audio.c revision 1.7 1 /* $NetBSD: audio.c,v 1.7 2019/05/13 08:50:25 nakayama Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - + (*1)
122 * freem - - + (*1)
123 * round_buffersize - x
124 * get_props - x
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * *1 Note: Before 8.0, since these have been called only at attach time,
131 * neither lock were necessary. Currently, on the other hand, since
132 * these may be also called after attach, the thread lock is required.
133 *
134 * In addition, there are two additional locks.
135 *
136 * - file->lock. This is a variable protected by sc_lock and is similar
137 * to the "thread lock". This is one for each file. If any thread
138 * context and software interrupt context who want to access the file
139 * structure, they must acquire this lock before. It protects
140 * descriptor's consistency among multithreaded accesses. Since this
141 * lock uses sc_lock, don't acquire from hardware interrupt context.
142 *
143 * - track->lock. This is an atomic variable and is similar to the
144 * "interrupt lock". This is one for each track. If any thread context
145 * (and software interrupt context) and hardware interrupt context who
146 * want to access some variables on this track, they must acquire this
147 * lock before. It protects track's consistency between hardware
148 * interrupt context and others.
149 */
150
151 #include <sys/cdefs.h>
152 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.7 2019/05/13 08:50:25 nakayama Exp $");
153
154 #ifdef _KERNEL_OPT
155 #include "audio.h"
156 #include "midi.h"
157 #endif
158
159 #if NAUDIO > 0
160
161 #ifdef _KERNEL
162
163 #include <sys/types.h>
164 #include <sys/param.h>
165 #include <sys/atomic.h>
166 #include <sys/audioio.h>
167 #include <sys/conf.h>
168 #include <sys/cpu.h>
169 #include <sys/device.h>
170 #include <sys/fcntl.h>
171 #include <sys/file.h>
172 #include <sys/filedesc.h>
173 #include <sys/intr.h>
174 #include <sys/ioctl.h>
175 #include <sys/kauth.h>
176 #include <sys/kernel.h>
177 #include <sys/kmem.h>
178 #include <sys/malloc.h>
179 #include <sys/mman.h>
180 #include <sys/module.h>
181 #include <sys/poll.h>
182 #include <sys/proc.h>
183 #include <sys/queue.h>
184 #include <sys/select.h>
185 #include <sys/signalvar.h>
186 #include <sys/stat.h>
187 #include <sys/sysctl.h>
188 #include <sys/systm.h>
189 #include <sys/syslog.h>
190 #include <sys/vnode.h>
191
192 #include <dev/audio/audio_if.h>
193 #include <dev/audio/audiovar.h>
194 #include <dev/audio/audiodef.h>
195 #include <dev/audio/linear.h>
196 #include <dev/audio/mulaw.h>
197
198 #include <machine/endian.h>
199
200 #include <uvm/uvm.h>
201
202 #include "ioconf.h"
203 #endif /* _KERNEL */
204
205 /*
206 * 0: No debug logs
207 * 1: action changes like open/close/set_format...
208 * 2: + normal operations like read/write/ioctl...
209 * 3: + TRACEs except interrupt
210 * 4: + TRACEs including interrupt
211 */
212 //#define AUDIO_DEBUG 1
213
214 #if defined(AUDIO_DEBUG)
215
216 int audiodebug = AUDIO_DEBUG;
217 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
218 const char *, va_list);
219 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
220 __printflike(3, 4);
221 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
222 __printflike(3, 4);
223 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
224 __printflike(3, 4);
225
226 /* XXX sloppy memory logger */
227 static void audio_mlog_init(void);
228 static void audio_mlog_free(void);
229 static void audio_mlog_softintr(void *);
230 extern void audio_mlog_flush(void);
231 extern void audio_mlog_printf(const char *, ...);
232
233 static int mlog_refs; /* reference counter */
234 static char *mlog_buf[2]; /* double buffer */
235 static int mlog_buflen; /* buffer length */
236 static int mlog_used; /* used length */
237 static int mlog_full; /* number of dropped lines by buffer full */
238 static int mlog_drop; /* number of dropped lines by busy */
239 static volatile uint32_t mlog_inuse; /* in-use */
240 static int mlog_wpage; /* active page */
241 static void *mlog_sih; /* softint handle */
242
243 static void
244 audio_mlog_init(void)
245 {
246 mlog_refs++;
247 if (mlog_refs > 1)
248 return;
249 mlog_buflen = 4096;
250 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
251 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
252 mlog_used = 0;
253 mlog_full = 0;
254 mlog_drop = 0;
255 mlog_inuse = 0;
256 mlog_wpage = 0;
257 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
258 if (mlog_sih == NULL)
259 printf("%s: softint_establish failed\n", __func__);
260 }
261
262 static void
263 audio_mlog_free(void)
264 {
265 mlog_refs--;
266 if (mlog_refs > 0)
267 return;
268
269 audio_mlog_flush();
270 if (mlog_sih)
271 softint_disestablish(mlog_sih);
272 kmem_free(mlog_buf[0], mlog_buflen);
273 kmem_free(mlog_buf[1], mlog_buflen);
274 }
275
276 /*
277 * Flush memory buffer.
278 * It must not be called from hardware interrupt context.
279 */
280 void
281 audio_mlog_flush(void)
282 {
283 if (mlog_refs == 0)
284 return;
285
286 /* Nothing to do if already in use ? */
287 if (atomic_swap_32(&mlog_inuse, 1) == 1)
288 return;
289
290 int rpage = mlog_wpage;
291 mlog_wpage ^= 1;
292 mlog_buf[mlog_wpage][0] = '\0';
293 mlog_used = 0;
294
295 atomic_swap_32(&mlog_inuse, 0);
296
297 if (mlog_buf[rpage][0] != '\0') {
298 printf("%s", mlog_buf[rpage]);
299 if (mlog_drop > 0)
300 printf("mlog_drop %d\n", mlog_drop);
301 if (mlog_full > 0)
302 printf("mlog_full %d\n", mlog_full);
303 }
304 mlog_full = 0;
305 mlog_drop = 0;
306 }
307
308 static void
309 audio_mlog_softintr(void *cookie)
310 {
311 audio_mlog_flush();
312 }
313
314 void
315 audio_mlog_printf(const char *fmt, ...)
316 {
317 int len;
318 va_list ap;
319
320 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
321 /* already inuse */
322 mlog_drop++;
323 return;
324 }
325
326 va_start(ap, fmt);
327 len = vsnprintf(
328 mlog_buf[mlog_wpage] + mlog_used,
329 mlog_buflen - mlog_used,
330 fmt, ap);
331 va_end(ap);
332
333 mlog_used += len;
334 if (mlog_buflen - mlog_used <= 1) {
335 mlog_full++;
336 }
337
338 atomic_swap_32(&mlog_inuse, 0);
339
340 if (mlog_sih)
341 softint_schedule(mlog_sih);
342 }
343
344 /* trace functions */
345 static void
346 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
347 const char *fmt, va_list ap)
348 {
349 char buf[256];
350 int n;
351
352 n = 0;
353 buf[0] = '\0';
354 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
355 funcname, device_unit(sc->sc_dev), header);
356 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
357
358 if (cpu_intr_p()) {
359 audio_mlog_printf("%s\n", buf);
360 } else {
361 audio_mlog_flush();
362 printf("%s\n", buf);
363 }
364 }
365
366 static void
367 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
368 {
369 va_list ap;
370
371 va_start(ap, fmt);
372 audio_vtrace(sc, funcname, "", fmt, ap);
373 va_end(ap);
374 }
375
376 static void
377 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
378 {
379 char hdr[16];
380 va_list ap;
381
382 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
383 va_start(ap, fmt);
384 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
385 va_end(ap);
386 }
387
388 static void
389 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
390 {
391 char hdr[32];
392 char phdr[16], rhdr[16];
393 va_list ap;
394
395 phdr[0] = '\0';
396 rhdr[0] = '\0';
397 if (file->ptrack)
398 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
399 if (file->rtrack)
400 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
401 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
402
403 va_start(ap, fmt);
404 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
405 va_end(ap);
406 }
407
408 #define DPRINTF(n, fmt...) do { \
409 if (audiodebug >= (n)) { \
410 audio_mlog_flush(); \
411 printf(fmt); \
412 } \
413 } while (0)
414 #define TRACE(n, fmt...) do { \
415 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
416 } while (0)
417 #define TRACET(n, t, fmt...) do { \
418 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
419 } while (0)
420 #define TRACEF(n, f, fmt...) do { \
421 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
422 } while (0)
423
424 struct audio_track_debugbuf {
425 char usrbuf[32];
426 char codec[32];
427 char chvol[32];
428 char chmix[32];
429 char freq[32];
430 char outbuf[32];
431 };
432
433 static void
434 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
435 {
436
437 memset(buf, 0, sizeof(*buf));
438
439 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
440 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
441 if (track->freq.filter)
442 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
443 track->freq.srcbuf.head,
444 track->freq.srcbuf.used,
445 track->freq.srcbuf.capacity);
446 if (track->chmix.filter)
447 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
448 track->chmix.srcbuf.used);
449 if (track->chvol.filter)
450 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
451 track->chvol.srcbuf.used);
452 if (track->codec.filter)
453 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
454 track->codec.srcbuf.used);
455 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
456 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
457 }
458 #else
459 #define DPRINTF(n, fmt...) do { } while (0)
460 #define TRACE(n, fmt, ...) do { } while (0)
461 #define TRACET(n, t, fmt, ...) do { } while (0)
462 #define TRACEF(n, f, fmt, ...) do { } while (0)
463 #endif
464
465 #define SPECIFIED(x) ((x) != ~0)
466 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
467
468 /* Device timeout in msec */
469 #define AUDIO_TIMEOUT (3000)
470
471 /* #define AUDIO_PM_IDLE */
472 #ifdef AUDIO_PM_IDLE
473 int audio_idle_timeout = 30;
474 #endif
475
476 struct portname {
477 const char *name;
478 int mask;
479 };
480
481 static int audiomatch(device_t, cfdata_t, void *);
482 static void audioattach(device_t, device_t, void *);
483 static int audiodetach(device_t, int);
484 static int audioactivate(device_t, enum devact);
485 static void audiochilddet(device_t, device_t);
486 static int audiorescan(device_t, const char *, const int *);
487
488 static int audio_modcmd(modcmd_t, void *);
489
490 #ifdef AUDIO_PM_IDLE
491 static void audio_idle(void *);
492 static void audio_activity(device_t, devactive_t);
493 #endif
494
495 static bool audio_suspend(device_t dv, const pmf_qual_t *);
496 static bool audio_resume(device_t dv, const pmf_qual_t *);
497 static void audio_volume_down(device_t);
498 static void audio_volume_up(device_t);
499 static void audio_volume_toggle(device_t);
500
501 static void audio_mixer_capture(struct audio_softc *);
502 static void audio_mixer_restore(struct audio_softc *);
503
504 static void audio_softintr_rd(void *);
505 static void audio_softintr_wr(void *);
506
507 static int audio_enter_exclusive(struct audio_softc *);
508 static void audio_exit_exclusive(struct audio_softc *);
509 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
510 static int audio_file_acquire(struct audio_softc *, audio_file_t *);
511 static void audio_file_release(struct audio_softc *, audio_file_t *);
512
513 static int audioclose(struct file *);
514 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
515 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
516 static int audioioctl(struct file *, u_long, void *);
517 static int audiopoll(struct file *, int);
518 static int audiokqfilter(struct file *, struct knote *);
519 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
520 struct uvm_object **, int *);
521 static int audiostat(struct file *, struct stat *);
522
523 static void filt_audiowrite_detach(struct knote *);
524 static int filt_audiowrite_event(struct knote *, long);
525 static void filt_audioread_detach(struct knote *);
526 static int filt_audioread_event(struct knote *, long);
527
528 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
529 struct audiobell_arg *);
530 static int audio_close(struct audio_softc *, audio_file_t *);
531 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
532 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
533 static void audio_file_clear(struct audio_softc *, audio_file_t *);
534 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
535 struct lwp *, audio_file_t *);
536 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
537 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
538 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
539 struct uvm_object **, int *, audio_file_t *);
540
541 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
542
543 static void audio_pintr(void *);
544 static void audio_rintr(void *);
545
546 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
547
548 static __inline int audio_track_readablebytes(const audio_track_t *);
549 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
550 const struct audio_info *);
551 static int audio_track_setinfo_check(audio_format2_t *,
552 const struct audio_prinfo *);
553 static void audio_track_setinfo_water(audio_track_t *,
554 const struct audio_info *);
555 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
556 struct audio_info *);
557 static int audio_hw_set_format(struct audio_softc *, int,
558 audio_format2_t *, audio_format2_t *,
559 audio_filter_reg_t *, audio_filter_reg_t *);
560 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
561 audio_file_t *);
562 static int audio_get_props(struct audio_softc *);
563 static bool audio_can_playback(struct audio_softc *);
564 static bool audio_can_capture(struct audio_softc *);
565 static int audio_check_params(audio_format2_t *);
566 static int audio_mixers_init(struct audio_softc *sc, int,
567 const audio_format2_t *, const audio_format2_t *,
568 const audio_filter_reg_t *, const audio_filter_reg_t *);
569 static int audio_select_freq(const struct audio_format *);
570 static int audio_hw_probe(struct audio_softc *, int, int *,
571 audio_format2_t *, audio_format2_t *);
572 static int audio_hw_probe_fmt(struct audio_softc *, audio_format2_t *, int);
573 static int audio_hw_validate_format(struct audio_softc *, int,
574 const audio_format2_t *);
575 static int audio_mixers_set_format(struct audio_softc *,
576 const struct audio_info *);
577 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
578 static int audio_sysctl_volume(SYSCTLFN_PROTO);
579 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
580 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
581 #if defined(AUDIO_DEBUG)
582 static int audio_sysctl_debug(SYSCTLFN_PROTO);
583 #endif
584 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
585 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
586 #endif
587 #if defined(AUDIO_DEBUG)
588 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
589 #endif
590
591 static void *audio_realloc(void *, size_t);
592 static int audio_realloc_usrbuf(audio_track_t *, int);
593 static void audio_free_usrbuf(audio_track_t *);
594
595 static audio_track_t *audio_track_create(struct audio_softc *,
596 audio_trackmixer_t *);
597 static void audio_track_destroy(audio_track_t *);
598 static audio_filter_t audio_track_get_codec(audio_track_t *,
599 const audio_format2_t *, const audio_format2_t *);
600 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
601 static void audio_track_play(audio_track_t *);
602 static int audio_track_drain(struct audio_softc *, audio_track_t *);
603 static void audio_track_record(audio_track_t *);
604 static void audio_track_clear(struct audio_softc *, audio_track_t *);
605
606 static int audio_mixer_init(struct audio_softc *, int,
607 const audio_format2_t *, const audio_filter_reg_t *);
608 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
609 static void audio_pmixer_start(struct audio_softc *, bool);
610 static void audio_pmixer_process(struct audio_softc *);
611 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
612 static void audio_pmixer_output(struct audio_softc *);
613 static int audio_pmixer_halt(struct audio_softc *);
614 static void audio_rmixer_start(struct audio_softc *);
615 static void audio_rmixer_process(struct audio_softc *);
616 static void audio_rmixer_input(struct audio_softc *);
617 static int audio_rmixer_halt(struct audio_softc *);
618
619 static void mixer_init(struct audio_softc *);
620 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
621 static int mixer_close(struct audio_softc *, audio_file_t *);
622 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
623 static void mixer_remove(struct audio_softc *);
624 static void mixer_signal(struct audio_softc *);
625
626 static int au_portof(struct audio_softc *, char *, int);
627
628 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
629 mixer_devinfo_t *, const struct portname *);
630 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
631 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
632 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
633 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
634 u_int *, u_char *);
635 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
636 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
637 static int au_set_monitor_gain(struct audio_softc *, int);
638 static int au_get_monitor_gain(struct audio_softc *);
639 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
640 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
641
642 static __inline struct audio_params
643 format2_to_params(const audio_format2_t *f2)
644 {
645 audio_params_t p;
646
647 /* validbits/precision <-> precision/stride */
648 p.sample_rate = f2->sample_rate;
649 p.channels = f2->channels;
650 p.encoding = f2->encoding;
651 p.validbits = f2->precision;
652 p.precision = f2->stride;
653 return p;
654 }
655
656 static __inline audio_format2_t
657 params_to_format2(const struct audio_params *p)
658 {
659 audio_format2_t f2;
660
661 /* precision/stride <-> validbits/precision */
662 f2.sample_rate = p->sample_rate;
663 f2.channels = p->channels;
664 f2.encoding = p->encoding;
665 f2.precision = p->validbits;
666 f2.stride = p->precision;
667 return f2;
668 }
669
670 /* Return true if this track is a playback track. */
671 static __inline bool
672 audio_track_is_playback(const audio_track_t *track)
673 {
674
675 return ((track->mode & AUMODE_PLAY) != 0);
676 }
677
678 /* Return true if this track is a recording track. */
679 static __inline bool
680 audio_track_is_record(const audio_track_t *track)
681 {
682
683 return ((track->mode & AUMODE_RECORD) != 0);
684 }
685
686 #if 0 /* XXX Not used yet */
687 /*
688 * Convert 0..255 volume used in userland to internal presentation 0..256.
689 */
690 static __inline u_int
691 audio_volume_to_inner(u_int v)
692 {
693
694 return v < 127 ? v : v + 1;
695 }
696
697 /*
698 * Convert 0..256 internal presentation to 0..255 volume used in userland.
699 */
700 static __inline u_int
701 audio_volume_to_outer(u_int v)
702 {
703
704 return v < 127 ? v : v - 1;
705 }
706 #endif /* 0 */
707
708 static dev_type_open(audioopen);
709 /* XXXMRG use more dev_type_xxx */
710
711 const struct cdevsw audio_cdevsw = {
712 .d_open = audioopen,
713 .d_close = noclose,
714 .d_read = noread,
715 .d_write = nowrite,
716 .d_ioctl = noioctl,
717 .d_stop = nostop,
718 .d_tty = notty,
719 .d_poll = nopoll,
720 .d_mmap = nommap,
721 .d_kqfilter = nokqfilter,
722 .d_discard = nodiscard,
723 .d_flag = D_OTHER | D_MPSAFE
724 };
725
726 const struct fileops audio_fileops = {
727 .fo_name = "audio",
728 .fo_read = audioread,
729 .fo_write = audiowrite,
730 .fo_ioctl = audioioctl,
731 .fo_fcntl = fnullop_fcntl,
732 .fo_stat = audiostat,
733 .fo_poll = audiopoll,
734 .fo_close = audioclose,
735 .fo_mmap = audiommap,
736 .fo_kqfilter = audiokqfilter,
737 .fo_restart = fnullop_restart
738 };
739
740 /* The default audio mode: 8 kHz mono mu-law */
741 static const struct audio_params audio_default = {
742 .sample_rate = 8000,
743 .encoding = AUDIO_ENCODING_ULAW,
744 .precision = 8,
745 .validbits = 8,
746 .channels = 1,
747 };
748
749 static const char *encoding_names[] = {
750 "none",
751 AudioEmulaw,
752 AudioEalaw,
753 "pcm16",
754 "pcm8",
755 AudioEadpcm,
756 AudioEslinear_le,
757 AudioEslinear_be,
758 AudioEulinear_le,
759 AudioEulinear_be,
760 AudioEslinear,
761 AudioEulinear,
762 AudioEmpeg_l1_stream,
763 AudioEmpeg_l1_packets,
764 AudioEmpeg_l1_system,
765 AudioEmpeg_l2_stream,
766 AudioEmpeg_l2_packets,
767 AudioEmpeg_l2_system,
768 AudioEac3,
769 };
770
771 /*
772 * Returns encoding name corresponding to AUDIO_ENCODING_*.
773 * Note that it may return a local buffer because it is mainly for debugging.
774 */
775 const char *
776 audio_encoding_name(int encoding)
777 {
778 static char buf[16];
779
780 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
781 return encoding_names[encoding];
782 } else {
783 snprintf(buf, sizeof(buf), "enc=%d", encoding);
784 return buf;
785 }
786 }
787
788 /*
789 * Supported encodings used by AUDIO_GETENC.
790 * index and flags are set by code.
791 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
792 */
793 static const audio_encoding_t audio_encodings[] = {
794 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
795 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
796 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
797 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
798 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
799 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
800 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
801 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
802 #if defined(AUDIO_SUPPORT_LINEAR24)
803 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
804 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
805 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
806 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
807 #endif
808 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
809 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
810 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
811 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
812 };
813
814 static const struct portname itable[] = {
815 { AudioNmicrophone, AUDIO_MICROPHONE },
816 { AudioNline, AUDIO_LINE_IN },
817 { AudioNcd, AUDIO_CD },
818 { 0, 0 }
819 };
820 static const struct portname otable[] = {
821 { AudioNspeaker, AUDIO_SPEAKER },
822 { AudioNheadphone, AUDIO_HEADPHONE },
823 { AudioNline, AUDIO_LINE_OUT },
824 { 0, 0 }
825 };
826
827 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
828 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
829 audiochilddet, DVF_DETACH_SHUTDOWN);
830
831 static int
832 audiomatch(device_t parent, cfdata_t match, void *aux)
833 {
834 struct audio_attach_args *sa;
835
836 sa = aux;
837 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
838 __func__, sa->type, sa, sa->hwif);
839 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
840 }
841
842 static void
843 audioattach(device_t parent, device_t self, void *aux)
844 {
845 struct audio_softc *sc;
846 struct audio_attach_args *sa;
847 const struct audio_hw_if *hw_if;
848 audio_format2_t phwfmt;
849 audio_format2_t rhwfmt;
850 audio_filter_reg_t pfil;
851 audio_filter_reg_t rfil;
852 const struct sysctlnode *node;
853 void *hdlp;
854 bool is_indep;
855 int mode;
856 int props;
857 int error;
858
859 sc = device_private(self);
860 sc->sc_dev = self;
861 sa = (struct audio_attach_args *)aux;
862 hw_if = sa->hwif;
863 hdlp = sa->hdl;
864
865 if (hw_if == NULL || hw_if->get_locks == NULL) {
866 panic("audioattach: missing hw_if method");
867 }
868
869 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
870
871 #ifdef DIAGNOSTIC
872 if (hw_if->query_format == NULL ||
873 hw_if->set_format == NULL ||
874 (hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
875 (hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
876 hw_if->halt_output == NULL ||
877 hw_if->halt_input == NULL ||
878 hw_if->getdev == NULL ||
879 hw_if->set_port == NULL ||
880 hw_if->get_port == NULL ||
881 hw_if->query_devinfo == NULL ||
882 hw_if->get_props == NULL) {
883 aprint_error(": missing method\n");
884 return;
885 }
886 #endif
887
888 sc->hw_if = hw_if;
889 sc->hw_hdl = hdlp;
890 sc->hw_dev = parent;
891
892 sc->sc_blk_ms = AUDIO_BLK_MS;
893 SLIST_INIT(&sc->sc_files);
894 cv_init(&sc->sc_exlockcv, "audiolk");
895
896 mutex_enter(sc->sc_lock);
897 props = audio_get_props(sc);
898 mutex_exit(sc->sc_lock);
899
900 if ((props & AUDIO_PROP_FULLDUPLEX))
901 aprint_normal(": full duplex");
902 else
903 aprint_normal(": half duplex");
904
905 is_indep = (props & AUDIO_PROP_INDEPENDENT);
906 mode = 0;
907 if ((props & AUDIO_PROP_PLAYBACK)) {
908 mode |= AUMODE_PLAY;
909 aprint_normal(", playback");
910 }
911 if ((props & AUDIO_PROP_CAPTURE)) {
912 mode |= AUMODE_RECORD;
913 aprint_normal(", capture");
914 }
915 if ((props & AUDIO_PROP_MMAP) != 0)
916 aprint_normal(", mmap");
917 if (is_indep)
918 aprint_normal(", independent");
919
920 aprint_naive("\n");
921 aprint_normal("\n");
922
923 KASSERT((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0);
924
925 /* probe hw params */
926 memset(&phwfmt, 0, sizeof(phwfmt));
927 memset(&rhwfmt, 0, sizeof(rhwfmt));
928 memset(&pfil, 0, sizeof(pfil));
929 memset(&rfil, 0, sizeof(rfil));
930 mutex_enter(sc->sc_lock);
931 error = audio_hw_probe(sc, is_indep, &mode, &phwfmt, &rhwfmt);
932 if (error) {
933 mutex_exit(sc->sc_lock);
934 aprint_error_dev(self, "audio_hw_probe failed, "
935 "error = %d\n", error);
936 goto bad;
937 }
938 if (mode == 0) {
939 mutex_exit(sc->sc_lock);
940 aprint_error_dev(self, "audio_hw_probe failed, no mode\n");
941 goto bad;
942 }
943 /* Init hardware. */
944 /* hw_probe() also validates [pr]hwfmt. */
945 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
946 if (error) {
947 mutex_exit(sc->sc_lock);
948 aprint_error_dev(self, "audio_hw_set_format failed, "
949 "error = %d\n", error);
950 goto bad;
951 }
952
953 /*
954 * Init track mixers. If at least one direction is available on
955 * attach time, we assume a success.
956 */
957 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
958 mutex_exit(sc->sc_lock);
959 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
960 aprint_error_dev(self, "audio_mixers_init failed, "
961 "error = %d\n", error);
962 goto bad;
963 }
964
965 selinit(&sc->sc_wsel);
966 selinit(&sc->sc_rsel);
967
968 /* Initial parameter of /dev/sound */
969 sc->sc_sound_pparams = params_to_format2(&audio_default);
970 sc->sc_sound_rparams = params_to_format2(&audio_default);
971 sc->sc_sound_ppause = false;
972 sc->sc_sound_rpause = false;
973
974 /* XXX TODO: consider about sc_ai */
975
976 mixer_init(sc);
977 TRACE(2, "inputs ports=0x%x, input master=%d, "
978 "output ports=0x%x, output master=%d",
979 sc->sc_inports.allports, sc->sc_inports.master,
980 sc->sc_outports.allports, sc->sc_outports.master);
981
982 sysctl_createv(&sc->sc_log, 0, NULL, &node,
983 0,
984 CTLTYPE_NODE, device_xname(sc->sc_dev),
985 SYSCTL_DESCR("audio test"),
986 NULL, 0,
987 NULL, 0,
988 CTL_HW,
989 CTL_CREATE, CTL_EOL);
990
991 if (node != NULL) {
992 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
993 CTLFLAG_READWRITE,
994 CTLTYPE_INT, "volume",
995 SYSCTL_DESCR("software volume test"),
996 audio_sysctl_volume, 0, (void *)sc, 0,
997 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
998
999 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1000 CTLFLAG_READWRITE,
1001 CTLTYPE_INT, "blk_ms",
1002 SYSCTL_DESCR("blocksize in msec"),
1003 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1004 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1005
1006 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1007 CTLFLAG_READWRITE,
1008 CTLTYPE_BOOL, "multiuser",
1009 SYSCTL_DESCR("allow multiple user access"),
1010 audio_sysctl_multiuser, 0, (void *)sc, 0,
1011 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1012
1013 #if defined(AUDIO_DEBUG)
1014 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1015 CTLFLAG_READWRITE,
1016 CTLTYPE_INT, "debug",
1017 SYSCTL_DESCR("debug level (0..4)"),
1018 audio_sysctl_debug, 0, (void *)sc, 0,
1019 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1020 #endif
1021 }
1022
1023 #ifdef AUDIO_PM_IDLE
1024 callout_init(&sc->sc_idle_counter, 0);
1025 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1026 #endif
1027
1028 if (!pmf_device_register(self, audio_suspend, audio_resume))
1029 aprint_error_dev(self, "couldn't establish power handler\n");
1030 #ifdef AUDIO_PM_IDLE
1031 if (!device_active_register(self, audio_activity))
1032 aprint_error_dev(self, "couldn't register activity handler\n");
1033 #endif
1034
1035 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1036 audio_volume_down, true))
1037 aprint_error_dev(self, "couldn't add volume down handler\n");
1038 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1039 audio_volume_up, true))
1040 aprint_error_dev(self, "couldn't add volume up handler\n");
1041 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1042 audio_volume_toggle, true))
1043 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1044
1045 #ifdef AUDIO_PM_IDLE
1046 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1047 #endif
1048
1049 #if defined(AUDIO_DEBUG)
1050 audio_mlog_init();
1051 #endif
1052
1053 audiorescan(self, "audio", NULL);
1054 return;
1055
1056 bad:
1057 /* Clearing hw_if means that device is attached but disabled. */
1058 sc->hw_if = NULL;
1059 aprint_error_dev(sc->sc_dev, "disabled\n");
1060 return;
1061 }
1062
1063 /*
1064 * Initialize hardware mixer.
1065 * This function is called from audioattach().
1066 */
1067 static void
1068 mixer_init(struct audio_softc *sc)
1069 {
1070 mixer_devinfo_t mi;
1071 int iclass, mclass, oclass, rclass;
1072 int record_master_found, record_source_found;
1073
1074 iclass = mclass = oclass = rclass = -1;
1075 sc->sc_inports.index = -1;
1076 sc->sc_inports.master = -1;
1077 sc->sc_inports.nports = 0;
1078 sc->sc_inports.isenum = false;
1079 sc->sc_inports.allports = 0;
1080 sc->sc_inports.isdual = false;
1081 sc->sc_inports.mixerout = -1;
1082 sc->sc_inports.cur_port = -1;
1083 sc->sc_outports.index = -1;
1084 sc->sc_outports.master = -1;
1085 sc->sc_outports.nports = 0;
1086 sc->sc_outports.isenum = false;
1087 sc->sc_outports.allports = 0;
1088 sc->sc_outports.isdual = false;
1089 sc->sc_outports.mixerout = -1;
1090 sc->sc_outports.cur_port = -1;
1091 sc->sc_monitor_port = -1;
1092 /*
1093 * Read through the underlying driver's list, picking out the class
1094 * names from the mixer descriptions. We'll need them to decode the
1095 * mixer descriptions on the next pass through the loop.
1096 */
1097 mutex_enter(sc->sc_lock);
1098 for(mi.index = 0; ; mi.index++) {
1099 if (audio_query_devinfo(sc, &mi) != 0)
1100 break;
1101 /*
1102 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1103 * All the other types describe an actual mixer.
1104 */
1105 if (mi.type == AUDIO_MIXER_CLASS) {
1106 if (strcmp(mi.label.name, AudioCinputs) == 0)
1107 iclass = mi.mixer_class;
1108 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1109 mclass = mi.mixer_class;
1110 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1111 oclass = mi.mixer_class;
1112 if (strcmp(mi.label.name, AudioCrecord) == 0)
1113 rclass = mi.mixer_class;
1114 }
1115 }
1116 mutex_exit(sc->sc_lock);
1117
1118 /* Allocate save area. Ensure non-zero allocation. */
1119 sc->sc_nmixer_states = mi.index;
1120 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1121 (sc->sc_nmixer_states + 1), KM_SLEEP);
1122
1123 /*
1124 * This is where we assign each control in the "audio" model, to the
1125 * underlying "mixer" control. We walk through the whole list once,
1126 * assigning likely candidates as we come across them.
1127 */
1128 record_master_found = 0;
1129 record_source_found = 0;
1130 mutex_enter(sc->sc_lock);
1131 for(mi.index = 0; ; mi.index++) {
1132 if (audio_query_devinfo(sc, &mi) != 0)
1133 break;
1134 KASSERT(mi.index < sc->sc_nmixer_states);
1135 if (mi.type == AUDIO_MIXER_CLASS)
1136 continue;
1137 if (mi.mixer_class == iclass) {
1138 /*
1139 * AudioCinputs is only a fallback, when we don't
1140 * find what we're looking for in AudioCrecord, so
1141 * check the flags before accepting one of these.
1142 */
1143 if (strcmp(mi.label.name, AudioNmaster) == 0
1144 && record_master_found == 0)
1145 sc->sc_inports.master = mi.index;
1146 if (strcmp(mi.label.name, AudioNsource) == 0
1147 && record_source_found == 0) {
1148 if (mi.type == AUDIO_MIXER_ENUM) {
1149 int i;
1150 for(i = 0; i < mi.un.e.num_mem; i++)
1151 if (strcmp(mi.un.e.member[i].label.name,
1152 AudioNmixerout) == 0)
1153 sc->sc_inports.mixerout =
1154 mi.un.e.member[i].ord;
1155 }
1156 au_setup_ports(sc, &sc->sc_inports, &mi,
1157 itable);
1158 }
1159 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1160 sc->sc_outports.master == -1)
1161 sc->sc_outports.master = mi.index;
1162 } else if (mi.mixer_class == mclass) {
1163 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1164 sc->sc_monitor_port = mi.index;
1165 } else if (mi.mixer_class == oclass) {
1166 if (strcmp(mi.label.name, AudioNmaster) == 0)
1167 sc->sc_outports.master = mi.index;
1168 if (strcmp(mi.label.name, AudioNselect) == 0)
1169 au_setup_ports(sc, &sc->sc_outports, &mi,
1170 otable);
1171 } else if (mi.mixer_class == rclass) {
1172 /*
1173 * These are the preferred mixers for the audio record
1174 * controls, so set the flags here, but don't check.
