinning.
3749 */
3750 static void
3751 audio_track_freq_down(audio_filter_arg_t *arg)
3752 {
3753 audio_track_t *track;
3754 audio_ring_t *src;
3755 audio_ring_t *dst;
3756 const aint_t *s0;
3757 aint_t *d;
3758 u_int i;
3759 u_int t;
3760 u_int step;
3761 u_int ch;
3762 u_int channels;
3763
3764 track = arg->context;
3765 KASSERT(track);
3766 src = &track->freq.srcbuf;
3767 dst = track->freq.dst;
3768
3769 DIAGNOSTIC_ring(dst);
3770 DIAGNOSTIC_ring(src);
3771 KASSERT(src->used > 0);
3772 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3773 "src->fmt.channels=%d dst->fmt.channels=%d",
3774 src->fmt.channels, dst->fmt.channels);
3775 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3776 "src->head=%d track->mixer->frames_per_block=%d",
3777 src->head, track->mixer->frames_per_block);
3778
3779 s0 = arg->src;
3780 d = arg->dst;
3781 t = track->freq_current;
3782 step = track->freq_step;
3783 channels = dst->fmt.channels;
3784 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3785 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3786 PRINTF(" t=%d\n", t);
3787
3788 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3789 const aint_t *s;
3790 PRINTF("i=%4d t=%10d", i, t);
3791 s = s0 + (t / 65536) * channels;
3792 PRINTF(" s=%5ld", (s - s0) / channels);
3793 for (ch = 0; ch < channels; ch++) {
3794 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3795 *d++ = s[ch];
3796 }
3797 PRINTF("\n");
3798 t += step;
3799 }
3800 t += track->freq_leap;
3801 PRINTF("end t=%d\n", t);
3802 auring_take(src, src->used);
3803 auring_push(dst, i);
3804 track->freq_current = t % 65536;
3805 }
3806
3807 /*
3808 * Creates track and returns it.
3809 * Must be called without sc_lock held.
3810 */
3811 audio_track_t *
3812 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3813 {
3814 audio_track_t *track;
3815 static int newid = 0;
3816
3817 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3818
3819 track->id = newid++;
3820 track->mixer = mixer;
3821 track->mode = mixer->mode;
3822
3823 /* Do TRACE after id is assigned. */
3824 TRACET(3, track, "for %s",
3825 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3826
3827 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3828 track->volume = 256;
3829 #endif
3830 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3831 track->ch_volume[i] = 256;
3832 }
3833
3834 return track;
3835 }
3836
3837 /*
3838 * Release all resources of the track and track itself.
3839 * track must not be NULL. Don't specify the track within the file
3840 * structure linked from sc->sc_files.
3841 */
3842 static void
3843 audio_track_destroy(audio_track_t *track)
3844 {
3845
3846 KASSERT(track);
3847
3848 audio_free_usrbuf(track);
3849 audio_free(track->codec.srcbuf.mem);
3850 audio_free(track->chvol.srcbuf.mem);
3851 audio_free(track->chmix.srcbuf.mem);
3852 audio_free(track->freq.srcbuf.mem);
3853 audio_free(track->outbuf.mem);
3854
3855 kmem_free(track, sizeof(*track));
3856 }
3857
3858 /*
3859 * It returns encoding conversion filter according to src and dst format.
3860 * If it is not a convertible pair, it returns NULL. Either src or dst
3861 * must be internal format.
3862 */
3863 static audio_filter_t
3864 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3865 const audio_format2_t *dst)
3866 {
3867
3868 if (audio_format2_is_internal(src)) {
3869 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3870 return audio_internal_to_mulaw;
3871 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3872 return audio_internal_to_alaw;
3873 } else if (audio_format2_is_linear(dst)) {
3874 switch (dst->stride) {
3875 case 8:
3876 return audio_internal_to_linear8;
3877 case 16:
3878 return audio_internal_to_linear16;
3879 #if defined(AUDIO_SUPPORT_LINEAR24)
3880 case 24:
3881 return audio_internal_to_linear24;
3882 #endif
3883 case 32:
3884 return audio_internal_to_linear32;
3885 default:
3886 TRACET(1, track, "unsupported %s stride %d",
3887 "dst", dst->stride);
3888 goto abort;
3889 }
3890 }
3891 } else if (audio_format2_is_internal(dst)) {
3892 if (src->encoding == AUDIO_ENCODING_ULAW) {
3893 return audio_mulaw_to_internal;
3894 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3895 return audio_alaw_to_internal;
3896 } else if (audio_format2_is_linear(src)) {
3897 switch (src->stride) {
3898 case 8:
3899 return audio_linear8_to_internal;
3900 case 16:
3901 return audio_linear16_to_internal;
3902 #if defined(AUDIO_SUPPORT_LINEAR24)
3903 case 24:
3904 return audio_linear24_to_internal;
3905 #endif
3906 case 32:
3907 return audio_linear32_to_internal;
3908 default:
3909 TRACET(1, track, "unsupported %s stride %d",
3910 "src", src->stride);
3911 goto abort;
3912 }
3913 }
3914 }
3915
3916 TRACET(1, track, "unsupported encoding");
3917 abort:
3918 #if defined(AUDIO_DEBUG)
3919 if (audiodebug >= 2) {
3920 char buf[100];
3921 audio_format2_tostr(buf, sizeof(buf), src);
3922 TRACET(2, track, "src %s", buf);
3923 audio_format2_tostr(buf, sizeof(buf), dst);
3924 TRACET(2, track, "dst %s", buf);
3925 }
3926 #endif
3927 return NULL;
3928 }
3929
3930 /*
3931 * Initialize the codec stage of this track as necessary.
3932 * If successful, it initializes the codec stage as necessary, stores updated
3933 * last_dst in *last_dstp in any case, and returns 0.
3934 * Otherwise, it returns errno without modifying *last_dstp.
3935 */
3936 static int
3937 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3938 {
3939 audio_ring_t *last_dst;
3940 audio_ring_t *srcbuf;
3941 audio_format2_t *srcfmt;
3942 audio_format2_t *dstfmt;
3943 audio_filter_arg_t *arg;
3944 u_int len;
3945 int error;
3946
3947 KASSERT(track);
3948
3949 last_dst = *last_dstp;
3950 dstfmt = &last_dst->fmt;
3951 srcfmt = &track->inputfmt;
3952 srcbuf = &track->codec.srcbuf;
3953 error = 0;
3954
3955 if (srcfmt->encoding != dstfmt->encoding
3956 || srcfmt->precision != dstfmt->precision
3957 || srcfmt->stride != dstfmt->stride) {
3958 track->codec.dst = last_dst;
3959
3960 srcbuf->fmt = *dstfmt;
3961 srcbuf->fmt.encoding = srcfmt->encoding;
3962 srcbuf->fmt.precision = srcfmt->precision;
3963 srcbuf->fmt.stride = srcfmt->stride;
3964
3965 track->codec.filter = audio_track_get_codec(track,
3966 &srcbuf->fmt, dstfmt);
3967 if (track->codec.filter == NULL) {
3968 error = EINVAL;
3969 goto abort;
3970 }
3971
3972 srcbuf->head = 0;
3973 srcbuf->used = 0;
3974 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3975 len = auring_bytelen(srcbuf);
3976 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3977
3978 arg = &track->codec.arg;
3979 arg->srcfmt = &srcbuf->fmt;
3980 arg->dstfmt = dstfmt;
3981 arg->context = NULL;
3982
3983 *last_dstp = srcbuf;
3984 return 0;
3985 }
3986
3987 abort:
3988 track->codec.filter = NULL;
3989 audio_free(srcbuf->mem);
3990 return error;
3991 }
3992
3993 /*
3994 * Initialize the chvol stage of this track as necessary.
3995 * If successful, it initializes the chvol stage as necessary, stores updated
3996 * last_dst in *last_dstp in any case, and returns 0.
3997 * Otherwise, it returns errno without modifying *last_dstp.
3998 */
3999 static int
4000 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4001 {
4002 audio_ring_t *last_dst;
4003 audio_ring_t *srcbuf;
4004 audio_format2_t *srcfmt;
4005 audio_format2_t *dstfmt;
4006 audio_filter_arg_t *arg;
4007 u_int len;
4008 int error;
4009
4010 KASSERT(track);
4011
4012 last_dst = *last_dstp;
4013 dstfmt = &last_dst->fmt;
4014 srcfmt = &track->inputfmt;
4015 srcbuf = &track->chvol.srcbuf;
4016 error = 0;
4017
4018 /* Check whether channel volume conversion is necessary. */
4019 bool use_chvol = false;
4020 for (int ch = 0; ch < srcfmt->channels; ch++) {
4021 if (track->ch_volume[ch] != 256) {
4022 use_chvol = true;
4023 break;
4024 }
4025 }
4026
4027 if (use_chvol == true) {
4028 track->chvol.dst = last_dst;
4029 track->chvol.filter = audio_track_chvol;
4030
4031 srcbuf->fmt = *dstfmt;
4032 /* no format conversion occurs */
4033
4034 srcbuf->head = 0;
4035 srcbuf->used = 0;
4036 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4037 len = auring_bytelen(srcbuf);
4038 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4039
4040 arg = &track->chvol.arg;
4041 arg->srcfmt = &srcbuf->fmt;
4042 arg->dstfmt = dstfmt;
4043 arg->context = track->ch_volume;
4044
4045 *last_dstp = srcbuf;
4046 return 0;
4047 }
4048
4049 track->chvol.filter = NULL;
4050 audio_free(srcbuf->mem);
4051 return error;
4052 }
4053
4054 /*
4055 * Initialize the chmix stage of this track as necessary.
4056 * If successful, it initializes the chmix stage as necessary, stores updated
4057 * last_dst in *last_dstp in any case, and returns 0.
4058 * Otherwise, it returns errno without modifying *last_dstp.
4059 */
4060 static int
4061 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4062 {
4063 audio_ring_t *last_dst;
4064 audio_ring_t *srcbuf;
4065 audio_format2_t *srcfmt;
4066 audio_format2_t *dstfmt;
4067 audio_filter_arg_t *arg;
4068 u_int srcch;
4069 u_int dstch;
4070 u_int len;
4071 int error;
4072
4073 KASSERT(track);
4074
4075 last_dst = *last_dstp;
4076 dstfmt = &last_dst->fmt;
4077 srcfmt = &track->inputfmt;
4078 srcbuf = &track->chmix.srcbuf;
4079 error = 0;
4080
4081 srcch = srcfmt->channels;
4082 dstch = dstfmt->channels;
4083 if (srcch != dstch) {
4084 track->chmix.dst = last_dst;
4085
4086 if (srcch >= 2 && dstch == 1) {
4087 track->chmix.filter = audio_track_chmix_mixLR;
4088 } else if (srcch == 1 && dstch >= 2) {
4089 track->chmix.filter = audio_track_chmix_dupLR;
4090 } else if (srcch > dstch) {
4091 track->chmix.filter = audio_track_chmix_shrink;
4092 } else {
4093 track->chmix.filter = audio_track_chmix_expand;
4094 }
4095
4096 srcbuf->fmt = *dstfmt;
4097 srcbuf->fmt.channels = srcch;
4098
4099 srcbuf->head = 0;
4100 srcbuf->used = 0;
4101 /* XXX The buffer size should be able to calculate. */
4102 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4103 len = auring_bytelen(srcbuf);
4104 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4105
4106 arg = &track->chmix.arg;
4107 arg->srcfmt = &srcbuf->fmt;
4108 arg->dstfmt = dstfmt;
4109 arg->context = NULL;
4110
4111 *last_dstp = srcbuf;
4112 return 0;
4113 }
4114
4115 track->chmix.filter = NULL;
4116 audio_free(srcbuf->mem);
4117 return error;
4118 }
4119
4120 /*
4121 * Initialize the freq stage of this track as necessary.
4122 * If successful, it initializes the freq stage as necessary, stores updated
4123 * last_dst in *last_dstp in any case, and returns 0.
4124 * Otherwise, it returns errno without modifying *last_dstp.
4125 */
4126 static int
4127 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4128 {
4129 audio_ring_t *last_dst;
4130 audio_ring_t *srcbuf;
4131 audio_format2_t *srcfmt;
4132 audio_format2_t *dstfmt;
4133 audio_filter_arg_t *arg;
4134 uint32_t srcfreq;
4135 uint32_t dstfreq;
4136 u_int dst_capacity;
4137 u_int mod;
4138 u_int len;
4139 int error;
4140
4141 KASSERT(track);
4142
4143 last_dst = *last_dstp;
4144 dstfmt = &last_dst->fmt;
4145 srcfmt = &track->inputfmt;
4146 srcbuf = &track->freq.srcbuf;
4147 error = 0;
4148
4149 srcfreq = srcfmt->sample_rate;
4150 dstfreq = dstfmt->sample_rate;
4151 if (srcfreq != dstfreq) {
4152 track->freq.dst = last_dst;
4153
4154 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4155 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4156
4157 /* freq_step is the ratio of src/dst when let dst 65536. */
4158 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4159
4160 dst_capacity = frame_per_block(track->mixer, dstfmt);
4161 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4162 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4163
4164 if (track->freq_step < 65536) {
4165 track->freq.filter = audio_track_freq_up;
4166 /* In order to carry at the first time. */
4167 track->freq_current = 65536;
4168 } else {
4169 track->freq.filter = audio_track_freq_down;
4170 track->freq_current = 0;
4171 }
4172
4173 srcbuf->fmt = *dstfmt;
4174 srcbuf->fmt.sample_rate = srcfreq;
4175
4176 srcbuf->head = 0;
4177 srcbuf->used = 0;
4178 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4179 len = auring_bytelen(srcbuf);
4180 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4181
4182 arg = &track->freq.arg;
4183 arg->srcfmt = &srcbuf->fmt;
4184 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4185 arg->context = track;
4186
4187 *last_dstp = srcbuf;
4188 return 0;
4189 }
4190
4191 track->freq.filter = NULL;
4192 audio_free(srcbuf->mem);
4193 return error;
4194 }
4195
4196 /*
4197 * When playing back: (e.g. if codec and freq stage are valid)
4198 *
4199 * write
4200 * | uiomove
4201 * v
4202 * usrbuf [...............] byte ring buffer (mmap-able)
4203 * | memcpy
4204 * v
4205 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4206 * .dst ----+
4207 * | convert
4208 * v
4209 * freq.srcbuf [....] 1 block (ring) buffer
4210 * .dst ----+
4211 * | convert
4212 * v
4213 * outbuf [...............] NBLKOUT blocks ring buffer
4214 *
4215 *
4216 * When recording:
4217 *
4218 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4219 * .dst ----+
4220 * | convert
4221 * v
4222 * codec.srcbuf[.....] 1 block (ring) buffer
4223 * .dst ----+
4224 * | convert
4225 * v
4226 * outbuf [.....] 1 block (ring) buffer
4227 * | memcpy
4228 * v
4229 * usrbuf [...............] byte ring buffer (mmap-able *)
4230 * | uiomove
4231 * v
4232 * read
4233 *
4234 * *: usrbuf for recording is also mmap-able due to symmetry with
4235 * playback buffer, but for now mmap will never happen for recording.
4236 */
4237
4238 /*
4239 * Set the userland format of this track.
4240 * usrfmt argument should be parameter verified with audio_check_params().
4241 * It will release and reallocate all internal conversion buffers.
4242 * It returns 0 if successful. Otherwise it returns errno with clearing all
4243 * internal buffers.
4244 * It must be called without sc_intr_lock since uvm_* routines require non
4245 * intr_lock state.
4246 * It must be called with track lock held since it may release and reallocate
4247 * outbuf.
4248 */
4249 static int
4250 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4251 {
4252 struct audio_softc *sc;
4253 u_int newbufsize;
4254 u_int oldblksize;
4255 u_int len;
4256 int error;
4257
4258 KASSERT(track);
4259 sc = track->mixer->sc;
4260
4261 /* usrbuf is the closest buffer to the userland. */
4262 track->usrbuf.fmt = *usrfmt;
4263
4264 /*
4265 * For references, one block size (in 40msec) is:
4266 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4267 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4268 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4269 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4270 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4271 *
4272 * For example,
4273 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4274 * newbufsize = rounddown(65536 / 7056) = 63504
4275 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4276 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4277 *
4278 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4279 * newbufsize = rounddown(65536 / 7680) = 61440
4280 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4281 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4282 */
4283 oldblksize = track->usrbuf_blksize;
4284 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4285 frame_per_block(track->mixer, &track->usrbuf.fmt));
4286 track->usrbuf.head = 0;
4287 track->usrbuf.used = 0;
4288 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4289 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4290 error = audio_realloc_usrbuf(track, newbufsize);
4291 if (error) {
4292 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4293 newbufsize);
4294 goto error;
4295 }
4296
4297 /* Recalc water mark. */
4298 if (track->usrbuf_blksize != oldblksize) {
4299 if (audio_track_is_playback(track)) {
4300 /* Set high at 100%, low at 75%. */
4301 track->usrbuf_usedhigh = track->usrbuf.capacity;
4302 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4303 } else {
4304 /* Set high at 100% minus 1block(?), low at 0% */
4305 track->usrbuf_usedhigh = track->usrbuf.capacity -
4306 track->usrbuf_blksize;
4307 track->usrbuf_usedlow = 0;
4308 }
4309 }
4310
4311 /* Stage buffer */
4312 audio_ring_t *last_dst = &track->outbuf;
4313 if (audio_track_is_playback(track)) {
4314 /* On playback, initialize from the mixer side in order. */
4315 track->inputfmt = *usrfmt;
4316 track->outbuf.fmt = track->mixer->track_fmt;
4317
4318 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4319 goto error;
4320 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4321 goto error;
4322 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4323 goto error;
4324 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4325 goto error;
4326 } else {
4327 /* On recording, initialize from userland side in order. */
4328 track->inputfmt = track->mixer->track_fmt;
4329 track->outbuf.fmt = *usrfmt;
4330
4331 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4332 goto error;
4333 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4334 goto error;
4335 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4336 goto error;
4337 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4338 goto error;
4339 }
4340 #if 0
4341 /* debug */
4342 if (track->freq.filter) {
4343 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4344 audio_print_format2("freq dst", &track->freq.dst->fmt);
4345 }
4346 if (track->chmix.filter) {
4347 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4348 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4349 }
4350 if (track->chvol.filter) {
4351 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4352 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4353 }
4354 if (track->codec.filter) {
4355 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4356 audio_print_format2("codec dst", &track->codec.dst->fmt);
4357 }
4358 #endif
4359
4360 /* Stage input buffer */
4361 track->input = last_dst;
4362
4363 /*
4364 * On the recording track, make the first stage a ring buffer.
4365 * XXX is there a better way?
4366 */
4367 if (audio_track_is_record(track)) {
4368 track->input->capacity = NBLKOUT *
4369 frame_per_block(track->mixer, &track->input->fmt);
4370 len = auring_bytelen(track->input);
4371 track->input->mem = audio_realloc(track->input->mem, len);
4372 }
4373
4374 /*
4375 * Output buffer.
4376 * On the playback track, its capacity is NBLKOUT blocks.
4377 * On the recording track, its capacity is 1 block.
