audio.c revision 1.78 1 /* $NetBSD: audio.c,v 1.78 2020/08/23 04:20:01 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - - Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.78 2020/08/23 04:20:01 isaki Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #include <sys/types.h>
151 #include <sys/param.h>
152 #include <sys/atomic.h>
153 #include <sys/audioio.h>
154 #include <sys/conf.h>
155 #include <sys/cpu.h>
156 #include <sys/device.h>
157 #include <sys/fcntl.h>
158 #include <sys/file.h>
159 #include <sys/filedesc.h>
160 #include <sys/intr.h>
161 #include <sys/ioctl.h>
162 #include <sys/kauth.h>
163 #include <sys/kernel.h>
164 #include <sys/kmem.h>
165 #include <sys/malloc.h>
166 #include <sys/mman.h>
167 #include <sys/module.h>
168 #include <sys/poll.h>
169 #include <sys/proc.h>
170 #include <sys/queue.h>
171 #include <sys/select.h>
172 #include <sys/signalvar.h>
173 #include <sys/stat.h>
174 #include <sys/sysctl.h>
175 #include <sys/systm.h>
176 #include <sys/syslog.h>
177 #include <sys/vnode.h>
178
179 #include <dev/audio/audio_if.h>
180 #include <dev/audio/audiovar.h>
181 #include <dev/audio/audiodef.h>
182 #include <dev/audio/linear.h>
183 #include <dev/audio/mulaw.h>
184
185 #include <machine/endian.h>
186
187 #include <uvm/uvm_extern.h>
188
189 #include "ioconf.h"
190
191 /*
192 * 0: No debug logs
193 * 1: action changes like open/close/set_format...
194 * 2: + normal operations like read/write/ioctl...
195 * 3: + TRACEs except interrupt
196 * 4: + TRACEs including interrupt
197 */
198 //#define AUDIO_DEBUG 1
199
200 #if defined(AUDIO_DEBUG)
201
202 int audiodebug = AUDIO_DEBUG;
203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
204 const char *, va_list);
205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
206 __printflike(3, 4);
207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
208 __printflike(3, 4);
209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
210 __printflike(3, 4);
211
212 /* XXX sloppy memory logger */
213 static void audio_mlog_init(void);
214 static void audio_mlog_free(void);
215 static void audio_mlog_softintr(void *);
216 extern void audio_mlog_flush(void);
217 extern void audio_mlog_printf(const char *, ...);
218
219 static int mlog_refs; /* reference counter */
220 static char *mlog_buf[2]; /* double buffer */
221 static int mlog_buflen; /* buffer length */
222 static int mlog_used; /* used length */
223 static int mlog_full; /* number of dropped lines by buffer full */
224 static int mlog_drop; /* number of dropped lines by busy */
225 static volatile uint32_t mlog_inuse; /* in-use */
226 static int mlog_wpage; /* active page */
227 static void *mlog_sih; /* softint handle */
228
229 static void
230 audio_mlog_init(void)
231 {
232 mlog_refs++;
233 if (mlog_refs > 1)
234 return;
235 mlog_buflen = 4096;
236 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
237 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
238 mlog_used = 0;
239 mlog_full = 0;
240 mlog_drop = 0;
241 mlog_inuse = 0;
242 mlog_wpage = 0;
243 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
244 if (mlog_sih == NULL)
245 printf("%s: softint_establish failed\n", __func__);
246 }
247
248 static void
249 audio_mlog_free(void)
250 {
251 mlog_refs--;
252 if (mlog_refs > 0)
253 return;
254
255 audio_mlog_flush();
256 if (mlog_sih)
257 softint_disestablish(mlog_sih);
258 kmem_free(mlog_buf[0], mlog_buflen);
259 kmem_free(mlog_buf[1], mlog_buflen);
260 }
261
262 /*
263 * Flush memory buffer.
264 * It must not be called from hardware interrupt context.
265 */
266 void
267 audio_mlog_flush(void)
268 {
269 if (mlog_refs == 0)
270 return;
271
272 /* Nothing to do if already in use ? */
273 if (atomic_swap_32(&mlog_inuse, 1) == 1)
274 return;
275
276 int rpage = mlog_wpage;
277 mlog_wpage ^= 1;
278 mlog_buf[mlog_wpage][0] = '\0';
279 mlog_used = 0;
280
281 atomic_swap_32(&mlog_inuse, 0);
282
283 if (mlog_buf[rpage][0] != '\0') {
284 printf("%s", mlog_buf[rpage]);
285 if (mlog_drop > 0)
286 printf("mlog_drop %d\n", mlog_drop);
287 if (mlog_full > 0)
288 printf("mlog_full %d\n", mlog_full);
289 }
290 mlog_full = 0;
291 mlog_drop = 0;
292 }
293
294 static void
295 audio_mlog_softintr(void *cookie)
296 {
297 audio_mlog_flush();
298 }
299
300 void
301 audio_mlog_printf(const char *fmt, ...)
302 {
303 int len;
304 va_list ap;
305
306 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
307 /* already inuse */
308 mlog_drop++;
309 return;
310 }
311
312 va_start(ap, fmt);
313 len = vsnprintf(
314 mlog_buf[mlog_wpage] + mlog_used,
315 mlog_buflen - mlog_used,
316 fmt, ap);
317 va_end(ap);
318
319 mlog_used += len;
320 if (mlog_buflen - mlog_used <= 1) {
321 mlog_full++;
322 }
323
324 atomic_swap_32(&mlog_inuse, 0);
325
326 if (mlog_sih)
327 softint_schedule(mlog_sih);
328 }
329
330 /* trace functions */
331 static void
332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
333 const char *fmt, va_list ap)
334 {
335 char buf[256];
336 int n;
337
338 n = 0;
339 buf[0] = '\0';
340 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
341 funcname, device_unit(sc->sc_dev), header);
342 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
343
344 if (cpu_intr_p()) {
345 audio_mlog_printf("%s\n", buf);
346 } else {
347 audio_mlog_flush();
348 printf("%s\n", buf);
349 }
350 }
351
352 static void
353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
354 {
355 va_list ap;
356
357 va_start(ap, fmt);
358 audio_vtrace(sc, funcname, "", fmt, ap);
359 va_end(ap);
360 }
361
362 static void
363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
364 {
365 char hdr[16];
366 va_list ap;
367
368 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
369 va_start(ap, fmt);
370 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
371 va_end(ap);
372 }
373
374 static void
375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
376 {
377 char hdr[32];
378 char phdr[16], rhdr[16];
379 va_list ap;
380
381 phdr[0] = '\0';
382 rhdr[0] = '\0';
383 if (file->ptrack)
384 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
385 if (file->rtrack)
386 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
387 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
388
389 va_start(ap, fmt);
390 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
391 va_end(ap);
392 }
393
394 #define DPRINTF(n, fmt...) do { \
395 if (audiodebug >= (n)) { \
396 audio_mlog_flush(); \
397 printf(fmt); \
398 } \
399 } while (0)
400 #define TRACE(n, fmt...) do { \
401 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
402 } while (0)
403 #define TRACET(n, t, fmt...) do { \
404 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
405 } while (0)
406 #define TRACEF(n, f, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
408 } while (0)
409
410 struct audio_track_debugbuf {
411 char usrbuf[32];
412 char codec[32];
413 char chvol[32];
414 char chmix[32];
415 char freq[32];
416 char outbuf[32];
417 };
418
419 static void
420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
421 {
422
423 memset(buf, 0, sizeof(*buf));
424
425 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
426 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
427 if (track->freq.filter)
428 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
429 track->freq.srcbuf.head,
430 track->freq.srcbuf.used,
431 track->freq.srcbuf.capacity);
432 if (track->chmix.filter)
433 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
434 track->chmix.srcbuf.used);
435 if (track->chvol.filter)
436 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
437 track->chvol.srcbuf.used);
438 if (track->codec.filter)
439 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
440 track->codec.srcbuf.used);
441 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
442 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
443 }
444 #else
445 #define DPRINTF(n, fmt...) do { } while (0)
446 #define TRACE(n, fmt, ...) do { } while (0)
447 #define TRACET(n, t, fmt, ...) do { } while (0)
448 #define TRACEF(n, f, fmt, ...) do { } while (0)
449 #endif
450
451 #define SPECIFIED(x) ((x) != ~0)
452 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
453
454 /*
455 * Default hardware blocksize in msec.
456 *
457 * We use 10 msec for most modern platforms. This period is good enough to
458 * play audio and video synchronizely.
459 * In contrast, for very old platforms, this is usually too short and too
460 * severe. Also such platforms usually can not play video confortably, so
461 * it's not so important to make the blocksize shorter. If the platform
462 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
463 * uses this instead.
464 *
465 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
466 * configuration file if you wish.
467 */
468 #if !defined(AUDIO_BLK_MS)
469 # if defined(__AUDIO_BLK_MS)
470 # define AUDIO_BLK_MS __AUDIO_BLK_MS
471 # else
472 # define AUDIO_BLK_MS (10)
473 # endif
474 #endif
475
476 /* Device timeout in msec */
477 #define AUDIO_TIMEOUT (3000)
478
479 /* #define AUDIO_PM_IDLE */
480 #ifdef AUDIO_PM_IDLE
481 int audio_idle_timeout = 30;
482 #endif
483
484 /* Number of elements of async mixer's pid */
485 #define AM_CAPACITY (4)
486
487 struct portname {
488 const char *name;
489 int mask;
490 };
491
492 static int audiomatch(device_t, cfdata_t, void *);
493 static void audioattach(device_t, device_t, void *);
494 static int audiodetach(device_t, int);
495 static int audioactivate(device_t, enum devact);
496 static void audiochilddet(device_t, device_t);
497 static int audiorescan(device_t, const char *, const int *);
498
499 static int audio_modcmd(modcmd_t, void *);
500
501 #ifdef AUDIO_PM_IDLE
502 static void audio_idle(void *);
503 static void audio_activity(device_t, devactive_t);
504 #endif
505
506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
507 static bool audio_resume(device_t dv, const pmf_qual_t *);
508 static void audio_volume_down(device_t);
509 static void audio_volume_up(device_t);
510 static void audio_volume_toggle(device_t);
511
512 static void audio_mixer_capture(struct audio_softc *);
513 static void audio_mixer_restore(struct audio_softc *);
514
515 static void audio_softintr_rd(void *);
516 static void audio_softintr_wr(void *);
517
518 static int audio_exlock_mutex_enter(struct audio_softc *);
519 static void audio_exlock_mutex_exit(struct audio_softc *);
520 static int audio_exlock_enter(struct audio_softc *);
521 static void audio_exlock_exit(struct audio_softc *);
522 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
523 static void audio_file_exit(struct audio_softc *, struct psref *);
524 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
525
526 static int audioclose(struct file *);
527 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
528 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
529 static int audioioctl(struct file *, u_long, void *);
530 static int audiopoll(struct file *, int);
531 static int audiokqfilter(struct file *, struct knote *);
532 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
533 struct uvm_object **, int *);
534 static int audiostat(struct file *, struct stat *);
535
536 static void filt_audiowrite_detach(struct knote *);
537 static int filt_audiowrite_event(struct knote *, long);
538 static void filt_audioread_detach(struct knote *);
539 static int filt_audioread_event(struct knote *, long);
540
541 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
542 audio_file_t **);
543 static int audio_close(struct audio_softc *, audio_file_t *);
544 static int audio_unlink(struct audio_softc *, audio_file_t *);
545 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
546 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
547 static void audio_file_clear(struct audio_softc *, audio_file_t *);
548 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
549 struct lwp *, audio_file_t *);
550 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
551 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
552 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
553 struct uvm_object **, int *, audio_file_t *);
554
555 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
556
557 static void audio_pintr(void *);
558 static void audio_rintr(void *);
559
560 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
561
562 static __inline int audio_track_readablebytes(const audio_track_t *);
563 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
564 const struct audio_info *);
565 static int audio_track_setinfo_check(audio_track_t *,
566 audio_format2_t *, const struct audio_prinfo *);
567 static void audio_track_setinfo_water(audio_track_t *,
568 const struct audio_info *);
569 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
570 struct audio_info *);
571 static int audio_hw_set_format(struct audio_softc *, int,
572 const audio_format2_t *, const audio_format2_t *,
573 audio_filter_reg_t *, audio_filter_reg_t *);
574 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
575 audio_file_t *);
576 static bool audio_can_playback(struct audio_softc *);
577 static bool audio_can_capture(struct audio_softc *);
578 static int audio_check_params(audio_format2_t *);
579 static int audio_mixers_init(struct audio_softc *sc, int,
580 const audio_format2_t *, const audio_format2_t *,
581 const audio_filter_reg_t *, const audio_filter_reg_t *);
582 static int audio_select_freq(const struct audio_format *);
583 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
584 static int audio_hw_validate_format(struct audio_softc *, int,
585 const audio_format2_t *);
586 static int audio_mixers_set_format(struct audio_softc *,
587 const struct audio_info *);
588 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
589 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
590 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
591 #if defined(AUDIO_DEBUG)
592 static int audio_sysctl_debug(SYSCTLFN_PROTO);
593 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
594 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
595 #endif
596
597 static void *audio_realloc(void *, size_t);
598 static int audio_realloc_usrbuf(audio_track_t *, int);
599 static void audio_free_usrbuf(audio_track_t *);
600
601 static audio_track_t *audio_track_create(struct audio_softc *,
602 audio_trackmixer_t *);
603 static void audio_track_destroy(audio_track_t *);
604 static audio_filter_t audio_track_get_codec(audio_track_t *,
605 const audio_format2_t *, const audio_format2_t *);
606 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
607 static void audio_track_play(audio_track_t *);
608 static int audio_track_drain(struct audio_softc *, audio_track_t *);
609 static void audio_track_record(audio_track_t *);
610 static void audio_track_clear(struct audio_softc *, audio_track_t *);
611
612 static int audio_mixer_init(struct audio_softc *, int,
613 const audio_format2_t *, const audio_filter_reg_t *);
614 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
615 static void audio_pmixer_start(struct audio_softc *, bool);
616 static void audio_pmixer_process(struct audio_softc *);
617 static void audio_pmixer_agc(audio_trackmixer_t *, int);
618 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
619 static void audio_pmixer_output(struct audio_softc *);
620 static int audio_pmixer_halt(struct audio_softc *);
621 static void audio_rmixer_start(struct audio_softc *);
622 static void audio_rmixer_process(struct audio_softc *);
623 static void audio_rmixer_input(struct audio_softc *);
624 static int audio_rmixer_halt(struct audio_softc *);
625
626 static void mixer_init(struct audio_softc *);
627 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
628 static int mixer_close(struct audio_softc *, audio_file_t *);
629 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
630 static void mixer_async_add(struct audio_softc *, pid_t);
631 static void mixer_async_remove(struct audio_softc *, pid_t);
632 static void mixer_signal(struct audio_softc *);
633
634 static int au_portof(struct audio_softc *, char *, int);
635
636 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
637 mixer_devinfo_t *, const struct portname *);
638 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
639 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
640 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
641 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
642 u_int *, u_char *);
643 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
644 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
645 static int au_set_monitor_gain(struct audio_softc *, int);
646 static int au_get_monitor_gain(struct audio_softc *);
647 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
648 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
649
650 static __inline struct audio_params
651 format2_to_params(const audio_format2_t *f2)
652 {
653 audio_params_t p;
654
655 /* validbits/precision <-> precision/stride */
656 p.sample_rate = f2->sample_rate;
657 p.channels = f2->channels;
658 p.encoding = f2->encoding;
659 p.validbits = f2->precision;
660 p.precision = f2->stride;
661 return p;
662 }
663
664 static __inline audio_format2_t
665 params_to_format2(const struct audio_params *p)
666 {
667 audio_format2_t f2;
668
669 /* precision/stride <-> validbits/precision */
670 f2.sample_rate = p->sample_rate;
671 f2.channels = p->channels;
672 f2.encoding = p->encoding;
673 f2.precision = p->validbits;
674 f2.stride = p->precision;
675 return f2;
676 }
677
678 /* Return true if this track is a playback track. */
679 static __inline bool
680 audio_track_is_playback(const audio_track_t *track)
681 {
682
683 return ((track->mode & AUMODE_PLAY) != 0);
684 }
685
686 /* Return true if this track is a recording track. */
687 static __inline bool
688 audio_track_is_record(const audio_track_t *track)
689 {
690
691 return ((track->mode & AUMODE_RECORD) != 0);
692 }
693
694 #if 0 /* XXX Not used yet */
695 /*
696 * Convert 0..255 volume used in userland to internal presentation 0..256.
697 */
698 static __inline u_int
699 audio_volume_to_inner(u_int v)
700 {
701
702 return v < 127 ? v : v + 1;
703 }
704
705 /*
706 * Convert 0..256 internal presentation to 0..255 volume used in userland.
707 */
708 static __inline u_int
709 audio_volume_to_outer(u_int v)
710 {
711
712 return v < 127 ? v : v - 1;
713 }
714 #endif /* 0 */
715
716 static dev_type_open(audioopen);
717 /* XXXMRG use more dev_type_xxx */
718
719 const struct cdevsw audio_cdevsw = {
720 .d_open = audioopen,
721 .d_close = noclose,
722 .d_read = noread,
723 .d_write = nowrite,
724 .d_ioctl = noioctl,
725 .d_stop = nostop,
726 .d_tty = notty,
727 .d_poll = nopoll,
728 .d_mmap = nommap,
729 .d_kqfilter = nokqfilter,
730 .d_discard = nodiscard,
731 .d_flag = D_OTHER | D_MPSAFE
732 };
733
734 const struct fileops audio_fileops = {
735 .fo_name = "audio",
736 .fo_read = audioread,
737 .fo_write = audiowrite,
738 .fo_ioctl = audioioctl,
739 .fo_fcntl = fnullop_fcntl,
740 .fo_stat = audiostat,
741 .fo_poll = audiopoll,
742 .fo_close = audioclose,
743 .fo_mmap = audiommap,
744 .fo_kqfilter = audiokqfilter,
745 .fo_restart = fnullop_restart
746 };
747
748 /* The default audio mode: 8 kHz mono mu-law */
749 static const struct audio_params audio_default = {
750 .sample_rate = 8000,
751 .encoding = AUDIO_ENCODING_ULAW,
752 .precision = 8,
753 .validbits = 8,
754 .channels = 1,
755 };
756
757 static const char *encoding_names[] = {
758 "none",
759 AudioEmulaw,
760 AudioEalaw,
761 "pcm16",
762 "pcm8",
763 AudioEadpcm,
764 AudioEslinear_le,
765 AudioEslinear_be,
766 AudioEulinear_le,
767 AudioEulinear_be,
768 AudioEslinear,
769 AudioEulinear,
770 AudioEmpeg_l1_stream,
771 AudioEmpeg_l1_packets,
772 AudioEmpeg_l1_system,
773 AudioEmpeg_l2_stream,
774 AudioEmpeg_l2_packets,
775 AudioEmpeg_l2_system,
776 AudioEac3,
777 };
778
779 /*
780 * Returns encoding name corresponding to AUDIO_ENCODING_*.
781 * Note that it may return a local buffer because it is mainly for debugging.
782 */
783 const char *
784 audio_encoding_name(int encoding)
785 {
786 static char buf[16];
787
788 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
789 return encoding_names[encoding];
790 } else {
791 snprintf(buf, sizeof(buf), "enc=%d", encoding);
792 return buf;
793 }
794 }
795
796 /*
797 * Supported encodings used by AUDIO_GETENC.
798 * index and flags are set by code.
799 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
800 */
801 static const audio_encoding_t audio_encodings[] = {
802 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
803 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
804 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
805 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
806 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
807 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
808 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
809 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
810 #if defined(AUDIO_SUPPORT_LINEAR24)
811 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
812 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
813 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
814 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
815 #endif
816 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
817 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
818 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
819 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
820 };
821
822 static const struct portname itable[] = {
823 { AudioNmicrophone, AUDIO_MICROPHONE },
824 { AudioNline, AUDIO_LINE_IN },
825 { AudioNcd, AUDIO_CD },
826 { 0, 0 }
827 };
828 static const struct portname otable[] = {
829 { AudioNspeaker, AUDIO_SPEAKER },
830 { AudioNheadphone, AUDIO_HEADPHONE },
831 { AudioNline, AUDIO_LINE_OUT },
832 { 0, 0 }
833 };
834
835 static struct psref_class *audio_psref_class __read_mostly;
836
837 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
838 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
839 audiochilddet, DVF_DETACH_SHUTDOWN);
840
841 static int
842 audiomatch(device_t parent, cfdata_t match, void *aux)
843 {
844 struct audio_attach_args *sa;
845
846 sa = aux;
847 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
848 __func__, sa->type, sa, sa->hwif);
849 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
850 }
851
852 static void
853 audioattach(device_t parent, device_t self, void *aux)
854 {
855 struct audio_softc *sc;
856 struct audio_attach_args *sa;
857 const struct audio_hw_if *hw_if;
858 audio_format2_t phwfmt;
859 audio_format2_t rhwfmt;
860 audio_filter_reg_t pfil;
861 audio_filter_reg_t rfil;
862 const struct sysctlnode *node;
863 void *hdlp;
864 bool has_playback;
865 bool has_capture;
866 bool has_indep;
867 bool has_fulldup;
868 int mode;
869 int error;
870
871 sc = device_private(self);
872 sc->sc_dev = self;
873 sa = (struct audio_attach_args *)aux;
874 hw_if = sa->hwif;
875 hdlp = sa->hdl;
876
877 if (hw_if == NULL) {
878 panic("audioattach: missing hw_if method");
879 }
880 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
881 aprint_error(": missing mandatory method\n");
882 return;
883 }
884
885 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
886 sc->sc_props = hw_if->get_props(hdlp);
887
888 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
889 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
890 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
891 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
892
893 #ifdef DIAGNOSTIC
894 if (hw_if->query_format == NULL ||
895 hw_if->set_format == NULL ||
896 hw_if->getdev == NULL ||
897 hw_if->set_port == NULL ||
898 hw_if->get_port == NULL ||
899 hw_if->query_devinfo == NULL) {
900 aprint_error(": missing mandatory method\n");
901 return;
902 }
903 if (has_playback) {
904 if ((hw_if->start_output == NULL &&
905 hw_if->trigger_output == NULL) ||
906 hw_if->halt_output == NULL) {
907 aprint_error(": missing playback method\n");
908 }
909 }
910 if (has_capture) {
911 if ((hw_if->start_input == NULL &&
912 hw_if->trigger_input == NULL) ||
913 hw_if->halt_input == NULL) {
914 aprint_error(": missing capture method\n");
915 }
916 }
917 #endif
918
919 sc->hw_if = hw_if;
920 sc->hw_hdl = hdlp;
921 sc->hw_dev = parent;
922
923 sc->sc_exlock = 1;
924 sc->sc_blk_ms = AUDIO_BLK_MS;
925 SLIST_INIT(&sc->sc_files);
926 cv_init(&sc->sc_exlockcv, "audiolk");
927 sc->sc_am_capacity = 0;
928 sc->sc_am_used = 0;
929 sc->sc_am = NULL;
930
931 /* MMAP is now supported by upper layer. */
932 sc->sc_props |= AUDIO_PROP_MMAP;
933
934 KASSERT(has_playback || has_capture);
935 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
936 if (!has_playback || !has_capture) {
937 KASSERT(!has_indep);
938 KASSERT(!has_fulldup);
939 }
940
941 mode = 0;
942 if (has_playback) {
943 aprint_normal(": playback");
944 mode |= AUMODE_PLAY;
945 }
946 if (has_capture) {
947 aprint_normal("%c capture", has_playback ? ',' : ':');
948 mode |= AUMODE_RECORD;
949 }
950 if (has_playback && has_capture) {
951 if (has_fulldup)
952 aprint_normal(", full duplex");
953 else
954 aprint_normal(", half duplex");
955
956 if (has_indep)
957 aprint_normal(", independent");
958 }
959
960 aprint_naive("\n");
961 aprint_normal("\n");
962
963 /* probe hw params */
964 memset(&phwfmt, 0, sizeof(phwfmt));
965 memset(&rhwfmt, 0, sizeof(rhwfmt));
966 memset(&pfil, 0, sizeof(pfil));
967 memset(&rfil, 0, sizeof(rfil));
968 if (has_indep) {
969 int perror, rerror;
970
971 /* On independent devices, probe separately. */
972 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
973 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
974 if (perror && rerror) {
975 aprint_error_dev(self, "audio_hw_probe failed, "
976 "perror = %d, rerror = %d\n", perror, rerror);
977 goto bad;
978 }
979 if (perror) {
980 mode &= ~AUMODE_PLAY;
981 aprint_error_dev(self, "audio_hw_probe failed with "
982 "%d, playback disabled\n", perror);
983 }
984 if (rerror) {
985 mode &= ~AUMODE_RECORD;
986 aprint_error_dev(self, "audio_hw_probe failed with "
987 "%d, capture disabled\n", rerror);
988 }
989 } else {
990 /*
991 * On non independent devices or uni-directional devices,
992 * probe once (simultaneously).
993 */
994 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
995 error = audio_hw_probe(sc, fmt, mode);
996 if (error) {
997 aprint_error_dev(self, "audio_hw_probe failed, "
998 "error = %d\n", error);
999 goto bad;
1000 }
1001 if (has_playback && has_capture)
1002 rhwfmt = phwfmt;
1003 }
1004
1005 /* Init hardware. */
1006 /* hw_probe() also validates [pr]hwfmt. */
1007 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1008 if (error) {
1009 aprint_error_dev(self, "audio_hw_set_format failed, "
1010 "error = %d\n", error);
1011 goto bad;
1012 }
1013
1014 /*
1015 * Init track mixers. If at least one direction is available on
1016 * attach time, we assume a success.
1017 */
1018 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1019 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1020 aprint_error_dev(self, "audio_mixers_init failed, "
1021 "error = %d\n", error);
1022 goto bad;
1023 }
1024
1025 sc->sc_psz = pserialize_create();
1026 psref_target_init(&sc->sc_psref, audio_psref_class);
1027
1028 selinit(&sc->sc_wsel);
1029 selinit(&sc->sc_rsel);
1030
1031 /* Initial parameter of /dev/sound */
1032 sc->sc_sound_pparams = params_to_format2(&audio_default);
1033 sc->sc_sound_rparams = params_to_format2(&audio_default);
1034 sc->sc_sound_ppause = false;
1035 sc->sc_sound_rpause = false;
1036
1037 /* XXX TODO: consider about sc_ai */
1038
1039 mixer_init(sc);
1040 TRACE(2, "inputs ports=0x%x, input master=%d, "
1041 "output ports=0x%x, output master=%d",
1042 sc->sc_inports.allports, sc->sc_inports.master,
1043 sc->sc_outports.allports, sc->sc_outports.master);
1044
1045 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1046 0,
1047 CTLTYPE_NODE, device_xname(sc->sc_dev),
1048 SYSCTL_DESCR("audio test"),
1049 NULL, 0,
1050 NULL, 0,
1051 CTL_HW,
1052 CTL_CREATE, CTL_EOL);
1053
1054 if (node != NULL) {
1055 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1056 CTLFLAG_READWRITE,
1057 CTLTYPE_INT, "blk_ms",
1058 SYSCTL_DESCR("blocksize in msec"),
1059 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1060 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1061
1062 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1063 CTLFLAG_READWRITE,
1064 CTLTYPE_BOOL, "multiuser",
1065 SYSCTL_DESCR("allow multiple user access"),
1066 audio_sysctl_multiuser, 0, (void *)sc, 0,
1067 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1068
1069 #if defined(AUDIO_DEBUG)
1070 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1071 CTLFLAG_READWRITE,
1072 CTLTYPE_INT, "debug",
1073 SYSCTL_DESCR("debug level (0..4)"),
1074 audio_sysctl_debug, 0, (void *)sc, 0,
1075 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1076 #endif
1077 }
1078
1079 #ifdef AUDIO_PM_IDLE
1080 callout_init(&sc->sc_idle_counter, 0);
1081 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1082 #endif
1083
1084 if (!pmf_device_register(self, audio_suspend, audio_resume))
1085 aprint_error_dev(self, "couldn't establish power handler\n");
1086 #ifdef AUDIO_PM_IDLE
1087 if (!device_active_register(self, audio_activity))
1088 aprint_error_dev(self, "couldn't register activity handler\n");
1089 #endif
1090
1091 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1092 audio_volume_down, true))
1093 aprint_error_dev(self, "couldn't add volume down handler\n");
1094 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1095 audio_volume_up, true))
1096 aprint_error_dev(self, "couldn't add volume up handler\n");
1097 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1098 audio_volume_toggle, true))
1099 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1100
1101 #ifdef AUDIO_PM_IDLE
1102 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1103 #endif
1104
1105 #if defined(AUDIO_DEBUG)
1106 audio_mlog_init();
1107 #endif
1108
1109 audiorescan(self, "audio", NULL);
1110 sc->sc_exlock = 0;
1111 return;
1112
1113 bad:
1114 /* Clearing hw_if means that device is attached but disabled. */
1115 sc->hw_if = NULL;
1116 sc->sc_exlock = 0;
1117 aprint_error_dev(sc->sc_dev, "disabled\n");
1118 return;
1119 }
1120
1121 /*
1122 * Initialize hardware mixer.
1123 * This function is called from audioattach().
1124 */
1125 static void
1126 mixer_init(struct audio_softc *sc)
1127 {
1128 mixer_devinfo_t mi;
1129 int iclass, mclass, oclass, rclass;
1130 int record_master_found, record_source_found;
1131
1132 iclass = mclass = oclass = rclass = -1;
1133 sc->sc_inports.index = -1;
1134 sc->sc_inports.master = -1;
1135 sc->sc_inports.nports = 0;
1136 sc->sc_inports.isenum = false;
1137 sc->sc_inports.allports = 0;
1138 sc->sc_inports.isdual = false;
1139 sc->sc_inports.mixerout = -1;
1140 sc->sc_inports.cur_port = -1;
1141 sc->sc_outports.index = -1;
1142 sc->sc_outports.master = -1;
1143 sc->sc_outports.nports = 0;
1144 sc->sc_outports.isenum = false;
1145 sc->sc_outports.allports = 0;
1146 sc->sc_outports.isdual = false;
1147 sc->sc_outports.mixerout = -1;
1148 sc->sc_outports.cur_port = -1;
1149 sc->sc_monitor_port = -1;
1150 /*
1151 * Read through the underlying driver's list, picking out the class
1152 * names from the mixer descriptions. We'll need them to decode the
1153 * mixer descriptions on the next pass through the loop.
1154 */
1155 mutex_enter(sc->sc_lock);
1156 for(mi.index = 0; ; mi.index++) {
1157 if (audio_query_devinfo(sc, &mi) != 0)
1158 break;
1159 /*
1160 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1161 * All the other types describe an actual mixer.
1162 */
1163 if (mi.type == AUDIO_MIXER_CLASS) {
1164 if (strcmp(mi.label.name, AudioCinputs) == 0)
1165 iclass = mi.mixer_class;
1166 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1167 mclass = mi.mixer_class;
1168 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1169 oclass = mi.mixer_class;
1170 if (strcmp(mi.label.name, AudioCrecord) == 0)
1171 rclass = mi.mixer_class;
1172 }
1173 }
1174 mutex_exit(sc->sc_lock);
1175
1176 /* Allocate save area. Ensure non-zero allocation. */
1177 sc->sc_nmixer_states = mi.index;
1178 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1179 (sc->sc_nmixer_states + 1), KM_SLEEP);
1180
1181 /*
1182 * This is where we assign each control in the "audio" model, to the
1183 * underlying "mixer" control. We walk through the whole list once,
1184 * assigning likely candidates as we come across them.
1185 */
1186 record_master_found = 0;
1187 record_source_found = 0;
1188 mutex_enter(sc->sc_lock);
1189 for(mi.index = 0; ; mi.index++) {
1190 if (audio_query_devinfo(sc, &mi) != 0)
1191 break;
1192 KASSERT(mi.index < sc->sc_nmixer_states);
1193 if (mi.type == AUDIO_MIXER_CLASS)
1194 continue;
1195 if (mi.mixer_class == iclass) {
1196 /*
1197 * AudioCinputs is only a fallback, when we don't
1198 * find what we're looking for in AudioCrecord, so
1199 * check the flags before accepting one of these.