1175 */
1176 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1177 sc->sc_inports.master = mi.index;
1178 record_master_found = 1;
1179 }
1180 #if 1 /* Deprecated. Use AudioNmaster. */
1181 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1182 sc->sc_inports.master = mi.index;
1183 record_master_found = 1;
1184 }
1185 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1186 sc->sc_inports.master = mi.index;
1187 record_master_found = 1;
1188 }
1189 #endif
1190 if (strcmp(mi.label.name, AudioNsource) == 0) {
1191 if (mi.type == AUDIO_MIXER_ENUM) {
1192 int i;
1193 for(i = 0; i < mi.un.e.num_mem; i++)
1194 if (strcmp(mi.un.e.member[i].label.name,
1195 AudioNmixerout) == 0)
1196 sc->sc_inports.mixerout =
1197 mi.un.e.member[i].ord;
1198 }
1199 au_setup_ports(sc, &sc->sc_inports, &mi,
1200 itable);
1201 record_source_found = 1;
1202 }
1203 }
1204 }
1205 mutex_exit(sc->sc_lock);
1206 }
1207
1208 static int
1209 audioactivate(device_t self, enum devact act)
1210 {
1211 struct audio_softc *sc = device_private(self);
1212
1213 switch (act) {
1214 case DVACT_DEACTIVATE:
1215 mutex_enter(sc->sc_lock);
1216 sc->sc_dying = true;
1217 cv_broadcast(&sc->sc_exlockcv);
1218 mutex_exit(sc->sc_lock);
1219 return 0;
1220 default:
1221 return EOPNOTSUPP;
1222 }
1223 }
1224
1225 static int
1226 audiodetach(device_t self, int flags)
1227 {
1228 struct audio_softc *sc;
1229 int maj, mn;
1230 int error;
1231
1232 sc = device_private(self);
1233 TRACE(2, "flags=%d", flags);
1234
1235 /* device is not initialized */
1236 if (sc->hw_if == NULL)
1237 return 0;
1238
1239 /* Start draining existing accessors of the device. */
1240 error = config_detach_children(self, flags);
1241 if (error)
1242 return error;
1243
1244 mutex_enter(sc->sc_lock);
1245 sc->sc_dying = true;
1246 cv_broadcast(&sc->sc_exlockcv);
1247 if (sc->sc_pmixer)
1248 cv_broadcast(&sc->sc_pmixer->outcv);
1249 if (sc->sc_rmixer)
1250 cv_broadcast(&sc->sc_rmixer->outcv);
1251 mutex_exit(sc->sc_lock);
1252
1253 /* locate the major number */
1254 maj = cdevsw_lookup_major(&audio_cdevsw);
1255
1256 /*
1257 * Nuke the vnodes for any open instances (calls close).
1258 * Will wait until any activity on the device nodes has ceased.
1259 */
1260 mn = device_unit(self);
1261 vdevgone(maj, mn | SOUND_DEVICE, mn | SOUND_DEVICE, VCHR);
1262 vdevgone(maj, mn | AUDIO_DEVICE, mn | AUDIO_DEVICE, VCHR);
1263 vdevgone(maj, mn | AUDIOCTL_DEVICE, mn | AUDIOCTL_DEVICE, VCHR);
1264 vdevgone(maj, mn | MIXER_DEVICE, mn | MIXER_DEVICE, VCHR);
1265
1266 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1267 audio_volume_down, true);
1268 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1269 audio_volume_up, true);
1270 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1271 audio_volume_toggle, true);
1272
1273 #ifdef AUDIO_PM_IDLE
1274 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1275
1276 device_active_deregister(self, audio_activity);
1277 #endif
1278
1279 pmf_device_deregister(self);
1280
1281 /* Free resources */
1282 mutex_enter(sc->sc_lock);
1283 if (sc->sc_pmixer) {
1284 audio_mixer_destroy(sc, sc->sc_pmixer);
1285 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1286 }
1287 if (sc->sc_rmixer) {
1288 audio_mixer_destroy(sc, sc->sc_rmixer);
1289 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1290 }
1291 mutex_exit(sc->sc_lock);
1292
1293 seldestroy(&sc->sc_wsel);
1294 seldestroy(&sc->sc_rsel);
1295
1296 #ifdef AUDIO_PM_IDLE
1297 callout_destroy(&sc->sc_idle_counter);
1298 #endif
1299
1300 cv_destroy(&sc->sc_exlockcv);
1301
1302 #if defined(AUDIO_DEBUG)
1303 audio_mlog_free();
1304 #endif
1305
1306 return 0;
1307 }
1308
1309 static void
1310 audiochilddet(device_t self, device_t child)
1311 {
1312
1313 /* we hold no child references, so do nothing */
1314 }
1315
1316 static int
1317 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1318 {
1319
1320 if (config_match(parent, cf, aux))
1321 config_attach_loc(parent, cf, locs, aux, NULL);
1322
1323 return 0;
1324 }
1325
1326 static int
1327 audiorescan(device_t self, const char *ifattr, const int *flags)
1328 {
1329 struct audio_softc *sc = device_private(self);
1330
1331 if (!ifattr_match(ifattr, "audio"))
1332 return 0;
1333
1334 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1335
1336 return 0;
1337 }
1338
1339 /*
1340 * Called from hardware driver. This is where the MI audio driver gets
1341 * probed/attached to the hardware driver.
1342 */
1343 device_t
1344 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1345 {
1346 struct audio_attach_args arg;
1347
1348 #ifdef DIAGNOSTIC
1349 if (ahwp == NULL) {
1350 aprint_error("audio_attach_mi: NULL\n");
1351 return 0;
1352 }
1353 #endif
1354 arg.type = AUDIODEV_TYPE_AUDIO;
1355 arg.hwif = ahwp;
1356 arg.hdl = hdlp;
1357 return config_found(dev, &arg, audioprint);
1358 }
1359
1360 /*
1361 * Acquire sc_lock and enter exlock critical section.
1362 * If successful, it returns 0. Otherwise returns errno.
1363 */
1364 static int
1365 audio_enter_exclusive(struct audio_softc *sc)
1366 {
1367 int error;
1368
1369 KASSERT(!mutex_owned(sc->sc_lock));
1370
1371 mutex_enter(sc->sc_lock);
1372 if (sc->sc_dying) {
1373 mutex_exit(sc->sc_lock);
1374 return EIO;
1375 }
1376
1377 while (__predict_false(sc->sc_exlock != 0)) {
1378 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1379 if (sc->sc_dying)
1380 error = EIO;
1381 if (error) {
1382 mutex_exit(sc->sc_lock);
1383 return error;
1384 }
1385 }
1386
1387 /* Acquire */
1388 sc->sc_exlock = 1;
1389 return 0;
1390 }
1391
1392 /*
1393 * Leave exlock critical section and release sc_lock.
1394 * Must be called with sc_lock held.
1395 */
1396 static void
1397 audio_exit_exclusive(struct audio_softc *sc)
1398 {
1399
1400 KASSERT(mutex_owned(sc->sc_lock));
1401 KASSERT(sc->sc_exlock);
1402
1403 /* Leave critical section */
1404 sc->sc_exlock = 0;
1405 cv_broadcast(&sc->sc_exlockcv);
1406 mutex_exit(sc->sc_lock);
1407 }
1408
1409 /*
1410 * Wait for I/O to complete, releasing sc_lock.
1411 * Must be called with sc_lock held.
1412 */
1413 static int
1414 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1415 {
1416 int error;
1417
1418 KASSERT(track);
1419 KASSERT(mutex_owned(sc->sc_lock));
1420
1421 /* Wait for pending I/O to complete. */
1422 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1423 mstohz(AUDIO_TIMEOUT));
1424 if (sc->sc_dying) {
1425 error = EIO;
1426 }
1427 if (error) {
1428 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1429 if (error == EWOULDBLOCK)
1430 device_printf(sc->sc_dev, "device timeout\n");
1431 } else {
1432 TRACET(3, track, "wakeup");
1433 }
1434 return error;
1435 }
1436
1437 /*
1438 * Acquire the file lock.
1439 * If file is acquired successfully, returns 0. Otherwise returns errno.
1440 * In both case, sc_lock is released.
1441 */
1442 static int
1443 audio_file_acquire(struct audio_softc *sc, audio_file_t *file)
1444 {
1445 int error;
1446
1447 KASSERT(!mutex_owned(sc->sc_lock));
1448
1449 mutex_enter(sc->sc_lock);
1450 if (sc->sc_dying) {
1451 mutex_exit(sc->sc_lock);
1452 return EIO;
1453 }
1454
1455 while (__predict_false(file->lock != 0)) {
1456 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1457 if (sc->sc_dying)
1458 error = EIO;
1459 if (error) {
1460 mutex_exit(sc->sc_lock);
1461 return error;
1462 }
1463 }
1464
1465 /* Mark this file locked */
1466 file->lock = 1;
1467 mutex_exit(sc->sc_lock);
1468
1469 return 0;
1470 }
1471
1472 /*
1473 * Release the file lock.
1474 */
1475 static void
1476 audio_file_release(struct audio_softc *sc, audio_file_t *file)
1477 {
1478
1479 KASSERT(!mutex_owned(sc->sc_lock));
1480
1481 mutex_enter(sc->sc_lock);
1482 KASSERT(file->lock);
1483 file->lock = 0;
1484 cv_broadcast(&sc->sc_exlockcv);
1485 mutex_exit(sc->sc_lock);
1486 }
1487
1488 /*
1489 * Try to acquire track lock.
1490 * It doesn't block if the track lock is already aquired.
1491 * Returns true if the track lock was acquired, or false if the track
1492 * lock was already acquired.
1493 */
1494 static __inline bool
1495 audio_track_lock_tryenter(audio_track_t *track)
1496 {
1497 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1498 }
1499
1500 /*
1501 * Acquire track lock.
1502 */
1503 static __inline void
1504 audio_track_lock_enter(audio_track_t *track)
1505 {
1506 /* Don't sleep here. */
1507 while (audio_track_lock_tryenter(track) == false)
1508 ;
1509 }
1510
1511 /*
1512 * Release track lock.
1513 */
1514 static __inline void
1515 audio_track_lock_exit(audio_track_t *track)
1516 {
1517 atomic_swap_uint(&track->lock, 0);
1518 }
1519
1520
1521 static int
1522 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1523 {
1524 struct audio_softc *sc;
1525 int error;
1526
1527 /* Find the device */
1528 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1529 if (sc == NULL || sc->hw_if == NULL)
1530 return ENXIO;
1531
1532 error = audio_enter_exclusive(sc);
1533 if (error)
1534 return error;
1535
1536 device_active(sc->sc_dev, DVA_SYSTEM);
1537 switch (AUDIODEV(dev)) {
1538 case SOUND_DEVICE:
1539 case AUDIO_DEVICE:
1540 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1541 break;
1542 case AUDIOCTL_DEVICE:
1543 error = audioctl_open(dev, sc, flags, ifmt, l);
1544 break;
1545 case MIXER_DEVICE:
1546 error = mixer_open(dev, sc, flags, ifmt, l);
1547 break;
1548 default:
1549 error = ENXIO;
1550 break;
1551 }
1552 audio_exit_exclusive(sc);
1553
1554 return error;
1555 }
1556
1557 static int
1558 audioclose(struct file *fp)
1559 {
1560 struct audio_softc *sc;
1561 audio_file_t *file;
1562 int error;
1563 dev_t dev;
1564
1565 KASSERT(fp->f_audioctx);
1566 file = fp->f_audioctx;
1567 sc = file->sc;
1568 dev = file->dev;
1569
1570 /* Acquire file lock and exlock */
1571 /* XXX what should I do when an error occurs? */
1572 error = audio_file_acquire(sc, file);
1573 if (error)
1574 return error;
1575
1576 device_active(sc->sc_dev, DVA_SYSTEM);
1577 switch (AUDIODEV(dev)) {
1578 case SOUND_DEVICE:
1579 case AUDIO_DEVICE:
1580 error = audio_close(sc, file);
1581 break;
1582 case AUDIOCTL_DEVICE:
1583 error = 0;
1584 break;
1585 case MIXER_DEVICE:
1586 error = mixer_close(sc, file);
1587 break;
1588 default:
1589 error = ENXIO;
1590 break;
1591 }
1592 if (error == 0) {
1593 kmem_free(fp->f_audioctx, sizeof(audio_file_t));
1594 fp->f_audioctx = NULL;
1595 }
1596
1597 /*
1598 * Since file has already been destructed,
1599 * audio_file_release() is not necessary.
1600 */
1601
1602 return error;
1603 }
1604
1605 static int
1606 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1607 int ioflag)
1608 {
1609 struct audio_softc *sc;
1610 audio_file_t *file;
1611 int error;
1612 dev_t dev;
1613
1614 KASSERT(fp->f_audioctx);
1615 file = fp->f_audioctx;
1616 sc = file->sc;
1617 dev = file->dev;
1618
1619 error = audio_file_acquire(sc, file);
1620 if (error)
1621 return error;
1622
1623 if (fp->f_flag & O_NONBLOCK)
1624 ioflag |= IO_NDELAY;
1625
1626 switch (AUDIODEV(dev)) {
1627 case SOUND_DEVICE:
1628 case AUDIO_DEVICE:
1629 error = audio_read(sc, uio, ioflag, file);
1630 break;
1631 case AUDIOCTL_DEVICE:
1632 case MIXER_DEVICE:
1633 error = ENODEV;
1634 break;
1635 default:
1636 error = ENXIO;
1637 break;
1638 }
1639 audio_file_release(sc, file);
1640
1641 return error;
1642 }
1643
1644 static int
1645 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1646 int ioflag)
1647 {
1648 struct audio_softc *sc;
1649 audio_file_t *file;
1650 int error;
1651 dev_t dev;
1652
1653 KASSERT(fp->f_audioctx);
1654 file = fp->f_audioctx;
1655 sc = file->sc;
1656 dev = file->dev;
1657
1658 error = audio_file_acquire(sc, file);
1659 if (error)
1660 return error;
1661
1662 if (fp->f_flag & O_NONBLOCK)
1663 ioflag |= IO_NDELAY;
1664
1665 switch (AUDIODEV(dev)) {
1666 case SOUND_DEVICE:
1667 case AUDIO_DEVICE:
1668 error = audio_write(sc, uio, ioflag, file);
1669 break;
1670 case AUDIOCTL_DEVICE:
1671 case MIXER_DEVICE:
1672 error = ENODEV;
1673 break;
1674 default:
1675 error = ENXIO;
1676 break;
1677 }
1678 audio_file_release(sc, file);
1679
1680 return error;
1681 }
1682
1683 static int
1684 audioioctl(struct file *fp, u_long cmd, void *addr)
1685 {
1686 struct audio_softc *sc;
1687 audio_file_t *file;
1688 struct lwp *l = curlwp;
1689 int error;
1690 dev_t dev;
1691
1692 KASSERT(fp->f_audioctx);
1693 file = fp->f_audioctx;
1694 sc = file->sc;
1695 dev = file->dev;
1696
1697 error = audio_file_acquire(sc, file);
1698 if (error)
1699 return error;
1700
1701 switch (AUDIODEV(dev)) {
1702 case SOUND_DEVICE:
1703 case AUDIO_DEVICE:
1704 case AUDIOCTL_DEVICE:
1705 mutex_enter(sc->sc_lock);
1706 device_active(sc->sc_dev, DVA_SYSTEM);
1707 mutex_exit(sc->sc_lock);
1708 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1709 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1710 else
1711 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1712 file);
1713 break;
1714 case MIXER_DEVICE:
1715 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1716 break;
1717 default:
1718 error = ENXIO;
1719 break;
1720 }
1721 audio_file_release(sc, file);
1722
1723 return error;
1724 }
1725
1726 static int
1727 audiostat(struct file *fp, struct stat *st)
1728 {
1729 audio_file_t *file;
1730
1731 KASSERT(fp->f_audioctx);
1732 file = fp->f_audioctx;
1733
1734 memset(st, 0, sizeof(*st));
1735
1736 st->st_dev = file->dev;
1737 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1738 st->st_gid = kauth_cred_getegid(fp->f_cred);
1739 st->st_mode = S_IFCHR;
1740 return 0;
1741 }
1742
1743 static int
1744 audiopoll(struct file *fp, int events)
1745 {
1746 struct audio_softc *sc;
1747 audio_file_t *file;
1748 struct lwp *l = curlwp;
1749 int revents;
1750 dev_t dev;
1751
1752 KASSERT(fp->f_audioctx);
1753 file = fp->f_audioctx;
1754 sc = file->sc;
1755 dev = file->dev;
1756
1757 if (audio_file_acquire(sc, file) != 0)
1758 return 0;
1759
1760 switch (AUDIODEV(dev)) {
1761 case SOUND_DEVICE:
1762 case AUDIO_DEVICE:
1763 revents = audio_poll(sc, events, l, file);
1764 break;
1765 case AUDIOCTL_DEVICE:
1766 case MIXER_DEVICE:
1767 revents = 0;
1768 break;
1769 default:
1770 revents = POLLERR;
1771 break;
1772 }
1773 audio_file_release(sc, file);
1774
1775 return revents;
1776 }
1777
1778 static int
1779 audiokqfilter(struct file *fp, struct knote *kn)
1780 {
1781 struct audio_softc *sc;
1782 audio_file_t *file;
1783 dev_t dev;
1784 int error;
1785
1786 KASSERT(fp->f_audioctx);
1787 file = fp->f_audioctx;
1788 sc = file->sc;
1789 dev = file->dev;
1790
1791 error = audio_file_acquire(sc, file);
1792 if (error)
1793 return error;
1794
1795 switch (AUDIODEV(dev)) {
1796 case SOUND_DEVICE:
1797 case AUDIO_DEVICE:
1798 error = audio_kqfilter(sc, file, kn);
1799 break;
1800 case AUDIOCTL_DEVICE:
1801 case MIXER_DEVICE:
1802 error = ENODEV;
1803 break;
1804 default:
1805 error = ENXIO;
1806 break;
1807 }
1808 audio_file_release(sc, file);
1809
1810 return error;
1811 }
1812
1813 static int
1814 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1815 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1816 {
1817 struct audio_softc *sc;
1818 audio_file_t *file;
1819 dev_t dev;
1820 int error;
1821
1822 KASSERT(fp->f_audioctx);
1823 file = fp->f_audioctx;
1824 sc = file->sc;
1825 dev = file->dev;
1826
1827 error = audio_file_acquire(sc, file);
1828 if (error)
1829 return error;
1830
1831 mutex_enter(sc->sc_lock);
1832 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1833 mutex_exit(sc->sc_lock);
1834
1835 switch (AUDIODEV(dev)) {
1836 case SOUND_DEVICE:
1837 case AUDIO_DEVICE:
1838 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1839 uobjp, maxprotp, file);
1840 break;
1841 case AUDIOCTL_DEVICE:
1842 case MIXER_DEVICE:
1843 default:
1844 error = ENOTSUP;
1845 break;
1846 }
1847 audio_file_release(sc, file);
1848
1849 return error;
1850 }
1851
1852
1853 /* Exported interfaces for audiobell. */
1854
1855 /*
1856 * Open for audiobell.
1857 * sample_rate, encoding, precision and channels in arg are in-parameter
1858 * and indicates input encoding.
1859 * Stores allocated file to arg->file.
1860 * Stores blocksize to arg->blocksize.
1861 * If successful returns 0, otherwise errno.
1862 */
1863 int
1864 audiobellopen(dev_t dev, struct audiobell_arg *arg)
1865 {
1866 struct audio_softc *sc;
1867 int error;
1868
1869 /* Find the device */
1870 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1871 if (sc == NULL || sc->hw_if == NULL)
1872 return ENXIO;
1873
1874 error = audio_enter_exclusive(sc);
1875 if (error)
1876 return error;
1877
1878 device_active(sc->sc_dev, DVA_SYSTEM);
1879 error = audio_open(dev, sc, FWRITE, 0, curlwp, arg);
1880
1881 audio_exit_exclusive(sc);
1882 return error;
1883 }
1884
1885 /* Close for audiobell */
1886 int
1887 audiobellclose(audio_file_t *file)
1888 {
1889 struct audio_softc *sc;
1890 int error;
1891
1892 sc = file->sc;
1893
1894 /* XXX what should I do when an error occurs? */
1895 error = audio_file_acquire(sc, file);
1896 if (error)
1897 return error;
1898
1899 device_active(sc->sc_dev, DVA_SYSTEM);
1900 error = audio_close(sc, file);
1901
1902 /*
1903 * Since file has already been destructed,
1904 * audio_file_release() is not necessary.
1905 */
1906
1907 return error;
1908 }
1909
1910 /* Playback for audiobell */
1911 int
1912 audiobellwrite(audio_file_t *file, struct uio *uio)
1913 {
1914 struct audio_softc *sc;
1915 int error;
1916
1917 sc = file->sc;
1918 error = audio_file_acquire(sc, file);
1919 if (error)
1920 return error;
1921
1922 error = audio_write(sc, uio, 0, file);
1923
1924 audio_file_release(sc, file);
1925 return error;
1926 }
1927
1928
1929 /*
1930 * Audio driver
1931 */
1932 int
1933 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
1934 struct lwp *l, struct audiobell_arg *bell)
1935 {
1936 struct audio_info ai;
1937 struct file *fp;
1938 audio_file_t *af;
1939 audio_ring_t *hwbuf;
1940 bool fullduplex;
1941 int fd;
1942 int error;
1943
1944 KASSERT(mutex_owned(sc->sc_lock));
1945 KASSERT(sc->sc_exlock);
1946
1947 TRACE(1, "%sflags=0x%x po=%d ro=%d",
1948 (audiodebug >= 3) ? "start " : "",
1949 flags, sc->sc_popens, sc->sc_ropens);
1950
1951 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
1952 af->sc = sc;
1953 af->dev = dev;
1954 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
1955 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
1956 if ((flags & FREAD) != 0 && audio_can_capture(sc))
1957 af->mode |= AUMODE_RECORD;
1958 if (af->mode == 0) {
1959 error = ENXIO;
1960 goto bad1;
1961 }
1962
1963 fullduplex = (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX);
1964
1965 /*
1966 * On half duplex hardware,
1967 * 1. if mode is (PLAY | REC), let mode PLAY.
1968 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
1969 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
1970 */
1971 if (fullduplex == false) {
1972 if ((af->mode & AUMODE_PLAY)) {
1973 if (sc->sc_ropens != 0) {
1974 TRACE(1, "record track already exists");
1975 error = ENODEV;
1976 goto bad1;
1977 }
1978 /* Play takes precedence */
1979 af->mode &= ~AUMODE_RECORD;
1980 }
1981 if ((af->mode & AUMODE_RECORD)) {
1982 if (sc->sc_popens != 0) {
1983 TRACE(1, "play track already exists");
1984 error = ENODEV;
1985 goto bad1;
1986 }
1987 }
1988 }
1989
1990 /* Create tracks */
1991 if ((af->mode & AUMODE_PLAY))
1992 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
1993 if ((af->mode & AUMODE_RECORD))
1994 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
1995
1996 /* Set parameters */
1997 AUDIO_INITINFO(&ai);
1998 if (bell) {
1999 ai.play.sample_rate = bell->sample_rate;
2000 ai.play.encoding = bell->encoding;
2001 ai.play.channels = bell->channels;
2002 ai.play.precision = bell->precision;
2003 ai.play.pause = false;
2004 } else if (ISDEVAUDIO(dev)) {
2005 /* If /dev/audio, initialize everytime. */
2006 ai.play.sample_rate = audio_default.sample_rate;
2007 ai.play.encoding = audio_default.encoding;
2008 ai.play.channels = audio_default.channels;
2009 ai.play.precision = audio_default.precision;
2010 ai.play.pause = false;
2011 ai.record.sample_rate = audio_default.sample_rate;
2012 ai.record.encoding = audio_default.encoding;
2013 ai.record.channels = audio_default.channels;
2014 ai.record.precision = audio_default.precision;
2015 ai.record.pause = false;
2016 } else {
2017 /* If /dev/sound, take over the previous parameters. */
2018 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2019 ai.play.encoding = sc->sc_sound_pparams.encoding;
2020 ai.play.channels = sc->sc_sound_pparams.channels;
2021 ai.play.precision = sc->sc_sound_pparams.precision;
2022 ai.play.pause = sc->sc_sound_ppause;
2023 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2024 ai.record.encoding = sc->sc_sound_rparams.encoding;
2025 ai.record.channels = sc->sc_sound_rparams.channels;
2026 ai.record.precision = sc->sc_sound_rparams.precision;
2027 ai.record.pause = sc->sc_sound_rpause;
2028 }
2029 error = audio_file_setinfo(sc, af, &ai);
2030 if (error)
2031 goto bad2;
2032
2033 if (sc->sc_popens + sc->sc_ropens == 0) {
2034 /* First open */
2035
2036 sc->sc_cred = kauth_cred_get();
2037 kauth_cred_hold(sc->sc_cred);
2038
2039 if (sc->hw_if->open) {
2040 int hwflags;
2041
2042 /*
2043 * Call hw_if->open() only at first open of
2044 * combination of playback and recording.
2045 * On full duplex hardware, the flags passed to
2046 * hw_if->open() is always (FREAD | FWRITE)
2047 * regardless of this open()'s flags.
2048 * see also dev/isa/aria.c
2049 * but ckeck its playback or recording capability.
2050 * On half duplex hardware, the flags passed to
2051 * hw_if->open() is either FREAD or FWRITE.
2052 * see also arch/evbarm/mini2440/audio_mini2440.c
2053 */
2054 if (fullduplex) {
2055 hwflags = FREAD | FWRITE;
2056 if (!audio_can_playback(sc))
2057 hwflags &= ~FWRITE;
2058 if (!audio_can_capture(sc))
2059 hwflags &= ~FREAD;
2060 } else {
2061 /* Construct hwflags from af->mode. */
2062 hwflags = 0;
2063 if ((af->mode & AUMODE_PLAY) != 0)
2064 hwflags |= FWRITE;
2065 if ((af->mode & AUMODE_RECORD) != 0)
2066 hwflags |= FREAD;
2067 }
2068
2069 mutex_enter(sc->sc_intr_lock);
2070 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2071 mutex_exit(sc->sc_intr_lock);
2072 if (error)
2073 goto bad2;
2074 }
2075
2076 /*
2077 * Set speaker mode when a half duplex.
2078 * XXX I'm not sure this is correct.
2079 */
2080 if (1/*XXX*/) {
2081 if (sc->hw_if->speaker_ctl) {
2082 int on;
2083 if (af->ptrack) {
2084 on = 1;
2085 } else {
2086 on = 0;
2087 }
2088 mutex_enter(sc->sc_intr_lock);
2089 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2090 mutex_exit(sc->sc_intr_lock);
2091 if (error)
2092 goto bad3;
2093 }
2094 }
2095 } else if (sc->sc_multiuser == false) {
2096 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2097 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2098 error = EPERM;
2099 goto bad2;
2100 }
2101 }
2102
2103 /* Call init_output if this is the first playback open. */
2104 if (af->ptrack && sc->sc_popens == 0) {
2105 if (sc->hw_if->init_output) {
2106 hwbuf = &sc->sc_pmixer->hwbuf;
2107 mutex_enter(sc->sc_intr_lock);
2108 error = sc->hw_if->init_output(sc->hw_hdl,
2109 hwbuf->mem,
2110 hwbuf->capacity *
2111 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2112 mutex_exit(sc->sc_intr_lock);
2113 if (error)
2114 goto bad3;
2115 }
2116 }
2117 /* Call init_input if this is the first recording open. */
2118 if (af->rtrack && sc->sc_ropens == 0) {
2119 if (sc->hw_if->init_input) {
2120 hwbuf = &sc->sc_rmixer->hwbuf;
2121 mutex_enter(sc->sc_intr_lock);
2122 error = sc->hw_if->init_input(sc->hw_hdl,
2123 hwbuf->mem,
2124 hwbuf->capacity *
2125 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2126 mutex_exit(sc->sc_intr_lock);
2127 if (error)
2128 goto bad3;
2129 }
2130 }
2131
2132 if (bell == NULL) {
2133 error = fd_allocfile(&fp, &fd);
2134 if (error)
2135 goto bad3;
2136 }
2137
2138 /*
2139 * Count up finally.
2140 * Don't fail from here.
2141 */
2142 if (af->ptrack)
2143 sc->sc_popens++;
2144 if (af->rtrack)
2145 sc->sc_ropens++;
2146 mutex_enter(sc->sc_intr_lock);
2147 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2148 mutex_exit(sc->sc_intr_lock);
2149
2150 if (bell) {
2151 bell->file = af;
2152 } else {
2153 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2154 KASSERT(error == EMOVEFD);
2155 }
2156
2157 TRACEF(3, af, "done");
2158 return error;
2159
2160 /*
2161 * Since track here is not yet linked to sc_files,
2162 * you can call track_destroy() without sc_intr_lock.
2163 */
2164 bad3:
2165 if (sc->sc_popens + sc->sc_ropens == 0) {
2166 if (sc->hw_if->close) {
2167 mutex_enter(sc->sc_intr_lock);
2168 sc->hw_if->close(sc->hw_hdl);
2169 mutex_exit(sc->sc_intr_lock);
2170 }
2171 }
2172 bad2:
2173 if (af->rtrack) {
2174 audio_track_destroy(af->rtrack);
2175 af->rtrack = NULL;
2176 }
2177 if (af->ptrack) {
2178 audio_track_destroy(af->ptrack);
2179 af->ptrack = NULL;
2180 }
2181 bad1:
2182 kmem_free(af, sizeof(*af));
2183 return error;
2184 }
2185
2186 int
2187 audio_close(struct audio_softc *sc, audio_file_t *file)
2188 {
2189 audio_track_t *oldtrack;
2190 int error;
2191
2192 KASSERT(!mutex_owned(sc->sc_lock));
2193 KASSERT(file->lock);
2194
2195 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2196 (audiodebug >= 3) ? "start " : "",
2197 (int)curproc->p_pid, (int)curlwp->l_lid,
2198 sc->sc_popens, sc->sc_ropens);
2199 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2200 "sc->sc_popens=%d, sc->sc_ropens=%d",
2201 sc->sc_popens, sc->sc_ropens);
2202
2203 /*
2204 * Drain first.
2205 * It must be done before acquiring exclusive lock.