4378 */
4379 track->outbuf.head = 0;
4380 track->outbuf.used = 0;
4381 track->outbuf.capacity = frame_per_block(track->mixer,
4382 &track->outbuf.fmt);
4383 if (audio_track_is_playback(track))
4384 track->outbuf.capacity *= NBLKOUT;
4385 len = auring_bytelen(&track->outbuf);
4386 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4387 if (track->outbuf.mem == NULL) {
4388 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4389 error = ENOMEM;
4390 goto error;
4391 }
4392
4393 #if defined(AUDIO_DEBUG)
4394 if (audiodebug >= 3) {
4395 struct audio_track_debugbuf m;
4396
4397 memset(&m, 0, sizeof(m));
4398 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4399 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4400 if (track->freq.filter)
4401 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4402 track->freq.srcbuf.capacity *
4403 frametobyte(&track->freq.srcbuf.fmt, 1));
4404 if (track->chmix.filter)
4405 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4406 track->chmix.srcbuf.capacity *
4407 frametobyte(&track->chmix.srcbuf.fmt, 1));
4408 if (track->chvol.filter)
4409 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4410 track->chvol.srcbuf.capacity *
4411 frametobyte(&track->chvol.srcbuf.fmt, 1));
4412 if (track->codec.filter)
4413 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4414 track->codec.srcbuf.capacity *
4415 frametobyte(&track->codec.srcbuf.fmt, 1));
4416 snprintf(m.usrbuf, sizeof(m.usrbuf),
4417 " usr=%d", track->usrbuf.capacity);
4418
4419 if (audio_track_is_playback(track)) {
4420 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4421 m.outbuf, m.freq, m.chmix,
4422 m.chvol, m.codec, m.usrbuf);
4423 } else {
4424 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4425 m.freq, m.chmix, m.chvol,
4426 m.codec, m.outbuf, m.usrbuf);
4427 }
4428 }
4429 #endif
4430 return 0;
4431
4432 error:
4433 audio_free_usrbuf(track);
4434 audio_free(track->codec.srcbuf.mem);
4435 audio_free(track->chvol.srcbuf.mem);
4436 audio_free(track->chmix.srcbuf.mem);
4437 audio_free(track->freq.srcbuf.mem);
4438 audio_free(track->outbuf.mem);
4439 return error;
4440 }
4441
4442 /*
4443 * Fill silence frames (as the internal format) up to 1 block
4444 * if the ring is not empty and less than 1 block.
4445 * It returns the number of appended frames.
4446 */
4447 static int
4448 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4449 {
4450 int fpb;
4451 int n;
4452
4453 KASSERT(track);
4454 KASSERT(audio_format2_is_internal(&ring->fmt));
4455
4456 /* XXX is n correct? */
4457 /* XXX memset uses frametobyte()? */
4458
4459 if (ring->used == 0)
4460 return 0;
4461
4462 fpb = frame_per_block(track->mixer, &ring->fmt);
4463 if (ring->used >= fpb)
4464 return 0;
4465
4466 n = (ring->capacity - ring->used) % fpb;
4467
4468 KASSERTMSG(auring_get_contig_free(ring) >= n,
4469 "auring_get_contig_free(ring)=%d n=%d",
4470 auring_get_contig_free(ring), n);
4471
4472 memset(auring_tailptr_aint(ring), 0,
4473 n * ring->fmt.channels * sizeof(aint_t));
4474 auring_push(ring, n);
4475 return n;
4476 }
4477
4478 /*
4479 * Execute the conversion stage.
4480 * It prepares arg from this stage and executes stage->filter.
4481 * It must be called only if stage->filter is not NULL.
4482 *
4483 * For stages other than frequency conversion, the function increments
4484 * src and dst counters here. For frequency conversion stage, on the
4485 * other hand, the function does not touch src and dst counters and
4486 * filter side has to increment them.
4487 */
4488 static void
4489 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4490 {
4491 audio_filter_arg_t *arg;
4492 int srccount;
4493 int dstcount;
4494 int count;
4495
4496 KASSERT(track);
4497 KASSERT(stage->filter);
4498
4499 srccount = auring_get_contig_used(&stage->srcbuf);
4500 dstcount = auring_get_contig_free(stage->dst);
4501
4502 if (isfreq) {
4503 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4504 count = uimin(dstcount, track->mixer->frames_per_block);
4505 } else {
4506 count = uimin(srccount, dstcount);
4507 }
4508
4509 if (count > 0) {
4510 arg = &stage->arg;
4511 arg->src = auring_headptr(&stage->srcbuf);
4512 arg->dst = auring_tailptr(stage->dst);
4513 arg->count = count;
4514
4515 stage->filter(arg);
4516
4517 if (!isfreq) {
4518 auring_take(&stage->srcbuf, count);
4519 auring_push(stage->dst, count);
4520 }
4521 }
4522 }
4523
4524 /*
4525 * Produce output buffer for playback from user input buffer.
4526 * It must be called only if usrbuf is not empty and outbuf is
4527 * available at least one free block.
4528 */
4529 static void
4530 audio_track_play(audio_track_t *track)
4531 {
4532 audio_ring_t *usrbuf;
4533 audio_ring_t *input;
4534 int count;
4535 int framesize;
4536 int bytes;
4537
4538 KASSERT(track);
4539 KASSERT(track->lock);
4540 TRACET(4, track, "start pstate=%d", track->pstate);
4541
4542 /* At this point usrbuf must not be empty. */
4543 KASSERT(track->usrbuf.used > 0);
4544 /* Also, outbuf must be available at least one block. */
4545 count = auring_get_contig_free(&track->outbuf);
4546 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4547 "count=%d fpb=%d",
4548 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4549
4550 /* XXX TODO: is this necessary for now? */
4551 int track_count_0 = track->outbuf.used;
4552
4553 usrbuf = &track->usrbuf;
4554 input = track->input;
4555
4556 /*
4557 * framesize is always 1 byte or more since all formats supported as
4558 * usrfmt(=input) have 8bit or more stride.
4559 */
4560 framesize = frametobyte(&input->fmt, 1);
4561 KASSERT(framesize >= 1);
4562
4563 /* The next stage of usrbuf (=input) must be available. */
4564 KASSERT(auring_get_contig_free(input) > 0);
4565
4566 /*
4567 * Copy usrbuf up to 1block to input buffer.
4568 * count is the number of frames to copy from usrbuf.
4569 * bytes is the number of bytes to copy from usrbuf. However it is
4570 * not copied less than one frame.
4571 */
4572 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4573 bytes = count * framesize;
4574
4575 track->usrbuf_stamp += bytes;
4576
4577 if (usrbuf->head + bytes < usrbuf->capacity) {
4578 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4579 (uint8_t *)usrbuf->mem + usrbuf->head,
4580 bytes);
4581 auring_push(input, count);
4582 auring_take(usrbuf, bytes);
4583 } else {
4584 int bytes1;
4585 int bytes2;
4586
4587 bytes1 = auring_get_contig_used(usrbuf);
4588 KASSERTMSG(bytes1 % framesize == 0,
4589 "bytes1=%d framesize=%d", bytes1, framesize);
4590 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4591 (uint8_t *)usrbuf->mem + usrbuf->head,
4592 bytes1);
4593 auring_push(input, bytes1 / framesize);
4594 auring_take(usrbuf, bytes1);
4595
4596 bytes2 = bytes - bytes1;
4597 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4598 (uint8_t *)usrbuf->mem + usrbuf->head,
4599 bytes2);
4600 auring_push(input, bytes2 / framesize);
4601 auring_take(usrbuf, bytes2);
4602 }
4603
4604 /* Encoding conversion */
4605 if (track->codec.filter)
4606 audio_apply_stage(track, &track->codec, false);
4607
4608 /* Channel volume */
4609 if (track->chvol.filter)
4610 audio_apply_stage(track, &track->chvol, false);
4611
4612 /* Channel mix */
4613 if (track->chmix.filter)
4614 audio_apply_stage(track, &track->chmix, false);
4615
4616 /* Frequency conversion */
4617 /*
4618 * Since the frequency conversion needs correction for each block,
4619 * it rounds up to 1 block.
4620 */
4621 if (track->freq.filter) {
4622 int n;
4623 n = audio_append_silence(track, &track->freq.srcbuf);
4624 if (n > 0) {
4625 TRACET(4, track,
4626 "freq.srcbuf add silence %d -> %d/%d/%d",
4627 n,
4628 track->freq.srcbuf.head,
4629 track->freq.srcbuf.used,
4630 track->freq.srcbuf.capacity);
4631 }
4632 if (track->freq.srcbuf.used > 0) {
4633 audio_apply_stage(track, &track->freq, true);
4634 }
4635 }
4636
4637 if (bytes < track->usrbuf_blksize) {
4638 /*
4639 * Clear all conversion buffer pointer if the conversion was
4640 * not exactly one block. These conversion stage buffers are
4641 * certainly circular buffers because of symmetry with the
4642 * previous and next stage buffer. However, since they are
4643 * treated as simple contiguous buffers in operation, so head
4644 * always should point 0. This may happen during drain-age.
4645 */
4646 TRACET(4, track, "reset stage");
4647 if (track->codec.filter) {
4648 KASSERT(track->codec.srcbuf.used == 0);
4649 track->codec.srcbuf.head = 0;
4650 }
4651 if (track->chvol.filter) {
4652 KASSERT(track->chvol.srcbuf.used == 0);
4653 track->chvol.srcbuf.head = 0;
4654 }
4655 if (track->chmix.filter) {
4656 KASSERT(track->chmix.srcbuf.used == 0);
4657 track->chmix.srcbuf.head = 0;
4658 }
4659 if (track->freq.filter) {
4660 KASSERT(track->freq.srcbuf.used == 0);
4661 track->freq.srcbuf.head = 0;
4662 }
4663 }
4664
4665 if (track->input == &track->outbuf) {
4666 track->outputcounter = track->inputcounter;
4667 } else {
4668 track->outputcounter += track->outbuf.used - track_count_0;
4669 }
4670
4671 #if defined(AUDIO_DEBUG)
4672 if (audiodebug >= 3) {
4673 struct audio_track_debugbuf m;
4674 audio_track_bufstat(track, &m);
4675 TRACET(0, track, "end%s%s%s%s%s%s",
4676 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4677 }
4678 #endif
4679 }
4680
4681 /*
4682 * Produce user output buffer for recording from input buffer.
4683 */
4684 static void
4685 audio_track_record(audio_track_t *track)
4686 {
4687 audio_ring_t *outbuf;
4688 audio_ring_t *usrbuf;
4689 int count;
4690 int bytes;
4691 int framesize;
4692
4693 KASSERT(track);
4694 KASSERT(track->lock);
4695
4696 /* Number of frames to process */
4697 count = auring_get_contig_used(track->input);
4698 count = uimin(count, track->mixer->frames_per_block);
4699 if (count == 0) {
4700 TRACET(4, track, "count == 0");
4701 return;
4702 }
4703
4704 /* Frequency conversion */
4705 if (track->freq.filter) {
4706 if (track->freq.srcbuf.used > 0) {
4707 audio_apply_stage(track, &track->freq, true);
4708 /* XXX should input of freq be from beginning of buf? */
4709 }
4710 }
4711
4712 /* Channel mix */
4713 if (track->chmix.filter)
4714 audio_apply_stage(track, &track->chmix, false);
4715
4716 /* Channel volume */
4717 if (track->chvol.filter)
4718 audio_apply_stage(track, &track->chvol, false);
4719
4720 /* Encoding conversion */
4721 if (track->codec.filter)
4722 audio_apply_stage(track, &track->codec, false);
4723
4724 /* Copy outbuf to usrbuf */
4725 outbuf = &track->outbuf;
4726 usrbuf = &track->usrbuf;
4727 /*
4728 * framesize is always 1 byte or more since all formats supported
4729 * as usrfmt(=output) have 8bit or more stride.
4730 */
4731 framesize = frametobyte(&outbuf->fmt, 1);
4732 KASSERT(framesize >= 1);
4733 /*
4734 * count is the number of frames to copy to usrbuf.
4735 * bytes is the number of bytes to copy to usrbuf.
4736 */
4737 count = outbuf->used;
4738 count = uimin(count,
4739 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4740 bytes = count * framesize;
4741 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4742 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4743 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4744 bytes);
4745 auring_push(usrbuf, bytes);
4746 auring_take(outbuf, count);
4747 } else {
4748 int bytes1;
4749 int bytes2;
4750
4751 bytes1 = auring_get_contig_free(usrbuf);
4752 KASSERTMSG(bytes1 % framesize == 0,
4753 "bytes1=%d framesize=%d", bytes1, framesize);
4754 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4755 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4756 bytes1);
4757 auring_push(usrbuf, bytes1);
4758 auring_take(outbuf, bytes1 / framesize);
4759
4760 bytes2 = bytes - bytes1;
4761 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4762 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4763 bytes2);
4764 auring_push(usrbuf, bytes2);
4765 auring_take(outbuf, bytes2 / framesize);
4766 }
4767
4768 /* XXX TODO: any counters here? */
4769
4770 #if defined(AUDIO_DEBUG)
4771 if (audiodebug >= 3) {
4772 struct audio_track_debugbuf m;
4773 audio_track_bufstat(track, &m);
4774 TRACET(0, track, "end%s%s%s%s%s%s",
4775 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4776 }
4777 #endif
4778 }
4779
4780 /*
4781 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4782 * Must be called with sc_exlock held.
4783 */
4784 static u_int
4785 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4786 {
4787 audio_format2_t *fmt;
4788 u_int blktime;
4789 u_int frames_per_block;
4790
4791 KASSERT(sc->sc_exlock);
4792
4793 fmt = &mixer->hwbuf.fmt;
4794 blktime = sc->sc_blk_ms;
4795
4796 /*
4797 * If stride is not multiples of 8, special treatment is necessary.
4798 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4799 */
4800 if (fmt->stride == 4) {
4801 frames_per_block = fmt->sample_rate * blktime / 1000;
4802 if ((frames_per_block & 1) != 0)
4803 blktime *= 2;
4804 }
4805 #ifdef DIAGNOSTIC
4806 else if (fmt->stride % NBBY != 0) {
4807 panic("unsupported HW stride %d", fmt->stride);
4808 }
4809 #endif
4810
4811 return blktime;
4812 }
4813
4814 /*
4815 * Initialize the mixer corresponding to the mode.
4816 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4817 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4818 * This function returns 0 on successful. Otherwise returns errno.
4819 * Must be called with sc_exlock held and without sc_lock held.
4820 */
4821 static int
4822 audio_mixer_init(struct audio_softc *sc, int mode,
4823 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4824 {
4825 char codecbuf[64];
4826 char blkdmsbuf[8];
4827 audio_trackmixer_t *mixer;
4828 void (*softint_handler)(void *);
4829 int len;
4830 int blksize;
4831 int capacity;
4832 size_t bufsize;
4833 int hwblks;
4834 int blkms;
4835 int blkdms;
4836 int error;
4837
4838 KASSERT(hwfmt != NULL);
4839 KASSERT(reg != NULL);
4840 KASSERT(sc->sc_exlock);
4841
4842 error = 0;
4843 if (mode == AUMODE_PLAY)
4844 mixer = sc->sc_pmixer;
4845 else
4846 mixer = sc->sc_rmixer;
4847
4848 mixer->sc = sc;
4849 mixer->mode = mode;
4850
4851 mixer->hwbuf.fmt = *hwfmt;
4852 mixer->volume = 256;
4853 mixer->blktime_d = 1000;
4854 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4855 sc->sc_blk_ms = mixer->blktime_n;
4856 hwblks = NBLKHW;
4857
4858 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4859 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4860 if (sc->hw_if->round_blocksize) {
4861 int rounded;
4862 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4863 mutex_enter(sc->sc_lock);
4864 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4865 mode, &p);
4866 mutex_exit(sc->sc_lock);
4867 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4868 if (rounded != blksize) {
4869 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4870 mixer->hwbuf.fmt.channels) != 0) {
4871 device_printf(sc->sc_dev,
4872 "round_blocksize must return blocksize "
4873 "divisible by framesize: "
4874 "blksize=%d rounded=%d "
4875 "stride=%ubit channels=%u\n",
4876 blksize, rounded,
4877 mixer->hwbuf.fmt.stride,
4878 mixer->hwbuf.fmt.channels);
4879 return EINVAL;
4880 }
4881 /* Recalculation */
4882 blksize = rounded;
4883 mixer->frames_per_block = blksize * NBBY /
4884 (mixer->hwbuf.fmt.stride *
4885 mixer->hwbuf.fmt.channels);
4886 }
4887 }
4888 mixer->blktime_n = mixer->frames_per_block;
4889 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4890
4891 capacity = mixer->frames_per_block * hwblks;
4892 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4893 if (sc->hw_if->round_buffersize) {
4894 size_t rounded;
4895 mutex_enter(sc->sc_lock);
4896 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4897 bufsize);
4898 mutex_exit(sc->sc_lock);
4899 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4900 if (rounded < bufsize) {
4901 /* buffersize needs NBLKHW blocks at least. */
4902 device_printf(sc->sc_dev,
4903 "buffersize too small: buffersize=%zd blksize=%d\n",
4904 rounded, blksize);
4905 return EINVAL;
4906 }
4907 if (rounded % blksize != 0) {
4908 /* buffersize/blksize constraint mismatch? */
4909 device_printf(sc->sc_dev,
4910 "buffersize must be multiple of blksize: "
4911 "buffersize=%zu blksize=%d\n",
4912 rounded, blksize);
4913 return EINVAL;
4914 }
4915 if (rounded != bufsize) {
4916 /* Recalcuration */
4917 bufsize = rounded;
4918 hwblks = bufsize / blksize;
4919 capacity = mixer->frames_per_block * hwblks;
4920 }
4921 }
4922 TRACE(1, "buffersize for %s = %zu",
4923 (mode == AUMODE_PLAY) ? "playback" : "recording",
4924 bufsize);
4925 mixer->hwbuf.capacity = capacity;
4926
4927 if (sc->hw_if->allocm) {
4928 /* sc_lock is not necessary for allocm */
4929 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4930 if (mixer->hwbuf.mem == NULL) {
4931 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4932 __func__, bufsize);
4933 return ENOMEM;
4934 }
4935 } else {
4936 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4937 }
4938
4939 /* From here, audio_mixer_destroy is necessary to exit. */
4940 if (mode == AUMODE_PLAY) {
4941 cv_init(&mixer->outcv, "audiowr");
4942 } else {
4943 cv_init(&mixer->outcv, "audiord");
4944 }
4945
4946 if (mode == AUMODE_PLAY) {
4947 softint_handler = audio_softintr_wr;
4948 } else {
4949 softint_handler = audio_softintr_rd;
4950 }
4951 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4952 softint_handler, sc);
4953 if (mixer->sih == NULL) {
4954 device_printf(sc->sc_dev, "softint_establish failed\n");
4955 goto abort;
4956 }
4957
4958 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4959 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4960 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4961 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4962 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4963
4964 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4965 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4966 mixer->swap_endian = true;
4967 TRACE(1, "swap_endian");
4968 }
4969
4970 if (mode == AUMODE_PLAY) {
4971 /* Mixing buffer */
4972 mixer->mixfmt = mixer->track_fmt;
4973 mixer->mixfmt.precision *= 2;
4974 mixer->mixfmt.stride *= 2;
4975 /* XXX TODO: use some macros? */
4976 len = mixer->frames_per_block * mixer->mixfmt.channels *
4977 mixer->mixfmt.stride / NBBY;
4978 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4979 } else {
4980 /* No mixing buffer for recording */
4981 }
4982
4983 if (reg->codec) {
4984 mixer->codec = reg->codec;
4985 mixer->codecarg.context = reg->context;
4986 if (mode == AUMODE_PLAY) {
4987 mixer->codecarg.srcfmt = &mixer->track_fmt;
4988 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4989 } else {
4990 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4991 mixer->codecarg.dstfmt = &mixer->track_fmt;
4992 }
4993 mixer->codecbuf.fmt = mixer->track_fmt;
4994 mixer->codecbuf.capacity = mixer->frames_per_block;
4995 len = auring_bytelen(&mixer->codecbuf);
4996 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4997 if (mixer->codecbuf.mem == NULL) {
4998 device_printf(sc->sc_dev,
4999 "%s: malloc codecbuf(%d) failed\n",
5000 __func__, len);
5001 error = ENOMEM;
5002 goto abort;
5003 }
5004 }
5005
5006 /* Succeeded so display it. */
5007 codecbuf[0] = '\0';
5008 if (mixer->codec || mixer->swap_endian) {
5009 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5010 (mode == AUMODE_PLAY) ? "->" : "<-",
5011 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5012 mixer->hwbuf.fmt.precision);
5013 }
5014 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5015 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5016 blkdmsbuf[0] = '\0';
5017 if (blkdms != 0) {
5018 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5019 }
5020 aprint_normal_dev(sc->sc_dev,
5021 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5022 audio_encoding_name(mixer->track_fmt.encoding),
5023 mixer->track_fmt.precision,
5024 codecbuf,
5025 mixer->track_fmt.channels,
5026 mixer->track_fmt.sample_rate,
5027 blksize,
5028 blkms, blkdmsbuf,
5029 (mode == AUMODE_PLAY) ? "playback" : "recording");
5030
5031 return 0;
5032
5033 abort:
5034 audio_mixer_destroy(sc, mixer);
5035 return error;
5036 }
5037
5038 /*
5039 * Releases all resources of 'mixer'.