1200 */
1201 if (strcmp(mi.label.name, AudioNmaster) == 0
1202 && record_master_found == 0)
1203 sc->sc_inports.master = mi.index;
1204 if (strcmp(mi.label.name, AudioNsource) == 0
1205 && record_source_found == 0) {
1206 if (mi.type == AUDIO_MIXER_ENUM) {
1207 int i;
1208 for(i = 0; i < mi.un.e.num_mem; i++)
1209 if (strcmp(mi.un.e.member[i].label.name,
1210 AudioNmixerout) == 0)
1211 sc->sc_inports.mixerout =
1212 mi.un.e.member[i].ord;
1213 }
1214 au_setup_ports(sc, &sc->sc_inports, &mi,
1215 itable);
1216 }
1217 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1218 sc->sc_outports.master == -1)
1219 sc->sc_outports.master = mi.index;
1220 } else if (mi.mixer_class == mclass) {
1221 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1222 sc->sc_monitor_port = mi.index;
1223 } else if (mi.mixer_class == oclass) {
1224 if (strcmp(mi.label.name, AudioNmaster) == 0)
1225 sc->sc_outports.master = mi.index;
1226 if (strcmp(mi.label.name, AudioNselect) == 0)
1227 au_setup_ports(sc, &sc->sc_outports, &mi,
1228 otable);
1229 } else if (mi.mixer_class == rclass) {
1230 /*
1231 * These are the preferred mixers for the audio record
1232 * controls, so set the flags here, but don't check.
1233 */
1234 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1235 sc->sc_inports.master = mi.index;
1236 record_master_found = 1;
1237 }
1238 #if 1 /* Deprecated. Use AudioNmaster. */
1239 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1240 sc->sc_inports.master = mi.index;
1241 record_master_found = 1;
1242 }
1243 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1244 sc->sc_inports.master = mi.index;
1245 record_master_found = 1;
1246 }
1247 #endif
1248 if (strcmp(mi.label.name, AudioNsource) == 0) {
1249 if (mi.type == AUDIO_MIXER_ENUM) {
1250 int i;
1251 for(i = 0; i < mi.un.e.num_mem; i++)
1252 if (strcmp(mi.un.e.member[i].label.name,
1253 AudioNmixerout) == 0)
1254 sc->sc_inports.mixerout =
1255 mi.un.e.member[i].ord;
1256 }
1257 au_setup_ports(sc, &sc->sc_inports, &mi,
1258 itable);
1259 record_source_found = 1;
1260 }
1261 }
1262 }
1263 mutex_exit(sc->sc_lock);
1264 }
1265
1266 static int
1267 audioactivate(device_t self, enum devact act)
1268 {
1269 struct audio_softc *sc = device_private(self);
1270
1271 switch (act) {
1272 case DVACT_DEACTIVATE:
1273 mutex_enter(sc->sc_lock);
1274 sc->sc_dying = true;
1275 cv_broadcast(&sc->sc_exlockcv);
1276 mutex_exit(sc->sc_lock);
1277 return 0;
1278 default:
1279 return EOPNOTSUPP;
1280 }
1281 }
1282
1283 static int
1284 audiodetach(device_t self, int flags)
1285 {
1286 struct audio_softc *sc;
1287 struct audio_file *file;
1288 int error;
1289
1290 sc = device_private(self);
1291 TRACE(2, "flags=%d", flags);
1292
1293 /* device is not initialized */
1294 if (sc->hw_if == NULL)
1295 return 0;
1296
1297 /* Start draining existing accessors of the device. */
1298 error = config_detach_children(self, flags);
1299 if (error)
1300 return error;
1301
1302 /* delete sysctl nodes */
1303 sysctl_teardown(&sc->sc_log);
1304
1305 mutex_enter(sc->sc_lock);
1306 sc->sc_dying = true;
1307 cv_broadcast(&sc->sc_exlockcv);
1308 if (sc->sc_pmixer)
1309 cv_broadcast(&sc->sc_pmixer->outcv);
1310 if (sc->sc_rmixer)
1311 cv_broadcast(&sc->sc_rmixer->outcv);
1312
1313 /* Prevent new users */
1314 SLIST_FOREACH(file, &sc->sc_files, entry) {
1315 atomic_store_relaxed(&file->dying, true);
1316 }
1317
1318 /*
1319 * Wait for existing users to drain.
1320 * - pserialize_perform waits for all pserialize_read sections on
1321 * all CPUs; after this, no more new psref_acquire can happen.
1322 * - psref_target_destroy waits for all extant acquired psrefs to
1323 * be psref_released.
1324 */
1325 pserialize_perform(sc->sc_psz);
1326 mutex_exit(sc->sc_lock);
1327 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1328
1329 /*
1330 * We are now guaranteed that there are no calls to audio fileops
1331 * that hold sc, and any new calls with files that were for sc will
1332 * fail. Thus, we now have exclusive access to the softc.
1333 */
1334 sc->sc_exlock = 1;
1335
1336 /*
1337 * Nuke all open instances.
1338 * Here, we no longer need any locks to traverse sc_files.
1339 */
1340 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1341 audio_unlink(sc, file);
1342 }
1343
1344 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1345 audio_volume_down, true);
1346 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1347 audio_volume_up, true);
1348 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1349 audio_volume_toggle, true);
1350
1351 #ifdef AUDIO_PM_IDLE
1352 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1353
1354 device_active_deregister(self, audio_activity);
1355 #endif
1356
1357 pmf_device_deregister(self);
1358
1359 /* Free resources */
1360 if (sc->sc_pmixer) {
1361 audio_mixer_destroy(sc, sc->sc_pmixer);
1362 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1363 }
1364 if (sc->sc_rmixer) {
1365 audio_mixer_destroy(sc, sc->sc_rmixer);
1366 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1367 }
1368 if (sc->sc_am)
1369 kern_free(sc->sc_am);
1370
1371 seldestroy(&sc->sc_wsel);
1372 seldestroy(&sc->sc_rsel);
1373
1374 #ifdef AUDIO_PM_IDLE
1375 callout_destroy(&sc->sc_idle_counter);
1376 #endif
1377
1378 cv_destroy(&sc->sc_exlockcv);
1379
1380 #if defined(AUDIO_DEBUG)
1381 audio_mlog_free();
1382 #endif
1383
1384 return 0;
1385 }
1386
1387 static void
1388 audiochilddet(device_t self, device_t child)
1389 {
1390
1391 /* we hold no child references, so do nothing */
1392 }
1393
1394 static int
1395 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1396 {
1397
1398 if (config_match(parent, cf, aux))
1399 config_attach_loc(parent, cf, locs, aux, NULL);
1400
1401 return 0;
1402 }
1403
1404 static int
1405 audiorescan(device_t self, const char *ifattr, const int *flags)
1406 {
1407 struct audio_softc *sc = device_private(self);
1408
1409 if (!ifattr_match(ifattr, "audio"))
1410 return 0;
1411
1412 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1413
1414 return 0;
1415 }
1416
1417 /*
1418 * Called from hardware driver. This is where the MI audio driver gets
1419 * probed/attached to the hardware driver.
1420 */
1421 device_t
1422 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1423 {
1424 struct audio_attach_args arg;
1425
1426 #ifdef DIAGNOSTIC
1427 if (ahwp == NULL) {
1428 aprint_error("audio_attach_mi: NULL\n");
1429 return 0;
1430 }
1431 #endif
1432 arg.type = AUDIODEV_TYPE_AUDIO;
1433 arg.hwif = ahwp;
1434 arg.hdl = hdlp;
1435 return config_found(dev, &arg, audioprint);
1436 }
1437
1438 /*
1439 * Enter critical section and also keep sc_lock.
1440 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1441 * Must be called without sc_lock held.
1442 */
1443 static int
1444 audio_exlock_mutex_enter(struct audio_softc *sc)
1445 {
1446 int error;
1447
1448 mutex_enter(sc->sc_lock);
1449 if (sc->sc_dying) {
1450 mutex_exit(sc->sc_lock);
1451 return EIO;
1452 }
1453
1454 while (__predict_false(sc->sc_exlock != 0)) {
1455 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1456 if (sc->sc_dying)
1457 error = EIO;
1458 if (error) {
1459 mutex_exit(sc->sc_lock);
1460 return error;
1461 }
1462 }
1463
1464 /* Acquire */
1465 sc->sc_exlock = 1;
1466 return 0;
1467 }
1468
1469 /*
1470 * Exit critical section and exit sc_lock.
1471 * Must be called with sc_lock held.
1472 */
1473 static void
1474 audio_exlock_mutex_exit(struct audio_softc *sc)
1475 {
1476
1477 KASSERT(mutex_owned(sc->sc_lock));
1478
1479 sc->sc_exlock = 0;
1480 cv_broadcast(&sc->sc_exlockcv);
1481 mutex_exit(sc->sc_lock);
1482 }
1483
1484 /*
1485 * Enter critical section.
1486 * If successful, it returns 0. Otherwise returns errno.
1487 * Must be called without sc_lock held.
1488 * This function returns without sc_lock held.
1489 */
1490 static int
1491 audio_exlock_enter(struct audio_softc *sc)
1492 {
1493 int error;
1494
1495 error = audio_exlock_mutex_enter(sc);
1496 if (error)
1497 return error;
1498 mutex_exit(sc->sc_lock);
1499 return 0;
1500 }
1501
1502 /*
1503 * Exit critical section.
1504 * Must be called without sc_lock held.
1505 */
1506 static void
1507 audio_exlock_exit(struct audio_softc *sc)
1508 {
1509
1510 mutex_enter(sc->sc_lock);
1511 audio_exlock_mutex_exit(sc);
1512 }
1513
1514 /*
1515 * Acquire sc from file, and increment the psref count.
1516 * If successful, returns sc. Otherwise returns NULL.
1517 */
1518 struct audio_softc *
1519 audio_file_enter(audio_file_t *file, struct psref *refp)
1520 {
1521 int s;
1522 bool dying;
1523
1524 /* psref(9) forbids to migrate CPUs */
1525 curlwp_bind();
1526
1527 /* Block audiodetach while we acquire a reference */
1528 s = pserialize_read_enter();
1529
1530 /* If close or audiodetach already ran, tough -- no more audio */
1531 dying = atomic_load_relaxed(&file->dying);
1532 if (dying) {
1533 pserialize_read_exit(s);
1534 return NULL;
1535 }
1536
1537 /* Acquire a reference */
1538 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1539
1540 /* Now sc won't go away until we drop the reference count */
1541 pserialize_read_exit(s);
1542
1543 return file->sc;
1544 }
1545
1546 /*
1547 * Decrement the psref count.
1548 */
1549 void
1550 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1551 {
1552
1553 psref_release(refp, &sc->sc_psref, audio_psref_class);
1554 }
1555
1556 /*
1557 * Wait for I/O to complete, releasing sc_lock.
1558 * Must be called with sc_lock held.
1559 */
1560 static int
1561 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1562 {
1563 int error;
1564
1565 KASSERT(track);
1566 KASSERT(mutex_owned(sc->sc_lock));
1567
1568 /* Wait for pending I/O to complete. */
1569 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1570 mstohz(AUDIO_TIMEOUT));
1571 if (sc->sc_suspending) {
1572 /* If it's about to suspend, ignore timeout error. */
1573 if (error == EWOULDBLOCK) {
1574 TRACET(2, track, "timeout (suspending)");
1575 return 0;
1576 }
1577 }
1578 if (sc->sc_dying) {
1579 error = EIO;
1580 }
1581 if (error) {
1582 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1583 if (error == EWOULDBLOCK)
1584 device_printf(sc->sc_dev, "device timeout\n");
1585 } else {
1586 TRACET(3, track, "wakeup");
1587 }
1588 return error;
1589 }
1590
1591 /*
1592 * Try to acquire track lock.
1593 * It doesn't block if the track lock is already aquired.
1594 * Returns true if the track lock was acquired, or false if the track
1595 * lock was already acquired.
1596 */
1597 static __inline bool
1598 audio_track_lock_tryenter(audio_track_t *track)
1599 {
1600 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1601 }
1602
1603 /*
1604 * Acquire track lock.
1605 */
1606 static __inline void
1607 audio_track_lock_enter(audio_track_t *track)
1608 {
1609 /* Don't sleep here. */
1610 while (audio_track_lock_tryenter(track) == false)
1611 ;
1612 }
1613
1614 /*
1615 * Release track lock.
1616 */
1617 static __inline void
1618 audio_track_lock_exit(audio_track_t *track)
1619 {
1620 atomic_swap_uint(&track->lock, 0);
1621 }
1622
1623
1624 static int
1625 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1626 {
1627 struct audio_softc *sc;
1628 int error;
1629
1630 /* Find the device */
1631 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1632 if (sc == NULL || sc->hw_if == NULL)
1633 return ENXIO;
1634
1635 error = audio_exlock_enter(sc);
1636 if (error)
1637 return error;
1638
1639 device_active(sc->sc_dev, DVA_SYSTEM);
1640 switch (AUDIODEV(dev)) {
1641 case SOUND_DEVICE:
1642 case AUDIO_DEVICE:
1643 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1644 break;
1645 case AUDIOCTL_DEVICE:
1646 error = audioctl_open(dev, sc, flags, ifmt, l);
1647 break;
1648 case MIXER_DEVICE:
1649 error = mixer_open(dev, sc, flags, ifmt, l);
1650 break;
1651 default:
1652 error = ENXIO;
1653 break;
1654 }
1655 audio_exlock_exit(sc);
1656
1657 return error;
1658 }
1659
1660 static int
1661 audioclose(struct file *fp)
1662 {
1663 struct audio_softc *sc;
1664 struct psref sc_ref;
1665 audio_file_t *file;
1666 int error;
1667 dev_t dev;
1668
1669 KASSERT(fp->f_audioctx);
1670 file = fp->f_audioctx;
1671 dev = file->dev;
1672 error = 0;
1673
1674 /*
1675 * audioclose() must
1676 * - unplug track from the trackmixer (and unplug anything from softc),
1677 * if sc exists.
1678 * - free all memory objects, regardless of sc.
1679 */
1680
1681 sc = audio_file_enter(file, &sc_ref);
1682 if (sc) {
1683 switch (AUDIODEV(dev)) {
1684 case SOUND_DEVICE:
1685 case AUDIO_DEVICE:
1686 error = audio_close(sc, file);
1687 break;
1688 case AUDIOCTL_DEVICE:
1689 error = 0;
1690 break;
1691 case MIXER_DEVICE:
1692 error = mixer_close(sc, file);
1693 break;
1694 default:
1695 error = ENXIO;
1696 break;
1697 }
1698
1699 audio_file_exit(sc, &sc_ref);
1700 }
1701
1702 /* Free memory objects anyway */
1703 TRACEF(2, file, "free memory");
1704 if (file->ptrack)
1705 audio_track_destroy(file->ptrack);
1706 if (file->rtrack)
1707 audio_track_destroy(file->rtrack);
1708 kmem_free(file, sizeof(*file));
1709 fp->f_audioctx = NULL;
1710
1711 return error;
1712 }
1713
1714 static int
1715 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1716 int ioflag)
1717 {
1718 struct audio_softc *sc;
1719 struct psref sc_ref;
1720 audio_file_t *file;
1721 int error;
1722 dev_t dev;
1723
1724 KASSERT(fp->f_audioctx);
1725 file = fp->f_audioctx;
1726 dev = file->dev;
1727
1728 sc = audio_file_enter(file, &sc_ref);
1729 if (sc == NULL)
1730 return EIO;
1731
1732 if (fp->f_flag & O_NONBLOCK)
1733 ioflag |= IO_NDELAY;
1734
1735 switch (AUDIODEV(dev)) {
1736 case SOUND_DEVICE:
1737 case AUDIO_DEVICE:
1738 error = audio_read(sc, uio, ioflag, file);
1739 break;
1740 case AUDIOCTL_DEVICE:
1741 case MIXER_DEVICE:
1742 error = ENODEV;
1743 break;
1744 default:
1745 error = ENXIO;
1746 break;
1747 }
1748
1749 audio_file_exit(sc, &sc_ref);
1750 return error;
1751 }
1752
1753 static int
1754 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1755 int ioflag)
1756 {
1757 struct audio_softc *sc;
1758 struct psref sc_ref;
1759 audio_file_t *file;
1760 int error;
1761 dev_t dev;
1762
1763 KASSERT(fp->f_audioctx);
1764 file = fp->f_audioctx;
1765 dev = file->dev;
1766
1767 sc = audio_file_enter(file, &sc_ref);
1768 if (sc == NULL)
1769 return EIO;
1770
1771 if (fp->f_flag & O_NONBLOCK)
1772 ioflag |= IO_NDELAY;
1773
1774 switch (AUDIODEV(dev)) {
1775 case SOUND_DEVICE:
1776 case AUDIO_DEVICE:
1777 error = audio_write(sc, uio, ioflag, file);
1778 break;
1779 case AUDIOCTL_DEVICE:
1780 case MIXER_DEVICE:
1781 error = ENODEV;
1782 break;
1783 default:
1784 error = ENXIO;
1785 break;
1786 }
1787
1788 audio_file_exit(sc, &sc_ref);
1789 return error;
1790 }
1791
1792 static int
1793 audioioctl(struct file *fp, u_long cmd, void *addr)
1794 {
1795 struct audio_softc *sc;
1796 struct psref sc_ref;
1797 audio_file_t *file;
1798 struct lwp *l = curlwp;
1799 int error;
1800 dev_t dev;
1801
1802 KASSERT(fp->f_audioctx);
1803 file = fp->f_audioctx;
1804 dev = file->dev;
1805
1806 sc = audio_file_enter(file, &sc_ref);
1807 if (sc == NULL)
1808 return EIO;
1809
1810 switch (AUDIODEV(dev)) {
1811 case SOUND_DEVICE:
1812 case AUDIO_DEVICE:
1813 case AUDIOCTL_DEVICE:
1814 mutex_enter(sc->sc_lock);
1815 device_active(sc->sc_dev, DVA_SYSTEM);
1816 mutex_exit(sc->sc_lock);
1817 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1818 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1819 else
1820 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1821 file);
1822 break;
1823 case MIXER_DEVICE:
1824 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1825 break;
1826 default:
1827 error = ENXIO;
1828 break;
1829 }
1830
1831 audio_file_exit(sc, &sc_ref);
1832 return error;
1833 }
1834
1835 static int
1836 audiostat(struct file *fp, struct stat *st)
1837 {
1838 struct audio_softc *sc;
1839 struct psref sc_ref;
1840 audio_file_t *file;
1841
1842 KASSERT(fp->f_audioctx);
1843 file = fp->f_audioctx;
1844
1845 sc = audio_file_enter(file, &sc_ref);
1846 if (sc == NULL)
1847 return EIO;
1848
1849 memset(st, 0, sizeof(*st));
1850
1851 st->st_dev = file->dev;
1852 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1853 st->st_gid = kauth_cred_getegid(fp->f_cred);
1854 st->st_mode = S_IFCHR;
1855
1856 audio_file_exit(sc, &sc_ref);
1857 return 0;
1858 }
1859
1860 static int
1861 audiopoll(struct file *fp, int events)
1862 {
1863 struct audio_softc *sc;
1864 struct psref sc_ref;
1865 audio_file_t *file;
1866 struct lwp *l = curlwp;
1867 int revents;
1868 dev_t dev;
1869
1870 KASSERT(fp->f_audioctx);
1871 file = fp->f_audioctx;
1872 dev = file->dev;
1873
1874 sc = audio_file_enter(file, &sc_ref);
1875 if (sc == NULL)
1876 return EIO;
1877
1878 switch (AUDIODEV(dev)) {
1879 case SOUND_DEVICE:
1880 case AUDIO_DEVICE:
1881 revents = audio_poll(sc, events, l, file);
1882 break;
1883 case AUDIOCTL_DEVICE:
1884 case MIXER_DEVICE:
1885 revents = 0;
1886 break;
1887 default:
1888 revents = POLLERR;
1889 break;
1890 }
1891
1892 audio_file_exit(sc, &sc_ref);
1893 return revents;
1894 }
1895
1896 static int
1897 audiokqfilter(struct file *fp, struct knote *kn)
1898 {
1899 struct audio_softc *sc;
1900 struct psref sc_ref;
1901 audio_file_t *file;
1902 dev_t dev;
1903 int error;
1904
1905 KASSERT(fp->f_audioctx);
1906 file = fp->f_audioctx;
1907 dev = file->dev;
1908
1909 sc = audio_file_enter(file, &sc_ref);
1910 if (sc == NULL)
1911 return EIO;
1912
1913 switch (AUDIODEV(dev)) {
1914 case SOUND_DEVICE:
1915 case AUDIO_DEVICE:
1916 error = audio_kqfilter(sc, file, kn);
1917 break;
1918 case AUDIOCTL_DEVICE:
1919 case MIXER_DEVICE:
1920 error = ENODEV;
1921 break;
1922 default:
1923 error = ENXIO;
1924 break;
1925 }
1926
1927 audio_file_exit(sc, &sc_ref);
1928 return error;
1929 }
1930
1931 static int
1932 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1933 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1934 {
1935 struct audio_softc *sc;
1936 struct psref sc_ref;
1937 audio_file_t *file;
1938 dev_t dev;
1939 int error;
1940
1941 KASSERT(fp->f_audioctx);
1942 file = fp->f_audioctx;
1943 dev = file->dev;
1944
1945 sc = audio_file_enter(file, &sc_ref);
1946 if (sc == NULL)
1947 return EIO;
1948
1949 mutex_enter(sc->sc_lock);
1950 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1951 mutex_exit(sc->sc_lock);
1952
1953 switch (AUDIODEV(dev)) {
1954 case SOUND_DEVICE:
1955 case AUDIO_DEVICE:
1956 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1957 uobjp, maxprotp, file);
1958 break;
1959 case AUDIOCTL_DEVICE:
1960 case MIXER_DEVICE:
1961 default:
1962 error = ENOTSUP;
1963 break;
1964 }
1965
1966 audio_file_exit(sc, &sc_ref);
1967 return error;
1968 }
1969
1970
1971 /* Exported interfaces for audiobell. */
1972
1973 /*
1974 * Open for audiobell.
1975 * It stores allocated file to *filep.
1976 * If successful returns 0, otherwise errno.
1977 */
1978 int
1979 audiobellopen(dev_t dev, audio_file_t **filep)
1980 {
1981 struct audio_softc *sc;
1982 int error;
1983
1984 /* Find the device */
1985 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1986 if (sc == NULL || sc->hw_if == NULL)
1987 return ENXIO;
1988
1989 error = audio_exlock_enter(sc);
1990 if (error)
1991 return error;
1992
1993 device_active(sc->sc_dev, DVA_SYSTEM);
1994 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1995
1996 audio_exlock_exit(sc);
1997 return error;
1998 }
1999
2000 /* Close for audiobell */
2001 int
2002 audiobellclose(audio_file_t *file)
2003 {
2004 struct audio_softc *sc;
2005 struct psref sc_ref;
2006 int error;
2007
2008 sc = audio_file_enter(file, &sc_ref);
2009 if (sc == NULL)
2010 return EIO;
2011
2012 error = audio_close(sc, file);
2013
2014 audio_file_exit(sc, &sc_ref);
2015
2016 KASSERT(file->ptrack);
2017 audio_track_destroy(file->ptrack);
2018 KASSERT(file->rtrack == NULL);
2019 kmem_free(file, sizeof(*file));
2020 return error;
2021 }
2022
2023 /* Set sample rate for audiobell */
2024 int
2025 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2026 {
2027 struct audio_softc *sc;
2028 struct psref sc_ref;
2029 struct audio_info ai;
2030 int error;
2031
2032 sc = audio_file_enter(file, &sc_ref);
2033 if (sc == NULL)
2034 return EIO;
2035
2036 AUDIO_INITINFO(&ai);
2037 ai.play.sample_rate = sample_rate;
2038
2039 error = audio_exlock_enter(sc);
2040 if (error)
2041 goto done;
2042 error = audio_file_setinfo(sc, file, &ai);
2043 audio_exlock_exit(sc);
2044
2045 done:
2046 audio_file_exit(sc, &sc_ref);
2047 return error;
2048 }
2049
2050 /* Playback for audiobell */
2051 int
2052 audiobellwrite(audio_file_t *file, struct uio *uio)
2053 {
2054 struct audio_softc *sc;
2055 struct psref sc_ref;
2056 int error;
2057
2058 sc = audio_file_enter(file, &sc_ref);
2059 if (sc == NULL)
2060 return EIO;
2061
2062 error = audio_write(sc, uio, 0, file);
2063
2064 audio_file_exit(sc, &sc_ref);
2065 return error;
2066 }
2067
2068
2069 /*
2070 * Audio driver
2071 */
2072
2073 /*
2074 * Must be called with sc_exlock held and without sc_lock held.
2075 */
2076 int
2077 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2078 struct lwp *l, audio_file_t **bellfile)
2079 {
2080 struct audio_info ai;
2081 struct file *fp;
2082 audio_file_t *af;
2083 audio_ring_t *hwbuf;
2084 bool fullduplex;
2085 int fd;
2086 int error;
2087
2088 KASSERT(sc->sc_exlock);
2089
2090 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2091 (audiodebug >= 3) ? "start " : "",
2092 ISDEVSOUND(dev) ? "sound" : "audio",
2093 flags, sc->sc_popens, sc->sc_ropens);
2094
2095 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2096 af->sc = sc;
2097 af->dev = dev;
2098 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2099 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2100 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2101 af->mode |= AUMODE_RECORD;
2102 if (af->mode == 0) {
2103 error = ENXIO;
2104 goto bad1;
2105 }
2106
2107 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2108
2109 /*
2110 * On half duplex hardware,
2111 * 1. if mode is (PLAY | REC), let mode PLAY.
2112 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2113 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2114 */
2115 if (fullduplex == false) {
2116 if ((af->mode & AUMODE_PLAY)) {
2117 if (sc->sc_ropens != 0) {
2118 TRACE(1, "record track already exists");
2119 error = ENODEV;
2120 goto bad1;
2121 }
2122 /* Play takes precedence */
2123 af->mode &= ~AUMODE_RECORD;
2124 }
2125 if ((af->mode & AUMODE_RECORD)) {
2126 if (sc->sc_popens != 0) {
2127 TRACE(1, "play track already exists");
2128 error = ENODEV;
2129 goto bad1;
2130 }
2131 }
2132 }
2133
2134 /* Create tracks */
2135 if ((af->mode & AUMODE_PLAY))
2136 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2137 if ((af->mode & AUMODE_RECORD))
2138 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2139
2140 /* Set parameters */
2141 AUDIO_INITINFO(&ai);
2142 if (bellfile) {
2143 /* If audiobell, only sample_rate will be set later. */
2144 ai.play.sample_rate = audio_default.sample_rate;
2145 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2146 ai.play.channels = 1;
2147 ai.play.precision = 16;
2148 ai.play.pause = 0;
2149 } else if (ISDEVAUDIO(dev)) {
2150 /* If /dev/audio, initialize everytime. */
2151 ai.play.sample_rate = audio_default.sample_rate;
2152 ai.play.encoding = audio_default.encoding;
2153 ai.play.channels = audio_default.channels;
2154 ai.play.precision = audio_default.precision;
2155 ai.play.pause = 0;
2156 ai.record.sample_rate = audio_default.sample_rate;
2157 ai.record.encoding = audio_default.encoding;
2158 ai.record.channels = audio_default.channels;
2159 ai.record.precision = audio_default.precision;
2160 ai.record.pause = 0;
2161 } else {
2162 /* If /dev/sound, take over the previous parameters. */
2163 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2164 ai.play.encoding = sc->sc_sound_pparams.encoding;
2165 ai.play.channels = sc->sc_sound_pparams.channels;
2166 ai.play.precision = sc->sc_sound_pparams.precision;
2167 ai.play.pause = sc->sc_sound_ppause;
2168 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2169 ai.record.encoding = sc->sc_sound_rparams.encoding;
2170 ai.record.channels = sc->sc_sound_rparams.channels;
2171 ai.record.precision = sc->sc_sound_rparams.precision;
2172 ai.record.pause = sc->sc_sound_rpause;
2173 }
2174 error = audio_file_setinfo(sc, af, &ai);
2175 if (error)
2176 goto bad2;
2177
2178 if (sc->sc_popens + sc->sc_ropens == 0) {
2179 /* First open */
2180
2181 sc->sc_cred = kauth_cred_get();
2182 kauth_cred_hold(sc->sc_cred);
2183
2184 if (sc->hw_if->open) {
2185 int hwflags;
2186
2187 /*
2188 * Call hw_if->open() only at first open of
2189 * combination of playback and recording.
2190 * On full duplex hardware, the flags passed to
2191 * hw_if->open() is always (FREAD | FWRITE)
2192 * regardless of this open()'s flags.
2193 * see also dev/isa/aria.c
2194 * On half duplex hardware, the flags passed to
2195 * hw_if->open() is either FREAD or FWRITE.
2196 * see also arch/evbarm/mini2440/audio_mini2440.c
2197 */
2198 if (fullduplex) {
2199 hwflags = FREAD | FWRITE;
2200 } else {
2201 /* Construct hwflags from af->mode. */
2202 hwflags = 0;
2203 if ((af->mode & AUMODE_PLAY) != 0)
2204 hwflags |= FWRITE;
2205 if ((af->mode & AUMODE_RECORD) != 0)
2206 hwflags |= FREAD;
2207 }
2208
2209 mutex_enter(sc->sc_lock);
2210 mutex_enter(sc->sc_intr_lock);
2211 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2212 mutex_exit(sc->sc_intr_lock);
2213 mutex_exit(sc->sc_lock);
2214 if (error)
2215 goto bad2;
2216 }
2217
2218 /*
2219 * Set speaker mode when a half duplex.
2220 * XXX I'm not sure this is correct.
2221 */
2222 if (1/*XXX*/) {
2223 if (sc->hw_if->speaker_ctl) {
2224 int on;
2225 if (af->ptrack) {
2226 on = 1;
2227 } else {
2228 on = 0;
2229 }
2230 mutex_enter(sc->sc_lock);
2231 mutex_enter(sc->sc_intr_lock);
2232 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2233 mutex_exit(sc->sc_intr_lock);
2234 mutex_exit(sc->sc_lock);
2235 if (error)
2236 goto bad3;
2237 }
2238 }
2239 } else if (sc->sc_multiuser == false) {
2240 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2241 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2242 error = EPERM;
2243 goto bad2;
2244 }
2245 }
2246
2247 /* Call init_output if this is the first playback open. */
2248 if (af->ptrack && sc->sc_popens == 0) {
2249 if (sc->hw_if->init_output) {
2250 hwbuf = &sc->sc_pmixer->hwbuf;
2251 mutex_enter(sc->sc_lock);
2252 mutex_enter(sc->sc_intr_lock);
2253 error = sc->hw_if->init_output(sc->hw_hdl,
2254 hwbuf->mem,
2255 hwbuf->capacity *
2256 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2257 mutex_exit(sc->sc_intr_lock);
2258 mutex_exit(sc->sc_lock);
2259 if (error)
2260 goto bad3;
2261 }
2262 }
2263 /*
2264 * Call init_input and start rmixer, if this is the first recording
2265 * open. See pause consideration notes.
2266 */
2267 if (af->rtrack && sc->sc_ropens == 0) {
2268 if (sc->hw_if->init_input) {
2269 hwbuf = &sc->sc_rmixer->hwbuf;
2270 mutex_enter(sc->sc_lock);
2271 mutex_enter(sc->sc_intr_lock);
2272 error = sc->hw_if->init_input(sc->hw_hdl,
2273 hwbuf->mem,
2274 hwbuf->capacity *
2275 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2276 mutex_exit(sc->sc_intr_lock);
2277 mutex_exit(sc->sc_lock);
2278 if (error)
2279 goto bad3;
2280 }
2281
2282 mutex_enter(sc->sc_lock);
2283 audio_rmixer_start(sc);
2284 mutex_exit(sc->sc_lock);
2285 }
2286
2287 if (bellfile == NULL) {
2288 error = fd_allocfile(&fp, &fd);
2289 if (error)
2290 goto bad3;
2291 }
2292
2293 /*
2294 * Count up finally.
2295 * Don't fail from here.
2296 */
2297 mutex_enter(sc->sc_lock);
2298 if (af->ptrack)
2299 sc->sc_popens++;
2300 if (af->rtrack)
2301 sc->sc_ropens++;
2302 mutex_enter(sc->sc_intr_lock);
2303 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2304 mutex_exit(sc->sc_intr_lock);
2305 mutex_exit(sc->sc_lock);
2306
2307 if (bellfile) {
2308 *bellfile = af;
2309 } else {
2310 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2311 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2312 }
2313
2314 TRACEF(3, af, "done");
2315 return error;
2316
2317 /*
2318 * Since track here is not yet linked to sc_files,
2319 * you can call track_destroy() without sc_intr_lock.
2320 */
2321 bad3:
2322 if (sc->sc_popens + sc->sc_ropens == 0) {
2323 if (sc->hw_if->close) {
2324 mutex_enter(sc->sc_lock);
2325 mutex_enter(sc->sc_intr_lock);
2326 sc->hw_if->close(sc->hw_hdl);
2327 mutex_exit(sc->sc_intr_lock);
2328 mutex_exit(sc->sc_lock);
2329 }
2330 }
2331 bad2:
2332 if (af->rtrack) {
2333 audio_track_destroy(af->rtrack);
2334 af->rtrack = NULL;
2335 }
2336 if (af->ptrack) {
2337 audio_track_destroy(af->ptrack);
2338 af->ptrack = NULL;
2339 }
2340 bad1:
2341 kmem_free(af, sizeof(*af));
2342 return error;
2343 }
2344
2345 /*
2346 * Must be called without sc_lock nor sc_exlock held.
