audio.c revision 1.72 1 /* $NetBSD: audio.c,v 1.72 2020/05/26 10:12:12 nia Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - - Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.72 2020/05/26 10:12:12 nia Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #include <sys/types.h>
151 #include <sys/param.h>
152 #include <sys/atomic.h>
153 #include <sys/audioio.h>
154 #include <sys/conf.h>
155 #include <sys/cpu.h>
156 #include <sys/device.h>
157 #include <sys/fcntl.h>
158 #include <sys/file.h>
159 #include <sys/filedesc.h>
160 #include <sys/intr.h>
161 #include <sys/ioctl.h>
162 #include <sys/kauth.h>
163 #include <sys/kernel.h>
164 #include <sys/kmem.h>
165 #include <sys/malloc.h>
166 #include <sys/mman.h>
167 #include <sys/module.h>
168 #include <sys/poll.h>
169 #include <sys/proc.h>
170 #include <sys/queue.h>
171 #include <sys/select.h>
172 #include <sys/signalvar.h>
173 #include <sys/stat.h>
174 #include <sys/sysctl.h>
175 #include <sys/systm.h>
176 #include <sys/syslog.h>
177 #include <sys/vnode.h>
178
179 #include <dev/audio/audio_if.h>
180 #include <dev/audio/audiovar.h>
181 #include <dev/audio/audiodef.h>
182 #include <dev/audio/linear.h>
183 #include <dev/audio/mulaw.h>
184
185 #include <machine/endian.h>
186
187 #include <uvm/uvm_extern.h>
188
189 #include "ioconf.h"
190
191 /*
192 * 0: No debug logs
193 * 1: action changes like open/close/set_format...
194 * 2: + normal operations like read/write/ioctl...
195 * 3: + TRACEs except interrupt
196 * 4: + TRACEs including interrupt
197 */
198 //#define AUDIO_DEBUG 1
199
200 #if defined(AUDIO_DEBUG)
201
202 int audiodebug = AUDIO_DEBUG;
203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
204 const char *, va_list);
205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
206 __printflike(3, 4);
207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
208 __printflike(3, 4);
209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
210 __printflike(3, 4);
211
212 /* XXX sloppy memory logger */
213 static void audio_mlog_init(void);
214 static void audio_mlog_free(void);
215 static void audio_mlog_softintr(void *);
216 extern void audio_mlog_flush(void);
217 extern void audio_mlog_printf(const char *, ...);
218
219 static int mlog_refs; /* reference counter */
220 static char *mlog_buf[2]; /* double buffer */
221 static int mlog_buflen; /* buffer length */
222 static int mlog_used; /* used length */
223 static int mlog_full; /* number of dropped lines by buffer full */
224 static int mlog_drop; /* number of dropped lines by busy */
225 static volatile uint32_t mlog_inuse; /* in-use */
226 static int mlog_wpage; /* active page */
227 static void *mlog_sih; /* softint handle */
228
229 static void
230 audio_mlog_init(void)
231 {
232 mlog_refs++;
233 if (mlog_refs > 1)
234 return;
235 mlog_buflen = 4096;
236 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
237 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
238 mlog_used = 0;
239 mlog_full = 0;
240 mlog_drop = 0;
241 mlog_inuse = 0;
242 mlog_wpage = 0;
243 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
244 if (mlog_sih == NULL)
245 printf("%s: softint_establish failed\n", __func__);
246 }
247
248 static void
249 audio_mlog_free(void)
250 {
251 mlog_refs--;
252 if (mlog_refs > 0)
253 return;
254
255 audio_mlog_flush();
256 if (mlog_sih)
257 softint_disestablish(mlog_sih);
258 kmem_free(mlog_buf[0], mlog_buflen);
259 kmem_free(mlog_buf[1], mlog_buflen);
260 }
261
262 /*
263 * Flush memory buffer.
264 * It must not be called from hardware interrupt context.
265 */
266 void
267 audio_mlog_flush(void)
268 {
269 if (mlog_refs == 0)
270 return;
271
272 /* Nothing to do if already in use ? */
273 if (atomic_swap_32(&mlog_inuse, 1) == 1)
274 return;
275
276 int rpage = mlog_wpage;
277 mlog_wpage ^= 1;
278 mlog_buf[mlog_wpage][0] = '\0';
279 mlog_used = 0;
280
281 atomic_swap_32(&mlog_inuse, 0);
282
283 if (mlog_buf[rpage][0] != '\0') {
284 printf("%s", mlog_buf[rpage]);
285 if (mlog_drop > 0)
286 printf("mlog_drop %d\n", mlog_drop);
287 if (mlog_full > 0)
288 printf("mlog_full %d\n", mlog_full);
289 }
290 mlog_full = 0;
291 mlog_drop = 0;
292 }
293
294 static void
295 audio_mlog_softintr(void *cookie)
296 {
297 audio_mlog_flush();
298 }
299
300 void
301 audio_mlog_printf(const char *fmt, ...)
302 {
303 int len;
304 va_list ap;
305
306 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
307 /* already inuse */
308 mlog_drop++;
309 return;
310 }
311
312 va_start(ap, fmt);
313 len = vsnprintf(
314 mlog_buf[mlog_wpage] + mlog_used,
315 mlog_buflen - mlog_used,
316 fmt, ap);
317 va_end(ap);
318
319 mlog_used += len;
320 if (mlog_buflen - mlog_used <= 1) {
321 mlog_full++;
322 }
323
324 atomic_swap_32(&mlog_inuse, 0);
325
326 if (mlog_sih)
327 softint_schedule(mlog_sih);
328 }
329
330 /* trace functions */
331 static void
332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
333 const char *fmt, va_list ap)
334 {
335 char buf[256];
336 int n;
337
338 n = 0;
339 buf[0] = '\0';
340 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
341 funcname, device_unit(sc->sc_dev), header);
342 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
343
344 if (cpu_intr_p()) {
345 audio_mlog_printf("%s\n", buf);
346 } else {
347 audio_mlog_flush();
348 printf("%s\n", buf);
349 }
350 }
351
352 static void
353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
354 {
355 va_list ap;
356
357 va_start(ap, fmt);
358 audio_vtrace(sc, funcname, "", fmt, ap);
359 va_end(ap);
360 }
361
362 static void
363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
364 {
365 char hdr[16];
366 va_list ap;
367
368 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
369 va_start(ap, fmt);
370 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
371 va_end(ap);
372 }
373
374 static void
375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
376 {
377 char hdr[32];
378 char phdr[16], rhdr[16];
379 va_list ap;
380
381 phdr[0] = '\0';
382 rhdr[0] = '\0';
383 if (file->ptrack)
384 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
385 if (file->rtrack)
386 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
387 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
388
389 va_start(ap, fmt);
390 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
391 va_end(ap);
392 }
393
394 #define DPRINTF(n, fmt...) do { \
395 if (audiodebug >= (n)) { \
396 audio_mlog_flush(); \
397 printf(fmt); \
398 } \
399 } while (0)
400 #define TRACE(n, fmt...) do { \
401 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
402 } while (0)
403 #define TRACET(n, t, fmt...) do { \
404 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
405 } while (0)
406 #define TRACEF(n, f, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
408 } while (0)
409
410 struct audio_track_debugbuf {
411 char usrbuf[32];
412 char codec[32];
413 char chvol[32];
414 char chmix[32];
415 char freq[32];
416 char outbuf[32];
417 };
418
419 static void
420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
421 {
422
423 memset(buf, 0, sizeof(*buf));
424
425 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
426 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
427 if (track->freq.filter)
428 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
429 track->freq.srcbuf.head,
430 track->freq.srcbuf.used,
431 track->freq.srcbuf.capacity);
432 if (track->chmix.filter)
433 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
434 track->chmix.srcbuf.used);
435 if (track->chvol.filter)
436 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
437 track->chvol.srcbuf.used);
438 if (track->codec.filter)
439 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
440 track->codec.srcbuf.used);
441 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
442 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
443 }
444 #else
445 #define DPRINTF(n, fmt...) do { } while (0)
446 #define TRACE(n, fmt, ...) do { } while (0)
447 #define TRACET(n, t, fmt, ...) do { } while (0)
448 #define TRACEF(n, f, fmt, ...) do { } while (0)
449 #endif
450
451 #define SPECIFIED(x) ((x) != ~0)
452 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
453
454 /*
455 * Default hardware blocksize in msec.
456 *
457 * We use 10 msec for most modern platforms. This period is good enough to
458 * play audio and video synchronizely.
459 * In contrast, for very old platforms, this is usually too short and too
460 * severe. Also such platforms usually can not play video confortably, so
461 * it's not so important to make the blocksize shorter. If the platform
462 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
463 * uses this instead.
464 *
465 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
466 * configuration file if you wish.
467 */
468 #if !defined(AUDIO_BLK_MS)
469 # if defined(__AUDIO_BLK_MS)
470 # define AUDIO_BLK_MS __AUDIO_BLK_MS
471 # else
472 # define AUDIO_BLK_MS (10)
473 # endif
474 #endif
475
476 /* Device timeout in msec */
477 #define AUDIO_TIMEOUT (3000)
478
479 /* #define AUDIO_PM_IDLE */
480 #ifdef AUDIO_PM_IDLE
481 int audio_idle_timeout = 30;
482 #endif
483
484 /* Number of elements of async mixer's pid */
485 #define AM_CAPACITY (4)
486
487 struct portname {
488 const char *name;
489 int mask;
490 };
491
492 static int audiomatch(device_t, cfdata_t, void *);
493 static void audioattach(device_t, device_t, void *);
494 static int audiodetach(device_t, int);
495 static int audioactivate(device_t, enum devact);
496 static void audiochilddet(device_t, device_t);
497 static int audiorescan(device_t, const char *, const int *);
498
499 static int audio_modcmd(modcmd_t, void *);
500
501 #ifdef AUDIO_PM_IDLE
502 static void audio_idle(void *);
503 static void audio_activity(device_t, devactive_t);
504 #endif
505
506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
507 static bool audio_resume(device_t dv, const pmf_qual_t *);
508 static void audio_volume_down(device_t);
509 static void audio_volume_up(device_t);
510 static void audio_volume_toggle(device_t);
511
512 static void audio_mixer_capture(struct audio_softc *);
513 static void audio_mixer_restore(struct audio_softc *);
514
515 static void audio_softintr_rd(void *);
516 static void audio_softintr_wr(void *);
517
518 static int audio_exlock_mutex_enter(struct audio_softc *);
519 static void audio_exlock_mutex_exit(struct audio_softc *);
520 static int audio_exlock_enter(struct audio_softc *);
521 static void audio_exlock_exit(struct audio_softc *);
522 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
523 static void audio_file_exit(struct audio_softc *, struct psref *);
524 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
525
526 static int audioclose(struct file *);
527 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
528 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
529 static int audioioctl(struct file *, u_long, void *);
530 static int audiopoll(struct file *, int);
531 static int audiokqfilter(struct file *, struct knote *);
532 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
533 struct uvm_object **, int *);
534 static int audiostat(struct file *, struct stat *);
535
536 static void filt_audiowrite_detach(struct knote *);
537 static int filt_audiowrite_event(struct knote *, long);
538 static void filt_audioread_detach(struct knote *);
539 static int filt_audioread_event(struct knote *, long);
540
541 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
542 audio_file_t **);
543 static int audio_close(struct audio_softc *, audio_file_t *);
544 static int audio_unlink(struct audio_softc *, audio_file_t *);
545 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
546 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
547 static void audio_file_clear(struct audio_softc *, audio_file_t *);
548 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
549 struct lwp *, audio_file_t *);
550 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
551 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
552 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
553 struct uvm_object **, int *, audio_file_t *);
554
555 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
556
557 static void audio_pintr(void *);
558 static void audio_rintr(void *);
559
560 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
561
562 static __inline int audio_track_readablebytes(const audio_track_t *);
563 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
564 const struct audio_info *);
565 static int audio_track_setinfo_check(audio_track_t *,
566 audio_format2_t *, const struct audio_prinfo *);
567 static void audio_track_setinfo_water(audio_track_t *,
568 const struct audio_info *);
569 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
570 struct audio_info *);
571 static int audio_hw_set_format(struct audio_softc *, int,
572 const audio_format2_t *, const audio_format2_t *,
573 audio_filter_reg_t *, audio_filter_reg_t *);
574 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
575 audio_file_t *);
576 static bool audio_can_playback(struct audio_softc *);
577 static bool audio_can_capture(struct audio_softc *);
578 static int audio_check_params(audio_format2_t *);
579 static int audio_mixers_init(struct audio_softc *sc, int,
580 const audio_format2_t *, const audio_format2_t *,
581 const audio_filter_reg_t *, const audio_filter_reg_t *);
582 static int audio_select_freq(const struct audio_format *);
583 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
584 static int audio_hw_validate_format(struct audio_softc *, int,
585 const audio_format2_t *);
586 static int audio_mixers_set_format(struct audio_softc *,
587 const struct audio_info *);
588 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
589 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
590 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
591 #if defined(AUDIO_DEBUG)
592 static int audio_sysctl_debug(SYSCTLFN_PROTO);
593 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
594 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
595 #endif
596
597 static void *audio_realloc(void *, size_t);
598 static int audio_realloc_usrbuf(audio_track_t *, int);
599 static void audio_free_usrbuf(audio_track_t *);
600
601 static audio_track_t *audio_track_create(struct audio_softc *,
602 audio_trackmixer_t *);
603 static void audio_track_destroy(audio_track_t *);
604 static audio_filter_t audio_track_get_codec(audio_track_t *,
605 const audio_format2_t *, const audio_format2_t *);
606 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
607 static void audio_track_play(audio_track_t *);
608 static int audio_track_drain(struct audio_softc *, audio_track_t *);
609 static void audio_track_record(audio_track_t *);
610 static void audio_track_clear(struct audio_softc *, audio_track_t *);
611
612 static int audio_mixer_init(struct audio_softc *, int,
613 const audio_format2_t *, const audio_filter_reg_t *);
614 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
615 static void audio_pmixer_start(struct audio_softc *, bool);
616 static void audio_pmixer_process(struct audio_softc *);
617 static void audio_pmixer_agc(audio_trackmixer_t *, int);
618 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
619 static void audio_pmixer_output(struct audio_softc *);
620 static int audio_pmixer_halt(struct audio_softc *);
621 static void audio_rmixer_start(struct audio_softc *);
622 static void audio_rmixer_process(struct audio_softc *);
623 static void audio_rmixer_input(struct audio_softc *);
624 static int audio_rmixer_halt(struct audio_softc *);
625
626 static void mixer_init(struct audio_softc *);
627 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
628 static int mixer_close(struct audio_softc *, audio_file_t *);
629 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
630 static void mixer_async_add(struct audio_softc *, pid_t);
631 static void mixer_async_remove(struct audio_softc *, pid_t);
632 static void mixer_signal(struct audio_softc *);
633
634 static int au_portof(struct audio_softc *, char *, int);
635
636 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
637 mixer_devinfo_t *, const struct portname *);
638 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
639 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
640 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
641 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
642 u_int *, u_char *);
643 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
644 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
645 static int au_set_monitor_gain(struct audio_softc *, int);
646 static int au_get_monitor_gain(struct audio_softc *);
647 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
648 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
649
650 static __inline struct audio_params
651 format2_to_params(const audio_format2_t *f2)
652 {
653 audio_params_t p;
654
655 /* validbits/precision <-> precision/stride */
656 p.sample_rate = f2->sample_rate;
657 p.channels = f2->channels;
658 p.encoding = f2->encoding;
659 p.validbits = f2->precision;
660 p.precision = f2->stride;
661 return p;
662 }
663
664 static __inline audio_format2_t
665 params_to_format2(const struct audio_params *p)
666 {
667 audio_format2_t f2;
668
669 /* precision/stride <-> validbits/precision */
670 f2.sample_rate = p->sample_rate;
671 f2.channels = p->channels;
672 f2.encoding = p->encoding;
673 f2.precision = p->validbits;
674 f2.stride = p->precision;
675 return f2;
676 }
677
678 /* Return true if this track is a playback track. */
679 static __inline bool
680 audio_track_is_playback(const audio_track_t *track)
681 {
682
683 return ((track->mode & AUMODE_PLAY) != 0);
684 }
685
686 /* Return true if this track is a recording track. */
687 static __inline bool
688 audio_track_is_record(const audio_track_t *track)
689 {
690
691 return ((track->mode & AUMODE_RECORD) != 0);
692 }
693
694 #if 0 /* XXX Not used yet */
695 /*
696 * Convert 0..255 volume used in userland to internal presentation 0..256.
697 */
698 static __inline u_int
699 audio_volume_to_inner(u_int v)
700 {
701
702 return v < 127 ? v : v + 1;
703 }
704
705 /*
706 * Convert 0..256 internal presentation to 0..255 volume used in userland.
707 */
708 static __inline u_int
709 audio_volume_to_outer(u_int v)
710 {
711
712 return v < 127 ? v : v - 1;
713 }
714 #endif /* 0 */
715
716 static dev_type_open(audioopen);
717 /* XXXMRG use more dev_type_xxx */
718
719 const struct cdevsw audio_cdevsw = {
720 .d_open = audioopen,
721 .d_close = noclose,
722 .d_read = noread,
723 .d_write = nowrite,
724 .d_ioctl = noioctl,
725 .d_stop = nostop,
726 .d_tty = notty,
727 .d_poll = nopoll,
728 .d_mmap = nommap,
729 .d_kqfilter = nokqfilter,
730 .d_discard = nodiscard,
731 .d_flag = D_OTHER | D_MPSAFE
732 };
733
734 const struct fileops audio_fileops = {
735 .fo_name = "audio",
736 .fo_read = audioread,
737 .fo_write = audiowrite,
738 .fo_ioctl = audioioctl,
739 .fo_fcntl = fnullop_fcntl,
740 .fo_stat = audiostat,
741 .fo_poll = audiopoll,
742 .fo_close = audioclose,
743 .fo_mmap = audiommap,
744 .fo_kqfilter = audiokqfilter,
745 .fo_restart = fnullop_restart
746 };
747
748 /* The default audio mode: 8 kHz mono mu-law */
749 static const struct audio_params audio_default = {
750 .sample_rate = 8000,
751 .encoding = AUDIO_ENCODING_ULAW,
752 .precision = 8,
753 .validbits = 8,
754 .channels = 1,
755 };
756
757 static const char *encoding_names[] = {
758 "none",
759 AudioEmulaw,
760 AudioEalaw,
761 "pcm16",
762 "pcm8",
763 AudioEadpcm,
764 AudioEslinear_le,
765 AudioEslinear_be,
766 AudioEulinear_le,
767 AudioEulinear_be,
768 AudioEslinear,
769 AudioEulinear,
770 AudioEmpeg_l1_stream,
771 AudioEmpeg_l1_packets,
772 AudioEmpeg_l1_system,
773 AudioEmpeg_l2_stream,
774 AudioEmpeg_l2_packets,
775 AudioEmpeg_l2_system,
776 AudioEac3,
777 };
778
779 /*
780 * Returns encoding name corresponding to AUDIO_ENCODING_*.
781 * Note that it may return a local buffer because it is mainly for debugging.
782 */
783 const char *
784 audio_encoding_name(int encoding)
785 {
786 static char buf[16];
787
788 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
789 return encoding_names[encoding];
790 } else {
791 snprintf(buf, sizeof(buf), "enc=%d", encoding);
792 return buf;
793 }
794 }
795
796 /*
797 * Supported encodings used by AUDIO_GETENC.
798 * index and flags are set by code.
799 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
800 */
801 static const audio_encoding_t audio_encodings[] = {
802 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
803 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
804 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
805 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
806 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
807 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
808 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
809 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
810 #if defined(AUDIO_SUPPORT_LINEAR24)
811 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
812 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
813 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
814 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
815 #endif
816 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
817 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
818 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
819 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
820 };
821
822 static const struct portname itable[] = {
823 { AudioNmicrophone, AUDIO_MICROPHONE },
824 { AudioNline, AUDIO_LINE_IN },
825 { AudioNcd, AUDIO_CD },
826 { 0, 0 }
827 };
828 static const struct portname otable[] = {
829 { AudioNspeaker, AUDIO_SPEAKER },
830 { AudioNheadphone, AUDIO_HEADPHONE },
831 { AudioNline, AUDIO_LINE_OUT },
832 { 0, 0 }
833 };
834
835 static struct psref_class *audio_psref_class __read_mostly;
836
837 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
838 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
839 audiochilddet, DVF_DETACH_SHUTDOWN);
840
841 static int
842 audiomatch(device_t parent, cfdata_t match, void *aux)
843 {
844 struct audio_attach_args *sa;
845
846 sa = aux;
847 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
848 __func__, sa->type, sa, sa->hwif);
849 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
850 }
851
852 static void
853 audioattach(device_t parent, device_t self, void *aux)
854 {
855 struct audio_softc *sc;
856 struct audio_attach_args *sa;
857 const struct audio_hw_if *hw_if;
858 audio_format2_t phwfmt;
859 audio_format2_t rhwfmt;
860 audio_filter_reg_t pfil;
861 audio_filter_reg_t rfil;
862 const struct sysctlnode *node;
863 void *hdlp;
864 bool has_playback;
865 bool has_capture;
866 bool has_indep;
867 bool has_fulldup;
868 int mode;
869 int error;
870
871 sc = device_private(self);
872 sc->sc_dev = self;
873 sa = (struct audio_attach_args *)aux;
874 hw_if = sa->hwif;
875 hdlp = sa->hdl;
876
877 if (hw_if == NULL) {
878 panic("audioattach: missing hw_if method");
879 }
880 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
881 aprint_error(": missing mandatory method\n");
882 return;
883 }
884
885 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
886 sc->sc_props = hw_if->get_props(hdlp);
887
888 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
889 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
890 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
891 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
892
893 #ifdef DIAGNOSTIC
894 if (hw_if->query_format == NULL ||
895 hw_if->set_format == NULL ||
896 hw_if->getdev == NULL ||
897 hw_if->set_port == NULL ||
898 hw_if->get_port == NULL ||
899 hw_if->query_devinfo == NULL) {
900 aprint_error(": missing mandatory method\n");
901 return;
902 }
903 if (has_playback) {
904 if ((hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
905 hw_if->halt_output == NULL) {
906 aprint_error(": missing playback method\n");
907 }
908 }
909 if (has_capture) {
910 if ((hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
911 hw_if->halt_input == NULL) {
912 aprint_error(": missing capture method\n");
913 }
914 }
915 #endif
916
917 sc->hw_if = hw_if;
918 sc->hw_hdl = hdlp;
919 sc->hw_dev = parent;
920
921 sc->sc_exlock = 1;
922 sc->sc_blk_ms = AUDIO_BLK_MS;
923 SLIST_INIT(&sc->sc_files);
924 cv_init(&sc->sc_exlockcv, "audiolk");
925 sc->sc_am_capacity = 0;
926 sc->sc_am_used = 0;
927 sc->sc_am = NULL;
928
929 /* MMAP is now supported by upper layer. */
930 sc->sc_props |= AUDIO_PROP_MMAP;
931
932 KASSERT(has_playback || has_capture);
933 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
934 if (!has_playback || !has_capture) {
935 KASSERT(!has_indep);
936 KASSERT(!has_fulldup);
937 }
938
939 mode = 0;
940 if (has_playback) {
941 aprint_normal(": playback");
942 mode |= AUMODE_PLAY;
943 }
944 if (has_capture) {
945 aprint_normal("%c capture", has_playback ? ',' : ':');
946 mode |= AUMODE_RECORD;
947 }
948 if (has_playback && has_capture) {
949 if (has_fulldup)
950 aprint_normal(", full duplex");
951 else
952 aprint_normal(", half duplex");
953
954 if (has_indep)
955 aprint_normal(", independent");
956 }
957
958 aprint_naive("\n");
959 aprint_normal("\n");
960
961 /* probe hw params */
962 memset(&phwfmt, 0, sizeof(phwfmt));
963 memset(&rhwfmt, 0, sizeof(rhwfmt));
964 memset(&pfil, 0, sizeof(pfil));
965 memset(&rfil, 0, sizeof(rfil));
966 if (has_indep) {
967 int perror, rerror;
968
969 /* On independent devices, probe separately. */
970 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
971 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
972 if (perror && rerror) {
973 aprint_error_dev(self, "audio_hw_probe failed, "
974 "perror = %d, rerror = %d\n", perror, rerror);
975 goto bad;
976 }
977 if (perror) {
978 mode &= ~AUMODE_PLAY;
979 aprint_error_dev(self, "audio_hw_probe failed with "
980 "%d, playback disabled\n", perror);
981 }
982 if (rerror) {
983 mode &= ~AUMODE_RECORD;
984 aprint_error_dev(self, "audio_hw_probe failed with "
985 "%d, capture disabled\n", rerror);
986 }
987 } else {
988 /*
989 * On non independent devices or uni-directional devices,
990 * probe once (simultaneously).
991 */
992 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
993 error = audio_hw_probe(sc, fmt, mode);
994 if (error) {
995 aprint_error_dev(self, "audio_hw_probe failed, "
996 "error = %d\n", error);
997 goto bad;
998 }
999 if (has_playback && has_capture)
1000 rhwfmt = phwfmt;
1001 }
1002
1003 /* Init hardware. */
1004 /* hw_probe() also validates [pr]hwfmt. */
1005 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1006 if (error) {
1007 aprint_error_dev(self, "audio_hw_set_format failed, "
1008 "error = %d\n", error);
1009 goto bad;
1010 }
1011
1012 /*
1013 * Init track mixers. If at least one direction is available on
1014 * attach time, we assume a success.
1015 */
1016 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1017 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1018 aprint_error_dev(self, "audio_mixers_init failed, "
1019 "error = %d\n", error);
1020 goto bad;
1021 }
1022
1023 sc->sc_psz = pserialize_create();
1024 psref_target_init(&sc->sc_psref, audio_psref_class);
1025
1026 selinit(&sc->sc_wsel);
1027 selinit(&sc->sc_rsel);
1028
1029 /* Initial parameter of /dev/sound */
1030 sc->sc_sound_pparams = params_to_format2(&audio_default);
1031 sc->sc_sound_rparams = params_to_format2(&audio_default);
1032 sc->sc_sound_ppause = false;
1033 sc->sc_sound_rpause = false;
1034
1035 /* XXX TODO: consider about sc_ai */
1036
1037 mixer_init(sc);
1038 TRACE(2, "inputs ports=0x%x, input master=%d, "
1039 "output ports=0x%x, output master=%d",
1040 sc->sc_inports.allports, sc->sc_inports.master,
1041 sc->sc_outports.allports, sc->sc_outports.master);
1042
1043 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1044 0,
1045 CTLTYPE_NODE, device_xname(sc->sc_dev),
1046 SYSCTL_DESCR("audio test"),
1047 NULL, 0,
1048 NULL, 0,
1049 CTL_HW,
1050 CTL_CREATE, CTL_EOL);
1051
1052 if (node != NULL) {
1053 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1054 CTLFLAG_READWRITE,
1055 CTLTYPE_INT, "blk_ms",
1056 SYSCTL_DESCR("blocksize in msec"),
1057 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1058 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1059
1060 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1061 CTLFLAG_READWRITE,
1062 CTLTYPE_BOOL, "multiuser",
1063 SYSCTL_DESCR("allow multiple user access"),
1064 audio_sysctl_multiuser, 0, (void *)sc, 0,
1065 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1066
1067 #if defined(AUDIO_DEBUG)
1068 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1069 CTLFLAG_READWRITE,
1070 CTLTYPE_INT, "debug",
1071 SYSCTL_DESCR("debug level (0..4)"),
1072 audio_sysctl_debug, 0, (void *)sc, 0,
1073 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1074 #endif
1075 }
1076
1077 #ifdef AUDIO_PM_IDLE
1078 callout_init(&sc->sc_idle_counter, 0);
1079 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1080 #endif
1081
1082 if (!pmf_device_register(self, audio_suspend, audio_resume))
1083 aprint_error_dev(self, "couldn't establish power handler\n");
1084 #ifdef AUDIO_PM_IDLE
1085 if (!device_active_register(self, audio_activity))
1086 aprint_error_dev(self, "couldn't register activity handler\n");
1087 #endif
1088
1089 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1090 audio_volume_down, true))
1091 aprint_error_dev(self, "couldn't add volume down handler\n");
1092 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1093 audio_volume_up, true))
1094 aprint_error_dev(self, "couldn't add volume up handler\n");
1095 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1096 audio_volume_toggle, true))
1097 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1098
1099 #ifdef AUDIO_PM_IDLE
1100 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1101 #endif
1102
1103 #if defined(AUDIO_DEBUG)
1104 audio_mlog_init();
1105 #endif
1106
1107 audiorescan(self, "audio", NULL);
1108 sc->sc_exlock = 0;
1109 return;
1110
1111 bad:
1112 /* Clearing hw_if means that device is attached but disabled. */
1113 sc->hw_if = NULL;
1114 sc->sc_exlock = 0;
1115 aprint_error_dev(sc->sc_dev, "disabled\n");
1116 return;
1117 }
1118
1119 /*
1120 * Initialize hardware mixer.
1121 * This function is called from audioattach().
1122 */
1123 static void
1124 mixer_init(struct audio_softc *sc)
1125 {
1126 mixer_devinfo_t mi;
1127 int iclass, mclass, oclass, rclass;
1128 int record_master_found, record_source_found;
1129
1130 iclass = mclass = oclass = rclass = -1;
1131 sc->sc_inports.index = -1;
1132 sc->sc_inports.master = -1;
1133 sc->sc_inports.nports = 0;
1134 sc->sc_inports.isenum = false;
1135 sc->sc_inports.allports = 0;
1136 sc->sc_inports.isdual = false;
1137 sc->sc_inports.mixerout = -1;
1138 sc->sc_inports.cur_port = -1;
1139 sc->sc_outports.index = -1;
1140 sc->sc_outports.master = -1;
1141 sc->sc_outports.nports = 0;
1142 sc->sc_outports.isenum = false;
1143 sc->sc_outports.allports = 0;
1144 sc->sc_outports.isdual = false;
1145 sc->sc_outports.mixerout = -1;
1146 sc->sc_outports.cur_port = -1;
1147 sc->sc_monitor_port = -1;
1148 /*
1149 * Read through the underlying driver's list, picking out the class
1150 * names from the mixer descriptions. We'll need them to decode the
1151 * mixer descriptions on the next pass through the loop.
1152 */
1153 mutex_enter(sc->sc_lock);
1154 for(mi.index = 0; ; mi.index++) {
1155 if (audio_query_devinfo(sc, &mi) != 0)
1156 break;
1157 /*
1158 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1159 * All the other types describe an actual mixer.
1160 */
1161 if (mi.type == AUDIO_MIXER_CLASS) {
1162 if (strcmp(mi.label.name, AudioCinputs) == 0)
1163 iclass = mi.mixer_class;
1164 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1165 mclass = mi.mixer_class;
1166 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1167 oclass = mi.mixer_class;
1168 if (strcmp(mi.label.name, AudioCrecord) == 0)
1169 rclass = mi.mixer_class;
1170 }
1171 }
1172 mutex_exit(sc->sc_lock);
1173
1174 /* Allocate save area. Ensure non-zero allocation. */
1175 sc->sc_nmixer_states = mi.index;
1176 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1177 (sc->sc_nmixer_states + 1), KM_SLEEP);
1178
1179 /*
1180 * This is where we assign each control in the "audio" model, to the
1181 * underlying "mixer" control. We walk through the whole list once,
1182 * assigning likely candidates as we come across them.
1183 */
1184 record_master_found = 0;
1185 record_source_found = 0;
1186 mutex_enter(sc->sc_lock);
1187 for(mi.index = 0; ; mi.index++) {
1188 if (audio_query_devinfo(sc, &mi) != 0)
1189 break;
1190 KASSERT(mi.index < sc->sc_nmixer_states);
1191 if (mi.type == AUDIO_MIXER_CLASS)
1192 continue;
1193 if (mi.mixer_class == iclass) {
1194 /*
1195 * AudioCinputs is only a fallback, when we don't
1196 * find what we're looking for in AudioCrecord, so
1197 * check the flags before accepting one of these.