5040 * Note that it does not release the memory area of 'mixer' itself.
5041 * Must be called with sc_exlock held and without sc_lock held.
5042 */
5043 static void
5044 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5045 {
5046 int bufsize;
5047
5048 KASSERT(sc->sc_exlock == 1);
5049
5050 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5051
5052 if (mixer->hwbuf.mem != NULL) {
5053 if (sc->hw_if->freem) {
5054 /* sc_lock is not necessary for freem */
5055 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5056 } else {
5057 kmem_free(mixer->hwbuf.mem, bufsize);
5058 }
5059 mixer->hwbuf.mem = NULL;
5060 }
5061
5062 audio_free(mixer->codecbuf.mem);
5063 audio_free(mixer->mixsample);
5064
5065 cv_destroy(&mixer->outcv);
5066
5067 if (mixer->sih) {
5068 softint_disestablish(mixer->sih);
5069 mixer->sih = NULL;
5070 }
5071 }
5072
5073 /*
5074 * Starts playback mixer.
5075 * Must be called only if sc_pbusy is false.
5076 * Must be called with sc_lock && sc_exlock held.
5077 * Must not be called from the interrupt context.
5078 */
5079 static void
5080 audio_pmixer_start(struct audio_softc *sc, bool force)
5081 {
5082 audio_trackmixer_t *mixer;
5083 int minimum;
5084
5085 KASSERT(mutex_owned(sc->sc_lock));
5086 KASSERT(sc->sc_exlock);
5087 KASSERT(sc->sc_pbusy == false);
5088
5089 mutex_enter(sc->sc_intr_lock);
5090
5091 mixer = sc->sc_pmixer;
5092 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5093 (audiodebug >= 3) ? "begin " : "",
5094 (int)mixer->mixseq, (int)mixer->hwseq,
5095 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5096 force ? " force" : "");
5097
5098 /* Need two blocks to start normally. */
5099 minimum = (force) ? 1 : 2;
5100 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5101 audio_pmixer_process(sc);
5102 }
5103
5104 /* Start output */
5105 audio_pmixer_output(sc);
5106 sc->sc_pbusy = true;
5107
5108 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5109 (int)mixer->mixseq, (int)mixer->hwseq,
5110 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5111
5112 mutex_exit(sc->sc_intr_lock);
5113 }
5114
5115 /*
5116 * When playing back with MD filter:
5117 *
5118 * track track ...
5119 * v v
5120 * + mix (with aint2_t)
5121 * | master volume (with aint2_t)
5122 * v
5123 * mixsample [::::] wide-int 1 block (ring) buffer
5124 * |
5125 * | convert aint2_t -> aint_t
5126 * v
5127 * codecbuf [....] 1 block (ring) buffer
5128 * |
5129 * | convert to hw format
5130 * v
5131 * hwbuf [............] NBLKHW blocks ring buffer
5132 *
5133 * When playing back without MD filter:
5134 *
5135 * mixsample [::::] wide-int 1 block (ring) buffer
5136 * |
5137 * | convert aint2_t -> aint_t
5138 * | (with byte swap if necessary)
5139 * v
5140 * hwbuf [............] NBLKHW blocks ring buffer
5141 *
5142 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5143 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5144 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5145 */
5146
5147 /*
5148 * Performs track mixing and converts it to hwbuf.
5149 * Note that this function doesn't transfer hwbuf to hardware.
5150 * Must be called with sc_intr_lock held.
5151 */
5152 static void
5153 audio_pmixer_process(struct audio_softc *sc)
5154 {
5155 audio_trackmixer_t *mixer;
5156 audio_file_t *f;
5157 int frame_count;
5158 int sample_count;
5159 int mixed;
5160 int i;
5161 aint2_t *m;
5162 aint_t *h;
5163
5164 mixer = sc->sc_pmixer;
5165
5166 frame_count = mixer->frames_per_block;
5167 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5168 "auring_get_contig_free()=%d frame_count=%d",
5169 auring_get_contig_free(&mixer->hwbuf), frame_count);
5170 sample_count = frame_count * mixer->mixfmt.channels;
5171
5172 mixer->mixseq++;
5173
5174 /* Mix all tracks */
5175 mixed = 0;
5176 SLIST_FOREACH(f, &sc->sc_files, entry) {
5177 audio_track_t *track = f->ptrack;
5178
5179 if (track == NULL)
5180 continue;
5181
5182 if (track->is_pause) {
5183 TRACET(4, track, "skip; paused");
5184 continue;
5185 }
5186
5187 /* Skip if the track is used by process context. */
5188 if (audio_track_lock_tryenter(track) == false) {
5189 TRACET(4, track, "skip; in use");
5190 continue;
5191 }
5192
5193 /* Emulate mmap'ped track */
5194 if (track->mmapped) {
5195 auring_push(&track->usrbuf, track->usrbuf_blksize);
5196 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5197 track->usrbuf.head,
5198 track->usrbuf.used,
5199 track->usrbuf.capacity);
5200 }
5201
5202 if (track->outbuf.used < mixer->frames_per_block &&
5203 track->usrbuf.used > 0) {
5204 TRACET(4, track, "process");
5205 audio_track_play(track);
5206 }
5207
5208 if (track->outbuf.used > 0) {
5209 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5210 } else {
5211 TRACET(4, track, "skip; empty");
5212 }
5213
5214 audio_track_lock_exit(track);
5215 }
5216
5217 if (mixed == 0) {
5218 /* Silence */
5219 memset(mixer->mixsample, 0,
5220 frametobyte(&mixer->mixfmt, frame_count));
5221 } else {
5222 if (mixed > 1) {
5223 /* If there are multiple tracks, do auto gain control */
5224 audio_pmixer_agc(mixer, sample_count);
5225 }
5226
5227 /* Apply master volume */
5228 if (mixer->volume < 256) {
5229 m = mixer->mixsample;
5230 for (i = 0; i < sample_count; i++) {
5231 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5232 m++;
5233 }
5234
5235 /*
5236 * Recover the volume gradually at the pace of
5237 * several times per second. If it's too fast, you
5238 * can recognize that the volume changes up and down
5239 * quickly and it's not so comfortable.
5240 */
5241 mixer->voltimer += mixer->blktime_n;
5242 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5243 mixer->volume++;
5244 mixer->voltimer = 0;
5245 #if defined(AUDIO_DEBUG_AGC)
5246 TRACE(1, "volume recover: %d", mixer->volume);
5247 #endif
5248 }
5249 }
5250 }
5251
5252 /*
5253 * The rest is the hardware part.
5254 */
5255
5256 if (mixer->codec) {
5257 h = auring_tailptr_aint(&mixer->codecbuf);
5258 } else {
5259 h = auring_tailptr_aint(&mixer->hwbuf);
5260 }
5261
5262 m = mixer->mixsample;
5263 if (mixer->swap_endian) {
5264 for (i = 0; i < sample_count; i++) {
5265 *h++ = bswap16(*m++);
5266 }
5267 } else {
5268 for (i = 0; i < sample_count; i++) {
5269 *h++ = *m++;
5270 }
5271 }
5272
5273 /* Hardware driver's codec */
5274 if (mixer->codec) {
5275 auring_push(&mixer->codecbuf, frame_count);
5276 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5277 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5278 mixer->codecarg.count = frame_count;
5279 mixer->codec(&mixer->codecarg);
5280 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5281 }
5282
5283 auring_push(&mixer->hwbuf, frame_count);
5284
5285 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5286 (int)mixer->mixseq,
5287 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5288 (mixed == 0) ? " silent" : "");
5289 }
5290
5291 /*
5292 * Do auto gain control.
5293 * Must be called sc_intr_lock held.
5294 */
5295 static void
5296 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5297 {
5298 struct audio_softc *sc __unused;
5299 aint2_t val;
5300 aint2_t maxval;
5301 aint2_t minval;
5302 aint2_t over_plus;
5303 aint2_t over_minus;
5304 aint2_t *m;
5305 int newvol;
5306 int i;
5307
5308 sc = mixer->sc;
5309
5310 /* Overflow detection */
5311 maxval = AINT_T_MAX;
5312 minval = AINT_T_MIN;
5313 m = mixer->mixsample;
5314 for (i = 0; i < sample_count; i++) {
5315 val = *m++;
5316 if (val > maxval)
5317 maxval = val;
5318 else if (val < minval)
5319 minval = val;
5320 }
5321
5322 /* Absolute value of overflowed amount */
5323 over_plus = maxval - AINT_T_MAX;
5324 over_minus = AINT_T_MIN - minval;
5325
5326 if (over_plus > 0 || over_minus > 0) {
5327 if (over_plus > over_minus) {
5328 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5329 } else {
5330 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5331 }
5332
5333 /*
5334 * Change the volume only if new one is smaller.
5335 * Reset the timer even if the volume isn't changed.
5336 */
5337 if (newvol <= mixer->volume) {
5338 mixer->volume = newvol;
5339 mixer->voltimer = 0;
5340 #if defined(AUDIO_DEBUG_AGC)
5341 TRACE(1, "auto volume adjust: %d", mixer->volume);
5342 #endif
5343 }
5344 }
5345 }
5346
5347 /*
5348 * Mix one track.
5349 * 'mixed' specifies the number of tracks mixed so far.
5350 * It returns the number of tracks mixed. In other words, it returns
5351 * mixed + 1 if this track is mixed.
5352 */
5353 static int
5354 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5355 int mixed)
5356 {
5357 int count;
5358 int sample_count;
5359 int remain;
5360 int i;
5361 const aint_t *s;
5362 aint2_t *d;
5363
5364 /* XXX TODO: Is this necessary for now? */
5365 if (mixer->mixseq < track->seq)
5366 return mixed;
5367
5368 count = auring_get_contig_used(&track->outbuf);
5369 count = uimin(count, mixer->frames_per_block);
5370
5371 s = auring_headptr_aint(&track->outbuf);
5372 d = mixer->mixsample;
5373
5374 /*
5375 * Apply track volume with double-sized integer and perform
5376 * additive synthesis.
5377 *
5378 * XXX If you limit the track volume to 1.0 or less (<= 256),
5379 * it would be better to do this in the track conversion stage
5380 * rather than here. However, if you accept the volume to
5381 * be greater than 1.0 (> 256), it's better to do it here.
5382 * Because the operation here is done by double-sized integer.
5383 */
5384 sample_count = count * mixer->mixfmt.channels;
5385 if (mixed == 0) {
5386 /* If this is the first track, assignment can be used. */
5387 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5388 if (track->volume != 256) {
5389 for (i = 0; i < sample_count; i++) {
5390 aint2_t v;
5391 v = *s++;
5392 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5393 }
5394 } else
5395 #endif
5396 {
5397 for (i = 0; i < sample_count; i++) {
5398 *d++ = ((aint2_t)*s++);
5399 }
5400 }
5401 /* Fill silence if the first track is not filled. */
5402 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5403 *d++ = 0;
5404 } else {
5405 /* If this is the second or later, add it. */
5406 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5407 if (track->volume != 256) {
5408 for (i = 0; i < sample_count; i++) {
5409 aint2_t v;
5410 v = *s++;
5411 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5412 }
5413 } else
5414 #endif
5415 {
5416 for (i = 0; i < sample_count; i++) {
5417 *d++ += ((aint2_t)*s++);
5418 }
5419 }
5420 }
5421
5422 auring_take(&track->outbuf, count);
5423 /*
5424 * The counters have to align block even if outbuf is less than
5425 * one block. XXX Is this still necessary?
5426 */
5427 remain = mixer->frames_per_block - count;
5428 if (__predict_false(remain != 0)) {
5429 auring_push(&track->outbuf, remain);
5430 auring_take(&track->outbuf, remain);
5431 }
5432
5433 /*
5434 * Update track sequence.
5435 * mixseq has previous value yet at this point.
5436 */
5437 track->seq = mixer->mixseq + 1;
5438
5439 return mixed + 1;
5440 }
5441
5442 /*
5443 * Output one block from hwbuf to HW.
5444 * Must be called with sc_intr_lock held.
5445 */
5446 static void
5447 audio_pmixer_output(struct audio_softc *sc)
5448 {
5449 audio_trackmixer_t *mixer;
5450 audio_params_t params;
5451 void *start;
5452 void *end;
5453 int blksize;
5454 int error;
5455
5456 mixer = sc->sc_pmixer;
5457 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5458 sc->sc_pbusy,
5459 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5460 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5461 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5462 mixer->hwbuf.used, mixer->frames_per_block);
5463
5464 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5465
5466 if (sc->hw_if->trigger_output) {
5467 /* trigger (at once) */
5468 if (!sc->sc_pbusy) {
5469 start = mixer->hwbuf.mem;
5470 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5471 params = format2_to_params(&mixer->hwbuf.fmt);
5472
5473 error = sc->hw_if->trigger_output(sc->hw_hdl,
5474 start, end, blksize, audio_pintr, sc, ¶ms);
5475 if (error) {
5476 device_printf(sc->sc_dev,
5477 "trigger_output failed with %d\n", error);
5478 return;
5479 }
5480 }
5481 } else {
5482 /* start (everytime) */
5483 start = auring_headptr(&mixer->hwbuf);
5484
5485 error = sc->hw_if->start_output(sc->hw_hdl,
5486 start, blksize, audio_pintr, sc);
5487 if (error) {
5488 device_printf(sc->sc_dev,
5489 "start_output failed with %d\n", error);
5490 return;
5491 }
5492 }
5493 }
5494
5495 /*
5496 * This is an interrupt handler for playback.
5497 * It is called with sc_intr_lock held.
5498 *
5499 * It is usually called from hardware interrupt. However, note that
5500 * for some drivers (e.g. uaudio) it is called from software interrupt.
5501 */
5502 static void
5503 audio_pintr(void *arg)
5504 {
5505 struct audio_softc *sc;
5506 audio_trackmixer_t *mixer;
5507
5508 sc = arg;
5509 KASSERT(mutex_owned(sc->sc_intr_lock));
5510
5511 if (sc->sc_dying)
5512 return;
5513 if (sc->sc_pbusy == false) {
5514 #if defined(DIAGNOSTIC)
5515 device_printf(sc->sc_dev,
5516 "DIAGNOSTIC: %s raised stray interrupt\n",
5517 device_xname(sc->hw_dev));
5518 #endif
5519 return;
5520 }
5521
5522 mixer = sc->sc_pmixer;
5523 mixer->hw_complete_counter += mixer->frames_per_block;
5524 mixer->hwseq++;
5525
5526 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5527
5528 TRACE(4,
5529 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5530 mixer->hwseq, mixer->hw_complete_counter,
5531 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5532
5533 #if defined(AUDIO_HW_SINGLE_BUFFER)
5534 /*
5535 * Create a new block here and output it immediately.
5536 * It makes a latency lower but needs machine power.
5537 */
5538 audio_pmixer_process(sc);
5539 audio_pmixer_output(sc);
5540 #else
5541 /*
5542 * It is called when block N output is done.
5543 * Output immediately block N+1 created by the last interrupt.
5544 * And then create block N+2 for the next interrupt.
5545 * This method makes playback robust even on slower machines.
5546 * Instead the latency is increased by one block.
5547 */
5548
5549 /* At first, output ready block. */
5550 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5551 audio_pmixer_output(sc);
5552 }
5553
5554 bool later = false;
5555
5556 if (mixer->hwbuf.used < mixer->frames_per_block) {
5557 later = true;
5558 }
5559
5560 /* Then, process next block. */
5561 audio_pmixer_process(sc);
5562
5563 if (later) {
5564 audio_pmixer_output(sc);
5565 }
5566 #endif
5567
5568 /*
5569 * When this interrupt is the real hardware interrupt, disabling
5570 * preemption here is not necessary. But some drivers (e.g. uaudio)
5571 * emulate it by software interrupt, so kpreempt_disable is necessary.
5572 */
5573 kpreempt_disable();
5574 softint_schedule(mixer->sih);
5575 kpreempt_enable();
5576 }
5577
5578 /*
5579 * Starts record mixer.
5580 * Must be called only if sc_rbusy is false.
5581 * Must be called with sc_lock && sc_exlock held.
5582 * Must not be called from the interrupt context.
5583 */
5584 static void
5585 audio_rmixer_start(struct audio_softc *sc)
5586 {
5587
5588 KASSERT(mutex_owned(sc->sc_lock));
5589 KASSERT(sc->sc_exlock);
5590 KASSERT(sc->sc_rbusy == false);
5591
5592 mutex_enter(sc->sc_intr_lock);
5593
5594 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5595 audio_rmixer_input(sc);
5596 sc->sc_rbusy = true;
5597 TRACE(3, "end");
5598
5599 mutex_exit(sc->sc_intr_lock);
5600 }
5601
5602 /*
5603 * When recording with MD filter:
5604 *
5605 * hwbuf [............] NBLKHW blocks ring buffer
5606 * |
5607 * | convert from hw format
5608 * v
5609 * codecbuf [....] 1 block (ring) buffer
5610 * | |
5611 * v v
5612 * track track ...
5613 *
5614 * When recording without MD filter:
5615 *
5616 * hwbuf [............] NBLKHW blocks ring buffer
5617 * | |
5618 * v v
5619 * track track ...
5620 *
5621 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5622 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5623 */
5624
5625 /*
5626 * Distribute a recorded block to all recording tracks.
5627 */
5628 static void
5629 audio_rmixer_process(struct audio_softc *sc)
5630 {
5631 audio_trackmixer_t *mixer;
5632 audio_ring_t *mixersrc;
5633 audio_file_t *f;
5634 aint_t *p;
5635 int count;
5636 int bytes;
5637 int i;
5638
5639 mixer = sc->sc_rmixer;
5640
5641 /*
5642 * count is the number of frames to be retrieved this time.
5643 * count should be one block.