2206 */
2207 if (file->ptrack) {
2208 mutex_enter(sc->sc_lock);
2209 audio_track_drain(sc, file->ptrack);
2210 mutex_exit(sc->sc_lock);
2211 }
2212
2213 /* Then, acquire exclusive lock to protect counters. */
2214 /* XXX what should I do when an error occurs? */
2215 error = audio_enter_exclusive(sc);
2216 if (error) {
2217 audio_file_release(sc, file);
2218 return error;
2219 }
2220
2221 if (file->ptrack) {
2222 /* Call hw halt_output if this is the last playback track. */
2223 if (sc->sc_popens == 1 && sc->sc_pbusy) {
2224 error = audio_pmixer_halt(sc);
2225 if (error) {
2226 device_printf(sc->sc_dev,
2227 "halt_output failed with %d\n", error);
2228 }
2229 }
2230
2231 /* Destroy the track. */
2232 oldtrack = file->ptrack;
2233 mutex_enter(sc->sc_intr_lock);
2234 file->ptrack = NULL;
2235 mutex_exit(sc->sc_intr_lock);
2236 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2237 oldtrack->dropframes);
2238 audio_track_destroy(oldtrack);
2239
2240 KASSERT(sc->sc_popens > 0);
2241 sc->sc_popens--;
2242 }
2243 if (file->rtrack) {
2244 /* Call hw halt_input if this is the last recording track. */
2245 if (sc->sc_ropens == 1 && sc->sc_rbusy) {
2246 error = audio_rmixer_halt(sc);
2247 if (error) {
2248 device_printf(sc->sc_dev,
2249 "halt_input failed with %d\n", error);
2250 }
2251 }
2252
2253 /* Destroy the track. */
2254 oldtrack = file->rtrack;
2255 mutex_enter(sc->sc_intr_lock);
2256 file->rtrack = NULL;
2257 mutex_exit(sc->sc_intr_lock);
2258 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2259 oldtrack->dropframes);
2260 audio_track_destroy(oldtrack);
2261
2262 KASSERT(sc->sc_ropens > 0);
2263 sc->sc_ropens--;
2264 }
2265
2266 /* Call hw close if this is the last track. */
2267 if (sc->sc_popens + sc->sc_ropens == 0) {
2268 if (sc->hw_if->close) {
2269 TRACE(2, "hw_if close");
2270 mutex_enter(sc->sc_intr_lock);
2271 sc->hw_if->close(sc->hw_hdl);
2272 mutex_exit(sc->sc_intr_lock);
2273 }
2274
2275 kauth_cred_free(sc->sc_cred);
2276 }
2277
2278 mutex_enter(sc->sc_intr_lock);
2279 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2280 mutex_exit(sc->sc_intr_lock);
2281
2282 TRACE(3, "done");
2283 audio_exit_exclusive(sc);
2284 return 0;
2285 }
2286
2287 int
2288 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2289 audio_file_t *file)
2290 {
2291 audio_track_t *track;
2292 audio_ring_t *usrbuf;
2293 audio_ring_t *input;
2294 int error;
2295
2296 track = file->rtrack;
2297 KASSERT(track);
2298 TRACET(2, track, "resid=%zd", uio->uio_resid);
2299
2300 KASSERT(!mutex_owned(sc->sc_lock));
2301 KASSERT(file->lock);
2302
2303 /* I think it's better than EINVAL. */
2304 if (track->mmapped)
2305 return EPERM;
2306
2307 #ifdef AUDIO_PM_IDLE
2308 mutex_enter(sc->sc_lock);
2309 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2310 device_active(&sc->sc_dev, DVA_SYSTEM);
2311 mutex_exit(sc->sc_lock);
2312 #endif
2313
2314 /*
2315 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2316 * However read() system call itself can be called because it's
2317 * opened with O_RDWR. So in this case, deny this read().
2318 */
2319 if ((file->mode & AUMODE_RECORD) == 0) {
2320 return EBADF;
2321 }
2322
2323 TRACET(3, track, "resid=%zd", uio->uio_resid);
2324
2325 usrbuf = &track->usrbuf;
2326 input = track->input;
2327
2328 /*
2329 * The first read starts rmixer.
2330 */
2331 error = audio_enter_exclusive(sc);
2332 if (error)
2333 return error;
2334 if (sc->sc_rbusy == false)
2335 audio_rmixer_start(sc);
2336 audio_exit_exclusive(sc);
2337
2338 error = 0;
2339 while (uio->uio_resid > 0 && error == 0) {
2340 int bytes;
2341
2342 TRACET(3, track,
2343 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2344 uio->uio_resid,
2345 input->head, input->used, input->capacity,
2346 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2347
2348 /* Wait when buffers are empty. */
2349 mutex_enter(sc->sc_lock);
2350 for (;;) {
2351 bool empty;
2352 audio_track_lock_enter(track);
2353 empty = (input->used == 0 && usrbuf->used == 0);
2354 audio_track_lock_exit(track);
2355 if (!empty)
2356 break;
2357
2358 if ((ioflag & IO_NDELAY)) {
2359 mutex_exit(sc->sc_lock);
2360 return EWOULDBLOCK;
2361 }
2362
2363 TRACET(3, track, "sleep");
2364 error = audio_track_waitio(sc, track);
2365 if (error) {
2366 mutex_exit(sc->sc_lock);
2367 return error;
2368 }
2369 }
2370 mutex_exit(sc->sc_lock);
2371
2372 audio_track_lock_enter(track);
2373 audio_track_record(track);
2374 audio_track_lock_exit(track);
2375
2376 /* uiomove from usrbuf as much as possible. */
2377 bytes = uimin(usrbuf->used, uio->uio_resid);
2378 while (bytes > 0) {
2379 int head = usrbuf->head;
2380 int len = uimin(bytes, usrbuf->capacity - head);
2381 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2382 uio);
2383 if (error) {
2384 device_printf(sc->sc_dev,
2385 "uiomove(len=%d) failed with %d\n",
2386 len, error);
2387 goto abort;
2388 }
2389 auring_take(usrbuf, len);
2390 track->useriobytes += len;
2391 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2392 len,
2393 usrbuf->head, usrbuf->used, usrbuf->capacity);
2394 bytes -= len;
2395 }
2396 }
2397
2398 abort:
2399 return error;
2400 }
2401
2402
2403 /*
2404 * Clear file's playback and/or record track buffer immediately.
2405 */
2406 static void
2407 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2408 {
2409
2410 if (file->ptrack)
2411 audio_track_clear(sc, file->ptrack);
2412 if (file->rtrack)
2413 audio_track_clear(sc, file->rtrack);
2414 }
2415
2416 int
2417 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2418 audio_file_t *file)
2419 {
2420 audio_track_t *track;
2421 audio_ring_t *usrbuf;
2422 audio_ring_t *outbuf;
2423 int error;
2424
2425 track = file->ptrack;
2426 KASSERT(track);
2427 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2428 audiodebug >= 3 ? "begin " : "",
2429 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2430
2431 KASSERT(!mutex_owned(sc->sc_lock));
2432 KASSERT(file->lock);
2433
2434 /* I think it's better than EINVAL. */
2435 if (track->mmapped)
2436 return EPERM;
2437
2438 if (uio->uio_resid == 0) {
2439 track->eofcounter++;
2440 return 0;
2441 }
2442
2443 #ifdef AUDIO_PM_IDLE
2444 mutex_enter(sc->sc_lock);
2445 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2446 device_active(&sc->sc_dev, DVA_SYSTEM);
2447 mutex_exit(sc->sc_lock);
2448 #endif
2449
2450 usrbuf = &track->usrbuf;
2451 outbuf = &track->outbuf;
2452
2453 /*
2454 * The first write starts pmixer.
2455 */
2456 error = audio_enter_exclusive(sc);
2457 if (error)
2458 return error;
2459 if (sc->sc_pbusy == false)
2460 audio_pmixer_start(sc, false);
2461 audio_exit_exclusive(sc);
2462
2463 track->pstate = AUDIO_STATE_RUNNING;
2464 error = 0;
2465 while (uio->uio_resid > 0 && error == 0) {
2466 int bytes;
2467
2468 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2469 uio->uio_resid,
2470 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2471
2472 /* Wait when buffers are full. */
2473 mutex_enter(sc->sc_lock);
2474 for (;;) {
2475 bool full;
2476 audio_track_lock_enter(track);
2477 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2478 outbuf->used >= outbuf->capacity);
2479 audio_track_lock_exit(track);
2480 if (!full)
2481 break;
2482
2483 if ((ioflag & IO_NDELAY)) {
2484 error = EWOULDBLOCK;
2485 mutex_exit(sc->sc_lock);
2486 goto abort;
2487 }
2488
2489 TRACET(3, track, "sleep usrbuf=%d/H%d",
2490 usrbuf->used, track->usrbuf_usedhigh);
2491 error = audio_track_waitio(sc, track);
2492 if (error) {
2493 mutex_exit(sc->sc_lock);
2494 goto abort;
2495 }
2496 }
2497 mutex_exit(sc->sc_lock);
2498
2499 /* uiomove to usrbuf as much as possible. */
2500 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2501 uio->uio_resid);
2502 while (bytes > 0) {
2503 int tail = auring_tail(usrbuf);
2504 int len = uimin(bytes, usrbuf->capacity - tail);
2505 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2506 uio);
2507 if (error) {
2508 device_printf(sc->sc_dev,
2509 "uiomove(len=%d) failed with %d\n",
2510 len, error);
2511 goto abort;
2512 }
2513 auring_push(usrbuf, len);
2514 track->useriobytes += len;
2515 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2516 len,
2517 usrbuf->head, usrbuf->used, usrbuf->capacity);
2518 bytes -= len;
2519 }
2520
2521 /* Convert them as much as possible. */
2522 audio_track_lock_enter(track);
2523 while (usrbuf->used >= track->usrbuf_blksize &&
2524 outbuf->used < outbuf->capacity) {
2525 audio_track_play(track);
2526 }
2527 audio_track_lock_exit(track);
2528 }
2529
2530 abort:
2531 TRACET(3, track, "done error=%d", error);
2532 return error;
2533 }
2534
2535 int
2536 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2537 struct lwp *l, audio_file_t *file)
2538 {
2539 struct audio_offset *ao;
2540 struct audio_info ai;
2541 audio_track_t *track;
2542 audio_encoding_t *ae;
2543 audio_format_query_t *query;
2544 u_int stamp;
2545 u_int offs;
2546 int fd;
2547 int index;
2548 int error;
2549
2550 KASSERT(!mutex_owned(sc->sc_lock));
2551 KASSERT(file->lock);
2552
2553 #if defined(AUDIO_DEBUG)
2554 const char *ioctlnames[] = {
2555 " AUDIO_GETINFO", /* 21 */
2556 " AUDIO_SETINFO", /* 22 */
2557 " AUDIO_DRAIN", /* 23 */
2558 " AUDIO_FLUSH", /* 24 */
2559 " AUDIO_WSEEK", /* 25 */
2560 " AUDIO_RERROR", /* 26 */
2561 " AUDIO_GETDEV", /* 27 */
2562 " AUDIO_GETENC", /* 28 */
2563 " AUDIO_GETFD", /* 29 */
2564 " AUDIO_SETFD", /* 30 */
2565 " AUDIO_PERROR", /* 31 */
2566 " AUDIO_GETIOFFS", /* 32 */
2567 " AUDIO_GETOOFFS", /* 33 */
2568 " AUDIO_GETPROPS", /* 34 */
2569 " AUDIO_GETBUFINFO", /* 35 */
2570 " AUDIO_SETCHAN", /* 36 */
2571 " AUDIO_GETCHAN", /* 37 */
2572 " AUDIO_QUERYFORMAT", /* 38 */
2573 " AUDIO_GETFORMAT", /* 39 */
2574 " AUDIO_SETFORMAT", /* 40 */
2575 };
2576 int nameidx = (cmd & 0xff);
2577 const char *ioctlname = "";
2578 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2579 ioctlname = ioctlnames[nameidx - 21];
2580 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2581 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2582 (int)curproc->p_pid, (int)l->l_lid);
2583 #endif
2584
2585 error = 0;
2586 switch (cmd) {
2587 case FIONBIO:
2588 /* All handled in the upper FS layer. */
2589 break;
2590
2591 case FIONREAD:
2592 /* Get the number of bytes that can be read. */
2593 if (file->rtrack) {
2594 *(int *)addr = audio_track_readablebytes(file->rtrack);
2595 } else {
2596 *(int *)addr = 0;
2597 }
2598 break;
2599
2600 case FIOASYNC:
2601 /* Set/Clear ASYNC I/O. */
2602 if (*(int *)addr) {
2603 file->async_audio = curproc->p_pid;
2604 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2605 } else {
2606 file->async_audio = 0;
2607 TRACEF(2, file, "FIOASYNC off");
2608 }
2609 break;
2610
2611 case AUDIO_FLUSH:
2612 /* XXX TODO: clear errors and restart? */
2613 audio_file_clear(sc, file);
2614 break;
2615
2616 case AUDIO_RERROR:
2617 /*
2618 * Number of read bytes dropped. We don't know where
2619 * or when they were dropped (including conversion stage).
2620 * Therefore, the number of accurate bytes or samples is
2621 * also unknown.
2622 */
2623 track = file->rtrack;
2624 if (track) {
2625 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2626 track->dropframes);
2627 }
2628 break;
2629
2630 case AUDIO_PERROR:
2631 /*
2632 * Number of write bytes dropped. We don't know where
2633 * or when they were dropped (including conversion stage).
2634 * Therefore, the number of accurate bytes or samples is
2635 * also unknown.
2636 */
2637 track = file->ptrack;
2638 if (track) {
2639 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2640 track->dropframes);
2641 }
2642 break;
2643
2644 case AUDIO_GETIOFFS:
2645 /* XXX TODO */
2646 ao = (struct audio_offset *)addr;
2647 ao->samples = 0;
2648 ao->deltablks = 0;
2649 ao->offset = 0;
2650 break;
2651
2652 case AUDIO_GETOOFFS:
2653 ao = (struct audio_offset *)addr;
2654 track = file->ptrack;
2655 if (track == NULL) {
2656 ao->samples = 0;
2657 ao->deltablks = 0;
2658 ao->offset = 0;
2659 break;
2660 }
2661 mutex_enter(sc->sc_lock);
2662 mutex_enter(sc->sc_intr_lock);
2663 /* figure out where next DMA will start */
2664 stamp = track->usrbuf_stamp;
2665 offs = track->usrbuf.head;
2666 mutex_exit(sc->sc_intr_lock);
2667 mutex_exit(sc->sc_lock);
2668
2669 ao->samples = stamp;
2670 ao->deltablks = (stamp / track->usrbuf_blksize) -
2671 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2672 track->usrbuf_stamp_last = stamp;
2673 offs = rounddown(offs, track->usrbuf_blksize)
2674 + track->usrbuf_blksize;
2675 if (offs >= track->usrbuf.capacity)
2676 offs -= track->usrbuf.capacity;
2677 ao->offset = offs;
2678
2679 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2680 ao->samples, ao->deltablks, ao->offset);
2681 break;
2682
2683 case AUDIO_WSEEK:
2684 /* XXX return value does not include outbuf one. */
2685 if (file->ptrack)
2686 *(u_long *)addr = file->ptrack->usrbuf.used;
2687 break;
2688
2689 case AUDIO_SETINFO:
2690 error = audio_enter_exclusive(sc);
2691 if (error)
2692 break;
2693 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2694 if (error) {
2695 audio_exit_exclusive(sc);
2696 break;
2697 }
2698 /* XXX TODO: update last_ai if /dev/sound ? */
2699 if (ISDEVSOUND(dev))
2700 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2701 audio_exit_exclusive(sc);
2702 break;
2703
2704 case AUDIO_GETINFO:
2705 error = audio_enter_exclusive(sc);
2706 if (error)
2707 break;
2708 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2709 audio_exit_exclusive(sc);
2710 break;
2711
2712 case AUDIO_GETBUFINFO:
2713 mutex_enter(sc->sc_lock);
2714 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2715 mutex_exit(sc->sc_lock);
2716 break;
2717
2718 case AUDIO_DRAIN:
2719 if (file->ptrack) {
2720 mutex_enter(sc->sc_lock);
2721 error = audio_track_drain(sc, file->ptrack);
2722 mutex_exit(sc->sc_lock);
2723 }
2724 break;
2725
2726 case AUDIO_GETDEV:
2727 mutex_enter(sc->sc_lock);
2728 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2729 mutex_exit(sc->sc_lock);
2730 break;
2731
2732 case AUDIO_GETENC:
2733 ae = (audio_encoding_t *)addr;
2734 index = ae->index;
2735 if (index < 0 || index >= __arraycount(audio_encodings)) {
2736 error = EINVAL;
2737 break;
2738 }
2739 *ae = audio_encodings[index];
2740 ae->index = index;
2741 /*
2742 * EMULATED always.
2743 * EMULATED flag at that time used to mean that it could
2744 * not be passed directly to the hardware as-is. But
2745 * currently, all formats including hardware native is not
2746 * passed directly to the hardware. So I set EMULATED
2747 * flag for all formats.
2748 */
2749 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2750 break;
2751
2752 case AUDIO_GETFD:
2753 /*
2754 * Returns the current setting of full duplex mode.
2755 * If HW has full duplex mode and there are two mixers,
2756 * it is full duplex. Otherwise half duplex.
2757 */
2758 mutex_enter(sc->sc_lock);
2759 fd = (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX)
2760 && (sc->sc_pmixer && sc->sc_rmixer);
2761 mutex_exit(sc->sc_lock);
2762 *(int *)addr = fd;
2763 break;
2764
2765 case AUDIO_GETPROPS:
2766 mutex_enter(sc->sc_lock);
2767 *(int *)addr = audio_get_props(sc);
2768 mutex_exit(sc->sc_lock);
2769 break;
2770
2771 case AUDIO_QUERYFORMAT:
2772 query = (audio_format_query_t *)addr;
2773 if (sc->hw_if->query_format) {
2774 mutex_enter(sc->sc_lock);
2775 error = sc->hw_if->query_format(sc->hw_hdl, query);
2776 mutex_exit(sc->sc_lock);
2777 /* Hide internal infomations */
2778 query->fmt.driver_data = NULL;
2779 } else {
2780 error = ENODEV;
2781 }
2782 break;
2783
2784 case AUDIO_GETFORMAT:
2785 audio_mixers_get_format(sc, (struct audio_info *)addr);
2786 break;
2787
2788 case AUDIO_SETFORMAT:
2789 mutex_enter(sc->sc_lock);
2790 audio_mixers_get_format(sc, &ai);
2791 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2792 if (error) {
2793 /* Rollback */
2794 audio_mixers_set_format(sc, &ai);
2795 }
2796 mutex_exit(sc->sc_lock);
2797 break;
2798
2799 case AUDIO_SETFD:
2800 case AUDIO_SETCHAN:
2801 case AUDIO_GETCHAN:
2802 /* Obsoleted */
2803 break;
2804
2805 default:
2806 if (sc->hw_if->dev_ioctl) {
2807 error = audio_enter_exclusive(sc);
2808 if (error)
2809 break;
2810 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2811 cmd, addr, flag, l);
2812 audio_exit_exclusive(sc);
2813 } else {
2814 TRACEF(2, file, "unknown ioctl");
2815 error = EINVAL;
2816 }
2817 break;
2818 }
2819 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2820 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2821 error);
2822 return error;
2823 }
2824
2825 /*
2826 * Returns the number of bytes that can be read on recording buffer.
2827 */
2828 static __inline int
2829 audio_track_readablebytes(const audio_track_t *track)
2830 {
2831 int bytes;
2832
2833 KASSERT(track);
2834 KASSERT(track->mode == AUMODE_RECORD);
2835
2836 /*
2837 * Although usrbuf is primarily readable data, recorded data
2838 * also stays in track->input until reading. So it is necessary
2839 * to add it. track->input is in frame, usrbuf is in byte.
2840 */
2841 bytes = track->usrbuf.used +
2842 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
2843 return bytes;
2844 }
2845
2846 int
2847 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
2848 audio_file_t *file)
2849 {
2850 audio_track_t *track;
2851 int revents;
2852 bool in_is_valid;
2853 bool out_is_valid;
2854
2855 KASSERT(!mutex_owned(sc->sc_lock));
2856 KASSERT(file->lock);
2857
2858 #if defined(AUDIO_DEBUG)
2859 #define POLLEV_BITMAP "\177\020" \
2860 "b\10WRBAND\0" \
2861 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
2862 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
2863 char evbuf[64];
2864 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
2865 TRACEF(2, file, "pid=%d.%d events=%s",
2866 (int)curproc->p_pid, (int)l->l_lid, evbuf);
2867 #endif
2868
2869 revents = 0;
2870 in_is_valid = false;
2871 out_is_valid = false;
2872 if (events & (POLLIN | POLLRDNORM)) {
2873 track = file->rtrack;
2874 if (track) {
2875 int used;
2876 in_is_valid = true;
2877 used = audio_track_readablebytes(track);
2878 if (used > 0)
2879 revents |= events & (POLLIN | POLLRDNORM);
2880 }
2881 }
2882 if (events & (POLLOUT | POLLWRNORM)) {
2883 track = file->ptrack;
2884 if (track) {
2885 out_is_valid = true;
2886 if (track->usrbuf.used <= track->usrbuf_usedlow)
2887 revents |= events & (POLLOUT | POLLWRNORM);
2888 }
2889 }
2890
2891 if (revents == 0) {
2892 mutex_enter(sc->sc_lock);
2893 if (in_is_valid) {
2894 TRACEF(3, file, "selrecord rsel");
2895 selrecord(l, &sc->sc_rsel);
2896 }
2897 if (out_is_valid) {
2898 TRACEF(3, file, "selrecord wsel");
2899 selrecord(l, &sc->sc_wsel);
2900 }
2901 mutex_exit(sc->sc_lock);
2902 }
2903
2904 #if defined(AUDIO_DEBUG)
2905 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
2906 TRACEF(2, file, "revents=%s", evbuf);
2907 #endif
2908 return revents;
2909 }
2910
2911 static const struct filterops audioread_filtops = {
2912 .f_isfd = 1,
2913 .f_attach = NULL,
2914 .f_detach = filt_audioread_detach,
2915 .f_event = filt_audioread_event,
2916 };
2917
2918 static void
2919 filt_audioread_detach(struct knote *kn)
2920 {
2921 struct audio_softc *sc;
2922 audio_file_t *file;
2923
2924 file = kn->kn_hook;
2925 sc = file->sc;
2926 TRACEF(3, file, "");
2927
2928 mutex_enter(sc->sc_lock);
2929 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
2930 mutex_exit(sc->sc_lock);
2931 }
2932
2933 static int
2934 filt_audioread_event(struct knote *kn, long hint)
2935 {
2936 audio_file_t *file;
2937 audio_track_t *track;
2938
2939 file = kn->kn_hook;
2940 track = file->rtrack;
2941
2942 /*
2943 * kn_data must contain the number of bytes can be read.
2944 * The return value indicates whether the event occurs or not.
2945 */
2946
2947 if (track == NULL) {
2948 /* can not read with this descriptor. */
2949 kn->kn_data = 0;
2950 return 0;
2951 }
2952
2953 kn->kn_data = audio_track_readablebytes(track);
2954 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2955 return kn->kn_data > 0;
2956 }
2957
2958 static const struct filterops audiowrite_filtops = {
2959 .f_isfd = 1,
2960 .f_attach = NULL,
2961 .f_detach = filt_audiowrite_detach,
2962 .f_event = filt_audiowrite_event,
2963 };
2964
2965 static void
2966 filt_audiowrite_detach(struct knote *kn)
2967 {
2968 struct audio_softc *sc;
2969 audio_file_t *file;
2970
2971 file = kn->kn_hook;
2972 sc = file->sc;
2973 TRACEF(3, file, "");
2974
2975 mutex_enter(sc->sc_lock);
2976 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
2977 mutex_exit(sc->sc_lock);
2978 }
2979
2980 static int
2981 filt_audiowrite_event(struct knote *kn, long hint)
2982 {
2983 audio_file_t *file;
2984 audio_track_t *track;
2985
2986 file = kn->kn_hook;
2987 track = file->ptrack;
2988
2989 /*
2990 * kn_data must contain the number of bytes can be write.
2991 * The return value indicates whether the event occurs or not.
2992 */
2993
2994 if (track == NULL) {
2995 /* can not write with this descriptor. */
2996 kn->kn_data = 0;
2997 return 0;
2998 }
2999
3000 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3001 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3002 return (track->usrbuf.used < track->usrbuf_usedlow);
3003 }
3004
3005 int
3006 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3007 {
3008 struct klist *klist;
3009
3010 KASSERT(!mutex_owned(sc->sc_lock));
3011 KASSERT(file->lock);
3012
3013 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3014
3015 switch (kn->kn_filter) {
3016 case EVFILT_READ:
3017 klist = &sc->sc_rsel.sel_klist;
3018 kn->kn_fop = &audioread_filtops;
3019 break;
3020
3021 case EVFILT_WRITE:
3022 klist = &sc->sc_wsel.sel_klist;
3023 kn->kn_fop = &audiowrite_filtops;
3024 break;
3025
3026 default:
3027 return EINVAL;
3028 }
3029
3030 kn->kn_hook = file;
3031
3032 mutex_enter(sc->sc_lock);
3033 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3034 mutex_exit(sc->sc_lock);
3035
3036 return 0;
3037 }
3038
3039 int
3040 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3041 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3042 audio_file_t *file)
3043 {
3044 audio_track_t *track;
3045 vsize_t vsize;
3046 int error;
3047
3048 KASSERT(!mutex_owned(sc->sc_lock));
3049 KASSERT(file->lock);
3050
3051 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3052
3053 if (*offp < 0)
3054 return EINVAL;
3055
3056 #if 0
3057 /* XXX
3058 * The idea here was to use the protection to determine if
3059 * we are mapping the read or write buffer, but it fails.
3060 * The VM system is broken in (at least) two ways.
3061 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3062 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3063 * has to be used for mmapping the play buffer.
3064 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3065 * audio_mmap will get called at some point with VM_PROT_READ
3066 * only.
3067 * So, alas, we always map the play buffer for now.
3068 */
3069 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3070 prot == VM_PROT_WRITE)
3071 track = file->ptrack;
3072 else if (prot == VM_PROT_READ)
3073 track = file->rtrack;
3074 else
3075 return EINVAL;
3076 #else
3077 track = file->ptrack;
3078 #endif
3079 if (track == NULL)
3080 return EACCES;
3081
3082 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3083 if (len > vsize)
3084 return EOVERFLOW;
3085 if (*offp > (uint)(vsize - len))
3086 return EOVERFLOW;
3087
3088 /* XXX TODO: what happens when mmap twice. */
3089 if (!track->mmapped) {
3090 track->mmapped = true;
3091
3092 if (!track->is_pause) {
3093 error = audio_enter_exclusive(sc);
3094 if (error)
3095 return error;
3096 if (sc->sc_pbusy == false)
3097 audio_pmixer_start(sc, true);
3098 audio_exit_exclusive(sc);
3099 }
3100 /* XXX mmapping record buffer is not supported */
3101 }
3102
3103 /* get ringbuffer */
3104 *uobjp = track->uobj;
3105
3106 /* Acquire a reference for the mmap. munmap will release. */
3107 uao_reference(*uobjp);
3108 *maxprotp = prot;
3109 *advicep = UVM_ADV_RANDOM;
3110 *flagsp = MAP_SHARED;
3111 return 0;
3112 }
3113
3114 /*
3115 * /dev/audioctl has to be able to open at any time without interference
3116 * with any /dev/audio or /dev/sound.
3117 */
3118 static int
3119 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3120 struct lwp *l)
3121 {
3122 struct file *fp;
3123 audio_file_t *af;
3124 int fd;
3125 int error;
3126
3127 KASSERT(mutex_owned(sc->sc_lock));
3128 KASSERT(sc->sc_exlock);
3129
3130 TRACE(1, "");
3131
3132 error = fd_allocfile(&fp, &fd);
3133 if (error)
3134 return error;
3135
3136 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3137 af->sc = sc;
3138 af->dev = dev;
3139
3140 /* Not necessary to insert sc_files. */
3141
3142 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3143 KASSERT(error == EMOVEFD);
3144
3145 return error;
3146 }
3147
3148 /*
3149 * Reallocate 'memblock' with specified 'bytes' if 'bytes' > 0.
3150 * Or free 'memblock' and return NULL if 'byte' is zero.
3151 */
3152 static void *
3153 audio_realloc(void *memblock, size_t bytes)
3154 {
3155
3156 if (memblock != NULL) {
3157 if (bytes != 0) {
3158 return kern_realloc(memblock, bytes, M_NOWAIT);
3159 } else {
3160 kern_free(memblock);
3161 return NULL;
3162 }
3163 } else {
3164 if (bytes != 0) {
3165 return kern_malloc(bytes, M_NOWAIT);
3166 } else {
3167 return NULL;
3168 }
3169 }
3170 }
3171
3172 /*
3173 * Free 'mem' if available, and initialize the pointer.
3174 * For this reason, this is implemented as macro.
3175 */
3176 #define audio_free(mem) do { \
3177 if (mem != NULL) { \
3178 kern_free(mem); \
3179 mem = NULL; \
3180 } \
3181 } while (0)
3182
3183 /*
3184 * (Re)allocate usrbuf with 'newbufsize' bytes.
3185 * Use this function for usrbuf because only usrbuf can be mmapped.
3186 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3187 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3188 * and returns errno.
3189 * It must be called before updating usrbuf.capacity.
3190 */
3191 static int
3192 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3193 {
3194 struct audio_softc *sc;
3195 vaddr_t vstart;
3196 vsize_t oldvsize;
3197 vsize_t newvsize;
3198 int error;
3199
3200 KASSERT(newbufsize > 0);
3201 sc = track->mixer->sc;
3202
3203 /* Get a nonzero multiple of PAGE_SIZE */
3204 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3205
3206 if (track->usrbuf.mem != NULL) {
3207 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3208 PAGE_SIZE);
3209 if (oldvsize == newvsize) {
3210 track->usrbuf.capacity = newbufsize;
3211 return 0;
3212 }
3213 vstart = (vaddr_t)track->usrbuf.mem;
3214 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3215 /* uvm_unmap also detach uobj */
3216 track->uobj = NULL; /* paranoia */
3217 track->usrbuf.mem = NULL;
3218 }
3219
3220 /* Create a uvm anonymous object */
3221 track->uobj = uao_create(newvsize, 0);
3222
3223 /* Map it into the kernel virtual address space */
3224 vstart = 0;
3225 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3226 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3227 UVM_ADV_RANDOM, 0));
3228 if (error) {
3229 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3230 uao_detach(track->uobj); /* release reference */
3231 goto abort;
3232 }
3233
3234 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3235 false, 0);
3236 if (error) {
3237 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3238 error);
3239 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3240 /* uvm_unmap also detach uobj */
3241 goto abort;
3242 }
3243
3244 track->usrbuf.mem = (void *)vstart;
3245 track->usrbuf.capacity = newbufsize;
3246 memset(track->usrbuf.mem, 0, newvsize);
3247 return 0;
3248
3249 /* failure */
3250 abort:
3251 track->uobj = NULL; /* paranoia */
3252 track->usrbuf.mem = NULL;
3253 track->usrbuf.capacity = 0;
3254 return error;
3255 }
3256
3257 /*
3258 * Free usrbuf (if available).
3259 */
3260 static void
3261 audio_free_usrbuf(audio_track_t *track)
3262 {
3263 vaddr_t vstart;
3264 vsize_t vsize;
3265
3266 vstart = (vaddr_t)track->usrbuf.mem;
3267 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3268 if (track->usrbuf.mem != NULL) {
3269 /*
3270 * Unmap the kernel mapping. uvm_unmap releases the
3271 * reference to the uvm object, and this should be the
3272 * last virtual mapping of the uvm object, so no need
3273 * to explicitly release (`detach') the object.
3274 */
3275 uvm_unmap(kernel_map, vstart, vstart + vsize);
3276
3277 track->uobj = NULL;
3278 track->usrbuf.mem = NULL;
3279 track->usrbuf.capacity = 0;
3280 }
3281 }
3282
3283 /*
3284 * This filter changes the volume for each channel.
3285 * arg->context points track->ch_volume[].
3286 */
3287 static void
3288 audio_track_chvol(audio_filter_arg_t *arg)
3289 {
3290 int16_t *ch_volume;
3291 const aint_t *s;
3292 aint_t *d;
3293 u_int i;
3294 u_int ch;
3295 u_int channels;
3296
3297 DIAGNOSTIC_filter_arg(arg);
3298 KASSERT(arg->srcfmt->channels == arg->dstfmt->channels);
3299 KASSERT(arg->context != NULL);
3300 KASSERT(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS);
3301
3302 s = arg->src;
3303 d = arg->dst;
3304 ch_volume = arg->context;
3305
3306 channels = arg->srcfmt->channels;
3307 for (i = 0; i < arg->count; i++) {
3308 for (ch = 0; ch < channels; ch++) {
3309 aint2_t val;
3310 val = *s++;
3311 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
3312 val = val * ch_volume[ch] >> 8;
3313 #else
3314 val = val * ch_volume[ch] / 256;
3315 #endif
3316 *d++ = (aint_t)val;
3317 }
3318 }
3319 }
3320
3321 /*
3322 * This filter performs conversion from stereo (or more channels) to mono.
3323 */
3324 static void
3325 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3326 {
3327 const aint_t *s;
3328 aint_t *d;
3329 u_int i;
3330
3331 DIAGNOSTIC_filter_arg(arg);
3332
3333 s = arg->src;
3334 d = arg->dst;
3335
3336 for (i = 0; i < arg->count; i++) {
3337 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
3338 *d++ = (s[0] >> 1) + (s[1] >> 1);
3339 #else
3340 *d++ = (s[0] / 2) + (s[1] / 2);
3341 #endif
3342 s += arg->srcfmt->channels;
3343 }
3344 }
3345
3346 /*
3347 * This filter performs conversion from mono to stereo (or more channels).