1198 */
1199 if (strcmp(mi.label.name, AudioNmaster) == 0
1200 && record_master_found == 0)
1201 sc->sc_inports.master = mi.index;
1202 if (strcmp(mi.label.name, AudioNsource) == 0
1203 && record_source_found == 0) {
1204 if (mi.type == AUDIO_MIXER_ENUM) {
1205 int i;
1206 for(i = 0; i < mi.un.e.num_mem; i++)
1207 if (strcmp(mi.un.e.member[i].label.name,
1208 AudioNmixerout) == 0)
1209 sc->sc_inports.mixerout =
1210 mi.un.e.member[i].ord;
1211 }
1212 au_setup_ports(sc, &sc->sc_inports, &mi,
1213 itable);
1214 }
1215 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1216 sc->sc_outports.master == -1)
1217 sc->sc_outports.master = mi.index;
1218 } else if (mi.mixer_class == mclass) {
1219 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1220 sc->sc_monitor_port = mi.index;
1221 } else if (mi.mixer_class == oclass) {
1222 if (strcmp(mi.label.name, AudioNmaster) == 0)
1223 sc->sc_outports.master = mi.index;
1224 if (strcmp(mi.label.name, AudioNselect) == 0)
1225 au_setup_ports(sc, &sc->sc_outports, &mi,
1226 otable);
1227 } else if (mi.mixer_class == rclass) {
1228 /*
1229 * These are the preferred mixers for the audio record
1230 * controls, so set the flags here, but don't check.
1231 */
1232 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1233 sc->sc_inports.master = mi.index;
1234 record_master_found = 1;
1235 }
1236 #if 1 /* Deprecated. Use AudioNmaster. */
1237 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1238 sc->sc_inports.master = mi.index;
1239 record_master_found = 1;
1240 }
1241 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1242 sc->sc_inports.master = mi.index;
1243 record_master_found = 1;
1244 }
1245 #endif
1246 if (strcmp(mi.label.name, AudioNsource) == 0) {
1247 if (mi.type == AUDIO_MIXER_ENUM) {
1248 int i;
1249 for(i = 0; i < mi.un.e.num_mem; i++)
1250 if (strcmp(mi.un.e.member[i].label.name,
1251 AudioNmixerout) == 0)
1252 sc->sc_inports.mixerout =
1253 mi.un.e.member[i].ord;
1254 }
1255 au_setup_ports(sc, &sc->sc_inports, &mi,
1256 itable);
1257 record_source_found = 1;
1258 }
1259 }
1260 }
1261 mutex_exit(sc->sc_lock);
1262 }
1263
1264 static int
1265 audioactivate(device_t self, enum devact act)
1266 {
1267 struct audio_softc *sc = device_private(self);
1268
1269 switch (act) {
1270 case DVACT_DEACTIVATE:
1271 mutex_enter(sc->sc_lock);
1272 sc->sc_dying = true;
1273 cv_broadcast(&sc->sc_exlockcv);
1274 mutex_exit(sc->sc_lock);
1275 return 0;
1276 default:
1277 return EOPNOTSUPP;
1278 }
1279 }
1280
1281 static int
1282 audiodetach(device_t self, int flags)
1283 {
1284 struct audio_softc *sc;
1285 struct audio_file *file;
1286 int error;
1287
1288 sc = device_private(self);
1289 TRACE(2, "flags=%d", flags);
1290
1291 /* device is not initialized */
1292 if (sc->hw_if == NULL)
1293 return 0;
1294
1295 /* Start draining existing accessors of the device. */
1296 error = config_detach_children(self, flags);
1297 if (error)
1298 return error;
1299
1300 /* delete sysctl nodes */
1301 sysctl_teardown(&sc->sc_log);
1302
1303 mutex_enter(sc->sc_lock);
1304 sc->sc_dying = true;
1305 cv_broadcast(&sc->sc_exlockcv);
1306 if (sc->sc_pmixer)
1307 cv_broadcast(&sc->sc_pmixer->outcv);
1308 if (sc->sc_rmixer)
1309 cv_broadcast(&sc->sc_rmixer->outcv);
1310
1311 /* Prevent new users */
1312 SLIST_FOREACH(file, &sc->sc_files, entry) {
1313 atomic_store_relaxed(&file->dying, true);
1314 }
1315
1316 /*
1317 * Wait for existing users to drain.
1318 * - pserialize_perform waits for all pserialize_read sections on
1319 * all CPUs; after this, no more new psref_acquire can happen.
1320 * - psref_target_destroy waits for all extant acquired psrefs to
1321 * be psref_released.
1322 */
1323 pserialize_perform(sc->sc_psz);
1324 mutex_exit(sc->sc_lock);
1325 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1326
1327 /*
1328 * We are now guaranteed that there are no calls to audio fileops
1329 * that hold sc, and any new calls with files that were for sc will
1330 * fail. Thus, we now have exclusive access to the softc.
1331 */
1332 sc->sc_exlock = 1;
1333
1334 /*
1335 * Nuke all open instances.
1336 * Here, we no longer need any locks to traverse sc_files.
1337 */
1338 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1339 audio_unlink(sc, file);
1340 }
1341
1342 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1343 audio_volume_down, true);
1344 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1345 audio_volume_up, true);
1346 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1347 audio_volume_toggle, true);
1348
1349 #ifdef AUDIO_PM_IDLE
1350 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1351
1352 device_active_deregister(self, audio_activity);
1353 #endif
1354
1355 pmf_device_deregister(self);
1356
1357 /* Free resources */
1358 if (sc->sc_pmixer) {
1359 audio_mixer_destroy(sc, sc->sc_pmixer);
1360 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1361 }
1362 if (sc->sc_rmixer) {
1363 audio_mixer_destroy(sc, sc->sc_rmixer);
1364 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1365 }
1366 if (sc->sc_am)
1367 kern_free(sc->sc_am);
1368
1369 seldestroy(&sc->sc_wsel);
1370 seldestroy(&sc->sc_rsel);
1371
1372 #ifdef AUDIO_PM_IDLE
1373 callout_destroy(&sc->sc_idle_counter);
1374 #endif
1375
1376 cv_destroy(&sc->sc_exlockcv);
1377
1378 #if defined(AUDIO_DEBUG)
1379 audio_mlog_free();
1380 #endif
1381
1382 return 0;
1383 }
1384
1385 static void
1386 audiochilddet(device_t self, device_t child)
1387 {
1388
1389 /* we hold no child references, so do nothing */
1390 }
1391
1392 static int
1393 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1394 {
1395
1396 if (config_match(parent, cf, aux))
1397 config_attach_loc(parent, cf, locs, aux, NULL);
1398
1399 return 0;
1400 }
1401
1402 static int
1403 audiorescan(device_t self, const char *ifattr, const int *flags)
1404 {
1405 struct audio_softc *sc = device_private(self);
1406
1407 if (!ifattr_match(ifattr, "audio"))
1408 return 0;
1409
1410 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1411
1412 return 0;
1413 }
1414
1415 /*
1416 * Called from hardware driver. This is where the MI audio driver gets
1417 * probed/attached to the hardware driver.
1418 */
1419 device_t
1420 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1421 {
1422 struct audio_attach_args arg;
1423
1424 #ifdef DIAGNOSTIC
1425 if (ahwp == NULL) {
1426 aprint_error("audio_attach_mi: NULL\n");
1427 return 0;
1428 }
1429 #endif
1430 arg.type = AUDIODEV_TYPE_AUDIO;
1431 arg.hwif = ahwp;
1432 arg.hdl = hdlp;
1433 return config_found(dev, &arg, audioprint);
1434 }
1435
1436 /*
1437 * Enter critical section and also keep sc_lock.
1438 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1439 * Must be called without sc_lock held.
1440 */
1441 static int
1442 audio_exlock_mutex_enter(struct audio_softc *sc)
1443 {
1444 int error;
1445
1446 mutex_enter(sc->sc_lock);
1447 if (sc->sc_dying) {
1448 mutex_exit(sc->sc_lock);
1449 return EIO;
1450 }
1451
1452 while (__predict_false(sc->sc_exlock != 0)) {
1453 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1454 if (sc->sc_dying)
1455 error = EIO;
1456 if (error) {
1457 mutex_exit(sc->sc_lock);
1458 return error;
1459 }
1460 }
1461
1462 /* Acquire */
1463 sc->sc_exlock = 1;
1464 return 0;
1465 }
1466
1467 /*
1468 * Exit critical section and exit sc_lock.
1469 * Must be called with sc_lock held.
1470 */
1471 static void
1472 audio_exlock_mutex_exit(struct audio_softc *sc)
1473 {
1474
1475 KASSERT(mutex_owned(sc->sc_lock));
1476
1477 sc->sc_exlock = 0;
1478 cv_broadcast(&sc->sc_exlockcv);
1479 mutex_exit(sc->sc_lock);
1480 }
1481
1482 /*
1483 * Enter critical section.
1484 * If successful, it returns 0. Otherwise returns errno.
1485 * Must be called without sc_lock held.
1486 * This function returns without sc_lock held.
1487 */
1488 static int
1489 audio_exlock_enter(struct audio_softc *sc)
1490 {
1491 int error;
1492
1493 error = audio_exlock_mutex_enter(sc);
1494 if (error)
1495 return error;
1496 mutex_exit(sc->sc_lock);
1497 return 0;
1498 }
1499
1500 /*
1501 * Exit critical section.
1502 * Must be called without sc_lock held.
1503 */
1504 static void
1505 audio_exlock_exit(struct audio_softc *sc)
1506 {
1507
1508 mutex_enter(sc->sc_lock);
1509 audio_exlock_mutex_exit(sc);
1510 }
1511
1512 /*
1513 * Acquire sc from file, and increment the psref count.
1514 * If successful, returns sc. Otherwise returns NULL.
1515 */
1516 struct audio_softc *
1517 audio_file_enter(audio_file_t *file, struct psref *refp)
1518 {
1519 int s;
1520 bool dying;
1521
1522 /* psref(9) forbids to migrate CPUs */
1523 curlwp_bind();
1524
1525 /* Block audiodetach while we acquire a reference */
1526 s = pserialize_read_enter();
1527
1528 /* If close or audiodetach already ran, tough -- no more audio */
1529 dying = atomic_load_relaxed(&file->dying);
1530 if (dying) {
1531 pserialize_read_exit(s);
1532 return NULL;
1533 }
1534
1535 /* Acquire a reference */
1536 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1537
1538 /* Now sc won't go away until we drop the reference count */
1539 pserialize_read_exit(s);
1540
1541 return file->sc;
1542 }
1543
1544 /*
1545 * Decrement the psref count.
1546 */
1547 void
1548 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1549 {
1550
1551 psref_release(refp, &sc->sc_psref, audio_psref_class);
1552 }
1553
1554 /*
1555 * Wait for I/O to complete, releasing sc_lock.
1556 * Must be called with sc_lock held.
1557 */
1558 static int
1559 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1560 {
1561 int error;
1562
1563 KASSERT(track);
1564 KASSERT(mutex_owned(sc->sc_lock));
1565
1566 /* Wait for pending I/O to complete. */
1567 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1568 mstohz(AUDIO_TIMEOUT));
1569 if (sc->sc_dying) {
1570 error = EIO;
1571 }
1572 if (error) {
1573 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1574 if (error == EWOULDBLOCK)
1575 device_printf(sc->sc_dev, "device timeout\n");
1576 } else {
1577 TRACET(3, track, "wakeup");
1578 }
1579 return error;
1580 }
1581
1582 /*
1583 * Try to acquire track lock.
1584 * It doesn't block if the track lock is already aquired.
1585 * Returns true if the track lock was acquired, or false if the track
1586 * lock was already acquired.
1587 */
1588 static __inline bool
1589 audio_track_lock_tryenter(audio_track_t *track)
1590 {
1591 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1592 }
1593
1594 /*
1595 * Acquire track lock.
1596 */
1597 static __inline void
1598 audio_track_lock_enter(audio_track_t *track)
1599 {
1600 /* Don't sleep here. */
1601 while (audio_track_lock_tryenter(track) == false)
1602 ;
1603 }
1604
1605 /*
1606 * Release track lock.
1607 */
1608 static __inline void
1609 audio_track_lock_exit(audio_track_t *track)
1610 {
1611 atomic_swap_uint(&track->lock, 0);
1612 }
1613
1614
1615 static int
1616 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1617 {
1618 struct audio_softc *sc;
1619 int error;
1620
1621 /* Find the device */
1622 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1623 if (sc == NULL || sc->hw_if == NULL)
1624 return ENXIO;
1625
1626 error = audio_exlock_enter(sc);
1627 if (error)
1628 return error;
1629
1630 device_active(sc->sc_dev, DVA_SYSTEM);
1631 switch (AUDIODEV(dev)) {
1632 case SOUND_DEVICE:
1633 case AUDIO_DEVICE:
1634 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1635 break;
1636 case AUDIOCTL_DEVICE:
1637 error = audioctl_open(dev, sc, flags, ifmt, l);
1638 break;
1639 case MIXER_DEVICE:
1640 error = mixer_open(dev, sc, flags, ifmt, l);
1641 break;
1642 default:
1643 error = ENXIO;
1644 break;
1645 }
1646 audio_exlock_exit(sc);
1647
1648 return error;
1649 }
1650
1651 static int
1652 audioclose(struct file *fp)
1653 {
1654 struct audio_softc *sc;
1655 struct psref sc_ref;
1656 audio_file_t *file;
1657 int error;
1658 dev_t dev;
1659
1660 KASSERT(fp->f_audioctx);
1661 file = fp->f_audioctx;
1662 dev = file->dev;
1663 error = 0;
1664
1665 /*
1666 * audioclose() must
1667 * - unplug track from the trackmixer (and unplug anything from softc),
1668 * if sc exists.
1669 * - free all memory objects, regardless of sc.
1670 */
1671
1672 sc = audio_file_enter(file, &sc_ref);
1673 if (sc) {
1674 switch (AUDIODEV(dev)) {
1675 case SOUND_DEVICE:
1676 case AUDIO_DEVICE:
1677 error = audio_close(sc, file);
1678 break;
1679 case AUDIOCTL_DEVICE:
1680 error = 0;
1681 break;
1682 case MIXER_DEVICE:
1683 error = mixer_close(sc, file);
1684 break;
1685 default:
1686 error = ENXIO;
1687 break;
1688 }
1689
1690 audio_file_exit(sc, &sc_ref);
1691 }
1692
1693 /* Free memory objects anyway */
1694 TRACEF(2, file, "free memory");
1695 if (file->ptrack)
1696 audio_track_destroy(file->ptrack);
1697 if (file->rtrack)
1698 audio_track_destroy(file->rtrack);
1699 kmem_free(file, sizeof(*file));
1700 fp->f_audioctx = NULL;
1701
1702 return error;
1703 }
1704
1705 static int
1706 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1707 int ioflag)
1708 {
1709 struct audio_softc *sc;
1710 struct psref sc_ref;
1711 audio_file_t *file;
1712 int error;
1713 dev_t dev;
1714
1715 KASSERT(fp->f_audioctx);
1716 file = fp->f_audioctx;
1717 dev = file->dev;
1718
1719 sc = audio_file_enter(file, &sc_ref);
1720 if (sc == NULL)
1721 return EIO;
1722
1723 if (fp->f_flag & O_NONBLOCK)
1724 ioflag |= IO_NDELAY;
1725
1726 switch (AUDIODEV(dev)) {
1727 case SOUND_DEVICE:
1728 case AUDIO_DEVICE:
1729 error = audio_read(sc, uio, ioflag, file);
1730 break;
1731 case AUDIOCTL_DEVICE:
1732 case MIXER_DEVICE:
1733 error = ENODEV;
1734 break;
1735 default:
1736 error = ENXIO;
1737 break;
1738 }
1739
1740 audio_file_exit(sc, &sc_ref);
1741 return error;
1742 }
1743
1744 static int
1745 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1746 int ioflag)
1747 {
1748 struct audio_softc *sc;
1749 struct psref sc_ref;
1750 audio_file_t *file;
1751 int error;
1752 dev_t dev;
1753
1754 KASSERT(fp->f_audioctx);
1755 file = fp->f_audioctx;
1756 dev = file->dev;
1757
1758 sc = audio_file_enter(file, &sc_ref);
1759 if (sc == NULL)
1760 return EIO;
1761
1762 if (fp->f_flag & O_NONBLOCK)
1763 ioflag |= IO_NDELAY;
1764
1765 switch (AUDIODEV(dev)) {
1766 case SOUND_DEVICE:
1767 case AUDIO_DEVICE:
1768 error = audio_write(sc, uio, ioflag, file);
1769 break;
1770 case AUDIOCTL_DEVICE:
1771 case MIXER_DEVICE:
1772 error = ENODEV;
1773 break;
1774 default:
1775 error = ENXIO;
1776 break;
1777 }
1778
1779 audio_file_exit(sc, &sc_ref);
1780 return error;
1781 }
1782
1783 static int
1784 audioioctl(struct file *fp, u_long cmd, void *addr)
1785 {
1786 struct audio_softc *sc;
1787 struct psref sc_ref;
1788 audio_file_t *file;
1789 struct lwp *l = curlwp;
1790 int error;
1791 dev_t dev;
1792
1793 KASSERT(fp->f_audioctx);
1794 file = fp->f_audioctx;
1795 dev = file->dev;
1796
1797 sc = audio_file_enter(file, &sc_ref);
1798 if (sc == NULL)
1799 return EIO;
1800
1801 switch (AUDIODEV(dev)) {
1802 case SOUND_DEVICE:
1803 case AUDIO_DEVICE:
1804 case AUDIOCTL_DEVICE:
1805 mutex_enter(sc->sc_lock);
1806 device_active(sc->sc_dev, DVA_SYSTEM);
1807 mutex_exit(sc->sc_lock);
1808 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1809 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1810 else
1811 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1812 file);
1813 break;
1814 case MIXER_DEVICE:
1815 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1816 break;
1817 default:
1818 error = ENXIO;
1819 break;
1820 }
1821
1822 audio_file_exit(sc, &sc_ref);
1823 return error;
1824 }
1825
1826 static int
1827 audiostat(struct file *fp, struct stat *st)
1828 {
1829 struct audio_softc *sc;
1830 struct psref sc_ref;
1831 audio_file_t *file;
1832
1833 KASSERT(fp->f_audioctx);
1834 file = fp->f_audioctx;
1835
1836 sc = audio_file_enter(file, &sc_ref);
1837 if (sc == NULL)
1838 return EIO;
1839
1840 memset(st, 0, sizeof(*st));
1841
1842 st->st_dev = file->dev;
1843 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1844 st->st_gid = kauth_cred_getegid(fp->f_cred);
1845 st->st_mode = S_IFCHR;
1846
1847 audio_file_exit(sc, &sc_ref);
1848 return 0;
1849 }
1850
1851 static int
1852 audiopoll(struct file *fp, int events)
1853 {
1854 struct audio_softc *sc;
1855 struct psref sc_ref;
1856 audio_file_t *file;
1857 struct lwp *l = curlwp;
1858 int revents;
1859 dev_t dev;
1860
1861 KASSERT(fp->f_audioctx);
1862 file = fp->f_audioctx;
1863 dev = file->dev;
1864
1865 sc = audio_file_enter(file, &sc_ref);
1866 if (sc == NULL)
1867 return EIO;
1868
1869 switch (AUDIODEV(dev)) {
1870 case SOUND_DEVICE:
1871 case AUDIO_DEVICE:
1872 revents = audio_poll(sc, events, l, file);
1873 break;
1874 case AUDIOCTL_DEVICE:
1875 case MIXER_DEVICE:
1876 revents = 0;
1877 break;
1878 default:
1879 revents = POLLERR;
1880 break;
1881 }
1882
1883 audio_file_exit(sc, &sc_ref);
1884 return revents;
1885 }
1886
1887 static int
1888 audiokqfilter(struct file *fp, struct knote *kn)
1889 {
1890 struct audio_softc *sc;
1891 struct psref sc_ref;
1892 audio_file_t *file;
1893 dev_t dev;
1894 int error;
1895
1896 KASSERT(fp->f_audioctx);
1897 file = fp->f_audioctx;
1898 dev = file->dev;
1899
1900 sc = audio_file_enter(file, &sc_ref);
1901 if (sc == NULL)
1902 return EIO;
1903
1904 switch (AUDIODEV(dev)) {
1905 case SOUND_DEVICE:
1906 case AUDIO_DEVICE:
1907 error = audio_kqfilter(sc, file, kn);
1908 break;
1909 case AUDIOCTL_DEVICE:
1910 case MIXER_DEVICE:
1911 error = ENODEV;
1912 break;
1913 default:
1914 error = ENXIO;
1915 break;
1916 }
1917
1918 audio_file_exit(sc, &sc_ref);
1919 return error;
1920 }
1921
1922 static int
1923 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1924 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1925 {
1926 struct audio_softc *sc;
1927 struct psref sc_ref;
1928 audio_file_t *file;
1929 dev_t dev;
1930 int error;
1931
1932 KASSERT(fp->f_audioctx);
1933 file = fp->f_audioctx;
1934 dev = file->dev;
1935
1936 sc = audio_file_enter(file, &sc_ref);
1937 if (sc == NULL)
1938 return EIO;
1939
1940 mutex_enter(sc->sc_lock);
1941 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1942 mutex_exit(sc->sc_lock);
1943
1944 switch (AUDIODEV(dev)) {
1945 case SOUND_DEVICE:
1946 case AUDIO_DEVICE:
1947 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1948 uobjp, maxprotp, file);
1949 break;
1950 case AUDIOCTL_DEVICE:
1951 case MIXER_DEVICE:
1952 default:
1953 error = ENOTSUP;
1954 break;
1955 }
1956
1957 audio_file_exit(sc, &sc_ref);
1958 return error;
1959 }
1960
1961
1962 /* Exported interfaces for audiobell. */
1963
1964 /*
1965 * Open for audiobell.
1966 * It stores allocated file to *filep.
1967 * If successful returns 0, otherwise errno.
1968 */
1969 int
1970 audiobellopen(dev_t dev, audio_file_t **filep)
1971 {
1972 struct audio_softc *sc;
1973 int error;
1974
1975 /* Find the device */
1976 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1977 if (sc == NULL || sc->hw_if == NULL)
1978 return ENXIO;
1979
1980 error = audio_exlock_enter(sc);
1981 if (error)
1982 return error;
1983
1984 device_active(sc->sc_dev, DVA_SYSTEM);
1985 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1986
1987 audio_exlock_exit(sc);
1988 return error;
1989 }
1990
1991 /* Close for audiobell */
1992 int
1993 audiobellclose(audio_file_t *file)
1994 {
1995 struct audio_softc *sc;
1996 struct psref sc_ref;
1997 int error;
1998
1999 sc = audio_file_enter(file, &sc_ref);
2000 if (sc == NULL)
2001 return EIO;
2002
2003 error = audio_close(sc, file);
2004
2005 audio_file_exit(sc, &sc_ref);
2006
2007 KASSERT(file->ptrack);
2008 audio_track_destroy(file->ptrack);
2009 KASSERT(file->rtrack == NULL);
2010 kmem_free(file, sizeof(*file));
2011 return error;
2012 }
2013
2014 /* Set sample rate for audiobell */
2015 int
2016 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2017 {
2018 struct audio_softc *sc;
2019 struct psref sc_ref;
2020 struct audio_info ai;
2021 int error;
2022
2023 sc = audio_file_enter(file, &sc_ref);
2024 if (sc == NULL)
2025 return EIO;
2026
2027 AUDIO_INITINFO(&ai);
2028 ai.play.sample_rate = sample_rate;
2029
2030 error = audio_exlock_enter(sc);
2031 if (error)
2032 goto done;
2033 error = audio_file_setinfo(sc, file, &ai);
2034 audio_exlock_exit(sc);
2035
2036 done:
2037 audio_file_exit(sc, &sc_ref);
2038 return error;
2039 }
2040
2041 /* Playback for audiobell */
2042 int
2043 audiobellwrite(audio_file_t *file, struct uio *uio)
2044 {
2045 struct audio_softc *sc;
2046 struct psref sc_ref;
2047 int error;
2048
2049 sc = audio_file_enter(file, &sc_ref);
2050 if (sc == NULL)
2051 return EIO;
2052
2053 error = audio_write(sc, uio, 0, file);
2054
2055 audio_file_exit(sc, &sc_ref);
2056 return error;
2057 }
2058
2059
2060 /*
2061 * Audio driver
2062 */
2063
2064 /*
2065 * Must be called with sc_exlock held and without sc_lock held.
2066 */
2067 int
2068 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2069 struct lwp *l, audio_file_t **bellfile)
2070 {
2071 struct audio_info ai;
2072 struct file *fp;
2073 audio_file_t *af;
2074 audio_ring_t *hwbuf;
2075 bool fullduplex;
2076 int fd;
2077 int error;
2078
2079 KASSERT(sc->sc_exlock);
2080
2081 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2082 (audiodebug >= 3) ? "start " : "",
2083 ISDEVSOUND(dev) ? "sound" : "audio",
2084 flags, sc->sc_popens, sc->sc_ropens);
2085
2086 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2087 af->sc = sc;
2088 af->dev = dev;
2089 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2090 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2091 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2092 af->mode |= AUMODE_RECORD;
2093 if (af->mode == 0) {
2094 error = ENXIO;
2095 goto bad1;
2096 }
2097
2098 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2099
2100 /*
2101 * On half duplex hardware,
2102 * 1. if mode is (PLAY | REC), let mode PLAY.
2103 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2104 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2105 */
2106 if (fullduplex == false) {
2107 if ((af->mode & AUMODE_PLAY)) {
2108 if (sc->sc_ropens != 0) {
2109 TRACE(1, "record track already exists");
2110 error = ENODEV;
2111 goto bad1;
2112 }
2113 /* Play takes precedence */
2114 af->mode &= ~AUMODE_RECORD;
2115 }
2116 if ((af->mode & AUMODE_RECORD)) {
2117 if (sc->sc_popens != 0) {
2118 TRACE(1, "play track already exists");
2119 error = ENODEV;
2120 goto bad1;
2121 }
2122 }
2123 }
2124
2125 /* Create tracks */
2126 if ((af->mode & AUMODE_PLAY))
2127 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2128 if ((af->mode & AUMODE_RECORD))
2129 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2130
2131 /* Set parameters */
2132 AUDIO_INITINFO(&ai);
2133 if (bellfile) {
2134 /* If audiobell, only sample_rate will be set later. */
2135 ai.play.sample_rate = audio_default.sample_rate;
2136 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2137 ai.play.channels = 1;
2138 ai.play.precision = 16;
2139 ai.play.pause = 0;
2140 } else if (ISDEVAUDIO(dev)) {
2141 /* If /dev/audio, initialize everytime. */
2142 ai.play.sample_rate = audio_default.sample_rate;
2143 ai.play.encoding = audio_default.encoding;
2144 ai.play.channels = audio_default.channels;
2145 ai.play.precision = audio_default.precision;
2146 ai.play.pause = 0;
2147 ai.record.sample_rate = audio_default.sample_rate;
2148 ai.record.encoding = audio_default.encoding;
2149 ai.record.channels = audio_default.channels;
2150 ai.record.precision = audio_default.precision;
2151 ai.record.pause = 0;
2152 } else {
2153 /* If /dev/sound, take over the previous parameters. */
2154 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2155 ai.play.encoding = sc->sc_sound_pparams.encoding;
2156 ai.play.channels = sc->sc_sound_pparams.channels;
2157 ai.play.precision = sc->sc_sound_pparams.precision;
2158 ai.play.pause = sc->sc_sound_ppause;
2159 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2160 ai.record.encoding = sc->sc_sound_rparams.encoding;
2161 ai.record.channels = sc->sc_sound_rparams.channels;
2162 ai.record.precision = sc->sc_sound_rparams.precision;
2163 ai.record.pause = sc->sc_sound_rpause;
2164 }
2165 error = audio_file_setinfo(sc, af, &ai);
2166 if (error)
2167 goto bad2;
2168
2169 if (sc->sc_popens + sc->sc_ropens == 0) {
2170 /* First open */
2171
2172 sc->sc_cred = kauth_cred_get();
2173 kauth_cred_hold(sc->sc_cred);
2174
2175 if (sc->hw_if->open) {
2176 int hwflags;
2177
2178 /*
2179 * Call hw_if->open() only at first open of
2180 * combination of playback and recording.
2181 * On full duplex hardware, the flags passed to
2182 * hw_if->open() is always (FREAD | FWRITE)
2183 * regardless of this open()'s flags.
2184 * see also dev/isa/aria.c
2185 * On half duplex hardware, the flags passed to
2186 * hw_if->open() is either FREAD or FWRITE.
2187 * see also arch/evbarm/mini2440/audio_mini2440.c
2188 */
2189 if (fullduplex) {
2190 hwflags = FREAD | FWRITE;
2191 } else {
2192 /* Construct hwflags from af->mode. */
2193 hwflags = 0;
2194 if ((af->mode & AUMODE_PLAY) != 0)
2195 hwflags |= FWRITE;
2196 if ((af->mode & AUMODE_RECORD) != 0)
2197 hwflags |= FREAD;
2198 }
2199
2200 mutex_enter(sc->sc_lock);
2201 mutex_enter(sc->sc_intr_lock);
2202 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2203 mutex_exit(sc->sc_intr_lock);
2204 mutex_exit(sc->sc_lock);
2205 if (error)
2206 goto bad2;
2207 }
2208
2209 /*
2210 * Set speaker mode when a half duplex.
2211 * XXX I'm not sure this is correct.
2212 */
2213 if (1/*XXX*/) {
2214 if (sc->hw_if->speaker_ctl) {
2215 int on;
2216 if (af->ptrack) {
2217 on = 1;
2218 } else {
2219 on = 0;
2220 }
2221 mutex_enter(sc->sc_lock);
2222 mutex_enter(sc->sc_intr_lock);
2223 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2224 mutex_exit(sc->sc_intr_lock);
2225 mutex_exit(sc->sc_lock);
2226 if (error)
2227 goto bad3;
2228 }
2229 }
2230 } else if (sc->sc_multiuser == false) {
2231 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2232 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2233 error = EPERM;
2234 goto bad2;
2235 }
2236 }
2237
2238 /* Call init_output if this is the first playback open. */
2239 if (af->ptrack && sc->sc_popens == 0) {
2240 if (sc->hw_if->init_output) {
2241 hwbuf = &sc->sc_pmixer->hwbuf;
2242 mutex_enter(sc->sc_lock);
2243 mutex_enter(sc->sc_intr_lock);
2244 error = sc->hw_if->init_output(sc->hw_hdl,
2245 hwbuf->mem,
2246 hwbuf->capacity *
2247 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2248 mutex_exit(sc->sc_intr_lock);
2249 mutex_exit(sc->sc_lock);
2250 if (error)
2251 goto bad3;
2252 }
2253 }
2254 /*
2255 * Call init_input and start rmixer, if this is the first recording
2256 * open. See pause consideration notes.
2257 */
2258 if (af->rtrack && sc->sc_ropens == 0) {
2259 if (sc->hw_if->init_input) {
2260 hwbuf = &sc->sc_rmixer->hwbuf;
2261 mutex_enter(sc->sc_lock);
2262 mutex_enter(sc->sc_intr_lock);
2263 error = sc->hw_if->init_input(sc->hw_hdl,
2264 hwbuf->mem,
2265 hwbuf->capacity *
2266 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2267 mutex_exit(sc->sc_intr_lock);
2268 mutex_exit(sc->sc_lock);
2269 if (error)
2270 goto bad3;
2271 }
2272
2273 mutex_enter(sc->sc_lock);
2274 audio_rmixer_start(sc);
2275 mutex_exit(sc->sc_lock);
2276 }
2277
2278 if (bellfile == NULL) {
2279 error = fd_allocfile(&fp, &fd);
2280 if (error)
2281 goto bad3;
2282 }
2283
2284 /*
2285 * Count up finally.
2286 * Don't fail from here.
2287 */
2288 mutex_enter(sc->sc_lock);
2289 if (af->ptrack)
2290 sc->sc_popens++;
2291 if (af->rtrack)
2292 sc->sc_ropens++;
2293 mutex_enter(sc->sc_intr_lock);
2294 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2295 mutex_exit(sc->sc_intr_lock);
2296 mutex_exit(sc->sc_lock);
2297
2298 if (bellfile) {
2299 *bellfile = af;
2300 } else {
2301 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2302 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2303 }
2304
2305 TRACEF(3, af, "done");
2306 return error;
2307
2308 /*
2309 * Since track here is not yet linked to sc_files,
2310 * you can call track_destroy() without sc_intr_lock.
2311 */
2312 bad3:
2313 if (sc->sc_popens + sc->sc_ropens == 0) {
2314 if (sc->hw_if->close) {
2315 mutex_enter(sc->sc_lock);
2316 mutex_enter(sc->sc_intr_lock);
2317 sc->hw_if->close(sc->hw_hdl);
2318 mutex_exit(sc->sc_intr_lock);
2319 mutex_exit(sc->sc_lock);
2320 }
2321 }
2322 bad2:
2323 if (af->rtrack) {
2324 audio_track_destroy(af->rtrack);
2325 af->rtrack = NULL;
2326 }
2327 if (af->ptrack) {
2328 audio_track_destroy(af->ptrack);
2329 af->ptrack = NULL;
2330 }
2331 bad1:
2332 kmem_free(af, sizeof(*af));
2333 return error;
2334 }
2335
2336 /*
2337 * Must be called without sc_lock nor sc_exlock held.
