audio.c revision 1.75 1 /* $NetBSD: audio.c,v 1.75 2020/05/29 03:09:14 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - - Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.75 2020/05/29 03:09:14 isaki Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #include <sys/types.h>
151 #include <sys/param.h>
152 #include <sys/atomic.h>
153 #include <sys/audioio.h>
154 #include <sys/conf.h>
155 #include <sys/cpu.h>
156 #include <sys/device.h>
157 #include <sys/fcntl.h>
158 #include <sys/file.h>
159 #include <sys/filedesc.h>
160 #include <sys/intr.h>
161 #include <sys/ioctl.h>
162 #include <sys/kauth.h>
163 #include <sys/kernel.h>
164 #include <sys/kmem.h>
165 #include <sys/malloc.h>
166 #include <sys/mman.h>
167 #include <sys/module.h>
168 #include <sys/poll.h>
169 #include <sys/proc.h>
170 #include <sys/queue.h>
171 #include <sys/select.h>
172 #include <sys/signalvar.h>
173 #include <sys/stat.h>
174 #include <sys/sysctl.h>
175 #include <sys/systm.h>
176 #include <sys/syslog.h>
177 #include <sys/vnode.h>
178
179 #include <dev/audio/audio_if.h>
180 #include <dev/audio/audiovar.h>
181 #include <dev/audio/audiodef.h>
182 #include <dev/audio/linear.h>
183 #include <dev/audio/mulaw.h>
184
185 #include <machine/endian.h>
186
187 #include <uvm/uvm_extern.h>
188
189 #include "ioconf.h"
190
191 /*
192 * 0: No debug logs
193 * 1: action changes like open/close/set_format...
194 * 2: + normal operations like read/write/ioctl...
195 * 3: + TRACEs except interrupt
196 * 4: + TRACEs including interrupt
197 */
198 //#define AUDIO_DEBUG 1
199
200 #if defined(AUDIO_DEBUG)
201
202 int audiodebug = AUDIO_DEBUG;
203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
204 const char *, va_list);
205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
206 __printflike(3, 4);
207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
208 __printflike(3, 4);
209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
210 __printflike(3, 4);
211
212 /* XXX sloppy memory logger */
213 static void audio_mlog_init(void);
214 static void audio_mlog_free(void);
215 static void audio_mlog_softintr(void *);
216 extern void audio_mlog_flush(void);
217 extern void audio_mlog_printf(const char *, ...);
218
219 static int mlog_refs; /* reference counter */
220 static char *mlog_buf[2]; /* double buffer */
221 static int mlog_buflen; /* buffer length */
222 static int mlog_used; /* used length */
223 static int mlog_full; /* number of dropped lines by buffer full */
224 static int mlog_drop; /* number of dropped lines by busy */
225 static volatile uint32_t mlog_inuse; /* in-use */
226 static int mlog_wpage; /* active page */
227 static void *mlog_sih; /* softint handle */
228
229 static void
230 audio_mlog_init(void)
231 {
232 mlog_refs++;
233 if (mlog_refs > 1)
234 return;
235 mlog_buflen = 4096;
236 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
237 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
238 mlog_used = 0;
239 mlog_full = 0;
240 mlog_drop = 0;
241 mlog_inuse = 0;
242 mlog_wpage = 0;
243 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
244 if (mlog_sih == NULL)
245 printf("%s: softint_establish failed\n", __func__);
246 }
247
248 static void
249 audio_mlog_free(void)
250 {
251 mlog_refs--;
252 if (mlog_refs > 0)
253 return;
254
255 audio_mlog_flush();
256 if (mlog_sih)
257 softint_disestablish(mlog_sih);
258 kmem_free(mlog_buf[0], mlog_buflen);
259 kmem_free(mlog_buf[1], mlog_buflen);
260 }
261
262 /*
263 * Flush memory buffer.
264 * It must not be called from hardware interrupt context.
265 */
266 void
267 audio_mlog_flush(void)
268 {
269 if (mlog_refs == 0)
270 return;
271
272 /* Nothing to do if already in use ? */
273 if (atomic_swap_32(&mlog_inuse, 1) == 1)
274 return;
275
276 int rpage = mlog_wpage;
277 mlog_wpage ^= 1;
278 mlog_buf[mlog_wpage][0] = '\0';
279 mlog_used = 0;
280
281 atomic_swap_32(&mlog_inuse, 0);
282
283 if (mlog_buf[rpage][0] != '\0') {
284 printf("%s", mlog_buf[rpage]);
285 if (mlog_drop > 0)
286 printf("mlog_drop %d\n", mlog_drop);
287 if (mlog_full > 0)
288 printf("mlog_full %d\n", mlog_full);
289 }
290 mlog_full = 0;
291 mlog_drop = 0;
292 }
293
294 static void
295 audio_mlog_softintr(void *cookie)
296 {
297 audio_mlog_flush();
298 }
299
300 void
301 audio_mlog_printf(const char *fmt, ...)
302 {
303 int len;
304 va_list ap;
305
306 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
307 /* already inuse */
308 mlog_drop++;
309 return;
310 }
311
312 va_start(ap, fmt);
313 len = vsnprintf(
314 mlog_buf[mlog_wpage] + mlog_used,
315 mlog_buflen - mlog_used,
316 fmt, ap);
317 va_end(ap);
318
319 mlog_used += len;
320 if (mlog_buflen - mlog_used <= 1) {
321 mlog_full++;
322 }
323
324 atomic_swap_32(&mlog_inuse, 0);
325
326 if (mlog_sih)
327 softint_schedule(mlog_sih);
328 }
329
330 /* trace functions */
331 static void
332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
333 const char *fmt, va_list ap)
334 {
335 char buf[256];
336 int n;
337
338 n = 0;
339 buf[0] = '\0';
340 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
341 funcname, device_unit(sc->sc_dev), header);
342 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
343
344 if (cpu_intr_p()) {
345 audio_mlog_printf("%s\n", buf);
346 } else {
347 audio_mlog_flush();
348 printf("%s\n", buf);
349 }
350 }
351
352 static void
353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
354 {
355 va_list ap;
356
357 va_start(ap, fmt);
358 audio_vtrace(sc, funcname, "", fmt, ap);
359 va_end(ap);
360 }
361
362 static void
363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
364 {
365 char hdr[16];
366 va_list ap;
367
368 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
369 va_start(ap, fmt);
370 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
371 va_end(ap);
372 }
373
374 static void
375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
376 {
377 char hdr[32];
378 char phdr[16], rhdr[16];
379 va_list ap;
380
381 phdr[0] = '\0';
382 rhdr[0] = '\0';
383 if (file->ptrack)
384 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
385 if (file->rtrack)
386 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
387 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
388
389 va_start(ap, fmt);
390 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
391 va_end(ap);
392 }
393
394 #define DPRINTF(n, fmt...) do { \
395 if (audiodebug >= (n)) { \
396 audio_mlog_flush(); \
397 printf(fmt); \
398 } \
399 } while (0)
400 #define TRACE(n, fmt...) do { \
401 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
402 } while (0)
403 #define TRACET(n, t, fmt...) do { \
404 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
405 } while (0)
406 #define TRACEF(n, f, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
408 } while (0)
409
410 struct audio_track_debugbuf {
411 char usrbuf[32];
412 char codec[32];
413 char chvol[32];
414 char chmix[32];
415 char freq[32];
416 char outbuf[32];
417 };
418
419 static void
420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
421 {
422
423 memset(buf, 0, sizeof(*buf));
424
425 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
426 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
427 if (track->freq.filter)
428 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
429 track->freq.srcbuf.head,
430 track->freq.srcbuf.used,
431 track->freq.srcbuf.capacity);
432 if (track->chmix.filter)
433 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
434 track->chmix.srcbuf.used);
435 if (track->chvol.filter)
436 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
437 track->chvol.srcbuf.used);
438 if (track->codec.filter)
439 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
440 track->codec.srcbuf.used);
441 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
442 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
443 }
444 #else
445 #define DPRINTF(n, fmt...) do { } while (0)
446 #define TRACE(n, fmt, ...) do { } while (0)
447 #define TRACET(n, t, fmt, ...) do { } while (0)
448 #define TRACEF(n, f, fmt, ...) do { } while (0)
449 #endif
450
451 #define SPECIFIED(x) ((x) != ~0)
452 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
453
454 /*
455 * Default hardware blocksize in msec.
456 *
457 * We use 10 msec for most modern platforms. This period is good enough to
458 * play audio and video synchronizely.
459 * In contrast, for very old platforms, this is usually too short and too
460 * severe. Also such platforms usually can not play video confortably, so
461 * it's not so important to make the blocksize shorter. If the platform
462 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
463 * uses this instead.
464 *
465 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
466 * configuration file if you wish.
467 */
468 #if !defined(AUDIO_BLK_MS)
469 # if defined(__AUDIO_BLK_MS)
470 # define AUDIO_BLK_MS __AUDIO_BLK_MS
471 # else
472 # define AUDIO_BLK_MS (10)
473 # endif
474 #endif
475
476 /* Device timeout in msec */
477 #define AUDIO_TIMEOUT (3000)
478
479 /* #define AUDIO_PM_IDLE */
480 #ifdef AUDIO_PM_IDLE
481 int audio_idle_timeout = 30;
482 #endif
483
484 /* Number of elements of async mixer's pid */
485 #define AM_CAPACITY (4)
486
487 struct portname {
488 const char *name;
489 int mask;
490 };
491
492 static int audiomatch(device_t, cfdata_t, void *);
493 static void audioattach(device_t, device_t, void *);
494 static int audiodetach(device_t, int);
495 static int audioactivate(device_t, enum devact);
496 static void audiochilddet(device_t, device_t);
497 static int audiorescan(device_t, const char *, const int *);
498
499 static int audio_modcmd(modcmd_t, void *);
500
501 #ifdef AUDIO_PM_IDLE
502 static void audio_idle(void *);
503 static void audio_activity(device_t, devactive_t);
504 #endif
505
506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
507 static bool audio_resume(device_t dv, const pmf_qual_t *);
508 static void audio_volume_down(device_t);
509 static void audio_volume_up(device_t);
510 static void audio_volume_toggle(device_t);
511
512 static void audio_mixer_capture(struct audio_softc *);
513 static void audio_mixer_restore(struct audio_softc *);
514
515 static void audio_softintr_rd(void *);
516 static void audio_softintr_wr(void *);
517
518 static int audio_exlock_mutex_enter(struct audio_softc *);
519 static void audio_exlock_mutex_exit(struct audio_softc *);
520 static int audio_exlock_enter(struct audio_softc *);
521 static void audio_exlock_exit(struct audio_softc *);
522 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
523 static void audio_file_exit(struct audio_softc *, struct psref *);
524 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
525
526 static int audioclose(struct file *);
527 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
528 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
529 static int audioioctl(struct file *, u_long, void *);
530 static int audiopoll(struct file *, int);
531 static int audiokqfilter(struct file *, struct knote *);
532 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
533 struct uvm_object **, int *);
534 static int audiostat(struct file *, struct stat *);
535
536 static void filt_audiowrite_detach(struct knote *);
537 static int filt_audiowrite_event(struct knote *, long);
538 static void filt_audioread_detach(struct knote *);
539 static int filt_audioread_event(struct knote *, long);
540
541 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
542 audio_file_t **);
543 static int audio_close(struct audio_softc *, audio_file_t *);
544 static int audio_unlink(struct audio_softc *, audio_file_t *);
545 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
546 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
547 static void audio_file_clear(struct audio_softc *, audio_file_t *);
548 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
549 struct lwp *, audio_file_t *);
550 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
551 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
552 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
553 struct uvm_object **, int *, audio_file_t *);
554
555 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
556
557 static void audio_pintr(void *);
558 static void audio_rintr(void *);
559
560 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
561
562 static __inline int audio_track_readablebytes(const audio_track_t *);
563 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
564 const struct audio_info *);
565 static int audio_track_setinfo_check(audio_track_t *,
566 audio_format2_t *, const struct audio_prinfo *);
567 static void audio_track_setinfo_water(audio_track_t *,
568 const struct audio_info *);
569 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
570 struct audio_info *);
571 static int audio_hw_set_format(struct audio_softc *, int,
572 const audio_format2_t *, const audio_format2_t *,
573 audio_filter_reg_t *, audio_filter_reg_t *);
574 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
575 audio_file_t *);
576 static bool audio_can_playback(struct audio_softc *);
577 static bool audio_can_capture(struct audio_softc *);
578 static int audio_check_params(audio_format2_t *);
579 static int audio_mixers_init(struct audio_softc *sc, int,
580 const audio_format2_t *, const audio_format2_t *,
581 const audio_filter_reg_t *, const audio_filter_reg_t *);
582 static int audio_select_freq(const struct audio_format *);
583 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
584 static int audio_hw_validate_format(struct audio_softc *, int,
585 const audio_format2_t *);
586 static int audio_mixers_set_format(struct audio_softc *,
587 const struct audio_info *);
588 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
589 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
590 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
591 #if defined(AUDIO_DEBUG)
592 static int audio_sysctl_debug(SYSCTLFN_PROTO);
593 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
594 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
595 #endif
596
597 static void *audio_realloc(void *, size_t);
598 static int audio_realloc_usrbuf(audio_track_t *, int);
599 static void audio_free_usrbuf(audio_track_t *);
600
601 static audio_track_t *audio_track_create(struct audio_softc *,
602 audio_trackmixer_t *);
603 static void audio_track_destroy(audio_track_t *);
604 static audio_filter_t audio_track_get_codec(audio_track_t *,
605 const audio_format2_t *, const audio_format2_t *);
606 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
607 static void audio_track_play(audio_track_t *);
608 static int audio_track_drain(struct audio_softc *, audio_track_t *);
609 static void audio_track_record(audio_track_t *);
610 static void audio_track_clear(struct audio_softc *, audio_track_t *);
611
612 static int audio_mixer_init(struct audio_softc *, int,
613 const audio_format2_t *, const audio_filter_reg_t *);
614 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
615 static void audio_pmixer_start(struct audio_softc *, bool);
616 static void audio_pmixer_process(struct audio_softc *);
617 static void audio_pmixer_agc(audio_trackmixer_t *, int);
618 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
619 static void audio_pmixer_output(struct audio_softc *);
620 static int audio_pmixer_halt(struct audio_softc *);
621 static void audio_rmixer_start(struct audio_softc *);
622 static void audio_rmixer_process(struct audio_softc *);
623 static void audio_rmixer_input(struct audio_softc *);
624 static int audio_rmixer_halt(struct audio_softc *);
625
626 static void mixer_init(struct audio_softc *);
627 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
628 static int mixer_close(struct audio_softc *, audio_file_t *);
629 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
630 static void mixer_async_add(struct audio_softc *, pid_t);
631 static void mixer_async_remove(struct audio_softc *, pid_t);
632 static void mixer_signal(struct audio_softc *);
633
634 static int au_portof(struct audio_softc *, char *, int);
635
636 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
637 mixer_devinfo_t *, const struct portname *);
638 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
639 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
640 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
641 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
642 u_int *, u_char *);
643 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
644 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
645 static int au_set_monitor_gain(struct audio_softc *, int);
646 static int au_get_monitor_gain(struct audio_softc *);
647 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
648 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
649
650 static __inline struct audio_params
651 format2_to_params(const audio_format2_t *f2)
652 {
653 audio_params_t p;
654
655 /* validbits/precision <-> precision/stride */
656 p.sample_rate = f2->sample_rate;
657 p.channels = f2->channels;
658 p.encoding = f2->encoding;
659 p.validbits = f2->precision;
660 p.precision = f2->stride;
661 return p;
662 }
663
664 static __inline audio_format2_t
665 params_to_format2(const struct audio_params *p)
666 {
667 audio_format2_t f2;
668
669 /* precision/stride <-> validbits/precision */
670 f2.sample_rate = p->sample_rate;
671 f2.channels = p->channels;
672 f2.encoding = p->encoding;
673 f2.precision = p->validbits;
674 f2.stride = p->precision;
675 return f2;
676 }
677
678 /* Return true if this track is a playback track. */
679 static __inline bool
680 audio_track_is_playback(const audio_track_t *track)
681 {
682
683 return ((track->mode & AUMODE_PLAY) != 0);
684 }
685
686 /* Return true if this track is a recording track. */
687 static __inline bool
688 audio_track_is_record(const audio_track_t *track)
689 {
690
691 return ((track->mode & AUMODE_RECORD) != 0);
692 }
693
694 #if 0 /* XXX Not used yet */
695 /*
696 * Convert 0..255 volume used in userland to internal presentation 0..256.
697 */
698 static __inline u_int
699 audio_volume_to_inner(u_int v)
700 {
701
702 return v < 127 ? v : v + 1;
703 }
704
705 /*
706 * Convert 0..256 internal presentation to 0..255 volume used in userland.
707 */
708 static __inline u_int
709 audio_volume_to_outer(u_int v)
710 {
711
712 return v < 127 ? v : v - 1;
713 }
714 #endif /* 0 */
715
716 static dev_type_open(audioopen);
717 /* XXXMRG use more dev_type_xxx */
718
719 const struct cdevsw audio_cdevsw = {
720 .d_open = audioopen,
721 .d_close = noclose,
722 .d_read = noread,
723 .d_write = nowrite,
724 .d_ioctl = noioctl,
725 .d_stop = nostop,
726 .d_tty = notty,
727 .d_poll = nopoll,
728 .d_mmap = nommap,
729 .d_kqfilter = nokqfilter,
730 .d_discard = nodiscard,
731 .d_flag = D_OTHER | D_MPSAFE
732 };
733
734 const struct fileops audio_fileops = {
735 .fo_name = "audio",
736 .fo_read = audioread,
737 .fo_write = audiowrite,
738 .fo_ioctl = audioioctl,
739 .fo_fcntl = fnullop_fcntl,
740 .fo_stat = audiostat,
741 .fo_poll = audiopoll,
742 .fo_close = audioclose,
743 .fo_mmap = audiommap,
744 .fo_kqfilter = audiokqfilter,
745 .fo_restart = fnullop_restart
746 };
747
748 /* The default audio mode: 8 kHz mono mu-law */
749 static const struct audio_params audio_default = {
750 .sample_rate = 8000,
751 .encoding = AUDIO_ENCODING_ULAW,
752 .precision = 8,
753 .validbits = 8,
754 .channels = 1,
755 };
756
757 static const char *encoding_names[] = {
758 "none",
759 AudioEmulaw,
760 AudioEalaw,
761 "pcm16",
762 "pcm8",
763 AudioEadpcm,
764 AudioEslinear_le,
765 AudioEslinear_be,
766 AudioEulinear_le,
767 AudioEulinear_be,
768 AudioEslinear,
769 AudioEulinear,
770 AudioEmpeg_l1_stream,
771 AudioEmpeg_l1_packets,
772 AudioEmpeg_l1_system,
773 AudioEmpeg_l2_stream,
774 AudioEmpeg_l2_packets,
775 AudioEmpeg_l2_system,
776 AudioEac3,
777 };
778
779 /*
780 * Returns encoding name corresponding to AUDIO_ENCODING_*.
781 * Note that it may return a local buffer because it is mainly for debugging.
782 */
783 const char *
784 audio_encoding_name(int encoding)
785 {
786 static char buf[16];
787
788 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
789 return encoding_names[encoding];
790 } else {
791 snprintf(buf, sizeof(buf), "enc=%d", encoding);
792 return buf;
793 }
794 }
795
796 /*
797 * Supported encodings used by AUDIO_GETENC.
798 * index and flags are set by code.
799 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
800 */
801 static const audio_encoding_t audio_encodings[] = {
802 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
803 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
804 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
805 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
806 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
807 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
808 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
809 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
810 #if defined(AUDIO_SUPPORT_LINEAR24)
811 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
812 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
813 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
814 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
815 #endif
816 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
817 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
818 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
819 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
820 };
821
822 static const struct portname itable[] = {
823 { AudioNmicrophone, AUDIO_MICROPHONE },
824 { AudioNline, AUDIO_LINE_IN },
825 { AudioNcd, AUDIO_CD },
826 { 0, 0 }
827 };
828 static const struct portname otable[] = {
829 { AudioNspeaker, AUDIO_SPEAKER },
830 { AudioNheadphone, AUDIO_HEADPHONE },
831 { AudioNline, AUDIO_LINE_OUT },
832 { 0, 0 }
833 };
834
835 static struct psref_class *audio_psref_class __read_mostly;
836
837 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
838 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
839 audiochilddet, DVF_DETACH_SHUTDOWN);
840
841 static int
842 audiomatch(device_t parent, cfdata_t match, void *aux)
843 {
844 struct audio_attach_args *sa;
845
846 sa = aux;
847 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
848 __func__, sa->type, sa, sa->hwif);
849 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
850 }
851
852 static void
853 audioattach(device_t parent, device_t self, void *aux)
854 {
855 struct audio_softc *sc;
856 struct audio_attach_args *sa;
857 const struct audio_hw_if *hw_if;
858 audio_format2_t phwfmt;
859 audio_format2_t rhwfmt;
860 audio_filter_reg_t pfil;
861 audio_filter_reg_t rfil;
862 const struct sysctlnode *node;
863 void *hdlp;
864 bool has_playback;
865 bool has_capture;
866 bool has_indep;
867 bool has_fulldup;
868 int mode;
869 int error;
870
871 sc = device_private(self);
872 sc->sc_dev = self;
873 sa = (struct audio_attach_args *)aux;
874 hw_if = sa->hwif;
875 hdlp = sa->hdl;
876
877 if (hw_if == NULL) {
878 panic("audioattach: missing hw_if method");
879 }
880 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
881 aprint_error(": missing mandatory method\n");
882 return;
883 }
884
885 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
886 sc->sc_props = hw_if->get_props(hdlp);
887
888 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
889 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
890 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
891 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
892
893 #ifdef DIAGNOSTIC
894 if (hw_if->query_format == NULL ||
895 hw_if->set_format == NULL ||
896 hw_if->getdev == NULL ||
897 hw_if->set_port == NULL ||
898 hw_if->get_port == NULL ||
899 hw_if->query_devinfo == NULL) {
900 aprint_error(": missing mandatory method\n");
901 return;
902 }
903 if (has_playback) {
904 if ((hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
905 hw_if->halt_output == NULL) {
906 aprint_error(": missing playback method\n");
907 }
908 }
909 if (has_capture) {
910 if ((hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
911 hw_if->halt_input == NULL) {
912 aprint_error(": missing capture method\n");
913 }
914 }
915 #endif
916
917 sc->hw_if = hw_if;
918 sc->hw_hdl = hdlp;
919 sc->hw_dev = parent;
920
921 sc->sc_exlock = 1;
922 sc->sc_blk_ms = AUDIO_BLK_MS;
923 SLIST_INIT(&sc->sc_files);
924 cv_init(&sc->sc_exlockcv, "audiolk");
925 sc->sc_am_capacity = 0;
926 sc->sc_am_used = 0;
927 sc->sc_am = NULL;
928
929 /* MMAP is now supported by upper layer. */
930 sc->sc_props |= AUDIO_PROP_MMAP;
931
932 KASSERT(has_playback || has_capture);
933 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
934 if (!has_playback || !has_capture) {
935 KASSERT(!has_indep);
936 KASSERT(!has_fulldup);
937 }
938
939 mode = 0;
940 if (has_playback) {
941 aprint_normal(": playback");
942 mode |= AUMODE_PLAY;
943 }
944 if (has_capture) {
945 aprint_normal("%c capture", has_playback ? ',' : ':');
946 mode |= AUMODE_RECORD;
947 }
948 if (has_playback && has_capture) {
949 if (has_fulldup)
950 aprint_normal(", full duplex");
951 else
952 aprint_normal(", half duplex");
953
954 if (has_indep)
955 aprint_normal(", independent");
956 }
957
958 aprint_naive("\n");
959 aprint_normal("\n");
960
961 /* probe hw params */
962 memset(&phwfmt, 0, sizeof(phwfmt));
963 memset(&rhwfmt, 0, sizeof(rhwfmt));
964 memset(&pfil, 0, sizeof(pfil));
965 memset(&rfil, 0, sizeof(rfil));
966 if (has_indep) {
967 int perror, rerror;
968
969 /* On independent devices, probe separately. */
970 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
971 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
972 if (perror && rerror) {
973 aprint_error_dev(self, "audio_hw_probe failed, "
974 "perror = %d, rerror = %d\n", perror, rerror);
975 goto bad;
976 }
977 if (perror) {
978 mode &= ~AUMODE_PLAY;
979 aprint_error_dev(self, "audio_hw_probe failed with "
980 "%d, playback disabled\n", perror);
981 }
982 if (rerror) {
983 mode &= ~AUMODE_RECORD;
984 aprint_error_dev(self, "audio_hw_probe failed with "
985 "%d, capture disabled\n", rerror);
986 }
987 } else {
988 /*
989 * On non independent devices or uni-directional devices,
990 * probe once (simultaneously).
991 */
992 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
993 error = audio_hw_probe(sc, fmt, mode);
994 if (error) {
995 aprint_error_dev(self, "audio_hw_probe failed, "
996 "error = %d\n", error);
997 goto bad;
998 }
999 if (has_playback && has_capture)
1000 rhwfmt = phwfmt;
1001 }
1002
1003 /* Init hardware. */
1004 /* hw_probe() also validates [pr]hwfmt. */
1005 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1006 if (error) {
1007 aprint_error_dev(self, "audio_hw_set_format failed, "
1008 "error = %d\n", error);
1009 goto bad;
1010 }
1011
1012 /*
1013 * Init track mixers. If at least one direction is available on
1014 * attach time, we assume a success.
1015 */
1016 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1017 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1018 aprint_error_dev(self, "audio_mixers_init failed, "
1019 "error = %d\n", error);
1020 goto bad;
1021 }
1022
1023 sc->sc_psz = pserialize_create();
1024 psref_target_init(&sc->sc_psref, audio_psref_class);
1025
1026 selinit(&sc->sc_wsel);
1027 selinit(&sc->sc_rsel);
1028
1029 /* Initial parameter of /dev/sound */
1030 sc->sc_sound_pparams = params_to_format2(&audio_default);
1031 sc->sc_sound_rparams = params_to_format2(&audio_default);
1032 sc->sc_sound_ppause = false;
1033 sc->sc_sound_rpause = false;
1034
1035 /* XXX TODO: consider about sc_ai */
1036
1037 mixer_init(sc);
1038 TRACE(2, "inputs ports=0x%x, input master=%d, "
1039 "output ports=0x%x, output master=%d",
1040 sc->sc_inports.allports, sc->sc_inports.master,
1041 sc->sc_outports.allports, sc->sc_outports.master);
1042
1043 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1044 0,
1045 CTLTYPE_NODE, device_xname(sc->sc_dev),
1046 SYSCTL_DESCR("audio test"),
1047 NULL, 0,
1048 NULL, 0,
1049 CTL_HW,
1050 CTL_CREATE, CTL_EOL);
1051
1052 if (node != NULL) {
1053 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1054 CTLFLAG_READWRITE,
1055 CTLTYPE_INT, "blk_ms",
1056 SYSCTL_DESCR("blocksize in msec"),
1057 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1058 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1059
1060 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1061 CTLFLAG_READWRITE,
1062 CTLTYPE_BOOL, "multiuser",
1063 SYSCTL_DESCR("allow multiple user access"),
1064 audio_sysctl_multiuser, 0, (void *)sc, 0,
1065 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1066
1067 #if defined(AUDIO_DEBUG)
1068 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1069 CTLFLAG_READWRITE,
1070 CTLTYPE_INT, "debug",
1071 SYSCTL_DESCR("debug level (0..4)"),
1072 audio_sysctl_debug, 0, (void *)sc, 0,
1073 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1074 #endif
1075 }
1076
1077 #ifdef AUDIO_PM_IDLE
1078 callout_init(&sc->sc_idle_counter, 0);
1079 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1080 #endif
1081
1082 if (!pmf_device_register(self, audio_suspend, audio_resume))
1083 aprint_error_dev(self, "couldn't establish power handler\n");
1084 #ifdef AUDIO_PM_IDLE
1085 if (!device_active_register(self, audio_activity))
1086 aprint_error_dev(self, "couldn't register activity handler\n");
1087 #endif
1088
1089 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1090 audio_volume_down, true))
1091 aprint_error_dev(self, "couldn't add volume down handler\n");
1092 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1093 audio_volume_up, true))
1094 aprint_error_dev(self, "couldn't add volume up handler\n");
1095 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1096 audio_volume_toggle, true))
1097 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1098
1099 #ifdef AUDIO_PM_IDLE
1100 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1101 #endif
1102
1103 #if defined(AUDIO_DEBUG)
1104 audio_mlog_init();
1105 #endif
1106
1107 audiorescan(self, "audio", NULL);
1108 sc->sc_exlock = 0;
1109 return;
1110
1111 bad:
1112 /* Clearing hw_if means that device is attached but disabled. */
1113 sc->hw_if = NULL;
1114 sc->sc_exlock = 0;
1115 aprint_error_dev(sc->sc_dev, "disabled\n");
1116 return;
1117 }
1118
1119 /*
1120 * Initialize hardware mixer.
1121 * This function is called from audioattach().
1122 */
1123 static void
1124 mixer_init(struct audio_softc *sc)
1125 {
1126 mixer_devinfo_t mi;
1127 int iclass, mclass, oclass, rclass;
1128 int record_master_found, record_source_found;
1129
1130 iclass = mclass = oclass = rclass = -1;
1131 sc->sc_inports.index = -1;
1132 sc->sc_inports.master = -1;
1133 sc->sc_inports.nports = 0;
1134 sc->sc_inports.isenum = false;
1135 sc->sc_inports.allports = 0;
1136 sc->sc_inports.isdual = false;
1137 sc->sc_inports.mixerout = -1;
1138 sc->sc_inports.cur_port = -1;
1139 sc->sc_outports.index = -1;
1140 sc->sc_outports.master = -1;
1141 sc->sc_outports.nports = 0;
1142 sc->sc_outports.isenum = false;
1143 sc->sc_outports.allports = 0;
1144 sc->sc_outports.isdual = false;
1145 sc->sc_outports.mixerout = -1;
1146 sc->sc_outports.cur_port = -1;
1147 sc->sc_monitor_port = -1;
1148 /*
1149 * Read through the underlying driver's list, picking out the class
1150 * names from the mixer descriptions. We'll need them to decode the
1151 * mixer descriptions on the next pass through the loop.
1152 */
1153 mutex_enter(sc->sc_lock);
1154 for(mi.index = 0; ; mi.index++) {
1155 if (audio_query_devinfo(sc, &mi) != 0)
1156 break;
1157 /*
1158 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1159 * All the other types describe an actual mixer.
1160 */
1161 if (mi.type == AUDIO_MIXER_CLASS) {
1162 if (strcmp(mi.label.name, AudioCinputs) == 0)
1163 iclass = mi.mixer_class;
1164 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1165 mclass = mi.mixer_class;
1166 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1167 oclass = mi.mixer_class;
1168 if (strcmp(mi.label.name, AudioCrecord) == 0)
1169 rclass = mi.mixer_class;
1170 }
1171 }
1172 mutex_exit(sc->sc_lock);
1173
1174 /* Allocate save area. Ensure non-zero allocation. */
1175 sc->sc_nmixer_states = mi.index;
1176 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1177 (sc->sc_nmixer_states + 1), KM_SLEEP);
1178
1179 /*
1180 * This is where we assign each control in the "audio" model, to the
1181 * underlying "mixer" control. We walk through the whole list once,
1182 * assigning likely candidates as we come across them.
1183 */
1184 record_master_found = 0;
1185 record_source_found = 0;
1186 mutex_enter(sc->sc_lock);
1187 for(mi.index = 0; ; mi.index++) {
1188 if (audio_query_devinfo(sc, &mi) != 0)
1189 break;
1190 KASSERT(mi.index < sc->sc_nmixer_states);
1191 if (mi.type == AUDIO_MIXER_CLASS)
1192 continue;
1193 if (mi.mixer_class == iclass) {
1194 /*
1195 * AudioCinputs is only a fallback, when we don't
1196 * find what we're looking for in AudioCrecord, so
1197 * check the flags before accepting one of these.