2347 */
2348 int
2349 audio_close(struct audio_softc *sc, audio_file_t *file)
2350 {
2351
2352 /* Protect entering new fileops to this file */
2353 atomic_store_relaxed(&file->dying, true);
2354
2355 /*
2356 * Drain first.
2357 * It must be done before unlinking(acquiring exlock).
2358 */
2359 if (file->ptrack) {
2360 mutex_enter(sc->sc_lock);
2361 audio_track_drain(sc, file->ptrack);
2362 mutex_exit(sc->sc_lock);
2363 }
2364
2365 return audio_unlink(sc, file);
2366 }
2367
2368 /*
2369 * Unlink this file, but not freeing memory here.
2370 * Must be called without sc_lock nor sc_exlock held.
2371 */
2372 int
2373 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2374 {
2375 int error;
2376
2377 mutex_enter(sc->sc_lock);
2378
2379 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2380 (audiodebug >= 3) ? "start " : "",
2381 (int)curproc->p_pid, (int)curlwp->l_lid,
2382 sc->sc_popens, sc->sc_ropens);
2383 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2384 "sc->sc_popens=%d, sc->sc_ropens=%d",
2385 sc->sc_popens, sc->sc_ropens);
2386
2387 /*
2388 * Acquire exlock to protect counters.
2389 * Does not use audio_exlock_enter() due to sc_dying.
2390 */
2391 while (__predict_false(sc->sc_exlock != 0)) {
2392 error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
2393 mstohz(AUDIO_TIMEOUT));
2394 /* XXX what should I do on error? */
2395 if (error == EWOULDBLOCK) {
2396 mutex_exit(sc->sc_lock);
2397 device_printf(sc->sc_dev,
2398 "%s: cv_timedwait_sig failed %d", __func__, error);
2399 return error;
2400 }
2401 }
2402 sc->sc_exlock = 1;
2403
2404 device_active(sc->sc_dev, DVA_SYSTEM);
2405
2406 mutex_enter(sc->sc_intr_lock);
2407 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2408 mutex_exit(sc->sc_intr_lock);
2409
2410 if (file->ptrack) {
2411 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2412 file->ptrack->dropframes);
2413
2414 KASSERT(sc->sc_popens > 0);
2415 sc->sc_popens--;
2416
2417 /* Call hw halt_output if this is the last playback track. */
2418 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2419 error = audio_pmixer_halt(sc);
2420 if (error) {
2421 device_printf(sc->sc_dev,
2422 "halt_output failed with %d (ignored)\n",
2423 error);
2424 }
2425 }
2426
2427 /* Restore mixing volume if all tracks are gone. */
2428 if (sc->sc_popens == 0) {
2429 /* intr_lock is not necessary, but just manners. */
2430 mutex_enter(sc->sc_intr_lock);
2431 sc->sc_pmixer->volume = 256;
2432 sc->sc_pmixer->voltimer = 0;
2433 mutex_exit(sc->sc_intr_lock);
2434 }
2435 }
2436 if (file->rtrack) {
2437 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2438 file->rtrack->dropframes);
2439
2440 KASSERT(sc->sc_ropens > 0);
2441 sc->sc_ropens--;
2442
2443 /* Call hw halt_input if this is the last recording track. */
2444 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2445 error = audio_rmixer_halt(sc);
2446 if (error) {
2447 device_printf(sc->sc_dev,
2448 "halt_input failed with %d (ignored)\n",
2449 error);
2450 }
2451 }
2452
2453 }
2454
2455 /* Call hw close if this is the last track. */
2456 if (sc->sc_popens + sc->sc_ropens == 0) {
2457 if (sc->hw_if->close) {
2458 TRACE(2, "hw_if close");
2459 mutex_enter(sc->sc_intr_lock);
2460 sc->hw_if->close(sc->hw_hdl);
2461 mutex_exit(sc->sc_intr_lock);
2462 }
2463 }
2464
2465 mutex_exit(sc->sc_lock);
2466 if (sc->sc_popens + sc->sc_ropens == 0)
2467 kauth_cred_free(sc->sc_cred);
2468
2469 TRACE(3, "done");
2470 audio_exlock_exit(sc);
2471
2472 return 0;
2473 }
2474
2475 /*
2476 * Must be called without sc_lock nor sc_exlock held.
2477 */
2478 int
2479 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2480 audio_file_t *file)
2481 {
2482 audio_track_t *track;
2483 audio_ring_t *usrbuf;
2484 audio_ring_t *input;
2485 int error;
2486
2487 /*
2488 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2489 * However read() system call itself can be called because it's
2490 * opened with O_RDWR. So in this case, deny this read().
2491 */
2492 track = file->rtrack;
2493 if (track == NULL) {
2494 return EBADF;
2495 }
2496
2497 /* I think it's better than EINVAL. */
2498 if (track->mmapped)
2499 return EPERM;
2500
2501 TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2502
2503 #ifdef AUDIO_PM_IDLE
2504 error = audio_exlock_mutex_enter(sc);
2505 if (error)
2506 return error;
2507
2508 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2509 device_active(&sc->sc_dev, DVA_SYSTEM);
2510
2511 /* In recording, unlike playback, read() never operates rmixer. */
2512
2513 audio_exlock_mutex_exit(sc);
2514 #endif
2515
2516 usrbuf = &track->usrbuf;
2517 input = track->input;
2518 error = 0;
2519
2520 while (uio->uio_resid > 0 && error == 0) {
2521 int bytes;
2522
2523 TRACET(3, track,
2524 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2525 uio->uio_resid,
2526 input->head, input->used, input->capacity,
2527 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2528
2529 /* Wait when buffers are empty. */
2530 mutex_enter(sc->sc_lock);
2531 for (;;) {
2532 bool empty;
2533 audio_track_lock_enter(track);
2534 empty = (input->used == 0 && usrbuf->used == 0);
2535 audio_track_lock_exit(track);
2536 if (!empty)
2537 break;
2538
2539 if ((ioflag & IO_NDELAY)) {
2540 mutex_exit(sc->sc_lock);
2541 return EWOULDBLOCK;
2542 }
2543
2544 TRACET(3, track, "sleep");
2545 error = audio_track_waitio(sc, track);
2546 if (error) {
2547 mutex_exit(sc->sc_lock);
2548 return error;
2549 }
2550 }
2551 mutex_exit(sc->sc_lock);
2552
2553 audio_track_lock_enter(track);
2554 audio_track_record(track);
2555
2556 /* uiomove from usrbuf as much as possible. */
2557 bytes = uimin(usrbuf->used, uio->uio_resid);
2558 while (bytes > 0) {
2559 int head = usrbuf->head;
2560 int len = uimin(bytes, usrbuf->capacity - head);
2561 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2562 uio);
2563 if (error) {
2564 audio_track_lock_exit(track);
2565 device_printf(sc->sc_dev,
2566 "uiomove(len=%d) failed with %d\n",
2567 len, error);
2568 goto abort;
2569 }
2570 auring_take(usrbuf, len);
2571 track->useriobytes += len;
2572 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2573 len,
2574 usrbuf->head, usrbuf->used, usrbuf->capacity);
2575 bytes -= len;
2576 }
2577
2578 audio_track_lock_exit(track);
2579 }
2580
2581 abort:
2582 return error;
2583 }
2584
2585
2586 /*
2587 * Clear file's playback and/or record track buffer immediately.
2588 */
2589 static void
2590 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2591 {
2592
2593 if (file->ptrack)
2594 audio_track_clear(sc, file->ptrack);
2595 if (file->rtrack)
2596 audio_track_clear(sc, file->rtrack);
2597 }
2598
2599 /*
2600 * Must be called without sc_lock nor sc_exlock held.
2601 */
2602 int
2603 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2604 audio_file_t *file)
2605 {
2606 audio_track_t *track;
2607 audio_ring_t *usrbuf;
2608 audio_ring_t *outbuf;
2609 int error;
2610
2611 track = file->ptrack;
2612 KASSERT(track);
2613
2614 /* I think it's better than EINVAL. */
2615 if (track->mmapped)
2616 return EPERM;
2617
2618 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2619 audiodebug >= 3 ? "begin " : "",
2620 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2621
2622 if (uio->uio_resid == 0) {
2623 track->eofcounter++;
2624 return 0;
2625 }
2626
2627 error = audio_exlock_mutex_enter(sc);
2628 if (error)
2629 return error;
2630
2631 #ifdef AUDIO_PM_IDLE
2632 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2633 device_active(&sc->sc_dev, DVA_SYSTEM);
2634 #endif
2635
2636 /*
2637 * The first write starts pmixer.
2638 */
2639 if (sc->sc_pbusy == false)
2640 audio_pmixer_start(sc, false);
2641 audio_exlock_mutex_exit(sc);
2642
2643 usrbuf = &track->usrbuf;
2644 outbuf = &track->outbuf;
2645 track->pstate = AUDIO_STATE_RUNNING;
2646 error = 0;
2647
2648 while (uio->uio_resid > 0 && error == 0) {
2649 int bytes;
2650
2651 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2652 uio->uio_resid,
2653 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2654
2655 /* Wait when buffers are full. */
2656 mutex_enter(sc->sc_lock);
2657 for (;;) {
2658 bool full;
2659 audio_track_lock_enter(track);
2660 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2661 outbuf->used >= outbuf->capacity);
2662 audio_track_lock_exit(track);
2663 if (!full)
2664 break;
2665
2666 if ((ioflag & IO_NDELAY)) {
2667 error = EWOULDBLOCK;
2668 mutex_exit(sc->sc_lock);
2669 goto abort;
2670 }
2671
2672 TRACET(3, track, "sleep usrbuf=%d/H%d",
2673 usrbuf->used, track->usrbuf_usedhigh);
2674 error = audio_track_waitio(sc, track);
2675 if (error) {
2676 mutex_exit(sc->sc_lock);
2677 goto abort;
2678 }
2679 }
2680 mutex_exit(sc->sc_lock);
2681
2682 audio_track_lock_enter(track);
2683
2684 /* uiomove to usrbuf as much as possible. */
2685 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2686 uio->uio_resid);
2687 while (bytes > 0) {
2688 int tail = auring_tail(usrbuf);
2689 int len = uimin(bytes, usrbuf->capacity - tail);
2690 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2691 uio);
2692 if (error) {
2693 audio_track_lock_exit(track);
2694 device_printf(sc->sc_dev,
2695 "uiomove(len=%d) failed with %d\n",
2696 len, error);
2697 goto abort;
2698 }
2699 auring_push(usrbuf, len);
2700 track->useriobytes += len;
2701 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2702 len,
2703 usrbuf->head, usrbuf->used, usrbuf->capacity);
2704 bytes -= len;
2705 }
2706
2707 /* Convert them as much as possible. */
2708 while (usrbuf->used >= track->usrbuf_blksize &&
2709 outbuf->used < outbuf->capacity) {
2710 audio_track_play(track);
2711 }
2712
2713 audio_track_lock_exit(track);
2714 }
2715
2716 abort:
2717 TRACET(3, track, "done error=%d", error);
2718 return error;
2719 }
2720
2721 /*
2722 * Must be called without sc_lock nor sc_exlock held.
2723 */
2724 int
2725 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2726 struct lwp *l, audio_file_t *file)
2727 {
2728 struct audio_offset *ao;
2729 struct audio_info ai;
2730 audio_track_t *track;
2731 audio_encoding_t *ae;
2732 audio_format_query_t *query;
2733 u_int stamp;
2734 u_int offs;
2735 int fd;
2736 int index;
2737 int error;
2738
2739 #if defined(AUDIO_DEBUG)
2740 const char *ioctlnames[] = {
2741 " AUDIO_GETINFO", /* 21 */
2742 " AUDIO_SETINFO", /* 22 */
2743 " AUDIO_DRAIN", /* 23 */
2744 " AUDIO_FLUSH", /* 24 */
2745 " AUDIO_WSEEK", /* 25 */
2746 " AUDIO_RERROR", /* 26 */
2747 " AUDIO_GETDEV", /* 27 */
2748 " AUDIO_GETENC", /* 28 */
2749 " AUDIO_GETFD", /* 29 */
2750 " AUDIO_SETFD", /* 30 */
2751 " AUDIO_PERROR", /* 31 */
2752 " AUDIO_GETIOFFS", /* 32 */
2753 " AUDIO_GETOOFFS", /* 33 */
2754 " AUDIO_GETPROPS", /* 34 */
2755 " AUDIO_GETBUFINFO", /* 35 */
2756 " AUDIO_SETCHAN", /* 36 */
2757 " AUDIO_GETCHAN", /* 37 */
2758 " AUDIO_QUERYFORMAT", /* 38 */
2759 " AUDIO_GETFORMAT", /* 39 */
2760 " AUDIO_SETFORMAT", /* 40 */
2761 };
2762 int nameidx = (cmd & 0xff);
2763 const char *ioctlname = "";
2764 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2765 ioctlname = ioctlnames[nameidx - 21];
2766 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2767 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2768 (int)curproc->p_pid, (int)l->l_lid);
2769 #endif
2770
2771 error = 0;
2772 switch (cmd) {
2773 case FIONBIO:
2774 /* All handled in the upper FS layer. */
2775 break;
2776
2777 case FIONREAD:
2778 /* Get the number of bytes that can be read. */
2779 if (file->rtrack) {
2780 *(int *)addr = audio_track_readablebytes(file->rtrack);
2781 } else {
2782 *(int *)addr = 0;
2783 }
2784 break;
2785
2786 case FIOASYNC:
2787 /* Set/Clear ASYNC I/O. */
2788 if (*(int *)addr) {
2789 file->async_audio = curproc->p_pid;
2790 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2791 } else {
2792 file->async_audio = 0;
2793 TRACEF(2, file, "FIOASYNC off");
2794 }
2795 break;
2796
2797 case AUDIO_FLUSH:
2798 /* XXX TODO: clear errors and restart? */
2799 audio_file_clear(sc, file);
2800 break;
2801
2802 case AUDIO_RERROR:
2803 /*
2804 * Number of read bytes dropped. We don't know where
2805 * or when they were dropped (including conversion stage).
2806 * Therefore, the number of accurate bytes or samples is
2807 * also unknown.
2808 */
2809 track = file->rtrack;
2810 if (track) {
2811 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2812 track->dropframes);
2813 }
2814 break;
2815
2816 case AUDIO_PERROR:
2817 /*
2818 * Number of write bytes dropped. We don't know where
2819 * or when they were dropped (including conversion stage).
2820 * Therefore, the number of accurate bytes or samples is
2821 * also unknown.
2822 */
2823 track = file->ptrack;
2824 if (track) {
2825 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2826 track->dropframes);
2827 }
2828 break;
2829
2830 case AUDIO_GETIOFFS:
2831 /* XXX TODO */
2832 ao = (struct audio_offset *)addr;
2833 ao->samples = 0;
2834 ao->deltablks = 0;
2835 ao->offset = 0;
2836 break;
2837
2838 case AUDIO_GETOOFFS:
2839 ao = (struct audio_offset *)addr;
2840 track = file->ptrack;
2841 if (track == NULL) {
2842 ao->samples = 0;
2843 ao->deltablks = 0;
2844 ao->offset = 0;
2845 break;
2846 }
2847 mutex_enter(sc->sc_lock);
2848 mutex_enter(sc->sc_intr_lock);
2849 /* figure out where next DMA will start */
2850 stamp = track->usrbuf_stamp;
2851 offs = track->usrbuf.head;
2852 mutex_exit(sc->sc_intr_lock);
2853 mutex_exit(sc->sc_lock);
2854
2855 ao->samples = stamp;
2856 ao->deltablks = (stamp / track->usrbuf_blksize) -
2857 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2858 track->usrbuf_stamp_last = stamp;
2859 offs = rounddown(offs, track->usrbuf_blksize)
2860 + track->usrbuf_blksize;
2861 if (offs >= track->usrbuf.capacity)
2862 offs -= track->usrbuf.capacity;
2863 ao->offset = offs;
2864
2865 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2866 ao->samples, ao->deltablks, ao->offset);
2867 break;
2868
2869 case AUDIO_WSEEK:
2870 /* XXX return value does not include outbuf one. */
2871 if (file->ptrack)
2872 *(u_long *)addr = file->ptrack->usrbuf.used;
2873 break;
2874
2875 case AUDIO_SETINFO:
2876 error = audio_exlock_enter(sc);
2877 if (error)
2878 break;
2879 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2880 if (error) {
2881 audio_exlock_exit(sc);
2882 break;
2883 }
2884 /* XXX TODO: update last_ai if /dev/sound ? */
2885 if (ISDEVSOUND(dev))
2886 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2887 audio_exlock_exit(sc);
2888 break;
2889
2890 case AUDIO_GETINFO:
2891 error = audio_exlock_enter(sc);
2892 if (error)
2893 break;
2894 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2895 audio_exlock_exit(sc);
2896 break;
2897
2898 case AUDIO_GETBUFINFO:
2899 error = audio_exlock_enter(sc);
2900 if (error)
2901 break;
2902 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2903 audio_exlock_exit(sc);
2904 break;
2905
2906 case AUDIO_DRAIN:
2907 if (file->ptrack) {
2908 mutex_enter(sc->sc_lock);
2909 error = audio_track_drain(sc, file->ptrack);
2910 mutex_exit(sc->sc_lock);
2911 }
2912 break;
2913
2914 case AUDIO_GETDEV:
2915 mutex_enter(sc->sc_lock);
2916 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2917 mutex_exit(sc->sc_lock);
2918 break;
2919
2920 case AUDIO_GETENC:
2921 ae = (audio_encoding_t *)addr;
2922 index = ae->index;
2923 if (index < 0 || index >= __arraycount(audio_encodings)) {
2924 error = EINVAL;
2925 break;
2926 }
2927 *ae = audio_encodings[index];
2928 ae->index = index;
2929 /*
2930 * EMULATED always.
2931 * EMULATED flag at that time used to mean that it could
2932 * not be passed directly to the hardware as-is. But
2933 * currently, all formats including hardware native is not
2934 * passed directly to the hardware. So I set EMULATED
2935 * flag for all formats.
2936 */
2937 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2938 break;
2939
2940 case AUDIO_GETFD:
2941 /*
2942 * Returns the current setting of full duplex mode.
2943 * If HW has full duplex mode and there are two mixers,
2944 * it is full duplex. Otherwise half duplex.
2945 */
2946 error = audio_exlock_enter(sc);
2947 if (error)
2948 break;
2949 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2950 && (sc->sc_pmixer && sc->sc_rmixer);
2951 audio_exlock_exit(sc);
2952 *(int *)addr = fd;
2953 break;
2954
2955 case AUDIO_GETPROPS:
2956 *(int *)addr = sc->sc_props;
2957 break;
2958
2959 case AUDIO_QUERYFORMAT:
2960 query = (audio_format_query_t *)addr;
2961 mutex_enter(sc->sc_lock);
2962 error = sc->hw_if->query_format(sc->hw_hdl, query);
2963 mutex_exit(sc->sc_lock);
2964 /* Hide internal infomations */
2965 query->fmt.driver_data = NULL;
2966 break;
2967
2968 case AUDIO_GETFORMAT:
2969 error = audio_exlock_enter(sc);
2970 if (error)
2971 break;
2972 audio_mixers_get_format(sc, (struct audio_info *)addr);
2973 audio_exlock_exit(sc);
2974 break;
2975
2976 case AUDIO_SETFORMAT:
2977 error = audio_exlock_enter(sc);
2978 audio_mixers_get_format(sc, &ai);
2979 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2980 if (error) {
2981 /* Rollback */
2982 audio_mixers_set_format(sc, &ai);
2983 }
2984 audio_exlock_exit(sc);
2985 break;
2986
2987 case AUDIO_SETFD:
2988 case AUDIO_SETCHAN:
2989 case AUDIO_GETCHAN:
2990 /* Obsoleted */
2991 break;
2992
2993 default:
2994 if (sc->hw_if->dev_ioctl) {
2995 mutex_enter(sc->sc_lock);
2996 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2997 cmd, addr, flag, l);
2998 mutex_exit(sc->sc_lock);
2999 } else {
3000 TRACEF(2, file, "unknown ioctl");
3001 error = EINVAL;
3002 }
3003 break;
3004 }
3005 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
3006 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
3007 error);
3008 return error;
3009 }
3010
3011 /*
3012 * Returns the number of bytes that can be read on recording buffer.
3013 */
3014 static __inline int
3015 audio_track_readablebytes(const audio_track_t *track)
3016 {
3017 int bytes;
3018
3019 KASSERT(track);
3020 KASSERT(track->mode == AUMODE_RECORD);
3021
3022 /*
3023 * Although usrbuf is primarily readable data, recorded data
3024 * also stays in track->input until reading. So it is necessary
3025 * to add it. track->input is in frame, usrbuf is in byte.
3026 */
3027 bytes = track->usrbuf.used +
3028 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3029 return bytes;
3030 }
3031
3032 /*
3033 * Must be called without sc_lock nor sc_exlock held.
3034 */
3035 int
3036 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3037 audio_file_t *file)
3038 {
3039 audio_track_t *track;
3040 int revents;
3041 bool in_is_valid;
3042 bool out_is_valid;
3043
3044 #if defined(AUDIO_DEBUG)
3045 #define POLLEV_BITMAP "\177\020" \
3046 "b\10WRBAND\0" \
3047 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3048 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3049 char evbuf[64];
3050 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3051 TRACEF(2, file, "pid=%d.%d events=%s",
3052 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3053 #endif
3054
3055 revents = 0;
3056 in_is_valid = false;
3057 out_is_valid = false;
3058 if (events & (POLLIN | POLLRDNORM)) {
3059 track = file->rtrack;
3060 if (track) {
3061 int used;
3062 in_is_valid = true;
3063 used = audio_track_readablebytes(track);
3064 if (used > 0)
3065 revents |= events & (POLLIN | POLLRDNORM);
3066 }
3067 }
3068 if (events & (POLLOUT | POLLWRNORM)) {
3069 track = file->ptrack;
3070 if (track) {
3071 out_is_valid = true;
3072 if (track->usrbuf.used <= track->usrbuf_usedlow)
3073 revents |= events & (POLLOUT | POLLWRNORM);
3074 }
3075 }
3076
3077 if (revents == 0) {
3078 mutex_enter(sc->sc_lock);
3079 if (in_is_valid) {
3080 TRACEF(3, file, "selrecord rsel");
3081 selrecord(l, &sc->sc_rsel);
3082 }
3083 if (out_is_valid) {
3084 TRACEF(3, file, "selrecord wsel");
3085 selrecord(l, &sc->sc_wsel);
3086 }
3087 mutex_exit(sc->sc_lock);
3088 }
3089
3090 #if defined(AUDIO_DEBUG)
3091 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3092 TRACEF(2, file, "revents=%s", evbuf);
3093 #endif
3094 return revents;
3095 }
3096
3097 static const struct filterops audioread_filtops = {
3098 .f_isfd = 1,
3099 .f_attach = NULL,
3100 .f_detach = filt_audioread_detach,
3101 .f_event = filt_audioread_event,
3102 };
3103
3104 static void
3105 filt_audioread_detach(struct knote *kn)
3106 {
3107 struct audio_softc *sc;
3108 audio_file_t *file;
3109
3110 file = kn->kn_hook;
3111 sc = file->sc;
3112 TRACEF(3, file, "");
3113
3114 mutex_enter(sc->sc_lock);
3115 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
3116 mutex_exit(sc->sc_lock);
3117 }
3118
3119 static int
3120 filt_audioread_event(struct knote *kn, long hint)
3121 {
3122 audio_file_t *file;
3123 audio_track_t *track;
3124
3125 file = kn->kn_hook;
3126 track = file->rtrack;
3127
3128 /*
3129 * kn_data must contain the number of bytes can be read.
3130 * The return value indicates whether the event occurs or not.
3131 */
3132
3133 if (track == NULL) {
3134 /* can not read with this descriptor. */
3135 kn->kn_data = 0;
3136 return 0;
3137 }
3138
3139 kn->kn_data = audio_track_readablebytes(track);
3140 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3141 return kn->kn_data > 0;
3142 }
3143
3144 static const struct filterops audiowrite_filtops = {
3145 .f_isfd = 1,
3146 .f_attach = NULL,
3147 .f_detach = filt_audiowrite_detach,
3148 .f_event = filt_audiowrite_event,
3149 };
3150
3151 static void
3152 filt_audiowrite_detach(struct knote *kn)
3153 {
3154 struct audio_softc *sc;
3155 audio_file_t *file;
3156
3157 file = kn->kn_hook;
3158 sc = file->sc;
3159 TRACEF(3, file, "");
3160
3161 mutex_enter(sc->sc_lock);
3162 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
3163 mutex_exit(sc->sc_lock);
3164 }
3165
3166 static int
3167 filt_audiowrite_event(struct knote *kn, long hint)
3168 {
3169 audio_file_t *file;
3170 audio_track_t *track;
3171
3172 file = kn->kn_hook;
3173 track = file->ptrack;
3174
3175 /*
3176 * kn_data must contain the number of bytes can be write.
3177 * The return value indicates whether the event occurs or not.
3178 */
3179
3180 if (track == NULL) {
3181 /* can not write with this descriptor. */
3182 kn->kn_data = 0;
3183 return 0;
3184 }
3185
3186 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3187 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3188 return (track->usrbuf.used < track->usrbuf_usedlow);
3189 }
3190
3191 /*
3192 * Must be called without sc_lock nor sc_exlock held.
3193 */
3194 int
3195 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3196 {
3197 struct klist *klist;
3198
3199 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3200
3201 mutex_enter(sc->sc_lock);
3202 switch (kn->kn_filter) {
3203 case EVFILT_READ:
3204 klist = &sc->sc_rsel.sel_klist;
3205 kn->kn_fop = &audioread_filtops;
3206 break;
3207
3208 case EVFILT_WRITE:
3209 klist = &sc->sc_wsel.sel_klist;
3210 kn->kn_fop = &audiowrite_filtops;
3211 break;
3212
3213 default:
3214 mutex_exit(sc->sc_lock);
3215 return EINVAL;
3216 }
3217
3218 kn->kn_hook = file;
3219
3220 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3221 mutex_exit(sc->sc_lock);
3222
3223 return 0;
3224 }
3225
3226 /*
3227 * Must be called without sc_lock nor sc_exlock held.
3228 */
3229 int
3230 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3231 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3232 audio_file_t *file)
3233 {
3234 audio_track_t *track;
3235 vsize_t vsize;
3236 int error;
3237
3238 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3239
3240 if (*offp < 0)
3241 return EINVAL;
3242
3243 #if 0
3244 /* XXX
3245 * The idea here was to use the protection to determine if
3246 * we are mapping the read or write buffer, but it fails.
3247 * The VM system is broken in (at least) two ways.
3248 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3249 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3250 * has to be used for mmapping the play buffer.
3251 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3252 * audio_mmap will get called at some point with VM_PROT_READ
3253 * only.
3254 * So, alas, we always map the play buffer for now.
3255 */
3256 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3257 prot == VM_PROT_WRITE)
3258 track = file->ptrack;
3259 else if (prot == VM_PROT_READ)
3260 track = file->rtrack;
3261 else
3262 return EINVAL;
3263 #else
3264 track = file->ptrack;
3265 #endif
3266 if (track == NULL)
3267 return EACCES;
3268
3269 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3270 if (len > vsize)
3271 return EOVERFLOW;
3272 if (*offp > (uint)(vsize - len))
3273 return EOVERFLOW;
3274
3275 /* XXX TODO: what happens when mmap twice. */
3276 if (!track->mmapped) {
3277 track->mmapped = true;
3278
3279 if (!track->is_pause) {
3280 error = audio_exlock_mutex_enter(sc);
3281 if (error)
3282 return error;
3283 if (sc->sc_pbusy == false)
3284 audio_pmixer_start(sc, true);
3285 audio_exlock_mutex_exit(sc);
3286 }
3287 /* XXX mmapping record buffer is not supported */
3288 }
3289
3290 /* get ringbuffer */
3291 *uobjp = track->uobj;
3292
3293 /* Acquire a reference for the mmap. munmap will release. */
3294 uao_reference(*uobjp);
3295 *maxprotp = prot;
3296 *advicep = UVM_ADV_RANDOM;
3297 *flagsp = MAP_SHARED;
3298 return 0;
3299 }
3300
3301 /*
3302 * /dev/audioctl has to be able to open at any time without interference
3303 * with any /dev/audio or /dev/sound.
3304 * Must be called with sc_exlock held and without sc_lock held.
3305 */
3306 static int
3307 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3308 struct lwp *l)
3309 {
3310 struct file *fp;
3311 audio_file_t *af;
3312 int fd;
3313 int error;
3314
3315 KASSERT(sc->sc_exlock);
3316
3317 TRACE(1, "");
3318
3319 error = fd_allocfile(&fp, &fd);
3320 if (error)
3321 return error;
3322
3323 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3324 af->sc = sc;
3325 af->dev = dev;
3326
3327 /* Not necessary to insert sc_files. */
3328
3329 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3330 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3331
3332 return error;
3333 }
3334
3335 /*
3336 * Free 'mem' if available, and initialize the pointer.
3337 * For this reason, this is implemented as macro.
3338 */
3339 #define audio_free(mem) do { \
3340 if (mem != NULL) { \
3341 kern_free(mem); \
3342 mem = NULL; \
3343 } \
3344 } while (0)
3345
3346 /*
3347 * (Re)allocate 'memblock' with specified 'bytes'.
3348 * bytes must not be 0.
3349 * This function never returns NULL.
3350 */
3351 static void *
3352 audio_realloc(void *memblock, size_t bytes)
3353 {
3354
3355 KASSERT(bytes != 0);
3356 audio_free(memblock);
3357 return kern_malloc(bytes, M_WAITOK);
3358 }
3359
3360 /*
3361 * (Re)allocate usrbuf with 'newbufsize' bytes.
3362 * Use this function for usrbuf because only usrbuf can be mmapped.
3363 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3364 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3365 * and returns errno.
3366 * It must be called before updating usrbuf.capacity.
3367 */
3368 static int
3369 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3370 {
3371 struct audio_softc *sc;
3372 vaddr_t vstart;
3373 vsize_t oldvsize;
3374 vsize_t newvsize;
3375 int error;
3376
3377 KASSERT(newbufsize > 0);
3378 sc = track->mixer->sc;
3379
3380 /* Get a nonzero multiple of PAGE_SIZE */
3381 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3382
3383 if (track->usrbuf.mem != NULL) {
3384 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3385 PAGE_SIZE);
3386 if (oldvsize == newvsize) {
3387 track->usrbuf.capacity = newbufsize;
3388 return 0;
3389 }
3390 vstart = (vaddr_t)track->usrbuf.mem;
3391 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3392 /* uvm_unmap also detach uobj */
3393 track->uobj = NULL; /* paranoia */
3394 track->usrbuf.mem = NULL;
3395 }
3396
3397 /* Create a uvm anonymous object */
3398 track->uobj = uao_create(newvsize, 0);
3399
3400 /* Map it into the kernel virtual address space */
3401 vstart = 0;
3402 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3403 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3404 UVM_ADV_RANDOM, 0));
3405 if (error) {
3406 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3407 uao_detach(track->uobj); /* release reference */
3408 goto abort;
3409 }
3410
3411 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3412 false, 0);
3413 if (error) {
3414 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3415 error);
3416 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3417 /* uvm_unmap also detach uobj */
3418 goto abort;
3419 }
3420
3421 track->usrbuf.mem = (void *)vstart;
3422 track->usrbuf.capacity = newbufsize;
3423 memset(track->usrbuf.mem, 0, newvsize);
3424 return 0;
3425
3426 /* failure */
3427 abort:
3428 track->uobj = NULL; /* paranoia */
3429 track->usrbuf.mem = NULL;
3430 track->usrbuf.capacity = 0;
3431 return error;
3432 }
3433
3434 /*
3435 * Free usrbuf (if available).
3436 */
3437 static void
3438 audio_free_usrbuf(audio_track_t *track)
3439 {
3440 vaddr_t vstart;
3441 vsize_t vsize;
3442
3443 vstart = (vaddr_t)track->usrbuf.mem;
3444 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3445 if (track->usrbuf.mem != NULL) {
3446 /*
3447 * Unmap the kernel mapping. uvm_unmap releases the
3448 * reference to the uvm object, and this should be the
3449 * last virtual mapping of the uvm object, so no need
3450 * to explicitly release (`detach') the object.