2338 */
2339 int
2340 audio_close(struct audio_softc *sc, audio_file_t *file)
2341 {
2342
2343 /* Protect entering new fileops to this file */
2344 atomic_store_relaxed(&file->dying, true);
2345
2346 /*
2347 * Drain first.
2348 * It must be done before unlinking(acquiring exlock).
2349 */
2350 if (file->ptrack) {
2351 mutex_enter(sc->sc_lock);
2352 audio_track_drain(sc, file->ptrack);
2353 mutex_exit(sc->sc_lock);
2354 }
2355
2356 return audio_unlink(sc, file);
2357 }
2358
2359 /*
2360 * Unlink this file, but not freeing memory here.
2361 * Must be called without sc_lock nor sc_exlock held.
2362 */
2363 int
2364 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2365 {
2366 int error;
2367
2368 mutex_enter(sc->sc_lock);
2369
2370 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2371 (audiodebug >= 3) ? "start " : "",
2372 (int)curproc->p_pid, (int)curlwp->l_lid,
2373 sc->sc_popens, sc->sc_ropens);
2374 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2375 "sc->sc_popens=%d, sc->sc_ropens=%d",
2376 sc->sc_popens, sc->sc_ropens);
2377
2378 /*
2379 * Acquire exlock to protect counters.
2380 * Does not use audio_exlock_enter() due to sc_dying.
2381 */
2382 while (__predict_false(sc->sc_exlock != 0)) {
2383 error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
2384 mstohz(AUDIO_TIMEOUT));
2385 /* XXX what should I do on error? */
2386 if (error == EWOULDBLOCK) {
2387 mutex_exit(sc->sc_lock);
2388 device_printf(sc->sc_dev,
2389 "%s: cv_timedwait_sig failed %d", __func__, error);
2390 return error;
2391 }
2392 }
2393 sc->sc_exlock = 1;
2394
2395 device_active(sc->sc_dev, DVA_SYSTEM);
2396
2397 mutex_enter(sc->sc_intr_lock);
2398 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2399 mutex_exit(sc->sc_intr_lock);
2400
2401 if (file->ptrack) {
2402 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2403 file->ptrack->dropframes);
2404
2405 KASSERT(sc->sc_popens > 0);
2406 sc->sc_popens--;
2407
2408 /* Call hw halt_output if this is the last playback track. */
2409 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2410 error = audio_pmixer_halt(sc);
2411 if (error) {
2412 device_printf(sc->sc_dev,
2413 "halt_output failed with %d (ignored)\n",
2414 error);
2415 }
2416 }
2417
2418 /* Restore mixing volume if all tracks are gone. */
2419 if (sc->sc_popens == 0) {
2420 /* intr_lock is not necessary, but just manners. */
2421 mutex_enter(sc->sc_intr_lock);
2422 sc->sc_pmixer->volume = 256;
2423 sc->sc_pmixer->voltimer = 0;
2424 mutex_exit(sc->sc_intr_lock);
2425 }
2426 }
2427 if (file->rtrack) {
2428 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2429 file->rtrack->dropframes);
2430
2431 KASSERT(sc->sc_ropens > 0);
2432 sc->sc_ropens--;
2433
2434 /* Call hw halt_input if this is the last recording track. */
2435 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2436 error = audio_rmixer_halt(sc);
2437 if (error) {
2438 device_printf(sc->sc_dev,
2439 "halt_input failed with %d (ignored)\n",
2440 error);
2441 }
2442 }
2443
2444 }
2445
2446 /* Call hw close if this is the last track. */
2447 if (sc->sc_popens + sc->sc_ropens == 0) {
2448 if (sc->hw_if->close) {
2449 TRACE(2, "hw_if close");
2450 mutex_enter(sc->sc_intr_lock);
2451 sc->hw_if->close(sc->hw_hdl);
2452 mutex_exit(sc->sc_intr_lock);
2453 }
2454 }
2455
2456 mutex_exit(sc->sc_lock);
2457 if (sc->sc_popens + sc->sc_ropens == 0)
2458 kauth_cred_free(sc->sc_cred);
2459
2460 TRACE(3, "done");
2461 audio_exlock_exit(sc);
2462
2463 return 0;
2464 }
2465
2466 /*
2467 * Must be called without sc_lock nor sc_exlock held.
2468 */
2469 int
2470 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2471 audio_file_t *file)
2472 {
2473 audio_track_t *track;
2474 audio_ring_t *usrbuf;
2475 audio_ring_t *input;
2476 int error;
2477
2478 /*
2479 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2480 * However read() system call itself can be called because it's
2481 * opened with O_RDWR. So in this case, deny this read().
2482 */
2483 track = file->rtrack;
2484 if (track == NULL) {
2485 return EBADF;
2486 }
2487
2488 /* I think it's better than EINVAL. */
2489 if (track->mmapped)
2490 return EPERM;
2491
2492 TRACET(2, track, "resid=%zd", uio->uio_resid);
2493
2494 #ifdef AUDIO_PM_IDLE
2495 error = audio_exlock_mutex_enter(sc);
2496 if (error)
2497 return error;
2498
2499 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2500 device_active(&sc->sc_dev, DVA_SYSTEM);
2501
2502 /* In recording, unlike playback, read() never operates rmixer. */
2503
2504 audio_exlock_mutex_exit(sc);
2505 #endif
2506
2507 usrbuf = &track->usrbuf;
2508 input = track->input;
2509 error = 0;
2510
2511 while (uio->uio_resid > 0 && error == 0) {
2512 int bytes;
2513
2514 TRACET(3, track,
2515 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2516 uio->uio_resid,
2517 input->head, input->used, input->capacity,
2518 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2519
2520 /* Wait when buffers are empty. */
2521 mutex_enter(sc->sc_lock);
2522 for (;;) {
2523 bool empty;
2524 audio_track_lock_enter(track);
2525 empty = (input->used == 0 && usrbuf->used == 0);
2526 audio_track_lock_exit(track);
2527 if (!empty)
2528 break;
2529
2530 if ((ioflag & IO_NDELAY)) {
2531 mutex_exit(sc->sc_lock);
2532 return EWOULDBLOCK;
2533 }
2534
2535 TRACET(3, track, "sleep");
2536 error = audio_track_waitio(sc, track);
2537 if (error) {
2538 mutex_exit(sc->sc_lock);
2539 return error;
2540 }
2541 }
2542 mutex_exit(sc->sc_lock);
2543
2544 audio_track_lock_enter(track);
2545 audio_track_record(track);
2546
2547 /* uiomove from usrbuf as much as possible. */
2548 bytes = uimin(usrbuf->used, uio->uio_resid);
2549 while (bytes > 0) {
2550 int head = usrbuf->head;
2551 int len = uimin(bytes, usrbuf->capacity - head);
2552 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2553 uio);
2554 if (error) {
2555 audio_track_lock_exit(track);
2556 device_printf(sc->sc_dev,
2557 "uiomove(len=%d) failed with %d\n",
2558 len, error);
2559 goto abort;
2560 }
2561 auring_take(usrbuf, len);
2562 track->useriobytes += len;
2563 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2564 len,
2565 usrbuf->head, usrbuf->used, usrbuf->capacity);
2566 bytes -= len;
2567 }
2568
2569 audio_track_lock_exit(track);
2570 }
2571
2572 abort:
2573 return error;
2574 }
2575
2576
2577 /*
2578 * Clear file's playback and/or record track buffer immediately.
2579 */
2580 static void
2581 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2582 {
2583
2584 if (file->ptrack)
2585 audio_track_clear(sc, file->ptrack);
2586 if (file->rtrack)
2587 audio_track_clear(sc, file->rtrack);
2588 }
2589
2590 /*
2591 * Must be called without sc_lock nor sc_exlock held.
2592 */
2593 int
2594 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2595 audio_file_t *file)
2596 {
2597 audio_track_t *track;
2598 audio_ring_t *usrbuf;
2599 audio_ring_t *outbuf;
2600 int error;
2601
2602 track = file->ptrack;
2603 KASSERT(track);
2604
2605 /* I think it's better than EINVAL. */
2606 if (track->mmapped)
2607 return EPERM;
2608
2609 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2610 audiodebug >= 3 ? "begin " : "",
2611 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2612
2613 if (uio->uio_resid == 0) {
2614 track->eofcounter++;
2615 return 0;
2616 }
2617
2618 error = audio_exlock_mutex_enter(sc);
2619 if (error)
2620 return error;
2621
2622 #ifdef AUDIO_PM_IDLE
2623 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2624 device_active(&sc->sc_dev, DVA_SYSTEM);
2625 #endif
2626
2627 /*
2628 * The first write starts pmixer.
2629 */
2630 if (sc->sc_pbusy == false)
2631 audio_pmixer_start(sc, false);
2632 audio_exlock_mutex_exit(sc);
2633
2634 usrbuf = &track->usrbuf;
2635 outbuf = &track->outbuf;
2636 track->pstate = AUDIO_STATE_RUNNING;
2637 error = 0;
2638
2639 while (uio->uio_resid > 0 && error == 0) {
2640 int bytes;
2641
2642 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2643 uio->uio_resid,
2644 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2645
2646 /* Wait when buffers are full. */
2647 mutex_enter(sc->sc_lock);
2648 for (;;) {
2649 bool full;
2650 audio_track_lock_enter(track);
2651 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2652 outbuf->used >= outbuf->capacity);
2653 audio_track_lock_exit(track);
2654 if (!full)
2655 break;
2656
2657 if ((ioflag & IO_NDELAY)) {
2658 error = EWOULDBLOCK;
2659 mutex_exit(sc->sc_lock);
2660 goto abort;
2661 }
2662
2663 TRACET(3, track, "sleep usrbuf=%d/H%d",
2664 usrbuf->used, track->usrbuf_usedhigh);
2665 error = audio_track_waitio(sc, track);
2666 if (error) {
2667 mutex_exit(sc->sc_lock);
2668 goto abort;
2669 }
2670 }
2671 mutex_exit(sc->sc_lock);
2672
2673 audio_track_lock_enter(track);
2674
2675 /* uiomove to usrbuf as much as possible. */
2676 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2677 uio->uio_resid);
2678 while (bytes > 0) {
2679 int tail = auring_tail(usrbuf);
2680 int len = uimin(bytes, usrbuf->capacity - tail);
2681 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2682 uio);
2683 if (error) {
2684 audio_track_lock_exit(track);
2685 device_printf(sc->sc_dev,
2686 "uiomove(len=%d) failed with %d\n",
2687 len, error);
2688 goto abort;
2689 }
2690 auring_push(usrbuf, len);
2691 track->useriobytes += len;
2692 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2693 len,
2694 usrbuf->head, usrbuf->used, usrbuf->capacity);
2695 bytes -= len;
2696 }
2697
2698 /* Convert them as much as possible. */
2699 while (usrbuf->used >= track->usrbuf_blksize &&
2700 outbuf->used < outbuf->capacity) {
2701 audio_track_play(track);
2702 }
2703
2704 audio_track_lock_exit(track);
2705 }
2706
2707 abort:
2708 TRACET(3, track, "done error=%d", error);
2709 return error;
2710 }
2711
2712 /*
2713 * Must be called without sc_lock nor sc_exlock held.
2714 */
2715 int
2716 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2717 struct lwp *l, audio_file_t *file)
2718 {
2719 struct audio_offset *ao;
2720 struct audio_info ai;
2721 audio_track_t *track;
2722 audio_encoding_t *ae;
2723 audio_format_query_t *query;
2724 u_int stamp;
2725 u_int offs;
2726 int fd;
2727 int index;
2728 int error;
2729
2730 #if defined(AUDIO_DEBUG)
2731 const char *ioctlnames[] = {
2732 " AUDIO_GETINFO", /* 21 */
2733 " AUDIO_SETINFO", /* 22 */
2734 " AUDIO_DRAIN", /* 23 */
2735 " AUDIO_FLUSH", /* 24 */
2736 " AUDIO_WSEEK", /* 25 */
2737 " AUDIO_RERROR", /* 26 */
2738 " AUDIO_GETDEV", /* 27 */
2739 " AUDIO_GETENC", /* 28 */
2740 " AUDIO_GETFD", /* 29 */
2741 " AUDIO_SETFD", /* 30 */
2742 " AUDIO_PERROR", /* 31 */
2743 " AUDIO_GETIOFFS", /* 32 */
2744 " AUDIO_GETOOFFS", /* 33 */
2745 " AUDIO_GETPROPS", /* 34 */
2746 " AUDIO_GETBUFINFO", /* 35 */
2747 " AUDIO_SETCHAN", /* 36 */
2748 " AUDIO_GETCHAN", /* 37 */
2749 " AUDIO_QUERYFORMAT", /* 38 */
2750 " AUDIO_GETFORMAT", /* 39 */
2751 " AUDIO_SETFORMAT", /* 40 */
2752 };
2753 int nameidx = (cmd & 0xff);
2754 const char *ioctlname = "";
2755 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2756 ioctlname = ioctlnames[nameidx - 21];
2757 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2758 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2759 (int)curproc->p_pid, (int)l->l_lid);
2760 #endif
2761
2762 error = 0;
2763 switch (cmd) {
2764 case FIONBIO:
2765 /* All handled in the upper FS layer. */
2766 break;
2767
2768 case FIONREAD:
2769 /* Get the number of bytes that can be read. */
2770 if (file->rtrack) {
2771 *(int *)addr = audio_track_readablebytes(file->rtrack);
2772 } else {
2773 *(int *)addr = 0;
2774 }
2775 break;
2776
2777 case FIOASYNC:
2778 /* Set/Clear ASYNC I/O. */
2779 if (*(int *)addr) {
2780 file->async_audio = curproc->p_pid;
2781 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2782 } else {
2783 file->async_audio = 0;
2784 TRACEF(2, file, "FIOASYNC off");
2785 }
2786 break;
2787
2788 case AUDIO_FLUSH:
2789 /* XXX TODO: clear errors and restart? */
2790 audio_file_clear(sc, file);
2791 break;
2792
2793 case AUDIO_RERROR:
2794 /*
2795 * Number of read bytes dropped. We don't know where
2796 * or when they were dropped (including conversion stage).
2797 * Therefore, the number of accurate bytes or samples is
2798 * also unknown.
2799 */
2800 track = file->rtrack;
2801 if (track) {
2802 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2803 track->dropframes);
2804 }
2805 break;
2806
2807 case AUDIO_PERROR:
2808 /*
2809 * Number of write bytes dropped. We don't know where
2810 * or when they were dropped (including conversion stage).
2811 * Therefore, the number of accurate bytes or samples is
2812 * also unknown.
2813 */
2814 track = file->ptrack;
2815 if (track) {
2816 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2817 track->dropframes);
2818 }
2819 break;
2820
2821 case AUDIO_GETIOFFS:
2822 /* XXX TODO */
2823 ao = (struct audio_offset *)addr;
2824 ao->samples = 0;
2825 ao->deltablks = 0;
2826 ao->offset = 0;
2827 break;
2828
2829 case AUDIO_GETOOFFS:
2830 ao = (struct audio_offset *)addr;
2831 track = file->ptrack;
2832 if (track == NULL) {
2833 ao->samples = 0;
2834 ao->deltablks = 0;
2835 ao->offset = 0;
2836 break;
2837 }
2838 mutex_enter(sc->sc_lock);
2839 mutex_enter(sc->sc_intr_lock);
2840 /* figure out where next DMA will start */
2841 stamp = track->usrbuf_stamp;
2842 offs = track->usrbuf.head;
2843 mutex_exit(sc->sc_intr_lock);
2844 mutex_exit(sc->sc_lock);
2845
2846 ao->samples = stamp;
2847 ao->deltablks = (stamp / track->usrbuf_blksize) -
2848 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2849 track->usrbuf_stamp_last = stamp;
2850 offs = rounddown(offs, track->usrbuf_blksize)
2851 + track->usrbuf_blksize;
2852 if (offs >= track->usrbuf.capacity)
2853 offs -= track->usrbuf.capacity;
2854 ao->offset = offs;
2855
2856 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2857 ao->samples, ao->deltablks, ao->offset);
2858 break;
2859
2860 case AUDIO_WSEEK:
2861 /* XXX return value does not include outbuf one. */
2862 if (file->ptrack)
2863 *(u_long *)addr = file->ptrack->usrbuf.used;
2864 break;
2865
2866 case AUDIO_SETINFO:
2867 error = audio_exlock_enter(sc);
2868 if (error)
2869 break;
2870 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2871 if (error) {
2872 audio_exlock_exit(sc);
2873 break;
2874 }
2875 /* XXX TODO: update last_ai if /dev/sound ? */
2876 if (ISDEVSOUND(dev))
2877 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2878 audio_exlock_exit(sc);
2879 break;
2880
2881 case AUDIO_GETINFO:
2882 error = audio_exlock_enter(sc);
2883 if (error)
2884 break;
2885 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2886 audio_exlock_exit(sc);
2887 break;
2888
2889 case AUDIO_GETBUFINFO:
2890 error = audio_exlock_enter(sc);
2891 if (error)
2892 break;
2893 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2894 audio_exlock_exit(sc);
2895 break;
2896
2897 case AUDIO_DRAIN:
2898 if (file->ptrack) {
2899 mutex_enter(sc->sc_lock);
2900 error = audio_track_drain(sc, file->ptrack);
2901 mutex_exit(sc->sc_lock);
2902 }
2903 break;
2904
2905 case AUDIO_GETDEV:
2906 mutex_enter(sc->sc_lock);
2907 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2908 mutex_exit(sc->sc_lock);
2909 break;
2910
2911 case AUDIO_GETENC:
2912 ae = (audio_encoding_t *)addr;
2913 index = ae->index;
2914 if (index < 0 || index >= __arraycount(audio_encodings)) {
2915 error = EINVAL;
2916 break;
2917 }
2918 *ae = audio_encodings[index];
2919 ae->index = index;
2920 /*
2921 * EMULATED always.
2922 * EMULATED flag at that time used to mean that it could
2923 * not be passed directly to the hardware as-is. But
2924 * currently, all formats including hardware native is not
2925 * passed directly to the hardware. So I set EMULATED
2926 * flag for all formats.
2927 */
2928 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2929 break;
2930
2931 case AUDIO_GETFD:
2932 /*
2933 * Returns the current setting of full duplex mode.
2934 * If HW has full duplex mode and there are two mixers,
2935 * it is full duplex. Otherwise half duplex.
2936 */
2937 error = audio_exlock_enter(sc);
2938 if (error)
2939 break;
2940 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2941 && (sc->sc_pmixer && sc->sc_rmixer);
2942 audio_exlock_exit(sc);
2943 *(int *)addr = fd;
2944 break;
2945
2946 case AUDIO_GETPROPS:
2947 *(int *)addr = sc->sc_props;
2948 break;
2949
2950 case AUDIO_QUERYFORMAT:
2951 query = (audio_format_query_t *)addr;
2952 mutex_enter(sc->sc_lock);
2953 error = sc->hw_if->query_format(sc->hw_hdl, query);
2954 mutex_exit(sc->sc_lock);
2955 /* Hide internal infomations */
2956 query->fmt.driver_data = NULL;
2957 break;
2958
2959 case AUDIO_GETFORMAT:
2960 error = audio_exlock_enter(sc);
2961 if (error)
2962 break;
2963 audio_mixers_get_format(sc, (struct audio_info *)addr);
2964 audio_exlock_exit(sc);
2965 break;
2966
2967 case AUDIO_SETFORMAT:
2968 error = audio_exlock_enter(sc);
2969 audio_mixers_get_format(sc, &ai);
2970 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2971 if (error) {
2972 /* Rollback */
2973 audio_mixers_set_format(sc, &ai);
2974 }
2975 audio_exlock_exit(sc);
2976 break;
2977
2978 case AUDIO_SETFD:
2979 case AUDIO_SETCHAN:
2980 case AUDIO_GETCHAN:
2981 /* Obsoleted */
2982 break;
2983
2984 default:
2985 if (sc->hw_if->dev_ioctl) {
2986 mutex_enter(sc->sc_lock);
2987 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2988 cmd, addr, flag, l);
2989 mutex_exit(sc->sc_lock);
2990 } else {
2991 TRACEF(2, file, "unknown ioctl");
2992 error = EINVAL;
2993 }
2994 break;
2995 }
2996 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2997 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2998 error);
2999 return error;
3000 }
3001
3002 /*
3003 * Returns the number of bytes that can be read on recording buffer.
3004 */
3005 static __inline int
3006 audio_track_readablebytes(const audio_track_t *track)
3007 {
3008 int bytes;
3009
3010 KASSERT(track);
3011 KASSERT(track->mode == AUMODE_RECORD);
3012
3013 /*
3014 * Although usrbuf is primarily readable data, recorded data
3015 * also stays in track->input until reading. So it is necessary
3016 * to add it. track->input is in frame, usrbuf is in byte.
3017 */
3018 bytes = track->usrbuf.used +
3019 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3020 return bytes;
3021 }
3022
3023 /*
3024 * Must be called without sc_lock nor sc_exlock held.
3025 */
3026 int
3027 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3028 audio_file_t *file)
3029 {
3030 audio_track_t *track;
3031 int revents;
3032 bool in_is_valid;
3033 bool out_is_valid;
3034
3035 #if defined(AUDIO_DEBUG)
3036 #define POLLEV_BITMAP "\177\020" \
3037 "b\10WRBAND\0" \
3038 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3039 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3040 char evbuf[64];
3041 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3042 TRACEF(2, file, "pid=%d.%d events=%s",
3043 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3044 #endif
3045
3046 revents = 0;
3047 in_is_valid = false;
3048 out_is_valid = false;
3049 if (events & (POLLIN | POLLRDNORM)) {
3050 track = file->rtrack;
3051 if (track) {
3052 int used;
3053 in_is_valid = true;
3054 used = audio_track_readablebytes(track);
3055 if (used > 0)
3056 revents |= events & (POLLIN | POLLRDNORM);
3057 }
3058 }
3059 if (events & (POLLOUT | POLLWRNORM)) {
3060 track = file->ptrack;
3061 if (track) {
3062 out_is_valid = true;
3063 if (track->usrbuf.used <= track->usrbuf_usedlow)
3064 revents |= events & (POLLOUT | POLLWRNORM);
3065 }
3066 }
3067
3068 if (revents == 0) {
3069 mutex_enter(sc->sc_lock);
3070 if (in_is_valid) {
3071 TRACEF(3, file, "selrecord rsel");
3072 selrecord(l, &sc->sc_rsel);
3073 }
3074 if (out_is_valid) {
3075 TRACEF(3, file, "selrecord wsel");
3076 selrecord(l, &sc->sc_wsel);
3077 }
3078 mutex_exit(sc->sc_lock);
3079 }
3080
3081 #if defined(AUDIO_DEBUG)
3082 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3083 TRACEF(2, file, "revents=%s", evbuf);
3084 #endif
3085 return revents;
3086 }
3087
3088 static const struct filterops audioread_filtops = {
3089 .f_isfd = 1,
3090 .f_attach = NULL,
3091 .f_detach = filt_audioread_detach,
3092 .f_event = filt_audioread_event,
3093 };
3094
3095 static void
3096 filt_audioread_detach(struct knote *kn)
3097 {
3098 struct audio_softc *sc;
3099 audio_file_t *file;
3100
3101 file = kn->kn_hook;
3102 sc = file->sc;
3103 TRACEF(3, file, "");
3104
3105 mutex_enter(sc->sc_lock);
3106 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
3107 mutex_exit(sc->sc_lock);
3108 }
3109
3110 static int
3111 filt_audioread_event(struct knote *kn, long hint)
3112 {
3113 audio_file_t *file;
3114 audio_track_t *track;
3115
3116 file = kn->kn_hook;
3117 track = file->rtrack;
3118
3119 /*
3120 * kn_data must contain the number of bytes can be read.
3121 * The return value indicates whether the event occurs or not.
3122 */
3123
3124 if (track == NULL) {
3125 /* can not read with this descriptor. */
3126 kn->kn_data = 0;
3127 return 0;
3128 }
3129
3130 kn->kn_data = audio_track_readablebytes(track);
3131 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3132 return kn->kn_data > 0;
3133 }
3134
3135 static const struct filterops audiowrite_filtops = {
3136 .f_isfd = 1,
3137 .f_attach = NULL,
3138 .f_detach = filt_audiowrite_detach,
3139 .f_event = filt_audiowrite_event,
3140 };
3141
3142 static void
3143 filt_audiowrite_detach(struct knote *kn)
3144 {
3145 struct audio_softc *sc;
3146 audio_file_t *file;
3147
3148 file = kn->kn_hook;
3149 sc = file->sc;
3150 TRACEF(3, file, "");
3151
3152 mutex_enter(sc->sc_lock);
3153 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
3154 mutex_exit(sc->sc_lock);
3155 }
3156
3157 static int
3158 filt_audiowrite_event(struct knote *kn, long hint)
3159 {
3160 audio_file_t *file;
3161 audio_track_t *track;
3162
3163 file = kn->kn_hook;
3164 track = file->ptrack;
3165
3166 /*
3167 * kn_data must contain the number of bytes can be write.
3168 * The return value indicates whether the event occurs or not.
3169 */
3170
3171 if (track == NULL) {
3172 /* can not write with this descriptor. */
3173 kn->kn_data = 0;
3174 return 0;
3175 }
3176
3177 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3178 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3179 return (track->usrbuf.used < track->usrbuf_usedlow);
3180 }
3181
3182 /*
3183 * Must be called without sc_lock nor sc_exlock held.
3184 */
3185 int
3186 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3187 {
3188 struct klist *klist;
3189
3190 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3191
3192 mutex_enter(sc->sc_lock);
3193 switch (kn->kn_filter) {
3194 case EVFILT_READ:
3195 klist = &sc->sc_rsel.sel_klist;
3196 kn->kn_fop = &audioread_filtops;
3197 break;
3198
3199 case EVFILT_WRITE:
3200 klist = &sc->sc_wsel.sel_klist;
3201 kn->kn_fop = &audiowrite_filtops;
3202 break;
3203
3204 default:
3205 mutex_exit(sc->sc_lock);
3206 return EINVAL;
3207 }
3208
3209 kn->kn_hook = file;
3210
3211 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3212 mutex_exit(sc->sc_lock);
3213
3214 return 0;
3215 }
3216
3217 /*
3218 * Must be called without sc_lock nor sc_exlock held.
3219 */
3220 int
3221 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3222 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3223 audio_file_t *file)
3224 {
3225 audio_track_t *track;
3226 vsize_t vsize;
3227 int error;
3228
3229 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3230
3231 if (*offp < 0)
3232 return EINVAL;
3233
3234 #if 0
3235 /* XXX
3236 * The idea here was to use the protection to determine if
3237 * we are mapping the read or write buffer, but it fails.
3238 * The VM system is broken in (at least) two ways.
3239 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3240 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3241 * has to be used for mmapping the play buffer.
3242 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3243 * audio_mmap will get called at some point with VM_PROT_READ
3244 * only.
3245 * So, alas, we always map the play buffer for now.
3246 */
3247 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3248 prot == VM_PROT_WRITE)
3249 track = file->ptrack;
3250 else if (prot == VM_PROT_READ)
3251 track = file->rtrack;
3252 else
3253 return EINVAL;
3254 #else
3255 track = file->ptrack;
3256 #endif
3257 if (track == NULL)
3258 return EACCES;
3259
3260 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3261 if (len > vsize)
3262 return EOVERFLOW;
3263 if (*offp > (uint)(vsize - len))
3264 return EOVERFLOW;
3265
3266 /* XXX TODO: what happens when mmap twice. */
3267 if (!track->mmapped) {
3268 track->mmapped = true;
3269
3270 if (!track->is_pause) {
3271 error = audio_exlock_mutex_enter(sc);
3272 if (error)
3273 return error;
3274 if (sc->sc_pbusy == false)
3275 audio_pmixer_start(sc, true);
3276 audio_exlock_mutex_exit(sc);
3277 }
3278 /* XXX mmapping record buffer is not supported */
3279 }
3280
3281 /* get ringbuffer */
3282 *uobjp = track->uobj;
3283
3284 /* Acquire a reference for the mmap. munmap will release. */
3285 uao_reference(*uobjp);
3286 *maxprotp = prot;
3287 *advicep = UVM_ADV_RANDOM;
3288 *flagsp = MAP_SHARED;
3289 return 0;
3290 }
3291
3292 /*
3293 * /dev/audioctl has to be able to open at any time without interference
3294 * with any /dev/audio or /dev/sound.
3295 * Must be called with sc_exlock held and without sc_lock held.
3296 */
3297 static int
3298 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3299 struct lwp *l)
3300 {
3301 struct file *fp;
3302 audio_file_t *af;
3303 int fd;
3304 int error;
3305
3306 KASSERT(sc->sc_exlock);
3307
3308 TRACE(1, "");
3309
3310 error = fd_allocfile(&fp, &fd);
3311 if (error)
3312 return error;
3313
3314 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3315 af->sc = sc;
3316 af->dev = dev;
3317
3318 /* Not necessary to insert sc_files. */
3319
3320 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3321 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3322
3323 return error;
3324 }
3325
3326 /*
3327 * Free 'mem' if available, and initialize the pointer.
3328 * For this reason, this is implemented as macro.
3329 */
3330 #define audio_free(mem) do { \
3331 if (mem != NULL) { \
3332 kern_free(mem); \
3333 mem = NULL; \
3334 } \
3335 } while (0)
3336
3337 /*
3338 * (Re)allocate 'memblock' with specified 'bytes'.
3339 * bytes must not be 0.
3340 * This function never returns NULL.
3341 */
3342 static void *
3343 audio_realloc(void *memblock, size_t bytes)
3344 {
3345
3346 KASSERT(bytes != 0);
3347 audio_free(memblock);
3348 return kern_malloc(bytes, M_WAITOK);
3349 }
3350
3351 /*
3352 * (Re)allocate usrbuf with 'newbufsize' bytes.
3353 * Use this function for usrbuf because only usrbuf can be mmapped.
3354 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3355 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3356 * and returns errno.
3357 * It must be called before updating usrbuf.capacity.
3358 */
3359 static int
3360 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3361 {
3362 struct audio_softc *sc;
3363 vaddr_t vstart;
3364 vsize_t oldvsize;
3365 vsize_t newvsize;
3366 int error;
3367
3368 KASSERT(newbufsize > 0);
3369 sc = track->mixer->sc;
3370
3371 /* Get a nonzero multiple of PAGE_SIZE */
3372 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3373
3374 if (track->usrbuf.mem != NULL) {
3375 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3376 PAGE_SIZE);
3377 if (oldvsize == newvsize) {
3378 track->usrbuf.capacity = newbufsize;
3379 return 0;
3380 }
3381 vstart = (vaddr_t)track->usrbuf.mem;
3382 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3383 /* uvm_unmap also detach uobj */
3384 track->uobj = NULL; /* paranoia */
3385 track->usrbuf.mem = NULL;
3386 }
3387
3388 /* Create a uvm anonymous object */
3389 track->uobj = uao_create(newvsize, 0);
3390
3391 /* Map it into the kernel virtual address space */
3392 vstart = 0;
3393 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3394 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3395 UVM_ADV_RANDOM, 0));
3396 if (error) {
3397 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3398 uao_detach(track->uobj); /* release reference */
3399 goto abort;
3400 }
3401
3402 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3403 false, 0);
3404 if (error) {
3405 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3406 error);
3407 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3408 /* uvm_unmap also detach uobj */
3409 goto abort;
3410 }
3411
3412 track->usrbuf.mem = (void *)vstart;
3413 track->usrbuf.capacity = newbufsize;
3414 memset(track->usrbuf.mem, 0, newvsize);
3415 return 0;
3416
3417 /* failure */
3418 abort:
3419 track->uobj = NULL; /* paranoia */
3420 track->usrbuf.mem = NULL;
3421 track->usrbuf.capacity = 0;
3422 return error;
3423 }
3424
3425 /*
3426 * Free usrbuf (if available).
3427 */
3428 static void
3429 audio_free_usrbuf(audio_track_t *track)
3430 {
3431 vaddr_t vstart;
3432 vsize_t vsize;
3433
3434 vstart = (vaddr_t)track->usrbuf.mem;
3435 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3436 if (track->usrbuf.mem != NULL) {
3437 /*
3438 * Unmap the kernel mapping. uvm_unmap releases the
3439 * reference to the uvm object, and this should be the
3440 * last virtual mapping of the uvm object, so no need
3441 * to explicitly release (`detach') the object.