1198 */
1199 if (strcmp(mi.label.name, AudioNmaster) == 0
1200 && record_master_found == 0)
1201 sc->sc_inports.master = mi.index;
1202 if (strcmp(mi.label.name, AudioNsource) == 0
1203 && record_source_found == 0) {
1204 if (mi.type == AUDIO_MIXER_ENUM) {
1205 int i;
1206 for(i = 0; i < mi.un.e.num_mem; i++)
1207 if (strcmp(mi.un.e.member[i].label.name,
1208 AudioNmixerout) == 0)
1209 sc->sc_inports.mixerout =
1210 mi.un.e.member[i].ord;
1211 }
1212 au_setup_ports(sc, &sc->sc_inports, &mi,
1213 itable);
1214 }
1215 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1216 sc->sc_outports.master == -1)
1217 sc->sc_outports.master = mi.index;
1218 } else if (mi.mixer_class == mclass) {
1219 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1220 sc->sc_monitor_port = mi.index;
1221 } else if (mi.mixer_class == oclass) {
1222 if (strcmp(mi.label.name, AudioNmaster) == 0)
1223 sc->sc_outports.master = mi.index;
1224 if (strcmp(mi.label.name, AudioNselect) == 0)
1225 au_setup_ports(sc, &sc->sc_outports, &mi,
1226 otable);
1227 } else if (mi.mixer_class == rclass) {
1228 /*
1229 * These are the preferred mixers for the audio record
1230 * controls, so set the flags here, but don't check.
1231 */
1232 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1233 sc->sc_inports.master = mi.index;
1234 record_master_found = 1;
1235 }
1236 #if 1 /* Deprecated. Use AudioNmaster. */
1237 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1238 sc->sc_inports.master = mi.index;
1239 record_master_found = 1;
1240 }
1241 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1242 sc->sc_inports.master = mi.index;
1243 record_master_found = 1;
1244 }
1245 #endif
1246 if (strcmp(mi.label.name, AudioNsource) == 0) {
1247 if (mi.type == AUDIO_MIXER_ENUM) {
1248 int i;
1249 for(i = 0; i < mi.un.e.num_mem; i++)
1250 if (strcmp(mi.un.e.member[i].label.name,
1251 AudioNmixerout) == 0)
1252 sc->sc_inports.mixerout =
1253 mi.un.e.member[i].ord;
1254 }
1255 au_setup_ports(sc, &sc->sc_inports, &mi,
1256 itable);
1257 record_source_found = 1;
1258 }
1259 }
1260 }
1261 mutex_exit(sc->sc_lock);
1262 }
1263
1264 static int
1265 audioactivate(device_t self, enum devact act)
1266 {
1267 struct audio_softc *sc = device_private(self);
1268
1269 switch (act) {
1270 case DVACT_DEACTIVATE:
1271 mutex_enter(sc->sc_lock);
1272 sc->sc_dying = true;
1273 cv_broadcast(&sc->sc_exlockcv);
1274 mutex_exit(sc->sc_lock);
1275 return 0;
1276 default:
1277 return EOPNOTSUPP;
1278 }
1279 }
1280
1281 static int
1282 audiodetach(device_t self, int flags)
1283 {
1284 struct audio_softc *sc;
1285 struct audio_file *file;
1286 int error;
1287
1288 sc = device_private(self);
1289 TRACE(2, "flags=%d", flags);
1290
1291 /* device is not initialized */
1292 if (sc->hw_if == NULL)
1293 return 0;
1294
1295 /* Start draining existing accessors of the device. */
1296 error = config_detach_children(self, flags);
1297 if (error)
1298 return error;
1299
1300 /* delete sysctl nodes */
1301 sysctl_teardown(&sc->sc_log);
1302
1303 mutex_enter(sc->sc_lock);
1304 sc->sc_dying = true;
1305 cv_broadcast(&sc->sc_exlockcv);
1306 if (sc->sc_pmixer)
1307 cv_broadcast(&sc->sc_pmixer->outcv);
1308 if (sc->sc_rmixer)
1309 cv_broadcast(&sc->sc_rmixer->outcv);
1310
1311 /* Prevent new users */
1312 SLIST_FOREACH(file, &sc->sc_files, entry) {
1313 atomic_store_relaxed(&file->dying, true);
1314 }
1315
1316 /*
1317 * Wait for existing users to drain.
1318 * - pserialize_perform waits for all pserialize_read sections on
1319 * all CPUs; after this, no more new psref_acquire can happen.
1320 * - psref_target_destroy waits for all extant acquired psrefs to
1321 * be psref_released.
1322 */
1323 pserialize_perform(sc->sc_psz);
1324 mutex_exit(sc->sc_lock);
1325 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1326
1327 /*
1328 * We are now guaranteed that there are no calls to audio fileops
1329 * that hold sc, and any new calls with files that were for sc will
1330 * fail. Thus, we now have exclusive access to the softc.
1331 */
1332 sc->sc_exlock = 1;
1333
1334 /*
1335 * Nuke all open instances.
1336 * Here, we no longer need any locks to traverse sc_files.
1337 */
1338 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1339 audio_unlink(sc, file);
1340 }
1341
1342 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1343 audio_volume_down, true);
1344 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1345 audio_volume_up, true);
1346 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1347 audio_volume_toggle, true);
1348
1349 #ifdef AUDIO_PM_IDLE
1350 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1351
1352 device_active_deregister(self, audio_activity);
1353 #endif
1354
1355 pmf_device_deregister(self);
1356
1357 /* Free resources */
1358 if (sc->sc_pmixer) {
1359 audio_mixer_destroy(sc, sc->sc_pmixer);
1360 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1361 }
1362 if (sc->sc_rmixer) {
1363 audio_mixer_destroy(sc, sc->sc_rmixer);
1364 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1365 }
1366 if (sc->sc_am)
1367 kern_free(sc->sc_am);
1368
1369 seldestroy(&sc->sc_wsel);
1370 seldestroy(&sc->sc_rsel);
1371
1372 #ifdef AUDIO_PM_IDLE
1373 callout_destroy(&sc->sc_idle_counter);
1374 #endif
1375
1376 cv_destroy(&sc->sc_exlockcv);
1377
1378 #if defined(AUDIO_DEBUG)
1379 audio_mlog_free();
1380 #endif
1381
1382 return 0;
1383 }
1384
1385 static void
1386 audiochilddet(device_t self, device_t child)
1387 {
1388
1389 /* we hold no child references, so do nothing */
1390 }
1391
1392 static int
1393 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1394 {
1395
1396 if (config_match(parent, cf, aux))
1397 config_attach_loc(parent, cf, locs, aux, NULL);
1398
1399 return 0;
1400 }
1401
1402 static int
1403 audiorescan(device_t self, const char *ifattr, const int *flags)
1404 {
1405 struct audio_softc *sc = device_private(self);
1406
1407 if (!ifattr_match(ifattr, "audio"))
1408 return 0;
1409
1410 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1411
1412 return 0;
1413 }
1414
1415 /*
1416 * Called from hardware driver. This is where the MI audio driver gets
1417 * probed/attached to the hardware driver.
1418 */
1419 device_t
1420 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1421 {
1422 struct audio_attach_args arg;
1423
1424 #ifdef DIAGNOSTIC
1425 if (ahwp == NULL) {
1426 aprint_error("audio_attach_mi: NULL\n");
1427 return 0;
1428 }
1429 #endif
1430 arg.type = AUDIODEV_TYPE_AUDIO;
1431 arg.hwif = ahwp;
1432 arg.hdl = hdlp;
1433 return config_found(dev, &arg, audioprint);
1434 }
1435
1436 /*
1437 * Enter critical section and also keep sc_lock.
1438 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1439 * Must be called without sc_lock held.
1440 */
1441 static int
1442 audio_exlock_mutex_enter(struct audio_softc *sc)
1443 {
1444 int error;
1445
1446 mutex_enter(sc->sc_lock);
1447 if (sc->sc_dying) {
1448 mutex_exit(sc->sc_lock);
1449 return EIO;
1450 }
1451
1452 while (__predict_false(sc->sc_exlock != 0)) {
1453 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1454 if (sc->sc_dying)
1455 error = EIO;
1456 if (error) {
1457 mutex_exit(sc->sc_lock);
1458 return error;
1459 }
1460 }
1461
1462 /* Acquire */
1463 sc->sc_exlock = 1;
1464 return 0;
1465 }
1466
1467 /*
1468 * Exit critical section and exit sc_lock.
1469 * Must be called with sc_lock held.
1470 */
1471 static void
1472 audio_exlock_mutex_exit(struct audio_softc *sc)
1473 {
1474
1475 KASSERT(mutex_owned(sc->sc_lock));
1476
1477 sc->sc_exlock = 0;
1478 cv_broadcast(&sc->sc_exlockcv);
1479 mutex_exit(sc->sc_lock);
1480 }
1481
1482 /*
1483 * Enter critical section.
1484 * If successful, it returns 0. Otherwise returns errno.
1485 * Must be called without sc_lock held.
1486 * This function returns without sc_lock held.
1487 */
1488 static int
1489 audio_exlock_enter(struct audio_softc *sc)
1490 {
1491 int error;
1492
1493 error = audio_exlock_mutex_enter(sc);
1494 if (error)
1495 return error;
1496 mutex_exit(sc->sc_lock);
1497 return 0;
1498 }
1499
1500 /*
1501 * Exit critical section.
1502 * Must be called without sc_lock held.
1503 */
1504 static void
1505 audio_exlock_exit(struct audio_softc *sc)
1506 {
1507
1508 mutex_enter(sc->sc_lock);
1509 audio_exlock_mutex_exit(sc);
1510 }
1511
1512 /*
1513 * Acquire sc from file, and increment the psref count.
1514 * If successful, returns sc. Otherwise returns NULL.
1515 */
1516 struct audio_softc *
1517 audio_file_enter(audio_file_t *file, struct psref *refp)
1518 {
1519 int s;
1520 bool dying;
1521
1522 /* psref(9) forbids to migrate CPUs */
1523 curlwp_bind();
1524
1525 /* Block audiodetach while we acquire a reference */
1526 s = pserialize_read_enter();
1527
1528 /* If close or audiodetach already ran, tough -- no more audio */
1529 dying = atomic_load_relaxed(&file->dying);
1530 if (dying) {
1531 pserialize_read_exit(s);
1532 return NULL;
1533 }
1534
1535 /* Acquire a reference */
1536 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1537
1538 /* Now sc won't go away until we drop the reference count */
1539 pserialize_read_exit(s);
1540
1541 return file->sc;
1542 }
1543
1544 /*
1545 * Decrement the psref count.
1546 */
1547 void
1548 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1549 {
1550
1551 psref_release(refp, &sc->sc_psref, audio_psref_class);
1552 }
1553
1554 /*
1555 * Wait for I/O to complete, releasing sc_lock.
1556 * Must be called with sc_lock held.
1557 */
1558 static int
1559 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1560 {
1561 int error;
1562
1563 KASSERT(track);
1564 KASSERT(mutex_owned(sc->sc_lock));
1565
1566 /* Wait for pending I/O to complete. */
1567 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1568 mstohz(AUDIO_TIMEOUT));
1569 if (sc->sc_suspending) {
1570 /* If it's about to suspend, ignore timeout error. */
1571 if (error == EWOULDBLOCK) {
1572 TRACET(2, track, "timeout (suspending)");
1573 return 0;
1574 }
1575 }
1576 if (sc->sc_dying) {
1577 error = EIO;
1578 }
1579 if (error) {
1580 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1581 if (error == EWOULDBLOCK)
1582 device_printf(sc->sc_dev, "device timeout\n");
1583 } else {
1584 TRACET(3, track, "wakeup");
1585 }
1586 return error;
1587 }
1588
1589 /*
1590 * Try to acquire track lock.
1591 * It doesn't block if the track lock is already aquired.
1592 * Returns true if the track lock was acquired, or false if the track
1593 * lock was already acquired.
1594 */
1595 static __inline bool
1596 audio_track_lock_tryenter(audio_track_t *track)
1597 {
1598 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1599 }
1600
1601 /*
1602 * Acquire track lock.
1603 */
1604 static __inline void
1605 audio_track_lock_enter(audio_track_t *track)
1606 {
1607 /* Don't sleep here. */
1608 while (audio_track_lock_tryenter(track) == false)
1609 ;
1610 }
1611
1612 /*
1613 * Release track lock.
1614 */
1615 static __inline void
1616 audio_track_lock_exit(audio_track_t *track)
1617 {
1618 atomic_swap_uint(&track->lock, 0);
1619 }
1620
1621
1622 static int
1623 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1624 {
1625 struct audio_softc *sc;
1626 int error;
1627
1628 /* Find the device */
1629 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1630 if (sc == NULL || sc->hw_if == NULL)
1631 return ENXIO;
1632
1633 error = audio_exlock_enter(sc);
1634 if (error)
1635 return error;
1636
1637 device_active(sc->sc_dev, DVA_SYSTEM);
1638 switch (AUDIODEV(dev)) {
1639 case SOUND_DEVICE:
1640 case AUDIO_DEVICE:
1641 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1642 break;
1643 case AUDIOCTL_DEVICE:
1644 error = audioctl_open(dev, sc, flags, ifmt, l);
1645 break;
1646 case MIXER_DEVICE:
1647 error = mixer_open(dev, sc, flags, ifmt, l);
1648 break;
1649 default:
1650 error = ENXIO;
1651 break;
1652 }
1653 audio_exlock_exit(sc);
1654
1655 return error;
1656 }
1657
1658 static int
1659 audioclose(struct file *fp)
1660 {
1661 struct audio_softc *sc;
1662 struct psref sc_ref;
1663 audio_file_t *file;
1664 int error;
1665 dev_t dev;
1666
1667 KASSERT(fp->f_audioctx);
1668 file = fp->f_audioctx;
1669 dev = file->dev;
1670 error = 0;
1671
1672 /*
1673 * audioclose() must
1674 * - unplug track from the trackmixer (and unplug anything from softc),
1675 * if sc exists.
1676 * - free all memory objects, regardless of sc.
1677 */
1678
1679 sc = audio_file_enter(file, &sc_ref);
1680 if (sc) {
1681 switch (AUDIODEV(dev)) {
1682 case SOUND_DEVICE:
1683 case AUDIO_DEVICE:
1684 error = audio_close(sc, file);
1685 break;
1686 case AUDIOCTL_DEVICE:
1687 error = 0;
1688 break;
1689 case MIXER_DEVICE:
1690 error = mixer_close(sc, file);
1691 break;
1692 default:
1693 error = ENXIO;
1694 break;
1695 }
1696
1697 audio_file_exit(sc, &sc_ref);
1698 }
1699
1700 /* Free memory objects anyway */
1701 TRACEF(2, file, "free memory");
1702 if (file->ptrack)
1703 audio_track_destroy(file->ptrack);
1704 if (file->rtrack)
1705 audio_track_destroy(file->rtrack);
1706 kmem_free(file, sizeof(*file));
1707 fp->f_audioctx = NULL;
1708
1709 return error;
1710 }
1711
1712 static int
1713 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1714 int ioflag)
1715 {
1716 struct audio_softc *sc;
1717 struct psref sc_ref;
1718 audio_file_t *file;
1719 int error;
1720 dev_t dev;
1721
1722 KASSERT(fp->f_audioctx);
1723 file = fp->f_audioctx;
1724 dev = file->dev;
1725
1726 sc = audio_file_enter(file, &sc_ref);
1727 if (sc == NULL)
1728 return EIO;
1729
1730 if (fp->f_flag & O_NONBLOCK)
1731 ioflag |= IO_NDELAY;
1732
1733 switch (AUDIODEV(dev)) {
1734 case SOUND_DEVICE:
1735 case AUDIO_DEVICE:
1736 error = audio_read(sc, uio, ioflag, file);
1737 break;
1738 case AUDIOCTL_DEVICE:
1739 case MIXER_DEVICE:
1740 error = ENODEV;
1741 break;
1742 default:
1743 error = ENXIO;
1744 break;
1745 }
1746
1747 audio_file_exit(sc, &sc_ref);
1748 return error;
1749 }
1750
1751 static int
1752 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1753 int ioflag)
1754 {
1755 struct audio_softc *sc;
1756 struct psref sc_ref;
1757 audio_file_t *file;
1758 int error;
1759 dev_t dev;
1760
1761 KASSERT(fp->f_audioctx);
1762 file = fp->f_audioctx;
1763 dev = file->dev;
1764
1765 sc = audio_file_enter(file, &sc_ref);
1766 if (sc == NULL)
1767 return EIO;
1768
1769 if (fp->f_flag & O_NONBLOCK)
1770 ioflag |= IO_NDELAY;
1771
1772 switch (AUDIODEV(dev)) {
1773 case SOUND_DEVICE:
1774 case AUDIO_DEVICE:
1775 error = audio_write(sc, uio, ioflag, file);
1776 break;
1777 case AUDIOCTL_DEVICE:
1778 case MIXER_DEVICE:
1779 error = ENODEV;
1780 break;
1781 default:
1782 error = ENXIO;
1783 break;
1784 }
1785
1786 audio_file_exit(sc, &sc_ref);
1787 return error;
1788 }
1789
1790 static int
1791 audioioctl(struct file *fp, u_long cmd, void *addr)
1792 {
1793 struct audio_softc *sc;
1794 struct psref sc_ref;
1795 audio_file_t *file;
1796 struct lwp *l = curlwp;
1797 int error;
1798 dev_t dev;
1799
1800 KASSERT(fp->f_audioctx);
1801 file = fp->f_audioctx;
1802 dev = file->dev;
1803
1804 sc = audio_file_enter(file, &sc_ref);
1805 if (sc == NULL)
1806 return EIO;
1807
1808 switch (AUDIODEV(dev)) {
1809 case SOUND_DEVICE:
1810 case AUDIO_DEVICE:
1811 case AUDIOCTL_DEVICE:
1812 mutex_enter(sc->sc_lock);
1813 device_active(sc->sc_dev, DVA_SYSTEM);
1814 mutex_exit(sc->sc_lock);
1815 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1816 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1817 else
1818 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1819 file);
1820 break;
1821 case MIXER_DEVICE:
1822 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1823 break;
1824 default:
1825 error = ENXIO;
1826 break;
1827 }
1828
1829 audio_file_exit(sc, &sc_ref);
1830 return error;
1831 }
1832
1833 static int
1834 audiostat(struct file *fp, struct stat *st)
1835 {
1836 struct audio_softc *sc;
1837 struct psref sc_ref;
1838 audio_file_t *file;
1839
1840 KASSERT(fp->f_audioctx);
1841 file = fp->f_audioctx;
1842
1843 sc = audio_file_enter(file, &sc_ref);
1844 if (sc == NULL)
1845 return EIO;
1846
1847 memset(st, 0, sizeof(*st));
1848
1849 st->st_dev = file->dev;
1850 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1851 st->st_gid = kauth_cred_getegid(fp->f_cred);
1852 st->st_mode = S_IFCHR;
1853
1854 audio_file_exit(sc, &sc_ref);
1855 return 0;
1856 }
1857
1858 static int
1859 audiopoll(struct file *fp, int events)
1860 {
1861 struct audio_softc *sc;
1862 struct psref sc_ref;
1863 audio_file_t *file;
1864 struct lwp *l = curlwp;
1865 int revents;
1866 dev_t dev;
1867
1868 KASSERT(fp->f_audioctx);
1869 file = fp->f_audioctx;
1870 dev = file->dev;
1871
1872 sc = audio_file_enter(file, &sc_ref);
1873 if (sc == NULL)
1874 return EIO;
1875
1876 switch (AUDIODEV(dev)) {
1877 case SOUND_DEVICE:
1878 case AUDIO_DEVICE:
1879 revents = audio_poll(sc, events, l, file);
1880 break;
1881 case AUDIOCTL_DEVICE:
1882 case MIXER_DEVICE:
1883 revents = 0;
1884 break;
1885 default:
1886 revents = POLLERR;
1887 break;
1888 }
1889
1890 audio_file_exit(sc, &sc_ref);
1891 return revents;
1892 }
1893
1894 static int
1895 audiokqfilter(struct file *fp, struct knote *kn)
1896 {
1897 struct audio_softc *sc;
1898 struct psref sc_ref;
1899 audio_file_t *file;
1900 dev_t dev;
1901 int error;
1902
1903 KASSERT(fp->f_audioctx);
1904 file = fp->f_audioctx;
1905 dev = file->dev;
1906
1907 sc = audio_file_enter(file, &sc_ref);
1908 if (sc == NULL)
1909 return EIO;
1910
1911 switch (AUDIODEV(dev)) {
1912 case SOUND_DEVICE:
1913 case AUDIO_DEVICE:
1914 error = audio_kqfilter(sc, file, kn);
1915 break;
1916 case AUDIOCTL_DEVICE:
1917 case MIXER_DEVICE:
1918 error = ENODEV;
1919 break;
1920 default:
1921 error = ENXIO;
1922 break;
1923 }
1924
1925 audio_file_exit(sc, &sc_ref);
1926 return error;
1927 }
1928
1929 static int
1930 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1931 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1932 {
1933 struct audio_softc *sc;
1934 struct psref sc_ref;
1935 audio_file_t *file;
1936 dev_t dev;
1937 int error;
1938
1939 KASSERT(fp->f_audioctx);
1940 file = fp->f_audioctx;
1941 dev = file->dev;
1942
1943 sc = audio_file_enter(file, &sc_ref);
1944 if (sc == NULL)
1945 return EIO;
1946
1947 mutex_enter(sc->sc_lock);
1948 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1949 mutex_exit(sc->sc_lock);
1950
1951 switch (AUDIODEV(dev)) {
1952 case SOUND_DEVICE:
1953 case AUDIO_DEVICE:
1954 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1955 uobjp, maxprotp, file);
1956 break;
1957 case AUDIOCTL_DEVICE:
1958 case MIXER_DEVICE:
1959 default:
1960 error = ENOTSUP;
1961 break;
1962 }
1963
1964 audio_file_exit(sc, &sc_ref);
1965 return error;
1966 }
1967
1968
1969 /* Exported interfaces for audiobell. */
1970
1971 /*
1972 * Open for audiobell.
1973 * It stores allocated file to *filep.
1974 * If successful returns 0, otherwise errno.
1975 */
1976 int
1977 audiobellopen(dev_t dev, audio_file_t **filep)
1978 {
1979 struct audio_softc *sc;
1980 int error;
1981
1982 /* Find the device */
1983 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1984 if (sc == NULL || sc->hw_if == NULL)
1985 return ENXIO;
1986
1987 error = audio_exlock_enter(sc);
1988 if (error)
1989 return error;
1990
1991 device_active(sc->sc_dev, DVA_SYSTEM);
1992 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1993
1994 audio_exlock_exit(sc);
1995 return error;
1996 }
1997
1998 /* Close for audiobell */
1999 int
2000 audiobellclose(audio_file_t *file)
2001 {
2002 struct audio_softc *sc;
2003 struct psref sc_ref;
2004 int error;
2005
2006 sc = audio_file_enter(file, &sc_ref);
2007 if (sc == NULL)
2008 return EIO;
2009
2010 error = audio_close(sc, file);
2011
2012 audio_file_exit(sc, &sc_ref);
2013
2014 KASSERT(file->ptrack);
2015 audio_track_destroy(file->ptrack);
2016 KASSERT(file->rtrack == NULL);
2017 kmem_free(file, sizeof(*file));
2018 return error;
2019 }
2020
2021 /* Set sample rate for audiobell */
2022 int
2023 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2024 {
2025 struct audio_softc *sc;
2026 struct psref sc_ref;
2027 struct audio_info ai;
2028 int error;
2029
2030 sc = audio_file_enter(file, &sc_ref);
2031 if (sc == NULL)
2032 return EIO;
2033
2034 AUDIO_INITINFO(&ai);
2035 ai.play.sample_rate = sample_rate;
2036
2037 error = audio_exlock_enter(sc);
2038 if (error)
2039 goto done;
2040 error = audio_file_setinfo(sc, file, &ai);
2041 audio_exlock_exit(sc);
2042
2043 done:
2044 audio_file_exit(sc, &sc_ref);
2045 return error;
2046 }
2047
2048 /* Playback for audiobell */
2049 int
2050 audiobellwrite(audio_file_t *file, struct uio *uio)
2051 {
2052 struct audio_softc *sc;
2053 struct psref sc_ref;
2054 int error;
2055
2056 sc = audio_file_enter(file, &sc_ref);
2057 if (sc == NULL)
2058 return EIO;
2059
2060 error = audio_write(sc, uio, 0, file);
2061
2062 audio_file_exit(sc, &sc_ref);
2063 return error;
2064 }
2065
2066
2067 /*
2068 * Audio driver
2069 */
2070
2071 /*
2072 * Must be called with sc_exlock held and without sc_lock held.
2073 */
2074 int
2075 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2076 struct lwp *l, audio_file_t **bellfile)
2077 {
2078 struct audio_info ai;
2079 struct file *fp;
2080 audio_file_t *af;
2081 audio_ring_t *hwbuf;
2082 bool fullduplex;
2083 int fd;
2084 int error;
2085
2086 KASSERT(sc->sc_exlock);
2087
2088 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2089 (audiodebug >= 3) ? "start " : "",
2090 ISDEVSOUND(dev) ? "sound" : "audio",
2091 flags, sc->sc_popens, sc->sc_ropens);
2092
2093 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2094 af->sc = sc;
2095 af->dev = dev;
2096 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2097 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2098 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2099 af->mode |= AUMODE_RECORD;
2100 if (af->mode == 0) {
2101 error = ENXIO;
2102 goto bad1;
2103 }
2104
2105 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2106
2107 /*
2108 * On half duplex hardware,
2109 * 1. if mode is (PLAY | REC), let mode PLAY.
2110 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2111 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2112 */
2113 if (fullduplex == false) {
2114 if ((af->mode & AUMODE_PLAY)) {
2115 if (sc->sc_ropens != 0) {
2116 TRACE(1, "record track already exists");
2117 error = ENODEV;
2118 goto bad1;
2119 }
2120 /* Play takes precedence */
2121 af->mode &= ~AUMODE_RECORD;
2122 }
2123 if ((af->mode & AUMODE_RECORD)) {
2124 if (sc->sc_popens != 0) {
2125 TRACE(1, "play track already exists");
2126 error = ENODEV;
2127 goto bad1;
2128 }
2129 }
2130 }
2131
2132 /* Create tracks */
2133 if ((af->mode & AUMODE_PLAY))
2134 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2135 if ((af->mode & AUMODE_RECORD))
2136 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2137
2138 /* Set parameters */
2139 AUDIO_INITINFO(&ai);
2140 if (bellfile) {
2141 /* If audiobell, only sample_rate will be set later. */
2142 ai.play.sample_rate = audio_default.sample_rate;
2143 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2144 ai.play.channels = 1;
2145 ai.play.precision = 16;
2146 ai.play.pause = 0;
2147 } else if (ISDEVAUDIO(dev)) {
2148 /* If /dev/audio, initialize everytime. */
2149 ai.play.sample_rate = audio_default.sample_rate;
2150 ai.play.encoding = audio_default.encoding;
2151 ai.play.channels = audio_default.channels;
2152 ai.play.precision = audio_default.precision;
2153 ai.play.pause = 0;
2154 ai.record.sample_rate = audio_default.sample_rate;
2155 ai.record.encoding = audio_default.encoding;
2156 ai.record.channels = audio_default.channels;
2157 ai.record.precision = audio_default.precision;
2158 ai.record.pause = 0;
2159 } else {
2160 /* If /dev/sound, take over the previous parameters. */
2161 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2162 ai.play.encoding = sc->sc_sound_pparams.encoding;
2163 ai.play.channels = sc->sc_sound_pparams.channels;
2164 ai.play.precision = sc->sc_sound_pparams.precision;
2165 ai.play.pause = sc->sc_sound_ppause;
2166 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2167 ai.record.encoding = sc->sc_sound_rparams.encoding;
2168 ai.record.channels = sc->sc_sound_rparams.channels;
2169 ai.record.precision = sc->sc_sound_rparams.precision;
2170 ai.record.pause = sc->sc_sound_rpause;
2171 }
2172 error = audio_file_setinfo(sc, af, &ai);
2173 if (error)
2174 goto bad2;
2175
2176 if (sc->sc_popens + sc->sc_ropens == 0) {
2177 /* First open */
2178
2179 sc->sc_cred = kauth_cred_get();
2180 kauth_cred_hold(sc->sc_cred);
2181
2182 if (sc->hw_if->open) {
2183 int hwflags;
2184
2185 /*
2186 * Call hw_if->open() only at first open of
2187 * combination of playback and recording.
2188 * On full duplex hardware, the flags passed to
2189 * hw_if->open() is always (FREAD | FWRITE)
2190 * regardless of this open()'s flags.
2191 * see also dev/isa/aria.c
2192 * On half duplex hardware, the flags passed to
2193 * hw_if->open() is either FREAD or FWRITE.
2194 * see also arch/evbarm/mini2440/audio_mini2440.c
2195 */
2196 if (fullduplex) {
2197 hwflags = FREAD | FWRITE;
2198 } else {
2199 /* Construct hwflags from af->mode. */
2200 hwflags = 0;
2201 if ((af->mode & AUMODE_PLAY) != 0)
2202 hwflags |= FWRITE;
2203 if ((af->mode & AUMODE_RECORD) != 0)
2204 hwflags |= FREAD;
2205 }
2206
2207 mutex_enter(sc->sc_lock);
2208 mutex_enter(sc->sc_intr_lock);
2209 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2210 mutex_exit(sc->sc_intr_lock);
2211 mutex_exit(sc->sc_lock);
2212 if (error)
2213 goto bad2;
2214 }
2215
2216 /*
2217 * Set speaker mode when a half duplex.
2218 * XXX I'm not sure this is correct.
2219 */
2220 if (1/*XXX*/) {
2221 if (sc->hw_if->speaker_ctl) {
2222 int on;
2223 if (af->ptrack) {
2224 on = 1;
2225 } else {
2226 on = 0;
2227 }
2228 mutex_enter(sc->sc_lock);
2229 mutex_enter(sc->sc_intr_lock);
2230 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2231 mutex_exit(sc->sc_intr_lock);
2232 mutex_exit(sc->sc_lock);
2233 if (error)
2234 goto bad3;
2235 }
2236 }
2237 } else if (sc->sc_multiuser == false) {
2238 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2239 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2240 error = EPERM;
2241 goto bad2;
2242 }
2243 }
2244
2245 /* Call init_output if this is the first playback open. */
2246 if (af->ptrack && sc->sc_popens == 0) {
2247 if (sc->hw_if->init_output) {
2248 hwbuf = &sc->sc_pmixer->hwbuf;
2249 mutex_enter(sc->sc_lock);
2250 mutex_enter(sc->sc_intr_lock);
2251 error = sc->hw_if->init_output(sc->hw_hdl,
2252 hwbuf->mem,
2253 hwbuf->capacity *
2254 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2255 mutex_exit(sc->sc_intr_lock);
2256 mutex_exit(sc->sc_lock);
2257 if (error)
2258 goto bad3;
2259 }
2260 }
2261 /*
2262 * Call init_input and start rmixer, if this is the first recording
2263 * open. See pause consideration notes.
2264 */
2265 if (af->rtrack && sc->sc_ropens == 0) {
2266 if (sc->hw_if->init_input) {
2267 hwbuf = &sc->sc_rmixer->hwbuf;
2268 mutex_enter(sc->sc_lock);
2269 mutex_enter(sc->sc_intr_lock);
2270 error = sc->hw_if->init_input(sc->hw_hdl,
2271 hwbuf->mem,
2272 hwbuf->capacity *
2273 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2274 mutex_exit(sc->sc_intr_lock);
2275 mutex_exit(sc->sc_lock);
2276 if (error)
2277 goto bad3;
2278 }
2279
2280 mutex_enter(sc->sc_lock);
2281 audio_rmixer_start(sc);
2282 mutex_exit(sc->sc_lock);
2283 }
2284
2285 if (bellfile == NULL) {
2286 error = fd_allocfile(&fp, &fd);
2287 if (error)
2288 goto bad3;
2289 }
2290
2291 /*
2292 * Count up finally.
2293 * Don't fail from here.
2294 */
2295 mutex_enter(sc->sc_lock);
2296 if (af->ptrack)
2297 sc->sc_popens++;
2298 if (af->rtrack)
2299 sc->sc_ropens++;
2300 mutex_enter(sc->sc_intr_lock);
2301 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2302 mutex_exit(sc->sc_intr_lock);
2303 mutex_exit(sc->sc_lock);
2304
2305 if (bellfile) {
2306 *bellfile = af;
2307 } else {
2308 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2309 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2310 }
2311
2312 TRACEF(3, af, "done");
2313 return error;
2314
2315 /*
2316 * Since track here is not yet linked to sc_files,
2317 * you can call track_destroy() without sc_intr_lock.
2318 */
2319 bad3:
2320 if (sc->sc_popens + sc->sc_ropens == 0) {
2321 if (sc->hw_if->close) {
2322 mutex_enter(sc->sc_lock);
2323 mutex_enter(sc->sc_intr_lock);
2324 sc->hw_if->close(sc->hw_hdl);
2325 mutex_exit(sc->sc_intr_lock);
2326 mutex_exit(sc->sc_lock);
2327 }
2328 }
2329 bad2:
2330 if (af->rtrack) {
2331 audio_track_destroy(af->rtrack);
2332 af->rtrack = NULL;
2333 }
2334 if (af->ptrack) {
2335 audio_track_destroy(af->ptrack);
2336 af->ptrack = NULL;
2337 }
2338 bad1:
2339 kmem_free(af, sizeof(*af));
2340 return error;
2341 }
2342
2343 /*
2344 * Must be called without sc_lock nor sc_exlock held.
