Home | History | Annotate | Line # | Download | only in audio
audio.c revision 1.75
      1 /*	$NetBSD: audio.c,v 1.75 2020/05/29 03:09:14 isaki Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1991-1993 Regents of the University of California.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed by the Computer Systems
     47  *	Engineering Group at Lawrence Berkeley Laboratory.
     48  * 4. Neither the name of the University nor of the Laboratory may be used
     49  *    to endorse or promote products derived from this software without
     50  *    specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62  * SUCH DAMAGE.
     63  */
     64 
     65 /*
     66  * Locking: there are three locks per device.
     67  *
     68  * - sc_lock, provided by the underlying driver.  This is an adaptive lock,
     69  *   returned in the second parameter to hw_if->get_locks().  It is known
     70  *   as the "thread lock".
     71  *
     72  *   It serializes access to state in all places except the
     73  *   driver's interrupt service routine.  This lock is taken from process
     74  *   context (example: access to /dev/audio).  It is also taken from soft
     75  *   interrupt handlers in this module, primarily to serialize delivery of
     76  *   wakeups.  This lock may be used/provided by modules external to the
     77  *   audio subsystem, so take care not to introduce a lock order problem.
     78  *   LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
     79  *
     80  * - sc_intr_lock, provided by the underlying driver.  This may be either a
     81  *   spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
     82  *   IPL_SOFT*), returned in the first parameter to hw_if->get_locks().  It
     83  *   is known as the "interrupt lock".
     84  *
     85  *   It provides atomic access to the device's hardware state, and to audio
     86  *   channel data that may be accessed by the hardware driver's ISR.
     87  *   In all places outside the ISR, sc_lock must be held before taking
     88  *   sc_intr_lock.  This is to ensure that groups of hardware operations are
     89  *   made atomically.  SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
     90  *
     91  * - sc_exlock, private to this module.  This is a variable protected by
     92  *   sc_lock.  It is known as the "critical section".
     93  *   Some operations release sc_lock in order to allocate memory, to wait
     94  *   for in-flight I/O to complete, to copy to/from user context, etc.
     95  *   sc_exlock provides a critical section even under the circumstance.
     96  *   "+" in following list indicates the interfaces which necessary to be
     97  *   protected by sc_exlock.
     98  *
     99  * List of hardware interface methods, and which locks are held when each
    100  * is called by this module:
    101  *
    102  *	METHOD			INTR	THREAD  NOTES
    103  *	----------------------- ------- -------	-------------------------
    104  *	open 			x	x +
    105  *	close 			x	x +
    106  *	query_format		-	x
    107  *	set_format		-	x
    108  *	round_blocksize		-	x
    109  *	commit_settings		-	x
    110  *	init_output 		x	x
    111  *	init_input 		x	x
    112  *	start_output 		x	x +
    113  *	start_input 		x	x +
    114  *	halt_output 		x	x +
    115  *	halt_input 		x	x +
    116  *	speaker_ctl 		x	x
    117  *	getdev 			-	x
    118  *	set_port 		-	x +
    119  *	get_port 		-	x +
    120  *	query_devinfo 		-	x
    121  *	allocm 			-	- +
    122  *	freem 			-	- +
    123  *	round_buffersize 	-	x
    124  *	get_props 		-	-	Called at attach time
    125  *	trigger_output 		x	x +
    126  *	trigger_input 		x	x +
    127  *	dev_ioctl 		-	x
    128  *	get_locks 		-	-	Called at attach time
    129  *
    130  * In addition, there is an additional lock.
    131  *
    132  * - track->lock.  This is an atomic variable and is similar to the
    133  *   "interrupt lock".  This is one for each track.  If any thread context
    134  *   (and software interrupt context) and hardware interrupt context who
    135  *   want to access some variables on this track, they must acquire this
    136  *   lock before.  It protects track's consistency between hardware
    137  *   interrupt context and others.
    138  */
    139 
    140 #include <sys/cdefs.h>
    141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.75 2020/05/29 03:09:14 isaki Exp $");
    142 
    143 #ifdef _KERNEL_OPT
    144 #include "audio.h"
    145 #include "midi.h"
    146 #endif
    147 
    148 #if NAUDIO > 0
    149 
    150 #include <sys/types.h>
    151 #include <sys/param.h>
    152 #include <sys/atomic.h>
    153 #include <sys/audioio.h>
    154 #include <sys/conf.h>
    155 #include <sys/cpu.h>
    156 #include <sys/device.h>
    157 #include <sys/fcntl.h>
    158 #include <sys/file.h>
    159 #include <sys/filedesc.h>
    160 #include <sys/intr.h>
    161 #include <sys/ioctl.h>
    162 #include <sys/kauth.h>
    163 #include <sys/kernel.h>
    164 #include <sys/kmem.h>
    165 #include <sys/malloc.h>
    166 #include <sys/mman.h>
    167 #include <sys/module.h>
    168 #include <sys/poll.h>
    169 #include <sys/proc.h>
    170 #include <sys/queue.h>
    171 #include <sys/select.h>
    172 #include <sys/signalvar.h>
    173 #include <sys/stat.h>
    174 #include <sys/sysctl.h>
    175 #include <sys/systm.h>
    176 #include <sys/syslog.h>
    177 #include <sys/vnode.h>
    178 
    179 #include <dev/audio/audio_if.h>
    180 #include <dev/audio/audiovar.h>
    181 #include <dev/audio/audiodef.h>
    182 #include <dev/audio/linear.h>
    183 #include <dev/audio/mulaw.h>
    184 
    185 #include <machine/endian.h>
    186 
    187 #include <uvm/uvm_extern.h>
    188 
    189 #include "ioconf.h"
    190 
    191 /*
    192  * 0: No debug logs
    193  * 1: action changes like open/close/set_format...
    194  * 2: + normal operations like read/write/ioctl...
    195  * 3: + TRACEs except interrupt
    196  * 4: + TRACEs including interrupt
    197  */
    198 //#define AUDIO_DEBUG 1
    199 
    200 #if defined(AUDIO_DEBUG)
    201 
    202 int audiodebug = AUDIO_DEBUG;
    203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
    204 	const char *, va_list);
    205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
    206 	__printflike(3, 4);
    207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
    208 	__printflike(3, 4);
    209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
    210 	__printflike(3, 4);
    211 
    212 /* XXX sloppy memory logger */
    213 static void audio_mlog_init(void);
    214 static void audio_mlog_free(void);
    215 static void audio_mlog_softintr(void *);
    216 extern void audio_mlog_flush(void);
    217 extern void audio_mlog_printf(const char *, ...);
    218 
    219 static int mlog_refs;		/* reference counter */
    220 static char *mlog_buf[2];	/* double buffer */
    221 static int mlog_buflen;		/* buffer length */
    222 static int mlog_used;		/* used length */
    223 static int mlog_full;		/* number of dropped lines by buffer full */
    224 static int mlog_drop;		/* number of dropped lines by busy */
    225 static volatile uint32_t mlog_inuse;	/* in-use */
    226 static int mlog_wpage;		/* active page */
    227 static void *mlog_sih;		/* softint handle */
    228 
    229 static void
    230 audio_mlog_init(void)
    231 {
    232 	mlog_refs++;
    233 	if (mlog_refs > 1)
    234 		return;
    235 	mlog_buflen = 4096;
    236 	mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
    237 	mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
    238 	mlog_used = 0;
    239 	mlog_full = 0;
    240 	mlog_drop = 0;
    241 	mlog_inuse = 0;
    242 	mlog_wpage = 0;
    243 	mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
    244 	if (mlog_sih == NULL)
    245 		printf("%s: softint_establish failed\n", __func__);
    246 }
    247 
    248 static void
    249 audio_mlog_free(void)
    250 {
    251 	mlog_refs--;
    252 	if (mlog_refs > 0)
    253 		return;
    254 
    255 	audio_mlog_flush();
    256 	if (mlog_sih)
    257 		softint_disestablish(mlog_sih);
    258 	kmem_free(mlog_buf[0], mlog_buflen);
    259 	kmem_free(mlog_buf[1], mlog_buflen);
    260 }
    261 
    262 /*
    263  * Flush memory buffer.
    264  * It must not be called from hardware interrupt context.
    265  */
    266 void
    267 audio_mlog_flush(void)
    268 {
    269 	if (mlog_refs == 0)
    270 		return;
    271 
    272 	/* Nothing to do if already in use ? */
    273 	if (atomic_swap_32(&mlog_inuse, 1) == 1)
    274 		return;
    275 
    276 	int rpage = mlog_wpage;
    277 	mlog_wpage ^= 1;
    278 	mlog_buf[mlog_wpage][0] = '\0';
    279 	mlog_used = 0;
    280 
    281 	atomic_swap_32(&mlog_inuse, 0);
    282 
    283 	if (mlog_buf[rpage][0] != '\0') {
    284 		printf("%s", mlog_buf[rpage]);
    285 		if (mlog_drop > 0)
    286 			printf("mlog_drop %d\n", mlog_drop);
    287 		if (mlog_full > 0)
    288 			printf("mlog_full %d\n", mlog_full);
    289 	}
    290 	mlog_full = 0;
    291 	mlog_drop = 0;
    292 }
    293 
    294 static void
    295 audio_mlog_softintr(void *cookie)
    296 {
    297 	audio_mlog_flush();
    298 }
    299 
    300 void
    301 audio_mlog_printf(const char *fmt, ...)
    302 {
    303 	int len;
    304 	va_list ap;
    305 
    306 	if (atomic_swap_32(&mlog_inuse, 1) == 1) {
    307 		/* already inuse */
    308 		mlog_drop++;
    309 		return;
    310 	}
    311 
    312 	va_start(ap, fmt);
    313 	len = vsnprintf(
    314 	    mlog_buf[mlog_wpage] + mlog_used,
    315 	    mlog_buflen - mlog_used,
    316 	    fmt, ap);
    317 	va_end(ap);
    318 
    319 	mlog_used += len;
    320 	if (mlog_buflen - mlog_used <= 1) {
    321 		mlog_full++;
    322 	}
    323 
    324 	atomic_swap_32(&mlog_inuse, 0);
    325 
    326 	if (mlog_sih)
    327 		softint_schedule(mlog_sih);
    328 }
    329 
    330 /* trace functions */
    331 static void
    332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
    333 	const char *fmt, va_list ap)
    334 {
    335 	char buf[256];
    336 	int n;
    337 
    338 	n = 0;
    339 	buf[0] = '\0';
    340 	n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
    341 	    funcname, device_unit(sc->sc_dev), header);
    342 	n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
    343 
    344 	if (cpu_intr_p()) {
    345 		audio_mlog_printf("%s\n", buf);
    346 	} else {
    347 		audio_mlog_flush();
    348 		printf("%s\n", buf);
    349 	}
    350 }
    351 
    352 static void
    353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
    354 {
    355 	va_list ap;
    356 
    357 	va_start(ap, fmt);
    358 	audio_vtrace(sc, funcname, "", fmt, ap);
    359 	va_end(ap);
    360 }
    361 
    362 static void
    363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
    364 {
    365 	char hdr[16];
    366 	va_list ap;
    367 
    368 	snprintf(hdr, sizeof(hdr), "#%d ", track->id);
    369 	va_start(ap, fmt);
    370 	audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
    371 	va_end(ap);
    372 }
    373 
    374 static void
    375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
    376 {
    377 	char hdr[32];
    378 	char phdr[16], rhdr[16];
    379 	va_list ap;
    380 
    381 	phdr[0] = '\0';
    382 	rhdr[0] = '\0';
    383 	if (file->ptrack)
    384 		snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
    385 	if (file->rtrack)
    386 		snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
    387 	snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
    388 
    389 	va_start(ap, fmt);
    390 	audio_vtrace(file->sc, funcname, hdr, fmt, ap);
    391 	va_end(ap);
    392 }
    393 
    394 #define DPRINTF(n, fmt...)	do {	\
    395 	if (audiodebug >= (n)) {	\
    396 		audio_mlog_flush();	\
    397 		printf(fmt);		\
    398 	}				\
    399 } while (0)
    400 #define TRACE(n, fmt...)	do { \
    401 	if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
    402 } while (0)
    403 #define TRACET(n, t, fmt...)	do { \
    404 	if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
    405 } while (0)
    406 #define TRACEF(n, f, fmt...)	do { \
    407 	if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
    408 } while (0)
    409 
    410 struct audio_track_debugbuf {
    411 	char usrbuf[32];
    412 	char codec[32];
    413 	char chvol[32];
    414 	char chmix[32];
    415 	char freq[32];
    416 	char outbuf[32];
    417 };
    418 
    419 static void
    420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
    421 {
    422 
    423 	memset(buf, 0, sizeof(*buf));
    424 
    425 	snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
    426 	    track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
    427 	if (track->freq.filter)
    428 		snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
    429 		    track->freq.srcbuf.head,
    430 		    track->freq.srcbuf.used,
    431 		    track->freq.srcbuf.capacity);
    432 	if (track->chmix.filter)
    433 		snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
    434 		    track->chmix.srcbuf.used);
    435 	if (track->chvol.filter)
    436 		snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
    437 		    track->chvol.srcbuf.used);
    438 	if (track->codec.filter)
    439 		snprintf(buf->codec, sizeof(buf->codec), " e=%d",
    440 		    track->codec.srcbuf.used);
    441 	snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
    442 	    track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
    443 }
    444 #else
    445 #define DPRINTF(n, fmt...)	do { } while (0)
    446 #define TRACE(n, fmt, ...)	do { } while (0)
    447 #define TRACET(n, t, fmt, ...)	do { } while (0)
    448 #define TRACEF(n, f, fmt, ...)	do { } while (0)
    449 #endif
    450 
    451 #define SPECIFIED(x)	((x) != ~0)
    452 #define SPECIFIED_CH(x)	((x) != (u_char)~0)
    453 
    454 /*
    455  * Default hardware blocksize in msec.
    456  *
    457  * We use 10 msec for most modern platforms.  This period is good enough to
    458  * play audio and video synchronizely.
    459  * In contrast, for very old platforms, this is usually too short and too
    460  * severe.  Also such platforms usually can not play video confortably, so
    461  * it's not so important to make the blocksize shorter.  If the platform
    462  * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
    463  * uses this instead.
    464  *
    465  * In either case, you can overwrite AUDIO_BLK_MS by your kernel
    466  * configuration file if you wish.
    467  */
    468 #if !defined(AUDIO_BLK_MS)
    469 # if defined(__AUDIO_BLK_MS)
    470 #  define AUDIO_BLK_MS __AUDIO_BLK_MS
    471 # else
    472 #  define AUDIO_BLK_MS (10)
    473 # endif
    474 #endif
    475 
    476 /* Device timeout in msec */
    477 #define AUDIO_TIMEOUT	(3000)
    478 
    479 /* #define AUDIO_PM_IDLE */
    480 #ifdef AUDIO_PM_IDLE
    481 int audio_idle_timeout = 30;
    482 #endif
    483 
    484 /* Number of elements of async mixer's pid */
    485 #define AM_CAPACITY	(4)
    486 
    487 struct portname {
    488 	const char *name;
    489 	int mask;
    490 };
    491 
    492 static int audiomatch(device_t, cfdata_t, void *);
    493 static void audioattach(device_t, device_t, void *);
    494 static int audiodetach(device_t, int);
    495 static int audioactivate(device_t, enum devact);
    496 static void audiochilddet(device_t, device_t);
    497 static int audiorescan(device_t, const char *, const int *);
    498 
    499 static int audio_modcmd(modcmd_t, void *);
    500 
    501 #ifdef AUDIO_PM_IDLE
    502 static void audio_idle(void *);
    503 static void audio_activity(device_t, devactive_t);
    504 #endif
    505 
    506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
    507 static bool audio_resume(device_t dv, const pmf_qual_t *);
    508 static void audio_volume_down(device_t);
    509 static void audio_volume_up(device_t);
    510 static void audio_volume_toggle(device_t);
    511 
    512 static void audio_mixer_capture(struct audio_softc *);
    513 static void audio_mixer_restore(struct audio_softc *);
    514 
    515 static void audio_softintr_rd(void *);
    516 static void audio_softintr_wr(void *);
    517 
    518 static int audio_exlock_mutex_enter(struct audio_softc *);
    519 static void audio_exlock_mutex_exit(struct audio_softc *);
    520 static int audio_exlock_enter(struct audio_softc *);
    521 static void audio_exlock_exit(struct audio_softc *);
    522 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
    523 static void audio_file_exit(struct audio_softc *, struct psref *);
    524 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
    525 
    526 static int audioclose(struct file *);
    527 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    528 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    529 static int audioioctl(struct file *, u_long, void *);
    530 static int audiopoll(struct file *, int);
    531 static int audiokqfilter(struct file *, struct knote *);
    532 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
    533 	struct uvm_object **, int *);
    534 static int audiostat(struct file *, struct stat *);
    535 
    536 static void filt_audiowrite_detach(struct knote *);
    537 static int  filt_audiowrite_event(struct knote *, long);
    538 static void filt_audioread_detach(struct knote *);
    539 static int  filt_audioread_event(struct knote *, long);
    540 
    541 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
    542 	audio_file_t **);
    543 static int audio_close(struct audio_softc *, audio_file_t *);
    544 static int audio_unlink(struct audio_softc *, audio_file_t *);
    545 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
    546 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
    547 static void audio_file_clear(struct audio_softc *, audio_file_t *);
    548 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
    549 	struct lwp *, audio_file_t *);
    550 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
    551 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
    552 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
    553 	struct uvm_object **, int *, audio_file_t *);
    554 
    555 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
    556 
    557 static void audio_pintr(void *);
    558 static void audio_rintr(void *);
    559 
    560 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
    561 
    562 static __inline int audio_track_readablebytes(const audio_track_t *);
    563 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
    564 	const struct audio_info *);
    565 static int audio_track_setinfo_check(audio_track_t *,
    566 	audio_format2_t *, const struct audio_prinfo *);
    567 static void audio_track_setinfo_water(audio_track_t *,
    568 	const struct audio_info *);
    569 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
    570 	struct audio_info *);
    571 static int audio_hw_set_format(struct audio_softc *, int,
    572 	const audio_format2_t *, const audio_format2_t *,
    573 	audio_filter_reg_t *, audio_filter_reg_t *);
    574 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
    575 	audio_file_t *);
    576 static bool audio_can_playback(struct audio_softc *);
    577 static bool audio_can_capture(struct audio_softc *);
    578 static int audio_check_params(audio_format2_t *);
    579 static int audio_mixers_init(struct audio_softc *sc, int,
    580 	const audio_format2_t *, const audio_format2_t *,
    581 	const audio_filter_reg_t *, const audio_filter_reg_t *);
    582 static int audio_select_freq(const struct audio_format *);
    583 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
    584 static int audio_hw_validate_format(struct audio_softc *, int,
    585 	const audio_format2_t *);
    586 static int audio_mixers_set_format(struct audio_softc *,
    587 	const struct audio_info *);
    588 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
    589 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
    590 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
    591 #if defined(AUDIO_DEBUG)
    592 static int audio_sysctl_debug(SYSCTLFN_PROTO);
    593 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
    594 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
    595 #endif
    596 
    597 static void *audio_realloc(void *, size_t);
    598 static int audio_realloc_usrbuf(audio_track_t *, int);
    599 static void audio_free_usrbuf(audio_track_t *);
    600 
    601 static audio_track_t *audio_track_create(struct audio_softc *,
    602 	audio_trackmixer_t *);
    603 static void audio_track_destroy(audio_track_t *);
    604 static audio_filter_t audio_track_get_codec(audio_track_t *,
    605 	const audio_format2_t *, const audio_format2_t *);
    606 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
    607 static void audio_track_play(audio_track_t *);
    608 static int audio_track_drain(struct audio_softc *, audio_track_t *);
    609 static void audio_track_record(audio_track_t *);
    610 static void audio_track_clear(struct audio_softc *, audio_track_t *);
    611 
    612 static int audio_mixer_init(struct audio_softc *, int,
    613 	const audio_format2_t *, const audio_filter_reg_t *);
    614 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
    615 static void audio_pmixer_start(struct audio_softc *, bool);
    616 static void audio_pmixer_process(struct audio_softc *);
    617 static void audio_pmixer_agc(audio_trackmixer_t *, int);
    618 static int  audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
    619 static void audio_pmixer_output(struct audio_softc *);
    620 static int  audio_pmixer_halt(struct audio_softc *);
    621 static void audio_rmixer_start(struct audio_softc *);
    622 static void audio_rmixer_process(struct audio_softc *);
    623 static void audio_rmixer_input(struct audio_softc *);
    624 static int  audio_rmixer_halt(struct audio_softc *);
    625 
    626 static void mixer_init(struct audio_softc *);
    627 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
    628 static int mixer_close(struct audio_softc *, audio_file_t *);
    629 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
    630 static void mixer_async_add(struct audio_softc *, pid_t);
    631 static void mixer_async_remove(struct audio_softc *, pid_t);
    632 static void mixer_signal(struct audio_softc *);
    633 
    634 static int au_portof(struct audio_softc *, char *, int);
    635 
    636 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
    637 	mixer_devinfo_t *, const struct portname *);
    638 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
    639 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
    640 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
    641 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
    642 	u_int *, u_char *);
    643 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
    644 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
    645 static int au_set_monitor_gain(struct audio_softc *, int);
    646 static int au_get_monitor_gain(struct audio_softc *);
    647 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
    648 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
    649 
    650 static __inline struct audio_params
    651 format2_to_params(const audio_format2_t *f2)
    652 {
    653 	audio_params_t p;
    654 
    655 	/* validbits/precision <-> precision/stride */
    656 	p.sample_rate = f2->sample_rate;
    657 	p.channels    = f2->channels;
    658 	p.encoding    = f2->encoding;
    659 	p.validbits   = f2->precision;
    660 	p.precision   = f2->stride;
    661 	return p;
    662 }
    663 
    664 static __inline audio_format2_t
    665 params_to_format2(const struct audio_params *p)
    666 {
    667 	audio_format2_t f2;
    668 
    669 	/* precision/stride <-> validbits/precision */
    670 	f2.sample_rate = p->sample_rate;
    671 	f2.channels    = p->channels;
    672 	f2.encoding    = p->encoding;
    673 	f2.precision   = p->validbits;
    674 	f2.stride      = p->precision;
    675 	return f2;
    676 }
    677 
    678 /* Return true if this track is a playback track. */
    679 static __inline bool
    680 audio_track_is_playback(const audio_track_t *track)
    681 {
    682 
    683 	return ((track->mode & AUMODE_PLAY) != 0);
    684 }
    685 
    686 /* Return true if this track is a recording track. */
    687 static __inline bool
    688 audio_track_is_record(const audio_track_t *track)
    689 {
    690 
    691 	return ((track->mode & AUMODE_RECORD) != 0);
    692 }
    693 
    694 #if 0 /* XXX Not used yet */
    695 /*
    696  * Convert 0..255 volume used in userland to internal presentation 0..256.
    697  */
    698 static __inline u_int
    699 audio_volume_to_inner(u_int v)
    700 {
    701 
    702 	return v < 127 ? v : v + 1;
    703 }
    704 
    705 /*
    706  * Convert 0..256 internal presentation to 0..255 volume used in userland.
    707  */
    708 static __inline u_int
    709 audio_volume_to_outer(u_int v)
    710 {
    711 
    712 	return v < 127 ? v : v - 1;
    713 }
    714 #endif /* 0 */
    715 
    716 static dev_type_open(audioopen);
    717 /* XXXMRG use more dev_type_xxx */
    718 
    719 const struct cdevsw audio_cdevsw = {
    720 	.d_open = audioopen,
    721 	.d_close = noclose,
    722 	.d_read = noread,
    723 	.d_write = nowrite,
    724 	.d_ioctl = noioctl,
    725 	.d_stop = nostop,
    726 	.d_tty = notty,
    727 	.d_poll = nopoll,
    728 	.d_mmap = nommap,
    729 	.d_kqfilter = nokqfilter,
    730 	.d_discard = nodiscard,
    731 	.d_flag = D_OTHER | D_MPSAFE
    732 };
    733 
    734 const struct fileops audio_fileops = {
    735 	.fo_name = "audio",
    736 	.fo_read = audioread,
    737 	.fo_write = audiowrite,
    738 	.fo_ioctl = audioioctl,
    739 	.fo_fcntl = fnullop_fcntl,
    740 	.fo_stat = audiostat,
    741 	.fo_poll = audiopoll,
    742 	.fo_close = audioclose,
    743 	.fo_mmap = audiommap,
    744 	.fo_kqfilter = audiokqfilter,
    745 	.fo_restart = fnullop_restart
    746 };
    747 
    748 /* The default audio mode: 8 kHz mono mu-law */
    749 static const struct audio_params audio_default = {
    750 	.sample_rate = 8000,
    751 	.encoding = AUDIO_ENCODING_ULAW,
    752 	.precision = 8,
    753 	.validbits = 8,
    754 	.channels = 1,
    755 };
    756 
    757 static const char *encoding_names[] = {
    758 	"none",
    759 	AudioEmulaw,
    760 	AudioEalaw,
    761 	"pcm16",
    762 	"pcm8",
    763 	AudioEadpcm,
    764 	AudioEslinear_le,
    765 	AudioEslinear_be,
    766 	AudioEulinear_le,
    767 	AudioEulinear_be,
    768 	AudioEslinear,
    769 	AudioEulinear,
    770 	AudioEmpeg_l1_stream,
    771 	AudioEmpeg_l1_packets,
    772 	AudioEmpeg_l1_system,
    773 	AudioEmpeg_l2_stream,
    774 	AudioEmpeg_l2_packets,
    775 	AudioEmpeg_l2_system,
    776 	AudioEac3,
    777 };
    778 
    779 /*
    780  * Returns encoding name corresponding to AUDIO_ENCODING_*.
    781  * Note that it may return a local buffer because it is mainly for debugging.
    782  */
    783 const char *
    784 audio_encoding_name(int encoding)
    785 {
    786 	static char buf[16];
    787 
    788 	if (0 <= encoding && encoding < __arraycount(encoding_names)) {
    789 		return encoding_names[encoding];
    790 	} else {
    791 		snprintf(buf, sizeof(buf), "enc=%d", encoding);
    792 		return buf;
    793 	}
    794 }
    795 
    796 /*
    797  * Supported encodings used by AUDIO_GETENC.
    798  * index and flags are set by code.
    799  * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
    800  */
    801 static const audio_encoding_t audio_encodings[] = {
    802 	{ 0, AudioEmulaw,	AUDIO_ENCODING_ULAW,		8,  0 },
    803 	{ 0, AudioEalaw,	AUDIO_ENCODING_ALAW,		8,  0 },
    804 	{ 0, AudioEslinear,	AUDIO_ENCODING_SLINEAR,		8,  0 },
    805 	{ 0, AudioEulinear,	AUDIO_ENCODING_ULINEAR,		8,  0 },
    806 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	16, 0 },
    807 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	16, 0 },
    808 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	16, 0 },
    809 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	16, 0 },
    810 #if defined(AUDIO_SUPPORT_LINEAR24)
    811 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	24, 0 },
    812 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	24, 0 },
    813 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	24, 0 },
    814 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	24, 0 },
    815 #endif
    816 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	32, 0 },
    817 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	32, 0 },
    818 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	32, 0 },
    819 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	32, 0 },
    820 };
    821 
    822 static const struct portname itable[] = {
    823 	{ AudioNmicrophone,	AUDIO_MICROPHONE },
    824 	{ AudioNline,		AUDIO_LINE_IN },
    825 	{ AudioNcd,		AUDIO_CD },
    826 	{ 0, 0 }
    827 };
    828 static const struct portname otable[] = {
    829 	{ AudioNspeaker,	AUDIO_SPEAKER },
    830 	{ AudioNheadphone,	AUDIO_HEADPHONE },
    831 	{ AudioNline,		AUDIO_LINE_OUT },
    832 	{ 0, 0 }
    833 };
    834 
    835 static struct psref_class *audio_psref_class __read_mostly;
    836 
    837 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
    838     audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
    839     audiochilddet, DVF_DETACH_SHUTDOWN);
    840 
    841 static int
    842 audiomatch(device_t parent, cfdata_t match, void *aux)
    843 {
    844 	struct audio_attach_args *sa;
    845 
    846 	sa = aux;
    847 	DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
    848 	     __func__, sa->type, sa, sa->hwif);
    849 	return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
    850 }
    851 
    852 static void
    853 audioattach(device_t parent, device_t self, void *aux)
    854 {
    855 	struct audio_softc *sc;
    856 	struct audio_attach_args *sa;
    857 	const struct audio_hw_if *hw_if;
    858 	audio_format2_t phwfmt;
    859 	audio_format2_t rhwfmt;
    860 	audio_filter_reg_t pfil;
    861 	audio_filter_reg_t rfil;
    862 	const struct sysctlnode *node;
    863 	void *hdlp;
    864 	bool has_playback;
    865 	bool has_capture;
    866 	bool has_indep;
    867 	bool has_fulldup;
    868 	int mode;
    869 	int error;
    870 
    871 	sc = device_private(self);
    872 	sc->sc_dev = self;
    873 	sa = (struct audio_attach_args *)aux;
    874 	hw_if = sa->hwif;
    875 	hdlp = sa->hdl;
    876 
    877 	if (hw_if == NULL) {
    878 		panic("audioattach: missing hw_if method");
    879 	}
    880 	if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
    881 		aprint_error(": missing mandatory method\n");
    882 		return;
    883 	}
    884 
    885 	hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
    886 	sc->sc_props = hw_if->get_props(hdlp);
    887 
    888 	has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
    889 	has_capture  = (sc->sc_props & AUDIO_PROP_CAPTURE);
    890 	has_indep    = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
    891 	has_fulldup  = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
    892 
    893 #ifdef DIAGNOSTIC
    894 	if (hw_if->query_format == NULL ||
    895 	    hw_if->set_format == NULL ||
    896 	    hw_if->getdev == NULL ||
    897 	    hw_if->set_port == NULL ||
    898 	    hw_if->get_port == NULL ||
    899 	    hw_if->query_devinfo == NULL) {
    900 		aprint_error(": missing mandatory method\n");
    901 		return;
    902 	}
    903 	if (has_playback) {
    904 		if ((hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
    905 		    hw_if->halt_output == NULL) {
    906 			aprint_error(": missing playback method\n");
    907 		}
    908 	}
    909 	if (has_capture) {
    910 		if ((hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
    911 		    hw_if->halt_input == NULL) {
    912 			aprint_error(": missing capture method\n");
    913 		}
    914 	}
    915 #endif
    916 
    917 	sc->hw_if = hw_if;
    918 	sc->hw_hdl = hdlp;
    919 	sc->hw_dev = parent;
    920 
    921 	sc->sc_exlock = 1;
    922 	sc->sc_blk_ms = AUDIO_BLK_MS;
    923 	SLIST_INIT(&sc->sc_files);
    924 	cv_init(&sc->sc_exlockcv, "audiolk");
    925 	sc->sc_am_capacity = 0;
    926 	sc->sc_am_used = 0;
    927 	sc->sc_am = NULL;
    928 
    929 	/* MMAP is now supported by upper layer.  */
    930 	sc->sc_props |= AUDIO_PROP_MMAP;
    931 
    932 	KASSERT(has_playback || has_capture);
    933 	/* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
    934 	if (!has_playback || !has_capture) {
    935 		KASSERT(!has_indep);
    936 		KASSERT(!has_fulldup);
    937 	}
    938 
    939 	mode = 0;
    940 	if (has_playback) {
    941 		aprint_normal(": playback");
    942 		mode |= AUMODE_PLAY;
    943 	}
    944 	if (has_capture) {
    945 		aprint_normal("%c capture", has_playback ? ',' : ':');
    946 		mode |= AUMODE_RECORD;
    947 	}
    948 	if (has_playback && has_capture) {
    949 		if (has_fulldup)
    950 			aprint_normal(", full duplex");
    951 		else
    952 			aprint_normal(", half duplex");
    953 
    954 		if (has_indep)
    955 			aprint_normal(", independent");
    956 	}
    957 
    958 	aprint_naive("\n");
    959 	aprint_normal("\n");
    960 
    961 	/* probe hw params */
    962 	memset(&phwfmt, 0, sizeof(phwfmt));
    963 	memset(&rhwfmt, 0, sizeof(rhwfmt));
    964 	memset(&pfil, 0, sizeof(pfil));
    965 	memset(&rfil, 0, sizeof(rfil));
    966 	if (has_indep) {
    967 		int perror, rerror;
    968 
    969 		/* On independent devices, probe separately. */
    970 		perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
    971 		rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
    972 		if (perror && rerror) {
    973 			aprint_error_dev(self, "audio_hw_probe failed, "
    974 			    "perror = %d, rerror = %d\n", perror, rerror);
    975 			goto bad;
    976 		}
    977 		if (perror) {
    978 			mode &= ~AUMODE_PLAY;
    979 			aprint_error_dev(self, "audio_hw_probe failed with "
    980 			    "%d, playback disabled\n", perror);
    981 		}
    982 		if (rerror) {
    983 			mode &= ~AUMODE_RECORD;
    984 			aprint_error_dev(self, "audio_hw_probe failed with "
    985 			    "%d, capture disabled\n", rerror);
    986 		}
    987 	} else {
    988 		/*
    989 		 * On non independent devices or uni-directional devices,
    990 		 * probe once (simultaneously).
    991 		 */
    992 		audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
    993 		error = audio_hw_probe(sc, fmt, mode);
    994 		if (error) {
    995 			aprint_error_dev(self, "audio_hw_probe failed, "
    996 			    "error = %d\n", error);
    997 			goto bad;
    998 		}
    999 		if (has_playback && has_capture)
   1000 			rhwfmt = phwfmt;
   1001 	}
   1002 
   1003 	/* Init hardware. */
   1004 	/* hw_probe() also validates [pr]hwfmt.  */
   1005 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   1006 	if (error) {
   1007 		aprint_error_dev(self, "audio_hw_set_format failed, "
   1008 		    "error = %d\n", error);
   1009 		goto bad;
   1010 	}
   1011 
   1012 	/*
   1013 	 * Init track mixers.  If at least one direction is available on
   1014 	 * attach time, we assume a success.
   1015 	 */
   1016 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   1017 	if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
   1018 		aprint_error_dev(self, "audio_mixers_init failed, "
   1019 		    "error = %d\n", error);
   1020 		goto bad;
   1021 	}
   1022 
   1023 	sc->sc_psz = pserialize_create();
   1024 	psref_target_init(&sc->sc_psref, audio_psref_class);
   1025 
   1026 	selinit(&sc->sc_wsel);
   1027 	selinit(&sc->sc_rsel);
   1028 
   1029 	/* Initial parameter of /dev/sound */
   1030 	sc->sc_sound_pparams = params_to_format2(&audio_default);
   1031 	sc->sc_sound_rparams = params_to_format2(&audio_default);
   1032 	sc->sc_sound_ppause = false;
   1033 	sc->sc_sound_rpause = false;
   1034 
   1035 	/* XXX TODO: consider about sc_ai */
   1036 
   1037 	mixer_init(sc);
   1038 	TRACE(2, "inputs ports=0x%x, input master=%d, "
   1039 	    "output ports=0x%x, output master=%d",
   1040 	    sc->sc_inports.allports, sc->sc_inports.master,
   1041 	    sc->sc_outports.allports, sc->sc_outports.master);
   1042 
   1043 	sysctl_createv(&sc->sc_log, 0, NULL, &node,
   1044 	    0,
   1045 	    CTLTYPE_NODE, device_xname(sc->sc_dev),
   1046 	    SYSCTL_DESCR("audio test"),
   1047 	    NULL, 0,
   1048 	    NULL, 0,
   1049 	    CTL_HW,
   1050 	    CTL_CREATE, CTL_EOL);
   1051 
   1052 	if (node != NULL) {
   1053 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
   1054 		    CTLFLAG_READWRITE,
   1055 		    CTLTYPE_INT, "blk_ms",
   1056 		    SYSCTL_DESCR("blocksize in msec"),
   1057 		    audio_sysctl_blk_ms, 0, (void *)sc, 0,
   1058 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
   1059 
   1060 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
   1061 		    CTLFLAG_READWRITE,
   1062 		    CTLTYPE_BOOL, "multiuser",
   1063 		    SYSCTL_DESCR("allow multiple user access"),
   1064 		    audio_sysctl_multiuser, 0, (void *)sc, 0,
   1065 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
   1066 
   1067 #if defined(AUDIO_DEBUG)
   1068 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
   1069 		    CTLFLAG_READWRITE,
   1070 		    CTLTYPE_INT, "debug",
   1071 		    SYSCTL_DESCR("debug level (0..4)"),
   1072 		    audio_sysctl_debug, 0, (void *)sc, 0,
   1073 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
   1074 #endif
   1075 	}
   1076 
   1077 #ifdef AUDIO_PM_IDLE
   1078 	callout_init(&sc->sc_idle_counter, 0);
   1079 	callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
   1080 #endif
   1081 
   1082 	if (!pmf_device_register(self, audio_suspend, audio_resume))
   1083 		aprint_error_dev(self, "couldn't establish power handler\n");
   1084 #ifdef AUDIO_PM_IDLE
   1085 	if (!device_active_register(self, audio_activity))
   1086 		aprint_error_dev(self, "couldn't register activity handler\n");
   1087 #endif
   1088 
   1089 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
   1090 	    audio_volume_down, true))
   1091 		aprint_error_dev(self, "couldn't add volume down handler\n");
   1092 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
   1093 	    audio_volume_up, true))
   1094 		aprint_error_dev(self, "couldn't add volume up handler\n");
   1095 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
   1096 	    audio_volume_toggle, true))
   1097 		aprint_error_dev(self, "couldn't add volume toggle handler\n");
   1098 
   1099 #ifdef AUDIO_PM_IDLE
   1100 	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
   1101 #endif
   1102 
   1103 #if defined(AUDIO_DEBUG)
   1104 	audio_mlog_init();
   1105 #endif
   1106 
   1107 	audiorescan(self, "audio", NULL);
   1108 	sc->sc_exlock = 0;
   1109 	return;
   1110 
   1111 bad:
   1112 	/* Clearing hw_if means that device is attached but disabled. */
   1113 	sc->hw_if = NULL;
   1114 	sc->sc_exlock = 0;
   1115 	aprint_error_dev(sc->sc_dev, "disabled\n");
   1116 	return;
   1117 }
   1118 
   1119 /*
   1120  * Initialize hardware mixer.
   1121  * This function is called from audioattach().
   1122  */
   1123 static void
   1124 mixer_init(struct audio_softc *sc)
   1125 {
   1126 	mixer_devinfo_t mi;
   1127 	int iclass, mclass, oclass, rclass;
   1128 	int record_master_found, record_source_found;
   1129 
   1130 	iclass = mclass = oclass = rclass = -1;
   1131 	sc->sc_inports.index = -1;
   1132 	sc->sc_inports.master = -1;
   1133 	sc->sc_inports.nports = 0;
   1134 	sc->sc_inports.isenum = false;
   1135 	sc->sc_inports.allports = 0;
   1136 	sc->sc_inports.isdual = false;
   1137 	sc->sc_inports.mixerout = -1;
   1138 	sc->sc_inports.cur_port = -1;
   1139 	sc->sc_outports.index = -1;
   1140 	sc->sc_outports.master = -1;
   1141 	sc->sc_outports.nports = 0;
   1142 	sc->sc_outports.isenum = false;
   1143 	sc->sc_outports.allports = 0;
   1144 	sc->sc_outports.isdual = false;
   1145 	sc->sc_outports.mixerout = -1;
   1146 	sc->sc_outports.cur_port = -1;
   1147 	sc->sc_monitor_port = -1;
   1148 	/*
   1149 	 * Read through the underlying driver's list, picking out the class
   1150 	 * names from the mixer descriptions. We'll need them to decode the
   1151 	 * mixer descriptions on the next pass through the loop.