3442 */
3443 uvm_unmap(kernel_map, vstart, vstart + vsize);
3444
3445 track->uobj = NULL;
3446 track->usrbuf.mem = NULL;
3447 track->usrbuf.capacity = 0;
3448 }
3449 }
3450
3451 /*
3452 * This filter changes the volume for each channel.
3453 * arg->context points track->ch_volume[].
3454 */
3455 static void
3456 audio_track_chvol(audio_filter_arg_t *arg)
3457 {
3458 int16_t *ch_volume;
3459 const aint_t *s;
3460 aint_t *d;
3461 u_int i;
3462 u_int ch;
3463 u_int channels;
3464
3465 DIAGNOSTIC_filter_arg(arg);
3466 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3467 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3468 arg->srcfmt->channels, arg->dstfmt->channels);
3469 KASSERT(arg->context != NULL);
3470 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3471 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3472
3473 s = arg->src;
3474 d = arg->dst;
3475 ch_volume = arg->context;
3476
3477 channels = arg->srcfmt->channels;
3478 for (i = 0; i < arg->count; i++) {
3479 for (ch = 0; ch < channels; ch++) {
3480 aint2_t val;
3481 val = *s++;
3482 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3483 *d++ = (aint_t)val;
3484 }
3485 }
3486 }
3487
3488 /*
3489 * This filter performs conversion from stereo (or more channels) to mono.
3490 */
3491 static void
3492 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3493 {
3494 const aint_t *s;
3495 aint_t *d;
3496 u_int i;
3497
3498 DIAGNOSTIC_filter_arg(arg);
3499
3500 s = arg->src;
3501 d = arg->dst;
3502
3503 for (i = 0; i < arg->count; i++) {
3504 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3505 s += arg->srcfmt->channels;
3506 }
3507 }
3508
3509 /*
3510 * This filter performs conversion from mono to stereo (or more channels).
3511 */
3512 static void
3513 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3514 {
3515 const aint_t *s;
3516 aint_t *d;
3517 u_int i;
3518 u_int ch;
3519 u_int dstchannels;
3520
3521 DIAGNOSTIC_filter_arg(arg);
3522
3523 s = arg->src;
3524 d = arg->dst;
3525 dstchannels = arg->dstfmt->channels;
3526
3527 for (i = 0; i < arg->count; i++) {
3528 d[0] = s[0];
3529 d[1] = s[0];
3530 s++;
3531 d += dstchannels;
3532 }
3533 if (dstchannels > 2) {
3534 d = arg->dst;
3535 for (i = 0; i < arg->count; i++) {
3536 for (ch = 2; ch < dstchannels; ch++) {
3537 d[ch] = 0;
3538 }
3539 d += dstchannels;
3540 }
3541 }
3542 }
3543
3544 /*
3545 * This filter shrinks M channels into N channels.
3546 * Extra channels are discarded.
3547 */
3548 static void
3549 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3550 {
3551 const aint_t *s;
3552 aint_t *d;
3553 u_int i;
3554 u_int ch;
3555
3556 DIAGNOSTIC_filter_arg(arg);
3557
3558 s = arg->src;
3559 d = arg->dst;
3560
3561 for (i = 0; i < arg->count; i++) {
3562 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3563 *d++ = s[ch];
3564 }
3565 s += arg->srcfmt->channels;
3566 }
3567 }
3568
3569 /*
3570 * This filter expands M channels into N channels.
3571 * Silence is inserted for missing channels.
3572 */
3573 static void
3574 audio_track_chmix_expand(audio_filter_arg_t *arg)
3575 {
3576 const aint_t *s;
3577 aint_t *d;
3578 u_int i;
3579 u_int ch;
3580 u_int srcchannels;
3581 u_int dstchannels;
3582
3583 DIAGNOSTIC_filter_arg(arg);
3584
3585 s = arg->src;
3586 d = arg->dst;
3587
3588 srcchannels = arg->srcfmt->channels;
3589 dstchannels = arg->dstfmt->channels;
3590 for (i = 0; i < arg->count; i++) {
3591 for (ch = 0; ch < srcchannels; ch++) {
3592 *d++ = *s++;
3593 }
3594 for (; ch < dstchannels; ch++) {
3595 *d++ = 0;
3596 }
3597 }
3598 }
3599
3600 /*
3601 * This filter performs frequency conversion (up sampling).
3602 * It uses linear interpolation.
3603 */
3604 static void
3605 audio_track_freq_up(audio_filter_arg_t *arg)
3606 {
3607 audio_track_t *track;
3608 audio_ring_t *src;
3609 audio_ring_t *dst;
3610 const aint_t *s;
3611 aint_t *d;
3612 aint_t prev[AUDIO_MAX_CHANNELS];
3613 aint_t curr[AUDIO_MAX_CHANNELS];
3614 aint_t grad[AUDIO_MAX_CHANNELS];
3615 u_int i;
3616 u_int t;
3617 u_int step;
3618 u_int channels;
3619 u_int ch;
3620 int srcused;
3621
3622 track = arg->context;
3623 KASSERT(track);
3624 src = &track->freq.srcbuf;
3625 dst = track->freq.dst;
3626 DIAGNOSTIC_ring(dst);
3627 DIAGNOSTIC_ring(src);
3628 KASSERT(src->used > 0);
3629 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3630 "src->fmt.channels=%d dst->fmt.channels=%d",
3631 src->fmt.channels, dst->fmt.channels);
3632 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3633 "src->head=%d track->mixer->frames_per_block=%d",
3634 src->head, track->mixer->frames_per_block);
3635
3636 s = arg->src;
3637 d = arg->dst;
3638
3639 /*
3640 * In order to faciliate interpolation for each block, slide (delay)
3641 * input by one sample. As a result, strictly speaking, the output
3642 * phase is delayed by 1/dstfreq. However, I believe there is no
3643 * observable impact.
3644 *
3645 * Example)
3646 * srcfreq:dstfreq = 1:3
3647 *
3648 * A - -
3649 * |
3650 * |
3651 * | B - -
3652 * +-----+-----> input timeframe
3653 * 0 1
3654 *
3655 * 0 1
3656 * +-----+-----> input timeframe
3657 * | A
3658 * | x x
3659 * | x x
3660 * x (B)
3661 * +-+-+-+-+-+-> output timeframe
3662 * 0 1 2 3 4 5
3663 */
3664
3665 /* Last samples in previous block */
3666 channels = src->fmt.channels;
3667 for (ch = 0; ch < channels; ch++) {
3668 prev[ch] = track->freq_prev[ch];
3669 curr[ch] = track->freq_curr[ch];
3670 grad[ch] = curr[ch] - prev[ch];
3671 }
3672
3673 step = track->freq_step;
3674 t = track->freq_current;
3675 //#define FREQ_DEBUG
3676 #if defined(FREQ_DEBUG)
3677 #define PRINTF(fmt...) printf(fmt)
3678 #else
3679 #define PRINTF(fmt...) do { } while (0)
3680 #endif
3681 srcused = src->used;
3682 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3683 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3684 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3685 PRINTF(" t=%d\n", t);
3686
3687 for (i = 0; i < arg->count; i++) {
3688 PRINTF("i=%d t=%5d", i, t);
3689 if (t >= 65536) {
3690 for (ch = 0; ch < channels; ch++) {
3691 prev[ch] = curr[ch];
3692 curr[ch] = *s++;
3693 grad[ch] = curr[ch] - prev[ch];
3694 }
3695 PRINTF(" prev=%d s[%d]=%d",
3696 prev[0], src->used - srcused, curr[0]);
3697
3698 /* Update */
3699 t -= 65536;
3700 srcused--;
3701 if (srcused < 0) {
3702 PRINTF(" break\n");
3703 break;
3704 }
3705 }
3706
3707 for (ch = 0; ch < channels; ch++) {
3708 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3709 #if defined(FREQ_DEBUG)
3710 if (ch == 0)
3711 printf(" t=%5d *d=%d", t, d[-1]);
3712 #endif
3713 }
3714 t += step;
3715
3716 PRINTF("\n");
3717 }
3718 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3719
3720 auring_take(src, src->used);
3721 auring_push(dst, i);
3722
3723 /* Adjust */
3724 t += track->freq_leap;
3725
3726 track->freq_current = t;
3727 for (ch = 0; ch < channels; ch++) {
3728 track->freq_prev[ch] = prev[ch];
3729 track->freq_curr[ch] = curr[ch];
3730 }
3731 }
3732
3733 /*
3734 * This filter performs frequency conversion (down sampling).
3735 * It uses simple thinning.
3736 */
3737 static void
3738 audio_track_freq_down(audio_filter_arg_t *arg)
3739 {
3740 audio_track_t *track;
3741 audio_ring_t *src;
3742 audio_ring_t *dst;
3743 const aint_t *s0;
3744 aint_t *d;
3745 u_int i;
3746 u_int t;
3747 u_int step;
3748 u_int ch;
3749 u_int channels;
3750
3751 track = arg->context;
3752 KASSERT(track);
3753 src = &track->freq.srcbuf;
3754 dst = track->freq.dst;
3755
3756 DIAGNOSTIC_ring(dst);
3757 DIAGNOSTIC_ring(src);
3758 KASSERT(src->used > 0);
3759 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3760 "src->fmt.channels=%d dst->fmt.channels=%d",
3761 src->fmt.channels, dst->fmt.channels);
3762 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3763 "src->head=%d track->mixer->frames_per_block=%d",
3764 src->head, track->mixer->frames_per_block);
3765
3766 s0 = arg->src;
3767 d = arg->dst;
3768 t = track->freq_current;
3769 step = track->freq_step;
3770 channels = dst->fmt.channels;
3771 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3772 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3773 PRINTF(" t=%d\n", t);
3774
3775 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3776 const aint_t *s;
3777 PRINTF("i=%4d t=%10d", i, t);
3778 s = s0 + (t / 65536) * channels;
3779 PRINTF(" s=%5ld", (s - s0) / channels);
3780 for (ch = 0; ch < channels; ch++) {
3781 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3782 *d++ = s[ch];
3783 }
3784 PRINTF("\n");
3785 t += step;
3786 }
3787 t += track->freq_leap;
3788 PRINTF("end t=%d\n", t);
3789 auring_take(src, src->used);
3790 auring_push(dst, i);
3791 track->freq_current = t % 65536;
3792 }
3793
3794 /*
3795 * Creates track and returns it.
3796 * Must be called without sc_lock held.
3797 */
3798 audio_track_t *
3799 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3800 {
3801 audio_track_t *track;
3802 static int newid = 0;
3803
3804 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3805
3806 track->id = newid++;
3807 track->mixer = mixer;
3808 track->mode = mixer->mode;
3809
3810 /* Do TRACE after id is assigned. */
3811 TRACET(3, track, "for %s",
3812 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3813
3814 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3815 track->volume = 256;
3816 #endif
3817 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3818 track->ch_volume[i] = 256;
3819 }
3820
3821 return track;
3822 }
3823
3824 /*
3825 * Release all resources of the track and track itself.
3826 * track must not be NULL. Don't specify the track within the file
3827 * structure linked from sc->sc_files.
3828 */
3829 static void
3830 audio_track_destroy(audio_track_t *track)
3831 {
3832
3833 KASSERT(track);
3834
3835 audio_free_usrbuf(track);
3836 audio_free(track->codec.srcbuf.mem);
3837 audio_free(track->chvol.srcbuf.mem);
3838 audio_free(track->chmix.srcbuf.mem);
3839 audio_free(track->freq.srcbuf.mem);
3840 audio_free(track->outbuf.mem);
3841
3842 kmem_free(track, sizeof(*track));
3843 }
3844
3845 /*
3846 * It returns encoding conversion filter according to src and dst format.
3847 * If it is not a convertible pair, it returns NULL. Either src or dst
3848 * must be internal format.
3849 */
3850 static audio_filter_t
3851 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3852 const audio_format2_t *dst)
3853 {
3854
3855 if (audio_format2_is_internal(src)) {
3856 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3857 return audio_internal_to_mulaw;
3858 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3859 return audio_internal_to_alaw;
3860 } else if (audio_format2_is_linear(dst)) {
3861 switch (dst->stride) {
3862 case 8:
3863 return audio_internal_to_linear8;
3864 case 16:
3865 return audio_internal_to_linear16;
3866 #if defined(AUDIO_SUPPORT_LINEAR24)
3867 case 24:
3868 return audio_internal_to_linear24;
3869 #endif
3870 case 32:
3871 return audio_internal_to_linear32;
3872 default:
3873 TRACET(1, track, "unsupported %s stride %d",
3874 "dst", dst->stride);
3875 goto abort;
3876 }
3877 }
3878 } else if (audio_format2_is_internal(dst)) {
3879 if (src->encoding == AUDIO_ENCODING_ULAW) {
3880 return audio_mulaw_to_internal;
3881 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3882 return audio_alaw_to_internal;
3883 } else if (audio_format2_is_linear(src)) {
3884 switch (src->stride) {
3885 case 8:
3886 return audio_linear8_to_internal;
3887 case 16:
3888 return audio_linear16_to_internal;
3889 #if defined(AUDIO_SUPPORT_LINEAR24)
3890 case 24:
3891 return audio_linear24_to_internal;
3892 #endif
3893 case 32:
3894 return audio_linear32_to_internal;
3895 default:
3896 TRACET(1, track, "unsupported %s stride %d",
3897 "src", src->stride);
3898 goto abort;
3899 }
3900 }
3901 }
3902
3903 TRACET(1, track, "unsupported encoding");
3904 abort:
3905 #if defined(AUDIO_DEBUG)
3906 if (audiodebug >= 2) {
3907 char buf[100];
3908 audio_format2_tostr(buf, sizeof(buf), src);
3909 TRACET(2, track, "src %s", buf);
3910 audio_format2_tostr(buf, sizeof(buf), dst);
3911 TRACET(2, track, "dst %s", buf);
3912 }
3913 #endif
3914 return NULL;
3915 }
3916
3917 /*
3918 * Initialize the codec stage of this track as necessary.
3919 * If successful, it initializes the codec stage as necessary, stores updated
3920 * last_dst in *last_dstp in any case, and returns 0.
3921 * Otherwise, it returns errno without modifying *last_dstp.
3922 */
3923 static int
3924 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3925 {
3926 audio_ring_t *last_dst;
3927 audio_ring_t *srcbuf;
3928 audio_format2_t *srcfmt;
3929 audio_format2_t *dstfmt;
3930 audio_filter_arg_t *arg;
3931 u_int len;
3932 int error;
3933
3934 KASSERT(track);
3935
3936 last_dst = *last_dstp;
3937 dstfmt = &last_dst->fmt;
3938 srcfmt = &track->inputfmt;
3939 srcbuf = &track->codec.srcbuf;
3940 error = 0;
3941
3942 if (srcfmt->encoding != dstfmt->encoding
3943 || srcfmt->precision != dstfmt->precision
3944 || srcfmt->stride != dstfmt->stride) {
3945 track->codec.dst = last_dst;
3946
3947 srcbuf->fmt = *dstfmt;
3948 srcbuf->fmt.encoding = srcfmt->encoding;
3949 srcbuf->fmt.precision = srcfmt->precision;
3950 srcbuf->fmt.stride = srcfmt->stride;
3951
3952 track->codec.filter = audio_track_get_codec(track,
3953 &srcbuf->fmt, dstfmt);
3954 if (track->codec.filter == NULL) {
3955 error = EINVAL;
3956 goto abort;
3957 }
3958
3959 srcbuf->head = 0;
3960 srcbuf->used = 0;
3961 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3962 len = auring_bytelen(srcbuf);
3963 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3964
3965 arg = &track->codec.arg;
3966 arg->srcfmt = &srcbuf->fmt;
3967 arg->dstfmt = dstfmt;
3968 arg->context = NULL;
3969
3970 *last_dstp = srcbuf;
3971 return 0;
3972 }
3973
3974 abort:
3975 track->codec.filter = NULL;
3976 audio_free(srcbuf->mem);
3977 return error;
3978 }
3979
3980 /*
3981 * Initialize the chvol stage of this track as necessary.
3982 * If successful, it initializes the chvol stage as necessary, stores updated
3983 * last_dst in *last_dstp in any case, and returns 0.
3984 * Otherwise, it returns errno without modifying *last_dstp.
3985 */
3986 static int
3987 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3988 {
3989 audio_ring_t *last_dst;
3990 audio_ring_t *srcbuf;
3991 audio_format2_t *srcfmt;
3992 audio_format2_t *dstfmt;
3993 audio_filter_arg_t *arg;
3994 u_int len;
3995 int error;
3996
3997 KASSERT(track);
3998
3999 last_dst = *last_dstp;
4000 dstfmt = &last_dst->fmt;
4001 srcfmt = &track->inputfmt;
4002 srcbuf = &track->chvol.srcbuf;
4003 error = 0;
4004
4005 /* Check whether channel volume conversion is necessary. */
4006 bool use_chvol = false;
4007 for (int ch = 0; ch < srcfmt->channels; ch++) {
4008 if (track->ch_volume[ch] != 256) {
4009 use_chvol = true;
4010 break;
4011 }
4012 }
4013
4014 if (use_chvol == true) {
4015 track->chvol.dst = last_dst;
4016 track->chvol.filter = audio_track_chvol;
4017
4018 srcbuf->fmt = *dstfmt;
4019 /* no format conversion occurs */
4020
4021 srcbuf->head = 0;
4022 srcbuf->used = 0;
4023 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4024 len = auring_bytelen(srcbuf);
4025 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4026
4027 arg = &track->chvol.arg;
4028 arg->srcfmt = &srcbuf->fmt;
4029 arg->dstfmt = dstfmt;
4030 arg->context = track->ch_volume;
4031
4032 *last_dstp = srcbuf;
4033 return 0;
4034 }
4035
4036 track->chvol.filter = NULL;
4037 audio_free(srcbuf->mem);
4038 return error;
4039 }
4040
4041 /*
4042 * Initialize the chmix stage of this track as necessary.
4043 * If successful, it initializes the chmix stage as necessary, stores updated
4044 * last_dst in *last_dstp in any case, and returns 0.
4045 * Otherwise, it returns errno without modifying *last_dstp.
4046 */
4047 static int
4048 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4049 {
4050 audio_ring_t *last_dst;
4051 audio_ring_t *srcbuf;
4052 audio_format2_t *srcfmt;
4053 audio_format2_t *dstfmt;
4054 audio_filter_arg_t *arg;
4055 u_int srcch;
4056 u_int dstch;
4057 u_int len;
4058 int error;
4059
4060 KASSERT(track);
4061
4062 last_dst = *last_dstp;
4063 dstfmt = &last_dst->fmt;
4064 srcfmt = &track->inputfmt;
4065 srcbuf = &track->chmix.srcbuf;
4066 error = 0;
4067
4068 srcch = srcfmt->channels;
4069 dstch = dstfmt->channels;
4070 if (srcch != dstch) {
4071 track->chmix.dst = last_dst;
4072
4073 if (srcch >= 2 && dstch == 1) {
4074 track->chmix.filter = audio_track_chmix_mixLR;
4075 } else if (srcch == 1 && dstch >= 2) {
4076 track->chmix.filter = audio_track_chmix_dupLR;
4077 } else if (srcch > dstch) {
4078 track->chmix.filter = audio_track_chmix_shrink;
4079 } else {
4080 track->chmix.filter = audio_track_chmix_expand;
4081 }
4082
4083 srcbuf->fmt = *dstfmt;
4084 srcbuf->fmt.channels = srcch;
4085
4086 srcbuf->head = 0;
4087 srcbuf->used = 0;
4088 /* XXX The buffer size should be able to calculate. */
4089 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4090 len = auring_bytelen(srcbuf);
4091 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4092
4093 arg = &track->chmix.arg;
4094 arg->srcfmt = &srcbuf->fmt;
4095 arg->dstfmt = dstfmt;
4096 arg->context = NULL;
4097
4098 *last_dstp = srcbuf;
4099 return 0;
4100 }
4101
4102 track->chmix.filter = NULL;
4103 audio_free(srcbuf->mem);
4104 return error;
4105 }
4106
4107 /*
4108 * Initialize the freq stage of this track as necessary.
4109 * If successful, it initializes the freq stage as necessary, stores updated
4110 * last_dst in *last_dstp in any case, and returns 0.
4111 * Otherwise, it returns errno without modifying *last_dstp.
4112 */
4113 static int
4114 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4115 {
4116 audio_ring_t *last_dst;
4117 audio_ring_t *srcbuf;
4118 audio_format2_t *srcfmt;
4119 audio_format2_t *dstfmt;
4120 audio_filter_arg_t *arg;
4121 uint32_t srcfreq;
4122 uint32_t dstfreq;
4123 u_int dst_capacity;
4124 u_int mod;
4125 u_int len;
4126 int error;
4127
4128 KASSERT(track);
4129
4130 last_dst = *last_dstp;
4131 dstfmt = &last_dst->fmt;
4132 srcfmt = &track->inputfmt;
4133 srcbuf = &track->freq.srcbuf;
4134 error = 0;
4135
4136 srcfreq = srcfmt->sample_rate;
4137 dstfreq = dstfmt->sample_rate;
4138 if (srcfreq != dstfreq) {
4139 track->freq.dst = last_dst;
4140
4141 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4142 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4143
4144 /* freq_step is the ratio of src/dst when let dst 65536. */
4145 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4146
4147 dst_capacity = frame_per_block(track->mixer, dstfmt);
4148 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4149 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4150
4151 if (track->freq_step < 65536) {
4152 track->freq.filter = audio_track_freq_up;
4153 /* In order to carry at the first time. */
4154 track->freq_current = 65536;
4155 } else {
4156 track->freq.filter = audio_track_freq_down;
4157 track->freq_current = 0;
4158 }
4159
4160 srcbuf->fmt = *dstfmt;
4161 srcbuf->fmt.sample_rate = srcfreq;
4162
4163 srcbuf->head = 0;
4164 srcbuf->used = 0;
4165 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4166 len = auring_bytelen(srcbuf);
4167 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4168
4169 arg = &track->freq.arg;
4170 arg->srcfmt = &srcbuf->fmt;
4171 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4172 arg->context = track;
4173
4174 *last_dstp = srcbuf;
4175 return 0;
4176 }
4177
4178 track->freq.filter = NULL;
4179 audio_free(srcbuf->mem);
4180 return error;
4181 }
4182
4183 /*
4184 * When playing back: (e.g. if codec and freq stage are valid)
4185 *
4186 * write
4187 * | uiomove
4188 * v
4189 * usrbuf [...............] byte ring buffer (mmap-able)
4190 * | memcpy
4191 * v
4192 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4193 * .dst ----+
4194 * | convert
4195 * v
4196 * freq.srcbuf [....] 1 block (ring) buffer
4197 * .dst ----+
4198 * | convert
4199 * v
4200 * outbuf [...............] NBLKOUT blocks ring buffer
4201 *
4202 *
4203 * When recording:
4204 *
4205 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4206 * .dst ----+
4207 * | convert
4208 * v
4209 * codec.srcbuf[.....] 1 block (ring) buffer
4210 * .dst ----+
4211 * | convert
4212 * v
4213 * outbuf [.....] 1 block (ring) buffer
4214 * | memcpy
4215 * v
4216 * usrbuf [...............] byte ring buffer (mmap-able *)
4217 * | uiomove
4218 * v
4219 * read
4220 *
4221 * *: usrbuf for recording is also mmap-able due to symmetry with
4222 * playback buffer, but for now mmap will never happen for recording.
4223 */
4224
4225 /*
4226 * Set the userland format of this track.
4227 * usrfmt argument should be parameter verified with audio_check_params().
4228 * It will release and reallocate all internal conversion buffers.
4229 * It returns 0 if successful. Otherwise it returns errno with clearing all
4230 * internal buffers.
4231 * It must be called without sc_intr_lock since uvm_* routines require non
4232 * intr_lock state.
4233 * It must be called with track lock held since it may release and reallocate
4234 * outbuf.
4235 */
4236 static int
4237 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4238 {
4239 struct audio_softc *sc;
4240 u_int newbufsize;
4241 u_int oldblksize;
4242 u_int len;
4243 int error;
4244
4245 KASSERT(track);
4246 sc = track->mixer->sc;
4247
4248 /* usrbuf is the closest buffer to the userland. */
4249 track->usrbuf.fmt = *usrfmt;
4250
4251 /*
4252 * For references, one block size (in 40msec) is:
4253 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4254 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4255 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4256 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4257 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4258 *
4259 * For example,
4260 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4261 * newbufsize = rounddown(65536 / 7056) = 63504
4262 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4263 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4264 *
4265 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4266 * newbufsize = rounddown(65536 / 7680) = 61440
4267 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4268 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4269 */
4270 oldblksize = track->usrbuf_blksize;
4271 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4272 frame_per_block(track->mixer, &track->usrbuf.fmt));
4273 track->usrbuf.head = 0;
4274 track->usrbuf.used = 0;
4275 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4276 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4277 error = audio_realloc_usrbuf(track, newbufsize);
4278 if (error) {
4279 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4280 newbufsize);
4281 goto error;
4282 }
4283
4284 /* Recalc water mark. */
4285 if (track->usrbuf_blksize != oldblksize) {
4286 if (audio_track_is_playback(track)) {
4287 /* Set high at 100%, low at 75%. */
4288 track->usrbuf_usedhigh = track->usrbuf.capacity;
4289 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4290 } else {
4291 /* Set high at 100% minus 1block(?), low at 0% */
4292 track->usrbuf_usedhigh = track->usrbuf.capacity -
4293 track->usrbuf_blksize;
4294 track->usrbuf_usedlow = 0;
4295 }
4296 }
4297
4298 /* Stage buffer */
4299 audio_ring_t *last_dst = &track->outbuf;
4300 if (audio_track_is_playback(track)) {
4301 /* On playback, initialize from the mixer side in order. */
4302 track->inputfmt = *usrfmt;
4303 track->outbuf.fmt = track->mixer->track_fmt;
4304
4305 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4306 goto error;
4307 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4308 goto error;
4309 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4310 goto error;
4311 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4312 goto error;
4313 } else {
4314 /* On recording, initialize from userland side in order. */
4315 track->inputfmt = track->mixer->track_fmt;
4316 track->outbuf.fmt = *usrfmt;
4317
4318 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4319 goto error;
4320 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4321 goto error;
4322 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4323 goto error;
4324 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4325 goto error;
4326 }
4327 #if 0
4328 /* debug */
4329 if (track->freq.filter) {
4330 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4331 audio_print_format2("freq dst", &track->freq.dst->fmt);
4332 }
4333 if (track->chmix.filter) {
4334 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4335 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4336 }
4337 if (track->chvol.filter) {
4338 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4339 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4340 }
4341 if (track->codec.filter) {
4342 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4343 audio_print_format2("codec dst", &track->codec.dst->fmt);
4344 }
4345 #endif
4346
4347 /* Stage input buffer */
4348 track->input = last_dst;
4349
4350 /*
4351 * On the recording track, make the first stage a ring buffer.
4352 * XXX is there a better way?
4353 */
4354 if (audio_track_is_record(track)) {
4355 track->input->capacity = NBLKOUT *
4356 frame_per_block(track->mixer, &track->input->fmt);
4357 len = auring_bytelen(track->input);
4358 track->input->mem = audio_realloc(track->input->mem, len);
4359 }
4360
4361 /*
4362 * Output buffer.
4363 * On the playback track, its capacity is NBLKOUT blocks.
4364 * On the recording track, its capacity is 1 block.
4365 */
4366 track->outbuf.head = 0;
4367 track->outbuf.used = 0;
4368 track->outbuf.capacity = frame_per_block(track->mixer,
4369 &track->outbuf.fmt);
4370 if (audio_track_is_playback(track))
4371 track->outbuf.capacity *= NBLKOUT;
4372 len = auring_bytelen(&track->outbuf);
4373 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4374 if (track->outbuf.mem == NULL) {
4375 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4376 error = ENOMEM;
4377 goto error;
4378 }
4379
4380 #if defined(AUDIO_DEBUG)
4381 if (audiodebug >= 3) {
4382 struct audio_track_debugbuf m;
4383
4384 memset(&m, 0, sizeof(m));
4385 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4386 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4387 if (track->freq.filter)
4388 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4389 track->freq.srcbuf.capacity *
4390 frametobyte(&track->freq.srcbuf.fmt, 1));
4391 if (track->chmix.filter)
4392 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4393 track->chmix.srcbuf.capacity *
4394 frametobyte(&track->chmix.srcbuf.fmt, 1));
4395 if (track->chvol.filter)
4396 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4397 track->chvol.srcbuf.capacity *
4398 frametobyte(&track->chvol.srcbuf.fmt, 1));
4399 if (track->codec.filter)
4400 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4401 track->codec.srcbuf.capacity *
4402 frametobyte(&track->codec.srcbuf.fmt, 1));
4403 snprintf(m.usrbuf, sizeof(m.usrbuf),
4404 " usr=%d", track->usrbuf.capacity);
4405
4406 if (audio_track_is_playback(track)) {
4407 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4408 m.outbuf, m.freq, m.chmix,
4409 m.chvol, m.codec, m.usrbuf);
4410 } else {
4411 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4412 m.freq, m.chmix, m.chvol,
4413 m.codec, m.outbuf, m.usrbuf);
4414 }
4415 }
4416 #endif
4417 return 0;
4418
4419 error:
4420 audio_free_usrbuf(track);
4421 audio_free(track->codec.srcbuf.mem);
4422 audio_free(track->chvol.srcbuf.mem);
4423 audio_free(track->chmix.srcbuf.mem);
4424 audio_free(track->freq.srcbuf.mem);
4425 audio_free(track->outbuf.mem);
4426 return error;
4427 }
4428
4429 /*
4430 * Fill silence frames (as the internal format) up to 1 block
4431 * if the ring is not empty and less than 1 block.
4432 * It returns the number of appended frames.
4433 */
4434 static int
4435 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4436 {
4437 int fpb;
4438 int n;
4439
4440 KASSERT(track);
4441 KASSERT(audio_format2_is_internal(&ring->fmt));
4442
4443 /* XXX is n correct? */
4444 /* XXX memset uses frametobyte()? */
4445
4446 if (ring->used == 0)
4447 return 0;
4448
4449 fpb = frame_per_block(track->mixer, &ring->fmt);
4450 if (ring->used >= fpb)
4451 return 0;
4452
4453 n = (ring->capacity - ring->used) % fpb;
4454
4455 KASSERTMSG(auring_get_contig_free(ring) >= n,
4456 "auring_get_contig_free(ring)=%d n=%d",
4457 auring_get_contig_free(ring), n);
4458
4459 memset(auring_tailptr_aint(ring), 0,
4460 n * ring->fmt.channels * sizeof(aint_t));
4461 auring_push(ring, n);
4462 return n;
4463 }
4464
4465 /*
4466 * Execute the conversion stage.
4467 * It prepares arg from this stage and executes stage->filter.
4468 * It must be called only if stage->filter is not NULL.
4469 *
4470 * For stages other than frequency conversion, the function increments
4471 * src and dst counters here. For frequency conversion stage, on the
4472 * other hand, the function does not touch src and dst counters and
4473 * filter side has to increment them.
4474 */
4475 static void
4476 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4477 {
4478 audio_filter_arg_t *arg;
4479 int srccount;
4480 int dstcount;
4481 int count;
4482
4483 KASSERT(track);
4484 KASSERT(stage->filter);
4485
4486 srccount = auring_get_contig_used(&stage->srcbuf);
4487 dstcount = auring_get_contig_free(stage->dst);
4488
4489 if (isfreq) {
4490 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4491 count = uimin(dstcount, track->mixer->frames_per_block);
4492 } else {
4493 count = uimin(srccount, dstcount);
4494 }
4495
4496 if (count > 0) {
4497 arg = &stage->arg;
4498 arg->src = auring_headptr(&stage->srcbuf);
4499 arg->dst = auring_tailptr(stage->dst);
4500 arg->count = count;
4501
4502 stage->filter(arg);
4503
4504 if (!isfreq) {
4505 auring_take(&stage->srcbuf, count);
4506 auring_push(stage->dst, count);
4507 }
4508 }
4509 }
4510
4511 /*
4512 * Produce output buffer for playback from user input buffer.
4513 * It must be called only if usrbuf is not empty and outbuf is
4514 * available at least one free block.