2345 */
2346 int
2347 audio_close(struct audio_softc *sc, audio_file_t *file)
2348 {
2349
2350 /* Protect entering new fileops to this file */
2351 atomic_store_relaxed(&file->dying, true);
2352
2353 /*
2354 * Drain first.
2355 * It must be done before unlinking(acquiring exlock).
2356 */
2357 if (file->ptrack) {
2358 mutex_enter(sc->sc_lock);
2359 audio_track_drain(sc, file->ptrack);
2360 mutex_exit(sc->sc_lock);
2361 }
2362
2363 return audio_unlink(sc, file);
2364 }
2365
2366 /*
2367 * Unlink this file, but not freeing memory here.
2368 * Must be called without sc_lock nor sc_exlock held.
2369 */
2370 int
2371 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2372 {
2373 int error;
2374
2375 mutex_enter(sc->sc_lock);
2376
2377 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2378 (audiodebug >= 3) ? "start " : "",
2379 (int)curproc->p_pid, (int)curlwp->l_lid,
2380 sc->sc_popens, sc->sc_ropens);
2381 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2382 "sc->sc_popens=%d, sc->sc_ropens=%d",
2383 sc->sc_popens, sc->sc_ropens);
2384
2385 /*
2386 * Acquire exlock to protect counters.
2387 * Does not use audio_exlock_enter() due to sc_dying.
2388 */
2389 while (__predict_false(sc->sc_exlock != 0)) {
2390 error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
2391 mstohz(AUDIO_TIMEOUT));
2392 /* XXX what should I do on error? */
2393 if (error == EWOULDBLOCK) {
2394 mutex_exit(sc->sc_lock);
2395 device_printf(sc->sc_dev,
2396 "%s: cv_timedwait_sig failed %d", __func__, error);
2397 return error;
2398 }
2399 }
2400 sc->sc_exlock = 1;
2401
2402 device_active(sc->sc_dev, DVA_SYSTEM);
2403
2404 mutex_enter(sc->sc_intr_lock);
2405 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2406 mutex_exit(sc->sc_intr_lock);
2407
2408 if (file->ptrack) {
2409 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2410 file->ptrack->dropframes);
2411
2412 KASSERT(sc->sc_popens > 0);
2413 sc->sc_popens--;
2414
2415 /* Call hw halt_output if this is the last playback track. */
2416 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2417 error = audio_pmixer_halt(sc);
2418 if (error) {
2419 device_printf(sc->sc_dev,
2420 "halt_output failed with %d (ignored)\n",
2421 error);
2422 }
2423 }
2424
2425 /* Restore mixing volume if all tracks are gone. */
2426 if (sc->sc_popens == 0) {
2427 /* intr_lock is not necessary, but just manners. */
2428 mutex_enter(sc->sc_intr_lock);
2429 sc->sc_pmixer->volume = 256;
2430 sc->sc_pmixer->voltimer = 0;
2431 mutex_exit(sc->sc_intr_lock);
2432 }
2433 }
2434 if (file->rtrack) {
2435 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2436 file->rtrack->dropframes);
2437
2438 KASSERT(sc->sc_ropens > 0);
2439 sc->sc_ropens--;
2440
2441 /* Call hw halt_input if this is the last recording track. */
2442 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2443 error = audio_rmixer_halt(sc);
2444 if (error) {
2445 device_printf(sc->sc_dev,
2446 "halt_input failed with %d (ignored)\n",
2447 error);
2448 }
2449 }
2450
2451 }
2452
2453 /* Call hw close if this is the last track. */
2454 if (sc->sc_popens + sc->sc_ropens == 0) {
2455 if (sc->hw_if->close) {
2456 TRACE(2, "hw_if close");
2457 mutex_enter(sc->sc_intr_lock);
2458 sc->hw_if->close(sc->hw_hdl);
2459 mutex_exit(sc->sc_intr_lock);
2460 }
2461 }
2462
2463 mutex_exit(sc->sc_lock);
2464 if (sc->sc_popens + sc->sc_ropens == 0)
2465 kauth_cred_free(sc->sc_cred);
2466
2467 TRACE(3, "done");
2468 audio_exlock_exit(sc);
2469
2470 return 0;
2471 }
2472
2473 /*
2474 * Must be called without sc_lock nor sc_exlock held.
2475 */
2476 int
2477 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2478 audio_file_t *file)
2479 {
2480 audio_track_t *track;
2481 audio_ring_t *usrbuf;
2482 audio_ring_t *input;
2483 int error;
2484
2485 /*
2486 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2487 * However read() system call itself can be called because it's
2488 * opened with O_RDWR. So in this case, deny this read().
2489 */
2490 track = file->rtrack;
2491 if (track == NULL) {
2492 return EBADF;
2493 }
2494
2495 /* I think it's better than EINVAL. */
2496 if (track->mmapped)
2497 return EPERM;
2498
2499 TRACET(2, track, "resid=%zd", uio->uio_resid);
2500
2501 #ifdef AUDIO_PM_IDLE
2502 error = audio_exlock_mutex_enter(sc);
2503 if (error)
2504 return error;
2505
2506 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2507 device_active(&sc->sc_dev, DVA_SYSTEM);
2508
2509 /* In recording, unlike playback, read() never operates rmixer. */
2510
2511 audio_exlock_mutex_exit(sc);
2512 #endif
2513
2514 usrbuf = &track->usrbuf;
2515 input = track->input;
2516 error = 0;
2517
2518 while (uio->uio_resid > 0 && error == 0) {
2519 int bytes;
2520
2521 TRACET(3, track,
2522 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2523 uio->uio_resid,
2524 input->head, input->used, input->capacity,
2525 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2526
2527 /* Wait when buffers are empty. */
2528 mutex_enter(sc->sc_lock);
2529 for (;;) {
2530 bool empty;
2531 audio_track_lock_enter(track);
2532 empty = (input->used == 0 && usrbuf->used == 0);
2533 audio_track_lock_exit(track);
2534 if (!empty)
2535 break;
2536
2537 if ((ioflag & IO_NDELAY)) {
2538 mutex_exit(sc->sc_lock);
2539 return EWOULDBLOCK;
2540 }
2541
2542 TRACET(3, track, "sleep");
2543 error = audio_track_waitio(sc, track);
2544 if (error) {
2545 mutex_exit(sc->sc_lock);
2546 return error;
2547 }
2548 }
2549 mutex_exit(sc->sc_lock);
2550
2551 audio_track_lock_enter(track);
2552 audio_track_record(track);
2553
2554 /* uiomove from usrbuf as much as possible. */
2555 bytes = uimin(usrbuf->used, uio->uio_resid);
2556 while (bytes > 0) {
2557 int head = usrbuf->head;
2558 int len = uimin(bytes, usrbuf->capacity - head);
2559 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2560 uio);
2561 if (error) {
2562 audio_track_lock_exit(track);
2563 device_printf(sc->sc_dev,
2564 "uiomove(len=%d) failed with %d\n",
2565 len, error);
2566 goto abort;
2567 }
2568 auring_take(usrbuf, len);
2569 track->useriobytes += len;
2570 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2571 len,
2572 usrbuf->head, usrbuf->used, usrbuf->capacity);
2573 bytes -= len;
2574 }
2575
2576 audio_track_lock_exit(track);
2577 }
2578
2579 abort:
2580 return error;
2581 }
2582
2583
2584 /*
2585 * Clear file's playback and/or record track buffer immediately.
2586 */
2587 static void
2588 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2589 {
2590
2591 if (file->ptrack)
2592 audio_track_clear(sc, file->ptrack);
2593 if (file->rtrack)
2594 audio_track_clear(sc, file->rtrack);
2595 }
2596
2597 /*
2598 * Must be called without sc_lock nor sc_exlock held.
2599 */
2600 int
2601 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2602 audio_file_t *file)
2603 {
2604 audio_track_t *track;
2605 audio_ring_t *usrbuf;
2606 audio_ring_t *outbuf;
2607 int error;
2608
2609 track = file->ptrack;
2610 KASSERT(track);
2611
2612 /* I think it's better than EINVAL. */
2613 if (track->mmapped)
2614 return EPERM;
2615
2616 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2617 audiodebug >= 3 ? "begin " : "",
2618 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2619
2620 if (uio->uio_resid == 0) {
2621 track->eofcounter++;
2622 return 0;
2623 }
2624
2625 error = audio_exlock_mutex_enter(sc);
2626 if (error)
2627 return error;
2628
2629 #ifdef AUDIO_PM_IDLE
2630 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2631 device_active(&sc->sc_dev, DVA_SYSTEM);
2632 #endif
2633
2634 /*
2635 * The first write starts pmixer.
2636 */
2637 if (sc->sc_pbusy == false)
2638 audio_pmixer_start(sc, false);
2639 audio_exlock_mutex_exit(sc);
2640
2641 usrbuf = &track->usrbuf;
2642 outbuf = &track->outbuf;
2643 track->pstate = AUDIO_STATE_RUNNING;
2644 error = 0;
2645
2646 while (uio->uio_resid > 0 && error == 0) {
2647 int bytes;
2648
2649 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2650 uio->uio_resid,
2651 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2652
2653 /* Wait when buffers are full. */
2654 mutex_enter(sc->sc_lock);
2655 for (;;) {
2656 bool full;
2657 audio_track_lock_enter(track);
2658 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2659 outbuf->used >= outbuf->capacity);
2660 audio_track_lock_exit(track);
2661 if (!full)
2662 break;
2663
2664 if ((ioflag & IO_NDELAY)) {
2665 error = EWOULDBLOCK;
2666 mutex_exit(sc->sc_lock);
2667 goto abort;
2668 }
2669
2670 TRACET(3, track, "sleep usrbuf=%d/H%d",
2671 usrbuf->used, track->usrbuf_usedhigh);
2672 error = audio_track_waitio(sc, track);
2673 if (error) {
2674 mutex_exit(sc->sc_lock);
2675 goto abort;
2676 }
2677 }
2678 mutex_exit(sc->sc_lock);
2679
2680 audio_track_lock_enter(track);
2681
2682 /* uiomove to usrbuf as much as possible. */
2683 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2684 uio->uio_resid);
2685 while (bytes > 0) {
2686 int tail = auring_tail(usrbuf);
2687 int len = uimin(bytes, usrbuf->capacity - tail);
2688 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2689 uio);
2690 if (error) {
2691 audio_track_lock_exit(track);
2692 device_printf(sc->sc_dev,
2693 "uiomove(len=%d) failed with %d\n",
2694 len, error);
2695 goto abort;
2696 }
2697 auring_push(usrbuf, len);
2698 track->useriobytes += len;
2699 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2700 len,
2701 usrbuf->head, usrbuf->used, usrbuf->capacity);
2702 bytes -= len;
2703 }
2704
2705 /* Convert them as much as possible. */
2706 while (usrbuf->used >= track->usrbuf_blksize &&
2707 outbuf->used < outbuf->capacity) {
2708 audio_track_play(track);
2709 }
2710
2711 audio_track_lock_exit(track);
2712 }
2713
2714 abort:
2715 TRACET(3, track, "done error=%d", error);
2716 return error;
2717 }
2718
2719 /*
2720 * Must be called without sc_lock nor sc_exlock held.
2721 */
2722 int
2723 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2724 struct lwp *l, audio_file_t *file)
2725 {
2726 struct audio_offset *ao;
2727 struct audio_info ai;
2728 audio_track_t *track;
2729 audio_encoding_t *ae;
2730 audio_format_query_t *query;
2731 u_int stamp;
2732 u_int offs;
2733 int fd;
2734 int index;
2735 int error;
2736
2737 #if defined(AUDIO_DEBUG)
2738 const char *ioctlnames[] = {
2739 " AUDIO_GETINFO", /* 21 */
2740 " AUDIO_SETINFO", /* 22 */
2741 " AUDIO_DRAIN", /* 23 */
2742 " AUDIO_FLUSH", /* 24 */
2743 " AUDIO_WSEEK", /* 25 */
2744 " AUDIO_RERROR", /* 26 */
2745 " AUDIO_GETDEV", /* 27 */
2746 " AUDIO_GETENC", /* 28 */
2747 " AUDIO_GETFD", /* 29 */
2748 " AUDIO_SETFD", /* 30 */
2749 " AUDIO_PERROR", /* 31 */
2750 " AUDIO_GETIOFFS", /* 32 */
2751 " AUDIO_GETOOFFS", /* 33 */
2752 " AUDIO_GETPROPS", /* 34 */
2753 " AUDIO_GETBUFINFO", /* 35 */
2754 " AUDIO_SETCHAN", /* 36 */
2755 " AUDIO_GETCHAN", /* 37 */
2756 " AUDIO_QUERYFORMAT", /* 38 */
2757 " AUDIO_GETFORMAT", /* 39 */
2758 " AUDIO_SETFORMAT", /* 40 */
2759 };
2760 int nameidx = (cmd & 0xff);
2761 const char *ioctlname = "";
2762 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2763 ioctlname = ioctlnames[nameidx - 21];
2764 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2765 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2766 (int)curproc->p_pid, (int)l->l_lid);
2767 #endif
2768
2769 error = 0;
2770 switch (cmd) {
2771 case FIONBIO:
2772 /* All handled in the upper FS layer. */
2773 break;
2774
2775 case FIONREAD:
2776 /* Get the number of bytes that can be read. */
2777 if (file->rtrack) {
2778 *(int *)addr = audio_track_readablebytes(file->rtrack);
2779 } else {
2780 *(int *)addr = 0;
2781 }
2782 break;
2783
2784 case FIOASYNC:
2785 /* Set/Clear ASYNC I/O. */
2786 if (*(int *)addr) {
2787 file->async_audio = curproc->p_pid;
2788 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2789 } else {
2790 file->async_audio = 0;
2791 TRACEF(2, file, "FIOASYNC off");
2792 }
2793 break;
2794
2795 case AUDIO_FLUSH:
2796 /* XXX TODO: clear errors and restart? */
2797 audio_file_clear(sc, file);
2798 break;
2799
2800 case AUDIO_RERROR:
2801 /*
2802 * Number of read bytes dropped. We don't know where
2803 * or when they were dropped (including conversion stage).
2804 * Therefore, the number of accurate bytes or samples is
2805 * also unknown.
2806 */
2807 track = file->rtrack;
2808 if (track) {
2809 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2810 track->dropframes);
2811 }
2812 break;
2813
2814 case AUDIO_PERROR:
2815 /*
2816 * Number of write bytes dropped. We don't know where
2817 * or when they were dropped (including conversion stage).
2818 * Therefore, the number of accurate bytes or samples is
2819 * also unknown.
2820 */
2821 track = file->ptrack;
2822 if (track) {
2823 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2824 track->dropframes);
2825 }
2826 break;
2827
2828 case AUDIO_GETIOFFS:
2829 /* XXX TODO */
2830 ao = (struct audio_offset *)addr;
2831 ao->samples = 0;
2832 ao->deltablks = 0;
2833 ao->offset = 0;
2834 break;
2835
2836 case AUDIO_GETOOFFS:
2837 ao = (struct audio_offset *)addr;
2838 track = file->ptrack;
2839 if (track == NULL) {
2840 ao->samples = 0;
2841 ao->deltablks = 0;
2842 ao->offset = 0;
2843 break;
2844 }
2845 mutex_enter(sc->sc_lock);
2846 mutex_enter(sc->sc_intr_lock);
2847 /* figure out where next DMA will start */
2848 stamp = track->usrbuf_stamp;
2849 offs = track->usrbuf.head;
2850 mutex_exit(sc->sc_intr_lock);
2851 mutex_exit(sc->sc_lock);
2852
2853 ao->samples = stamp;
2854 ao->deltablks = (stamp / track->usrbuf_blksize) -
2855 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2856 track->usrbuf_stamp_last = stamp;
2857 offs = rounddown(offs, track->usrbuf_blksize)
2858 + track->usrbuf_blksize;
2859 if (offs >= track->usrbuf.capacity)
2860 offs -= track->usrbuf.capacity;
2861 ao->offset = offs;
2862
2863 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2864 ao->samples, ao->deltablks, ao->offset);
2865 break;
2866
2867 case AUDIO_WSEEK:
2868 /* XXX return value does not include outbuf one. */
2869 if (file->ptrack)
2870 *(u_long *)addr = file->ptrack->usrbuf.used;
2871 break;
2872
2873 case AUDIO_SETINFO:
2874 error = audio_exlock_enter(sc);
2875 if (error)
2876 break;
2877 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2878 if (error) {
2879 audio_exlock_exit(sc);
2880 break;
2881 }
2882 /* XXX TODO: update last_ai if /dev/sound ? */
2883 if (ISDEVSOUND(dev))
2884 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2885 audio_exlock_exit(sc);
2886 break;
2887
2888 case AUDIO_GETINFO:
2889 error = audio_exlock_enter(sc);
2890 if (error)
2891 break;
2892 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2893 audio_exlock_exit(sc);
2894 break;
2895
2896 case AUDIO_GETBUFINFO:
2897 error = audio_exlock_enter(sc);
2898 if (error)
2899 break;
2900 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2901 audio_exlock_exit(sc);
2902 break;
2903
2904 case AUDIO_DRAIN:
2905 if (file->ptrack) {
2906 mutex_enter(sc->sc_lock);
2907 error = audio_track_drain(sc, file->ptrack);
2908 mutex_exit(sc->sc_lock);
2909 }
2910 break;
2911
2912 case AUDIO_GETDEV:
2913 mutex_enter(sc->sc_lock);
2914 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2915 mutex_exit(sc->sc_lock);
2916 break;
2917
2918 case AUDIO_GETENC:
2919 ae = (audio_encoding_t *)addr;
2920 index = ae->index;
2921 if (index < 0 || index >= __arraycount(audio_encodings)) {
2922 error = EINVAL;
2923 break;
2924 }
2925 *ae = audio_encodings[index];
2926 ae->index = index;
2927 /*
2928 * EMULATED always.
2929 * EMULATED flag at that time used to mean that it could
2930 * not be passed directly to the hardware as-is. But
2931 * currently, all formats including hardware native is not
2932 * passed directly to the hardware. So I set EMULATED
2933 * flag for all formats.
2934 */
2935 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2936 break;
2937
2938 case AUDIO_GETFD:
2939 /*
2940 * Returns the current setting of full duplex mode.
2941 * If HW has full duplex mode and there are two mixers,
2942 * it is full duplex. Otherwise half duplex.
2943 */
2944 error = audio_exlock_enter(sc);
2945 if (error)
2946 break;
2947 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2948 && (sc->sc_pmixer && sc->sc_rmixer);
2949 audio_exlock_exit(sc);
2950 *(int *)addr = fd;
2951 break;
2952
2953 case AUDIO_GETPROPS:
2954 *(int *)addr = sc->sc_props;
2955 break;
2956
2957 case AUDIO_QUERYFORMAT:
2958 query = (audio_format_query_t *)addr;
2959 mutex_enter(sc->sc_lock);
2960 error = sc->hw_if->query_format(sc->hw_hdl, query);
2961 mutex_exit(sc->sc_lock);
2962 /* Hide internal infomations */
2963 query->fmt.driver_data = NULL;
2964 break;
2965
2966 case AUDIO_GETFORMAT:
2967 error = audio_exlock_enter(sc);
2968 if (error)
2969 break;
2970 audio_mixers_get_format(sc, (struct audio_info *)addr);
2971 audio_exlock_exit(sc);
2972 break;
2973
2974 case AUDIO_SETFORMAT:
2975 error = audio_exlock_enter(sc);
2976 audio_mixers_get_format(sc, &ai);
2977 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2978 if (error) {
2979 /* Rollback */
2980 audio_mixers_set_format(sc, &ai);
2981 }
2982 audio_exlock_exit(sc);
2983 break;
2984
2985 case AUDIO_SETFD:
2986 case AUDIO_SETCHAN:
2987 case AUDIO_GETCHAN:
2988 /* Obsoleted */
2989 break;
2990
2991 default:
2992 if (sc->hw_if->dev_ioctl) {
2993 mutex_enter(sc->sc_lock);
2994 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2995 cmd, addr, flag, l);
2996 mutex_exit(sc->sc_lock);
2997 } else {
2998 TRACEF(2, file, "unknown ioctl");
2999 error = EINVAL;
3000 }
3001 break;
3002 }
3003 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
3004 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
3005 error);
3006 return error;
3007 }
3008
3009 /*
3010 * Returns the number of bytes that can be read on recording buffer.
3011 */
3012 static __inline int
3013 audio_track_readablebytes(const audio_track_t *track)
3014 {
3015 int bytes;
3016
3017 KASSERT(track);
3018 KASSERT(track->mode == AUMODE_RECORD);
3019
3020 /*
3021 * Although usrbuf is primarily readable data, recorded data
3022 * also stays in track->input until reading. So it is necessary
3023 * to add it. track->input is in frame, usrbuf is in byte.
3024 */
3025 bytes = track->usrbuf.used +
3026 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3027 return bytes;
3028 }
3029
3030 /*
3031 * Must be called without sc_lock nor sc_exlock held.
3032 */
3033 int
3034 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3035 audio_file_t *file)
3036 {
3037 audio_track_t *track;
3038 int revents;
3039 bool in_is_valid;
3040 bool out_is_valid;
3041
3042 #if defined(AUDIO_DEBUG)
3043 #define POLLEV_BITMAP "\177\020" \
3044 "b\10WRBAND\0" \
3045 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3046 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3047 char evbuf[64];
3048 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3049 TRACEF(2, file, "pid=%d.%d events=%s",
3050 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3051 #endif
3052
3053 revents = 0;
3054 in_is_valid = false;
3055 out_is_valid = false;
3056 if (events & (POLLIN | POLLRDNORM)) {
3057 track = file->rtrack;
3058 if (track) {
3059 int used;
3060 in_is_valid = true;
3061 used = audio_track_readablebytes(track);
3062 if (used > 0)
3063 revents |= events & (POLLIN | POLLRDNORM);
3064 }
3065 }
3066 if (events & (POLLOUT | POLLWRNORM)) {
3067 track = file->ptrack;
3068 if (track) {
3069 out_is_valid = true;
3070 if (track->usrbuf.used <= track->usrbuf_usedlow)
3071 revents |= events & (POLLOUT | POLLWRNORM);
3072 }
3073 }
3074
3075 if (revents == 0) {
3076 mutex_enter(sc->sc_lock);
3077 if (in_is_valid) {
3078 TRACEF(3, file, "selrecord rsel");
3079 selrecord(l, &sc->sc_rsel);
3080 }
3081 if (out_is_valid) {
3082 TRACEF(3, file, "selrecord wsel");
3083 selrecord(l, &sc->sc_wsel);
3084 }
3085 mutex_exit(sc->sc_lock);
3086 }
3087
3088 #if defined(AUDIO_DEBUG)
3089 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3090 TRACEF(2, file, "revents=%s", evbuf);
3091 #endif
3092 return revents;
3093 }
3094
3095 static const struct filterops audioread_filtops = {
3096 .f_isfd = 1,
3097 .f_attach = NULL,
3098 .f_detach = filt_audioread_detach,
3099 .f_event = filt_audioread_event,
3100 };
3101
3102 static void
3103 filt_audioread_detach(struct knote *kn)
3104 {
3105 struct audio_softc *sc;
3106 audio_file_t *file;
3107
3108 file = kn->kn_hook;
3109 sc = file->sc;
3110 TRACEF(3, file, "");
3111
3112 mutex_enter(sc->sc_lock);
3113 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
3114 mutex_exit(sc->sc_lock);
3115 }
3116
3117 static int
3118 filt_audioread_event(struct knote *kn, long hint)
3119 {
3120 audio_file_t *file;
3121 audio_track_t *track;
3122
3123 file = kn->kn_hook;
3124 track = file->rtrack;
3125
3126 /*
3127 * kn_data must contain the number of bytes can be read.
3128 * The return value indicates whether the event occurs or not.
3129 */
3130
3131 if (track == NULL) {
3132 /* can not read with this descriptor. */
3133 kn->kn_data = 0;
3134 return 0;
3135 }
3136
3137 kn->kn_data = audio_track_readablebytes(track);
3138 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3139 return kn->kn_data > 0;
3140 }
3141
3142 static const struct filterops audiowrite_filtops = {
3143 .f_isfd = 1,
3144 .f_attach = NULL,
3145 .f_detach = filt_audiowrite_detach,
3146 .f_event = filt_audiowrite_event,
3147 };
3148
3149 static void
3150 filt_audiowrite_detach(struct knote *kn)
3151 {
3152 struct audio_softc *sc;
3153 audio_file_t *file;
3154
3155 file = kn->kn_hook;
3156 sc = file->sc;
3157 TRACEF(3, file, "");
3158
3159 mutex_enter(sc->sc_lock);
3160 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
3161 mutex_exit(sc->sc_lock);
3162 }
3163
3164 static int
3165 filt_audiowrite_event(struct knote *kn, long hint)
3166 {
3167 audio_file_t *file;
3168 audio_track_t *track;
3169
3170 file = kn->kn_hook;
3171 track = file->ptrack;
3172
3173 /*
3174 * kn_data must contain the number of bytes can be write.
3175 * The return value indicates whether the event occurs or not.
3176 */
3177
3178 if (track == NULL) {
3179 /* can not write with this descriptor. */
3180 kn->kn_data = 0;
3181 return 0;
3182 }
3183
3184 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3185 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3186 return (track->usrbuf.used < track->usrbuf_usedlow);
3187 }
3188
3189 /*
3190 * Must be called without sc_lock nor sc_exlock held.
3191 */
3192 int
3193 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3194 {
3195 struct klist *klist;
3196
3197 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3198
3199 mutex_enter(sc->sc_lock);
3200 switch (kn->kn_filter) {
3201 case EVFILT_READ:
3202 klist = &sc->sc_rsel.sel_klist;
3203 kn->kn_fop = &audioread_filtops;
3204 break;
3205
3206 case EVFILT_WRITE:
3207 klist = &sc->sc_wsel.sel_klist;
3208 kn->kn_fop = &audiowrite_filtops;
3209 break;
3210
3211 default:
3212 mutex_exit(sc->sc_lock);
3213 return EINVAL;
3214 }
3215
3216 kn->kn_hook = file;
3217
3218 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3219 mutex_exit(sc->sc_lock);
3220
3221 return 0;
3222 }
3223
3224 /*
3225 * Must be called without sc_lock nor sc_exlock held.
3226 */
3227 int
3228 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3229 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3230 audio_file_t *file)
3231 {
3232 audio_track_t *track;
3233 vsize_t vsize;
3234 int error;
3235
3236 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3237
3238 if (*offp < 0)
3239 return EINVAL;
3240
3241 #if 0
3242 /* XXX
3243 * The idea here was to use the protection to determine if
3244 * we are mapping the read or write buffer, but it fails.
3245 * The VM system is broken in (at least) two ways.
3246 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3247 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3248 * has to be used for mmapping the play buffer.
3249 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3250 * audio_mmap will get called at some point with VM_PROT_READ
3251 * only.
3252 * So, alas, we always map the play buffer for now.
3253 */
3254 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3255 prot == VM_PROT_WRITE)
3256 track = file->ptrack;
3257 else if (prot == VM_PROT_READ)
3258 track = file->rtrack;
3259 else
3260 return EINVAL;
3261 #else
3262 track = file->ptrack;
3263 #endif
3264 if (track == NULL)
3265 return EACCES;
3266
3267 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3268 if (len > vsize)
3269 return EOVERFLOW;
3270 if (*offp > (uint)(vsize - len))
3271 return EOVERFLOW;
3272
3273 /* XXX TODO: what happens when mmap twice. */
3274 if (!track->mmapped) {
3275 track->mmapped = true;
3276
3277 if (!track->is_pause) {
3278 error = audio_exlock_mutex_enter(sc);
3279 if (error)
3280 return error;
3281 if (sc->sc_pbusy == false)
3282 audio_pmixer_start(sc, true);
3283 audio_exlock_mutex_exit(sc);
3284 }
3285 /* XXX mmapping record buffer is not supported */
3286 }
3287
3288 /* get ringbuffer */
3289 *uobjp = track->uobj;
3290
3291 /* Acquire a reference for the mmap. munmap will release. */
3292 uao_reference(*uobjp);
3293 *maxprotp = prot;
3294 *advicep = UVM_ADV_RANDOM;
3295 *flagsp = MAP_SHARED;
3296 return 0;
3297 }
3298
3299 /*
3300 * /dev/audioctl has to be able to open at any time without interference
3301 * with any /dev/audio or /dev/sound.
3302 * Must be called with sc_exlock held and without sc_lock held.
3303 */
3304 static int
3305 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3306 struct lwp *l)
3307 {
3308 struct file *fp;
3309 audio_file_t *af;
3310 int fd;
3311 int error;
3312
3313 KASSERT(sc->sc_exlock);
3314
3315 TRACE(1, "");
3316
3317 error = fd_allocfile(&fp, &fd);
3318 if (error)
3319 return error;
3320
3321 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3322 af->sc = sc;
3323 af->dev = dev;
3324
3325 /* Not necessary to insert sc_files. */
3326
3327 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3328 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3329
3330 return error;
3331 }
3332
3333 /*
3334 * Free 'mem' if available, and initialize the pointer.
3335 * For this reason, this is implemented as macro.
3336 */
3337 #define audio_free(mem) do { \
3338 if (mem != NULL) { \
3339 kern_free(mem); \
3340 mem = NULL; \
3341 } \
3342 } while (0)
3343
3344 /*
3345 * (Re)allocate 'memblock' with specified 'bytes'.
3346 * bytes must not be 0.
3347 * This function never returns NULL.
3348 */
3349 static void *
3350 audio_realloc(void *memblock, size_t bytes)
3351 {
3352
3353 KASSERT(bytes != 0);
3354 audio_free(memblock);
3355 return kern_malloc(bytes, M_WAITOK);
3356 }
3357
3358 /*
3359 * (Re)allocate usrbuf with 'newbufsize' bytes.
3360 * Use this function for usrbuf because only usrbuf can be mmapped.
3361 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3362 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3363 * and returns errno.
3364 * It must be called before updating usrbuf.capacity.
3365 */
3366 static int
3367 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3368 {
3369 struct audio_softc *sc;
3370 vaddr_t vstart;
3371 vsize_t oldvsize;
3372 vsize_t newvsize;
3373 int error;
3374
3375 KASSERT(newbufsize > 0);
3376 sc = track->mixer->sc;
3377
3378 /* Get a nonzero multiple of PAGE_SIZE */
3379 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3380
3381 if (track->usrbuf.mem != NULL) {
3382 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3383 PAGE_SIZE);
3384 if (oldvsize == newvsize) {
3385 track->usrbuf.capacity = newbufsize;
3386 return 0;
3387 }
3388 vstart = (vaddr_t)track->usrbuf.mem;
3389 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3390 /* uvm_unmap also detach uobj */
3391 track->uobj = NULL; /* paranoia */
3392 track->usrbuf.mem = NULL;
3393 }
3394
3395 /* Create a uvm anonymous object */
3396 track->uobj = uao_create(newvsize, 0);
3397
3398 /* Map it into the kernel virtual address space */
3399 vstart = 0;
3400 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3401 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3402 UVM_ADV_RANDOM, 0));
3403 if (error) {
3404 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3405 uao_detach(track->uobj); /* release reference */
3406 goto abort;
3407 }
3408
3409 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3410 false, 0);
3411 if (error) {
3412 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3413 error);
3414 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3415 /* uvm_unmap also detach uobj */
3416 goto abort;
3417 }
3418
3419 track->usrbuf.mem = (void *)vstart;
3420 track->usrbuf.capacity = newbufsize;
3421 memset(track->usrbuf.mem, 0, newvsize);
3422 return 0;
3423
3424 /* failure */
3425 abort:
3426 track->uobj = NULL; /* paranoia */
3427 track->usrbuf.mem = NULL;
3428 track->usrbuf.capacity = 0;
3429 return error;
3430 }
3431
3432 /*
3433 * Free usrbuf (if available).
3434 */
3435 static void
3436 audio_free_usrbuf(audio_track_t *track)
3437 {
3438 vaddr_t vstart;
3439 vsize_t vsize;
3440
3441 vstart = (vaddr_t)track->usrbuf.mem;
3442 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3443 if (track->usrbuf.mem != NULL) {
3444 /*
3445 * Unmap the kernel mapping. uvm_unmap releases the
3446 * reference to the uvm object, and this should be the
3447 * last virtual mapping of the uvm object, so no need
3448 * to explicitly release (`detach') the object.