   1152 	 */
   1153 	mutex_enter(sc->sc_lock);
   1154 	for(mi.index = 0; ; mi.index++) {
   1155 		if (audio_query_devinfo(sc, &mi) != 0)
   1156 			break;
   1157 		 /*
   1158 		  * The type of AUDIO_MIXER_CLASS merely introduces a class.
   1159 		  * All the other types describe an actual mixer.
   1160 		  */
   1161 		if (mi.type == AUDIO_MIXER_CLASS) {
   1162 			if (strcmp(mi.label.name, AudioCinputs) == 0)
   1163 				iclass = mi.mixer_class;
   1164 			if (strcmp(mi.label.name, AudioCmonitor) == 0)
   1165 				mclass = mi.mixer_class;
   1166 			if (strcmp(mi.label.name, AudioCoutputs) == 0)
   1167 				oclass = mi.mixer_class;
   1168 			if (strcmp(mi.label.name, AudioCrecord) == 0)
   1169 				rclass = mi.mixer_class;
   1170 		}
   1171 	}
   1172 	mutex_exit(sc->sc_lock);
   1173 
   1174 	/* Allocate save area.  Ensure non-zero allocation. */
   1175 	sc->sc_nmixer_states = mi.index;
   1176 	sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
   1177 	    (sc->sc_nmixer_states + 1), KM_SLEEP);
   1178 
   1179 	/*
   1180 	 * This is where we assign each control in the "audio" model, to the
   1181 	 * underlying "mixer" control.  We walk through the whole list once,
   1182 	 * assigning likely candidates as we come across them.
   1183 	 */
   1184 	record_master_found = 0;
   1185 	record_source_found = 0;
   1186 	mutex_enter(sc->sc_lock);
   1187 	for(mi.index = 0; ; mi.index++) {
   1188 		if (audio_query_devinfo(sc, &mi) != 0)
   1189 			break;
   1190 		KASSERT(mi.index < sc->sc_nmixer_states);
   1191 		if (mi.type == AUDIO_MIXER_CLASS)
   1192 			continue;
   1193 		if (mi.mixer_class == iclass) {
   1194 			/*
   1195 			 * AudioCinputs is only a fallback, when we don't
   1196 			 * find what we're looking for in AudioCrecord, so
   1197 			 * check the flags before accepting one of these.
   1198 			 */
   1199 			if (strcmp(mi.label.name, AudioNmaster) == 0
   1200 			    && record_master_found == 0)
   1201 				sc->sc_inports.master = mi.index;
   1202 			if (strcmp(mi.label.name, AudioNsource) == 0
   1203 			    && record_source_found == 0) {
   1204 				if (mi.type == AUDIO_MIXER_ENUM) {
   1205 				    int i;
   1206 				    for(i = 0; i < mi.un.e.num_mem; i++)
   1207 					if (strcmp(mi.un.e.member[i].label.name,
   1208 						    AudioNmixerout) == 0)
   1209 						sc->sc_inports.mixerout =
   1210 						    mi.un.e.member[i].ord;
   1211 				}
   1212 				au_setup_ports(sc, &sc->sc_inports, &mi,
   1213 				    itable);
   1214 			}
   1215 			if (strcmp(mi.label.name, AudioNdac) == 0 &&
   1216 			    sc->sc_outports.master == -1)
   1217 				sc->sc_outports.master = mi.index;
   1218 		} else if (mi.mixer_class == mclass) {
   1219 			if (strcmp(mi.label.name, AudioNmonitor) == 0)
   1220 				sc->sc_monitor_port = mi.index;
   1221 		} else if (mi.mixer_class == oclass) {
   1222 			if (strcmp(mi.label.name, AudioNmaster) == 0)
   1223 				sc->sc_outports.master = mi.index;
   1224 			if (strcmp(mi.label.name, AudioNselect) == 0)
   1225 				au_setup_ports(sc, &sc->sc_outports, &mi,
   1226 				    otable);
   1227 		} else if (mi.mixer_class == rclass) {
   1228 			/*
   1229 			 * These are the preferred mixers for the audio record
   1230 			 * controls, so set the flags here, but don't check.
   1231 			 */
   1232 			if (strcmp(mi.label.name, AudioNmaster) == 0) {
   1233 				sc->sc_inports.master = mi.index;
   1234 				record_master_found = 1;
   1235 			}
   1236 #if 1	/* Deprecated. Use AudioNmaster. */
   1237 			if (strcmp(mi.label.name, AudioNrecord) == 0) {
   1238 				sc->sc_inports.master = mi.index;
   1239 				record_master_found = 1;
   1240 			}
   1241 			if (strcmp(mi.label.name, AudioNvolume) == 0) {
   1242 				sc->sc_inports.master = mi.index;
   1243 				record_master_found = 1;
   1244 			}
   1245 #endif
   1246 			if (strcmp(mi.label.name, AudioNsource) == 0) {
   1247 				if (mi.type == AUDIO_MIXER_ENUM) {
   1248 				    int i;
   1249 				    for(i = 0; i < mi.un.e.num_mem; i++)
   1250 					if (strcmp(mi.un.e.member[i].label.name,
   1251 						    AudioNmixerout) == 0)
   1252 						sc->sc_inports.mixerout =
   1253 						    mi.un.e.member[i].ord;
   1254 				}
   1255 				au_setup_ports(sc, &sc->sc_inports, &mi,
   1256 				    itable);
   1257 				record_source_found = 1;
   1258 			}
   1259 		}
   1260 	}
   1261 	mutex_exit(sc->sc_lock);
   1262 }
   1263 
   1264 static int
   1265 audioactivate(device_t self, enum devact act)
   1266 {
   1267 	struct audio_softc *sc = device_private(self);
   1268 
   1269 	switch (act) {
   1270 	case DVACT_DEACTIVATE:
   1271 		mutex_enter(sc->sc_lock);
   1272 		sc->sc_dying = true;
   1273 		cv_broadcast(&sc->sc_exlockcv);
   1274 		mutex_exit(sc->sc_lock);
   1275 		return 0;
   1276 	default:
   1277 		return EOPNOTSUPP;
   1278 	}
   1279 }
   1280 
   1281 static int
   1282 audiodetach(device_t self, int flags)
   1283 {
   1284 	struct audio_softc *sc;
   1285 	struct audio_file *file;
   1286 	int error;
   1287 
   1288 	sc = device_private(self);
   1289 	TRACE(2, "flags=%d", flags);
   1290 
   1291 	/* device is not initialized */
   1292 	if (sc->hw_if == NULL)
   1293 		return 0;
   1294 
   1295 	/* Start draining existing accessors of the device. */
   1296 	error = config_detach_children(self, flags);
   1297 	if (error)
   1298 		return error;
   1299 
   1300 	/* delete sysctl nodes */
   1301 	sysctl_teardown(&sc->sc_log);
   1302 
   1303 	mutex_enter(sc->sc_lock);
   1304 	sc->sc_dying = true;
   1305 	cv_broadcast(&sc->sc_exlockcv);
   1306 	if (sc->sc_pmixer)
   1307 		cv_broadcast(&sc->sc_pmixer->outcv);
   1308 	if (sc->sc_rmixer)
   1309 		cv_broadcast(&sc->sc_rmixer->outcv);
   1310 
   1311 	/* Prevent new users */
   1312 	SLIST_FOREACH(file, &sc->sc_files, entry) {
   1313 		atomic_store_relaxed(&file->dying, true);
   1314 	}
   1315 
   1316 	/*
   1317 	 * Wait for existing users to drain.
   1318 	 * - pserialize_perform waits for all pserialize_read sections on
   1319 	 *   all CPUs; after this, no more new psref_acquire can happen.
   1320 	 * - psref_target_destroy waits for all extant acquired psrefs to
   1321 	 *   be psref_released.
   1322 	 */
   1323 	pserialize_perform(sc->sc_psz);
   1324 	mutex_exit(sc->sc_lock);
   1325 	psref_target_destroy(&sc->sc_psref, audio_psref_class);
   1326 
   1327 	/*
   1328 	 * We are now guaranteed that there are no calls to audio fileops
   1329 	 * that hold sc, and any new calls with files that were for sc will
   1330 	 * fail.  Thus, we now have exclusive access to the softc.
   1331 	 */
   1332 	sc->sc_exlock = 1;
   1333 
   1334 	/*
   1335 	 * Nuke all open instances.
   1336 	 * Here, we no longer need any locks to traverse sc_files.
   1337 	 */
   1338 	while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
   1339 		audio_unlink(sc, file);
   1340 	}
   1341 
   1342 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
   1343 	    audio_volume_down, true);
   1344 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
   1345 	    audio_volume_up, true);
   1346 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
   1347 	    audio_volume_toggle, true);
   1348 
   1349 #ifdef AUDIO_PM_IDLE
   1350 	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
   1351 
   1352 	device_active_deregister(self, audio_activity);
   1353 #endif
   1354 
   1355 	pmf_device_deregister(self);
   1356 
   1357 	/* Free resources */
   1358 	if (sc->sc_pmixer) {
   1359 		audio_mixer_destroy(sc, sc->sc_pmixer);
   1360 		kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
   1361 	}
   1362 	if (sc->sc_rmixer) {
   1363 		audio_mixer_destroy(sc, sc->sc_rmixer);
   1364 		kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
   1365 	}
   1366 	if (sc->sc_am)
   1367 		kern_free(sc->sc_am);
   1368 
   1369 	seldestroy(&sc->sc_wsel);
   1370 	seldestroy(&sc->sc_rsel);
   1371 
   1372 #ifdef AUDIO_PM_IDLE
   1373 	callout_destroy(&sc->sc_idle_counter);
   1374 #endif
   1375 
   1376 	cv_destroy(&sc->sc_exlockcv);
   1377 
   1378 #if defined(AUDIO_DEBUG)
   1379 	audio_mlog_free();
   1380 #endif
   1381 
   1382 	return 0;
   1383 }
   1384 
   1385 static void
   1386 audiochilddet(device_t self, device_t child)
   1387 {
   1388 
   1389 	/* we hold no child references, so do nothing */
   1390 }
   1391 
   1392 static int
   1393 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
   1394 {
   1395 
   1396 	if (config_match(parent, cf, aux))
   1397 		config_attach_loc(parent, cf, locs, aux, NULL);
   1398 
   1399 	return 0;
   1400 }
   1401 
   1402 static int
   1403 audiorescan(device_t self, const char *ifattr, const int *flags)
   1404 {
   1405 	struct audio_softc *sc = device_private(self);
   1406 
   1407 	if (!ifattr_match(ifattr, "audio"))
   1408 		return 0;
   1409 
   1410 	config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
   1411 
   1412 	return 0;
   1413 }
   1414 
   1415 /*
   1416  * Called from hardware driver.  This is where the MI audio driver gets
   1417  * probed/attached to the hardware driver.
   1418  */
   1419 device_t
   1420 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
   1421 {
   1422 	struct audio_attach_args arg;
   1423 
   1424 #ifdef DIAGNOSTIC
   1425 	if (ahwp == NULL) {
   1426 		aprint_error("audio_attach_mi: NULL\n");
   1427 		return 0;
   1428 	}
   1429 #endif
   1430 	arg.type = AUDIODEV_TYPE_AUDIO;
   1431 	arg.hwif = ahwp;
   1432 	arg.hdl = hdlp;
   1433 	return config_found(dev, &arg, audioprint);
   1434 }
   1435 
   1436 /*
   1437  * Enter critical section and also keep sc_lock.
   1438  * If successful, returns 0 with sc_lock held.  Otherwise returns errno.
   1439  * Must be called without sc_lock held.
   1440  */
   1441 static int
   1442 audio_exlock_mutex_enter(struct audio_softc *sc)
   1443 {
   1444 	int error;
   1445 
   1446 	mutex_enter(sc->sc_lock);
   1447 	if (sc->sc_dying) {
   1448 		mutex_exit(sc->sc_lock);
   1449 		return EIO;
   1450 	}
   1451 
   1452 	while (__predict_false(sc->sc_exlock != 0)) {
   1453 		error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
   1454 		if (sc->sc_dying)
   1455 			error = EIO;
   1456 		if (error) {
   1457 			mutex_exit(sc->sc_lock);
   1458 			return error;
   1459 		}
   1460 	}
   1461 
   1462 	/* Acquire */
   1463 	sc->sc_exlock = 1;
   1464 	return 0;
   1465 }
   1466 
   1467 /*
   1468  * Exit critical section and exit sc_lock.
   1469  * Must be called with sc_lock held.
   1470  */
   1471 static void
   1472 audio_exlock_mutex_exit(struct audio_softc *sc)
   1473 {
   1474 
   1475 	KASSERT(mutex_owned(sc->sc_lock));
   1476 
   1477 	sc->sc_exlock = 0;
   1478 	cv_broadcast(&sc->sc_exlockcv);
   1479 	mutex_exit(sc->sc_lock);
   1480 }
   1481 
   1482 /*
   1483  * Enter critical section.
   1484  * If successful, it returns 0.  Otherwise returns errno.
   1485  * Must be called without sc_lock held.
   1486  * This function returns without sc_lock held.
   1487  */
   1488 static int
   1489 audio_exlock_enter(struct audio_softc *sc)
   1490 {
   1491 	int error;
   1492 
   1493 	error = audio_exlock_mutex_enter(sc);
   1494 	if (error)
   1495 		return error;
   1496 	mutex_exit(sc->sc_lock);
   1497 	return 0;
   1498 }
   1499 
   1500 /*
   1501  * Exit critical section.
   1502  * Must be called without sc_lock held.
   1503  */
   1504 static void
   1505 audio_exlock_exit(struct audio_softc *sc)
   1506 {
   1507 
   1508 	mutex_enter(sc->sc_lock);
   1509 	audio_exlock_mutex_exit(sc);
   1510 }
   1511 
   1512 /*
   1513  * Acquire sc from file, and increment the psref count.
   1514  * If successful, returns sc.  Otherwise returns NULL.
   1515  */
   1516 struct audio_softc *
   1517 audio_file_enter(audio_file_t *file, struct psref *refp)
   1518 {
   1519 	int s;
   1520 	bool dying;
   1521 
   1522 	/* psref(9) forbids to migrate CPUs */
   1523 	curlwp_bind();
   1524 
   1525 	/* Block audiodetach while we acquire a reference */
   1526 	s = pserialize_read_enter();
   1527 
   1528 	/* If close or audiodetach already ran, tough -- no more audio */
   1529 	dying = atomic_load_relaxed(&file->dying);
   1530 	if (dying) {
   1531 		pserialize_read_exit(s);
   1532 		return NULL;
   1533 	}
   1534 
   1535 	/* Acquire a reference */
   1536 	psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
   1537 
   1538 	/* Now sc won't go away until we drop the reference count */
   1539 	pserialize_read_exit(s);
   1540 
   1541 	return file->sc;
   1542 }
   1543 
   1544 /*
   1545  * Decrement the psref count.
   1546  */
   1547 void
   1548 audio_file_exit(struct audio_softc *sc, struct psref *refp)
   1549 {
   1550 
   1551 	psref_release(refp, &sc->sc_psref, audio_psref_class);
   1552 }
   1553 
   1554 /*
   1555  * Wait for I/O to complete, releasing sc_lock.
   1556  * Must be called with sc_lock held.
   1557  */
   1558 static int
   1559 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
   1560 {
   1561 	int error;
   1562 
   1563 	KASSERT(track);
   1564 	KASSERT(mutex_owned(sc->sc_lock));
   1565 
   1566 	/* Wait for pending I/O to complete. */
   1567 	error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
   1568 	    mstohz(AUDIO_TIMEOUT));
   1569 	if (sc->sc_suspending) {
   1570 		/* If it's about to suspend, ignore timeout error. */
   1571 		if (error == EWOULDBLOCK) {
   1572 			TRACET(2, track, "timeout (suspending)");
   1573 			return 0;
   1574 		}
   1575 	}
   1576 	if (sc->sc_dying) {
   1577 		error = EIO;
   1578 	}
   1579 	if (error) {
   1580 		TRACET(2, track, "cv_timedwait_sig failed %d", error);
   1581 		if (error == EWOULDBLOCK)
   1582 			device_printf(sc->sc_dev, "device timeout\n");
   1583 	} else {
   1584 		TRACET(3, track, "wakeup");
   1585 	}
   1586 	return error;
   1587 }
   1588 
   1589 /*
   1590  * Try to acquire track lock.
   1591  * It doesn't block if the track lock is already aquired.
   1592  * Returns true if the track lock was acquired, or false if the track
   1593  * lock was already acquired.
   1594  */
   1595 static __inline bool
   1596 audio_track_lock_tryenter(audio_track_t *track)
   1597 {
   1598 	return (atomic_cas_uint(&track->lock, 0, 1) == 0);
   1599 }
   1600 
   1601 /*
   1602  * Acquire track lock.
   1603  */
   1604 static __inline void
   1605 audio_track_lock_enter(audio_track_t *track)
   1606 {
   1607 	/* Don't sleep here. */
   1608 	while (audio_track_lock_tryenter(track) == false)
   1609 		;
   1610 }
   1611 
   1612 /*
   1613  * Release track lock.
   1614  */
   1615 static __inline void
   1616 audio_track_lock_exit(audio_track_t *track)
   1617 {
   1618 	atomic_swap_uint(&track->lock, 0);
   1619 }
   1620 
   1621 
   1622 static int
   1623 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
   1624 {
   1625 	struct audio_softc *sc;
   1626 	int error;
   1627 
   1628 	/* Find the device */
   1629 	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
   1630 	if (sc == NULL || sc->hw_if == NULL)
   1631 		return ENXIO;
   1632 
   1633 	error = audio_exlock_enter(sc);
   1634 	if (error)
   1635 		return error;
   1636 
   1637 	device_active(sc->sc_dev, DVA_SYSTEM);
   1638 	switch (AUDIODEV(dev)) {
   1639 	case SOUND_DEVICE:
   1640 	case AUDIO_DEVICE:
   1641 		error = audio_open(dev, sc, flags, ifmt, l, NULL);
   1642 		break;
   1643 	case AUDIOCTL_DEVICE:
   1644 		error = audioctl_open(dev, sc, flags, ifmt, l);
   1645 		break;
   1646 	case MIXER_DEVICE:
   1647 		error = mixer_open(dev, sc, flags, ifmt, l);
   1648 		break;
   1649 	default:
   1650 		error = ENXIO;
   1651 		break;
   1652 	}
   1653 	audio_exlock_exit(sc);
   1654 
   1655 	return error;
   1656 }
   1657 
   1658 static int
   1659 audioclose(struct file *fp)
   1660 {
   1661 	struct audio_softc *sc;
   1662 	struct psref sc_ref;
   1663 	audio_file_t *file;
   1664 	int error;
   1665 	dev_t dev;
   1666 
   1667 	KASSERT(fp->f_audioctx);
   1668 	file = fp->f_audioctx;
   1669 	dev = file->dev;
   1670 	error = 0;
   1671 
   1672 	/*
   1673 	 * audioclose() must
   1674 	 * - unplug track from the trackmixer (and unplug anything from softc),
   1675 	 *   if sc exists.
   1676 	 * - free all memory objects, regardless of sc.
   1677 	 */
   1678 
   1679 	sc = audio_file_enter(file, &sc_ref);
   1680 	if (sc) {
   1681 		switch (AUDIODEV(dev)) {
   1682 		case SOUND_DEVICE:
   1683 		case AUDIO_DEVICE:
   1684 			error = audio_close(sc, file);
   1685 			break;
   1686 		case AUDIOCTL_DEVICE:
   1687 			error = 0;
   1688 			break;
   1689 		case MIXER_DEVICE:
   1690 			error = mixer_close(sc, file);
   1691 			break;
   1692 		default:
   1693 			error = ENXIO;
   1694 			break;
   1695 		}
   1696 
   1697 		audio_file_exit(sc, &sc_ref);
   1698 	}
   1699 
   1700 	/* Free memory objects anyway */
   1701 	TRACEF(2, file, "free memory");
   1702 	if (file->ptrack)
   1703 		audio_track_destroy(file->ptrack);
   1704 	if (file->rtrack)
   1705 		audio_track_destroy(file->rtrack);
   1706 	kmem_free(file, sizeof(*file));
   1707 	fp->f_audioctx = NULL;
   1708 
   1709 	return error;
   1710 }
   1711 
   1712 static int
   1713 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1714 	int ioflag)
   1715 {
   1716 	struct audio_softc *sc;
   1717 	struct psref sc_ref;
   1718 	audio_file_t *file;
   1719 	int error;
   1720 	dev_t dev;
   1721 
   1722 	KASSERT(fp->f_audioctx);
   1723 	file = fp->f_audioctx;
   1724 	dev = file->dev;
   1725 
   1726 	sc = audio_file_enter(file, &sc_ref);
   1727 	if (sc == NULL)
   1728 		return EIO;
   1729 
   1730 	if (fp->f_flag & O_NONBLOCK)
   1731 		ioflag |= IO_NDELAY;
   1732 
   1733 	switch (AUDIODEV(dev)) {
   1734 	case SOUND_DEVICE:
   1735 	case AUDIO_DEVICE:
   1736 		error = audio_read(sc, uio, ioflag, file);
   1737 		break;
   1738 	case AUDIOCTL_DEVICE:
   1739 	case MIXER_DEVICE:
   1740 		error = ENODEV;
   1741 		break;
   1742 	default:
   1743 		error = ENXIO;
   1744 		break;
   1745 	}
   1746 
   1747 	audio_file_exit(sc, &sc_ref);
   1748 	return error;
   1749 }
   1750 
   1751 static int
   1752 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1753 	int ioflag)
   1754 {
   1755 	struct audio_softc *sc;
   1756 	struct psref sc_ref;
   1757 	audio_file_t *file;
   1758 	int error;
   1759 	dev_t dev;
   1760 
   1761 	KASSERT(fp->f_audioctx);
   1762 	file = fp->f_audioctx;
   1763 	dev = file->dev;
   1764 
   1765 	sc = audio_file_enter(file, &sc_ref);
   1766 	if (sc == NULL)
   1767 		return EIO;
   1768 
   1769 	if (fp->f_flag & O_NONBLOCK)
   1770 		ioflag |= IO_NDELAY;
   1771 
   1772 	switch (AUDIODEV(dev)) {
   1773 	case SOUND_DEVICE:
   1774 	case AUDIO_DEVICE:
   1775 		error = audio_write(sc, uio, ioflag, file);
   1776 		break;
   1777 	case AUDIOCTL_DEVICE:
   1778 	case MIXER_DEVICE:
   1779 		error = ENODEV;
   1780 		break;
   1781 	default:
   1782 		error = ENXIO;
   1783 		break;
   1784 	}
   1785 
   1786 	audio_file_exit(sc, &sc_ref);
   1787 	return error;
   1788 }
   1789 
   1790 static int
   1791 audioioctl(struct file *fp, u_long cmd, void *addr)
   1792 {
   1793 	struct audio_softc *sc;
   1794 	struct psref sc_ref;
   1795 	audio_file_t *file;
   1796 	struct lwp *l = curlwp;
   1797 	int error;
   1798 	dev_t dev;
   1799 
   1800 	KASSERT(fp->f_audioctx);
   1801 	file = fp->f_audioctx;
   1802 	dev = file->dev;
   1803 
   1804 	sc = audio_file_enter(file, &sc_ref);
   1805 	if (sc == NULL)
   1806 		return EIO;
   1807 
   1808 	switch (AUDIODEV(dev)) {
   1809 	case SOUND_DEVICE:
   1810 	case AUDIO_DEVICE:
   1811 	case AUDIOCTL_DEVICE:
   1812 		mutex_enter(sc->sc_lock);
   1813 		device_active(sc->sc_dev, DVA_SYSTEM);
   1814 		mutex_exit(sc->sc_lock);
   1815 		if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
   1816 			error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
   1817 		else
   1818 			error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
   1819 			    file);
   1820 		break;
   1821 	case MIXER_DEVICE:
   1822 		error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
   1823 		break;
   1824 	default:
   1825 		error = ENXIO;
   1826 		break;
   1827 	}
   1828 
   1829 	audio_file_exit(sc, &sc_ref);
   1830 	return error;
   1831 }
   1832 
   1833 static int
   1834 audiostat(struct file *fp, struct stat *st)
   1835 {
   1836 	struct audio_softc *sc;
   1837 	struct psref sc_ref;
   1838 	audio_file_t *file;
   1839 
   1840 	KASSERT(fp->f_audioctx);
   1841 	file = fp->f_audioctx;
   1842 
   1843 	sc = audio_file_enter(file, &sc_ref);
   1844 	if (sc == NULL)
   1845 		return EIO;
   1846 
   1847 	memset(st, 0, sizeof(*st));
   1848 
   1849 	st->st_dev = file->dev;
   1850 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1851 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1852 	st->st_mode = S_IFCHR;
   1853 
   1854 	audio_file_exit(sc, &sc_ref);
   1855 	return 0;
   1856 }
   1857 
   1858 static int
   1859 audiopoll(struct file *fp, int events)
   1860 {
   1861 	struct audio_softc *sc;
   1862 	struct psref sc_ref;
   1863 	audio_file_t *file;
   1864 	struct lwp *l = curlwp;
   1865 	int revents;
   1866 	dev_t dev;
   1867 
   1868 	KASSERT(fp->f_audioctx);
   1869 	file = fp->f_audioctx;
   1870 	dev = file->dev;
   1871 
   1872 	sc = audio_file_enter(file, &sc_ref);
   1873 	if (sc == NULL)
   1874 		return EIO;
   1875 
   1876 	switch (AUDIODEV(dev)) {
   1877 	case SOUND_DEVICE:
   1878 	case AUDIO_DEVICE:
   1879 		revents = audio_poll(sc, events, l, file);
   1880 		break;
   1881 	case AUDIOCTL_DEVICE:
   1882 	case MIXER_DEVICE:
   1883 		revents = 0;
   1884 		break;
   1885 	default:
   1886 		revents = POLLERR;
   1887 		break;
   1888 	}
   1889 
   1890 	audio_file_exit(sc, &sc_ref);
   1891 	return revents;
   1892 }
   1893 
   1894 static int
   1895 audiokqfilter(struct file *fp, struct knote *kn)
   1896 {
   1897 	struct audio_softc *sc;
   1898 	struct psref sc_ref;
   1899 	audio_file_t *file;
   1900 	dev_t dev;
   1901 	int error;
   1902 
   1903 	KASSERT(fp->f_audioctx);
   1904 	file = fp->f_audioctx;
   1905 	dev = file->dev;
   1906 
   1907 	sc = audio_file_enter(file, &sc_ref);
   1908 	if (sc == NULL)
   1909 		return EIO;
   1910 
   1911 	switch (AUDIODEV(dev)) {
   1912 	case SOUND_DEVICE:
   1913 	case AUDIO_DEVICE:
   1914 		error = audio_kqfilter(sc, file, kn);
   1915 		break;
   1916 	case AUDIOCTL_DEVICE:
   1917 	case MIXER_DEVICE:
   1918 		error = ENODEV;
   1919 		break;
   1920 	default:
   1921 		error = ENXIO;
   1922 		break;
   1923 	}
   1924 
   1925 	audio_file_exit(sc, &sc_ref);
   1926 	return error;
   1927 }
   1928 
   1929 static int
   1930 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
   1931 	int *advicep, struct uvm_object **uobjp, int *maxprotp)
   1932 {
   1933 	struct audio_softc *sc;
   1934 	struct psref sc_ref;
   1935 	audio_file_t *file;
   1936 	dev_t dev;
   1937 	int error;
   1938 
   1939 	KASSERT(fp->f_audioctx);
   1940 	file = fp->f_audioctx;
   1941 	dev = file->dev;
   1942 
   1943 	sc = audio_file_enter(file, &sc_ref);
   1944 	if (sc == NULL)
   1945 		return EIO;
   1946 
   1947 	mutex_enter(sc->sc_lock);
   1948 	device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
   1949 	mutex_exit(sc->sc_lock);
   1950 
   1951 	switch (AUDIODEV(dev)) {
   1952 	case SOUND_DEVICE:
   1953 	case AUDIO_DEVICE:
   1954 		error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
   1955 		    uobjp, maxprotp, file);
   1956 		break;
   1957 	case AUDIOCTL_DEVICE:
   1958 	case MIXER_DEVICE:
   1959 	default:
   1960 		error = ENOTSUP;
   1961 		break;
   1962 	}
   1963 
   1964 	audio_file_exit(sc, &sc_ref);
   1965 	return error;
   1966 }
   1967 
   1968 
   1969 /* Exported interfaces for audiobell. */
   1970 
   1971 /*
   1972  * Open for audiobell.
   1973  * It stores allocated file to *filep.
   1974  * If successful returns 0, otherwise errno.
   1975  */
   1976 int
   1977 audiobellopen(dev_t dev, audio_file_t **filep)
   1978 {
   1979 	struct audio_softc *sc;
   1980 	int error;
   1981 
   1982 	/* Find the device */
   1983 	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
   1984 	if (sc == NULL || sc->hw_if == NULL)
   1985 		return ENXIO;
   1986 
   1987 	error = audio_exlock_enter(sc);
   1988 	if (error)
   1989 		return error;
   1990 
   1991 	device_active(sc->sc_dev, DVA_SYSTEM);
   1992 	error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
   1993 
   1994 	audio_exlock_exit(sc);
   1995 	return error;
   1996 }
   1997 
   1998 /* Close for audiobell */
   1999 int
   2000 audiobellclose(audio_file_t *file)
   2001 {
   2002 	struct audio_softc *sc;
   2003 	struct psref sc_ref;
   2004 	int error;
   2005 
   2006 	sc = audio_file_enter(file, &sc_ref);
   2007 	if (sc == NULL)
   2008 		return EIO;
   2009 
   2010 	error = audio_close(sc, file);
   2011 
   2012 	audio_file_exit(sc, &sc_ref);
   2013 
   2014 	KASSERT(file->ptrack);
   2015 	audio_track_destroy(file->ptrack);
   2016 	KASSERT(file->rtrack == NULL);
   2017 	kmem_free(file, sizeof(*file));
   2018 	return error;
   2019 }
   2020 
   2021 /* Set sample rate for audiobell */
   2022 int
   2023 audiobellsetrate(audio_file_t *file, u_int sample_rate)
   2024 {
   2025 	struct audio_softc *sc;
   2026 	struct psref sc_ref;
   2027 	struct audio_info ai;
   2028 	int error;
   2029 
   2030 	sc = audio_file_enter(file, &sc_ref);
   2031 	if (sc == NULL)
   2032 		return EIO;
   2033 
   2034 	AUDIO_INITINFO(&ai);
   2035 	ai.play.sample_rate = sample_rate;
   2036 
   2037 	error = audio_exlock_enter(sc);
   2038 	if (error)
   2039 		goto done;
   2040 	error = audio_file_setinfo(sc, file, &ai);
   2041 	audio_exlock_exit(sc);
   2042 
   2043 done:
   2044 	audio_file_exit(sc, &sc_ref);
   2045 	return error;
   2046 }
   2047 
   2048 /* Playback for audiobell */
   2049 int
   2050 audiobellwrite(audio_file_t *file, struct uio *uio)
   2051 {
   2052 	struct audio_softc *sc;
   2053 	struct psref sc_ref;
   2054 	int error;
   2055 
   2056 	sc = audio_file_enter(file, &sc_ref);
   2057 	if (sc == NULL)
   2058 		return EIO;
   2059 
   2060 	error = audio_write(sc, uio, 0, file);
   2061 
   2062 	audio_file_exit(sc, &sc_ref);
   2063 	return error;
   2064 }
   2065 
   2066 
   2067 /*
   2068  * Audio driver
   2069  */
   2070 
   2071 /*
   2072  * Must be called with sc_exlock held and without sc_lock held.
   2073  */
   2074 int
   2075 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
   2076 	struct lwp *l, audio_file_t **bellfile)
   2077 {
   2078 	struct audio_info ai;
   2079 	struct file *fp;
   2080 	audio_file_t *af;
   2081 	audio_ring_t *hwbuf;
   2082 	bool fullduplex;
   2083 	int fd;
   2084 	int error;
   2085 
   2086 	KASSERT(sc->sc_exlock);
   2087 
   2088 	TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
   2089 	    (audiodebug >= 3) ? "start " : "",
   2090 	    ISDEVSOUND(dev) ? "sound" : "audio",
   2091 	    flags, sc->sc_popens, sc->sc_ropens);
   2092 
   2093 	af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
   2094 	af->sc = sc;
   2095 	af->dev = dev;
   2096 	if ((flags & FWRITE) != 0 && audio_can_playback(sc))
   2097 		af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
   2098 	if ((flags & FREAD) != 0 && audio_can_capture(sc))
   2099 		af->mode |= AUMODE_RECORD;
   2100 	if (af->mode == 0) {
   2101 		error = ENXIO;
   2102 		goto bad1;
   2103 	}
   2104 
   2105 	fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
   2106 
   2107 	/*
   2108 	 * On half duplex hardware,
   2109 	 * 1. if mode is (PLAY | REC), let mode PLAY.
   2110 	 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
   2111 	 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
   2112 	 */
   2113 	if (fullduplex == false) {
   2114 		if ((af->mode & AUMODE_PLAY)) {
   2115 			if (sc->sc_ropens != 0) {
   2116 				TRACE(1, "record track already exists");
   2117 				error = ENODEV;
   2118 				goto bad1;
   2119 			}
   2120 			/* Play takes precedence */
   2121 			af->mode &= ~AUMODE_RECORD;
   2122 		}
   2123 		if ((af->mode & AUMODE_RECORD)) {
   2124 			if (sc->sc_popens != 0) {
   2125 				TRACE(1, "play track already exists");
   2126 				error = ENODEV;
   2127 				goto bad1;
   2128 			}
   2129 		}
   2130 	}
   2131 
   2132 	/* Create tracks */
   2133 	if ((af->mode & AUMODE_PLAY))
   2134 		af->ptrack = audio_track_create(sc, sc->sc_pmixer);
   2135 	if ((af->mode & AUMODE_RECORD))
   2136 		af->rtrack = audio_track_create(sc, sc->sc_rmixer);
   2137 
   2138 	/* Set parameters */
   2139 	AUDIO_INITINFO(&ai);
   2140 	if (bellfile) {
   2141 		/* If audiobell, only sample_rate will be set later. */
   2142 		ai.play.sample_rate   = audio_default.sample_rate;
   2143 		ai.play.encoding      = AUDIO_ENCODING_SLINEAR_NE;
   2144 		ai.play.channels      = 1;
   2145 		ai.play.precision     = 16;
   2146 		ai.play.pause         = 0;
   2147 	} else if (ISDEVAUDIO(dev)) {
   2148 		/* If /dev/audio, initialize everytime. */
   2149 		ai.play.sample_rate   = audio_default.sample_rate;
   2150 		ai.play.encoding      = audio_default.encoding;
   2151 		ai.play.channels      = audio_default.channels;
   2152 		ai.play.precision     = audio_default.precision;
   2153 		ai.play.pause         = 0;
   2154 		ai.record.sample_rate = audio_default.sample_rate;
   2155 		ai.record.encoding    = audio_default.encoding;
   2156 		ai.record.channels    = audio_default.channels;
   2157 		ai.record.precision   = audio_default.precision;
   2158 		ai.record.pause       = 0;
   2159 	} else {
   2160 		/* If /dev/sound, take over the previous parameters. */
   2161 		ai.play.sample_rate   = sc->sc_sound_pparams.sample_rate;
   2162 		ai.play.encoding      = sc->sc_sound_pparams.encoding;
   2163 		ai.play.channels      = sc->sc_sound_pparams.channels;
   2164 		ai.play.precision     = sc->sc_sound_pparams.precision;
   2165 		ai.play.pause         = sc->sc_sound_ppause;
   2166 		ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
   2167 		ai.record.encoding    = sc->sc_sound_rparams.encoding;
   2168 		ai.record.channels    = sc->sc_sound_rparams.channels;
   2169 		ai.record.precision   = sc->sc_sound_rparams.precision;
   2170 		ai.record.pause       = sc->sc_sound_rpause;
   2171 	}
   2172 	error = audio_file_setinfo(sc, af, &ai);
   2173 	if (error)
   2174 		goto bad2;
   2175 
   2176 	if (sc->sc_popens + sc->sc_ropens == 0) {
   2177 		/* First open */
   2178 
   2179 		sc->sc_cred = kauth_cred_get();
   2180 		kauth_cred_hold(sc->sc_cred);
   2181 
   2182 		if (sc->hw_if->open) {
   2183 			int hwflags;
   2184 
   2185 			/*
   2186 			 * Call hw_if->open() only at first open of
   2187 			 * combination of playback and recording.
   2188 			 * On full duplex hardware, the flags passed to
   2189 			 * hw_if->open() is always (FREAD | FWRITE)
   2190 			 * regardless of this open()'s flags.
   2191 			 * see also dev/isa/aria.c
   2192 			 * On half duplex hardware, the flags passed to
   2193 			 * hw_if->open() is either FREAD or FWRITE.
   2194 			 * see also arch/evbarm/mini2440/audio_mini2440.c
   2195 			 */
   2196 			if (fullduplex) {
   2197 				hwflags = FREAD | FWRITE;
   2198 			} else {
   2199 				/* Construct hwflags from af->mode. */
   2200 				hwflags = 0;
   2201 				if ((af->mode & AUMODE_PLAY) != 0)
   2202 					hwflags |= FWRITE;
   2203 				if ((af->mode & AUMODE_RECORD) != 0)
   2204 					hwflags |= FREAD;
   2205 			}
   2206 
   2207 			mutex_enter(sc->sc_lock);
   2208 			mutex_enter(sc->sc_intr_lock);
   2209 			error = sc->hw_if->open(sc->hw_hdl, hwflags);
   2210 			mutex_exit(sc->sc_intr_lock);
   2211 			mutex_exit(sc->sc_lock);
   2212 			if (error)
   2213 				goto bad2;
   2214 		}
   2215 
   2216 		/*
   2217 		 * Set speaker mode when a half duplex.
   2218 		 * XXX I'm not sure this is correct.
   2219 		 */
   2220 		if (1/*XXX*/) {
   2221 			if (sc->hw_if->speaker_ctl) {
   2222 				int on;
   2223 				if (af->ptrack) {
   2224 					on = 1;
   2225 				} else {
   2226 					on = 0;
   2227 				}
   2228 				mutex_enter(sc->sc_lock);
   2229 				mutex_enter(sc->sc_intr_lock);
   2230 				error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
   2231 				mutex_exit(sc->sc_intr_lock);
   2232 				mutex_exit(sc->sc_lock);
   2233 				if (error)
   2234 					goto bad3;
   2235 			}
   2236 		}
   2237 	} else if (sc->sc_multiuser == false) {
   2238 		uid_t euid = kauth_cred_geteuid(kauth_cred_get());
   2239 		if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
   2240 			error = EPERM;
   2241 			goto bad2;
   2242 		}
   2243 	}
   2244 
   2245 	/* Call init_output if this is the first playback open. */
   2246 	if (af->ptrack && sc->sc_popens == 0) {
   2247 		if (sc->hw_if->init_output) {
   2248 			hwbuf = &sc->sc_pmixer->hwbuf;
   2249 			mutex_enter(sc->sc_lock);
   2250 			mutex_enter(sc->sc_intr_lock);
   2251 			error = sc->hw_if->init_output(sc->hw_hdl,
   2252 			    hwbuf->mem,
   2253 			    hwbuf->capacity *
   2254 			    hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
   2255 			mutex_exit(sc->sc_intr_lock);
   2256 			mutex_exit(sc->sc_lock);
   2257 			if (error)
   2258 				goto bad3;
   2259 		}
   2260 	}
   2261 	/*
   2262 	 * Call init_input and start rmixer, if this is the first recording
   2263 	 * open.  See pause consideration notes.