4515 */
4516 static void
4517 audio_track_play(audio_track_t *track)
4518 {
4519 audio_ring_t *usrbuf;
4520 audio_ring_t *input;
4521 int count;
4522 int framesize;
4523 int bytes;
4524
4525 KASSERT(track);
4526 KASSERT(track->lock);
4527 TRACET(4, track, "start pstate=%d", track->pstate);
4528
4529 /* At this point usrbuf must not be empty. */
4530 KASSERT(track->usrbuf.used > 0);
4531 /* Also, outbuf must be available at least one block. */
4532 count = auring_get_contig_free(&track->outbuf);
4533 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4534 "count=%d fpb=%d",
4535 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4536
4537 /* XXX TODO: is this necessary for now? */
4538 int track_count_0 = track->outbuf.used;
4539
4540 usrbuf = &track->usrbuf;
4541 input = track->input;
4542
4543 /*
4544 * framesize is always 1 byte or more since all formats supported as
4545 * usrfmt(=input) have 8bit or more stride.
4546 */
4547 framesize = frametobyte(&input->fmt, 1);
4548 KASSERT(framesize >= 1);
4549
4550 /* The next stage of usrbuf (=input) must be available. */
4551 KASSERT(auring_get_contig_free(input) > 0);
4552
4553 /*
4554 * Copy usrbuf up to 1block to input buffer.
4555 * count is the number of frames to copy from usrbuf.
4556 * bytes is the number of bytes to copy from usrbuf. However it is
4557 * not copied less than one frame.
4558 */
4559 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4560 bytes = count * framesize;
4561
4562 track->usrbuf_stamp += bytes;
4563
4564 if (usrbuf->head + bytes < usrbuf->capacity) {
4565 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4566 (uint8_t *)usrbuf->mem + usrbuf->head,
4567 bytes);
4568 auring_push(input, count);
4569 auring_take(usrbuf, bytes);
4570 } else {
4571 int bytes1;
4572 int bytes2;
4573
4574 bytes1 = auring_get_contig_used(usrbuf);
4575 KASSERTMSG(bytes1 % framesize == 0,
4576 "bytes1=%d framesize=%d", bytes1, framesize);
4577 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4578 (uint8_t *)usrbuf->mem + usrbuf->head,
4579 bytes1);
4580 auring_push(input, bytes1 / framesize);
4581 auring_take(usrbuf, bytes1);
4582
4583 bytes2 = bytes - bytes1;
4584 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4585 (uint8_t *)usrbuf->mem + usrbuf->head,
4586 bytes2);
4587 auring_push(input, bytes2 / framesize);
4588 auring_take(usrbuf, bytes2);
4589 }
4590
4591 /* Encoding conversion */
4592 if (track->codec.filter)
4593 audio_apply_stage(track, &track->codec, false);
4594
4595 /* Channel volume */
4596 if (track->chvol.filter)
4597 audio_apply_stage(track, &track->chvol, false);
4598
4599 /* Channel mix */
4600 if (track->chmix.filter)
4601 audio_apply_stage(track, &track->chmix, false);
4602
4603 /* Frequency conversion */
4604 /*
4605 * Since the frequency conversion needs correction for each block,
4606 * it rounds up to 1 block.
4607 */
4608 if (track->freq.filter) {
4609 int n;
4610 n = audio_append_silence(track, &track->freq.srcbuf);
4611 if (n > 0) {
4612 TRACET(4, track,
4613 "freq.srcbuf add silence %d -> %d/%d/%d",
4614 n,
4615 track->freq.srcbuf.head,
4616 track->freq.srcbuf.used,
4617 track->freq.srcbuf.capacity);
4618 }
4619 if (track->freq.srcbuf.used > 0) {
4620 audio_apply_stage(track, &track->freq, true);
4621 }
4622 }
4623
4624 if (bytes < track->usrbuf_blksize) {
4625 /*
4626 * Clear all conversion buffer pointer if the conversion was
4627 * not exactly one block. These conversion stage buffers are
4628 * certainly circular buffers because of symmetry with the
4629 * previous and next stage buffer. However, since they are
4630 * treated as simple contiguous buffers in operation, so head
4631 * always should point 0. This may happen during drain-age.
4632 */
4633 TRACET(4, track, "reset stage");
4634 if (track->codec.filter) {
4635 KASSERT(track->codec.srcbuf.used == 0);
4636 track->codec.srcbuf.head = 0;
4637 }
4638 if (track->chvol.filter) {
4639 KASSERT(track->chvol.srcbuf.used == 0);
4640 track->chvol.srcbuf.head = 0;
4641 }
4642 if (track->chmix.filter) {
4643 KASSERT(track->chmix.srcbuf.used == 0);
4644 track->chmix.srcbuf.head = 0;
4645 }
4646 if (track->freq.filter) {
4647 KASSERT(track->freq.srcbuf.used == 0);
4648 track->freq.srcbuf.head = 0;
4649 }
4650 }
4651
4652 if (track->input == &track->outbuf) {
4653 track->outputcounter = track->inputcounter;
4654 } else {
4655 track->outputcounter += track->outbuf.used - track_count_0;
4656 }
4657
4658 #if defined(AUDIO_DEBUG)
4659 if (audiodebug >= 3) {
4660 struct audio_track_debugbuf m;
4661 audio_track_bufstat(track, &m);
4662 TRACET(0, track, "end%s%s%s%s%s%s",
4663 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4664 }
4665 #endif
4666 }
4667
4668 /*
4669 * Produce user output buffer for recording from input buffer.
4670 */
4671 static void
4672 audio_track_record(audio_track_t *track)
4673 {
4674 audio_ring_t *outbuf;
4675 audio_ring_t *usrbuf;
4676 int count;
4677 int bytes;
4678 int framesize;
4679
4680 KASSERT(track);
4681 KASSERT(track->lock);
4682
4683 /* Number of frames to process */
4684 count = auring_get_contig_used(track->input);
4685 count = uimin(count, track->mixer->frames_per_block);
4686 if (count == 0) {
4687 TRACET(4, track, "count == 0");
4688 return;
4689 }
4690
4691 /* Frequency conversion */
4692 if (track->freq.filter) {
4693 if (track->freq.srcbuf.used > 0) {
4694 audio_apply_stage(track, &track->freq, true);
4695 /* XXX should input of freq be from beginning of buf? */
4696 }
4697 }
4698
4699 /* Channel mix */
4700 if (track->chmix.filter)
4701 audio_apply_stage(track, &track->chmix, false);
4702
4703 /* Channel volume */
4704 if (track->chvol.filter)
4705 audio_apply_stage(track, &track->chvol, false);
4706
4707 /* Encoding conversion */
4708 if (track->codec.filter)
4709 audio_apply_stage(track, &track->codec, false);
4710
4711 /* Copy outbuf to usrbuf */
4712 outbuf = &track->outbuf;
4713 usrbuf = &track->usrbuf;
4714 /*
4715 * framesize is always 1 byte or more since all formats supported
4716 * as usrfmt(=output) have 8bit or more stride.
4717 */
4718 framesize = frametobyte(&outbuf->fmt, 1);
4719 KASSERT(framesize >= 1);
4720 /*
4721 * count is the number of frames to copy to usrbuf.
4722 * bytes is the number of bytes to copy to usrbuf.
4723 */
4724 count = outbuf->used;
4725 count = uimin(count,
4726 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4727 bytes = count * framesize;
4728 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4729 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4730 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4731 bytes);
4732 auring_push(usrbuf, bytes);
4733 auring_take(outbuf, count);
4734 } else {
4735 int bytes1;
4736 int bytes2;
4737
4738 bytes1 = auring_get_contig_free(usrbuf);
4739 KASSERTMSG(bytes1 % framesize == 0,
4740 "bytes1=%d framesize=%d", bytes1, framesize);
4741 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4742 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4743 bytes1);
4744 auring_push(usrbuf, bytes1);
4745 auring_take(outbuf, bytes1 / framesize);
4746
4747 bytes2 = bytes - bytes1;
4748 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4749 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4750 bytes2);
4751 auring_push(usrbuf, bytes2);
4752 auring_take(outbuf, bytes2 / framesize);
4753 }
4754
4755 /* XXX TODO: any counters here? */
4756
4757 #if defined(AUDIO_DEBUG)
4758 if (audiodebug >= 3) {
4759 struct audio_track_debugbuf m;
4760 audio_track_bufstat(track, &m);
4761 TRACET(0, track, "end%s%s%s%s%s%s",
4762 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4763 }
4764 #endif
4765 }
4766
4767 /*
4768 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4769 * Must be called with sc_exlock held.
4770 */
4771 static u_int
4772 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4773 {
4774 audio_format2_t *fmt;
4775 u_int blktime;
4776 u_int frames_per_block;
4777
4778 KASSERT(sc->sc_exlock);
4779
4780 fmt = &mixer->hwbuf.fmt;
4781 blktime = sc->sc_blk_ms;
4782
4783 /*
4784 * If stride is not multiples of 8, special treatment is necessary.
4785 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4786 */
4787 if (fmt->stride == 4) {
4788 frames_per_block = fmt->sample_rate * blktime / 1000;
4789 if ((frames_per_block & 1) != 0)
4790 blktime *= 2;
4791 }
4792 #ifdef DIAGNOSTIC
4793 else if (fmt->stride % NBBY != 0) {
4794 panic("unsupported HW stride %d", fmt->stride);
4795 }
4796 #endif
4797
4798 return blktime;
4799 }
4800
4801 /*
4802 * Initialize the mixer corresponding to the mode.
4803 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4804 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4805 * This function returns 0 on successful. Otherwise returns errno.
4806 * Must be called with sc_exlock held and without sc_lock held.
4807 */
4808 static int
4809 audio_mixer_init(struct audio_softc *sc, int mode,
4810 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4811 {
4812 char codecbuf[64];
4813 char blkdmsbuf[8];
4814 audio_trackmixer_t *mixer;
4815 void (*softint_handler)(void *);
4816 int len;
4817 int blksize;
4818 int capacity;
4819 size_t bufsize;
4820 int hwblks;
4821 int blkms;
4822 int blkdms;
4823 int error;
4824
4825 KASSERT(hwfmt != NULL);
4826 KASSERT(reg != NULL);
4827 KASSERT(sc->sc_exlock);
4828
4829 error = 0;
4830 if (mode == AUMODE_PLAY)
4831 mixer = sc->sc_pmixer;
4832 else
4833 mixer = sc->sc_rmixer;
4834
4835 mixer->sc = sc;
4836 mixer->mode = mode;
4837
4838 mixer->hwbuf.fmt = *hwfmt;
4839 mixer->volume = 256;
4840 mixer->blktime_d = 1000;
4841 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4842 sc->sc_blk_ms = mixer->blktime_n;
4843 hwblks = NBLKHW;
4844
4845 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4846 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4847 if (sc->hw_if->round_blocksize) {
4848 int rounded;
4849 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4850 mutex_enter(sc->sc_lock);
4851 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4852 mode, &p);
4853 mutex_exit(sc->sc_lock);
4854 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4855 if (rounded != blksize) {
4856 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4857 mixer->hwbuf.fmt.channels) != 0) {
4858 device_printf(sc->sc_dev,
4859 "round_blocksize must return blocksize "
4860 "divisible by framesize: "
4861 "blksize=%d rounded=%d "
4862 "stride=%ubit channels=%u\n",
4863 blksize, rounded,
4864 mixer->hwbuf.fmt.stride,
4865 mixer->hwbuf.fmt.channels);
4866 return EINVAL;
4867 }
4868 /* Recalculation */
4869 blksize = rounded;
4870 mixer->frames_per_block = blksize * NBBY /
4871 (mixer->hwbuf.fmt.stride *
4872 mixer->hwbuf.fmt.channels);
4873 }
4874 }
4875 mixer->blktime_n = mixer->frames_per_block;
4876 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4877
4878 capacity = mixer->frames_per_block * hwblks;
4879 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4880 if (sc->hw_if->round_buffersize) {
4881 size_t rounded;
4882 mutex_enter(sc->sc_lock);
4883 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4884 bufsize);
4885 mutex_exit(sc->sc_lock);
4886 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4887 if (rounded < bufsize) {
4888 /* buffersize needs NBLKHW blocks at least. */
4889 device_printf(sc->sc_dev,
4890 "buffersize too small: buffersize=%zd blksize=%d\n",
4891 rounded, blksize);
4892 return EINVAL;
4893 }
4894 if (rounded % blksize != 0) {
4895 /* buffersize/blksize constraint mismatch? */
4896 device_printf(sc->sc_dev,
4897 "buffersize must be multiple of blksize: "
4898 "buffersize=%zu blksize=%d\n",
4899 rounded, blksize);
4900 return EINVAL;
4901 }
4902 if (rounded != bufsize) {
4903 /* Recalcuration */
4904 bufsize = rounded;
4905 hwblks = bufsize / blksize;
4906 capacity = mixer->frames_per_block * hwblks;
4907 }
4908 }
4909 TRACE(1, "buffersize for %s = %zu",
4910 (mode == AUMODE_PLAY) ? "playback" : "recording",
4911 bufsize);
4912 mixer->hwbuf.capacity = capacity;
4913
4914 if (sc->hw_if->allocm) {
4915 /* sc_lock is not necessary for allocm */
4916 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4917 if (mixer->hwbuf.mem == NULL) {
4918 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4919 __func__, bufsize);
4920 return ENOMEM;
4921 }
4922 } else {
4923 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4924 }
4925
4926 /* From here, audio_mixer_destroy is necessary to exit. */
4927 if (mode == AUMODE_PLAY) {
4928 cv_init(&mixer->outcv, "audiowr");
4929 } else {
4930 cv_init(&mixer->outcv, "audiord");
4931 }
4932
4933 if (mode == AUMODE_PLAY) {
4934 softint_handler = audio_softintr_wr;
4935 } else {
4936 softint_handler = audio_softintr_rd;
4937 }
4938 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4939 softint_handler, sc);
4940 if (mixer->sih == NULL) {
4941 device_printf(sc->sc_dev, "softint_establish failed\n");
4942 goto abort;
4943 }
4944
4945 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4946 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4947 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4948 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4949 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4950
4951 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4952 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4953 mixer->swap_endian = true;
4954 TRACE(1, "swap_endian");
4955 }
4956
4957 if (mode == AUMODE_PLAY) {
4958 /* Mixing buffer */
4959 mixer->mixfmt = mixer->track_fmt;
4960 mixer->mixfmt.precision *= 2;
4961 mixer->mixfmt.stride *= 2;
4962 /* XXX TODO: use some macros? */
4963 len = mixer->frames_per_block * mixer->mixfmt.channels *
4964 mixer->mixfmt.stride / NBBY;
4965 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4966 } else {
4967 /* No mixing buffer for recording */
4968 }
4969
4970 if (reg->codec) {
4971 mixer->codec = reg->codec;
4972 mixer->codecarg.context = reg->context;
4973 if (mode == AUMODE_PLAY) {
4974 mixer->codecarg.srcfmt = &mixer->track_fmt;
4975 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4976 } else {
4977 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4978 mixer->codecarg.dstfmt = &mixer->track_fmt;
4979 }
4980 mixer->codecbuf.fmt = mixer->track_fmt;
4981 mixer->codecbuf.capacity = mixer->frames_per_block;
4982 len = auring_bytelen(&mixer->codecbuf);
4983 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4984 if (mixer->codecbuf.mem == NULL) {
4985 device_printf(sc->sc_dev,
4986 "%s: malloc codecbuf(%d) failed\n",
4987 __func__, len);
4988 error = ENOMEM;
4989 goto abort;
4990 }
4991 }
4992
4993 /* Succeeded so display it. */
4994 codecbuf[0] = '\0';
4995 if (mixer->codec || mixer->swap_endian) {
4996 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4997 (mode == AUMODE_PLAY) ? "->" : "<-",
4998 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4999 mixer->hwbuf.fmt.precision);
5000 }
5001 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5002 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5003 blkdmsbuf[0] = '\0';
5004 if (blkdms != 0) {
5005 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5006 }
5007 aprint_normal_dev(sc->sc_dev,
5008 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5009 audio_encoding_name(mixer->track_fmt.encoding),
5010 mixer->track_fmt.precision,
5011 codecbuf,
5012 mixer->track_fmt.channels,
5013 mixer->track_fmt.sample_rate,
5014 blksize,
5015 blkms, blkdmsbuf,
5016 (mode == AUMODE_PLAY) ? "playback" : "recording");
5017
5018 return 0;
5019
5020 abort:
5021 audio_mixer_destroy(sc, mixer);
5022 return error;
5023 }
5024
5025 /*
5026 * Releases all resources of 'mixer'.
5027 * Note that it does not release the memory area of 'mixer' itself.
5028 * Must be called with sc_exlock held and without sc_lock held.
5029 */
5030 static void
5031 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5032 {
5033 int bufsize;
5034
5035 KASSERT(sc->sc_exlock == 1);
5036
5037 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5038
5039 if (mixer->hwbuf.mem != NULL) {
5040 if (sc->hw_if->freem) {
5041 /* sc_lock is not necessary for freem */
5042 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5043 } else {
5044 kmem_free(mixer->hwbuf.mem, bufsize);
5045 }
5046 mixer->hwbuf.mem = NULL;
5047 }
5048
5049 audio_free(mixer->codecbuf.mem);
5050 audio_free(mixer->mixsample);
5051
5052 cv_destroy(&mixer->outcv);
5053
5054 if (mixer->sih) {
5055 softint_disestablish(mixer->sih);
5056 mixer->sih = NULL;
5057 }
5058 }
5059
5060 /*
5061 * Starts playback mixer.
5062 * Must be called only if sc_pbusy is false.
5063 * Must be called with sc_lock && sc_exlock held.
5064 * Must not be called from the interrupt context.
5065 */
5066 static void
5067 audio_pmixer_start(struct audio_softc *sc, bool force)
5068 {
5069 audio_trackmixer_t *mixer;
5070 int minimum;
5071
5072 KASSERT(mutex_owned(sc->sc_lock));
5073 KASSERT(sc->sc_exlock);
5074 KASSERT(sc->sc_pbusy == false);
5075
5076 mutex_enter(sc->sc_intr_lock);
5077
5078 mixer = sc->sc_pmixer;
5079 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5080 (audiodebug >= 3) ? "begin " : "",
5081 (int)mixer->mixseq, (int)mixer->hwseq,
5082 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5083 force ? " force" : "");
5084
5085 /* Need two blocks to start normally. */
5086 minimum = (force) ? 1 : 2;
5087 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5088 audio_pmixer_process(sc);
5089 }
5090
5091 /* Start output */
5092 audio_pmixer_output(sc);
5093 sc->sc_pbusy = true;
5094
5095 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5096 (int)mixer->mixseq, (int)mixer->hwseq,
5097 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5098
5099 mutex_exit(sc->sc_intr_lock);
5100 }
5101
5102 /*
5103 * When playing back with MD filter:
5104 *
5105 * track track ...
5106 * v v
5107 * + mix (with aint2_t)
5108 * | master volume (with aint2_t)
5109 * v
5110 * mixsample [::::] wide-int 1 block (ring) buffer
5111 * |
5112 * | convert aint2_t -> aint_t
5113 * v
5114 * codecbuf [....] 1 block (ring) buffer
5115 * |
5116 * | convert to hw format
5117 * v
5118 * hwbuf [............] NBLKHW blocks ring buffer
5119 *
5120 * When playing back without MD filter:
5121 *
5122 * mixsample [::::] wide-int 1 block (ring) buffer
5123 * |
5124 * | convert aint2_t -> aint_t
5125 * | (with byte swap if necessary)
5126 * v
5127 * hwbuf [............] NBLKHW blocks ring buffer
5128 *
5129 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5130 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5131 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5132 */
5133
5134 /*
5135 * Performs track mixing and converts it to hwbuf.
5136 * Note that this function doesn't transfer hwbuf to hardware.
5137 * Must be called with sc_intr_lock held.
5138 */
5139 static void
5140 audio_pmixer_process(struct audio_softc *sc)
5141 {
5142 audio_trackmixer_t *mixer;
5143 audio_file_t *f;
5144 int frame_count;
5145 int sample_count;
5146 int mixed;
5147 int i;
5148 aint2_t *m;
5149 aint_t *h;
5150
5151 mixer = sc->sc_pmixer;
5152
5153 frame_count = mixer->frames_per_block;
5154 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5155 "auring_get_contig_free()=%d frame_count=%d",
5156 auring_get_contig_free(&mixer->hwbuf), frame_count);
5157 sample_count = frame_count * mixer->mixfmt.channels;
5158
5159 mixer->mixseq++;
5160
5161 /* Mix all tracks */
5162 mixed = 0;
5163 SLIST_FOREACH(f, &sc->sc_files, entry) {
5164 audio_track_t *track = f->ptrack;
5165
5166 if (track == NULL)
5167 continue;
5168
5169 if (track->is_pause) {
5170 TRACET(4, track, "skip; paused");
5171 continue;
5172 }
5173
5174 /* Skip if the track is used by process context. */
5175 if (audio_track_lock_tryenter(track) == false) {
5176 TRACET(4, track, "skip; in use");
5177 continue;
5178 }
5179
5180 /* Emulate mmap'ped track */
5181 if (track->mmapped) {
5182 auring_push(&track->usrbuf, track->usrbuf_blksize);
5183 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5184 track->usrbuf.head,
5185 track->usrbuf.used,
5186 track->usrbuf.capacity);
5187 }
5188
5189 if (track->outbuf.used < mixer->frames_per_block &&
5190 track->usrbuf.used > 0) {
5191 TRACET(4, track, "process");
5192 audio_track_play(track);
5193 }
5194
5195 if (track->outbuf.used > 0) {
5196 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5197 } else {
5198 TRACET(4, track, "skip; empty");
5199 }
5200
5201 audio_track_lock_exit(track);
5202 }
5203
5204 if (mixed == 0) {
5205 /* Silence */
5206 memset(mixer->mixsample, 0,
5207 frametobyte(&mixer->mixfmt, frame_count));
5208 } else {
5209 if (mixed > 1) {
5210 /* If there are multiple tracks, do auto gain control */
5211 audio_pmixer_agc(mixer, sample_count);
5212 }
5213
5214 /* Apply master volume */
5215 if (mixer->volume < 256) {
5216 m = mixer->mixsample;
5217 for (i = 0; i < sample_count; i++) {
5218 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5219 m++;
5220 }
5221
5222 /*
5223 * Recover the volume gradually at the pace of
5224 * several times per second. If it's too fast, you
5225 * can recognize that the volume changes up and down
5226 * quickly and it's not so comfortable.
5227 */
5228 mixer->voltimer += mixer->blktime_n;
5229 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5230 mixer->volume++;
5231 mixer->voltimer = 0;
5232 #if defined(AUDIO_DEBUG_AGC)
5233 TRACE(1, "volume recover: %d", mixer->volume);
5234 #endif
5235 }
5236 }
5237 }
5238
5239 /*
5240 * The rest is the hardware part.
5241 */
5242
5243 if (mixer->codec) {
5244 h = auring_tailptr_aint(&mixer->codecbuf);
5245 } else {
5246 h = auring_tailptr_aint(&mixer->hwbuf);
5247 }
5248
5249 m = mixer->mixsample;
5250 if (mixer->swap_endian) {
5251 for (i = 0; i < sample_count; i++) {
5252 *h++ = bswap16(*m++);
5253 }
5254 } else {
5255 for (i = 0; i < sample_count; i++) {
5256 *h++ = *m++;
5257 }
5258 }
5259
5260 /* Hardware driver's codec */
5261 if (mixer->codec) {
5262 auring_push(&mixer->codecbuf, frame_count);
5263 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5264 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5265 mixer->codecarg.count = frame_count;
5266 mixer->codec(&mixer->codecarg);
5267 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5268 }
5269
5270 auring_push(&mixer->hwbuf, frame_count);
5271
5272 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5273 (int)mixer->mixseq,
5274 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5275 (mixed == 0) ? " silent" : "");
5276 }
5277
5278 /*
5279 * Do auto gain control.
5280 * Must be called sc_intr_lock held.
5281 */
5282 static void
5283 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5284 {
5285 struct audio_softc *sc __unused;
5286 aint2_t val;
5287 aint2_t maxval;
5288 aint2_t minval;
5289 aint2_t over_plus;
5290 aint2_t over_minus;
5291 aint2_t *m;
5292 int newvol;
5293 int i;
5294
5295 sc = mixer->sc;
5296
5297 /* Overflow detection */
5298 maxval = AINT_T_MAX;
5299 minval = AINT_T_MIN;
5300 m = mixer->mixsample;
5301 for (i = 0; i < sample_count; i++) {
5302 val = *m++;
5303 if (val > maxval)
5304 maxval = val;
5305 else if (val < minval)
5306 minval = val;
5307 }
5308
5309 /* Absolute value of overflowed amount */
5310 over_plus = maxval - AINT_T_MAX;
5311 over_minus = AINT_T_MIN - minval;
5312
5313 if (over_plus > 0 || over_minus > 0) {
5314 if (over_plus > over_minus) {
5315 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5316 } else {
5317 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5318 }
5319
5320 /*
5321 * Change the volume only if new one is smaller.
5322 * Reset the timer even if the volume isn't changed.
5323 */
5324 if (newvol <= mixer->volume) {
5325 mixer->volume = newvol;
5326 mixer->voltimer = 0;
5327 #if defined(AUDIO_DEBUG_AGC)
5328 TRACE(1, "auto volume adjust: %d", mixer->volume);
5329 #endif
5330 }
5331 }
5332 }
5333
5334 /*
5335 * Mix one track.
5336 * 'mixed' specifies the number of tracks mixed so far.
5337 * It returns the number of tracks mixed. In other words, it returns
5338 * mixed + 1 if this track is mixed.
5339 */
5340 static int
5341 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5342 int mixed)
5343 {
5344 int count;
5345 int sample_count;
5346 int remain;
5347 int i;
5348 const aint_t *s;
5349 aint2_t *d;
5350
5351 /* XXX TODO: Is this necessary for now? */
5352 if (mixer->mixseq < track->seq)
5353 return mixed;
5354
5355 count = auring_get_contig_used(&track->outbuf);
5356 count = uimin(count, mixer->frames_per_block);
5357
5358 s = auring_headptr_aint(&track->outbuf);
5359 d = mixer->mixsample;
5360
5361 /*
5362 * Apply track volume with double-sized integer and perform
5363 * additive synthesis.
5364 *
5365 * XXX If you limit the track volume to 1.0 or less (<= 256),
5366 * it would be better to do this in the track conversion stage
5367 * rather than here. However, if you accept the volume to
5368 * be greater than 1.0 (> 256), it's better to do it here.
5369 * Because the operation here is done by double-sized integer.
5370 */
5371 sample_count = count * mixer->mixfmt.channels;
5372 if (mixed == 0) {
5373 /* If this is the first track, assignment can be used. */
5374 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5375 if (track->volume != 256) {
5376 for (i = 0; i < sample_count; i++) {
5377 aint2_t v;
5378 v = *s++;
5379 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5380 }
5381 } else
5382 #endif
5383 {
5384 for (i = 0; i < sample_count; i++) {
5385 *d++ = ((aint2_t)*s++);
5386 }
5387 }
5388 /* Fill silence if the first track is not filled. */
5389 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5390 *d++ = 0;
5391 } else {
5392 /* If this is the second or later, add it. */
5393 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5394 if (track->volume != 256) {
5395 for (i = 0; i < sample_count; i++) {
5396 aint2_t v;
5397 v = *s++;
5398 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5399 }
5400 } else
5401 #endif
5402 {
5403 for (i = 0; i < sample_count; i++) {
5404 *d++ += ((aint2_t)*s++);
5405 }
5406 }
5407 }
5408
5409 auring_take(&track->outbuf, count);
5410 /*
5411 * The counters have to align block even if outbuf is less than
5412 * one block. XXX Is this still necessary?
5413 */
5414 remain = mixer->frames_per_block - count;
5415 if (__predict_false(remain != 0)) {
5416 auring_push(&track->outbuf, remain);
5417 auring_take(&track->outbuf, remain);
5418 }
5419
5420 /*
5421 * Update track sequence.
5422 * mixseq has previous value yet at this point.
5423 */
5424 track->seq = mixer->mixseq + 1;
5425
5426 return mixed + 1;
5427 }
5428
5429 /*
5430 * Output one block from hwbuf to HW.
5431 * Must be called with sc_intr_lock held.
5432 */
5433 static void
5434 audio_pmixer_output(struct audio_softc *sc)
5435 {
5436 audio_trackmixer_t *mixer;
5437 audio_params_t params;
5438 void *start;
5439 void *end;
5440 int blksize;
5441 int error;
5442
5443 mixer = sc->sc_pmixer;
5444 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5445 sc->sc_pbusy,
5446 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5447 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5448 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5449 mixer->hwbuf.used, mixer->frames_per_block);
5450
5451 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5452
5453 if (sc->hw_if->trigger_output) {
5454 /* trigger (at once) */
5455 if (!sc->sc_pbusy) {
5456 start = mixer->hwbuf.mem;
5457 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5458 params = format2_to_params(&mixer->hwbuf.fmt);
5459
5460 error = sc->hw_if->trigger_output(sc->hw_hdl,
5461 start, end, blksize, audio_pintr, sc, ¶ms);
5462 if (error) {
5463 device_printf(sc->sc_dev,
5464 "trigger_output failed with %d\n", error);
5465 return;
5466 }
5467 }
5468 } else {
5469 /* start (everytime) */
5470 start = auring_headptr(&mixer->hwbuf);
5471
5472 error = sc->hw_if->start_output(sc->hw_hdl,
5473 start, blksize, audio_pintr, sc);
5474 if (error) {
5475 device_printf(sc->sc_dev,
5476 "start_output failed with %d\n", error);
5477 return;
5478 }
5479 }
5480 }
5481
5482 /*
5483 * This is an interrupt handler for playback.
5484 * It is called with sc_intr_lock held.
5485 *
5486 * It is usually called from hardware interrupt. However, note that
5487 * for some drivers (e.g. uaudio) it is called from software interrupt.
5488 */
5489 static void
5490 audio_pintr(void *arg)
5491 {
5492 struct audio_softc *sc;
5493 audio_trackmixer_t *mixer;
5494
5495 sc = arg;
5496 KASSERT(mutex_owned(sc->sc_intr_lock));
5497
5498 if (sc->sc_dying)
5499 return;
5500 if (sc->sc_pbusy == false) {
5501 #if defined(DIAGNOSTIC)
5502 device_printf(sc->sc_dev,
5503 "DIAGNOSTIC: %s raised stray interrupt\n",
5504 device_xname(sc->hw_dev));
5505 #endif
5506 return;
5507 }
5508
5509 mixer = sc->sc_pmixer;
5510 mixer->hw_complete_counter += mixer->frames_per_block;
5511 mixer->hwseq++;
5512
5513 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5514
5515 TRACE(4,
5516 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5517 mixer->hwseq, mixer->hw_complete_counter,
5518 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5519
5520 #if defined(AUDIO_HW_SINGLE_BUFFER)
5521 /*
5522 * Create a new block here and output it immediately.
5523 * It makes a latency lower but needs machine power.
5524 */
5525 audio_pmixer_process(sc);
5526 audio_pmixer_output(sc);
5527 #else
5528 /*
5529 * It is called when block N output is done.
5530 * Output immediately block N+1 created by the last interrupt.
5531 * And then create block N+2 for the next interrupt.
5532 * This method makes playback robust even on slower machines.
5533 * Instead the latency is increased by one block.
5534 */
5535
5536 /* At first, output ready block. */
5537 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5538 audio_pmixer_output(sc);
5539 }
5540
5541 bool later = false;
5542
5543 if (mixer->hwbuf.used < mixer->frames_per_block) {
5544 later = true;
5545 }
5546
5547 /* Then, process next block. */
5548 audio_pmixer_process(sc);
5549
5550 if (later) {
5551 audio_pmixer_output(sc);
5552 }
5553 #endif
5554
5555 /*
5556 * When this interrupt is the real hardware interrupt, disabling
5557 * preemption here is not necessary. But some drivers (e.g. uaudio)
5558 * emulate it by software interrupt, so kpreempt_disable is necessary.
5559 */
5560 kpreempt_disable();
5561 softint_schedule(mixer->sih);
5562 kpreempt_enable();
5563 }
5564
5565 /*
5566 * Starts record mixer.
5567 * Must be called only if sc_rbusy is false.
5568 * Must be called with sc_lock && sc_exlock held.
5569 * Must not be called from the interrupt context.
5570 */
5571 static void
5572 audio_rmixer_start(struct audio_softc *sc)
5573 {
5574
5575 KASSERT(mutex_owned(sc->sc_lock));
5576 KASSERT(sc->sc_exlock);
5577 KASSERT(sc->sc_rbusy == false);
5578
5579 mutex_enter(sc->sc_intr_lock);
5580
5581 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5582 audio_rmixer_input(sc);
5583 sc->sc_rbusy = true;
5584 TRACE(3, "end");
5585
5586 mutex_exit(sc->sc_intr_lock);
5587 }
5588
5589 /*
5590 * When recording with MD filter:
5591 *
5592 * hwbuf [............] NBLKHW blocks ring buffer
5593 * |
5594 * | convert from hw format
5595 * v
5596 * codecbuf [....] 1 block (ring) buffer
5597 * | |
5598 * v v
5599 * track track ...