3449 */
3450 uvm_unmap(kernel_map, vstart, vstart + vsize);
3451
3452 track->uobj = NULL;
3453 track->usrbuf.mem = NULL;
3454 track->usrbuf.capacity = 0;
3455 }
3456 }
3457
3458 /*
3459 * This filter changes the volume for each channel.
3460 * arg->context points track->ch_volume[].
3461 */
3462 static void
3463 audio_track_chvol(audio_filter_arg_t *arg)
3464 {
3465 int16_t *ch_volume;
3466 const aint_t *s;
3467 aint_t *d;
3468 u_int i;
3469 u_int ch;
3470 u_int channels;
3471
3472 DIAGNOSTIC_filter_arg(arg);
3473 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3474 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3475 arg->srcfmt->channels, arg->dstfmt->channels);
3476 KASSERT(arg->context != NULL);
3477 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3478 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3479
3480 s = arg->src;
3481 d = arg->dst;
3482 ch_volume = arg->context;
3483
3484 channels = arg->srcfmt->channels;
3485 for (i = 0; i < arg->count; i++) {
3486 for (ch = 0; ch < channels; ch++) {
3487 aint2_t val;
3488 val = *s++;
3489 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3490 *d++ = (aint_t)val;
3491 }
3492 }
3493 }
3494
3495 /*
3496 * This filter performs conversion from stereo (or more channels) to mono.
3497 */
3498 static void
3499 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3500 {
3501 const aint_t *s;
3502 aint_t *d;
3503 u_int i;
3504
3505 DIAGNOSTIC_filter_arg(arg);
3506
3507 s = arg->src;
3508 d = arg->dst;
3509
3510 for (i = 0; i < arg->count; i++) {
3511 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3512 s += arg->srcfmt->channels;
3513 }
3514 }
3515
3516 /*
3517 * This filter performs conversion from mono to stereo (or more channels).
3518 */
3519 static void
3520 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3521 {
3522 const aint_t *s;
3523 aint_t *d;
3524 u_int i;
3525 u_int ch;
3526 u_int dstchannels;
3527
3528 DIAGNOSTIC_filter_arg(arg);
3529
3530 s = arg->src;
3531 d = arg->dst;
3532 dstchannels = arg->dstfmt->channels;
3533
3534 for (i = 0; i < arg->count; i++) {
3535 d[0] = s[0];
3536 d[1] = s[0];
3537 s++;
3538 d += dstchannels;
3539 }
3540 if (dstchannels > 2) {
3541 d = arg->dst;
3542 for (i = 0; i < arg->count; i++) {
3543 for (ch = 2; ch < dstchannels; ch++) {
3544 d[ch] = 0;
3545 }
3546 d += dstchannels;
3547 }
3548 }
3549 }
3550
3551 /*
3552 * This filter shrinks M channels into N channels.
3553 * Extra channels are discarded.
3554 */
3555 static void
3556 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3557 {
3558 const aint_t *s;
3559 aint_t *d;
3560 u_int i;
3561 u_int ch;
3562
3563 DIAGNOSTIC_filter_arg(arg);
3564
3565 s = arg->src;
3566 d = arg->dst;
3567
3568 for (i = 0; i < arg->count; i++) {
3569 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3570 *d++ = s[ch];
3571 }
3572 s += arg->srcfmt->channels;
3573 }
3574 }
3575
3576 /*
3577 * This filter expands M channels into N channels.
3578 * Silence is inserted for missing channels.
3579 */
3580 static void
3581 audio_track_chmix_expand(audio_filter_arg_t *arg)
3582 {
3583 const aint_t *s;
3584 aint_t *d;
3585 u_int i;
3586 u_int ch;
3587 u_int srcchannels;
3588 u_int dstchannels;
3589
3590 DIAGNOSTIC_filter_arg(arg);
3591
3592 s = arg->src;
3593 d = arg->dst;
3594
3595 srcchannels = arg->srcfmt->channels;
3596 dstchannels = arg->dstfmt->channels;
3597 for (i = 0; i < arg->count; i++) {
3598 for (ch = 0; ch < srcchannels; ch++) {
3599 *d++ = *s++;
3600 }
3601 for (; ch < dstchannels; ch++) {
3602 *d++ = 0;
3603 }
3604 }
3605 }
3606
3607 /*
3608 * This filter performs frequency conversion (up sampling).
3609 * It uses linear interpolation.
3610 */
3611 static void
3612 audio_track_freq_up(audio_filter_arg_t *arg)
3613 {
3614 audio_track_t *track;
3615 audio_ring_t *src;
3616 audio_ring_t *dst;
3617 const aint_t *s;
3618 aint_t *d;
3619 aint_t prev[AUDIO_MAX_CHANNELS];
3620 aint_t curr[AUDIO_MAX_CHANNELS];
3621 aint_t grad[AUDIO_MAX_CHANNELS];
3622 u_int i;
3623 u_int t;
3624 u_int step;
3625 u_int channels;
3626 u_int ch;
3627 int srcused;
3628
3629 track = arg->context;
3630 KASSERT(track);
3631 src = &track->freq.srcbuf;
3632 dst = track->freq.dst;
3633 DIAGNOSTIC_ring(dst);
3634 DIAGNOSTIC_ring(src);
3635 KASSERT(src->used > 0);
3636 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3637 "src->fmt.channels=%d dst->fmt.channels=%d",
3638 src->fmt.channels, dst->fmt.channels);
3639 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3640 "src->head=%d track->mixer->frames_per_block=%d",
3641 src->head, track->mixer->frames_per_block);
3642
3643 s = arg->src;
3644 d = arg->dst;
3645
3646 /*
3647 * In order to faciliate interpolation for each block, slide (delay)
3648 * input by one sample. As a result, strictly speaking, the output
3649 * phase is delayed by 1/dstfreq. However, I believe there is no
3650 * observable impact.
3651 *
3652 * Example)
3653 * srcfreq:dstfreq = 1:3
3654 *
3655 * A - -
3656 * |
3657 * |
3658 * | B - -
3659 * +-----+-----> input timeframe
3660 * 0 1
3661 *
3662 * 0 1
3663 * +-----+-----> input timeframe
3664 * | A
3665 * | x x
3666 * | x x
3667 * x (B)
3668 * +-+-+-+-+-+-> output timeframe
3669 * 0 1 2 3 4 5
3670 */
3671
3672 /* Last samples in previous block */
3673 channels = src->fmt.channels;
3674 for (ch = 0; ch < channels; ch++) {
3675 prev[ch] = track->freq_prev[ch];
3676 curr[ch] = track->freq_curr[ch];
3677 grad[ch] = curr[ch] - prev[ch];
3678 }
3679
3680 step = track->freq_step;
3681 t = track->freq_current;
3682 //#define FREQ_DEBUG
3683 #if defined(FREQ_DEBUG)
3684 #define PRINTF(fmt...) printf(fmt)
3685 #else
3686 #define PRINTF(fmt...) do { } while (0)
3687 #endif
3688 srcused = src->used;
3689 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3690 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3691 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3692 PRINTF(" t=%d\n", t);
3693
3694 for (i = 0; i < arg->count; i++) {
3695 PRINTF("i=%d t=%5d", i, t);
3696 if (t >= 65536) {
3697 for (ch = 0; ch < channels; ch++) {
3698 prev[ch] = curr[ch];
3699 curr[ch] = *s++;
3700 grad[ch] = curr[ch] - prev[ch];
3701 }
3702 PRINTF(" prev=%d s[%d]=%d",
3703 prev[0], src->used - srcused, curr[0]);
3704
3705 /* Update */
3706 t -= 65536;
3707 srcused--;
3708 if (srcused < 0) {
3709 PRINTF(" break\n");
3710 break;
3711 }
3712 }
3713
3714 for (ch = 0; ch < channels; ch++) {
3715 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3716 #if defined(FREQ_DEBUG)
3717 if (ch == 0)
3718 printf(" t=%5d *d=%d", t, d[-1]);
3719 #endif
3720 }
3721 t += step;
3722
3723 PRINTF("\n");
3724 }
3725 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3726
3727 auring_take(src, src->used);
3728 auring_push(dst, i);
3729
3730 /* Adjust */
3731 t += track->freq_leap;
3732
3733 track->freq_current = t;
3734 for (ch = 0; ch < channels; ch++) {
3735 track->freq_prev[ch] = prev[ch];
3736 track->freq_curr[ch] = curr[ch];
3737 }
3738 }
3739
3740 /*
3741 * This filter performs frequency conversion (down sampling).
3742 * It uses simple thinning.
3743 */
3744 static void
3745 audio_track_freq_down(audio_filter_arg_t *arg)
3746 {
3747 audio_track_t *track;
3748 audio_ring_t *src;
3749 audio_ring_t *dst;
3750 const aint_t *s0;
3751 aint_t *d;
3752 u_int i;
3753 u_int t;
3754 u_int step;
3755 u_int ch;
3756 u_int channels;
3757
3758 track = arg->context;
3759 KASSERT(track);
3760 src = &track->freq.srcbuf;
3761 dst = track->freq.dst;
3762
3763 DIAGNOSTIC_ring(dst);
3764 DIAGNOSTIC_ring(src);
3765 KASSERT(src->used > 0);
3766 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3767 "src->fmt.channels=%d dst->fmt.channels=%d",
3768 src->fmt.channels, dst->fmt.channels);
3769 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3770 "src->head=%d track->mixer->frames_per_block=%d",
3771 src->head, track->mixer->frames_per_block);
3772
3773 s0 = arg->src;
3774 d = arg->dst;
3775 t = track->freq_current;
3776 step = track->freq_step;
3777 channels = dst->fmt.channels;
3778 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3779 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3780 PRINTF(" t=%d\n", t);
3781
3782 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3783 const aint_t *s;
3784 PRINTF("i=%4d t=%10d", i, t);
3785 s = s0 + (t / 65536) * channels;
3786 PRINTF(" s=%5ld", (s - s0) / channels);
3787 for (ch = 0; ch < channels; ch++) {
3788 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3789 *d++ = s[ch];
3790 }
3791 PRINTF("\n");
3792 t += step;
3793 }
3794 t += track->freq_leap;
3795 PRINTF("end t=%d\n", t);
3796 auring_take(src, src->used);
3797 auring_push(dst, i);
3798 track->freq_current = t % 65536;
3799 }
3800
3801 /*
3802 * Creates track and returns it.
3803 * Must be called without sc_lock held.
3804 */
3805 audio_track_t *
3806 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3807 {
3808 audio_track_t *track;
3809 static int newid = 0;
3810
3811 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3812
3813 track->id = newid++;
3814 track->mixer = mixer;
3815 track->mode = mixer->mode;
3816
3817 /* Do TRACE after id is assigned. */
3818 TRACET(3, track, "for %s",
3819 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3820
3821 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3822 track->volume = 256;
3823 #endif
3824 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3825 track->ch_volume[i] = 256;
3826 }
3827
3828 return track;
3829 }
3830
3831 /*
3832 * Release all resources of the track and track itself.
3833 * track must not be NULL. Don't specify the track within the file
3834 * structure linked from sc->sc_files.
3835 */
3836 static void
3837 audio_track_destroy(audio_track_t *track)
3838 {
3839
3840 KASSERT(track);
3841
3842 audio_free_usrbuf(track);
3843 audio_free(track->codec.srcbuf.mem);
3844 audio_free(track->chvol.srcbuf.mem);
3845 audio_free(track->chmix.srcbuf.mem);
3846 audio_free(track->freq.srcbuf.mem);
3847 audio_free(track->outbuf.mem);
3848
3849 kmem_free(track, sizeof(*track));
3850 }
3851
3852 /*
3853 * It returns encoding conversion filter according to src and dst format.
3854 * If it is not a convertible pair, it returns NULL. Either src or dst
3855 * must be internal format.
3856 */
3857 static audio_filter_t
3858 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3859 const audio_format2_t *dst)
3860 {
3861
3862 if (audio_format2_is_internal(src)) {
3863 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3864 return audio_internal_to_mulaw;
3865 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3866 return audio_internal_to_alaw;
3867 } else if (audio_format2_is_linear(dst)) {
3868 switch (dst->stride) {
3869 case 8:
3870 return audio_internal_to_linear8;
3871 case 16:
3872 return audio_internal_to_linear16;
3873 #if defined(AUDIO_SUPPORT_LINEAR24)
3874 case 24:
3875 return audio_internal_to_linear24;
3876 #endif
3877 case 32:
3878 return audio_internal_to_linear32;
3879 default:
3880 TRACET(1, track, "unsupported %s stride %d",
3881 "dst", dst->stride);
3882 goto abort;
3883 }
3884 }
3885 } else if (audio_format2_is_internal(dst)) {
3886 if (src->encoding == AUDIO_ENCODING_ULAW) {
3887 return audio_mulaw_to_internal;
3888 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3889 return audio_alaw_to_internal;
3890 } else if (audio_format2_is_linear(src)) {
3891 switch (src->stride) {
3892 case 8:
3893 return audio_linear8_to_internal;
3894 case 16:
3895 return audio_linear16_to_internal;
3896 #if defined(AUDIO_SUPPORT_LINEAR24)
3897 case 24:
3898 return audio_linear24_to_internal;
3899 #endif
3900 case 32:
3901 return audio_linear32_to_internal;
3902 default:
3903 TRACET(1, track, "unsupported %s stride %d",
3904 "src", src->stride);
3905 goto abort;
3906 }
3907 }
3908 }
3909
3910 TRACET(1, track, "unsupported encoding");
3911 abort:
3912 #if defined(AUDIO_DEBUG)
3913 if (audiodebug >= 2) {
3914 char buf[100];
3915 audio_format2_tostr(buf, sizeof(buf), src);
3916 TRACET(2, track, "src %s", buf);
3917 audio_format2_tostr(buf, sizeof(buf), dst);
3918 TRACET(2, track, "dst %s", buf);
3919 }
3920 #endif
3921 return NULL;
3922 }
3923
3924 /*
3925 * Initialize the codec stage of this track as necessary.
3926 * If successful, it initializes the codec stage as necessary, stores updated
3927 * last_dst in *last_dstp in any case, and returns 0.
3928 * Otherwise, it returns errno without modifying *last_dstp.
3929 */
3930 static int
3931 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3932 {
3933 audio_ring_t *last_dst;
3934 audio_ring_t *srcbuf;
3935 audio_format2_t *srcfmt;
3936 audio_format2_t *dstfmt;
3937 audio_filter_arg_t *arg;
3938 u_int len;
3939 int error;
3940
3941 KASSERT(track);
3942
3943 last_dst = *last_dstp;
3944 dstfmt = &last_dst->fmt;
3945 srcfmt = &track->inputfmt;
3946 srcbuf = &track->codec.srcbuf;
3947 error = 0;
3948
3949 if (srcfmt->encoding != dstfmt->encoding
3950 || srcfmt->precision != dstfmt->precision
3951 || srcfmt->stride != dstfmt->stride) {
3952 track->codec.dst = last_dst;
3953
3954 srcbuf->fmt = *dstfmt;
3955 srcbuf->fmt.encoding = srcfmt->encoding;
3956 srcbuf->fmt.precision = srcfmt->precision;
3957 srcbuf->fmt.stride = srcfmt->stride;
3958
3959 track->codec.filter = audio_track_get_codec(track,
3960 &srcbuf->fmt, dstfmt);
3961 if (track->codec.filter == NULL) {
3962 error = EINVAL;
3963 goto abort;
3964 }
3965
3966 srcbuf->head = 0;
3967 srcbuf->used = 0;
3968 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3969 len = auring_bytelen(srcbuf);
3970 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3971
3972 arg = &track->codec.arg;
3973 arg->srcfmt = &srcbuf->fmt;
3974 arg->dstfmt = dstfmt;
3975 arg->context = NULL;
3976
3977 *last_dstp = srcbuf;
3978 return 0;
3979 }
3980
3981 abort:
3982 track->codec.filter = NULL;
3983 audio_free(srcbuf->mem);
3984 return error;
3985 }
3986
3987 /*
3988 * Initialize the chvol stage of this track as necessary.
3989 * If successful, it initializes the chvol stage as necessary, stores updated
3990 * last_dst in *last_dstp in any case, and returns 0.
3991 * Otherwise, it returns errno without modifying *last_dstp.
3992 */
3993 static int
3994 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3995 {
3996 audio_ring_t *last_dst;
3997 audio_ring_t *srcbuf;
3998 audio_format2_t *srcfmt;
3999 audio_format2_t *dstfmt;
4000 audio_filter_arg_t *arg;
4001 u_int len;
4002 int error;
4003
4004 KASSERT(track);
4005
4006 last_dst = *last_dstp;
4007 dstfmt = &last_dst->fmt;
4008 srcfmt = &track->inputfmt;
4009 srcbuf = &track->chvol.srcbuf;
4010 error = 0;
4011
4012 /* Check whether channel volume conversion is necessary. */
4013 bool use_chvol = false;
4014 for (int ch = 0; ch < srcfmt->channels; ch++) {
4015 if (track->ch_volume[ch] != 256) {
4016 use_chvol = true;
4017 break;
4018 }
4019 }
4020
4021 if (use_chvol == true) {
4022 track->chvol.dst = last_dst;
4023 track->chvol.filter = audio_track_chvol;
4024
4025 srcbuf->fmt = *dstfmt;
4026 /* no format conversion occurs */
4027
4028 srcbuf->head = 0;
4029 srcbuf->used = 0;
4030 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4031 len = auring_bytelen(srcbuf);
4032 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4033
4034 arg = &track->chvol.arg;
4035 arg->srcfmt = &srcbuf->fmt;
4036 arg->dstfmt = dstfmt;
4037 arg->context = track->ch_volume;
4038
4039 *last_dstp = srcbuf;
4040 return 0;
4041 }
4042
4043 track->chvol.filter = NULL;
4044 audio_free(srcbuf->mem);
4045 return error;
4046 }
4047
4048 /*
4049 * Initialize the chmix stage of this track as necessary.
4050 * If successful, it initializes the chmix stage as necessary, stores updated
4051 * last_dst in *last_dstp in any case, and returns 0.
4052 * Otherwise, it returns errno without modifying *last_dstp.
4053 */
4054 static int
4055 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4056 {
4057 audio_ring_t *last_dst;
4058 audio_ring_t *srcbuf;
4059 audio_format2_t *srcfmt;
4060 audio_format2_t *dstfmt;
4061 audio_filter_arg_t *arg;
4062 u_int srcch;
4063 u_int dstch;
4064 u_int len;
4065 int error;
4066
4067 KASSERT(track);
4068
4069 last_dst = *last_dstp;
4070 dstfmt = &last_dst->fmt;
4071 srcfmt = &track->inputfmt;
4072 srcbuf = &track->chmix.srcbuf;
4073 error = 0;
4074
4075 srcch = srcfmt->channels;
4076 dstch = dstfmt->channels;
4077 if (srcch != dstch) {
4078 track->chmix.dst = last_dst;
4079
4080 if (srcch >= 2 && dstch == 1) {
4081 track->chmix.filter = audio_track_chmix_mixLR;
4082 } else if (srcch == 1 && dstch >= 2) {
4083 track->chmix.filter = audio_track_chmix_dupLR;
4084 } else if (srcch > dstch) {
4085 track->chmix.filter = audio_track_chmix_shrink;
4086 } else {
4087 track->chmix.filter = audio_track_chmix_expand;
4088 }
4089
4090 srcbuf->fmt = *dstfmt;
4091 srcbuf->fmt.channels = srcch;
4092
4093 srcbuf->head = 0;
4094 srcbuf->used = 0;
4095 /* XXX The buffer size should be able to calculate. */
4096 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4097 len = auring_bytelen(srcbuf);
4098 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4099
4100 arg = &track->chmix.arg;
4101 arg->srcfmt = &srcbuf->fmt;
4102 arg->dstfmt = dstfmt;
4103 arg->context = NULL;
4104
4105 *last_dstp = srcbuf;
4106 return 0;
4107 }
4108
4109 track->chmix.filter = NULL;
4110 audio_free(srcbuf->mem);
4111 return error;
4112 }
4113
4114 /*
4115 * Initialize the freq stage of this track as necessary.
4116 * If successful, it initializes the freq stage as necessary, stores updated
4117 * last_dst in *last_dstp in any case, and returns 0.
4118 * Otherwise, it returns errno without modifying *last_dstp.
4119 */
4120 static int
4121 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4122 {
4123 audio_ring_t *last_dst;
4124 audio_ring_t *srcbuf;
4125 audio_format2_t *srcfmt;
4126 audio_format2_t *dstfmt;
4127 audio_filter_arg_t *arg;
4128 uint32_t srcfreq;
4129 uint32_t dstfreq;
4130 u_int dst_capacity;
4131 u_int mod;
4132 u_int len;
4133 int error;
4134
4135 KASSERT(track);
4136
4137 last_dst = *last_dstp;
4138 dstfmt = &last_dst->fmt;
4139 srcfmt = &track->inputfmt;
4140 srcbuf = &track->freq.srcbuf;
4141 error = 0;
4142
4143 srcfreq = srcfmt->sample_rate;
4144 dstfreq = dstfmt->sample_rate;
4145 if (srcfreq != dstfreq) {
4146 track->freq.dst = last_dst;
4147
4148 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4149 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4150
4151 /* freq_step is the ratio of src/dst when let dst 65536. */
4152 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4153
4154 dst_capacity = frame_per_block(track->mixer, dstfmt);
4155 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4156 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4157
4158 if (track->freq_step < 65536) {
4159 track->freq.filter = audio_track_freq_up;
4160 /* In order to carry at the first time. */
4161 track->freq_current = 65536;
4162 } else {
4163 track->freq.filter = audio_track_freq_down;
4164 track->freq_current = 0;
4165 }
4166
4167 srcbuf->fmt = *dstfmt;
4168 srcbuf->fmt.sample_rate = srcfreq;
4169
4170 srcbuf->head = 0;
4171 srcbuf->used = 0;
4172 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4173 len = auring_bytelen(srcbuf);
4174 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4175
4176 arg = &track->freq.arg;
4177 arg->srcfmt = &srcbuf->fmt;
4178 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4179 arg->context = track;
4180
4181 *last_dstp = srcbuf;
4182 return 0;
4183 }
4184
4185 track->freq.filter = NULL;
4186 audio_free(srcbuf->mem);
4187 return error;
4188 }
4189
4190 /*
4191 * When playing back: (e.g. if codec and freq stage are valid)
4192 *
4193 * write
4194 * | uiomove
4195 * v
4196 * usrbuf [...............] byte ring buffer (mmap-able)
4197 * | memcpy
4198 * v
4199 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4200 * .dst ----+
4201 * | convert
4202 * v
4203 * freq.srcbuf [....] 1 block (ring) buffer
4204 * .dst ----+
4205 * | convert
4206 * v
4207 * outbuf [...............] NBLKOUT blocks ring buffer
4208 *
4209 *
4210 * When recording:
4211 *
4212 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4213 * .dst ----+
4214 * | convert
4215 * v
4216 * codec.srcbuf[.....] 1 block (ring) buffer
4217 * .dst ----+
4218 * | convert
4219 * v
4220 * outbuf [.....] 1 block (ring) buffer
4221 * | memcpy
4222 * v
4223 * usrbuf [...............] byte ring buffer (mmap-able *)
4224 * | uiomove
4225 * v
4226 * read
4227 *
4228 * *: usrbuf for recording is also mmap-able due to symmetry with
4229 * playback buffer, but for now mmap will never happen for recording.
4230 */
4231
4232 /*
4233 * Set the userland format of this track.
4234 * usrfmt argument should be parameter verified with audio_check_params().
4235 * It will release and reallocate all internal conversion buffers.
4236 * It returns 0 if successful. Otherwise it returns errno with clearing all
4237 * internal buffers.
4238 * It must be called without sc_intr_lock since uvm_* routines require non
4239 * intr_lock state.
4240 * It must be called with track lock held since it may release and reallocate
4241 * outbuf.
4242 */
4243 static int
4244 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4245 {
4246 struct audio_softc *sc;
4247 u_int newbufsize;
4248 u_int oldblksize;
4249 u_int len;
4250 int error;
4251
4252 KASSERT(track);
4253 sc = track->mixer->sc;
4254
4255 /* usrbuf is the closest buffer to the userland. */
4256 track->usrbuf.fmt = *usrfmt;
4257
4258 /*
4259 * For references, one block size (in 40msec) is:
4260 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4261 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4262 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4263 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4264 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4265 *
4266 * For example,
4267 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4268 * newbufsize = rounddown(65536 / 7056) = 63504
4269 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4270 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4271 *
4272 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4273 * newbufsize = rounddown(65536 / 7680) = 61440
4274 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4275 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4276 */
4277 oldblksize = track->usrbuf_blksize;
4278 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4279 frame_per_block(track->mixer, &track->usrbuf.fmt));
4280 track->usrbuf.head = 0;
4281 track->usrbuf.used = 0;
4282 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4283 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4284 error = audio_realloc_usrbuf(track, newbufsize);
4285 if (error) {
4286 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4287 newbufsize);
4288 goto error;
4289 }
4290
4291 /* Recalc water mark. */
4292 if (track->usrbuf_blksize != oldblksize) {
4293 if (audio_track_is_playback(track)) {
4294 /* Set high at 100%, low at 75%. */
4295 track->usrbuf_usedhigh = track->usrbuf.capacity;
4296 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4297 } else {
4298 /* Set high at 100% minus 1block(?), low at 0% */
4299 track->usrbuf_usedhigh = track->usrbuf.capacity -
4300 track->usrbuf_blksize;
4301 track->usrbuf_usedlow = 0;
4302 }
4303 }
4304
4305 /* Stage buffer */
4306 audio_ring_t *last_dst = &track->outbuf;
4307 if (audio_track_is_playback(track)) {
4308 /* On playback, initialize from the mixer side in order. */
4309 track->inputfmt = *usrfmt;
4310 track->outbuf.fmt = track->mixer->track_fmt;
4311
4312 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4313 goto error;
4314 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4315 goto error;
4316 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4317 goto error;
4318 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4319 goto error;
4320 } else {
4321 /* On recording, initialize from userland side in order. */
4322 track->inputfmt = track->mixer->track_fmt;
4323 track->outbuf.fmt = *usrfmt;
4324
4325 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4326 goto error;
4327 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4328 goto error;
4329 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4330 goto error;
4331 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4332 goto error;
4333 }
4334 #if 0
4335 /* debug */
4336 if (track->freq.filter) {
4337 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4338 audio_print_format2("freq dst", &track->freq.dst->fmt);
4339 }
4340 if (track->chmix.filter) {
4341 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4342 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4343 }
4344 if (track->chvol.filter) {
4345 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4346 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4347 }
4348 if (track->codec.filter) {
4349 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4350 audio_print_format2("codec dst", &track->codec.dst->fmt);
4351 }
4352 #endif
4353
4354 /* Stage input buffer */
4355 track->input = last_dst;
4356
4357 /*
4358 * On the recording track, make the first stage a ring buffer.
4359 * XXX is there a better way?
4360 */
4361 if (audio_track_is_record(track)) {
4362 track->input->capacity = NBLKOUT *
4363 frame_per_block(track->mixer, &track->input->fmt);
4364 len = auring_bytelen(track->input);
4365 track->input->mem = audio_realloc(track->input->mem, len);
4366 }
4367
4368 /*
4369 * Output buffer.
4370 * On the playback track, its capacity is NBLKOUT blocks.
4371 * On the recording track, its capacity is 1 block.
4372 */
4373 track->outbuf.head = 0;
4374 track->outbuf.used = 0;
4375 track->outbuf.capacity = frame_per_block(track->mixer,
4376 &track->outbuf.fmt);
4377 if (audio_track_is_playback(track))
4378 track->outbuf.capacity *= NBLKOUT;
4379 len = auring_bytelen(&track->outbuf);
4380 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4381 if (track->outbuf.mem == NULL) {
4382 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4383 error = ENOMEM;
4384 goto error;
4385 }
4386
4387 #if defined(AUDIO_DEBUG)
4388 if (audiodebug >= 3) {
4389 struct audio_track_debugbuf m;
4390
4391 memset(&m, 0, sizeof(m));
4392 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4393 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4394 if (track->freq.filter)
4395 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4396 track->freq.srcbuf.capacity *
4397 frametobyte(&track->freq.srcbuf.fmt, 1));
4398 if (track->chmix.filter)
4399 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4400 track->chmix.srcbuf.capacity *
4401 frametobyte(&track->chmix.srcbuf.fmt, 1));
4402 if (track->chvol.filter)
4403 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4404 track->chvol.srcbuf.capacity *
4405 frametobyte(&track->chvol.srcbuf.fmt, 1));
4406 if (track->codec.filter)
4407 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4408 track->codec.srcbuf.capacity *
4409 frametobyte(&track->codec.srcbuf.fmt, 1));
4410 snprintf(m.usrbuf, sizeof(m.usrbuf),
4411 " usr=%d", track->usrbuf.capacity);
4412
4413 if (audio_track_is_playback(track)) {
4414 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4415 m.outbuf, m.freq, m.chmix,
4416 m.chvol, m.codec, m.usrbuf);
4417 } else {
4418 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4419 m.freq, m.chmix, m.chvol,
4420 m.codec, m.outbuf, m.usrbuf);
4421 }
4422 }
4423 #endif
4424 return 0;
4425
4426 error:
4427 audio_free_usrbuf(track);
4428 audio_free(track->codec.srcbuf.mem);
4429 audio_free(track->chvol.srcbuf.mem);
4430 audio_free(track->chmix.srcbuf.mem);
4431 audio_free(track->freq.srcbuf.mem);
4432 audio_free(track->outbuf.mem);
4433 return error;
4434 }
4435
4436 /*
4437 * Fill silence frames (as the internal format) up to 1 block
4438 * if the ring is not empty and less than 1 block.
4439 * It returns the number of appended frames.
4440 */
4441 static int
4442 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4443 {
4444 int fpb;
4445 int n;
4446
4447 KASSERT(track);
4448 KASSERT(audio_format2_is_internal(&ring->fmt));
4449
4450 /* XXX is n correct? */
4451 /* XXX memset uses frametobyte()? */
4452
4453 if (ring->used == 0)
4454 return 0;
4455
4456 fpb = frame_per_block(track->mixer, &ring->fmt);
4457 if (ring->used >= fpb)
4458 return 0;
4459
4460 n = (ring->capacity - ring->used) % fpb;
4461
4462 KASSERTMSG(auring_get_contig_free(ring) >= n,
4463 "auring_get_contig_free(ring)=%d n=%d",
4464 auring_get_contig_free(ring), n);
4465
4466 memset(auring_tailptr_aint(ring), 0,
4467 n * ring->fmt.channels * sizeof(aint_t));
4468 auring_push(ring, n);
4469 return n;
4470 }
4471
4472 /*
4473 * Execute the conversion stage.
4474 * It prepares arg from this stage and executes stage->filter.
4475 * It must be called only if stage->filter is not NULL.
4476 *
4477 * For stages other than frequency conversion, the function increments
4478 * src and dst counters here. For frequency conversion stage, on the
4479 * other hand, the function does not touch src and dst counters and
4480 * filter side has to increment them.
4481 */
4482 static void
4483 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4484 {
4485 audio_filter_arg_t *arg;
4486 int srccount;
4487 int dstcount;
4488 int count;
4489
4490 KASSERT(track);
4491 KASSERT(stage->filter);
4492
4493 srccount = auring_get_contig_used(&stage->srcbuf);
4494 dstcount = auring_get_contig_free(stage->dst);
4495
4496 if (isfreq) {
4497 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4498 count = uimin(dstcount, track->mixer->frames_per_block);
4499 } else {
4500 count = uimin(srccount, dstcount);
4501 }
4502
4503 if (count > 0) {
4504 arg = &stage->arg;
4505 arg->src = auring_headptr(&stage->srcbuf);
4506 arg->dst = auring_tailptr(stage->dst);
4507 arg->count = count;
4508
4509 stage->filter(arg);
4510
4511 if (!isfreq) {
4512 auring_take(&stage->srcbuf, count);
4513 auring_push(stage->dst, count);
4514 }
4515 }
4516 }
4517
4518 /*
4519 * Produce output buffer for playback from user input buffer.
4520 * It must be called only if usrbuf is not empty and outbuf is
4521 * available at least one free block.
4522 */
4523 static void
4524 audio_track_play(audio_track_t *track)
4525 {
4526 audio_ring_t *usrbuf;
4527 audio_ring_t *input;
4528 int count;
4529 int framesize;
4530 int bytes;
4531
4532 KASSERT(track);
4533 KASSERT(track->lock);
4534 TRACET(4, track, "start pstate=%d", track->pstate);
4535
4536 /* At this point usrbuf must not be empty. */
4537 KASSERT(track->usrbuf.used > 0);
4538 /* Also, outbuf must be available at least one block. */
4539 count = auring_get_contig_free(&track->outbuf);
4540 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4541 "count=%d fpb=%d",
4542 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4543
4544 /* XXX TODO: is this necessary for now? */
4545 int track_count_0 = track->outbuf.used;
4546
4547 usrbuf = &track->usrbuf;
4548 input = track->input;
4549
4550 /*
4551 * framesize is always 1 byte or more since all formats supported as
4552 * usrfmt(=input) have 8bit or more stride.