   2264 	 */
   2265 	if (af->rtrack && sc->sc_ropens == 0) {
   2266 		if (sc->hw_if->init_input) {
   2267 			hwbuf = &sc->sc_rmixer->hwbuf;
   2268 			mutex_enter(sc->sc_lock);
   2269 			mutex_enter(sc->sc_intr_lock);
   2270 			error = sc->hw_if->init_input(sc->hw_hdl,
   2271 			    hwbuf->mem,
   2272 			    hwbuf->capacity *
   2273 			    hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
   2274 			mutex_exit(sc->sc_intr_lock);
   2275 			mutex_exit(sc->sc_lock);
   2276 			if (error)
   2277 				goto bad3;
   2278 		}
   2279 
   2280 		mutex_enter(sc->sc_lock);
   2281 		audio_rmixer_start(sc);
   2282 		mutex_exit(sc->sc_lock);
   2283 	}
   2284 
   2285 	if (bellfile == NULL) {
   2286 		error = fd_allocfile(&fp, &fd);
   2287 		if (error)
   2288 			goto bad3;
   2289 	}
   2290 
   2291 	/*
   2292 	 * Count up finally.
   2293 	 * Don't fail from here.
   2294 	 */
   2295 	mutex_enter(sc->sc_lock);
   2296 	if (af->ptrack)
   2297 		sc->sc_popens++;
   2298 	if (af->rtrack)
   2299 		sc->sc_ropens++;
   2300 	mutex_enter(sc->sc_intr_lock);
   2301 	SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
   2302 	mutex_exit(sc->sc_intr_lock);
   2303 	mutex_exit(sc->sc_lock);
   2304 
   2305 	if (bellfile) {
   2306 		*bellfile = af;
   2307 	} else {
   2308 		error = fd_clone(fp, fd, flags, &audio_fileops, af);
   2309 		KASSERTMSG(error == EMOVEFD, "error=%d", error);
   2310 	}
   2311 
   2312 	TRACEF(3, af, "done");
   2313 	return error;
   2314 
   2315 	/*
   2316 	 * Since track here is not yet linked to sc_files,
   2317 	 * you can call track_destroy() without sc_intr_lock.
   2318 	 */
   2319 bad3:
   2320 	if (sc->sc_popens + sc->sc_ropens == 0) {
   2321 		if (sc->hw_if->close) {
   2322 			mutex_enter(sc->sc_lock);
   2323 			mutex_enter(sc->sc_intr_lock);
   2324 			sc->hw_if->close(sc->hw_hdl);
   2325 			mutex_exit(sc->sc_intr_lock);
   2326 			mutex_exit(sc->sc_lock);
   2327 		}
   2328 	}
   2329 bad2:
   2330 	if (af->rtrack) {
   2331 		audio_track_destroy(af->rtrack);
   2332 		af->rtrack = NULL;
   2333 	}
   2334 	if (af->ptrack) {
   2335 		audio_track_destroy(af->ptrack);
   2336 		af->ptrack = NULL;
   2337 	}
   2338 bad1:
   2339 	kmem_free(af, sizeof(*af));
   2340 	return error;
   2341 }
   2342 
   2343 /*
   2344  * Must be called without sc_lock nor sc_exlock held.
   2345  */
   2346 int
   2347 audio_close(struct audio_softc *sc, audio_file_t *file)
   2348 {
   2349 
   2350 	/* Protect entering new fileops to this file */
   2351 	atomic_store_relaxed(&file->dying, true);
   2352 
   2353 	/*
   2354 	 * Drain first.
   2355 	 * It must be done before unlinking(acquiring exlock).
   2356 	 */
   2357 	if (file->ptrack) {
   2358 		mutex_enter(sc->sc_lock);
   2359 		audio_track_drain(sc, file->ptrack);
   2360 		mutex_exit(sc->sc_lock);
   2361 	}
   2362 
   2363 	return audio_unlink(sc, file);
   2364 }
   2365 
   2366 /*
   2367  * Unlink this file, but not freeing memory here.
   2368  * Must be called without sc_lock nor sc_exlock held.
   2369  */
   2370 int
   2371 audio_unlink(struct audio_softc *sc, audio_file_t *file)
   2372 {
   2373 	int error;
   2374 
   2375 	mutex_enter(sc->sc_lock);
   2376 
   2377 	TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
   2378 	    (audiodebug >= 3) ? "start " : "",
   2379 	    (int)curproc->p_pid, (int)curlwp->l_lid,
   2380 	    sc->sc_popens, sc->sc_ropens);
   2381 	KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
   2382 	    "sc->sc_popens=%d, sc->sc_ropens=%d",
   2383 	    sc->sc_popens, sc->sc_ropens);
   2384 
   2385 	/*
   2386 	 * Acquire exlock to protect counters.
   2387 	 * Does not use audio_exlock_enter() due to sc_dying.
   2388 	 */
   2389 	while (__predict_false(sc->sc_exlock != 0)) {
   2390 		error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
   2391 		    mstohz(AUDIO_TIMEOUT));
   2392 		/* XXX what should I do on error? */
   2393 		if (error == EWOULDBLOCK) {
   2394 			mutex_exit(sc->sc_lock);
   2395 			device_printf(sc->sc_dev,
   2396 			    "%s: cv_timedwait_sig failed %d", __func__, error);
   2397 			return error;
   2398 		}
   2399 	}
   2400 	sc->sc_exlock = 1;
   2401 
   2402 	device_active(sc->sc_dev, DVA_SYSTEM);
   2403 
   2404 	mutex_enter(sc->sc_intr_lock);
   2405 	SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
   2406 	mutex_exit(sc->sc_intr_lock);
   2407 
   2408 	if (file->ptrack) {
   2409 		TRACET(3, file->ptrack, "dropframes=%" PRIu64,
   2410 		    file->ptrack->dropframes);
   2411 
   2412 		KASSERT(sc->sc_popens > 0);
   2413 		sc->sc_popens--;
   2414 
   2415 		/* Call hw halt_output if this is the last playback track. */
   2416 		if (sc->sc_popens == 0 && sc->sc_pbusy) {
   2417 			error = audio_pmixer_halt(sc);
   2418 			if (error) {
   2419 				device_printf(sc->sc_dev,
   2420 				    "halt_output failed with %d (ignored)\n",
   2421 				    error);
   2422 			}
   2423 		}
   2424 
   2425 		/* Restore mixing volume if all tracks are gone. */
   2426 		if (sc->sc_popens == 0) {
   2427 			/* intr_lock is not necessary, but just manners. */
   2428 			mutex_enter(sc->sc_intr_lock);
   2429 			sc->sc_pmixer->volume = 256;
   2430 			sc->sc_pmixer->voltimer = 0;
   2431 			mutex_exit(sc->sc_intr_lock);
   2432 		}
   2433 	}
   2434 	if (file->rtrack) {
   2435 		TRACET(3, file->rtrack, "dropframes=%" PRIu64,
   2436 		    file->rtrack->dropframes);
   2437 
   2438 		KASSERT(sc->sc_ropens > 0);
   2439 		sc->sc_ropens--;
   2440 
   2441 		/* Call hw halt_input if this is the last recording track. */
   2442 		if (sc->sc_ropens == 0 && sc->sc_rbusy) {
   2443 			error = audio_rmixer_halt(sc);
   2444 			if (error) {
   2445 				device_printf(sc->sc_dev,
   2446 				    "halt_input failed with %d (ignored)\n",
   2447 				    error);
   2448 			}
   2449 		}
   2450 
   2451 	}
   2452 
   2453 	/* Call hw close if this is the last track. */
   2454 	if (sc->sc_popens + sc->sc_ropens == 0) {
   2455 		if (sc->hw_if->close) {
   2456 			TRACE(2, "hw_if close");
   2457 			mutex_enter(sc->sc_intr_lock);
   2458 			sc->hw_if->close(sc->hw_hdl);
   2459 			mutex_exit(sc->sc_intr_lock);
   2460 		}
   2461 	}
   2462 
   2463 	mutex_exit(sc->sc_lock);
   2464 	if (sc->sc_popens + sc->sc_ropens == 0)
   2465 		kauth_cred_free(sc->sc_cred);
   2466 
   2467 	TRACE(3, "done");
   2468 	audio_exlock_exit(sc);
   2469 
   2470 	return 0;
   2471 }
   2472 
   2473 /*
   2474  * Must be called without sc_lock nor sc_exlock held.
   2475  */
   2476 int
   2477 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
   2478 	audio_file_t *file)
   2479 {
   2480 	audio_track_t *track;
   2481 	audio_ring_t *usrbuf;
   2482 	audio_ring_t *input;
   2483 	int error;
   2484 
   2485 	/*
   2486 	 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
   2487 	 * However read() system call itself can be called because it's
   2488 	 * opened with O_RDWR.  So in this case, deny this read().
   2489 	 */
   2490 	track = file->rtrack;
   2491 	if (track == NULL) {
   2492 		return EBADF;
   2493 	}
   2494 
   2495 	/* I think it's better than EINVAL. */
   2496 	if (track->mmapped)
   2497 		return EPERM;
   2498 
   2499 	TRACET(2, track, "resid=%zd", uio->uio_resid);
   2500 
   2501 #ifdef AUDIO_PM_IDLE
   2502 	error = audio_exlock_mutex_enter(sc);
   2503 	if (error)
   2504 		return error;
   2505 
   2506 	if (device_is_active(&sc->sc_dev) || sc->sc_idle)
   2507 		device_active(&sc->sc_dev, DVA_SYSTEM);
   2508 
   2509 	/* In recording, unlike playback, read() never operates rmixer. */
   2510 
   2511 	audio_exlock_mutex_exit(sc);
   2512 #endif
   2513 
   2514 	usrbuf = &track->usrbuf;
   2515 	input = track->input;
   2516 	error = 0;
   2517 
   2518 	while (uio->uio_resid > 0 && error == 0) {
   2519 		int bytes;
   2520 
   2521 		TRACET(3, track,
   2522 		    "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
   2523 		    uio->uio_resid,
   2524 		    input->head, input->used, input->capacity,
   2525 		    usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
   2526 
   2527 		/* Wait when buffers are empty. */
   2528 		mutex_enter(sc->sc_lock);
   2529 		for (;;) {
   2530 			bool empty;
   2531 			audio_track_lock_enter(track);
   2532 			empty = (input->used == 0 && usrbuf->used == 0);
   2533 			audio_track_lock_exit(track);
   2534 			if (!empty)
   2535 				break;
   2536 
   2537 			if ((ioflag & IO_NDELAY)) {
   2538 				mutex_exit(sc->sc_lock);
   2539 				return EWOULDBLOCK;
   2540 			}
   2541 
   2542 			TRACET(3, track, "sleep");
   2543 			error = audio_track_waitio(sc, track);
   2544 			if (error) {
   2545 				mutex_exit(sc->sc_lock);
   2546 				return error;
   2547 			}
   2548 		}
   2549 		mutex_exit(sc->sc_lock);
   2550 
   2551 		audio_track_lock_enter(track);
   2552 		audio_track_record(track);
   2553 
   2554 		/* uiomove from usrbuf as much as possible. */
   2555 		bytes = uimin(usrbuf->used, uio->uio_resid);
   2556 		while (bytes > 0) {
   2557 			int head = usrbuf->head;
   2558 			int len = uimin(bytes, usrbuf->capacity - head);
   2559 			error = uiomove((uint8_t *)usrbuf->mem + head, len,
   2560 			    uio);
   2561 			if (error) {
   2562 				audio_track_lock_exit(track);
   2563 				device_printf(sc->sc_dev,
   2564 				    "uiomove(len=%d) failed with %d\n",
   2565 				    len, error);
   2566 				goto abort;
   2567 			}
   2568 			auring_take(usrbuf, len);
   2569 			track->useriobytes += len;
   2570 			TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
   2571 			    len,
   2572 			    usrbuf->head, usrbuf->used, usrbuf->capacity);
   2573 			bytes -= len;
   2574 		}
   2575 
   2576 		audio_track_lock_exit(track);
   2577 	}
   2578 
   2579 abort:
   2580 	return error;
   2581 }
   2582 
   2583 
   2584 /*
   2585  * Clear file's playback and/or record track buffer immediately.
   2586  */
   2587 static void
   2588 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
   2589 {
   2590 
   2591 	if (file->ptrack)
   2592 		audio_track_clear(sc, file->ptrack);
   2593 	if (file->rtrack)
   2594 		audio_track_clear(sc, file->rtrack);
   2595 }
   2596 
   2597 /*
   2598  * Must be called without sc_lock nor sc_exlock held.
   2599  */
   2600 int
   2601 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
   2602 	audio_file_t *file)
   2603 {
   2604 	audio_track_t *track;
   2605 	audio_ring_t *usrbuf;
   2606 	audio_ring_t *outbuf;
   2607 	int error;
   2608 
   2609 	track = file->ptrack;
   2610 	KASSERT(track);
   2611 
   2612 	/* I think it's better than EINVAL. */
   2613 	if (track->mmapped)
   2614 		return EPERM;
   2615 
   2616 	TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
   2617 	    audiodebug >= 3 ? "begin " : "",
   2618 	    uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
   2619 
   2620 	if (uio->uio_resid == 0) {
   2621 		track->eofcounter++;
   2622 		return 0;
   2623 	}
   2624 
   2625 	error = audio_exlock_mutex_enter(sc);
   2626 	if (error)
   2627 		return error;
   2628 
   2629 #ifdef AUDIO_PM_IDLE
   2630 	if (device_is_active(&sc->sc_dev) || sc->sc_idle)
   2631 		device_active(&sc->sc_dev, DVA_SYSTEM);
   2632 #endif
   2633 
   2634 	/*
   2635 	 * The first write starts pmixer.
   2636 	 */
   2637 	if (sc->sc_pbusy == false)
   2638 		audio_pmixer_start(sc, false);
   2639 	audio_exlock_mutex_exit(sc);
   2640 
   2641 	usrbuf = &track->usrbuf;
   2642 	outbuf = &track->outbuf;
   2643 	track->pstate = AUDIO_STATE_RUNNING;
   2644 	error = 0;
   2645 
   2646 	while (uio->uio_resid > 0 && error == 0) {
   2647 		int bytes;
   2648 
   2649 		TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
   2650 		    uio->uio_resid,
   2651 		    usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
   2652 
   2653 		/* Wait when buffers are full. */
   2654 		mutex_enter(sc->sc_lock);
   2655 		for (;;) {
   2656 			bool full;
   2657 			audio_track_lock_enter(track);
   2658 			full = (usrbuf->used >= track->usrbuf_usedhigh &&
   2659 			    outbuf->used >= outbuf->capacity);
   2660 			audio_track_lock_exit(track);
   2661 			if (!full)
   2662 				break;
   2663 
   2664 			if ((ioflag & IO_NDELAY)) {
   2665 				error = EWOULDBLOCK;
   2666 				mutex_exit(sc->sc_lock);
   2667 				goto abort;
   2668 			}
   2669 
   2670 			TRACET(3, track, "sleep usrbuf=%d/H%d",
   2671 			    usrbuf->used, track->usrbuf_usedhigh);
   2672 			error = audio_track_waitio(sc, track);
   2673 			if (error) {
   2674 				mutex_exit(sc->sc_lock);
   2675 				goto abort;
   2676 			}
   2677 		}
   2678 		mutex_exit(sc->sc_lock);
   2679 
   2680 		audio_track_lock_enter(track);
   2681 
   2682 		/* uiomove to usrbuf as much as possible. */
   2683 		bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
   2684 		    uio->uio_resid);
   2685 		while (bytes > 0) {
   2686 			int tail = auring_tail(usrbuf);
   2687 			int len = uimin(bytes, usrbuf->capacity - tail);
   2688 			error = uiomove((uint8_t *)usrbuf->mem + tail, len,
   2689 			    uio);
   2690 			if (error) {
   2691 				audio_track_lock_exit(track);
   2692 				device_printf(sc->sc_dev,
   2693 				    "uiomove(len=%d) failed with %d\n",
   2694 				    len, error);
   2695 				goto abort;
   2696 			}
   2697 			auring_push(usrbuf, len);
   2698 			track->useriobytes += len;
   2699 			TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
   2700 			    len,
   2701 			    usrbuf->head, usrbuf->used, usrbuf->capacity);
   2702 			bytes -= len;
   2703 		}
   2704 
   2705 		/* Convert them as much as possible. */
   2706 		while (usrbuf->used >= track->usrbuf_blksize &&
   2707 		    outbuf->used < outbuf->capacity) {
   2708 			audio_track_play(track);
   2709 		}
   2710 
   2711 		audio_track_lock_exit(track);
   2712 	}
   2713 
   2714 abort:
   2715 	TRACET(3, track, "done error=%d", error);
   2716 	return error;
   2717 }
   2718 
   2719 /*
   2720  * Must be called without sc_lock nor sc_exlock held.
   2721  */
   2722 int
   2723 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
   2724 	struct lwp *l, audio_file_t *file)
   2725 {
   2726 	struct audio_offset *ao;
   2727 	struct audio_info ai;
   2728 	audio_track_t *track;
   2729 	audio_encoding_t *ae;
   2730 	audio_format_query_t *query;
   2731 	u_int stamp;
   2732 	u_int offs;
   2733 	int fd;
   2734 	int index;
   2735 	int error;
   2736 
   2737 #if defined(AUDIO_DEBUG)
   2738 	const char *ioctlnames[] = {
   2739 		" AUDIO_GETINFO",	/* 21 */
   2740 		" AUDIO_SETINFO",	/* 22 */
   2741 		" AUDIO_DRAIN",		/* 23 */
   2742 		" AUDIO_FLUSH",		/* 24 */
   2743 		" AUDIO_WSEEK",		/* 25 */
   2744 		" AUDIO_RERROR",	/* 26 */
   2745 		" AUDIO_GETDEV",	/* 27 */
   2746 		" AUDIO_GETENC",	/* 28 */
   2747 		" AUDIO_GETFD",		/* 29 */
   2748 		" AUDIO_SETFD",		/* 30 */
   2749 		" AUDIO_PERROR",	/* 31 */
   2750 		" AUDIO_GETIOFFS",	/* 32 */
   2751 		" AUDIO_GETOOFFS",	/* 33 */
   2752 		" AUDIO_GETPROPS",	/* 34 */
   2753 		" AUDIO_GETBUFINFO",	/* 35 */
   2754 		" AUDIO_SETCHAN",	/* 36 */
   2755 		" AUDIO_GETCHAN",	/* 37 */
   2756 		" AUDIO_QUERYFORMAT",	/* 38 */
   2757 		" AUDIO_GETFORMAT",	/* 39 */
   2758 		" AUDIO_SETFORMAT",	/* 40 */
   2759 	};
   2760 	int nameidx = (cmd & 0xff);
   2761 	const char *ioctlname = "";
   2762 	if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
   2763 		ioctlname = ioctlnames[nameidx - 21];
   2764 	TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
   2765 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
   2766 	    (int)curproc->p_pid, (int)l->l_lid);
   2767 #endif
   2768 
   2769 	error = 0;
   2770 	switch (cmd) {
   2771 	case FIONBIO:
   2772 		/* All handled in the upper FS layer. */
   2773 		break;
   2774 
   2775 	case FIONREAD:
   2776 		/* Get the number of bytes that can be read. */
   2777 		if (file->rtrack) {
   2778 			*(int *)addr = audio_track_readablebytes(file->rtrack);
   2779 		} else {
   2780 			*(int *)addr = 0;
   2781 		}
   2782 		break;
   2783 
   2784 	case FIOASYNC:
   2785 		/* Set/Clear ASYNC I/O. */
   2786 		if (*(int *)addr) {
   2787 			file->async_audio = curproc->p_pid;
   2788 			TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
   2789 		} else {
   2790 			file->async_audio = 0;
   2791 			TRACEF(2, file, "FIOASYNC off");
   2792 		}
   2793 		break;
   2794 
   2795 	case AUDIO_FLUSH:
   2796 		/* XXX TODO: clear errors and restart? */
   2797 		audio_file_clear(sc, file);
   2798 		break;
   2799 
   2800 	case AUDIO_RERROR:
   2801 		/*
   2802 		 * Number of read bytes dropped.  We don't know where
   2803 		 * or when they were dropped (including conversion stage).
   2804 		 * Therefore, the number of accurate bytes or samples is
   2805 		 * also unknown.
   2806 		 */
   2807 		track = file->rtrack;
   2808 		if (track) {
   2809 			*(int *)addr = frametobyte(&track->usrbuf.fmt,
   2810 			    track->dropframes);
   2811 		}
   2812 		break;
   2813 
   2814 	case AUDIO_PERROR:
   2815 		/*
   2816 		 * Number of write bytes dropped.  We don't know where
   2817 		 * or when they were dropped (including conversion stage).
   2818 		 * Therefore, the number of accurate bytes or samples is
   2819 		 * also unknown.
   2820 		 */
   2821 		track = file->ptrack;
   2822 		if (track) {
   2823 			*(int *)addr = frametobyte(&track->usrbuf.fmt,
   2824 			    track->dropframes);
   2825 		}
   2826 		break;
   2827 
   2828 	case AUDIO_GETIOFFS:
   2829 		/* XXX TODO */
   2830 		ao = (struct audio_offset *)addr;
   2831 		ao->samples = 0;
   2832 		ao->deltablks = 0;
   2833 		ao->offset = 0;
   2834 		break;
   2835 
   2836 	case AUDIO_GETOOFFS:
   2837 		ao = (struct audio_offset *)addr;
   2838 		track = file->ptrack;
   2839 		if (track == NULL) {
   2840 			ao->samples = 0;
   2841 			ao->deltablks = 0;
   2842 			ao->offset = 0;
   2843 			break;
   2844 		}
   2845 		mutex_enter(sc->sc_lock);
   2846 		mutex_enter(sc->sc_intr_lock);
   2847 		/* figure out where next DMA will start */
   2848 		stamp = track->usrbuf_stamp;
   2849 		offs = track->usrbuf.head;
   2850 		mutex_exit(sc->sc_intr_lock);
   2851 		mutex_exit(sc->sc_lock);
   2852 
   2853 		ao->samples = stamp;
   2854 		ao->deltablks = (stamp / track->usrbuf_blksize) -
   2855 		    (track->usrbuf_stamp_last / track->usrbuf_blksize);
   2856 		track->usrbuf_stamp_last = stamp;
   2857 		offs = rounddown(offs, track->usrbuf_blksize)
   2858 		    + track->usrbuf_blksize;
   2859 		if (offs >= track->usrbuf.capacity)
   2860 			offs -= track->usrbuf.capacity;
   2861 		ao->offset = offs;
   2862 
   2863 		TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
   2864 		    ao->samples, ao->deltablks, ao->offset);
   2865 		break;
   2866 
   2867 	case AUDIO_WSEEK:
   2868 		/* XXX return value does not include outbuf one. */
   2869 		if (file->ptrack)
   2870 			*(u_long *)addr = file->ptrack->usrbuf.used;
   2871 		break;
   2872 
   2873 	case AUDIO_SETINFO:
   2874 		error = audio_exlock_enter(sc);
   2875 		if (error)
   2876 			break;
   2877 		error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
   2878 		if (error) {
   2879 			audio_exlock_exit(sc);
   2880 			break;
   2881 		}
   2882 		/* XXX TODO: update last_ai if /dev/sound ? */
   2883 		if (ISDEVSOUND(dev))
   2884 			error = audiogetinfo(sc, &sc->sc_ai, 0, file);
   2885 		audio_exlock_exit(sc);
   2886 		break;
   2887 
   2888 	case AUDIO_GETINFO:
   2889 		error = audio_exlock_enter(sc);
   2890 		if (error)
   2891 			break;
   2892 		error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
   2893 		audio_exlock_exit(sc);
   2894 		break;
   2895 
   2896 	case AUDIO_GETBUFINFO:
   2897 		error = audio_exlock_enter(sc);
   2898 		if (error)
   2899 			break;
   2900 		error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
   2901 		audio_exlock_exit(sc);
   2902 		break;
   2903 
   2904 	case AUDIO_DRAIN:
   2905 		if (file->ptrack) {
   2906 			mutex_enter(sc->sc_lock);
   2907 			error = audio_track_drain(sc, file->ptrack);
   2908 			mutex_exit(sc->sc_lock);
   2909 		}
   2910 		break;
   2911 
   2912 	case AUDIO_GETDEV:
   2913 		mutex_enter(sc->sc_lock);
   2914 		error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
   2915 		mutex_exit(sc->sc_lock);
   2916 		break;
   2917 
   2918 	case AUDIO_GETENC:
   2919 		ae = (audio_encoding_t *)addr;
   2920 		index = ae->index;
   2921 		if (index < 0 || index >= __arraycount(audio_encodings)) {
   2922 			error = EINVAL;
   2923 			break;
   2924 		}
   2925 		*ae = audio_encodings[index];
   2926 		ae->index = index;
   2927 		/*
   2928 		 * EMULATED always.
   2929 		 * EMULATED flag at that time used to mean that it could
   2930 		 * not be passed directly to the hardware as-is.  But
   2931 		 * currently, all formats including hardware native is not
   2932 		 * passed directly to the hardware.  So I set EMULATED
   2933 		 * flag for all formats.
   2934 		 */
   2935 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
   2936 		break;
   2937 
   2938 	case AUDIO_GETFD:
   2939 		/*
   2940 		 * Returns the current setting of full duplex mode.
   2941 		 * If HW has full duplex mode and there are two mixers,
   2942 		 * it is full duplex.  Otherwise half duplex.
   2943 		 */
   2944 		error = audio_exlock_enter(sc);
   2945 		if (error)
   2946 			break;
   2947 		fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
   2948 		    && (sc->sc_pmixer && sc->sc_rmixer);
   2949 		audio_exlock_exit(sc);
   2950 		*(int *)addr = fd;
   2951 		break;
   2952 
   2953 	case AUDIO_GETPROPS:
   2954 		*(int *)addr = sc->sc_props;
   2955 		break;
   2956 
   2957 	case AUDIO_QUERYFORMAT:
   2958 		query = (audio_format_query_t *)addr;
   2959 		mutex_enter(sc->sc_lock);
   2960 		error = sc->hw_if->query_format(sc->hw_hdl, query);
   2961 		mutex_exit(sc->sc_lock);
   2962 		/* Hide internal infomations */
   2963 		query->fmt.driver_data = NULL;
   2964 		break;
   2965 
   2966 	case AUDIO_GETFORMAT:
   2967 		error = audio_exlock_enter(sc);
   2968 		if (error)
   2969 			break;
   2970 		audio_mixers_get_format(sc, (struct audio_info *)addr);
   2971 		audio_exlock_exit(sc);
   2972 		break;
   2973 
   2974 	case AUDIO_SETFORMAT:
   2975 		error = audio_exlock_enter(sc);
   2976 		audio_mixers_get_format(sc, &ai);
   2977 		error = audio_mixers_set_format(sc, (struct audio_info *)addr);
   2978 		if (error) {
   2979 			/* Rollback */
   2980 			audio_mixers_set_format(sc, &ai);
   2981 		}
   2982 		audio_exlock_exit(sc);
   2983 		break;
   2984 
   2985 	case AUDIO_SETFD:
   2986 	case AUDIO_SETCHAN:
   2987 	case AUDIO_GETCHAN:
   2988 		/* Obsoleted */
   2989 		break;
   2990 
   2991 	default:
   2992 		if (sc->hw_if->dev_ioctl) {
   2993 			mutex_enter(sc->sc_lock);
   2994 			error = sc->hw_if->dev_ioctl(sc->hw_hdl,
   2995 			    cmd, addr, flag, l);
   2996 			mutex_exit(sc->sc_lock);
   2997 		} else {
   2998 			TRACEF(2, file, "unknown ioctl");
   2999 			error = EINVAL;
   3000 		}
   3001 		break;
   3002 	}
   3003 	TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
   3004 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
   3005 	    error);
   3006 	return error;
   3007 }
   3008 
   3009 /*
   3010  * Returns the number of bytes that can be read on recording buffer.
   3011  */
   3012 static __inline int
   3013 audio_track_readablebytes(const audio_track_t *track)
   3014 {
   3015 	int bytes;
   3016 
   3017 	KASSERT(track);
   3018 	KASSERT(track->mode == AUMODE_RECORD);
   3019 
   3020 	/*
   3021 	 * Although usrbuf is primarily readable data, recorded data
   3022 	 * also stays in track->input until reading.  So it is necessary
   3023 	 * to add it.  track->input is in frame, usrbuf is in byte.
   3024 	 */
   3025 	bytes = track->usrbuf.used +
   3026 	    track->input->used * frametobyte(&track->usrbuf.fmt, 1);
   3027 	return bytes;
   3028 }
   3029 
   3030 /*
   3031  * Must be called without sc_lock nor sc_exlock held.
   3032  */
   3033 int
   3034 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
   3035 	audio_file_t *file)
   3036 {
   3037 	audio_track_t *track;
   3038 	int revents;
   3039 	bool in_is_valid;
   3040 	bool out_is_valid;
   3041 
   3042 #if defined(AUDIO_DEBUG)
   3043 #define POLLEV_BITMAP "\177\020" \
   3044 	    "b\10WRBAND\0" \
   3045 	    "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
   3046 	    "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
   3047 	char evbuf[64];
   3048 	snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
   3049 	TRACEF(2, file, "pid=%d.%d events=%s",
   3050 	    (int)curproc->p_pid, (int)l->l_lid, evbuf);
   3051 #endif
   3052 
   3053 	revents = 0;
   3054 	in_is_valid = false;
   3055 	out_is_valid = false;
   3056 	if (events & (POLLIN | POLLRDNORM)) {
   3057 		track = file->rtrack;
   3058 		if (track) {
   3059 			int used;
   3060 			in_is_valid = true;
   3061 			used = audio_track_readablebytes(track);
   3062 			if (used > 0)
   3063 				revents |= events & (POLLIN | POLLRDNORM);
   3064 		}
   3065 	}
   3066 	if (events & (POLLOUT | POLLWRNORM)) {
   3067 		track = file->ptrack;
   3068 		if (track) {
   3069 			out_is_valid = true;
   3070 			if (track->usrbuf.used <= track->usrbuf_usedlow)
   3071 				revents |= events & (POLLOUT | POLLWRNORM);
   3072 		}
   3073 	}
   3074 
   3075 	if (revents == 0) {
   3076 		mutex_enter(sc->sc_lock);
   3077 		if (in_is_valid) {
   3078 			TRACEF(3, file, "selrecord rsel");
   3079 			selrecord(l, &sc->sc_rsel);
   3080 		}
   3081 		if (out_is_valid) {
   3082 			TRACEF(3, file, "selrecord wsel");
   3083 			selrecord(l, &sc->sc_wsel);
   3084 		}
   3085 		mutex_exit(sc->sc_lock);
   3086 	}
   3087 
   3088 #if defined(AUDIO_DEBUG)
   3089 	snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
   3090 	TRACEF(2, file, "revents=%s", evbuf);
   3091 #endif
   3092 	return revents;
   3093 }
   3094 
   3095 static const struct filterops audioread_filtops = {
   3096 	.f_isfd = 1,
   3097 	.f_attach = NULL,
   3098 	.f_detach = filt_audioread_detach,
   3099 	.f_event = filt_audioread_event,
   3100 };
   3101 
   3102 static void
   3103 filt_audioread_detach(struct knote *kn)
   3104 {
   3105 	struct audio_softc *sc;
   3106 	audio_file_t *file;
   3107 
   3108 	file = kn->kn_hook;
   3109 	sc = file->sc;
   3110 	TRACEF(3, file, "");
   3111 
   3112 	mutex_enter(sc->sc_lock);
   3113 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   3114 	mutex_exit(sc->sc_lock);
   3115 }
   3116 
   3117 static int
   3118 filt_audioread_event(struct knote *kn, long hint)
   3119 {
   3120 	audio_file_t *file;
   3121 	audio_track_t *track;
   3122 
   3123 	file = kn->kn_hook;
   3124 	track = file->rtrack;
   3125 
   3126 	/*
   3127 	 * kn_data must contain the number of bytes can be read.
   3128 	 * The return value indicates whether the event occurs or not.
   3129 	 */
   3130 
   3131 	if (track == NULL) {
   3132 		/* can not read with this descriptor. */
   3133 		kn->kn_data = 0;
   3134 		return 0;
   3135 	}
   3136 
   3137 	kn->kn_data = audio_track_readablebytes(track);
   3138 	TRACEF(3, file, "data=%" PRId64, kn->kn_data);
   3139 	return kn->kn_data > 0;
   3140 }
   3141 
   3142 static const struct filterops audiowrite_filtops = {
   3143 	.f_isfd = 1,
   3144 	.f_attach = NULL,
   3145 	.f_detach = filt_audiowrite_detach,
   3146 	.f_event = filt_audiowrite_event,
   3147 };
   3148 
   3149 static void
   3150 filt_audiowrite_detach(struct knote *kn)
   3151 {
   3152 	struct audio_softc *sc;
   3153 	audio_file_t *file;
   3154 
   3155 	file = kn->kn_hook;
   3156 	sc = file->sc;
   3157 	TRACEF(3, file, "");
   3158 
   3159 	mutex_enter(sc->sc_lock);
   3160 	SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
   3161 	mutex_exit(sc->sc_lock);
   3162 }
   3163 
   3164 static int
   3165 filt_audiowrite_event(struct knote *kn, long hint)
   3166 {
   3167 	audio_file_t *file;
   3168 	audio_track_t *track;
   3169 
   3170 	file = kn->kn_hook;
   3171 	track = file->ptrack;
   3172 
   3173 	/*
   3174 	 * kn_data must contain the number of bytes can be write.
   3175 	 * The return value indicates whether the event occurs or not.
   3176 	 */
   3177 
   3178 	if (track == NULL) {
   3179 		/* can not write with this descriptor. */
   3180 		kn->kn_data = 0;
   3181 		return 0;
   3182 	}
   3183 
   3184 	kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
   3185 	TRACEF(3, file, "data=%" PRId64, kn->kn_data);
   3186 	return (track->usrbuf.used < track->usrbuf_usedlow);
   3187 }
   3188 
   3189 /*
   3190  * Must be called without sc_lock nor sc_exlock held.
   3191  */
   3192 int
   3193 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
   3194 {
   3195 	struct klist *klist;
   3196 
   3197 	TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
   3198 
   3199 	mutex_enter(sc->sc_lock);
   3200 	switch (kn->kn_filter) {
   3201 	case EVFILT_READ:
   3202 		klist = &sc->sc_rsel.sel_klist;
   3203 		kn->kn_fop = &audioread_filtops;
   3204 		break;
   3205 
   3206 	case EVFILT_WRITE:
   3207 		klist = &sc->sc_wsel.sel_klist;
   3208 		kn->kn_fop = &audiowrite_filtops;
   3209 		break;
   3210 
   3211 	default:
   3212 		mutex_exit(sc->sc_lock);
   3213 		return EINVAL;
   3214 	}
   3215 
   3216 	kn->kn_hook = file;
   3217 
   3218 	SLIST_INSERT_HEAD(klist, kn, kn_selnext);
   3219 	mutex_exit(sc->sc_lock);
   3220 
   3221 	return 0;
   3222 }
   3223 
   3224 /*
   3225  * Must be called without sc_lock nor sc_exlock held.
   3226  */
   3227 int
   3228 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
   3229 	int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
   3230 	audio_file_t *file)
   3231 {
   3232 	audio_track_t *track;
   3233 	vsize_t vsize;
   3234 	int error;
   3235 
   3236 	TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
   3237 
   3238 	if (*offp < 0)
   3239 		return EINVAL;
   3240 
   3241 #if 0
   3242 	/* XXX
   3243 	 * The idea here was to use the protection to determine if
   3244 	 * we are mapping the read or write buffer, but it fails.
   3245 	 * The VM system is broken in (at least) two ways.
   3246 	 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
   3247 	 *    when writing to it, so VM_PROT_READ|VM_PROT_WRITE
   3248 	 *    has to be used for mmapping the play buffer.
   3249 	 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
   3250 	 *    audio_mmap will get called at some point with VM_PROT_READ
   3251 	 *    only.
   3252 	 * So, alas, we always map the play buffer for now.
   3253 	 */
   3254 	if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
   3255 	    prot == VM_PROT_WRITE)
   3256 		track = file->ptrack;
   3257 	else if (prot == VM_PROT_READ)
   3258 		track = file->rtrack;
   3259 	else
   3260 		return EINVAL;
   3261 #else
   3262 	track = file->ptrack;
   3263 #endif
   3264 	if (track == NULL)
   3265 		return EACCES;
   3266 
   3267 	vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
   3268 	if (len > vsize)
   3269 		return EOVERFLOW;
   3270 	if (*offp > (uint)(vsize - len))
   3271 		return EOVERFLOW;
   3272 
   3273 	/* XXX TODO: what happens when mmap twice. */
   3274 	if (!track->mmapped) {
   3275 		track->mmapped = true;
   3276 
   3277 		if (!track->is_pause) {
   3278 			error = audio_exlock_mutex_enter(sc);
   3279 			if (error)
   3280 				return error;
   3281 			if (sc->sc_pbusy == false)
   3282 				audio_pmixer_start(sc, true);
   3283 			audio_exlock_mutex_exit(sc);
   3284 		}
   3285 		/* XXX mmapping record buffer is not supported */
   3286 	}
   3287 
   3288 	/* get ringbuffer */
   3289 	*uobjp = track->uobj;
   3290 
   3291 	/* Acquire a reference for the mmap.  munmap will release. */
   3292 	uao_reference(*uobjp);
   3293 	*maxprotp = prot;
   3294 	*advicep = UVM_ADV_RANDOM;
   3295 	*flagsp = MAP_SHARED;
   3296 	return 0;
   3297 }
   3298 
   3299 /*
   3300  * /dev/audioctl has to be able to open at any time without interference
   3301  * with any /dev/audio or /dev/sound.
   3302  * Must be called with sc_exlock held and without sc_lock held.
   3303  */
   3304 static int
   3305 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
   3306 	struct lwp *l)
   3307 {
   3308 	struct file *fp;
   3309 	audio_file_t *af;
   3310 	int fd;
   3311 	int error;
   3312 
   3313 	KASSERT(sc->sc_exlock);
   3314 
   3315 	TRACE(1, "");
   3316 
   3317 	error = fd_allocfile(&fp, &fd);
   3318 	if (error)
   3319 		return error;
   3320 
   3321 	af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
   3322 	af->sc = sc;
   3323 	af->dev = dev;
   3324 
   3325 	/* Not necessary to insert sc_files. */
   3326 
   3327 	error = fd_clone(fp, fd, flags, &audio_fileops, af);
   3328 	KASSERTMSG(error == EMOVEFD, "error=%d", error);
   3329 
   3330 	return error;
   3331 }
   3332 
   3333 /*
   3334  * Free 'mem' if available, and initialize the pointer.
   3335  * For this reason, this is implemented as macro.
   3336  */
   3337 #define audio_free(mem)	do {	\
   3338 	if (mem != NULL) {	\
   3339 		kern_free(mem);	\
   3340 		mem = NULL;	\
   3341 	}	\
   3342 } while (0)
   3343 
   3344 /*
   3345  * (Re)allocate 'memblock' with specified 'bytes'.
   3346  * bytes must not be 0.
   3347  * This function never returns NULL.
   3348  */
   3349 static void *
   3350 audio_realloc(void *memblock, size_t bytes)
   3351 {
   3352 
   3353 	KASSERT(bytes != 0);
   3354 	audio_free(memblock);
   3355 	return kern_malloc(bytes, M_WAITOK);
   3356 }
   3357 
   3358 /*
   3359  * (Re)allocate usrbuf with 'newbufsize' bytes.
   3360  * Use this function for usrbuf because only usrbuf can be mmapped.
   3361  * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
   3362  * returns 0.  Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
   3363  * and returns errno.
   3364  * It must be called before updating usrbuf.capacity.