3348 */
3349 static void
3350 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3351 {
3352 const aint_t *s;
3353 aint_t *d;
3354 u_int i;
3355 u_int ch;
3356 u_int dstchannels;
3357
3358 DIAGNOSTIC_filter_arg(arg);
3359
3360 s = arg->src;
3361 d = arg->dst;
3362 dstchannels = arg->dstfmt->channels;
3363
3364 for (i = 0; i < arg->count; i++) {
3365 d[0] = s[0];
3366 d[1] = s[0];
3367 s++;
3368 d += dstchannels;
3369 }
3370 if (dstchannels > 2) {
3371 d = arg->dst;
3372 for (i = 0; i < arg->count; i++) {
3373 for (ch = 2; ch < dstchannels; ch++) {
3374 d[ch] = 0;
3375 }
3376 d += dstchannels;
3377 }
3378 }
3379 }
3380
3381 /*
3382 * This filter shrinks M channels into N channels.
3383 * Extra channels are discarded.
3384 */
3385 static void
3386 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3387 {
3388 const aint_t *s;
3389 aint_t *d;
3390 u_int i;
3391 u_int ch;
3392
3393 DIAGNOSTIC_filter_arg(arg);
3394
3395 s = arg->src;
3396 d = arg->dst;
3397
3398 for (i = 0; i < arg->count; i++) {
3399 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3400 *d++ = s[ch];
3401 }
3402 s += arg->srcfmt->channels;
3403 }
3404 }
3405
3406 /*
3407 * This filter expands M channels into N channels.
3408 * Silence is inserted for missing channels.
3409 */
3410 static void
3411 audio_track_chmix_expand(audio_filter_arg_t *arg)
3412 {
3413 const aint_t *s;
3414 aint_t *d;
3415 u_int i;
3416 u_int ch;
3417 u_int srcchannels;
3418 u_int dstchannels;
3419
3420 DIAGNOSTIC_filter_arg(arg);
3421
3422 s = arg->src;
3423 d = arg->dst;
3424
3425 srcchannels = arg->srcfmt->channels;
3426 dstchannels = arg->dstfmt->channels;
3427 for (i = 0; i < arg->count; i++) {
3428 for (ch = 0; ch < srcchannels; ch++) {
3429 *d++ = *s++;
3430 }
3431 for (; ch < dstchannels; ch++) {
3432 *d++ = 0;
3433 }
3434 }
3435 }
3436
3437 /*
3438 * This filter performs frequency conversion (up sampling).
3439 * It uses linear interpolation.
3440 */
3441 static void
3442 audio_track_freq_up(audio_filter_arg_t *arg)
3443 {
3444 audio_track_t *track;
3445 audio_ring_t *src;
3446 audio_ring_t *dst;
3447 const aint_t *s;
3448 aint_t *d;
3449 aint_t prev[AUDIO_MAX_CHANNELS];
3450 aint_t curr[AUDIO_MAX_CHANNELS];
3451 aint_t grad[AUDIO_MAX_CHANNELS];
3452 u_int i;
3453 u_int t;
3454 u_int step;
3455 u_int channels;
3456 u_int ch;
3457 int srcused;
3458
3459 track = arg->context;
3460 KASSERT(track);
3461 src = &track->freq.srcbuf;
3462 dst = track->freq.dst;
3463 DIAGNOSTIC_ring(dst);
3464 DIAGNOSTIC_ring(src);
3465 KASSERT(src->used > 0);
3466 KASSERT(src->fmt.channels == dst->fmt.channels);
3467 KASSERT(src->head % track->mixer->frames_per_block == 0);
3468
3469 s = arg->src;
3470 d = arg->dst;
3471
3472 /*
3473 * In order to faciliate interpolation for each block, slide (delay)
3474 * input by one sample. As a result, strictly speaking, the output
3475 * phase is delayed by 1/dstfreq. However, I believe there is no
3476 * observable impact.
3477 *
3478 * Example)
3479 * srcfreq:dstfreq = 1:3
3480 *
3481 * A - -
3482 * |
3483 * |
3484 * | B - -
3485 * +-----+-----> input timeframe
3486 * 0 1
3487 *
3488 * 0 1
3489 * +-----+-----> input timeframe
3490 * | A
3491 * | x x
3492 * | x x
3493 * x (B)
3494 * +-+-+-+-+-+-> output timeframe
3495 * 0 1 2 3 4 5
3496 */
3497
3498 /* Last samples in previous block */
3499 channels = src->fmt.channels;
3500 for (ch = 0; ch < channels; ch++) {
3501 prev[ch] = track->freq_prev[ch];
3502 curr[ch] = track->freq_curr[ch];
3503 grad[ch] = curr[ch] - prev[ch];
3504 }
3505
3506 step = track->freq_step;
3507 t = track->freq_current;
3508 //#define FREQ_DEBUG
3509 #if defined(FREQ_DEBUG)
3510 #define PRINTF(fmt...) printf(fmt)
3511 #else
3512 #define PRINTF(fmt...) do { } while (0)
3513 #endif
3514 srcused = src->used;
3515 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3516 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3517 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3518 PRINTF(" t=%d\n", t);
3519
3520 for (i = 0; i < arg->count; i++) {
3521 PRINTF("i=%d t=%5d", i, t);
3522 if (t >= 65536) {
3523 for (ch = 0; ch < channels; ch++) {
3524 prev[ch] = curr[ch];
3525 curr[ch] = *s++;
3526 grad[ch] = curr[ch] - prev[ch];
3527 }
3528 PRINTF(" prev=%d s[%d]=%d",
3529 prev[0], src->used - srcused, curr[0]);
3530
3531 /* Update */
3532 t -= 65536;
3533 srcused--;
3534 if (srcused < 0) {
3535 PRINTF(" break\n");
3536 break;
3537 }
3538 }
3539
3540 for (ch = 0; ch < channels; ch++) {
3541 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3542 #if defined(FREQ_DEBUG)
3543 if (ch == 0)
3544 printf(" t=%5d *d=%d", t, d[-1]);
3545 #endif
3546 }
3547 t += step;
3548
3549 PRINTF("\n");
3550 }
3551 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3552
3553 auring_take(src, src->used);
3554 auring_push(dst, i);
3555
3556 /* Adjust */
3557 t += track->freq_leap;
3558
3559 track->freq_current = t;
3560 for (ch = 0; ch < channels; ch++) {
3561 track->freq_prev[ch] = prev[ch];
3562 track->freq_curr[ch] = curr[ch];
3563 }
3564 }
3565
3566 /*
3567 * This filter performs frequency conversion (down sampling).
3568 * It uses simple thinning.
3569 */
3570 static void
3571 audio_track_freq_down(audio_filter_arg_t *arg)
3572 {
3573 audio_track_t *track;
3574 audio_ring_t *src;
3575 audio_ring_t *dst;
3576 const aint_t *s0;
3577 aint_t *d;
3578 u_int i;
3579 u_int t;
3580 u_int step;
3581 u_int ch;
3582 u_int channels;
3583
3584 track = arg->context;
3585 KASSERT(track);
3586 src = &track->freq.srcbuf;
3587 dst = track->freq.dst;
3588
3589 DIAGNOSTIC_ring(dst);
3590 DIAGNOSTIC_ring(src);
3591 KASSERT(src->used > 0);
3592 KASSERT(src->fmt.channels == dst->fmt.channels);
3593 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3594 "src->head=%d fpb=%d",
3595 src->head, track->mixer->frames_per_block);
3596
3597 s0 = arg->src;
3598 d = arg->dst;
3599 t = track->freq_current;
3600 step = track->freq_step;
3601 channels = dst->fmt.channels;
3602 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3603 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3604 PRINTF(" t=%d\n", t);
3605
3606 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3607 const aint_t *s;
3608 PRINTF("i=%4d t=%10d", i, t);
3609 s = s0 + (t / 65536) * channels;
3610 PRINTF(" s=%5ld", (s - s0) / channels);
3611 for (ch = 0; ch < channels; ch++) {
3612 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3613 *d++ = s[ch];
3614 }
3615 PRINTF("\n");
3616 t += step;
3617 }
3618 t += track->freq_leap;
3619 PRINTF("end t=%d\n", t);
3620 auring_take(src, src->used);
3621 auring_push(dst, i);
3622 track->freq_current = t % 65536;
3623 }
3624
3625 /*
3626 * Creates track and returns it.
3627 */
3628 audio_track_t *
3629 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3630 {
3631 audio_track_t *track;
3632 static int newid = 0;
3633
3634 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3635
3636 track->id = newid++;
3637 track->mixer = mixer;
3638 track->mode = mixer->mode;
3639
3640 /* Do TRACE after id is assigned. */
3641 TRACET(3, track, "for %s",
3642 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3643
3644 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3645 track->volume = 256;
3646 #endif
3647 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3648 track->ch_volume[i] = 256;
3649 }
3650
3651 return track;
3652 }
3653
3654 /*
3655 * Release all resources of the track and track itself.
3656 * track must not be NULL. Don't specify the track within the file
3657 * structure linked from sc->sc_files.
3658 */
3659 static void
3660 audio_track_destroy(audio_track_t *track)
3661 {
3662
3663 KASSERT(track);
3664
3665 audio_free_usrbuf(track);
3666 audio_free(track->codec.srcbuf.mem);
3667 audio_free(track->chvol.srcbuf.mem);
3668 audio_free(track->chmix.srcbuf.mem);
3669 audio_free(track->freq.srcbuf.mem);
3670 audio_free(track->outbuf.mem);
3671
3672 kmem_free(track, sizeof(*track));
3673 }
3674
3675 /*
3676 * It returns encoding conversion filter according to src and dst format.
3677 * If it is not a convertible pair, it returns NULL. Either src or dst
3678 * must be internal format.
3679 */
3680 static audio_filter_t
3681 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3682 const audio_format2_t *dst)
3683 {
3684
3685 if (audio_format2_is_internal(src)) {
3686 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3687 return audio_internal_to_mulaw;
3688 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3689 return audio_internal_to_alaw;
3690 } else if (audio_format2_is_linear(dst)) {
3691 switch (dst->stride) {
3692 case 8:
3693 return audio_internal_to_linear8;
3694 case 16:
3695 return audio_internal_to_linear16;
3696 #if defined(AUDIO_SUPPORT_LINEAR24)
3697 case 24:
3698 return audio_internal_to_linear24;
3699 #endif
3700 case 32:
3701 return audio_internal_to_linear32;
3702 default:
3703 TRACET(1, track, "unsupported %s stride %d",
3704 "dst", dst->stride);
3705 goto abort;
3706 }
3707 }
3708 } else if (audio_format2_is_internal(dst)) {
3709 if (src->encoding == AUDIO_ENCODING_ULAW) {
3710 return audio_mulaw_to_internal;
3711 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3712 return audio_alaw_to_internal;
3713 } else if (audio_format2_is_linear(src)) {
3714 switch (src->stride) {
3715 case 8:
3716 return audio_linear8_to_internal;
3717 case 16:
3718 return audio_linear16_to_internal;
3719 #if defined(AUDIO_SUPPORT_LINEAR24)
3720 case 24:
3721 return audio_linear24_to_internal;
3722 #endif
3723 case 32:
3724 return audio_linear32_to_internal;
3725 default:
3726 TRACET(1, track, "unsupported %s stride %d",
3727 "src", src->stride);
3728 goto abort;
3729 }
3730 }
3731 }
3732
3733 TRACET(1, track, "unsupported encoding");
3734 abort:
3735 #if defined(AUDIO_DEBUG)
3736 if (audiodebug >= 2) {
3737 char buf[100];
3738 audio_format2_tostr(buf, sizeof(buf), src);
3739 TRACET(2, track, "src %s", buf);
3740 audio_format2_tostr(buf, sizeof(buf), dst);
3741 TRACET(2, track, "dst %s", buf);
3742 }
3743 #endif
3744 return NULL;
3745 }
3746
3747 /*
3748 * Initialize the codec stage of this track as necessary.
3749 * If successful, it initializes the codec stage as necessary, stores updated
3750 * last_dst in *last_dstp in any case, and returns 0.
3751 * Otherwise, it returns errno without modifying *last_dstp.
3752 */
3753 static int
3754 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3755 {
3756 struct audio_softc *sc;
3757 audio_ring_t *last_dst;
3758 audio_ring_t *srcbuf;
3759 audio_format2_t *srcfmt;
3760 audio_format2_t *dstfmt;
3761 audio_filter_arg_t *arg;
3762 u_int len;
3763 int error;
3764
3765 KASSERT(track);
3766
3767 sc = track->mixer->sc;
3768 last_dst = *last_dstp;
3769 dstfmt = &last_dst->fmt;
3770 srcfmt = &track->inputfmt;
3771 srcbuf = &track->codec.srcbuf;
3772 error = 0;
3773
3774 if (srcfmt->encoding != dstfmt->encoding
3775 || srcfmt->precision != dstfmt->precision
3776 || srcfmt->stride != dstfmt->stride) {
3777 track->codec.dst = last_dst;
3778
3779 srcbuf->fmt = *dstfmt;
3780 srcbuf->fmt.encoding = srcfmt->encoding;
3781 srcbuf->fmt.precision = srcfmt->precision;
3782 srcbuf->fmt.stride = srcfmt->stride;
3783
3784 track->codec.filter = audio_track_get_codec(track,
3785 &srcbuf->fmt, dstfmt);
3786 if (track->codec.filter == NULL) {
3787 error = EINVAL;
3788 goto abort;
3789 }
3790
3791 srcbuf->head = 0;
3792 srcbuf->used = 0;
3793 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3794 len = auring_bytelen(srcbuf);
3795 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3796 if (srcbuf->mem == NULL) {
3797 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3798 __func__, len);
3799 error = ENOMEM;
3800 goto abort;
3801 }
3802
3803 arg = &track->codec.arg;
3804 arg->srcfmt = &srcbuf->fmt;
3805 arg->dstfmt = dstfmt;
3806 arg->context = NULL;
3807
3808 *last_dstp = srcbuf;
3809 return 0;
3810 }
3811
3812 abort:
3813 track->codec.filter = NULL;
3814 audio_free(srcbuf->mem);
3815 return error;
3816 }
3817
3818 /*
3819 * Initialize the chvol stage of this track as necessary.
3820 * If successful, it initializes the chvol stage as necessary, stores updated
3821 * last_dst in *last_dstp in any case, and returns 0.
3822 * Otherwise, it returns errno without modifying *last_dstp.
3823 */
3824 static int
3825 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3826 {
3827 struct audio_softc *sc;
3828 audio_ring_t *last_dst;
3829 audio_ring_t *srcbuf;
3830 audio_format2_t *srcfmt;
3831 audio_format2_t *dstfmt;
3832 audio_filter_arg_t *arg;
3833 u_int len;
3834 int error;
3835
3836 KASSERT(track);
3837
3838 sc = track->mixer->sc;
3839 last_dst = *last_dstp;
3840 dstfmt = &last_dst->fmt;
3841 srcfmt = &track->inputfmt;
3842 srcbuf = &track->chvol.srcbuf;
3843 error = 0;
3844
3845 /* Check whether channel volume conversion is necessary. */
3846 bool use_chvol = false;
3847 for (int ch = 0; ch < srcfmt->channels; ch++) {
3848 if (track->ch_volume[ch] != 256) {
3849 use_chvol = true;
3850 break;
3851 }
3852 }
3853
3854 if (use_chvol == true) {
3855 track->chvol.dst = last_dst;
3856 track->chvol.filter = audio_track_chvol;
3857
3858 srcbuf->fmt = *dstfmt;
3859 /* no format conversion occurs */
3860
3861 srcbuf->head = 0;
3862 srcbuf->used = 0;
3863 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3864 len = auring_bytelen(srcbuf);
3865 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3866 if (srcbuf->mem == NULL) {
3867 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3868 __func__, len);
3869 error = ENOMEM;
3870 goto abort;
3871 }
3872
3873 arg = &track->chvol.arg;
3874 arg->srcfmt = &srcbuf->fmt;
3875 arg->dstfmt = dstfmt;
3876 arg->context = track->ch_volume;
3877
3878 *last_dstp = srcbuf;
3879 return 0;
3880 }
3881
3882 abort:
3883 track->chvol.filter = NULL;
3884 audio_free(srcbuf->mem);
3885 return error;
3886 }
3887
3888 /*
3889 * Initialize the chmix stage of this track as necessary.
3890 * If successful, it initializes the chmix stage as necessary, stores updated
3891 * last_dst in *last_dstp in any case, and returns 0.
3892 * Otherwise, it returns errno without modifying *last_dstp.
3893 */
3894 static int
3895 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
3896 {
3897 struct audio_softc *sc;
3898 audio_ring_t *last_dst;
3899 audio_ring_t *srcbuf;
3900 audio_format2_t *srcfmt;
3901 audio_format2_t *dstfmt;
3902 audio_filter_arg_t *arg;
3903 u_int srcch;
3904 u_int dstch;
3905 u_int len;
3906 int error;
3907
3908 KASSERT(track);
3909
3910 sc = track->mixer->sc;
3911 last_dst = *last_dstp;
3912 dstfmt = &last_dst->fmt;
3913 srcfmt = &track->inputfmt;
3914 srcbuf = &track->chmix.srcbuf;
3915 error = 0;
3916
3917 srcch = srcfmt->channels;
3918 dstch = dstfmt->channels;
3919 if (srcch != dstch) {
3920 track->chmix.dst = last_dst;
3921
3922 if (srcch >= 2 && dstch == 1) {
3923 track->chmix.filter = audio_track_chmix_mixLR;
3924 } else if (srcch == 1 && dstch >= 2) {
3925 track->chmix.filter = audio_track_chmix_dupLR;
3926 } else if (srcch > dstch) {
3927 track->chmix.filter = audio_track_chmix_shrink;
3928 } else {
3929 track->chmix.filter = audio_track_chmix_expand;
3930 }
3931
3932 srcbuf->fmt = *dstfmt;
3933 srcbuf->fmt.channels = srcch;
3934
3935 srcbuf->head = 0;
3936 srcbuf->used = 0;
3937 /* XXX The buffer size should be able to calculate. */
3938 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3939 len = auring_bytelen(srcbuf);
3940 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3941 if (srcbuf->mem == NULL) {
3942 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3943 __func__, len);
3944 error = ENOMEM;
3945 goto abort;
3946 }
3947
3948 arg = &track->chmix.arg;
3949 arg->srcfmt = &srcbuf->fmt;
3950 arg->dstfmt = dstfmt;
3951 arg->context = NULL;
3952
3953 *last_dstp = srcbuf;
3954 return 0;
3955 }
3956
3957 abort:
3958 track->chmix.filter = NULL;
3959 audio_free(srcbuf->mem);
3960 return error;
3961 }
3962
3963 /*
3964 * Initialize the freq stage of this track as necessary.
3965 * If successful, it initializes the freq stage as necessary, stores updated
3966 * last_dst in *last_dstp in any case, and returns 0.
3967 * Otherwise, it returns errno without modifying *last_dstp.
3968 */
3969 static int
3970 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
3971 {
3972 struct audio_softc *sc;
3973 audio_ring_t *last_dst;
3974 audio_ring_t *srcbuf;
3975 audio_format2_t *srcfmt;
3976 audio_format2_t *dstfmt;
3977 audio_filter_arg_t *arg;
3978 uint32_t srcfreq;
3979 uint32_t dstfreq;
3980 u_int dst_capacity;
3981 u_int mod;
3982 u_int len;
3983 int error;
3984
3985 KASSERT(track);
3986
3987 sc = track->mixer->sc;
3988 last_dst = *last_dstp;
3989 dstfmt = &last_dst->fmt;
3990 srcfmt = &track->inputfmt;
3991 srcbuf = &track->freq.srcbuf;
3992 error = 0;
3993
3994 srcfreq = srcfmt->sample_rate;
3995 dstfreq = dstfmt->sample_rate;
3996 if (srcfreq != dstfreq) {
3997 track->freq.dst = last_dst;
3998
3999 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4000 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4001
4002 /* freq_step is the ratio of src/dst when let dst 65536. */
4003 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4004
4005 dst_capacity = frame_per_block(track->mixer, dstfmt);
4006 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4007 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4008
4009 if (track->freq_step < 65536) {
4010 track->freq.filter = audio_track_freq_up;
4011 /* In order to carry at the first time. */
4012 track->freq_current = 65536;
4013 } else {
4014 track->freq.filter = audio_track_freq_down;
4015 track->freq_current = 0;
4016 }
4017
4018 srcbuf->fmt = *dstfmt;
4019 srcbuf->fmt.sample_rate = srcfreq;
4020
4021 srcbuf->head = 0;
4022 srcbuf->used = 0;
4023 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4024 len = auring_bytelen(srcbuf);
4025 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4026 if (srcbuf->mem == NULL) {
4027 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
4028 __func__, len);
4029 error = ENOMEM;
4030 goto abort;
4031 }
4032
4033 arg = &track->freq.arg;
4034 arg->srcfmt = &srcbuf->fmt;
4035 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4036 arg->context = track;
4037
4038 *last_dstp = srcbuf;
4039 return 0;
4040 }
4041
4042 abort:
4043 track->freq.filter = NULL;
4044 audio_free(srcbuf->mem);
4045 return error;
4046 }
4047
4048 /*
4049 * When playing back: (e.g. if codec and freq stage are valid)
4050 *
4051 * write
4052 * | uiomove
4053 * v
4054 * usrbuf [...............] byte ring buffer (mmap-able)
4055 * | memcpy
4056 * v
4057 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4058 * .dst ----+
4059 * | convert
4060 * v
4061 * freq.srcbuf [....] 1 block (ring) buffer
4062 * .dst ----+
4063 * | convert
4064 * v
4065 * outbuf [...............] NBLKOUT blocks ring buffer
4066 *
4067 *
4068 * When recording:
4069 *
4070 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4071 * .dst ----+
4072 * | convert
4073 * v
4074 * codec.srcbuf[.....] 1 block (ring) buffer
4075 * .dst ----+
4076 * | convert
4077 * v
4078 * outbuf [.....] 1 block (ring) buffer
4079 * | memcpy
4080 * v
4081 * usrbuf [...............] byte ring buffer (mmap-able *)
4082 * | uiomove
4083 * v
4084 * read
4085 *
4086 * *: usrbuf for recording is also mmap-able due to symmetry with
4087 * playback buffer, but for now mmap will never happen for recording.
4088 */
4089
4090 /*
4091 * Set the userland format of this track.
4092 * usrfmt argument should be parameter verified with audio_check_params().
4093 * It will release and reallocate all internal conversion buffers.
4094 * It returns 0 if successful. Otherwise it returns errno with clearing all
4095 * internal buffers.
4096 * It must be called without sc_intr_lock since uvm_* routines require non
4097 * intr_lock state.
4098 * It must be called with track lock held since it may release and reallocate
4099 * outbuf.
4100 */
4101 static int
4102 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4103 {
4104 struct audio_softc *sc;
4105 u_int newbufsize;
4106 u_int oldblksize;
4107 u_int len;
4108 int error;
4109
4110 KASSERT(track);
4111 sc = track->mixer->sc;
4112
4113 /* usrbuf is the closest buffer to the userland. */
4114 track->usrbuf.fmt = *usrfmt;
4115
4116 /*
4117 * For references, one block size (in 40msec) is:
4118 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4119 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4120 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4121 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4122 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4123 *
4124 * For example,
4125 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4126 * newbufsize = rounddown(65536 / 7056) = 63504
4127 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4128 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4129 *
4130 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4131 * newbufsize = rounddown(65536 / 7680) = 61440
4132 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4133 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4134 */
4135 oldblksize = track->usrbuf_blksize;
4136 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4137 frame_per_block(track->mixer, &track->usrbuf.fmt));
4138 track->usrbuf.head = 0;
4139 track->usrbuf.used = 0;
4140 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4141 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4142 error = audio_realloc_usrbuf(track, newbufsize);
4143 if (error) {
4144 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4145 newbufsize);
4146 goto error;
4147 }
4148
4149 /* Recalc water mark. */
4150 if (track->usrbuf_blksize != oldblksize) {
4151 if (audio_track_is_playback(track)) {
4152 /* Set high at 100%, low at 75%. */
4153 track->usrbuf_usedhigh = track->usrbuf.capacity;
4154 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4155 } else {
4156 /* Set high at 100% minus 1block(?), low at 0% */
4157 track->usrbuf_usedhigh = track->usrbuf.capacity -
4158 track->usrbuf_blksize;
4159 track->usrbuf_usedlow = 0;
4160 }
4161 }
4162
4163 /* Stage buffer */
4164 audio_ring_t *last_dst = &track->outbuf;
4165 if (audio_track_is_playback(track)) {
4166 /* On playback, initialize from the mixer side in order. */
4167 track->inputfmt = *usrfmt;
4168 track->outbuf.fmt = track->mixer->track_fmt;
4169
4170 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4171 goto error;
4172 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4173 goto error;
4174 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4175 goto error;
4176 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4177 goto error;
4178 } else {
4179 /* On recording, initialize from userland side in order. */
4180 track->inputfmt = track->mixer->track_fmt;
4181 track->outbuf.fmt = *usrfmt;
4182
4183 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4184 goto error;
4185 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4186 goto error;
4187 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4188 goto error;
4189 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4190 goto error;
4191 }
4192 #if 0
4193 /* debug */
4194 if (track->freq.filter) {
4195 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4196 audio_print_format2("freq dst", &track->freq.dst->fmt);
4197 }
4198 if (track->chmix.filter) {
4199 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4200 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4201 }
4202 if (track->chvol.filter) {
4203 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4204 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4205 }
4206 if (track->codec.filter) {
4207 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4208 audio_print_format2("codec dst", &track->codec.dst->fmt);
4209 }
4210 #endif
4211
4212 /* Stage input buffer */
4213 track->input = last_dst;
4214
4215 /*
4216 * On the recording track, make the first stage a ring buffer.
4217 * XXX is there a better way?
4218 */
4219 if (audio_track_is_record(track)) {
4220 track->input->capacity = NBLKOUT *
4221 frame_per_block(track->mixer, &track->input->fmt);
4222 len = auring_bytelen(track->input);
4223 track->input->mem = audio_realloc(track->input->mem, len);
4224 if (track->input->mem == NULL) {
4225 device_printf(sc->sc_dev, "malloc input(%d) failed\n",
4226 len);
4227 error = ENOMEM;
4228 goto error;
4229 }
4230 }
4231
4232 /*
4233 * Output buffer.
4234 * On the playback track, its capacity is NBLKOUT blocks.
4235 * On the recording track, its capacity is 1 block.
4236 */
4237 track->outbuf.head = 0;
4238 track->outbuf.used = 0;
4239 track->outbuf.capacity = frame_per_block(track->mixer,
4240 &track->outbuf.fmt);
4241 if (audio_track_is_playback(track))
4242 track->outbuf.capacity *= NBLKOUT;
4243 len = auring_bytelen(&track->outbuf);
4244 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4245 if (track->outbuf.mem == NULL) {
4246 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4247 error = ENOMEM;
4248 goto error;
4249 }
4250
4251 #if defined(AUDIO_DEBUG)
4252 if (audiodebug >= 3) {
4253 struct audio_track_debugbuf m;
4254
4255 memset(&m, 0, sizeof(m));
4256 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4257 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4258 if (track->freq.filter)
4259 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4260 track->freq.srcbuf.capacity *
4261 frametobyte(&track->freq.srcbuf.fmt, 1));
4262 if (track->chmix.filter)
4263 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4264 track->chmix.srcbuf.capacity *
4265 frametobyte(&track->chmix.srcbuf.fmt, 1));
4266 if (track->chvol.filter)
4267 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4268 track->chvol.srcbuf.capacity *
4269 frametobyte(&track->chvol.srcbuf.fmt, 1));
4270 if (track->codec.filter)
4271 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4272 track->codec.srcbuf.capacity *
4273 frametobyte(&track->codec.srcbuf.fmt, 1));
4274 snprintf(m.usrbuf, sizeof(m.usrbuf),
4275 " usr=%d", track->usrbuf.capacity);
4276
4277 if (audio_track_is_playback(track)) {
4278 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4279 m.outbuf, m.freq, m.chmix,
4280 m.chvol, m.codec, m.usrbuf);
4281 } else {
4282 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4283 m.freq, m.chmix, m.chvol,
4284 m.codec, m.outbuf, m.usrbuf);
4285 }
4286 }
4287 #endif
4288 return 0;
4289
4290 error:
4291 audio_free_usrbuf(track);
4292 audio_free(track->codec.srcbuf.mem);
4293 audio_free(track->chvol.srcbuf.mem);
4294 audio_free(track->chmix.srcbuf.mem);
4295 audio_free(track->freq.srcbuf.mem);
4296 audio_free(track->outbuf.mem);
4297 return error;
4298 }
4299
4300 /*
4301 * Fill silence frames (as the internal format) up to 1 block
4302 * if the ring is not empty and less than 1 block.
4303 * It returns the number of appended frames.
4304 */
4305 static int
4306 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4307 {
4308 int fpb;
4309 int n;
4310
4311 KASSERT(track);
4312 KASSERT(audio_format2_is_internal(&ring->fmt));
4313
4314 /* XXX is n correct? */
4315 /* XXX memset uses frametobyte()? */
4316
4317 if (ring->used == 0)
4318 return 0;
4319
4320 fpb = frame_per_block(track->mixer, &ring->fmt);
4321 if (ring->used >= fpb)
4322 return 0;
4323
4324 n = (ring->capacity - ring->used) % fpb;
4325
4326 KASSERT(auring_get_contig_free(ring) >= n);
4327
4328 memset(auring_tailptr_aint(ring), 0,
4329 n * ring->fmt.channels * sizeof(aint_t));
4330 auring_push(ring, n);
4331 return n;
4332 }
4333
4334 /*
4335 * Execute the conversion stage.
4336 * It prepares arg from this stage and executes stage->filter.
4337 * It must be called only if stage->filter is not NULL.
4338 *
4339 * For stages other than frequency conversion, the function increments
4340 * src and dst counters here. For frequency conversion stage, on the
4341 * other hand, the function does not touch src and dst counters and
4342 * filter side has to increment them.
4343 */
4344 static void
4345 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4346 {
4347 audio_filter_arg_t *arg;
4348 int srccount;
4349 int dstcount;
4350 int count;
4351
4352 KASSERT(track);
4353 KASSERT(stage->filter);
4354
4355 srccount = auring_get_contig_used(&stage->srcbuf);
4356 dstcount = auring_get_contig_free(stage->dst);
4357
4358 if (isfreq) {
4359 KASSERTMSG(srccount > 0, "freq but srccount == %d", srccount);
4360 count = uimin(dstcount, track->mixer->frames_per_block);
4361 } else {
4362 count = uimin(srccount, dstcount);
4363 }
4364
4365 if (count > 0) {
4366 arg = &stage->arg;
4367 arg->src = auring_headptr(&stage->srcbuf);
4368 arg->dst = auring_tailptr(stage->dst);
4369 arg->count = count;
4370
4371 stage->filter(arg);
4372
4373 if (!isfreq) {
4374 auring_take(&stage->srcbuf, count);
4375 auring_push(stage->dst, count);
4376 }
4377 }
4378 }
4379
4380 /*
4381 * Produce output buffer for playback from user input buffer.
4382 * It must be called only if usrbuf is not empty and outbuf is
4383 * available at least one free block.
4384 */
4385 static void
4386 audio_track_play(audio_track_t *track)
4387 {
4388 audio_ring_t *usrbuf;
4389 audio_ring_t *input;
4390 int count;
4391 int framesize;
4392 int bytes;
4393 u_int dropcount;
4394
4395 KASSERT(track);
4396 KASSERT(track->lock);
4397 TRACET(4, track, "start pstate=%d", track->pstate);
4398
4399 /* At this point usrbuf must not be empty. */
4400 KASSERT(track->usrbuf.used > 0);
4401 /* Also, outbuf must be available at least one block. */
4402 count = auring_get_contig_free(&track->outbuf);
4403 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4404 "count=%d fpb=%d",
4405 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4406
4407 /* XXX TODO: is this necessary for now? */
4408 int track_count_0 = track->outbuf.used;
4409
4410 usrbuf = &track->usrbuf;
4411 input = track->input;
4412 dropcount = 0;
4413
4414 /*
4415 * framesize is always 1 byte or more since all formats supported as
4416 * usrfmt(=input) have 8bit or more stride.
4417 */
4418 framesize = frametobyte(&input->fmt, 1);
4419 KASSERT(framesize >= 1);
4420
4421 /* The next stage of usrbuf (=input) must be available. */
4422 KASSERT(auring_get_contig_free(input) > 0);
4423
4424 /*
4425 * Copy usrbuf up to 1block to input buffer.
4426 * count is the number of frames to copy from usrbuf.
4427 * bytes is the number of bytes to copy from usrbuf. However it is
4428 * not copied less than one frame.