5600 *
5601 * When recording without MD filter:
5602 *
5603 * hwbuf [............] NBLKHW blocks ring buffer
5604 * | |
5605 * v v
5606 * track track ...
5607 *
5608 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5609 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5610 */
5611
5612 /*
5613 * Distribute a recorded block to all recording tracks.
5614 */
5615 static void
5616 audio_rmixer_process(struct audio_softc *sc)
5617 {
5618 audio_trackmixer_t *mixer;
5619 audio_ring_t *mixersrc;
5620 audio_file_t *f;
5621 aint_t *p;
5622 int count;
5623 int bytes;
5624 int i;
5625
5626 mixer = sc->sc_rmixer;
5627
5628 /*
5629 * count is the number of frames to be retrieved this time.
5630 * count should be one block.
5631 */
5632 count = auring_get_contig_used(&mixer->hwbuf);
5633 count = uimin(count, mixer->frames_per_block);
5634 if (count <= 0) {
5635 TRACE(4, "count %d: too short", count);
5636 return;
5637 }
5638 bytes = frametobyte(&mixer->track_fmt, count);
5639
5640 /* Hardware driver's codec */
5641 if (mixer->codec) {
5642 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5643 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5644 mixer->codecarg.count = count;
5645 mixer->codec(&mixer->codecarg);
5646 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5647 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5648 mixersrc = &mixer->codecbuf;
5649 } else {
5650 mixersrc = &mixer->hwbuf;
5651 }
5652
5653 if (mixer->swap_endian) {
5654 /* inplace conversion */
5655 p = auring_headptr_aint(mixersrc);
5656 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5657 *p = bswap16(*p);
5658 }
5659 }
5660
5661 /* Distribute to all tracks. */
5662 SLIST_FOREACH(f, &sc->sc_files, entry) {
5663 audio_track_t *track = f->rtrack;
5664 audio_ring_t *input;
5665
5666 if (track == NULL)
5667 continue;
5668
5669 if (track->is_pause) {
5670 TRACET(4, track, "skip; paused");
5671 continue;
5672 }
5673
5674 if (audio_track_lock_tryenter(track) == false) {
5675 TRACET(4, track, "skip; in use");
5676 continue;
5677 }
5678
5679 /* If the track buffer is full, discard the oldest one? */
5680 input = track->input;
5681 if (input->capacity - input->used < mixer->frames_per_block) {
5682 int drops = mixer->frames_per_block -
5683 (input->capacity - input->used);
5684 track->dropframes += drops;
5685 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5686 drops,
5687 input->head, input->used, input->capacity);
5688 auring_take(input, drops);
5689 }
5690 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5691 "input->used=%d mixer->frames_per_block=%d",
5692 input->used, mixer->frames_per_block);
5693
5694 memcpy(auring_tailptr_aint(input),
5695 auring_headptr_aint(mixersrc),
5696 bytes);
5697 auring_push(input, count);
5698
5699 /* XXX sequence counter? */
5700
5701 audio_track_lock_exit(track);
5702 }
5703
5704 auring_take(mixersrc, count);
5705 }
5706
5707 /*
5708 * Input one block from HW to hwbuf.
5709 * Must be called with sc_intr_lock held.
5710 */
5711 static void
5712 audio_rmixer_input(struct audio_softc *sc)
5713 {
5714 audio_trackmixer_t *mixer;
5715 audio_params_t params;
5716 void *start;
5717 void *end;
5718 int blksize;
5719 int error;
5720
5721 mixer = sc->sc_rmixer;
5722 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5723
5724 if (sc->hw_if->trigger_input) {
5725 /* trigger (at once) */
5726 if (!sc->sc_rbusy) {
5727 start = mixer->hwbuf.mem;
5728 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5729 params = format2_to_params(&mixer->hwbuf.fmt);
5730
5731 error = sc->hw_if->trigger_input(sc->hw_hdl,
5732 start, end, blksize, audio_rintr, sc, ¶ms);
5733 if (error) {
5734 device_printf(sc->sc_dev,
5735 "trigger_input failed with %d\n", error);
5736 return;
5737 }
5738 }
5739 } else {
5740 /* start (everytime) */
5741 start = auring_tailptr(&mixer->hwbuf);
5742
5743 error = sc->hw_if->start_input(sc->hw_hdl,
5744 start, blksize, audio_rintr, sc);
5745 if (error) {
5746 device_printf(sc->sc_dev,
5747 "start_input failed with %d\n", error);
5748 return;
5749 }
5750 }
5751 }
5752
5753 /*
5754 * This is an interrupt handler for recording.
5755 * It is called with sc_intr_lock.
5756 *
5757 * It is usually called from hardware interrupt. However, note that
5758 * for some drivers (e.g. uaudio) it is called from software interrupt.
5759 */
5760 static void
5761 audio_rintr(void *arg)
5762 {
5763 struct audio_softc *sc;
5764 audio_trackmixer_t *mixer;
5765
5766 sc = arg;
5767 KASSERT(mutex_owned(sc->sc_intr_lock));
5768
5769 if (sc->sc_dying)
5770 return;
5771 if (sc->sc_rbusy == false) {
5772 #if defined(DIAGNOSTIC)
5773 device_printf(sc->sc_dev,
5774 "DIAGNOSTIC: %s raised stray interrupt\n",
5775 device_xname(sc->hw_dev));
5776 #endif
5777 return;
5778 }
5779
5780 mixer = sc->sc_rmixer;
5781 mixer->hw_complete_counter += mixer->frames_per_block;
5782 mixer->hwseq++;
5783
5784 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5785
5786 TRACE(4,
5787 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5788 mixer->hwseq, mixer->hw_complete_counter,
5789 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5790
5791 /* Distrubute recorded block */
5792 audio_rmixer_process(sc);
5793
5794 /* Request next block */
5795 audio_rmixer_input(sc);
5796
5797 /*
5798 * When this interrupt is the real hardware interrupt, disabling
5799 * preemption here is not necessary. But some drivers (e.g. uaudio)
5800 * emulate it by software interrupt, so kpreempt_disable is necessary.
5801 */
5802 kpreempt_disable();
5803 softint_schedule(mixer->sih);
5804 kpreempt_enable();
5805 }
5806
5807 /*
5808 * Halts playback mixer.
5809 * This function also clears related parameters, so call this function
5810 * instead of calling halt_output directly.
5811 * Must be called only if sc_pbusy is true.
5812 * Must be called with sc_lock && sc_exlock held.
5813 */
5814 static int
5815 audio_pmixer_halt(struct audio_softc *sc)
5816 {
5817 int error;
5818
5819 TRACE(2, "");
5820 KASSERT(mutex_owned(sc->sc_lock));
5821 KASSERT(sc->sc_exlock);
5822
5823 mutex_enter(sc->sc_intr_lock);
5824 error = sc->hw_if->halt_output(sc->hw_hdl);
5825
5826 /* Halts anyway even if some error has occurred. */
5827 sc->sc_pbusy = false;
5828 sc->sc_pmixer->hwbuf.head = 0;
5829 sc->sc_pmixer->hwbuf.used = 0;
5830 sc->sc_pmixer->mixseq = 0;
5831 sc->sc_pmixer->hwseq = 0;
5832 mutex_exit(sc->sc_intr_lock);
5833
5834 return error;
5835 }
5836
5837 /*
5838 * Halts recording mixer.
5839 * This function also clears related parameters, so call this function
5840 * instead of calling halt_input directly.
5841 * Must be called only if sc_rbusy is true.
5842 * Must be called with sc_lock && sc_exlock held.
5843 */
5844 static int
5845 audio_rmixer_halt(struct audio_softc *sc)
5846 {
5847 int error;
5848
5849 TRACE(2, "");
5850 KASSERT(mutex_owned(sc->sc_lock));
5851 KASSERT(sc->sc_exlock);
5852
5853 mutex_enter(sc->sc_intr_lock);
5854 error = sc->hw_if->halt_input(sc->hw_hdl);
5855
5856 /* Halts anyway even if some error has occurred. */
5857 sc->sc_rbusy = false;
5858 sc->sc_rmixer->hwbuf.head = 0;
5859 sc->sc_rmixer->hwbuf.used = 0;
5860 sc->sc_rmixer->mixseq = 0;
5861 sc->sc_rmixer->hwseq = 0;
5862 mutex_exit(sc->sc_intr_lock);
5863
5864 return error;
5865 }
5866
5867 /*
5868 * Flush this track.
5869 * Halts all operations, clears all buffers, reset error counters.
5870 * XXX I'm not sure...
5871 */
5872 static void
5873 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5874 {
5875
5876 KASSERT(track);
5877 TRACET(3, track, "clear");
5878
5879 audio_track_lock_enter(track);
5880
5881 track->usrbuf.used = 0;
5882 /* Clear all internal parameters. */
5883 if (track->codec.filter) {
5884 track->codec.srcbuf.used = 0;
5885 track->codec.srcbuf.head = 0;
5886 }
5887 if (track->chvol.filter) {
5888 track->chvol.srcbuf.used = 0;
5889 track->chvol.srcbuf.head = 0;
5890 }
5891 if (track->chmix.filter) {
5892 track->chmix.srcbuf.used = 0;
5893 track->chmix.srcbuf.head = 0;
5894 }
5895 if (track->freq.filter) {
5896 track->freq.srcbuf.used = 0;
5897 track->freq.srcbuf.head = 0;
5898 if (track->freq_step < 65536)
5899 track->freq_current = 65536;
5900 else
5901 track->freq_current = 0;
5902 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5903 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5904 }
5905 /* Clear buffer, then operation halts naturally. */
5906 track->outbuf.used = 0;
5907
5908 /* Clear counters. */
5909 track->dropframes = 0;
5910
5911 audio_track_lock_exit(track);
5912 }
5913
5914 /*
5915 * Drain the track.
5916 * track must be present and for playback.
5917 * If successful, it returns 0. Otherwise returns errno.
5918 * Must be called with sc_lock held.
5919 */
5920 static int
5921 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5922 {
5923 audio_trackmixer_t *mixer;
5924 int done;
5925 int error;
5926
5927 KASSERT(track);
5928 TRACET(3, track, "start");
5929 mixer = track->mixer;
5930 KASSERT(mutex_owned(sc->sc_lock));
5931
5932 /* Ignore them if pause. */
5933 if (track->is_pause) {
5934 TRACET(3, track, "pause -> clear");
5935 track->pstate = AUDIO_STATE_CLEAR;
5936 }
5937 /* Terminate early here if there is no data in the track. */
5938 if (track->pstate == AUDIO_STATE_CLEAR) {
5939 TRACET(3, track, "no need to drain");
5940 return 0;
5941 }
5942 track->pstate = AUDIO_STATE_DRAINING;
5943
5944 for (;;) {
5945 /* I want to display it before condition evaluation. */
5946 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5947 (int)curproc->p_pid, (int)curlwp->l_lid,
5948 (int)track->seq, (int)mixer->hwseq,
5949 track->outbuf.head, track->outbuf.used,
5950 track->outbuf.capacity);
5951
5952 /* Condition to terminate */
5953 audio_track_lock_enter(track);
5954 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5955 track->outbuf.used == 0 &&
5956 track->seq <= mixer->hwseq);
5957 audio_track_lock_exit(track);
5958 if (done)
5959 break;
5960
5961 TRACET(3, track, "sleep");
5962 error = audio_track_waitio(sc, track);
5963 if (error)
5964 return error;
5965
5966 /* XXX call audio_track_play here ? */
5967 }
5968
5969 track->pstate = AUDIO_STATE_CLEAR;
5970 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5971 (int)track->inputcounter, (int)track->outputcounter);
5972 return 0;
5973 }
5974
5975 /*
5976 * Send signal to process.
5977 * This is intended to be called only from audio_softintr_{rd,wr}.
5978 * Must be called without sc_intr_lock held.
5979 */
5980 static inline void
5981 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
5982 {
5983 proc_t *p;
5984
5985 KASSERT(pid != 0);
5986
5987 /*
5988 * psignal() must be called without spin lock held.
5989 */
5990
5991 mutex_enter(&proc_lock);
5992 p = proc_find(pid);
5993 if (p)
5994 psignal(p, signum);
5995 mutex_exit(&proc_lock);
5996 }
5997
5998 /*
5999 * This is software interrupt handler for record.
6000 * It is called from recording hardware interrupt everytime.
6001 * It does:
6002 * - Deliver SIGIO for all async processes.
6003 * - Notify to audio_read() that data has arrived.
6004 * - selnotify() for select/poll-ing processes.
6005 */
6006 /*
6007 * XXX If a process issues FIOASYNC between hardware interrupt and
6008 * software interrupt, (stray) SIGIO will be sent to the process
6009 * despite the fact that it has not receive recorded data yet.
6010 */
6011 static void
6012 audio_softintr_rd(void *cookie)
6013 {
6014 struct audio_softc *sc = cookie;
6015 audio_file_t *f;
6016 pid_t pid;
6017
6018 mutex_enter(sc->sc_lock);
6019
6020 SLIST_FOREACH(f, &sc->sc_files, entry) {
6021 audio_track_t *track = f->rtrack;
6022
6023 if (track == NULL)
6024 continue;
6025
6026 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6027 track->input->head,
6028 track->input->used,
6029 track->input->capacity);
6030
6031 pid = f->async_audio;
6032 if (pid != 0) {
6033 TRACEF(4, f, "sending SIGIO %d", pid);
6034 audio_psignal(sc, pid, SIGIO);
6035 }
6036 }
6037
6038 /* Notify that data has arrived. */
6039 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6040 KNOTE(&sc->sc_rsel.sel_klist, 0);
6041 cv_broadcast(&sc->sc_rmixer->outcv);
6042
6043 mutex_exit(sc->sc_lock);
6044 }
6045
6046 /*
6047 * This is software interrupt handler for playback.
6048 * It is called from playback hardware interrupt everytime.
6049 * It does:
6050 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6051 * - Notify to audio_write() that outbuf block available.
6052 * - selnotify() for select/poll-ing processes if there are any writable
6053 * (used < lowat) processes. Checking each descriptor will be done by
6054 * filt_audiowrite_event().
6055 */
6056 static void
6057 audio_softintr_wr(void *cookie)
6058 {
6059 struct audio_softc *sc = cookie;
6060 audio_file_t *f;
6061 bool found;
6062 pid_t pid;
6063
6064 TRACE(4, "called");
6065 found = false;
6066
6067 mutex_enter(sc->sc_lock);
6068
6069 SLIST_FOREACH(f, &sc->sc_files, entry) {
6070 audio_track_t *track = f->ptrack;
6071
6072 if (track == NULL)
6073 continue;
6074
6075 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
6076 (int)track->seq,
6077 track->outbuf.head,
6078 track->outbuf.used,
6079 track->outbuf.capacity);
6080
6081 /*
6082 * Send a signal if the process is async mode and
6083 * used is lower than lowat.
6084 */
6085 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6086 !track->is_pause) {
6087 /* For selnotify */
6088 found = true;
6089 /* For SIGIO */
6090 pid = f->async_audio;
6091 if (pid != 0) {
6092 TRACEF(4, f, "sending SIGIO %d", pid);
6093 audio_psignal(sc, pid, SIGIO);
6094 }
6095 }
6096 }
6097
6098 /*
6099 * Notify for select/poll when someone become writable.
6100 * It needs sc_lock (and not sc_intr_lock).
6101 */
6102 if (found) {
6103 TRACE(4, "selnotify");
6104 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6105 KNOTE(&sc->sc_wsel.sel_klist, 0);
6106 }
6107
6108 /* Notify to audio_write() that outbuf available. */
6109 cv_broadcast(&sc->sc_pmixer->outcv);
6110
6111 mutex_exit(sc->sc_lock);
6112 }
6113
6114 /*
6115 * Check (and convert) the format *p came from userland.
6116 * If successful, it writes back the converted format to *p if necessary
6117 * and returns 0. Otherwise returns errno (*p may change even this case).
6118 */
6119 static int
6120 audio_check_params(audio_format2_t *p)
6121 {
6122
6123 /*
6124 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6125 *
6126 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6127 * So, it's always signed, as in SunOS.
6128 *
6129 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6130 * So, it's always unsigned, as in SunOS.
6131 */
6132 if (p->encoding == AUDIO_ENCODING_PCM16) {
6133 p->encoding = AUDIO_ENCODING_SLINEAR;
6134 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6135 if (p->precision == 8)
6136 p->encoding = AUDIO_ENCODING_ULINEAR;
6137 else
6138 return EINVAL;
6139 }
6140
6141 /*
6142 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6143 * suffix.
6144 */
6145 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6146 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6147 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6148 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6149
6150 switch (p->encoding) {
6151 case AUDIO_ENCODING_ULAW:
6152 case AUDIO_ENCODING_ALAW:
6153 if (p->precision != 8)
6154 return EINVAL;
6155 break;
6156 case AUDIO_ENCODING_ADPCM:
6157 if (p->precision != 4 && p->precision != 8)
6158 return EINVAL;
6159 break;
6160 case AUDIO_ENCODING_SLINEAR_LE:
6161 case AUDIO_ENCODING_SLINEAR_BE:
6162 case AUDIO_ENCODING_ULINEAR_LE:
6163 case AUDIO_ENCODING_ULINEAR_BE:
6164 if (p->precision != 8 && p->precision != 16 &&
6165 p->precision != 24 && p->precision != 32)
6166 return EINVAL;
6167
6168 /* 8bit format does not have endianness. */
6169 if (p->precision == 8) {
6170 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6171 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6172 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6173 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6174 }
6175
6176 if (p->precision > p->stride)
6177 return EINVAL;
6178 break;
6179 case AUDIO_ENCODING_MPEG_L1_STREAM:
6180 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6181 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6182 case AUDIO_ENCODING_MPEG_L2_STREAM:
6183 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6184 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6185 case AUDIO_ENCODING_AC3:
6186 break;
6187 default:
6188 return EINVAL;
6189 }
6190
6191 /* sanity check # of channels*/
6192 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6193 return EINVAL;
6194
6195 return 0;
6196 }
6197
6198 /*
6199 * Initialize playback and record mixers.
6200 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6201 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6202 * the filter registration information. These four must not be NULL.
6203 * If successful returns 0. Otherwise returns errno.
6204 * Must be called with sc_exlock held and without sc_lock held.
6205 * Must not be called if there are any tracks.
6206 * Caller should check that the initialization succeed by whether
6207 * sc_[pr]mixer is not NULL.
6208 */
6209 static int
6210 audio_mixers_init(struct audio_softc *sc, int mode,
6211 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6212 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6213 {
6214 int error;
6215
6216 KASSERT(phwfmt != NULL);
6217 KASSERT(rhwfmt != NULL);
6218 KASSERT(pfil != NULL);
6219 KASSERT(rfil != NULL);
6220 KASSERT(sc->sc_exlock);
6221
6222 if ((mode & AUMODE_PLAY)) {
6223 if (sc->sc_pmixer == NULL) {
6224 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6225 KM_SLEEP);
6226 } else {
6227 /* destroy() doesn't free memory. */
6228 audio_mixer_destroy(sc, sc->sc_pmixer);
6229 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6230 }
6231 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6232 if (error) {
6233 device_printf(sc->sc_dev,
6234 "configuring playback mode failed with %d\n",
6235 error);
6236 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6237 sc->sc_pmixer = NULL;
6238 return error;
6239 }
6240 }
6241 if ((mode & AUMODE_RECORD)) {
6242 if (sc->sc_rmixer == NULL) {
6243 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6244 KM_SLEEP);
6245 } else {
6246 /* destroy() doesn't free memory. */
6247 audio_mixer_destroy(sc, sc->sc_rmixer);
6248 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6249 }
6250 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6251 if (error) {
6252 device_printf(sc->sc_dev,
6253 "configuring record mode failed with %d\n",
6254 error);
6255 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6256 sc->sc_rmixer = NULL;
6257 return error;
6258 }
6259 }
6260
6261 return 0;
6262 }
6263
6264 /*
6265 * Select a frequency.
6266 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6267 * XXX Better algorithm?
6268 */
6269 static int
6270 audio_select_freq(const struct audio_format *fmt)
6271 {
6272 int freq;
6273 int high;
6274 int low;
6275 int j;
6276
6277 if (fmt->frequency_type == 0) {
6278 low = fmt->frequency[0];
6279 high = fmt->frequency[1];
6280 freq = 48000;
6281 if (low <= freq && freq <= high) {
6282 return freq;
6283 }
6284 freq = 44100;
6285 if (low <= freq && freq <= high) {
6286 return freq;
6287 }
6288 return high;
6289 } else {
6290 for (j = 0; j < fmt->frequency_type; j++) {
6291 if (fmt->frequency[j] == 48000) {
6292 return fmt->frequency[j];
6293 }
6294 }
6295 high = 0;
6296 for (j = 0; j < fmt->frequency_type; j++) {
6297 if (fmt->frequency[j] == 44100) {
6298 return fmt->frequency[j];
6299 }
6300 if (fmt->frequency[j] > high) {
6301 high = fmt->frequency[j];
6302 }
6303 }
6304 return high;
6305 }
6306 }
6307
6308 /*
6309 * Choose the most preferred hardware format.
6310 * If successful, it will store the chosen format into *cand and return 0.
6311 * Otherwise, return errno.
6312 * Must be called without sc_lock held.
6313 */
6314 static int
6315 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6316 {
6317 audio_format_query_t query;
6318 int cand_score;
6319 int score;
6320 int i;
6321 int error;
6322
6323 /*
6324 * Score each formats and choose the highest one.
6325 *
6326 * +---- priority(0-3)
6327 * |+--- encoding/precision
6328 * ||+-- channels
6329 * score = 0x000000PEC
6330 */
6331
6332 cand_score = 0;
6333 for (i = 0; ; i++) {
6334 memset(&query, 0, sizeof(query));
6335 query.index = i;
6336
6337 mutex_enter(sc->sc_lock);
6338 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6339 mutex_exit(sc->sc_lock);
6340 if (error == EINVAL)
6341 break;
6342 if (error)
6343 return error;
6344
6345 #if defined(AUDIO_DEBUG)
6346 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6347 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6348 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6349 query.fmt.priority,
6350 audio_encoding_name(query.fmt.encoding),
6351 query.fmt.validbits,
6352 query.fmt.precision,
6353 query.fmt.channels);
6354 if (query.fmt.frequency_type == 0) {
6355 DPRINTF(1, "{%d-%d",
6356 query.fmt.frequency[0], query.fmt.frequency[1]);
6357 } else {
6358 int j;
6359 for (j = 0; j < query.fmt.frequency_type; j++) {
6360 DPRINTF(1, "%c%d",
6361 (j == 0) ? '{' : ',',
6362 query.fmt.frequency[j]);
6363 }
6364 }
6365 DPRINTF(1, "}\n");
6366 #endif
6367
6368 if ((query.fmt.mode & mode) == 0) {
6369 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6370 mode);
6371 continue;
6372 }
6373
6374 if (query.fmt.priority < 0) {
6375 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6376 continue;
6377 }
6378
6379 /* Score */
6380 score = (query.fmt.priority & 3) * 0x100;
6381 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6382 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6383 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6384 score += 0x20;
6385 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6386 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6387 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6388 score += 0x10;
6389 }
6390 score += query.fmt.channels;
6391
6392 if (score < cand_score) {
6393 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6394 score, cand_score);
6395 continue;
6396 }
6397
6398 /* Update candidate */
6399 cand_score = score;
6400 cand->encoding = query.fmt.encoding;
6401 cand->precision = query.fmt.validbits;
6402 cand->stride = query.fmt.precision;
6403 cand->channels = query.fmt.channels;
6404 cand->sample_rate = audio_select_freq(&query.fmt);
6405 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6406 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6407 cand_score, query.fmt.priority,
6408 audio_encoding_name(query.fmt.encoding),
6409 cand->precision, cand->stride,
6410 cand->channels, cand->sample_rate);
6411 }
6412
6413 if (cand_score == 0) {
6414 DPRINTF(1, "%s no fmt\n", __func__);
6415 return ENXIO;
6416 }
6417 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6418 audio_encoding_name(cand->encoding),
6419 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6420 return 0;
6421 }
6422
6423 /*
6424 * Validate fmt with query_format.
6425 * If fmt is included in the result of query_format, returns 0.
6426 * Otherwise returns EINVAL.
6427 * Must be called without sc_lock held.
6428 */
6429 static int
6430 audio_hw_validate_format(struct audio_softc *sc, int mode,
6431 const audio_format2_t *fmt)
6432 {
6433 audio_format_query_t query;
6434 struct audio_format *q;
6435 int index;
6436 int error;
6437 int j;
6438
6439 for (index = 0; ; index++) {
6440 query.index = index;
6441 mutex_enter(sc->sc_lock);
6442 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6443 mutex_exit(sc->sc_lock);
6444 if (error == EINVAL)
6445 break;
6446 if (error)
6447 return error;
6448
6449 q = &query.fmt;
6450 /*
6451 * Note that fmt is audio_format2_t (precision/stride) but
6452 * q is audio_format_t (validbits/precision).
6453 */
6454 if ((q->mode & mode) == 0) {
6455 continue;
6456 }
6457 if (fmt->encoding != q->encoding) {
6458 continue;
6459 }
6460 if (fmt->precision != q->validbits) {
6461 continue;
6462 }
6463 if (fmt->stride != q->precision) {
6464 continue;
6465 }
6466 if (fmt->channels != q->channels) {
6467 continue;
6468 }
6469 if (q->frequency_type == 0) {
6470 if (fmt->sample_rate < q->frequency[0] ||
6471 fmt->sample_rate > q->frequency[1]) {
6472 continue;
6473 }
6474 } else {
6475 for (j = 0; j < q->frequency_type; j++) {
6476 if (fmt->sample_rate == q->frequency[j])
6477 break;
6478 }
6479 if (j == query.fmt.frequency_type) {
6480 continue;
6481 }
6482 }
6483
6484 /* Matched. */
6485 return 0;
6486 }
6487
6488 return EINVAL;
6489 }
6490
6491 /*
6492 * Set track mixer's format depending on ai->mode.
6493 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6494 * with ai.play.*.
6495 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6496 * with ai.record.*.
6497 * All other fields in ai are ignored.
6498 * If successful returns 0. Otherwise returns errno.
6499 * This function does not roll back even if it fails.
6500 * Must be called with sc_exlock held and without sc_lock held.
6501 */
6502 static int
6503 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6504 {
6505 audio_format2_t phwfmt;
6506 audio_format2_t rhwfmt;
6507 audio_filter_reg_t pfil;
6508 audio_filter_reg_t rfil;
6509 int mode;
6510 int error;
6511
6512 KASSERT(sc->sc_exlock);
6513
6514 /*
6515 * Even when setting either one of playback and recording,
6516 * both must be halted.
6517 */
6518 if (sc->sc_popens + sc->sc_ropens > 0)
6519 return EBUSY;
6520
6521 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6522 return ENOTTY;
6523
6524 mode = ai->mode;
6525 if ((mode & AUMODE_PLAY)) {
6526 phwfmt.encoding = ai->play.encoding;
6527 phwfmt.precision = ai->play.precision;
6528 phwfmt.stride = ai->play.precision;
6529 phwfmt.channels = ai->play.channels;
6530 phwfmt.sample_rate = ai->play.sample_rate;
6531 }
6532 if ((mode & AUMODE_RECORD)) {
6533 rhwfmt.encoding = ai->record.encoding;
6534 rhwfmt.precision = ai->record.precision;
6535 rhwfmt.stride = ai->record.precision;
6536 rhwfmt.channels = ai->record.channels;
6537 rhwfmt.sample_rate = ai->record.sample_rate;
6538 }
6539
6540 /* On non-independent devices, use the same format for both. */
6541 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6542 if (mode == AUMODE_RECORD) {
6543 phwfmt = rhwfmt;
6544 } else {
6545 rhwfmt = phwfmt;
6546 }
6547 mode = AUMODE_PLAY | AUMODE_RECORD;
6548 }
6549
6550 /* Then, unset the direction not exist on the hardware. */
6551 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6552 mode &= ~AUMODE_PLAY;
6553 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6554 mode &= ~AUMODE_RECORD;
6555
6556 /* debug */
6557 if ((mode & AUMODE_PLAY)) {
6558 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6559 audio_encoding_name(phwfmt.encoding),
6560 phwfmt.precision,
6561 phwfmt.stride,
6562 phwfmt.channels,
6563 phwfmt.sample_rate);
6564 }
6565 if ((mode & AUMODE_RECORD)) {
6566 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6567 audio_encoding_name(rhwfmt.encoding),
6568 rhwfmt.precision,
6569 rhwfmt.stride,
6570 rhwfmt.channels,
6571 rhwfmt.sample_rate);
6572 }
6573
6574 /* Check the format */
6575 if ((mode & AUMODE_PLAY)) {
6576 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6577 TRACE(1, "invalid format");
6578 return EINVAL;
6579 }
6580 }
6581 if ((mode & AUMODE_RECORD)) {
6582 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6583 TRACE(1, "invalid format");
6584 return EINVAL;
6585 }
6586 }
6587
6588 /* Configure the mixers. */
6589 memset(&pfil, 0, sizeof(pfil));
6590 memset(&rfil, 0, sizeof(rfil));
6591 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6592 if (error)
6593 return error;
6594
6595 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6596 if (error)
6597 return error;
6598
6599 /*
6600 * Reinitialize the sticky parameters for /dev/sound.
6601 * If the number of the hardware channels becomes less than the number
6602 * of channels that sticky parameters remember, subsequent /dev/sound
6603 * open will fail. To prevent this, reinitialize the sticky
6604 * parameters whenever the hardware format is changed.
6605 */
6606 sc->sc_sound_pparams = params_to_format2(&audio_default);
6607 sc->sc_sound_rparams = params_to_format2(&audio_default);
6608 sc->sc_sound_ppause = false;
6609 sc->sc_sound_rpause = false;
6610
6611 return 0;
6612 }
6613
6614 /*
6615 * Store current mixers format into *ai.
6616 * Must be called with sc_exlock held.
6617 */
6618 static void
6619 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6620 {
6621
6622 KASSERT(sc->sc_exlock);
6623
6624 /*
6625 * There is no stride information in audio_info but it doesn't matter.
6626 * trackmixer always treats stride and precision as the same.
6627 */
6628 AUDIO_INITINFO(ai);
6629 ai->mode = 0;
6630 if (sc->sc_pmixer) {
6631 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6632 ai->play.encoding = fmt->encoding;
6633 ai->play.precision = fmt->precision;
6634 ai->play.channels = fmt->channels;
6635 ai->play.sample_rate = fmt->sample_rate;
6636 ai->mode |= AUMODE_PLAY;
6637 }
6638 if (sc->sc_rmixer) {
6639 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6640 ai->record.encoding = fmt->encoding;
6641 ai->record.precision = fmt->precision;
6642 ai->record.channels = fmt->channels;
6643 ai->record.sample_rate = fmt->sample_rate;
6644 ai->mode |= AUMODE_RECORD;
6645 }
6646 }
6647
6648 /*
6649 * audio_info details:
6650 *
6651 * ai.{play,record}.sample_rate (R/W)
6652 * ai.{play,record}.encoding (R/W)
6653 * ai.{play,record}.precision (R/W)
6654 * ai.{play,record}.channels (R/W)
6655 * These specify the playback or recording format.
6656 * Ignore members within an inactive track.
6657 *
6658 * ai.mode (R/W)
6659 * It specifies the playback or recording mode, AUMODE_*.
6660 * Currently, a mode change operation by ai.mode after opening is
6661 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6662 * However, it's possible to get or to set for backward compatibility.
6663 *
6664 * ai.{hiwat,lowat} (R/W)
6665 * These specify the high water mark and low water mark for playback
6666 * track. The unit is block.
6667 *
6668 * ai.{play,record}.gain (R/W)
6669 * It specifies the HW mixer volume in 0-255.
6670 * It is historical reason that the gain is connected to HW mixer.
6671 *
6672 * ai.{play,record}.balance (R/W)
6673 * It specifies the left-right balance of HW mixer in 0-64.
6674 * 32 means the center.
6675 * It is historical reason that the balance is connected to HW mixer.
6676 *
6677 * ai.{play,record}.port (R/W)
6678 * It specifies the input/output port of HW mixer.
6679 *
6680 * ai.monitor_gain (R/W)
6681 * It specifies the recording monitor gain(?) of HW mixer.
6682 *
6683 * ai.{play,record}.pause (R/W)
6684 * Non-zero means the track is paused.