   3365  */
   3366 static int
   3367 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
   3368 {
   3369 	struct audio_softc *sc;
   3370 	vaddr_t vstart;
   3371 	vsize_t oldvsize;
   3372 	vsize_t newvsize;
   3373 	int error;
   3374 
   3375 	KASSERT(newbufsize > 0);
   3376 	sc = track->mixer->sc;
   3377 
   3378 	/* Get a nonzero multiple of PAGE_SIZE */
   3379 	newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
   3380 
   3381 	if (track->usrbuf.mem != NULL) {
   3382 		oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
   3383 		    PAGE_SIZE);
   3384 		if (oldvsize == newvsize) {
   3385 			track->usrbuf.capacity = newbufsize;
   3386 			return 0;
   3387 		}
   3388 		vstart = (vaddr_t)track->usrbuf.mem;
   3389 		uvm_unmap(kernel_map, vstart, vstart + oldvsize);
   3390 		/* uvm_unmap also detach uobj */
   3391 		track->uobj = NULL;		/* paranoia */
   3392 		track->usrbuf.mem = NULL;
   3393 	}
   3394 
   3395 	/* Create a uvm anonymous object */
   3396 	track->uobj = uao_create(newvsize, 0);
   3397 
   3398 	/* Map it into the kernel virtual address space */
   3399 	vstart = 0;
   3400 	error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
   3401 	    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
   3402 	    UVM_ADV_RANDOM, 0));
   3403 	if (error) {
   3404 		device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
   3405 		uao_detach(track->uobj);	/* release reference */
   3406 		goto abort;
   3407 	}
   3408 
   3409 	error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
   3410 	    false, 0);
   3411 	if (error) {
   3412 		device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
   3413 		    error);
   3414 		uvm_unmap(kernel_map, vstart, vstart + newvsize);
   3415 		/* uvm_unmap also detach uobj */
   3416 		goto abort;
   3417 	}
   3418 
   3419 	track->usrbuf.mem = (void *)vstart;
   3420 	track->usrbuf.capacity = newbufsize;
   3421 	memset(track->usrbuf.mem, 0, newvsize);
   3422 	return 0;
   3423 
   3424 	/* failure */
   3425 abort:
   3426 	track->uobj = NULL;		/* paranoia */
   3427 	track->usrbuf.mem = NULL;
   3428 	track->usrbuf.capacity = 0;
   3429 	return error;
   3430 }
   3431 
   3432 /*
   3433  * Free usrbuf (if available).
   3434  */
   3435 static void
   3436 audio_free_usrbuf(audio_track_t *track)
   3437 {
   3438 	vaddr_t vstart;
   3439 	vsize_t vsize;
   3440 
   3441 	vstart = (vaddr_t)track->usrbuf.mem;
   3442 	vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
   3443 	if (track->usrbuf.mem != NULL) {
   3444 		/*
   3445 		 * Unmap the kernel mapping.  uvm_unmap releases the
   3446 		 * reference to the uvm object, and this should be the
   3447 		 * last virtual mapping of the uvm object, so no need
   3448 		 * to explicitly release (`detach') the object.
   3449 		 */
   3450 		uvm_unmap(kernel_map, vstart, vstart + vsize);
   3451 
   3452 		track->uobj = NULL;
   3453 		track->usrbuf.mem = NULL;
   3454 		track->usrbuf.capacity = 0;
   3455 	}
   3456 }
   3457 
   3458 /*
   3459  * This filter changes the volume for each channel.
   3460  * arg->context points track->ch_volume[].
   3461  */
   3462 static void
   3463 audio_track_chvol(audio_filter_arg_t *arg)
   3464 {
   3465 	int16_t *ch_volume;
   3466 	const aint_t *s;
   3467 	aint_t *d;
   3468 	u_int i;
   3469 	u_int ch;
   3470 	u_int channels;
   3471 
   3472 	DIAGNOSTIC_filter_arg(arg);
   3473 	KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
   3474 	    "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
   3475 	    arg->srcfmt->channels, arg->dstfmt->channels);
   3476 	KASSERT(arg->context != NULL);
   3477 	KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
   3478 	    "arg->srcfmt->channels=%d", arg->srcfmt->channels);
   3479 
   3480 	s = arg->src;
   3481 	d = arg->dst;
   3482 	ch_volume = arg->context;
   3483 
   3484 	channels = arg->srcfmt->channels;
   3485 	for (i = 0; i < arg->count; i++) {
   3486 		for (ch = 0; ch < channels; ch++) {
   3487 			aint2_t val;
   3488 			val = *s++;
   3489 			val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
   3490 			*d++ = (aint_t)val;
   3491 		}
   3492 	}
   3493 }
   3494 
   3495 /*
   3496  * This filter performs conversion from stereo (or more channels) to mono.
   3497  */
   3498 static void
   3499 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
   3500 {
   3501 	const aint_t *s;
   3502 	aint_t *d;
   3503 	u_int i;
   3504 
   3505 	DIAGNOSTIC_filter_arg(arg);
   3506 
   3507 	s = arg->src;
   3508 	d = arg->dst;
   3509 
   3510 	for (i = 0; i < arg->count; i++) {
   3511 		*d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
   3512 		s += arg->srcfmt->channels;
   3513 	}
   3514 }
   3515 
   3516 /*
   3517  * This filter performs conversion from mono to stereo (or more channels).
   3518  */
   3519 static void
   3520 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
   3521 {
   3522 	const aint_t *s;
   3523 	aint_t *d;
   3524 	u_int i;
   3525 	u_int ch;
   3526 	u_int dstchannels;
   3527 
   3528 	DIAGNOSTIC_filter_arg(arg);
   3529 
   3530 	s = arg->src;
   3531 	d = arg->dst;
   3532 	dstchannels = arg->dstfmt->channels;
   3533 
   3534 	for (i = 0; i < arg->count; i++) {
   3535 		d[0] = s[0];
   3536 		d[1] = s[0];
   3537 		s++;
   3538 		d += dstchannels;
   3539 	}
   3540 	if (dstchannels > 2) {
   3541 		d = arg->dst;
   3542 		for (i = 0; i < arg->count; i++) {
   3543 			for (ch = 2; ch < dstchannels; ch++) {
   3544 				d[ch] = 0;
   3545 			}
   3546 			d += dstchannels;
   3547 		}
   3548 	}
   3549 }
   3550 
   3551 /*
   3552  * This filter shrinks M channels into N channels.
   3553  * Extra channels are discarded.
   3554  */
   3555 static void
   3556 audio_track_chmix_shrink(audio_filter_arg_t *arg)
   3557 {
   3558 	const aint_t *s;
   3559 	aint_t *d;
   3560 	u_int i;
   3561 	u_int ch;
   3562 
   3563 	DIAGNOSTIC_filter_arg(arg);
   3564 
   3565 	s = arg->src;
   3566 	d = arg->dst;
   3567 
   3568 	for (i = 0; i < arg->count; i++) {
   3569 		for (ch = 0; ch < arg->dstfmt->channels; ch++) {
   3570 			*d++ = s[ch];
   3571 		}
   3572 		s += arg->srcfmt->channels;
   3573 	}
   3574 }
   3575 
   3576 /*
   3577  * This filter expands M channels into N channels.
   3578  * Silence is inserted for missing channels.
   3579  */
   3580 static void
   3581 audio_track_chmix_expand(audio_filter_arg_t *arg)
   3582 {
   3583 	const aint_t *s;
   3584 	aint_t *d;
   3585 	u_int i;
   3586 	u_int ch;
   3587 	u_int srcchannels;
   3588 	u_int dstchannels;
   3589 
   3590 	DIAGNOSTIC_filter_arg(arg);
   3591 
   3592 	s = arg->src;
   3593 	d = arg->dst;
   3594 
   3595 	srcchannels = arg->srcfmt->channels;
   3596 	dstchannels = arg->dstfmt->channels;
   3597 	for (i = 0; i < arg->count; i++) {
   3598 		for (ch = 0; ch < srcchannels; ch++) {
   3599 			*d++ = *s++;
   3600 		}
   3601 		for (; ch < dstchannels; ch++) {
   3602 			*d++ = 0;
   3603 		}
   3604 	}
   3605 }
   3606 
   3607 /*
   3608  * This filter performs frequency conversion (up sampling).
   3609  * It uses linear interpolation.
   3610  */
   3611 static void
   3612 audio_track_freq_up(audio_filter_arg_t *arg)
   3613 {
   3614 	audio_track_t *track;
   3615 	audio_ring_t *src;
   3616 	audio_ring_t *dst;
   3617 	const aint_t *s;
   3618 	aint_t *d;
   3619 	aint_t prev[AUDIO_MAX_CHANNELS];
   3620 	aint_t curr[AUDIO_MAX_CHANNELS];
   3621 	aint_t grad[AUDIO_MAX_CHANNELS];
   3622 	u_int i;
   3623 	u_int t;
   3624 	u_int step;
   3625 	u_int channels;
   3626 	u_int ch;
   3627 	int srcused;
   3628 
   3629 	track = arg->context;
   3630 	KASSERT(track);
   3631 	src = &track->freq.srcbuf;
   3632 	dst = track->freq.dst;
   3633 	DIAGNOSTIC_ring(dst);
   3634 	DIAGNOSTIC_ring(src);
   3635 	KASSERT(src->used > 0);
   3636 	KASSERTMSG(src->fmt.channels == dst->fmt.channels,
   3637 	    "src->fmt.channels=%d dst->fmt.channels=%d",
   3638 	    src->fmt.channels, dst->fmt.channels);
   3639 	KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
   3640 	    "src->head=%d track->mixer->frames_per_block=%d",
   3641 	    src->head, track->mixer->frames_per_block);
   3642 
   3643 	s = arg->src;
   3644 	d = arg->dst;
   3645 
   3646 	/*
   3647 	 * In order to faciliate interpolation for each block, slide (delay)
   3648 	 * input by one sample.  As a result, strictly speaking, the output
   3649 	 * phase is delayed by 1/dstfreq.  However, I believe there is no
   3650 	 * observable impact.
   3651 	 *
   3652 	 * Example)
   3653 	 * srcfreq:dstfreq = 1:3
   3654 	 *
   3655 	 *  A - -
   3656 	 *  |
   3657 	 *  |
   3658 	 *  |     B - -
   3659 	 *  +-----+-----> input timeframe
   3660 	 *  0     1
   3661 	 *
   3662 	 *  0     1
   3663 	 *  +-----+-----> input timeframe
   3664 	 *  |     A
   3665 	 *  |   x   x
   3666 	 *  | x       x
   3667 	 *  x          (B)
   3668 	 *  +-+-+-+-+-+-> output timeframe
   3669 	 *  0 1 2 3 4 5
   3670 	 */
   3671 
   3672 	/* Last samples in previous block */
   3673 	channels = src->fmt.channels;
   3674 	for (ch = 0; ch < channels; ch++) {
   3675 		prev[ch] = track->freq_prev[ch];
   3676 		curr[ch] = track->freq_curr[ch];
   3677 		grad[ch] = curr[ch] - prev[ch];
   3678 	}
   3679 
   3680 	step = track->freq_step;
   3681 	t = track->freq_current;
   3682 //#define FREQ_DEBUG
   3683 #if defined(FREQ_DEBUG)
   3684 #define PRINTF(fmt...)	printf(fmt)
   3685 #else
   3686 #define PRINTF(fmt...)	do { } while (0)
   3687 #endif
   3688 	srcused = src->used;
   3689 	PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
   3690 	PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
   3691 	PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
   3692 	PRINTF(" t=%d\n", t);
   3693 
   3694 	for (i = 0; i < arg->count; i++) {
   3695 		PRINTF("i=%d t=%5d", i, t);
   3696 		if (t >= 65536) {
   3697 			for (ch = 0; ch < channels; ch++) {
   3698 				prev[ch] = curr[ch];
   3699 				curr[ch] = *s++;
   3700 				grad[ch] = curr[ch] - prev[ch];
   3701 			}
   3702 			PRINTF(" prev=%d s[%d]=%d",
   3703 			    prev[0], src->used - srcused, curr[0]);
   3704 
   3705 			/* Update */
   3706 			t -= 65536;
   3707 			srcused--;
   3708 			if (srcused < 0) {
   3709 				PRINTF(" break\n");
   3710 				break;
   3711 			}
   3712 		}
   3713 
   3714 		for (ch = 0; ch < channels; ch++) {
   3715 			*d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
   3716 #if defined(FREQ_DEBUG)
   3717 			if (ch == 0)
   3718 				printf(" t=%5d *d=%d", t, d[-1]);
   3719 #endif
   3720 		}
   3721 		t += step;
   3722 
   3723 		PRINTF("\n");
   3724 	}
   3725 	PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
   3726 
   3727 	auring_take(src, src->used);
   3728 	auring_push(dst, i);
   3729 
   3730 	/* Adjust */
   3731 	t += track->freq_leap;
   3732 
   3733 	track->freq_current = t;
   3734 	for (ch = 0; ch < channels; ch++) {
   3735 		track->freq_prev[ch] = prev[ch];
   3736 		track->freq_curr[ch] = curr[ch];
   3737 	}
   3738 }
   3739 
   3740 /*
   3741  * This filter performs frequency conversion (down sampling).
   3742  * It uses simple thinning.
   3743  */
   3744 static void
   3745 audio_track_freq_down(audio_filter_arg_t *arg)
   3746 {
   3747 	audio_track_t *track;
   3748 	audio_ring_t *src;
   3749 	audio_ring_t *dst;
   3750 	const aint_t *s0;
   3751 	aint_t *d;
   3752 	u_int i;
   3753 	u_int t;
   3754 	u_int step;
   3755 	u_int ch;
   3756 	u_int channels;
   3757 
   3758 	track = arg->context;
   3759 	KASSERT(track);
   3760 	src = &track->freq.srcbuf;
   3761 	dst = track->freq.dst;
   3762 
   3763 	DIAGNOSTIC_ring(dst);
   3764 	DIAGNOSTIC_ring(src);
   3765 	KASSERT(src->used > 0);
   3766 	KASSERTMSG(src->fmt.channels == dst->fmt.channels,
   3767 	    "src->fmt.channels=%d dst->fmt.channels=%d",
   3768 	    src->fmt.channels, dst->fmt.channels);
   3769 	KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
   3770 	    "src->head=%d track->mixer->frames_per_block=%d",
   3771 	    src->head, track->mixer->frames_per_block);
   3772 
   3773 	s0 = arg->src;
   3774 	d = arg->dst;
   3775 	t = track->freq_current;
   3776 	step = track->freq_step;
   3777 	channels = dst->fmt.channels;
   3778 	PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
   3779 	PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
   3780 	PRINTF(" t=%d\n", t);
   3781 
   3782 	for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
   3783 		const aint_t *s;
   3784 		PRINTF("i=%4d t=%10d", i, t);
   3785 		s = s0 + (t / 65536) * channels;
   3786 		PRINTF(" s=%5ld", (s - s0) / channels);
   3787 		for (ch = 0; ch < channels; ch++) {
   3788 			if (ch == 0) PRINTF(" *s=%d", s[ch]);
   3789 			*d++ = s[ch];
   3790 		}
   3791 		PRINTF("\n");
   3792 		t += step;
   3793 	}
   3794 	t += track->freq_leap;
   3795 	PRINTF("end t=%d\n", t);
   3796 	auring_take(src, src->used);
   3797 	auring_push(dst, i);
   3798 	track->freq_current = t % 65536;
   3799 }
   3800 
   3801 /*
   3802  * Creates track and returns it.
   3803  * Must be called without sc_lock held.
   3804  */
   3805 audio_track_t *
   3806 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
   3807 {
   3808 	audio_track_t *track;
   3809 	static int newid = 0;
   3810 
   3811 	track = kmem_zalloc(sizeof(*track), KM_SLEEP);
   3812 
   3813 	track->id = newid++;
   3814 	track->mixer = mixer;
   3815 	track->mode = mixer->mode;
   3816 
   3817 	/* Do TRACE after id is assigned. */
   3818 	TRACET(3, track, "for %s",
   3819 	    mixer->mode == AUMODE_PLAY ? "playback" : "recording");
   3820 
   3821 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
   3822 	track->volume = 256;
   3823 #endif
   3824 	for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
   3825 		track->ch_volume[i] = 256;
   3826 	}
   3827 
   3828 	return track;
   3829 }
   3830 
   3831 /*
   3832  * Release all resources of the track and track itself.
   3833  * track must not be NULL.  Don't specify the track within the file
   3834  * structure linked from sc->sc_files.
   3835  */
   3836 static void
   3837 audio_track_destroy(audio_track_t *track)
   3838 {
   3839 
   3840 	KASSERT(track);
   3841 
   3842 	audio_free_usrbuf(track);
   3843 	audio_free(track->codec.srcbuf.mem);
   3844 	audio_free(track->chvol.srcbuf.mem);
   3845 	audio_free(track->chmix.srcbuf.mem);
   3846 	audio_free(track->freq.srcbuf.mem);
   3847 	audio_free(track->outbuf.mem);
   3848 
   3849 	kmem_free(track, sizeof(*track));
   3850 }
   3851 
   3852 /*
   3853  * It returns encoding conversion filter according to src and dst format.
   3854  * If it is not a convertible pair, it returns NULL.  Either src or dst
   3855  * must be internal format.
   3856  */
   3857 static audio_filter_t
   3858 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
   3859 	const audio_format2_t *dst)
   3860 {
   3861 
   3862 	if (audio_format2_is_internal(src)) {
   3863 		if (dst->encoding == AUDIO_ENCODING_ULAW) {
   3864 			return audio_internal_to_mulaw;
   3865 		} else if (dst->encoding == AUDIO_ENCODING_ALAW) {
   3866 			return audio_internal_to_alaw;
   3867 		} else if (audio_format2_is_linear(dst)) {
   3868 			switch (dst->stride) {
   3869 			case 8:
   3870 				return audio_internal_to_linear8;
   3871 			case 16:
   3872 				return audio_internal_to_linear16;
   3873 #if defined(AUDIO_SUPPORT_LINEAR24)
   3874 			case 24:
   3875 				return audio_internal_to_linear24;
   3876 #endif
   3877 			case 32:
   3878 				return audio_internal_to_linear32;
   3879 			default:
   3880 				TRACET(1, track, "unsupported %s stride %d",
   3881 				    "dst", dst->stride);
   3882 				goto abort;
   3883 			}
   3884 		}
   3885 	} else if (audio_format2_is_internal(dst)) {
   3886 		if (src->encoding == AUDIO_ENCODING_ULAW) {
   3887 			return audio_mulaw_to_internal;
   3888 		} else if (src->encoding == AUDIO_ENCODING_ALAW) {
   3889 			return audio_alaw_to_internal;
   3890 		} else if (audio_format2_is_linear(src)) {
   3891 			switch (src->stride) {
   3892 			case 8:
   3893 				return audio_linear8_to_internal;
   3894 			case 16:
   3895 				return audio_linear16_to_internal;
   3896 #if defined(AUDIO_SUPPORT_LINEAR24)
   3897 			case 24:
   3898 				return audio_linear24_to_internal;
   3899 #endif
   3900 			case 32:
   3901 				return audio_linear32_to_internal;
   3902 			default:
   3903 				TRACET(1, track, "unsupported %s stride %d",
   3904 				    "src", src->stride);
   3905 				goto abort;
   3906 			}
   3907 		}
   3908 	}
   3909 
   3910 	TRACET(1, track, "unsupported encoding");
   3911 abort:
   3912 #if defined(AUDIO_DEBUG)
   3913 	if (audiodebug >= 2) {
   3914 		char buf[100];
   3915 		audio_format2_tostr(buf, sizeof(buf), src);
   3916 		TRACET(2, track, "src %s", buf);
   3917 		audio_format2_tostr(buf, sizeof(buf), dst);
   3918 		TRACET(2, track, "dst %s", buf);
   3919 	}
   3920 #endif
   3921 	return NULL;
   3922 }
   3923 
   3924 /*
   3925  * Initialize the codec stage of this track as necessary.
   3926  * If successful, it initializes the codec stage as necessary, stores updated
   3927  * last_dst in *last_dstp in any case, and returns 0.
   3928  * Otherwise, it returns errno without modifying *last_dstp.
   3929  */
   3930 static int
   3931 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
   3932 {
   3933 	audio_ring_t *last_dst;
   3934 	audio_ring_t *srcbuf;
   3935 	audio_format2_t *srcfmt;
   3936 	audio_format2_t *dstfmt;
   3937 	audio_filter_arg_t *arg;
   3938 	u_int len;
   3939 	int error;
   3940 
   3941 	KASSERT(track);
   3942 
   3943 	last_dst = *last_dstp;
   3944 	dstfmt = &last_dst->fmt;
   3945 	srcfmt = &track->inputfmt;
   3946 	srcbuf = &track->codec.srcbuf;
   3947 	error = 0;
   3948 
   3949 	if (srcfmt->encoding != dstfmt->encoding
   3950 	 || srcfmt->precision != dstfmt->precision
   3951 	 || srcfmt->stride != dstfmt->stride) {
   3952 		track->codec.dst = last_dst;
   3953 
   3954 		srcbuf->fmt = *dstfmt;
   3955 		srcbuf->fmt.encoding = srcfmt->encoding;
   3956 		srcbuf->fmt.precision = srcfmt->precision;
   3957 		srcbuf->fmt.stride = srcfmt->stride;
   3958 
   3959 		track->codec.filter = audio_track_get_codec(track,
   3960 		    &srcbuf->fmt, dstfmt);
   3961 		if (track->codec.filter == NULL) {
   3962 			error = EINVAL;
   3963 			goto abort;
   3964 		}
   3965 
   3966 		srcbuf->head = 0;
   3967 		srcbuf->used = 0;
   3968 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   3969 		len = auring_bytelen(srcbuf);
   3970 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   3971 
   3972 		arg = &track->codec.arg;
   3973 		arg->srcfmt = &srcbuf->fmt;
   3974 		arg->dstfmt = dstfmt;
   3975 		arg->context = NULL;
   3976 
   3977 		*last_dstp = srcbuf;
   3978 		return 0;
   3979 	}
   3980 
   3981 abort:
   3982 	track->codec.filter = NULL;
   3983 	audio_free(srcbuf->mem);
   3984 	return error;
   3985 }
   3986 
   3987 /*
   3988  * Initialize the chvol stage of this track as necessary.
   3989  * If successful, it initializes the chvol stage as necessary, stores updated
   3990  * last_dst in *last_dstp in any case, and returns 0.
   3991  * Otherwise, it returns errno without modifying *last_dstp.
   3992  */
   3993 static int
   3994 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
   3995 {
   3996 	audio_ring_t *last_dst;
   3997 	audio_ring_t *srcbuf;
   3998 	audio_format2_t *srcfmt;
   3999 	audio_format2_t *dstfmt;
   4000 	audio_filter_arg_t *arg;
   4001 	u_int len;
   4002 	int error;
   4003 
   4004 	KASSERT(track);
   4005 
   4006 	last_dst = *last_dstp;
   4007 	dstfmt = &last_dst->fmt;
   4008 	srcfmt = &track->inputfmt;
   4009 	srcbuf = &track->chvol.srcbuf;
   4010 	error = 0;
   4011 
   4012 	/* Check whether channel volume conversion is necessary. */
   4013 	bool use_chvol = false;
   4014 	for (int ch = 0; ch < srcfmt->channels; ch++) {
   4015 		if (track->ch_volume[ch] != 256) {
   4016 			use_chvol = true;
   4017 			break;
   4018 		}
   4019 	}
   4020 
   4021 	if (use_chvol == true) {
   4022 		track->chvol.dst = last_dst;
   4023 		track->chvol.filter = audio_track_chvol;
   4024 
   4025 		srcbuf->fmt = *dstfmt;
   4026 		/* no format conversion occurs */
   4027 
   4028 		srcbuf->head = 0;
   4029 		srcbuf->used = 0;
   4030 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4031 		len = auring_bytelen(srcbuf);
   4032 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4033 
   4034 		arg = &track->chvol.arg;
   4035 		arg->srcfmt = &srcbuf->fmt;
   4036 		arg->dstfmt = dstfmt;
   4037 		arg->context = track->ch_volume;
   4038 
   4039 		*last_dstp = srcbuf;
   4040 		return 0;
   4041 	}
   4042 
   4043 	track->chvol.filter = NULL;
   4044 	audio_free(srcbuf->mem);
   4045 	return error;
   4046 }
   4047 
   4048 /*
   4049  * Initialize the chmix stage of this track as necessary.
   4050  * If successful, it initializes the chmix stage as necessary, stores updated
   4051  * last_dst in *last_dstp in any case, and returns 0.
   4052  * Otherwise, it returns errno without modifying *last_dstp.
   4053  */
   4054 static int
   4055 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
   4056 {
   4057 	audio_ring_t *last_dst;
   4058 	audio_ring_t *srcbuf;
   4059 	audio_format2_t *srcfmt;
   4060 	audio_format2_t *dstfmt;
   4061 	audio_filter_arg_t *arg;
   4062 	u_int srcch;
   4063 	u_int dstch;
   4064 	u_int len;
   4065 	int error;
   4066 
   4067 	KASSERT(track);
   4068 
   4069 	last_dst = *last_dstp;
   4070 	dstfmt = &last_dst->fmt;
   4071 	srcfmt = &track->inputfmt;
   4072 	srcbuf = &track->chmix.srcbuf;
   4073 	error = 0;
   4074 
   4075 	srcch = srcfmt->channels;
   4076 	dstch = dstfmt->channels;
   4077 	if (srcch != dstch) {
   4078 		track->chmix.dst = last_dst;
   4079 
   4080 		if (srcch >= 2 && dstch == 1) {
   4081 			track->chmix.filter = audio_track_chmix_mixLR;
   4082 		} else if (srcch == 1 && dstch >= 2) {
   4083 			track->chmix.filter = audio_track_chmix_dupLR;
   4084 		} else if (srcch > dstch) {
   4085 			track->chmix.filter = audio_track_chmix_shrink;
   4086 		} else {
   4087 			track->chmix.filter = audio_track_chmix_expand;
   4088 		}
   4089 
   4090 		srcbuf->fmt = *dstfmt;
   4091 		srcbuf->fmt.channels = srcch;
   4092 
   4093 		srcbuf->head = 0;
   4094 		srcbuf->used = 0;
   4095 		/* XXX The buffer size should be able to calculate. */
   4096 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4097 		len = auring_bytelen(srcbuf);
   4098 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4099 
   4100 		arg = &track->chmix.arg;
   4101 		arg->srcfmt = &srcbuf->fmt;
   4102 		arg->dstfmt = dstfmt;
   4103 		arg->context = NULL;
   4104 
   4105 		*last_dstp = srcbuf;
   4106 		return 0;
   4107 	}
   4108 
   4109 	track->chmix.filter = NULL;
   4110 	audio_free(srcbuf->mem);
   4111 	return error;
   4112 }
   4113 
   4114 /*
   4115  * Initialize the freq stage of this track as necessary.
   4116  * If successful, it initializes the freq stage as necessary, stores updated
   4117  * last_dst in *last_dstp in any case, and returns 0.
   4118  * Otherwise, it returns errno without modifying *last_dstp.
   4119  */
   4120 static int
   4121 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
   4122 {
   4123 	audio_ring_t *last_dst;
   4124 	audio_ring_t *srcbuf;
   4125 	audio_format2_t *srcfmt;
   4126 	audio_format2_t *dstfmt;
   4127 	audio_filter_arg_t *arg;
   4128 	uint32_t srcfreq;
   4129 	uint32_t dstfreq;
   4130 	u_int dst_capacity;
   4131 	u_int mod;
   4132 	u_int len;
   4133 	int error;
   4134 
   4135 	KASSERT(track);
   4136 
   4137 	last_dst = *last_dstp;
   4138 	dstfmt = &last_dst->fmt;
   4139 	srcfmt = &track->inputfmt;
   4140 	srcbuf = &track->freq.srcbuf;
   4141 	error = 0;
   4142 
   4143 	srcfreq = srcfmt->sample_rate;
   4144 	dstfreq = dstfmt->sample_rate;
   4145 	if (srcfreq != dstfreq) {
   4146 		track->freq.dst = last_dst;
   4147 
   4148 		memset(track->freq_prev, 0, sizeof(track->freq_prev));
   4149 		memset(track->freq_curr, 0, sizeof(track->freq_curr));
   4150 
   4151 		/* freq_step is the ratio of src/dst when let dst 65536. */
   4152 		track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
   4153 
   4154 		dst_capacity = frame_per_block(track->mixer, dstfmt);
   4155 		mod = (uint64_t)srcfreq * 65536 % dstfreq;
   4156 		track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
   4157 
   4158 		if (track->freq_step < 65536) {
   4159 			track->freq.filter = audio_track_freq_up;
   4160 			/* In order to carry at the first time. */
   4161 			track->freq_current = 65536;
   4162 		} else {
   4163 			track->freq.filter = audio_track_freq_down;
   4164 			track->freq_current = 0;
   4165 		}
   4166 
   4167 		srcbuf->fmt = *dstfmt;
   4168 		srcbuf->fmt.sample_rate = srcfreq;
   4169 
   4170 		srcbuf->head = 0;
   4171 		srcbuf->used = 0;
   4172 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4173 		len = auring_bytelen(srcbuf);
   4174 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4175 
   4176 		arg = &track->freq.arg;
   4177 		arg->srcfmt = &srcbuf->fmt;
   4178 		arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
   4179 		arg->context = track;
   4180 
   4181 		*last_dstp = srcbuf;
   4182 		return 0;
   4183 	}
   4184 
   4185 	track->freq.filter = NULL;
   4186 	audio_free(srcbuf->mem);
   4187 	return error;
   4188 }
   4189 
   4190 /*
   4191  * When playing back: (e.g. if codec and freq stage are valid)
   4192  *
   4193  *               write
   4194  *                | uiomove
   4195  *                v
   4196  *  usrbuf      [...............]  byte ring buffer (mmap-able)
   4197  *                | memcpy
   4198  *                v
   4199  *  codec.srcbuf[....]             1 block (ring) buffer   <-- stage input
   4200  *       .dst ----+
   4201  *                | convert
   4202  *                v
   4203  *  freq.srcbuf [....]             1 block (ring) buffer
   4204  *      .dst  ----+
   4205  *                | convert
   4206  *                v
   4207  *  outbuf      [...............]  NBLKOUT blocks ring buffer
   4208  *
   4209  *
   4210  * When recording:
   4211  *
   4212  *  freq.srcbuf [...............]  NBLKOUT blocks ring buffer <-- stage input
   4213  *      .dst  ----+
   4214  *                | convert
   4215  *                v
   4216  *  codec.srcbuf[.....]            1 block (ring) buffer
   4217  *       .dst ----+
   4218  *                | convert
   4219  *                v
   4220  *  outbuf      [.....]            1 block (ring) buffer
   4221  *                | memcpy
   4222  *                v
   4223  *  usrbuf      [...............]  byte ring buffer (mmap-able *)
   4224  *                | uiomove
   4225  *                v
   4226  *               read
   4227  *
   4228  *    *: usrbuf for recording is also mmap-able due to symmetry with
   4229  *       playback buffer, but for now mmap will never happen for recording.
   4230  */
   4231 
   4232 /*
   4233  * Set the userland format of this track.
   4234  * usrfmt argument should be parameter verified with audio_check_params().
   4235  * It will release and reallocate all internal conversion buffers.
   4236  * It returns 0 if successful.  Otherwise it returns errno with clearing all
   4237  * internal buffers.
   4238  * It must be called without sc_intr_lock since uvm_* routines require non
   4239  * intr_lock state.
   4240  * It must be called with track lock held since it may release and reallocate
   4241  * outbuf.
   4242  */
   4243 static int
   4244 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
   4245 {
   4246 	struct audio_softc *sc;
   4247 	u_int newbufsize;
   4248 	u_int oldblksize;
   4249 	u_int len;
   4250 	int error;
   4251 
   4252 	KASSERT(track);
   4253 	sc = track->mixer->sc;
   4254 
   4255 	/* usrbuf is the closest buffer to the userland. */
   4256 	track->usrbuf.fmt = *usrfmt;
   4257 
   4258 	/*
   4259 	 * For references, one block size (in 40msec) is:
   4260 	 *  320 bytes    = 204 blocks/64KB for mulaw/8kHz/1ch
   4261 	 *  7680 bytes   = 8 blocks/64KB for s16/48kHz/2ch
   4262 	 *  30720 bytes  = 90 KB/3blocks for s16/48kHz/8ch
   4263 	 *  61440 bytes  = 180 KB/3blocks for s16/96kHz/8ch
   4264 	 *  245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
   4265 	 *
   4266 	 * For example,
   4267 	 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
   4268 	 *     newbufsize = rounddown(65536 / 7056) = 63504
   4269 	 *     newvsize = roundup2(63504, PAGE_SIZE) = 65536
   4270 	 *    Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
   4271 	 *
   4272 	 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
   4273 	 *     newbufsize = rounddown(65536 / 7680) = 61440
   4274 	 *     newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
   4275 	 *    Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
   4276 	 */
   4277 	oldblksize = track->usrbuf_blksize;
   4278 	track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
   4279 	    frame_per_block(track->mixer, &track->usrbuf.fmt));
   4280 	track->usrbuf.head = 0;
   4281 	track->usrbuf.used = 0;
   4282 	newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
   4283 	newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
   4284 	error = audio_realloc_usrbuf(track, newbufsize);
   4285 	if (error) {
   4286 		device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
   4287 		    newbufsize);
   4288 		goto error;
   4289 	}
   4290 
   4291 	/* Recalc water mark. */
   4292 	if (track->usrbuf_blksize != oldblksize) {
   4293 		if (audio_track_is_playback(track)) {
   4294 			/* Set high at 100%, low at 75%.  */
   4295 			track->usrbuf_usedhigh = track->usrbuf.capacity;
   4296 			track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
   4297 		} else {
   4298 			/* Set high at 100% minus 1block(?), low at 0% */
   4299 			track->usrbuf_usedhigh = track->usrbuf.capacity -
   4300 			    track->usrbuf_blksize;
   4301 			track->usrbuf_usedlow = 0;
   4302 		}
   4303 	}
   4304 
   4305 	/* Stage buffer */
   4306 	audio_ring_t *last_dst = &track->outbuf;
   4307 	if (audio_track_is_playback(track)) {
   4308 		/* On playback, initialize from the mixer side in order. */
   4309 		track->inputfmt = *usrfmt;
   4310 		track->outbuf.fmt =  track->mixer->track_fmt;
   4311 
   4312 		if ((error = audio_track_init_freq(track, &last_dst)) != 0)
   4313 			goto error;
   4314 		if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
   4315 			goto error;
   4316 		if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
   4317 			goto error;
   4318 		if ((error = audio_track_init_codec(track, &last_dst)) != 0)
   4319 			goto error;
   4320 	} else {
   4321 		/* On recording, initialize from userland side in order. */
   4322 		track->inputfmt = track->mixer->track_fmt;
   4323 		track->outbuf.fmt = *usrfmt;
   4324 
   4325 		if ((error = audio_track_init_codec(track, &last_dst)) != 0)
   4326 			goto error;
   4327 		if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
   4328 			goto error;
   4329 		if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
   4330 			goto error;
   4331 		if ((error = audio_track_init_freq(track, &last_dst)) != 0)
   4332 			goto error;
   4333 	}
   4334 #if 0
   4335 	/* debug */
   4336 	if (track->freq.filter) {
   4337 		audio_print_format2("freq src", &track->freq.srcbuf.fmt);
   4338 		audio_print_format2("freq dst", &track->freq.dst->fmt);
   4339 	}
   4340 	if (track->chmix.filter) {
   4341 		audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
   4342 		audio_print_format2("chmix dst", &track->chmix.dst->fmt);
   4343 	}
   4344 	if (track->chvol.filter) {
   4345 		audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
   4346 		audio_print_format2("chvol dst", &track->chvol.dst->fmt);
   4347 	}
   4348 	if (track->codec.filter) {
   4349 		audio_print_format2("codec src", &track->codec.srcbuf.fmt);
   4350 		audio_print_format2("codec dst", &track->codec.dst->fmt);
   4351 	}
   4352 #endif
   4353 
   4354 	/* Stage input buffer */
   4355 	track->input = last_dst;
   4356 
   4357 	/*
   4358 	 * On the recording track, make the first stage a ring buffer.
   4359 	 * XXX is there a better way?
   4360 	 */
   4361 	if (audio_track_is_record(track)) {
   4362 		track->input->capacity = NBLKOUT *
   4363 		    frame_per_block(track->mixer, &track->input->fmt);
   4364 		len = auring_bytelen(track->input);
   4365 		track->input->mem = audio_realloc(track->input->mem, len);
   4366 	}
   4367 
   4368 	/*
   4369 	 * Output buffer.
   4370 	 * On the playback track, its capacity is NBLKOUT blocks.
   4371 	 * On the recording track, its capacity is 1 block.
   4372 	 */
   4373 	track->outbuf.head = 0;
   4374 	track->outbuf.used = 0;
   4375 	track->outbuf.capacity = frame_per_block(track->mixer,
   4376 	    &track->outbuf.fmt);
   4377 	if (audio_track_is_playback(track))
   4378 		track->outbuf.capacity *= NBLKOUT;
   4379 	len = auring_bytelen(&track->outbuf);
   4380 	track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
   4381 	if (track->outbuf.mem == NULL) {
   4382 		device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
   4383 		error = ENOMEM;
   4384 		goto error;
   4385 	}
   4386 
   4387 #if defined(AUDIO_DEBUG)
   4388 	if (audiodebug >= 3) {
   4389 		struct audio_track_debugbuf m;
   4390 
   4391 		memset(&m, 0, sizeof(m));
   4392 		snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
   4393 		    track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
   4394 		if (track->freq.filter)
   4395 			snprintf(m.freq, sizeof(m.freq), " freq=%d",
   4396 			    track->freq.srcbuf.capacity *
   4397 			    frametobyte(&track->freq.srcbuf.fmt, 1));
   4398 		if (track->chmix.filter)
   4399 			snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
   4400 			    track->chmix.srcbuf.capacity *
   4401 			    frametobyte(&track->chmix.srcbuf.fmt, 1));
   4402 		if (track->chvol.filter)
   4403 			snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
   4404 			    track->chvol.srcbuf.capacity *
   4405 			    frametobyte(&track->chvol.srcbuf.fmt, 1));
   4406 		if (track->codec.filter)
   4407 			snprintf(m.codec, sizeof(m.codec), " codec=%d",
   4408 			    track->codec.srcbuf.capacity *
   4409 			    frametobyte(&track->codec.srcbuf.fmt, 1));
   4410 		snprintf(m.usrbuf, sizeof(m.usrbuf),
   4411 		    " usr=%d", track->usrbuf.capacity);
   4412 
   4413 		if (audio_track_is_playback(track)) {
   4414 			TRACET(0, track, "bufsize%s%s%s%s%s%s",
   4415 			    m.outbuf, m.freq, m.chmix,
   4416 			    m.chvol, m.codec, m.usrbuf);
   4417 		} else {
   4418 			TRACET(0, track, "bufsize%s%s%s%s%s%s",
   4419 			    m.freq, m.chmix, m.chvol,
   4420 			    m.codec, m.outbuf, m.usrbuf);
   4421 		}
   4422 	}
   4423 #endif
   4424 	return 0;
   4425 
   4426 error:
   4427 	audio_free_usrbuf(track);
   4428 	audio_free(track->codec.srcbuf.mem);
   4429 	audio_free(track->chvol.srcbuf.mem);
   4430 	audio_free(track->chmix.srcbuf.mem);
   4431 	audio_free(track->freq.srcbuf.mem);
   4432 	audio_free(track->outbuf.mem);
   4433 	return error;
   4434 }
   4435 
   4436 /*
   4437  * Fill silence frames (as the internal format) up to 1 block
   4438  * if the ring is not empty and less than 1 block.
   4439  * It returns the number of appended frames.
   4440  */
   4441 static int
   4442 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
   4443 {
   4444 	int fpb;
   4445 	int n;
   4446 
   4447 	KASSERT(track);
   4448 	KASSERT(audio_format2_is_internal(&ring->fmt));
   4449 
   4450 	/* XXX is n correct? */
   4451 	/* XXX memset uses frametobyte()? */
   4452 
   4453 	if (ring->used == 0)
   4454 		return 0;
   4455 
   4456 	fpb = frame_per_block(track->mixer, &ring->fmt);
   4457 	if (ring->used >= fpb)
   4458 		return 0;
   4459 
   4460 	n = (ring->capacity - ring->used) % fpb;
   4461 
   4462 	KASSERTMSG(auring_get_contig_free(ring) >= n,
   4463 	    "auring_get_contig_free(ring)=%d n=%d",
   4464 	    auring_get_contig_free(ring), n);
   4465 
   4466 	memset(auring_tailptr_aint(ring), 0,
   4467 	    n * ring->fmt.channels * sizeof(aint_t));
   4468 	auring_push(ring, n);
   4469 	return n;
   4470 }
   4471 
   4472 /*
   4473  * Execute the conversion stage.