4429 */
4430 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4431 bytes = count * framesize;
4432
4433 /*
4434 * If bytes is less than one block,
4435 * if not draining, buffer is not filled so return.
4436 * if draining, fall through.
4437 */
4438 if (count < track->usrbuf_blksize / framesize) {
4439 dropcount = track->usrbuf_blksize / framesize - count;
4440
4441 if (track->pstate != AUDIO_STATE_DRAINING) {
4442 /* Wait until filled. */
4443 TRACET(4, track, "not enough; return");
4444 return;
4445 }
4446 }
4447
4448 track->usrbuf_stamp += bytes;
4449
4450 if (usrbuf->head + bytes < usrbuf->capacity) {
4451 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4452 (uint8_t *)usrbuf->mem + usrbuf->head,
4453 bytes);
4454 auring_push(input, count);
4455 auring_take(usrbuf, bytes);
4456 } else {
4457 int bytes1;
4458 int bytes2;
4459
4460 bytes1 = auring_get_contig_used(usrbuf);
4461 KASSERT(bytes1 % framesize == 0);
4462 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4463 (uint8_t *)usrbuf->mem + usrbuf->head,
4464 bytes1);
4465 auring_push(input, bytes1 / framesize);
4466 auring_take(usrbuf, bytes1);
4467
4468 bytes2 = bytes - bytes1;
4469 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4470 (uint8_t *)usrbuf->mem + usrbuf->head,
4471 bytes2);
4472 auring_push(input, bytes2 / framesize);
4473 auring_take(usrbuf, bytes2);
4474 }
4475
4476 /* Encoding conversion */
4477 if (track->codec.filter)
4478 audio_apply_stage(track, &track->codec, false);
4479
4480 /* Channel volume */
4481 if (track->chvol.filter)
4482 audio_apply_stage(track, &track->chvol, false);
4483
4484 /* Channel mix */
4485 if (track->chmix.filter)
4486 audio_apply_stage(track, &track->chmix, false);
4487
4488 /* Frequency conversion */
4489 /*
4490 * Since the frequency conversion needs correction for each block,
4491 * it rounds up to 1 block.
4492 */
4493 if (track->freq.filter) {
4494 int n;
4495 n = audio_append_silence(track, &track->freq.srcbuf);
4496 if (n > 0) {
4497 TRACET(4, track,
4498 "freq.srcbuf add silence %d -> %d/%d/%d",
4499 n,
4500 track->freq.srcbuf.head,
4501 track->freq.srcbuf.used,
4502 track->freq.srcbuf.capacity);
4503 }
4504 if (track->freq.srcbuf.used > 0) {
4505 audio_apply_stage(track, &track->freq, true);
4506 }
4507 }
4508
4509 if (dropcount != 0) {
4510 /*
4511 * Clear all conversion buffer pointer if the conversion was
4512 * not exactly one block. These conversion stage buffers are
4513 * certainly circular buffers because of symmetry with the
4514 * previous and next stage buffer. However, since they are
4515 * treated as simple contiguous buffers in operation, so head
4516 * always should point 0. This may happen during drain-age.
4517 */
4518 TRACET(4, track, "reset stage");
4519 if (track->codec.filter) {
4520 KASSERT(track->codec.srcbuf.used == 0);
4521 track->codec.srcbuf.head = 0;
4522 }
4523 if (track->chvol.filter) {
4524 KASSERT(track->chvol.srcbuf.used == 0);
4525 track->chvol.srcbuf.head = 0;
4526 }
4527 if (track->chmix.filter) {
4528 KASSERT(track->chmix.srcbuf.used == 0);
4529 track->chmix.srcbuf.head = 0;
4530 }
4531 if (track->freq.filter) {
4532 KASSERT(track->freq.srcbuf.used == 0);
4533 track->freq.srcbuf.head = 0;
4534 }
4535 }
4536
4537 if (track->input == &track->outbuf) {
4538 track->outputcounter = track->inputcounter;
4539 } else {
4540 track->outputcounter += track->outbuf.used - track_count_0;
4541 }
4542
4543 #if defined(AUDIO_DEBUG)
4544 if (audiodebug >= 3) {
4545 struct audio_track_debugbuf m;
4546 audio_track_bufstat(track, &m);
4547 TRACET(0, track, "end%s%s%s%s%s%s",
4548 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4549 }
4550 #endif
4551 }
4552
4553 /*
4554 * Produce user output buffer for recording from input buffer.
4555 */
4556 static void
4557 audio_track_record(audio_track_t *track)
4558 {
4559 audio_ring_t *outbuf;
4560 audio_ring_t *usrbuf;
4561 int count;
4562 int bytes;
4563 int framesize;
4564
4565 KASSERT(track);
4566 KASSERT(track->lock);
4567
4568 /* Number of frames to process */
4569 count = auring_get_contig_used(track->input);
4570 count = uimin(count, track->mixer->frames_per_block);
4571 if (count == 0) {
4572 TRACET(4, track, "count == 0");
4573 return;
4574 }
4575
4576 /* Frequency conversion */
4577 if (track->freq.filter) {
4578 if (track->freq.srcbuf.used > 0) {
4579 audio_apply_stage(track, &track->freq, true);
4580 /* XXX should input of freq be from beginning of buf? */
4581 }
4582 }
4583
4584 /* Channel mix */
4585 if (track->chmix.filter)
4586 audio_apply_stage(track, &track->chmix, false);
4587
4588 /* Channel volume */
4589 if (track->chvol.filter)
4590 audio_apply_stage(track, &track->chvol, false);
4591
4592 /* Encoding conversion */
4593 if (track->codec.filter)
4594 audio_apply_stage(track, &track->codec, false);
4595
4596 /* Copy outbuf to usrbuf */
4597 outbuf = &track->outbuf;
4598 usrbuf = &track->usrbuf;
4599 /*
4600 * framesize is always 1 byte or more since all formats supported
4601 * as usrfmt(=output) have 8bit or more stride.
4602 */
4603 framesize = frametobyte(&outbuf->fmt, 1);
4604 KASSERT(framesize >= 1);
4605 /*
4606 * count is the number of frames to copy to usrbuf.
4607 * bytes is the number of bytes to copy to usrbuf.
4608 */
4609 count = outbuf->used;
4610 count = uimin(count,
4611 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4612 bytes = count * framesize;
4613 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4614 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4615 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4616 bytes);
4617 auring_push(usrbuf, bytes);
4618 auring_take(outbuf, count);
4619 } else {
4620 int bytes1;
4621 int bytes2;
4622
4623 bytes1 = auring_get_contig_used(usrbuf);
4624 KASSERT(bytes1 % framesize == 0);
4625 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4626 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4627 bytes1);
4628 auring_push(usrbuf, bytes1);
4629 auring_take(outbuf, bytes1 / framesize);
4630
4631 bytes2 = bytes - bytes1;
4632 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4633 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4634 bytes2);
4635 auring_push(usrbuf, bytes2);
4636 auring_take(outbuf, bytes2 / framesize);
4637 }
4638
4639 /* XXX TODO: any counters here? */
4640
4641 #if defined(AUDIO_DEBUG)
4642 if (audiodebug >= 3) {
4643 struct audio_track_debugbuf m;
4644 audio_track_bufstat(track, &m);
4645 TRACET(0, track, "end%s%s%s%s%s%s",
4646 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4647 }
4648 #endif
4649 }
4650
4651 /*
4652 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4653 * Must be called with sc_lock held.
4654 */
4655 static u_int
4656 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4657 {
4658 audio_format2_t *fmt;
4659 u_int blktime;
4660 u_int frames_per_block;
4661
4662 KASSERT(mutex_owned(sc->sc_lock));
4663
4664 fmt = &mixer->hwbuf.fmt;
4665 blktime = sc->sc_blk_ms;
4666
4667 /*
4668 * If stride is not multiples of 8, special treatment is necessary.
4669 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4670 */
4671 if (fmt->stride == 4) {
4672 frames_per_block = fmt->sample_rate * blktime / 1000;
4673 if ((frames_per_block & 1) != 0)
4674 blktime *= 2;
4675 }
4676 #ifdef DIAGNOSTIC
4677 else if (fmt->stride % NBBY != 0) {
4678 panic("unsupported HW stride %d", fmt->stride);
4679 }
4680 #endif
4681
4682 return blktime;
4683 }
4684
4685 /*
4686 * Initialize the mixer corresponding to the mode.
4687 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4688 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4689 * This function returns 0 on sucessful. Otherwise returns errno.
4690 * Must be called with sc_lock held.
4691 */
4692 static int
4693 audio_mixer_init(struct audio_softc *sc, int mode,
4694 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4695 {
4696 char codecbuf[64];
4697 audio_trackmixer_t *mixer;
4698 void (*softint_handler)(void *);
4699 int len;
4700 int blksize;
4701 int capacity;
4702 size_t bufsize;
4703 int hwblks;
4704 int blkms;
4705 int error;
4706
4707 KASSERT(hwfmt != NULL);
4708 KASSERT(reg != NULL);
4709 KASSERT(mutex_owned(sc->sc_lock));
4710
4711 error = 0;
4712 if (mode == AUMODE_PLAY)
4713 mixer = sc->sc_pmixer;
4714 else
4715 mixer = sc->sc_rmixer;
4716
4717 mixer->sc = sc;
4718 mixer->mode = mode;
4719
4720 mixer->hwbuf.fmt = *hwfmt;
4721 mixer->volume = 256;
4722 mixer->blktime_d = 1000;
4723 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4724 sc->sc_blk_ms = mixer->blktime_n;
4725 hwblks = NBLKHW;
4726
4727 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4728 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4729 if (sc->hw_if->round_blocksize) {
4730 int rounded;
4731 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4732 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4733 mode, &p);
4734 TRACE(2, "round_blocksize %d -> %d", blksize, rounded);
4735 if (rounded != blksize) {
4736 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4737 mixer->hwbuf.fmt.channels) != 0) {
4738 device_printf(sc->sc_dev,
4739 "blksize not configured %d -> %d\n",
4740 blksize, rounded);
4741 return EINVAL;
4742 }
4743 /* Recalculation */
4744 blksize = rounded;
4745 mixer->frames_per_block = blksize * NBBY /
4746 (mixer->hwbuf.fmt.stride *
4747 mixer->hwbuf.fmt.channels);
4748 }
4749 }
4750 mixer->blktime_n = mixer->frames_per_block;
4751 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4752
4753 capacity = mixer->frames_per_block * hwblks;
4754 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4755 if (sc->hw_if->round_buffersize) {
4756 size_t rounded;
4757 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4758 bufsize);
4759 TRACE(2, "round_buffersize %zd -> %zd", bufsize, rounded);
4760 if (rounded < bufsize) {
4761 /* buffersize needs NBLKHW blocks at least. */
4762 device_printf(sc->sc_dev,
4763 "buffersize too small: buffersize=%zd blksize=%d\n",
4764 rounded, blksize);
4765 return EINVAL;
4766 }
4767 if (rounded % blksize != 0) {
4768 /* buffersize/blksize constraint mismatch? */
4769 device_printf(sc->sc_dev,
4770 "buffersize must be multiple of blksize: "
4771 "buffersize=%zu blksize=%d\n",
4772 rounded, blksize);
4773 return EINVAL;
4774 }
4775 if (rounded != bufsize) {
4776 /* Recalcuration */
4777 bufsize = rounded;
4778 hwblks = bufsize / blksize;
4779 capacity = mixer->frames_per_block * hwblks;
4780 }
4781 }
4782 TRACE(2, "buffersize for %s = %zu",
4783 (mode == AUMODE_PLAY) ? "playback" : "recording",
4784 bufsize);
4785 mixer->hwbuf.capacity = capacity;
4786
4787 /*
4788 * XXX need to release sc_lock for compatibility?
4789 */
4790 if (sc->hw_if->allocm) {
4791 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4792 if (mixer->hwbuf.mem == NULL) {
4793 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4794 __func__, bufsize);
4795 return ENOMEM;
4796 }
4797 } else {
4798 mixer->hwbuf.mem = kern_malloc(bufsize, M_NOWAIT);
4799 if (mixer->hwbuf.mem == NULL) {
4800 device_printf(sc->sc_dev,
4801 "%s: malloc hwbuf(%zu) failed\n",
4802 __func__, bufsize);
4803 return ENOMEM;
4804 }
4805 }
4806
4807 /* From here, audio_mixer_destroy is necessary to exit. */
4808 if (mode == AUMODE_PLAY) {
4809 cv_init(&mixer->outcv, "audiowr");
4810 } else {
4811 cv_init(&mixer->outcv, "audiord");
4812 }
4813
4814 if (mode == AUMODE_PLAY) {
4815 softint_handler = audio_softintr_wr;
4816 } else {
4817 softint_handler = audio_softintr_rd;
4818 }
4819 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4820 softint_handler, sc);
4821 if (mixer->sih == NULL) {
4822 device_printf(sc->sc_dev, "softint_establish failed\n");
4823 goto abort;
4824 }
4825
4826 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4827 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4828 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4829 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4830 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4831
4832 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4833 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4834 mixer->swap_endian = true;
4835 TRACE(1, "swap_endian");
4836 }
4837
4838 if (mode == AUMODE_PLAY) {
4839 /* Mixing buffer */
4840 mixer->mixfmt = mixer->track_fmt;
4841 mixer->mixfmt.precision *= 2;
4842 mixer->mixfmt.stride *= 2;
4843 /* XXX TODO: use some macros? */
4844 len = mixer->frames_per_block * mixer->mixfmt.channels *
4845 mixer->mixfmt.stride / NBBY;
4846 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4847 if (mixer->mixsample == NULL) {
4848 device_printf(sc->sc_dev,
4849 "%s: malloc mixsample(%d) failed\n",
4850 __func__, len);
4851 error = ENOMEM;
4852 goto abort;
4853 }
4854 } else {
4855 /* No mixing buffer for recording */
4856 }
4857
4858 if (reg->codec) {
4859 mixer->codec = reg->codec;
4860 mixer->codecarg.context = reg->context;
4861 if (mode == AUMODE_PLAY) {
4862 mixer->codecarg.srcfmt = &mixer->track_fmt;
4863 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4864 } else {
4865 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4866 mixer->codecarg.dstfmt = &mixer->track_fmt;
4867 }
4868 mixer->codecbuf.fmt = mixer->track_fmt;
4869 mixer->codecbuf.capacity = mixer->frames_per_block;
4870 len = auring_bytelen(&mixer->codecbuf);
4871 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4872 if (mixer->codecbuf.mem == NULL) {
4873 device_printf(sc->sc_dev,
4874 "%s: malloc codecbuf(%d) failed\n",
4875 __func__, len);
4876 error = ENOMEM;
4877 goto abort;
4878 }
4879 }
4880
4881 /* Succeeded so display it. */
4882 codecbuf[0] = '\0';
4883 if (mixer->codec || mixer->swap_endian) {
4884 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4885 (mode == AUMODE_PLAY) ? "->" : "<-",
4886 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4887 mixer->hwbuf.fmt.precision);
4888 }
4889 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
4890 aprint_normal_dev(sc->sc_dev, "%s:%d%s %dch %dHz, blk %dms for %s\n",
4891 audio_encoding_name(mixer->track_fmt.encoding),
4892 mixer->track_fmt.precision,
4893 codecbuf,
4894 mixer->track_fmt.channels,
4895 mixer->track_fmt.sample_rate,
4896 blkms,
4897 (mode == AUMODE_PLAY) ? "playback" : "recording");
4898
4899 return 0;
4900
4901 abort:
4902 audio_mixer_destroy(sc, mixer);
4903 return error;
4904 }
4905
4906 /*
4907 * Releases all resources of 'mixer'.
4908 * Note that it does not release the memory area of 'mixer' itself.
4909 * Must be called with sc_lock held.
4910 */
4911 static void
4912 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
4913 {
4914 int mode;
4915
4916 KASSERT(mutex_owned(sc->sc_lock));
4917
4918 mode = mixer->mode;
4919 KASSERT(mode == AUMODE_PLAY || mode == AUMODE_RECORD);
4920
4921 if (mixer->hwbuf.mem != NULL) {
4922 if (sc->hw_if->freem) {
4923 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, mode);
4924 } else {
4925 kern_free(mixer->hwbuf.mem);
4926 }
4927 mixer->hwbuf.mem = NULL;
4928 }
4929
4930 audio_free(mixer->codecbuf.mem);
4931 audio_free(mixer->mixsample);
4932
4933 cv_destroy(&mixer->outcv);
4934
4935 if (mixer->sih) {
4936 softint_disestablish(mixer->sih);
4937 mixer->sih = NULL;
4938 }
4939 }
4940
4941 /*
4942 * Starts playback mixer.
4943 * Must be called only if sc_pbusy is false.
4944 * Must be called with sc_lock held.
4945 * Must not be called from the interrupt context.
4946 */
4947 static void
4948 audio_pmixer_start(struct audio_softc *sc, bool force)
4949 {
4950 audio_trackmixer_t *mixer;
4951 int minimum;
4952
4953 KASSERT(mutex_owned(sc->sc_lock));
4954 KASSERT(sc->sc_pbusy == false);
4955
4956 mutex_enter(sc->sc_intr_lock);
4957
4958 mixer = sc->sc_pmixer;
4959 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
4960 (audiodebug >= 3) ? "begin " : "",
4961 (int)mixer->mixseq, (int)mixer->hwseq,
4962 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
4963 force ? " force" : "");
4964
4965 /* Need two blocks to start normally. */
4966 minimum = (force) ? 1 : 2;
4967 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
4968 audio_pmixer_process(sc);
4969 }
4970
4971 /* Start output */
4972 audio_pmixer_output(sc);
4973 sc->sc_pbusy = true;
4974
4975 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
4976 (int)mixer->mixseq, (int)mixer->hwseq,
4977 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
4978
4979 mutex_exit(sc->sc_intr_lock);
4980 }
4981
4982 /*
4983 * When playing back with MD filter:
4984 *
4985 * track track ...
4986 * v v
4987 * + mix (with aint2_t)
4988 * | master volume (with aint2_t)
4989 * v
4990 * mixsample [::::] wide-int 1 block (ring) buffer
4991 * |
4992 * | convert aint2_t -> aint_t
4993 * v
4994 * codecbuf [....] 1 block (ring) buffer
4995 * |
4996 * | convert to hw format
4997 * v
4998 * hwbuf [............] NBLKHW blocks ring buffer
4999 *
5000 * When playing back without MD filter:
5001 *
5002 * mixsample [::::] wide-int 1 block (ring) buffer
5003 * |
5004 * | convert aint2_t -> aint_t
5005 * | (with byte swap if necessary)
5006 * v
5007 * hwbuf [............] NBLKHW blocks ring buffer
5008 *
5009 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5010 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5011 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5012 */
5013
5014 /*
5015 * Performs track mixing and converts it to hwbuf.
5016 * Note that this function doesn't transfer hwbuf to hardware.
5017 * Must be called with sc_intr_lock held.
5018 */
5019 static void
5020 audio_pmixer_process(struct audio_softc *sc)
5021 {
5022 audio_trackmixer_t *mixer;
5023 audio_file_t *f;
5024 int frame_count;
5025 int sample_count;
5026 int mixed;
5027 int i;
5028 aint2_t *m;
5029 aint_t *h;
5030
5031 mixer = sc->sc_pmixer;
5032
5033 frame_count = mixer->frames_per_block;
5034 KASSERT(auring_get_contig_free(&mixer->hwbuf) >= frame_count);
5035 sample_count = frame_count * mixer->mixfmt.channels;
5036
5037 mixer->mixseq++;
5038
5039 /* Mix all tracks */
5040 mixed = 0;
5041 SLIST_FOREACH(f, &sc->sc_files, entry) {
5042 audio_track_t *track = f->ptrack;
5043
5044 if (track == NULL)
5045 continue;
5046
5047 if (track->is_pause) {
5048 TRACET(4, track, "skip; paused");
5049 continue;
5050 }
5051
5052 /* Skip if the track is used by process context. */
5053 if (audio_track_lock_tryenter(track) == false) {
5054 TRACET(4, track, "skip; in use");
5055 continue;
5056 }
5057
5058 /* Emulate mmap'ped track */
5059 if (track->mmapped) {
5060 auring_push(&track->usrbuf, track->usrbuf_blksize);
5061 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5062 track->usrbuf.head,
5063 track->usrbuf.used,
5064 track->usrbuf.capacity);
5065 }
5066
5067 if (track->outbuf.used < mixer->frames_per_block &&
5068 track->usrbuf.used > 0) {
5069 TRACET(4, track, "process");
5070 audio_track_play(track);
5071 }
5072
5073 if (track->outbuf.used > 0) {
5074 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5075 } else {
5076 TRACET(4, track, "skip; empty");
5077 }
5078
5079 audio_track_lock_exit(track);
5080 }
5081
5082 if (mixed == 0) {
5083 /* Silence */
5084 memset(mixer->mixsample, 0,
5085 frametobyte(&mixer->mixfmt, frame_count));
5086 } else {
5087 aint2_t ovf_plus;
5088 aint2_t ovf_minus;
5089 int vol;
5090
5091 /* Overflow detection */
5092 ovf_plus = AINT_T_MAX;
5093 ovf_minus = AINT_T_MIN;
5094 m = mixer->mixsample;
5095 for (i = 0; i < sample_count; i++) {
5096 aint2_t val;
5097
5098 val = *m++;
5099 if (val > ovf_plus)
5100 ovf_plus = val;
5101 else if (val < ovf_minus)
5102 ovf_minus = val;
5103 }
5104
5105 /* Master Volume Auto Adjust */
5106 vol = mixer->volume;
5107 if (ovf_plus > (aint2_t)AINT_T_MAX
5108 || ovf_minus < (aint2_t)AINT_T_MIN) {
5109 aint2_t ovf;
5110 int vol2;
5111
5112 /* XXX TODO: Check AINT2_T_MIN ? */
5113 ovf = ovf_plus;
5114 if (ovf < -ovf_minus)
5115 ovf = -ovf_minus;
5116
5117 /* Turn down the volume if overflow occured. */
5118 vol2 = (int)((aint2_t)AINT_T_MAX * 256 / ovf);
5119 if (vol2 < vol)
5120 vol = vol2;
5121
5122 if (vol < mixer->volume) {
5123 /* Turn down gradually to 128. */
5124 if (mixer->volume > 128) {
5125 mixer->volume =
5126 (mixer->volume * 95) / 100;
5127 device_printf(sc->sc_dev,
5128 "auto volume adjust: volume %d\n",
5129 mixer->volume);
5130 }
5131 }
5132 }
5133
5134 /* Apply Master Volume. */
5135 if (vol != 256) {
5136 m = mixer->mixsample;
5137 for (i = 0; i < sample_count; i++) {
5138 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5139 *m = *m * vol >> 8;
5140 #else
5141 *m = *m * vol / 256;
5142 #endif
5143 m++;
5144 }
5145 }
5146 }
5147
5148 /*
5149 * The rest is the hardware part.
5150 */
5151
5152 if (mixer->codec) {
5153 h = auring_tailptr_aint(&mixer->codecbuf);
5154 } else {
5155 h = auring_tailptr_aint(&mixer->hwbuf);
5156 }
5157
5158 m = mixer->mixsample;
5159 if (mixer->swap_endian) {
5160 for (i = 0; i < sample_count; i++) {
5161 *h++ = bswap16(*m++);
5162 }
5163 } else {
5164 for (i = 0; i < sample_count; i++) {
5165 *h++ = *m++;
5166 }
5167 }
5168
5169 /* Hardware driver's codec */
5170 if (mixer->codec) {
5171 auring_push(&mixer->codecbuf, frame_count);
5172 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5173 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5174 mixer->codecarg.count = frame_count;
5175 mixer->codec(&mixer->codecarg);
5176 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5177 }
5178
5179 auring_push(&mixer->hwbuf, frame_count);
5180
5181 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5182 (int)mixer->mixseq,
5183 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5184 (mixed == 0) ? " silent" : "");
5185 }
5186
5187 /*
5188 * Mix one track.
5189 * 'mixed' specifies the number of tracks mixed so far.
5190 * It returns the number of tracks mixed. In other words, it returns
5191 * mixed + 1 if this track is mixed.
5192 */
5193 static int
5194 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5195 int mixed)
5196 {
5197 int count;
5198 int sample_count;
5199 int remain;
5200 int i;
5201 const aint_t *s;
5202 aint2_t *d;
5203
5204 /* XXX TODO: Is this necessary for now? */
5205 if (mixer->mixseq < track->seq)
5206 return mixed;
5207
5208 count = auring_get_contig_used(&track->outbuf);
5209 count = uimin(count, mixer->frames_per_block);
5210
5211 s = auring_headptr_aint(&track->outbuf);
5212 d = mixer->mixsample;
5213
5214 /*
5215 * Apply track volume with double-sized integer and perform
5216 * additive synthesis.
5217 *
5218 * XXX If you limit the track volume to 1.0 or less (<= 256),
5219 * it would be better to do this in the track conversion stage
5220 * rather than here. However, if you accept the volume to
5221 * be greater than 1.0 (> 256), it's better to do it here.
5222 * Because the operation here is done by double-sized integer.
5223 */
5224 sample_count = count * mixer->mixfmt.channels;
5225 if (mixed == 0) {
5226 /* If this is the first track, assignment can be used. */
5227 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5228 if (track->volume != 256) {
5229 for (i = 0; i < sample_count; i++) {
5230 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5231 *d++ = ((aint2_t)*s++) * track->volume >> 8;
5232 #else
5233 *d++ = ((aint2_t)*s++) * track->volume / 256;
5234 #endif
5235 }
5236 } else
5237 #endif
5238 {
5239 for (i = 0; i < sample_count; i++) {
5240 *d++ = ((aint2_t)*s++);
5241 }
5242 }
5243 } else {
5244 /* If this is the second or later, add it. */
5245 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5246 if (track->volume != 256) {
5247 for (i = 0; i < sample_count; i++) {
5248 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5249 *d++ += ((aint2_t)*s++) * track->volume >> 8;
5250 #else
5251 *d++ += ((aint2_t)*s++) * track->volume / 256;
5252 #endif
5253 }
5254 } else
5255 #endif
5256 {
5257 for (i = 0; i < sample_count; i++) {
5258 *d++ += ((aint2_t)*s++);
5259 }
5260 }
5261 }
5262
5263 auring_take(&track->outbuf, count);
5264 /*
5265 * The counters have to align block even if outbuf is less than
5266 * one block. XXX Is this still necessary?
5267 */
5268 remain = mixer->frames_per_block - count;
5269 if (__predict_false(remain != 0)) {
5270 auring_push(&track->outbuf, remain);
5271 auring_take(&track->outbuf, remain);
5272 }
5273
5274 /*
5275 * Update track sequence.
5276 * mixseq has previous value yet at this point.
5277 */
5278 track->seq = mixer->mixseq + 1;
5279
5280 return mixed + 1;
5281 }
5282
5283 /*
5284 * Output one block from hwbuf to HW.
5285 * Must be called with sc_intr_lock held.
5286 */
5287 static void
5288 audio_pmixer_output(struct audio_softc *sc)
5289 {
5290 audio_trackmixer_t *mixer;
5291 audio_params_t params;
5292 void *start;
5293 void *end;
5294 int blksize;
5295 int error;
5296
5297 mixer = sc->sc_pmixer;
5298 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5299 sc->sc_pbusy,
5300 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5301 KASSERT(mixer->hwbuf.used >= mixer->frames_per_block);
5302
5303 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5304
5305 if (sc->hw_if->trigger_output) {
5306 /* trigger (at once) */
5307 if (!sc->sc_pbusy) {
5308 start = mixer->hwbuf.mem;
5309 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5310 params = format2_to_params(&mixer->hwbuf.fmt);
5311
5312 error = sc->hw_if->trigger_output(sc->hw_hdl,
5313 start, end, blksize, audio_pintr, sc, ¶ms);
5314 if (error) {
5315 device_printf(sc->sc_dev,
5316 "trigger_output failed with %d", error);
5317 return;
5318 }
5319 }
5320 } else {
5321 /* start (everytime) */
5322 start = auring_headptr(&mixer->hwbuf);
5323
5324 error = sc->hw_if->start_output(sc->hw_hdl,
5325 start, blksize, audio_pintr, sc);
5326 if (error) {
5327 device_printf(sc->sc_dev,
5328 "start_output failed with %d", error);
5329 return;
5330 }
5331 }
5332 }
5333
5334 /*
5335 * This is an interrupt handler for playback.
5336 * It is called with sc_intr_lock held.
5337 *
5338 * It is usually called from hardware interrupt. However, note that
5339 * for some drivers (e.g. uaudio) it is called from software interrupt.
5340 */
5341 static void
5342 audio_pintr(void *arg)
5343 {
5344 struct audio_softc *sc;
5345 audio_trackmixer_t *mixer;
5346
5347 sc = arg;
5348 KASSERT(mutex_owned(sc->sc_intr_lock));
5349
5350 if (sc->sc_dying)
5351 return;
5352 #if defined(DIAGNOSTIC)
5353 if (sc->sc_pbusy == false) {
5354 device_printf(sc->sc_dev, "stray interrupt\n");
5355 return;
5356 }
5357 #endif
5358
5359 mixer = sc->sc_pmixer;
5360 mixer->hw_complete_counter += mixer->frames_per_block;
5361 mixer->hwseq++;
5362
5363 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5364
5365 TRACE(4,
5366 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5367 mixer->hwseq, mixer->hw_complete_counter,
5368 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5369
5370 #if !defined(_KERNEL)
5371 /* This is a debug code for userland test. */
5372 return;
5373 #endif
5374
5375 #if defined(AUDIO_HW_SINGLE_BUFFER)
5376 /*
5377 * Create a new block here and output it immediately.
5378 * It makes a latency lower but needs machine power.
5379 */
5380 audio_pmixer_process(sc);
5381 audio_pmixer_output(sc);
5382 #else
5383 /*
5384 * It is called when block N output is done.
5385 * Output immediately block N+1 created by the last interrupt.
5386 * And then create block N+2 for the next interrupt.
5387 * This method makes playback robust even on slower machines.
5388 * Instead the latency is increased by one block.
5389 */
5390
5391 /* At first, output ready block. */
5392 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5393 audio_pmixer_output(sc);
5394 }
5395
5396 bool later = false;
5397
5398 if (mixer->hwbuf.used < mixer->frames_per_block) {
5399 later = true;
5400 }
5401
5402 /* Then, process next block. */
5403 audio_pmixer_process(sc);
5404
5405 if (later) {
5406 audio_pmixer_output(sc);
5407 }
5408 #endif
5409
5410 /*
5411 * When this interrupt is the real hardware interrupt, disabling
5412 * preemption here is not necessary. But some drivers (e.g. uaudio)
5413 * emulate it by software interrupt, so kpreempt_disable is necessary.
5414 */
5415 kpreempt_disable();
5416 softint_schedule(mixer->sih);
5417 kpreempt_enable();
5418 }
5419
5420 /*
5421 * Starts record mixer.
5422 * Must be called only if sc_rbusy is false.
5423 * Must be called with sc_lock held.
5424 * Must not be called from the interrupt context.
5425 */
5426 static void
5427 audio_rmixer_start(struct audio_softc *sc)
5428 {
5429
5430 KASSERT(mutex_owned(sc->sc_lock));
5431 KASSERT(sc->sc_rbusy == false);
5432
5433 mutex_enter(sc->sc_intr_lock);
5434
5435 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5436 audio_rmixer_input(sc);
5437 sc->sc_rbusy = true;
5438 TRACE(3, "end");
5439
5440 mutex_exit(sc->sc_intr_lock);
5441 }
5442
5443 /*
5444 * When recording with MD filter:
5445 *
5446 * hwbuf [............] NBLKHW blocks ring buffer
5447 * |
5448 * | convert from hw format
5449 * v
5450 * codecbuf [....] 1 block (ring) buffer
5451 * | |
5452 * v v
5453 * track track ...
5454 *
5455 * When recording without MD filter:
5456 *
5457 * hwbuf [............] NBLKHW blocks ring buffer
5458 * | |
5459 * v v
5460 * track track ...
5461 *
5462 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5463 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5464 */
5465
5466 /*
5467 * Distribute a recorded block to all recording tracks.
5468 */
5469 static void
5470 audio_rmixer_process(struct audio_softc *sc)
5471 {
5472 audio_trackmixer_t *mixer;
5473 audio_ring_t *mixersrc;
5474 audio_file_t *f;
5475 aint_t *p;
5476 int count;
5477 int bytes;
5478 int i;
5479
5480 mixer = sc->sc_rmixer;
5481
5482 /*
5483 * count is the number of frames to be retrieved this time.
5484 * count should be one block.