4553 */
4554 framesize = frametobyte(&input->fmt, 1);
4555 KASSERT(framesize >= 1);
4556
4557 /* The next stage of usrbuf (=input) must be available. */
4558 KASSERT(auring_get_contig_free(input) > 0);
4559
4560 /*
4561 * Copy usrbuf up to 1block to input buffer.
4562 * count is the number of frames to copy from usrbuf.
4563 * bytes is the number of bytes to copy from usrbuf. However it is
4564 * not copied less than one frame.
4565 */
4566 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4567 bytes = count * framesize;
4568
4569 track->usrbuf_stamp += bytes;
4570
4571 if (usrbuf->head + bytes < usrbuf->capacity) {
4572 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4573 (uint8_t *)usrbuf->mem + usrbuf->head,
4574 bytes);
4575 auring_push(input, count);
4576 auring_take(usrbuf, bytes);
4577 } else {
4578 int bytes1;
4579 int bytes2;
4580
4581 bytes1 = auring_get_contig_used(usrbuf);
4582 KASSERTMSG(bytes1 % framesize == 0,
4583 "bytes1=%d framesize=%d", bytes1, framesize);
4584 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4585 (uint8_t *)usrbuf->mem + usrbuf->head,
4586 bytes1);
4587 auring_push(input, bytes1 / framesize);
4588 auring_take(usrbuf, bytes1);
4589
4590 bytes2 = bytes - bytes1;
4591 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4592 (uint8_t *)usrbuf->mem + usrbuf->head,
4593 bytes2);
4594 auring_push(input, bytes2 / framesize);
4595 auring_take(usrbuf, bytes2);
4596 }
4597
4598 /* Encoding conversion */
4599 if (track->codec.filter)
4600 audio_apply_stage(track, &track->codec, false);
4601
4602 /* Channel volume */
4603 if (track->chvol.filter)
4604 audio_apply_stage(track, &track->chvol, false);
4605
4606 /* Channel mix */
4607 if (track->chmix.filter)
4608 audio_apply_stage(track, &track->chmix, false);
4609
4610 /* Frequency conversion */
4611 /*
4612 * Since the frequency conversion needs correction for each block,
4613 * it rounds up to 1 block.
4614 */
4615 if (track->freq.filter) {
4616 int n;
4617 n = audio_append_silence(track, &track->freq.srcbuf);
4618 if (n > 0) {
4619 TRACET(4, track,
4620 "freq.srcbuf add silence %d -> %d/%d/%d",
4621 n,
4622 track->freq.srcbuf.head,
4623 track->freq.srcbuf.used,
4624 track->freq.srcbuf.capacity);
4625 }
4626 if (track->freq.srcbuf.used > 0) {
4627 audio_apply_stage(track, &track->freq, true);
4628 }
4629 }
4630
4631 if (bytes < track->usrbuf_blksize) {
4632 /*
4633 * Clear all conversion buffer pointer if the conversion was
4634 * not exactly one block. These conversion stage buffers are
4635 * certainly circular buffers because of symmetry with the
4636 * previous and next stage buffer. However, since they are
4637 * treated as simple contiguous buffers in operation, so head
4638 * always should point 0. This may happen during drain-age.
4639 */
4640 TRACET(4, track, "reset stage");
4641 if (track->codec.filter) {
4642 KASSERT(track->codec.srcbuf.used == 0);
4643 track->codec.srcbuf.head = 0;
4644 }
4645 if (track->chvol.filter) {
4646 KASSERT(track->chvol.srcbuf.used == 0);
4647 track->chvol.srcbuf.head = 0;
4648 }
4649 if (track->chmix.filter) {
4650 KASSERT(track->chmix.srcbuf.used == 0);
4651 track->chmix.srcbuf.head = 0;
4652 }
4653 if (track->freq.filter) {
4654 KASSERT(track->freq.srcbuf.used == 0);
4655 track->freq.srcbuf.head = 0;
4656 }
4657 }
4658
4659 if (track->input == &track->outbuf) {
4660 track->outputcounter = track->inputcounter;
4661 } else {
4662 track->outputcounter += track->outbuf.used - track_count_0;
4663 }
4664
4665 #if defined(AUDIO_DEBUG)
4666 if (audiodebug >= 3) {
4667 struct audio_track_debugbuf m;
4668 audio_track_bufstat(track, &m);
4669 TRACET(0, track, "end%s%s%s%s%s%s",
4670 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4671 }
4672 #endif
4673 }
4674
4675 /*
4676 * Produce user output buffer for recording from input buffer.
4677 */
4678 static void
4679 audio_track_record(audio_track_t *track)
4680 {
4681 audio_ring_t *outbuf;
4682 audio_ring_t *usrbuf;
4683 int count;
4684 int bytes;
4685 int framesize;
4686
4687 KASSERT(track);
4688 KASSERT(track->lock);
4689
4690 /* Number of frames to process */
4691 count = auring_get_contig_used(track->input);
4692 count = uimin(count, track->mixer->frames_per_block);
4693 if (count == 0) {
4694 TRACET(4, track, "count == 0");
4695 return;
4696 }
4697
4698 /* Frequency conversion */
4699 if (track->freq.filter) {
4700 if (track->freq.srcbuf.used > 0) {
4701 audio_apply_stage(track, &track->freq, true);
4702 /* XXX should input of freq be from beginning of buf? */
4703 }
4704 }
4705
4706 /* Channel mix */
4707 if (track->chmix.filter)
4708 audio_apply_stage(track, &track->chmix, false);
4709
4710 /* Channel volume */
4711 if (track->chvol.filter)
4712 audio_apply_stage(track, &track->chvol, false);
4713
4714 /* Encoding conversion */
4715 if (track->codec.filter)
4716 audio_apply_stage(track, &track->codec, false);
4717
4718 /* Copy outbuf to usrbuf */
4719 outbuf = &track->outbuf;
4720 usrbuf = &track->usrbuf;
4721 /*
4722 * framesize is always 1 byte or more since all formats supported
4723 * as usrfmt(=output) have 8bit or more stride.
4724 */
4725 framesize = frametobyte(&outbuf->fmt, 1);
4726 KASSERT(framesize >= 1);
4727 /*
4728 * count is the number of frames to copy to usrbuf.
4729 * bytes is the number of bytes to copy to usrbuf.
4730 */
4731 count = outbuf->used;
4732 count = uimin(count,
4733 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4734 bytes = count * framesize;
4735 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4736 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4737 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4738 bytes);
4739 auring_push(usrbuf, bytes);
4740 auring_take(outbuf, count);
4741 } else {
4742 int bytes1;
4743 int bytes2;
4744
4745 bytes1 = auring_get_contig_free(usrbuf);
4746 KASSERTMSG(bytes1 % framesize == 0,
4747 "bytes1=%d framesize=%d", bytes1, framesize);
4748 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4749 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4750 bytes1);
4751 auring_push(usrbuf, bytes1);
4752 auring_take(outbuf, bytes1 / framesize);
4753
4754 bytes2 = bytes - bytes1;
4755 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4756 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4757 bytes2);
4758 auring_push(usrbuf, bytes2);
4759 auring_take(outbuf, bytes2 / framesize);
4760 }
4761
4762 /* XXX TODO: any counters here? */
4763
4764 #if defined(AUDIO_DEBUG)
4765 if (audiodebug >= 3) {
4766 struct audio_track_debugbuf m;
4767 audio_track_bufstat(track, &m);
4768 TRACET(0, track, "end%s%s%s%s%s%s",
4769 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4770 }
4771 #endif
4772 }
4773
4774 /*
4775 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4776 * Must be called with sc_exlock held.
4777 */
4778 static u_int
4779 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4780 {
4781 audio_format2_t *fmt;
4782 u_int blktime;
4783 u_int frames_per_block;
4784
4785 KASSERT(sc->sc_exlock);
4786
4787 fmt = &mixer->hwbuf.fmt;
4788 blktime = sc->sc_blk_ms;
4789
4790 /*
4791 * If stride is not multiples of 8, special treatment is necessary.
4792 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4793 */
4794 if (fmt->stride == 4) {
4795 frames_per_block = fmt->sample_rate * blktime / 1000;
4796 if ((frames_per_block & 1) != 0)
4797 blktime *= 2;
4798 }
4799 #ifdef DIAGNOSTIC
4800 else if (fmt->stride % NBBY != 0) {
4801 panic("unsupported HW stride %d", fmt->stride);
4802 }
4803 #endif
4804
4805 return blktime;
4806 }
4807
4808 /*
4809 * Initialize the mixer corresponding to the mode.
4810 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4811 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4812 * This function returns 0 on successful. Otherwise returns errno.
4813 * Must be called with sc_exlock held and without sc_lock held.
4814 */
4815 static int
4816 audio_mixer_init(struct audio_softc *sc, int mode,
4817 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4818 {
4819 char codecbuf[64];
4820 char blkdmsbuf[8];
4821 audio_trackmixer_t *mixer;
4822 void (*softint_handler)(void *);
4823 int len;
4824 int blksize;
4825 int capacity;
4826 size_t bufsize;
4827 int hwblks;
4828 int blkms;
4829 int blkdms;
4830 int error;
4831
4832 KASSERT(hwfmt != NULL);
4833 KASSERT(reg != NULL);
4834 KASSERT(sc->sc_exlock);
4835
4836 error = 0;
4837 if (mode == AUMODE_PLAY)
4838 mixer = sc->sc_pmixer;
4839 else
4840 mixer = sc->sc_rmixer;
4841
4842 mixer->sc = sc;
4843 mixer->mode = mode;
4844
4845 mixer->hwbuf.fmt = *hwfmt;
4846 mixer->volume = 256;
4847 mixer->blktime_d = 1000;
4848 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4849 sc->sc_blk_ms = mixer->blktime_n;
4850 hwblks = NBLKHW;
4851
4852 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4853 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4854 if (sc->hw_if->round_blocksize) {
4855 int rounded;
4856 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4857 mutex_enter(sc->sc_lock);
4858 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4859 mode, &p);
4860 mutex_exit(sc->sc_lock);
4861 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4862 if (rounded != blksize) {
4863 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4864 mixer->hwbuf.fmt.channels) != 0) {
4865 device_printf(sc->sc_dev,
4866 "round_blocksize must return blocksize "
4867 "divisible by framesize: "
4868 "blksize=%d rounded=%d "
4869 "stride=%ubit channels=%u\n",
4870 blksize, rounded,
4871 mixer->hwbuf.fmt.stride,
4872 mixer->hwbuf.fmt.channels);
4873 return EINVAL;
4874 }
4875 /* Recalculation */
4876 blksize = rounded;
4877 mixer->frames_per_block = blksize * NBBY /
4878 (mixer->hwbuf.fmt.stride *
4879 mixer->hwbuf.fmt.channels);
4880 }
4881 }
4882 mixer->blktime_n = mixer->frames_per_block;
4883 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4884
4885 capacity = mixer->frames_per_block * hwblks;
4886 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4887 if (sc->hw_if->round_buffersize) {
4888 size_t rounded;
4889 mutex_enter(sc->sc_lock);
4890 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4891 bufsize);
4892 mutex_exit(sc->sc_lock);
4893 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4894 if (rounded < bufsize) {
4895 /* buffersize needs NBLKHW blocks at least. */
4896 device_printf(sc->sc_dev,
4897 "buffersize too small: buffersize=%zd blksize=%d\n",
4898 rounded, blksize);
4899 return EINVAL;
4900 }
4901 if (rounded % blksize != 0) {
4902 /* buffersize/blksize constraint mismatch? */
4903 device_printf(sc->sc_dev,
4904 "buffersize must be multiple of blksize: "
4905 "buffersize=%zu blksize=%d\n",
4906 rounded, blksize);
4907 return EINVAL;
4908 }
4909 if (rounded != bufsize) {
4910 /* Recalcuration */
4911 bufsize = rounded;
4912 hwblks = bufsize / blksize;
4913 capacity = mixer->frames_per_block * hwblks;
4914 }
4915 }
4916 TRACE(1, "buffersize for %s = %zu",
4917 (mode == AUMODE_PLAY) ? "playback" : "recording",
4918 bufsize);
4919 mixer->hwbuf.capacity = capacity;
4920
4921 if (sc->hw_if->allocm) {
4922 /* sc_lock is not necessary for allocm */
4923 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4924 if (mixer->hwbuf.mem == NULL) {
4925 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4926 __func__, bufsize);
4927 return ENOMEM;
4928 }
4929 } else {
4930 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4931 }
4932
4933 /* From here, audio_mixer_destroy is necessary to exit. */
4934 if (mode == AUMODE_PLAY) {
4935 cv_init(&mixer->outcv, "audiowr");
4936 } else {
4937 cv_init(&mixer->outcv, "audiord");
4938 }
4939
4940 if (mode == AUMODE_PLAY) {
4941 softint_handler = audio_softintr_wr;
4942 } else {
4943 softint_handler = audio_softintr_rd;
4944 }
4945 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4946 softint_handler, sc);
4947 if (mixer->sih == NULL) {
4948 device_printf(sc->sc_dev, "softint_establish failed\n");
4949 goto abort;
4950 }
4951
4952 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4953 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4954 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4955 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4956 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4957
4958 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4959 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4960 mixer->swap_endian = true;
4961 TRACE(1, "swap_endian");
4962 }
4963
4964 if (mode == AUMODE_PLAY) {
4965 /* Mixing buffer */
4966 mixer->mixfmt = mixer->track_fmt;
4967 mixer->mixfmt.precision *= 2;
4968 mixer->mixfmt.stride *= 2;
4969 /* XXX TODO: use some macros? */
4970 len = mixer->frames_per_block * mixer->mixfmt.channels *
4971 mixer->mixfmt.stride / NBBY;
4972 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4973 } else {
4974 /* No mixing buffer for recording */
4975 }
4976
4977 if (reg->codec) {
4978 mixer->codec = reg->codec;
4979 mixer->codecarg.context = reg->context;
4980 if (mode == AUMODE_PLAY) {
4981 mixer->codecarg.srcfmt = &mixer->track_fmt;
4982 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4983 } else {
4984 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4985 mixer->codecarg.dstfmt = &mixer->track_fmt;
4986 }
4987 mixer->codecbuf.fmt = mixer->track_fmt;
4988 mixer->codecbuf.capacity = mixer->frames_per_block;
4989 len = auring_bytelen(&mixer->codecbuf);
4990 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4991 if (mixer->codecbuf.mem == NULL) {
4992 device_printf(sc->sc_dev,
4993 "%s: malloc codecbuf(%d) failed\n",
4994 __func__, len);
4995 error = ENOMEM;
4996 goto abort;
4997 }
4998 }
4999
5000 /* Succeeded so display it. */
5001 codecbuf[0] = '\0';
5002 if (mixer->codec || mixer->swap_endian) {
5003 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5004 (mode == AUMODE_PLAY) ? "->" : "<-",
5005 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5006 mixer->hwbuf.fmt.precision);
5007 }
5008 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5009 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5010 blkdmsbuf[0] = '\0';
5011 if (blkdms != 0) {
5012 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5013 }
5014 aprint_normal_dev(sc->sc_dev,
5015 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5016 audio_encoding_name(mixer->track_fmt.encoding),
5017 mixer->track_fmt.precision,
5018 codecbuf,
5019 mixer->track_fmt.channels,
5020 mixer->track_fmt.sample_rate,
5021 blksize,
5022 blkms, blkdmsbuf,
5023 (mode == AUMODE_PLAY) ? "playback" : "recording");
5024
5025 return 0;
5026
5027 abort:
5028 audio_mixer_destroy(sc, mixer);
5029 return error;
5030 }
5031
5032 /*
5033 * Releases all resources of 'mixer'.
5034 * Note that it does not release the memory area of 'mixer' itself.
5035 * Must be called with sc_exlock held and without sc_lock held.
5036 */
5037 static void
5038 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5039 {
5040 int bufsize;
5041
5042 KASSERT(sc->sc_exlock == 1);
5043
5044 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5045
5046 if (mixer->hwbuf.mem != NULL) {
5047 if (sc->hw_if->freem) {
5048 /* sc_lock is not necessary for freem */
5049 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5050 } else {
5051 kmem_free(mixer->hwbuf.mem, bufsize);
5052 }
5053 mixer->hwbuf.mem = NULL;
5054 }
5055
5056 audio_free(mixer->codecbuf.mem);
5057 audio_free(mixer->mixsample);
5058
5059 cv_destroy(&mixer->outcv);
5060
5061 if (mixer->sih) {
5062 softint_disestablish(mixer->sih);
5063 mixer->sih = NULL;
5064 }
5065 }
5066
5067 /*
5068 * Starts playback mixer.
5069 * Must be called only if sc_pbusy is false.
5070 * Must be called with sc_lock && sc_exlock held.
5071 * Must not be called from the interrupt context.
5072 */
5073 static void
5074 audio_pmixer_start(struct audio_softc *sc, bool force)
5075 {
5076 audio_trackmixer_t *mixer;
5077 int minimum;
5078
5079 KASSERT(mutex_owned(sc->sc_lock));
5080 KASSERT(sc->sc_exlock);
5081 KASSERT(sc->sc_pbusy == false);
5082
5083 mutex_enter(sc->sc_intr_lock);
5084
5085 mixer = sc->sc_pmixer;
5086 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5087 (audiodebug >= 3) ? "begin " : "",
5088 (int)mixer->mixseq, (int)mixer->hwseq,
5089 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5090 force ? " force" : "");
5091
5092 /* Need two blocks to start normally. */
5093 minimum = (force) ? 1 : 2;
5094 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5095 audio_pmixer_process(sc);
5096 }
5097
5098 /* Start output */
5099 audio_pmixer_output(sc);
5100 sc->sc_pbusy = true;
5101
5102 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5103 (int)mixer->mixseq, (int)mixer->hwseq,
5104 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5105
5106 mutex_exit(sc->sc_intr_lock);
5107 }
5108
5109 /*
5110 * When playing back with MD filter:
5111 *
5112 * track track ...
5113 * v v
5114 * + mix (with aint2_t)
5115 * | master volume (with aint2_t)
5116 * v
5117 * mixsample [::::] wide-int 1 block (ring) buffer
5118 * |
5119 * | convert aint2_t -> aint_t
5120 * v
5121 * codecbuf [....] 1 block (ring) buffer
5122 * |
5123 * | convert to hw format
5124 * v
5125 * hwbuf [............] NBLKHW blocks ring buffer
5126 *
5127 * When playing back without MD filter:
5128 *
5129 * mixsample [::::] wide-int 1 block (ring) buffer
5130 * |
5131 * | convert aint2_t -> aint_t
5132 * | (with byte swap if necessary)
5133 * v
5134 * hwbuf [............] NBLKHW blocks ring buffer
5135 *
5136 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5137 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5138 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5139 */
5140
5141 /*
5142 * Performs track mixing and converts it to hwbuf.
5143 * Note that this function doesn't transfer hwbuf to hardware.
5144 * Must be called with sc_intr_lock held.
5145 */
5146 static void
5147 audio_pmixer_process(struct audio_softc *sc)
5148 {
5149 audio_trackmixer_t *mixer;
5150 audio_file_t *f;
5151 int frame_count;
5152 int sample_count;
5153 int mixed;
5154 int i;
5155 aint2_t *m;
5156 aint_t *h;
5157
5158 mixer = sc->sc_pmixer;
5159
5160 frame_count = mixer->frames_per_block;
5161 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5162 "auring_get_contig_free()=%d frame_count=%d",
5163 auring_get_contig_free(&mixer->hwbuf), frame_count);
5164 sample_count = frame_count * mixer->mixfmt.channels;
5165
5166 mixer->mixseq++;
5167
5168 /* Mix all tracks */
5169 mixed = 0;
5170 SLIST_FOREACH(f, &sc->sc_files, entry) {
5171 audio_track_t *track = f->ptrack;
5172
5173 if (track == NULL)
5174 continue;
5175
5176 if (track->is_pause) {
5177 TRACET(4, track, "skip; paused");
5178 continue;
5179 }
5180
5181 /* Skip if the track is used by process context. */
5182 if (audio_track_lock_tryenter(track) == false) {
5183 TRACET(4, track, "skip; in use");
5184 continue;
5185 }
5186
5187 /* Emulate mmap'ped track */
5188 if (track->mmapped) {
5189 auring_push(&track->usrbuf, track->usrbuf_blksize);
5190 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5191 track->usrbuf.head,
5192 track->usrbuf.used,
5193 track->usrbuf.capacity);
5194 }
5195
5196 if (track->outbuf.used < mixer->frames_per_block &&
5197 track->usrbuf.used > 0) {
5198 TRACET(4, track, "process");
5199 audio_track_play(track);
5200 }
5201
5202 if (track->outbuf.used > 0) {
5203 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5204 } else {
5205 TRACET(4, track, "skip; empty");
5206 }
5207
5208 audio_track_lock_exit(track);
5209 }
5210
5211 if (mixed == 0) {
5212 /* Silence */
5213 memset(mixer->mixsample, 0,
5214 frametobyte(&mixer->mixfmt, frame_count));
5215 } else {
5216 if (mixed > 1) {
5217 /* If there are multiple tracks, do auto gain control */
5218 audio_pmixer_agc(mixer, sample_count);
5219 }
5220
5221 /* Apply master volume */
5222 if (mixer->volume < 256) {
5223 m = mixer->mixsample;
5224 for (i = 0; i < sample_count; i++) {
5225 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5226 m++;
5227 }
5228
5229 /*
5230 * Recover the volume gradually at the pace of
5231 * several times per second. If it's too fast, you
5232 * can recognize that the volume changes up and down
5233 * quickly and it's not so comfortable.
5234 */
5235 mixer->voltimer += mixer->blktime_n;
5236 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5237 mixer->volume++;
5238 mixer->voltimer = 0;
5239 #if defined(AUDIO_DEBUG_AGC)
5240 TRACE(1, "volume recover: %d", mixer->volume);
5241 #endif
5242 }
5243 }
5244 }
5245
5246 /*
5247 * The rest is the hardware part.
5248 */
5249
5250 if (mixer->codec) {
5251 h = auring_tailptr_aint(&mixer->codecbuf);
5252 } else {
5253 h = auring_tailptr_aint(&mixer->hwbuf);
5254 }
5255
5256 m = mixer->mixsample;
5257 if (mixer->swap_endian) {
5258 for (i = 0; i < sample_count; i++) {
5259 *h++ = bswap16(*m++);
5260 }
5261 } else {
5262 for (i = 0; i < sample_count; i++) {
5263 *h++ = *m++;
5264 }
5265 }
5266
5267 /* Hardware driver's codec */
5268 if (mixer->codec) {
5269 auring_push(&mixer->codecbuf, frame_count);
5270 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5271 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5272 mixer->codecarg.count = frame_count;
5273 mixer->codec(&mixer->codecarg);
5274 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5275 }
5276
5277 auring_push(&mixer->hwbuf, frame_count);
5278
5279 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5280 (int)mixer->mixseq,
5281 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5282 (mixed == 0) ? " silent" : "");
5283 }
5284
5285 /*
5286 * Do auto gain control.
5287 * Must be called sc_intr_lock held.
5288 */
5289 static void
5290 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5291 {
5292 struct audio_softc *sc __unused;
5293 aint2_t val;
5294 aint2_t maxval;
5295 aint2_t minval;
5296 aint2_t over_plus;
5297 aint2_t over_minus;
5298 aint2_t *m;
5299 int newvol;
5300 int i;
5301
5302 sc = mixer->sc;
5303
5304 /* Overflow detection */
5305 maxval = AINT_T_MAX;
5306 minval = AINT_T_MIN;
5307 m = mixer->mixsample;
5308 for (i = 0; i < sample_count; i++) {
5309 val = *m++;
5310 if (val > maxval)
5311 maxval = val;
5312 else if (val < minval)
5313 minval = val;
5314 }
5315
5316 /* Absolute value of overflowed amount */
5317 over_plus = maxval - AINT_T_MAX;
5318 over_minus = AINT_T_MIN - minval;
5319
5320 if (over_plus > 0 || over_minus > 0) {
5321 if (over_plus > over_minus) {
5322 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5323 } else {
5324 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5325 }
5326
5327 /*
5328 * Change the volume only if new one is smaller.
5329 * Reset the timer even if the volume isn't changed.
5330 */
5331 if (newvol <= mixer->volume) {
5332 mixer->volume = newvol;
5333 mixer->voltimer = 0;
5334 #if defined(AUDIO_DEBUG_AGC)
5335 TRACE(1, "auto volume adjust: %d", mixer->volume);
5336 #endif
5337 }
5338 }
5339 }
5340
5341 /*
5342 * Mix one track.
5343 * 'mixed' specifies the number of tracks mixed so far.
5344 * It returns the number of tracks mixed. In other words, it returns
5345 * mixed + 1 if this track is mixed.
5346 */
5347 static int
5348 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5349 int mixed)
5350 {
5351 int count;
5352 int sample_count;
5353 int remain;
5354 int i;
5355 const aint_t *s;
5356 aint2_t *d;
5357
5358 /* XXX TODO: Is this necessary for now? */
5359 if (mixer->mixseq < track->seq)
5360 return mixed;
5361
5362 count = auring_get_contig_used(&track->outbuf);
5363 count = uimin(count, mixer->frames_per_block);
5364
5365 s = auring_headptr_aint(&track->outbuf);
5366 d = mixer->mixsample;
5367
5368 /*
5369 * Apply track volume with double-sized integer and perform
5370 * additive synthesis.
5371 *
5372 * XXX If you limit the track volume to 1.0 or less (<= 256),
5373 * it would be better to do this in the track conversion stage
5374 * rather than here. However, if you accept the volume to
5375 * be greater than 1.0 (> 256), it's better to do it here.
5376 * Because the operation here is done by double-sized integer.
5377 */
5378 sample_count = count * mixer->mixfmt.channels;
5379 if (mixed == 0) {
5380 /* If this is the first track, assignment can be used. */
5381 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5382 if (track->volume != 256) {
5383 for (i = 0; i < sample_count; i++) {
5384 aint2_t v;
5385 v = *s++;
5386 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5387 }
5388 } else
5389 #endif
5390 {
5391 for (i = 0; i < sample_count; i++) {
5392 *d++ = ((aint2_t)*s++);
5393 }
5394 }
5395 /* Fill silence if the first track is not filled. */
5396 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5397 *d++ = 0;
5398 } else {
5399 /* If this is the second or later, add it. */
5400 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5401 if (track->volume != 256) {
5402 for (i = 0; i < sample_count; i++) {
5403 aint2_t v;
5404 v = *s++;
5405 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5406 }
5407 } else
5408 #endif
5409 {
5410 for (i = 0; i < sample_count; i++) {
5411 *d++ += ((aint2_t)*s++);
5412 }
5413 }
5414 }
5415
5416 auring_take(&track->outbuf, count);
5417 /*
5418 * The counters have to align block even if outbuf is less than
5419 * one block. XXX Is this still necessary?
5420 */
5421 remain = mixer->frames_per_block - count;
5422 if (__predict_false(remain != 0)) {
5423 auring_push(&track->outbuf, remain);
5424 auring_take(&track->outbuf, remain);
5425 }
5426
5427 /*
5428 * Update track sequence.
5429 * mixseq has previous value yet at this point.
5430 */
5431 track->seq = mixer->mixseq + 1;
5432
5433 return mixed + 1;
5434 }
5435
5436 /*
5437 * Output one block from hwbuf to HW.
5438 * Must be called with sc_intr_lock held.
5439 */
5440 static void
5441 audio_pmixer_output(struct audio_softc *sc)
5442 {
5443 audio_trackmixer_t *mixer;
5444 audio_params_t params;
5445 void *start;
5446 void *end;
5447 int blksize;
5448 int error;
5449
5450 mixer = sc->sc_pmixer;
5451 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5452 sc->sc_pbusy,
5453 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5454 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5455 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5456 mixer->hwbuf.used, mixer->frames_per_block);
5457
5458 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5459
5460 if (sc->hw_if->trigger_output) {
5461 /* trigger (at once) */
5462 if (!sc->sc_pbusy) {
5463 start = mixer->hwbuf.mem;
5464 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5465 params = format2_to_params(&mixer->hwbuf.fmt);
5466
5467 error = sc->hw_if->trigger_output(sc->hw_hdl,
5468 start, end, blksize, audio_pintr, sc, ¶ms);
5469 if (error) {
5470 device_printf(sc->sc_dev,
5471 "trigger_output failed with %d\n", error);
5472 return;
5473 }
5474 }
5475 } else {
5476 /* start (everytime) */
5477 start = auring_headptr(&mixer->hwbuf);
5478
5479 error = sc->hw_if->start_output(sc->hw_hdl,
5480 start, blksize, audio_pintr, sc);
5481 if (error) {
5482 device_printf(sc->sc_dev,
5483 "start_output failed with %d\n", error);
5484 return;
5485 }
5486 }
5487 }
5488
5489 /*
5490 * This is an interrupt handler for playback.
5491 * It is called with sc_intr_lock held.
5492 *
5493 * It is usually called from hardware interrupt. However, note that
5494 * for some drivers (e.g. uaudio) it is called from software interrupt.
5495 */
5496 static void
5497 audio_pintr(void *arg)
5498 {
5499 struct audio_softc *sc;
5500 audio_trackmixer_t *mixer;
5501
5502 sc = arg;
5503 KASSERT(mutex_owned(sc->sc_intr_lock));
5504
5505 if (sc->sc_dying)
5506 return;
5507 if (sc->sc_pbusy == false) {
5508 #if defined(DIAGNOSTIC)
5509 device_printf(sc->sc_dev,
5510 "DIAGNOSTIC: %s raised stray interrupt\n",
5511 device_xname(sc->hw_dev));
5512 #endif
5513 return;
5514 }
5515
5516 mixer = sc->sc_pmixer;
5517 mixer->hw_complete_counter += mixer->frames_per_block;
5518 mixer->hwseq++;
5519
5520 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5521
5522 TRACE(4,
5523 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5524 mixer->hwseq, mixer->hw_complete_counter,
5525 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5526
5527 #if defined(AUDIO_HW_SINGLE_BUFFER)
5528 /*
5529 * Create a new block here and output it immediately.
5530 * It makes a latency lower but needs machine power.
5531 */
5532 audio_pmixer_process(sc);
5533 audio_pmixer_output(sc);
5534 #else
5535 /*
5536 * It is called when block N output is done.
5537 * Output immediately block N+1 created by the last interrupt.
5538 * And then create block N+2 for the next interrupt.
5539 * This method makes playback robust even on slower machines.
5540 * Instead the latency is increased by one block.
5541 */
5542
5543 /* At first, output ready block. */
5544 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5545 audio_pmixer_output(sc);
5546 }
5547
5548 bool later = false;
5549
5550 if (mixer->hwbuf.used < mixer->frames_per_block) {
5551 later = true;
5552 }
5553
5554 /* Then, process next block. */
5555 audio_pmixer_process(sc);
5556
5557 if (later) {
5558 audio_pmixer_output(sc);
5559 }
5560 #endif
5561
5562 /*
5563 * When this interrupt is the real hardware interrupt, disabling
5564 * preemption here is not necessary. But some drivers (e.g. uaudio)
5565 * emulate it by software interrupt, so kpreempt_disable is necessary.
5566 */
5567 kpreempt_disable();
5568 softint_schedule(mixer->sih);
5569 kpreempt_enable();
5570 }
5571
5572 /*
5573 * Starts record mixer.
5574 * Must be called only if sc_rbusy is false.
5575 * Must be called with sc_lock && sc_exlock held.
5576 * Must not be called from the interrupt context.
5577 */
5578 static void
5579 audio_rmixer_start(struct audio_softc *sc)
5580 {
5581
5582 KASSERT(mutex_owned(sc->sc_lock));
5583 KASSERT(sc->sc_exlock);
5584 KASSERT(sc->sc_rbusy == false);
5585
5586 mutex_enter(sc->sc_intr_lock);
5587
5588 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5589 audio_rmixer_input(sc);
5590 sc->sc_rbusy = true;
5591 TRACE(3, "end");
5592
5593 mutex_exit(sc->sc_intr_lock);
5594 }
5595
5596 /*
5597 * When recording with MD filter:
5598 *
5599 * hwbuf [............] NBLKHW blocks ring buffer
5600 * |
5601 * | convert from hw format
5602 * v
5603 * codecbuf [....] 1 block (ring) buffer
5604 * | |
5605 * v v
5606 * track track ...