5644 */
5645 count = auring_get_contig_used(&mixer->hwbuf);
5646 count = uimin(count, mixer->frames_per_block);
5647 if (count <= 0) {
5648 TRACE(4, "count %d: too short", count);
5649 return;
5650 }
5651 bytes = frametobyte(&mixer->track_fmt, count);
5652
5653 /* Hardware driver's codec */
5654 if (mixer->codec) {
5655 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5656 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5657 mixer->codecarg.count = count;
5658 mixer->codec(&mixer->codecarg);
5659 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5660 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5661 mixersrc = &mixer->codecbuf;
5662 } else {
5663 mixersrc = &mixer->hwbuf;
5664 }
5665
5666 if (mixer->swap_endian) {
5667 /* inplace conversion */
5668 p = auring_headptr_aint(mixersrc);
5669 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5670 *p = bswap16(*p);
5671 }
5672 }
5673
5674 /* Distribute to all tracks. */
5675 SLIST_FOREACH(f, &sc->sc_files, entry) {
5676 audio_track_t *track = f->rtrack;
5677 audio_ring_t *input;
5678
5679 if (track == NULL)
5680 continue;
5681
5682 if (track->is_pause) {
5683 TRACET(4, track, "skip; paused");
5684 continue;
5685 }
5686
5687 if (audio_track_lock_tryenter(track) == false) {
5688 TRACET(4, track, "skip; in use");
5689 continue;
5690 }
5691
5692 /* If the track buffer is full, discard the oldest one? */
5693 input = track->input;
5694 if (input->capacity - input->used < mixer->frames_per_block) {
5695 int drops = mixer->frames_per_block -
5696 (input->capacity - input->used);
5697 track->dropframes += drops;
5698 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5699 drops,
5700 input->head, input->used, input->capacity);
5701 auring_take(input, drops);
5702 }
5703 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5704 "input->used=%d mixer->frames_per_block=%d",
5705 input->used, mixer->frames_per_block);
5706
5707 memcpy(auring_tailptr_aint(input),
5708 auring_headptr_aint(mixersrc),
5709 bytes);
5710 auring_push(input, count);
5711
5712 /* XXX sequence counter? */
5713
5714 audio_track_lock_exit(track);
5715 }
5716
5717 auring_take(mixersrc, count);
5718 }
5719
5720 /*
5721 * Input one block from HW to hwbuf.
5722 * Must be called with sc_intr_lock held.
5723 */
5724 static void
5725 audio_rmixer_input(struct audio_softc *sc)
5726 {
5727 audio_trackmixer_t *mixer;
5728 audio_params_t params;
5729 void *start;
5730 void *end;
5731 int blksize;
5732 int error;
5733
5734 mixer = sc->sc_rmixer;
5735 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5736
5737 if (sc->hw_if->trigger_input) {
5738 /* trigger (at once) */
5739 if (!sc->sc_rbusy) {
5740 start = mixer->hwbuf.mem;
5741 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5742 params = format2_to_params(&mixer->hwbuf.fmt);
5743
5744 error = sc->hw_if->trigger_input(sc->hw_hdl,
5745 start, end, blksize, audio_rintr, sc, ¶ms);
5746 if (error) {
5747 device_printf(sc->sc_dev,
5748 "trigger_input failed with %d\n", error);
5749 return;
5750 }
5751 }
5752 } else {
5753 /* start (everytime) */
5754 start = auring_tailptr(&mixer->hwbuf);
5755
5756 error = sc->hw_if->start_input(sc->hw_hdl,
5757 start, blksize, audio_rintr, sc);
5758 if (error) {
5759 device_printf(sc->sc_dev,
5760 "start_input failed with %d\n", error);
5761 return;
5762 }
5763 }
5764 }
5765
5766 /*
5767 * This is an interrupt handler for recording.
5768 * It is called with sc_intr_lock.
5769 *
5770 * It is usually called from hardware interrupt. However, note that
5771 * for some drivers (e.g. uaudio) it is called from software interrupt.
5772 */
5773 static void
5774 audio_rintr(void *arg)
5775 {
5776 struct audio_softc *sc;
5777 audio_trackmixer_t *mixer;
5778
5779 sc = arg;
5780 KASSERT(mutex_owned(sc->sc_intr_lock));
5781
5782 if (sc->sc_dying)
5783 return;
5784 if (sc->sc_rbusy == false) {
5785 #if defined(DIAGNOSTIC)
5786 device_printf(sc->sc_dev,
5787 "DIAGNOSTIC: %s raised stray interrupt\n",
5788 device_xname(sc->hw_dev));
5789 #endif
5790 return;
5791 }
5792
5793 mixer = sc->sc_rmixer;
5794 mixer->hw_complete_counter += mixer->frames_per_block;
5795 mixer->hwseq++;
5796
5797 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5798
5799 TRACE(4,
5800 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5801 mixer->hwseq, mixer->hw_complete_counter,
5802 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5803
5804 /* Distrubute recorded block */
5805 audio_rmixer_process(sc);
5806
5807 /* Request next block */
5808 audio_rmixer_input(sc);
5809
5810 /*
5811 * When this interrupt is the real hardware interrupt, disabling
5812 * preemption here is not necessary. But some drivers (e.g. uaudio)
5813 * emulate it by software interrupt, so kpreempt_disable is necessary.
5814 */
5815 kpreempt_disable();
5816 softint_schedule(mixer->sih);
5817 kpreempt_enable();
5818 }
5819
5820 /*
5821 * Halts playback mixer.
5822 * This function also clears related parameters, so call this function
5823 * instead of calling halt_output directly.
5824 * Must be called only if sc_pbusy is true.
5825 * Must be called with sc_lock && sc_exlock held.
5826 */
5827 static int
5828 audio_pmixer_halt(struct audio_softc *sc)
5829 {
5830 int error;
5831
5832 TRACE(2, "");
5833 KASSERT(mutex_owned(sc->sc_lock));
5834 KASSERT(sc->sc_exlock);
5835
5836 mutex_enter(sc->sc_intr_lock);
5837 error = sc->hw_if->halt_output(sc->hw_hdl);
5838
5839 /* Halts anyway even if some error has occurred. */
5840 sc->sc_pbusy = false;
5841 sc->sc_pmixer->hwbuf.head = 0;
5842 sc->sc_pmixer->hwbuf.used = 0;
5843 sc->sc_pmixer->mixseq = 0;
5844 sc->sc_pmixer->hwseq = 0;
5845 mutex_exit(sc->sc_intr_lock);
5846
5847 return error;
5848 }
5849
5850 /*
5851 * Halts recording mixer.
5852 * This function also clears related parameters, so call this function
5853 * instead of calling halt_input directly.
5854 * Must be called only if sc_rbusy is true.
5855 * Must be called with sc_lock && sc_exlock held.
5856 */
5857 static int
5858 audio_rmixer_halt(struct audio_softc *sc)
5859 {
5860 int error;
5861
5862 TRACE(2, "");
5863 KASSERT(mutex_owned(sc->sc_lock));
5864 KASSERT(sc->sc_exlock);
5865
5866 mutex_enter(sc->sc_intr_lock);
5867 error = sc->hw_if->halt_input(sc->hw_hdl);
5868
5869 /* Halts anyway even if some error has occurred. */
5870 sc->sc_rbusy = false;
5871 sc->sc_rmixer->hwbuf.head = 0;
5872 sc->sc_rmixer->hwbuf.used = 0;
5873 sc->sc_rmixer->mixseq = 0;
5874 sc->sc_rmixer->hwseq = 0;
5875 mutex_exit(sc->sc_intr_lock);
5876
5877 return error;
5878 }
5879
5880 /*
5881 * Flush this track.
5882 * Halts all operations, clears all buffers, reset error counters.
5883 * XXX I'm not sure...
5884 */
5885 static void
5886 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5887 {
5888
5889 KASSERT(track);
5890 TRACET(3, track, "clear");
5891
5892 audio_track_lock_enter(track);
5893
5894 track->usrbuf.used = 0;
5895 /* Clear all internal parameters. */
5896 if (track->codec.filter) {
5897 track->codec.srcbuf.used = 0;
5898 track->codec.srcbuf.head = 0;
5899 }
5900 if (track->chvol.filter) {
5901 track->chvol.srcbuf.used = 0;
5902 track->chvol.srcbuf.head = 0;
5903 }
5904 if (track->chmix.filter) {
5905 track->chmix.srcbuf.used = 0;
5906 track->chmix.srcbuf.head = 0;
5907 }
5908 if (track->freq.filter) {
5909 track->freq.srcbuf.used = 0;
5910 track->freq.srcbuf.head = 0;
5911 if (track->freq_step < 65536)
5912 track->freq_current = 65536;
5913 else
5914 track->freq_current = 0;
5915 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5916 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5917 }
5918 /* Clear buffer, then operation halts naturally. */
5919 track->outbuf.used = 0;
5920
5921 /* Clear counters. */
5922 track->dropframes = 0;
5923
5924 audio_track_lock_exit(track);
5925 }
5926
5927 /*
5928 * Drain the track.
5929 * track must be present and for playback.
5930 * If successful, it returns 0. Otherwise returns errno.
5931 * Must be called with sc_lock held.
5932 */
5933 static int
5934 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5935 {
5936 audio_trackmixer_t *mixer;
5937 int done;
5938 int error;
5939
5940 KASSERT(track);
5941 TRACET(3, track, "start");
5942 mixer = track->mixer;
5943 KASSERT(mutex_owned(sc->sc_lock));
5944
5945 /* Ignore them if pause. */
5946 if (track->is_pause) {
5947 TRACET(3, track, "pause -> clear");
5948 track->pstate = AUDIO_STATE_CLEAR;
5949 }
5950 /* Terminate early here if there is no data in the track. */
5951 if (track->pstate == AUDIO_STATE_CLEAR) {
5952 TRACET(3, track, "no need to drain");
5953 return 0;
5954 }
5955 track->pstate = AUDIO_STATE_DRAINING;
5956
5957 for (;;) {
5958 /* I want to display it before condition evaluation. */
5959 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5960 (int)curproc->p_pid, (int)curlwp->l_lid,
5961 (int)track->seq, (int)mixer->hwseq,
5962 track->outbuf.head, track->outbuf.used,
5963 track->outbuf.capacity);
5964
5965 /* Condition to terminate */
5966 audio_track_lock_enter(track);
5967 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5968 track->outbuf.used == 0 &&
5969 track->seq <= mixer->hwseq);
5970 audio_track_lock_exit(track);
5971 if (done)
5972 break;
5973
5974 TRACET(3, track, "sleep");
5975 error = audio_track_waitio(sc, track);
5976 if (error)
5977 return error;
5978
5979 /* XXX call audio_track_play here ? */
5980 }
5981
5982 track->pstate = AUDIO_STATE_CLEAR;
5983 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5984 (int)track->inputcounter, (int)track->outputcounter);
5985 return 0;
5986 }
5987
5988 /*
5989 * Send signal to process.
5990 * This is intended to be called only from audio_softintr_{rd,wr}.
5991 * Must be called without sc_intr_lock held.
5992 */
5993 static inline void
5994 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
5995 {
5996 proc_t *p;
5997
5998 KASSERT(pid != 0);
5999
6000 /*
6001 * psignal() must be called without spin lock held.
6002 */
6003
6004 mutex_enter(proc_lock);
6005 p = proc_find(pid);
6006 if (p)
6007 psignal(p, signum);
6008 mutex_exit(proc_lock);
6009 }
6010
6011 /*
6012 * This is software interrupt handler for record.
6013 * It is called from recording hardware interrupt everytime.
6014 * It does:
6015 * - Deliver SIGIO for all async processes.
6016 * - Notify to audio_read() that data has arrived.
6017 * - selnotify() for select/poll-ing processes.
6018 */
6019 /*
6020 * XXX If a process issues FIOASYNC between hardware interrupt and
6021 * software interrupt, (stray) SIGIO will be sent to the process
6022 * despite the fact that it has not receive recorded data yet.
6023 */
6024 static void
6025 audio_softintr_rd(void *cookie)
6026 {
6027 struct audio_softc *sc = cookie;
6028 audio_file_t *f;
6029 pid_t pid;
6030
6031 mutex_enter(sc->sc_lock);
6032
6033 SLIST_FOREACH(f, &sc->sc_files, entry) {
6034 audio_track_t *track = f->rtrack;
6035
6036 if (track == NULL)
6037 continue;
6038
6039 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6040 track->input->head,
6041 track->input->used,
6042 track->input->capacity);
6043
6044 pid = f->async_audio;
6045 if (pid != 0) {
6046 TRACEF(4, f, "sending SIGIO %d", pid);
6047 audio_psignal(sc, pid, SIGIO);
6048 }
6049 }
6050
6051 /* Notify that data has arrived. */
6052 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6053 KNOTE(&sc->sc_rsel.sel_klist, 0);
6054 cv_broadcast(&sc->sc_rmixer->outcv);
6055
6056 mutex_exit(sc->sc_lock);
6057 }
6058
6059 /*
6060 * This is software interrupt handler for playback.
6061 * It is called from playback hardware interrupt everytime.
6062 * It does:
6063 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6064 * - Notify to audio_write() that outbuf block available.
6065 * - selnotify() for select/poll-ing processes if there are any writable
6066 * (used < lowat) processes. Checking each descriptor will be done by
6067 * filt_audiowrite_event().
6068 */
6069 static void
6070 audio_softintr_wr(void *cookie)
6071 {
6072 struct audio_softc *sc = cookie;
6073 audio_file_t *f;
6074 bool found;
6075 pid_t pid;
6076
6077 TRACE(4, "called");
6078 found = false;
6079
6080 mutex_enter(sc->sc_lock);
6081
6082 SLIST_FOREACH(f, &sc->sc_files, entry) {
6083 audio_track_t *track = f->ptrack;
6084
6085 if (track == NULL)
6086 continue;
6087
6088 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
6089 (int)track->seq,
6090 track->outbuf.head,
6091 track->outbuf.used,
6092 track->outbuf.capacity);
6093
6094 /*
6095 * Send a signal if the process is async mode and
6096 * used is lower than lowat.
6097 */
6098 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6099 !track->is_pause) {
6100 /* For selnotify */
6101 found = true;
6102 /* For SIGIO */
6103 pid = f->async_audio;
6104 if (pid != 0) {
6105 TRACEF(4, f, "sending SIGIO %d", pid);
6106 audio_psignal(sc, pid, SIGIO);
6107 }
6108 }
6109 }
6110
6111 /*
6112 * Notify for select/poll when someone become writable.
6113 * It needs sc_lock (and not sc_intr_lock).
6114 */
6115 if (found) {
6116 TRACE(4, "selnotify");
6117 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6118 KNOTE(&sc->sc_wsel.sel_klist, 0);
6119 }
6120
6121 /* Notify to audio_write() that outbuf available. */
6122 cv_broadcast(&sc->sc_pmixer->outcv);
6123
6124 mutex_exit(sc->sc_lock);
6125 }
6126
6127 /*
6128 * Check (and convert) the format *p came from userland.
6129 * If successful, it writes back the converted format to *p if necessary
6130 * and returns 0. Otherwise returns errno (*p may change even this case).
6131 */
6132 static int
6133 audio_check_params(audio_format2_t *p)
6134 {
6135
6136 /* Convert obsoleted AUDIO_ENCODING_PCM* */
6137 /* XXX Is this conversion right? */
6138 if (p->encoding == AUDIO_ENCODING_PCM16) {
6139 if (p->precision == 8)
6140 p->encoding = AUDIO_ENCODING_ULINEAR;
6141 else
6142 p->encoding = AUDIO_ENCODING_SLINEAR;
6143 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6144 if (p->precision == 8)
6145 p->encoding = AUDIO_ENCODING_ULINEAR;
6146 else
6147 return EINVAL;
6148 }
6149
6150 /*
6151 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6152 * suffix.
6153 */
6154 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6155 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6156 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6157 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6158
6159 switch (p->encoding) {
6160 case AUDIO_ENCODING_ULAW:
6161 case AUDIO_ENCODING_ALAW:
6162 if (p->precision != 8)
6163 return EINVAL;
6164 break;
6165 case AUDIO_ENCODING_ADPCM:
6166 if (p->precision != 4 && p->precision != 8)
6167 return EINVAL;
6168 break;
6169 case AUDIO_ENCODING_SLINEAR_LE:
6170 case AUDIO_ENCODING_SLINEAR_BE:
6171 case AUDIO_ENCODING_ULINEAR_LE:
6172 case AUDIO_ENCODING_ULINEAR_BE:
6173 if (p->precision != 8 && p->precision != 16 &&
6174 p->precision != 24 && p->precision != 32)
6175 return EINVAL;
6176
6177 /* 8bit format does not have endianness. */
6178 if (p->precision == 8) {
6179 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6180 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6181 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6182 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6183 }
6184
6185 if (p->precision > p->stride)
6186 return EINVAL;
6187 break;
6188 case AUDIO_ENCODING_MPEG_L1_STREAM:
6189 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6190 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6191 case AUDIO_ENCODING_MPEG_L2_STREAM:
6192 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6193 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6194 case AUDIO_ENCODING_AC3:
6195 break;
6196 default:
6197 return EINVAL;
6198 }
6199
6200 /* sanity check # of channels*/
6201 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6202 return EINVAL;
6203
6204 return 0;
6205 }
6206
6207 /*
6208 * Initialize playback and record mixers.
6209 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6210 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6211 * the filter registration information. These four must not be NULL.
6212 * If successful returns 0. Otherwise returns errno.
6213 * Must be called with sc_exlock held and without sc_lock held.
6214 * Must not be called if there are any tracks.
6215 * Caller should check that the initialization succeed by whether
6216 * sc_[pr]mixer is not NULL.
6217 */
6218 static int
6219 audio_mixers_init(struct audio_softc *sc, int mode,
6220 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6221 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6222 {
6223 int error;
6224
6225 KASSERT(phwfmt != NULL);
6226 KASSERT(rhwfmt != NULL);
6227 KASSERT(pfil != NULL);
6228 KASSERT(rfil != NULL);
6229 KASSERT(sc->sc_exlock);
6230
6231 if ((mode & AUMODE_PLAY)) {
6232 if (sc->sc_pmixer == NULL) {
6233 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6234 KM_SLEEP);
6235 } else {
6236 /* destroy() doesn't free memory. */
6237 audio_mixer_destroy(sc, sc->sc_pmixer);
6238 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6239 }
6240 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6241 if (error) {
6242 device_printf(sc->sc_dev,
6243 "configuring playback mode failed with %d\n",
6244 error);
6245 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6246 sc->sc_pmixer = NULL;
6247 return error;
6248 }
6249 }
6250 if ((mode & AUMODE_RECORD)) {
6251 if (sc->sc_rmixer == NULL) {
6252 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6253 KM_SLEEP);
6254 } else {
6255 /* destroy() doesn't free memory. */
6256 audio_mixer_destroy(sc, sc->sc_rmixer);
6257 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6258 }
6259 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6260 if (error) {
6261 device_printf(sc->sc_dev,
6262 "configuring record mode failed with %d\n",
6263 error);
6264 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6265 sc->sc_rmixer = NULL;
6266 return error;
6267 }
6268 }
6269
6270 return 0;
6271 }
6272
6273 /*
6274 * Select a frequency.
6275 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6276 * XXX Better algorithm?