   4474  * It prepares arg from this stage and executes stage->filter.
   4475  * It must be called only if stage->filter is not NULL.
   4476  *
   4477  * For stages other than frequency conversion, the function increments
   4478  * src and dst counters here.  For frequency conversion stage, on the
   4479  * other hand, the function does not touch src and dst counters and
   4480  * filter side has to increment them.
   4481  */
   4482 static void
   4483 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
   4484 {
   4485 	audio_filter_arg_t *arg;
   4486 	int srccount;
   4487 	int dstcount;
   4488 	int count;
   4489 
   4490 	KASSERT(track);
   4491 	KASSERT(stage->filter);
   4492 
   4493 	srccount = auring_get_contig_used(&stage->srcbuf);
   4494 	dstcount = auring_get_contig_free(stage->dst);
   4495 
   4496 	if (isfreq) {
   4497 		KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
   4498 		count = uimin(dstcount, track->mixer->frames_per_block);
   4499 	} else {
   4500 		count = uimin(srccount, dstcount);
   4501 	}
   4502 
   4503 	if (count > 0) {
   4504 		arg = &stage->arg;
   4505 		arg->src = auring_headptr(&stage->srcbuf);
   4506 		arg->dst = auring_tailptr(stage->dst);
   4507 		arg->count = count;
   4508 
   4509 		stage->filter(arg);
   4510 
   4511 		if (!isfreq) {
   4512 			auring_take(&stage->srcbuf, count);
   4513 			auring_push(stage->dst, count);
   4514 		}
   4515 	}
   4516 }
   4517 
   4518 /*
   4519  * Produce output buffer for playback from user input buffer.
   4520  * It must be called only if usrbuf is not empty and outbuf is
   4521  * available at least one free block.
   4522  */
   4523 static void
   4524 audio_track_play(audio_track_t *track)
   4525 {
   4526 	audio_ring_t *usrbuf;
   4527 	audio_ring_t *input;
   4528 	int count;
   4529 	int framesize;
   4530 	int bytes;
   4531 
   4532 	KASSERT(track);
   4533 	KASSERT(track->lock);
   4534 	TRACET(4, track, "start pstate=%d", track->pstate);
   4535 
   4536 	/* At this point usrbuf must not be empty. */
   4537 	KASSERT(track->usrbuf.used > 0);
   4538 	/* Also, outbuf must be available at least one block. */
   4539 	count = auring_get_contig_free(&track->outbuf);
   4540 	KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
   4541 	    "count=%d fpb=%d",
   4542 	    count, frame_per_block(track->mixer, &track->outbuf.fmt));
   4543 
   4544 	/* XXX TODO: is this necessary for now? */
   4545 	int track_count_0 = track->outbuf.used;
   4546 
   4547 	usrbuf = &track->usrbuf;
   4548 	input = track->input;
   4549 
   4550 	/*
   4551 	 * framesize is always 1 byte or more since all formats supported as
   4552 	 * usrfmt(=input) have 8bit or more stride.
   4553 	 */
   4554 	framesize = frametobyte(&input->fmt, 1);
   4555 	KASSERT(framesize >= 1);
   4556 
   4557 	/* The next stage of usrbuf (=input) must be available. */
   4558 	KASSERT(auring_get_contig_free(input) > 0);
   4559 
   4560 	/*
   4561 	 * Copy usrbuf up to 1block to input buffer.
   4562 	 * count is the number of frames to copy from usrbuf.
   4563 	 * bytes is the number of bytes to copy from usrbuf.  However it is
   4564 	 * not copied less than one frame.
   4565 	 */
   4566 	count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
   4567 	bytes = count * framesize;
   4568 
   4569 	track->usrbuf_stamp += bytes;
   4570 
   4571 	if (usrbuf->head + bytes < usrbuf->capacity) {
   4572 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
   4573 		    (uint8_t *)usrbuf->mem + usrbuf->head,
   4574 		    bytes);
   4575 		auring_push(input, count);
   4576 		auring_take(usrbuf, bytes);
   4577 	} else {
   4578 		int bytes1;
   4579 		int bytes2;
   4580 
   4581 		bytes1 = auring_get_contig_used(usrbuf);
   4582 		KASSERTMSG(bytes1 % framesize == 0,
   4583 		    "bytes1=%d framesize=%d", bytes1, framesize);
   4584 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
   4585 		    (uint8_t *)usrbuf->mem + usrbuf->head,
   4586 		    bytes1);
   4587 		auring_push(input, bytes1 / framesize);
   4588 		auring_take(usrbuf, bytes1);
   4589 
   4590 		bytes2 = bytes - bytes1;
   4591 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
   4592 		    (uint8_t *)usrbuf->mem + usrbuf->head,
   4593 		    bytes2);
   4594 		auring_push(input, bytes2 / framesize);
   4595 		auring_take(usrbuf, bytes2);
   4596 	}
   4597 
   4598 	/* Encoding conversion */
   4599 	if (track->codec.filter)
   4600 		audio_apply_stage(track, &track->codec, false);
   4601 
   4602 	/* Channel volume */
   4603 	if (track->chvol.filter)
   4604 		audio_apply_stage(track, &track->chvol, false);
   4605 
   4606 	/* Channel mix */
   4607 	if (track->chmix.filter)
   4608 		audio_apply_stage(track, &track->chmix, false);
   4609 
   4610 	/* Frequency conversion */
   4611 	/*
   4612 	 * Since the frequency conversion needs correction for each block,
   4613 	 * it rounds up to 1 block.
   4614 	 */
   4615 	if (track->freq.filter) {
   4616 		int n;
   4617 		n = audio_append_silence(track, &track->freq.srcbuf);
   4618 		if (n > 0) {
   4619 			TRACET(4, track,
   4620 			    "freq.srcbuf add silence %d -> %d/%d/%d",
   4621 			    n,
   4622 			    track->freq.srcbuf.head,
   4623 			    track->freq.srcbuf.used,
   4624 			    track->freq.srcbuf.capacity);
   4625 		}
   4626 		if (track->freq.srcbuf.used > 0) {
   4627 			audio_apply_stage(track, &track->freq, true);
   4628 		}
   4629 	}
   4630 
   4631 	if (bytes < track->usrbuf_blksize) {
   4632 		/*
   4633 		 * Clear all conversion buffer pointer if the conversion was
   4634 		 * not exactly one block.  These conversion stage buffers are
   4635 		 * certainly circular buffers because of symmetry with the
   4636 		 * previous and next stage buffer.  However, since they are
   4637 		 * treated as simple contiguous buffers in operation, so head
   4638 		 * always should point 0.  This may happen during drain-age.
   4639 		 */
   4640 		TRACET(4, track, "reset stage");
   4641 		if (track->codec.filter) {
   4642 			KASSERT(track->codec.srcbuf.used == 0);
   4643 			track->codec.srcbuf.head = 0;
   4644 		}
   4645 		if (track->chvol.filter) {
   4646 			KASSERT(track->chvol.srcbuf.used == 0);
   4647 			track->chvol.srcbuf.head = 0;
   4648 		}
   4649 		if (track->chmix.filter) {
   4650 			KASSERT(track->chmix.srcbuf.used == 0);
   4651 			track->chmix.srcbuf.head = 0;
   4652 		}
   4653 		if (track->freq.filter) {
   4654 			KASSERT(track->freq.srcbuf.used == 0);
   4655 			track->freq.srcbuf.head = 0;
   4656 		}
   4657 	}
   4658 
   4659 	if (track->input == &track->outbuf) {
   4660 		track->outputcounter = track->inputcounter;
   4661 	} else {
   4662 		track->outputcounter += track->outbuf.used - track_count_0;
   4663 	}
   4664 
   4665 #if defined(AUDIO_DEBUG)
   4666 	if (audiodebug >= 3) {
   4667 		struct audio_track_debugbuf m;
   4668 		audio_track_bufstat(track, &m);
   4669 		TRACET(0, track, "end%s%s%s%s%s%s",
   4670 		    m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
   4671 	}
   4672 #endif
   4673 }
   4674 
   4675 /*
   4676  * Produce user output buffer for recording from input buffer.
   4677  */
   4678 static void
   4679 audio_track_record(audio_track_t *track)
   4680 {
   4681 	audio_ring_t *outbuf;
   4682 	audio_ring_t *usrbuf;
   4683 	int count;
   4684 	int bytes;
   4685 	int framesize;
   4686 
   4687 	KASSERT(track);
   4688 	KASSERT(track->lock);
   4689 
   4690 	/* Number of frames to process */
   4691 	count = auring_get_contig_used(track->input);
   4692 	count = uimin(count, track->mixer->frames_per_block);
   4693 	if (count == 0) {
   4694 		TRACET(4, track, "count == 0");
   4695 		return;
   4696 	}
   4697 
   4698 	/* Frequency conversion */
   4699 	if (track->freq.filter) {
   4700 		if (track->freq.srcbuf.used > 0) {
   4701 			audio_apply_stage(track, &track->freq, true);
   4702 			/* XXX should input of freq be from beginning of buf? */
   4703 		}
   4704 	}
   4705 
   4706 	/* Channel mix */
   4707 	if (track->chmix.filter)
   4708 		audio_apply_stage(track, &track->chmix, false);
   4709 
   4710 	/* Channel volume */
   4711 	if (track->chvol.filter)
   4712 		audio_apply_stage(track, &track->chvol, false);
   4713 
   4714 	/* Encoding conversion */
   4715 	if (track->codec.filter)
   4716 		audio_apply_stage(track, &track->codec, false);
   4717 
   4718 	/* Copy outbuf to usrbuf */
   4719 	outbuf = &track->outbuf;
   4720 	usrbuf = &track->usrbuf;
   4721 	/*
   4722 	 * framesize is always 1 byte or more since all formats supported
   4723 	 * as usrfmt(=output) have 8bit or more stride.
   4724 	 */
   4725 	framesize = frametobyte(&outbuf->fmt, 1);
   4726 	KASSERT(framesize >= 1);
   4727 	/*
   4728 	 * count is the number of frames to copy to usrbuf.
   4729 	 * bytes is the number of bytes to copy to usrbuf.
   4730 	 */
   4731 	count = outbuf->used;
   4732 	count = uimin(count,
   4733 	    (track->usrbuf_usedhigh - usrbuf->used) / framesize);
   4734 	bytes = count * framesize;
   4735 	if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
   4736 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
   4737 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
   4738 		    bytes);
   4739 		auring_push(usrbuf, bytes);
   4740 		auring_take(outbuf, count);
   4741 	} else {
   4742 		int bytes1;
   4743 		int bytes2;
   4744 
   4745 		bytes1 = auring_get_contig_free(usrbuf);
   4746 		KASSERTMSG(bytes1 % framesize == 0,
   4747 		    "bytes1=%d framesize=%d", bytes1, framesize);
   4748 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
   4749 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
   4750 		    bytes1);
   4751 		auring_push(usrbuf, bytes1);
   4752 		auring_take(outbuf, bytes1 / framesize);
   4753 
   4754 		bytes2 = bytes - bytes1;
   4755 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
   4756 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
   4757 		    bytes2);
   4758 		auring_push(usrbuf, bytes2);
   4759 		auring_take(outbuf, bytes2 / framesize);
   4760 	}
   4761 
   4762 	/* XXX TODO: any counters here? */
   4763 
   4764 #if defined(AUDIO_DEBUG)
   4765 	if (audiodebug >= 3) {
   4766 		struct audio_track_debugbuf m;
   4767 		audio_track_bufstat(track, &m);
   4768 		TRACET(0, track, "end%s%s%s%s%s%s",
   4769 		    m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
   4770 	}
   4771 #endif
   4772 }
   4773 
   4774 /*
   4775  * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
   4776  * Must be called with sc_exlock held.
   4777  */
   4778 static u_int
   4779 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
   4780 {
   4781 	audio_format2_t *fmt;
   4782 	u_int blktime;
   4783 	u_int frames_per_block;
   4784 
   4785 	KASSERT(sc->sc_exlock);
   4786 
   4787 	fmt = &mixer->hwbuf.fmt;
   4788 	blktime = sc->sc_blk_ms;
   4789 
   4790 	/*
   4791 	 * If stride is not multiples of 8, special treatment is necessary.
   4792 	 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
   4793 	 */
   4794 	if (fmt->stride == 4) {
   4795 		frames_per_block = fmt->sample_rate * blktime / 1000;
   4796 		if ((frames_per_block & 1) != 0)
   4797 			blktime *= 2;
   4798 	}
   4799 #ifdef DIAGNOSTIC
   4800 	else if (fmt->stride % NBBY != 0) {
   4801 		panic("unsupported HW stride %d", fmt->stride);
   4802 	}
   4803 #endif
   4804 
   4805 	return blktime;
   4806 }
   4807 
   4808 /*
   4809  * Initialize the mixer corresponding to the mode.
   4810  * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
   4811  * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
   4812  * This function returns 0 on successful.  Otherwise returns errno.
   4813  * Must be called with sc_exlock held and without sc_lock held.
   4814  */
   4815 static int
   4816 audio_mixer_init(struct audio_softc *sc, int mode,
   4817 	const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
   4818 {
   4819 	char codecbuf[64];
   4820 	char blkdmsbuf[8];
   4821 	audio_trackmixer_t *mixer;
   4822 	void (*softint_handler)(void *);
   4823 	int len;
   4824 	int blksize;
   4825 	int capacity;
   4826 	size_t bufsize;
   4827 	int hwblks;
   4828 	int blkms;
   4829 	int blkdms;
   4830 	int error;
   4831 
   4832 	KASSERT(hwfmt != NULL);
   4833 	KASSERT(reg != NULL);
   4834 	KASSERT(sc->sc_exlock);
   4835 
   4836 	error = 0;
   4837 	if (mode == AUMODE_PLAY)
   4838 		mixer = sc->sc_pmixer;
   4839 	else
   4840 		mixer = sc->sc_rmixer;
   4841 
   4842 	mixer->sc = sc;
   4843 	mixer->mode = mode;
   4844 
   4845 	mixer->hwbuf.fmt = *hwfmt;
   4846 	mixer->volume = 256;
   4847 	mixer->blktime_d = 1000;
   4848 	mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
   4849 	sc->sc_blk_ms = mixer->blktime_n;
   4850 	hwblks = NBLKHW;
   4851 
   4852 	mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
   4853 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
   4854 	if (sc->hw_if->round_blocksize) {
   4855 		int rounded;
   4856 		audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
   4857 		mutex_enter(sc->sc_lock);
   4858 		rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
   4859 		    mode, &p);
   4860 		mutex_exit(sc->sc_lock);
   4861 		TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
   4862 		if (rounded != blksize) {
   4863 			if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
   4864 			    mixer->hwbuf.fmt.channels) != 0) {
   4865 				device_printf(sc->sc_dev,
   4866 				    "round_blocksize must return blocksize "
   4867 				    "divisible by framesize: "
   4868 				    "blksize=%d rounded=%d "
   4869 				    "stride=%ubit channels=%u\n",
   4870 				    blksize, rounded,
   4871 				    mixer->hwbuf.fmt.stride,
   4872 				    mixer->hwbuf.fmt.channels);
   4873 				return EINVAL;
   4874 			}
   4875 			/* Recalculation */
   4876 			blksize = rounded;
   4877 			mixer->frames_per_block = blksize * NBBY /
   4878 			    (mixer->hwbuf.fmt.stride *
   4879 			     mixer->hwbuf.fmt.channels);
   4880 		}
   4881 	}
   4882 	mixer->blktime_n = mixer->frames_per_block;
   4883 	mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
   4884 
   4885 	capacity = mixer->frames_per_block * hwblks;
   4886 	bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
   4887 	if (sc->hw_if->round_buffersize) {
   4888 		size_t rounded;
   4889 		mutex_enter(sc->sc_lock);
   4890 		rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
   4891 		    bufsize);
   4892 		mutex_exit(sc->sc_lock);
   4893 		TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
   4894 		if (rounded < bufsize) {
   4895 			/* buffersize needs NBLKHW blocks at least. */
   4896 			device_printf(sc->sc_dev,
   4897 			    "buffersize too small: buffersize=%zd blksize=%d\n",
   4898 			    rounded, blksize);
   4899 			return EINVAL;
   4900 		}
   4901 		if (rounded % blksize != 0) {
   4902 			/* buffersize/blksize constraint mismatch? */
   4903 			device_printf(sc->sc_dev,
   4904 			    "buffersize must be multiple of blksize: "
   4905 			    "buffersize=%zu blksize=%d\n",
   4906 			    rounded, blksize);
   4907 			return EINVAL;
   4908 		}
   4909 		if (rounded != bufsize) {
   4910 			/* Recalcuration */
   4911 			bufsize = rounded;
   4912 			hwblks = bufsize / blksize;
   4913 			capacity = mixer->frames_per_block * hwblks;
   4914 		}
   4915 	}
   4916 	TRACE(1, "buffersize for %s = %zu",
   4917 	    (mode == AUMODE_PLAY) ? "playback" : "recording",
   4918 	    bufsize);
   4919 	mixer->hwbuf.capacity = capacity;
   4920 
   4921 	if (sc->hw_if->allocm) {
   4922 		/* sc_lock is not necessary for allocm */
   4923 		mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
   4924 		if (mixer->hwbuf.mem == NULL) {
   4925 			device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
   4926 			    __func__, bufsize);
   4927 			return ENOMEM;
   4928 		}
   4929 	} else {
   4930 		mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
   4931 	}
   4932 
   4933 	/* From here, audio_mixer_destroy is necessary to exit. */
   4934 	if (mode == AUMODE_PLAY) {
   4935 		cv_init(&mixer->outcv, "audiowr");
   4936 	} else {
   4937 		cv_init(&mixer->outcv, "audiord");
   4938 	}
   4939 
   4940 	if (mode == AUMODE_PLAY) {
   4941 		softint_handler = audio_softintr_wr;
   4942 	} else {
   4943 		softint_handler = audio_softintr_rd;
   4944 	}
   4945 	mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
   4946 	    softint_handler, sc);
   4947 	if (mixer->sih == NULL) {
   4948 		device_printf(sc->sc_dev, "softint_establish failed\n");
   4949 		goto abort;
   4950 	}
   4951 
   4952 	mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
   4953 	mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
   4954 	mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
   4955 	mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
   4956 	mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
   4957 
   4958 	if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
   4959 	    mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
   4960 		mixer->swap_endian = true;
   4961 		TRACE(1, "swap_endian");
   4962 	}
   4963 
   4964 	if (mode == AUMODE_PLAY) {
   4965 		/* Mixing buffer */
   4966 		mixer->mixfmt = mixer->track_fmt;
   4967 		mixer->mixfmt.precision *= 2;
   4968 		mixer->mixfmt.stride *= 2;
   4969 		/* XXX TODO: use some macros? */
   4970 		len = mixer->frames_per_block * mixer->mixfmt.channels *
   4971 		    mixer->mixfmt.stride / NBBY;
   4972 		mixer->mixsample = audio_realloc(mixer->mixsample, len);
   4973 	} else {
   4974 		/* No mixing buffer for recording */
   4975 	}
   4976 
   4977 	if (reg->codec) {
   4978 		mixer->codec = reg->codec;
   4979 		mixer->codecarg.context = reg->context;
   4980 		if (mode == AUMODE_PLAY) {
   4981 			mixer->codecarg.srcfmt = &mixer->track_fmt;
   4982 			mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
   4983 		} else {
   4984 			mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
   4985 			mixer->codecarg.dstfmt = &mixer->track_fmt;
   4986 		}
   4987 		mixer->codecbuf.fmt = mixer->track_fmt;
   4988 		mixer->codecbuf.capacity = mixer->frames_per_block;
   4989 		len = auring_bytelen(&mixer->codecbuf);
   4990 		mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
   4991 		if (mixer->codecbuf.mem == NULL) {
   4992 			device_printf(sc->sc_dev,
   4993 			    "%s: malloc codecbuf(%d) failed\n",
   4994 			    __func__, len);
   4995 			error = ENOMEM;
   4996 			goto abort;
   4997 		}
   4998 	}
   4999 
   5000 	/* Succeeded so display it. */
   5001 	codecbuf[0] = '\0';
   5002 	if (mixer->codec || mixer->swap_endian) {
   5003 		snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
   5004 		    (mode == AUMODE_PLAY) ? "->" : "<-",
   5005 		    audio_encoding_name(mixer->hwbuf.fmt.encoding),
   5006 		    mixer->hwbuf.fmt.precision);
   5007 	}
   5008 	blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
   5009 	blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
   5010 	blkdmsbuf[0] = '\0';
   5011 	if (blkdms != 0) {
   5012 		snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
   5013 	}
   5014 	aprint_normal_dev(sc->sc_dev,
   5015 	    "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
   5016 	    audio_encoding_name(mixer->track_fmt.encoding),
   5017 	    mixer->track_fmt.precision,
   5018 	    codecbuf,
   5019 	    mixer->track_fmt.channels,
   5020 	    mixer->track_fmt.sample_rate,
   5021 	    blksize,
   5022 	    blkms, blkdmsbuf,
   5023 	    (mode == AUMODE_PLAY) ? "playback" : "recording");
   5024 
   5025 	return 0;
   5026 
   5027 abort:
   5028 	audio_mixer_destroy(sc, mixer);
   5029 	return error;
   5030 }
   5031 
   5032 /*
   5033  * Releases all resources of 'mixer'.
   5034  * Note that it does not release the memory area of 'mixer' itself.
   5035  * Must be called with sc_exlock held and without sc_lock held.
   5036  */
   5037 static void
   5038 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
   5039 {
   5040 	int bufsize;
   5041 
   5042 	KASSERT(sc->sc_exlock == 1);
   5043 
   5044 	bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
   5045 
   5046 	if (mixer->hwbuf.mem != NULL) {
   5047 		if (sc->hw_if->freem) {
   5048 			/* sc_lock is not necessary for freem */
   5049 			sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
   5050 		} else {
   5051 			kmem_free(mixer->hwbuf.mem, bufsize);
   5052 		}
   5053 		mixer->hwbuf.mem = NULL;
   5054 	}
   5055 
   5056 	audio_free(mixer->codecbuf.mem);
   5057 	audio_free(mixer->mixsample);
   5058 
   5059 	cv_destroy(&mixer->outcv);
   5060 
   5061 	if (mixer->sih) {
   5062 		softint_disestablish(mixer->sih);
   5063 		mixer->sih = NULL;
   5064 	}
   5065 }
   5066 
   5067 /*
   5068  * Starts playback mixer.
   5069  * Must be called only if sc_pbusy is false.
   5070  * Must be called with sc_lock && sc_exlock held.
   5071  * Must not be called from the interrupt context.
   5072  */
   5073 static void
   5074 audio_pmixer_start(struct audio_softc *sc, bool force)
   5075 {
   5076 	audio_trackmixer_t *mixer;
   5077 	int minimum;
   5078 
   5079 	KASSERT(mutex_owned(sc->sc_lock));
   5080 	KASSERT(sc->sc_exlock);
   5081 	KASSERT(sc->sc_pbusy == false);
   5082 
   5083 	mutex_enter(sc->sc_intr_lock);
   5084 
   5085 	mixer = sc->sc_pmixer;
   5086 	TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
   5087 	    (audiodebug >= 3) ? "begin " : "",
   5088 	    (int)mixer->mixseq, (int)mixer->hwseq,
   5089 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
   5090 	    force ? " force" : "");
   5091 
   5092 	/* Need two blocks to start normally. */
   5093 	minimum = (force) ? 1 : 2;
   5094 	while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
   5095 		audio_pmixer_process(sc);
   5096 	}
   5097 
   5098 	/* Start output */
   5099 	audio_pmixer_output(sc);
   5100 	sc->sc_pbusy = true;
   5101 
   5102 	TRACE(3, "end   mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
   5103 	    (int)mixer->mixseq, (int)mixer->hwseq,
   5104 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5105 
   5106 	mutex_exit(sc->sc_intr_lock);
   5107 }
   5108 
   5109 /*
   5110  * When playing back with MD filter:
   5111  *
   5112  *           track track ...
   5113  *               v v
   5114  *                +  mix (with aint2_t)
   5115  *                |  master volume (with aint2_t)
   5116  *                v
   5117  *    mixsample [::::]                  wide-int 1 block (ring) buffer
   5118  *                |
   5119  *                |  convert aint2_t -> aint_t
   5120  *                v
   5121  *    codecbuf  [....]                  1 block (ring) buffer
   5122  *                |
   5123  *                |  convert to hw format
   5124  *                v
   5125  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5126  *
   5127  * When playing back without MD filter:
   5128  *
   5129  *    mixsample [::::]                  wide-int 1 block (ring) buffer
   5130  *                |
   5131  *                |  convert aint2_t -> aint_t
   5132  *                |  (with byte swap if necessary)
   5133  *                v
   5134  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5135  *
   5136  * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
   5137  * codecbuf:  slinear_NE, internal precision,      HW ch, HW freq.
   5138  * hwbuf:     HW encoding, HW precision,           HW ch, HW freq.
   5139  */
   5140 
   5141 /*
   5142  * Performs track mixing and converts it to hwbuf.
   5143  * Note that this function doesn't transfer hwbuf to hardware.
   5144  * Must be called with sc_intr_lock held.
   5145  */
   5146 static void
   5147 audio_pmixer_process(struct audio_softc *sc)
   5148 {
   5149 	audio_trackmixer_t *mixer;
   5150 	audio_file_t *f;
   5151 	int frame_count;
   5152 	int sample_count;
   5153 	int mixed;
   5154 	int i;
   5155 	aint2_t *m;
   5156 	aint_t *h;
   5157 
   5158 	mixer = sc->sc_pmixer;
   5159 
   5160 	frame_count = mixer->frames_per_block;
   5161 	KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
   5162 	    "auring_get_contig_free()=%d frame_count=%d",
   5163 	    auring_get_contig_free(&mixer->hwbuf), frame_count);
   5164 	sample_count = frame_count * mixer->mixfmt.channels;
   5165 
   5166 	mixer->mixseq++;
   5167 
   5168 	/* Mix all tracks */
   5169 	mixed = 0;
   5170 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   5171 		audio_track_t *track = f->ptrack;
   5172 
   5173 		if (track == NULL)
   5174 			continue;
   5175 
   5176 		if (track->is_pause) {
   5177 			TRACET(4, track, "skip; paused");
   5178 			continue;
   5179 		}
   5180 
   5181 		/* Skip if the track is used by process context. */
   5182 		if (audio_track_lock_tryenter(track) == false) {
   5183 			TRACET(4, track, "skip; in use");
   5184 			continue;
   5185 		}
   5186 
   5187 		/* Emulate mmap'ped track */
   5188 		if (track->mmapped) {
   5189 			auring_push(&track->usrbuf, track->usrbuf_blksize);
   5190 			TRACET(4, track, "mmap; usr=%d/%d/C%d",
   5191 			    track->usrbuf.head,
   5192 			    track->usrbuf.used,
   5193 			    track->usrbuf.capacity);
   5194 		}
   5195 
   5196 		if (track->outbuf.used < mixer->frames_per_block &&
   5197 		    track->usrbuf.used > 0) {
   5198 			TRACET(4, track, "process");
   5199 			audio_track_play(track);
   5200 		}
   5201 
   5202 		if (track->outbuf.used > 0) {
   5203 			mixed = audio_pmixer_mix_track(mixer, track, mixed);
   5204 		} else {
   5205 			TRACET(4, track, "skip; empty");
   5206 		}
   5207 
   5208 		audio_track_lock_exit(track);
   5209 	}
   5210 
   5211 	if (mixed == 0) {
   5212 		/* Silence */
   5213 		memset(mixer->mixsample, 0,
   5214 		    frametobyte(&mixer->mixfmt, frame_count));
   5215 	} else {
   5216 		if (mixed > 1) {
   5217 			/* If there are multiple tracks, do auto gain control */
   5218 			audio_pmixer_agc(mixer, sample_count);
   5219 		}
   5220 
   5221 		/* Apply master volume */
   5222 		if (mixer->volume < 256) {
   5223 			m = mixer->mixsample;
   5224 			for (i = 0; i < sample_count; i++) {
   5225 				*m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
   5226 				m++;
   5227 			}
   5228 
   5229 			/*
   5230 			 * Recover the volume gradually at the pace of
   5231 			 * several times per second.  If it's too fast, you
   5232 			 * can recognize that the volume changes up and down
   5233 			 * quickly and it's not so comfortable.
   5234 			 */
   5235 			mixer->voltimer += mixer->blktime_n;
   5236 			if (mixer->voltimer * 4 >= mixer->blktime_d) {
   5237 				mixer->volume++;
   5238 				mixer->voltimer = 0;
   5239 #if defined(AUDIO_DEBUG_AGC)
   5240 				TRACE(1, "volume recover: %d", mixer->volume);
   5241 #endif
   5242 			}
   5243 		}
   5244 	}
   5245 
   5246 	/*
   5247 	 * The rest is the hardware part.
   5248 	 */
   5249 
   5250 	if (mixer->codec) {
   5251 		h = auring_tailptr_aint(&mixer->codecbuf);
   5252 	} else {
   5253 		h = auring_tailptr_aint(&mixer->hwbuf);
   5254 	}
   5255 
   5256 	m = mixer->mixsample;
   5257 	if (mixer->swap_endian) {
   5258 		for (i = 0; i < sample_count; i++) {
   5259 			*h++ = bswap16(*m++);
   5260 		}
   5261 	} else {
   5262 		for (i = 0; i < sample_count; i++) {
   5263 			*h++ = *m++;
   5264 		}
   5265 	}
   5266 
   5267 	/* Hardware driver's codec */
   5268 	if (mixer->codec) {
   5269 		auring_push(&mixer->codecbuf, frame_count);
   5270 		mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
   5271 		mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
   5272 		mixer->codecarg.count = frame_count;
   5273 		mixer->codec(&mixer->codecarg);
   5274 		auring_take(&mixer->codecbuf, mixer->codecarg.count);
   5275 	}
   5276 
   5277 	auring_push(&mixer->hwbuf, frame_count);
   5278 
   5279 	TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
   5280 	    (int)mixer->mixseq,
   5281 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
   5282 	    (mixed == 0) ? " silent" : "");
   5283 }
   5284 
   5285 /*
   5286  * Do auto gain control.
   5287  * Must be called sc_intr_lock held.
   5288  */
   5289 static void
   5290 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
   5291 {
   5292 	struct audio_softc *sc __unused;
   5293 	aint2_t val;
   5294 	aint2_t maxval;
   5295 	aint2_t minval;
   5296 	aint2_t over_plus;
   5297 	aint2_t over_minus;
   5298 	aint2_t *m;
   5299 	int newvol;
   5300 	int i;
   5301 
   5302 	sc = mixer->sc;
   5303 
   5304 	/* Overflow detection */
   5305 	maxval = AINT_T_MAX;
   5306 	minval = AINT_T_MIN;
   5307 	m = mixer->mixsample;
   5308 	for (i = 0; i < sample_count; i++) {
   5309 		val = *m++;
   5310 		if (val > maxval)
   5311 			maxval = val;
   5312 		else if (val < minval)
   5313 			minval = val;
   5314 	}
   5315 
   5316 	/* Absolute value of overflowed amount */
   5317 	over_plus = maxval - AINT_T_MAX;
   5318 	over_minus = AINT_T_MIN - minval;
   5319 
   5320 	if (over_plus > 0 || over_minus > 0) {
   5321 		if (over_plus > over_minus) {
   5322 			newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
   5323 		} else {
   5324 			newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
   5325 		}
   5326 
   5327 		/*
   5328 		 * Change the volume only if new one is smaller.
   5329 		 * Reset the timer even if the volume isn't changed.
   5330 		 */
   5331 		if (newvol <= mixer->volume) {
   5332 			mixer->volume = newvol;
   5333 			mixer->voltimer = 0;
   5334 #if defined(AUDIO_DEBUG_AGC)
   5335 			TRACE(1, "auto volume adjust: %d", mixer->volume);
   5336 #endif
   5337 		}
   5338 	}
   5339 }
   5340 
   5341 /*
   5342  * Mix one track.
   5343  * 'mixed' specifies the number of tracks mixed so far.
   5344  * It returns the number of tracks mixed.  In other words, it returns
   5345  * mixed + 1 if this track is mixed.
   5346  */
   5347 static int
   5348 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
   5349 	int mixed)
   5350 {
   5351 	int count;
   5352 	int sample_count;
   5353 	int remain;
   5354 	int i;
   5355 	const aint_t *s;
   5356 	aint2_t *d;
   5357 
   5358 	/* XXX TODO: Is this necessary for now? */
   5359 	if (mixer->mixseq < track->seq)
   5360 		return mixed;
   5361 
   5362 	count = auring_get_contig_used(&track->outbuf);
   5363 	count = uimin(count, mixer->frames_per_block);
   5364 
   5365 	s = auring_headptr_aint(&track->outbuf);
   5366 	d = mixer->mixsample;
   5367 
   5368 	/*
   5369 	 * Apply track volume with double-sized integer and perform
   5370 	 * additive synthesis.
   5371 	 *
   5372 	 * XXX If you limit the track volume to 1.0 or less (<= 256),
   5373 	 *     it would be better to do this in the track conversion stage
   5374 	 *     rather than here.  However, if you accept the volume to
   5375 	 *     be greater than 1.0 (> 256), it's better to do it here.
   5376 	 *     Because the operation here is done by double-sized integer.
   5377 	 */
   5378 	sample_count = count * mixer->mixfmt.channels;
   5379 	if (mixed == 0) {
   5380 		/* If this is the first track, assignment can be used. */
   5381 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
   5382 		if (track->volume != 256) {
   5383 			for (i = 0; i < sample_count; i++) {
   5384 				aint2_t v;
   5385 				v = *s++;
   5386 				*d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
   5387 			}
   5388 		} else
   5389 #endif
   5390 		{
   5391 			for (i = 0; i < sample_count; i++) {
   5392 				*d++ = ((aint2_t)*s++);
   5393 			}
   5394 		}
   5395 		/* Fill silence if the first track is not filled. */
   5396 		for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
   5397 			*d++ = 0;
   5398 	} else {
   5399 		/* If this is the second or later, add it. */
   5400 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
   5401 		if (track->volume != 256) {
   5402 			for (i = 0; i < sample_count; i++) {
   5403 				aint2_t v;
   5404 				v = *s++;
   5405 				*d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
   5406 			}
   5407 		} else
   5408 #endif
   5409 		{
   5410 			for (i = 0; i < sample_count; i++) {
   5411 				*d++ += ((aint2_t)*s++);
   5412 			}
   5413 		}
   5414 	}
   5415 
   5416 	auring_take(&track->outbuf, count);
   5417 	/*
   5418 	 * The counters have to align block even if outbuf is less than
   5419 	 * one block. XXX Is this still necessary?
   5420 	 */
   5421 	remain = mixer->frames_per_block - count;
   5422 	if (__predict_false(remain != 0)) {
   5423 		auring_push(&track->outbuf, remain);
   5424 		auring_take(&track->outbuf, remain);
   5425 	}
   5426 
   5427 	/*
   5428 	 * Update track sequence.
   5429 	 * mixseq has previous value yet at this point.
   5430 	 */
   5431 	track->seq = mixer->mixseq + 1;
   5432 
   5433 	return mixed + 1;
   5434 }
   5435 
   5436 /*
   5437  * Output one block from hwbuf to HW.
   5438  * Must be called with sc_intr_lock held.
   5439  */
   5440 static void
   5441 audio_pmixer_output(struct audio_softc *sc)
   5442 {
   5443 	audio_trackmixer_t *mixer;
   5444 	audio_params_t params;
   5445 	void *start;
   5446 	void *end;
   5447 	int blksize;
   5448 	int error;
   5449 
   5450 	mixer = sc->sc_pmixer;
   5451 	TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
   5452 	    sc->sc_pbusy,
   5453 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5454 	KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
   5455 	    "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
   5456 	    mixer->hwbuf.used, mixer->frames_per_block);
   5457 
   5458 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
   5459 
   5460 	if (sc->hw_if->trigger_output) {
   5461 		/* trigger (at once) */
   5462 		if (!sc->sc_pbusy) {
   5463 			start = mixer->hwbuf.mem;
   5464 			end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
   5465 			params = format2_to_params(&mixer->hwbuf.fmt);
   5466 
   5467 			error = sc->hw_if->trigger_output(sc->hw_hdl,
   5468 			    start, end, blksize, audio_pintr, sc, &params);
   5469 			if (error) {
   5470 				device_printf(sc->sc_dev,
   5471 				    "trigger_output failed with %d\n", error);
   5472 				return;
   5473 			}
   5474 		}
   5475 	} else {
   5476 		/* start (everytime) */
   5477 		start = auring_headptr(&mixer->hwbuf);
   5478 
   5479 		error = sc->hw_if->start_output(sc->hw_hdl,
   5480 		    start, blksize, audio_pintr, sc);
   5481 		if (error) {
   5482 			device_printf(sc->sc_dev,
   5483 			    "start_output failed with %d\n", error);
   5484 			return;
   5485 		}
   5486 	}
   5487 }
   5488 
   5489 /*
   5490  * This is an interrupt handler for playback.
   5491  * It is called with sc_intr_lock held.
   5492  *
   5493  * It is usually called from hardware interrupt.  However, note that
   5494  * for some drivers (e.g. uaudio) it is called from software interrupt.
   5495  */
   5496 static void
   5497 audio_pintr(void *arg)
   5498 {
   5499 	struct audio_softc *sc;
   5500 	audio_trackmixer_t *mixer;
   5501 
   5502 	sc = arg;
   5503 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5504 
   5505 	if (sc->sc_dying)
   5506 		return;
   5507 	if (sc->sc_pbusy == false) {
   5508 #if defined(DIAGNOSTIC)
   5509 		device_printf(sc->sc_dev,
   5510 		    "DIAGNOSTIC: %s raised stray interrupt\n",
   5511 		    device_xname(sc->hw_dev));
   5512 #endif
   5513 		return;
   5514 	}
   5515 
   5516 	mixer = sc->sc_pmixer;
   5517 	mixer->hw_complete_counter += mixer->frames_per_block;
   5518 	mixer->hwseq++;
   5519 
   5520 	auring_take(&mixer->hwbuf, mixer->frames_per_block);
   5521 
   5522 	TRACE(4,
   5523 	    "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
   5524 	    mixer->hwseq, mixer->hw_complete_counter,
   5525 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5526 
   5527 #if defined(AUDIO_HW_SINGLE_BUFFER)
   5528 	/*
   5529 	 * Create a new block here and output it immediately.
   5530 	 * It makes a latency lower but needs machine power.
   5531 	 */
   5532 	audio_pmixer_process(sc);
   5533 	audio_pmixer_output(sc);
   5534 #else
   5535 	/*
   5536 	 * It is called when block N output is done.
   5537 	 * Output immediately block N+1 created by the last interrupt.
   5538 	 * And then create block N+2 for the next interrupt.
   5539 	 * This method makes playback robust even on slower machines.
   5540 	 * Instead the latency is increased by one block.
   5541 	 */
   5542 
   5543 	/* At first, output ready block. */
   5544 	if (mixer->hwbuf.used >= mixer->frames_per_block) {
   5545 		audio_pmixer_output(sc);
   5546 	}
   5547 
   5548 	bool later = false;
   5549 
   5550 	if (mixer->hwbuf.used < mixer->frames_per_block) {
   5551 		later = true;
   5552 	}
   5553 
   5554 	/* Then, process next block. */
   5555 	audio_pmixer_process(sc);
   5556 
   5557 	if (later) {
   5558 		audio_pmixer_output(sc);
   5559 	}
   5560 #endif
   5561 
   5562 	/*
   5563 	 * When this interrupt is the real hardware interrupt, disabling
   5564 	 * preemption here is not necessary.  But some drivers (e.g. uaudio)
   5565 	 * emulate it by software interrupt, so kpreempt_disable is necessary.