3451 */
3452 uvm_unmap(kernel_map, vstart, vstart + vsize);
3453
3454 track->uobj = NULL;
3455 track->usrbuf.mem = NULL;
3456 track->usrbuf.capacity = 0;
3457 }
3458 }
3459
3460 /*
3461 * This filter changes the volume for each channel.
3462 * arg->context points track->ch_volume[].
3463 */
3464 static void
3465 audio_track_chvol(audio_filter_arg_t *arg)
3466 {
3467 int16_t *ch_volume;
3468 const aint_t *s;
3469 aint_t *d;
3470 u_int i;
3471 u_int ch;
3472 u_int channels;
3473
3474 DIAGNOSTIC_filter_arg(arg);
3475 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3476 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3477 arg->srcfmt->channels, arg->dstfmt->channels);
3478 KASSERT(arg->context != NULL);
3479 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3480 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3481
3482 s = arg->src;
3483 d = arg->dst;
3484 ch_volume = arg->context;
3485
3486 channels = arg->srcfmt->channels;
3487 for (i = 0; i < arg->count; i++) {
3488 for (ch = 0; ch < channels; ch++) {
3489 aint2_t val;
3490 val = *s++;
3491 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3492 *d++ = (aint_t)val;
3493 }
3494 }
3495 }
3496
3497 /*
3498 * This filter performs conversion from stereo (or more channels) to mono.
3499 */
3500 static void
3501 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3502 {
3503 const aint_t *s;
3504 aint_t *d;
3505 u_int i;
3506
3507 DIAGNOSTIC_filter_arg(arg);
3508
3509 s = arg->src;
3510 d = arg->dst;
3511
3512 for (i = 0; i < arg->count; i++) {
3513 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3514 s += arg->srcfmt->channels;
3515 }
3516 }
3517
3518 /*
3519 * This filter performs conversion from mono to stereo (or more channels).
3520 */
3521 static void
3522 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3523 {
3524 const aint_t *s;
3525 aint_t *d;
3526 u_int i;
3527 u_int ch;
3528 u_int dstchannels;
3529
3530 DIAGNOSTIC_filter_arg(arg);
3531
3532 s = arg->src;
3533 d = arg->dst;
3534 dstchannels = arg->dstfmt->channels;
3535
3536 for (i = 0; i < arg->count; i++) {
3537 d[0] = s[0];
3538 d[1] = s[0];
3539 s++;
3540 d += dstchannels;
3541 }
3542 if (dstchannels > 2) {
3543 d = arg->dst;
3544 for (i = 0; i < arg->count; i++) {
3545 for (ch = 2; ch < dstchannels; ch++) {
3546 d[ch] = 0;
3547 }
3548 d += dstchannels;
3549 }
3550 }
3551 }
3552
3553 /*
3554 * This filter shrinks M channels into N channels.
3555 * Extra channels are discarded.
3556 */
3557 static void
3558 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3559 {
3560 const aint_t *s;
3561 aint_t *d;
3562 u_int i;
3563 u_int ch;
3564
3565 DIAGNOSTIC_filter_arg(arg);
3566
3567 s = arg->src;
3568 d = arg->dst;
3569
3570 for (i = 0; i < arg->count; i++) {
3571 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3572 *d++ = s[ch];
3573 }
3574 s += arg->srcfmt->channels;
3575 }
3576 }
3577
3578 /*
3579 * This filter expands M channels into N channels.
3580 * Silence is inserted for missing channels.
3581 */
3582 static void
3583 audio_track_chmix_expand(audio_filter_arg_t *arg)
3584 {
3585 const aint_t *s;
3586 aint_t *d;
3587 u_int i;
3588 u_int ch;
3589 u_int srcchannels;
3590 u_int dstchannels;
3591
3592 DIAGNOSTIC_filter_arg(arg);
3593
3594 s = arg->src;
3595 d = arg->dst;
3596
3597 srcchannels = arg->srcfmt->channels;
3598 dstchannels = arg->dstfmt->channels;
3599 for (i = 0; i < arg->count; i++) {
3600 for (ch = 0; ch < srcchannels; ch++) {
3601 *d++ = *s++;
3602 }
3603 for (; ch < dstchannels; ch++) {
3604 *d++ = 0;
3605 }
3606 }
3607 }
3608
3609 /*
3610 * This filter performs frequency conversion (up sampling).
3611 * It uses linear interpolation.
3612 */
3613 static void
3614 audio_track_freq_up(audio_filter_arg_t *arg)
3615 {
3616 audio_track_t *track;
3617 audio_ring_t *src;
3618 audio_ring_t *dst;
3619 const aint_t *s;
3620 aint_t *d;
3621 aint_t prev[AUDIO_MAX_CHANNELS];
3622 aint_t curr[AUDIO_MAX_CHANNELS];
3623 aint_t grad[AUDIO_MAX_CHANNELS];
3624 u_int i;
3625 u_int t;
3626 u_int step;
3627 u_int channels;
3628 u_int ch;
3629 int srcused;
3630
3631 track = arg->context;
3632 KASSERT(track);
3633 src = &track->freq.srcbuf;
3634 dst = track->freq.dst;
3635 DIAGNOSTIC_ring(dst);
3636 DIAGNOSTIC_ring(src);
3637 KASSERT(src->used > 0);
3638 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3639 "src->fmt.channels=%d dst->fmt.channels=%d",
3640 src->fmt.channels, dst->fmt.channels);
3641 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3642 "src->head=%d track->mixer->frames_per_block=%d",
3643 src->head, track->mixer->frames_per_block);
3644
3645 s = arg->src;
3646 d = arg->dst;
3647
3648 /*
3649 * In order to faciliate interpolation for each block, slide (delay)
3650 * input by one sample. As a result, strictly speaking, the output
3651 * phase is delayed by 1/dstfreq. However, I believe there is no
3652 * observable impact.
3653 *
3654 * Example)
3655 * srcfreq:dstfreq = 1:3
3656 *
3657 * A - -
3658 * |
3659 * |
3660 * | B - -
3661 * +-----+-----> input timeframe
3662 * 0 1
3663 *
3664 * 0 1
3665 * +-----+-----> input timeframe
3666 * | A
3667 * | x x
3668 * | x x
3669 * x (B)
3670 * +-+-+-+-+-+-> output timeframe
3671 * 0 1 2 3 4 5
3672 */
3673
3674 /* Last samples in previous block */
3675 channels = src->fmt.channels;
3676 for (ch = 0; ch < channels; ch++) {
3677 prev[ch] = track->freq_prev[ch];
3678 curr[ch] = track->freq_curr[ch];
3679 grad[ch] = curr[ch] - prev[ch];
3680 }
3681
3682 step = track->freq_step;
3683 t = track->freq_current;
3684 //#define FREQ_DEBUG
3685 #if defined(FREQ_DEBUG)
3686 #define PRINTF(fmt...) printf(fmt)
3687 #else
3688 #define PRINTF(fmt...) do { } while (0)
3689 #endif
3690 srcused = src->used;
3691 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3692 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3693 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3694 PRINTF(" t=%d\n", t);
3695
3696 for (i = 0; i < arg->count; i++) {
3697 PRINTF("i=%d t=%5d", i, t);
3698 if (t >= 65536) {
3699 for (ch = 0; ch < channels; ch++) {
3700 prev[ch] = curr[ch];
3701 curr[ch] = *s++;
3702 grad[ch] = curr[ch] - prev[ch];
3703 }
3704 PRINTF(" prev=%d s[%d]=%d",
3705 prev[0], src->used - srcused, curr[0]);
3706
3707 /* Update */
3708 t -= 65536;
3709 srcused--;
3710 if (srcused < 0) {
3711 PRINTF(" break\n");
3712 break;
3713 }
3714 }
3715
3716 for (ch = 0; ch < channels; ch++) {
3717 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3718 #if defined(FREQ_DEBUG)
3719 if (ch == 0)
3720 printf(" t=%5d *d=%d", t, d[-1]);
3721 #endif
3722 }
3723 t += step;
3724
3725 PRINTF("\n");
3726 }
3727 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3728
3729 auring_take(src, src->used);
3730 auring_push(dst, i);
3731
3732 /* Adjust */
3733 t += track->freq_leap;
3734
3735 track->freq_current = t;
3736 for (ch = 0; ch < channels; ch++) {
3737 track->freq_prev[ch] = prev[ch];
3738 track->freq_curr[ch] = curr[ch];
3739 }
3740 }
3741
3742 /*
3743 * This filter performs frequency conversion (down sampling).
3744 * It uses simple thinning.
3745 */
3746 static void
3747 audio_track_freq_down(audio_filter_arg_t *arg)
3748 {
3749 audio_track_t *track;
3750 audio_ring_t *src;
3751 audio_ring_t *dst;
3752 const aint_t *s0;
3753 aint_t *d;
3754 u_int i;
3755 u_int t;
3756 u_int step;
3757 u_int ch;
3758 u_int channels;
3759
3760 track = arg->context;
3761 KASSERT(track);
3762 src = &track->freq.srcbuf;
3763 dst = track->freq.dst;
3764
3765 DIAGNOSTIC_ring(dst);
3766 DIAGNOSTIC_ring(src);
3767 KASSERT(src->used > 0);
3768 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3769 "src->fmt.channels=%d dst->fmt.channels=%d",
3770 src->fmt.channels, dst->fmt.channels);
3771 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3772 "src->head=%d track->mixer->frames_per_block=%d",
3773 src->head, track->mixer->frames_per_block);
3774
3775 s0 = arg->src;
3776 d = arg->dst;
3777 t = track->freq_current;
3778 step = track->freq_step;
3779 channels = dst->fmt.channels;
3780 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3781 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3782 PRINTF(" t=%d\n", t);
3783
3784 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3785 const aint_t *s;
3786 PRINTF("i=%4d t=%10d", i, t);
3787 s = s0 + (t / 65536) * channels;
3788 PRINTF(" s=%5ld", (s - s0) / channels);
3789 for (ch = 0; ch < channels; ch++) {
3790 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3791 *d++ = s[ch];
3792 }
3793 PRINTF("\n");
3794 t += step;
3795 }
3796 t += track->freq_leap;
3797 PRINTF("end t=%d\n", t);
3798 auring_take(src, src->used);
3799 auring_push(dst, i);
3800 track->freq_current = t % 65536;
3801 }
3802
3803 /*
3804 * Creates track and returns it.
3805 * Must be called without sc_lock held.
3806 */
3807 audio_track_t *
3808 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3809 {
3810 audio_track_t *track;
3811 static int newid = 0;
3812
3813 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3814
3815 track->id = newid++;
3816 track->mixer = mixer;
3817 track->mode = mixer->mode;
3818
3819 /* Do TRACE after id is assigned. */
3820 TRACET(3, track, "for %s",
3821 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3822
3823 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3824 track->volume = 256;
3825 #endif
3826 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3827 track->ch_volume[i] = 256;
3828 }
3829
3830 return track;
3831 }
3832
3833 /*
3834 * Release all resources of the track and track itself.
3835 * track must not be NULL. Don't specify the track within the file
3836 * structure linked from sc->sc_files.
3837 */
3838 static void
3839 audio_track_destroy(audio_track_t *track)
3840 {
3841
3842 KASSERT(track);
3843
3844 audio_free_usrbuf(track);
3845 audio_free(track->codec.srcbuf.mem);
3846 audio_free(track->chvol.srcbuf.mem);
3847 audio_free(track->chmix.srcbuf.mem);
3848 audio_free(track->freq.srcbuf.mem);
3849 audio_free(track->outbuf.mem);
3850
3851 kmem_free(track, sizeof(*track));
3852 }
3853
3854 /*
3855 * It returns encoding conversion filter according to src and dst format.
3856 * If it is not a convertible pair, it returns NULL. Either src or dst
3857 * must be internal format.
3858 */
3859 static audio_filter_t
3860 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3861 const audio_format2_t *dst)
3862 {
3863
3864 if (audio_format2_is_internal(src)) {
3865 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3866 return audio_internal_to_mulaw;
3867 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3868 return audio_internal_to_alaw;
3869 } else if (audio_format2_is_linear(dst)) {
3870 switch (dst->stride) {
3871 case 8:
3872 return audio_internal_to_linear8;
3873 case 16:
3874 return audio_internal_to_linear16;
3875 #if defined(AUDIO_SUPPORT_LINEAR24)
3876 case 24:
3877 return audio_internal_to_linear24;
3878 #endif
3879 case 32:
3880 return audio_internal_to_linear32;
3881 default:
3882 TRACET(1, track, "unsupported %s stride %d",
3883 "dst", dst->stride);
3884 goto abort;
3885 }
3886 }
3887 } else if (audio_format2_is_internal(dst)) {
3888 if (src->encoding == AUDIO_ENCODING_ULAW) {
3889 return audio_mulaw_to_internal;
3890 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3891 return audio_alaw_to_internal;
3892 } else if (audio_format2_is_linear(src)) {
3893 switch (src->stride) {
3894 case 8:
3895 return audio_linear8_to_internal;
3896 case 16:
3897 return audio_linear16_to_internal;
3898 #if defined(AUDIO_SUPPORT_LINEAR24)
3899 case 24:
3900 return audio_linear24_to_internal;
3901 #endif
3902 case 32:
3903 return audio_linear32_to_internal;
3904 default:
3905 TRACET(1, track, "unsupported %s stride %d",
3906 "src", src->stride);
3907 goto abort;
3908 }
3909 }
3910 }
3911
3912 TRACET(1, track, "unsupported encoding");
3913 abort:
3914 #if defined(AUDIO_DEBUG)
3915 if (audiodebug >= 2) {
3916 char buf[100];
3917 audio_format2_tostr(buf, sizeof(buf), src);
3918 TRACET(2, track, "src %s", buf);
3919 audio_format2_tostr(buf, sizeof(buf), dst);
3920 TRACET(2, track, "dst %s", buf);
3921 }
3922 #endif
3923 return NULL;
3924 }
3925
3926 /*
3927 * Initialize the codec stage of this track as necessary.
3928 * If successful, it initializes the codec stage as necessary, stores updated
3929 * last_dst in *last_dstp in any case, and returns 0.
3930 * Otherwise, it returns errno without modifying *last_dstp.
3931 */
3932 static int
3933 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3934 {
3935 audio_ring_t *last_dst;
3936 audio_ring_t *srcbuf;
3937 audio_format2_t *srcfmt;
3938 audio_format2_t *dstfmt;
3939 audio_filter_arg_t *arg;
3940 u_int len;
3941 int error;
3942
3943 KASSERT(track);
3944
3945 last_dst = *last_dstp;
3946 dstfmt = &last_dst->fmt;
3947 srcfmt = &track->inputfmt;
3948 srcbuf = &track->codec.srcbuf;
3949 error = 0;
3950
3951 if (srcfmt->encoding != dstfmt->encoding
3952 || srcfmt->precision != dstfmt->precision
3953 || srcfmt->stride != dstfmt->stride) {
3954 track->codec.dst = last_dst;
3955
3956 srcbuf->fmt = *dstfmt;
3957 srcbuf->fmt.encoding = srcfmt->encoding;
3958 srcbuf->fmt.precision = srcfmt->precision;
3959 srcbuf->fmt.stride = srcfmt->stride;
3960
3961 track->codec.filter = audio_track_get_codec(track,
3962 &srcbuf->fmt, dstfmt);
3963 if (track->codec.filter == NULL) {
3964 error = EINVAL;
3965 goto abort;
3966 }
3967
3968 srcbuf->head = 0;
3969 srcbuf->used = 0;
3970 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3971 len = auring_bytelen(srcbuf);
3972 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3973
3974 arg = &track->codec.arg;
3975 arg->srcfmt = &srcbuf->fmt;
3976 arg->dstfmt = dstfmt;
3977 arg->context = NULL;
3978
3979 *last_dstp = srcbuf;
3980 return 0;
3981 }
3982
3983 abort:
3984 track->codec.filter = NULL;
3985 audio_free(srcbuf->mem);
3986 return error;
3987 }
3988
3989 /*
3990 * Initialize the chvol stage of this track as necessary.
3991 * If successful, it initializes the chvol stage as necessary, stores updated
3992 * last_dst in *last_dstp in any case, and returns 0.
3993 * Otherwise, it returns errno without modifying *last_dstp.
3994 */
3995 static int
3996 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3997 {
3998 audio_ring_t *last_dst;
3999 audio_ring_t *srcbuf;
4000 audio_format2_t *srcfmt;
4001 audio_format2_t *dstfmt;
4002 audio_filter_arg_t *arg;
4003 u_int len;
4004 int error;
4005
4006 KASSERT(track);
4007
4008 last_dst = *last_dstp;
4009 dstfmt = &last_dst->fmt;
4010 srcfmt = &track->inputfmt;
4011 srcbuf = &track->chvol.srcbuf;
4012 error = 0;
4013
4014 /* Check whether channel volume conversion is necessary. */
4015 bool use_chvol = false;
4016 for (int ch = 0; ch < srcfmt->channels; ch++) {
4017 if (track->ch_volume[ch] != 256) {
4018 use_chvol = true;
4019 break;
4020 }
4021 }
4022
4023 if (use_chvol == true) {
4024 track->chvol.dst = last_dst;
4025 track->chvol.filter = audio_track_chvol;
4026
4027 srcbuf->fmt = *dstfmt;
4028 /* no format conversion occurs */
4029
4030 srcbuf->head = 0;
4031 srcbuf->used = 0;
4032 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4033 len = auring_bytelen(srcbuf);
4034 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4035
4036 arg = &track->chvol.arg;
4037 arg->srcfmt = &srcbuf->fmt;
4038 arg->dstfmt = dstfmt;
4039 arg->context = track->ch_volume;
4040
4041 *last_dstp = srcbuf;
4042 return 0;
4043 }
4044
4045 track->chvol.filter = NULL;
4046 audio_free(srcbuf->mem);
4047 return error;
4048 }
4049
4050 /*
4051 * Initialize the chmix stage of this track as necessary.
4052 * If successful, it initializes the chmix stage as necessary, stores updated
4053 * last_dst in *last_dstp in any case, and returns 0.
4054 * Otherwise, it returns errno without modifying *last_dstp.
4055 */
4056 static int
4057 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4058 {
4059 audio_ring_t *last_dst;
4060 audio_ring_t *srcbuf;
4061 audio_format2_t *srcfmt;
4062 audio_format2_t *dstfmt;
4063 audio_filter_arg_t *arg;
4064 u_int srcch;
4065 u_int dstch;
4066 u_int len;
4067 int error;
4068
4069 KASSERT(track);
4070
4071 last_dst = *last_dstp;
4072 dstfmt = &last_dst->fmt;
4073 srcfmt = &track->inputfmt;
4074 srcbuf = &track->chmix.srcbuf;
4075 error = 0;
4076
4077 srcch = srcfmt->channels;
4078 dstch = dstfmt->channels;
4079 if (srcch != dstch) {
4080 track->chmix.dst = last_dst;
4081
4082 if (srcch >= 2 && dstch == 1) {
4083 track->chmix.filter = audio_track_chmix_mixLR;
4084 } else if (srcch == 1 && dstch >= 2) {
4085 track->chmix.filter = audio_track_chmix_dupLR;
4086 } else if (srcch > dstch) {
4087 track->chmix.filter = audio_track_chmix_shrink;
4088 } else {
4089 track->chmix.filter = audio_track_chmix_expand;
4090 }
4091
4092 srcbuf->fmt = *dstfmt;
4093 srcbuf->fmt.channels = srcch;
4094
4095 srcbuf->head = 0;
4096 srcbuf->used = 0;
4097 /* XXX The buffer size should be able to calculate. */
4098 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4099 len = auring_bytelen(srcbuf);
4100 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4101
4102 arg = &track->chmix.arg;
4103 arg->srcfmt = &srcbuf->fmt;
4104 arg->dstfmt = dstfmt;
4105 arg->context = NULL;
4106
4107 *last_dstp = srcbuf;
4108 return 0;
4109 }
4110
4111 track->chmix.filter = NULL;
4112 audio_free(srcbuf->mem);
4113 return error;
4114 }
4115
4116 /*
4117 * Initialize the freq stage of this track as necessary.
4118 * If successful, it initializes the freq stage as necessary, stores updated
4119 * last_dst in *last_dstp in any case, and returns 0.
4120 * Otherwise, it returns errno without modifying *last_dstp.
4121 */
4122 static int
4123 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4124 {
4125 audio_ring_t *last_dst;
4126 audio_ring_t *srcbuf;
4127 audio_format2_t *srcfmt;
4128 audio_format2_t *dstfmt;
4129 audio_filter_arg_t *arg;
4130 uint32_t srcfreq;
4131 uint32_t dstfreq;
4132 u_int dst_capacity;
4133 u_int mod;
4134 u_int len;
4135 int error;
4136
4137 KASSERT(track);
4138
4139 last_dst = *last_dstp;
4140 dstfmt = &last_dst->fmt;
4141 srcfmt = &track->inputfmt;
4142 srcbuf = &track->freq.srcbuf;
4143 error = 0;
4144
4145 srcfreq = srcfmt->sample_rate;
4146 dstfreq = dstfmt->sample_rate;
4147 if (srcfreq != dstfreq) {
4148 track->freq.dst = last_dst;
4149
4150 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4151 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4152
4153 /* freq_step is the ratio of src/dst when let dst 65536. */
4154 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4155
4156 dst_capacity = frame_per_block(track->mixer, dstfmt);
4157 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4158 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4159
4160 if (track->freq_step < 65536) {
4161 track->freq.filter = audio_track_freq_up;
4162 /* In order to carry at the first time. */
4163 track->freq_current = 65536;
4164 } else {
4165 track->freq.filter = audio_track_freq_down;
4166 track->freq_current = 0;
4167 }
4168
4169 srcbuf->fmt = *dstfmt;
4170 srcbuf->fmt.sample_rate = srcfreq;
4171
4172 srcbuf->head = 0;
4173 srcbuf->used = 0;
4174 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4175 len = auring_bytelen(srcbuf);
4176 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4177
4178 arg = &track->freq.arg;
4179 arg->srcfmt = &srcbuf->fmt;
4180 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4181 arg->context = track;
4182
4183 *last_dstp = srcbuf;
4184 return 0;
4185 }
4186
4187 track->freq.filter = NULL;
4188 audio_free(srcbuf->mem);
4189 return error;
4190 }
4191
4192 /*
4193 * When playing back: (e.g. if codec and freq stage are valid)
4194 *
4195 * write
4196 * | uiomove
4197 * v
4198 * usrbuf [...............] byte ring buffer (mmap-able)
4199 * | memcpy
4200 * v
4201 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4202 * .dst ----+
4203 * | convert
4204 * v
4205 * freq.srcbuf [....] 1 block (ring) buffer
4206 * .dst ----+
4207 * | convert
4208 * v
4209 * outbuf [...............] NBLKOUT blocks ring buffer
4210 *
4211 *
4212 * When recording:
4213 *
4214 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4215 * .dst ----+
4216 * | convert
4217 * v
4218 * codec.srcbuf[.....] 1 block (ring) buffer
4219 * .dst ----+
4220 * | convert
4221 * v
4222 * outbuf [.....] 1 block (ring) buffer
4223 * | memcpy
4224 * v
4225 * usrbuf [...............] byte ring buffer (mmap-able *)
4226 * | uiomove
4227 * v
4228 * read
4229 *
4230 * *: usrbuf for recording is also mmap-able due to symmetry with
4231 * playback buffer, but for now mmap will never happen for recording.
4232 */
4233
4234 /*
4235 * Set the userland format of this track.
4236 * usrfmt argument should have been previously verified by
4237 * audio_track_setinfo_check().
4238 * This function may release and reallocate all internal conversion buffers.
4239 * It returns 0 if successful. Otherwise it returns errno with clearing all
4240 * internal buffers.
4241 * It must be called without sc_intr_lock since uvm_* routines require non
4242 * intr_lock state.
4243 * It must be called with track lock held since it may release and reallocate
4244 * outbuf.
4245 */
4246 static int
4247 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4248 {
4249 struct audio_softc *sc;
4250 u_int newbufsize;
4251 u_int oldblksize;
4252 u_int len;
4253 int error;
4254
4255 KASSERT(track);
4256 sc = track->mixer->sc;
4257
4258 /* usrbuf is the closest buffer to the userland. */
4259 track->usrbuf.fmt = *usrfmt;
4260
4261 /*
4262 * For references, one block size (in 40msec) is:
4263 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4264 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4265 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4266 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4267 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4268 *
4269 * For example,
4270 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4271 * newbufsize = rounddown(65536 / 7056) = 63504
4272 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4273 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4274 *
4275 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4276 * newbufsize = rounddown(65536 / 7680) = 61440
4277 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4278 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4279 */
4280 oldblksize = track->usrbuf_blksize;
4281 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4282 frame_per_block(track->mixer, &track->usrbuf.fmt));
4283 track->usrbuf.head = 0;
4284 track->usrbuf.used = 0;
4285 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4286 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4287 error = audio_realloc_usrbuf(track, newbufsize);
4288 if (error) {
4289 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4290 newbufsize);
4291 goto error;
4292 }
4293
4294 /* Recalc water mark. */
4295 if (track->usrbuf_blksize != oldblksize) {
4296 if (audio_track_is_playback(track)) {
4297 /* Set high at 100%, low at 75%. */
4298 track->usrbuf_usedhigh = track->usrbuf.capacity;
4299 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4300 } else {
4301 /* Set high at 100% minus 1block(?), low at 0% */
4302 track->usrbuf_usedhigh = track->usrbuf.capacity -
4303 track->usrbuf_blksize;
4304 track->usrbuf_usedlow = 0;
4305 }
4306 }
4307
4308 /* Stage buffer */
4309 audio_ring_t *last_dst = &track->outbuf;
4310 if (audio_track_is_playback(track)) {
4311 /* On playback, initialize from the mixer side in order. */
4312 track->inputfmt = *usrfmt;
4313 track->outbuf.fmt = track->mixer->track_fmt;
4314
4315 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4316 goto error;
4317 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4318 goto error;
4319 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4320 goto error;
4321 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4322 goto error;
4323 } else {
4324 /* On recording, initialize from userland side in order. */
4325 track->inputfmt = track->mixer->track_fmt;
4326 track->outbuf.fmt = *usrfmt;
4327
4328 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4329 goto error;
4330 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4331 goto error;
4332 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4333 goto error;
4334 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4335 goto error;
4336 }
4337 #if 0
4338 /* debug */
4339 if (track->freq.filter) {
4340 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4341 audio_print_format2("freq dst", &track->freq.dst->fmt);
4342 }
4343 if (track->chmix.filter) {
4344 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4345 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4346 }
4347 if (track->chvol.filter) {
4348 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4349 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4350 }
4351 if (track->codec.filter) {
4352 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4353 audio_print_format2("codec dst", &track->codec.dst->fmt);
4354 }
4355 #endif
4356
4357 /* Stage input buffer */
4358 track->input = last_dst;
4359
4360 /*
4361 * On the recording track, make the first stage a ring buffer.
4362 * XXX is there a better way?
4363 */
4364 if (audio_track_is_record(track)) {
4365 track->input->capacity = NBLKOUT *
4366 frame_per_block(track->mixer, &track->input->fmt);
4367 len = auring_bytelen(track->input);
4368 track->input->mem = audio_realloc(track->input->mem, len);
4369 }
4370
4371 /*
4372 * Output buffer.
4373 * On the playback track, its capacity is NBLKOUT blocks.
4374 * On the recording track, its capacity is 1 block.
4375 */
4376 track->outbuf.head = 0;
4377 track->outbuf.used = 0;
4378 track->outbuf.capacity = frame_per_block(track->mixer,
4379 &track->outbuf.fmt);
4380 if (audio_track_is_playback(track))
4381 track->outbuf.capacity *= NBLKOUT;
4382 len = auring_bytelen(&track->outbuf);
4383 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4384 if (track->outbuf.mem == NULL) {
4385 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4386 error = ENOMEM;
4387 goto error;
4388 }
4389
4390 #if defined(AUDIO_DEBUG)
4391 if (audiodebug >= 3) {
4392 struct audio_track_debugbuf m;
4393
4394 memset(&m, 0, sizeof(m));
4395 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4396 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4397 if (track->freq.filter)
4398 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4399 track->freq.srcbuf.capacity *
4400 frametobyte(&track->freq.srcbuf.fmt, 1));
4401 if (track->chmix.filter)
4402 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4403 track->chmix.srcbuf.capacity *
4404 frametobyte(&track->chmix.srcbuf.fmt, 1));
4405 if (track->chvol.filter)
4406 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4407 track->chvol.srcbuf.capacity *
4408 frametobyte(&track->chvol.srcbuf.fmt, 1));
4409 if (track->codec.filter)
4410 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4411 track->codec.srcbuf.capacity *
4412 frametobyte(&track->codec.srcbuf.fmt, 1));
4413 snprintf(m.usrbuf, sizeof(m.usrbuf),
4414 " usr=%d", track->usrbuf.capacity);
4415
4416 if (audio_track_is_playback(track)) {
4417 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4418 m.outbuf, m.freq, m.chmix,
4419 m.chvol, m.codec, m.usrbuf);
4420 } else {
4421 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4422 m.freq, m.chmix, m.chvol,
4423 m.codec, m.outbuf, m.usrbuf);
4424 }
4425 }
4426 #endif
4427 return 0;
4428
4429 error:
4430 audio_free_usrbuf(track);
4431 audio_free(track->codec.srcbuf.mem);
4432 audio_free(track->chvol.srcbuf.mem);
4433 audio_free(track->chmix.srcbuf.mem);
4434 audio_free(track->freq.srcbuf.mem);
4435 audio_free(track->outbuf.mem);
4436 return error;
4437 }
4438
4439 /*
4440 * Fill silence frames (as the internal format) up to 1 block
4441 * if the ring is not empty and less than 1 block.
4442 * It returns the number of appended frames.
4443 */
4444 static int
4445 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4446 {
4447 int fpb;
4448 int n;
4449
4450 KASSERT(track);
4451 KASSERT(audio_format2_is_internal(&ring->fmt));
4452
4453 /* XXX is n correct? */
4454 /* XXX memset uses frametobyte()? */
4455
4456 if (ring->used == 0)
4457 return 0;
4458
4459 fpb = frame_per_block(track->mixer, &ring->fmt);
4460 if (ring->used >= fpb)
4461 return 0;
4462
4463 n = (ring->capacity - ring->used) % fpb;
4464
4465 KASSERTMSG(auring_get_contig_free(ring) >= n,
4466 "auring_get_contig_free(ring)=%d n=%d",
4467 auring_get_contig_free(ring), n);
4468
4469 memset(auring_tailptr_aint(ring), 0,
4470 n * ring->fmt.channels * sizeof(aint_t));
4471 auring_push(ring, n);
4472 return n;
4473 }
4474
4475 /*
4476 * Execute the conversion stage.
4477 * It prepares arg from this stage and executes stage->filter.
4478 * It must be called only if stage->filter is not NULL.
4479 *
4480 * For stages other than frequency conversion, the function increments
4481 * src and dst counters here. For frequency conversion stage, on the
4482 * other hand, the function does not touch src and dst counters and
4483 * filter side has to increment them.
4484 */
4485 static void
4486 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4487 {
4488 audio_filter_arg_t *arg;
4489 int srccount;
4490 int dstcount;
4491 int count;
4492
4493 KASSERT(track);
4494 KASSERT(stage->filter);
4495
4496 srccount = auring_get_contig_used(&stage->srcbuf);
4497 dstcount = auring_get_contig_free(stage->dst);
4498
4499 if (isfreq) {
4500 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4501 count = uimin(dstcount, track->mixer->frames_per_block);
4502 } else {
4503 count = uimin(srccount, dstcount);
4504 }
4505
4506 if (count > 0) {
4507 arg = &stage->arg;
4508 arg->src = auring_headptr(&stage->srcbuf);
4509 arg->dst = auring_tailptr(stage->dst);
4510 arg->count = count;
4511
4512 stage->filter(arg);
4513
4514 if (!isfreq) {
4515 auring_take(&stage->srcbuf, count);
4516 auring_push(stage->dst, count);
4517 }
4518 }
4519 }
4520
4521 /*
4522 * Produce output buffer for playback from user input buffer.
4523 * It must be called only if usrbuf is not empty and outbuf is
4524 * available at least one free block.
4525 */
4526 static void
4527 audio_track_play(audio_track_t *track)
4528 {
4529 audio_ring_t *usrbuf;
4530 audio_ring_t *input;
4531 int count;
4532 int framesize;
4533 int bytes;
4534
4535 KASSERT(track);
4536 KASSERT(track->lock);
4537 TRACET(4, track, "start pstate=%d", track->pstate);
4538
4539 /* At this point usrbuf must not be empty. */
4540 KASSERT(track->usrbuf.used > 0);
4541 /* Also, outbuf must be available at least one block. */
4542 count = auring_get_contig_free(&track->outbuf);
4543 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4544 "count=%d fpb=%d",
4545 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4546
4547 /* XXX TODO: is this necessary for now? */
4548 int track_count_0 = track->outbuf.used;
4549
4550 usrbuf = &track->usrbuf;
4551 input = track->input;
4552
4553 /*
4554 * framesize is always 1 byte or more since all formats supported as
4555 * usrfmt(=input) have 8bit or more stride.