6277 */
6278 static int
6279 audio_select_freq(const struct audio_format *fmt)
6280 {
6281 int freq;
6282 int high;
6283 int low;
6284 int j;
6285
6286 if (fmt->frequency_type == 0) {
6287 low = fmt->frequency[0];
6288 high = fmt->frequency[1];
6289 freq = 48000;
6290 if (low <= freq && freq <= high) {
6291 return freq;
6292 }
6293 freq = 44100;
6294 if (low <= freq && freq <= high) {
6295 return freq;
6296 }
6297 return high;
6298 } else {
6299 for (j = 0; j < fmt->frequency_type; j++) {
6300 if (fmt->frequency[j] == 48000) {
6301 return fmt->frequency[j];
6302 }
6303 }
6304 high = 0;
6305 for (j = 0; j < fmt->frequency_type; j++) {
6306 if (fmt->frequency[j] == 44100) {
6307 return fmt->frequency[j];
6308 }
6309 if (fmt->frequency[j] > high) {
6310 high = fmt->frequency[j];
6311 }
6312 }
6313 return high;
6314 }
6315 }
6316
6317 /*
6318 * Choose the most preferred hardware format.
6319 * If successful, it will store the chosen format into *cand and return 0.
6320 * Otherwise, return errno.
6321 * Must be called without sc_lock held.
6322 */
6323 static int
6324 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6325 {
6326 audio_format_query_t query;
6327 int cand_score;
6328 int score;
6329 int i;
6330 int error;
6331
6332 /*
6333 * Score each formats and choose the highest one.
6334 *
6335 * +---- priority(0-3)
6336 * |+--- encoding/precision
6337 * ||+-- channels
6338 * score = 0x000000PEC
6339 */
6340
6341 cand_score = 0;
6342 for (i = 0; ; i++) {
6343 memset(&query, 0, sizeof(query));
6344 query.index = i;
6345
6346 mutex_enter(sc->sc_lock);
6347 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6348 mutex_exit(sc->sc_lock);
6349 if (error == EINVAL)
6350 break;
6351 if (error)
6352 return error;
6353
6354 #if defined(AUDIO_DEBUG)
6355 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6356 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6357 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6358 query.fmt.priority,
6359 audio_encoding_name(query.fmt.encoding),
6360 query.fmt.validbits,
6361 query.fmt.precision,
6362 query.fmt.channels);
6363 if (query.fmt.frequency_type == 0) {
6364 DPRINTF(1, "{%d-%d",
6365 query.fmt.frequency[0], query.fmt.frequency[1]);
6366 } else {
6367 int j;
6368 for (j = 0; j < query.fmt.frequency_type; j++) {
6369 DPRINTF(1, "%c%d",
6370 (j == 0) ? '{' : ',',
6371 query.fmt.frequency[j]);
6372 }
6373 }
6374 DPRINTF(1, "}\n");
6375 #endif
6376
6377 if ((query.fmt.mode & mode) == 0) {
6378 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6379 mode);
6380 continue;
6381 }
6382
6383 if (query.fmt.priority < 0) {
6384 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6385 continue;
6386 }
6387
6388 /* Score */
6389 score = (query.fmt.priority & 3) * 0x100;
6390 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6391 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6392 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6393 score += 0x20;
6394 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6395 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6396 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6397 score += 0x10;
6398 }
6399 score += query.fmt.channels;
6400
6401 if (score < cand_score) {
6402 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6403 score, cand_score);
6404 continue;
6405 }
6406
6407 /* Update candidate */
6408 cand_score = score;
6409 cand->encoding = query.fmt.encoding;
6410 cand->precision = query.fmt.validbits;
6411 cand->stride = query.fmt.precision;
6412 cand->channels = query.fmt.channels;
6413 cand->sample_rate = audio_select_freq(&query.fmt);
6414 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6415 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6416 cand_score, query.fmt.priority,
6417 audio_encoding_name(query.fmt.encoding),
6418 cand->precision, cand->stride,
6419 cand->channels, cand->sample_rate);
6420 }
6421
6422 if (cand_score == 0) {
6423 DPRINTF(1, "%s no fmt\n", __func__);
6424 return ENXIO;
6425 }
6426 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6427 audio_encoding_name(cand->encoding),
6428 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6429 return 0;
6430 }
6431
6432 /*
6433 * Validate fmt with query_format.
6434 * If fmt is included in the result of query_format, returns 0.
6435 * Otherwise returns EINVAL.
6436 * Must be called without sc_lock held.
6437 */
6438 static int
6439 audio_hw_validate_format(struct audio_softc *sc, int mode,
6440 const audio_format2_t *fmt)
6441 {
6442 audio_format_query_t query;
6443 struct audio_format *q;
6444 int index;
6445 int error;
6446 int j;
6447
6448 for (index = 0; ; index++) {
6449 query.index = index;
6450 mutex_enter(sc->sc_lock);
6451 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6452 mutex_exit(sc->sc_lock);
6453 if (error == EINVAL)
6454 break;
6455 if (error)
6456 return error;
6457
6458 q = &query.fmt;
6459 /*
6460 * Note that fmt is audio_format2_t (precision/stride) but
6461 * q is audio_format_t (validbits/precision).
6462 */
6463 if ((q->mode & mode) == 0) {
6464 continue;
6465 }
6466 if (fmt->encoding != q->encoding) {
6467 continue;
6468 }
6469 if (fmt->precision != q->validbits) {
6470 continue;
6471 }
6472 if (fmt->stride != q->precision) {
6473 continue;
6474 }
6475 if (fmt->channels != q->channels) {
6476 continue;
6477 }
6478 if (q->frequency_type == 0) {
6479 if (fmt->sample_rate < q->frequency[0] ||
6480 fmt->sample_rate > q->frequency[1]) {
6481 continue;
6482 }
6483 } else {
6484 for (j = 0; j < q->frequency_type; j++) {
6485 if (fmt->sample_rate == q->frequency[j])
6486 break;
6487 }
6488 if (j == query.fmt.frequency_type) {
6489 continue;
6490 }
6491 }
6492
6493 /* Matched. */
6494 return 0;
6495 }
6496
6497 return EINVAL;
6498 }
6499
6500 /*
6501 * Set track mixer's format depending on ai->mode.
6502 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6503 * with ai.play.*.
6504 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6505 * with ai.record.*.
6506 * All other fields in ai are ignored.
6507 * If successful returns 0. Otherwise returns errno.
6508 * This function does not roll back even if it fails.
6509 * Must be called with sc_exlock held and without sc_lock held.
6510 */
6511 static int
6512 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6513 {
6514 audio_format2_t phwfmt;
6515 audio_format2_t rhwfmt;
6516 audio_filter_reg_t pfil;
6517 audio_filter_reg_t rfil;
6518 int mode;
6519 int error;
6520
6521 KASSERT(sc->sc_exlock);
6522
6523 /*
6524 * Even when setting either one of playback and recording,
6525 * both must be halted.
6526 */
6527 if (sc->sc_popens + sc->sc_ropens > 0)
6528 return EBUSY;
6529
6530 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6531 return ENOTTY;
6532
6533 mode = ai->mode;
6534 if ((mode & AUMODE_PLAY)) {
6535 phwfmt.encoding = ai->play.encoding;
6536 phwfmt.precision = ai->play.precision;
6537 phwfmt.stride = ai->play.precision;
6538 phwfmt.channels = ai->play.channels;
6539 phwfmt.sample_rate = ai->play.sample_rate;
6540 }
6541 if ((mode & AUMODE_RECORD)) {
6542 rhwfmt.encoding = ai->record.encoding;
6543 rhwfmt.precision = ai->record.precision;
6544 rhwfmt.stride = ai->record.precision;
6545 rhwfmt.channels = ai->record.channels;
6546 rhwfmt.sample_rate = ai->record.sample_rate;
6547 }
6548
6549 /* On non-independent devices, use the same format for both. */
6550 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6551 if (mode == AUMODE_RECORD) {
6552 phwfmt = rhwfmt;
6553 } else {
6554 rhwfmt = phwfmt;
6555 }
6556 mode = AUMODE_PLAY | AUMODE_RECORD;
6557 }
6558
6559 /* Then, unset the direction not exist on the hardware. */
6560 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6561 mode &= ~AUMODE_PLAY;
6562 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6563 mode &= ~AUMODE_RECORD;
6564
6565 /* debug */
6566 if ((mode & AUMODE_PLAY)) {
6567 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6568 audio_encoding_name(phwfmt.encoding),
6569 phwfmt.precision,
6570 phwfmt.stride,
6571 phwfmt.channels,
6572 phwfmt.sample_rate);
6573 }
6574 if ((mode & AUMODE_RECORD)) {
6575 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6576 audio_encoding_name(rhwfmt.encoding),
6577 rhwfmt.precision,
6578 rhwfmt.stride,
6579 rhwfmt.channels,
6580 rhwfmt.sample_rate);
6581 }
6582
6583 /* Check the format */
6584 if ((mode & AUMODE_PLAY)) {
6585 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6586 TRACE(1, "invalid format");
6587 return EINVAL;
6588 }
6589 }
6590 if ((mode & AUMODE_RECORD)) {
6591 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6592 TRACE(1, "invalid format");
6593 return EINVAL;
6594 }
6595 }
6596
6597 /* Configure the mixers. */
6598 memset(&pfil, 0, sizeof(pfil));
6599 memset(&rfil, 0, sizeof(rfil));
6600 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6601 if (error)
6602 return error;
6603
6604 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6605 if (error)
6606 return error;
6607
6608 /*
6609 * Reinitialize the sticky parameters for /dev/sound.
6610 * If the number of the hardware channels becomes less than the number
6611 * of channels that sticky parameters remember, subsequent /dev/sound
6612 * open will fail. To prevent this, reinitialize the sticky
6613 * parameters whenever the hardware format is changed.
6614 */
6615 sc->sc_sound_pparams = params_to_format2(&audio_default);
6616 sc->sc_sound_rparams = params_to_format2(&audio_default);
6617 sc->sc_sound_ppause = false;
6618 sc->sc_sound_rpause = false;
6619
6620 return 0;
6621 }
6622
6623 /*
6624 * Store current mixers format into *ai.
6625 * Must be called with sc_exlock held.
6626 */
6627 static void
6628 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6629 {
6630
6631 KASSERT(sc->sc_exlock);
6632
6633 /*
6634 * There is no stride information in audio_info but it doesn't matter.
6635 * trackmixer always treats stride and precision as the same.
6636 */
6637 AUDIO_INITINFO(ai);
6638 ai->mode = 0;
6639 if (sc->sc_pmixer) {
6640 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6641 ai->play.encoding = fmt->encoding;
6642 ai->play.precision = fmt->precision;
6643 ai->play.channels = fmt->channels;
6644 ai->play.sample_rate = fmt->sample_rate;
6645 ai->mode |= AUMODE_PLAY;
6646 }
6647 if (sc->sc_rmixer) {
6648 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6649 ai->record.encoding = fmt->encoding;
6650 ai->record.precision = fmt->precision;
6651 ai->record.channels = fmt->channels;
6652 ai->record.sample_rate = fmt->sample_rate;
6653 ai->mode |= AUMODE_RECORD;
6654 }
6655 }
6656
6657 /*
6658 * audio_info details:
6659 *
6660 * ai.{play,record}.sample_rate (R/W)
6661 * ai.{play,record}.encoding (R/W)
6662 * ai.{play,record}.precision (R/W)
6663 * ai.{play,record}.channels (R/W)
6664 * These specify the playback or recording format.
6665 * Ignore members within an inactive track.
6666 *
6667 * ai.mode (R/W)
6668 * It specifies the playback or recording mode, AUMODE_*.
6669 * Currently, a mode change operation by ai.mode after opening is
6670 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6671 * However, it's possible to get or to set for backward compatibility.
6672 *
6673 * ai.{hiwat,lowat} (R/W)
6674 * These specify the high water mark and low water mark for playback
6675 * track. The unit is block.
6676 *
6677 * ai.{play,record}.gain (R/W)
6678 * It specifies the HW mixer volume in 0-255.
6679 * It is historical reason that the gain is connected to HW mixer.
6680 *
6681 * ai.{play,record}.balance (R/W)
6682 * It specifies the left-right balance of HW mixer in 0-64.
6683 * 32 means the center.
6684 * It is historical reason that the balance is connected to HW mixer.
6685 *
6686 * ai.{play,record}.port (R/W)
6687 * It specifies the input/output port of HW mixer.
6688 *
6689 * ai.monitor_gain (R/W)
6690 * It specifies the recording monitor gain(?) of HW mixer.
6691 *
6692 * ai.{play,record}.pause (R/W)
6693 * Non-zero means the track is paused.
6694 *
6695 * ai.play.seek (R/-)
6696 * It indicates the number of bytes written but not processed.
6697 * ai.record.seek (R/-)
6698 * It indicates the number of bytes to be able to read.
6699 *
6700 * ai.{play,record}.avail_ports (R/-)
6701 * Mixer info.
6702 *
6703 * ai.{play,record}.buffer_size (R/-)
6704 * It indicates the buffer size in bytes. Internally it means usrbuf.
6705 *
6706 * ai.{play,record}.samples (R/-)
6707 * It indicates the total number of bytes played or recorded.
6708 *
6709 * ai.{play,record}.eof (R/-)
6710 * It indicates the number of times reached EOF(?).
6711 *
6712 * ai.{play,record}.error (R/-)
6713 * Non-zero indicates overflow/underflow has occured.
6714 *
6715 * ai.{play,record}.waiting (R/-)
6716 * Non-zero indicates that other process waits to open.
6717 * It will never happen anymore.
6718 *
6719 * ai.{play,record}.open (R/-)
6720 * Non-zero indicates the direction is opened by this process(?).
6721 * XXX Is this better to indicate that "the device is opened by
6722 * at least one process"?
6723 *
6724 * ai.{play,record}.active (R/-)
6725 * Non-zero indicates that I/O is currently active.
6726 *
6727 * ai.blocksize (R/-)
6728 * It indicates the block size in bytes.
6729 * XXX The blocksize of playback and recording may be different.
6730 */
6731
6732 /*
6733 * Pause consideration:
6734 *
6735 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6736 * operation simple. Note that playback and recording are asymmetric.
6737 *
6738 * For playback,
6739 * 1. Any playback open doesn't start pmixer regardless of initial pause
6740 * state of this track.
6741 * 2. The first write access among playback tracks only starts pmixer
6742 * regardless of this track's pause state.
6743 * 3. Even a pause of the last playback track doesn't stop pmixer.
6744 * 4. The last close of all playback tracks only stops pmixer.
6745 *
6746 * For recording,
6747 * 1. The first recording open only starts rmixer regardless of initial
6748 * pause state of this track.
6749 * 2. Even a pause of the last track doesn't stop rmixer.
6750 * 3. The last close of all recording tracks only stops rmixer.
6751 */
6752
6753 /*
6754 * Set both track's parameters within a file depending on ai.
6755 * Update sc_sound_[pr]* if set.
6756 * Must be called with sc_exlock held and without sc_lock held.
6757 */
6758 static int
6759 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6760 const struct audio_info *ai)
6761 {
6762 const struct audio_prinfo *pi;
6763 const struct audio_prinfo *ri;
6764 audio_track_t *ptrack;
6765 audio_track_t *rtrack;
6766 audio_format2_t pfmt;
6767 audio_format2_t rfmt;
6768 int pchanges;
6769 int rchanges;
6770 int mode;
6771 struct audio_info saved_ai;
6772 audio_format2_t saved_pfmt;
6773 audio_format2_t saved_rfmt;
6774 int error;
6775
6776 KASSERT(sc->sc_exlock);
6777
6778 pi = &ai->play;
6779 ri = &ai->record;
6780 pchanges = 0;
6781 rchanges = 0;
6782
6783 ptrack = file->ptrack;
6784 rtrack = file->rtrack;
6785
6786 #if defined(AUDIO_DEBUG)
6787 if (audiodebug >= 2) {
6788 char buf[256];
6789 char p[64];
6790 int buflen;
6791 int plen;
6792 #define SPRINTF(var, fmt...) do { \
6793 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6794 } while (0)
6795
6796 buflen = 0;
6797 plen = 0;
6798 if (SPECIFIED(pi->encoding))
6799 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6800 if (SPECIFIED(pi->precision))
6801 SPRINTF(p, "/%dbit", pi->precision);
6802 if (SPECIFIED(pi->channels))
6803 SPRINTF(p, "/%dch", pi->channels);
6804 if (SPECIFIED(pi->sample_rate))
6805 SPRINTF(p, "/%dHz", pi->sample_rate);
6806 if (plen > 0)
6807 SPRINTF(buf, ",play.param=%s", p + 1);
6808
6809 plen = 0;
6810 if (SPECIFIED(ri->encoding))
6811 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6812 if (SPECIFIED(ri->precision))
6813 SPRINTF(p, "/%dbit", ri->precision);
6814 if (SPECIFIED(ri->channels))
6815 SPRINTF(p, "/%dch", ri->channels);
6816 if (SPECIFIED(ri->sample_rate))
6817 SPRINTF(p, "/%dHz", ri->sample_rate);
6818 if (plen > 0)
6819 SPRINTF(buf, ",record.param=%s", p + 1);
6820
6821 if (SPECIFIED(ai->mode))
6822 SPRINTF(buf, ",mode=%d", ai->mode);
6823 if (SPECIFIED(ai->hiwat))
6824 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6825 if (SPECIFIED(ai->lowat))
6826 SPRINTF(buf, ",lowat=%d", ai->lowat);
6827 if (SPECIFIED(ai->play.gain))
6828 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6829 if (SPECIFIED(ai->record.gain))
6830 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6831 if (SPECIFIED_CH(ai->play.balance))
6832 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6833 if (SPECIFIED_CH(ai->record.balance))
6834 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6835 if (SPECIFIED(ai->play.port))
6836 SPRINTF(buf, ",play.port=%d", ai->play.port);
6837 if (SPECIFIED(ai->record.port))
6838 SPRINTF(buf, ",record.port=%d", ai->record.port);
6839 if (SPECIFIED(ai->monitor_gain))
6840 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6841 if (SPECIFIED_CH(ai->play.pause))
6842 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6843 if (SPECIFIED_CH(ai->record.pause))
6844 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6845
6846 if (buflen > 0)
6847 TRACE(2, "specified %s", buf + 1);
6848 }
6849 #endif
6850
6851 AUDIO_INITINFO(&saved_ai);
6852 /* XXX shut up gcc */
6853 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6854 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6855
6856 /*
6857 * Set default value and save current parameters.
6858 * For backward compatibility, use sticky parameters for nonexistent
6859 * track.
6860 */
6861 if (ptrack) {
6862 pfmt = ptrack->usrbuf.fmt;
6863 saved_pfmt = ptrack->usrbuf.fmt;
6864 saved_ai.play.pause = ptrack->is_pause;
6865 } else {
6866 pfmt = sc->sc_sound_pparams;
6867 }
6868 if (rtrack) {
6869 rfmt = rtrack->usrbuf.fmt;
6870 saved_rfmt = rtrack->usrbuf.fmt;
6871 saved_ai.record.pause = rtrack->is_pause;
6872 } else {
6873 rfmt = sc->sc_sound_rparams;
6874 }
6875 saved_ai.mode = file->mode;
6876
6877 /*
6878 * Overwrite if specified.
6879 */
6880 mode = file->mode;
6881 if (SPECIFIED(ai->mode)) {
6882 /*
6883 * Setting ai->mode no longer does anything because it's
6884 * prohibited to change playback/recording mode after open
6885 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6886 * keeps the state of AUMODE_PLAY_ALL itself for backward
6887 * compatibility.
6888 * In the internal, only file->mode has the state of
6889 * AUMODE_PLAY_ALL flag and track->mode in both track does
6890 * not have.