5607 *
5608 * When recording without MD filter:
5609 *
5610 * hwbuf [............] NBLKHW blocks ring buffer
5611 * | |
5612 * v v
5613 * track track ...
5614 *
5615 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5616 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5617 */
5618
5619 /*
5620 * Distribute a recorded block to all recording tracks.
5621 */
5622 static void
5623 audio_rmixer_process(struct audio_softc *sc)
5624 {
5625 audio_trackmixer_t *mixer;
5626 audio_ring_t *mixersrc;
5627 audio_file_t *f;
5628 aint_t *p;
5629 int count;
5630 int bytes;
5631 int i;
5632
5633 mixer = sc->sc_rmixer;
5634
5635 /*
5636 * count is the number of frames to be retrieved this time.
5637 * count should be one block.
5638 */
5639 count = auring_get_contig_used(&mixer->hwbuf);
5640 count = uimin(count, mixer->frames_per_block);
5641 if (count <= 0) {
5642 TRACE(4, "count %d: too short", count);
5643 return;
5644 }
5645 bytes = frametobyte(&mixer->track_fmt, count);
5646
5647 /* Hardware driver's codec */
5648 if (mixer->codec) {
5649 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5650 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5651 mixer->codecarg.count = count;
5652 mixer->codec(&mixer->codecarg);
5653 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5654 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5655 mixersrc = &mixer->codecbuf;
5656 } else {
5657 mixersrc = &mixer->hwbuf;
5658 }
5659
5660 if (mixer->swap_endian) {
5661 /* inplace conversion */
5662 p = auring_headptr_aint(mixersrc);
5663 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5664 *p = bswap16(*p);
5665 }
5666 }
5667
5668 /* Distribute to all tracks. */
5669 SLIST_FOREACH(f, &sc->sc_files, entry) {
5670 audio_track_t *track = f->rtrack;
5671 audio_ring_t *input;
5672
5673 if (track == NULL)
5674 continue;
5675
5676 if (track->is_pause) {
5677 TRACET(4, track, "skip; paused");
5678 continue;
5679 }
5680
5681 if (audio_track_lock_tryenter(track) == false) {
5682 TRACET(4, track, "skip; in use");
5683 continue;
5684 }
5685
5686 /* If the track buffer is full, discard the oldest one? */
5687 input = track->input;
5688 if (input->capacity - input->used < mixer->frames_per_block) {
5689 int drops = mixer->frames_per_block -
5690 (input->capacity - input->used);
5691 track->dropframes += drops;
5692 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5693 drops,
5694 input->head, input->used, input->capacity);
5695 auring_take(input, drops);
5696 }
5697 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5698 "input->used=%d mixer->frames_per_block=%d",
5699 input->used, mixer->frames_per_block);
5700
5701 memcpy(auring_tailptr_aint(input),
5702 auring_headptr_aint(mixersrc),
5703 bytes);
5704 auring_push(input, count);
5705
5706 /* XXX sequence counter? */
5707
5708 audio_track_lock_exit(track);
5709 }
5710
5711 auring_take(mixersrc, count);
5712 }
5713
5714 /*
5715 * Input one block from HW to hwbuf.
5716 * Must be called with sc_intr_lock held.
5717 */
5718 static void
5719 audio_rmixer_input(struct audio_softc *sc)
5720 {
5721 audio_trackmixer_t *mixer;
5722 audio_params_t params;
5723 void *start;
5724 void *end;
5725 int blksize;
5726 int error;
5727
5728 mixer = sc->sc_rmixer;
5729 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5730
5731 if (sc->hw_if->trigger_input) {
5732 /* trigger (at once) */
5733 if (!sc->sc_rbusy) {
5734 start = mixer->hwbuf.mem;
5735 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5736 params = format2_to_params(&mixer->hwbuf.fmt);
5737
5738 error = sc->hw_if->trigger_input(sc->hw_hdl,
5739 start, end, blksize, audio_rintr, sc, ¶ms);
5740 if (error) {
5741 device_printf(sc->sc_dev,
5742 "trigger_input failed with %d\n", error);
5743 return;
5744 }
5745 }
5746 } else {
5747 /* start (everytime) */
5748 start = auring_tailptr(&mixer->hwbuf);
5749
5750 error = sc->hw_if->start_input(sc->hw_hdl,
5751 start, blksize, audio_rintr, sc);
5752 if (error) {
5753 device_printf(sc->sc_dev,
5754 "start_input failed with %d\n", error);
5755 return;
5756 }
5757 }
5758 }
5759
5760 /*
5761 * This is an interrupt handler for recording.
5762 * It is called with sc_intr_lock.
5763 *
5764 * It is usually called from hardware interrupt. However, note that
5765 * for some drivers (e.g. uaudio) it is called from software interrupt.
5766 */
5767 static void
5768 audio_rintr(void *arg)
5769 {
5770 struct audio_softc *sc;
5771 audio_trackmixer_t *mixer;
5772
5773 sc = arg;
5774 KASSERT(mutex_owned(sc->sc_intr_lock));
5775
5776 if (sc->sc_dying)
5777 return;
5778 if (sc->sc_rbusy == false) {
5779 #if defined(DIAGNOSTIC)
5780 device_printf(sc->sc_dev,
5781 "DIAGNOSTIC: %s raised stray interrupt\n",
5782 device_xname(sc->hw_dev));
5783 #endif
5784 return;
5785 }
5786
5787 mixer = sc->sc_rmixer;
5788 mixer->hw_complete_counter += mixer->frames_per_block;
5789 mixer->hwseq++;
5790
5791 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5792
5793 TRACE(4,
5794 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5795 mixer->hwseq, mixer->hw_complete_counter,
5796 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5797
5798 /* Distrubute recorded block */
5799 audio_rmixer_process(sc);
5800
5801 /* Request next block */
5802 audio_rmixer_input(sc);
5803
5804 /*
5805 * When this interrupt is the real hardware interrupt, disabling
5806 * preemption here is not necessary. But some drivers (e.g. uaudio)
5807 * emulate it by software interrupt, so kpreempt_disable is necessary.
5808 */
5809 kpreempt_disable();
5810 softint_schedule(mixer->sih);
5811 kpreempt_enable();
5812 }
5813
5814 /*
5815 * Halts playback mixer.
5816 * This function also clears related parameters, so call this function
5817 * instead of calling halt_output directly.
5818 * Must be called only if sc_pbusy is true.
5819 * Must be called with sc_lock && sc_exlock held.
5820 */
5821 static int
5822 audio_pmixer_halt(struct audio_softc *sc)
5823 {
5824 int error;
5825
5826 TRACE(2, "");
5827 KASSERT(mutex_owned(sc->sc_lock));
5828 KASSERT(sc->sc_exlock);
5829
5830 mutex_enter(sc->sc_intr_lock);
5831 error = sc->hw_if->halt_output(sc->hw_hdl);
5832
5833 /* Halts anyway even if some error has occurred. */
5834 sc->sc_pbusy = false;
5835 sc->sc_pmixer->hwbuf.head = 0;
5836 sc->sc_pmixer->hwbuf.used = 0;
5837 sc->sc_pmixer->mixseq = 0;
5838 sc->sc_pmixer->hwseq = 0;
5839 mutex_exit(sc->sc_intr_lock);
5840
5841 return error;
5842 }
5843
5844 /*
5845 * Halts recording mixer.
5846 * This function also clears related parameters, so call this function
5847 * instead of calling halt_input directly.
5848 * Must be called only if sc_rbusy is true.
5849 * Must be called with sc_lock && sc_exlock held.
5850 */
5851 static int
5852 audio_rmixer_halt(struct audio_softc *sc)
5853 {
5854 int error;
5855
5856 TRACE(2, "");
5857 KASSERT(mutex_owned(sc->sc_lock));
5858 KASSERT(sc->sc_exlock);
5859
5860 mutex_enter(sc->sc_intr_lock);
5861 error = sc->hw_if->halt_input(sc->hw_hdl);
5862
5863 /* Halts anyway even if some error has occurred. */
5864 sc->sc_rbusy = false;
5865 sc->sc_rmixer->hwbuf.head = 0;
5866 sc->sc_rmixer->hwbuf.used = 0;
5867 sc->sc_rmixer->mixseq = 0;
5868 sc->sc_rmixer->hwseq = 0;
5869 mutex_exit(sc->sc_intr_lock);
5870
5871 return error;
5872 }
5873
5874 /*
5875 * Flush this track.
5876 * Halts all operations, clears all buffers, reset error counters.
5877 * XXX I'm not sure...
5878 */
5879 static void
5880 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5881 {
5882
5883 KASSERT(track);
5884 TRACET(3, track, "clear");
5885
5886 audio_track_lock_enter(track);
5887
5888 track->usrbuf.used = 0;
5889 /* Clear all internal parameters. */
5890 if (track->codec.filter) {
5891 track->codec.srcbuf.used = 0;
5892 track->codec.srcbuf.head = 0;
5893 }
5894 if (track->chvol.filter) {
5895 track->chvol.srcbuf.used = 0;
5896 track->chvol.srcbuf.head = 0;
5897 }
5898 if (track->chmix.filter) {
5899 track->chmix.srcbuf.used = 0;
5900 track->chmix.srcbuf.head = 0;
5901 }
5902 if (track->freq.filter) {
5903 track->freq.srcbuf.used = 0;
5904 track->freq.srcbuf.head = 0;
5905 if (track->freq_step < 65536)
5906 track->freq_current = 65536;
5907 else
5908 track->freq_current = 0;
5909 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5910 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5911 }
5912 /* Clear buffer, then operation halts naturally. */
5913 track->outbuf.used = 0;
5914
5915 /* Clear counters. */
5916 track->dropframes = 0;
5917
5918 audio_track_lock_exit(track);
5919 }
5920
5921 /*
5922 * Drain the track.
5923 * track must be present and for playback.
5924 * If successful, it returns 0. Otherwise returns errno.
5925 * Must be called with sc_lock held.
5926 */
5927 static int
5928 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5929 {
5930 audio_trackmixer_t *mixer;
5931 int done;
5932 int error;
5933
5934 KASSERT(track);
5935 TRACET(3, track, "start");
5936 mixer = track->mixer;
5937 KASSERT(mutex_owned(sc->sc_lock));
5938
5939 /* Ignore them if pause. */
5940 if (track->is_pause) {
5941 TRACET(3, track, "pause -> clear");
5942 track->pstate = AUDIO_STATE_CLEAR;
5943 }
5944 /* Terminate early here if there is no data in the track. */
5945 if (track->pstate == AUDIO_STATE_CLEAR) {
5946 TRACET(3, track, "no need to drain");
5947 return 0;
5948 }
5949 track->pstate = AUDIO_STATE_DRAINING;
5950
5951 for (;;) {
5952 /* I want to display it before condition evaluation. */
5953 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5954 (int)curproc->p_pid, (int)curlwp->l_lid,
5955 (int)track->seq, (int)mixer->hwseq,
5956 track->outbuf.head, track->outbuf.used,
5957 track->outbuf.capacity);
5958
5959 /* Condition to terminate */
5960 audio_track_lock_enter(track);
5961 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5962 track->outbuf.used == 0 &&
5963 track->seq <= mixer->hwseq);
5964 audio_track_lock_exit(track);
5965 if (done)
5966 break;
5967
5968 TRACET(3, track, "sleep");
5969 error = audio_track_waitio(sc, track);
5970 if (error)
5971 return error;
5972
5973 /* XXX call audio_track_play here ? */
5974 }
5975
5976 track->pstate = AUDIO_STATE_CLEAR;
5977 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5978 (int)track->inputcounter, (int)track->outputcounter);
5979 return 0;
5980 }
5981
5982 /*
5983 * Send signal to process.
5984 * This is intended to be called only from audio_softintr_{rd,wr}.
5985 * Must be called without sc_intr_lock held.
5986 */
5987 static inline void
5988 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
5989 {
5990 proc_t *p;
5991
5992 KASSERT(pid != 0);
5993
5994 /*
5995 * psignal() must be called without spin lock held.
5996 */
5997
5998 mutex_enter(&proc_lock);
5999 p = proc_find(pid);
6000 if (p)
6001 psignal(p, signum);
6002 mutex_exit(&proc_lock);
6003 }
6004
6005 /*
6006 * This is software interrupt handler for record.
6007 * It is called from recording hardware interrupt everytime.
6008 * It does:
6009 * - Deliver SIGIO for all async processes.
6010 * - Notify to audio_read() that data has arrived.
6011 * - selnotify() for select/poll-ing processes.
6012 */
6013 /*
6014 * XXX If a process issues FIOASYNC between hardware interrupt and
6015 * software interrupt, (stray) SIGIO will be sent to the process
6016 * despite the fact that it has not receive recorded data yet.
6017 */
6018 static void
6019 audio_softintr_rd(void *cookie)
6020 {
6021 struct audio_softc *sc = cookie;
6022 audio_file_t *f;
6023 pid_t pid;
6024
6025 mutex_enter(sc->sc_lock);
6026
6027 SLIST_FOREACH(f, &sc->sc_files, entry) {
6028 audio_track_t *track = f->rtrack;
6029
6030 if (track == NULL)
6031 continue;
6032
6033 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6034 track->input->head,
6035 track->input->used,
6036 track->input->capacity);
6037
6038 pid = f->async_audio;
6039 if (pid != 0) {
6040 TRACEF(4, f, "sending SIGIO %d", pid);
6041 audio_psignal(sc, pid, SIGIO);
6042 }
6043 }
6044
6045 /* Notify that data has arrived. */
6046 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6047 KNOTE(&sc->sc_rsel.sel_klist, 0);
6048 cv_broadcast(&sc->sc_rmixer->outcv);
6049
6050 mutex_exit(sc->sc_lock);
6051 }
6052
6053 /*
6054 * This is software interrupt handler for playback.
6055 * It is called from playback hardware interrupt everytime.
6056 * It does:
6057 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6058 * - Notify to audio_write() that outbuf block available.
6059 * - selnotify() for select/poll-ing processes if there are any writable
6060 * (used < lowat) processes. Checking each descriptor will be done by
6061 * filt_audiowrite_event().
6062 */
6063 static void
6064 audio_softintr_wr(void *cookie)
6065 {
6066 struct audio_softc *sc = cookie;
6067 audio_file_t *f;
6068 bool found;
6069 pid_t pid;
6070
6071 TRACE(4, "called");
6072 found = false;
6073
6074 mutex_enter(sc->sc_lock);
6075
6076 SLIST_FOREACH(f, &sc->sc_files, entry) {
6077 audio_track_t *track = f->ptrack;
6078
6079 if (track == NULL)
6080 continue;
6081
6082 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
6083 (int)track->seq,
6084 track->outbuf.head,
6085 track->outbuf.used,
6086 track->outbuf.capacity);
6087
6088 /*
6089 * Send a signal if the process is async mode and
6090 * used is lower than lowat.
6091 */
6092 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6093 !track->is_pause) {
6094 /* For selnotify */
6095 found = true;
6096 /* For SIGIO */
6097 pid = f->async_audio;
6098 if (pid != 0) {
6099 TRACEF(4, f, "sending SIGIO %d", pid);
6100 audio_psignal(sc, pid, SIGIO);
6101 }
6102 }
6103 }
6104
6105 /*
6106 * Notify for select/poll when someone become writable.
6107 * It needs sc_lock (and not sc_intr_lock).
6108 */
6109 if (found) {
6110 TRACE(4, "selnotify");
6111 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6112 KNOTE(&sc->sc_wsel.sel_klist, 0);
6113 }
6114
6115 /* Notify to audio_write() that outbuf available. */
6116 cv_broadcast(&sc->sc_pmixer->outcv);
6117
6118 mutex_exit(sc->sc_lock);
6119 }
6120
6121 /*
6122 * Check (and convert) the format *p came from userland.
6123 * If successful, it writes back the converted format to *p if necessary
6124 * and returns 0. Otherwise returns errno (*p may change even this case).
6125 */
6126 static int
6127 audio_check_params(audio_format2_t *p)
6128 {
6129
6130 /*
6131 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6132 *
6133 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6134 * So, it's always signed, as in SunOS.
6135 *
6136 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6137 * So, it's always unsigned, as in SunOS.
6138 */
6139 if (p->encoding == AUDIO_ENCODING_PCM16) {
6140 p->encoding = AUDIO_ENCODING_SLINEAR;
6141 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6142 if (p->precision == 8)
6143 p->encoding = AUDIO_ENCODING_ULINEAR;
6144 else
6145 return EINVAL;
6146 }
6147
6148 /*
6149 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6150 * suffix.
6151 */
6152 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6153 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6154 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6155 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6156
6157 switch (p->encoding) {
6158 case AUDIO_ENCODING_ULAW:
6159 case AUDIO_ENCODING_ALAW:
6160 if (p->precision != 8)
6161 return EINVAL;
6162 break;
6163 case AUDIO_ENCODING_ADPCM:
6164 if (p->precision != 4 && p->precision != 8)
6165 return EINVAL;
6166 break;
6167 case AUDIO_ENCODING_SLINEAR_LE:
6168 case AUDIO_ENCODING_SLINEAR_BE:
6169 case AUDIO_ENCODING_ULINEAR_LE:
6170 case AUDIO_ENCODING_ULINEAR_BE:
6171 if (p->precision != 8 && p->precision != 16 &&
6172 p->precision != 24 && p->precision != 32)
6173 return EINVAL;
6174
6175 /* 8bit format does not have endianness. */
6176 if (p->precision == 8) {
6177 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6178 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6179 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6180 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6181 }
6182
6183 if (p->precision > p->stride)
6184 return EINVAL;
6185 break;
6186 case AUDIO_ENCODING_MPEG_L1_STREAM:
6187 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6188 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6189 case AUDIO_ENCODING_MPEG_L2_STREAM:
6190 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6191 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6192 case AUDIO_ENCODING_AC3:
6193 break;
6194 default:
6195 return EINVAL;
6196 }
6197
6198 /* sanity check # of channels*/
6199 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6200 return EINVAL;
6201
6202 return 0;
6203 }
6204
6205 /*
6206 * Initialize playback and record mixers.
6207 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6208 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6209 * the filter registration information. These four must not be NULL.
6210 * If successful returns 0. Otherwise returns errno.
6211 * Must be called with sc_exlock held and without sc_lock held.
6212 * Must not be called if there are any tracks.
6213 * Caller should check that the initialization succeed by whether
6214 * sc_[pr]mixer is not NULL.
6215 */
6216 static int
6217 audio_mixers_init(struct audio_softc *sc, int mode,
6218 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6219 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6220 {
6221 int error;
6222
6223 KASSERT(phwfmt != NULL);
6224 KASSERT(rhwfmt != NULL);
6225 KASSERT(pfil != NULL);
6226 KASSERT(rfil != NULL);
6227 KASSERT(sc->sc_exlock);
6228
6229 if ((mode & AUMODE_PLAY)) {
6230 if (sc->sc_pmixer == NULL) {
6231 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6232 KM_SLEEP);
6233 } else {
6234 /* destroy() doesn't free memory. */
6235 audio_mixer_destroy(sc, sc->sc_pmixer);
6236 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6237 }
6238 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6239 if (error) {
6240 device_printf(sc->sc_dev,
6241 "configuring playback mode failed with %d\n",
6242 error);
6243 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6244 sc->sc_pmixer = NULL;
6245 return error;
6246 }
6247 }
6248 if ((mode & AUMODE_RECORD)) {
6249 if (sc->sc_rmixer == NULL) {
6250 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6251 KM_SLEEP);
6252 } else {
6253 /* destroy() doesn't free memory. */
6254 audio_mixer_destroy(sc, sc->sc_rmixer);
6255 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6256 }
6257 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6258 if (error) {
6259 device_printf(sc->sc_dev,
6260 "configuring record mode failed with %d\n",
6261 error);
6262 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6263 sc->sc_rmixer = NULL;
6264 return error;
6265 }
6266 }
6267
6268 return 0;
6269 }
6270
6271 /*
6272 * Select a frequency.
6273 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6274 * XXX Better algorithm?
6275 */
6276 static int
6277 audio_select_freq(const struct audio_format *fmt)
6278 {
6279 int freq;
6280 int high;
6281 int low;
6282 int j;
6283
6284 if (fmt->frequency_type == 0) {
6285 low = fmt->frequency[0];
6286 high = fmt->frequency[1];
6287 freq = 48000;
6288 if (low <= freq && freq <= high) {
6289 return freq;
6290 }
6291 freq = 44100;
6292 if (low <= freq && freq <= high) {
6293 return freq;
6294 }
6295 return high;
6296 } else {
6297 for (j = 0; j < fmt->frequency_type; j++) {
6298 if (fmt->frequency[j] == 48000) {
6299 return fmt->frequency[j];
6300 }
6301 }
6302 high = 0;
6303 for (j = 0; j < fmt->frequency_type; j++) {
6304 if (fmt->frequency[j] == 44100) {
6305 return fmt->frequency[j];
6306 }
6307 if (fmt->frequency[j] > high) {
6308 high = fmt->frequency[j];
6309 }
6310 }
6311 return high;
6312 }
6313 }
6314
6315 /*
6316 * Choose the most preferred hardware format.
6317 * If successful, it will store the chosen format into *cand and return 0.
6318 * Otherwise, return errno.
6319 * Must be called without sc_lock held.
6320 */
6321 static int
6322 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6323 {
6324 audio_format_query_t query;
6325 int cand_score;
6326 int score;
6327 int i;
6328 int error;
6329
6330 /*
6331 * Score each formats and choose the highest one.
6332 *
6333 * +---- priority(0-3)
6334 * |+--- encoding/precision
6335 * ||+-- channels
6336 * score = 0x000000PEC
6337 */
6338
6339 cand_score = 0;
6340 for (i = 0; ; i++) {
6341 memset(&query, 0, sizeof(query));
6342 query.index = i;
6343
6344 mutex_enter(sc->sc_lock);
6345 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6346 mutex_exit(sc->sc_lock);
6347 if (error == EINVAL)
6348 break;
6349 if (error)
6350 return error;
6351
6352 #if defined(AUDIO_DEBUG)
6353 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6354 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6355 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6356 query.fmt.priority,
6357 audio_encoding_name(query.fmt.encoding),
6358 query.fmt.validbits,
6359 query.fmt.precision,
6360 query.fmt.channels);
6361 if (query.fmt.frequency_type == 0) {
6362 DPRINTF(1, "{%d-%d",
6363 query.fmt.frequency[0], query.fmt.frequency[1]);
6364 } else {
6365 int j;
6366 for (j = 0; j < query.fmt.frequency_type; j++) {
6367 DPRINTF(1, "%c%d",
6368 (j == 0) ? '{' : ',',
6369 query.fmt.frequency[j]);
6370 }
6371 }
6372 DPRINTF(1, "}\n");
6373 #endif
6374
6375 if ((query.fmt.mode & mode) == 0) {
6376 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6377 mode);
6378 continue;
6379 }
6380
6381 if (query.fmt.priority < 0) {
6382 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6383 continue;
6384 }
6385
6386 /* Score */
6387 score = (query.fmt.priority & 3) * 0x100;
6388 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6389 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6390 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6391 score += 0x20;
6392 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6393 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6394 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6395 score += 0x10;
6396 }
6397 score += query.fmt.channels;
6398
6399 if (score < cand_score) {
6400 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6401 score, cand_score);
6402 continue;
6403 }
6404
6405 /* Update candidate */
6406 cand_score = score;
6407 cand->encoding = query.fmt.encoding;
6408 cand->precision = query.fmt.validbits;
6409 cand->stride = query.fmt.precision;
6410 cand->channels = query.fmt.channels;
6411 cand->sample_rate = audio_select_freq(&query.fmt);
6412 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6413 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6414 cand_score, query.fmt.priority,
6415 audio_encoding_name(query.fmt.encoding),
6416 cand->precision, cand->stride,
6417 cand->channels, cand->sample_rate);
6418 }
6419
6420 if (cand_score == 0) {
6421 DPRINTF(1, "%s no fmt\n", __func__);
6422 return ENXIO;
6423 }
6424 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6425 audio_encoding_name(cand->encoding),
6426 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6427 return 0;
6428 }
6429
6430 /*
6431 * Validate fmt with query_format.
6432 * If fmt is included in the result of query_format, returns 0.
6433 * Otherwise returns EINVAL.
6434 * Must be called without sc_lock held.
6435 */
6436 static int
6437 audio_hw_validate_format(struct audio_softc *sc, int mode,
6438 const audio_format2_t *fmt)
6439 {
6440 audio_format_query_t query;
6441 struct audio_format *q;
6442 int index;
6443 int error;
6444 int j;
6445
6446 for (index = 0; ; index++) {
6447 query.index = index;
6448 mutex_enter(sc->sc_lock);
6449 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6450 mutex_exit(sc->sc_lock);
6451 if (error == EINVAL)
6452 break;
6453 if (error)
6454 return error;
6455
6456 q = &query.fmt;
6457 /*
6458 * Note that fmt is audio_format2_t (precision/stride) but
6459 * q is audio_format_t (validbits/precision).
6460 */
6461 if ((q->mode & mode) == 0) {
6462 continue;
6463 }
6464 if (fmt->encoding != q->encoding) {
6465 continue;
6466 }
6467 if (fmt->precision != q->validbits) {
6468 continue;
6469 }
6470 if (fmt->stride != q->precision) {
6471 continue;
6472 }
6473 if (fmt->channels != q->channels) {
6474 continue;
6475 }
6476 if (q->frequency_type == 0) {
6477 if (fmt->sample_rate < q->frequency[0] ||
6478 fmt->sample_rate > q->frequency[1]) {
6479 continue;
6480 }
6481 } else {
6482 for (j = 0; j < q->frequency_type; j++) {
6483 if (fmt->sample_rate == q->frequency[j])
6484 break;
6485 }
6486 if (j == query.fmt.frequency_type) {
6487 continue;
6488 }
6489 }
6490
6491 /* Matched. */
6492 return 0;
6493 }
6494
6495 return EINVAL;
6496 }
6497
6498 /*
6499 * Set track mixer's format depending on ai->mode.
6500 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6501 * with ai.play.*.
6502 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6503 * with ai.record.*.
6504 * All other fields in ai are ignored.
6505 * If successful returns 0. Otherwise returns errno.
6506 * This function does not roll back even if it fails.
6507 * Must be called with sc_exlock held and without sc_lock held.
6508 */
6509 static int
6510 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6511 {
6512 audio_format2_t phwfmt;
6513 audio_format2_t rhwfmt;
6514 audio_filter_reg_t pfil;
6515 audio_filter_reg_t rfil;
6516 int mode;
6517 int error;
6518
6519 KASSERT(sc->sc_exlock);
6520
6521 /*
6522 * Even when setting either one of playback and recording,
6523 * both must be halted.
6524 */
6525 if (sc->sc_popens + sc->sc_ropens > 0)
6526 return EBUSY;
6527
6528 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6529 return ENOTTY;
6530
6531 mode = ai->mode;
6532 if ((mode & AUMODE_PLAY)) {
6533 phwfmt.encoding = ai->play.encoding;
6534 phwfmt.precision = ai->play.precision;
6535 phwfmt.stride = ai->play.precision;
6536 phwfmt.channels = ai->play.channels;
6537 phwfmt.sample_rate = ai->play.sample_rate;
6538 }
6539 if ((mode & AUMODE_RECORD)) {
6540 rhwfmt.encoding = ai->record.encoding;
6541 rhwfmt.precision = ai->record.precision;
6542 rhwfmt.stride = ai->record.precision;
6543 rhwfmt.channels = ai->record.channels;
6544 rhwfmt.sample_rate = ai->record.sample_rate;
6545 }
6546
6547 /* On non-independent devices, use the same format for both. */
6548 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6549 if (mode == AUMODE_RECORD) {
6550 phwfmt = rhwfmt;
6551 } else {
6552 rhwfmt = phwfmt;
6553 }
6554 mode = AUMODE_PLAY | AUMODE_RECORD;
6555 }
6556
6557 /* Then, unset the direction not exist on the hardware. */
6558 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6559 mode &= ~AUMODE_PLAY;
6560 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6561 mode &= ~AUMODE_RECORD;
6562
6563 /* debug */
6564 if ((mode & AUMODE_PLAY)) {
6565 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6566 audio_encoding_name(phwfmt.encoding),
6567 phwfmt.precision,
6568 phwfmt.stride,
6569 phwfmt.channels,
6570 phwfmt.sample_rate);
6571 }
6572 if ((mode & AUMODE_RECORD)) {
6573 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6574 audio_encoding_name(rhwfmt.encoding),
6575 rhwfmt.precision,
6576 rhwfmt.stride,
6577 rhwfmt.channels,
6578 rhwfmt.sample_rate);
6579 }
6580
6581 /* Check the format */
6582 if ((mode & AUMODE_PLAY)) {
6583 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6584 TRACE(1, "invalid format");
6585 return EINVAL;
6586 }
6587 }
6588 if ((mode & AUMODE_RECORD)) {
6589 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6590 TRACE(1, "invalid format");
6591 return EINVAL;
6592 }
6593 }
6594
6595 /* Configure the mixers. */
6596 memset(&pfil, 0, sizeof(pfil));
6597 memset(&rfil, 0, sizeof(rfil));
6598 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6599 if (error)
6600 return error;
6601
6602 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6603 if (error)
6604 return error;
6605
6606 /*
6607 * Reinitialize the sticky parameters for /dev/sound.
6608 * If the number of the hardware channels becomes less than the number
6609 * of channels that sticky parameters remember, subsequent /dev/sound
6610 * open will fail. To prevent this, reinitialize the sticky
6611 * parameters whenever the hardware format is changed.
6612 */
6613 sc->sc_sound_pparams = params_to_format2(&audio_default);
6614 sc->sc_sound_rparams = params_to_format2(&audio_default);
6615 sc->sc_sound_ppause = false;
6616 sc->sc_sound_rpause = false;
6617
6618 return 0;
6619 }
6620
6621 /*
6622 * Store current mixers format into *ai.
6623 * Must be called with sc_exlock held.
6624 */
6625 static void
6626 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6627 {
6628
6629 KASSERT(sc->sc_exlock);
6630
6631 /*
6632 * There is no stride information in audio_info but it doesn't matter.
6633 * trackmixer always treats stride and precision as the same.
6634 */
6635 AUDIO_INITINFO(ai);
6636 ai->mode = 0;
6637 if (sc->sc_pmixer) {
6638 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6639 ai->play.encoding = fmt->encoding;
6640 ai->play.precision = fmt->precision;
6641 ai->play.channels = fmt->channels;
6642 ai->play.sample_rate = fmt->sample_rate;
6643 ai->mode |= AUMODE_PLAY;
6644 }
6645 if (sc->sc_rmixer) {
6646 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6647 ai->record.encoding = fmt->encoding;
6648 ai->record.precision = fmt->precision;
6649 ai->record.channels = fmt->channels;
6650 ai->record.sample_rate = fmt->sample_rate;
6651 ai->mode |= AUMODE_RECORD;
6652 }
6653 }
6654
6655 /*
6656 * audio_info details:
6657 *
6658 * ai.{play,record}.sample_rate (R/W)
6659 * ai.{play,record}.encoding (R/W)
6660 * ai.{play,record}.precision (R/W)
6661 * ai.{play,record}.channels (R/W)
6662 * These specify the playback or recording format.
6663 * Ignore members within an inactive track.
6664 *
6665 * ai.mode (R/W)
6666 * It specifies the playback or recording mode, AUMODE_*.
6667 * Currently, a mode change operation by ai.mode after opening is
6668 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6669 * However, it's possible to get or to set for backward compatibility.
6670 *
6671 * ai.{hiwat,lowat} (R/W)
6672 * These specify the high water mark and low water mark for playback
6673 * track. The unit is block.
6674 *
6675 * ai.{play,record}.gain (R/W)
6676 * It specifies the HW mixer volume in 0-255.
6677 * It is historical reason that the gain is connected to HW mixer.
6678 *
6679 * ai.{play,record}.balance (R/W)
6680 * It specifies the left-right balance of HW mixer in 0-64.
6681 * 32 means the center.
6682 * It is historical reason that the balance is connected to HW mixer.
6683 *
6684 * ai.{play,record}.port (R/W)
6685 * It specifies the input/output port of HW mixer.
6686 *
6687 * ai.monitor_gain (R/W)
6688 * It specifies the recording monitor gain(?) of HW mixer.
6689 *
6690 * ai.{play,record}.pause (R/W)
6691 * Non-zero means the track is paused.
6692 *
6693 * ai.play.seek (R/-)
6694 * It indicates the number of bytes written but not processed.
6695 * ai.record.seek (R/-)
6696 * It indicates the number of bytes to be able to read.
6697 *
6698 * ai.{play,record}.avail_ports (R/-)
6699 * Mixer info.
6700 *
6701 * ai.{play,record}.buffer_size (R/-)
6702 * It indicates the buffer size in bytes. Internally it means usrbuf.