4556 */
4557 framesize = frametobyte(&input->fmt, 1);
4558 KASSERT(framesize >= 1);
4559
4560 /* The next stage of usrbuf (=input) must be available. */
4561 KASSERT(auring_get_contig_free(input) > 0);
4562
4563 /*
4564 * Copy usrbuf up to 1block to input buffer.
4565 * count is the number of frames to copy from usrbuf.
4566 * bytes is the number of bytes to copy from usrbuf. However it is
4567 * not copied less than one frame.
4568 */
4569 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4570 bytes = count * framesize;
4571
4572 track->usrbuf_stamp += bytes;
4573
4574 if (usrbuf->head + bytes < usrbuf->capacity) {
4575 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4576 (uint8_t *)usrbuf->mem + usrbuf->head,
4577 bytes);
4578 auring_push(input, count);
4579 auring_take(usrbuf, bytes);
4580 } else {
4581 int bytes1;
4582 int bytes2;
4583
4584 bytes1 = auring_get_contig_used(usrbuf);
4585 KASSERTMSG(bytes1 % framesize == 0,
4586 "bytes1=%d framesize=%d", bytes1, framesize);
4587 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4588 (uint8_t *)usrbuf->mem + usrbuf->head,
4589 bytes1);
4590 auring_push(input, bytes1 / framesize);
4591 auring_take(usrbuf, bytes1);
4592
4593 bytes2 = bytes - bytes1;
4594 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4595 (uint8_t *)usrbuf->mem + usrbuf->head,
4596 bytes2);
4597 auring_push(input, bytes2 / framesize);
4598 auring_take(usrbuf, bytes2);
4599 }
4600
4601 /* Encoding conversion */
4602 if (track->codec.filter)
4603 audio_apply_stage(track, &track->codec, false);
4604
4605 /* Channel volume */
4606 if (track->chvol.filter)
4607 audio_apply_stage(track, &track->chvol, false);
4608
4609 /* Channel mix */
4610 if (track->chmix.filter)
4611 audio_apply_stage(track, &track->chmix, false);
4612
4613 /* Frequency conversion */
4614 /*
4615 * Since the frequency conversion needs correction for each block,
4616 * it rounds up to 1 block.
4617 */
4618 if (track->freq.filter) {
4619 int n;
4620 n = audio_append_silence(track, &track->freq.srcbuf);
4621 if (n > 0) {
4622 TRACET(4, track,
4623 "freq.srcbuf add silence %d -> %d/%d/%d",
4624 n,
4625 track->freq.srcbuf.head,
4626 track->freq.srcbuf.used,
4627 track->freq.srcbuf.capacity);
4628 }
4629 if (track->freq.srcbuf.used > 0) {
4630 audio_apply_stage(track, &track->freq, true);
4631 }
4632 }
4633
4634 if (bytes < track->usrbuf_blksize) {
4635 /*
4636 * Clear all conversion buffer pointer if the conversion was
4637 * not exactly one block. These conversion stage buffers are
4638 * certainly circular buffers because of symmetry with the
4639 * previous and next stage buffer. However, since they are
4640 * treated as simple contiguous buffers in operation, so head
4641 * always should point 0. This may happen during drain-age.
4642 */
4643 TRACET(4, track, "reset stage");
4644 if (track->codec.filter) {
4645 KASSERT(track->codec.srcbuf.used == 0);
4646 track->codec.srcbuf.head = 0;
4647 }
4648 if (track->chvol.filter) {
4649 KASSERT(track->chvol.srcbuf.used == 0);
4650 track->chvol.srcbuf.head = 0;
4651 }
4652 if (track->chmix.filter) {
4653 KASSERT(track->chmix.srcbuf.used == 0);
4654 track->chmix.srcbuf.head = 0;
4655 }
4656 if (track->freq.filter) {
4657 KASSERT(track->freq.srcbuf.used == 0);
4658 track->freq.srcbuf.head = 0;
4659 }
4660 }
4661
4662 if (track->input == &track->outbuf) {
4663 track->outputcounter = track->inputcounter;
4664 } else {
4665 track->outputcounter += track->outbuf.used - track_count_0;
4666 }
4667
4668 #if defined(AUDIO_DEBUG)
4669 if (audiodebug >= 3) {
4670 struct audio_track_debugbuf m;
4671 audio_track_bufstat(track, &m);
4672 TRACET(0, track, "end%s%s%s%s%s%s",
4673 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4674 }
4675 #endif
4676 }
4677
4678 /*
4679 * Produce user output buffer for recording from input buffer.
4680 */
4681 static void
4682 audio_track_record(audio_track_t *track)
4683 {
4684 audio_ring_t *outbuf;
4685 audio_ring_t *usrbuf;
4686 int count;
4687 int bytes;
4688 int framesize;
4689
4690 KASSERT(track);
4691 KASSERT(track->lock);
4692
4693 /* Number of frames to process */
4694 count = auring_get_contig_used(track->input);
4695 count = uimin(count, track->mixer->frames_per_block);
4696 if (count == 0) {
4697 TRACET(4, track, "count == 0");
4698 return;
4699 }
4700
4701 /* Frequency conversion */
4702 if (track->freq.filter) {
4703 if (track->freq.srcbuf.used > 0) {
4704 audio_apply_stage(track, &track->freq, true);
4705 /* XXX should input of freq be from beginning of buf? */
4706 }
4707 }
4708
4709 /* Channel mix */
4710 if (track->chmix.filter)
4711 audio_apply_stage(track, &track->chmix, false);
4712
4713 /* Channel volume */
4714 if (track->chvol.filter)
4715 audio_apply_stage(track, &track->chvol, false);
4716
4717 /* Encoding conversion */
4718 if (track->codec.filter)
4719 audio_apply_stage(track, &track->codec, false);
4720
4721 /* Copy outbuf to usrbuf */
4722 outbuf = &track->outbuf;
4723 usrbuf = &track->usrbuf;
4724 /*
4725 * framesize is always 1 byte or more since all formats supported
4726 * as usrfmt(=output) have 8bit or more stride.
4727 */
4728 framesize = frametobyte(&outbuf->fmt, 1);
4729 KASSERT(framesize >= 1);
4730 /*
4731 * count is the number of frames to copy to usrbuf.
4732 * bytes is the number of bytes to copy to usrbuf.
4733 */
4734 count = outbuf->used;
4735 count = uimin(count,
4736 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4737 bytes = count * framesize;
4738 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4739 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4740 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4741 bytes);
4742 auring_push(usrbuf, bytes);
4743 auring_take(outbuf, count);
4744 } else {
4745 int bytes1;
4746 int bytes2;
4747
4748 bytes1 = auring_get_contig_free(usrbuf);
4749 KASSERTMSG(bytes1 % framesize == 0,
4750 "bytes1=%d framesize=%d", bytes1, framesize);
4751 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4752 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4753 bytes1);
4754 auring_push(usrbuf, bytes1);
4755 auring_take(outbuf, bytes1 / framesize);
4756
4757 bytes2 = bytes - bytes1;
4758 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4759 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4760 bytes2);
4761 auring_push(usrbuf, bytes2);
4762 auring_take(outbuf, bytes2 / framesize);
4763 }
4764
4765 /* XXX TODO: any counters here? */
4766
4767 #if defined(AUDIO_DEBUG)
4768 if (audiodebug >= 3) {
4769 struct audio_track_debugbuf m;
4770 audio_track_bufstat(track, &m);
4771 TRACET(0, track, "end%s%s%s%s%s%s",
4772 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4773 }
4774 #endif
4775 }
4776
4777 /*
4778 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4779 * Must be called with sc_exlock held.
4780 */
4781 static u_int
4782 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4783 {
4784 audio_format2_t *fmt;
4785 u_int blktime;
4786 u_int frames_per_block;
4787
4788 KASSERT(sc->sc_exlock);
4789
4790 fmt = &mixer->hwbuf.fmt;
4791 blktime = sc->sc_blk_ms;
4792
4793 /*
4794 * If stride is not multiples of 8, special treatment is necessary.
4795 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4796 */
4797 if (fmt->stride == 4) {
4798 frames_per_block = fmt->sample_rate * blktime / 1000;
4799 if ((frames_per_block & 1) != 0)
4800 blktime *= 2;
4801 }
4802 #ifdef DIAGNOSTIC
4803 else if (fmt->stride % NBBY != 0) {
4804 panic("unsupported HW stride %d", fmt->stride);
4805 }
4806 #endif
4807
4808 return blktime;
4809 }
4810
4811 /*
4812 * Initialize the mixer corresponding to the mode.
4813 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4814 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4815 * This function returns 0 on successful. Otherwise returns errno.
4816 * Must be called with sc_exlock held and without sc_lock held.
4817 */
4818 static int
4819 audio_mixer_init(struct audio_softc *sc, int mode,
4820 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4821 {
4822 char codecbuf[64];
4823 char blkdmsbuf[8];
4824 audio_trackmixer_t *mixer;
4825 void (*softint_handler)(void *);
4826 int len;
4827 int blksize;
4828 int capacity;
4829 size_t bufsize;
4830 int hwblks;
4831 int blkms;
4832 int blkdms;
4833 int error;
4834
4835 KASSERT(hwfmt != NULL);
4836 KASSERT(reg != NULL);
4837 KASSERT(sc->sc_exlock);
4838
4839 error = 0;
4840 if (mode == AUMODE_PLAY)
4841 mixer = sc->sc_pmixer;
4842 else
4843 mixer = sc->sc_rmixer;
4844
4845 mixer->sc = sc;
4846 mixer->mode = mode;
4847
4848 mixer->hwbuf.fmt = *hwfmt;
4849 mixer->volume = 256;
4850 mixer->blktime_d = 1000;
4851 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4852 sc->sc_blk_ms = mixer->blktime_n;
4853 hwblks = NBLKHW;
4854
4855 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4856 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4857 if (sc->hw_if->round_blocksize) {
4858 int rounded;
4859 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4860 mutex_enter(sc->sc_lock);
4861 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4862 mode, &p);
4863 mutex_exit(sc->sc_lock);
4864 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4865 if (rounded != blksize) {
4866 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4867 mixer->hwbuf.fmt.channels) != 0) {
4868 device_printf(sc->sc_dev,
4869 "round_blocksize must return blocksize "
4870 "divisible by framesize: "
4871 "blksize=%d rounded=%d "
4872 "stride=%ubit channels=%u\n",
4873 blksize, rounded,
4874 mixer->hwbuf.fmt.stride,
4875 mixer->hwbuf.fmt.channels);
4876 return EINVAL;
4877 }
4878 /* Recalculation */
4879 blksize = rounded;
4880 mixer->frames_per_block = blksize * NBBY /
4881 (mixer->hwbuf.fmt.stride *
4882 mixer->hwbuf.fmt.channels);
4883 }
4884 }
4885 mixer->blktime_n = mixer->frames_per_block;
4886 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4887
4888 capacity = mixer->frames_per_block * hwblks;
4889 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4890 if (sc->hw_if->round_buffersize) {
4891 size_t rounded;
4892 mutex_enter(sc->sc_lock);
4893 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4894 bufsize);
4895 mutex_exit(sc->sc_lock);
4896 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4897 if (rounded < bufsize) {
4898 /* buffersize needs NBLKHW blocks at least. */
4899 device_printf(sc->sc_dev,
4900 "buffersize too small: buffersize=%zd blksize=%d\n",
4901 rounded, blksize);
4902 return EINVAL;
4903 }
4904 if (rounded % blksize != 0) {
4905 /* buffersize/blksize constraint mismatch? */
4906 device_printf(sc->sc_dev,
4907 "buffersize must be multiple of blksize: "
4908 "buffersize=%zu blksize=%d\n",
4909 rounded, blksize);
4910 return EINVAL;
4911 }
4912 if (rounded != bufsize) {
4913 /* Recalcuration */
4914 bufsize = rounded;
4915 hwblks = bufsize / blksize;
4916 capacity = mixer->frames_per_block * hwblks;
4917 }
4918 }
4919 TRACE(1, "buffersize for %s = %zu",
4920 (mode == AUMODE_PLAY) ? "playback" : "recording",
4921 bufsize);
4922 mixer->hwbuf.capacity = capacity;
4923
4924 if (sc->hw_if->allocm) {
4925 /* sc_lock is not necessary for allocm */
4926 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4927 if (mixer->hwbuf.mem == NULL) {
4928 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4929 __func__, bufsize);
4930 return ENOMEM;
4931 }
4932 } else {
4933 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4934 }
4935
4936 /* From here, audio_mixer_destroy is necessary to exit. */
4937 if (mode == AUMODE_PLAY) {
4938 cv_init(&mixer->outcv, "audiowr");
4939 } else {
4940 cv_init(&mixer->outcv, "audiord");
4941 }
4942
4943 if (mode == AUMODE_PLAY) {
4944 softint_handler = audio_softintr_wr;
4945 } else {
4946 softint_handler = audio_softintr_rd;
4947 }
4948 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4949 softint_handler, sc);
4950 if (mixer->sih == NULL) {
4951 device_printf(sc->sc_dev, "softint_establish failed\n");
4952 goto abort;
4953 }
4954
4955 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4956 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4957 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4958 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4959 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4960
4961 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4962 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4963 mixer->swap_endian = true;
4964 TRACE(1, "swap_endian");
4965 }
4966
4967 if (mode == AUMODE_PLAY) {
4968 /* Mixing buffer */
4969 mixer->mixfmt = mixer->track_fmt;
4970 mixer->mixfmt.precision *= 2;
4971 mixer->mixfmt.stride *= 2;
4972 /* XXX TODO: use some macros? */
4973 len = mixer->frames_per_block * mixer->mixfmt.channels *
4974 mixer->mixfmt.stride / NBBY;
4975 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4976 } else {
4977 /* No mixing buffer for recording */
4978 }
4979
4980 if (reg->codec) {
4981 mixer->codec = reg->codec;
4982 mixer->codecarg.context = reg->context;
4983 if (mode == AUMODE_PLAY) {
4984 mixer->codecarg.srcfmt = &mixer->track_fmt;
4985 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4986 } else {
4987 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4988 mixer->codecarg.dstfmt = &mixer->track_fmt;
4989 }
4990 mixer->codecbuf.fmt = mixer->track_fmt;
4991 mixer->codecbuf.capacity = mixer->frames_per_block;
4992 len = auring_bytelen(&mixer->codecbuf);
4993 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4994 if (mixer->codecbuf.mem == NULL) {
4995 device_printf(sc->sc_dev,
4996 "%s: malloc codecbuf(%d) failed\n",
4997 __func__, len);
4998 error = ENOMEM;
4999 goto abort;
5000 }
5001 }
5002
5003 /* Succeeded so display it. */
5004 codecbuf[0] = '\0';
5005 if (mixer->codec || mixer->swap_endian) {
5006 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5007 (mode == AUMODE_PLAY) ? "->" : "<-",
5008 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5009 mixer->hwbuf.fmt.precision);
5010 }
5011 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5012 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5013 blkdmsbuf[0] = '\0';
5014 if (blkdms != 0) {
5015 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5016 }
5017 aprint_normal_dev(sc->sc_dev,
5018 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5019 audio_encoding_name(mixer->track_fmt.encoding),
5020 mixer->track_fmt.precision,
5021 codecbuf,
5022 mixer->track_fmt.channels,
5023 mixer->track_fmt.sample_rate,
5024 blksize,
5025 blkms, blkdmsbuf,
5026 (mode == AUMODE_PLAY) ? "playback" : "recording");
5027
5028 return 0;
5029
5030 abort:
5031 audio_mixer_destroy(sc, mixer);
5032 return error;
5033 }
5034
5035 /*
5036 * Releases all resources of 'mixer'.
5037 * Note that it does not release the memory area of 'mixer' itself.
5038 * Must be called with sc_exlock held and without sc_lock held.
5039 */
5040 static void
5041 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5042 {
5043 int bufsize;
5044
5045 KASSERT(sc->sc_exlock == 1);
5046
5047 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5048
5049 if (mixer->hwbuf.mem != NULL) {
5050 if (sc->hw_if->freem) {
5051 /* sc_lock is not necessary for freem */
5052 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5053 } else {
5054 kmem_free(mixer->hwbuf.mem, bufsize);
5055 }
5056 mixer->hwbuf.mem = NULL;
5057 }
5058
5059 audio_free(mixer->codecbuf.mem);
5060 audio_free(mixer->mixsample);
5061
5062 cv_destroy(&mixer->outcv);
5063
5064 if (mixer->sih) {
5065 softint_disestablish(mixer->sih);
5066 mixer->sih = NULL;
5067 }
5068 }
5069
5070 /*
5071 * Starts playback mixer.
5072 * Must be called only if sc_pbusy is false.
5073 * Must be called with sc_lock && sc_exlock held.
5074 * Must not be called from the interrupt context.
5075 */
5076 static void
5077 audio_pmixer_start(struct audio_softc *sc, bool force)
5078 {
5079 audio_trackmixer_t *mixer;
5080 int minimum;
5081
5082 KASSERT(mutex_owned(sc->sc_lock));
5083 KASSERT(sc->sc_exlock);
5084 KASSERT(sc->sc_pbusy == false);
5085
5086 mutex_enter(sc->sc_intr_lock);
5087
5088 mixer = sc->sc_pmixer;
5089 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5090 (audiodebug >= 3) ? "begin " : "",
5091 (int)mixer->mixseq, (int)mixer->hwseq,
5092 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5093 force ? " force" : "");
5094
5095 /* Need two blocks to start normally. */
5096 minimum = (force) ? 1 : 2;
5097 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5098 audio_pmixer_process(sc);
5099 }
5100
5101 /* Start output */
5102 audio_pmixer_output(sc);
5103 sc->sc_pbusy = true;
5104
5105 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5106 (int)mixer->mixseq, (int)mixer->hwseq,
5107 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5108
5109 mutex_exit(sc->sc_intr_lock);
5110 }
5111
5112 /*
5113 * When playing back with MD filter:
5114 *
5115 * track track ...
5116 * v v
5117 * + mix (with aint2_t)
5118 * | master volume (with aint2_t)
5119 * v
5120 * mixsample [::::] wide-int 1 block (ring) buffer
5121 * |
5122 * | convert aint2_t -> aint_t
5123 * v
5124 * codecbuf [....] 1 block (ring) buffer
5125 * |
5126 * | convert to hw format
5127 * v
5128 * hwbuf [............] NBLKHW blocks ring buffer
5129 *
5130 * When playing back without MD filter:
5131 *
5132 * mixsample [::::] wide-int 1 block (ring) buffer
5133 * |
5134 * | convert aint2_t -> aint_t
5135 * | (with byte swap if necessary)
5136 * v
5137 * hwbuf [............] NBLKHW blocks ring buffer
5138 *
5139 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5140 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5141 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5142 */
5143
5144 /*
5145 * Performs track mixing and converts it to hwbuf.
5146 * Note that this function doesn't transfer hwbuf to hardware.
5147 * Must be called with sc_intr_lock held.
5148 */
5149 static void
5150 audio_pmixer_process(struct audio_softc *sc)
5151 {
5152 audio_trackmixer_t *mixer;
5153 audio_file_t *f;
5154 int frame_count;
5155 int sample_count;
5156 int mixed;
5157 int i;
5158 aint2_t *m;
5159 aint_t *h;
5160
5161 mixer = sc->sc_pmixer;
5162
5163 frame_count = mixer->frames_per_block;
5164 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5165 "auring_get_contig_free()=%d frame_count=%d",
5166 auring_get_contig_free(&mixer->hwbuf), frame_count);
5167 sample_count = frame_count * mixer->mixfmt.channels;
5168
5169 mixer->mixseq++;
5170
5171 /* Mix all tracks */
5172 mixed = 0;
5173 SLIST_FOREACH(f, &sc->sc_files, entry) {
5174 audio_track_t *track = f->ptrack;
5175
5176 if (track == NULL)
5177 continue;
5178
5179 if (track->is_pause) {
5180 TRACET(4, track, "skip; paused");
5181 continue;
5182 }
5183
5184 /* Skip if the track is used by process context. */
5185 if (audio_track_lock_tryenter(track) == false) {
5186 TRACET(4, track, "skip; in use");
5187 continue;
5188 }
5189
5190 /* Emulate mmap'ped track */
5191 if (track->mmapped) {
5192 auring_push(&track->usrbuf, track->usrbuf_blksize);
5193 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5194 track->usrbuf.head,
5195 track->usrbuf.used,
5196 track->usrbuf.capacity);
5197 }
5198
5199 if (track->outbuf.used < mixer->frames_per_block &&
5200 track->usrbuf.used > 0) {
5201 TRACET(4, track, "process");
5202 audio_track_play(track);
5203 }
5204
5205 if (track->outbuf.used > 0) {
5206 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5207 } else {
5208 TRACET(4, track, "skip; empty");
5209 }
5210
5211 audio_track_lock_exit(track);
5212 }
5213
5214 if (mixed == 0) {
5215 /* Silence */
5216 memset(mixer->mixsample, 0,
5217 frametobyte(&mixer->mixfmt, frame_count));
5218 } else {
5219 if (mixed > 1) {
5220 /* If there are multiple tracks, do auto gain control */
5221 audio_pmixer_agc(mixer, sample_count);
5222 }
5223
5224 /* Apply master volume */
5225 if (mixer->volume < 256) {
5226 m = mixer->mixsample;
5227 for (i = 0; i < sample_count; i++) {
5228 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5229 m++;
5230 }
5231
5232 /*
5233 * Recover the volume gradually at the pace of
5234 * several times per second. If it's too fast, you
5235 * can recognize that the volume changes up and down
5236 * quickly and it's not so comfortable.
5237 */
5238 mixer->voltimer += mixer->blktime_n;
5239 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5240 mixer->volume++;
5241 mixer->voltimer = 0;
5242 #if defined(AUDIO_DEBUG_AGC)
5243 TRACE(1, "volume recover: %d", mixer->volume);
5244 #endif
5245 }
5246 }
5247 }
5248
5249 /*
5250 * The rest is the hardware part.
5251 */
5252
5253 if (mixer->codec) {
5254 h = auring_tailptr_aint(&mixer->codecbuf);
5255 } else {
5256 h = auring_tailptr_aint(&mixer->hwbuf);
5257 }
5258
5259 m = mixer->mixsample;
5260 if (mixer->swap_endian) {
5261 for (i = 0; i < sample_count; i++) {
5262 *h++ = bswap16(*m++);
5263 }
5264 } else {
5265 for (i = 0; i < sample_count; i++) {
5266 *h++ = *m++;
5267 }
5268 }
5269
5270 /* Hardware driver's codec */
5271 if (mixer->codec) {
5272 auring_push(&mixer->codecbuf, frame_count);
5273 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5274 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5275 mixer->codecarg.count = frame_count;
5276 mixer->codec(&mixer->codecarg);
5277 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5278 }
5279
5280 auring_push(&mixer->hwbuf, frame_count);
5281
5282 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5283 (int)mixer->mixseq,
5284 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5285 (mixed == 0) ? " silent" : "");
5286 }
5287
5288 /*
5289 * Do auto gain control.
5290 * Must be called sc_intr_lock held.
5291 */
5292 static void
5293 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5294 {
5295 struct audio_softc *sc __unused;
5296 aint2_t val;
5297 aint2_t maxval;
5298 aint2_t minval;
5299 aint2_t over_plus;
5300 aint2_t over_minus;
5301 aint2_t *m;
5302 int newvol;
5303 int i;
5304
5305 sc = mixer->sc;
5306
5307 /* Overflow detection */
5308 maxval = AINT_T_MAX;
5309 minval = AINT_T_MIN;
5310 m = mixer->mixsample;
5311 for (i = 0; i < sample_count; i++) {
5312 val = *m++;
5313 if (val > maxval)
5314 maxval = val;
5315 else if (val < minval)
5316 minval = val;
5317 }
5318
5319 /* Absolute value of overflowed amount */
5320 over_plus = maxval - AINT_T_MAX;
5321 over_minus = AINT_T_MIN - minval;
5322
5323 if (over_plus > 0 || over_minus > 0) {
5324 if (over_plus > over_minus) {
5325 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5326 } else {
5327 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5328 }
5329
5330 /*
5331 * Change the volume only if new one is smaller.
5332 * Reset the timer even if the volume isn't changed.
5333 */
5334 if (newvol <= mixer->volume) {
5335 mixer->volume = newvol;
5336 mixer->voltimer = 0;
5337 #if defined(AUDIO_DEBUG_AGC)
5338 TRACE(1, "auto volume adjust: %d", mixer->volume);
5339 #endif
5340 }
5341 }
5342 }
5343
5344 /*
5345 * Mix one track.
5346 * 'mixed' specifies the number of tracks mixed so far.
5347 * It returns the number of tracks mixed. In other words, it returns
5348 * mixed + 1 if this track is mixed.
5349 */
5350 static int
5351 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5352 int mixed)
5353 {
5354 int count;
5355 int sample_count;
5356 int remain;
5357 int i;
5358 const aint_t *s;
5359 aint2_t *d;
5360
5361 /* XXX TODO: Is this necessary for now? */
5362 if (mixer->mixseq < track->seq)
5363 return mixed;
5364
5365 count = auring_get_contig_used(&track->outbuf);
5366 count = uimin(count, mixer->frames_per_block);
5367
5368 s = auring_headptr_aint(&track->outbuf);
5369 d = mixer->mixsample;
5370
5371 /*
5372 * Apply track volume with double-sized integer and perform
5373 * additive synthesis.
5374 *
5375 * XXX If you limit the track volume to 1.0 or less (<= 256),
5376 * it would be better to do this in the track conversion stage
5377 * rather than here. However, if you accept the volume to
5378 * be greater than 1.0 (> 256), it's better to do it here.
5379 * Because the operation here is done by double-sized integer.
5380 */
5381 sample_count = count * mixer->mixfmt.channels;
5382 if (mixed == 0) {
5383 /* If this is the first track, assignment can be used. */
5384 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5385 if (track->volume != 256) {
5386 for (i = 0; i < sample_count; i++) {
5387 aint2_t v;
5388 v = *s++;
5389 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5390 }
5391 } else
5392 #endif
5393 {
5394 for (i = 0; i < sample_count; i++) {
5395 *d++ = ((aint2_t)*s++);
5396 }
5397 }
5398 /* Fill silence if the first track is not filled. */
5399 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5400 *d++ = 0;
5401 } else {
5402 /* If this is the second or later, add it. */
5403 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5404 if (track->volume != 256) {
5405 for (i = 0; i < sample_count; i++) {
5406 aint2_t v;
5407 v = *s++;
5408 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5409 }
5410 } else
5411 #endif
5412 {
5413 for (i = 0; i < sample_count; i++) {
5414 *d++ += ((aint2_t)*s++);
5415 }
5416 }
5417 }
5418
5419 auring_take(&track->outbuf, count);
5420 /*
5421 * The counters have to align block even if outbuf is less than
5422 * one block. XXX Is this still necessary?
5423 */
5424 remain = mixer->frames_per_block - count;
5425 if (__predict_false(remain != 0)) {
5426 auring_push(&track->outbuf, remain);
5427 auring_take(&track->outbuf, remain);
5428 }
5429
5430 /*
5431 * Update track sequence.
5432 * mixseq has previous value yet at this point.
5433 */
5434 track->seq = mixer->mixseq + 1;
5435
5436 return mixed + 1;
5437 }
5438
5439 /*
5440 * Output one block from hwbuf to HW.
5441 * Must be called with sc_intr_lock held.
5442 */
5443 static void
5444 audio_pmixer_output(struct audio_softc *sc)
5445 {
5446 audio_trackmixer_t *mixer;
5447 audio_params_t params;
5448 void *start;
5449 void *end;
5450 int blksize;
5451 int error;
5452
5453 mixer = sc->sc_pmixer;
5454 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5455 sc->sc_pbusy,
5456 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5457 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5458 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5459 mixer->hwbuf.used, mixer->frames_per_block);
5460
5461 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5462
5463 if (sc->hw_if->trigger_output) {
5464 /* trigger (at once) */
5465 if (!sc->sc_pbusy) {
5466 start = mixer->hwbuf.mem;
5467 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5468 params = format2_to_params(&mixer->hwbuf.fmt);
5469
5470 error = sc->hw_if->trigger_output(sc->hw_hdl,
5471 start, end, blksize, audio_pintr, sc, ¶ms);
5472 if (error) {
5473 device_printf(sc->sc_dev,
5474 "trigger_output failed with %d\n", error);
5475 return;
5476 }
5477 }
5478 } else {
5479 /* start (everytime) */
5480 start = auring_headptr(&mixer->hwbuf);
5481
5482 error = sc->hw_if->start_output(sc->hw_hdl,
5483 start, blksize, audio_pintr, sc);
5484 if (error) {
5485 device_printf(sc->sc_dev,
5486 "start_output failed with %d\n", error);
5487 return;
5488 }
5489 }
5490 }
5491
5492 /*
5493 * This is an interrupt handler for playback.
5494 * It is called with sc_intr_lock held.
5495 *
5496 * It is usually called from hardware interrupt. However, note that
5497 * for some drivers (e.g. uaudio) it is called from software interrupt.
5498 */
5499 static void
5500 audio_pintr(void *arg)
5501 {
5502 struct audio_softc *sc;
5503 audio_trackmixer_t *mixer;
5504
5505 sc = arg;
5506 KASSERT(mutex_owned(sc->sc_intr_lock));
5507
5508 if (sc->sc_dying)
5509 return;
5510 if (sc->sc_pbusy == false) {
5511 #if defined(DIAGNOSTIC)
5512 device_printf(sc->sc_dev,
5513 "DIAGNOSTIC: %s raised stray interrupt\n",
5514 device_xname(sc->hw_dev));
5515 #endif
5516 return;
5517 }
5518
5519 mixer = sc->sc_pmixer;
5520 mixer->hw_complete_counter += mixer->frames_per_block;
5521 mixer->hwseq++;
5522
5523 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5524
5525 TRACE(4,
5526 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5527 mixer->hwseq, mixer->hw_complete_counter,
5528 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5529
5530 #if defined(AUDIO_HW_SINGLE_BUFFER)
5531 /*
5532 * Create a new block here and output it immediately.
5533 * It makes a latency lower but needs machine power.
5534 */
5535 audio_pmixer_process(sc);
5536 audio_pmixer_output(sc);
5537 #else
5538 /*
5539 * It is called when block N output is done.
5540 * Output immediately block N+1 created by the last interrupt.
5541 * And then create block N+2 for the next interrupt.
5542 * This method makes playback robust even on slower machines.
5543 * Instead the latency is increased by one block.
5544 */
5545
5546 /* At first, output ready block. */
5547 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5548 audio_pmixer_output(sc);
5549 }
5550
5551 bool later = false;
5552
5553 if (mixer->hwbuf.used < mixer->frames_per_block) {
5554 later = true;
5555 }
5556
5557 /* Then, process next block. */
5558 audio_pmixer_process(sc);
5559
5560 if (later) {
5561 audio_pmixer_output(sc);
5562 }
5563 #endif
5564
5565 /*
5566 * When this interrupt is the real hardware interrupt, disabling
5567 * preemption here is not necessary. But some drivers (e.g. uaudio)
5568 * emulate it by software interrupt, so kpreempt_disable is necessary.
5569 */
5570 kpreempt_disable();
5571 softint_schedule(mixer->sih);
5572 kpreempt_enable();
5573 }
5574
5575 /*
5576 * Starts record mixer.
5577 * Must be called only if sc_rbusy is false.
5578 * Must be called with sc_lock && sc_exlock held.
5579 * Must not be called from the interrupt context.
5580 */
5581 static void
5582 audio_rmixer_start(struct audio_softc *sc)
5583 {
5584
5585 KASSERT(mutex_owned(sc->sc_lock));
5586 KASSERT(sc->sc_exlock);
5587 KASSERT(sc->sc_rbusy == false);
5588
5589 mutex_enter(sc->sc_intr_lock);
5590
5591 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5592 audio_rmixer_input(sc);
5593 sc->sc_rbusy = true;
5594 TRACE(3, "end");
5595
5596 mutex_exit(sc->sc_intr_lock);
5597 }
5598
5599 /*
5600 * When recording with MD filter:
5601 *
5602 * hwbuf [............] NBLKHW blocks ring buffer
5603 * |
5604 * | convert from hw format
5605 * v
5606 * codecbuf [....] 1 block (ring) buffer
5607 * | |
5608 * v v
5609 * track track ...