   5566 	 */
   5567 	kpreempt_disable();
   5568 	softint_schedule(mixer->sih);
   5569 	kpreempt_enable();
   5570 }
   5571 
   5572 /*
   5573  * Starts record mixer.
   5574  * Must be called only if sc_rbusy is false.
   5575  * Must be called with sc_lock && sc_exlock held.
   5576  * Must not be called from the interrupt context.
   5577  */
   5578 static void
   5579 audio_rmixer_start(struct audio_softc *sc)
   5580 {
   5581 
   5582 	KASSERT(mutex_owned(sc->sc_lock));
   5583 	KASSERT(sc->sc_exlock);
   5584 	KASSERT(sc->sc_rbusy == false);
   5585 
   5586 	mutex_enter(sc->sc_intr_lock);
   5587 
   5588 	TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
   5589 	audio_rmixer_input(sc);
   5590 	sc->sc_rbusy = true;
   5591 	TRACE(3, "end");
   5592 
   5593 	mutex_exit(sc->sc_intr_lock);
   5594 }
   5595 
   5596 /*
   5597  * When recording with MD filter:
   5598  *
   5599  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5600  *                |
   5601  *                | convert from hw format
   5602  *                v
   5603  *    codecbuf  [....]                  1 block (ring) buffer
   5604  *               |  |
   5605  *               v  v
   5606  *            track track ...
   5607  *
   5608  * When recording without MD filter:
   5609  *
   5610  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5611  *               |  |
   5612  *               v  v
   5613  *            track track ...
   5614  *
   5615  * hwbuf:     HW encoding, HW precision, HW ch, HW freq.
   5616  * codecbuf:  slinear_NE, internal precision, HW ch, HW freq.
   5617  */
   5618 
   5619 /*
   5620  * Distribute a recorded block to all recording tracks.
   5621  */
   5622 static void
   5623 audio_rmixer_process(struct audio_softc *sc)
   5624 {
   5625 	audio_trackmixer_t *mixer;
   5626 	audio_ring_t *mixersrc;
   5627 	audio_file_t *f;
   5628 	aint_t *p;
   5629 	int count;
   5630 	int bytes;
   5631 	int i;
   5632 
   5633 	mixer = sc->sc_rmixer;
   5634 
   5635 	/*
   5636 	 * count is the number of frames to be retrieved this time.
   5637 	 * count should be one block.
   5638 	 */
   5639 	count = auring_get_contig_used(&mixer->hwbuf);
   5640 	count = uimin(count, mixer->frames_per_block);
   5641 	if (count <= 0) {
   5642 		TRACE(4, "count %d: too short", count);
   5643 		return;
   5644 	}
   5645 	bytes = frametobyte(&mixer->track_fmt, count);
   5646 
   5647 	/* Hardware driver's codec */
   5648 	if (mixer->codec) {
   5649 		mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
   5650 		mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
   5651 		mixer->codecarg.count = count;
   5652 		mixer->codec(&mixer->codecarg);
   5653 		auring_take(&mixer->hwbuf, mixer->codecarg.count);
   5654 		auring_push(&mixer->codecbuf, mixer->codecarg.count);
   5655 		mixersrc = &mixer->codecbuf;
   5656 	} else {
   5657 		mixersrc = &mixer->hwbuf;
   5658 	}
   5659 
   5660 	if (mixer->swap_endian) {
   5661 		/* inplace conversion */
   5662 		p = auring_headptr_aint(mixersrc);
   5663 		for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
   5664 			*p = bswap16(*p);
   5665 		}
   5666 	}
   5667 
   5668 	/* Distribute to all tracks. */
   5669 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   5670 		audio_track_t *track = f->rtrack;
   5671 		audio_ring_t *input;
   5672 
   5673 		if (track == NULL)
   5674 			continue;
   5675 
   5676 		if (track->is_pause) {
   5677 			TRACET(4, track, "skip; paused");
   5678 			continue;
   5679 		}
   5680 
   5681 		if (audio_track_lock_tryenter(track) == false) {
   5682 			TRACET(4, track, "skip; in use");
   5683 			continue;
   5684 		}
   5685 
   5686 		/* If the track buffer is full, discard the oldest one? */
   5687 		input = track->input;
   5688 		if (input->capacity - input->used < mixer->frames_per_block) {
   5689 			int drops = mixer->frames_per_block -
   5690 			    (input->capacity - input->used);
   5691 			track->dropframes += drops;
   5692 			TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
   5693 			    drops,
   5694 			    input->head, input->used, input->capacity);
   5695 			auring_take(input, drops);
   5696 		}
   5697 		KASSERTMSG(input->used % mixer->frames_per_block == 0,
   5698 		    "input->used=%d mixer->frames_per_block=%d",
   5699 		    input->used, mixer->frames_per_block);
   5700 
   5701 		memcpy(auring_tailptr_aint(input),
   5702 		    auring_headptr_aint(mixersrc),
   5703 		    bytes);
   5704 		auring_push(input, count);
   5705 
   5706 		/* XXX sequence counter? */
   5707 
   5708 		audio_track_lock_exit(track);
   5709 	}
   5710 
   5711 	auring_take(mixersrc, count);
   5712 }
   5713 
   5714 /*
   5715  * Input one block from HW to hwbuf.
   5716  * Must be called with sc_intr_lock held.
   5717  */
   5718 static void
   5719 audio_rmixer_input(struct audio_softc *sc)
   5720 {
   5721 	audio_trackmixer_t *mixer;
   5722 	audio_params_t params;
   5723 	void *start;
   5724 	void *end;
   5725 	int blksize;
   5726 	int error;
   5727 
   5728 	mixer = sc->sc_rmixer;
   5729 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
   5730 
   5731 	if (sc->hw_if->trigger_input) {
   5732 		/* trigger (at once) */
   5733 		if (!sc->sc_rbusy) {
   5734 			start = mixer->hwbuf.mem;
   5735 			end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
   5736 			params = format2_to_params(&mixer->hwbuf.fmt);
   5737 
   5738 			error = sc->hw_if->trigger_input(sc->hw_hdl,
   5739 			    start, end, blksize, audio_rintr, sc, &params);
   5740 			if (error) {
   5741 				device_printf(sc->sc_dev,
   5742 				    "trigger_input failed with %d\n", error);
   5743 				return;
   5744 			}
   5745 		}
   5746 	} else {
   5747 		/* start (everytime) */
   5748 		start = auring_tailptr(&mixer->hwbuf);
   5749 
   5750 		error = sc->hw_if->start_input(sc->hw_hdl,
   5751 		    start, blksize, audio_rintr, sc);
   5752 		if (error) {
   5753 			device_printf(sc->sc_dev,
   5754 			    "start_input failed with %d\n", error);
   5755 			return;
   5756 		}
   5757 	}
   5758 }
   5759 
   5760 /*
   5761  * This is an interrupt handler for recording.
   5762  * It is called with sc_intr_lock.
   5763  *
   5764  * It is usually called from hardware interrupt.  However, note that
   5765  * for some drivers (e.g. uaudio) it is called from software interrupt.
   5766  */
   5767 static void
   5768 audio_rintr(void *arg)
   5769 {
   5770 	struct audio_softc *sc;
   5771 	audio_trackmixer_t *mixer;
   5772 
   5773 	sc = arg;
   5774 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5775 
   5776 	if (sc->sc_dying)
   5777 		return;
   5778 	if (sc->sc_rbusy == false) {
   5779 #if defined(DIAGNOSTIC)
   5780 		device_printf(sc->sc_dev,
   5781 		    "DIAGNOSTIC: %s raised stray interrupt\n",
   5782 		    device_xname(sc->hw_dev));
   5783 #endif
   5784 		return;
   5785 	}
   5786 
   5787 	mixer = sc->sc_rmixer;
   5788 	mixer->hw_complete_counter += mixer->frames_per_block;
   5789 	mixer->hwseq++;
   5790 
   5791 	auring_push(&mixer->hwbuf, mixer->frames_per_block);
   5792 
   5793 	TRACE(4,
   5794 	    "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
   5795 	    mixer->hwseq, mixer->hw_complete_counter,
   5796 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5797 
   5798 	/* Distrubute recorded block */
   5799 	audio_rmixer_process(sc);
   5800 
   5801 	/* Request next block */
   5802 	audio_rmixer_input(sc);
   5803 
   5804 	/*
   5805 	 * When this interrupt is the real hardware interrupt, disabling
   5806 	 * preemption here is not necessary.  But some drivers (e.g. uaudio)
   5807 	 * emulate it by software interrupt, so kpreempt_disable is necessary.
   5808 	 */
   5809 	kpreempt_disable();
   5810 	softint_schedule(mixer->sih);
   5811 	kpreempt_enable();
   5812 }
   5813 
   5814 /*
   5815  * Halts playback mixer.
   5816  * This function also clears related parameters, so call this function
   5817  * instead of calling halt_output directly.
   5818  * Must be called only if sc_pbusy is true.
   5819  * Must be called with sc_lock && sc_exlock held.
   5820  */
   5821 static int
   5822 audio_pmixer_halt(struct audio_softc *sc)
   5823 {
   5824 	int error;
   5825 
   5826 	TRACE(2, "");
   5827 	KASSERT(mutex_owned(sc->sc_lock));
   5828 	KASSERT(sc->sc_exlock);
   5829 
   5830 	mutex_enter(sc->sc_intr_lock);
   5831 	error = sc->hw_if->halt_output(sc->hw_hdl);
   5832 
   5833 	/* Halts anyway even if some error has occurred. */
   5834 	sc->sc_pbusy = false;
   5835 	sc->sc_pmixer->hwbuf.head = 0;
   5836 	sc->sc_pmixer->hwbuf.used = 0;
   5837 	sc->sc_pmixer->mixseq = 0;
   5838 	sc->sc_pmixer->hwseq = 0;
   5839 	mutex_exit(sc->sc_intr_lock);
   5840 
   5841 	return error;
   5842 }
   5843 
   5844 /*
   5845  * Halts recording mixer.
   5846  * This function also clears related parameters, so call this function
   5847  * instead of calling halt_input directly.
   5848  * Must be called only if sc_rbusy is true.
   5849  * Must be called with sc_lock && sc_exlock held.
   5850  */
   5851 static int
   5852 audio_rmixer_halt(struct audio_softc *sc)
   5853 {
   5854 	int error;
   5855 
   5856 	TRACE(2, "");
   5857 	KASSERT(mutex_owned(sc->sc_lock));
   5858 	KASSERT(sc->sc_exlock);
   5859 
   5860 	mutex_enter(sc->sc_intr_lock);
   5861 	error = sc->hw_if->halt_input(sc->hw_hdl);
   5862 
   5863 	/* Halts anyway even if some error has occurred. */
   5864 	sc->sc_rbusy = false;
   5865 	sc->sc_rmixer->hwbuf.head = 0;
   5866 	sc->sc_rmixer->hwbuf.used = 0;
   5867 	sc->sc_rmixer->mixseq = 0;
   5868 	sc->sc_rmixer->hwseq = 0;
   5869 	mutex_exit(sc->sc_intr_lock);
   5870 
   5871 	return error;
   5872 }
   5873 
   5874 /*
   5875  * Flush this track.
   5876  * Halts all operations, clears all buffers, reset error counters.
   5877  * XXX I'm not sure...
   5878  */
   5879 static void
   5880 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
   5881 {
   5882 
   5883 	KASSERT(track);
   5884 	TRACET(3, track, "clear");
   5885 
   5886 	audio_track_lock_enter(track);
   5887 
   5888 	track->usrbuf.used = 0;
   5889 	/* Clear all internal parameters. */
   5890 	if (track->codec.filter) {
   5891 		track->codec.srcbuf.used = 0;
   5892 		track->codec.srcbuf.head = 0;
   5893 	}
   5894 	if (track->chvol.filter) {
   5895 		track->chvol.srcbuf.used = 0;
   5896 		track->chvol.srcbuf.head = 0;
   5897 	}
   5898 	if (track->chmix.filter) {
   5899 		track->chmix.srcbuf.used = 0;
   5900 		track->chmix.srcbuf.head = 0;
   5901 	}
   5902 	if (track->freq.filter) {
   5903 		track->freq.srcbuf.used = 0;
   5904 		track->freq.srcbuf.head = 0;
   5905 		if (track->freq_step < 65536)
   5906 			track->freq_current = 65536;
   5907 		else
   5908 			track->freq_current = 0;
   5909 		memset(track->freq_prev, 0, sizeof(track->freq_prev));
   5910 		memset(track->freq_curr, 0, sizeof(track->freq_curr));
   5911 	}
   5912 	/* Clear buffer, then operation halts naturally. */
   5913 	track->outbuf.used = 0;
   5914 
   5915 	/* Clear counters. */
   5916 	track->dropframes = 0;
   5917 
   5918 	audio_track_lock_exit(track);
   5919 }
   5920 
   5921 /*
   5922  * Drain the track.
   5923  * track must be present and for playback.
   5924  * If successful, it returns 0.  Otherwise returns errno.
   5925  * Must be called with sc_lock held.
   5926  */
   5927 static int
   5928 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
   5929 {
   5930 	audio_trackmixer_t *mixer;
   5931 	int done;
   5932 	int error;
   5933 
   5934 	KASSERT(track);
   5935 	TRACET(3, track, "start");
   5936 	mixer = track->mixer;
   5937 	KASSERT(mutex_owned(sc->sc_lock));
   5938 
   5939 	/* Ignore them if pause. */
   5940 	if (track->is_pause) {
   5941 		TRACET(3, track, "pause -> clear");
   5942 		track->pstate = AUDIO_STATE_CLEAR;
   5943 	}
   5944 	/* Terminate early here if there is no data in the track. */
   5945 	if (track->pstate == AUDIO_STATE_CLEAR) {
   5946 		TRACET(3, track, "no need to drain");
   5947 		return 0;
   5948 	}
   5949 	track->pstate = AUDIO_STATE_DRAINING;
   5950 
   5951 	for (;;) {
   5952 		/* I want to display it before condition evaluation. */
   5953 		TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
   5954 		    (int)curproc->p_pid, (int)curlwp->l_lid,
   5955 		    (int)track->seq, (int)mixer->hwseq,
   5956 		    track->outbuf.head, track->outbuf.used,
   5957 		    track->outbuf.capacity);
   5958 
   5959 		/* Condition to terminate */
   5960 		audio_track_lock_enter(track);
   5961 		done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
   5962 		    track->outbuf.used == 0 &&
   5963 		    track->seq <= mixer->hwseq);
   5964 		audio_track_lock_exit(track);
   5965 		if (done)
   5966 			break;
   5967 
   5968 		TRACET(3, track, "sleep");
   5969 		error = audio_track_waitio(sc, track);
   5970 		if (error)
   5971 			return error;
   5972 
   5973 		/* XXX call audio_track_play here ? */
   5974 	}
   5975 
   5976 	track->pstate = AUDIO_STATE_CLEAR;
   5977 	TRACET(3, track, "done trk_inp=%d trk_out=%d",
   5978 		(int)track->inputcounter, (int)track->outputcounter);
   5979 	return 0;
   5980 }
   5981 
   5982 /*
   5983  * Send signal to process.
   5984  * This is intended to be called only from audio_softintr_{rd,wr}.
   5985  * Must be called without sc_intr_lock held.
   5986  */
   5987 static inline void
   5988 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
   5989 {
   5990 	proc_t *p;
   5991 
   5992 	KASSERT(pid != 0);
   5993 
   5994 	/*
   5995 	 * psignal() must be called without spin lock held.
   5996 	 */
   5997 
   5998 	mutex_enter(&proc_lock);
   5999 	p = proc_find(pid);
   6000 	if (p)
   6001 		psignal(p, signum);
   6002 	mutex_exit(&proc_lock);
   6003 }
   6004 
   6005 /*
   6006  * This is software interrupt handler for record.
   6007  * It is called from recording hardware interrupt everytime.
   6008  * It does:
   6009  * - Deliver SIGIO for all async processes.
   6010  * - Notify to audio_read() that data has arrived.
   6011  * - selnotify() for select/poll-ing processes.
   6012  */
   6013 /*
   6014  * XXX If a process issues FIOASYNC between hardware interrupt and
   6015  *     software interrupt, (stray) SIGIO will be sent to the process
   6016  *     despite the fact that it has not receive recorded data yet.
   6017  */
   6018 static void
   6019 audio_softintr_rd(void *cookie)
   6020 {
   6021 	struct audio_softc *sc = cookie;
   6022 	audio_file_t *f;
   6023 	pid_t pid;
   6024 
   6025 	mutex_enter(sc->sc_lock);
   6026 
   6027 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   6028 		audio_track_t *track = f->rtrack;
   6029 
   6030 		if (track == NULL)
   6031 			continue;
   6032 
   6033 		TRACET(4, track, "broadcast; inp=%d/%d/%d",
   6034 		    track->input->head,
   6035 		    track->input->used,
   6036 		    track->input->capacity);
   6037 
   6038 		pid = f->async_audio;
   6039 		if (pid != 0) {
   6040 			TRACEF(4, f, "sending SIGIO %d", pid);
   6041 			audio_psignal(sc, pid, SIGIO);
   6042 		}
   6043 	}
   6044 
   6045 	/* Notify that data has arrived. */
   6046 	selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
   6047 	KNOTE(&sc->sc_rsel.sel_klist, 0);
   6048 	cv_broadcast(&sc->sc_rmixer->outcv);
   6049 
   6050 	mutex_exit(sc->sc_lock);
   6051 }
   6052 
   6053 /*
   6054  * This is software interrupt handler for playback.
   6055  * It is called from playback hardware interrupt everytime.
   6056  * It does:
   6057  * - Deliver SIGIO for all async and writable (used < lowat) processes.
   6058  * - Notify to audio_write() that outbuf block available.
   6059  * - selnotify() for select/poll-ing processes if there are any writable
   6060  *   (used < lowat) processes.  Checking each descriptor will be done by
   6061  *   filt_audiowrite_event().
   6062  */
   6063 static void
   6064 audio_softintr_wr(void *cookie)
   6065 {
   6066 	struct audio_softc *sc = cookie;
   6067 	audio_file_t *f;
   6068 	bool found;
   6069 	pid_t pid;
   6070 
   6071 	TRACE(4, "called");
   6072 	found = false;
   6073 
   6074 	mutex_enter(sc->sc_lock);
   6075 
   6076 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   6077 		audio_track_t *track = f->ptrack;
   6078 
   6079 		if (track == NULL)
   6080 			continue;
   6081 
   6082 		TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
   6083 		    (int)track->seq,
   6084 		    track->outbuf.head,
   6085 		    track->outbuf.used,
   6086 		    track->outbuf.capacity);
   6087 
   6088 		/*
   6089 		 * Send a signal if the process is async mode and
   6090 		 * used is lower than lowat.
   6091 		 */
   6092 		if (track->usrbuf.used <= track->usrbuf_usedlow &&
   6093 		    !track->is_pause) {
   6094 			/* For selnotify */
   6095 			found = true;
   6096 			/* For SIGIO */
   6097 			pid = f->async_audio;
   6098 			if (pid != 0) {
   6099 				TRACEF(4, f, "sending SIGIO %d", pid);
   6100 				audio_psignal(sc, pid, SIGIO);
   6101 			}
   6102 		}
   6103 	}
   6104 
   6105 	/*
   6106 	 * Notify for select/poll when someone become writable.
   6107 	 * It needs sc_lock (and not sc_intr_lock).
   6108 	 */
   6109 	if (found) {
   6110 		TRACE(4, "selnotify");
   6111 		selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
   6112 		KNOTE(&sc->sc_wsel.sel_klist, 0);
   6113 	}
   6114 
   6115 	/* Notify to audio_write() that outbuf available. */
   6116 	cv_broadcast(&sc->sc_pmixer->outcv);
   6117 
   6118 	mutex_exit(sc->sc_lock);
   6119 }
   6120 
   6121 /*
   6122  * Check (and convert) the format *p came from userland.
   6123  * If successful, it writes back the converted format to *p if necessary
   6124  * and returns 0.  Otherwise returns errno (*p may change even this case).
   6125  */
   6126 static int
   6127 audio_check_params(audio_format2_t *p)
   6128 {
   6129 
   6130 	/*
   6131 	 * Convert obsolete AUDIO_ENCODING_PCM encodings.
   6132 	 *
   6133 	 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
   6134 	 * So, it's always signed, as in SunOS.
   6135 	 *
   6136 	 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
   6137 	 * So, it's always unsigned, as in SunOS.
   6138 	 */
   6139 	if (p->encoding == AUDIO_ENCODING_PCM16) {
   6140 		p->encoding = AUDIO_ENCODING_SLINEAR;
   6141 	} else if (p->encoding == AUDIO_ENCODING_PCM8) {
   6142 		if (p->precision == 8)
   6143 			p->encoding = AUDIO_ENCODING_ULINEAR;
   6144 		else
   6145 			return EINVAL;
   6146 	}
   6147 
   6148 	/*
   6149 	 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
   6150 	 * suffix.
   6151 	 */
   6152 	if (p->encoding == AUDIO_ENCODING_SLINEAR)
   6153 		p->encoding = AUDIO_ENCODING_SLINEAR_NE;
   6154 	if (p->encoding == AUDIO_ENCODING_ULINEAR)
   6155 		p->encoding = AUDIO_ENCODING_ULINEAR_NE;
   6156 
   6157 	switch (p->encoding) {
   6158 	case AUDIO_ENCODING_ULAW:
   6159 	case AUDIO_ENCODING_ALAW:
   6160 		if (p->precision != 8)
   6161 			return EINVAL;
   6162 		break;
   6163 	case AUDIO_ENCODING_ADPCM:
   6164 		if (p->precision != 4 && p->precision != 8)
   6165 			return EINVAL;
   6166 		break;
   6167 	case AUDIO_ENCODING_SLINEAR_LE:
   6168 	case AUDIO_ENCODING_SLINEAR_BE:
   6169 	case AUDIO_ENCODING_ULINEAR_LE:
   6170 	case AUDIO_ENCODING_ULINEAR_BE:
   6171 		if (p->precision !=  8 && p->precision != 16 &&
   6172 		    p->precision != 24 && p->precision != 32)
   6173 			return EINVAL;
   6174 
   6175 		/* 8bit format does not have endianness. */
   6176 		if (p->precision == 8) {
   6177 			if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
   6178 				p->encoding = AUDIO_ENCODING_SLINEAR_NE;
   6179 			if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
   6180 				p->encoding = AUDIO_ENCODING_ULINEAR_NE;
   6181 		}
   6182 
   6183 		if (p->precision > p->stride)
   6184 			return EINVAL;
   6185 		break;
   6186 	case AUDIO_ENCODING_MPEG_L1_STREAM:
   6187 	case AUDIO_ENCODING_MPEG_L1_PACKETS:
   6188 	case AUDIO_ENCODING_MPEG_L1_SYSTEM:
   6189 	case AUDIO_ENCODING_MPEG_L2_STREAM:
   6190 	case AUDIO_ENCODING_MPEG_L2_PACKETS:
   6191 	case AUDIO_ENCODING_MPEG_L2_SYSTEM:
   6192 	case AUDIO_ENCODING_AC3:
   6193 		break;
   6194 	default:
   6195 		return EINVAL;
   6196 	}
   6197 
   6198 	/* sanity check # of channels*/
   6199 	if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
   6200 		return EINVAL;
   6201 
   6202 	return 0;
   6203 }
   6204 
   6205 /*
   6206  * Initialize playback and record mixers.
   6207  * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
   6208  * phwfmt and rhwfmt indicate the hardware format.  pfil and rfil indicate
   6209  * the filter registration information.  These four must not be NULL.
   6210  * If successful returns 0.  Otherwise returns errno.
   6211  * Must be called with sc_exlock held and without sc_lock held.
   6212  * Must not be called if there are any tracks.
   6213  * Caller should check that the initialization succeed by whether
   6214  * sc_[pr]mixer is not NULL.
   6215  */
   6216 static int
   6217 audio_mixers_init(struct audio_softc *sc, int mode,
   6218 	const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
   6219 	const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
   6220 {
   6221 	int error;
   6222 
   6223 	KASSERT(phwfmt != NULL);
   6224 	KASSERT(rhwfmt != NULL);
   6225 	KASSERT(pfil != NULL);
   6226 	KASSERT(rfil != NULL);
   6227 	KASSERT(sc->sc_exlock);
   6228 
   6229 	if ((mode & AUMODE_PLAY)) {
   6230 		if (sc->sc_pmixer == NULL) {
   6231 			sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
   6232 			    KM_SLEEP);
   6233 		} else {
   6234 			/* destroy() doesn't free memory. */
   6235 			audio_mixer_destroy(sc, sc->sc_pmixer);
   6236 			memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
   6237 		}
   6238 		error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
   6239 		if (error) {
   6240 			device_printf(sc->sc_dev,
   6241 			    "configuring playback mode failed with %d\n",
   6242 			    error);
   6243 			kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
   6244 			sc->sc_pmixer = NULL;
   6245 			return error;
   6246 		}
   6247 	}
   6248 	if ((mode & AUMODE_RECORD)) {
   6249 		if (sc->sc_rmixer == NULL) {
   6250 			sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
   6251 			    KM_SLEEP);
   6252 		} else {
   6253 			/* destroy() doesn't free memory. */
   6254 			audio_mixer_destroy(sc, sc->sc_rmixer);
   6255 			memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
   6256 		}
   6257 		error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
   6258 		if (error) {
   6259 			device_printf(sc->sc_dev,
   6260 			    "configuring record mode failed with %d\n",
   6261 			    error);
   6262 			kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
   6263 			sc->sc_rmixer = NULL;
   6264 			return error;
   6265 		}
   6266 	}
   6267 
   6268 	return 0;
   6269 }
   6270 
   6271 /*
   6272  * Select a frequency.
   6273  * Prioritize 48kHz and 44.1kHz.  Otherwise choose the highest one.
   6274  * XXX Better algorithm?
   6275  */
   6276 static int
   6277 audio_select_freq(const struct audio_format *fmt)
   6278 {
   6279 	int freq;
   6280 	int high;
   6281 	int low;
   6282 	int j;
   6283 
   6284 	if (fmt->frequency_type == 0) {
   6285 		low = fmt->frequency[0];
   6286 		high = fmt->frequency[1];
   6287 		freq = 48000;
   6288 		if (low <= freq && freq <= high) {
   6289 			return freq;
   6290 		}
   6291 		freq = 44100;
   6292 		if (low <= freq && freq <= high) {
   6293 			return freq;
   6294 		}
   6295 		return high;
   6296 	} else {
   6297 		for (j = 0; j < fmt->frequency_type; j++) {
   6298 			if (fmt->frequency[j] == 48000) {
   6299 				return fmt->frequency[j];
   6300 			}
   6301 		}
   6302 		high = 0;
   6303 		for (j = 0; j < fmt->frequency_type; j++) {
   6304 			if (fmt->frequency[j] == 44100) {
   6305 				return fmt->frequency[j];
   6306 			}
   6307 			if (fmt->frequency[j] > high) {
   6308 				high = fmt->frequency[j];
   6309 			}
   6310 		}
   6311 		return high;
   6312 	}
   6313 }
   6314 
   6315 /*
   6316  * Choose the most preferred hardware format.
   6317  * If successful, it will store the chosen format into *cand and return 0.
   6318  * Otherwise, return errno.
   6319  * Must be called without sc_lock held.
   6320  */
   6321 static int
   6322 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
   6323 {
   6324 	audio_format_query_t query;
   6325 	int cand_score;
   6326 	int score;
   6327 	int i;
   6328 	int error;
   6329 
   6330 	/*
   6331 	 * Score each formats and choose the highest one.
   6332 	 *
   6333 	 *                 +---- priority(0-3)
   6334 	 *                 |+--- encoding/precision
   6335 	 *                 ||+-- channels
   6336 	 * score = 0x000000PEC
   6337 	 */
   6338 
   6339 	cand_score = 0;
   6340 	for (i = 0; ; i++) {
   6341 		memset(&query, 0, sizeof(query));
   6342 		query.index = i;
   6343 
   6344 		mutex_enter(sc->sc_lock);
   6345 		error = sc->hw_if->query_format(sc->hw_hdl, &query);
   6346 		mutex_exit(sc->sc_lock);
   6347 		if (error == EINVAL)
   6348 			break;
   6349 		if (error)
   6350 			return error;
   6351 
   6352 #if defined(AUDIO_DEBUG)
   6353 		DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
   6354 		    (query.fmt.mode & AUMODE_PLAY)   ? 'P' : '-',
   6355 		    (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
   6356 		    query.fmt.priority,
   6357 		    audio_encoding_name(query.fmt.encoding),
   6358 		    query.fmt.validbits,
   6359 		    query.fmt.precision,
   6360 		    query.fmt.channels);
   6361 		if (query.fmt.frequency_type == 0) {
   6362 			DPRINTF(1, "{%d-%d",
   6363 			    query.fmt.frequency[0], query.fmt.frequency[1]);
   6364 		} else {
   6365 			int j;
   6366 			for (j = 0; j < query.fmt.frequency_type; j++) {
   6367 				DPRINTF(1, "%c%d",
   6368 				    (j == 0) ? '{' : ',',
   6369 				    query.fmt.frequency[j]);
   6370 			}
   6371 		}
   6372 		DPRINTF(1, "}\n");
   6373 #endif
   6374 
   6375 		if ((query.fmt.mode & mode) == 0) {
   6376 			DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
   6377 			    mode);
   6378 			continue;
   6379 		}
   6380 
   6381 		if (query.fmt.priority < 0) {
   6382 			DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
   6383 			continue;
   6384 		}
   6385 
   6386 		/* Score */
   6387 		score = (query.fmt.priority & 3) * 0x100;
   6388 		if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
   6389 		    query.fmt.validbits == AUDIO_INTERNAL_BITS &&
   6390 		    query.fmt.precision == AUDIO_INTERNAL_BITS) {
   6391 			score += 0x20;
   6392 		} else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
   6393 		    query.fmt.validbits == AUDIO_INTERNAL_BITS &&
   6394 		    query.fmt.precision == AUDIO_INTERNAL_BITS) {
   6395 			score += 0x10;
   6396 		}
   6397 		score += query.fmt.channels;
   6398 
   6399 		if (score < cand_score) {
   6400 			DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
   6401 			    score, cand_score);
   6402 			continue;
   6403 		}
   6404 
   6405 		/* Update candidate */
   6406 		cand_score = score;
   6407 		cand->encoding    = query.fmt.encoding;
   6408 		cand->precision   = query.fmt.validbits;
   6409 		cand->stride      = query.fmt.precision;
   6410 		cand->channels    = query.fmt.channels;
   6411 		cand->sample_rate = audio_select_freq(&query.fmt);
   6412 		DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
   6413 		    " pri=%d %s,%d/%d,%dch,%dHz\n", i,
   6414 		    cand_score, query.fmt.priority,
   6415 		    audio_encoding_name(query.fmt.encoding),
   6416 		    cand->precision, cand->stride,
   6417 		    cand->channels, cand->sample_rate);
   6418 	}
   6419 
   6420 	if (cand_score == 0) {
   6421 		DPRINTF(1, "%s no fmt\n", __func__);
   6422 		return ENXIO;
   6423 	}
   6424 	DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
   6425 	    audio_encoding_name(cand->encoding),
   6426 	    cand->precision, cand->stride, cand->channels, cand->sample_rate);
   6427 	return 0;
   6428 }
   6429 
   6430 /*
   6431  * Validate fmt with query_format.
   6432  * If fmt is included in the result of query_format, returns 0.
   6433  * Otherwise returns EINVAL.
   6434  * Must be called without sc_lock held.
   6435  */
   6436 static int
   6437 audio_hw_validate_format(struct audio_softc *sc, int mode,
   6438 	const audio_format2_t *fmt)
   6439 {
   6440 	audio_format_query_t query;
   6441 	struct audio_format *q;
   6442 	int index;
   6443 	int error;
   6444 	int j;
   6445 
   6446 	for (index = 0; ; index++) {
   6447 		query.index = index;
   6448 		mutex_enter(sc->sc_lock);
   6449 		error = sc->hw_if->query_format(sc->hw_hdl, &query);
   6450 		mutex_exit(sc->sc_lock);
   6451 		if (error == EINVAL)
   6452 			break;
   6453 		if (error)
   6454 			return error;
   6455 
   6456 		q = &query.fmt;
   6457 		/*
   6458 		 * Note that fmt is audio_format2_t (precision/stride) but
   6459 		 * q is audio_format_t (validbits/precision).
   6460 		 */
   6461 		if ((q->mode & mode) == 0) {
   6462 			continue;
   6463 		}
   6464 		if (fmt->encoding != q->encoding) {
   6465 			continue;
   6466 		}
   6467 		if (fmt->precision != q->validbits) {
   6468 			continue;
   6469 		}
   6470 		if (fmt->stride != q->precision) {
   6471 			continue;
   6472 		}
   6473 		if (fmt->channels != q->channels) {
   6474 			continue;
   6475 		}
   6476 		if (q->frequency_type == 0) {
   6477 			if (fmt->sample_rate < q->frequency[0] ||
   6478 			    fmt->sample_rate > q->frequency[1]) {
   6479 				continue;
   6480 			}
   6481 		} else {
   6482 			for (j = 0; j < q->frequency_type; j++) {
   6483 				if (fmt->sample_rate == q->frequency[j])
   6484 					break;
   6485 			}
   6486 			if (j == query.fmt.frequency_type) {
   6487 				continue;
   6488 			}
   6489 		}
   6490 
   6491 		/* Matched. */
   6492 		return 0;
   6493 	}
   6494 
   6495 	return EINVAL;
   6496 }
   6497 
   6498 /*
   6499  * Set track mixer's format depending on ai->mode.
   6500  * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
   6501  * with ai.play.*.
   6502  * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
   6503  * with ai.record.*.
   6504  * All other fields in ai are ignored.
   6505  * If successful returns 0.  Otherwise returns errno.
   6506  * This function does not roll back even if it fails.
   6507  * Must be called with sc_exlock held and without sc_lock held.
   6508  */
   6509 static int
   6510 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
   6511 {
   6512 	audio_format2_t phwfmt;
   6513 	audio_format2_t rhwfmt;
   6514 	audio_filter_reg_t pfil;
   6515 	audio_filter_reg_t rfil;
   6516 	int mode;
   6517 	int error;
   6518 
   6519 	KASSERT(sc->sc_exlock);
   6520 
   6521 	/*
   6522 	 * Even when setting either one of playback and recording,
   6523 	 * both must be halted.
   6524 	 */
   6525 	if (sc->sc_popens + sc->sc_ropens > 0)
   6526 		return EBUSY;
   6527 
   6528 	if (!SPECIFIED(ai->mode) || ai->mode == 0)
   6529 		return ENOTTY;
   6530 
   6531 	mode = ai->mode;
   6532 	if ((mode & AUMODE_PLAY)) {
   6533 		phwfmt.encoding    = ai->play.encoding;
   6534 		phwfmt.precision   = ai->play.precision;
   6535 		phwfmt.stride      = ai->play.precision;
   6536 		phwfmt.channels    = ai->play.channels;
   6537 		phwfmt.sample_rate = ai->play.sample_rate;
   6538 	}
   6539 	if ((mode & AUMODE_RECORD)) {
   6540 		rhwfmt.encoding    = ai->record.encoding;
   6541 		rhwfmt.precision   = ai->record.precision;
   6542 		rhwfmt.stride      = ai->record.precision;
   6543 		rhwfmt.channels    = ai->record.channels;
   6544 		rhwfmt.sample_rate = ai->record.sample_rate;
   6545 	}
   6546 
   6547 	/* On non-independent devices, use the same format for both. */
   6548 	if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
   6549 		if (mode == AUMODE_RECORD) {
   6550 			phwfmt = rhwfmt;
   6551 		} else {
   6552 			rhwfmt = phwfmt;
   6553 		}
   6554 		mode = AUMODE_PLAY | AUMODE_RECORD;
   6555 	}
   6556 
   6557 	/* Then, unset the direction not exist on the hardware. */
   6558 	if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
   6559 		mode &= ~AUMODE_PLAY;
   6560 	if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
   6561 		mode &= ~AUMODE_RECORD;
   6562 
   6563 	/* debug */
   6564 	if ((mode & AUMODE_PLAY)) {
   6565 		TRACE(1, "play=%s/%d/%d/%dch/%dHz",
   6566 		    audio_encoding_name(phwfmt.encoding),
   6567 		    phwfmt.precision,
   6568 		    phwfmt.stride,
   6569 		    phwfmt.channels,
   6570 		    phwfmt.sample_rate);
   6571 	}
   6572 	if ((mode & AUMODE_RECORD)) {
   6573 		TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
   6574 		    audio_encoding_name(rhwfmt.encoding),
   6575 		    rhwfmt.precision,
   6576 		    rhwfmt.stride,
   6577 		    rhwfmt.channels,
   6578 		    rhwfmt.sample_rate);
   6579 	}
   6580 
   6581 	/* Check the format */
   6582 	if ((mode & AUMODE_PLAY)) {
   6583 		if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
   6584 			TRACE(1, "invalid format");
   6585 			return EINVAL;
   6586 		}
   6587 	}
   6588 	if ((mode & AUMODE_RECORD)) {
   6589 		if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
   6590 			TRACE(1, "invalid format");
   6591 			return EINVAL;
   6592 		}
   6593 	}
   6594 
   6595 	/* Configure the mixers. */
   6596 	memset(&pfil, 0, sizeof(pfil));
   6597 	memset(&rfil, 0, sizeof(rfil));
   6598 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   6599 	if (error)
   6600 		return error;
   6601 
   6602 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   6603 	if (error)
   6604 		return error;
   6605 
   6606 	/*
   6607 	 * Reinitialize the sticky parameters for /dev/sound.
   6608 	 * If the number of the hardware channels becomes less than the number
   6609 	 * of channels that sticky parameters remember, subsequent /dev/sound
   6610 	 * open will fail.  To prevent this, reinitialize the sticky
   6611 	 * parameters whenever the hardware format is changed.
   6612 	 */
   6613 	sc->sc_sound_pparams = params_to_format2(&audio_default);
   6614 	sc->sc_sound_rparams = params_to_format2(&audio_default);
   6615 	sc->sc_sound_ppause = false;
   6616 	sc->sc_sound_rpause = false;
   6617 
   6618 	return 0;
   6619 }
   6620 
   6621 /*
   6622  * Store current mixers format into *ai.
   6623  * Must be called with sc_exlock held.
   6624  */
   6625 static void
   6626 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
   6627 {
   6628 
   6629 	KASSERT(sc->sc_exlock);
   6630 
   6631 	/*
   6632 	 * There is no stride information in audio_info but it doesn't matter.
   6633 	 * trackmixer always treats stride and precision as the same.
   6634 	 */
   6635 	AUDIO_INITINFO(ai);
   6636 	ai->mode = 0;
   6637 	if (sc->sc_pmixer) {
   6638 		audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
   6639 		ai->play.encoding    = fmt->encoding;
   6640 		ai->play.precision   = fmt->precision;
   6641 		ai->play.channels    = fmt->channels;
   6642 		ai->play.sample_rate = fmt->sample_rate;
   6643 		ai->mode |= AUMODE_PLAY;
   6644 	}
   6645 	if (sc->sc_rmixer) {
   6646 		audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
   6647 		ai->record.encoding    = fmt->encoding;
   6648 		ai->record.precision   = fmt->precision;
   6649 		ai->record.channels    = fmt->channels;
   6650 		ai->record.sample_rate = fmt->sample_rate;
   6651 		ai->mode |= AUMODE_RECORD;
   6652 	}
   6653 }
   6654 
   6655 /*
   6656  * audio_info details:
   6657  *
   6658  * ai.{play,record}.sample_rate		(R/W)
   6659  * ai.{play,record}.encoding		(R/W)
   6660  * ai.{play,record}.precision		(R/W)
   6661  * ai.{play,record}.channels		(R/W)
   6662  *	These specify the playback or recording format.