6703 *
6704 * ai.{play,record}.samples (R/-)
6705 * It indicates the total number of bytes played or recorded.
6706 *
6707 * ai.{play,record}.eof (R/-)
6708 * It indicates the number of times reached EOF(?).
6709 *
6710 * ai.{play,record}.error (R/-)
6711 * Non-zero indicates overflow/underflow has occured.
6712 *
6713 * ai.{play,record}.waiting (R/-)
6714 * Non-zero indicates that other process waits to open.
6715 * It will never happen anymore.
6716 *
6717 * ai.{play,record}.open (R/-)
6718 * Non-zero indicates the direction is opened by this process(?).
6719 * XXX Is this better to indicate that "the device is opened by
6720 * at least one process"?
6721 *
6722 * ai.{play,record}.active (R/-)
6723 * Non-zero indicates that I/O is currently active.
6724 *
6725 * ai.blocksize (R/-)
6726 * It indicates the block size in bytes.
6727 * XXX The blocksize of playback and recording may be different.
6728 */
6729
6730 /*
6731 * Pause consideration:
6732 *
6733 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6734 * operation simple. Note that playback and recording are asymmetric.
6735 *
6736 * For playback,
6737 * 1. Any playback open doesn't start pmixer regardless of initial pause
6738 * state of this track.
6739 * 2. The first write access among playback tracks only starts pmixer
6740 * regardless of this track's pause state.
6741 * 3. Even a pause of the last playback track doesn't stop pmixer.
6742 * 4. The last close of all playback tracks only stops pmixer.
6743 *
6744 * For recording,
6745 * 1. The first recording open only starts rmixer regardless of initial
6746 * pause state of this track.
6747 * 2. Even a pause of the last track doesn't stop rmixer.
6748 * 3. The last close of all recording tracks only stops rmixer.
6749 */
6750
6751 /*
6752 * Set both track's parameters within a file depending on ai.
6753 * Update sc_sound_[pr]* if set.
6754 * Must be called with sc_exlock held and without sc_lock held.
6755 */
6756 static int
6757 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6758 const struct audio_info *ai)
6759 {
6760 const struct audio_prinfo *pi;
6761 const struct audio_prinfo *ri;
6762 audio_track_t *ptrack;
6763 audio_track_t *rtrack;
6764 audio_format2_t pfmt;
6765 audio_format2_t rfmt;
6766 int pchanges;
6767 int rchanges;
6768 int mode;
6769 struct audio_info saved_ai;
6770 audio_format2_t saved_pfmt;
6771 audio_format2_t saved_rfmt;
6772 int error;
6773
6774 KASSERT(sc->sc_exlock);
6775
6776 pi = &ai->play;
6777 ri = &ai->record;
6778 pchanges = 0;
6779 rchanges = 0;
6780
6781 ptrack = file->ptrack;
6782 rtrack = file->rtrack;
6783
6784 #if defined(AUDIO_DEBUG)
6785 if (audiodebug >= 2) {
6786 char buf[256];
6787 char p[64];
6788 int buflen;
6789 int plen;
6790 #define SPRINTF(var, fmt...) do { \
6791 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6792 } while (0)
6793
6794 buflen = 0;
6795 plen = 0;
6796 if (SPECIFIED(pi->encoding))
6797 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6798 if (SPECIFIED(pi->precision))
6799 SPRINTF(p, "/%dbit", pi->precision);
6800 if (SPECIFIED(pi->channels))
6801 SPRINTF(p, "/%dch", pi->channels);
6802 if (SPECIFIED(pi->sample_rate))
6803 SPRINTF(p, "/%dHz", pi->sample_rate);
6804 if (plen > 0)
6805 SPRINTF(buf, ",play.param=%s", p + 1);
6806
6807 plen = 0;
6808 if (SPECIFIED(ri->encoding))
6809 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6810 if (SPECIFIED(ri->precision))
6811 SPRINTF(p, "/%dbit", ri->precision);
6812 if (SPECIFIED(ri->channels))
6813 SPRINTF(p, "/%dch", ri->channels);
6814 if (SPECIFIED(ri->sample_rate))
6815 SPRINTF(p, "/%dHz", ri->sample_rate);
6816 if (plen > 0)
6817 SPRINTF(buf, ",record.param=%s", p + 1);
6818
6819 if (SPECIFIED(ai->mode))
6820 SPRINTF(buf, ",mode=%d", ai->mode);
6821 if (SPECIFIED(ai->hiwat))
6822 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6823 if (SPECIFIED(ai->lowat))
6824 SPRINTF(buf, ",lowat=%d", ai->lowat);
6825 if (SPECIFIED(ai->play.gain))
6826 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6827 if (SPECIFIED(ai->record.gain))
6828 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6829 if (SPECIFIED_CH(ai->play.balance))
6830 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6831 if (SPECIFIED_CH(ai->record.balance))
6832 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6833 if (SPECIFIED(ai->play.port))
6834 SPRINTF(buf, ",play.port=%d", ai->play.port);
6835 if (SPECIFIED(ai->record.port))
6836 SPRINTF(buf, ",record.port=%d", ai->record.port);
6837 if (SPECIFIED(ai->monitor_gain))
6838 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6839 if (SPECIFIED_CH(ai->play.pause))
6840 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6841 if (SPECIFIED_CH(ai->record.pause))
6842 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6843
6844 if (buflen > 0)
6845 TRACE(2, "specified %s", buf + 1);
6846 }
6847 #endif
6848
6849 AUDIO_INITINFO(&saved_ai);
6850 /* XXX shut up gcc */
6851 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6852 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6853
6854 /*
6855 * Set default value and save current parameters.
6856 * For backward compatibility, use sticky parameters for nonexistent
6857 * track.
6858 */
6859 if (ptrack) {
6860 pfmt = ptrack->usrbuf.fmt;
6861 saved_pfmt = ptrack->usrbuf.fmt;
6862 saved_ai.play.pause = ptrack->is_pause;
6863 } else {
6864 pfmt = sc->sc_sound_pparams;
6865 }
6866 if (rtrack) {
6867 rfmt = rtrack->usrbuf.fmt;
6868 saved_rfmt = rtrack->usrbuf.fmt;
6869 saved_ai.record.pause = rtrack->is_pause;
6870 } else {
6871 rfmt = sc->sc_sound_rparams;
6872 }
6873 saved_ai.mode = file->mode;
6874
6875 /*
6876 * Overwrite if specified.
6877 */
6878 mode = file->mode;
6879 if (SPECIFIED(ai->mode)) {
6880 /*
6881 * Setting ai->mode no longer does anything because it's
6882 * prohibited to change playback/recording mode after open
6883 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6884 * keeps the state of AUMODE_PLAY_ALL itself for backward
6885 * compatibility.
6886 * In the internal, only file->mode has the state of
6887 * AUMODE_PLAY_ALL flag and track->mode in both track does
6888 * not have.
6889 */
6890 if ((file->mode & AUMODE_PLAY)) {
6891 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6892 | (ai->mode & AUMODE_PLAY_ALL);
6893 }
6894 }
6895
6896 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
6897 if (pchanges == -1) {
6898 #if defined(AUDIO_DEBUG)
6899 TRACEF(1, file, "check play.params failed: "
6900 "%s %ubit %uch %uHz",
6901 audio_encoding_name(pi->encoding),
6902 pi->precision,
6903 pi->channels,
6904 pi->sample_rate);
6905 #endif
6906 return EINVAL;
6907 }
6908
6909 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
6910 if (rchanges == -1) {
6911 #if defined(AUDIO_DEBUG)
6912 TRACEF(1, file, "check record.params failed: "
6913 "%s %ubit %uch %uHz",
6914 audio_encoding_name(ri->encoding),
6915 ri->precision,
6916 ri->channels,
6917 ri->sample_rate);
6918 #endif
6919 return EINVAL;
6920 }
6921
6922 if (SPECIFIED(ai->mode)) {
6923 pchanges = 1;
6924 rchanges = 1;
6925 }
6926
6927 /*
6928 * Even when setting either one of playback and recording,
6929 * both track must be halted.
6930 */
6931 if (pchanges || rchanges) {
6932 audio_file_clear(sc, file);
6933 #if defined(AUDIO_DEBUG)
6934 char nbuf[16];
6935 char fmtbuf[64];
6936 if (pchanges) {
6937 if (ptrack) {
6938 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
6939 } else {
6940 snprintf(nbuf, sizeof(nbuf), "-");
6941 }
6942 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6943 DPRINTF(1, "audio track#%s play mode: %s\n",
6944 nbuf, fmtbuf);
6945 }
6946 if (rchanges) {
6947 if (rtrack) {
6948 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
6949 } else {
6950 snprintf(nbuf, sizeof(nbuf), "-");
6951 }
6952 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6953 DPRINTF(1, "audio track#%s rec mode: %s\n",
6954 nbuf, fmtbuf);
6955 }
6956 #endif
6957 }
6958
6959 /* Set mixer parameters */
6960 mutex_enter(sc->sc_lock);
6961 error = audio_hw_setinfo(sc, ai, &saved_ai);
6962 mutex_exit(sc->sc_lock);
6963 if (error)
6964 goto abort1;
6965
6966 /*
6967 * Set to track and update sticky parameters.
6968 */
6969 error = 0;
6970 file->mode = mode;
6971
6972 if (SPECIFIED_CH(pi->pause)) {
6973 if (ptrack)
6974 ptrack->is_pause = pi->pause;
6975 sc->sc_sound_ppause = pi->pause;
6976 }
6977 if (pchanges) {
6978 if (ptrack) {
6979 audio_track_lock_enter(ptrack);
6980 error = audio_track_set_format(ptrack, &pfmt);
6981 audio_track_lock_exit(ptrack);
6982 if (error) {
6983 TRACET(1, ptrack, "set play.params failed");
6984 goto abort2;
6985 }
6986 }
6987 sc->sc_sound_pparams = pfmt;
6988 }
6989 /* Change water marks after initializing the buffers. */
6990 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6991 if (ptrack)
6992 audio_track_setinfo_water(ptrack, ai);
6993 }
6994
6995 if (SPECIFIED_CH(ri->pause)) {
6996 if (rtrack)
6997 rtrack->is_pause = ri->pause;
6998 sc->sc_sound_rpause = ri->pause;
6999 }
7000 if (rchanges) {
7001 if (rtrack) {
7002 audio_track_lock_enter(rtrack);
7003 error = audio_track_set_format(rtrack, &rfmt);
7004 audio_track_lock_exit(rtrack);
7005 if (error) {
7006 TRACET(1, rtrack, "set record.params failed");
7007 goto abort3;
7008 }
7009 }
7010 sc->sc_sound_rparams = rfmt;
7011 }
7012
7013 return 0;
7014
7015 /* Rollback */
7016 abort3:
7017 if (error != ENOMEM) {
7018 rtrack->is_pause = saved_ai.record.pause;
7019 audio_track_lock_enter(rtrack);
7020 audio_track_set_format(rtrack, &saved_rfmt);
7021 audio_track_lock_exit(rtrack);
7022 }
7023 sc->sc_sound_rpause = saved_ai.record.pause;
7024 sc->sc_sound_rparams = saved_rfmt;
7025 abort2:
7026 if (ptrack && error != ENOMEM) {
7027 ptrack->is_pause = saved_ai.play.pause;
7028 audio_track_lock_enter(ptrack);
7029 audio_track_set_format(ptrack, &saved_pfmt);
7030 audio_track_lock_exit(ptrack);
7031 }
7032 sc->sc_sound_ppause = saved_ai.play.pause;
7033 sc->sc_sound_pparams = saved_pfmt;
7034 file->mode = saved_ai.mode;
7035 abort1:
7036 mutex_enter(sc->sc_lock);
7037 audio_hw_setinfo(sc, &saved_ai, NULL);
7038 mutex_exit(sc->sc_lock);
7039
7040 return error;
7041 }
7042
7043 /*
7044 * Write SPECIFIED() parameters within info back to fmt.
7045 * Note that track can be NULL here.
7046 * Return value of 1 indicates that fmt is modified.
7047 * Return value of 0 indicates that fmt is not modified.
7048 * Return value of -1 indicates that error EINVAL has occurred.
7049 */
7050 static int
7051 audio_track_setinfo_check(audio_track_t *track,
7052 audio_format2_t *fmt, const struct audio_prinfo *info)
7053 {
7054 const audio_format2_t *hwfmt;
7055 int changes;
7056
7057 changes = 0;
7058 if (SPECIFIED(info->sample_rate)) {
7059 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7060 return -1;
7061 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7062 return -1;
7063 fmt->sample_rate = info->sample_rate;
7064 changes = 1;
7065 }
7066 if (SPECIFIED(info->encoding)) {
7067 fmt->encoding = info->encoding;
7068 changes = 1;
7069 }
7070 if (SPECIFIED(info->precision)) {
7071 fmt->precision = info->precision;
7072 /* we don't have API to specify stride */
7073 fmt->stride = info->precision;
7074 changes = 1;
7075 }
7076 if (SPECIFIED(info->channels)) {
7077 /*
7078 * We can convert between monaural and stereo each other.
7079 * We can reduce than the number of channels that the hardware
7080 * supports.
7081 */
7082 if (info->channels > 2) {
7083 if (track) {
7084 hwfmt = &track->mixer->hwbuf.fmt;
7085 if (info->channels > hwfmt->channels)
7086 return -1;
7087 } else {
7088 /*
7089 * This should never happen.
7090 * If track == NULL, channels should be <= 2.
7091 */
7092 return -1;
7093 }
7094 }
7095 fmt->channels = info->channels;
7096 changes = 1;
7097 }
7098
7099 if (changes) {
7100 if (audio_check_params(fmt) != 0)
7101 return -1;
7102 }
7103
7104 return changes;
7105 }
7106
7107 /*
7108 * Change water marks for playback track if specfied.
7109 */
7110 static void
7111 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7112 {
7113 u_int blks;
7114 u_int maxblks;
7115 u_int blksize;
7116
7117 KASSERT(audio_track_is_playback(track));
7118
7119 blksize = track->usrbuf_blksize;
7120 maxblks = track->usrbuf.capacity / blksize;
7121
7122 if (SPECIFIED(ai->hiwat)) {
7123 blks = ai->hiwat;
7124 if (blks > maxblks)
7125 blks = maxblks;
7126 if (blks < 2)
7127 blks = 2;
7128 track->usrbuf_usedhigh = blks * blksize;
7129 }
7130 if (SPECIFIED(ai->lowat)) {
7131 blks = ai->lowat;
7132 if (blks > maxblks - 1)
7133 blks = maxblks - 1;
7134 track->usrbuf_usedlow = blks * blksize;
7135 }
7136 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7137 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7138 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7139 blksize;
7140 }
7141 }
7142 }
7143
7144 /*
7145 * Set hardware part of *newai.
7146 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7147 * If oldai is specified, previous parameters are stored.
7148 * This function itself does not roll back if error occurred.
7149 * Must be called with sc_lock && sc_exlock held.
7150 */
7151 static int
7152 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7153 struct audio_info *oldai)
7154 {
7155 const struct audio_prinfo *newpi;
7156 const struct audio_prinfo *newri;
7157 struct audio_prinfo *oldpi;
7158 struct audio_prinfo *oldri;
7159 u_int pgain;
7160 u_int rgain;
7161 u_char pbalance;
7162 u_char rbalance;
7163 int error;
7164
7165 KASSERT(mutex_owned(sc->sc_lock));
7166 KASSERT(sc->sc_exlock);
7167
7168 /* XXX shut up gcc */
7169 oldpi = NULL;
7170 oldri = NULL;
7171
7172 newpi = &newai->play;
7173 newri = &newai->record;
7174 if (oldai) {
7175 oldpi = &oldai->play;
7176 oldri = &oldai->record;
7177 }
7178 error = 0;
7179
7180 /*
7181 * It looks like unnecessary to halt HW mixers to set HW mixers.
7182 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7183 */
7184
7185 if (SPECIFIED(newpi->port)) {
7186 if (oldai)
7187 oldpi->port = au_get_port(sc, &sc->sc_outports);
7188 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7189 if (error) {
7190 device_printf(sc->sc_dev,
7191 "setting play.port=%d failed with %d\n",
7192 newpi->port, error);
7193 goto abort;
7194 }
7195 }
7196 if (SPECIFIED(newri->port)) {
7197 if (oldai)
7198 oldri->port = au_get_port(sc, &sc->sc_inports);
7199 error = au_set_port(sc, &sc->sc_inports, newri->port);
7200 if (error) {
7201 device_printf(sc->sc_dev,
7202 "setting record.port=%d failed with %d\n",
7203 newri->port, error);
7204 goto abort;
7205 }
7206 }
7207
7208 /* Backup play.{gain,balance} */
7209 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7210 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7211 if (oldai) {
7212 oldpi->gain = pgain;
7213 oldpi->balance = pbalance;
7214 }
7215 }
7216 /* Backup record.{gain,balance} */
7217 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7218 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7219 if (oldai) {
7220 oldri->gain = rgain;
7221 oldri->balance = rbalance;
7222 }
7223 }
7224 if (SPECIFIED(newpi->gain)) {
7225 error = au_set_gain(sc, &sc->sc_outports,
7226 newpi->gain, pbalance);
7227 if (error) {
7228 device_printf(sc->sc_dev,
7229 "setting play.gain=%d failed with %d\n",
7230 newpi->gain, error);
7231 goto abort;
7232 }
7233 }
7234 if (SPECIFIED(newri->gain)) {
7235 error = au_set_gain(sc, &sc->sc_inports,
7236 newri->gain, rbalance);
7237 if (error) {
7238 device_printf(sc->sc_dev,
7239 "setting record.gain=%d failed with %d\n",
7240 newri->gain, error);
7241 goto abort;
7242 }
7243 }
7244 if (SPECIFIED_CH(newpi->balance)) {
7245 error = au_set_gain(sc, &sc->sc_outports,
7246 pgain, newpi->balance);
7247 if (error) {
7248 device_printf(sc->sc_dev,
7249 "setting play.balance=%d failed with %d\n",
7250 newpi->balance, error);
7251 goto abort;
7252 }
7253 }
7254 if (SPECIFIED_CH(newri->balance)) {
7255 error = au_set_gain(sc, &sc->sc_inports,
7256 rgain, newri->balance);
7257 if (error) {
7258 device_printf(sc->sc_dev,
7259 "setting record.balance=%d failed with %d\n",
7260 newri->balance, error);
7261 goto abort;
7262 }
7263 }
7264
7265 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7266 if (oldai)
7267 oldai->monitor_gain = au_get_monitor_gain(sc);
7268 error = au_set_monitor_gain(sc, newai->monitor_gain);
7269 if (error) {
7270 device_printf(sc->sc_dev,
7271 "setting monitor_gain=%d failed with %d\n",
7272 newai->monitor_gain, error);
7273 goto abort;
7274 }
7275 }
7276
7277 /* XXX TODO */
7278 /* sc->sc_ai = *ai; */
7279
7280 error = 0;
7281 abort:
7282 return error;
7283 }
7284
7285 /*
7286 * Setup the hardware with mixer format phwfmt, rhwfmt.
7287 * The arguments have following restrictions:
7288 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7289 * or both.
7290 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7291 * - On non-independent devices, phwfmt and rhwfmt must have the same
7292 * parameters.
7293 * - pfil and rfil must be zero-filled.
7294 * If successful,
7295 * - pfil, rfil will be filled with filter information specified by the
7296 * hardware driver.
7297 * and then returns 0. Otherwise returns errno.
7298 * Must be called without sc_lock held.
7299 */
7300 static int
7301 audio_hw_set_format(struct audio_softc *sc, int setmode,
7302 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7303 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7304 {
7305 audio_params_t pp, rp;
7306 int error;
7307
7308 KASSERT(phwfmt != NULL);
7309 KASSERT(rhwfmt != NULL);
7310
7311 pp = format2_to_params(phwfmt);
7312 rp = format2_to_params(rhwfmt);
7313
7314 mutex_enter(sc->sc_lock);
7315 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7316 &pp, &rp, pfil, rfil);
7317 if (error) {
7318 mutex_exit(sc->sc_lock);
7319 device_printf(sc->sc_dev,
7320 "set_format failed with %d\n", error);
7321 return error;
7322 }
7323
7324 if (sc->hw_if->commit_settings) {
7325 error = sc->hw_if->commit_settings(sc->hw_hdl);
7326 if (error) {
7327 mutex_exit(sc->sc_lock);
7328 device_printf(sc->sc_dev,
7329 "commit_settings failed with %d\n", error);
7330 return error;
7331 }
7332 }
7333 mutex_exit(sc->sc_lock);
7334
7335 return 0;
7336 }
7337
7338 /*
7339 * Fill audio_info structure. If need_mixerinfo is true, it will also
7340 * fill the hardware mixer information.
7341 * Must be called with sc_exlock held and without sc_lock held.
7342 */
7343 static int
7344 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7345 audio_file_t *file)
7346 {
7347 struct audio_prinfo *ri, *pi;
7348 audio_track_t *track;
7349 audio_track_t *ptrack;
7350 audio_track_t *rtrack;
7351 int gain;
7352
7353 KASSERT(sc->sc_exlock);
7354
7355 ri = &ai->record;
7356 pi = &ai->play;
7357 ptrack = file->ptrack;
7358 rtrack = file->rtrack;
7359
7360 memset(ai, 0, sizeof(*ai));
7361
7362 if (ptrack) {
7363 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7364 pi->channels = ptrack->usrbuf.fmt.channels;
7365 pi->precision = ptrack->usrbuf.fmt.precision;
7366 pi->encoding = ptrack->usrbuf.fmt.encoding;
7367 pi->pause = ptrack->is_pause;
7368 } else {
7369 /* Use sticky parameters if the track is not available. */
7370 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7371 pi->channels = sc->sc_sound_pparams.channels;
7372 pi->precision = sc->sc_sound_pparams.precision;
7373 pi->encoding = sc->sc_sound_pparams.encoding;
7374 pi->pause = sc->sc_sound_ppause;
7375 }
7376 if (rtrack) {
7377 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7378 ri->channels = rtrack->usrbuf.fmt.channels;
7379 ri->precision = rtrack->usrbuf.fmt.precision;
7380 ri->encoding = rtrack->usrbuf.fmt.encoding;
7381 ri->pause = rtrack->is_pause;
7382 } else {
7383 /* Use sticky parameters if the track is not available. */
7384 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7385 ri->channels = sc->sc_sound_rparams.channels;
7386 ri->precision = sc->sc_sound_rparams.precision;
7387 ri->encoding = sc->sc_sound_rparams.encoding;
7388 ri->pause = sc->sc_sound_rpause;
7389 }
7390
7391 if (ptrack) {
7392 pi->seek = ptrack->usrbuf.used;
7393 pi->samples = ptrack->usrbuf_stamp;
7394 pi->eof = ptrack->eofcounter;
7395 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7396 pi->open = 1;
7397 pi->buffer_size = ptrack->usrbuf.capacity;
7398 }
7399 pi->waiting = 0; /* open never hangs */
7400 pi->active = sc->sc_pbusy;
7401
7402 if (rtrack) {
7403 ri->seek = rtrack->usrbuf.used;
7404 ri->samples = rtrack->usrbuf_stamp;
7405 ri->eof = 0;
7406 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7407 ri->open = 1;
7408 ri->buffer_size = rtrack->usrbuf.capacity;
7409 }
7410 ri->waiting = 0; /* open never hangs */
7411 ri->active = sc->sc_rbusy;
7412
7413 /*
7414 * XXX There may be different number of channels between playback
7415 * and recording, so that blocksize also may be different.
7416 * But struct audio_info has an united blocksize...
7417 * Here, I use play info precedencely if ptrack is available,
7418 * otherwise record info.
7419 *
7420 * XXX hiwat/lowat is a playback-only parameter. What should I
7421 * return for a record-only descriptor?
7422 */
7423 track = ptrack ? ptrack : rtrack;
7424 if (track) {
7425 ai->blocksize = track->usrbuf_blksize;
7426 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7427 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7428 }
7429 ai->mode = file->mode;
7430
7431 /*
7432 * For backward compatibility, we have to pad these five fields
7433 * a fake non-zero value even if there are no tracks.
7434 */
7435 if (ptrack == NULL)
7436 pi->buffer_size = 65536;
7437 if (rtrack == NULL)
7438 ri->buffer_size = 65536;
7439 if (ptrack == NULL && rtrack == NULL) {
7440 ai->blocksize = 2048;
7441 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7442 ai->lowat = ai->hiwat * 3 / 4;
7443 }
7444
7445 if (need_mixerinfo) {
7446 mutex_enter(sc->sc_lock);
7447
7448 pi->port = au_get_port(sc, &sc->sc_outports);
7449 ri->port = au_get_port(sc, &sc->sc_inports);
7450
7451 pi->avail_ports = sc->sc_outports.allports;
7452 ri->avail_ports = sc->sc_inports.allports;
7453
7454 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7455 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7456
7457 if (sc->sc_monitor_port != -1) {
7458 gain = au_get_monitor_gain(sc);
7459 if (gain != -1)
7460 ai->monitor_gain = gain;
7461 }
7462 mutex_exit(sc->sc_lock);
7463 }
7464
7465 return 0;
7466 }
7467
7468 /*
7469 * Return true if playback is configured.
7470 * This function can be used after audioattach.
7471 */
7472 static bool
7473 audio_can_playback(struct audio_softc *sc)
7474 {
7475
7476 return (sc->sc_pmixer != NULL);
7477 }
7478
7479 /*
7480 * Return true if recording is configured.
7481 * This function can be used after audioattach.
7482 */
7483 static bool
7484 audio_can_capture(struct audio_softc *sc)
7485 {
7486
7487 return (sc->sc_rmixer != NULL);
7488 }
7489
7490 /*
7491 * Get the afp->index'th item from the valid one of format[].
7492 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7493 *
7494 * This is common routines for query_format.
7495 * If your hardware driver has struct audio_format[], the simplest case
7496 * you can write your query_format interface as follows:
7497 *
7498 * struct audio_format foo_format[] = { ... };
7499 *
7500 * int
7501 * foo_query_format(void *hdl, audio_format_query_t *afp)
7502 * {
7503 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7504 * }
7505 */
7506 int
7507 audio_query_format(const struct audio_format *format, int nformats,
7508 audio_format_query_t *afp)
7509 {
7510 const struct audio_format *f;
7511 int idx;
7512 int i;
7513
7514 idx = 0;
7515 for (i = 0; i < nformats; i++) {
7516 f = &format[i];
7517 if (!AUFMT_IS_VALID(f))
7518 continue;
7519 if (afp->index == idx) {
7520 afp->fmt = *f;
7521 return 0;
7522 }
7523 idx++;
7524 }
7525 return EINVAL;
7526 }
7527
7528 /*
7529 * This function is provided for the hardware driver's set_format() to
7530 * find index matches with 'param' from array of audio_format_t 'formats'.
7531 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7532 * It returns the matched index and never fails. Because param passed to
7533 * set_format() is selected from query_format().
7534 * This function will be an alternative to auconv_set_converter() to
7535 * find index.
7536 */
7537 int
7538 audio_indexof_format(const struct audio_format *formats, int nformats,
7539 int mode, const audio_params_t *param)
7540 {
7541 const struct audio_format *f;
7542 int index;
7543 int j;
7544
7545 for (index = 0; index < nformats; index++) {
7546 f = &formats[index];
7547
7548 if (!AUFMT_IS_VALID(f))
7549 continue;
7550 if ((f->mode & mode) == 0)
7551 continue;
7552 if (f->encoding != param->encoding)
7553 continue;
7554 if (f->validbits != param->precision)
7555 continue;
7556 if (f->channels != param->channels)
7557 continue;
7558
7559 if (f->frequency_type == 0) {
7560 if (param->sample_rate < f->frequency[0] ||
7561 param->sample_rate > f->frequency[1])
7562 continue;
7563 } else {
7564 for (j = 0; j < f->frequency_type; j++) {
7565 if (param->sample_rate == f->frequency[j])
7566 break;
7567 }
7568 if (j == f->frequency_type)
7569 continue;
7570 }
7571
7572 /* Then, matched */
7573 return index;
7574 }
7575
7576 /* Not matched. This should not be happened. */
7577 panic("%s: cannot find matched format\n", __func__);
7578 }
7579
7580 /*
7581 * Get or set hardware blocksize in msec.
7582 * XXX It's for debug.
7583 */
7584 static int
7585 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7586 {
7587 struct sysctlnode node;
7588 struct audio_softc *sc;
7589 audio_format2_t phwfmt;
7590 audio_format2_t rhwfmt;
7591 audio_filter_reg_t pfil;
7592 audio_filter_reg_t rfil;
7593 int t;
7594 int old_blk_ms;
7595 int mode;
7596 int error;
7597
7598 node = *rnode;
7599 sc = node.sysctl_data;
7600
7601 error = audio_exlock_enter(sc);
7602 if (error)
7603 return error;
7604
7605 old_blk_ms = sc->sc_blk_ms;
7606 t = old_blk_ms;
7607 node.sysctl_data = &t;
7608 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7609 if (error || newp == NULL)
7610 goto abort;
7611
7612 if (t < 0) {
7613 error = EINVAL;
7614 goto abort;
7615 }
7616
7617 if (sc->sc_popens + sc->sc_ropens > 0) {
7618 error = EBUSY;
7619 goto abort;
7620 }
7621 sc->sc_blk_ms = t;
7622 mode = 0;
7623 if (sc->sc_pmixer) {
7624 mode |= AUMODE_PLAY;
7625 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7626 }
7627 if (sc->sc_rmixer) {
7628 mode |= AUMODE_RECORD;
7629 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7630 }
7631
7632 /* re-init hardware */
7633 memset(&pfil, 0, sizeof(pfil));
7634 memset(&rfil, 0, sizeof(rfil));
7635 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7636 if (error) {
7637 goto abort;
7638 }
7639
7640 /* re-init track mixer */
7641 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7642 if (error) {
7643 /* Rollback */
7644 sc->sc_blk_ms = old_blk_ms;
7645 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7646 goto abort;
7647 }
7648 error = 0;
7649 abort:
7650 audio_exlock_exit(sc);
7651 return error;
7652 }
7653
7654 /*
7655 * Get or set multiuser mode.
7656 */
7657 static int
7658 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7659 {
7660 struct sysctlnode node;
7661 struct audio_softc *sc;
7662 bool t;
7663 int error;
7664
7665 node = *rnode;
7666 sc = node.sysctl_data;
7667
7668 error = audio_exlock_enter(sc);
7669 if (error)
7670 return error;
7671
7672 t = sc->sc_multiuser;
7673 node.sysctl_data = &t;
7674 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7675 if (error || newp == NULL)
7676 goto abort;
7677
7678 sc->sc_multiuser = t;
7679 error = 0;
7680 abort:
7681 audio_exlock_exit(sc);
7682 return error;
7683 }
7684
7685 #if defined(AUDIO_DEBUG)
7686 /*
7687 * Get or set debug verbose level. (0..4)
7688 * XXX It's for debug.
7689 * XXX It is not separated per device.
7690 */
7691 static int
7692 audio_sysctl_debug(SYSCTLFN_ARGS)
7693 {
7694 struct sysctlnode node;
7695 int t;
7696 int error;
7697
7698 node = *rnode;
7699 t = audiodebug;
7700 node.sysctl_data = &t;
7701 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7702 if (error || newp == NULL)
7703 return error;
7704
7705 if (t < 0 || t > 4)
7706 return EINVAL;
7707 audiodebug = t;
7708 printf("audio: audiodebug = %d\n", audiodebug);
7709 return 0;
7710 }
7711 #endif /* AUDIO_DEBUG */
7712
7713 #ifdef AUDIO_PM_IDLE
7714 static void
7715 audio_idle(void *arg)
7716 {
7717 device_t dv = arg;
7718 struct audio_softc *sc = device_private(dv);
7719
7720 #ifdef PNP_DEBUG
7721 extern int pnp_debug_idle;
7722 if (pnp_debug_idle)
7723 printf("%s: idle handler called\n", device_xname(dv));
7724 #endif
7725
7726 sc->sc_idle = true;
7727
7728 /* XXX joerg Make pmf_device_suspend handle children? */
7729 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7730 return;
7731
7732 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7733 pmf_device_resume(dv, PMF_Q_SELF);
7734 }
7735
7736 static void
7737 audio_activity(device_t dv, devactive_t type)
7738 {
7739 struct audio_softc *sc = device_private(dv);
7740
7741 if (type != DVA_SYSTEM)
7742 return;
7743
7744 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7745
7746 sc->sc_idle = false;
7747 if (!device_is_active(dv)) {
7748 /* XXX joerg How to deal with a failing resume... */
7749 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7750 pmf_device_resume(dv, PMF_Q_SELF);
7751 }
7752 }
7753 #endif
7754
7755 static bool
7756 audio_suspend(device_t dv, const pmf_qual_t *qual)
7757 {
7758 struct audio_softc *sc = device_private(dv);
7759 int error;
7760
7761 error = audio_exlock_mutex_enter(sc);
7762 if (error)
7763 return error;
7764 sc->sc_suspending = true;
7765 audio_mixer_capture(sc);
7766
7767 if (sc->sc_pbusy) {
7768 audio_pmixer_halt(sc);
7769 /* Reuse this as need-to-restart flag while suspending */
7770 sc->sc_pbusy = true;
7771 }
7772 if (sc->sc_rbusy) {
7773 audio_rmixer_halt(sc);
7774 /* Reuse this as need-to-restart flag while suspending */
7775 sc->sc_rbusy = true;
7776 }
7777
7778 #ifdef AUDIO_PM_IDLE
7779 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7780 #endif
7781 audio_exlock_mutex_exit(sc);
7782
7783 return true;
7784 }
7785
7786 static bool
7787 audio_resume(device_t dv, const pmf_qual_t *qual)
7788 {
7789 struct audio_softc *sc = device_private(dv);
7790 struct audio_info ai;
7791 int error;
7792
7793 error = audio_exlock_mutex_enter(sc);
7794 if (error)
7795 return error;
7796
7797 sc->sc_suspending = false;
7798 audio_mixer_restore(sc);
7799 /* XXX ? */
7800 AUDIO_INITINFO(&ai);
7801 audio_hw_setinfo(sc, &ai, NULL);
7802
7803 /*
7804 * During from suspend to resume here, sc_[pr]busy is used as
7805 * need-to-restart flag temporarily. After this point,
7806 * sc_[pr]busy is returned to its original usage (busy flag).