5610 *
5611 * When recording without MD filter:
5612 *
5613 * hwbuf [............] NBLKHW blocks ring buffer
5614 * | |
5615 * v v
5616 * track track ...
5617 *
5618 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5619 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5620 */
5621
5622 /*
5623 * Distribute a recorded block to all recording tracks.
5624 */
5625 static void
5626 audio_rmixer_process(struct audio_softc *sc)
5627 {
5628 audio_trackmixer_t *mixer;
5629 audio_ring_t *mixersrc;
5630 audio_file_t *f;
5631 aint_t *p;
5632 int count;
5633 int bytes;
5634 int i;
5635
5636 mixer = sc->sc_rmixer;
5637
5638 /*
5639 * count is the number of frames to be retrieved this time.
5640 * count should be one block.
5641 */
5642 count = auring_get_contig_used(&mixer->hwbuf);
5643 count = uimin(count, mixer->frames_per_block);
5644 if (count <= 0) {
5645 TRACE(4, "count %d: too short", count);
5646 return;
5647 }
5648 bytes = frametobyte(&mixer->track_fmt, count);
5649
5650 /* Hardware driver's codec */
5651 if (mixer->codec) {
5652 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5653 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5654 mixer->codecarg.count = count;
5655 mixer->codec(&mixer->codecarg);
5656 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5657 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5658 mixersrc = &mixer->codecbuf;
5659 } else {
5660 mixersrc = &mixer->hwbuf;
5661 }
5662
5663 if (mixer->swap_endian) {
5664 /* inplace conversion */
5665 p = auring_headptr_aint(mixersrc);
5666 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5667 *p = bswap16(*p);
5668 }
5669 }
5670
5671 /* Distribute to all tracks. */
5672 SLIST_FOREACH(f, &sc->sc_files, entry) {
5673 audio_track_t *track = f->rtrack;
5674 audio_ring_t *input;
5675
5676 if (track == NULL)
5677 continue;
5678
5679 if (track->is_pause) {
5680 TRACET(4, track, "skip; paused");
5681 continue;
5682 }
5683
5684 if (audio_track_lock_tryenter(track) == false) {
5685 TRACET(4, track, "skip; in use");
5686 continue;
5687 }
5688
5689 /* If the track buffer is full, discard the oldest one? */
5690 input = track->input;
5691 if (input->capacity - input->used < mixer->frames_per_block) {
5692 int drops = mixer->frames_per_block -
5693 (input->capacity - input->used);
5694 track->dropframes += drops;
5695 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5696 drops,
5697 input->head, input->used, input->capacity);
5698 auring_take(input, drops);
5699 }
5700 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5701 "input->used=%d mixer->frames_per_block=%d",
5702 input->used, mixer->frames_per_block);
5703
5704 memcpy(auring_tailptr_aint(input),
5705 auring_headptr_aint(mixersrc),
5706 bytes);
5707 auring_push(input, count);
5708
5709 /* XXX sequence counter? */
5710
5711 audio_track_lock_exit(track);
5712 }
5713
5714 auring_take(mixersrc, count);
5715 }
5716
5717 /*
5718 * Input one block from HW to hwbuf.
5719 * Must be called with sc_intr_lock held.
5720 */
5721 static void
5722 audio_rmixer_input(struct audio_softc *sc)
5723 {
5724 audio_trackmixer_t *mixer;
5725 audio_params_t params;
5726 void *start;
5727 void *end;
5728 int blksize;
5729 int error;
5730
5731 mixer = sc->sc_rmixer;
5732 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5733
5734 if (sc->hw_if->trigger_input) {
5735 /* trigger (at once) */
5736 if (!sc->sc_rbusy) {
5737 start = mixer->hwbuf.mem;
5738 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5739 params = format2_to_params(&mixer->hwbuf.fmt);
5740
5741 error = sc->hw_if->trigger_input(sc->hw_hdl,
5742 start, end, blksize, audio_rintr, sc, ¶ms);
5743 if (error) {
5744 device_printf(sc->sc_dev,
5745 "trigger_input failed with %d\n", error);
5746 return;
5747 }
5748 }
5749 } else {
5750 /* start (everytime) */
5751 start = auring_tailptr(&mixer->hwbuf);
5752
5753 error = sc->hw_if->start_input(sc->hw_hdl,
5754 start, blksize, audio_rintr, sc);
5755 if (error) {
5756 device_printf(sc->sc_dev,
5757 "start_input failed with %d\n", error);
5758 return;
5759 }
5760 }
5761 }
5762
5763 /*
5764 * This is an interrupt handler for recording.
5765 * It is called with sc_intr_lock.
5766 *
5767 * It is usually called from hardware interrupt. However, note that
5768 * for some drivers (e.g. uaudio) it is called from software interrupt.
5769 */
5770 static void
5771 audio_rintr(void *arg)
5772 {
5773 struct audio_softc *sc;
5774 audio_trackmixer_t *mixer;
5775
5776 sc = arg;
5777 KASSERT(mutex_owned(sc->sc_intr_lock));
5778
5779 if (sc->sc_dying)
5780 return;
5781 if (sc->sc_rbusy == false) {
5782 #if defined(DIAGNOSTIC)
5783 device_printf(sc->sc_dev,
5784 "DIAGNOSTIC: %s raised stray interrupt\n",
5785 device_xname(sc->hw_dev));
5786 #endif
5787 return;
5788 }
5789
5790 mixer = sc->sc_rmixer;
5791 mixer->hw_complete_counter += mixer->frames_per_block;
5792 mixer->hwseq++;
5793
5794 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5795
5796 TRACE(4,
5797 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5798 mixer->hwseq, mixer->hw_complete_counter,
5799 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5800
5801 /* Distrubute recorded block */
5802 audio_rmixer_process(sc);
5803
5804 /* Request next block */
5805 audio_rmixer_input(sc);
5806
5807 /*
5808 * When this interrupt is the real hardware interrupt, disabling
5809 * preemption here is not necessary. But some drivers (e.g. uaudio)
5810 * emulate it by software interrupt, so kpreempt_disable is necessary.
5811 */
5812 kpreempt_disable();
5813 softint_schedule(mixer->sih);
5814 kpreempt_enable();
5815 }
5816
5817 /*
5818 * Halts playback mixer.
5819 * This function also clears related parameters, so call this function
5820 * instead of calling halt_output directly.
5821 * Must be called only if sc_pbusy is true.
5822 * Must be called with sc_lock && sc_exlock held.
5823 */
5824 static int
5825 audio_pmixer_halt(struct audio_softc *sc)
5826 {
5827 int error;
5828
5829 TRACE(2, "");
5830 KASSERT(mutex_owned(sc->sc_lock));
5831 KASSERT(sc->sc_exlock);
5832
5833 mutex_enter(sc->sc_intr_lock);
5834 error = sc->hw_if->halt_output(sc->hw_hdl);
5835
5836 /* Halts anyway even if some error has occurred. */
5837 sc->sc_pbusy = false;
5838 sc->sc_pmixer->hwbuf.head = 0;
5839 sc->sc_pmixer->hwbuf.used = 0;
5840 sc->sc_pmixer->mixseq = 0;
5841 sc->sc_pmixer->hwseq = 0;
5842 mutex_exit(sc->sc_intr_lock);
5843
5844 return error;
5845 }
5846
5847 /*
5848 * Halts recording mixer.
5849 * This function also clears related parameters, so call this function
5850 * instead of calling halt_input directly.
5851 * Must be called only if sc_rbusy is true.
5852 * Must be called with sc_lock && sc_exlock held.
5853 */
5854 static int
5855 audio_rmixer_halt(struct audio_softc *sc)
5856 {
5857 int error;
5858
5859 TRACE(2, "");
5860 KASSERT(mutex_owned(sc->sc_lock));
5861 KASSERT(sc->sc_exlock);
5862
5863 mutex_enter(sc->sc_intr_lock);
5864 error = sc->hw_if->halt_input(sc->hw_hdl);
5865
5866 /* Halts anyway even if some error has occurred. */
5867 sc->sc_rbusy = false;
5868 sc->sc_rmixer->hwbuf.head = 0;
5869 sc->sc_rmixer->hwbuf.used = 0;
5870 sc->sc_rmixer->mixseq = 0;
5871 sc->sc_rmixer->hwseq = 0;
5872 mutex_exit(sc->sc_intr_lock);
5873
5874 return error;
5875 }
5876
5877 /*
5878 * Flush this track.
5879 * Halts all operations, clears all buffers, reset error counters.
5880 * XXX I'm not sure...
5881 */
5882 static void
5883 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5884 {
5885
5886 KASSERT(track);
5887 TRACET(3, track, "clear");
5888
5889 audio_track_lock_enter(track);
5890
5891 track->usrbuf.used = 0;
5892 /* Clear all internal parameters. */
5893 if (track->codec.filter) {
5894 track->codec.srcbuf.used = 0;
5895 track->codec.srcbuf.head = 0;
5896 }
5897 if (track->chvol.filter) {
5898 track->chvol.srcbuf.used = 0;
5899 track->chvol.srcbuf.head = 0;
5900 }
5901 if (track->chmix.filter) {
5902 track->chmix.srcbuf.used = 0;
5903 track->chmix.srcbuf.head = 0;
5904 }
5905 if (track->freq.filter) {
5906 track->freq.srcbuf.used = 0;
5907 track->freq.srcbuf.head = 0;
5908 if (track->freq_step < 65536)
5909 track->freq_current = 65536;
5910 else
5911 track->freq_current = 0;
5912 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5913 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5914 }
5915 /* Clear buffer, then operation halts naturally. */
5916 track->outbuf.used = 0;
5917
5918 /* Clear counters. */
5919 track->dropframes = 0;
5920
5921 audio_track_lock_exit(track);
5922 }
5923
5924 /*
5925 * Drain the track.
5926 * track must be present and for playback.
5927 * If successful, it returns 0. Otherwise returns errno.
5928 * Must be called with sc_lock held.
5929 */
5930 static int
5931 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5932 {
5933 audio_trackmixer_t *mixer;
5934 int done;
5935 int error;
5936
5937 KASSERT(track);
5938 TRACET(3, track, "start");
5939 mixer = track->mixer;
5940 KASSERT(mutex_owned(sc->sc_lock));
5941
5942 /* Ignore them if pause. */
5943 if (track->is_pause) {
5944 TRACET(3, track, "pause -> clear");
5945 track->pstate = AUDIO_STATE_CLEAR;
5946 }
5947 /* Terminate early here if there is no data in the track. */
5948 if (track->pstate == AUDIO_STATE_CLEAR) {
5949 TRACET(3, track, "no need to drain");
5950 return 0;
5951 }
5952 track->pstate = AUDIO_STATE_DRAINING;
5953
5954 for (;;) {
5955 /* I want to display it before condition evaluation. */
5956 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5957 (int)curproc->p_pid, (int)curlwp->l_lid,
5958 (int)track->seq, (int)mixer->hwseq,
5959 track->outbuf.head, track->outbuf.used,
5960 track->outbuf.capacity);
5961
5962 /* Condition to terminate */
5963 audio_track_lock_enter(track);
5964 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5965 track->outbuf.used == 0 &&
5966 track->seq <= mixer->hwseq);
5967 audio_track_lock_exit(track);
5968 if (done)
5969 break;
5970
5971 TRACET(3, track, "sleep");
5972 error = audio_track_waitio(sc, track);
5973 if (error)
5974 return error;
5975
5976 /* XXX call audio_track_play here ? */
5977 }
5978
5979 track->pstate = AUDIO_STATE_CLEAR;
5980 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5981 (int)track->inputcounter, (int)track->outputcounter);
5982 return 0;
5983 }
5984
5985 /*
5986 * Send signal to process.
5987 * This is intended to be called only from audio_softintr_{rd,wr}.
5988 * Must be called without sc_intr_lock held.
5989 */
5990 static inline void
5991 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
5992 {
5993 proc_t *p;
5994
5995 KASSERT(pid != 0);
5996
5997 /*
5998 * psignal() must be called without spin lock held.
5999 */
6000
6001 mutex_enter(&proc_lock);
6002 p = proc_find(pid);
6003 if (p)
6004 psignal(p, signum);
6005 mutex_exit(&proc_lock);
6006 }
6007
6008 /*
6009 * This is software interrupt handler for record.
6010 * It is called from recording hardware interrupt everytime.
6011 * It does:
6012 * - Deliver SIGIO for all async processes.
6013 * - Notify to audio_read() that data has arrived.
6014 * - selnotify() for select/poll-ing processes.
6015 */
6016 /*
6017 * XXX If a process issues FIOASYNC between hardware interrupt and
6018 * software interrupt, (stray) SIGIO will be sent to the process
6019 * despite the fact that it has not receive recorded data yet.
6020 */
6021 static void
6022 audio_softintr_rd(void *cookie)
6023 {
6024 struct audio_softc *sc = cookie;
6025 audio_file_t *f;
6026 pid_t pid;
6027
6028 mutex_enter(sc->sc_lock);
6029
6030 SLIST_FOREACH(f, &sc->sc_files, entry) {
6031 audio_track_t *track = f->rtrack;
6032
6033 if (track == NULL)
6034 continue;
6035
6036 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6037 track->input->head,
6038 track->input->used,
6039 track->input->capacity);
6040
6041 pid = f->async_audio;
6042 if (pid != 0) {
6043 TRACEF(4, f, "sending SIGIO %d", pid);
6044 audio_psignal(sc, pid, SIGIO);
6045 }
6046 }
6047
6048 /* Notify that data has arrived. */
6049 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6050 KNOTE(&sc->sc_rsel.sel_klist, 0);
6051 cv_broadcast(&sc->sc_rmixer->outcv);
6052
6053 mutex_exit(sc->sc_lock);
6054 }
6055
6056 /*
6057 * This is software interrupt handler for playback.
6058 * It is called from playback hardware interrupt everytime.
6059 * It does:
6060 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6061 * - Notify to audio_write() that outbuf block available.
6062 * - selnotify() for select/poll-ing processes if there are any writable
6063 * (used < lowat) processes. Checking each descriptor will be done by
6064 * filt_audiowrite_event().
6065 */
6066 static void
6067 audio_softintr_wr(void *cookie)
6068 {
6069 struct audio_softc *sc = cookie;
6070 audio_file_t *f;
6071 bool found;
6072 pid_t pid;
6073
6074 TRACE(4, "called");
6075 found = false;
6076
6077 mutex_enter(sc->sc_lock);
6078
6079 SLIST_FOREACH(f, &sc->sc_files, entry) {
6080 audio_track_t *track = f->ptrack;
6081
6082 if (track == NULL)
6083 continue;
6084
6085 TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6086 (int)track->seq,
6087 track->outbuf.head,
6088 track->outbuf.used,
6089 track->outbuf.capacity);
6090
6091 /*
6092 * Send a signal if the process is async mode and
6093 * used is lower than lowat.
6094 */
6095 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6096 !track->is_pause) {
6097 /* For selnotify */
6098 found = true;
6099 /* For SIGIO */
6100 pid = f->async_audio;
6101 if (pid != 0) {
6102 TRACEF(4, f, "sending SIGIO %d", pid);
6103 audio_psignal(sc, pid, SIGIO);
6104 }
6105 }
6106 }
6107
6108 /*
6109 * Notify for select/poll when someone become writable.
6110 * It needs sc_lock (and not sc_intr_lock).
6111 */
6112 if (found) {
6113 TRACE(4, "selnotify");
6114 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6115 KNOTE(&sc->sc_wsel.sel_klist, 0);
6116 }
6117
6118 /* Notify to audio_write() that outbuf available. */
6119 cv_broadcast(&sc->sc_pmixer->outcv);
6120
6121 mutex_exit(sc->sc_lock);
6122 }
6123
6124 /*
6125 * Check (and convert) the format *p came from userland.
6126 * If successful, it writes back the converted format to *p if necessary
6127 * and returns 0. Otherwise returns errno (*p may change even this case).
6128 */
6129 static int
6130 audio_check_params(audio_format2_t *p)
6131 {
6132
6133 /*
6134 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6135 *
6136 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6137 * So, it's always signed, as in SunOS.
6138 *
6139 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6140 * So, it's always unsigned, as in SunOS.
6141 */
6142 if (p->encoding == AUDIO_ENCODING_PCM16) {
6143 p->encoding = AUDIO_ENCODING_SLINEAR;
6144 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6145 if (p->precision == 8)
6146 p->encoding = AUDIO_ENCODING_ULINEAR;
6147 else
6148 return EINVAL;
6149 }
6150
6151 /*
6152 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6153 * suffix.
6154 */
6155 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6156 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6157 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6158 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6159
6160 switch (p->encoding) {
6161 case AUDIO_ENCODING_ULAW:
6162 case AUDIO_ENCODING_ALAW:
6163 if (p->precision != 8)
6164 return EINVAL;
6165 break;
6166 case AUDIO_ENCODING_ADPCM:
6167 if (p->precision != 4 && p->precision != 8)
6168 return EINVAL;
6169 break;
6170 case AUDIO_ENCODING_SLINEAR_LE:
6171 case AUDIO_ENCODING_SLINEAR_BE:
6172 case AUDIO_ENCODING_ULINEAR_LE:
6173 case AUDIO_ENCODING_ULINEAR_BE:
6174 if (p->precision != 8 && p->precision != 16 &&
6175 p->precision != 24 && p->precision != 32)
6176 return EINVAL;
6177
6178 /* 8bit format does not have endianness. */
6179 if (p->precision == 8) {
6180 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6181 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6182 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6183 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6184 }
6185
6186 if (p->precision > p->stride)
6187 return EINVAL;
6188 break;
6189 case AUDIO_ENCODING_MPEG_L1_STREAM:
6190 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6191 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6192 case AUDIO_ENCODING_MPEG_L2_STREAM:
6193 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6194 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6195 case AUDIO_ENCODING_AC3:
6196 break;
6197 default:
6198 return EINVAL;
6199 }
6200
6201 /* sanity check # of channels*/
6202 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6203 return EINVAL;
6204
6205 return 0;
6206 }
6207
6208 /*
6209 * Initialize playback and record mixers.
6210 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6211 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6212 * the filter registration information. These four must not be NULL.
6213 * If successful returns 0. Otherwise returns errno.
6214 * Must be called with sc_exlock held and without sc_lock held.
6215 * Must not be called if there are any tracks.
6216 * Caller should check that the initialization succeed by whether
6217 * sc_[pr]mixer is not NULL.
6218 */
6219 static int
6220 audio_mixers_init(struct audio_softc *sc, int mode,
6221 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6222 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6223 {
6224 int error;
6225
6226 KASSERT(phwfmt != NULL);
6227 KASSERT(rhwfmt != NULL);
6228 KASSERT(pfil != NULL);
6229 KASSERT(rfil != NULL);
6230 KASSERT(sc->sc_exlock);
6231
6232 if ((mode & AUMODE_PLAY)) {
6233 if (sc->sc_pmixer == NULL) {
6234 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6235 KM_SLEEP);
6236 } else {
6237 /* destroy() doesn't free memory. */
6238 audio_mixer_destroy(sc, sc->sc_pmixer);
6239 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6240 }
6241 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6242 if (error) {
6243 device_printf(sc->sc_dev,
6244 "configuring playback mode failed with %d\n",
6245 error);
6246 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6247 sc->sc_pmixer = NULL;
6248 return error;
6249 }
6250 }
6251 if ((mode & AUMODE_RECORD)) {
6252 if (sc->sc_rmixer == NULL) {
6253 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6254 KM_SLEEP);
6255 } else {
6256 /* destroy() doesn't free memory. */
6257 audio_mixer_destroy(sc, sc->sc_rmixer);
6258 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6259 }
6260 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6261 if (error) {
6262 device_printf(sc->sc_dev,
6263 "configuring record mode failed with %d\n",
6264 error);
6265 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6266 sc->sc_rmixer = NULL;
6267 return error;
6268 }
6269 }
6270
6271 return 0;
6272 }
6273
6274 /*
6275 * Select a frequency.
6276 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6277 * XXX Better algorithm?
6278 */
6279 static int
6280 audio_select_freq(const struct audio_format *fmt)
6281 {
6282 int freq;
6283 int high;
6284 int low;
6285 int j;
6286
6287 if (fmt->frequency_type == 0) {
6288 low = fmt->frequency[0];
6289 high = fmt->frequency[1];
6290 freq = 48000;
6291 if (low <= freq && freq <= high) {
6292 return freq;
6293 }
6294 freq = 44100;
6295 if (low <= freq && freq <= high) {
6296 return freq;
6297 }
6298 return high;
6299 } else {
6300 for (j = 0; j < fmt->frequency_type; j++) {
6301 if (fmt->frequency[j] == 48000) {
6302 return fmt->frequency[j];
6303 }
6304 }
6305 high = 0;
6306 for (j = 0; j < fmt->frequency_type; j++) {
6307 if (fmt->frequency[j] == 44100) {
6308 return fmt->frequency[j];
6309 }
6310 if (fmt->frequency[j] > high) {
6311 high = fmt->frequency[j];
6312 }
6313 }
6314 return high;
6315 }
6316 }
6317
6318 /*
6319 * Choose the most preferred hardware format.
6320 * If successful, it will store the chosen format into *cand and return 0.
6321 * Otherwise, return errno.
6322 * Must be called without sc_lock held.
6323 */
6324 static int
6325 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6326 {
6327 audio_format_query_t query;
6328 int cand_score;
6329 int score;
6330 int i;
6331 int error;
6332
6333 /*
6334 * Score each formats and choose the highest one.
6335 *
6336 * +---- priority(0-3)
6337 * |+--- encoding/precision
6338 * ||+-- channels
6339 * score = 0x000000PEC
6340 */
6341
6342 cand_score = 0;
6343 for (i = 0; ; i++) {
6344 memset(&query, 0, sizeof(query));
6345 query.index = i;
6346
6347 mutex_enter(sc->sc_lock);
6348 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6349 mutex_exit(sc->sc_lock);
6350 if (error == EINVAL)
6351 break;
6352 if (error)
6353 return error;
6354
6355 #if defined(AUDIO_DEBUG)
6356 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6357 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6358 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6359 query.fmt.priority,
6360 audio_encoding_name(query.fmt.encoding),
6361 query.fmt.validbits,
6362 query.fmt.precision,
6363 query.fmt.channels);
6364 if (query.fmt.frequency_type == 0) {
6365 DPRINTF(1, "{%d-%d",
6366 query.fmt.frequency[0], query.fmt.frequency[1]);
6367 } else {
6368 int j;
6369 for (j = 0; j < query.fmt.frequency_type; j++) {
6370 DPRINTF(1, "%c%d",
6371 (j == 0) ? '{' : ',',
6372 query.fmt.frequency[j]);
6373 }
6374 }
6375 DPRINTF(1, "}\n");
6376 #endif
6377
6378 if ((query.fmt.mode & mode) == 0) {
6379 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6380 mode);
6381 continue;
6382 }
6383
6384 if (query.fmt.priority < 0) {
6385 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6386 continue;
6387 }
6388
6389 /* Score */
6390 score = (query.fmt.priority & 3) * 0x100;
6391 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6392 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6393 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6394 score += 0x20;
6395 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6396 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6397 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6398 score += 0x10;
6399 }
6400 score += query.fmt.channels;
6401
6402 if (score < cand_score) {
6403 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6404 score, cand_score);
6405 continue;
6406 }
6407
6408 /* Update candidate */
6409 cand_score = score;
6410 cand->encoding = query.fmt.encoding;
6411 cand->precision = query.fmt.validbits;
6412 cand->stride = query.fmt.precision;
6413 cand->channels = query.fmt.channels;
6414 cand->sample_rate = audio_select_freq(&query.fmt);
6415 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6416 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6417 cand_score, query.fmt.priority,
6418 audio_encoding_name(query.fmt.encoding),
6419 cand->precision, cand->stride,
6420 cand->channels, cand->sample_rate);
6421 }
6422
6423 if (cand_score == 0) {
6424 DPRINTF(1, "%s no fmt\n", __func__);
6425 return ENXIO;
6426 }
6427 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6428 audio_encoding_name(cand->encoding),
6429 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6430 return 0;
6431 }
6432
6433 /*
6434 * Validate fmt with query_format.
6435 * If fmt is included in the result of query_format, returns 0.
6436 * Otherwise returns EINVAL.
6437 * Must be called without sc_lock held.
6438 */
6439 static int
6440 audio_hw_validate_format(struct audio_softc *sc, int mode,
6441 const audio_format2_t *fmt)
6442 {
6443 audio_format_query_t query;
6444 struct audio_format *q;
6445 int index;
6446 int error;
6447 int j;
6448
6449 for (index = 0; ; index++) {
6450 query.index = index;
6451 mutex_enter(sc->sc_lock);
6452 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6453 mutex_exit(sc->sc_lock);
6454 if (error == EINVAL)
6455 break;
6456 if (error)
6457 return error;
6458
6459 q = &query.fmt;
6460 /*
6461 * Note that fmt is audio_format2_t (precision/stride) but
6462 * q is audio_format_t (validbits/precision).
6463 */
6464 if ((q->mode & mode) == 0) {
6465 continue;
6466 }
6467 if (fmt->encoding != q->encoding) {
6468 continue;
6469 }
6470 if (fmt->precision != q->validbits) {
6471 continue;
6472 }
6473 if (fmt->stride != q->precision) {
6474 continue;
6475 }
6476 if (fmt->channels != q->channels) {
6477 continue;
6478 }
6479 if (q->frequency_type == 0) {
6480 if (fmt->sample_rate < q->frequency[0] ||
6481 fmt->sample_rate > q->frequency[1]) {
6482 continue;
6483 }
6484 } else {
6485 for (j = 0; j < q->frequency_type; j++) {
6486 if (fmt->sample_rate == q->frequency[j])
6487 break;
6488 }
6489 if (j == query.fmt.frequency_type) {
6490 continue;
6491 }
6492 }
6493
6494 /* Matched. */
6495 return 0;
6496 }
6497
6498 return EINVAL;
6499 }
6500
6501 /*
6502 * Set track mixer's format depending on ai->mode.
6503 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6504 * with ai.play.*.
6505 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6506 * with ai.record.*.
6507 * All other fields in ai are ignored.
6508 * If successful returns 0. Otherwise returns errno.
6509 * This function does not roll back even if it fails.
6510 * Must be called with sc_exlock held and without sc_lock held.
6511 */
6512 static int
6513 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6514 {
6515 audio_format2_t phwfmt;
6516 audio_format2_t rhwfmt;
6517 audio_filter_reg_t pfil;
6518 audio_filter_reg_t rfil;
6519 int mode;
6520 int error;
6521
6522 KASSERT(sc->sc_exlock);
6523
6524 /*
6525 * Even when setting either one of playback and recording,
6526 * both must be halted.
6527 */
6528 if (sc->sc_popens + sc->sc_ropens > 0)
6529 return EBUSY;
6530
6531 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6532 return ENOTTY;
6533
6534 mode = ai->mode;
6535 if ((mode & AUMODE_PLAY)) {
6536 phwfmt.encoding = ai->play.encoding;
6537 phwfmt.precision = ai->play.precision;
6538 phwfmt.stride = ai->play.precision;
6539 phwfmt.channels = ai->play.channels;
6540 phwfmt.sample_rate = ai->play.sample_rate;
6541 }
6542 if ((mode & AUMODE_RECORD)) {
6543 rhwfmt.encoding = ai->record.encoding;
6544 rhwfmt.precision = ai->record.precision;
6545 rhwfmt.stride = ai->record.precision;
6546 rhwfmt.channels = ai->record.channels;
6547 rhwfmt.sample_rate = ai->record.sample_rate;
6548 }
6549
6550 /* On non-independent devices, use the same format for both. */
6551 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6552 if (mode == AUMODE_RECORD) {
6553 phwfmt = rhwfmt;
6554 } else {
6555 rhwfmt = phwfmt;
6556 }
6557 mode = AUMODE_PLAY | AUMODE_RECORD;
6558 }
6559
6560 /* Then, unset the direction not exist on the hardware. */
6561 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6562 mode &= ~AUMODE_PLAY;
6563 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6564 mode &= ~AUMODE_RECORD;
6565
6566 /* debug */
6567 if ((mode & AUMODE_PLAY)) {
6568 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6569 audio_encoding_name(phwfmt.encoding),
6570 phwfmt.precision,
6571 phwfmt.stride,
6572 phwfmt.channels,
6573 phwfmt.sample_rate);
6574 }
6575 if ((mode & AUMODE_RECORD)) {
6576 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6577 audio_encoding_name(rhwfmt.encoding),
6578 rhwfmt.precision,
6579 rhwfmt.stride,
6580 rhwfmt.channels,
6581 rhwfmt.sample_rate);
6582 }
6583
6584 /* Check the format */
6585 if ((mode & AUMODE_PLAY)) {
6586 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6587 TRACE(1, "invalid format");
6588 return EINVAL;
6589 }
6590 }
6591 if ((mode & AUMODE_RECORD)) {
6592 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6593 TRACE(1, "invalid format");
6594 return EINVAL;
6595 }
6596 }
6597
6598 /* Configure the mixers. */
6599 memset(&pfil, 0, sizeof(pfil));
6600 memset(&rfil, 0, sizeof(rfil));
6601 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6602 if (error)
6603 return error;
6604
6605 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6606 if (error)
6607 return error;
6608
6609 /*
6610 * Reinitialize the sticky parameters for /dev/sound.
6611 * If the number of the hardware channels becomes less than the number
6612 * of channels that sticky parameters remember, subsequent /dev/sound
6613 * open will fail. To prevent this, reinitialize the sticky
6614 * parameters whenever the hardware format is changed.
6615 */
6616 sc->sc_sound_pparams = params_to_format2(&audio_default);
6617 sc->sc_sound_rparams = params_to_format2(&audio_default);
6618 sc->sc_sound_ppause = false;
6619 sc->sc_sound_rpause = false;
6620
6621 return 0;
6622 }
6623
6624 /*
6625 * Store current mixers format into *ai.
6626 * Must be called with sc_exlock held.
6627 */
6628 static void
6629 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6630 {
6631
6632 KASSERT(sc->sc_exlock);
6633
6634 /*
6635 * There is no stride information in audio_info but it doesn't matter.
6636 * trackmixer always treats stride and precision as the same.
6637 */
6638 AUDIO_INITINFO(ai);
6639 ai->mode = 0;
6640 if (sc->sc_pmixer) {
6641 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6642 ai->play.encoding = fmt->encoding;
6643 ai->play.precision = fmt->precision;
6644 ai->play.channels = fmt->channels;
6645 ai->play.sample_rate = fmt->sample_rate;
6646 ai->mode |= AUMODE_PLAY;
6647 }
6648 if (sc->sc_rmixer) {
6649 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6650 ai->record.encoding = fmt->encoding;
6651 ai->record.precision = fmt->precision;
6652 ai->record.channels = fmt->channels;
6653 ai->record.sample_rate = fmt->sample_rate;
6654 ai->mode |= AUMODE_RECORD;
6655 }
6656 }
6657
6658 /*
6659 * audio_info details:
6660 *
6661 * ai.{play,record}.sample_rate (R/W)
6662 * ai.{play,record}.encoding (R/W)
6663 * ai.{play,record}.precision (R/W)
6664 * ai.{play,record}.channels (R/W)
6665 * These specify the playback or recording format.
6666 * Ignore members within an inactive track.
6667 *
6668 * ai.mode (R/W)
6669 * It specifies the playback or recording mode, AUMODE_*.
6670 * Currently, a mode change operation by ai.mode after opening is
6671 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6672 * However, it's possible to get or to set for backward compatibility.
6673 *
6674 * ai.{hiwat,lowat} (R/W)
6675 * These specify the high water mark and low water mark for playback
6676 * track. The unit is block.
6677 *
6678 * ai.{play,record}.gain (R/W)
6679 * It specifies the HW mixer volume in 0-255.
6680 * It is historical reason that the gain is connected to HW mixer.
6681 *
6682 * ai.{play,record}.balance (R/W)
6683 * It specifies the left-right balance of HW mixer in 0-64.
6684 * 32 means the center.
6685 * It is historical reason that the balance is connected to HW mixer.
6686 *
6687 * ai.{play,record}.port (R/W)
6688 * It specifies the input/output port of HW mixer.
6689 *
6690 * ai.monitor_gain (R/W)
6691 * It specifies the recording monitor gain(?) of HW mixer.
6692 *
6693 * ai.{play,record}.pause (R/W)
6694 * Non-zero means the track is paused.
6695 *
6696 * ai.play.seek (R/-)
6697 * It indicates the number of bytes written but not processed.
6698 * ai.record.seek (R/-)
6699 * It indicates the number of bytes to be able to read.
6700 *
6701 * ai.{play,record}.avail_ports (R/-)
6702 * Mixer info.
6703 *
6704 * ai.{play,record}.buffer_size (R/-)
6705 * It indicates the buffer size in bytes. Internally it means usrbuf.