6891 */
6892 if ((file->mode & AUMODE_PLAY)) {
6893 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6894 | (ai->mode & AUMODE_PLAY_ALL);
6895 }
6896 }
6897
6898 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
6899 if (pchanges == -1) {
6900 #if defined(AUDIO_DEBUG)
6901 TRACEF(1, file, "check play.params failed: "
6902 "%s %ubit %uch %uHz",
6903 audio_encoding_name(pi->encoding),
6904 pi->precision,
6905 pi->channels,
6906 pi->sample_rate);
6907 #endif
6908 return EINVAL;
6909 }
6910
6911 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
6912 if (rchanges == -1) {
6913 #if defined(AUDIO_DEBUG)
6914 TRACEF(1, file, "check record.params failed: "
6915 "%s %ubit %uch %uHz",
6916 audio_encoding_name(ri->encoding),
6917 ri->precision,
6918 ri->channels,
6919 ri->sample_rate);
6920 #endif
6921 return EINVAL;
6922 }
6923
6924 if (SPECIFIED(ai->mode)) {
6925 pchanges = 1;
6926 rchanges = 1;
6927 }
6928
6929 /*
6930 * Even when setting either one of playback and recording,
6931 * both track must be halted.
6932 */
6933 if (pchanges || rchanges) {
6934 audio_file_clear(sc, file);
6935 #if defined(AUDIO_DEBUG)
6936 char nbuf[16];
6937 char fmtbuf[64];
6938 if (pchanges) {
6939 if (ptrack) {
6940 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
6941 } else {
6942 snprintf(nbuf, sizeof(nbuf), "-");
6943 }
6944 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6945 DPRINTF(1, "audio track#%s play mode: %s\n",
6946 nbuf, fmtbuf);
6947 }
6948 if (rchanges) {
6949 if (rtrack) {
6950 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
6951 } else {
6952 snprintf(nbuf, sizeof(nbuf), "-");
6953 }
6954 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6955 DPRINTF(1, "audio track#%s rec mode: %s\n",
6956 nbuf, fmtbuf);
6957 }
6958 #endif
6959 }
6960
6961 /* Set mixer parameters */
6962 mutex_enter(sc->sc_lock);
6963 error = audio_hw_setinfo(sc, ai, &saved_ai);
6964 mutex_exit(sc->sc_lock);
6965 if (error)
6966 goto abort1;
6967
6968 /*
6969 * Set to track and update sticky parameters.
6970 */
6971 error = 0;
6972 file->mode = mode;
6973
6974 if (SPECIFIED_CH(pi->pause)) {
6975 if (ptrack)
6976 ptrack->is_pause = pi->pause;
6977 sc->sc_sound_ppause = pi->pause;
6978 }
6979 if (pchanges) {
6980 if (ptrack) {
6981 audio_track_lock_enter(ptrack);
6982 error = audio_track_set_format(ptrack, &pfmt);
6983 audio_track_lock_exit(ptrack);
6984 if (error) {
6985 TRACET(1, ptrack, "set play.params failed");
6986 goto abort2;
6987 }
6988 }
6989 sc->sc_sound_pparams = pfmt;
6990 }
6991 /* Change water marks after initializing the buffers. */
6992 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6993 if (ptrack)
6994 audio_track_setinfo_water(ptrack, ai);
6995 }
6996
6997 if (SPECIFIED_CH(ri->pause)) {
6998 if (rtrack)
6999 rtrack->is_pause = ri->pause;
7000 sc->sc_sound_rpause = ri->pause;
7001 }
7002 if (rchanges) {
7003 if (rtrack) {
7004 audio_track_lock_enter(rtrack);
7005 error = audio_track_set_format(rtrack, &rfmt);
7006 audio_track_lock_exit(rtrack);
7007 if (error) {
7008 TRACET(1, rtrack, "set record.params failed");
7009 goto abort3;
7010 }
7011 }
7012 sc->sc_sound_rparams = rfmt;
7013 }
7014
7015 return 0;
7016
7017 /* Rollback */
7018 abort3:
7019 if (error != ENOMEM) {
7020 rtrack->is_pause = saved_ai.record.pause;
7021 audio_track_lock_enter(rtrack);
7022 audio_track_set_format(rtrack, &saved_rfmt);
7023 audio_track_lock_exit(rtrack);
7024 }
7025 sc->sc_sound_rpause = saved_ai.record.pause;
7026 sc->sc_sound_rparams = saved_rfmt;
7027 abort2:
7028 if (ptrack && error != ENOMEM) {
7029 ptrack->is_pause = saved_ai.play.pause;
7030 audio_track_lock_enter(ptrack);
7031 audio_track_set_format(ptrack, &saved_pfmt);
7032 audio_track_lock_exit(ptrack);
7033 }
7034 sc->sc_sound_ppause = saved_ai.play.pause;
7035 sc->sc_sound_pparams = saved_pfmt;
7036 file->mode = saved_ai.mode;
7037 abort1:
7038 mutex_enter(sc->sc_lock);
7039 audio_hw_setinfo(sc, &saved_ai, NULL);
7040 mutex_exit(sc->sc_lock);
7041
7042 return error;
7043 }
7044
7045 /*
7046 * Write SPECIFIED() parameters within info back to fmt.
7047 * Note that track can be NULL here.
7048 * Return value of 1 indicates that fmt is modified.
7049 * Return value of 0 indicates that fmt is not modified.
7050 * Return value of -1 indicates that error EINVAL has occurred.
7051 */
7052 static int
7053 audio_track_setinfo_check(audio_track_t *track,
7054 audio_format2_t *fmt, const struct audio_prinfo *info)
7055 {
7056 const audio_format2_t *hwfmt;
7057 int changes;
7058
7059 changes = 0;
7060 if (SPECIFIED(info->sample_rate)) {
7061 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7062 return -1;
7063 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7064 return -1;
7065 fmt->sample_rate = info->sample_rate;
7066 changes = 1;
7067 }
7068 if (SPECIFIED(info->encoding)) {
7069 fmt->encoding = info->encoding;
7070 changes = 1;
7071 }
7072 if (SPECIFIED(info->precision)) {
7073 fmt->precision = info->precision;
7074 /* we don't have API to specify stride */
7075 fmt->stride = info->precision;
7076 changes = 1;
7077 }
7078 if (SPECIFIED(info->channels)) {
7079 /*
7080 * We can convert between monaural and stereo each other.
7081 * We can reduce than the number of channels that the hardware
7082 * supports.
7083 */
7084 if (info->channels > 2) {
7085 if (track) {
7086 hwfmt = &track->mixer->hwbuf.fmt;
7087 if (info->channels > hwfmt->channels)
7088 return -1;
7089 } else {
7090 /*
7091 * This should never happen.
7092 * If track == NULL, channels should be <= 2.
7093 */
7094 return -1;
7095 }
7096 }
7097 fmt->channels = info->channels;
7098 changes = 1;
7099 }
7100
7101 if (changes) {
7102 if (audio_check_params(fmt) != 0)
7103 return -1;
7104 }
7105
7106 return changes;
7107 }
7108
7109 /*
7110 * Change water marks for playback track if specfied.
7111 */
7112 static void
7113 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7114 {
7115 u_int blks;
7116 u_int maxblks;
7117 u_int blksize;
7118
7119 KASSERT(audio_track_is_playback(track));
7120
7121 blksize = track->usrbuf_blksize;
7122 maxblks = track->usrbuf.capacity / blksize;
7123
7124 if (SPECIFIED(ai->hiwat)) {
7125 blks = ai->hiwat;
7126 if (blks > maxblks)
7127 blks = maxblks;
7128 if (blks < 2)
7129 blks = 2;
7130 track->usrbuf_usedhigh = blks * blksize;
7131 }
7132 if (SPECIFIED(ai->lowat)) {
7133 blks = ai->lowat;
7134 if (blks > maxblks - 1)
7135 blks = maxblks - 1;
7136 track->usrbuf_usedlow = blks * blksize;
7137 }
7138 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7139 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7140 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7141 blksize;
7142 }
7143 }
7144 }
7145
7146 /*
7147 * Set hardware part of *newai.
7148 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7149 * If oldai is specified, previous parameters are stored.
7150 * This function itself does not roll back if error occurred.
7151 * Must be called with sc_lock && sc_exlock held.
7152 */
7153 static int
7154 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7155 struct audio_info *oldai)
7156 {
7157 const struct audio_prinfo *newpi;
7158 const struct audio_prinfo *newri;
7159 struct audio_prinfo *oldpi;
7160 struct audio_prinfo *oldri;
7161 u_int pgain;
7162 u_int rgain;
7163 u_char pbalance;
7164 u_char rbalance;
7165 int error;
7166
7167 KASSERT(mutex_owned(sc->sc_lock));
7168 KASSERT(sc->sc_exlock);
7169
7170 /* XXX shut up gcc */
7171 oldpi = NULL;
7172 oldri = NULL;
7173
7174 newpi = &newai->play;
7175 newri = &newai->record;
7176 if (oldai) {
7177 oldpi = &oldai->play;
7178 oldri = &oldai->record;
7179 }
7180 error = 0;
7181
7182 /*
7183 * It looks like unnecessary to halt HW mixers to set HW mixers.
7184 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7185 */
7186
7187 if (SPECIFIED(newpi->port)) {
7188 if (oldai)
7189 oldpi->port = au_get_port(sc, &sc->sc_outports);
7190 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7191 if (error) {
7192 device_printf(sc->sc_dev,
7193 "setting play.port=%d failed with %d\n",
7194 newpi->port, error);
7195 goto abort;
7196 }
7197 }
7198 if (SPECIFIED(newri->port)) {
7199 if (oldai)
7200 oldri->port = au_get_port(sc, &sc->sc_inports);
7201 error = au_set_port(sc, &sc->sc_inports, newri->port);
7202 if (error) {
7203 device_printf(sc->sc_dev,
7204 "setting record.port=%d failed with %d\n",
7205 newri->port, error);
7206 goto abort;
7207 }
7208 }
7209
7210 /* Backup play.{gain,balance} */
7211 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7212 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7213 if (oldai) {
7214 oldpi->gain = pgain;
7215 oldpi->balance = pbalance;
7216 }
7217 }
7218 /* Backup record.{gain,balance} */
7219 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7220 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7221 if (oldai) {
7222 oldri->gain = rgain;
7223 oldri->balance = rbalance;
7224 }
7225 }
7226 if (SPECIFIED(newpi->gain)) {
7227 error = au_set_gain(sc, &sc->sc_outports,
7228 newpi->gain, pbalance);
7229 if (error) {
7230 device_printf(sc->sc_dev,
7231 "setting play.gain=%d failed with %d\n",
7232 newpi->gain, error);
7233 goto abort;
7234 }
7235 }
7236 if (SPECIFIED(newri->gain)) {
7237 error = au_set_gain(sc, &sc->sc_inports,
7238 newri->gain, rbalance);
7239 if (error) {
7240 device_printf(sc->sc_dev,
7241 "setting record.gain=%d failed with %d\n",
7242 newri->gain, error);
7243 goto abort;
7244 }
7245 }
7246 if (SPECIFIED_CH(newpi->balance)) {
7247 error = au_set_gain(sc, &sc->sc_outports,
7248 pgain, newpi->balance);
7249 if (error) {
7250 device_printf(sc->sc_dev,
7251 "setting play.balance=%d failed with %d\n",
7252 newpi->balance, error);
7253 goto abort;
7254 }
7255 }
7256 if (SPECIFIED_CH(newri->balance)) {
7257 error = au_set_gain(sc, &sc->sc_inports,
7258 rgain, newri->balance);
7259 if (error) {
7260 device_printf(sc->sc_dev,
7261 "setting record.balance=%d failed with %d\n",
7262 newri->balance, error);
7263 goto abort;
7264 }
7265 }
7266
7267 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7268 if (oldai)
7269 oldai->monitor_gain = au_get_monitor_gain(sc);
7270 error = au_set_monitor_gain(sc, newai->monitor_gain);
7271 if (error) {
7272 device_printf(sc->sc_dev,
7273 "setting monitor_gain=%d failed with %d\n",
7274 newai->monitor_gain, error);
7275 goto abort;
7276 }
7277 }
7278
7279 /* XXX TODO */
7280 /* sc->sc_ai = *ai; */
7281
7282 error = 0;
7283 abort:
7284 return error;
7285 }
7286
7287 /*
7288 * Setup the hardware with mixer format phwfmt, rhwfmt.
7289 * The arguments have following restrictions:
7290 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7291 * or both.
7292 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7293 * - On non-independent devices, phwfmt and rhwfmt must have the same
7294 * parameters.
7295 * - pfil and rfil must be zero-filled.
7296 * If successful,
7297 * - pfil, rfil will be filled with filter information specified by the
7298 * hardware driver.
7299 * and then returns 0. Otherwise returns errno.
7300 * Must be called without sc_lock held.
7301 */
7302 static int
7303 audio_hw_set_format(struct audio_softc *sc, int setmode,
7304 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7305 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7306 {
7307 audio_params_t pp, rp;
7308 int error;
7309
7310 KASSERT(phwfmt != NULL);
7311 KASSERT(rhwfmt != NULL);
7312
7313 pp = format2_to_params(phwfmt);
7314 rp = format2_to_params(rhwfmt);
7315
7316 mutex_enter(sc->sc_lock);
7317 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7318 &pp, &rp, pfil, rfil);
7319 if (error) {
7320 mutex_exit(sc->sc_lock);
7321 device_printf(sc->sc_dev,
7322 "set_format failed with %d\n", error);
7323 return error;
7324 }
7325
7326 if (sc->hw_if->commit_settings) {
7327 error = sc->hw_if->commit_settings(sc->hw_hdl);
7328 if (error) {
7329 mutex_exit(sc->sc_lock);
7330 device_printf(sc->sc_dev,
7331 "commit_settings failed with %d\n", error);
7332 return error;
7333 }
7334 }
7335 mutex_exit(sc->sc_lock);
7336
7337 return 0;
7338 }
7339
7340 /*
7341 * Fill audio_info structure. If need_mixerinfo is true, it will also
7342 * fill the hardware mixer information.
7343 * Must be called with sc_exlock held and without sc_lock held.
7344 */
7345 static int
7346 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7347 audio_file_t *file)
7348 {
7349 struct audio_prinfo *ri, *pi;
7350 audio_track_t *track;
7351 audio_track_t *ptrack;
7352 audio_track_t *rtrack;
7353 int gain;
7354
7355 KASSERT(sc->sc_exlock);
7356
7357 ri = &ai->record;
7358 pi = &ai->play;
7359 ptrack = file->ptrack;
7360 rtrack = file->rtrack;
7361
7362 memset(ai, 0, sizeof(*ai));
7363
7364 if (ptrack) {
7365 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7366 pi->channels = ptrack->usrbuf.fmt.channels;
7367 pi->precision = ptrack->usrbuf.fmt.precision;
7368 pi->encoding = ptrack->usrbuf.fmt.encoding;
7369 pi->pause = ptrack->is_pause;
7370 } else {
7371 /* Use sticky parameters if the track is not available. */
7372 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7373 pi->channels = sc->sc_sound_pparams.channels;
7374 pi->precision = sc->sc_sound_pparams.precision;
7375 pi->encoding = sc->sc_sound_pparams.encoding;
7376 pi->pause = sc->sc_sound_ppause;
7377 }
7378 if (rtrack) {
7379 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7380 ri->channels = rtrack->usrbuf.fmt.channels;
7381 ri->precision = rtrack->usrbuf.fmt.precision;
7382 ri->encoding = rtrack->usrbuf.fmt.encoding;
7383 ri->pause = rtrack->is_pause;
7384 } else {
7385 /* Use sticky parameters if the track is not available. */
7386 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7387 ri->channels = sc->sc_sound_rparams.channels;
7388 ri->precision = sc->sc_sound_rparams.precision;
7389 ri->encoding = sc->sc_sound_rparams.encoding;
7390 ri->pause = sc->sc_sound_rpause;
7391 }
7392
7393 if (ptrack) {
7394 pi->seek = ptrack->usrbuf.used;
7395 pi->samples = ptrack->usrbuf_stamp;
7396 pi->eof = ptrack->eofcounter;
7397 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7398 pi->open = 1;
7399 pi->buffer_size = ptrack->usrbuf.capacity;
7400 }
7401 pi->waiting = 0; /* open never hangs */
7402 pi->active = sc->sc_pbusy;
7403
7404 if (rtrack) {
7405 ri->seek = rtrack->usrbuf.used;
7406 ri->samples = rtrack->usrbuf_stamp;
7407 ri->eof = 0;
7408 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7409 ri->open = 1;
7410 ri->buffer_size = rtrack->usrbuf.capacity;
7411 }
7412 ri->waiting = 0; /* open never hangs */
7413 ri->active = sc->sc_rbusy;
7414
7415 /*
7416 * XXX There may be different number of channels between playback
7417 * and recording, so that blocksize also may be different.
7418 * But struct audio_info has an united blocksize...
7419 * Here, I use play info precedencely if ptrack is available,
7420 * otherwise record info.
7421 *
7422 * XXX hiwat/lowat is a playback-only parameter. What should I
7423 * return for a record-only descriptor?
7424 */
7425 track = ptrack ? ptrack : rtrack;
7426 if (track) {
7427 ai->blocksize = track->usrbuf_blksize;
7428 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7429 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7430 }
7431 ai->mode = file->mode;
7432
7433 /*
7434 * For backward compatibility, we have to pad these five fields
7435 * a fake non-zero value even if there are no tracks.
7436 */
7437 if (ptrack == NULL)
7438 pi->buffer_size = 65536;
7439 if (rtrack == NULL)
7440 ri->buffer_size = 65536;
7441 if (ptrack == NULL && rtrack == NULL) {
7442 ai->blocksize = 2048;
7443 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7444 ai->lowat = ai->hiwat * 3 / 4;
7445 }
7446
7447 if (need_mixerinfo) {
7448 mutex_enter(sc->sc_lock);
7449
7450 pi->port = au_get_port(sc, &sc->sc_outports);
7451 ri->port = au_get_port(sc, &sc->sc_inports);
7452
7453 pi->avail_ports = sc->sc_outports.allports;
7454 ri->avail_ports = sc->sc_inports.allports;
7455
7456 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7457 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7458
7459 if (sc->sc_monitor_port != -1) {
7460 gain = au_get_monitor_gain(sc);
7461 if (gain != -1)
7462 ai->monitor_gain = gain;
7463 }
7464 mutex_exit(sc->sc_lock);
7465 }
7466
7467 return 0;
7468 }
7469
7470 /*
7471 * Return true if playback is configured.
7472 * This function can be used after audioattach.
7473 */
7474 static bool
7475 audio_can_playback(struct audio_softc *sc)
7476 {
7477
7478 return (sc->sc_pmixer != NULL);
7479 }
7480
7481 /*
7482 * Return true if recording is configured.
7483 * This function can be used after audioattach.
7484 */
7485 static bool
7486 audio_can_capture(struct audio_softc *sc)
7487 {
7488
7489 return (sc->sc_rmixer != NULL);
7490 }
7491
7492 /*
7493 * Get the afp->index'th item from the valid one of format[].
7494 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7495 *
7496 * This is common routines for query_format.