7807 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
7808 */
7809 if (sc->sc_pbusy) {
7810 /* pmixer_start() requires pbusy is false */
7811 sc->sc_pbusy = false;
7812 audio_pmixer_start(sc, true);
7813 }
7814 if (sc->sc_rbusy) {
7815 /* rmixer_start() requires rbusy is false */
7816 sc->sc_rbusy = false;
7817 audio_rmixer_start(sc);
7818 }
7819
7820 audio_exlock_mutex_exit(sc);
7821
7822 return true;
7823 }
7824
7825 #if defined(AUDIO_DEBUG)
7826 static void
7827 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7828 {
7829 int n;
7830
7831 n = 0;
7832 n += snprintf(buf + n, bufsize - n, "%s",
7833 audio_encoding_name(fmt->encoding));
7834 if (fmt->precision == fmt->stride) {
7835 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7836 } else {
7837 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7838 fmt->precision, fmt->stride);
7839 }
7840
7841 snprintf(buf + n, bufsize - n, " %uch %uHz",
7842 fmt->channels, fmt->sample_rate);
7843 }
7844 #endif
7845
7846 #if defined(AUDIO_DEBUG)
7847 static void
7848 audio_print_format2(const char *s, const audio_format2_t *fmt)
7849 {
7850 char fmtstr[64];
7851
7852 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7853 printf("%s %s\n", s, fmtstr);
7854 }
7855 #endif
7856
7857 #ifdef DIAGNOSTIC
7858 void
7859 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7860 {
7861
7862 KASSERTMSG(fmt, "called from %s", where);
7863
7864 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7865 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7866 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7867 "called from %s: fmt->stride=%d", where, fmt->stride);
7868 } else {
7869 KASSERTMSG(fmt->stride % NBBY == 0,
7870 "called from %s: fmt->stride=%d", where, fmt->stride);
7871 }
7872 KASSERTMSG(fmt->precision <= fmt->stride,
7873 "called from %s: fmt->precision=%d fmt->stride=%d",
7874 where, fmt->precision, fmt->stride);
7875 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7876 "called from %s: fmt->channels=%d", where, fmt->channels);
7877
7878 /* XXX No check for encodings? */
7879 }
7880
7881 void
7882 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7883 {
7884
7885 KASSERT(arg != NULL);
7886 KASSERT(arg->src != NULL);
7887 KASSERT(arg->dst != NULL);
7888 audio_diagnostic_format2(where, arg->srcfmt);
7889 audio_diagnostic_format2(where, arg->dstfmt);
7890 KASSERT(arg->count > 0);
7891 }
7892
7893 void
7894 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7895 {
7896
7897 KASSERTMSG(ring, "called from %s", where);
7898 audio_diagnostic_format2(where, &ring->fmt);
7899 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7900 "called from %s: ring->capacity=%d", where, ring->capacity);
7901 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7902 "called from %s: ring->used=%d ring->capacity=%d",
7903 where, ring->used, ring->capacity);
7904 if (ring->capacity == 0) {
7905 KASSERTMSG(ring->mem == NULL,
7906 "called from %s: capacity == 0 but mem != NULL", where);
7907 } else {
7908 KASSERTMSG(ring->mem != NULL,
7909 "called from %s: capacity != 0 but mem == NULL", where);
7910 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7911 "called from %s: ring->head=%d ring->capacity=%d",
7912 where, ring->head, ring->capacity);
7913 }
7914 }
7915 #endif /* DIAGNOSTIC */
7916
7917
7918 /*
7919 * Mixer driver
7920 */
7921
7922 /*
7923 * Must be called without sc_lock held.
7924 */
7925 int
7926 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7927 struct lwp *l)
7928 {
7929 struct file *fp;
7930 audio_file_t *af;
7931 int error, fd;
7932
7933 TRACE(1, "flags=0x%x", flags);
7934
7935 error = fd_allocfile(&fp, &fd);
7936 if (error)
7937 return error;
7938
7939 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7940 af->sc = sc;
7941 af->dev = dev;
7942
7943 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7944 KASSERT(error == EMOVEFD);
7945
7946 return error;
7947 }
7948
7949 /*
7950 * Add a process to those to be signalled on mixer activity.
7951 * If the process has already been added, do nothing.
7952 * Must be called with sc_exlock held and without sc_lock held.
7953 */
7954 static void
7955 mixer_async_add(struct audio_softc *sc, pid_t pid)
7956 {
7957 int i;
7958
7959 KASSERT(sc->sc_exlock);
7960
7961 /* If already exists, returns without doing anything. */
7962 for (i = 0; i < sc->sc_am_used; i++) {
7963 if (sc->sc_am[i] == pid)
7964 return;
7965 }
7966
7967 /* Extend array if necessary. */
7968 if (sc->sc_am_used >= sc->sc_am_capacity) {
7969 sc->sc_am_capacity += AM_CAPACITY;
7970 sc->sc_am = kern_realloc(sc->sc_am,
7971 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
7972 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
7973 }
7974
7975 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
7976 sc->sc_am[sc->sc_am_used++] = pid;
7977 }
7978
7979 /*
7980 * Remove a process from those to be signalled on mixer activity.
7981 * If the process has not been added, do nothing.
7982 * Must be called with sc_exlock held and without sc_lock held.
7983 */
7984 static void
7985 mixer_async_remove(struct audio_softc *sc, pid_t pid)
7986 {
7987 int i;
7988
7989 KASSERT(sc->sc_exlock);
7990
7991 for (i = 0; i < sc->sc_am_used; i++) {
7992 if (sc->sc_am[i] == pid) {
7993 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
7994 TRACE(2, "am[%d](%d) removed, used=%d",
7995 i, (int)pid, sc->sc_am_used);
7996
7997 /* Empty array if no longer necessary. */
7998 if (sc->sc_am_used == 0) {
7999 kern_free(sc->sc_am);
8000 sc->sc_am = NULL;
8001 sc->sc_am_capacity = 0;
8002 TRACE(2, "released");
8003 }
8004 return;
8005 }
8006 }
8007 }
8008
8009 /*
8010 * Signal all processes waiting for the mixer.
8011 * Must be called with sc_exlock held.
8012 */
8013 static void
8014 mixer_signal(struct audio_softc *sc)
8015 {
8016 proc_t *p;
8017 int i;
8018
8019 KASSERT(sc->sc_exlock);
8020
8021 for (i = 0; i < sc->sc_am_used; i++) {
8022 mutex_enter(&proc_lock);
8023 p = proc_find(sc->sc_am[i]);
8024 if (p)
8025 psignal(p, SIGIO);
8026 mutex_exit(&proc_lock);
8027 }
8028 }
8029
8030 /*
8031 * Close a mixer device
8032 */
8033 int
8034 mixer_close(struct audio_softc *sc, audio_file_t *file)
8035 {
8036 int error;
8037
8038 error = audio_exlock_enter(sc);
8039 if (error)
8040 return error;
8041 TRACE(1, "");
8042 mixer_async_remove(sc, curproc->p_pid);
8043 audio_exlock_exit(sc);
8044
8045 return 0;
8046 }
8047
8048 /*
8049 * Must be called without sc_lock nor sc_exlock held.
8050 */
8051 int
8052 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8053 struct lwp *l)
8054 {
8055 mixer_devinfo_t *mi;
8056 mixer_ctrl_t *mc;
8057 int error;
8058
8059 TRACE(2, "(%lu,'%c',%lu)",
8060 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8061 error = EINVAL;
8062
8063 /* we can return cached values if we are sleeping */
8064 if (cmd != AUDIO_MIXER_READ) {
8065 mutex_enter(sc->sc_lock);
8066 device_active(sc->sc_dev, DVA_SYSTEM);
8067 mutex_exit(sc->sc_lock);
8068 }
8069
8070 switch (cmd) {
8071 case FIOASYNC:
8072 error = audio_exlock_enter(sc);
8073 if (error)
8074 break;
8075 if (*(int *)addr) {
8076 mixer_async_add(sc, curproc->p_pid);
8077 } else {
8078 mixer_async_remove(sc, curproc->p_pid);
8079 }
8080 audio_exlock_exit(sc);
8081 break;
8082
8083 case AUDIO_GETDEV:
8084 TRACE(2, "AUDIO_GETDEV");
8085 mutex_enter(sc->sc_lock);
8086 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8087 mutex_exit(sc->sc_lock);
8088 break;
8089
8090 case AUDIO_MIXER_DEVINFO:
8091 TRACE(2, "AUDIO_MIXER_DEVINFO");
8092 mi = (mixer_devinfo_t *)addr;
8093
8094 mi->un.v.delta = 0; /* default */
8095 mutex_enter(sc->sc_lock);
8096 error = audio_query_devinfo(sc, mi);
8097 mutex_exit(sc->sc_lock);
8098 break;
8099
8100 case AUDIO_MIXER_READ:
8101 TRACE(2, "AUDIO_MIXER_READ");
8102 mc = (mixer_ctrl_t *)addr;
8103
8104 error = audio_exlock_mutex_enter(sc);
8105 if (error)
8106 break;
8107 if (device_is_active(sc->hw_dev))
8108 error = audio_get_port(sc, mc);
8109 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8110 error = ENXIO;
8111 else {
8112 int dev = mc->dev;
8113 memcpy(mc, &sc->sc_mixer_state[dev],
8114 sizeof(mixer_ctrl_t));
8115 error = 0;
8116 }
8117 audio_exlock_mutex_exit(sc);
8118 break;
8119
8120 case AUDIO_MIXER_WRITE:
8121 TRACE(2, "AUDIO_MIXER_WRITE");
8122 error = audio_exlock_mutex_enter(sc);
8123 if (error)
8124 break;
8125 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8126 if (error) {
8127 audio_exlock_mutex_exit(sc);
8128 break;
8129 }
8130
8131 if (sc->hw_if->commit_settings) {
8132 error = sc->hw_if->commit_settings(sc->hw_hdl);
8133 if (error) {
8134 audio_exlock_mutex_exit(sc);
8135 break;
8136 }
8137 }
8138 mutex_exit(sc->sc_lock);
8139 mixer_signal(sc);
8140 audio_exlock_exit(sc);
8141 break;
8142
8143 default:
8144 if (sc->hw_if->dev_ioctl) {
8145 mutex_enter(sc->sc_lock);
8146 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8147 cmd, addr, flag, l);
8148 mutex_exit(sc->sc_lock);
8149 } else
8150 error = EINVAL;
8151 break;
8152 }
8153 TRACE(2, "(%lu,'%c',%lu) result %d",
8154 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8155 return error;
8156 }
8157
8158 /*
8159 * Must be called with sc_lock held.
8160 */
8161 int
8162 au_portof(struct audio_softc *sc, char *name, int class)
8163 {
8164 mixer_devinfo_t mi;
8165
8166 KASSERT(mutex_owned(sc->sc_lock));
8167
8168 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8169 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8170 return mi.index;
8171 }
8172 return -1;
8173 }
8174
8175 /*
8176 * Must be called with sc_lock held.
8177 */
8178 void
8179 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8180 mixer_devinfo_t *mi, const struct portname *tbl)
8181 {
8182 int i, j;
8183
8184 KASSERT(mutex_owned(sc->sc_lock));
8185
8186 ports->index = mi->index;
8187 if (mi->type == AUDIO_MIXER_ENUM) {
8188 ports->isenum = true;
8189 for(i = 0; tbl[i].name; i++)
8190 for(j = 0; j < mi->un.e.num_mem; j++)
8191 if (strcmp(mi->un.e.member[j].label.name,
8192 tbl[i].name) == 0) {
8193 ports->allports |= tbl[i].mask;
8194 ports->aumask[ports->nports] = tbl[i].mask;
8195 ports->misel[ports->nports] =
8196 mi->un.e.member[j].ord;
8197 ports->miport[ports->nports] =
8198 au_portof(sc, mi->un.e.member[j].label.name,
8199 mi->mixer_class);
8200 if (ports->mixerout != -1 &&
8201 ports->miport[ports->nports] != -1)
8202 ports->isdual = true;
8203 ++ports->nports;
8204 }
8205 } else if (mi->type == AUDIO_MIXER_SET) {
8206 for(i = 0; tbl[i].name; i++)
8207 for(j = 0; j < mi->un.s.num_mem; j++)
8208 if (strcmp(mi->un.s.member[j].label.name,
8209 tbl[i].name) == 0) {
8210 ports->allports |= tbl[i].mask;
8211 ports->aumask[ports->nports] = tbl[i].mask;
8212 ports->misel[ports->nports] =
8213 mi->un.s.member[j].mask;
8214 ports->miport[ports->nports] =
8215 au_portof(sc, mi->un.s.member[j].label.name,
8216 mi->mixer_class);
8217 ++ports->nports;
8218 }
8219 }
8220 }
8221
8222 /*
8223 * Must be called with sc_lock && sc_exlock held.
8224 */
8225 int
8226 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8227 {
8228
8229 KASSERT(mutex_owned(sc->sc_lock));
8230 KASSERT(sc->sc_exlock);
8231
8232 ct->type = AUDIO_MIXER_VALUE;
8233 ct->un.value.num_channels = 2;
8234 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8235 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8236 if (audio_set_port(sc, ct) == 0)
8237 return 0;
8238 ct->un.value.num_channels = 1;
8239 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8240 return audio_set_port(sc, ct);
8241 }
8242
8243 /*
8244 * Must be called with sc_lock && sc_exlock held.
8245 */
8246 int
8247 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8248 {
8249 int error;
8250
8251 KASSERT(mutex_owned(sc->sc_lock));
8252 KASSERT(sc->sc_exlock);
8253
8254 ct->un.value.num_channels = 2;
8255 if (audio_get_port(sc, ct) == 0) {
8256 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8257 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8258 } else {
8259 ct->un.value.num_channels = 1;
8260 error = audio_get_port(sc, ct);
8261 if (error)
8262 return error;
8263 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8264 }
8265 return 0;
8266 }
8267
8268 /*
8269 * Must be called with sc_lock && sc_exlock held.
8270 */
8271 int
8272 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8273 int gain, int balance)
8274 {
8275 mixer_ctrl_t ct;
8276 int i, error;
8277 int l, r;
8278 u_int mask;
8279 int nset;
8280
8281 KASSERT(mutex_owned(sc->sc_lock));
8282 KASSERT(sc->sc_exlock);
8283
8284 if (balance == AUDIO_MID_BALANCE) {
8285 l = r = gain;
8286 } else if (balance < AUDIO_MID_BALANCE) {
8287 l = gain;
8288 r = (balance * gain) / AUDIO_MID_BALANCE;
8289 } else {
8290 r = gain;
8291 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8292 / AUDIO_MID_BALANCE;
8293 }
8294 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8295
8296 if (ports->index == -1) {
8297 usemaster:
8298 if (ports->master == -1)
8299 return 0; /* just ignore it silently */
8300 ct.dev = ports->master;
8301 error = au_set_lr_value(sc, &ct, l, r);
8302 } else {
8303 ct.dev = ports->index;
8304 if (ports->isenum) {
8305 ct.type = AUDIO_MIXER_ENUM;
8306 error = audio_get_port(sc, &ct);
8307 if (error)
8308 return error;
8309 if (ports->isdual) {
8310 if (ports->cur_port == -1)
8311 ct.dev = ports->master;
8312 else
8313 ct.dev = ports->miport[ports->cur_port];
8314 error = au_set_lr_value(sc, &ct, l, r);
8315 } else {
8316 for(i = 0; i < ports->nports; i++)
8317 if (ports->misel[i] == ct.un.ord) {
8318 ct.dev = ports->miport[i];
8319 if (ct.dev == -1 ||
8320 au_set_lr_value(sc, &ct, l, r))
8321 goto usemaster;
8322 else
8323 break;
8324 }
8325 }
8326 } else {
8327 ct.type = AUDIO_MIXER_SET;
8328 error = audio_get_port(sc, &ct);
8329 if (error)
8330 return error;
8331 mask = ct.un.mask;
8332 nset = 0;
8333 for(i = 0; i < ports->nports; i++) {
8334 if (ports->misel[i] & mask) {
8335 ct.dev = ports->miport[i];
8336 if (ct.dev != -1 &&
8337 au_set_lr_value(sc, &ct, l, r) == 0)
8338 nset++;
8339 }
8340 }
8341 if (nset == 0)
8342 goto usemaster;
8343 }
8344 }
8345 if (!error)
8346 mixer_signal(sc);
8347 return error;
8348 }
8349
8350 /*
8351 * Must be called with sc_lock && sc_exlock held.
8352 */
8353 void
8354 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8355 u_int *pgain, u_char *pbalance)
8356 {
8357 mixer_ctrl_t ct;
8358 int i, l, r, n;
8359 int lgain, rgain;
8360
8361 KASSERT(mutex_owned(sc->sc_lock));
8362 KASSERT(sc->sc_exlock);
8363
8364 lgain = AUDIO_MAX_GAIN / 2;
8365 rgain = AUDIO_MAX_GAIN / 2;
8366 if (ports->index == -1) {
8367 usemaster:
8368 if (ports->master == -1)
8369 goto bad;
8370 ct.dev = ports->master;
8371 ct.type = AUDIO_MIXER_VALUE;
8372 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8373 goto bad;
8374 } else {
8375 ct.dev = ports->index;
8376 if (ports->isenum) {
8377 ct.type = AUDIO_MIXER_ENUM;
8378 if (audio_get_port(sc, &ct))
8379 goto bad;
8380 ct.type = AUDIO_MIXER_VALUE;
8381 if (ports->isdual) {
8382 if (ports->cur_port == -1)
8383 ct.dev = ports->master;
8384 else
8385 ct.dev = ports->miport[ports->cur_port];
8386 au_get_lr_value(sc, &ct, &lgain, &rgain);
8387 } else {
8388 for(i = 0; i < ports->nports; i++)
8389 if (ports->misel[i] == ct.un.ord) {
8390 ct.dev = ports->miport[i];
8391 if (ct.dev == -1 ||
8392 au_get_lr_value(sc, &ct,
8393 &lgain, &rgain))
8394 goto usemaster;
8395 else
8396 break;
8397 }
8398 }
8399 } else {
8400 ct.type = AUDIO_MIXER_SET;
8401 if (audio_get_port(sc, &ct))
8402 goto bad;
8403 ct.type = AUDIO_MIXER_VALUE;
8404 lgain = rgain = n = 0;
8405 for(i = 0; i < ports->nports; i++) {
8406 if (ports->misel[i] & ct.un.mask) {
8407 ct.dev = ports->miport[i];
8408 if (ct.dev == -1 ||
8409 au_get_lr_value(sc, &ct, &l, &r))
8410 goto usemaster;
8411 else {
8412 lgain += l;
8413 rgain += r;
8414 n++;
8415 }
8416 }
8417 }
8418 if (n != 0) {
8419 lgain /= n;
8420 rgain /= n;
8421 }
8422 }
8423 }
8424 bad:
8425 if (lgain == rgain) { /* handles lgain==rgain==0 */
8426 *pgain = lgain;
8427 *pbalance = AUDIO_MID_BALANCE;
8428 } else if (lgain < rgain) {
8429 *pgain = rgain;
8430 /* balance should be > AUDIO_MID_BALANCE */
8431 *pbalance = AUDIO_RIGHT_BALANCE -
8432 (AUDIO_MID_BALANCE * lgain) / rgain;
8433 } else /* lgain > rgain */ {
8434 *pgain = lgain;
8435 /* balance should be < AUDIO_MID_BALANCE */
8436 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8437 }
8438 }
8439
8440 /*
8441 * Must be called with sc_lock && sc_exlock held.
8442 */
8443 int
8444 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8445 {
8446 mixer_ctrl_t ct;
8447 int i, error, use_mixerout;
8448
8449 KASSERT(mutex_owned(sc->sc_lock));
8450 KASSERT(sc->sc_exlock);
8451
8452 use_mixerout = 1;
8453 if (port == 0) {
8454 if (ports->allports == 0)
8455 return 0; /* Allow this special case. */
8456 else if (ports->isdual) {
8457 if (ports->cur_port == -1) {
8458 return 0;
8459 } else {
8460 port = ports->aumask[ports->cur_port];
8461 ports->cur_port = -1;
8462 use_mixerout = 0;
8463 }
8464 }
8465 }
8466 if (ports->index == -1)
8467 return EINVAL;
8468 ct.dev = ports->index;
8469 if (ports->isenum) {
8470 if (port & (port-1))
8471 return EINVAL; /* Only one port allowed */
8472 ct.type = AUDIO_MIXER_ENUM;
8473 error = EINVAL;
8474 for(i = 0; i < ports->nports; i++)
8475 if (ports->aumask[i] == port) {
8476 if (ports->isdual && use_mixerout) {
8477 ct.un.ord = ports->mixerout;
8478 ports->cur_port = i;
8479 } else {
8480 ct.un.ord = ports->misel[i];
8481 }
8482 error = audio_set_port(sc, &ct);
8483 break;
8484 }
8485 } else {
8486 ct.type = AUDIO_MIXER_SET;
8487 ct.un.mask = 0;
8488 for(i = 0; i < ports->nports; i++)
8489 if (ports->aumask[i] & port)
8490 ct.un.mask |= ports->misel[i];
8491 if (port != 0 && ct.un.mask == 0)
8492 error = EINVAL;
8493 else
8494 error = audio_set_port(sc, &ct);
8495 }
8496 if (!error)
8497 mixer_signal(sc);
8498 return error;
8499 }
8500
8501 /*
8502 * Must be called with sc_lock && sc_exlock held.
8503 */
8504 int
8505 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8506 {
8507 mixer_ctrl_t ct;
8508 int i, aumask;
8509
8510 KASSERT(mutex_owned(sc->sc_lock));
8511 KASSERT(sc->sc_exlock);
8512
8513 if (ports->index == -1)
8514 return 0;
8515 ct.dev = ports->index;
8516 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8517 if (audio_get_port(sc, &ct))
8518 return 0;
8519 aumask = 0;
8520 if (ports->isenum) {
8521 if (ports->isdual && ports->cur_port != -1) {
8522 if (ports->mixerout == ct.un.ord)
8523 aumask = ports->aumask[ports->cur_port];
8524 else
8525 ports->cur_port = -1;
8526 }
8527 if (aumask == 0)
8528 for(i = 0; i < ports->nports; i++)
8529 if (ports->misel[i] == ct.un.ord)
8530 aumask = ports->aumask[i];
8531 } else {
8532 for(i = 0; i < ports->nports; i++)
8533 if (ct.un.mask & ports->misel[i])
8534 aumask |= ports->aumask[i];
8535 }
8536 return aumask;
8537 }
8538
8539 /*
8540 * It returns 0 if success, otherwise errno.
8541 * Must be called only if sc->sc_monitor_port != -1.
8542 * Must be called with sc_lock && sc_exlock held.
8543 */
8544 static int
8545 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8546 {
8547 mixer_ctrl_t ct;
8548
8549 KASSERT(mutex_owned(sc->sc_lock));
8550 KASSERT(sc->sc_exlock);
8551
8552 ct.dev = sc->sc_monitor_port;
8553 ct.type = AUDIO_MIXER_VALUE;
8554 ct.un.value.num_channels = 1;
8555 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8556 return audio_set_port(sc, &ct);
8557 }
8558
8559 /*
8560 * It returns monitor gain if success, otherwise -1.
8561 * Must be called only if sc->sc_monitor_port != -1.
8562 * Must be called with sc_lock && sc_exlock held.
8563 */
8564 static int
8565 au_get_monitor_gain(struct audio_softc *sc)
8566 {
8567 mixer_ctrl_t ct;
8568
8569 KASSERT(mutex_owned(sc->sc_lock));
8570 KASSERT(sc->sc_exlock);
8571
8572 ct.dev = sc->sc_monitor_port;
8573 ct.type = AUDIO_MIXER_VALUE;
8574 ct.un.value.num_channels = 1;
8575 if (audio_get_port(sc, &ct))
8576 return -1;
8577 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8578 }
8579
8580 /*
8581 * Must be called with sc_lock && sc_exlock held.
8582 */
8583 static int
8584 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8585 {
8586
8587 KASSERT(mutex_owned(sc->sc_lock));
8588 KASSERT(sc->sc_exlock);
8589
8590 return sc->hw_if->set_port(sc->hw_hdl, mc);
8591 }
8592
8593 /*
8594 * Must be called with sc_lock && sc_exlock held.
8595 */
8596 static int
8597 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8598 {
8599
8600 KASSERT(mutex_owned(sc->sc_lock));
8601 KASSERT(sc->sc_exlock);
8602
8603 return sc->hw_if->get_port(sc->hw_hdl, mc);
8604 }
8605
8606 /*
8607 * Must be called with sc_lock && sc_exlock held.
8608 */
8609 static void
8610 audio_mixer_capture(struct audio_softc *sc)
8611 {
8612 mixer_devinfo_t mi;
8613 mixer_ctrl_t *mc;
8614
8615 KASSERT(mutex_owned(sc->sc_lock));
8616 KASSERT(sc->sc_exlock);
8617
8618 for (mi.index = 0;; mi.index++) {
8619 if (audio_query_devinfo(sc, &mi) != 0)
8620 break;
8621 KASSERT(mi.index < sc->sc_nmixer_states);
8622 if (mi.type == AUDIO_MIXER_CLASS)
8623 continue;
8624 mc = &sc->sc_mixer_state[mi.index];
8625 mc->dev = mi.index;
8626 mc->type = mi.type;
8627 mc->un.value.num_channels = mi.un.v.num_channels;
8628 (void)audio_get_port(sc, mc);
8629 }
8630
8631 return;
8632 }
8633
8634 /*
8635 * Must be called with sc_lock && sc_exlock held.
8636 */
8637 static void
8638 audio_mixer_restore(struct audio_softc *sc)
8639 {
8640 mixer_devinfo_t mi;
8641 mixer_ctrl_t *mc;
8642
8643 KASSERT(mutex_owned(sc->sc_lock));
8644 KASSERT(sc->sc_exlock);
8645
8646 for (mi.index = 0; ; mi.index++) {
8647 if (audio_query_devinfo(sc, &mi) != 0)
8648 break;
8649 if (mi.type == AUDIO_MIXER_CLASS)
8650 continue;
8651 mc = &sc->sc_mixer_state[mi.index];
8652 (void)audio_set_port(sc, mc);
8653 }
8654 if (sc->hw_if->commit_settings)
8655 sc->hw_if->commit_settings(sc->hw_hdl);
8656
8657 return;
8658 }
8659
8660 static void
8661 audio_volume_down(device_t dv)
8662 {
8663 struct audio_softc *sc = device_private(dv);
8664 mixer_devinfo_t mi;
8665 int newgain;
8666 u_int gain;
8667 u_char balance;
8668
8669 if (audio_exlock_mutex_enter(sc) != 0)
8670 return;
8671 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8672 mi.index = sc->sc_outports.master;
8673 mi.un.v.delta = 0;
8674 if (audio_query_devinfo(sc, &mi) == 0) {
8675 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8676 newgain = gain - mi.un.v.delta;
8677 if (newgain < AUDIO_MIN_GAIN)
8678 newgain = AUDIO_MIN_GAIN;
8679 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8680 }
8681 }
8682 audio_exlock_mutex_exit(sc);
8683 }
8684
8685 static void
8686 audio_volume_up(device_t dv)
8687 {
8688 struct audio_softc *sc = device_private(dv);
8689 mixer_devinfo_t mi;
8690 u_int gain, newgain;
8691 u_char balance;
8692
8693 if (audio_exlock_mutex_enter(sc) != 0)
8694 return;
8695 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8696 mi.index = sc->sc_outports.master;
8697 mi.un.v.delta = 0;
8698 if (audio_query_devinfo(sc, &mi) == 0) {
8699 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8700 newgain = gain + mi.un.v.delta;
8701 if (newgain > AUDIO_MAX_GAIN)
8702 newgain = AUDIO_MAX_GAIN;
8703 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8704 }
8705 }
8706 audio_exlock_mutex_exit(sc);
8707 }
8708
8709 static void
8710 audio_volume_toggle(device_t dv)
8711 {
8712 struct audio_softc *sc = device_private(dv);
8713 u_int gain, newgain;
8714 u_char balance;
8715
8716 if (audio_exlock_mutex_enter(sc) != 0)
8717 return;
8718 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8719 if (gain != 0) {
8720 sc->sc_lastgain = gain;
8721 newgain = 0;
8722 } else
8723 newgain = sc->sc_lastgain;
8724 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8725 audio_exlock_mutex_exit(sc);
8726 }
8727
8728 /*
8729 * Must be called with sc_lock held.
8730 */
8731 static int
8732 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8733 {
8734
8735 KASSERT(mutex_owned(sc->sc_lock));
8736
8737 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8738 }
8739
8740 #endif /* NAUDIO > 0 */
8741
8742 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8743 #include <sys/param.h>
8744 #include <sys/systm.h>
8745 #include <sys/device.h>
8746 #include <sys/audioio.h>
8747 #include <dev/audio/audio_if.h>
8748 #endif
8749
8750 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8751 int
8752 audioprint(void *aux, const char *pnp)
8753 {
8754 struct audio_attach_args *arg;
8755 const char *type;
8756
8757 if (pnp != NULL) {
8758 arg = aux;
8759 switch (arg->type) {
8760 case AUDIODEV_TYPE_AUDIO:
8761 type = "audio";
8762 break;
8763 case AUDIODEV_TYPE_MIDI:
8764 type = "midi";
8765 break;
8766 case AUDIODEV_TYPE_OPL:
8767 type = "opl";
8768 break;
8769 case AUDIODEV_TYPE_MPU:
8770 type = "mpu";
8771 break;
8772 default:
8773 panic("audioprint: unknown type %d", arg->type);
8774 }
8775 aprint_normal("%s at %s", type, pnp);
8776 }
8777 return UNCONF;
8778 }
8779
8780 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8781
8782 #ifdef _MODULE
8783
8784 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8785
8786 #include "ioconf.c"
8787
8788 #endif
8789
8790 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8791
8792 static int
8793 audio_modcmd(modcmd_t cmd, void *arg)
8794 {
8795 int error = 0;
8796
8797 switch (cmd) {
8798 case MODULE_CMD_INIT:
8799 /* XXX interrupt level? */
8800 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8801 #ifdef _MODULE
8802 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8803 &audio_cdevsw, &audio_cmajor);
8804 if (error)
8805 break;
8806
8807 error = config_init_component(cfdriver_ioconf_audio,
8808 cfattach_ioconf_audio, cfdata_ioconf_audio);
8809 if (error) {
8810 devsw_detach(NULL, &audio_cdevsw);
8811 }
8812 #endif
8813 break;
8814 case MODULE_CMD_FINI:
8815 #ifdef _MODULE
8816 devsw_detach(NULL, &audio_cdevsw);
8817 error = config_fini_component(cfdriver_ioconf_audio,
8818 cfattach_ioconf_audio, cfdata_ioconf_audio);
8819 if (error)
8820 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8821 &audio_cdevsw, &audio_cmajor);
8822 #endif
8823 psref_class_destroy(audio_psref_class);
8824 break;
8825 default:
8826 error = ENOTTY;
8827 break;
8828 }
8829
8830 return error;
8831 }
8832