6706 *
6707 * ai.{play,record}.samples (R/-)
6708 * It indicates the total number of bytes played or recorded.
6709 *
6710 * ai.{play,record}.eof (R/-)
6711 * It indicates the number of times reached EOF(?).
6712 *
6713 * ai.{play,record}.error (R/-)
6714 * Non-zero indicates overflow/underflow has occured.
6715 *
6716 * ai.{play,record}.waiting (R/-)
6717 * Non-zero indicates that other process waits to open.
6718 * It will never happen anymore.
6719 *
6720 * ai.{play,record}.open (R/-)
6721 * Non-zero indicates the direction is opened by this process(?).
6722 * XXX Is this better to indicate that "the device is opened by
6723 * at least one process"?
6724 *
6725 * ai.{play,record}.active (R/-)
6726 * Non-zero indicates that I/O is currently active.
6727 *
6728 * ai.blocksize (R/-)
6729 * It indicates the block size in bytes.
6730 * XXX The blocksize of playback and recording may be different.
6731 */
6732
6733 /*
6734 * Pause consideration:
6735 *
6736 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6737 * operation simple. Note that playback and recording are asymmetric.
6738 *
6739 * For playback,
6740 * 1. Any playback open doesn't start pmixer regardless of initial pause
6741 * state of this track.
6742 * 2. The first write access among playback tracks only starts pmixer
6743 * regardless of this track's pause state.
6744 * 3. Even a pause of the last playback track doesn't stop pmixer.
6745 * 4. The last close of all playback tracks only stops pmixer.
6746 *
6747 * For recording,
6748 * 1. The first recording open only starts rmixer regardless of initial
6749 * pause state of this track.
6750 * 2. Even a pause of the last track doesn't stop rmixer.
6751 * 3. The last close of all recording tracks only stops rmixer.
6752 */
6753
6754 /*
6755 * Set both track's parameters within a file depending on ai.
6756 * Update sc_sound_[pr]* if set.
6757 * Must be called with sc_exlock held and without sc_lock held.
6758 */
6759 static int
6760 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6761 const struct audio_info *ai)
6762 {
6763 const struct audio_prinfo *pi;
6764 const struct audio_prinfo *ri;
6765 audio_track_t *ptrack;
6766 audio_track_t *rtrack;
6767 audio_format2_t pfmt;
6768 audio_format2_t rfmt;
6769 int pchanges;
6770 int rchanges;
6771 int mode;
6772 struct audio_info saved_ai;
6773 audio_format2_t saved_pfmt;
6774 audio_format2_t saved_rfmt;
6775 int error;
6776
6777 KASSERT(sc->sc_exlock);
6778
6779 pi = &ai->play;
6780 ri = &ai->record;
6781 pchanges = 0;
6782 rchanges = 0;
6783
6784 ptrack = file->ptrack;
6785 rtrack = file->rtrack;
6786
6787 #if defined(AUDIO_DEBUG)
6788 if (audiodebug >= 2) {
6789 char buf[256];
6790 char p[64];
6791 int buflen;
6792 int plen;
6793 #define SPRINTF(var, fmt...) do { \
6794 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6795 } while (0)
6796
6797 buflen = 0;
6798 plen = 0;
6799 if (SPECIFIED(pi->encoding))
6800 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6801 if (SPECIFIED(pi->precision))
6802 SPRINTF(p, "/%dbit", pi->precision);
6803 if (SPECIFIED(pi->channels))
6804 SPRINTF(p, "/%dch", pi->channels);
6805 if (SPECIFIED(pi->sample_rate))
6806 SPRINTF(p, "/%dHz", pi->sample_rate);
6807 if (plen > 0)
6808 SPRINTF(buf, ",play.param=%s", p + 1);
6809
6810 plen = 0;
6811 if (SPECIFIED(ri->encoding))
6812 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6813 if (SPECIFIED(ri->precision))
6814 SPRINTF(p, "/%dbit", ri->precision);
6815 if (SPECIFIED(ri->channels))
6816 SPRINTF(p, "/%dch", ri->channels);
6817 if (SPECIFIED(ri->sample_rate))
6818 SPRINTF(p, "/%dHz", ri->sample_rate);
6819 if (plen > 0)
6820 SPRINTF(buf, ",record.param=%s", p + 1);
6821
6822 if (SPECIFIED(ai->mode))
6823 SPRINTF(buf, ",mode=%d", ai->mode);
6824 if (SPECIFIED(ai->hiwat))
6825 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6826 if (SPECIFIED(ai->lowat))
6827 SPRINTF(buf, ",lowat=%d", ai->lowat);
6828 if (SPECIFIED(ai->play.gain))
6829 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6830 if (SPECIFIED(ai->record.gain))
6831 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6832 if (SPECIFIED_CH(ai->play.balance))
6833 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6834 if (SPECIFIED_CH(ai->record.balance))
6835 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6836 if (SPECIFIED(ai->play.port))
6837 SPRINTF(buf, ",play.port=%d", ai->play.port);
6838 if (SPECIFIED(ai->record.port))
6839 SPRINTF(buf, ",record.port=%d", ai->record.port);
6840 if (SPECIFIED(ai->monitor_gain))
6841 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6842 if (SPECIFIED_CH(ai->play.pause))
6843 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6844 if (SPECIFIED_CH(ai->record.pause))
6845 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6846
6847 if (buflen > 0)
6848 TRACE(2, "specified %s", buf + 1);
6849 }
6850 #endif
6851
6852 AUDIO_INITINFO(&saved_ai);
6853 /* XXX shut up gcc */
6854 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6855 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6856
6857 /*
6858 * Set default value and save current parameters.
6859 * For backward compatibility, use sticky parameters for nonexistent
6860 * track.
6861 */
6862 if (ptrack) {
6863 pfmt = ptrack->usrbuf.fmt;
6864 saved_pfmt = ptrack->usrbuf.fmt;
6865 saved_ai.play.pause = ptrack->is_pause;
6866 } else {
6867 pfmt = sc->sc_sound_pparams;
6868 }
6869 if (rtrack) {
6870 rfmt = rtrack->usrbuf.fmt;
6871 saved_rfmt = rtrack->usrbuf.fmt;
6872 saved_ai.record.pause = rtrack->is_pause;
6873 } else {
6874 rfmt = sc->sc_sound_rparams;
6875 }
6876 saved_ai.mode = file->mode;
6877
6878 /*
6879 * Overwrite if specified.
6880 */
6881 mode = file->mode;
6882 if (SPECIFIED(ai->mode)) {
6883 /*
6884 * Setting ai->mode no longer does anything because it's
6885 * prohibited to change playback/recording mode after open
6886 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6887 * keeps the state of AUMODE_PLAY_ALL itself for backward
6888 * compatibility.
6889 * In the internal, only file->mode has the state of
6890 * AUMODE_PLAY_ALL flag and track->mode in both track does
6891 * not have.
6892 */
6893 if ((file->mode & AUMODE_PLAY)) {
6894 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6895 | (ai->mode & AUMODE_PLAY_ALL);
6896 }
6897 }
6898
6899 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
6900 if (pchanges == -1) {
6901 #if defined(AUDIO_DEBUG)
6902 TRACEF(1, file, "check play.params failed: "
6903 "%s %ubit %uch %uHz",
6904 audio_encoding_name(pi->encoding),
6905 pi->precision,
6906 pi->channels,
6907 pi->sample_rate);
6908 #endif
6909 return EINVAL;
6910 }
6911
6912 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
6913 if (rchanges == -1) {
6914 #if defined(AUDIO_DEBUG)
6915 TRACEF(1, file, "check record.params failed: "
6916 "%s %ubit %uch %uHz",
6917 audio_encoding_name(ri->encoding),
6918 ri->precision,
6919 ri->channels,
6920 ri->sample_rate);
6921 #endif
6922 return EINVAL;
6923 }
6924
6925 if (SPECIFIED(ai->mode)) {
6926 pchanges = 1;
6927 rchanges = 1;
6928 }
6929
6930 /*
6931 * Even when setting either one of playback and recording,
6932 * both track must be halted.
6933 */
6934 if (pchanges || rchanges) {
6935 audio_file_clear(sc, file);
6936 #if defined(AUDIO_DEBUG)
6937 char nbuf[16];
6938 char fmtbuf[64];
6939 if (pchanges) {
6940 if (ptrack) {
6941 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
6942 } else {
6943 snprintf(nbuf, sizeof(nbuf), "-");
6944 }
6945 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6946 DPRINTF(1, "audio track#%s play mode: %s\n",
6947 nbuf, fmtbuf);
6948 }
6949 if (rchanges) {
6950 if (rtrack) {
6951 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
6952 } else {
6953 snprintf(nbuf, sizeof(nbuf), "-");
6954 }
6955 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6956 DPRINTF(1, "audio track#%s rec mode: %s\n",
6957 nbuf, fmtbuf);
6958 }
6959 #endif
6960 }
6961
6962 /* Set mixer parameters */
6963 mutex_enter(sc->sc_lock);
6964 error = audio_hw_setinfo(sc, ai, &saved_ai);
6965 mutex_exit(sc->sc_lock);
6966 if (error)
6967 goto abort1;
6968
6969 /*
6970 * Set to track and update sticky parameters.
6971 */
6972 error = 0;
6973 file->mode = mode;
6974
6975 if (SPECIFIED_CH(pi->pause)) {
6976 if (ptrack)
6977 ptrack->is_pause = pi->pause;
6978 sc->sc_sound_ppause = pi->pause;
6979 }
6980 if (pchanges) {
6981 if (ptrack) {
6982 audio_track_lock_enter(ptrack);
6983 error = audio_track_set_format(ptrack, &pfmt);
6984 audio_track_lock_exit(ptrack);
6985 if (error) {
6986 TRACET(1, ptrack, "set play.params failed");
6987 goto abort2;
6988 }
6989 }
6990 sc->sc_sound_pparams = pfmt;
6991 }
6992 /* Change water marks after initializing the buffers. */
6993 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6994 if (ptrack)
6995 audio_track_setinfo_water(ptrack, ai);
6996 }
6997
6998 if (SPECIFIED_CH(ri->pause)) {
6999 if (rtrack)
7000 rtrack->is_pause = ri->pause;
7001 sc->sc_sound_rpause = ri->pause;
7002 }
7003 if (rchanges) {
7004 if (rtrack) {
7005 audio_track_lock_enter(rtrack);
7006 error = audio_track_set_format(rtrack, &rfmt);
7007 audio_track_lock_exit(rtrack);
7008 if (error) {
7009 TRACET(1, rtrack, "set record.params failed");
7010 goto abort3;
7011 }
7012 }
7013 sc->sc_sound_rparams = rfmt;
7014 }
7015
7016 return 0;
7017
7018 /* Rollback */
7019 abort3:
7020 if (error != ENOMEM) {
7021 rtrack->is_pause = saved_ai.record.pause;
7022 audio_track_lock_enter(rtrack);
7023 audio_track_set_format(rtrack, &saved_rfmt);
7024 audio_track_lock_exit(rtrack);
7025 }
7026 sc->sc_sound_rpause = saved_ai.record.pause;
7027 sc->sc_sound_rparams = saved_rfmt;
7028 abort2:
7029 if (ptrack && error != ENOMEM) {
7030 ptrack->is_pause = saved_ai.play.pause;
7031 audio_track_lock_enter(ptrack);
7032 audio_track_set_format(ptrack, &saved_pfmt);
7033 audio_track_lock_exit(ptrack);
7034 }
7035 sc->sc_sound_ppause = saved_ai.play.pause;
7036 sc->sc_sound_pparams = saved_pfmt;
7037 file->mode = saved_ai.mode;
7038 abort1:
7039 mutex_enter(sc->sc_lock);
7040 audio_hw_setinfo(sc, &saved_ai, NULL);
7041 mutex_exit(sc->sc_lock);
7042
7043 return error;
7044 }
7045
7046 /*
7047 * Write SPECIFIED() parameters within info back to fmt.
7048 * Note that track can be NULL here.
7049 * Return value of 1 indicates that fmt is modified.
7050 * Return value of 0 indicates that fmt is not modified.
7051 * Return value of -1 indicates that error EINVAL has occurred.
7052 */
7053 static int
7054 audio_track_setinfo_check(audio_track_t *track,
7055 audio_format2_t *fmt, const struct audio_prinfo *info)
7056 {
7057 const audio_format2_t *hwfmt;
7058 int changes;
7059
7060 changes = 0;
7061 if (SPECIFIED(info->sample_rate)) {
7062 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7063 return -1;
7064 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7065 return -1;
7066 fmt->sample_rate = info->sample_rate;
7067 changes = 1;
7068 }
7069 if (SPECIFIED(info->encoding)) {
7070 fmt->encoding = info->encoding;
7071 changes = 1;
7072 }
7073 if (SPECIFIED(info->precision)) {
7074 fmt->precision = info->precision;
7075 /* we don't have API to specify stride */
7076 fmt->stride = info->precision;
7077 changes = 1;
7078 }
7079 if (SPECIFIED(info->channels)) {
7080 /*
7081 * We can convert between monaural and stereo each other.
7082 * We can reduce than the number of channels that the hardware
7083 * supports.
7084 */
7085 if (info->channels > 2) {
7086 if (track) {
7087 hwfmt = &track->mixer->hwbuf.fmt;
7088 if (info->channels > hwfmt->channels)
7089 return -1;
7090 } else {
7091 /*
7092 * This should never happen.
7093 * If track == NULL, channels should be <= 2.
7094 */
7095 return -1;
7096 }
7097 }
7098 fmt->channels = info->channels;
7099 changes = 1;
7100 }
7101
7102 if (changes) {
7103 if (audio_check_params(fmt) != 0)
7104 return -1;
7105 }
7106
7107 return changes;
7108 }
7109
7110 /*
7111 * Change water marks for playback track if specfied.
7112 */
7113 static void
7114 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7115 {
7116 u_int blks;
7117 u_int maxblks;
7118 u_int blksize;
7119
7120 KASSERT(audio_track_is_playback(track));
7121
7122 blksize = track->usrbuf_blksize;
7123 maxblks = track->usrbuf.capacity / blksize;
7124
7125 if (SPECIFIED(ai->hiwat)) {
7126 blks = ai->hiwat;
7127 if (blks > maxblks)
7128 blks = maxblks;
7129 if (blks < 2)
7130 blks = 2;
7131 track->usrbuf_usedhigh = blks * blksize;
7132 }
7133 if (SPECIFIED(ai->lowat)) {
7134 blks = ai->lowat;
7135 if (blks > maxblks - 1)
7136 blks = maxblks - 1;
7137 track->usrbuf_usedlow = blks * blksize;
7138 }
7139 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7140 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7141 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7142 blksize;
7143 }
7144 }
7145 }
7146
7147 /*
7148 * Set hardware part of *newai.
7149 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7150 * If oldai is specified, previous parameters are stored.
7151 * This function itself does not roll back if error occurred.
7152 * Must be called with sc_lock && sc_exlock held.
7153 */
7154 static int
7155 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7156 struct audio_info *oldai)
7157 {
7158 const struct audio_prinfo *newpi;
7159 const struct audio_prinfo *newri;
7160 struct audio_prinfo *oldpi;
7161 struct audio_prinfo *oldri;
7162 u_int pgain;
7163 u_int rgain;
7164 u_char pbalance;
7165 u_char rbalance;
7166 int error;
7167
7168 KASSERT(mutex_owned(sc->sc_lock));
7169 KASSERT(sc->sc_exlock);
7170
7171 /* XXX shut up gcc */
7172 oldpi = NULL;
7173 oldri = NULL;
7174
7175 newpi = &newai->play;
7176 newri = &newai->record;
7177 if (oldai) {
7178 oldpi = &oldai->play;
7179 oldri = &oldai->record;
7180 }
7181 error = 0;
7182
7183 /*
7184 * It looks like unnecessary to halt HW mixers to set HW mixers.
7185 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7186 */
7187
7188 if (SPECIFIED(newpi->port)) {
7189 if (oldai)
7190 oldpi->port = au_get_port(sc, &sc->sc_outports);
7191 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7192 if (error) {
7193 device_printf(sc->sc_dev,
7194 "setting play.port=%d failed with %d\n",
7195 newpi->port, error);
7196 goto abort;
7197 }
7198 }
7199 if (SPECIFIED(newri->port)) {
7200 if (oldai)
7201 oldri->port = au_get_port(sc, &sc->sc_inports);
7202 error = au_set_port(sc, &sc->sc_inports, newri->port);
7203 if (error) {
7204 device_printf(sc->sc_dev,
7205 "setting record.port=%d failed with %d\n",
7206 newri->port, error);
7207 goto abort;
7208 }
7209 }
7210
7211 /* Backup play.{gain,balance} */
7212 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7213 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7214 if (oldai) {
7215 oldpi->gain = pgain;
7216 oldpi->balance = pbalance;
7217 }
7218 }
7219 /* Backup record.{gain,balance} */
7220 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7221 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7222 if (oldai) {
7223 oldri->gain = rgain;
7224 oldri->balance = rbalance;
7225 }
7226 }
7227 if (SPECIFIED(newpi->gain)) {
7228 error = au_set_gain(sc, &sc->sc_outports,
7229 newpi->gain, pbalance);
7230 if (error) {
7231 device_printf(sc->sc_dev,
7232 "setting play.gain=%d failed with %d\n",
7233 newpi->gain, error);
7234 goto abort;
7235 }
7236 }
7237 if (SPECIFIED(newri->gain)) {
7238 error = au_set_gain(sc, &sc->sc_inports,
7239 newri->gain, rbalance);
7240 if (error) {
7241 device_printf(sc->sc_dev,
7242 "setting record.gain=%d failed with %d\n",
7243 newri->gain, error);
7244 goto abort;
7245 }
7246 }
7247 if (SPECIFIED_CH(newpi->balance)) {
7248 error = au_set_gain(sc, &sc->sc_outports,
7249 pgain, newpi->balance);
7250 if (error) {
7251 device_printf(sc->sc_dev,
7252 "setting play.balance=%d failed with %d\n",
7253 newpi->balance, error);
7254 goto abort;
7255 }
7256 }
7257 if (SPECIFIED_CH(newri->balance)) {
7258 error = au_set_gain(sc, &sc->sc_inports,
7259 rgain, newri->balance);
7260 if (error) {
7261 device_printf(sc->sc_dev,
7262 "setting record.balance=%d failed with %d\n",
7263 newri->balance, error);
7264 goto abort;
7265 }
7266 }
7267
7268 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7269 if (oldai)
7270 oldai->monitor_gain = au_get_monitor_gain(sc);
7271 error = au_set_monitor_gain(sc, newai->monitor_gain);
7272 if (error) {
7273 device_printf(sc->sc_dev,
7274 "setting monitor_gain=%d failed with %d\n",
7275 newai->monitor_gain, error);
7276 goto abort;
7277 }
7278 }
7279
7280 /* XXX TODO */
7281 /* sc->sc_ai = *ai; */
7282
7283 error = 0;
7284 abort:
7285 return error;
7286 }
7287
7288 /*
7289 * Setup the hardware with mixer format phwfmt, rhwfmt.
7290 * The arguments have following restrictions:
7291 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7292 * or both.
7293 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7294 * - On non-independent devices, phwfmt and rhwfmt must have the same
7295 * parameters.
7296 * - pfil and rfil must be zero-filled.
7297 * If successful,
7298 * - pfil, rfil will be filled with filter information specified by the
7299 * hardware driver if necessary.
7300 * and then returns 0. Otherwise returns errno.
7301 * Must be called without sc_lock held.
7302 */
7303 static int
7304 audio_hw_set_format(struct audio_softc *sc, int setmode,
7305 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7306 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7307 {
7308 audio_params_t pp, rp;
7309 int error;
7310
7311 KASSERT(phwfmt != NULL);
7312 KASSERT(rhwfmt != NULL);
7313
7314 pp = format2_to_params(phwfmt);
7315 rp = format2_to_params(rhwfmt);
7316
7317 mutex_enter(sc->sc_lock);
7318 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7319 &pp, &rp, pfil, rfil);
7320 if (error) {
7321 mutex_exit(sc->sc_lock);
7322 device_printf(sc->sc_dev,
7323 "set_format failed with %d\n", error);
7324 return error;
7325 }
7326
7327 if (sc->hw_if->commit_settings) {
7328 error = sc->hw_if->commit_settings(sc->hw_hdl);
7329 if (error) {
7330 mutex_exit(sc->sc_lock);
7331 device_printf(sc->sc_dev,
7332 "commit_settings failed with %d\n", error);
7333 return error;
7334 }
7335 }
7336 mutex_exit(sc->sc_lock);
7337
7338 return 0;
7339 }
7340
7341 /*
7342 * Fill audio_info structure. If need_mixerinfo is true, it will also
7343 * fill the hardware mixer information.
7344 * Must be called with sc_exlock held and without sc_lock held.
7345 */
7346 static int
7347 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7348 audio_file_t *file)
7349 {
7350 struct audio_prinfo *ri, *pi;
7351 audio_track_t *track;
7352 audio_track_t *ptrack;
7353 audio_track_t *rtrack;
7354 int gain;
7355
7356 KASSERT(sc->sc_exlock);
7357
7358 ri = &ai->record;
7359 pi = &ai->play;
7360 ptrack = file->ptrack;
7361 rtrack = file->rtrack;
7362
7363 memset(ai, 0, sizeof(*ai));
7364
7365 if (ptrack) {
7366 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7367 pi->channels = ptrack->usrbuf.fmt.channels;
7368 pi->precision = ptrack->usrbuf.fmt.precision;
7369 pi->encoding = ptrack->usrbuf.fmt.encoding;
7370 pi->pause = ptrack->is_pause;
7371 } else {
7372 /* Use sticky parameters if the track is not available. */
7373 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7374 pi->channels = sc->sc_sound_pparams.channels;
7375 pi->precision = sc->sc_sound_pparams.precision;
7376 pi->encoding = sc->sc_sound_pparams.encoding;
7377 pi->pause = sc->sc_sound_ppause;
7378 }
7379 if (rtrack) {
7380 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7381 ri->channels = rtrack->usrbuf.fmt.channels;
7382 ri->precision = rtrack->usrbuf.fmt.precision;
7383 ri->encoding = rtrack->usrbuf.fmt.encoding;
7384 ri->pause = rtrack->is_pause;
7385 } else {
7386 /* Use sticky parameters if the track is not available. */
7387 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7388 ri->channels = sc->sc_sound_rparams.channels;
7389 ri->precision = sc->sc_sound_rparams.precision;
7390 ri->encoding = sc->sc_sound_rparams.encoding;
7391 ri->pause = sc->sc_sound_rpause;
7392 }
7393
7394 if (ptrack) {
7395 pi->seek = ptrack->usrbuf.used;
7396 pi->samples = ptrack->usrbuf_stamp;
7397 pi->eof = ptrack->eofcounter;
7398 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7399 pi->open = 1;
7400 pi->buffer_size = ptrack->usrbuf.capacity;
7401 }
7402 pi->waiting = 0; /* open never hangs */
7403 pi->active = sc->sc_pbusy;
7404
7405 if (rtrack) {
7406 ri->seek = rtrack->usrbuf.used;
7407 ri->samples = rtrack->usrbuf_stamp;
7408 ri->eof = 0;
7409 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7410 ri->open = 1;
7411 ri->buffer_size = rtrack->usrbuf.capacity;
7412 }
7413 ri->waiting = 0; /* open never hangs */
7414 ri->active = sc->sc_rbusy;
7415
7416 /*
7417 * XXX There may be different number of channels between playback
7418 * and recording, so that blocksize also may be different.
7419 * But struct audio_info has an united blocksize...
7420 * Here, I use play info precedencely if ptrack is available,
7421 * otherwise record info.
7422 *
7423 * XXX hiwat/lowat is a playback-only parameter. What should I
7424 * return for a record-only descriptor?
7425 */
7426 track = ptrack ? ptrack : rtrack;
7427 if (track) {
7428 ai->blocksize = track->usrbuf_blksize;
7429 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7430 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7431 }
7432 ai->mode = file->mode;
7433
7434 /*
7435 * For backward compatibility, we have to pad these five fields
7436 * a fake non-zero value even if there are no tracks.
7437 */
7438 if (ptrack == NULL)
7439 pi->buffer_size = 65536;
7440 if (rtrack == NULL)
7441 ri->buffer_size = 65536;
7442 if (ptrack == NULL && rtrack == NULL) {
7443 ai->blocksize = 2048;
7444 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7445 ai->lowat = ai->hiwat * 3 / 4;
7446 }
7447
7448 if (need_mixerinfo) {
7449 mutex_enter(sc->sc_lock);
7450
7451 pi->port = au_get_port(sc, &sc->sc_outports);
7452 ri->port = au_get_port(sc, &sc->sc_inports);
7453
7454 pi->avail_ports = sc->sc_outports.allports;
7455 ri->avail_ports = sc->sc_inports.allports;
7456
7457 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7458 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7459
7460 if (sc->sc_monitor_port != -1) {
7461 gain = au_get_monitor_gain(sc);
7462 if (gain != -1)
7463 ai->monitor_gain = gain;
7464 }
7465 mutex_exit(sc->sc_lock);
7466 }
7467
7468 return 0;
7469 }
7470
7471 /*
7472 * Return true if playback is configured.
7473 * This function can be used after audioattach.
7474 */
7475 static bool
7476 audio_can_playback(struct audio_softc *sc)
7477 {
7478
7479 return (sc->sc_pmixer != NULL);
7480 }
7481
7482 /*
7483 * Return true if recording is configured.
7484 * This function can be used after audioattach.
7485 */
7486 static bool
7487 audio_can_capture(struct audio_softc *sc)
7488 {
7489
7490 return (sc->sc_rmixer != NULL);
7491 }
7492
7493 /*
7494 * Get the afp->index'th item from the valid one of format[].
7495 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7496 *
7497 * This is common routines for query_format.
7498 * If your hardware driver has struct audio_format[], the simplest case
7499 * you can write your query_format interface as follows:
7500 *
7501 * struct audio_format foo_format[] = { ... };
7502 *
7503 * int
7504 * foo_query_format(void *hdl, audio_format_query_t *afp)
7505 * {
7506 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7507 * }
7508 */
7509 int
7510 audio_query_format(const struct audio_format *format, int nformats,
7511 audio_format_query_t *afp)
7512 {
7513 const struct audio_format *f;
7514 int idx;
7515 int i;
7516
7517 idx = 0;
7518 for (i = 0; i < nformats; i++) {
7519 f = &format[i];
7520 if (!AUFMT_IS_VALID(f))
7521 continue;
7522 if (afp->index == idx) {
7523 afp->fmt = *f;
7524 return 0;
7525 }
7526 idx++;
7527 }
7528 return EINVAL;
7529 }
7530
7531 /*
7532 * This function is provided for the hardware driver's set_format() to
7533 * find index matches with 'param' from array of audio_format_t 'formats'.
7534 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7535 * It returns the matched index and never fails. Because param passed to
7536 * set_format() is selected from query_format().
7537 * This function will be an alternative to auconv_set_converter() to
7538 * find index.
7539 */
7540 int
7541 audio_indexof_format(const struct audio_format *formats, int nformats,
7542 int mode, const audio_params_t *param)
7543 {
7544 const struct audio_format *f;
7545 int index;
7546 int j;
7547
7548 for (index = 0; index < nformats; index++) {
7549 f = &formats[index];
7550
7551 if (!AUFMT_IS_VALID(f))
7552 continue;
7553 if ((f->mode & mode) == 0)
7554 continue;
7555 if (f->encoding != param->encoding)
7556 continue;
7557 if (f->validbits != param->precision)
7558 continue;
7559 if (f->channels != param->channels)
7560 continue;
7561
7562 if (f->frequency_type == 0) {
7563 if (param->sample_rate < f->frequency[0] ||
7564 param->sample_rate > f->frequency[1])
7565 continue;
7566 } else {
7567 for (j = 0; j < f->frequency_type; j++) {
7568 if (param->sample_rate == f->frequency[j])
7569 break;
7570 }
7571 if (j == f->frequency_type)
7572 continue;
7573 }
7574
7575 /* Then, matched */
7576 return index;
7577 }
7578
7579 /* Not matched. This should not be happened. */
7580 panic("%s: cannot find matched format\n", __func__);
7581 }
7582
7583 /*
7584 * Get or set hardware blocksize in msec.
7585 * XXX It's for debug.
7586 */
7587 static int
7588 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7589 {
7590 struct sysctlnode node;
7591 struct audio_softc *sc;
7592 audio_format2_t phwfmt;
7593 audio_format2_t rhwfmt;
7594 audio_filter_reg_t pfil;
7595 audio_filter_reg_t rfil;
7596 int t;
7597 int old_blk_ms;
7598 int mode;
7599 int error;
7600
7601 node = *rnode;
7602 sc = node.sysctl_data;
7603
7604 error = audio_exlock_enter(sc);
7605 if (error)
7606 return error;
7607
7608 old_blk_ms = sc->sc_blk_ms;
7609 t = old_blk_ms;
7610 node.sysctl_data = &t;
7611 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7612 if (error || newp == NULL)
7613 goto abort;
7614
7615 if (t < 0) {
7616 error = EINVAL;
7617 goto abort;
7618 }
7619
7620 if (sc->sc_popens + sc->sc_ropens > 0) {
7621 error = EBUSY;
7622 goto abort;
7623 }
7624 sc->sc_blk_ms = t;
7625 mode = 0;
7626 if (sc->sc_pmixer) {
7627 mode |= AUMODE_PLAY;
7628 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7629 }
7630 if (sc->sc_rmixer) {
7631 mode |= AUMODE_RECORD;
7632 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7633 }
7634
7635 /* re-init hardware */
7636 memset(&pfil, 0, sizeof(pfil));
7637 memset(&rfil, 0, sizeof(rfil));
7638 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7639 if (error) {
7640 goto abort;
7641 }
7642
7643 /* re-init track mixer */
7644 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7645 if (error) {
7646 /* Rollback */
7647 sc->sc_blk_ms = old_blk_ms;
7648 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7649 goto abort;
7650 }
7651 error = 0;
7652 abort:
7653 audio_exlock_exit(sc);
7654 return error;
7655 }
7656
7657 /*
7658 * Get or set multiuser mode.
7659 */
7660 static int
7661 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7662 {
7663 struct sysctlnode node;
7664 struct audio_softc *sc;
7665 bool t;
7666 int error;
7667
7668 node = *rnode;
7669 sc = node.sysctl_data;
7670
7671 error = audio_exlock_enter(sc);
7672 if (error)
7673 return error;
7674
7675 t = sc->sc_multiuser;
7676 node.sysctl_data = &t;
7677 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7678 if (error || newp == NULL)
7679 goto abort;
7680
7681 sc->sc_multiuser = t;
7682 error = 0;
7683 abort:
7684 audio_exlock_exit(sc);
7685 return error;
7686 }
7687
7688 #if defined(AUDIO_DEBUG)
7689 /*
7690 * Get or set debug verbose level. (0..4)
7691 * XXX It's for debug.
7692 * XXX It is not separated per device.
7693 */
7694 static int
7695 audio_sysctl_debug(SYSCTLFN_ARGS)
7696 {
7697 struct sysctlnode node;
7698 int t;
7699 int error;
7700
7701 node = *rnode;
7702 t = audiodebug;
7703 node.sysctl_data = &t;
7704 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7705 if (error || newp == NULL)
7706 return error;
7707
7708 if (t < 0 || t > 4)
7709 return EINVAL;
7710 audiodebug = t;
7711 printf("audio: audiodebug = %d\n", audiodebug);
7712 return 0;
7713 }
7714 #endif /* AUDIO_DEBUG */
7715
7716 #ifdef AUDIO_PM_IDLE
7717 static void
7718 audio_idle(void *arg)
7719 {
7720 device_t dv = arg;
7721 struct audio_softc *sc = device_private(dv);
7722
7723 #ifdef PNP_DEBUG
7724 extern int pnp_debug_idle;
7725 if (pnp_debug_idle)
7726 printf("%s: idle handler called\n", device_xname(dv));
7727 #endif
7728
7729 sc->sc_idle = true;
7730
7731 /* XXX joerg Make pmf_device_suspend handle children? */
7732 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7733 return;
7734
7735 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7736 pmf_device_resume(dv, PMF_Q_SELF);
7737 }
7738
7739 static void
7740 audio_activity(device_t dv, devactive_t type)
7741 {
7742 struct audio_softc *sc = device_private(dv);
7743
7744 if (type != DVA_SYSTEM)
7745 return;
7746
7747 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7748
7749 sc->sc_idle = false;
7750 if (!device_is_active(dv)) {
7751 /* XXX joerg How to deal with a failing resume... */
7752 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7753 pmf_device_resume(dv, PMF_Q_SELF);
7754 }
7755 }
7756 #endif
7757
7758 static bool
7759 audio_suspend(device_t dv, const pmf_qual_t *qual)
7760 {
7761 struct audio_softc *sc = device_private(dv);
7762 int error;
7763
7764 error = audio_exlock_mutex_enter(sc);
7765 if (error)
7766 return error;
7767 sc->sc_suspending = true;
7768 audio_mixer_capture(sc);
7769
7770 if (sc->sc_pbusy) {
7771 audio_pmixer_halt(sc);
7772 /* Reuse this as need-to-restart flag while suspending */
7773 sc->sc_pbusy = true;
7774 }
7775 if (sc->sc_rbusy) {
7776 audio_rmixer_halt(sc);
7777 /* Reuse this as need-to-restart flag while suspending */
7778 sc->sc_rbusy = true;
7779 }
7780
7781 #ifdef AUDIO_PM_IDLE
7782 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7783 #endif
7784 audio_exlock_mutex_exit(sc);
7785
7786 return true;
7787 }
7788
7789 static bool
7790 audio_resume(device_t dv, const pmf_qual_t *qual)
7791 {
7792 struct audio_softc *sc = device_private(dv);
7793 struct audio_info ai;
7794 int error;
7795
7796 error = audio_exlock_mutex_enter(sc);
7797 if (error)
7798 return error;
7799
7800 sc->sc_suspending = false;
7801 audio_mixer_restore(sc);
7802 /* XXX ? */
7803 AUDIO_INITINFO(&ai);
7804 audio_hw_setinfo(sc, &ai, NULL);
7805
7806 /*
7807 * During from suspend to resume here, sc_[pr]busy is used as
7808 * need-to-restart flag temporarily. After this point,
7809 * sc_[pr]busy is returned to its original usage (busy flag).