6685 *
6686 * ai.play.seek (R/-)
6687 * It indicates the number of bytes written but not processed.
6688 * ai.record.seek (R/-)
6689 * It indicates the number of bytes to be able to read.
6690 *
6691 * ai.{play,record}.avail_ports (R/-)
6692 * Mixer info.
6693 *
6694 * ai.{play,record}.buffer_size (R/-)
6695 * It indicates the buffer size in bytes. Internally it means usrbuf.
6696 *
6697 * ai.{play,record}.samples (R/-)
6698 * It indicates the total number of bytes played or recorded.
6699 *
6700 * ai.{play,record}.eof (R/-)
6701 * It indicates the number of times reached EOF(?).
6702 *
6703 * ai.{play,record}.error (R/-)
6704 * Non-zero indicates overflow/underflow has occured.
6705 *
6706 * ai.{play,record}.waiting (R/-)
6707 * Non-zero indicates that other process waits to open.
6708 * It will never happen anymore.
6709 *
6710 * ai.{play,record}.open (R/-)
6711 * Non-zero indicates the direction is opened by this process(?).
6712 * XXX Is this better to indicate that "the device is opened by
6713 * at least one process"?
6714 *
6715 * ai.{play,record}.active (R/-)
6716 * Non-zero indicates that I/O is currently active.
6717 *
6718 * ai.blocksize (R/-)
6719 * It indicates the block size in bytes.
6720 * XXX The blocksize of playback and recording may be different.
6721 */
6722
6723 /*
6724 * Pause consideration:
6725 *
6726 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6727 * operation simple. Note that playback and recording are asymmetric.
6728 *
6729 * For playback,
6730 * 1. Any playback open doesn't start pmixer regardless of initial pause
6731 * state of this track.
6732 * 2. The first write access among playback tracks only starts pmixer
6733 * regardless of this track's pause state.
6734 * 3. Even a pause of the last playback track doesn't stop pmixer.
6735 * 4. The last close of all playback tracks only stops pmixer.
6736 *
6737 * For recording,
6738 * 1. The first recording open only starts rmixer regardless of initial
6739 * pause state of this track.
6740 * 2. Even a pause of the last track doesn't stop rmixer.
6741 * 3. The last close of all recording tracks only stops rmixer.
6742 */
6743
6744 /*
6745 * Set both track's parameters within a file depending on ai.
6746 * Update sc_sound_[pr]* if set.
6747 * Must be called with sc_exlock held and without sc_lock held.
6748 */
6749 static int
6750 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6751 const struct audio_info *ai)
6752 {
6753 const struct audio_prinfo *pi;
6754 const struct audio_prinfo *ri;
6755 audio_track_t *ptrack;
6756 audio_track_t *rtrack;
6757 audio_format2_t pfmt;
6758 audio_format2_t rfmt;
6759 int pchanges;
6760 int rchanges;
6761 int mode;
6762 struct audio_info saved_ai;
6763 audio_format2_t saved_pfmt;
6764 audio_format2_t saved_rfmt;
6765 int error;
6766
6767 KASSERT(sc->sc_exlock);
6768
6769 pi = &ai->play;
6770 ri = &ai->record;
6771 pchanges = 0;
6772 rchanges = 0;
6773
6774 ptrack = file->ptrack;
6775 rtrack = file->rtrack;
6776
6777 #if defined(AUDIO_DEBUG)
6778 if (audiodebug >= 2) {
6779 char buf[256];
6780 char p[64];
6781 int buflen;
6782 int plen;
6783 #define SPRINTF(var, fmt...) do { \
6784 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6785 } while (0)
6786
6787 buflen = 0;
6788 plen = 0;
6789 if (SPECIFIED(pi->encoding))
6790 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6791 if (SPECIFIED(pi->precision))
6792 SPRINTF(p, "/%dbit", pi->precision);
6793 if (SPECIFIED(pi->channels))
6794 SPRINTF(p, "/%dch", pi->channels);
6795 if (SPECIFIED(pi->sample_rate))
6796 SPRINTF(p, "/%dHz", pi->sample_rate);
6797 if (plen > 0)
6798 SPRINTF(buf, ",play.param=%s", p + 1);
6799
6800 plen = 0;
6801 if (SPECIFIED(ri->encoding))
6802 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6803 if (SPECIFIED(ri->precision))
6804 SPRINTF(p, "/%dbit", ri->precision);
6805 if (SPECIFIED(ri->channels))
6806 SPRINTF(p, "/%dch", ri->channels);
6807 if (SPECIFIED(ri->sample_rate))
6808 SPRINTF(p, "/%dHz", ri->sample_rate);
6809 if (plen > 0)
6810 SPRINTF(buf, ",record.param=%s", p + 1);
6811
6812 if (SPECIFIED(ai->mode))
6813 SPRINTF(buf, ",mode=%d", ai->mode);
6814 if (SPECIFIED(ai->hiwat))
6815 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6816 if (SPECIFIED(ai->lowat))
6817 SPRINTF(buf, ",lowat=%d", ai->lowat);
6818 if (SPECIFIED(ai->play.gain))
6819 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6820 if (SPECIFIED(ai->record.gain))
6821 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6822 if (SPECIFIED_CH(ai->play.balance))
6823 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6824 if (SPECIFIED_CH(ai->record.balance))
6825 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6826 if (SPECIFIED(ai->play.port))
6827 SPRINTF(buf, ",play.port=%d", ai->play.port);
6828 if (SPECIFIED(ai->record.port))
6829 SPRINTF(buf, ",record.port=%d", ai->record.port);
6830 if (SPECIFIED(ai->monitor_gain))
6831 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6832 if (SPECIFIED_CH(ai->play.pause))
6833 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6834 if (SPECIFIED_CH(ai->record.pause))
6835 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6836
6837 if (buflen > 0)
6838 TRACE(2, "specified %s", buf + 1);
6839 }
6840 #endif
6841
6842 AUDIO_INITINFO(&saved_ai);
6843 /* XXX shut up gcc */
6844 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6845 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6846
6847 /*
6848 * Set default value and save current parameters.
6849 * For backward compatibility, use sticky parameters for nonexistent
6850 * track.
6851 */
6852 if (ptrack) {
6853 pfmt = ptrack->usrbuf.fmt;
6854 saved_pfmt = ptrack->usrbuf.fmt;
6855 saved_ai.play.pause = ptrack->is_pause;
6856 } else {
6857 pfmt = sc->sc_sound_pparams;
6858 }
6859 if (rtrack) {
6860 rfmt = rtrack->usrbuf.fmt;
6861 saved_rfmt = rtrack->usrbuf.fmt;
6862 saved_ai.record.pause = rtrack->is_pause;
6863 } else {
6864 rfmt = sc->sc_sound_rparams;
6865 }
6866 saved_ai.mode = file->mode;
6867
6868 /*
6869 * Overwrite if specified.
6870 */
6871 mode = file->mode;
6872 if (SPECIFIED(ai->mode)) {
6873 /*
6874 * Setting ai->mode no longer does anything because it's
6875 * prohibited to change playback/recording mode after open
6876 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6877 * keeps the state of AUMODE_PLAY_ALL itself for backward
6878 * compatibility.
6879 * In the internal, only file->mode has the state of
6880 * AUMODE_PLAY_ALL flag and track->mode in both track does
6881 * not have.
6882 */
6883 if ((file->mode & AUMODE_PLAY)) {
6884 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6885 | (ai->mode & AUMODE_PLAY_ALL);
6886 }
6887 }
6888
6889 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
6890 if (pchanges == -1) {
6891 #if defined(AUDIO_DEBUG)
6892 TRACEF(1, file, "check play.params failed: "
6893 "%s %ubit %uch %uHz",
6894 audio_encoding_name(pi->encoding),
6895 pi->precision,
6896 pi->channels,
6897 pi->sample_rate);
6898 #endif
6899 return EINVAL;
6900 }
6901
6902 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
6903 if (rchanges == -1) {
6904 #if defined(AUDIO_DEBUG)
6905 TRACEF(1, file, "check record.params failed: "
6906 "%s %ubit %uch %uHz",
6907 audio_encoding_name(ri->encoding),
6908 ri->precision,
6909 ri->channels,
6910 ri->sample_rate);
6911 #endif
6912 return EINVAL;
6913 }
6914
6915 if (SPECIFIED(ai->mode)) {
6916 pchanges = 1;
6917 rchanges = 1;
6918 }
6919
6920 /*
6921 * Even when setting either one of playback and recording,
6922 * both track must be halted.
6923 */
6924 if (pchanges || rchanges) {
6925 audio_file_clear(sc, file);
6926 #if defined(AUDIO_DEBUG)
6927 char nbuf[16];
6928 char fmtbuf[64];
6929 if (pchanges) {
6930 if (ptrack) {
6931 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
6932 } else {
6933 snprintf(nbuf, sizeof(nbuf), "-");
6934 }
6935 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6936 DPRINTF(1, "audio track#%s play mode: %s\n",
6937 nbuf, fmtbuf);
6938 }
6939 if (rchanges) {
6940 if (rtrack) {
6941 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
6942 } else {
6943 snprintf(nbuf, sizeof(nbuf), "-");
6944 }
6945 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6946 DPRINTF(1, "audio track#%s rec mode: %s\n",
6947 nbuf, fmtbuf);
6948 }
6949 #endif
6950 }
6951
6952 /* Set mixer parameters */
6953 mutex_enter(sc->sc_lock);
6954 error = audio_hw_setinfo(sc, ai, &saved_ai);
6955 mutex_exit(sc->sc_lock);
6956 if (error)
6957 goto abort1;
6958
6959 /*
6960 * Set to track and update sticky parameters.
6961 */
6962 error = 0;
6963 file->mode = mode;
6964
6965 if (SPECIFIED_CH(pi->pause)) {
6966 if (ptrack)
6967 ptrack->is_pause = pi->pause;
6968 sc->sc_sound_ppause = pi->pause;
6969 }
6970 if (pchanges) {
6971 if (ptrack) {
6972 audio_track_lock_enter(ptrack);
6973 error = audio_track_set_format(ptrack, &pfmt);
6974 audio_track_lock_exit(ptrack);
6975 if (error) {
6976 TRACET(1, ptrack, "set play.params failed");
6977 goto abort2;
6978 }
6979 }
6980 sc->sc_sound_pparams = pfmt;
6981 }
6982 /* Change water marks after initializing the buffers. */
6983 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6984 if (ptrack)
6985 audio_track_setinfo_water(ptrack, ai);
6986 }
6987
6988 if (SPECIFIED_CH(ri->pause)) {
6989 if (rtrack)
6990 rtrack->is_pause = ri->pause;
6991 sc->sc_sound_rpause = ri->pause;
6992 }
6993 if (rchanges) {
6994 if (rtrack) {
6995 audio_track_lock_enter(rtrack);
6996 error = audio_track_set_format(rtrack, &rfmt);
6997 audio_track_lock_exit(rtrack);
6998 if (error) {
6999 TRACET(1, rtrack, "set record.params failed");
7000 goto abort3;
7001 }
7002 }
7003 sc->sc_sound_rparams = rfmt;
7004 }
7005
7006 return 0;
7007
7008 /* Rollback */
7009 abort3:
7010 if (error != ENOMEM) {
7011 rtrack->is_pause = saved_ai.record.pause;
7012 audio_track_lock_enter(rtrack);
7013 audio_track_set_format(rtrack, &saved_rfmt);
7014 audio_track_lock_exit(rtrack);
7015 }
7016 sc->sc_sound_rpause = saved_ai.record.pause;
7017 sc->sc_sound_rparams = saved_rfmt;
7018 abort2:
7019 if (ptrack && error != ENOMEM) {
7020 ptrack->is_pause = saved_ai.play.pause;
7021 audio_track_lock_enter(ptrack);
7022 audio_track_set_format(ptrack, &saved_pfmt);
7023 audio_track_lock_exit(ptrack);
7024 }
7025 sc->sc_sound_ppause = saved_ai.play.pause;
7026 sc->sc_sound_pparams = saved_pfmt;
7027 file->mode = saved_ai.mode;
7028 abort1:
7029 mutex_enter(sc->sc_lock);
7030 audio_hw_setinfo(sc, &saved_ai, NULL);
7031 mutex_exit(sc->sc_lock);
7032
7033 return error;
7034 }
7035
7036 /*
7037 * Write SPECIFIED() parameters within info back to fmt.
7038 * Note that track can be NULL here.
7039 * Return value of 1 indicates that fmt is modified.
7040 * Return value of 0 indicates that fmt is not modified.
7041 * Return value of -1 indicates that error EINVAL has occurred.
7042 */
7043 static int
7044 audio_track_setinfo_check(audio_track_t *track,
7045 audio_format2_t *fmt, const struct audio_prinfo *info)
7046 {
7047 const audio_format2_t *hwfmt;
7048 int changes;
7049
7050 changes = 0;
7051 if (SPECIFIED(info->sample_rate)) {
7052 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7053 return -1;
7054 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7055 return -1;
7056 fmt->sample_rate = info->sample_rate;
7057 changes = 1;
7058 }
7059 if (SPECIFIED(info->encoding)) {
7060 fmt->encoding = info->encoding;
7061 changes = 1;
7062 }
7063 if (SPECIFIED(info->precision)) {
7064 fmt->precision = info->precision;
7065 /* we don't have API to specify stride */
7066 fmt->stride = info->precision;
7067 changes = 1;
7068 }
7069 if (SPECIFIED(info->channels)) {
7070 /*
7071 * We can convert between monaural and stereo each other.
7072 * We can reduce than the number of channels that the hardware
7073 * supports.
7074 */
7075 if (info->channels > 2) {
7076 if (track) {
7077 hwfmt = &track->mixer->hwbuf.fmt;
7078 if (info->channels > hwfmt->channels)
7079 return -1;
7080 } else {
7081 /*
7082 * This should never happen.
7083 * If track == NULL, channels should be <= 2.
7084 */
7085 return -1;
7086 }
7087 }
7088 fmt->channels = info->channels;
7089 changes = 1;
7090 }
7091
7092 if (changes) {
7093 if (audio_check_params(fmt) != 0)
7094 return -1;
7095 }
7096
7097 return changes;
7098 }
7099
7100 /*
7101 * Change water marks for playback track if specfied.
7102 */
7103 static void
7104 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7105 {
7106 u_int blks;
7107 u_int maxblks;
7108 u_int blksize;
7109
7110 KASSERT(audio_track_is_playback(track));
7111
7112 blksize = track->usrbuf_blksize;
7113 maxblks = track->usrbuf.capacity / blksize;
7114
7115 if (SPECIFIED(ai->hiwat)) {
7116 blks = ai->hiwat;
7117 if (blks > maxblks)
7118 blks = maxblks;
7119 if (blks < 2)
7120 blks = 2;
7121 track->usrbuf_usedhigh = blks * blksize;
7122 }
7123 if (SPECIFIED(ai->lowat)) {
7124 blks = ai->lowat;
7125 if (blks > maxblks - 1)
7126 blks = maxblks - 1;
7127 track->usrbuf_usedlow = blks * blksize;
7128 }
7129 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7130 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7131 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7132 blksize;
7133 }
7134 }
7135 }
7136
7137 /*
7138 * Set hardware part of *newai.
7139 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7140 * If oldai is specified, previous parameters are stored.
7141 * This function itself does not roll back if error occurred.
7142 * Must be called with sc_lock && sc_exlock held.
7143 */
7144 static int
7145 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7146 struct audio_info *oldai)
7147 {
7148 const struct audio_prinfo *newpi;
7149 const struct audio_prinfo *newri;
7150 struct audio_prinfo *oldpi;
7151 struct audio_prinfo *oldri;
7152 u_int pgain;
7153 u_int rgain;
7154 u_char pbalance;
7155 u_char rbalance;
7156 int error;
7157
7158 KASSERT(mutex_owned(sc->sc_lock));
7159 KASSERT(sc->sc_exlock);
7160
7161 /* XXX shut up gcc */
7162 oldpi = NULL;
7163 oldri = NULL;
7164
7165 newpi = &newai->play;
7166 newri = &newai->record;
7167 if (oldai) {
7168 oldpi = &oldai->play;
7169 oldri = &oldai->record;
7170 }
7171 error = 0;
7172
7173 /*
7174 * It looks like unnecessary to halt HW mixers to set HW mixers.
7175 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7176 */
7177
7178 if (SPECIFIED(newpi->port)) {
7179 if (oldai)
7180 oldpi->port = au_get_port(sc, &sc->sc_outports);
7181 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7182 if (error) {
7183 device_printf(sc->sc_dev,
7184 "setting play.port=%d failed with %d\n",
7185 newpi->port, error);
7186 goto abort;
7187 }
7188 }
7189 if (SPECIFIED(newri->port)) {
7190 if (oldai)
7191 oldri->port = au_get_port(sc, &sc->sc_inports);
7192 error = au_set_port(sc, &sc->sc_inports, newri->port);
7193 if (error) {
7194 device_printf(sc->sc_dev,
7195 "setting record.port=%d failed with %d\n",
7196 newri->port, error);
7197 goto abort;
7198 }
7199 }
7200
7201 /* Backup play.{gain,balance} */
7202 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7203 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7204 if (oldai) {
7205 oldpi->gain = pgain;
7206 oldpi->balance = pbalance;
7207 }
7208 }
7209 /* Backup record.{gain,balance} */
7210 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7211 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7212 if (oldai) {
7213 oldri->gain = rgain;
7214 oldri->balance = rbalance;
7215 }
7216 }
7217 if (SPECIFIED(newpi->gain)) {
7218 error = au_set_gain(sc, &sc->sc_outports,
7219 newpi->gain, pbalance);
7220 if (error) {
7221 device_printf(sc->sc_dev,
7222 "setting play.gain=%d failed with %d\n",
7223 newpi->gain, error);
7224 goto abort;
7225 }
7226 }
7227 if (SPECIFIED(newri->gain)) {
7228 error = au_set_gain(sc, &sc->sc_inports,
7229 newri->gain, rbalance);
7230 if (error) {
7231 device_printf(sc->sc_dev,
7232 "setting record.gain=%d failed with %d\n",
7233 newri->gain, error);
7234 goto abort;
7235 }
7236 }
7237 if (SPECIFIED_CH(newpi->balance)) {
7238 error = au_set_gain(sc, &sc->sc_outports,
7239 pgain, newpi->balance);
7240 if (error) {
7241 device_printf(sc->sc_dev,
7242 "setting play.balance=%d failed with %d\n",
7243 newpi->balance, error);
7244 goto abort;
7245 }
7246 }
7247 if (SPECIFIED_CH(newri->balance)) {
7248 error = au_set_gain(sc, &sc->sc_inports,
7249 rgain, newri->balance);
7250 if (error) {
7251 device_printf(sc->sc_dev,
7252 "setting record.balance=%d failed with %d\n",
7253 newri->balance, error);
7254 goto abort;
7255 }
7256 }
7257
7258 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7259 if (oldai)
7260 oldai->monitor_gain = au_get_monitor_gain(sc);
7261 error = au_set_monitor_gain(sc, newai->monitor_gain);
7262 if (error) {
7263 device_printf(sc->sc_dev,
7264 "setting monitor_gain=%d failed with %d\n",
7265 newai->monitor_gain, error);
7266 goto abort;
7267 }
7268 }
7269
7270 /* XXX TODO */
7271 /* sc->sc_ai = *ai; */
7272
7273 error = 0;
7274 abort:
7275 return error;
7276 }
7277
7278 /*
7279 * Setup the hardware with mixer format phwfmt, rhwfmt.
7280 * The arguments have following restrictions:
7281 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7282 * or both.
7283 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7284 * - On non-independent devices, phwfmt and rhwfmt must have the same
7285 * parameters.
7286 * - pfil and rfil must be zero-filled.
7287 * If successful,
7288 * - pfil, rfil will be filled with filter information specified by the
7289 * hardware driver.
7290 * and then returns 0. Otherwise returns errno.
7291 * Must be called without sc_lock held.
7292 */
7293 static int
7294 audio_hw_set_format(struct audio_softc *sc, int setmode,
7295 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7296 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7297 {
7298 audio_params_t pp, rp;
7299 int error;
7300
7301 KASSERT(phwfmt != NULL);
7302 KASSERT(rhwfmt != NULL);
7303
7304 pp = format2_to_params(phwfmt);
7305 rp = format2_to_params(rhwfmt);
7306
7307 mutex_enter(sc->sc_lock);
7308 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7309 &pp, &rp, pfil, rfil);
7310 if (error) {
7311 mutex_exit(sc->sc_lock);
7312 device_printf(sc->sc_dev,
7313 "set_format failed with %d\n", error);
7314 return error;
7315 }
7316
7317 if (sc->hw_if->commit_settings) {
7318 error = sc->hw_if->commit_settings(sc->hw_hdl);
7319 if (error) {
7320 mutex_exit(sc->sc_lock);
7321 device_printf(sc->sc_dev,
7322 "commit_settings failed with %d\n", error);
7323 return error;
7324 }
7325 }
7326 mutex_exit(sc->sc_lock);
7327
7328 return 0;
7329 }
7330
7331 /*
7332 * Fill audio_info structure. If need_mixerinfo is true, it will also
7333 * fill the hardware mixer information.
7334 * Must be called with sc_exlock held and without sc_lock held.
7335 */
7336 static int
7337 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7338 audio_file_t *file)
7339 {
7340 struct audio_prinfo *ri, *pi;
7341 audio_track_t *track;
7342 audio_track_t *ptrack;
7343 audio_track_t *rtrack;
7344 int gain;
7345
7346 KASSERT(sc->sc_exlock);
7347
7348 ri = &ai->record;
7349 pi = &ai->play;
7350 ptrack = file->ptrack;
7351 rtrack = file->rtrack;
7352
7353 memset(ai, 0, sizeof(*ai));
7354
7355 if (ptrack) {
7356 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7357 pi->channels = ptrack->usrbuf.fmt.channels;
7358 pi->precision = ptrack->usrbuf.fmt.precision;
7359 pi->encoding = ptrack->usrbuf.fmt.encoding;
7360 pi->pause = ptrack->is_pause;
7361 } else {
7362 /* Use sticky parameters if the track is not available. */
7363 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7364 pi->channels = sc->sc_sound_pparams.channels;
7365 pi->precision = sc->sc_sound_pparams.precision;
7366 pi->encoding = sc->sc_sound_pparams.encoding;
7367 pi->pause = sc->sc_sound_ppause;
7368 }
7369 if (rtrack) {
7370 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7371 ri->channels = rtrack->usrbuf.fmt.channels;
7372 ri->precision = rtrack->usrbuf.fmt.precision;
7373 ri->encoding = rtrack->usrbuf.fmt.encoding;
7374 ri->pause = rtrack->is_pause;
7375 } else {
7376 /* Use sticky parameters if the track is not available. */
7377 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7378 ri->channels = sc->sc_sound_rparams.channels;
7379 ri->precision = sc->sc_sound_rparams.precision;
7380 ri->encoding = sc->sc_sound_rparams.encoding;
7381 ri->pause = sc->sc_sound_rpause;
7382 }
7383
7384 if (ptrack) {
7385 pi->seek = ptrack->usrbuf.used;
7386 pi->samples = ptrack->usrbuf_stamp;
7387 pi->eof = ptrack->eofcounter;
7388 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7389 pi->open = 1;
7390 pi->buffer_size = ptrack->usrbuf.capacity;
7391 }
7392 pi->waiting = 0; /* open never hangs */
7393 pi->active = sc->sc_pbusy;
7394
7395 if (rtrack) {
7396 ri->seek = rtrack->usrbuf.used;
7397 ri->samples = rtrack->usrbuf_stamp;
7398 ri->eof = 0;
7399 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7400 ri->open = 1;
7401 ri->buffer_size = rtrack->usrbuf.capacity;
7402 }
7403 ri->waiting = 0; /* open never hangs */
7404 ri->active = sc->sc_rbusy;
7405
7406 /*
7407 * XXX There may be different number of channels between playback
7408 * and recording, so that blocksize also may be different.
7409 * But struct audio_info has an united blocksize...
7410 * Here, I use play info precedencely if ptrack is available,
7411 * otherwise record info.
7412 *
7413 * XXX hiwat/lowat is a playback-only parameter. What should I
7414 * return for a record-only descriptor?
7415 */
7416 track = ptrack ? ptrack : rtrack;
7417 if (track) {
7418 ai->blocksize = track->usrbuf_blksize;
7419 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7420 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7421 }
7422 ai->mode = file->mode;
7423
7424 /*
7425 * For backward compatibility, we have to pad these five fields
7426 * a fake non-zero value even if there are no tracks.
7427 */
7428 if (ptrack == NULL)
7429 pi->buffer_size = 65536;
7430 if (rtrack == NULL)
7431 ri->buffer_size = 65536;
7432 if (ptrack == NULL && rtrack == NULL) {
7433 ai->blocksize = 2048;
7434 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7435 ai->lowat = ai->hiwat * 3 / 4;
7436 }
7437
7438 if (need_mixerinfo) {
7439 mutex_enter(sc->sc_lock);
7440
7441 pi->port = au_get_port(sc, &sc->sc_outports);
7442 ri->port = au_get_port(sc, &sc->sc_inports);
7443
7444 pi->avail_ports = sc->sc_outports.allports;
7445 ri->avail_ports = sc->sc_inports.allports;
7446
7447 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7448 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7449
7450 if (sc->sc_monitor_port != -1) {
7451 gain = au_get_monitor_gain(sc);
7452 if (gain != -1)
7453 ai->monitor_gain = gain;
7454 }
7455 mutex_exit(sc->sc_lock);
7456 }
7457
7458 return 0;
7459 }
7460
7461 /*
7462 * Return true if playback is configured.
7463 * This function can be used after audioattach.
7464 */
7465 static bool
7466 audio_can_playback(struct audio_softc *sc)
7467 {
7468
7469 return (sc->sc_pmixer != NULL);
7470 }
7471
7472 /*
7473 * Return true if recording is configured.
7474 * This function can be used after audioattach.
7475 */
7476 static bool
7477 audio_can_capture(struct audio_softc *sc)
7478 {
7479
7480 return (sc->sc_rmixer != NULL);
7481 }
7482
7483 /*
7484 * Get the afp->index'th item from the valid one of format[].
7485 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7486 *
7487 * This is common routines for query_format.
7488 * If your hardware driver has struct audio_format[], the simplest case
7489 * you can write your query_format interface as follows:
7490 *
7491 * struct audio_format foo_format[] = { ... };
7492 *
7493 * int
7494 * foo_query_format(void *hdl, audio_format_query_t *afp)
7495 * {
7496 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7497 * }
7498 */
7499 int
7500 audio_query_format(const struct audio_format *format, int nformats,
7501 audio_format_query_t *afp)
7502 {
7503 const struct audio_format *f;
7504 int idx;
7505 int i;
7506
7507 idx = 0;
7508 for (i = 0; i < nformats; i++) {
7509 f = &format[i];
7510 if (!AUFMT_IS_VALID(f))
7511 continue;
7512 if (afp->index == idx) {
7513 afp->fmt = *f;
7514 return 0;
7515 }
7516 idx++;
7517 }
7518 return EINVAL;
7519 }
7520
7521 /*
7522 * This function is provided for the hardware driver's set_format() to
7523 * find index matches with 'param' from array of audio_format_t 'formats'.
7524 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7525 * It returns the matched index and never fails. Because param passed to
7526 * set_format() is selected from query_format().
7527 * This function will be an alternative to auconv_set_converter() to
7528 * find index.
7529 */
7530 int
7531 audio_indexof_format(const struct audio_format *formats, int nformats,
7532 int mode, const audio_params_t *param)
7533 {
7534 const struct audio_format *f;
7535 int index;
7536 int j;
7537
7538 for (index = 0; index < nformats; index++) {
7539 f = &formats[index];
7540
7541 if (!AUFMT_IS_VALID(f))
7542 continue;
7543 if ((f->mode & mode) == 0)
7544 continue;
7545 if (f->encoding != param->encoding)
7546 continue;
7547 if (f->validbits != param->precision)
7548 continue;
7549 if (f->channels != param->channels)
7550 continue;
7551
7552 if (f->frequency_type == 0) {
7553 if (param->sample_rate < f->frequency[0] ||
7554 param->sample_rate > f->frequency[1])
7555 continue;
7556 } else {
7557 for (j = 0; j < f->frequency_type; j++) {
7558 if (param->sample_rate == f->frequency[j])
7559 break;
7560 }
7561 if (j == f->frequency_type)
7562 continue;
7563 }
7564
7565 /* Then, matched */
7566 return index;
7567 }
7568
7569 /* Not matched. This should not be happened. */
7570 panic("%s: cannot find matched format\n", __func__);
7571 }
7572
7573 /*
7574 * Get or set hardware blocksize in msec.
7575 * XXX It's for debug.
7576 */
7577 static int
7578 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7579 {
7580 struct sysctlnode node;
7581 struct audio_softc *sc;
7582 audio_format2_t phwfmt;
7583 audio_format2_t rhwfmt;
7584 audio_filter_reg_t pfil;
7585 audio_filter_reg_t rfil;
7586 int t;
7587 int old_blk_ms;
7588 int mode;
7589 int error;
7590
7591 node = *rnode;
7592 sc = node.sysctl_data;
7593
7594 error = audio_exlock_enter(sc);
7595 if (error)
7596 return error;
7597
7598 old_blk_ms = sc->sc_blk_ms;
7599 t = old_blk_ms;
7600 node.sysctl_data = &t;
7601 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7602 if (error || newp == NULL)
7603 goto abort;
7604
7605 if (t < 0) {
7606 error = EINVAL;
7607 goto abort;
7608 }
7609
7610 if (sc->sc_popens + sc->sc_ropens > 0) {
7611 error = EBUSY;
7612 goto abort;
7613 }
7614 sc->sc_blk_ms = t;
7615 mode = 0;
7616 if (sc->sc_pmixer) {
7617 mode |= AUMODE_PLAY;
7618 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7619 }
7620 if (sc->sc_rmixer) {
7621 mode |= AUMODE_RECORD;
7622 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7623 }
7624
7625 /* re-init hardware */
7626 memset(&pfil, 0, sizeof(pfil));
7627 memset(&rfil, 0, sizeof(rfil));
7628 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7629 if (error) {
7630 goto abort;
7631 }
7632
7633 /* re-init track mixer */
7634 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7635 if (error) {
7636 /* Rollback */
7637 sc->sc_blk_ms = old_blk_ms;
7638 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7639 goto abort;
7640 }
7641 error = 0;
7642 abort:
7643 audio_exlock_exit(sc);
7644 return error;
7645 }
7646
7647 /*
7648 * Get or set multiuser mode.
7649 */
7650 static int
7651 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7652 {
7653 struct sysctlnode node;
7654 struct audio_softc *sc;
7655 bool t;
7656 int error;
7657
7658 node = *rnode;
7659 sc = node.sysctl_data;
7660
7661 error = audio_exlock_enter(sc);
7662 if (error)
7663 return error;
7664
7665 t = sc->sc_multiuser;
7666 node.sysctl_data = &t;
7667 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7668 if (error || newp == NULL)
7669 goto abort;
7670
7671 sc->sc_multiuser = t;
7672 error = 0;
7673 abort:
7674 audio_exlock_exit(sc);
7675 return error;
7676 }
7677
7678 #if defined(AUDIO_DEBUG)
7679 /*
7680 * Get or set debug verbose level. (0..4)
7681 * XXX It's for debug.
7682 * XXX It is not separated per device.