7497 * If your hardware driver has struct audio_format[], the simplest case
7498 * you can write your query_format interface as follows:
7499 *
7500 * struct audio_format foo_format[] = { ... };
7501 *
7502 * int
7503 * foo_query_format(void *hdl, audio_format_query_t *afp)
7504 * {
7505 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7506 * }
7507 */
7508 int
7509 audio_query_format(const struct audio_format *format, int nformats,
7510 audio_format_query_t *afp)
7511 {
7512 const struct audio_format *f;
7513 int idx;
7514 int i;
7515
7516 idx = 0;
7517 for (i = 0; i < nformats; i++) {
7518 f = &format[i];
7519 if (!AUFMT_IS_VALID(f))
7520 continue;
7521 if (afp->index == idx) {
7522 afp->fmt = *f;
7523 return 0;
7524 }
7525 idx++;
7526 }
7527 return EINVAL;
7528 }
7529
7530 /*
7531 * This function is provided for the hardware driver's set_format() to
7532 * find index matches with 'param' from array of audio_format_t 'formats'.
7533 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7534 * It returns the matched index and never fails. Because param passed to
7535 * set_format() is selected from query_format().
7536 * This function will be an alternative to auconv_set_converter() to
7537 * find index.
7538 */
7539 int
7540 audio_indexof_format(const struct audio_format *formats, int nformats,
7541 int mode, const audio_params_t *param)
7542 {
7543 const struct audio_format *f;
7544 int index;
7545 int j;
7546
7547 for (index = 0; index < nformats; index++) {
7548 f = &formats[index];
7549
7550 if (!AUFMT_IS_VALID(f))
7551 continue;
7552 if ((f->mode & mode) == 0)
7553 continue;
7554 if (f->encoding != param->encoding)
7555 continue;
7556 if (f->validbits != param->precision)
7557 continue;
7558 if (f->channels != param->channels)
7559 continue;
7560
7561 if (f->frequency_type == 0) {
7562 if (param->sample_rate < f->frequency[0] ||
7563 param->sample_rate > f->frequency[1])
7564 continue;
7565 } else {
7566 for (j = 0; j < f->frequency_type; j++) {
7567 if (param->sample_rate == f->frequency[j])
7568 break;
7569 }
7570 if (j == f->frequency_type)
7571 continue;
7572 }
7573
7574 /* Then, matched */
7575 return index;
7576 }
7577
7578 /* Not matched. This should not be happened. */
7579 panic("%s: cannot find matched format\n", __func__);
7580 }
7581
7582 /*
7583 * Get or set hardware blocksize in msec.
7584 * XXX It's for debug.
7585 */
7586 static int
7587 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7588 {
7589 struct sysctlnode node;
7590 struct audio_softc *sc;
7591 audio_format2_t phwfmt;
7592 audio_format2_t rhwfmt;
7593 audio_filter_reg_t pfil;
7594 audio_filter_reg_t rfil;
7595 int t;
7596 int old_blk_ms;
7597 int mode;
7598 int error;
7599
7600 node = *rnode;
7601 sc = node.sysctl_data;
7602
7603 error = audio_exlock_enter(sc);
7604 if (error)
7605 return error;
7606
7607 old_blk_ms = sc->sc_blk_ms;
7608 t = old_blk_ms;
7609 node.sysctl_data = &t;
7610 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7611 if (error || newp == NULL)
7612 goto abort;
7613
7614 if (t < 0) {
7615 error = EINVAL;
7616 goto abort;
7617 }
7618
7619 if (sc->sc_popens + sc->sc_ropens > 0) {
7620 error = EBUSY;
7621 goto abort;
7622 }
7623 sc->sc_blk_ms = t;
7624 mode = 0;
7625 if (sc->sc_pmixer) {
7626 mode |= AUMODE_PLAY;
7627 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7628 }
7629 if (sc->sc_rmixer) {
7630 mode |= AUMODE_RECORD;
7631 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7632 }
7633
7634 /* re-init hardware */
7635 memset(&pfil, 0, sizeof(pfil));
7636 memset(&rfil, 0, sizeof(rfil));
7637 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7638 if (error) {
7639 goto abort;
7640 }
7641
7642 /* re-init track mixer */
7643 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7644 if (error) {
7645 /* Rollback */
7646 sc->sc_blk_ms = old_blk_ms;
7647 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7648 goto abort;
7649 }
7650 error = 0;
7651 abort:
7652 audio_exlock_exit(sc);
7653 return error;
7654 }
7655
7656 /*
7657 * Get or set multiuser mode.
7658 */
7659 static int
7660 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7661 {
7662 struct sysctlnode node;
7663 struct audio_softc *sc;
7664 bool t;
7665 int error;
7666
7667 node = *rnode;
7668 sc = node.sysctl_data;
7669
7670 error = audio_exlock_enter(sc);
7671 if (error)
7672 return error;
7673
7674 t = sc->sc_multiuser;
7675 node.sysctl_data = &t;
7676 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7677 if (error || newp == NULL)
7678 goto abort;
7679
7680 sc->sc_multiuser = t;
7681 error = 0;
7682 abort:
7683 audio_exlock_exit(sc);
7684 return error;
7685 }
7686
7687 #if defined(AUDIO_DEBUG)
7688 /*
7689 * Get or set debug verbose level. (0..4)
7690 * XXX It's for debug.
7691 * XXX It is not separated per device.
7692 */
7693 static int
7694 audio_sysctl_debug(SYSCTLFN_ARGS)
7695 {
7696 struct sysctlnode node;
7697 int t;
7698 int error;
7699
7700 node = *rnode;
7701 t = audiodebug;
7702 node.sysctl_data = &t;
7703 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7704 if (error || newp == NULL)
7705 return error;
7706
7707 if (t < 0 || t > 4)
7708 return EINVAL;
7709 audiodebug = t;
7710 printf("audio: audiodebug = %d\n", audiodebug);
7711 return 0;
7712 }
7713 #endif /* AUDIO_DEBUG */
7714
7715 #ifdef AUDIO_PM_IDLE
7716 static void
7717 audio_idle(void *arg)
7718 {
7719 device_t dv = arg;
7720 struct audio_softc *sc = device_private(dv);
7721
7722 #ifdef PNP_DEBUG
7723 extern int pnp_debug_idle;
7724 if (pnp_debug_idle)
7725 printf("%s: idle handler called\n", device_xname(dv));
7726 #endif
7727
7728 sc->sc_idle = true;
7729
7730 /* XXX joerg Make pmf_device_suspend handle children? */
7731 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7732 return;
7733
7734 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7735 pmf_device_resume(dv, PMF_Q_SELF);
7736 }
7737
7738 static void
7739 audio_activity(device_t dv, devactive_t type)
7740 {
7741 struct audio_softc *sc = device_private(dv);
7742
7743 if (type != DVA_SYSTEM)
7744 return;
7745
7746 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7747
7748 sc->sc_idle = false;
7749 if (!device_is_active(dv)) {
7750 /* XXX joerg How to deal with a failing resume... */
7751 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7752 pmf_device_resume(dv, PMF_Q_SELF);
7753 }
7754 }
7755 #endif
7756
7757 static bool
7758 audio_suspend(device_t dv, const pmf_qual_t *qual)
7759 {
7760 struct audio_softc *sc = device_private(dv);
7761 int error;
7762
7763 error = audio_exlock_mutex_enter(sc);
7764 if (error)
7765 return error;
7766 audio_mixer_capture(sc);
7767
7768 /* Halts mixers but don't clear busy flag for resume */
7769 if (sc->sc_pbusy) {
7770 audio_pmixer_halt(sc);
7771 sc->sc_pbusy = true;
7772 }
7773 if (sc->sc_rbusy) {
7774 audio_rmixer_halt(sc);
7775 sc->sc_rbusy = true;
7776 }
7777
7778 #ifdef AUDIO_PM_IDLE
7779 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7780 #endif
7781 audio_exlock_mutex_exit(sc);
7782
7783 return true;
7784 }
7785
7786 static bool
7787 audio_resume(device_t dv, const pmf_qual_t *qual)
7788 {
7789 struct audio_softc *sc = device_private(dv);
7790 struct audio_info ai;
7791 int error;
7792
7793 error = audio_exlock_mutex_enter(sc);
7794 if (error)
7795 return error;
7796
7797 audio_mixer_restore(sc);
7798 /* XXX ? */
7799 AUDIO_INITINFO(&ai);
7800 audio_hw_setinfo(sc, &ai, NULL);
7801
7802 if (sc->sc_pbusy)
7803 audio_pmixer_start(sc, true);
7804 if (sc->sc_rbusy)
7805 audio_rmixer_start(sc);
7806
7807 audio_exlock_mutex_exit(sc);
7808
7809 return true;
7810 }
7811
7812 #if defined(AUDIO_DEBUG)
7813 static void
7814 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7815 {
7816 int n;
7817
7818 n = 0;
7819 n += snprintf(buf + n, bufsize - n, "%s",
7820 audio_encoding_name(fmt->encoding));
7821 if (fmt->precision == fmt->stride) {
7822 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7823 } else {
7824 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7825 fmt->precision, fmt->stride);
7826 }
7827
7828 snprintf(buf + n, bufsize - n, " %uch %uHz",
7829 fmt->channels, fmt->sample_rate);
7830 }
7831 #endif
7832
7833 #if defined(AUDIO_DEBUG)
7834 static void
7835 audio_print_format2(const char *s, const audio_format2_t *fmt)
7836 {
7837 char fmtstr[64];
7838
7839 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7840 printf("%s %s\n", s, fmtstr);
7841 }
7842 #endif
7843
7844 #ifdef DIAGNOSTIC
7845 void
7846 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7847 {
7848
7849 KASSERTMSG(fmt, "called from %s", where);
7850
7851 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7852 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7853 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7854 "called from %s: fmt->stride=%d", where, fmt->stride);
7855 } else {
7856 KASSERTMSG(fmt->stride % NBBY == 0,
7857 "called from %s: fmt->stride=%d", where, fmt->stride);
7858 }
7859 KASSERTMSG(fmt->precision <= fmt->stride,
7860 "called from %s: fmt->precision=%d fmt->stride=%d",
7861 where, fmt->precision, fmt->stride);
7862 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7863 "called from %s: fmt->channels=%d", where, fmt->channels);
7864
7865 /* XXX No check for encodings? */
7866 }
7867
7868 void
7869 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7870 {
7871
7872 KASSERT(arg != NULL);
7873 KASSERT(arg->src != NULL);
7874 KASSERT(arg->dst != NULL);
7875 audio_diagnostic_format2(where, arg->srcfmt);
7876 audio_diagnostic_format2(where, arg->dstfmt);
7877 KASSERT(arg->count > 0);
7878 }
7879
7880 void
7881 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7882 {
7883
7884 KASSERTMSG(ring, "called from %s", where);
7885 audio_diagnostic_format2(where, &ring->fmt);
7886 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7887 "called from %s: ring->capacity=%d", where, ring->capacity);
7888 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7889 "called from %s: ring->used=%d ring->capacity=%d",
7890 where, ring->used, ring->capacity);
7891 if (ring->capacity == 0) {
7892 KASSERTMSG(ring->mem == NULL,
7893 "called from %s: capacity == 0 but mem != NULL", where);
7894 } else {
7895 KASSERTMSG(ring->mem != NULL,
7896 "called from %s: capacity != 0 but mem == NULL", where);
7897 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7898 "called from %s: ring->head=%d ring->capacity=%d",
7899 where, ring->head, ring->capacity);
7900 }
7901 }
7902 #endif /* DIAGNOSTIC */
7903
7904
7905 /*
7906 * Mixer driver
7907 */
7908
7909 /*
7910 * Must be called without sc_lock held.
7911 */
7912 int
7913 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7914 struct lwp *l)
7915 {
7916 struct file *fp;
7917 audio_file_t *af;
7918 int error, fd;
7919
7920 TRACE(1, "flags=0x%x", flags);
7921
7922 error = fd_allocfile(&fp, &fd);
7923 if (error)
7924 return error;
7925
7926 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7927 af->sc = sc;
7928 af->dev = dev;
7929
7930 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7931 KASSERT(error == EMOVEFD);
7932
7933 return error;
7934 }
7935
7936 /*
7937 * Add a process to those to be signalled on mixer activity.
7938 * If the process has already been added, do nothing.
7939 * Must be called with sc_exlock held and without sc_lock held.
7940 */
7941 static void
7942 mixer_async_add(struct audio_softc *sc, pid_t pid)
7943 {
7944 int i;
7945
7946 KASSERT(sc->sc_exlock);
7947
7948 /* If already exists, returns without doing anything. */
7949 for (i = 0; i < sc->sc_am_used; i++) {
7950 if (sc->sc_am[i] == pid)
7951 return;
7952 }
7953
7954 /* Extend array if necessary. */
7955 if (sc->sc_am_used >= sc->sc_am_capacity) {
7956 sc->sc_am_capacity += AM_CAPACITY;
7957 sc->sc_am = kern_realloc(sc->sc_am,
7958 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
7959 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
7960 }
7961
7962 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
7963 sc->sc_am[sc->sc_am_used++] = pid;
7964 }
7965
7966 /*
7967 * Remove a process from those to be signalled on mixer activity.
7968 * If the process has not been added, do nothing.
7969 * Must be called with sc_exlock held and without sc_lock held.
7970 */
7971 static void
7972 mixer_async_remove(struct audio_softc *sc, pid_t pid)
7973 {
7974 int i;
7975
7976 KASSERT(sc->sc_exlock);
7977
7978 for (i = 0; i < sc->sc_am_used; i++) {
7979 if (sc->sc_am[i] == pid) {
7980 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
7981 TRACE(2, "am[%d](%d) removed, used=%d",
7982 i, (int)pid, sc->sc_am_used);
7983
7984 /* Empty array if no longer necessary. */
7985 if (sc->sc_am_used == 0) {
7986 kern_free(sc->sc_am);
7987 sc->sc_am = NULL;
7988 sc->sc_am_capacity = 0;
7989 TRACE(2, "released");
7990 }
7991 return;
7992 }
7993 }
7994 }
7995
7996 /*
7997 * Signal all processes waiting for the mixer.
7998 * Must be called with sc_exlock held.
7999 */
8000 static void
8001 mixer_signal(struct audio_softc *sc)
8002 {
8003 proc_t *p;
8004 int i;
8005
8006 KASSERT(sc->sc_exlock);
8007
8008 for (i = 0; i < sc->sc_am_used; i++) {
8009 mutex_enter(proc_lock);
8010 p = proc_find(sc->sc_am[i]);
8011 if (p)
8012 psignal(p, SIGIO);
8013 mutex_exit(proc_lock);
8014 }
8015 }
8016
8017 /*
8018 * Close a mixer device
8019 */
8020 int
8021 mixer_close(struct audio_softc *sc, audio_file_t *file)
8022 {
8023 int error;
8024
8025 error = audio_exlock_enter(sc);
8026 if (error)
8027 return error;
8028 TRACE(1, "");
8029 mixer_async_remove(sc, curproc->p_pid);
8030 audio_exlock_exit(sc);
8031
8032 return 0;
8033 }
8034
8035 /*
8036 * Must be called without sc_lock nor sc_exlock held.
8037 */
8038 int
8039 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8040 struct lwp *l)
8041 {
8042 mixer_devinfo_t *mi;
8043 mixer_ctrl_t *mc;
8044 int error;
8045
8046 TRACE(2, "(%lu,'%c',%lu)",
8047 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8048 error = EINVAL;
8049
8050 /* we can return cached values if we are sleeping */
8051 if (cmd != AUDIO_MIXER_READ) {
8052 mutex_enter(sc->sc_lock);
8053 device_active(sc->sc_dev, DVA_SYSTEM);
8054 mutex_exit(sc->sc_lock);
8055 }
8056
8057 switch (cmd) {
8058 case FIOASYNC:
8059 error = audio_exlock_enter(sc);
8060 if (error)
8061 break;
8062 if (*(int *)addr) {
8063 mixer_async_add(sc, curproc->p_pid);
8064 } else {
8065 mixer_async_remove(sc, curproc->p_pid);
8066 }
8067 audio_exlock_exit(sc);
8068 break;
8069
8070 case AUDIO_GETDEV:
8071 TRACE(2, "AUDIO_GETDEV");
8072 mutex_enter(sc->sc_lock);
8073 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8074 mutex_exit(sc->sc_lock);
8075 break;
8076
8077 case AUDIO_MIXER_DEVINFO:
8078 TRACE(2, "AUDIO_MIXER_DEVINFO");
8079 mi = (mixer_devinfo_t *)addr;
8080
8081 mi->un.v.delta = 0; /* default */
8082 mutex_enter(sc->sc_lock);
8083 error = audio_query_devinfo(sc, mi);
8084 mutex_exit(sc->sc_lock);
8085 break;
8086
8087 case AUDIO_MIXER_READ:
8088 TRACE(2, "AUDIO_MIXER_READ");
8089 mc = (mixer_ctrl_t *)addr;
8090
8091 error = audio_exlock_mutex_enter(sc);
8092 if (error)
8093 break;
8094 if (device_is_active(sc->hw_dev))
8095 error = audio_get_port(sc, mc);
8096 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8097 error = ENXIO;
8098 else {
8099 int dev = mc->dev;
8100 memcpy(mc, &sc->sc_mixer_state[dev],
8101 sizeof(mixer_ctrl_t));
8102 error = 0;
8103 }
8104 audio_exlock_mutex_exit(sc);
8105 break;
8106
8107 case AUDIO_MIXER_WRITE:
8108 TRACE(2, "AUDIO_MIXER_WRITE");
8109 error = audio_exlock_mutex_enter(sc);
8110 if (error)
8111 break;
8112 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8113 if (error) {
8114 audio_exlock_mutex_exit(sc);
8115 break;
8116 }
8117
8118 if (sc->hw_if->commit_settings) {
8119 error = sc->hw_if->commit_settings(sc->hw_hdl);
8120 if (error) {
8121 audio_exlock_mutex_exit(sc);
8122 break;
8123 }
8124 }
8125 mutex_exit(sc->sc_lock);
8126 mixer_signal(sc);
8127 audio_exlock_exit(sc);
8128 break;
8129
8130 default:
8131 if (sc->hw_if->dev_ioctl) {
8132 mutex_enter(sc->sc_lock);
8133 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8134 cmd, addr, flag, l);
8135 mutex_exit(sc->sc_lock);
8136 } else
8137 error = EINVAL;
8138 break;
8139 }
8140 TRACE(2, "(%lu,'%c',%lu) result %d",
8141 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8142 return error;
8143 }
8144
8145 /*
8146 * Must be called with sc_lock held.
8147 */
8148 int
8149 au_portof(struct audio_softc *sc, char *name, int class)
8150 {
8151 mixer_devinfo_t mi;
8152
8153 KASSERT(mutex_owned(sc->sc_lock));
8154
8155 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8156 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8157 return mi.index;
8158 }
8159 return -1;
8160 }
8161
8162 /*
8163 * Must be called with sc_lock held.