5485 */
5486 count = auring_get_contig_used(&mixer->hwbuf);
5487 count = uimin(count, mixer->frames_per_block);
5488 if (count <= 0) {
5489 TRACE(4, "count %d: too short", count);
5490 return;
5491 }
5492 bytes = frametobyte(&mixer->track_fmt, count);
5493
5494 /* Hardware driver's codec */
5495 if (mixer->codec) {
5496 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5497 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5498 mixer->codecarg.count = count;
5499 mixer->codec(&mixer->codecarg);
5500 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5501 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5502 mixersrc = &mixer->codecbuf;
5503 } else {
5504 mixersrc = &mixer->hwbuf;
5505 }
5506
5507 if (mixer->swap_endian) {
5508 /* inplace conversion */
5509 p = auring_headptr_aint(mixersrc);
5510 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5511 *p = bswap16(*p);
5512 }
5513 }
5514
5515 /* Distribute to all tracks. */
5516 SLIST_FOREACH(f, &sc->sc_files, entry) {
5517 audio_track_t *track = f->rtrack;
5518 audio_ring_t *input;
5519
5520 if (track == NULL)
5521 continue;
5522
5523 if (track->is_pause) {
5524 TRACET(4, track, "skip; paused");
5525 continue;
5526 }
5527
5528 if (audio_track_lock_tryenter(track) == false) {
5529 TRACET(4, track, "skip; in use");
5530 continue;
5531 }
5532
5533 /* If the track buffer is full, discard the oldest one? */
5534 input = track->input;
5535 if (input->capacity - input->used < mixer->frames_per_block) {
5536 int drops = mixer->frames_per_block -
5537 (input->capacity - input->used);
5538 track->dropframes += drops;
5539 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5540 drops,
5541 input->head, input->used, input->capacity);
5542 auring_take(input, drops);
5543 }
5544 KASSERT(input->used % mixer->frames_per_block == 0);
5545
5546 memcpy(auring_tailptr_aint(input),
5547 auring_headptr_aint(mixersrc),
5548 bytes);
5549 auring_push(input, count);
5550
5551 /* XXX sequence counter? */
5552
5553 audio_track_lock_exit(track);
5554 }
5555
5556 auring_take(mixersrc, count);
5557 }
5558
5559 /*
5560 * Input one block from HW to hwbuf.
5561 * Must be called with sc_intr_lock held.
5562 */
5563 static void
5564 audio_rmixer_input(struct audio_softc *sc)
5565 {
5566 audio_trackmixer_t *mixer;
5567 audio_params_t params;
5568 void *start;
5569 void *end;
5570 int blksize;
5571 int error;
5572
5573 mixer = sc->sc_rmixer;
5574 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5575
5576 if (sc->hw_if->trigger_input) {
5577 /* trigger (at once) */
5578 if (!sc->sc_rbusy) {
5579 start = mixer->hwbuf.mem;
5580 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5581 params = format2_to_params(&mixer->hwbuf.fmt);
5582
5583 error = sc->hw_if->trigger_input(sc->hw_hdl,
5584 start, end, blksize, audio_rintr, sc, ¶ms);
5585 if (error) {
5586 device_printf(sc->sc_dev,
5587 "trigger_input failed with %d", error);
5588 return;
5589 }
5590 }
5591 } else {
5592 /* start (everytime) */
5593 start = auring_tailptr(&mixer->hwbuf);
5594
5595 error = sc->hw_if->start_input(sc->hw_hdl,
5596 start, blksize, audio_rintr, sc);
5597 if (error) {
5598 device_printf(sc->sc_dev,
5599 "start_input failed with %d", error);
5600 return;
5601 }
5602 }
5603 }
5604
5605 /*
5606 * This is an interrupt handler for recording.
5607 * It is called with sc_intr_lock.
5608 *
5609 * It is usually called from hardware interrupt. However, note that
5610 * for some drivers (e.g. uaudio) it is called from software interrupt.
5611 */
5612 static void
5613 audio_rintr(void *arg)
5614 {
5615 struct audio_softc *sc;
5616 audio_trackmixer_t *mixer;
5617
5618 sc = arg;
5619 KASSERT(mutex_owned(sc->sc_intr_lock));
5620
5621 if (sc->sc_dying)
5622 return;
5623 #if defined(DIAGNOSTIC)
5624 if (sc->sc_rbusy == false) {
5625 device_printf(sc->sc_dev, "stray interrupt\n");
5626 return;
5627 }
5628 #endif
5629
5630 mixer = sc->sc_rmixer;
5631 mixer->hw_complete_counter += mixer->frames_per_block;
5632 mixer->hwseq++;
5633
5634 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5635
5636 TRACE(4,
5637 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5638 mixer->hwseq, mixer->hw_complete_counter,
5639 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5640
5641 /* Distrubute recorded block */
5642 audio_rmixer_process(sc);
5643
5644 /* Request next block */
5645 audio_rmixer_input(sc);
5646
5647 /*
5648 * When this interrupt is the real hardware interrupt, disabling
5649 * preemption here is not necessary. But some drivers (e.g. uaudio)
5650 * emulate it by software interrupt, so kpreempt_disable is necessary.
5651 */
5652 kpreempt_disable();
5653 softint_schedule(mixer->sih);
5654 kpreempt_enable();
5655 }
5656
5657 /*
5658 * Halts playback mixer.
5659 * This function also clears related parameters, so call this function
5660 * instead of calling halt_output directly.
5661 * Must be called only if sc_pbusy is true.
5662 * Must be called with sc_lock && sc_exlock held.
5663 */
5664 static int
5665 audio_pmixer_halt(struct audio_softc *sc)
5666 {
5667 int error;
5668
5669 TRACE(2, "");
5670 KASSERT(mutex_owned(sc->sc_lock));
5671 KASSERT(sc->sc_exlock);
5672
5673 mutex_enter(sc->sc_intr_lock);
5674 error = sc->hw_if->halt_output(sc->hw_hdl);
5675 mutex_exit(sc->sc_intr_lock);
5676
5677 /* Halts anyway even if some error has occurred. */
5678 sc->sc_pbusy = false;
5679 sc->sc_pmixer->hwbuf.head = 0;
5680 sc->sc_pmixer->hwbuf.used = 0;
5681 sc->sc_pmixer->mixseq = 0;
5682 sc->sc_pmixer->hwseq = 0;
5683
5684 return error;
5685 }
5686
5687 /*
5688 * Halts recording mixer.
5689 * This function also clears related parameters, so call this function
5690 * instead of calling halt_input directly.
5691 * Must be called only if sc_rbusy is true.
5692 * Must be called with sc_lock && sc_exlock held.
5693 */
5694 static int
5695 audio_rmixer_halt(struct audio_softc *sc)
5696 {
5697 int error;
5698
5699 TRACE(2, "");
5700 KASSERT(mutex_owned(sc->sc_lock));
5701 KASSERT(sc->sc_exlock);
5702
5703 mutex_enter(sc->sc_intr_lock);
5704 error = sc->hw_if->halt_input(sc->hw_hdl);
5705 mutex_exit(sc->sc_intr_lock);
5706
5707 /* Halts anyway even if some error has occurred. */
5708 sc->sc_rbusy = false;
5709 sc->sc_rmixer->hwbuf.head = 0;
5710 sc->sc_rmixer->hwbuf.used = 0;
5711 sc->sc_rmixer->mixseq = 0;
5712 sc->sc_rmixer->hwseq = 0;
5713
5714 return error;
5715 }
5716
5717 /*
5718 * Flush this track.
5719 * Halts all operations, clears all buffers, reset error counters.
5720 * XXX I'm not sure...
5721 */
5722 static void
5723 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5724 {
5725
5726 KASSERT(track);
5727 TRACET(3, track, "clear");
5728
5729 audio_track_lock_enter(track);
5730
5731 track->usrbuf.used = 0;
5732 /* Clear all internal parameters. */
5733 if (track->codec.filter) {
5734 track->codec.srcbuf.used = 0;
5735 track->codec.srcbuf.head = 0;
5736 }
5737 if (track->chvol.filter) {
5738 track->chvol.srcbuf.used = 0;
5739 track->chvol.srcbuf.head = 0;
5740 }
5741 if (track->chmix.filter) {
5742 track->chmix.srcbuf.used = 0;
5743 track->chmix.srcbuf.head = 0;
5744 }
5745 if (track->freq.filter) {
5746 track->freq.srcbuf.used = 0;
5747 track->freq.srcbuf.head = 0;
5748 if (track->freq_step < 65536)
5749 track->freq_current = 65536;
5750 else
5751 track->freq_current = 0;
5752 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5753 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5754 }
5755 /* Clear buffer, then operation halts naturally. */
5756 track->outbuf.used = 0;
5757
5758 /* Clear counters. */
5759 track->dropframes = 0;
5760
5761 audio_track_lock_exit(track);
5762 }
5763
5764 /*
5765 * Drain the track.
5766 * track must be present and for playback.
5767 * If successful, it returns 0. Otherwise returns errno.
5768 * Must be called with sc_lock held.
5769 */
5770 static int
5771 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5772 {
5773 audio_trackmixer_t *mixer;
5774 int done;
5775 int error;
5776
5777 KASSERT(track);
5778 TRACET(3, track, "start");
5779 mixer = track->mixer;
5780 KASSERT(mutex_owned(sc->sc_lock));
5781
5782 /* Ignore them if pause. */
5783 if (track->is_pause) {
5784 TRACET(3, track, "pause -> clear");
5785 track->pstate = AUDIO_STATE_CLEAR;
5786 }
5787 /* Terminate early here if there is no data in the track. */
5788 if (track->pstate == AUDIO_STATE_CLEAR) {
5789 TRACET(3, track, "no need to drain");
5790 return 0;
5791 }
5792 track->pstate = AUDIO_STATE_DRAINING;
5793
5794 for (;;) {
5795 /* I want to display it bofore condition evaluation. */
5796 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5797 (int)curproc->p_pid, (int)curlwp->l_lid,
5798 (int)track->seq, (int)mixer->hwseq,
5799 track->outbuf.head, track->outbuf.used,
5800 track->outbuf.capacity);
5801
5802 /* Condition to terminate */
5803 audio_track_lock_enter(track);
5804 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5805 track->outbuf.used == 0 &&
5806 track->seq <= mixer->hwseq);
5807 audio_track_lock_exit(track);
5808 if (done)
5809 break;
5810
5811 TRACET(3, track, "sleep");
5812 error = audio_track_waitio(sc, track);
5813 if (error)
5814 return error;
5815
5816 /* XXX call audio_track_play here ? */
5817 }
5818
5819 track->pstate = AUDIO_STATE_CLEAR;
5820 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5821 (int)track->inputcounter, (int)track->outputcounter);
5822 return 0;
5823 }
5824
5825 /*
5826 * This is software interrupt handler for record.
5827 * It is called from recording hardware interrupt everytime.
5828 * It does:
5829 * - Deliver SIGIO for all async processes.
5830 * - Notify to audio_read() that data has arrived.
5831 * - selnotify() for select/poll-ing processes.
5832 */
5833 /*
5834 * XXX If a process issues FIOASYNC between hardware interrupt and
5835 * software interrupt, (stray) SIGIO will be sent to the process
5836 * despite the fact that it has not receive recorded data yet.
5837 */
5838 static void
5839 audio_softintr_rd(void *cookie)
5840 {
5841 struct audio_softc *sc = cookie;
5842 audio_file_t *f;
5843 proc_t *p;
5844 pid_t pid;
5845
5846 mutex_enter(sc->sc_lock);
5847 mutex_enter(sc->sc_intr_lock);
5848
5849 SLIST_FOREACH(f, &sc->sc_files, entry) {
5850 audio_track_t *track = f->rtrack;
5851
5852 if (track == NULL)
5853 continue;
5854
5855 TRACET(4, track, "broadcast; inp=%d/%d/%d",
5856 track->input->head,
5857 track->input->used,
5858 track->input->capacity);
5859
5860 pid = f->async_audio;
5861 if (pid != 0) {
5862 TRACEF(4, f, "sending SIGIO %d", pid);
5863 mutex_enter(proc_lock);
5864 if ((p = proc_find(pid)) != NULL)
5865 psignal(p, SIGIO);
5866 mutex_exit(proc_lock);
5867 }
5868 }
5869 mutex_exit(sc->sc_intr_lock);
5870
5871 /* Notify that data has arrived. */
5872 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
5873 KNOTE(&sc->sc_rsel.sel_klist, 0);
5874 cv_broadcast(&sc->sc_rmixer->outcv);
5875
5876 mutex_exit(sc->sc_lock);
5877 }
5878
5879 /*
5880 * This is software interrupt handler for playback.
5881 * It is called from playback hardware interrupt everytime.
5882 * It does:
5883 * - Deliver SIGIO for all async and writable (used < lowat) processes.
5884 * - Notify to audio_write() that outbuf block available.
5885 * - selnotify() for select/poll-ing processes if there are any writable
5886 * (used < lowat) processes. Checking each descriptor will be done by
5887 * filt_audiowrite_event().
5888 */
5889 static void
5890 audio_softintr_wr(void *cookie)
5891 {
5892 struct audio_softc *sc = cookie;
5893 audio_file_t *f;
5894 bool found;
5895 proc_t *p;
5896 pid_t pid;
5897
5898 TRACE(4, "called");
5899 found = false;
5900
5901 mutex_enter(sc->sc_lock);
5902 mutex_enter(sc->sc_intr_lock);
5903
5904 SLIST_FOREACH(f, &sc->sc_files, entry) {
5905 audio_track_t *track = f->ptrack;
5906
5907 if (track == NULL)
5908 continue;
5909
5910 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
5911 (int)track->seq,
5912 track->outbuf.head,
5913 track->outbuf.used,
5914 track->outbuf.capacity);
5915
5916 /*
5917 * Send a signal if the process is async mode and
5918 * used is lower than lowat.
5919 */
5920 if (track->usrbuf.used <= track->usrbuf_usedlow &&
5921 !track->is_pause) {
5922 found = true;
5923 pid = f->async_audio;
5924 if (pid != 0) {
5925 TRACEF(4, f, "sending SIGIO %d", pid);
5926 mutex_enter(proc_lock);
5927 if ((p = proc_find(pid)) != NULL)
5928 psignal(p, SIGIO);
5929 mutex_exit(proc_lock);
5930 }
5931 }
5932 }
5933 mutex_exit(sc->sc_intr_lock);
5934
5935 /*
5936 * Notify for select/poll when someone become writable.
5937 * It needs sc_lock (and not sc_intr_lock).
5938 */
5939 if (found) {
5940 TRACE(4, "selnotify");
5941 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
5942 KNOTE(&sc->sc_wsel.sel_klist, 0);
5943 }
5944
5945 /* Notify to audio_write() that outbuf available. */
5946 cv_broadcast(&sc->sc_pmixer->outcv);
5947
5948 mutex_exit(sc->sc_lock);
5949 }
5950
5951 /*
5952 * Check (and convert) the format *p came from userland.
5953 * If successful, it writes back the converted format to *p if necessary
5954 * and returns 0. Otherwise returns errno (*p may change even this case).
5955 */
5956 static int
5957 audio_check_params(audio_format2_t *p)
5958 {
5959
5960 /* Convert obsoleted AUDIO_ENCODING_PCM* */
5961 /* XXX Is this conversion right? */
5962 if (p->encoding == AUDIO_ENCODING_PCM16) {
5963 if (p->precision == 8)
5964 p->encoding = AUDIO_ENCODING_ULINEAR;
5965 else
5966 p->encoding = AUDIO_ENCODING_SLINEAR;
5967 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
5968 if (p->precision == 8)
5969 p->encoding = AUDIO_ENCODING_ULINEAR;
5970 else
5971 return EINVAL;
5972 }
5973
5974 /*
5975 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
5976 * suffix.
5977 */
5978 if (p->encoding == AUDIO_ENCODING_SLINEAR)
5979 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5980 if (p->encoding == AUDIO_ENCODING_ULINEAR)
5981 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5982
5983 switch (p->encoding) {
5984 case AUDIO_ENCODING_ULAW:
5985 case AUDIO_ENCODING_ALAW:
5986 if (p->precision != 8)
5987 return EINVAL;
5988 break;
5989 case AUDIO_ENCODING_ADPCM:
5990 if (p->precision != 4 && p->precision != 8)
5991 return EINVAL;
5992 break;
5993 case AUDIO_ENCODING_SLINEAR_LE:
5994 case AUDIO_ENCODING_SLINEAR_BE:
5995 case AUDIO_ENCODING_ULINEAR_LE:
5996 case AUDIO_ENCODING_ULINEAR_BE:
5997 if (p->precision != 8 && p->precision != 16 &&
5998 p->precision != 24 && p->precision != 32)
5999 return EINVAL;
6000
6001 /* 8bit format does not have endianness. */
6002 if (p->precision == 8) {
6003 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6004 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6005 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6006 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6007 }
6008
6009 if (p->precision > p->stride)
6010 return EINVAL;
6011 break;
6012 case AUDIO_ENCODING_MPEG_L1_STREAM:
6013 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6014 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6015 case AUDIO_ENCODING_MPEG_L2_STREAM:
6016 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6017 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6018 case AUDIO_ENCODING_AC3:
6019 break;
6020 default:
6021 return EINVAL;
6022 }
6023
6024 /* sanity check # of channels*/
6025 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6026 return EINVAL;
6027
6028 return 0;
6029 }
6030
6031 /*
6032 * Initialize playback and record mixers.
6033 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initalized.
6034 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6035 * the filter registration information. These four must not be NULL.
6036 * If successful returns 0. Otherwise returns errno.
6037 * Must be called with sc_lock held.
6038 * Must not be called if there are any tracks.
6039 * Caller should check that the initialization succeed by whether
6040 * sc_[pr]mixer is not NULL.
6041 */
6042 static int
6043 audio_mixers_init(struct audio_softc *sc, int mode,
6044 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6045 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6046 {
6047 int error;
6048
6049 KASSERT(phwfmt != NULL);
6050 KASSERT(rhwfmt != NULL);
6051 KASSERT(pfil != NULL);
6052 KASSERT(rfil != NULL);
6053 KASSERT(mutex_owned(sc->sc_lock));
6054
6055 if ((mode & AUMODE_PLAY)) {
6056 if (sc->sc_pmixer) {
6057 audio_mixer_destroy(sc, sc->sc_pmixer);
6058 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6059 }
6060 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer), KM_SLEEP);
6061 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6062 if (error) {
6063 aprint_error_dev(sc->sc_dev,
6064 "configuring playback mode failed\n");
6065 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6066 sc->sc_pmixer = NULL;
6067 return error;
6068 }
6069 }
6070 if ((mode & AUMODE_RECORD)) {
6071 if (sc->sc_rmixer) {
6072 audio_mixer_destroy(sc, sc->sc_rmixer);
6073 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6074 }
6075 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer), KM_SLEEP);
6076 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6077 if (error) {
6078 aprint_error_dev(sc->sc_dev,
6079 "configuring record mode failed\n");
6080 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6081 sc->sc_rmixer = NULL;
6082 return error;
6083 }
6084 }
6085
6086 return 0;
6087 }
6088
6089 /*
6090 * Select a frequency.
6091 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6092 * XXX Better algorithm?
6093 */
6094 static int
6095 audio_select_freq(const struct audio_format *fmt)
6096 {
6097 int freq;
6098 int high;
6099 int low;
6100 int j;
6101
6102 if (fmt->frequency_type == 0) {
6103 low = fmt->frequency[0];
6104 high = fmt->frequency[1];
6105 freq = 48000;
6106 if (low <= freq && freq <= high) {
6107 return freq;
6108 }
6109 freq = 44100;
6110 if (low <= freq && freq <= high) {
6111 return freq;
6112 }
6113 return high;
6114 } else {
6115 for (j = 0; j < fmt->frequency_type; j++) {
6116 if (fmt->frequency[j] == 48000) {
6117 return fmt->frequency[j];
6118 }
6119 }
6120 high = 0;
6121 for (j = 0; j < fmt->frequency_type; j++) {
6122 if (fmt->frequency[j] == 44100) {
6123 return fmt->frequency[j];
6124 }
6125 if (fmt->frequency[j] > high) {
6126 high = fmt->frequency[j];
6127 }
6128 }
6129 return high;
6130 }
6131 }
6132
6133 /*
6134 * Probe playback and/or recording format (depending on *modep).
6135 * *modep is an in-out parameter. It indicates the direction to configure
6136 * as an argument, and the direction configured is written back as out
6137 * parameter.
6138 * If successful, probed hardware format is stored into *phwfmt, *rhwfmt
6139 * depending on *modep, and return 0. Otherwise it returns errno.
6140 * Must be called with sc_lock held.
6141 */
6142 static int
6143 audio_hw_probe(struct audio_softc *sc, int is_indep, int *modep,
6144 audio_format2_t *phwfmt, audio_format2_t *rhwfmt)
6145 {
6146 audio_format2_t fmt;
6147 int mode;
6148 int error = 0;
6149
6150 KASSERT(mutex_owned(sc->sc_lock));
6151
6152 mode = *modep;
6153 KASSERTMSG((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0,
6154 "invalid mode = %x", mode);
6155
6156 if (is_indep) {
6157 int errorp = 0, errorr = 0;
6158
6159 /* On independent devices, probe separately. */
6160 if ((mode & AUMODE_PLAY) != 0) {
6161 errorp = audio_hw_probe_fmt(sc, phwfmt, AUMODE_PLAY);
6162 if (errorp)
6163 mode &= ~AUMODE_PLAY;
6164 }
6165 if ((mode & AUMODE_RECORD) != 0) {
6166 errorr = audio_hw_probe_fmt(sc, rhwfmt, AUMODE_RECORD);
6167 if (errorr)
6168 mode &= ~AUMODE_RECORD;
6169 }
6170
6171 /* Return error if both play and record probes failed. */
6172 if (errorp && errorr)
6173 error = errorp;
6174 } else {
6175 /* On non independent devices, probe simultaneously. */
6176 error = audio_hw_probe_fmt(sc, &fmt, mode);
6177 if (error) {
6178 mode = 0;
6179 } else {
6180 *phwfmt = fmt;
6181 *rhwfmt = fmt;
6182 }
6183 }
6184
6185 *modep = mode;
6186 return error;
6187 }
6188
6189 /*
6190 * Choose the most preferred hardware format.
6191 * If successful, it will store the chosen format into *cand and return 0.
6192 * Otherwise, return errno.
6193 * Must be called with sc_lock held.
6194 */
6195 static int
6196 audio_hw_probe_fmt(struct audio_softc *sc, audio_format2_t *cand, int mode)
6197 {
6198 audio_format_query_t query;
6199 int cand_score;
6200 int score;
6201 int i;
6202 int error;
6203
6204 KASSERT(mutex_owned(sc->sc_lock));
6205
6206 /*
6207 * Score each formats and choose the highest one.
6208 *
6209 * +---- priority(0-3)
6210 * |+--- encoding/precision
6211 * ||+-- channels
6212 * score = 0x000000PEC
6213 */
6214
6215 cand_score = 0;
6216 for (i = 0; ; i++) {
6217 memset(&query, 0, sizeof(query));
6218 query.index = i;
6219
6220 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6221 if (error == EINVAL)
6222 break;
6223 if (error)
6224 return error;
6225
6226 #if defined(AUDIO_DEBUG)
6227 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6228 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6229 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6230 query.fmt.priority,
6231 audio_encoding_name(query.fmt.encoding),
6232 query.fmt.validbits,
6233 query.fmt.precision,
6234 query.fmt.channels);
6235 if (query.fmt.frequency_type == 0) {
6236 DPRINTF(1, "{%d-%d",
6237 query.fmt.frequency[0], query.fmt.frequency[1]);
6238 } else {
6239 int j;
6240 for (j = 0; j < query.fmt.frequency_type; j++) {
6241 DPRINTF(1, "%c%d",
6242 (j == 0) ? '{' : ',',
6243 query.fmt.frequency[j]);
6244 }
6245 }
6246 DPRINTF(1, "}\n");
6247 #endif
6248
6249 if ((query.fmt.mode & mode) == 0) {
6250 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6251 mode);
6252 continue;
6253 }
6254
6255 if (query.fmt.priority < 0) {
6256 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6257 continue;
6258 }
6259
6260 /* Score */
6261 score = (query.fmt.priority & 3) * 0x100;
6262 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6263 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6264 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6265 score += 0x20;
6266 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6267 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6268 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6269 score += 0x10;
6270 }
6271 score += query.fmt.channels;
6272
6273 if (score < cand_score) {
6274 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6275 score, cand_score);
6276 continue;
6277 }
6278
6279 /* Update candidate */
6280 cand_score = score;
6281 cand->encoding = query.fmt.encoding;
6282 cand->precision = query.fmt.validbits;
6283 cand->stride = query.fmt.precision;
6284 cand->channels = query.fmt.channels;
6285 cand->sample_rate = audio_select_freq(&query.fmt);
6286 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6287 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6288 cand_score, query.fmt.priority,
6289 audio_encoding_name(query.fmt.encoding),
6290 cand->precision, cand->stride,
6291 cand->channels, cand->sample_rate);
6292 }
6293
6294 if (cand_score == 0) {
6295 DPRINTF(1, "%s no fmt\n", __func__);
6296 return ENXIO;
6297 }
6298 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6299 audio_encoding_name(cand->encoding),
6300 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6301 return 0;
6302 }
6303
6304 /*
6305 * Validate fmt with query_format.
6306 * If fmt is included in the result of query_format, returns 0.
6307 * Otherwise returns EINVAL.
6308 * Must be called with sc_lock held.
6309 */
6310 static int
6311 audio_hw_validate_format(struct audio_softc *sc, int mode,
6312 const audio_format2_t *fmt)
6313 {
6314 audio_format_query_t query;
6315 struct audio_format *q;
6316 int index;
6317 int error;
6318 int j;
6319
6320 KASSERT(mutex_owned(sc->sc_lock));
6321
6322 /*
6323 * If query_format is not supported by hardware driver,
6324 * a rough check instead will be performed.
6325 * XXX This will gone in the future.
6326 */
6327 if (sc->hw_if->query_format == NULL) {
6328 if (fmt->encoding != AUDIO_ENCODING_SLINEAR_NE)
6329 return EINVAL;
6330 if (fmt->precision != AUDIO_INTERNAL_BITS)
6331 return EINVAL;
6332 if (fmt->stride != AUDIO_INTERNAL_BITS)
6333 return EINVAL;
6334 return 0;
6335 }
6336
6337 for (index = 0; ; index++) {
6338 query.index = index;
6339 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6340 if (error == EINVAL)
6341 break;
6342 if (error)
6343 return error;
6344
6345 q = &query.fmt;
6346 /*
6347 * Note that fmt is audio_format2_t (precision/stride) but
6348 * q is audio_format_t (validbits/precision).
6349 */
6350 if ((q->mode & mode) == 0) {
6351 continue;
6352 }
6353 if (fmt->encoding != q->encoding) {
6354 continue;
6355 }
6356 if (fmt->precision != q->validbits) {
6357 continue;
6358 }
6359 if (fmt->stride != q->precision) {
6360 continue;
6361 }
6362 if (fmt->channels != q->channels) {
6363 continue;
6364 }
6365 if (q->frequency_type == 0) {
6366 if (fmt->sample_rate < q->frequency[0] ||
6367 fmt->sample_rate > q->frequency[1]) {
6368 continue;
6369 }
6370 } else {
6371 for (j = 0; j < q->frequency_type; j++) {
6372 if (fmt->sample_rate == q->frequency[j])
6373 break;
6374 }
6375 if (j == query.fmt.frequency_type) {
6376 continue;
6377 }
6378 }
6379
6380 /* Matched. */
6381 return 0;
6382 }
6383
6384 return EINVAL;
6385 }
6386
6387 /*
6388 * Set track mixer's format depending on ai->mode.
6389 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6390 * with ai.play.{channels, sample_rate}.
6391 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6392 * with ai.record.{channels, sample_rate}.
6393 * All other fields in ai are ignored.
6394 * If successful returns 0. Otherwise returns errno.
6395 * This function does not roll back even if it fails.
6396 * Must be called with sc_lock held.
6397 */
6398 static int
6399 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6400 {
6401 audio_format2_t phwfmt;
6402 audio_format2_t rhwfmt;
6403 audio_filter_reg_t pfil;
6404 audio_filter_reg_t rfil;
6405 int mode;
6406 int props;
6407 int error;
6408
6409 KASSERT(mutex_owned(sc->sc_lock));
6410
6411 /*
6412 * Even when setting either one of playback and recording,
6413 * both must be halted.
6414 */
6415 if (sc->sc_popens + sc->sc_ropens > 0)
6416 return EBUSY;
6417
6418 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6419 return ENOTTY;
6420
6421 /* Only channels and sample_rate are changeable. */
6422 mode = ai->mode;
6423 if ((mode & AUMODE_PLAY)) {
6424 phwfmt.encoding = ai->play.encoding;
6425 phwfmt.precision = ai->play.precision;
6426 phwfmt.stride = ai->play.precision;
6427 phwfmt.channels = ai->play.channels;
6428 phwfmt.sample_rate = ai->play.sample_rate;
6429 }
6430 if ((mode & AUMODE_RECORD)) {
6431 rhwfmt.encoding = ai->record.encoding;
6432 rhwfmt.precision = ai->record.precision;
6433 rhwfmt.stride = ai->record.precision;
6434 rhwfmt.channels = ai->record.channels;
6435 rhwfmt.sample_rate = ai->record.sample_rate;
6436 }
6437
6438 /* On non-independent devices, use the same format for both. */
6439 props = audio_get_props(sc);
6440 if ((props & AUDIO_PROP_INDEPENDENT) == 0) {
6441 if (mode == AUMODE_RECORD) {
6442 phwfmt = rhwfmt;
6443 } else {
6444 rhwfmt = phwfmt;
6445 }
6446 mode = AUMODE_PLAY | AUMODE_RECORD;
6447 }
6448
6449 /* Then, unset the direction not exist on the hardware. */
6450 if ((props & AUDIO_PROP_PLAYBACK) == 0)
6451 mode &= ~AUMODE_PLAY;
6452 if ((props & AUDIO_PROP_CAPTURE) == 0)
6453 mode &= ~AUMODE_RECORD;
6454
6455 /* debug */
6456 if ((mode & AUMODE_PLAY)) {
6457 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6458 audio_encoding_name(phwfmt.encoding),
6459 phwfmt.precision,
6460 phwfmt.stride,
6461 phwfmt.channels,
6462 phwfmt.sample_rate);
6463 }
6464 if ((mode & AUMODE_RECORD)) {
6465 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6466 audio_encoding_name(rhwfmt.encoding),
6467 rhwfmt.precision,
6468 rhwfmt.stride,
6469 rhwfmt.channels,
6470 rhwfmt.sample_rate);
6471 }
6472
6473 /* Check the format */
6474 if ((mode & AUMODE_PLAY)) {
6475 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6476 TRACE(1, "invalid format");
6477 return EINVAL;
6478 }
6479 }
6480 if ((mode & AUMODE_RECORD)) {
6481 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6482 TRACE(1, "invalid format");
6483 return EINVAL;
6484 }
6485 }
6486
6487 /* Configure the mixers. */
6488 memset(&pfil, 0, sizeof(pfil));
6489 memset(&rfil, 0, sizeof(rfil));
6490 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6491 if (error)
6492 return error;
6493
6494 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6495 if (error)
6496 return error;
6497
6498 return 0;
6499 }
6500
6501 /*
6502 * Store current mixers format into *ai.
6503 */
6504 static void
6505 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6506 {
6507 /*
6508 * There is no stride information in audio_info but it doesn't matter.
6509 * trackmixer always treats stride and precision as the same.
6510 */
6511 AUDIO_INITINFO(ai);
6512 ai->mode = 0;
6513 if (sc->sc_pmixer) {
6514 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6515 ai->play.encoding = fmt->encoding;
6516 ai->play.precision = fmt->precision;
6517 ai->play.channels = fmt->channels;
6518 ai->play.sample_rate = fmt->sample_rate;
6519 ai->mode |= AUMODE_PLAY;
6520 }
6521 if (sc->sc_rmixer) {
6522 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6523 ai->record.encoding = fmt->encoding;
6524 ai->record.precision = fmt->precision;
6525 ai->record.channels = fmt->channels;
6526 ai->record.sample_rate = fmt->sample_rate;
6527 ai->mode |= AUMODE_RECORD;
6528 }
6529 }
6530
6531 /*
6532 * audio_info details:
6533 *
6534 * ai.{play,record}.sample_rate (R/W)
6535 * ai.{play,record}.encoding (R/W)
6536 * ai.{play,record}.precision (R/W)
6537 * ai.{play,record}.channels (R/W)
6538 * These specify the playback or recording format.