   6663  *	Ignore members within an inactive track.
   6664  *
   6665  * ai.mode				(R/W)
   6666  *	It specifies the playback or recording mode, AUMODE_*.
   6667  *	Currently, a mode change operation by ai.mode after opening is
   6668  *	prohibited.  In addition, AUMODE_PLAY_ALL no longer makes sense.
   6669  *	However, it's possible to get or to set for backward compatibility.
   6670  *
   6671  * ai.{hiwat,lowat}			(R/W)
   6672  *	These specify the high water mark and low water mark for playback
   6673  *	track.  The unit is block.
   6674  *
   6675  * ai.{play,record}.gain		(R/W)
   6676  *	It specifies the HW mixer volume in 0-255.
   6677  *	It is historical reason that the gain is connected to HW mixer.
   6678  *
   6679  * ai.{play,record}.balance		(R/W)
   6680  *	It specifies the left-right balance of HW mixer in 0-64.
   6681  *	32 means the center.
   6682  *	It is historical reason that the balance is connected to HW mixer.
   6683  *
   6684  * ai.{play,record}.port		(R/W)
   6685  *	It specifies the input/output port of HW mixer.
   6686  *
   6687  * ai.monitor_gain			(R/W)
   6688  *	It specifies the recording monitor gain(?) of HW mixer.
   6689  *
   6690  * ai.{play,record}.pause		(R/W)
   6691  *	Non-zero means the track is paused.
   6692  *
   6693  * ai.play.seek				(R/-)
   6694  *	It indicates the number of bytes written but not processed.
   6695  * ai.record.seek			(R/-)
   6696  *	It indicates the number of bytes to be able to read.
   6697  *
   6698  * ai.{play,record}.avail_ports		(R/-)
   6699  *	Mixer info.
   6700  *
   6701  * ai.{play,record}.buffer_size		(R/-)
   6702  *	It indicates the buffer size in bytes.  Internally it means usrbuf.
   6703  *
   6704  * ai.{play,record}.samples		(R/-)
   6705  *	It indicates the total number of bytes played or recorded.
   6706  *
   6707  * ai.{play,record}.eof			(R/-)
   6708  *	It indicates the number of times reached EOF(?).
   6709  *
   6710  * ai.{play,record}.error		(R/-)
   6711  *	Non-zero indicates overflow/underflow has occured.
   6712  *
   6713  * ai.{play,record}.waiting		(R/-)
   6714  *	Non-zero indicates that other process waits to open.
   6715  *	It will never happen anymore.
   6716  *
   6717  * ai.{play,record}.open		(R/-)
   6718  *	Non-zero indicates the direction is opened by this process(?).
   6719  *	XXX Is this better to indicate that "the device is opened by
   6720  *	at least one process"?
   6721  *
   6722  * ai.{play,record}.active		(R/-)
   6723  *	Non-zero indicates that I/O is currently active.
   6724  *
   6725  * ai.blocksize				(R/-)
   6726  *	It indicates the block size in bytes.
   6727  *	XXX The blocksize of playback and recording may be different.
   6728  */
   6729 
   6730 /*
   6731  * Pause consideration:
   6732  *
   6733  * Pausing/unpausing never affect [pr]mixer.  This single rule makes
   6734  * operation simple.  Note that playback and recording are asymmetric.
   6735  *
   6736  * For playback,
   6737  *  1. Any playback open doesn't start pmixer regardless of initial pause
   6738  *     state of this track.
   6739  *  2. The first write access among playback tracks only starts pmixer
   6740  *     regardless of this track's pause state.
   6741  *  3. Even a pause of the last playback track doesn't stop pmixer.
   6742  *  4. The last close of all playback tracks only stops pmixer.
   6743  *
   6744  * For recording,
   6745  *  1. The first recording open only starts rmixer regardless of initial
   6746  *     pause state of this track.
   6747  *  2. Even a pause of the last track doesn't stop rmixer.
   6748  *  3. The last close of all recording tracks only stops rmixer.
   6749  */
   6750 
   6751 /*
   6752  * Set both track's parameters within a file depending on ai.
   6753  * Update sc_sound_[pr]* if set.
   6754  * Must be called with sc_exlock held and without sc_lock held.
   6755  */
   6756 static int
   6757 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
   6758 	const struct audio_info *ai)
   6759 {
   6760 	const struct audio_prinfo *pi;
   6761 	const struct audio_prinfo *ri;
   6762 	audio_track_t *ptrack;
   6763 	audio_track_t *rtrack;
   6764 	audio_format2_t pfmt;
   6765 	audio_format2_t rfmt;
   6766 	int pchanges;
   6767 	int rchanges;
   6768 	int mode;
   6769 	struct audio_info saved_ai;
   6770 	audio_format2_t saved_pfmt;
   6771 	audio_format2_t saved_rfmt;
   6772 	int error;
   6773 
   6774 	KASSERT(sc->sc_exlock);
   6775 
   6776 	pi = &ai->play;
   6777 	ri = &ai->record;
   6778 	pchanges = 0;
   6779 	rchanges = 0;
   6780 
   6781 	ptrack = file->ptrack;
   6782 	rtrack = file->rtrack;
   6783 
   6784 #if defined(AUDIO_DEBUG)
   6785 	if (audiodebug >= 2) {
   6786 		char buf[256];
   6787 		char p[64];
   6788 		int buflen;
   6789 		int plen;
   6790 #define SPRINTF(var, fmt...) do {	\
   6791 	var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
   6792 } while (0)
   6793 
   6794 		buflen = 0;
   6795 		plen = 0;
   6796 		if (SPECIFIED(pi->encoding))
   6797 			SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
   6798 		if (SPECIFIED(pi->precision))
   6799 			SPRINTF(p, "/%dbit", pi->precision);
   6800 		if (SPECIFIED(pi->channels))
   6801 			SPRINTF(p, "/%dch", pi->channels);
   6802 		if (SPECIFIED(pi->sample_rate))
   6803 			SPRINTF(p, "/%dHz", pi->sample_rate);
   6804 		if (plen > 0)
   6805 			SPRINTF(buf, ",play.param=%s", p + 1);
   6806 
   6807 		plen = 0;
   6808 		if (SPECIFIED(ri->encoding))
   6809 			SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
   6810 		if (SPECIFIED(ri->precision))
   6811 			SPRINTF(p, "/%dbit", ri->precision);
   6812 		if (SPECIFIED(ri->channels))
   6813 			SPRINTF(p, "/%dch", ri->channels);
   6814 		if (SPECIFIED(ri->sample_rate))
   6815 			SPRINTF(p, "/%dHz", ri->sample_rate);
   6816 		if (plen > 0)
   6817 			SPRINTF(buf, ",record.param=%s", p + 1);
   6818 
   6819 		if (SPECIFIED(ai->mode))
   6820 			SPRINTF(buf, ",mode=%d", ai->mode);
   6821 		if (SPECIFIED(ai->hiwat))
   6822 			SPRINTF(buf, ",hiwat=%d", ai->hiwat);
   6823 		if (SPECIFIED(ai->lowat))
   6824 			SPRINTF(buf, ",lowat=%d", ai->lowat);
   6825 		if (SPECIFIED(ai->play.gain))
   6826 			SPRINTF(buf, ",play.gain=%d", ai->play.gain);
   6827 		if (SPECIFIED(ai->record.gain))
   6828 			SPRINTF(buf, ",record.gain=%d", ai->record.gain);
   6829 		if (SPECIFIED_CH(ai->play.balance))
   6830 			SPRINTF(buf, ",play.balance=%d", ai->play.balance);
   6831 		if (SPECIFIED_CH(ai->record.balance))
   6832 			SPRINTF(buf, ",record.balance=%d", ai->record.balance);
   6833 		if (SPECIFIED(ai->play.port))
   6834 			SPRINTF(buf, ",play.port=%d", ai->play.port);
   6835 		if (SPECIFIED(ai->record.port))
   6836 			SPRINTF(buf, ",record.port=%d", ai->record.port);
   6837 		if (SPECIFIED(ai->monitor_gain))
   6838 			SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
   6839 		if (SPECIFIED_CH(ai->play.pause))
   6840 			SPRINTF(buf, ",play.pause=%d", ai->play.pause);
   6841 		if (SPECIFIED_CH(ai->record.pause))
   6842 			SPRINTF(buf, ",record.pause=%d", ai->record.pause);
   6843 
   6844 		if (buflen > 0)
   6845 			TRACE(2, "specified %s", buf + 1);
   6846 	}
   6847 #endif
   6848 
   6849 	AUDIO_INITINFO(&saved_ai);
   6850 	/* XXX shut up gcc */
   6851 	memset(&saved_pfmt, 0, sizeof(saved_pfmt));
   6852 	memset(&saved_rfmt, 0, sizeof(saved_rfmt));
   6853 
   6854 	/*
   6855 	 * Set default value and save current parameters.
   6856 	 * For backward compatibility, use sticky parameters for nonexistent
   6857 	 * track.
   6858 	 */
   6859 	if (ptrack) {
   6860 		pfmt = ptrack->usrbuf.fmt;
   6861 		saved_pfmt = ptrack->usrbuf.fmt;
   6862 		saved_ai.play.pause = ptrack->is_pause;
   6863 	} else {
   6864 		pfmt = sc->sc_sound_pparams;
   6865 	}
   6866 	if (rtrack) {
   6867 		rfmt = rtrack->usrbuf.fmt;
   6868 		saved_rfmt = rtrack->usrbuf.fmt;
   6869 		saved_ai.record.pause = rtrack->is_pause;
   6870 	} else {
   6871 		rfmt = sc->sc_sound_rparams;
   6872 	}
   6873 	saved_ai.mode = file->mode;
   6874 
   6875 	/*
   6876 	 * Overwrite if specified.
   6877 	 */
   6878 	mode = file->mode;
   6879 	if (SPECIFIED(ai->mode)) {
   6880 		/*
   6881 		 * Setting ai->mode no longer does anything because it's
   6882 		 * prohibited to change playback/recording mode after open
   6883 		 * and AUMODE_PLAY_ALL is obsoleted.  However, it still
   6884 		 * keeps the state of AUMODE_PLAY_ALL itself for backward
   6885 		 * compatibility.
   6886 		 * In the internal, only file->mode has the state of
   6887 		 * AUMODE_PLAY_ALL flag and track->mode in both track does
   6888 		 * not have.
   6889 		 */
   6890 		if ((file->mode & AUMODE_PLAY)) {
   6891 			mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
   6892 			    | (ai->mode & AUMODE_PLAY_ALL);
   6893 		}
   6894 	}
   6895 
   6896 	pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
   6897 	if (pchanges == -1) {
   6898 #if defined(AUDIO_DEBUG)
   6899 		TRACEF(1, file, "check play.params failed: "
   6900 		    "%s %ubit %uch %uHz",
   6901 		    audio_encoding_name(pi->encoding),
   6902 		    pi->precision,
   6903 		    pi->channels,
   6904 		    pi->sample_rate);
   6905 #endif
   6906 		return EINVAL;
   6907 	}
   6908 
   6909 	rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
   6910 	if (rchanges == -1) {
   6911 #if defined(AUDIO_DEBUG)
   6912 		TRACEF(1, file, "check record.params failed: "
   6913 		    "%s %ubit %uch %uHz",
   6914 		    audio_encoding_name(ri->encoding),
   6915 		    ri->precision,
   6916 		    ri->channels,
   6917 		    ri->sample_rate);
   6918 #endif
   6919 		return EINVAL;
   6920 	}
   6921 
   6922 	if (SPECIFIED(ai->mode)) {
   6923 		pchanges = 1;
   6924 		rchanges = 1;
   6925 	}
   6926 
   6927 	/*
   6928 	 * Even when setting either one of playback and recording,
   6929 	 * both track must be halted.
   6930 	 */
   6931 	if (pchanges || rchanges) {
   6932 		audio_file_clear(sc, file);
   6933 #if defined(AUDIO_DEBUG)
   6934 		char nbuf[16];
   6935 		char fmtbuf[64];
   6936 		if (pchanges) {
   6937 			if (ptrack) {
   6938 				snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
   6939 			} else {
   6940 				snprintf(nbuf, sizeof(nbuf), "-");
   6941 			}
   6942 			audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
   6943 			DPRINTF(1, "audio track#%s play mode: %s\n",
   6944 			    nbuf, fmtbuf);
   6945 		}
   6946 		if (rchanges) {
   6947 			if (rtrack) {
   6948 				snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
   6949 			} else {
   6950 				snprintf(nbuf, sizeof(nbuf), "-");
   6951 			}
   6952 			audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
   6953 			DPRINTF(1, "audio track#%s rec  mode: %s\n",
   6954 			    nbuf, fmtbuf);
   6955 		}
   6956 #endif
   6957 	}
   6958 
   6959 	/* Set mixer parameters */
   6960 	mutex_enter(sc->sc_lock);
   6961 	error = audio_hw_setinfo(sc, ai, &saved_ai);
   6962 	mutex_exit(sc->sc_lock);
   6963 	if (error)
   6964 		goto abort1;
   6965 
   6966 	/*
   6967 	 * Set to track and update sticky parameters.
   6968 	 */
   6969 	error = 0;
   6970 	file->mode = mode;
   6971 
   6972 	if (SPECIFIED_CH(pi->pause)) {
   6973 		if (ptrack)
   6974 			ptrack->is_pause = pi->pause;
   6975 		sc->sc_sound_ppause = pi->pause;
   6976 	}
   6977 	if (pchanges) {
   6978 		if (ptrack) {
   6979 			audio_track_lock_enter(ptrack);
   6980 			error = audio_track_set_format(ptrack, &pfmt);
   6981 			audio_track_lock_exit(ptrack);
   6982 			if (error) {
   6983 				TRACET(1, ptrack, "set play.params failed");
   6984 				goto abort2;
   6985 			}
   6986 		}
   6987 		sc->sc_sound_pparams = pfmt;
   6988 	}
   6989 	/* Change water marks after initializing the buffers. */
   6990 	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
   6991 		if (ptrack)
   6992 			audio_track_setinfo_water(ptrack, ai);
   6993 	}
   6994 
   6995 	if (SPECIFIED_CH(ri->pause)) {
   6996 		if (rtrack)
   6997 			rtrack->is_pause = ri->pause;
   6998 		sc->sc_sound_rpause = ri->pause;
   6999 	}
   7000 	if (rchanges) {
   7001 		if (rtrack) {
   7002 			audio_track_lock_enter(rtrack);
   7003 			error = audio_track_set_format(rtrack, &rfmt);
   7004 			audio_track_lock_exit(rtrack);
   7005 			if (error) {
   7006 				TRACET(1, rtrack, "set record.params failed");
   7007 				goto abort3;
   7008 			}
   7009 		}
   7010 		sc->sc_sound_rparams = rfmt;
   7011 	}
   7012 
   7013 	return 0;
   7014 
   7015 	/* Rollback */
   7016 abort3:
   7017 	if (error != ENOMEM) {
   7018 		rtrack->is_pause = saved_ai.record.pause;
   7019 		audio_track_lock_enter(rtrack);
   7020 		audio_track_set_format(rtrack, &saved_rfmt);
   7021 		audio_track_lock_exit(rtrack);
   7022 	}
   7023 	sc->sc_sound_rpause = saved_ai.record.pause;
   7024 	sc->sc_sound_rparams = saved_rfmt;
   7025 abort2:
   7026 	if (ptrack && error != ENOMEM) {
   7027 		ptrack->is_pause = saved_ai.play.pause;
   7028 		audio_track_lock_enter(ptrack);
   7029 		audio_track_set_format(ptrack, &saved_pfmt);
   7030 		audio_track_lock_exit(ptrack);
   7031 	}
   7032 	sc->sc_sound_ppause = saved_ai.play.pause;
   7033 	sc->sc_sound_pparams = saved_pfmt;
   7034 	file->mode = saved_ai.mode;
   7035 abort1:
   7036 	mutex_enter(sc->sc_lock);
   7037 	audio_hw_setinfo(sc, &saved_ai, NULL);
   7038 	mutex_exit(sc->sc_lock);
   7039 
   7040 	return error;
   7041 }
   7042 
   7043 /*
   7044  * Write SPECIFIED() parameters within info back to fmt.
   7045  * Note that track can be NULL here.
   7046  * Return value of 1 indicates that fmt is modified.
   7047  * Return value of 0 indicates that fmt is not modified.
   7048  * Return value of -1 indicates that error EINVAL has occurred.
   7049  */
   7050 static int
   7051 audio_track_setinfo_check(audio_track_t *track,
   7052 	audio_format2_t *fmt, const struct audio_prinfo *info)
   7053 {
   7054 	const audio_format2_t *hwfmt;
   7055 	int changes;
   7056 
   7057 	changes = 0;
   7058 	if (SPECIFIED(info->sample_rate)) {
   7059 		if (info->sample_rate < AUDIO_MIN_FREQUENCY)
   7060 			return -1;
   7061 		if (info->sample_rate > AUDIO_MAX_FREQUENCY)
   7062 			return -1;
   7063 		fmt->sample_rate = info->sample_rate;
   7064 		changes = 1;
   7065 	}
   7066 	if (SPECIFIED(info->encoding)) {
   7067 		fmt->encoding = info->encoding;
   7068 		changes = 1;
   7069 	}
   7070 	if (SPECIFIED(info->precision)) {
   7071 		fmt->precision = info->precision;
   7072 		/* we don't have API to specify stride */
   7073 		fmt->stride = info->precision;
   7074 		changes = 1;
   7075 	}
   7076 	if (SPECIFIED(info->channels)) {
   7077 		/*
   7078 		 * We can convert between monaural and stereo each other.
   7079 		 * We can reduce than the number of channels that the hardware
   7080 		 * supports.
   7081 		 */
   7082 		if (info->channels > 2) {
   7083 			if (track) {
   7084 				hwfmt = &track->mixer->hwbuf.fmt;
   7085 				if (info->channels > hwfmt->channels)
   7086 					return -1;
   7087 			} else {
   7088 				/*
   7089 				 * This should never happen.
   7090 				 * If track == NULL, channels should be <= 2.
   7091 				 */
   7092 				return -1;
   7093 			}
   7094 		}
   7095 		fmt->channels = info->channels;
   7096 		changes = 1;
   7097 	}
   7098 
   7099 	if (changes) {
   7100 		if (audio_check_params(fmt) != 0)
   7101 			return -1;
   7102 	}
   7103 
   7104 	return changes;
   7105 }
   7106 
   7107 /*
   7108  * Change water marks for playback track if specfied.
   7109  */
   7110 static void
   7111 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
   7112 {
   7113 	u_int blks;
   7114 	u_int maxblks;
   7115 	u_int blksize;
   7116 
   7117 	KASSERT(audio_track_is_playback(track));
   7118 
   7119 	blksize = track->usrbuf_blksize;
   7120 	maxblks = track->usrbuf.capacity / blksize;
   7121 
   7122 	if (SPECIFIED(ai->hiwat)) {
   7123 		blks = ai->hiwat;
   7124 		if (blks > maxblks)
   7125 			blks = maxblks;
   7126 		if (blks < 2)
   7127 			blks = 2;
   7128 		track->usrbuf_usedhigh = blks * blksize;
   7129 	}
   7130 	if (SPECIFIED(ai->lowat)) {
   7131 		blks = ai->lowat;
   7132 		if (blks > maxblks - 1)
   7133 			blks = maxblks - 1;
   7134 		track->usrbuf_usedlow = blks * blksize;
   7135 	}
   7136 	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
   7137 		if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
   7138 			track->usrbuf_usedlow = track->usrbuf_usedhigh -
   7139 			    blksize;
   7140 		}
   7141 	}
   7142 }
   7143 
   7144 /*
   7145  * Set hardware part of *newai.
   7146  * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
   7147  * If oldai is specified, previous parameters are stored.
   7148  * This function itself does not roll back if error occurred.
   7149  * Must be called with sc_lock && sc_exlock held.
   7150  */
   7151 static int
   7152 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
   7153 	struct audio_info *oldai)
   7154 {
   7155 	const struct audio_prinfo *newpi;
   7156 	const struct audio_prinfo *newri;
   7157 	struct audio_prinfo *oldpi;
   7158 	struct audio_prinfo *oldri;
   7159 	u_int pgain;
   7160 	u_int rgain;
   7161 	u_char pbalance;
   7162 	u_char rbalance;
   7163 	int error;
   7164 
   7165 	KASSERT(mutex_owned(sc->sc_lock));
   7166 	KASSERT(sc->sc_exlock);
   7167 
   7168 	/* XXX shut up gcc */
   7169 	oldpi = NULL;
   7170 	oldri = NULL;
   7171 
   7172 	newpi = &newai->play;
   7173 	newri = &newai->record;
   7174 	if (oldai) {
   7175 		oldpi = &oldai->play;
   7176 		oldri = &oldai->record;
   7177 	}
   7178 	error = 0;
   7179 
   7180 	/*
   7181 	 * It looks like unnecessary to halt HW mixers to set HW mixers.
   7182 	 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
   7183 	 */
   7184 
   7185 	if (SPECIFIED(newpi->port)) {
   7186 		if (oldai)
   7187 			oldpi->port = au_get_port(sc, &sc->sc_outports);
   7188 		error = au_set_port(sc, &sc->sc_outports, newpi->port);
   7189 		if (error) {
   7190 			device_printf(sc->sc_dev,
   7191 			    "setting play.port=%d failed with %d\n",
   7192 			    newpi->port, error);
   7193 			goto abort;
   7194 		}
   7195 	}
   7196 	if (SPECIFIED(newri->port)) {
   7197 		if (oldai)
   7198 			oldri->port = au_get_port(sc, &sc->sc_inports);
   7199 		error = au_set_port(sc, &sc->sc_inports, newri->port);
   7200 		if (error) {
   7201 			device_printf(sc->sc_dev,
   7202 			    "setting record.port=%d failed with %d\n",
   7203 			    newri->port, error);
   7204 			goto abort;
   7205 		}
   7206 	}
   7207 
   7208 	/* Backup play.{gain,balance} */
   7209 	if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
   7210 		au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
   7211 		if (oldai) {
   7212 			oldpi->gain = pgain;
   7213 			oldpi->balance = pbalance;
   7214 		}
   7215 	}
   7216 	/* Backup record.{gain,balance} */
   7217 	if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
   7218 		au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
   7219 		if (oldai) {
   7220 			oldri->gain = rgain;
   7221 			oldri->balance = rbalance;
   7222 		}
   7223 	}
   7224 	if (SPECIFIED(newpi->gain)) {
   7225 		error = au_set_gain(sc, &sc->sc_outports,
   7226 		    newpi->gain, pbalance);
   7227 		if (error) {
   7228 			device_printf(sc->sc_dev,
   7229 			    "setting play.gain=%d failed with %d\n",
   7230 			    newpi->gain, error);
   7231 			goto abort;
   7232 		}
   7233 	}
   7234 	if (SPECIFIED(newri->gain)) {
   7235 		error = au_set_gain(sc, &sc->sc_inports,
   7236 		    newri->gain, rbalance);
   7237 		if (error) {
   7238 			device_printf(sc->sc_dev,
   7239 			    "setting record.gain=%d failed with %d\n",
   7240 			    newri->gain, error);
   7241 			goto abort;
   7242 		}
   7243 	}
   7244 	if (SPECIFIED_CH(newpi->balance)) {
   7245 		error = au_set_gain(sc, &sc->sc_outports,
   7246 		    pgain, newpi->balance);
   7247 		if (error) {
   7248 			device_printf(sc->sc_dev,
   7249 			    "setting play.balance=%d failed with %d\n",
   7250 			    newpi->balance, error);
   7251 			goto abort;
   7252 		}
   7253 	}
   7254 	if (SPECIFIED_CH(newri->balance)) {
   7255 		error = au_set_gain(sc, &sc->sc_inports,
   7256 		    rgain, newri->balance);
   7257 		if (error) {
   7258 			device_printf(sc->sc_dev,
   7259 			    "setting record.balance=%d failed with %d\n",
   7260 			    newri->balance, error);
   7261 			goto abort;
   7262 		}
   7263 	}
   7264 
   7265 	if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
   7266 		if (oldai)
   7267 			oldai->monitor_gain = au_get_monitor_gain(sc);
   7268 		error = au_set_monitor_gain(sc, newai->monitor_gain);
   7269 		if (error) {
   7270 			device_printf(sc->sc_dev,
   7271 			    "setting monitor_gain=%d failed with %d\n",
   7272 			    newai->monitor_gain, error);
   7273 			goto abort;
   7274 		}
   7275 	}
   7276 
   7277 	/* XXX TODO */
   7278 	/* sc->sc_ai = *ai; */
   7279 
   7280 	error = 0;
   7281 abort:
   7282 	return error;
   7283 }
   7284 
   7285 /*
   7286  * Setup the hardware with mixer format phwfmt, rhwfmt.
   7287  * The arguments have following restrictions:
   7288  * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
   7289  *   or both.
   7290  * - phwfmt and rhwfmt must not be NULL regardless of setmode.
   7291  * - On non-independent devices, phwfmt and rhwfmt must have the same
   7292  *   parameters.
   7293  * - pfil and rfil must be zero-filled.
   7294  * If successful,
   7295  * - pfil, rfil will be filled with filter information specified by the
   7296  *   hardware driver.
   7297  * and then returns 0.  Otherwise returns errno.
   7298  * Must be called without sc_lock held.
   7299  */
   7300 static int
   7301 audio_hw_set_format(struct audio_softc *sc, int setmode,
   7302 	const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
   7303 	audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
   7304 {
   7305 	audio_params_t pp, rp;
   7306 	int error;
   7307 
   7308 	KASSERT(phwfmt != NULL);
   7309 	KASSERT(rhwfmt != NULL);
   7310 
   7311 	pp = format2_to_params(phwfmt);
   7312 	rp = format2_to_params(rhwfmt);
   7313 
   7314 	mutex_enter(sc->sc_lock);
   7315 	error = sc->hw_if->set_format(sc->hw_hdl, setmode,
   7316 	    &pp, &rp, pfil, rfil);
   7317 	if (error) {
   7318 		mutex_exit(sc->sc_lock);
   7319 		device_printf(sc->sc_dev,
   7320 		    "set_format failed with %d\n", error);
   7321 		return error;
   7322 	}
   7323 
   7324 	if (sc->hw_if->commit_settings) {
   7325 		error = sc->hw_if->commit_settings(sc->hw_hdl);
   7326 		if (error) {
   7327 			mutex_exit(sc->sc_lock);
   7328 			device_printf(sc->sc_dev,
   7329 			    "commit_settings failed with %d\n", error);
   7330 			return error;
   7331 		}
   7332 	}
   7333 	mutex_exit(sc->sc_lock);
   7334 
   7335 	return 0;
   7336 }
   7337 
   7338 /*
   7339  * Fill audio_info structure.  If need_mixerinfo is true, it will also
   7340  * fill the hardware mixer information.
   7341  * Must be called with sc_exlock held and without sc_lock held.
   7342  */
   7343 static int
   7344 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
   7345 	audio_file_t *file)
   7346 {
   7347 	struct audio_prinfo *ri, *pi;
   7348 	audio_track_t *track;
   7349 	audio_track_t *ptrack;
   7350 	audio_track_t *rtrack;
   7351 	int gain;
   7352 
   7353 	KASSERT(sc->sc_exlock);
   7354 
   7355 	ri = &ai->record;
   7356 	pi = &ai->play;
   7357 	ptrack = file->ptrack;
   7358 	rtrack = file->rtrack;
   7359 
   7360 	memset(ai, 0, sizeof(*ai));
   7361 
   7362 	if (ptrack) {
   7363 		pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
   7364 		pi->channels    = ptrack->usrbuf.fmt.channels;
   7365 		pi->precision   = ptrack->usrbuf.fmt.precision;
   7366 		pi->encoding    = ptrack->usrbuf.fmt.encoding;
   7367 		pi->pause       = ptrack->is_pause;
   7368 	} else {
   7369 		/* Use sticky parameters if the track is not available. */
   7370 		pi->sample_rate = sc->sc_sound_pparams.sample_rate;
   7371 		pi->channels    = sc->sc_sound_pparams.channels;
   7372 		pi->precision   = sc->sc_sound_pparams.precision;
   7373 		pi->encoding    = sc->sc_sound_pparams.encoding;
   7374 		pi->pause       = sc->sc_sound_ppause;
   7375 	}
   7376 	if (rtrack) {
   7377 		ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
   7378 		ri->channels    = rtrack->usrbuf.fmt.channels;
   7379 		ri->precision   = rtrack->usrbuf.fmt.precision;
   7380 		ri->encoding    = rtrack->usrbuf.fmt.encoding;
   7381 		ri->pause       = rtrack->is_pause;
   7382 	} else {
   7383 		/* Use sticky parameters if the track is not available. */
   7384 		ri->sample_rate = sc->sc_sound_rparams.sample_rate;
   7385 		ri->channels    = sc->sc_sound_rparams.channels;
   7386 		ri->precision   = sc->sc_sound_rparams.precision;
   7387 		ri->encoding    = sc->sc_sound_rparams.encoding;
   7388 		ri->pause       = sc->sc_sound_rpause;
   7389 	}
   7390 
   7391 	if (ptrack) {
   7392 		pi->seek = ptrack->usrbuf.used;
   7393 		pi->samples = ptrack->usrbuf_stamp;
   7394 		pi->eof = ptrack->eofcounter;
   7395 		pi->error = (ptrack->dropframes != 0) ? 1 : 0;
   7396 		pi->open = 1;
   7397 		pi->buffer_size = ptrack->usrbuf.capacity;
   7398 	}
   7399 	pi->waiting = 0;		/* open never hangs */
   7400 	pi->active = sc->sc_pbusy;
   7401 
   7402 	if (rtrack) {
   7403 		ri->seek = rtrack->usrbuf.used;
   7404 		ri->samples = rtrack->usrbuf_stamp;
   7405 		ri->eof = 0;
   7406 		ri->error = (rtrack->dropframes != 0) ? 1 : 0;
   7407 		ri->open = 1;
   7408 		ri->buffer_size = rtrack->usrbuf.capacity;
   7409 	}
   7410 	ri->waiting = 0;		/* open never hangs */
   7411 	ri->active = sc->sc_rbusy;
   7412 
   7413 	/*
   7414 	 * XXX There may be different number of channels between playback
   7415 	 *     and recording, so that blocksize also may be different.
   7416 	 *     But struct audio_info has an united blocksize...
   7417 	 *     Here, I use play info precedencely if ptrack is available,
   7418 	 *     otherwise record info.
   7419 	 *
   7420 	 * XXX hiwat/lowat is a playback-only parameter.  What should I
   7421 	 *     return for a record-only descriptor?
   7422 	 */
   7423 	track = ptrack ? ptrack : rtrack;
   7424 	if (track) {
   7425 		ai->blocksize = track->usrbuf_blksize;
   7426 		ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
   7427 		ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
   7428 	}
   7429 	ai->mode = file->mode;
   7430 
   7431 	/*
   7432 	 * For backward compatibility, we have to pad these five fields
   7433 	 * a fake non-zero value even if there are no tracks.
   7434 	 */
   7435 	if (ptrack == NULL)
   7436 		pi->buffer_size = 65536;
   7437 	if (rtrack == NULL)
   7438 		ri->buffer_size = 65536;
   7439 	if (ptrack == NULL && rtrack == NULL) {
   7440 		ai->blocksize = 2048;
   7441 		ai->hiwat = ai->play.buffer_size / ai->blocksize;
   7442 		ai->lowat = ai->hiwat * 3 / 4;
   7443 	}
   7444 
   7445 	if (need_mixerinfo) {
   7446 		mutex_enter(sc->sc_lock);
   7447 
   7448 		pi->port = au_get_port(sc, &sc->sc_outports);
   7449 		ri->port = au_get_port(sc, &sc->sc_inports);
   7450 
   7451 		pi->avail_ports = sc->sc_outports.allports;
   7452 		ri->avail_ports = sc->sc_inports.allports;
   7453 
   7454 		au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
   7455 		au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
   7456 
   7457 		if (sc->sc_monitor_port != -1) {
   7458 			gain = au_get_monitor_gain(sc);
   7459 			if (gain != -1)
   7460 				ai->monitor_gain = gain;
   7461 		}
   7462 		mutex_exit(sc->sc_lock);
   7463 	}
   7464 
   7465 	return 0;
   7466 }
   7467 
   7468 /*
   7469  * Return true if playback is configured.
   7470  * This function can be used after audioattach.
   7471  */
   7472 static bool
   7473 audio_can_playback(struct audio_softc *sc)
   7474 {
   7475 
   7476 	return (sc->sc_pmixer != NULL);
   7477 }
   7478 
   7479 /*
   7480  * Return true if recording is configured.
   7481  * This function can be used after audioattach.
   7482  */
   7483 static bool
   7484 audio_can_capture(struct audio_softc *sc)
   7485 {
   7486 
   7487 	return (sc->sc_rmixer != NULL);
   7488 }
   7489 
   7490 /*
   7491  * Get the afp->index'th item from the valid one of format[].
   7492  * If found, stores it to afp->fmt and returns 0.  Otherwise return EINVAL.
   7493  *
   7494  * This is common routines for query_format.
   7495  * If your hardware driver has struct audio_format[], the simplest case
   7496  * you can write your query_format interface as follows:
   7497  *
   7498  * struct audio_format foo_format[] = { ... };
   7499  *
   7500  * int
   7501  * foo_query_format(void *hdl, audio_format_query_t *afp)
   7502  * {
   7503  *   return audio_query_format(foo_format, __arraycount(foo_format), afp);
   7504  * }
   7505  */
   7506 int
   7507 audio_query_format(const struct audio_format *format, int nformats,
   7508 	audio_format_query_t *afp)
   7509 {
   7510 	const struct audio_format *f;
   7511 	int idx;
   7512 	int i;
   7513 
   7514 	idx = 0;
   7515 	for (i = 0; i < nformats; i++) {
   7516 		f = &format[i];
   7517 		if (!AUFMT_IS_VALID(f))
   7518 			continue;
   7519 		if (afp->index == idx) {
   7520 			afp->fmt = *f;
   7521 			return 0;
   7522 		}
   7523 		idx++;
   7524 	}
   7525 	return EINVAL;
   7526 }
   7527 
   7528 /*
   7529  * This function is provided for the hardware driver's set_format() to
   7530  * find index matches with 'param' from array of audio_format_t 'formats'.
   7531  * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
   7532  * It returns the matched index and never fails.  Because param passed to
   7533  * set_format() is selected from query_format().
   7534  * This function will be an alternative to auconv_set_converter() to
   7535  * find index.
   7536  */
   7537 int
   7538 audio_indexof_format(const struct audio_format *formats, int nformats,
   7539 	int mode, const audio_params_t *param)
   7540 {
   7541 	const struct audio_format *f;
   7542 	int index;
   7543 	int j;
   7544 
   7545 	for (index = 0; index < nformats; index++) {
   7546 		f = &formats[index];
   7547 
   7548 		if (!AUFMT_IS_VALID(f))
   7549 			continue;
   7550 		if ((f->mode & mode) == 0)
   7551 			continue;
   7552 		if (f->encoding != param->encoding)
   7553 			continue;
   7554 		if (f->validbits != param->precision)
   7555 			continue;
   7556 		if (f->channels != param->channels)
   7557 			continue;
   7558 
   7559 		if (f->frequency_type == 0) {
   7560 			if (param->sample_rate < f->frequency[0] ||
   7561 			    param->sample_rate > f->frequency[1])
   7562 				continue;
   7563 		} else {
   7564 			for (j = 0; j < f->frequency_type; j++) {
   7565 				if (param->sample_rate == f->frequency[j])
   7566 					break;
   7567 			}
   7568 			if (j == f->frequency_type)
   7569 				continue;
   7570 		}
   7571 
   7572 		/* Then, matched */
   7573 		return index;
   7574 	}
   7575 
   7576 	/* Not matched.  This should not be happened. */
   7577 	panic("%s: cannot find matched format\n", __func__);
   7578 }
   7579 
   7580 /*
   7581  * Get or set hardware blocksize in msec.
   7582  * XXX It's for debug.
   7583  */
   7584 static int
   7585 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
   7586 {
   7587 	struct sysctlnode node;
   7588 	struct audio_softc *sc;
   7589 	audio_format2_t phwfmt;
   7590 	audio_format2_t rhwfmt;
   7591 	audio_filter_reg_t pfil;
   7592 	audio_filter_reg_t rfil;
   7593 	int t;
   7594 	int old_blk_ms;
   7595 	int mode;
   7596 	int error;
   7597 
   7598 	node = *rnode;
   7599 	sc = node.sysctl_data;
   7600 
   7601 	error = audio_exlock_enter(sc);
   7602 	if (error)
   7603 		return error;
   7604 
   7605 	old_blk_ms = sc->sc_blk_ms;
   7606 	t = old_blk_ms;
   7607 	node.sysctl_data = &t;
   7608 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   7609 	if (error || newp == NULL)
   7610 		goto abort;
   7611 
   7612 	if (t < 0) {
   7613 		error = EINVAL;
   7614 		goto abort;
   7615 	}
   7616 
   7617 	if (sc->sc_popens + sc->sc_ropens > 0) {
   7618 		error = EBUSY;
   7619 		goto abort;
   7620 	}
   7621 	sc->sc_blk_ms = t;
   7622 	mode = 0;
   7623 	if (sc->sc_pmixer) {
   7624 		mode |= AUMODE_PLAY;
   7625 		phwfmt = sc->sc_pmixer->hwbuf.fmt;
   7626 	}
   7627 	if (sc->sc_rmixer) {
   7628 		mode |= AUMODE_RECORD;
   7629 		rhwfmt = sc->sc_rmixer->hwbuf.fmt;
   7630 	}
   7631 
   7632 	/* re-init hardware */
   7633 	memset(&pfil, 0, sizeof(pfil));
   7634 	memset(&rfil, 0, sizeof(rfil));
   7635 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   7636 	if (error) {
   7637 		goto abort;
   7638 	}
   7639 
   7640 	/* re-init track mixer */
   7641 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   7642 	if (error) {
   7643 		/* Rollback */
   7644 		sc->sc_blk_ms = old_blk_ms;
   7645 		audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   7646 		goto abort;
   7647 	}
   7648 	error = 0;
   7649 abort:
   7650 	audio_exlock_exit(sc);
   7651 	return error;
   7652 }
   7653 
   7654 /*
   7655  * Get or set multiuser mode.
   7656  */
   7657 static int
   7658 audio_sysctl_multiuser(SYSCTLFN_ARGS)
   7659 {
   7660 	struct sysctlnode node;
   7661 	struct audio_softc *sc;
   7662 	bool t;
   7663 	int error;
   7664 
   7665 	node = *rnode;
   7666 	sc = node.sysctl_data;
   7667 
   7668 	error = audio_exlock_enter(sc);
   7669 	if (error)
   7670 		return error;
   7671 
   7672 	t = sc->sc_multiuser;
   7673 	node.sysctl_data = &t;
   7674 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   7675 	if (error || newp == NULL)
   7676 		goto abort;
   7677 
   7678 	sc->sc_multiuser = t;
   7679 	error = 0;
   7680 abort:
   7681 	audio_exlock_exit(sc);
   7682 	return error;
   7683 }
   7684 
   7685 #if defined(AUDIO_DEBUG)
   7686 /*
   7687  * Get or set debug verbose level. (0..4)
   7688  * XXX It's for debug.
   7689  * XXX It is not separated per device.