8164 */
8165 void
8166 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8167 mixer_devinfo_t *mi, const struct portname *tbl)
8168 {
8169 int i, j;
8170
8171 KASSERT(mutex_owned(sc->sc_lock));
8172
8173 ports->index = mi->index;
8174 if (mi->type == AUDIO_MIXER_ENUM) {
8175 ports->isenum = true;
8176 for(i = 0; tbl[i].name; i++)
8177 for(j = 0; j < mi->un.e.num_mem; j++)
8178 if (strcmp(mi->un.e.member[j].label.name,
8179 tbl[i].name) == 0) {
8180 ports->allports |= tbl[i].mask;
8181 ports->aumask[ports->nports] = tbl[i].mask;
8182 ports->misel[ports->nports] =
8183 mi->un.e.member[j].ord;
8184 ports->miport[ports->nports] =
8185 au_portof(sc, mi->un.e.member[j].label.name,
8186 mi->mixer_class);
8187 if (ports->mixerout != -1 &&
8188 ports->miport[ports->nports] != -1)
8189 ports->isdual = true;
8190 ++ports->nports;
8191 }
8192 } else if (mi->type == AUDIO_MIXER_SET) {
8193 for(i = 0; tbl[i].name; i++)
8194 for(j = 0; j < mi->un.s.num_mem; j++)
8195 if (strcmp(mi->un.s.member[j].label.name,
8196 tbl[i].name) == 0) {
8197 ports->allports |= tbl[i].mask;
8198 ports->aumask[ports->nports] = tbl[i].mask;
8199 ports->misel[ports->nports] =
8200 mi->un.s.member[j].mask;
8201 ports->miport[ports->nports] =
8202 au_portof(sc, mi->un.s.member[j].label.name,
8203 mi->mixer_class);
8204 ++ports->nports;
8205 }
8206 }
8207 }
8208
8209 /*
8210 * Must be called with sc_lock && sc_exlock held.
8211 */
8212 int
8213 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8214 {
8215
8216 KASSERT(mutex_owned(sc->sc_lock));
8217 KASSERT(sc->sc_exlock);
8218
8219 ct->type = AUDIO_MIXER_VALUE;
8220 ct->un.value.num_channels = 2;
8221 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8222 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8223 if (audio_set_port(sc, ct) == 0)
8224 return 0;
8225 ct->un.value.num_channels = 1;
8226 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8227 return audio_set_port(sc, ct);
8228 }
8229
8230 /*
8231 * Must be called with sc_lock && sc_exlock held.
8232 */
8233 int
8234 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8235 {
8236 int error;
8237
8238 KASSERT(mutex_owned(sc->sc_lock));
8239 KASSERT(sc->sc_exlock);
8240
8241 ct->un.value.num_channels = 2;
8242 if (audio_get_port(sc, ct) == 0) {
8243 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8244 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8245 } else {
8246 ct->un.value.num_channels = 1;
8247 error = audio_get_port(sc, ct);
8248 if (error)
8249 return error;
8250 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8251 }
8252 return 0;
8253 }
8254
8255 /*
8256 * Must be called with sc_lock && sc_exlock held.
8257 */
8258 int
8259 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8260 int gain, int balance)
8261 {
8262 mixer_ctrl_t ct;
8263 int i, error;
8264 int l, r;
8265 u_int mask;
8266 int nset;
8267
8268 KASSERT(mutex_owned(sc->sc_lock));
8269 KASSERT(sc->sc_exlock);
8270
8271 if (balance == AUDIO_MID_BALANCE) {
8272 l = r = gain;
8273 } else if (balance < AUDIO_MID_BALANCE) {
8274 l = gain;
8275 r = (balance * gain) / AUDIO_MID_BALANCE;
8276 } else {
8277 r = gain;
8278 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8279 / AUDIO_MID_BALANCE;
8280 }
8281 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8282
8283 if (ports->index == -1) {
8284 usemaster:
8285 if (ports->master == -1)
8286 return 0; /* just ignore it silently */
8287 ct.dev = ports->master;
8288 error = au_set_lr_value(sc, &ct, l, r);
8289 } else {
8290 ct.dev = ports->index;
8291 if (ports->isenum) {
8292 ct.type = AUDIO_MIXER_ENUM;
8293 error = audio_get_port(sc, &ct);
8294 if (error)
8295 return error;
8296 if (ports->isdual) {
8297 if (ports->cur_port == -1)
8298 ct.dev = ports->master;
8299 else
8300 ct.dev = ports->miport[ports->cur_port];
8301 error = au_set_lr_value(sc, &ct, l, r);
8302 } else {
8303 for(i = 0; i < ports->nports; i++)
8304 if (ports->misel[i] == ct.un.ord) {
8305 ct.dev = ports->miport[i];
8306 if (ct.dev == -1 ||
8307 au_set_lr_value(sc, &ct, l, r))
8308 goto usemaster;
8309 else
8310 break;
8311 }
8312 }
8313 } else {
8314 ct.type = AUDIO_MIXER_SET;
8315 error = audio_get_port(sc, &ct);
8316 if (error)
8317 return error;
8318 mask = ct.un.mask;
8319 nset = 0;
8320 for(i = 0; i < ports->nports; i++) {
8321 if (ports->misel[i] & mask) {
8322 ct.dev = ports->miport[i];
8323 if (ct.dev != -1 &&
8324 au_set_lr_value(sc, &ct, l, r) == 0)
8325 nset++;
8326 }
8327 }
8328 if (nset == 0)
8329 goto usemaster;
8330 }
8331 }
8332 if (!error)
8333 mixer_signal(sc);
8334 return error;
8335 }
8336
8337 /*
8338 * Must be called with sc_lock && sc_exlock held.
8339 */
8340 void
8341 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8342 u_int *pgain, u_char *pbalance)
8343 {
8344 mixer_ctrl_t ct;
8345 int i, l, r, n;
8346 int lgain, rgain;
8347
8348 KASSERT(mutex_owned(sc->sc_lock));
8349 KASSERT(sc->sc_exlock);
8350
8351 lgain = AUDIO_MAX_GAIN / 2;
8352 rgain = AUDIO_MAX_GAIN / 2;
8353 if (ports->index == -1) {
8354 usemaster:
8355 if (ports->master == -1)
8356 goto bad;
8357 ct.dev = ports->master;
8358 ct.type = AUDIO_MIXER_VALUE;
8359 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8360 goto bad;
8361 } else {
8362 ct.dev = ports->index;
8363 if (ports->isenum) {
8364 ct.type = AUDIO_MIXER_ENUM;
8365 if (audio_get_port(sc, &ct))
8366 goto bad;
8367 ct.type = AUDIO_MIXER_VALUE;
8368 if (ports->isdual) {
8369 if (ports->cur_port == -1)
8370 ct.dev = ports->master;
8371 else
8372 ct.dev = ports->miport[ports->cur_port];
8373 au_get_lr_value(sc, &ct, &lgain, &rgain);
8374 } else {
8375 for(i = 0; i < ports->nports; i++)
8376 if (ports->misel[i] == ct.un.ord) {
8377 ct.dev = ports->miport[i];
8378 if (ct.dev == -1 ||
8379 au_get_lr_value(sc, &ct,
8380 &lgain, &rgain))
8381 goto usemaster;
8382 else
8383 break;
8384 }
8385 }
8386 } else {
8387 ct.type = AUDIO_MIXER_SET;
8388 if (audio_get_port(sc, &ct))
8389 goto bad;
8390 ct.type = AUDIO_MIXER_VALUE;
8391 lgain = rgain = n = 0;
8392 for(i = 0; i < ports->nports; i++) {
8393 if (ports->misel[i] & ct.un.mask) {
8394 ct.dev = ports->miport[i];
8395 if (ct.dev == -1 ||
8396 au_get_lr_value(sc, &ct, &l, &r))
8397 goto usemaster;
8398 else {
8399 lgain += l;
8400 rgain += r;
8401 n++;
8402 }
8403 }
8404 }
8405 if (n != 0) {
8406 lgain /= n;
8407 rgain /= n;
8408 }
8409 }
8410 }
8411 bad:
8412 if (lgain == rgain) { /* handles lgain==rgain==0 */
8413 *pgain = lgain;
8414 *pbalance = AUDIO_MID_BALANCE;
8415 } else if (lgain < rgain) {
8416 *pgain = rgain;
8417 /* balance should be > AUDIO_MID_BALANCE */
8418 *pbalance = AUDIO_RIGHT_BALANCE -
8419 (AUDIO_MID_BALANCE * lgain) / rgain;
8420 } else /* lgain > rgain */ {
8421 *pgain = lgain;
8422 /* balance should be < AUDIO_MID_BALANCE */
8423 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8424 }
8425 }
8426
8427 /*
8428 * Must be called with sc_lock && sc_exlock held.
8429 */
8430 int
8431 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8432 {
8433 mixer_ctrl_t ct;
8434 int i, error, use_mixerout;
8435
8436 KASSERT(mutex_owned(sc->sc_lock));
8437 KASSERT(sc->sc_exlock);
8438
8439 use_mixerout = 1;
8440 if (port == 0) {
8441 if (ports->allports == 0)
8442 return 0; /* Allow this special case. */
8443 else if (ports->isdual) {
8444 if (ports->cur_port == -1) {
8445 return 0;
8446 } else {
8447 port = ports->aumask[ports->cur_port];
8448 ports->cur_port = -1;
8449 use_mixerout = 0;
8450 }
8451 }
8452 }
8453 if (ports->index == -1)
8454 return EINVAL;
8455 ct.dev = ports->index;
8456 if (ports->isenum) {
8457 if (port & (port-1))
8458 return EINVAL; /* Only one port allowed */
8459 ct.type = AUDIO_MIXER_ENUM;
8460 error = EINVAL;
8461 for(i = 0; i < ports->nports; i++)
8462 if (ports->aumask[i] == port) {
8463 if (ports->isdual && use_mixerout) {
8464 ct.un.ord = ports->mixerout;
8465 ports->cur_port = i;
8466 } else {
8467 ct.un.ord = ports->misel[i];
8468 }
8469 error = audio_set_port(sc, &ct);
8470 break;
8471 }
8472 } else {
8473 ct.type = AUDIO_MIXER_SET;
8474 ct.un.mask = 0;
8475 for(i = 0; i < ports->nports; i++)
8476 if (ports->aumask[i] & port)
8477 ct.un.mask |= ports->misel[i];
8478 if (port != 0 && ct.un.mask == 0)
8479 error = EINVAL;
8480 else
8481 error = audio_set_port(sc, &ct);
8482 }
8483 if (!error)
8484 mixer_signal(sc);
8485 return error;
8486 }
8487
8488 /*
8489 * Must be called with sc_lock && sc_exlock held.
8490 */
8491 int
8492 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8493 {
8494 mixer_ctrl_t ct;
8495 int i, aumask;
8496
8497 KASSERT(mutex_owned(sc->sc_lock));
8498 KASSERT(sc->sc_exlock);
8499
8500 if (ports->index == -1)
8501 return 0;
8502 ct.dev = ports->index;
8503 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8504 if (audio_get_port(sc, &ct))
8505 return 0;
8506 aumask = 0;
8507 if (ports->isenum) {
8508 if (ports->isdual && ports->cur_port != -1) {
8509 if (ports->mixerout == ct.un.ord)
8510 aumask = ports->aumask[ports->cur_port];
8511 else
8512 ports->cur_port = -1;
8513 }
8514 if (aumask == 0)
8515 for(i = 0; i < ports->nports; i++)
8516 if (ports->misel[i] == ct.un.ord)
8517 aumask = ports->aumask[i];
8518 } else {
8519 for(i = 0; i < ports->nports; i++)
8520 if (ct.un.mask & ports->misel[i])
8521 aumask |= ports->aumask[i];
8522 }
8523 return aumask;
8524 }
8525
8526 /*
8527 * It returns 0 if success, otherwise errno.
8528 * Must be called only if sc->sc_monitor_port != -1.
8529 * Must be called with sc_lock && sc_exlock held.
8530 */
8531 static int
8532 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8533 {
8534 mixer_ctrl_t ct;
8535
8536 KASSERT(mutex_owned(sc->sc_lock));
8537 KASSERT(sc->sc_exlock);
8538
8539 ct.dev = sc->sc_monitor_port;
8540 ct.type = AUDIO_MIXER_VALUE;
8541 ct.un.value.num_channels = 1;
8542 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8543 return audio_set_port(sc, &ct);
8544 }
8545
8546 /*
8547 * It returns monitor gain if success, otherwise -1.
8548 * Must be called only if sc->sc_monitor_port != -1.
8549 * Must be called with sc_lock && sc_exlock held.
8550 */
8551 static int
8552 au_get_monitor_gain(struct audio_softc *sc)
8553 {
8554 mixer_ctrl_t ct;
8555
8556 KASSERT(mutex_owned(sc->sc_lock));
8557 KASSERT(sc->sc_exlock);
8558
8559 ct.dev = sc->sc_monitor_port;
8560 ct.type = AUDIO_MIXER_VALUE;
8561 ct.un.value.num_channels = 1;
8562 if (audio_get_port(sc, &ct))
8563 return -1;
8564 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8565 }
8566
8567 /*
8568 * Must be called with sc_lock && sc_exlock held.
8569 */
8570 static int
8571 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8572 {
8573
8574 KASSERT(mutex_owned(sc->sc_lock));
8575 KASSERT(sc->sc_exlock);
8576
8577 return sc->hw_if->set_port(sc->hw_hdl, mc);
8578 }
8579
8580 /*
8581 * Must be called with sc_lock && sc_exlock held.
8582 */
8583 static int
8584 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8585 {
8586
8587 KASSERT(mutex_owned(sc->sc_lock));
8588 KASSERT(sc->sc_exlock);
8589
8590 return sc->hw_if->get_port(sc->hw_hdl, mc);
8591 }
8592
8593 /*
8594 * Must be called with sc_lock && sc_exlock held.
8595 */
8596 static void
8597 audio_mixer_capture(struct audio_softc *sc)
8598 {
8599 mixer_devinfo_t mi;
8600 mixer_ctrl_t *mc;
8601
8602 KASSERT(mutex_owned(sc->sc_lock));
8603 KASSERT(sc->sc_exlock);
8604
8605 for (mi.index = 0;; mi.index++) {
8606 if (audio_query_devinfo(sc, &mi) != 0)
8607 break;
8608 KASSERT(mi.index < sc->sc_nmixer_states);
8609 if (mi.type == AUDIO_MIXER_CLASS)
8610 continue;
8611 mc = &sc->sc_mixer_state[mi.index];
8612 mc->dev = mi.index;
8613 mc->type = mi.type;
8614 mc->un.value.num_channels = mi.un.v.num_channels;
8615 (void)audio_get_port(sc, mc);
8616 }
8617
8618 return;
8619 }
8620
8621 /*
8622 * Must be called with sc_lock && sc_exlock held.
8623 */
8624 static void
8625 audio_mixer_restore(struct audio_softc *sc)
8626 {
8627 mixer_devinfo_t mi;
8628 mixer_ctrl_t *mc;
8629
8630 KASSERT(mutex_owned(sc->sc_lock));
8631 KASSERT(sc->sc_exlock);
8632
8633 for (mi.index = 0; ; mi.index++) {
8634 if (audio_query_devinfo(sc, &mi) != 0)
8635 break;
8636 if (mi.type == AUDIO_MIXER_CLASS)
8637 continue;
8638 mc = &sc->sc_mixer_state[mi.index];
8639 (void)audio_set_port(sc, mc);
8640 }
8641 if (sc->hw_if->commit_settings)
8642 sc->hw_if->commit_settings(sc->hw_hdl);
8643
8644 return;
8645 }
8646
8647 static void
8648 audio_volume_down(device_t dv)
8649 {
8650 struct audio_softc *sc = device_private(dv);
8651 mixer_devinfo_t mi;
8652 int newgain;
8653 u_int gain;
8654 u_char balance;
8655
8656 if (audio_exlock_mutex_enter(sc) != 0)
8657 return;
8658 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8659 mi.index = sc->sc_outports.master;
8660 mi.un.v.delta = 0;
8661 if (audio_query_devinfo(sc, &mi) == 0) {
8662 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8663 newgain = gain - mi.un.v.delta;
8664 if (newgain < AUDIO_MIN_GAIN)
8665 newgain = AUDIO_MIN_GAIN;
8666 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8667 }
8668 }
8669 audio_exlock_mutex_exit(sc);
8670 }
8671
8672 static void
8673 audio_volume_up(device_t dv)
8674 {
8675 struct audio_softc *sc = device_private(dv);
8676 mixer_devinfo_t mi;
8677 u_int gain, newgain;
8678 u_char balance;
8679
8680 if (audio_exlock_mutex_enter(sc) != 0)
8681 return;
8682 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8683 mi.index = sc->sc_outports.master;
8684 mi.un.v.delta = 0;
8685 if (audio_query_devinfo(sc, &mi) == 0) {
8686 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8687 newgain = gain + mi.un.v.delta;
8688 if (newgain > AUDIO_MAX_GAIN)
8689 newgain = AUDIO_MAX_GAIN;
8690 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8691 }
8692 }
8693 audio_exlock_mutex_exit(sc);
8694 }
8695
8696 static void
8697 audio_volume_toggle(device_t dv)
8698 {
8699 struct audio_softc *sc = device_private(dv);
8700 u_int gain, newgain;
8701 u_char balance;
8702
8703 if (audio_exlock_mutex_enter(sc) != 0)
8704 return;
8705 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8706 if (gain != 0) {
8707 sc->sc_lastgain = gain;
8708 newgain = 0;
8709 } else
8710 newgain = sc->sc_lastgain;
8711 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8712 audio_exlock_mutex_exit(sc);
8713 }
8714
8715 /*
8716 * Must be called with sc_lock held.
8717 */
8718 static int
8719 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8720 {
8721
8722 KASSERT(mutex_owned(sc->sc_lock));
8723
8724 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8725 }
8726
8727 #endif /* NAUDIO > 0 */
8728
8729 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8730 #include <sys/param.h>
8731 #include <sys/systm.h>
8732 #include <sys/device.h>
8733 #include <sys/audioio.h>
8734 #include <dev/audio/audio_if.h>
8735 #endif
8736
8737 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8738 int
8739 audioprint(void *aux, const char *pnp)
8740 {
8741 struct audio_attach_args *arg;
8742 const char *type;
8743
8744 if (pnp != NULL) {
8745 arg = aux;
8746 switch (arg->type) {
8747 case AUDIODEV_TYPE_AUDIO:
8748 type = "audio";
8749 break;
8750 case AUDIODEV_TYPE_MIDI:
8751 type = "midi";
8752 break;
8753 case AUDIODEV_TYPE_OPL:
8754 type = "opl";
8755 break;
8756 case AUDIODEV_TYPE_MPU:
8757 type = "mpu";
8758 break;
8759 default:
8760 panic("audioprint: unknown type %d", arg->type);
8761 }
8762 aprint_normal("%s at %s", type, pnp);
8763 }
8764 return UNCONF;
8765 }
8766
8767 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8768
8769 #ifdef _MODULE
8770
8771 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8772
8773 #include "ioconf.c"
8774
8775 #endif
8776
8777 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8778
8779 static int
8780 audio_modcmd(modcmd_t cmd, void *arg)
8781 {
8782 int error = 0;
8783
8784 switch (cmd) {
8785 case MODULE_CMD_INIT:
8786 /* XXX interrupt level? */
8787 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8788 #ifdef _MODULE
8789 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8790 &audio_cdevsw, &audio_cmajor);
8791 if (error)
8792 break;
8793
8794 error = config_init_component(cfdriver_ioconf_audio,
8795 cfattach_ioconf_audio, cfdata_ioconf_audio);
8796 if (error) {
8797 devsw_detach(NULL, &audio_cdevsw);
8798 }
8799 #endif
8800 break;
8801 case MODULE_CMD_FINI:
8802 #ifdef _MODULE
8803 devsw_detach(NULL, &audio_cdevsw);
8804 error = config_fini_component(cfdriver_ioconf_audio,
8805 cfattach_ioconf_audio, cfdata_ioconf_audio);
8806 if (error)
8807 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8808 &audio_cdevsw, &audio_cmajor);
8809 #endif
8810 psref_class_destroy(audio_psref_class);
8811 break;
8812 default:
8813 error = ENOTTY;
8814 break;
8815 }
8816
8817 return error;
8818 }
8819