6539 * Ignore members within an inactive track.
6540 *
6541 * ai.mode (R/W)
6542 * It specifies the playback or recording mode, AUMODE_*.
6543 * Currently, a mode change operation by ai.mode after opening is
6544 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6545 * However, it's possible to get or to set for backward compatibility.
6546 *
6547 * ai.{hiwat,lowat} (R/W)
6548 * These specify the high water mark and low water mark for playback
6549 * track. The unit is block.
6550 *
6551 * ai.{play,record}.gain (R/W)
6552 * It specifies the HW mixer volume in 0-255.
6553 * It is historical reason that the gain is connected to HW mixer.
6554 *
6555 * ai.{play,record}.balance (R/W)
6556 * It specifies the left-right balance of HW mixer in 0-64.
6557 * 32 means the center.
6558 * It is historical reason that the balance is connected to HW mixer.
6559 *
6560 * ai.{play,record}.port (R/W)
6561 * It specifies the input/output port of HW mixer.
6562 *
6563 * ai.monitor_gain (R/W)
6564 * It specifies the recording monitor gain(?) of HW mixer.
6565 *
6566 * ai.{play,record}.pause (R/W)
6567 * Non-zero means the track is paused.
6568 *
6569 * ai.play.seek (R/-)
6570 * It indicates the number of bytes written but not processed.
6571 * ai.record.seek (R/-)
6572 * It indicates the number of bytes to be able to read.
6573 *
6574 * ai.{play,record}.avail_ports (R/-)
6575 * Mixer info.
6576 *
6577 * ai.{play,record}.buffer_size (R/-)
6578 * It indicates the buffer size in bytes. Internally it means usrbuf.
6579 *
6580 * ai.{play,record}.samples (R/-)
6581 * It indicates the total number of bytes played or recorded.
6582 *
6583 * ai.{play,record}.eof (R/-)
6584 * It indicates the number of times reached EOF(?).
6585 *
6586 * ai.{play,record}.error (R/-)
6587 * Non-zero indicates overflow/underflow has occured.
6588 *
6589 * ai.{play,record}.waiting (R/-)
6590 * Non-zero indicates that other process waits to open.
6591 * It will never happen anymore.
6592 *
6593 * ai.{play,record}.open (R/-)
6594 * Non-zero indicates the direction is opened by this process(?).
6595 * XXX Is this better to indicate that "the device is opened by
6596 * at least one process"?
6597 *
6598 * ai.{play,record}.active (R/-)
6599 * Non-zero indicates that I/O is currently active.
6600 *
6601 * ai.blocksize (R/-)
6602 * It indicates the block size in bytes.
6603 * XXX The blocksize of playback and recording may be different.
6604 */
6605
6606 /*
6607 * Pause consideration:
6608 *
6609 * The introduction of these two behavior makes pause/unpause operation
6610 * simple.
6611 * 1. The first read/write access of the first track makes mixer start.
6612 * 2. A pause of the last track doesn't make mixer stop.
6613 */
6614
6615 /*
6616 * Set both track's parameters within a file depending on ai.
6617 * Update sc_sound_[pr]* if set.
6618 * Must be called with sc_lock and sc_exlock held.
6619 */
6620 static int
6621 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6622 const struct audio_info *ai)
6623 {
6624 const struct audio_prinfo *pi;
6625 const struct audio_prinfo *ri;
6626 audio_track_t *ptrack;
6627 audio_track_t *rtrack;
6628 audio_format2_t pfmt;
6629 audio_format2_t rfmt;
6630 int pchanges;
6631 int rchanges;
6632 int mode;
6633 struct audio_info saved_ai;
6634 audio_format2_t saved_pfmt;
6635 audio_format2_t saved_rfmt;
6636 int error;
6637
6638 KASSERT(mutex_owned(sc->sc_lock));
6639 KASSERT(sc->sc_exlock);
6640
6641 pi = &ai->play;
6642 ri = &ai->record;
6643 pchanges = 0;
6644 rchanges = 0;
6645
6646 ptrack = file->ptrack;
6647 rtrack = file->rtrack;
6648
6649 #if defined(AUDIO_DEBUG)
6650 if (audiodebug >= 2) {
6651 char buf[256];
6652 char p[64];
6653 int buflen;
6654 int plen;
6655 #define SPRINTF(var, fmt...) do { \
6656 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6657 } while (0)
6658
6659 buflen = 0;
6660 plen = 0;
6661 if (SPECIFIED(pi->encoding))
6662 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6663 if (SPECIFIED(pi->precision))
6664 SPRINTF(p, "/%dbit", pi->precision);
6665 if (SPECIFIED(pi->channels))
6666 SPRINTF(p, "/%dch", pi->channels);
6667 if (SPECIFIED(pi->sample_rate))
6668 SPRINTF(p, "/%dHz", pi->sample_rate);
6669 if (plen > 0)
6670 SPRINTF(buf, ",play.param=%s", p + 1);
6671
6672 plen = 0;
6673 if (SPECIFIED(ri->encoding))
6674 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6675 if (SPECIFIED(ri->precision))
6676 SPRINTF(p, "/%dbit", ri->precision);
6677 if (SPECIFIED(ri->channels))
6678 SPRINTF(p, "/%dch", ri->channels);
6679 if (SPECIFIED(ri->sample_rate))
6680 SPRINTF(p, "/%dHz", ri->sample_rate);
6681 if (plen > 0)
6682 SPRINTF(buf, ",record.param=%s", p + 1);
6683
6684 if (SPECIFIED(ai->mode))
6685 SPRINTF(buf, ",mode=%d", ai->mode);
6686 if (SPECIFIED(ai->hiwat))
6687 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6688 if (SPECIFIED(ai->lowat))
6689 SPRINTF(buf, ",lowat=%d", ai->lowat);
6690 if (SPECIFIED(ai->play.gain))
6691 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6692 if (SPECIFIED(ai->record.gain))
6693 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6694 if (SPECIFIED_CH(ai->play.balance))
6695 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6696 if (SPECIFIED_CH(ai->record.balance))
6697 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6698 if (SPECIFIED(ai->play.port))
6699 SPRINTF(buf, ",play.port=%d", ai->play.port);
6700 if (SPECIFIED(ai->record.port))
6701 SPRINTF(buf, ",record.port=%d", ai->record.port);
6702 if (SPECIFIED(ai->monitor_gain))
6703 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6704 if (SPECIFIED_CH(ai->play.pause))
6705 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6706 if (SPECIFIED_CH(ai->record.pause))
6707 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6708
6709 if (buflen > 0)
6710 TRACE(2, "specified %s", buf + 1);
6711 }
6712 #endif
6713
6714 AUDIO_INITINFO(&saved_ai);
6715 /* XXX shut up gcc */
6716 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6717 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6718
6719 /* Set default value and save current parameters */
6720 if (ptrack) {
6721 pfmt = ptrack->usrbuf.fmt;
6722 saved_pfmt = ptrack->usrbuf.fmt;
6723 saved_ai.play.pause = ptrack->is_pause;
6724 }
6725 if (rtrack) {
6726 rfmt = rtrack->usrbuf.fmt;
6727 saved_rfmt = rtrack->usrbuf.fmt;
6728 saved_ai.record.pause = rtrack->is_pause;
6729 }
6730 saved_ai.mode = file->mode;
6731
6732 /* Overwrite if specified */
6733 mode = file->mode;
6734 if (SPECIFIED(ai->mode)) {
6735 /*
6736 * Setting ai->mode no longer does anything because it's
6737 * prohibited to change playback/recording mode after open
6738 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6739 * keeps the state of AUMODE_PLAY_ALL itself for backward
6740 * compatibility.
6741 * In the internal, only file->mode has the state of
6742 * AUMODE_PLAY_ALL flag and track->mode in both track does
6743 * not have.
6744 */
6745 if ((file->mode & AUMODE_PLAY)) {
6746 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6747 | (ai->mode & AUMODE_PLAY_ALL);
6748 }
6749 }
6750
6751 if (ptrack) {
6752 pchanges = audio_track_setinfo_check(&pfmt, pi);
6753 if (pchanges == -1) {
6754 TRACET(1, ptrack, "check play.params failed");
6755 return EINVAL;
6756 }
6757 if (SPECIFIED(ai->mode))
6758 pchanges = 1;
6759 }
6760 if (rtrack) {
6761 rchanges = audio_track_setinfo_check(&rfmt, ri);
6762 if (rchanges == -1) {
6763 TRACET(1, rtrack, "check record.params failed");
6764 return EINVAL;
6765 }
6766 if (SPECIFIED(ai->mode))
6767 rchanges = 1;
6768 }
6769
6770 /*
6771 * Even when setting either one of playback and recording,
6772 * both track must be halted.
6773 */
6774 if (pchanges || rchanges) {
6775 audio_file_clear(sc, file);
6776 #if defined(AUDIO_DEBUG)
6777 char fmtbuf[64];
6778 if (pchanges) {
6779 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6780 DPRINTF(1, "audio track#%d play mode: %s\n",
6781 ptrack->id, fmtbuf);
6782 }
6783 if (rchanges) {
6784 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6785 DPRINTF(1, "audio track#%d rec mode: %s\n",
6786 rtrack->id, fmtbuf);
6787 }
6788 #endif
6789 }
6790
6791 /* Set mixer parameters */
6792 error = audio_hw_setinfo(sc, ai, &saved_ai);
6793 if (error)
6794 goto abort1;
6795
6796 /* Set to track and update sticky parameters */
6797 error = 0;
6798 file->mode = mode;
6799 if (ptrack) {
6800 if (SPECIFIED_CH(pi->pause)) {
6801 ptrack->is_pause = pi->pause;
6802 sc->sc_sound_ppause = pi->pause;
6803 }
6804 if (pchanges) {
6805 audio_track_lock_enter(ptrack);
6806 error = audio_track_set_format(ptrack, &pfmt);
6807 audio_track_lock_exit(ptrack);
6808 if (error) {
6809 TRACET(1, ptrack, "set play.params failed");
6810 goto abort2;
6811 }
6812 sc->sc_sound_pparams = pfmt;
6813 }
6814 /* Change water marks after initializing the buffers. */
6815 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat))
6816 audio_track_setinfo_water(ptrack, ai);
6817 }
6818 if (rtrack) {
6819 if (SPECIFIED_CH(ri->pause)) {
6820 rtrack->is_pause = ri->pause;
6821 sc->sc_sound_rpause = ri->pause;
6822 }
6823 if (rchanges) {
6824 audio_track_lock_enter(rtrack);
6825 error = audio_track_set_format(rtrack, &rfmt);
6826 audio_track_lock_exit(rtrack);
6827 if (error) {
6828 TRACET(1, rtrack, "set record.params failed");
6829 goto abort3;
6830 }
6831 sc->sc_sound_rparams = rfmt;
6832 }
6833 }
6834
6835 return 0;
6836
6837 /* Rollback */
6838 abort3:
6839 if (error != ENOMEM) {
6840 rtrack->is_pause = saved_ai.record.pause;
6841 audio_track_lock_enter(rtrack);
6842 audio_track_set_format(rtrack, &saved_rfmt);
6843 audio_track_lock_exit(rtrack);
6844 }
6845 abort2:
6846 if (ptrack && error != ENOMEM) {
6847 ptrack->is_pause = saved_ai.play.pause;
6848 audio_track_lock_enter(ptrack);
6849 audio_track_set_format(ptrack, &saved_pfmt);
6850 audio_track_lock_exit(ptrack);
6851 sc->sc_sound_pparams = saved_pfmt;
6852 sc->sc_sound_ppause = saved_ai.play.pause;
6853 }
6854 file->mode = saved_ai.mode;
6855 abort1:
6856 audio_hw_setinfo(sc, &saved_ai, NULL);
6857
6858 return error;
6859 }
6860
6861 /*
6862 * Write SPECIFIED() parameters within info back to fmt.
6863 * Return value of 1 indicates that fmt is modified.
6864 * Return value of 0 indicates that fmt is not modified.
6865 * Return value of -1 indicates that error EINVAL has occurred.
6866 */
6867 static int
6868 audio_track_setinfo_check(audio_format2_t *fmt, const struct audio_prinfo *info)
6869 {
6870 int changes;
6871
6872 changes = 0;
6873 if (SPECIFIED(info->sample_rate)) {
6874 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
6875 return -1;
6876 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
6877 return -1;
6878 fmt->sample_rate = info->sample_rate;
6879 changes = 1;
6880 }
6881 if (SPECIFIED(info->encoding)) {
6882 fmt->encoding = info->encoding;
6883 changes = 1;
6884 }
6885 if (SPECIFIED(info->precision)) {
6886 fmt->precision = info->precision;
6887 /* we don't have API to specify stride */
6888 fmt->stride = info->precision;
6889 changes = 1;
6890 }
6891 if (SPECIFIED(info->channels)) {
6892 fmt->channels = info->channels;
6893 changes = 1;
6894 }
6895
6896 if (changes) {
6897 if (audio_check_params(fmt) != 0) {
6898 #ifdef DIAGNOSTIC
6899 char fmtbuf[64];
6900 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), fmt);
6901 printf("%s failed: %s\n", __func__, fmtbuf);
6902 #endif
6903 return -1;
6904 }
6905 }
6906
6907 return changes;
6908 }
6909
6910 /*
6911 * Change water marks for playback track if specfied.
6912 */
6913 static void
6914 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
6915 {
6916 u_int blks;
6917 u_int maxblks;
6918 u_int blksize;
6919
6920 KASSERT(audio_track_is_playback(track));
6921
6922 blksize = track->usrbuf_blksize;
6923 maxblks = track->usrbuf.capacity / blksize;
6924
6925 if (SPECIFIED(ai->hiwat)) {
6926 blks = ai->hiwat;
6927 if (blks > maxblks)
6928 blks = maxblks;
6929 if (blks < 2)
6930 blks = 2;
6931 track->usrbuf_usedhigh = blks * blksize;
6932 }
6933 if (SPECIFIED(ai->lowat)) {
6934 blks = ai->lowat;
6935 if (blks > maxblks - 1)
6936 blks = maxblks - 1;
6937 track->usrbuf_usedlow = blks * blksize;
6938 }
6939 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6940 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
6941 track->usrbuf_usedlow = track->usrbuf_usedhigh -
6942 blksize;
6943 }
6944 }
6945 }
6946
6947 /*
6948 * Set hardware part of *ai.
6949 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
6950 * If oldai is specified, previous parameters are stored.
6951 * This function itself does not roll back if error occurred.
6952 * Must be called with sc_lock and sc_exlock held.
6953 */
6954 static int
6955 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
6956 struct audio_info *oldai)
6957 {
6958 const struct audio_prinfo *newpi;
6959 const struct audio_prinfo *newri;
6960 struct audio_prinfo *oldpi;
6961 struct audio_prinfo *oldri;
6962 u_int pgain;
6963 u_int rgain;
6964 u_char pbalance;
6965 u_char rbalance;
6966 int error;
6967
6968 KASSERT(mutex_owned(sc->sc_lock));
6969 KASSERT(sc->sc_exlock);
6970
6971 /* XXX shut up gcc */
6972 oldpi = NULL;
6973 oldri = NULL;
6974
6975 newpi = &newai->play;
6976 newri = &newai->record;
6977 if (oldai) {
6978 oldpi = &oldai->play;
6979 oldri = &oldai->record;
6980 }
6981 error = 0;
6982
6983 /*
6984 * It looks like unnecessary to halt HW mixers to set HW mixers.
6985 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
6986 */
6987
6988 if (SPECIFIED(newpi->port)) {
6989 if (oldai)
6990 oldpi->port = au_get_port(sc, &sc->sc_outports);
6991 error = au_set_port(sc, &sc->sc_outports, newpi->port);
6992 if (error) {
6993 device_printf(sc->sc_dev,
6994 "setting play.port=%d failed with %d\n",
6995 newpi->port, error);
6996 goto abort;
6997 }
6998 }
6999 if (SPECIFIED(newri->port)) {
7000 if (oldai)
7001 oldri->port = au_get_port(sc, &sc->sc_inports);
7002 error = au_set_port(sc, &sc->sc_inports, newri->port);
7003 if (error) {
7004 device_printf(sc->sc_dev,
7005 "setting record.port=%d failed with %d\n",
7006 newri->port, error);
7007 goto abort;
7008 }
7009 }
7010
7011 /* Backup play.{gain,balance} */
7012 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7013 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7014 if (oldai) {
7015 oldpi->gain = pgain;
7016 oldpi->balance = pbalance;
7017 }
7018 }
7019 /* Backup record.{gain,balance} */
7020 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7021 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7022 if (oldai) {
7023 oldri->gain = rgain;
7024 oldri->balance = rbalance;
7025 }
7026 }
7027 if (SPECIFIED(newpi->gain)) {
7028 error = au_set_gain(sc, &sc->sc_outports,
7029 newpi->gain, pbalance);
7030 if (error) {
7031 device_printf(sc->sc_dev,
7032 "setting play.gain=%d failed with %d\n",
7033 newpi->gain, error);
7034 goto abort;
7035 }
7036 }
7037 if (SPECIFIED(newri->gain)) {
7038 error = au_set_gain(sc, &sc->sc_inports,
7039 newri->gain, rbalance);
7040 if (error) {
7041 device_printf(sc->sc_dev,
7042 "setting record.gain=%d failed with %d\n",
7043 newri->gain, error);
7044 goto abort;
7045 }
7046 }
7047 if (SPECIFIED_CH(newpi->balance)) {
7048 error = au_set_gain(sc, &sc->sc_outports,
7049 pgain, newpi->balance);
7050 if (error) {
7051 device_printf(sc->sc_dev,
7052 "setting play.balance=%d failed with %d\n",
7053 newpi->balance, error);
7054 goto abort;
7055 }
7056 }
7057 if (SPECIFIED_CH(newri->balance)) {
7058 error = au_set_gain(sc, &sc->sc_inports,
7059 rgain, newri->balance);
7060 if (error) {
7061 device_printf(sc->sc_dev,
7062 "setting record.balance=%d failed with %d\n",
7063 newri->balance, error);
7064 goto abort;
7065 }
7066 }
7067
7068 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7069 if (oldai)
7070 oldai->monitor_gain = au_get_monitor_gain(sc);
7071 error = au_set_monitor_gain(sc, newai->monitor_gain);
7072 if (error) {
7073 device_printf(sc->sc_dev,
7074 "setting monitor_gain=%d failed with %d\n",
7075 newai->monitor_gain, error);
7076 goto abort;
7077 }
7078 }
7079
7080 /* XXX TODO */
7081 /* sc->sc_ai = *ai; */
7082
7083 error = 0;
7084 abort:
7085 return error;
7086 }
7087
7088 /*
7089 * Setup the hardware with mixer format phwfmt, rhwfmt.
7090 * The arguments have following restrictions:
7091 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7092 * or both.
7093 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7094 * - On non-independent devices, phwfmt and rhwfmt must have the same
7095 * parameters.
7096 * - pfil and rfil must be zero-filled.
7097 * If successful,
7098 * - phwfmt, rhwfmt will be overwritten by hardware format.
7099 * - pfil, rfil will be filled with filter information specified by the
7100 * hardware driver.
7101 * and then returns 0. Otherwise returns errno.
7102 * Must be called with sc_lock held.
7103 */
7104 static int
7105 audio_hw_set_format(struct audio_softc *sc, int setmode,
7106 audio_format2_t *phwfmt, audio_format2_t *rhwfmt,
7107 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7108 {
7109 audio_params_t pp, rp;
7110 int error;
7111
7112 KASSERT(mutex_owned(sc->sc_lock));
7113 KASSERT(phwfmt != NULL);
7114 KASSERT(rhwfmt != NULL);
7115
7116 pp = format2_to_params(phwfmt);
7117 rp = format2_to_params(rhwfmt);
7118
7119 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7120 &pp, &rp, pfil, rfil);
7121 if (error) {
7122 device_printf(sc->sc_dev,
7123 "set_format failed with %d\n", error);
7124 return error;
7125 }
7126
7127 if (sc->hw_if->commit_settings) {
7128 error = sc->hw_if->commit_settings(sc->hw_hdl);
7129 if (error) {
7130 device_printf(sc->sc_dev,
7131 "commit_settings failed with %d\n", error);
7132 return error;
7133 }
7134 }
7135
7136 return 0;
7137 }
7138
7139 /*
7140 * Fill audio_info structure. If need_mixerinfo is true, it will also
7141 * fill the hardware mixer information.
7142 * Must be called with sc_lock held.
7143 * Must be called with sc_exlock held, in addition, if need_mixerinfo is
7144 * true.
7145 */
7146 static int
7147 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7148 audio_file_t *file)
7149 {
7150 struct audio_prinfo *ri, *pi;
7151 audio_track_t *track;
7152 audio_track_t *ptrack;
7153 audio_track_t *rtrack;
7154 int gain;
7155
7156 KASSERT(mutex_owned(sc->sc_lock));
7157
7158 ri = &ai->record;
7159 pi = &ai->play;
7160 ptrack = file->ptrack;
7161 rtrack = file->rtrack;
7162
7163 memset(ai, 0, sizeof(*ai));
7164
7165 if (ptrack) {
7166 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7167 pi->channels = ptrack->usrbuf.fmt.channels;
7168 pi->precision = ptrack->usrbuf.fmt.precision;
7169 pi->encoding = ptrack->usrbuf.fmt.encoding;
7170 } else {
7171 /* Set default parameters if the track is not available. */
7172 if (ISDEVAUDIO(file->dev)) {
7173 pi->sample_rate = audio_default.sample_rate;
7174 pi->channels = audio_default.channels;
7175 pi->precision = audio_default.precision;
7176 pi->encoding = audio_default.encoding;
7177 } else {
7178 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7179 pi->channels = sc->sc_sound_pparams.channels;
7180 pi->precision = sc->sc_sound_pparams.precision;
7181 pi->encoding = sc->sc_sound_pparams.encoding;
7182 }
7183 }
7184 if (rtrack) {
7185 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7186 ri->channels = rtrack->usrbuf.fmt.channels;
7187 ri->precision = rtrack->usrbuf.fmt.precision;
7188 ri->encoding = rtrack->usrbuf.fmt.encoding;
7189 } else {
7190 /* Set default parameters if the track is not available. */
7191 if (ISDEVAUDIO(file->dev)) {
7192 ri->sample_rate = audio_default.sample_rate;
7193 ri->channels = audio_default.channels;
7194 ri->precision = audio_default.precision;
7195 ri->encoding = audio_default.encoding;
7196 } else {
7197 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7198 ri->channels = sc->sc_sound_rparams.channels;
7199 ri->precision = sc->sc_sound_rparams.precision;
7200 ri->encoding = sc->sc_sound_rparams.encoding;
7201 }
7202 }
7203
7204 if (ptrack) {
7205 pi->seek = ptrack->usrbuf.used;
7206 pi->samples = ptrack->usrbuf_stamp;
7207 pi->eof = ptrack->eofcounter;
7208 pi->pause = ptrack->is_pause;
7209 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7210 pi->waiting = 0; /* open never hangs */
7211 pi->open = 1;
7212 pi->active = sc->sc_pbusy;
7213 pi->buffer_size = ptrack->usrbuf.capacity;
7214 }
7215 if (rtrack) {
7216 ri->seek = rtrack->usrbuf.used;
7217 ri->samples = rtrack->usrbuf_stamp;
7218 ri->eof = 0;
7219 ri->pause = rtrack->is_pause;
7220 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7221 ri->waiting = 0; /* open never hangs */
7222 ri->open = 1;
7223 ri->active = sc->sc_rbusy;
7224 ri->buffer_size = rtrack->usrbuf.capacity;
7225 }
7226
7227 /*
7228 * XXX There may be different number of channels between playback
7229 * and recording, so that blocksize also may be different.
7230 * But struct audio_info has an united blocksize...
7231 * Here, I use play info precedencely if ptrack is available,
7232 * otherwise record info.
7233 *
7234 * XXX hiwat/lowat is a playback-only parameter. What should I
7235 * return for a record-only descriptor?
7236 */
7237 track = ptrack ? ptrack : rtrack;
7238 if (track) {
7239 ai->blocksize = track->usrbuf_blksize;
7240 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7241 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7242 }
7243 ai->mode = file->mode;
7244
7245 if (need_mixerinfo) {
7246 KASSERT(sc->sc_exlock);
7247
7248 pi->port = au_get_port(sc, &sc->sc_outports);
7249 ri->port = au_get_port(sc, &sc->sc_inports);
7250
7251 pi->avail_ports = sc->sc_outports.allports;
7252 ri->avail_ports = sc->sc_inports.allports;
7253
7254 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7255 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7256
7257 if (sc->sc_monitor_port != -1) {
7258 gain = au_get_monitor_gain(sc);
7259 if (gain != -1)
7260 ai->monitor_gain = gain;
7261 }
7262 }
7263
7264 return 0;
7265 }
7266
7267 /*
7268 * Must be called with sc_lock held.
7269 */
7270 static int
7271 audio_get_props(struct audio_softc *sc)
7272 {
7273 const struct audio_hw_if *hw;
7274 int props;
7275
7276 KASSERT(mutex_owned(sc->sc_lock));
7277
7278 hw = sc->hw_if;
7279 props = hw->get_props(sc->hw_hdl);
7280
7281 /*
7282 * For historical reasons, if neither playback nor capture
7283 * properties are reported, assume both are supported.
7284 * XXX Ideally (all) hardware driver should be updated...
7285 */
7286 if ((props & (AUDIO_PROP_PLAYBACK|AUDIO_PROP_CAPTURE)) == 0)
7287 props |= (AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE);
7288
7289 /* MMAP is now supported by upper layer. */
7290 props |= AUDIO_PROP_MMAP;
7291
7292 return props;
7293 }
7294
7295 /*
7296 * Return true if playback is configured.
7297 * This function can be used after audioattach.
7298 */
7299 static bool
7300 audio_can_playback(struct audio_softc *sc)
7301 {
7302
7303 return (sc->sc_pmixer != NULL);
7304 }
7305
7306 /*
7307 * Return true if recording is configured.
7308 * This function can be used after audioattach.
7309 */
7310 static bool
7311 audio_can_capture(struct audio_softc *sc)
7312 {
7313
7314 return (sc->sc_rmixer != NULL);
7315 }
7316
7317 /*
7318 * Get the afp->index'th item from the valid one of format[].
7319 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7320 *
7321 * This is common routines for query_format.
7322 * If your hardware driver has struct audio_format[], the simplest case
7323 * you can write your query_format interface as follows:
7324 *
7325 * struct audio_format foo_format[] = { ... };
7326 *
7327 * int
7328 * foo_query_format(void *hdl, audio_format_query_t *afp)
7329 * {
7330 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7331 * }
7332 */
7333 int
7334 audio_query_format(const struct audio_format *format, int nformats,
7335 audio_format_query_t *afp)
7336 {
7337 const struct audio_format *f;
7338 int idx;
7339 int i;
7340
7341 idx = 0;
7342 for (i = 0; i < nformats; i++) {
7343 f = &format[i];
7344 if (!AUFMT_IS_VALID(f))
7345 continue;
7346 if (afp->index == idx) {
7347 afp->fmt = *f;
7348 return 0;
7349 }
7350 idx++;
7351 }
7352 return EINVAL;
7353 }
7354
7355 /*
7356 * This function is provided for the hardware driver's set_format() to
7357 * find index matches with 'param' from array of audio_format_t 'formats'.
7358 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7359 * It returns the matched index and never fails. Because param passed to
7360 * set_format() is selected from query_format().
7361 * This function will be an alternative to auconv_set_converter() to
7362 * find index.
7363 */
7364 int
7365 audio_indexof_format(const struct audio_format *formats, int nformats,
7366 int mode, const audio_params_t *param)
7367 {
7368 const struct audio_format *f;
7369 int index;
7370 int j;
7371
7372 for (index = 0; index < nformats; index++) {
7373 f = &formats[index];
7374
7375 if (!AUFMT_IS_VALID(f))
7376 continue;
7377 if ((f->mode & mode) == 0)
7378 continue;
7379 if (f->encoding != param->encoding)
7380 continue;
7381 if (f->validbits != param->precision)
7382 continue;
7383 if (f->channels != param->channels)
7384 continue;
7385
7386 if (f->frequency_type == 0) {
7387 if (param->sample_rate < f->frequency[0] ||
7388 param->sample_rate > f->frequency[1])
7389 continue;
7390 } else {
7391 for (j = 0; j < f->frequency_type; j++) {
7392 if (param->sample_rate == f->frequency[j])
7393 break;
7394 }
7395 if (j == f->frequency_type)
7396 continue;
7397 }
7398
7399 /* Then, matched */
7400 return index;
7401 }
7402
7403 /* Not matched. This should not be happened. */
7404 panic("%s: cannot find matched format\n", __func__);
7405 }
7406
7407 /*
7408 * Get or set software master volume: 0..256
7409 * XXX It's for debug.
7410 */
7411 static int
7412 audio_sysctl_volume(SYSCTLFN_ARGS)
7413 {
7414 struct sysctlnode node;
7415 struct audio_softc *sc;
7416 int t, error;
7417
7418 node = *rnode;
7419 sc = node.sysctl_data;
7420
7421 if (sc->sc_pmixer)
7422 t = sc->sc_pmixer->volume;
7423 else
7424 t = -1;
7425 node.sysctl_data = &t;
7426 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7427 if (error || newp == NULL)
7428 return error;
7429
7430 if (sc->sc_pmixer == NULL)
7431 return EINVAL;
7432 if (t < 0)
7433 return EINVAL;
7434
7435 sc->sc_pmixer->volume = t;
7436 return 0;
7437 }
7438
7439 /*
7440 * Get or set hardware blocksize in msec.
7441 * XXX It's for debug.
7442 */
7443 static int
7444 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7445 {
7446 struct sysctlnode node;
7447 struct audio_softc *sc;
7448 audio_format2_t phwfmt;
7449 audio_format2_t rhwfmt;
7450 audio_filter_reg_t pfil;
7451 audio_filter_reg_t rfil;
7452 int t;
7453 int old_blk_ms;
7454 int mode;
7455 int error;
7456
7457 node = *rnode;
7458 sc = node.sysctl_data;
7459
7460 mutex_enter(sc->sc_lock);
7461
7462 old_blk_ms = sc->sc_blk_ms;
7463 t = old_blk_ms;
7464 node.sysctl_data = &t;
7465 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7466 if (error || newp == NULL)
7467 goto abort;
7468
7469 if (t < 0) {
7470 error = EINVAL;
7471 goto abort;
7472 }
7473
7474 if (sc->sc_popens + sc->sc_ropens > 0) {
7475 error = EBUSY;
7476 goto abort;
7477 }
7478 sc->sc_blk_ms = t;
7479 mode = 0;
7480 if (sc->sc_pmixer) {
7481 mode |= AUMODE_PLAY;
7482 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7483 }
7484 if (sc->sc_rmixer) {
7485 mode |= AUMODE_RECORD;
7486 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7487 }
7488
7489 /* re-init hardware */
7490 memset(&pfil, 0, sizeof(pfil));
7491 memset(&rfil, 0, sizeof(rfil));
7492 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7493 if (error) {
7494 goto abort;
7495 }
7496
7497 /* re-init track mixer */
7498 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7499 if (error) {
7500 /* Rollback */
7501 sc->sc_blk_ms = old_blk_ms;
7502 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7503 goto abort;
7504 }
7505 error = 0;
7506 abort:
7507 mutex_exit(sc->sc_lock);
7508 return error;
7509 }
7510
7511 /*
7512 * Get or set multiuser mode.
7513 */
7514 static int
7515 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7516 {
7517 struct sysctlnode node;
7518 struct audio_softc *sc;
7519 bool t;
7520 int error;
7521
7522 node = *rnode;
7523 sc = node.sysctl_data;
7524
7525 mutex_enter(sc->sc_lock);
7526
7527 t = sc->sc_multiuser;
7528 node.sysctl_data = &t;
7529 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7530 if (error || newp == NULL)
7531 goto abort;
7532
7533 sc->sc_multiuser = t;
7534 error = 0;
7535 abort:
7536 mutex_exit(sc->sc_lock);
7537 return error;
7538 }
7539
7540 #if defined(AUDIO_DEBUG)
7541 /*
7542 * Get or set debug verbose level. (0..4)
7543 * XXX It's for debug.
7544 * XXX It is not separated per device.