   7690  */
   7691 static int
   7692 audio_sysctl_debug(SYSCTLFN_ARGS)
   7693 {
   7694 	struct sysctlnode node;
   7695 	int t;
   7696 	int error;
   7697 
   7698 	node = *rnode;
   7699 	t = audiodebug;
   7700 	node.sysctl_data = &t;
   7701 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   7702 	if (error || newp == NULL)
   7703 		return error;
   7704 
   7705 	if (t < 0 || t > 4)
   7706 		return EINVAL;
   7707 	audiodebug = t;
   7708 	printf("audio: audiodebug = %d\n", audiodebug);
   7709 	return 0;
   7710 }
   7711 #endif /* AUDIO_DEBUG */
   7712 
   7713 #ifdef AUDIO_PM_IDLE
   7714 static void
   7715 audio_idle(void *arg)
   7716 {
   7717 	device_t dv = arg;
   7718 	struct audio_softc *sc = device_private(dv);
   7719 
   7720 #ifdef PNP_DEBUG
   7721 	extern int pnp_debug_idle;
   7722 	if (pnp_debug_idle)
   7723 		printf("%s: idle handler called\n", device_xname(dv));
   7724 #endif
   7725 
   7726 	sc->sc_idle = true;
   7727 
   7728 	/* XXX joerg Make pmf_device_suspend handle children? */
   7729 	if (!pmf_device_suspend(dv, PMF_Q_SELF))
   7730 		return;
   7731 
   7732 	if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
   7733 		pmf_device_resume(dv, PMF_Q_SELF);
   7734 }
   7735 
   7736 static void
   7737 audio_activity(device_t dv, devactive_t type)
   7738 {
   7739 	struct audio_softc *sc = device_private(dv);
   7740 
   7741 	if (type != DVA_SYSTEM)
   7742 		return;
   7743 
   7744 	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
   7745 
   7746 	sc->sc_idle = false;
   7747 	if (!device_is_active(dv)) {
   7748 		/* XXX joerg How to deal with a failing resume... */
   7749 		pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
   7750 		pmf_device_resume(dv, PMF_Q_SELF);
   7751 	}
   7752 }
   7753 #endif
   7754 
   7755 static bool
   7756 audio_suspend(device_t dv, const pmf_qual_t *qual)
   7757 {
   7758 	struct audio_softc *sc = device_private(dv);
   7759 	int error;
   7760 
   7761 	error = audio_exlock_mutex_enter(sc);
   7762 	if (error)
   7763 		return error;
   7764 	sc->sc_suspending = true;
   7765 	audio_mixer_capture(sc);
   7766 
   7767 	if (sc->sc_pbusy) {
   7768 		audio_pmixer_halt(sc);
   7769 		/* Reuse this as need-to-restart flag while suspending */
   7770 		sc->sc_pbusy = true;
   7771 	}
   7772 	if (sc->sc_rbusy) {
   7773 		audio_rmixer_halt(sc);
   7774 		/* Reuse this as need-to-restart flag while suspending */
   7775 		sc->sc_rbusy = true;
   7776 	}
   7777 
   7778 #ifdef AUDIO_PM_IDLE
   7779 	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
   7780 #endif
   7781 	audio_exlock_mutex_exit(sc);
   7782 
   7783 	return true;
   7784 }
   7785 
   7786 static bool
   7787 audio_resume(device_t dv, const pmf_qual_t *qual)
   7788 {
   7789 	struct audio_softc *sc = device_private(dv);
   7790 	struct audio_info ai;
   7791 	int error;
   7792 
   7793 	error = audio_exlock_mutex_enter(sc);
   7794 	if (error)
   7795 		return error;
   7796 
   7797 	sc->sc_suspending = false;
   7798 	audio_mixer_restore(sc);
   7799 	/* XXX ? */
   7800 	AUDIO_INITINFO(&ai);
   7801 	audio_hw_setinfo(sc, &ai, NULL);
   7802 
   7803 	/*
   7804 	 * During from suspend to resume here, sc_[pr]busy is used as
   7805 	 * need-to-restart flag temporarily.  After this point,
   7806 	 * sc_[pr]busy is returned to its original usage (busy flag).
   7807 	 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
   7808 	 */
   7809 	if (sc->sc_pbusy) {
   7810 		/* pmixer_start() requires pbusy is false */
   7811 		sc->sc_pbusy = false;
   7812 		audio_pmixer_start(sc, true);
   7813 	}
   7814 	if (sc->sc_rbusy) {
   7815 		/* rmixer_start() requires rbusy is false */
   7816 		sc->sc_rbusy = false;
   7817 		audio_rmixer_start(sc);
   7818 	}
   7819 
   7820 	audio_exlock_mutex_exit(sc);
   7821 
   7822 	return true;
   7823 }
   7824 
   7825 #if defined(AUDIO_DEBUG)
   7826 static void
   7827 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
   7828 {
   7829 	int n;
   7830 
   7831 	n = 0;
   7832 	n += snprintf(buf + n, bufsize - n, "%s",
   7833 	    audio_encoding_name(fmt->encoding));
   7834 	if (fmt->precision == fmt->stride) {
   7835 		n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
   7836 	} else {
   7837 		n += snprintf(buf + n, bufsize - n, " %d/%dbit",
   7838 			fmt->precision, fmt->stride);
   7839 	}
   7840 
   7841 	snprintf(buf + n, bufsize - n, " %uch %uHz",
   7842 	    fmt->channels, fmt->sample_rate);
   7843 }
   7844 #endif
   7845 
   7846 #if defined(AUDIO_DEBUG)
   7847 static void
   7848 audio_print_format2(const char *s, const audio_format2_t *fmt)
   7849 {
   7850 	char fmtstr[64];
   7851 
   7852 	audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
   7853 	printf("%s %s\n", s, fmtstr);
   7854 }
   7855 #endif
   7856 
   7857 #ifdef DIAGNOSTIC
   7858 void
   7859 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
   7860 {
   7861 
   7862 	KASSERTMSG(fmt, "called from %s", where);
   7863 
   7864 	/* XXX MSM6258 vs(4) only has 4bit stride format. */
   7865 	if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
   7866 		KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
   7867 		    "called from %s: fmt->stride=%d", where, fmt->stride);
   7868 	} else {
   7869 		KASSERTMSG(fmt->stride % NBBY == 0,
   7870 		    "called from %s: fmt->stride=%d", where, fmt->stride);
   7871 	}
   7872 	KASSERTMSG(fmt->precision <= fmt->stride,
   7873 	    "called from %s: fmt->precision=%d fmt->stride=%d",
   7874 	    where, fmt->precision, fmt->stride);
   7875 	KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
   7876 	    "called from %s: fmt->channels=%d", where, fmt->channels);
   7877 
   7878 	/* XXX No check for encodings? */
   7879 }
   7880 
   7881 void
   7882 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
   7883 {
   7884 
   7885 	KASSERT(arg != NULL);
   7886 	KASSERT(arg->src != NULL);
   7887 	KASSERT(arg->dst != NULL);
   7888 	audio_diagnostic_format2(where, arg->srcfmt);
   7889 	audio_diagnostic_format2(where, arg->dstfmt);
   7890 	KASSERT(arg->count > 0);
   7891 }
   7892 
   7893 void
   7894 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
   7895 {
   7896 
   7897 	KASSERTMSG(ring, "called from %s", where);
   7898 	audio_diagnostic_format2(where, &ring->fmt);
   7899 	KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
   7900 	    "called from %s: ring->capacity=%d", where, ring->capacity);
   7901 	KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
   7902 	    "called from %s: ring->used=%d ring->capacity=%d",
   7903 	    where, ring->used, ring->capacity);
   7904 	if (ring->capacity == 0) {
   7905 		KASSERTMSG(ring->mem == NULL,
   7906 		    "called from %s: capacity == 0 but mem != NULL", where);
   7907 	} else {
   7908 		KASSERTMSG(ring->mem != NULL,
   7909 		    "called from %s: capacity != 0 but mem == NULL", where);
   7910 		KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
   7911 		    "called from %s: ring->head=%d ring->capacity=%d",
   7912 		    where, ring->head, ring->capacity);
   7913 	}
   7914 }
   7915 #endif /* DIAGNOSTIC */
   7916 
   7917 
   7918 /*
   7919  * Mixer driver
   7920  */
   7921 
   7922 /*
   7923  * Must be called without sc_lock held.
   7924  */
   7925 int
   7926 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
   7927 	struct lwp *l)
   7928 {
   7929 	struct file *fp;
   7930 	audio_file_t *af;
   7931 	int error, fd;
   7932 
   7933 	TRACE(1, "flags=0x%x", flags);
   7934 
   7935 	error = fd_allocfile(&fp, &fd);
   7936 	if (error)
   7937 		return error;
   7938 
   7939 	af = kmem_zalloc(sizeof(*af), KM_SLEEP);
   7940 	af->sc = sc;
   7941 	af->dev = dev;
   7942 
   7943 	error = fd_clone(fp, fd, flags, &audio_fileops, af);
   7944 	KASSERT(error == EMOVEFD);
   7945 
   7946 	return error;
   7947 }
   7948 
   7949 /*
   7950  * Add a process to those to be signalled on mixer activity.
   7951  * If the process has already been added, do nothing.
   7952  * Must be called with sc_exlock held and without sc_lock held.
   7953  */
   7954 static void
   7955 mixer_async_add(struct audio_softc *sc, pid_t pid)
   7956 {
   7957 	int i;
   7958 
   7959 	KASSERT(sc->sc_exlock);
   7960 
   7961 	/* If already exists, returns without doing anything. */
   7962 	for (i = 0; i < sc->sc_am_used; i++) {
   7963 		if (sc->sc_am[i] == pid)
   7964 			return;
   7965 	}
   7966 
   7967 	/* Extend array if necessary. */
   7968 	if (sc->sc_am_used >= sc->sc_am_capacity) {
   7969 		sc->sc_am_capacity += AM_CAPACITY;
   7970 		sc->sc_am = kern_realloc(sc->sc_am,
   7971 		    sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
   7972 		TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
   7973 	}
   7974 
   7975 	TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
   7976 	sc->sc_am[sc->sc_am_used++] = pid;
   7977 }
   7978 
   7979 /*
   7980  * Remove a process from those to be signalled on mixer activity.
   7981  * If the process has not been added, do nothing.
   7982  * Must be called with sc_exlock held and without sc_lock held.
   7983  */
   7984 static void
   7985 mixer_async_remove(struct audio_softc *sc, pid_t pid)
   7986 {
   7987 	int i;
   7988 
   7989 	KASSERT(sc->sc_exlock);
   7990 
   7991 	for (i = 0; i < sc->sc_am_used; i++) {
   7992 		if (sc->sc_am[i] == pid) {
   7993 			sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
   7994 			TRACE(2, "am[%d](%d) removed, used=%d",
   7995 			    i, (int)pid, sc->sc_am_used);
   7996 
   7997 			/* Empty array if no longer necessary. */
   7998 			if (sc->sc_am_used == 0) {
   7999 				kern_free(sc->sc_am);
   8000 				sc->sc_am = NULL;
   8001 				sc->sc_am_capacity = 0;
   8002 				TRACE(2, "released");
   8003 			}
   8004 			return;
   8005 		}
   8006 	}
   8007 }
   8008 
   8009 /*
   8010  * Signal all processes waiting for the mixer.
   8011  * Must be called with sc_exlock held.
   8012  */
   8013 static void
   8014 mixer_signal(struct audio_softc *sc)
   8015 {
   8016 	proc_t *p;
   8017 	int i;
   8018 
   8019 	KASSERT(sc->sc_exlock);
   8020 
   8021 	for (i = 0; i < sc->sc_am_used; i++) {
   8022 		mutex_enter(&proc_lock);
   8023 		p = proc_find(sc->sc_am[i]);
   8024 		if (p)
   8025 			psignal(p, SIGIO);
   8026 		mutex_exit(&proc_lock);
   8027 	}
   8028 }
   8029 
   8030 /*
   8031  * Close a mixer device
   8032  */
   8033 int
   8034 mixer_close(struct audio_softc *sc, audio_file_t *file)
   8035 {
   8036 	int error;
   8037 
   8038 	error = audio_exlock_enter(sc);
   8039 	if (error)
   8040 		return error;
   8041 	TRACE(1, "");
   8042 	mixer_async_remove(sc, curproc->p_pid);
   8043 	audio_exlock_exit(sc);
   8044 
   8045 	return 0;
   8046 }
   8047 
   8048 /*
   8049  * Must be called without sc_lock nor sc_exlock held.
   8050  */
   8051 int
   8052 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
   8053 	struct lwp *l)
   8054 {
   8055 	mixer_devinfo_t *mi;
   8056 	mixer_ctrl_t *mc;
   8057 	int error;
   8058 
   8059 	TRACE(2, "(%lu,'%c',%lu)",
   8060 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
   8061 	error = EINVAL;
   8062 
   8063 	/* we can return cached values if we are sleeping */
   8064 	if (cmd != AUDIO_MIXER_READ) {
   8065 		mutex_enter(sc->sc_lock);
   8066 		device_active(sc->sc_dev, DVA_SYSTEM);
   8067 		mutex_exit(sc->sc_lock);
   8068 	}
   8069 
   8070 	switch (cmd) {
   8071 	case FIOASYNC:
   8072 		error = audio_exlock_enter(sc);
   8073 		if (error)
   8074 			break;
   8075 		if (*(int *)addr) {
   8076 			mixer_async_add(sc, curproc->p_pid);
   8077 		} else {
   8078 			mixer_async_remove(sc, curproc->p_pid);
   8079 		}
   8080 		audio_exlock_exit(sc);
   8081 		break;
   8082 
   8083 	case AUDIO_GETDEV:
   8084 		TRACE(2, "AUDIO_GETDEV");
   8085 		mutex_enter(sc->sc_lock);
   8086 		error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
   8087 		mutex_exit(sc->sc_lock);
   8088 		break;
   8089 
   8090 	case AUDIO_MIXER_DEVINFO:
   8091 		TRACE(2, "AUDIO_MIXER_DEVINFO");
   8092 		mi = (mixer_devinfo_t *)addr;
   8093 
   8094 		mi->un.v.delta = 0; /* default */
   8095 		mutex_enter(sc->sc_lock);
   8096 		error = audio_query_devinfo(sc, mi);
   8097 		mutex_exit(sc->sc_lock);
   8098 		break;
   8099 
   8100 	case AUDIO_MIXER_READ:
   8101 		TRACE(2, "AUDIO_MIXER_READ");
   8102 		mc = (mixer_ctrl_t *)addr;
   8103 
   8104 		error = audio_exlock_mutex_enter(sc);
   8105 		if (error)
   8106 			break;
   8107 		if (device_is_active(sc->hw_dev))
   8108 			error = audio_get_port(sc, mc);
   8109 		else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
   8110 			error = ENXIO;
   8111 		else {
   8112 			int dev = mc->dev;
   8113 			memcpy(mc, &sc->sc_mixer_state[dev],
   8114 			    sizeof(mixer_ctrl_t));
   8115 			error = 0;
   8116 		}
   8117 		audio_exlock_mutex_exit(sc);
   8118 		break;
   8119 
   8120 	case AUDIO_MIXER_WRITE:
   8121 		TRACE(2, "AUDIO_MIXER_WRITE");
   8122 		error = audio_exlock_mutex_enter(sc);
   8123 		if (error)
   8124 			break;
   8125 		error = audio_set_port(sc, (mixer_ctrl_t *)addr);
   8126 		if (error) {
   8127 			audio_exlock_mutex_exit(sc);
   8128 			break;
   8129 		}
   8130 
   8131 		if (sc->hw_if->commit_settings) {
   8132 			error = sc->hw_if->commit_settings(sc->hw_hdl);
   8133 			if (error) {
   8134 				audio_exlock_mutex_exit(sc);
   8135 				break;
   8136 			}
   8137 		}
   8138 		mutex_exit(sc->sc_lock);
   8139 		mixer_signal(sc);
   8140 		audio_exlock_exit(sc);
   8141 		break;
   8142 
   8143 	default:
   8144 		if (sc->hw_if->dev_ioctl) {
   8145 			mutex_enter(sc->sc_lock);
   8146 			error = sc->hw_if->dev_ioctl(sc->hw_hdl,
   8147 			    cmd, addr, flag, l);
   8148 			mutex_exit(sc->sc_lock);
   8149 		} else
   8150 			error = EINVAL;
   8151 		break;
   8152 	}
   8153 	TRACE(2, "(%lu,'%c',%lu) result %d",
   8154 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
   8155 	return error;
   8156 }
   8157 
   8158 /*
   8159  * Must be called with sc_lock held.
   8160  */
   8161 int
   8162 au_portof(struct audio_softc *sc, char *name, int class)
   8163 {
   8164 	mixer_devinfo_t mi;
   8165 
   8166 	KASSERT(mutex_owned(sc->sc_lock));
   8167 
   8168 	for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
   8169 		if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
   8170 			return mi.index;
   8171 	}
   8172 	return -1;
   8173 }
   8174 
   8175 /*
   8176  * Must be called with sc_lock held.
   8177  */
   8178 void
   8179 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
   8180 	mixer_devinfo_t *mi, const struct portname *tbl)
   8181 {
   8182 	int i, j;
   8183 
   8184 	KASSERT(mutex_owned(sc->sc_lock));
   8185 
   8186 	ports->index = mi->index;
   8187 	if (mi->type == AUDIO_MIXER_ENUM) {
   8188 		ports->isenum = true;
   8189 		for(i = 0; tbl[i].name; i++)
   8190 		    for(j = 0; j < mi->un.e.num_mem; j++)
   8191 			if (strcmp(mi->un.e.member[j].label.name,
   8192 						    tbl[i].name) == 0) {
   8193 				ports->allports |= tbl[i].mask;
   8194 				ports->aumask[ports->nports] = tbl[i].mask;
   8195 				ports->misel[ports->nports] =
   8196 				    mi->un.e.member[j].ord;
   8197 				ports->miport[ports->nports] =
   8198 				    au_portof(sc, mi->un.e.member[j].label.name,
   8199 				    mi->mixer_class);
   8200 				if (ports->mixerout != -1 &&
   8201 				    ports->miport[ports->nports] != -1)
   8202 					ports->isdual = true;
   8203 				++ports->nports;
   8204 			}
   8205 	} else if (mi->type == AUDIO_MIXER_SET) {
   8206 		for(i = 0; tbl[i].name; i++)
   8207 		    for(j = 0; j < mi->un.s.num_mem; j++)
   8208 			if (strcmp(mi->un.s.member[j].label.name,
   8209 						tbl[i].name) == 0) {
   8210 				ports->allports |= tbl[i].mask;
   8211 				ports->aumask[ports->nports] = tbl[i].mask;
   8212 				ports->misel[ports->nports] =
   8213 				    mi->un.s.member[j].mask;
   8214 				ports->miport[ports->nports] =
   8215 				    au_portof(sc, mi->un.s.member[j].label.name,
   8216 				    mi->mixer_class);
   8217 				++ports->nports;
   8218 			}
   8219 	}
   8220 }
   8221 
   8222 /*
   8223  * Must be called with sc_lock && sc_exlock held.
   8224  */
   8225 int
   8226 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
   8227 {
   8228 
   8229 	KASSERT(mutex_owned(sc->sc_lock));
   8230 	KASSERT(sc->sc_exlock);
   8231 
   8232 	ct->type = AUDIO_MIXER_VALUE;
   8233 	ct->un.value.num_channels = 2;
   8234 	ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
   8235 	ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
   8236 	if (audio_set_port(sc, ct) == 0)
   8237 		return 0;
   8238 	ct->un.value.num_channels = 1;
   8239 	ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
   8240 	return audio_set_port(sc, ct);
   8241 }
   8242 
   8243 /*
   8244  * Must be called with sc_lock && sc_exlock held.
   8245  */
   8246 int
   8247 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
   8248 {
   8249 	int error;
   8250 
   8251 	KASSERT(mutex_owned(sc->sc_lock));
   8252 	KASSERT(sc->sc_exlock);
   8253 
   8254 	ct->un.value.num_channels = 2;
   8255 	if (audio_get_port(sc, ct) == 0) {
   8256 		*l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   8257 		*r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   8258 	} else {
   8259 		ct->un.value.num_channels = 1;
   8260 		error = audio_get_port(sc, ct);
   8261 		if (error)
   8262 			return error;
   8263 		*r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   8264 	}
   8265 	return 0;
   8266 }
   8267 
   8268 /*
   8269  * Must be called with sc_lock && sc_exlock held.
   8270  */
   8271 int
   8272 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
   8273 	int gain, int balance)
   8274 {
   8275 	mixer_ctrl_t ct;
   8276 	int i, error;
   8277 	int l, r;
   8278 	u_int mask;
   8279 	int nset;
   8280 
   8281 	KASSERT(mutex_owned(sc->sc_lock));
   8282 	KASSERT(sc->sc_exlock);
   8283 
   8284 	if (balance == AUDIO_MID_BALANCE) {
   8285 		l = r = gain;
   8286 	} else if (balance < AUDIO_MID_BALANCE) {
   8287 		l = gain;
   8288 		r = (balance * gain) / AUDIO_MID_BALANCE;
   8289 	} else {
   8290 		r = gain;
   8291 		l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
   8292 		    / AUDIO_MID_BALANCE;
   8293 	}
   8294 	TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
   8295 
   8296 	if (ports->index == -1) {
   8297 	usemaster:
   8298 		if (ports->master == -1)
   8299 			return 0; /* just ignore it silently */
   8300 		ct.dev = ports->master;
   8301 		error = au_set_lr_value(sc, &ct, l, r);
   8302 	} else {
   8303 		ct.dev = ports->index;
   8304 		if (ports->isenum) {
   8305 			ct.type = AUDIO_MIXER_ENUM;
   8306 			error = audio_get_port(sc, &ct);
   8307 			if (error)
   8308 				return error;
   8309 			if (ports->isdual) {
   8310 				if (ports->cur_port == -1)
   8311 					ct.dev = ports->master;
   8312 				else
   8313 					ct.dev = ports->miport[ports->cur_port];
   8314 				error = au_set_lr_value(sc, &ct, l, r);
   8315 			} else {
   8316 				for(i = 0; i < ports->nports; i++)
   8317 				    if (ports->misel[i] == ct.un.ord) {
   8318 					    ct.dev = ports->miport[i];
   8319 					    if (ct.dev == -1 ||
   8320 						au_set_lr_value(sc, &ct, l, r))
   8321 						    goto usemaster;
   8322 					    else
   8323 						    break;
   8324 				    }
   8325 			}
   8326 		} else {
   8327 			ct.type = AUDIO_MIXER_SET;
   8328 			error = audio_get_port(sc, &ct);
   8329 			if (error)
   8330 				return error;
   8331 			mask = ct.un.mask;
   8332 			nset = 0;
   8333 			for(i = 0; i < ports->nports; i++) {
   8334 				if (ports->misel[i] & mask) {
   8335 				    ct.dev = ports->miport[i];
   8336 				    if (ct.dev != -1 &&
   8337 					au_set_lr_value(sc, &ct, l, r) == 0)
   8338 					    nset++;
   8339 				}
   8340 			}
   8341 			if (nset == 0)
   8342 				goto usemaster;
   8343 		}
   8344 	}
   8345 	if (!error)
   8346 		mixer_signal(sc);
   8347 	return error;
   8348 }
   8349 
   8350 /*
   8351  * Must be called with sc_lock && sc_exlock held.
   8352  */
   8353 void
   8354 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
   8355 	u_int *pgain, u_char *pbalance)
   8356 {
   8357 	mixer_ctrl_t ct;
   8358 	int i, l, r, n;
   8359 	int lgain, rgain;
   8360 
   8361 	KASSERT(mutex_owned(sc->sc_lock));
   8362 	KASSERT(sc->sc_exlock);
   8363 
   8364 	lgain = AUDIO_MAX_GAIN / 2;
   8365 	rgain = AUDIO_MAX_GAIN / 2;
   8366 	if (ports->index == -1) {
   8367 	usemaster:
   8368 		if (ports->master == -1)
   8369 			goto bad;
   8370 		ct.dev = ports->master;
   8371 		ct.type = AUDIO_MIXER_VALUE;
   8372 		if (au_get_lr_value(sc, &ct, &lgain, &rgain))
   8373 			goto bad;
   8374 	} else {
   8375 		ct.dev = ports->index;
   8376 		if (ports->isenum) {
   8377 			ct.type = AUDIO_MIXER_ENUM;
   8378 			if (audio_get_port(sc, &ct))
   8379 				goto bad;
   8380 			ct.type = AUDIO_MIXER_VALUE;
   8381 			if (ports->isdual) {
   8382 				if (ports->cur_port == -1)
   8383 					ct.dev = ports->master;
   8384 				else
   8385 					ct.dev = ports->miport[ports->cur_port];
   8386 				au_get_lr_value(sc, &ct, &lgain, &rgain);
   8387 			} else {
   8388 				for(i = 0; i < ports->nports; i++)
   8389 				    if (ports->misel[i] == ct.un.ord) {
   8390 					    ct.dev = ports->miport[i];
   8391 					    if (ct.dev == -1 ||
   8392 						au_get_lr_value(sc, &ct,
   8393 								&lgain, &rgain))
   8394 						    goto usemaster;
   8395 					    else
   8396 						    break;
   8397 				    }
   8398 			}
   8399 		} else {
   8400 			ct.type = AUDIO_MIXER_SET;
   8401 			if (audio_get_port(sc, &ct))
   8402 				goto bad;
   8403 			ct.type = AUDIO_MIXER_VALUE;
   8404 			lgain = rgain = n = 0;
   8405 			for(i = 0; i < ports->nports; i++) {
   8406 				if (ports->misel[i] & ct.un.mask) {
   8407 					ct.dev = ports->miport[i];
   8408 					if (ct.dev == -1 ||
   8409 					    au_get_lr_value(sc, &ct, &l, &r))
   8410 						goto usemaster;
   8411 					else {
   8412 						lgain += l;
   8413 						rgain += r;
   8414 						n++;
   8415 					}
   8416 				}
   8417 			}
   8418 			if (n != 0) {
   8419 				lgain /= n;
   8420 				rgain /= n;
   8421 			}
   8422 		}
   8423 	}
   8424 bad:
   8425 	if (lgain == rgain) {	/* handles lgain==rgain==0 */
   8426 		*pgain = lgain;
   8427 		*pbalance = AUDIO_MID_BALANCE;
   8428 	} else if (lgain < rgain) {
   8429 		*pgain = rgain;
   8430 		/* balance should be > AUDIO_MID_BALANCE */
   8431 		*pbalance = AUDIO_RIGHT_BALANCE -
   8432 			(AUDIO_MID_BALANCE * lgain) / rgain;
   8433 	} else /* lgain > rgain */ {
   8434 		*pgain = lgain;
   8435 		/* balance should be < AUDIO_MID_BALANCE */
   8436 		*pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
   8437 	}
   8438 }
   8439 
   8440 /*
   8441  * Must be called with sc_lock && sc_exlock held.
   8442  */
   8443 int
   8444 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
   8445 {
   8446 	mixer_ctrl_t ct;
   8447 	int i, error, use_mixerout;
   8448 
   8449 	KASSERT(mutex_owned(sc->sc_lock));
   8450 	KASSERT(sc->sc_exlock);
   8451 
   8452 	use_mixerout = 1;
   8453 	if (port == 0) {
   8454 		if (ports->allports == 0)
   8455 			return 0;		/* Allow this special case. */
   8456 		else if (ports->isdual) {
   8457 			if (ports->cur_port == -1) {
   8458 				return 0;
   8459 			} else {
   8460 				port = ports->aumask[ports->cur_port];
   8461 				ports->cur_port = -1;
   8462 				use_mixerout = 0;
   8463 			}
   8464 		}
   8465 	}
   8466 	if (ports->index == -1)
   8467 		return EINVAL;
   8468 	ct.dev = ports->index;
   8469 	if (ports->isenum) {
   8470 		if (port & (port-1))
   8471 			return EINVAL; /* Only one port allowed */
   8472 		ct.type = AUDIO_MIXER_ENUM;
   8473 		error = EINVAL;
   8474 		for(i = 0; i < ports->nports; i++)
   8475 			if (ports->aumask[i] == port) {
   8476 				if (ports->isdual && use_mixerout) {
   8477 					ct.un.ord = ports->mixerout;
   8478 					ports->cur_port = i;
   8479 				} else {
   8480 					ct.un.ord = ports->misel[i];
   8481 				}
   8482 				error = audio_set_port(sc, &ct);
   8483 				break;
   8484 			}
   8485 	} else {
   8486 		ct.type = AUDIO_MIXER_SET;
   8487 		ct.un.mask = 0;
   8488 		for(i = 0; i < ports->nports; i++)
   8489 			if (ports->aumask[i] & port)
   8490 				ct.un.mask |= ports->misel[i];
   8491 		if (port != 0 && ct.un.mask == 0)
   8492 			error = EINVAL;
   8493 		else
   8494 			error = audio_set_port(sc, &ct);
   8495 	}
   8496 	if (!error)
   8497 		mixer_signal(sc);
   8498 	return error;
   8499 }
   8500 
   8501 /*
   8502  * Must be called with sc_lock && sc_exlock held.
   8503  */
   8504 int
   8505 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
   8506 {
   8507 	mixer_ctrl_t ct;
   8508 	int i, aumask;
   8509 
   8510 	KASSERT(mutex_owned(sc->sc_lock));
   8511 	KASSERT(sc->sc_exlock);
   8512 
   8513 	if (ports->index == -1)
   8514 		return 0;
   8515 	ct.dev = ports->index;
   8516 	ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
   8517 	if (audio_get_port(sc, &ct))
   8518 		return 0;
   8519 	aumask = 0;
   8520 	if (ports->isenum) {
   8521 		if (ports->isdual && ports->cur_port != -1) {
   8522 			if (ports->mixerout == ct.un.ord)
   8523 				aumask = ports->aumask[ports->cur_port];
   8524 			else
   8525 				ports->cur_port = -1;
   8526 		}
   8527 		if (aumask == 0)
   8528 			for(i = 0; i < ports->nports; i++)
   8529 				if (ports->misel[i] == ct.un.ord)
   8530 					aumask = ports->aumask[i];
   8531 	} else {
   8532 		for(i = 0; i < ports->nports; i++)
   8533 			if (ct.un.mask & ports->misel[i])
   8534 				aumask |= ports->aumask[i];
   8535 	}
   8536 	return aumask;
   8537 }
   8538 
   8539 /*
   8540  * It returns 0 if success, otherwise errno.
   8541  * Must be called only if sc->sc_monitor_port != -1.
   8542  * Must be called with sc_lock && sc_exlock held.
   8543  */
   8544 static int
   8545 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
   8546 {
   8547 	mixer_ctrl_t ct;
   8548 
   8549 	KASSERT(mutex_owned(sc->sc_lock));
   8550 	KASSERT(sc->sc_exlock);
   8551 
   8552 	ct.dev = sc->sc_monitor_port;
   8553 	ct.type = AUDIO_MIXER_VALUE;
   8554 	ct.un.value.num_channels = 1;
   8555 	ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
   8556 	return audio_set_port(sc, &ct);
   8557 }
   8558 
   8559 /*
   8560  * It returns monitor gain if success, otherwise -1.
   8561  * Must be called only if sc->sc_monitor_port != -1.
   8562  * Must be called with sc_lock && sc_exlock held.
   8563  */
   8564 static int
   8565 au_get_monitor_gain(struct audio_softc *sc)
   8566 {
   8567 	mixer_ctrl_t ct;
   8568 
   8569 	KASSERT(mutex_owned(sc->sc_lock));
   8570 	KASSERT(sc->sc_exlock);
   8571 
   8572 	ct.dev = sc->sc_monitor_port;
   8573 	ct.type = AUDIO_MIXER_VALUE;
   8574 	ct.un.value.num_channels = 1;
   8575 	if (audio_get_port(sc, &ct))
   8576 		return -1;
   8577 	return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
   8578 }
   8579 
   8580 /*
   8581  * Must be called with sc_lock && sc_exlock held.
   8582  */
   8583 static int
   8584 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
   8585 {
   8586 
   8587 	KASSERT(mutex_owned(sc->sc_lock));
   8588 	KASSERT(sc->sc_exlock);
   8589 
   8590 	return sc->hw_if->set_port(sc->hw_hdl, mc);
   8591 }
   8592 
   8593 /*
   8594  * Must be called with sc_lock && sc_exlock held.
   8595  */
   8596 static int
   8597 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
   8598 {
   8599 
   8600 	KASSERT(mutex_owned(sc->sc_lock));
   8601 	KASSERT(sc->sc_exlock);
   8602 
   8603 	return sc->hw_if->get_port(sc->hw_hdl, mc);
   8604 }
   8605 
   8606 /*
   8607  * Must be called with sc_lock && sc_exlock held.
   8608  */
   8609 static void
   8610 audio_mixer_capture(struct audio_softc *sc)
   8611 {
   8612 	mixer_devinfo_t mi;
   8613 	mixer_ctrl_t *mc;
   8614 
   8615 	KASSERT(mutex_owned(sc->sc_lock));
   8616 	KASSERT(sc->sc_exlock);
   8617 
   8618 	for (mi.index = 0;; mi.index++) {
   8619 		if (audio_query_devinfo(sc, &mi) != 0)
   8620 			break;
   8621 		KASSERT(mi.index < sc->sc_nmixer_states);
   8622 		if (mi.type == AUDIO_MIXER_CLASS)
   8623 			continue;
   8624 		mc = &sc->sc_mixer_state[mi.index];
   8625 		mc->dev = mi.index;
   8626 		mc->type = mi.type;
   8627 		mc->un.value.num_channels = mi.un.v.num_channels;
   8628 		(void)audio_get_port(sc, mc);
   8629 	}
   8630 
   8631 	return;
   8632 }
   8633 
   8634 /*
   8635  * Must be called with sc_lock && sc_exlock held.
   8636  */
   8637 static void
   8638 audio_mixer_restore(struct audio_softc *sc)
   8639 {
   8640 	mixer_devinfo_t mi;
   8641 	mixer_ctrl_t *mc;
   8642 
   8643 	KASSERT(mutex_owned(sc->sc_lock));
   8644 	KASSERT(sc->sc_exlock);
   8645 
   8646 	for (mi.index = 0; ; mi.index++) {
   8647 		if (audio_query_devinfo(sc, &mi) != 0)
   8648 			break;
   8649 		if (mi.type == AUDIO_MIXER_CLASS)
   8650 			continue;
   8651 		mc = &sc->sc_mixer_state[mi.index];
   8652 		(void)audio_set_port(sc, mc);
   8653 	}
   8654 	if (sc->hw_if->commit_settings)
   8655 		sc->hw_if->commit_settings(sc->hw_hdl);
   8656 
   8657 	return;
   8658 }
   8659 
   8660 static void
   8661 audio_volume_down(device_t dv)
   8662 {
   8663 	struct audio_softc *sc = device_private(dv);
   8664 	mixer_devinfo_t mi;
   8665 	int newgain;
   8666 	u_int gain;
   8667 	u_char balance;
   8668 
   8669 	if (audio_exlock_mutex_enter(sc) != 0)
   8670 		return;
   8671 	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
   8672 		mi.index = sc->sc_outports.master;
   8673 		mi.un.v.delta = 0;
   8674 		if (audio_query_devinfo(sc, &mi) == 0) {
   8675 			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
   8676 			newgain = gain - mi.un.v.delta;
   8677 			if (newgain < AUDIO_MIN_GAIN)
   8678 				newgain = AUDIO_MIN_GAIN;
   8679 			au_set_gain(sc, &sc->sc_outports, newgain, balance);
   8680 		}
   8681 	}
   8682 	audio_exlock_mutex_exit(sc);
   8683 }
   8684 
   8685 static void
   8686 audio_volume_up(device_t dv)
   8687 {
   8688 	struct audio_softc *sc = device_private(dv);
   8689 	mixer_devinfo_t mi;
   8690 	u_int gain, newgain;
   8691 	u_char balance;
   8692 
   8693 	if (audio_exlock_mutex_enter(sc) != 0)
   8694 		return;
   8695 	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
   8696 		mi.index = sc->sc_outports.master;
   8697 		mi.un.v.delta = 0;
   8698 		if (audio_query_devinfo(sc, &mi) == 0) {
   8699 			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
   8700 			newgain = gain + mi.un.v.delta;
   8701 			if (newgain > AUDIO_MAX_GAIN)
   8702 				newgain = AUDIO_MAX_GAIN;
   8703 			au_set_gain(sc, &sc->sc_outports, newgain, balance);
   8704 		}
   8705 	}
   8706 	audio_exlock_mutex_exit(sc);
   8707 }
   8708 
   8709 static void
   8710 audio_volume_toggle(device_t dv)
   8711 {
   8712 	struct audio_softc *sc = device_private(dv);
   8713 	u_int gain, newgain;
   8714 	u_char balance;
   8715 
   8716 	if (audio_exlock_mutex_enter(sc) != 0)
   8717 		return;
   8718 	au_get_gain(sc, &sc->sc_outports, &gain, &balance);
   8719 	if (gain != 0) {
   8720 		sc->sc_lastgain = gain;
   8721 		newgain = 0;
   8722 	} else
   8723 		newgain = sc->sc_lastgain;
   8724 	au_set_gain(sc, &sc->sc_outports, newgain, balance);
   8725 	audio_exlock_mutex_exit(sc);
   8726 }
   8727 
   8728 /*
   8729  * Must be called with sc_lock held.
   8730  */
   8731 static int
   8732 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
   8733 {
   8734 
   8735 	KASSERT(mutex_owned(sc->sc_lock));
   8736 
   8737 	return sc->hw_if->query_devinfo(sc->hw_hdl, di);
   8738 }
   8739 
   8740 #endif /* NAUDIO > 0 */
   8741 
   8742 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
   8743 #include <sys/param.h>
   8744 #include <sys/systm.h>
   8745 #include <sys/device.h>
   8746 #include <sys/audioio.h>
   8747 #include <dev/audio/audio_if.h>
   8748 #endif
   8749 
   8750 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
   8751 int
   8752 audioprint(void *aux, const char *pnp)
   8753 {
   8754 	struct audio_attach_args *arg;
   8755 	const char *type;
   8756 
   8757 	if (pnp != NULL) {
   8758 		arg = aux;
   8759 		switch (arg->type) {
   8760 		case AUDIODEV_TYPE_AUDIO:
   8761 			type = "audio";
   8762 			break;
   8763 		case AUDIODEV_TYPE_MIDI:
   8764 			type = "midi";
   8765 			break;
   8766 		case AUDIODEV_TYPE_OPL:
   8767 			type = "opl";
   8768 			break;
   8769 		case AUDIODEV_TYPE_MPU:
   8770 			type = "mpu";
   8771 			break;
   8772 		default:
   8773 			panic("audioprint: unknown type %d", arg->type);
   8774 		}
   8775 		aprint_normal("%s at %s", type, pnp);
   8776 	}
   8777 	return UNCONF;
   8778 }
   8779 
   8780 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
   8781 
   8782 #ifdef _MODULE
   8783 
   8784 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
   8785 
   8786 #include "ioconf.c"
   8787 
   8788 #endif
   8789 
   8790 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
   8791 
   8792 static int
   8793 audio_modcmd(modcmd_t cmd, void *arg)
   8794 {
   8795 	int error = 0;
   8796 
   8797 	switch (cmd) {
   8798 	case MODULE_CMD_INIT:
   8799 		/* XXX interrupt level? */
   8800 		audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
   8801 #ifdef _MODULE
   8802 		error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
   8803 		    &audio_cdevsw, &audio_cmajor);
   8804 		if (error)
   8805 			break;
   8806 
   8807 		error = config_init_component(cfdriver_ioconf_audio,
   8808 		    cfattach_ioconf_audio, cfdata_ioconf_audio);
   8809 		if (error) {
   8810 			devsw_detach(NULL, &audio_cdevsw);
   8811 		}
   8812 #endif
   8813 		break;
   8814 	case MODULE_CMD_FINI:
   8815 #ifdef _MODULE
   8816 		devsw_detach(NULL, &audio_cdevsw);
   8817 		error = config_fini_component(cfdriver_ioconf_audio,
   8818 		   cfattach_ioconf_audio, cfdata_ioconf_audio);
   8819 		if (error)
   8820 			devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
   8821 			    &audio_cdevsw, &audio_cmajor);
   8822 #endif
   8823 		psref_class_destroy(audio_psref_class);
   8824 		break;
   8825 	default:
   8826 		error = ENOTTY;
   8827 		break;
   8828 	}
   8829 
   8830 	return error;
   8831 }
   8832