7683 */
7684 static int
7685 audio_sysctl_debug(SYSCTLFN_ARGS)
7686 {
7687 struct sysctlnode node;
7688 int t;
7689 int error;
7690
7691 node = *rnode;
7692 t = audiodebug;
7693 node.sysctl_data = &t;
7694 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7695 if (error || newp == NULL)
7696 return error;
7697
7698 if (t < 0 || t > 4)
7699 return EINVAL;
7700 audiodebug = t;
7701 printf("audio: audiodebug = %d\n", audiodebug);
7702 return 0;
7703 }
7704 #endif /* AUDIO_DEBUG */
7705
7706 #ifdef AUDIO_PM_IDLE
7707 static void
7708 audio_idle(void *arg)
7709 {
7710 device_t dv = arg;
7711 struct audio_softc *sc = device_private(dv);
7712
7713 #ifdef PNP_DEBUG
7714 extern int pnp_debug_idle;
7715 if (pnp_debug_idle)
7716 printf("%s: idle handler called\n", device_xname(dv));
7717 #endif
7718
7719 sc->sc_idle = true;
7720
7721 /* XXX joerg Make pmf_device_suspend handle children? */
7722 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7723 return;
7724
7725 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7726 pmf_device_resume(dv, PMF_Q_SELF);
7727 }
7728
7729 static void
7730 audio_activity(device_t dv, devactive_t type)
7731 {
7732 struct audio_softc *sc = device_private(dv);
7733
7734 if (type != DVA_SYSTEM)
7735 return;
7736
7737 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7738
7739 sc->sc_idle = false;
7740 if (!device_is_active(dv)) {
7741 /* XXX joerg How to deal with a failing resume... */
7742 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7743 pmf_device_resume(dv, PMF_Q_SELF);
7744 }
7745 }
7746 #endif
7747
7748 static bool
7749 audio_suspend(device_t dv, const pmf_qual_t *qual)
7750 {
7751 struct audio_softc *sc = device_private(dv);
7752 int error;
7753
7754 error = audio_exlock_mutex_enter(sc);
7755 if (error)
7756 return error;
7757 audio_mixer_capture(sc);
7758
7759 /* Halts mixers but don't clear busy flag for resume */
7760 if (sc->sc_pbusy) {
7761 audio_pmixer_halt(sc);
7762 }
7763 if (sc->sc_rbusy) {
7764 audio_rmixer_halt(sc);
7765 }
7766
7767 #ifdef AUDIO_PM_IDLE
7768 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7769 #endif
7770 audio_exlock_mutex_exit(sc);
7771
7772 return true;
7773 }
7774
7775 static bool
7776 audio_resume(device_t dv, const pmf_qual_t *qual)
7777 {
7778 struct audio_softc *sc = device_private(dv);
7779 struct audio_info ai;
7780 int error;
7781
7782 error = audio_exlock_mutex_enter(sc);
7783 if (error)
7784 return error;
7785
7786 audio_mixer_restore(sc);
7787 /* XXX ? */
7788 AUDIO_INITINFO(&ai);
7789 audio_hw_setinfo(sc, &ai, NULL);
7790
7791 if (!sc->sc_pbusy)
7792 audio_pmixer_start(sc, true);
7793 if (!sc->sc_rbusy)
7794 audio_rmixer_start(sc);
7795
7796 audio_exlock_mutex_exit(sc);
7797
7798 return true;
7799 }
7800
7801 #if defined(AUDIO_DEBUG)
7802 static void
7803 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7804 {
7805 int n;
7806
7807 n = 0;
7808 n += snprintf(buf + n, bufsize - n, "%s",
7809 audio_encoding_name(fmt->encoding));
7810 if (fmt->precision == fmt->stride) {
7811 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7812 } else {
7813 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7814 fmt->precision, fmt->stride);
7815 }
7816
7817 snprintf(buf + n, bufsize - n, " %uch %uHz",
7818 fmt->channels, fmt->sample_rate);
7819 }
7820 #endif
7821
7822 #if defined(AUDIO_DEBUG)
7823 static void
7824 audio_print_format2(const char *s, const audio_format2_t *fmt)
7825 {
7826 char fmtstr[64];
7827
7828 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7829 printf("%s %s\n", s, fmtstr);
7830 }
7831 #endif
7832
7833 #ifdef DIAGNOSTIC
7834 void
7835 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7836 {
7837
7838 KASSERTMSG(fmt, "called from %s", where);
7839
7840 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7841 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7842 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7843 "called from %s: fmt->stride=%d", where, fmt->stride);
7844 } else {
7845 KASSERTMSG(fmt->stride % NBBY == 0,
7846 "called from %s: fmt->stride=%d", where, fmt->stride);
7847 }
7848 KASSERTMSG(fmt->precision <= fmt->stride,
7849 "called from %s: fmt->precision=%d fmt->stride=%d",
7850 where, fmt->precision, fmt->stride);
7851 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7852 "called from %s: fmt->channels=%d", where, fmt->channels);
7853
7854 /* XXX No check for encodings? */
7855 }
7856
7857 void
7858 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7859 {
7860
7861 KASSERT(arg != NULL);
7862 KASSERT(arg->src != NULL);
7863 KASSERT(arg->dst != NULL);
7864 audio_diagnostic_format2(where, arg->srcfmt);
7865 audio_diagnostic_format2(where, arg->dstfmt);
7866 KASSERT(arg->count > 0);
7867 }
7868
7869 void
7870 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7871 {
7872
7873 KASSERTMSG(ring, "called from %s", where);
7874 audio_diagnostic_format2(where, &ring->fmt);
7875 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7876 "called from %s: ring->capacity=%d", where, ring->capacity);
7877 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7878 "called from %s: ring->used=%d ring->capacity=%d",
7879 where, ring->used, ring->capacity);
7880 if (ring->capacity == 0) {
7881 KASSERTMSG(ring->mem == NULL,
7882 "called from %s: capacity == 0 but mem != NULL", where);
7883 } else {
7884 KASSERTMSG(ring->mem != NULL,
7885 "called from %s: capacity != 0 but mem == NULL", where);
7886 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7887 "called from %s: ring->head=%d ring->capacity=%d",
7888 where, ring->head, ring->capacity);
7889 }
7890 }
7891 #endif /* DIAGNOSTIC */
7892
7893
7894 /*
7895 * Mixer driver
7896 */
7897
7898 /*
7899 * Must be called without sc_lock held.
7900 */
7901 int
7902 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7903 struct lwp *l)
7904 {
7905 struct file *fp;
7906 audio_file_t *af;
7907 int error, fd;
7908
7909 TRACE(1, "flags=0x%x", flags);
7910
7911 error = fd_allocfile(&fp, &fd);
7912 if (error)
7913 return error;
7914
7915 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7916 af->sc = sc;
7917 af->dev = dev;
7918
7919 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7920 KASSERT(error == EMOVEFD);
7921
7922 return error;
7923 }
7924
7925 /*
7926 * Add a process to those to be signalled on mixer activity.
7927 * If the process has already been added, do nothing.
7928 * Must be called with sc_exlock held and without sc_lock held.
7929 */
7930 static void
7931 mixer_async_add(struct audio_softc *sc, pid_t pid)
7932 {
7933 int i;
7934
7935 KASSERT(sc->sc_exlock);
7936
7937 /* If already exists, returns without doing anything. */
7938 for (i = 0; i < sc->sc_am_used; i++) {
7939 if (sc->sc_am[i] == pid)
7940 return;
7941 }
7942
7943 /* Extend array if necessary. */
7944 if (sc->sc_am_used >= sc->sc_am_capacity) {
7945 sc->sc_am_capacity += AM_CAPACITY;
7946 sc->sc_am = kern_realloc(sc->sc_am,
7947 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
7948 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
7949 }
7950
7951 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
7952 sc->sc_am[sc->sc_am_used++] = pid;
7953 }
7954
7955 /*
7956 * Remove a process from those to be signalled on mixer activity.
7957 * If the process has not been added, do nothing.
7958 * Must be called with sc_exlock held and without sc_lock held.
7959 */
7960 static void
7961 mixer_async_remove(struct audio_softc *sc, pid_t pid)
7962 {
7963 int i;
7964
7965 KASSERT(sc->sc_exlock);
7966
7967 for (i = 0; i < sc->sc_am_used; i++) {
7968 if (sc->sc_am[i] == pid) {
7969 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
7970 TRACE(2, "am[%d](%d) removed, used=%d",
7971 i, (int)pid, sc->sc_am_used);
7972
7973 /* Empty array if no longer necessary. */
7974 if (sc->sc_am_used == 0) {
7975 kern_free(sc->sc_am);
7976 sc->sc_am = NULL;
7977 sc->sc_am_capacity = 0;
7978 TRACE(2, "released");
7979 }
7980 return;
7981 }
7982 }
7983 }
7984
7985 /*
7986 * Signal all processes waiting for the mixer.
7987 * Must be called with sc_exlock held.
7988 */
7989 static void
7990 mixer_signal(struct audio_softc *sc)
7991 {
7992 proc_t *p;
7993 int i;
7994
7995 KASSERT(sc->sc_exlock);
7996
7997 for (i = 0; i < sc->sc_am_used; i++) {
7998 mutex_enter(&proc_lock);
7999 p = proc_find(sc->sc_am[i]);
8000 if (p)
8001 psignal(p, SIGIO);
8002 mutex_exit(&proc_lock);
8003 }
8004 }
8005
8006 /*
8007 * Close a mixer device
8008 */
8009 int
8010 mixer_close(struct audio_softc *sc, audio_file_t *file)
8011 {
8012 int error;
8013
8014 error = audio_exlock_enter(sc);
8015 if (error)
8016 return error;
8017 TRACE(1, "");
8018 mixer_async_remove(sc, curproc->p_pid);
8019 audio_exlock_exit(sc);
8020
8021 return 0;
8022 }
8023
8024 /*
8025 * Must be called without sc_lock nor sc_exlock held.
8026 */
8027 int
8028 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8029 struct lwp *l)
8030 {
8031 mixer_devinfo_t *mi;
8032 mixer_ctrl_t *mc;
8033 int error;
8034
8035 TRACE(2, "(%lu,'%c',%lu)",
8036 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8037 error = EINVAL;
8038
8039 /* we can return cached values if we are sleeping */
8040 if (cmd != AUDIO_MIXER_READ) {
8041 mutex_enter(sc->sc_lock);
8042 device_active(sc->sc_dev, DVA_SYSTEM);
8043 mutex_exit(sc->sc_lock);
8044 }
8045
8046 switch (cmd) {
8047 case FIOASYNC:
8048 error = audio_exlock_enter(sc);
8049 if (error)
8050 break;
8051 if (*(int *)addr) {
8052 mixer_async_add(sc, curproc->p_pid);
8053 } else {
8054 mixer_async_remove(sc, curproc->p_pid);
8055 }
8056 audio_exlock_exit(sc);
8057 break;
8058
8059 case AUDIO_GETDEV:
8060 TRACE(2, "AUDIO_GETDEV");
8061 mutex_enter(sc->sc_lock);
8062 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8063 mutex_exit(sc->sc_lock);
8064 break;
8065
8066 case AUDIO_MIXER_DEVINFO:
8067 TRACE(2, "AUDIO_MIXER_DEVINFO");
8068 mi = (mixer_devinfo_t *)addr;
8069
8070 mi->un.v.delta = 0; /* default */
8071 mutex_enter(sc->sc_lock);
8072 error = audio_query_devinfo(sc, mi);
8073 mutex_exit(sc->sc_lock);
8074 break;
8075
8076 case AUDIO_MIXER_READ:
8077 TRACE(2, "AUDIO_MIXER_READ");
8078 mc = (mixer_ctrl_t *)addr;
8079
8080 error = audio_exlock_mutex_enter(sc);
8081 if (error)
8082 break;
8083 if (device_is_active(sc->hw_dev))
8084 error = audio_get_port(sc, mc);
8085 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8086 error = ENXIO;
8087 else {
8088 int dev = mc->dev;
8089 memcpy(mc, &sc->sc_mixer_state[dev],
8090 sizeof(mixer_ctrl_t));
8091 error = 0;
8092 }
8093 audio_exlock_mutex_exit(sc);
8094 break;
8095
8096 case AUDIO_MIXER_WRITE:
8097 TRACE(2, "AUDIO_MIXER_WRITE");
8098 error = audio_exlock_mutex_enter(sc);
8099 if (error)
8100 break;
8101 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8102 if (error) {
8103 audio_exlock_mutex_exit(sc);
8104 break;
8105 }
8106
8107 if (sc->hw_if->commit_settings) {
8108 error = sc->hw_if->commit_settings(sc->hw_hdl);
8109 if (error) {
8110 audio_exlock_mutex_exit(sc);
8111 break;
8112 }
8113 }
8114 mutex_exit(sc->sc_lock);
8115 mixer_signal(sc);
8116 audio_exlock_exit(sc);
8117 break;
8118
8119 default:
8120 if (sc->hw_if->dev_ioctl) {
8121 mutex_enter(sc->sc_lock);
8122 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8123 cmd, addr, flag, l);
8124 mutex_exit(sc->sc_lock);
8125 } else
8126 error = EINVAL;
8127 break;
8128 }
8129 TRACE(2, "(%lu,'%c',%lu) result %d",
8130 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8131 return error;
8132 }
8133
8134 /*
8135 * Must be called with sc_lock held.
8136 */
8137 int
8138 au_portof(struct audio_softc *sc, char *name, int class)
8139 {
8140 mixer_devinfo_t mi;
8141
8142 KASSERT(mutex_owned(sc->sc_lock));
8143
8144 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8145 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8146 return mi.index;
8147 }
8148 return -1;
8149 }
8150
8151 /*
8152 * Must be called with sc_lock held.
8153 */
8154 void
8155 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8156 mixer_devinfo_t *mi, const struct portname *tbl)
8157 {
8158 int i, j;
8159
8160 KASSERT(mutex_owned(sc->sc_lock));
8161
8162 ports->index = mi->index;
8163 if (mi->type == AUDIO_MIXER_ENUM) {
8164 ports->isenum = true;
8165 for(i = 0; tbl[i].name; i++)
8166 for(j = 0; j < mi->un.e.num_mem; j++)
8167 if (strcmp(mi->un.e.member[j].label.name,
8168 tbl[i].name) == 0) {
8169 ports->allports |= tbl[i].mask;
8170 ports->aumask[ports->nports] = tbl[i].mask;
8171 ports->misel[ports->nports] =
8172 mi->un.e.member[j].ord;
8173 ports->miport[ports->nports] =
8174 au_portof(sc, mi->un.e.member[j].label.name,
8175 mi->mixer_class);
8176 if (ports->mixerout != -1 &&
8177 ports->miport[ports->nports] != -1)
8178 ports->isdual = true;
8179 ++ports->nports;
8180 }
8181 } else if (mi->type == AUDIO_MIXER_SET) {
8182 for(i = 0; tbl[i].name; i++)
8183 for(j = 0; j < mi->un.s.num_mem; j++)
8184 if (strcmp(mi->un.s.member[j].label.name,
8185 tbl[i].name) == 0) {
8186 ports->allports |= tbl[i].mask;
8187 ports->aumask[ports->nports] = tbl[i].mask;
8188 ports->misel[ports->nports] =
8189 mi->un.s.member[j].mask;
8190 ports->miport[ports->nports] =
8191 au_portof(sc, mi->un.s.member[j].label.name,
8192 mi->mixer_class);
8193 ++ports->nports;
8194 }
8195 }
8196 }
8197
8198 /*
8199 * Must be called with sc_lock && sc_exlock held.
8200 */
8201 int
8202 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8203 {
8204
8205 KASSERT(mutex_owned(sc->sc_lock));
8206 KASSERT(sc->sc_exlock);
8207
8208 ct->type = AUDIO_MIXER_VALUE;
8209 ct->un.value.num_channels = 2;
8210 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8211 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8212 if (audio_set_port(sc, ct) == 0)
8213 return 0;
8214 ct->un.value.num_channels = 1;
8215 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8216 return audio_set_port(sc, ct);
8217 }
8218
8219 /*
8220 * Must be called with sc_lock && sc_exlock held.
8221 */
8222 int
8223 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8224 {
8225 int error;
8226
8227 KASSERT(mutex_owned(sc->sc_lock));
8228 KASSERT(sc->sc_exlock);
8229
8230 ct->un.value.num_channels = 2;
8231 if (audio_get_port(sc, ct) == 0) {
8232 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8233 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8234 } else {
8235 ct->un.value.num_channels = 1;
8236 error = audio_get_port(sc, ct);
8237 if (error)
8238 return error;
8239 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8240 }
8241 return 0;
8242 }
8243
8244 /*
8245 * Must be called with sc_lock && sc_exlock held.
8246 */
8247 int
8248 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8249 int gain, int balance)
8250 {
8251 mixer_ctrl_t ct;
8252 int i, error;
8253 int l, r;
8254 u_int mask;
8255 int nset;
8256
8257 KASSERT(mutex_owned(sc->sc_lock));
8258 KASSERT(sc->sc_exlock);
8259
8260 if (balance == AUDIO_MID_BALANCE) {
8261 l = r = gain;
8262 } else if (balance < AUDIO_MID_BALANCE) {
8263 l = gain;
8264 r = (balance * gain) / AUDIO_MID_BALANCE;
8265 } else {
8266 r = gain;
8267 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8268 / AUDIO_MID_BALANCE;
8269 }
8270 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8271
8272 if (ports->index == -1) {
8273 usemaster:
8274 if (ports->master == -1)
8275 return 0; /* just ignore it silently */
8276 ct.dev = ports->master;
8277 error = au_set_lr_value(sc, &ct, l, r);
8278 } else {
8279 ct.dev = ports->index;
8280 if (ports->isenum) {
8281 ct.type = AUDIO_MIXER_ENUM;
8282 error = audio_get_port(sc, &ct);
8283 if (error)
8284 return error;
8285 if (ports->isdual) {
8286 if (ports->cur_port == -1)
8287 ct.dev = ports->master;
8288 else
8289 ct.dev = ports->miport[ports->cur_port];
8290 error = au_set_lr_value(sc, &ct, l, r);
8291 } else {
8292 for(i = 0; i < ports->nports; i++)
8293 if (ports->misel[i] == ct.un.ord) {
8294 ct.dev = ports->miport[i];
8295 if (ct.dev == -1 ||
8296 au_set_lr_value(sc, &ct, l, r))
8297 goto usemaster;
8298 else
8299 break;
8300 }
8301 }
8302 } else {
8303 ct.type = AUDIO_MIXER_SET;
8304 error = audio_get_port(sc, &ct);
8305 if (error)
8306 return error;
8307 mask = ct.un.mask;
8308 nset = 0;
8309 for(i = 0; i < ports->nports; i++) {
8310 if (ports->misel[i] & mask) {
8311 ct.dev = ports->miport[i];
8312 if (ct.dev != -1 &&
8313 au_set_lr_value(sc, &ct, l, r) == 0)
8314 nset++;
8315 }
8316 }
8317 if (nset == 0)
8318 goto usemaster;
8319 }
8320 }
8321 if (!error)
8322 mixer_signal(sc);
8323 return error;
8324 }
8325
8326 /*
8327 * Must be called with sc_lock && sc_exlock held.
8328 */
8329 void
8330 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8331 u_int *pgain, u_char *pbalance)
8332 {
8333 mixer_ctrl_t ct;
8334 int i, l, r, n;
8335 int lgain, rgain;
8336
8337 KASSERT(mutex_owned(sc->sc_lock));
8338 KASSERT(sc->sc_exlock);
8339
8340 lgain = AUDIO_MAX_GAIN / 2;
8341 rgain = AUDIO_MAX_GAIN / 2;
8342 if (ports->index == -1) {
8343 usemaster:
8344 if (ports->master == -1)
8345 goto bad;
8346 ct.dev = ports->master;
8347 ct.type = AUDIO_MIXER_VALUE;
8348 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8349 goto bad;
8350 } else {
8351 ct.dev = ports->index;
8352 if (ports->isenum) {
8353 ct.type = AUDIO_MIXER_ENUM;
8354 if (audio_get_port(sc, &ct))
8355 goto bad;
8356 ct.type = AUDIO_MIXER_VALUE;
8357 if (ports->isdual) {
8358 if (ports->cur_port == -1)
8359 ct.dev = ports->master;
8360 else
8361 ct.dev = ports->miport[ports->cur_port];
8362 au_get_lr_value(sc, &ct, &lgain, &rgain);
8363 } else {
8364 for(i = 0; i < ports->nports; i++)
8365 if (ports->misel[i] == ct.un.ord) {
8366 ct.dev = ports->miport[i];
8367 if (ct.dev == -1 ||
8368 au_get_lr_value(sc, &ct,
8369 &lgain, &rgain))
8370 goto usemaster;
8371 else
8372 break;
8373 }
8374 }
8375 } else {
8376 ct.type = AUDIO_MIXER_SET;
8377 if (audio_get_port(sc, &ct))
8378 goto bad;
8379 ct.type = AUDIO_MIXER_VALUE;
8380 lgain = rgain = n = 0;
8381 for(i = 0; i < ports->nports; i++) {
8382 if (ports->misel[i] & ct.un.mask) {
8383 ct.dev = ports->miport[i];
8384 if (ct.dev == -1 ||
8385 au_get_lr_value(sc, &ct, &l, &r))
8386 goto usemaster;
8387 else {
8388 lgain += l;
8389 rgain += r;
8390 n++;
8391 }
8392 }
8393 }
8394 if (n != 0) {
8395 lgain /= n;
8396 rgain /= n;
8397 }
8398 }
8399 }
8400 bad:
8401 if (lgain == rgain) { /* handles lgain==rgain==0 */
8402 *pgain = lgain;
8403 *pbalance = AUDIO_MID_BALANCE;
8404 } else if (lgain < rgain) {
8405 *pgain = rgain;
8406 /* balance should be > AUDIO_MID_BALANCE */
8407 *pbalance = AUDIO_RIGHT_BALANCE -
8408 (AUDIO_MID_BALANCE * lgain) / rgain;
8409 } else /* lgain > rgain */ {
8410 *pgain = lgain;
8411 /* balance should be < AUDIO_MID_BALANCE */
8412 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8413 }
8414 }
8415
8416 /*
8417 * Must be called with sc_lock && sc_exlock held.
8418 */
8419 int
8420 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8421 {
8422 mixer_ctrl_t ct;
8423 int i, error, use_mixerout;
8424
8425 KASSERT(mutex_owned(sc->sc_lock));
8426 KASSERT(sc->sc_exlock);
8427
8428 use_mixerout = 1;
8429 if (port == 0) {
8430 if (ports->allports == 0)
8431 return 0; /* Allow this special case. */
8432 else if (ports->isdual) {
8433 if (ports->cur_port == -1) {
8434 return 0;
8435 } else {
8436 port = ports->aumask[ports->cur_port];
8437 ports->cur_port = -1;
8438 use_mixerout = 0;
8439 }
8440 }
8441 }
8442 if (ports->index == -1)
8443 return EINVAL;
8444 ct.dev = ports->index;
8445 if (ports->isenum) {
8446 if (port & (port-1))
8447 return EINVAL; /* Only one port allowed */
8448 ct.type = AUDIO_MIXER_ENUM;
8449 error = EINVAL;
8450 for(i = 0; i < ports->nports; i++)
8451 if (ports->aumask[i] == port) {
8452 if (ports->isdual && use_mixerout) {
8453 ct.un.ord = ports->mixerout;
8454 ports->cur_port = i;
8455 } else {
8456 ct.un.ord = ports->misel[i];
8457 }
8458 error = audio_set_port(sc, &ct);
8459 break;
8460 }
8461 } else {
8462 ct.type = AUDIO_MIXER_SET;
8463 ct.un.mask = 0;
8464 for(i = 0; i < ports->nports; i++)
8465 if (ports->aumask[i] & port)
8466 ct.un.mask |= ports->misel[i];
8467 if (port != 0 && ct.un.mask == 0)
8468 error = EINVAL;
8469 else
8470 error = audio_set_port(sc, &ct);
8471 }
8472 if (!error)
8473 mixer_signal(sc);
8474 return error;
8475 }
8476
8477 /*
8478 * Must be called with sc_lock && sc_exlock held.
8479 */
8480 int
8481 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8482 {
8483 mixer_ctrl_t ct;
8484 int i, aumask;
8485
8486 KASSERT(mutex_owned(sc->sc_lock));
8487 KASSERT(sc->sc_exlock);
8488
8489 if (ports->index == -1)
8490 return 0;
8491 ct.dev = ports->index;
8492 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8493 if (audio_get_port(sc, &ct))
8494 return 0;
8495 aumask = 0;
8496 if (ports->isenum) {
8497 if (ports->isdual && ports->cur_port != -1) {
8498 if (ports->mixerout == ct.un.ord)
8499 aumask = ports->aumask[ports->cur_port];
8500 else
8501 ports->cur_port = -1;
8502 }
8503 if (aumask == 0)
8504 for(i = 0; i < ports->nports; i++)
8505 if (ports->misel[i] == ct.un.ord)
8506 aumask = ports->aumask[i];
8507 } else {
8508 for(i = 0; i < ports->nports; i++)
8509 if (ct.un.mask & ports->misel[i])
8510 aumask |= ports->aumask[i];
8511 }
8512 return aumask;
8513 }
8514
8515 /*
8516 * It returns 0 if success, otherwise errno.
8517 * Must be called only if sc->sc_monitor_port != -1.
8518 * Must be called with sc_lock && sc_exlock held.
8519 */
8520 static int
8521 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8522 {
8523 mixer_ctrl_t ct;
8524
8525 KASSERT(mutex_owned(sc->sc_lock));
8526 KASSERT(sc->sc_exlock);
8527
8528 ct.dev = sc->sc_monitor_port;
8529 ct.type = AUDIO_MIXER_VALUE;
8530 ct.un.value.num_channels = 1;
8531 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8532 return audio_set_port(sc, &ct);
8533 }
8534
8535 /*
8536 * It returns monitor gain if success, otherwise -1.
8537 * Must be called only if sc->sc_monitor_port != -1.
8538 * Must be called with sc_lock && sc_exlock held.
8539 */
8540 static int
8541 au_get_monitor_gain(struct audio_softc *sc)
8542 {
8543 mixer_ctrl_t ct;
8544
8545 KASSERT(mutex_owned(sc->sc_lock));
8546 KASSERT(sc->sc_exlock);
8547
8548 ct.dev = sc->sc_monitor_port;
8549 ct.type = AUDIO_MIXER_VALUE;
8550 ct.un.value.num_channels = 1;
8551 if (audio_get_port(sc, &ct))
8552 return -1;
8553 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8554 }
8555
8556 /*
8557 * Must be called with sc_lock && sc_exlock held.
8558 */
8559 static int
8560 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8561 {
8562
8563 KASSERT(mutex_owned(sc->sc_lock));
8564 KASSERT(sc->sc_exlock);
8565
8566 return sc->hw_if->set_port(sc->hw_hdl, mc);
8567 }
8568
8569 /*
8570 * Must be called with sc_lock && sc_exlock held.
8571 */
8572 static int
8573 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8574 {
8575
8576 KASSERT(mutex_owned(sc->sc_lock));
8577 KASSERT(sc->sc_exlock);
8578
8579 return sc->hw_if->get_port(sc->hw_hdl, mc);
8580 }
8581
8582 /*
8583 * Must be called with sc_lock && sc_exlock held.
8584 */
8585 static void
8586 audio_mixer_capture(struct audio_softc *sc)
8587 {
8588 mixer_devinfo_t mi;
8589 mixer_ctrl_t *mc;
8590
8591 KASSERT(mutex_owned(sc->sc_lock));
8592 KASSERT(sc->sc_exlock);
8593
8594 for (mi.index = 0;; mi.index++) {
8595 if (audio_query_devinfo(sc, &mi) != 0)
8596 break;
8597 KASSERT(mi.index < sc->sc_nmixer_states);
8598 if (mi.type == AUDIO_MIXER_CLASS)
8599 continue;
8600 mc = &sc->sc_mixer_state[mi.index];
8601 mc->dev = mi.index;
8602 mc->type = mi.type;
8603 mc->un.value.num_channels = mi.un.v.num_channels;
8604 (void)audio_get_port(sc, mc);
8605 }
8606
8607 return;
8608 }
8609
8610 /*
8611 * Must be called with sc_lock && sc_exlock held.
8612 */
8613 static void
8614 audio_mixer_restore(struct audio_softc *sc)
8615 {
8616 mixer_devinfo_t mi;
8617 mixer_ctrl_t *mc;
8618
8619 KASSERT(mutex_owned(sc->sc_lock));
8620 KASSERT(sc->sc_exlock);
8621
8622 for (mi.index = 0; ; mi.index++) {
8623 if (audio_query_devinfo(sc, &mi) != 0)
8624 break;
8625 if (mi.type == AUDIO_MIXER_CLASS)
8626 continue;
8627 mc = &sc->sc_mixer_state[mi.index];
8628 (void)audio_set_port(sc, mc);
8629 }
8630 if (sc->hw_if->commit_settings)
8631 sc->hw_if->commit_settings(sc->hw_hdl);
8632
8633 return;
8634 }
8635
8636 static void
8637 audio_volume_down(device_t dv)
8638 {
8639 struct audio_softc *sc = device_private(dv);
8640 mixer_devinfo_t mi;
8641 int newgain;
8642 u_int gain;
8643 u_char balance;
8644
8645 if (audio_exlock_mutex_enter(sc) != 0)
8646 return;
8647 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8648 mi.index = sc->sc_outports.master;
8649 mi.un.v.delta = 0;
8650 if (audio_query_devinfo(sc, &mi) == 0) {
8651 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8652 newgain = gain - mi.un.v.delta;
8653 if (newgain < AUDIO_MIN_GAIN)
8654 newgain = AUDIO_MIN_GAIN;
8655 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8656 }
8657 }
8658 audio_exlock_mutex_exit(sc);
8659 }
8660
8661 static void
8662 audio_volume_up(device_t dv)
8663 {
8664 struct audio_softc *sc = device_private(dv);
8665 mixer_devinfo_t mi;
8666 u_int gain, newgain;
8667 u_char balance;
8668
8669 if (audio_exlock_mutex_enter(sc) != 0)
8670 return;
8671 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8672 mi.index = sc->sc_outports.master;
8673 mi.un.v.delta = 0;
8674 if (audio_query_devinfo(sc, &mi) == 0) {
8675 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8676 newgain = gain + mi.un.v.delta;
8677 if (newgain > AUDIO_MAX_GAIN)
8678 newgain = AUDIO_MAX_GAIN;
8679 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8680 }
8681 }
8682 audio_exlock_mutex_exit(sc);
8683 }
8684
8685 static void
8686 audio_volume_toggle(device_t dv)
8687 {
8688 struct audio_softc *sc = device_private(dv);
8689 u_int gain, newgain;
8690 u_char balance;
8691
8692 if (audio_exlock_mutex_enter(sc) != 0)
8693 return;
8694 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8695 if (gain != 0) {
8696 sc->sc_lastgain = gain;
8697 newgain = 0;
8698 } else
8699 newgain = sc->sc_lastgain;
8700 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8701 audio_exlock_mutex_exit(sc);
8702 }
8703
8704 /*
8705 * Must be called with sc_lock held.
8706 */
8707 static int
8708 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8709 {
8710
8711 KASSERT(mutex_owned(sc->sc_lock));
8712
8713 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8714 }
8715
8716 #endif /* NAUDIO > 0 */
8717
8718 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8719 #include <sys/param.h>
8720 #include <sys/systm.h>
8721 #include <sys/device.h>
8722 #include <sys/audioio.h>
8723 #include <dev/audio/audio_if.h>
8724 #endif
8725
8726 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8727 int
8728 audioprint(void *aux, const char *pnp)
8729 {
8730 struct audio_attach_args *arg;
8731 const char *type;
8732
8733 if (pnp != NULL) {
8734 arg = aux;
8735 switch (arg->type) {
8736 case AUDIODEV_TYPE_AUDIO:
8737 type = "audio";
8738 break;
8739 case AUDIODEV_TYPE_MIDI:
8740 type = "midi";
8741 break;
8742 case AUDIODEV_TYPE_OPL:
8743 type = "opl";
8744 break;
8745 case AUDIODEV_TYPE_MPU:
8746 type = "mpu";
8747 break;
8748 default:
8749 panic("audioprint: unknown type %d", arg->type);
8750 }
8751 aprint_normal("%s at %s", type, pnp);
8752 }
8753 return UNCONF;
8754 }
8755
8756 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8757
8758 #ifdef _MODULE
8759
8760 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8761
8762 #include "ioconf.c"
8763
8764 #endif
8765
8766 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8767
8768 static int
8769 audio_modcmd(modcmd_t cmd, void *arg)
8770 {
8771 int error = 0;
8772
8773 switch (cmd) {
8774 case MODULE_CMD_INIT:
8775 /* XXX interrupt level? */
8776 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8777 #ifdef _MODULE
8778 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8779 &audio_cdevsw, &audio_cmajor);
8780 if (error)
8781 break;
8782
8783 error = config_init_component(cfdriver_ioconf_audio,
8784 cfattach_ioconf_audio, cfdata_ioconf_audio);
8785 if (error) {
8786 devsw_detach(NULL, &audio_cdevsw);
8787 }
8788 #endif
8789 break;
8790 case MODULE_CMD_FINI:
8791 #ifdef _MODULE
8792 devsw_detach(NULL, &audio_cdevsw);
8793 error = config_fini_component(cfdriver_ioconf_audio,
8794 cfattach_ioconf_audio, cfdata_ioconf_audio);
8795 if (error)
8796 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8797 &audio_cdevsw, &audio_cmajor);
8798 #endif
8799 psref_class_destroy(audio_psref_class);
8800 break;
8801 default:
8802 error = ENOTTY;
8803 break;
8804 }
8805
8806 return error;
8807 }
8808