7545 */
7546 static int
7547 audio_sysctl_debug(SYSCTLFN_ARGS)
7548 {
7549 struct sysctlnode node;
7550 int t;
7551 int error;
7552
7553 node = *rnode;
7554 t = audiodebug;
7555 node.sysctl_data = &t;
7556 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7557 if (error || newp == NULL)
7558 return error;
7559
7560 if (t < 0 || t > 4)
7561 return EINVAL;
7562 audiodebug = t;
7563 printf("audio: audiodebug = %d\n", audiodebug);
7564 return 0;
7565 }
7566 #endif /* AUDIO_DEBUG */
7567
7568 #ifdef AUDIO_PM_IDLE
7569 static void
7570 audio_idle(void *arg)
7571 {
7572 device_t dv = arg;
7573 struct audio_softc *sc = device_private(dv);
7574
7575 #ifdef PNP_DEBUG
7576 extern int pnp_debug_idle;
7577 if (pnp_debug_idle)
7578 printf("%s: idle handler called\n", device_xname(dv));
7579 #endif
7580
7581 sc->sc_idle = true;
7582
7583 /* XXX joerg Make pmf_device_suspend handle children? */
7584 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7585 return;
7586
7587 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7588 pmf_device_resume(dv, PMF_Q_SELF);
7589 }
7590
7591 static void
7592 audio_activity(device_t dv, devactive_t type)
7593 {
7594 struct audio_softc *sc = device_private(dv);
7595
7596 if (type != DVA_SYSTEM)
7597 return;
7598
7599 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7600
7601 sc->sc_idle = false;
7602 if (!device_is_active(dv)) {
7603 /* XXX joerg How to deal with a failing resume... */
7604 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7605 pmf_device_resume(dv, PMF_Q_SELF);
7606 }
7607 }
7608 #endif
7609
7610 static bool
7611 audio_suspend(device_t dv, const pmf_qual_t *qual)
7612 {
7613 struct audio_softc *sc = device_private(dv);
7614 int error;
7615
7616 error = audio_enter_exclusive(sc);
7617 if (error)
7618 return error;
7619 audio_mixer_capture(sc);
7620
7621 /* Halts mixers but don't clear busy flag for resume */
7622 if (sc->sc_pbusy) {
7623 audio_pmixer_halt(sc);
7624 sc->sc_pbusy = true;
7625 }
7626 if (sc->sc_rbusy) {
7627 audio_rmixer_halt(sc);
7628 sc->sc_rbusy = true;
7629 }
7630
7631 #ifdef AUDIO_PM_IDLE
7632 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7633 #endif
7634 audio_exit_exclusive(sc);
7635
7636 return true;
7637 }
7638
7639 static bool
7640 audio_resume(device_t dv, const pmf_qual_t *qual)
7641 {
7642 struct audio_softc *sc = device_private(dv);
7643 struct audio_info ai;
7644 int error;
7645
7646 error = audio_enter_exclusive(sc);
7647 if (error)
7648 return error;
7649
7650 audio_mixer_restore(sc);
7651 /* XXX ? */
7652 AUDIO_INITINFO(&ai);
7653 audio_hw_setinfo(sc, &ai, NULL);
7654
7655 if (sc->sc_pbusy)
7656 audio_pmixer_start(sc, true);
7657 if (sc->sc_rbusy)
7658 audio_rmixer_start(sc);
7659
7660 audio_exit_exclusive(sc);
7661
7662 return true;
7663 }
7664
7665 #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
7666 static void
7667 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7668 {
7669 int n;
7670
7671 n = 0;
7672 n += snprintf(buf + n, bufsize - n, "%s",
7673 audio_encoding_name(fmt->encoding));
7674 if (fmt->precision == fmt->stride) {
7675 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7676 } else {
7677 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7678 fmt->precision, fmt->stride);
7679 }
7680
7681 snprintf(buf + n, bufsize - n, " %uch %uHz",
7682 fmt->channels, fmt->sample_rate);
7683 }
7684 #endif
7685
7686 #if defined(AUDIO_DEBUG)
7687 static void
7688 audio_print_format2(const char *s, const audio_format2_t *fmt)
7689 {
7690 char fmtstr[64];
7691
7692 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7693 printf("%s %s\n", s, fmtstr);
7694 }
7695 #endif
7696
7697 #ifdef DIAGNOSTIC
7698 void
7699 audio_diagnostic_format2(const char *func, const audio_format2_t *fmt)
7700 {
7701
7702 KASSERTMSG(fmt, "%s: fmt == NULL", func);
7703
7704 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7705 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7706 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7707 "%s: stride(%d) is invalid", func, fmt->stride);
7708 } else {
7709 KASSERTMSG(fmt->stride % NBBY == 0,
7710 "%s: stride(%d) is invalid", func, fmt->stride);
7711 }
7712 KASSERTMSG(fmt->precision <= fmt->stride,
7713 "%s: precision(%d) <= stride(%d)",
7714 func, fmt->precision, fmt->stride);
7715 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7716 "%s: channels(%d) is out of range",
7717 func, fmt->channels);
7718
7719 /* XXX No check for encodings? */
7720 }
7721
7722 void
7723 audio_diagnostic_filter_arg(const char *func, const audio_filter_arg_t *arg)
7724 {
7725
7726 KASSERT(arg != NULL);
7727 KASSERT(arg->src != NULL);
7728 KASSERT(arg->dst != NULL);
7729 DIAGNOSTIC_format2(arg->srcfmt);
7730 DIAGNOSTIC_format2(arg->dstfmt);
7731 KASSERTMSG(arg->count > 0,
7732 "%s: count(%d) is out of range", func, arg->count);
7733 }
7734
7735 void
7736 audio_diagnostic_ring(const char *func, const audio_ring_t *ring)
7737 {
7738
7739 KASSERTMSG(ring, "%s: ring == NULL", func);
7740 DIAGNOSTIC_format2(&ring->fmt);
7741 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7742 "%s: capacity(%d) is out of range", func, ring->capacity);
7743 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7744 "%s: used(%d) is out of range (capacity:%d)",
7745 func, ring->used, ring->capacity);
7746 if (ring->capacity == 0) {
7747 KASSERTMSG(ring->mem == NULL,
7748 "%s: capacity == 0 but mem != NULL", func);
7749 } else {
7750 KASSERTMSG(ring->mem != NULL,
7751 "%s: capacity != 0 but mem == NULL", func);
7752 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7753 "%s: head(%d) is out of range (capacity:%d)",
7754 func, ring->head, ring->capacity);
7755 }
7756 }
7757 #endif /* DIAGNOSTIC */
7758
7759
7760 /*
7761 * Mixer driver
7762 */
7763 int
7764 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7765 struct lwp *l)
7766 {
7767 struct file *fp;
7768 audio_file_t *af;
7769 int error, fd;
7770
7771 KASSERT(mutex_owned(sc->sc_lock));
7772
7773 TRACE(1, "flags=0x%x", flags);
7774
7775 error = fd_allocfile(&fp, &fd);
7776 if (error)
7777 return error;
7778
7779 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7780 af->sc = sc;
7781 af->dev = dev;
7782
7783 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7784 KASSERT(error == EMOVEFD);
7785
7786 return error;
7787 }
7788
7789 /*
7790 * Remove a process from those to be signalled on mixer activity.
7791 * Must be called with sc_lock held.
7792 */
7793 static void
7794 mixer_remove(struct audio_softc *sc)
7795 {
7796 struct mixer_asyncs **pm, *m;
7797 pid_t pid;
7798
7799 KASSERT(mutex_owned(sc->sc_lock));
7800
7801 pid = curproc->p_pid;
7802 for (pm = &sc->sc_async_mixer; *pm; pm = &(*pm)->next) {
7803 if ((*pm)->pid == pid) {
7804 m = *pm;
7805 *pm = m->next;
7806 kmem_free(m, sizeof(*m));
7807 return;
7808 }
7809 }
7810 }
7811
7812 /*
7813 * Signal all processes waiting for the mixer.
7814 * Must be called with sc_lock held.
7815 */
7816 static void
7817 mixer_signal(struct audio_softc *sc)
7818 {
7819 struct mixer_asyncs *m;
7820 proc_t *p;
7821
7822 for (m = sc->sc_async_mixer; m; m = m->next) {
7823 mutex_enter(proc_lock);
7824 if ((p = proc_find(m->pid)) != NULL)
7825 psignal(p, SIGIO);
7826 mutex_exit(proc_lock);
7827 }
7828 }
7829
7830 /*
7831 * Close a mixer device
7832 */
7833 int
7834 mixer_close(struct audio_softc *sc, audio_file_t *file)
7835 {
7836
7837 mutex_enter(sc->sc_lock);
7838 TRACE(1, "");
7839 mixer_remove(sc);
7840 mutex_exit(sc->sc_lock);
7841
7842 return 0;
7843 }
7844
7845 int
7846 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
7847 struct lwp *l)
7848 {
7849 struct mixer_asyncs *ma;
7850 mixer_devinfo_t *mi;
7851 mixer_ctrl_t *mc;
7852 int error;
7853
7854 KASSERT(!mutex_owned(sc->sc_lock));
7855
7856 TRACE(2, "(%lu,'%c',%lu)",
7857 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
7858 error = EINVAL;
7859
7860 /* we can return cached values if we are sleeping */
7861 if (cmd != AUDIO_MIXER_READ) {
7862 mutex_enter(sc->sc_lock);
7863 device_active(sc->sc_dev, DVA_SYSTEM);
7864 mutex_exit(sc->sc_lock);
7865 }
7866
7867 switch (cmd) {
7868 case FIOASYNC:
7869 if (*(int *)addr) {
7870 ma = kmem_alloc(sizeof(struct mixer_asyncs), KM_SLEEP);
7871 } else {
7872 ma = NULL;
7873 }
7874 mixer_remove(sc); /* remove old entry */
7875 if (ma != NULL) {
7876 ma->next = sc->sc_async_mixer;
7877 ma->pid = curproc->p_pid;
7878 sc->sc_async_mixer = ma;
7879 }
7880 error = 0;
7881 break;
7882
7883 case AUDIO_GETDEV:
7884 TRACE(2, "AUDIO_GETDEV");
7885 error = audio_enter_exclusive(sc);
7886 if (error)
7887 break;
7888 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
7889 audio_exit_exclusive(sc);
7890 break;
7891
7892 case AUDIO_MIXER_DEVINFO:
7893 TRACE(2, "AUDIO_MIXER_DEVINFO");
7894 mi = (mixer_devinfo_t *)addr;
7895
7896 mi->un.v.delta = 0; /* default */
7897 mutex_enter(sc->sc_lock);
7898 error = audio_query_devinfo(sc, mi);
7899 mutex_exit(sc->sc_lock);
7900 break;
7901
7902 case AUDIO_MIXER_READ:
7903 TRACE(2, "AUDIO_MIXER_READ");
7904 mc = (mixer_ctrl_t *)addr;
7905
7906 error = audio_enter_exclusive(sc);
7907 if (error)
7908 break;
7909 if (device_is_active(sc->hw_dev))
7910 error = audio_get_port(sc, mc);
7911 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
7912 error = ENXIO;
7913 else {
7914 int dev = mc->dev;
7915 memcpy(mc, &sc->sc_mixer_state[dev],
7916 sizeof(mixer_ctrl_t));
7917 error = 0;
7918 }
7919 audio_exit_exclusive(sc);
7920 break;
7921
7922 case AUDIO_MIXER_WRITE:
7923 TRACE(2, "AUDIO_MIXER_WRITE");
7924 error = audio_enter_exclusive(sc);
7925 if (error)
7926 break;
7927 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
7928 if (error) {
7929 audio_exit_exclusive(sc);
7930 break;
7931 }
7932
7933 if (sc->hw_if->commit_settings) {
7934 error = sc->hw_if->commit_settings(sc->hw_hdl);
7935 if (error) {
7936 audio_exit_exclusive(sc);
7937 break;
7938 }
7939 }
7940 mixer_signal(sc);
7941 audio_exit_exclusive(sc);
7942 break;
7943
7944 default:
7945 if (sc->hw_if->dev_ioctl) {
7946 error = audio_enter_exclusive(sc);
7947 if (error)
7948 break;
7949 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
7950 cmd, addr, flag, l);
7951 audio_exit_exclusive(sc);
7952 } else
7953 error = EINVAL;
7954 break;
7955 }
7956 TRACE(2, "(%lu,'%c',%lu) result %d",
7957 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
7958 return error;
7959 }
7960
7961 /*
7962 * Must be called with sc_lock held.
7963 */
7964 int
7965 au_portof(struct audio_softc *sc, char *name, int class)
7966 {
7967 mixer_devinfo_t mi;
7968
7969 KASSERT(mutex_owned(sc->sc_lock));
7970
7971 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
7972 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
7973 return mi.index;
7974 }
7975 return -1;
7976 }
7977
7978 /*
7979 * Must be called with sc_lock held.
7980 */
7981 void
7982 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
7983 mixer_devinfo_t *mi, const struct portname *tbl)
7984 {
7985 int i, j;
7986
7987 KASSERT(mutex_owned(sc->sc_lock));
7988
7989 ports->index = mi->index;
7990 if (mi->type == AUDIO_MIXER_ENUM) {
7991 ports->isenum = true;
7992 for(i = 0; tbl[i].name; i++)
7993 for(j = 0; j < mi->un.e.num_mem; j++)
7994 if (strcmp(mi->un.e.member[j].label.name,
7995 tbl[i].name) == 0) {
7996 ports->allports |= tbl[i].mask;
7997 ports->aumask[ports->nports] = tbl[i].mask;
7998 ports->misel[ports->nports] =
7999 mi->un.e.member[j].ord;
8000 ports->miport[ports->nports] =
8001 au_portof(sc, mi->un.e.member[j].label.name,
8002 mi->mixer_class);
8003 if (ports->mixerout != -1 &&
8004 ports->miport[ports->nports] != -1)
8005 ports->isdual = true;
8006 ++ports->nports;
8007 }
8008 } else if (mi->type == AUDIO_MIXER_SET) {
8009 for(i = 0; tbl[i].name; i++)
8010 for(j = 0; j < mi->un.s.num_mem; j++)
8011 if (strcmp(mi->un.s.member[j].label.name,
8012 tbl[i].name) == 0) {
8013 ports->allports |= tbl[i].mask;
8014 ports->aumask[ports->nports] = tbl[i].mask;
8015 ports->misel[ports->nports] =
8016 mi->un.s.member[j].mask;
8017 ports->miport[ports->nports] =
8018 au_portof(sc, mi->un.s.member[j].label.name,
8019 mi->mixer_class);
8020 ++ports->nports;
8021 }
8022 }
8023 }
8024
8025 /*
8026 * Must be called with sc_lock && sc_exlock held.
8027 */
8028 int
8029 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8030 {
8031
8032 KASSERT(mutex_owned(sc->sc_lock));
8033 KASSERT(sc->sc_exlock);
8034
8035 ct->type = AUDIO_MIXER_VALUE;
8036 ct->un.value.num_channels = 2;
8037 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8038 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8039 if (audio_set_port(sc, ct) == 0)
8040 return 0;
8041 ct->un.value.num_channels = 1;
8042 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8043 return audio_set_port(sc, ct);
8044 }
8045
8046 /*
8047 * Must be called with sc_lock && sc_exlock held.
8048 */
8049 int
8050 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8051 {
8052 int error;
8053
8054 KASSERT(mutex_owned(sc->sc_lock));
8055 KASSERT(sc->sc_exlock);
8056
8057 ct->un.value.num_channels = 2;
8058 if (audio_get_port(sc, ct) == 0) {
8059 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8060 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8061 } else {
8062 ct->un.value.num_channels = 1;
8063 error = audio_get_port(sc, ct);
8064 if (error)
8065 return error;
8066 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8067 }
8068 return 0;
8069 }
8070
8071 /*
8072 * Must be called with sc_lock && sc_exlock held.
8073 */
8074 int
8075 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8076 int gain, int balance)
8077 {
8078 mixer_ctrl_t ct;
8079 int i, error;
8080 int l, r;
8081 u_int mask;
8082 int nset;
8083
8084 KASSERT(mutex_owned(sc->sc_lock));
8085 KASSERT(sc->sc_exlock);
8086
8087 if (balance == AUDIO_MID_BALANCE) {
8088 l = r = gain;
8089 } else if (balance < AUDIO_MID_BALANCE) {
8090 l = gain;
8091 r = (balance * gain) / AUDIO_MID_BALANCE;
8092 } else {
8093 r = gain;
8094 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8095 / AUDIO_MID_BALANCE;
8096 }
8097 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8098
8099 if (ports->index == -1) {
8100 usemaster:
8101 if (ports->master == -1)
8102 return 0; /* just ignore it silently */
8103 ct.dev = ports->master;
8104 error = au_set_lr_value(sc, &ct, l, r);
8105 } else {
8106 ct.dev = ports->index;
8107 if (ports->isenum) {
8108 ct.type = AUDIO_MIXER_ENUM;
8109 error = audio_get_port(sc, &ct);
8110 if (error)
8111 return error;
8112 if (ports->isdual) {
8113 if (ports->cur_port == -1)
8114 ct.dev = ports->master;
8115 else
8116 ct.dev = ports->miport[ports->cur_port];
8117 error = au_set_lr_value(sc, &ct, l, r);
8118 } else {
8119 for(i = 0; i < ports->nports; i++)
8120 if (ports->misel[i] == ct.un.ord) {
8121 ct.dev = ports->miport[i];
8122 if (ct.dev == -1 ||
8123 au_set_lr_value(sc, &ct, l, r))
8124 goto usemaster;
8125 else
8126 break;
8127 }
8128 }
8129 } else {
8130 ct.type = AUDIO_MIXER_SET;
8131 error = audio_get_port(sc, &ct);
8132 if (error)
8133 return error;
8134 mask = ct.un.mask;
8135 nset = 0;
8136 for(i = 0; i < ports->nports; i++) {
8137 if (ports->misel[i] & mask) {
8138 ct.dev = ports->miport[i];
8139 if (ct.dev != -1 &&
8140 au_set_lr_value(sc, &ct, l, r) == 0)
8141 nset++;
8142 }
8143 }
8144 if (nset == 0)
8145 goto usemaster;
8146 }
8147 }
8148 if (!error)
8149 mixer_signal(sc);
8150 return error;
8151 }
8152
8153 /*
8154 * Must be called with sc_lock && sc_exlock held.
8155 */
8156 void
8157 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8158 u_int *pgain, u_char *pbalance)
8159 {
8160 mixer_ctrl_t ct;
8161 int i, l, r, n;
8162 int lgain, rgain;
8163
8164 KASSERT(mutex_owned(sc->sc_lock));
8165 KASSERT(sc->sc_exlock);
8166
8167 lgain = AUDIO_MAX_GAIN / 2;
8168 rgain = AUDIO_MAX_GAIN / 2;
8169 if (ports->index == -1) {
8170 usemaster:
8171 if (ports->master == -1)
8172 goto bad;
8173 ct.dev = ports->master;
8174 ct.type = AUDIO_MIXER_VALUE;
8175 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8176 goto bad;
8177 } else {
8178 ct.dev = ports->index;
8179 if (ports->isenum) {
8180 ct.type = AUDIO_MIXER_ENUM;
8181 if (audio_get_port(sc, &ct))
8182 goto bad;
8183 ct.type = AUDIO_MIXER_VALUE;
8184 if (ports->isdual) {
8185 if (ports->cur_port == -1)
8186 ct.dev = ports->master;
8187 else
8188 ct.dev = ports->miport[ports->cur_port];
8189 au_get_lr_value(sc, &ct, &lgain, &rgain);
8190 } else {
8191 for(i = 0; i < ports->nports; i++)
8192 if (ports->misel[i] == ct.un.ord) {
8193 ct.dev = ports->miport[i];
8194 if (ct.dev == -1 ||
8195 au_get_lr_value(sc, &ct,
8196 &lgain, &rgain))
8197 goto usemaster;
8198 else
8199 break;
8200 }
8201 }
8202 } else {
8203 ct.type = AUDIO_MIXER_SET;
8204 if (audio_get_port(sc, &ct))
8205 goto bad;
8206 ct.type = AUDIO_MIXER_VALUE;
8207 lgain = rgain = n = 0;
8208 for(i = 0; i < ports->nports; i++) {
8209 if (ports->misel[i] & ct.un.mask) {
8210 ct.dev = ports->miport[i];
8211 if (ct.dev == -1 ||
8212 au_get_lr_value(sc, &ct, &l, &r))
8213 goto usemaster;
8214 else {
8215 lgain += l;
8216 rgain += r;
8217 n++;
8218 }
8219 }
8220 }
8221 if (n != 0) {
8222 lgain /= n;
8223 rgain /= n;
8224 }
8225 }
8226 }
8227 bad:
8228 if (lgain == rgain) { /* handles lgain==rgain==0 */
8229 *pgain = lgain;
8230 *pbalance = AUDIO_MID_BALANCE;
8231 } else if (lgain < rgain) {
8232 *pgain = rgain;
8233 /* balance should be > AUDIO_MID_BALANCE */
8234 *pbalance = AUDIO_RIGHT_BALANCE -
8235 (AUDIO_MID_BALANCE * lgain) / rgain;
8236 } else /* lgain > rgain */ {
8237 *pgain = lgain;
8238 /* balance should be < AUDIO_MID_BALANCE */
8239 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8240 }
8241 }
8242
8243 /*
8244 * Must be called with sc_lock && sc_exlock held.
8245 */
8246 int
8247 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8248 {
8249 mixer_ctrl_t ct;
8250 int i, error, use_mixerout;
8251
8252 KASSERT(mutex_owned(sc->sc_lock));
8253 KASSERT(sc->sc_exlock);
8254
8255 use_mixerout = 1;
8256 if (port == 0) {
8257 if (ports->allports == 0)
8258 return 0; /* Allow this special case. */
8259 else if (ports->isdual) {
8260 if (ports->cur_port == -1) {
8261 return 0;
8262 } else {
8263 port = ports->aumask[ports->cur_port];
8264 ports->cur_port = -1;
8265 use_mixerout = 0;
8266 }
8267 }
8268 }
8269 if (ports->index == -1)
8270 return EINVAL;
8271 ct.dev = ports->index;
8272 if (ports->isenum) {
8273 if (port & (port-1))
8274 return EINVAL; /* Only one port allowed */
8275 ct.type = AUDIO_MIXER_ENUM;
8276 error = EINVAL;
8277 for(i = 0; i < ports->nports; i++)
8278 if (ports->aumask[i] == port) {
8279 if (ports->isdual && use_mixerout) {
8280 ct.un.ord = ports->mixerout;
8281 ports->cur_port = i;
8282 } else {
8283 ct.un.ord = ports->misel[i];
8284 }
8285 error = audio_set_port(sc, &ct);
8286 break;
8287 }
8288 } else {
8289 ct.type = AUDIO_MIXER_SET;
8290 ct.un.mask = 0;
8291 for(i = 0; i < ports->nports; i++)
8292 if (ports->aumask[i] & port)
8293 ct.un.mask |= ports->misel[i];
8294 if (port != 0 && ct.un.mask == 0)
8295 error = EINVAL;
8296 else
8297 error = audio_set_port(sc, &ct);
8298 }
8299 if (!error)
8300 mixer_signal(sc);
8301 return error;
8302 }
8303
8304 /*
8305 * Must be called with sc_lock && sc_exlock held.
8306 */
8307 int
8308 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8309 {
8310 mixer_ctrl_t ct;
8311 int i, aumask;
8312
8313 KASSERT(mutex_owned(sc->sc_lock));
8314 KASSERT(sc->sc_exlock);
8315
8316 if (ports->index == -1)
8317 return 0;
8318 ct.dev = ports->index;
8319 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8320 if (audio_get_port(sc, &ct))
8321 return 0;
8322 aumask = 0;
8323 if (ports->isenum) {
8324 if (ports->isdual && ports->cur_port != -1) {
8325 if (ports->mixerout == ct.un.ord)
8326 aumask = ports->aumask[ports->cur_port];
8327 else
8328 ports->cur_port = -1;
8329 }
8330 if (aumask == 0)
8331 for(i = 0; i < ports->nports; i++)
8332 if (ports->misel[i] == ct.un.ord)
8333 aumask = ports->aumask[i];
8334 } else {
8335 for(i = 0; i < ports->nports; i++)
8336 if (ct.un.mask & ports->misel[i])
8337 aumask |= ports->aumask[i];
8338 }
8339 return aumask;
8340 }
8341
8342 /*
8343 * It returns 0 if success, otherwise errno.
8344 * Must be called only if sc->sc_monitor_port != -1.
8345 * Must be called with sc_lock && sc_exlock held.
8346 */
8347 static int
8348 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8349 {
8350 mixer_ctrl_t ct;
8351
8352 KASSERT(mutex_owned(sc->sc_lock));
8353 KASSERT(sc->sc_exlock);
8354
8355 ct.dev = sc->sc_monitor_port;
8356 ct.type = AUDIO_MIXER_VALUE;
8357 ct.un.value.num_channels = 1;
8358 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8359 return audio_set_port(sc, &ct);
8360 }
8361
8362 /*
8363 * It returns monitor gain if success, otherwise -1.
8364 * Must be called only if sc->sc_monitor_port != -1.
8365 * Must be called with sc_lock && sc_exlock held.
8366 */
8367 static int
8368 au_get_monitor_gain(struct audio_softc *sc)
8369 {
8370 mixer_ctrl_t ct;
8371
8372 KASSERT(mutex_owned(sc->sc_lock));
8373 KASSERT(sc->sc_exlock);
8374
8375 ct.dev = sc->sc_monitor_port;
8376 ct.type = AUDIO_MIXER_VALUE;
8377 ct.un.value.num_channels = 1;
8378 if (audio_get_port(sc, &ct))
8379 return -1;
8380 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8381 }
8382
8383 /*
8384 * Must be called with sc_lock && sc_exlock held.
8385 */
8386 static int
8387 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8388 {
8389
8390 KASSERT(mutex_owned(sc->sc_lock));
8391 KASSERT(sc->sc_exlock);
8392
8393 return sc->hw_if->set_port(sc->hw_hdl, mc);
8394 }
8395
8396 /*
8397 * Must be called with sc_lock && sc_exlock held.
8398 */
8399 static int
8400 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8401 {
8402
8403 KASSERT(mutex_owned(sc->sc_lock));
8404 KASSERT(sc->sc_exlock);
8405
8406 return sc->hw_if->get_port(sc->hw_hdl, mc);
8407 }
8408
8409 /*
8410 * Must be called with sc_lock && sc_exlock held.
8411 */
8412 static void
8413 audio_mixer_capture(struct audio_softc *sc)
8414 {
8415 mixer_devinfo_t mi;
8416 mixer_ctrl_t *mc;
8417
8418 KASSERT(mutex_owned(sc->sc_lock));
8419 KASSERT(sc->sc_exlock);
8420
8421 for (mi.index = 0;; mi.index++) {
8422 if (audio_query_devinfo(sc, &mi) != 0)
8423 break;
8424 KASSERT(mi.index < sc->sc_nmixer_states);
8425 if (mi.type == AUDIO_MIXER_CLASS)
8426 continue;
8427 mc = &sc->sc_mixer_state[mi.index];
8428 mc->dev = mi.index;
8429 mc->type = mi.type;
8430 mc->un.value.num_channels = mi.un.v.num_channels;
8431 (void)audio_get_port(sc, mc);
8432 }
8433
8434 return;
8435 }
8436
8437 /*
8438 * Must be called with sc_lock && sc_exlock held.
8439 */
8440 static void
8441 audio_mixer_restore(struct audio_softc *sc)
8442 {
8443 mixer_devinfo_t mi;
8444 mixer_ctrl_t *mc;
8445
8446 KASSERT(mutex_owned(sc->sc_lock));
8447 KASSERT(sc->sc_exlock);
8448
8449 for (mi.index = 0; ; mi.index++) {
8450 if (audio_query_devinfo(sc, &mi) != 0)
8451 break;
8452 if (mi.type == AUDIO_MIXER_CLASS)
8453 continue;
8454 mc = &sc->sc_mixer_state[mi.index];
8455 (void)audio_set_port(sc, mc);
8456 }
8457 if (sc->hw_if->commit_settings)
8458 sc->hw_if->commit_settings(sc->hw_hdl);
8459
8460 return;
8461 }
8462
8463 static void
8464 audio_volume_down(device_t dv)
8465 {
8466 struct audio_softc *sc = device_private(dv);
8467 mixer_devinfo_t mi;
8468 int newgain;
8469 u_int gain;
8470 u_char balance;
8471
8472 if (audio_enter_exclusive(sc) != 0)
8473 return;
8474 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8475 mi.index = sc->sc_outports.master;
8476 mi.un.v.delta = 0;
8477 if (audio_query_devinfo(sc, &mi) == 0) {
8478 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8479 newgain = gain - mi.un.v.delta;
8480 if (newgain < AUDIO_MIN_GAIN)
8481 newgain = AUDIO_MIN_GAIN;
8482 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8483 }
8484 }
8485 audio_exit_exclusive(sc);
8486 }
8487
8488 static void
8489 audio_volume_up(device_t dv)
8490 {
8491 struct audio_softc *sc = device_private(dv);
8492 mixer_devinfo_t mi;
8493 u_int gain, newgain;
8494 u_char balance;
8495
8496 if (audio_enter_exclusive(sc) != 0)
8497 return;
8498 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8499 mi.index = sc->sc_outports.master;
8500 mi.un.v.delta = 0;
8501 if (audio_query_devinfo(sc, &mi) == 0) {
8502 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8503 newgain = gain + mi.un.v.delta;
8504 if (newgain > AUDIO_MAX_GAIN)
8505 newgain = AUDIO_MAX_GAIN;
8506 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8507 }
8508 }
8509 audio_exit_exclusive(sc);
8510 }
8511
8512 static void
8513 audio_volume_toggle(device_t dv)
8514 {
8515 struct audio_softc *sc = device_private(dv);
8516 u_int gain, newgain;
8517 u_char balance;
8518
8519 if (audio_enter_exclusive(sc) != 0)
8520 return;
8521 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8522 if (gain != 0) {
8523 sc->sc_lastgain = gain;
8524 newgain = 0;
8525 } else
8526 newgain = sc->sc_lastgain;
8527 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8528 audio_exit_exclusive(sc);
8529 }
8530
8531 static int
8532 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8533 {
8534
8535 KASSERT(mutex_owned(sc->sc_lock));
8536
8537 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8538 }
8539
8540 #endif /* NAUDIO > 0 */
8541
8542 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8543 #include <sys/param.h>
8544 #include <sys/systm.h>
8545 #include <sys/device.h>
8546 #include <sys/audioio.h>
8547 #include <dev/audio/audio_if.h>
8548 #endif
8549
8550 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8551 int
8552 audioprint(void *aux, const char *pnp)
8553 {
8554 struct audio_attach_args *arg;
8555 const char *type;
8556
8557 if (pnp != NULL) {
8558 arg = aux;
8559 switch (arg->type) {
8560 case AUDIODEV_TYPE_AUDIO:
8561 type = "audio";
8562 break;
8563 case AUDIODEV_TYPE_MIDI:
8564 type = "midi";
8565 break;
8566 case AUDIODEV_TYPE_OPL:
8567 type = "opl";
8568 break;
8569 case AUDIODEV_TYPE_MPU:
8570 type = "mpu";
8571 break;
8572 default:
8573 panic("audioprint: unknown type %d", arg->type);
8574 }
8575 aprint_normal("%s at %s", type, pnp);
8576 }
8577 return UNCONF;
8578 }
8579
8580 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8581
8582 #ifdef _MODULE
8583
8584 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8585
8586 #include "ioconf.c"
8587
8588 #endif
8589
8590 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8591
8592 static int
8593 audio_modcmd(modcmd_t cmd, void *arg)
8594 {
8595 int error = 0;
8596
8597 #ifdef _MODULE
8598 switch (cmd) {
8599 case MODULE_CMD_INIT:
8600 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8601 &audio_cdevsw, &audio_cmajor);
8602 if (error)
8603 break;
8604
8605 error = config_init_component(cfdriver_ioconf_audio,
8606 cfattach_ioconf_audio, cfdata_ioconf_audio);
8607 if (error) {
8608 devsw_detach(NULL, &audio_cdevsw);
8609 }
8610 break;
8611 case MODULE_CMD_FINI:
8612 devsw_detach(NULL, &audio_cdevsw);
8613 error = config_fini_component(cfdriver_ioconf_audio,
8614 cfattach_ioconf_audio, cfdata_ioconf_audio);
8615 if (error)
8616 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8617 &audio_cdevsw, &audio_cmajor);
8618 break;
8619 default:
8620 error = ENOTTY;
8621 break;
8622 }
8623 #endif
8624
8625 return error;
8626 }
8627