7810 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
7811 */
7812 if (sc->sc_pbusy) {
7813 /* pmixer_start() requires pbusy is false */
7814 sc->sc_pbusy = false;
7815 audio_pmixer_start(sc, true);
7816 }
7817 if (sc->sc_rbusy) {
7818 /* rmixer_start() requires rbusy is false */
7819 sc->sc_rbusy = false;
7820 audio_rmixer_start(sc);
7821 }
7822
7823 audio_exlock_mutex_exit(sc);
7824
7825 return true;
7826 }
7827
7828 #if defined(AUDIO_DEBUG)
7829 static void
7830 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7831 {
7832 int n;
7833
7834 n = 0;
7835 n += snprintf(buf + n, bufsize - n, "%s",
7836 audio_encoding_name(fmt->encoding));
7837 if (fmt->precision == fmt->stride) {
7838 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7839 } else {
7840 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7841 fmt->precision, fmt->stride);
7842 }
7843
7844 snprintf(buf + n, bufsize - n, " %uch %uHz",
7845 fmt->channels, fmt->sample_rate);
7846 }
7847 #endif
7848
7849 #if defined(AUDIO_DEBUG)
7850 static void
7851 audio_print_format2(const char *s, const audio_format2_t *fmt)
7852 {
7853 char fmtstr[64];
7854
7855 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7856 printf("%s %s\n", s, fmtstr);
7857 }
7858 #endif
7859
7860 #ifdef DIAGNOSTIC
7861 void
7862 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7863 {
7864
7865 KASSERTMSG(fmt, "called from %s", where);
7866
7867 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7868 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7869 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7870 "called from %s: fmt->stride=%d", where, fmt->stride);
7871 } else {
7872 KASSERTMSG(fmt->stride % NBBY == 0,
7873 "called from %s: fmt->stride=%d", where, fmt->stride);
7874 }
7875 KASSERTMSG(fmt->precision <= fmt->stride,
7876 "called from %s: fmt->precision=%d fmt->stride=%d",
7877 where, fmt->precision, fmt->stride);
7878 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7879 "called from %s: fmt->channels=%d", where, fmt->channels);
7880
7881 /* XXX No check for encodings? */
7882 }
7883
7884 void
7885 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7886 {
7887
7888 KASSERT(arg != NULL);
7889 KASSERT(arg->src != NULL);
7890 KASSERT(arg->dst != NULL);
7891 audio_diagnostic_format2(where, arg->srcfmt);
7892 audio_diagnostic_format2(where, arg->dstfmt);
7893 KASSERT(arg->count > 0);
7894 }
7895
7896 void
7897 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7898 {
7899
7900 KASSERTMSG(ring, "called from %s", where);
7901 audio_diagnostic_format2(where, &ring->fmt);
7902 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7903 "called from %s: ring->capacity=%d", where, ring->capacity);
7904 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7905 "called from %s: ring->used=%d ring->capacity=%d",
7906 where, ring->used, ring->capacity);
7907 if (ring->capacity == 0) {
7908 KASSERTMSG(ring->mem == NULL,
7909 "called from %s: capacity == 0 but mem != NULL", where);
7910 } else {
7911 KASSERTMSG(ring->mem != NULL,
7912 "called from %s: capacity != 0 but mem == NULL", where);
7913 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7914 "called from %s: ring->head=%d ring->capacity=%d",
7915 where, ring->head, ring->capacity);
7916 }
7917 }
7918 #endif /* DIAGNOSTIC */
7919
7920
7921 /*
7922 * Mixer driver
7923 */
7924
7925 /*
7926 * Must be called without sc_lock held.
7927 */
7928 int
7929 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7930 struct lwp *l)
7931 {
7932 struct file *fp;
7933 audio_file_t *af;
7934 int error, fd;
7935
7936 TRACE(1, "flags=0x%x", flags);
7937
7938 error = fd_allocfile(&fp, &fd);
7939 if (error)
7940 return error;
7941
7942 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7943 af->sc = sc;
7944 af->dev = dev;
7945
7946 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7947 KASSERT(error == EMOVEFD);
7948
7949 return error;
7950 }
7951
7952 /*
7953 * Add a process to those to be signalled on mixer activity.
7954 * If the process has already been added, do nothing.
7955 * Must be called with sc_exlock held and without sc_lock held.
7956 */
7957 static void
7958 mixer_async_add(struct audio_softc *sc, pid_t pid)
7959 {
7960 int i;
7961
7962 KASSERT(sc->sc_exlock);
7963
7964 /* If already exists, returns without doing anything. */
7965 for (i = 0; i < sc->sc_am_used; i++) {
7966 if (sc->sc_am[i] == pid)
7967 return;
7968 }
7969
7970 /* Extend array if necessary. */
7971 if (sc->sc_am_used >= sc->sc_am_capacity) {
7972 sc->sc_am_capacity += AM_CAPACITY;
7973 sc->sc_am = kern_realloc(sc->sc_am,
7974 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
7975 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
7976 }
7977
7978 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
7979 sc->sc_am[sc->sc_am_used++] = pid;
7980 }
7981
7982 /*
7983 * Remove a process from those to be signalled on mixer activity.
7984 * If the process has not been added, do nothing.
7985 * Must be called with sc_exlock held and without sc_lock held.
7986 */
7987 static void
7988 mixer_async_remove(struct audio_softc *sc, pid_t pid)
7989 {
7990 int i;
7991
7992 KASSERT(sc->sc_exlock);
7993
7994 for (i = 0; i < sc->sc_am_used; i++) {
7995 if (sc->sc_am[i] == pid) {
7996 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
7997 TRACE(2, "am[%d](%d) removed, used=%d",
7998 i, (int)pid, sc->sc_am_used);
7999
8000 /* Empty array if no longer necessary. */
8001 if (sc->sc_am_used == 0) {
8002 kern_free(sc->sc_am);
8003 sc->sc_am = NULL;
8004 sc->sc_am_capacity = 0;
8005 TRACE(2, "released");
8006 }
8007 return;
8008 }
8009 }
8010 }
8011
8012 /*
8013 * Signal all processes waiting for the mixer.
8014 * Must be called with sc_exlock held.
8015 */
8016 static void
8017 mixer_signal(struct audio_softc *sc)
8018 {
8019 proc_t *p;
8020 int i;
8021
8022 KASSERT(sc->sc_exlock);
8023
8024 for (i = 0; i < sc->sc_am_used; i++) {
8025 mutex_enter(&proc_lock);
8026 p = proc_find(sc->sc_am[i]);
8027 if (p)
8028 psignal(p, SIGIO);
8029 mutex_exit(&proc_lock);
8030 }
8031 }
8032
8033 /*
8034 * Close a mixer device
8035 */
8036 int
8037 mixer_close(struct audio_softc *sc, audio_file_t *file)
8038 {
8039 int error;
8040
8041 error = audio_exlock_enter(sc);
8042 if (error)
8043 return error;
8044 TRACE(1, "");
8045 mixer_async_remove(sc, curproc->p_pid);
8046 audio_exlock_exit(sc);
8047
8048 return 0;
8049 }
8050
8051 /*
8052 * Must be called without sc_lock nor sc_exlock held.
8053 */
8054 int
8055 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8056 struct lwp *l)
8057 {
8058 mixer_devinfo_t *mi;
8059 mixer_ctrl_t *mc;
8060 int error;
8061
8062 TRACE(2, "(%lu,'%c',%lu)",
8063 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8064 error = EINVAL;
8065
8066 /* we can return cached values if we are sleeping */
8067 if (cmd != AUDIO_MIXER_READ) {
8068 mutex_enter(sc->sc_lock);
8069 device_active(sc->sc_dev, DVA_SYSTEM);
8070 mutex_exit(sc->sc_lock);
8071 }
8072
8073 switch (cmd) {
8074 case FIOASYNC:
8075 error = audio_exlock_enter(sc);
8076 if (error)
8077 break;
8078 if (*(int *)addr) {
8079 mixer_async_add(sc, curproc->p_pid);
8080 } else {
8081 mixer_async_remove(sc, curproc->p_pid);
8082 }
8083 audio_exlock_exit(sc);
8084 break;
8085
8086 case AUDIO_GETDEV:
8087 TRACE(2, "AUDIO_GETDEV");
8088 mutex_enter(sc->sc_lock);
8089 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8090 mutex_exit(sc->sc_lock);
8091 break;
8092
8093 case AUDIO_MIXER_DEVINFO:
8094 TRACE(2, "AUDIO_MIXER_DEVINFO");
8095 mi = (mixer_devinfo_t *)addr;
8096
8097 mi->un.v.delta = 0; /* default */
8098 mutex_enter(sc->sc_lock);
8099 error = audio_query_devinfo(sc, mi);
8100 mutex_exit(sc->sc_lock);
8101 break;
8102
8103 case AUDIO_MIXER_READ:
8104 TRACE(2, "AUDIO_MIXER_READ");
8105 mc = (mixer_ctrl_t *)addr;
8106
8107 error = audio_exlock_mutex_enter(sc);
8108 if (error)
8109 break;
8110 if (device_is_active(sc->hw_dev))
8111 error = audio_get_port(sc, mc);
8112 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8113 error = ENXIO;
8114 else {
8115 int dev = mc->dev;
8116 memcpy(mc, &sc->sc_mixer_state[dev],
8117 sizeof(mixer_ctrl_t));
8118 error = 0;
8119 }
8120 audio_exlock_mutex_exit(sc);
8121 break;
8122
8123 case AUDIO_MIXER_WRITE:
8124 TRACE(2, "AUDIO_MIXER_WRITE");
8125 error = audio_exlock_mutex_enter(sc);
8126 if (error)
8127 break;
8128 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8129 if (error) {
8130 audio_exlock_mutex_exit(sc);
8131 break;
8132 }
8133
8134 if (sc->hw_if->commit_settings) {
8135 error = sc->hw_if->commit_settings(sc->hw_hdl);
8136 if (error) {
8137 audio_exlock_mutex_exit(sc);
8138 break;
8139 }
8140 }
8141 mutex_exit(sc->sc_lock);
8142 mixer_signal(sc);
8143 audio_exlock_exit(sc);
8144 break;
8145
8146 default:
8147 if (sc->hw_if->dev_ioctl) {
8148 mutex_enter(sc->sc_lock);
8149 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8150 cmd, addr, flag, l);
8151 mutex_exit(sc->sc_lock);
8152 } else
8153 error = EINVAL;
8154 break;
8155 }
8156 TRACE(2, "(%lu,'%c',%lu) result %d",
8157 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8158 return error;
8159 }
8160
8161 /*
8162 * Must be called with sc_lock held.
8163 */
8164 int
8165 au_portof(struct audio_softc *sc, char *name, int class)
8166 {
8167 mixer_devinfo_t mi;
8168
8169 KASSERT(mutex_owned(sc->sc_lock));
8170
8171 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8172 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8173 return mi.index;
8174 }
8175 return -1;
8176 }
8177
8178 /*
8179 * Must be called with sc_lock held.
8180 */
8181 void
8182 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8183 mixer_devinfo_t *mi, const struct portname *tbl)
8184 {
8185 int i, j;
8186
8187 KASSERT(mutex_owned(sc->sc_lock));
8188
8189 ports->index = mi->index;
8190 if (mi->type == AUDIO_MIXER_ENUM) {
8191 ports->isenum = true;
8192 for(i = 0; tbl[i].name; i++)
8193 for(j = 0; j < mi->un.e.num_mem; j++)
8194 if (strcmp(mi->un.e.member[j].label.name,
8195 tbl[i].name) == 0) {
8196 ports->allports |= tbl[i].mask;
8197 ports->aumask[ports->nports] = tbl[i].mask;
8198 ports->misel[ports->nports] =
8199 mi->un.e.member[j].ord;
8200 ports->miport[ports->nports] =
8201 au_portof(sc, mi->un.e.member[j].label.name,
8202 mi->mixer_class);
8203 if (ports->mixerout != -1 &&
8204 ports->miport[ports->nports] != -1)
8205 ports->isdual = true;
8206 ++ports->nports;
8207 }
8208 } else if (mi->type == AUDIO_MIXER_SET) {
8209 for(i = 0; tbl[i].name; i++)
8210 for(j = 0; j < mi->un.s.num_mem; j++)
8211 if (strcmp(mi->un.s.member[j].label.name,
8212 tbl[i].name) == 0) {
8213 ports->allports |= tbl[i].mask;
8214 ports->aumask[ports->nports] = tbl[i].mask;
8215 ports->misel[ports->nports] =
8216 mi->un.s.member[j].mask;
8217 ports->miport[ports->nports] =
8218 au_portof(sc, mi->un.s.member[j].label.name,
8219 mi->mixer_class);
8220 ++ports->nports;
8221 }
8222 }
8223 }
8224
8225 /*
8226 * Must be called with sc_lock && sc_exlock held.
8227 */
8228 int
8229 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8230 {
8231
8232 KASSERT(mutex_owned(sc->sc_lock));
8233 KASSERT(sc->sc_exlock);
8234
8235 ct->type = AUDIO_MIXER_VALUE;
8236 ct->un.value.num_channels = 2;
8237 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8238 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8239 if (audio_set_port(sc, ct) == 0)
8240 return 0;
8241 ct->un.value.num_channels = 1;
8242 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8243 return audio_set_port(sc, ct);
8244 }
8245
8246 /*
8247 * Must be called with sc_lock && sc_exlock held.
8248 */
8249 int
8250 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8251 {
8252 int error;
8253
8254 KASSERT(mutex_owned(sc->sc_lock));
8255 KASSERT(sc->sc_exlock);
8256
8257 ct->un.value.num_channels = 2;
8258 if (audio_get_port(sc, ct) == 0) {
8259 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8260 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8261 } else {
8262 ct->un.value.num_channels = 1;
8263 error = audio_get_port(sc, ct);
8264 if (error)
8265 return error;
8266 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8267 }
8268 return 0;
8269 }
8270
8271 /*
8272 * Must be called with sc_lock && sc_exlock held.
8273 */
8274 int
8275 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8276 int gain, int balance)
8277 {
8278 mixer_ctrl_t ct;
8279 int i, error;
8280 int l, r;
8281 u_int mask;
8282 int nset;
8283
8284 KASSERT(mutex_owned(sc->sc_lock));
8285 KASSERT(sc->sc_exlock);
8286
8287 if (balance == AUDIO_MID_BALANCE) {
8288 l = r = gain;
8289 } else if (balance < AUDIO_MID_BALANCE) {
8290 l = gain;
8291 r = (balance * gain) / AUDIO_MID_BALANCE;
8292 } else {
8293 r = gain;
8294 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8295 / AUDIO_MID_BALANCE;
8296 }
8297 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8298
8299 if (ports->index == -1) {
8300 usemaster:
8301 if (ports->master == -1)
8302 return 0; /* just ignore it silently */
8303 ct.dev = ports->master;
8304 error = au_set_lr_value(sc, &ct, l, r);
8305 } else {
8306 ct.dev = ports->index;
8307 if (ports->isenum) {
8308 ct.type = AUDIO_MIXER_ENUM;
8309 error = audio_get_port(sc, &ct);
8310 if (error)
8311 return error;
8312 if (ports->isdual) {
8313 if (ports->cur_port == -1)
8314 ct.dev = ports->master;
8315 else
8316 ct.dev = ports->miport[ports->cur_port];
8317 error = au_set_lr_value(sc, &ct, l, r);
8318 } else {
8319 for(i = 0; i < ports->nports; i++)
8320 if (ports->misel[i] == ct.un.ord) {
8321 ct.dev = ports->miport[i];
8322 if (ct.dev == -1 ||
8323 au_set_lr_value(sc, &ct, l, r))
8324 goto usemaster;
8325 else
8326 break;
8327 }
8328 }
8329 } else {
8330 ct.type = AUDIO_MIXER_SET;
8331 error = audio_get_port(sc, &ct);
8332 if (error)
8333 return error;
8334 mask = ct.un.mask;
8335 nset = 0;
8336 for(i = 0; i < ports->nports; i++) {
8337 if (ports->misel[i] & mask) {
8338 ct.dev = ports->miport[i];
8339 if (ct.dev != -1 &&
8340 au_set_lr_value(sc, &ct, l, r) == 0)
8341 nset++;
8342 }
8343 }
8344 if (nset == 0)
8345 goto usemaster;
8346 }
8347 }
8348 if (!error)
8349 mixer_signal(sc);
8350 return error;
8351 }
8352
8353 /*
8354 * Must be called with sc_lock && sc_exlock held.
8355 */
8356 void
8357 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8358 u_int *pgain, u_char *pbalance)
8359 {
8360 mixer_ctrl_t ct;
8361 int i, l, r, n;
8362 int lgain, rgain;
8363
8364 KASSERT(mutex_owned(sc->sc_lock));
8365 KASSERT(sc->sc_exlock);
8366
8367 lgain = AUDIO_MAX_GAIN / 2;
8368 rgain = AUDIO_MAX_GAIN / 2;
8369 if (ports->index == -1) {
8370 usemaster:
8371 if (ports->master == -1)
8372 goto bad;
8373 ct.dev = ports->master;
8374 ct.type = AUDIO_MIXER_VALUE;
8375 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8376 goto bad;
8377 } else {
8378 ct.dev = ports->index;
8379 if (ports->isenum) {
8380 ct.type = AUDIO_MIXER_ENUM;
8381 if (audio_get_port(sc, &ct))
8382 goto bad;
8383 ct.type = AUDIO_MIXER_VALUE;
8384 if (ports->isdual) {
8385 if (ports->cur_port == -1)
8386 ct.dev = ports->master;
8387 else
8388 ct.dev = ports->miport[ports->cur_port];
8389 au_get_lr_value(sc, &ct, &lgain, &rgain);
8390 } else {
8391 for(i = 0; i < ports->nports; i++)
8392 if (ports->misel[i] == ct.un.ord) {
8393 ct.dev = ports->miport[i];
8394 if (ct.dev == -1 ||
8395 au_get_lr_value(sc, &ct,
8396 &lgain, &rgain))
8397 goto usemaster;
8398 else
8399 break;
8400 }
8401 }
8402 } else {
8403 ct.type = AUDIO_MIXER_SET;
8404 if (audio_get_port(sc, &ct))
8405 goto bad;
8406 ct.type = AUDIO_MIXER_VALUE;
8407 lgain = rgain = n = 0;
8408 for(i = 0; i < ports->nports; i++) {
8409 if (ports->misel[i] & ct.un.mask) {
8410 ct.dev = ports->miport[i];
8411 if (ct.dev == -1 ||
8412 au_get_lr_value(sc, &ct, &l, &r))
8413 goto usemaster;
8414 else {
8415 lgain += l;
8416 rgain += r;
8417 n++;
8418 }
8419 }
8420 }
8421 if (n != 0) {
8422 lgain /= n;
8423 rgain /= n;
8424 }
8425 }
8426 }
8427 bad:
8428 if (lgain == rgain) { /* handles lgain==rgain==0 */
8429 *pgain = lgain;
8430 *pbalance = AUDIO_MID_BALANCE;
8431 } else if (lgain < rgain) {
8432 *pgain = rgain;
8433 /* balance should be > AUDIO_MID_BALANCE */
8434 *pbalance = AUDIO_RIGHT_BALANCE -
8435 (AUDIO_MID_BALANCE * lgain) / rgain;
8436 } else /* lgain > rgain */ {
8437 *pgain = lgain;
8438 /* balance should be < AUDIO_MID_BALANCE */
8439 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8440 }
8441 }
8442
8443 /*
8444 * Must be called with sc_lock && sc_exlock held.
8445 */
8446 int
8447 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8448 {
8449 mixer_ctrl_t ct;
8450 int i, error, use_mixerout;
8451
8452 KASSERT(mutex_owned(sc->sc_lock));
8453 KASSERT(sc->sc_exlock);
8454
8455 use_mixerout = 1;
8456 if (port == 0) {
8457 if (ports->allports == 0)
8458 return 0; /* Allow this special case. */
8459 else if (ports->isdual) {
8460 if (ports->cur_port == -1) {
8461 return 0;
8462 } else {
8463 port = ports->aumask[ports->cur_port];
8464 ports->cur_port = -1;
8465 use_mixerout = 0;
8466 }
8467 }
8468 }
8469 if (ports->index == -1)
8470 return EINVAL;
8471 ct.dev = ports->index;
8472 if (ports->isenum) {
8473 if (port & (port-1))
8474 return EINVAL; /* Only one port allowed */
8475 ct.type = AUDIO_MIXER_ENUM;
8476 error = EINVAL;
8477 for(i = 0; i < ports->nports; i++)
8478 if (ports->aumask[i] == port) {
8479 if (ports->isdual && use_mixerout) {
8480 ct.un.ord = ports->mixerout;
8481 ports->cur_port = i;
8482 } else {
8483 ct.un.ord = ports->misel[i];
8484 }
8485 error = audio_set_port(sc, &ct);
8486 break;
8487 }
8488 } else {
8489 ct.type = AUDIO_MIXER_SET;
8490 ct.un.mask = 0;
8491 for(i = 0; i < ports->nports; i++)
8492 if (ports->aumask[i] & port)
8493 ct.un.mask |= ports->misel[i];
8494 if (port != 0 && ct.un.mask == 0)
8495 error = EINVAL;
8496 else
8497 error = audio_set_port(sc, &ct);
8498 }
8499 if (!error)
8500 mixer_signal(sc);
8501 return error;
8502 }
8503
8504 /*
8505 * Must be called with sc_lock && sc_exlock held.
8506 */
8507 int
8508 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8509 {
8510 mixer_ctrl_t ct;
8511 int i, aumask;
8512
8513 KASSERT(mutex_owned(sc->sc_lock));
8514 KASSERT(sc->sc_exlock);
8515
8516 if (ports->index == -1)
8517 return 0;
8518 ct.dev = ports->index;
8519 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8520 if (audio_get_port(sc, &ct))
8521 return 0;
8522 aumask = 0;
8523 if (ports->isenum) {
8524 if (ports->isdual && ports->cur_port != -1) {
8525 if (ports->mixerout == ct.un.ord)
8526 aumask = ports->aumask[ports->cur_port];
8527 else
8528 ports->cur_port = -1;
8529 }
8530 if (aumask == 0)
8531 for(i = 0; i < ports->nports; i++)
8532 if (ports->misel[i] == ct.un.ord)
8533 aumask = ports->aumask[i];
8534 } else {
8535 for(i = 0; i < ports->nports; i++)
8536 if (ct.un.mask & ports->misel[i])
8537 aumask |= ports->aumask[i];
8538 }
8539 return aumask;
8540 }
8541
8542 /*
8543 * It returns 0 if success, otherwise errno.
8544 * Must be called only if sc->sc_monitor_port != -1.
8545 * Must be called with sc_lock && sc_exlock held.
8546 */
8547 static int
8548 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8549 {
8550 mixer_ctrl_t ct;
8551
8552 KASSERT(mutex_owned(sc->sc_lock));
8553 KASSERT(sc->sc_exlock);
8554
8555 ct.dev = sc->sc_monitor_port;
8556 ct.type = AUDIO_MIXER_VALUE;
8557 ct.un.value.num_channels = 1;
8558 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8559 return audio_set_port(sc, &ct);
8560 }
8561
8562 /*
8563 * It returns monitor gain if success, otherwise -1.
8564 * Must be called only if sc->sc_monitor_port != -1.
8565 * Must be called with sc_lock && sc_exlock held.
8566 */
8567 static int
8568 au_get_monitor_gain(struct audio_softc *sc)
8569 {
8570 mixer_ctrl_t ct;
8571
8572 KASSERT(mutex_owned(sc->sc_lock));
8573 KASSERT(sc->sc_exlock);
8574
8575 ct.dev = sc->sc_monitor_port;
8576 ct.type = AUDIO_MIXER_VALUE;
8577 ct.un.value.num_channels = 1;
8578 if (audio_get_port(sc, &ct))
8579 return -1;
8580 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8581 }
8582
8583 /*
8584 * Must be called with sc_lock && sc_exlock held.
8585 */
8586 static int
8587 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8588 {
8589
8590 KASSERT(mutex_owned(sc->sc_lock));
8591 KASSERT(sc->sc_exlock);
8592
8593 return sc->hw_if->set_port(sc->hw_hdl, mc);
8594 }
8595
8596 /*
8597 * Must be called with sc_lock && sc_exlock held.
8598 */
8599 static int
8600 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8601 {
8602
8603 KASSERT(mutex_owned(sc->sc_lock));
8604 KASSERT(sc->sc_exlock);
8605
8606 return sc->hw_if->get_port(sc->hw_hdl, mc);
8607 }
8608
8609 /*
8610 * Must be called with sc_lock && sc_exlock held.
8611 */
8612 static void
8613 audio_mixer_capture(struct audio_softc *sc)
8614 {
8615 mixer_devinfo_t mi;
8616 mixer_ctrl_t *mc;
8617
8618 KASSERT(mutex_owned(sc->sc_lock));
8619 KASSERT(sc->sc_exlock);
8620
8621 for (mi.index = 0;; mi.index++) {
8622 if (audio_query_devinfo(sc, &mi) != 0)
8623 break;
8624 KASSERT(mi.index < sc->sc_nmixer_states);
8625 if (mi.type == AUDIO_MIXER_CLASS)
8626 continue;
8627 mc = &sc->sc_mixer_state[mi.index];
8628 mc->dev = mi.index;
8629 mc->type = mi.type;
8630 mc->un.value.num_channels = mi.un.v.num_channels;
8631 (void)audio_get_port(sc, mc);
8632 }
8633
8634 return;
8635 }
8636
8637 /*
8638 * Must be called with sc_lock && sc_exlock held.
8639 */
8640 static void
8641 audio_mixer_restore(struct audio_softc *sc)
8642 {
8643 mixer_devinfo_t mi;
8644 mixer_ctrl_t *mc;
8645
8646 KASSERT(mutex_owned(sc->sc_lock));
8647 KASSERT(sc->sc_exlock);
8648
8649 for (mi.index = 0; ; mi.index++) {
8650 if (audio_query_devinfo(sc, &mi) != 0)
8651 break;
8652 if (mi.type == AUDIO_MIXER_CLASS)
8653 continue;
8654 mc = &sc->sc_mixer_state[mi.index];
8655 (void)audio_set_port(sc, mc);
8656 }
8657 if (sc->hw_if->commit_settings)
8658 sc->hw_if->commit_settings(sc->hw_hdl);
8659
8660 return;
8661 }
8662
8663 static void
8664 audio_volume_down(device_t dv)
8665 {
8666 struct audio_softc *sc = device_private(dv);
8667 mixer_devinfo_t mi;
8668 int newgain;
8669 u_int gain;
8670 u_char balance;
8671
8672 if (audio_exlock_mutex_enter(sc) != 0)
8673 return;
8674 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8675 mi.index = sc->sc_outports.master;
8676 mi.un.v.delta = 0;
8677 if (audio_query_devinfo(sc, &mi) == 0) {
8678 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8679 newgain = gain - mi.un.v.delta;
8680 if (newgain < AUDIO_MIN_GAIN)
8681 newgain = AUDIO_MIN_GAIN;
8682 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8683 }
8684 }
8685 audio_exlock_mutex_exit(sc);
8686 }
8687
8688 static void
8689 audio_volume_up(device_t dv)
8690 {
8691 struct audio_softc *sc = device_private(dv);
8692 mixer_devinfo_t mi;
8693 u_int gain, newgain;
8694 u_char balance;
8695
8696 if (audio_exlock_mutex_enter(sc) != 0)
8697 return;
8698 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8699 mi.index = sc->sc_outports.master;
8700 mi.un.v.delta = 0;
8701 if (audio_query_devinfo(sc, &mi) == 0) {
8702 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8703 newgain = gain + mi.un.v.delta;
8704 if (newgain > AUDIO_MAX_GAIN)
8705 newgain = AUDIO_MAX_GAIN;
8706 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8707 }
8708 }
8709 audio_exlock_mutex_exit(sc);
8710 }
8711
8712 static void
8713 audio_volume_toggle(device_t dv)
8714 {
8715 struct audio_softc *sc = device_private(dv);
8716 u_int gain, newgain;
8717 u_char balance;
8718
8719 if (audio_exlock_mutex_enter(sc) != 0)
8720 return;
8721 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8722 if (gain != 0) {
8723 sc->sc_lastgain = gain;
8724 newgain = 0;
8725 } else
8726 newgain = sc->sc_lastgain;
8727 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8728 audio_exlock_mutex_exit(sc);
8729 }
8730
8731 /*
8732 * Must be called with sc_lock held.
8733 */
8734 static int
8735 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8736 {
8737
8738 KASSERT(mutex_owned(sc->sc_lock));
8739
8740 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8741 }
8742
8743 #endif /* NAUDIO > 0 */
8744
8745 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8746 #include <sys/param.h>
8747 #include <sys/systm.h>
8748 #include <sys/device.h>
8749 #include <sys/audioio.h>
8750 #include <dev/audio/audio_if.h>
8751 #endif
8752
8753 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8754 int
8755 audioprint(void *aux, const char *pnp)
8756 {
8757 struct audio_attach_args *arg;
8758 const char *type;
8759
8760 if (pnp != NULL) {
8761 arg = aux;
8762 switch (arg->type) {
8763 case AUDIODEV_TYPE_AUDIO:
8764 type = "audio";
8765 break;
8766 case AUDIODEV_TYPE_MIDI:
8767 type = "midi";
8768 break;
8769 case AUDIODEV_TYPE_OPL:
8770 type = "opl";
8771 break;
8772 case AUDIODEV_TYPE_MPU:
8773 type = "mpu";
8774 break;
8775 default:
8776 panic("audioprint: unknown type %d", arg->type);
8777 }
8778 aprint_normal("%s at %s", type, pnp);
8779 }
8780 return UNCONF;
8781 }
8782
8783 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8784
8785 #ifdef _MODULE
8786
8787 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8788
8789 #include "ioconf.c"
8790
8791 #endif
8792
8793 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8794
8795 static int
8796 audio_modcmd(modcmd_t cmd, void *arg)
8797 {
8798 int error = 0;
8799
8800 switch (cmd) {
8801 case MODULE_CMD_INIT:
8802 /* XXX interrupt level? */
8803 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8804 #ifdef _MODULE
8805 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8806 &audio_cdevsw, &audio_cmajor);
8807 if (error)
8808 break;
8809
8810 error = config_init_component(cfdriver_ioconf_audio,
8811 cfattach_ioconf_audio, cfdata_ioconf_audio);
8812 if (error) {
8813 devsw_detach(NULL, &audio_cdevsw);
8814 }
8815 #endif
8816 break;
8817 case MODULE_CMD_FINI:
8818 #ifdef _MODULE
8819 devsw_detach(NULL, &audio_cdevsw);
8820 error = config_fini_component(cfdriver_ioconf_audio,
8821 cfattach_ioconf_audio, cfdata_ioconf_audio);
8822 if (error)
8823 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8824 &audio_cdevsw, &audio_cmajor);
8825 #endif
8826 psref_class_destroy(audio_psref_class);
8827 break;
8828 default:
8829 error = ENOTTY;
8830 break;
8831 }
8832
8833 return error;
8834 }
8835