Home | History | Annotate | Line # | Download | only in audio
audio.c revision 1.78
      1 /*	$NetBSD: audio.c,v 1.78 2020/08/23 04:20:01 isaki Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1991-1993 Regents of the University of California.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed by the Computer Systems
     47  *	Engineering Group at Lawrence Berkeley Laboratory.
     48  * 4. Neither the name of the University nor of the Laboratory may be used
     49  *    to endorse or promote products derived from this software without
     50  *    specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     62  * SUCH DAMAGE.
     63  */
     64 
     65 /*
     66  * Locking: there are three locks per device.
     67  *
     68  * - sc_lock, provided by the underlying driver.  This is an adaptive lock,
     69  *   returned in the second parameter to hw_if->get_locks().  It is known
     70  *   as the "thread lock".
     71  *
     72  *   It serializes access to state in all places except the
     73  *   driver's interrupt service routine.  This lock is taken from process
     74  *   context (example: access to /dev/audio).  It is also taken from soft
     75  *   interrupt handlers in this module, primarily to serialize delivery of
     76  *   wakeups.  This lock may be used/provided by modules external to the
     77  *   audio subsystem, so take care not to introduce a lock order problem.
     78  *   LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
     79  *
     80  * - sc_intr_lock, provided by the underlying driver.  This may be either a
     81  *   spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
     82  *   IPL_SOFT*), returned in the first parameter to hw_if->get_locks().  It
     83  *   is known as the "interrupt lock".
     84  *
     85  *   It provides atomic access to the device's hardware state, and to audio
     86  *   channel data that may be accessed by the hardware driver's ISR.
     87  *   In all places outside the ISR, sc_lock must be held before taking
     88  *   sc_intr_lock.  This is to ensure that groups of hardware operations are
     89  *   made atomically.  SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
     90  *
     91  * - sc_exlock, private to this module.  This is a variable protected by
     92  *   sc_lock.  It is known as the "critical section".
     93  *   Some operations release sc_lock in order to allocate memory, to wait
     94  *   for in-flight I/O to complete, to copy to/from user context, etc.
     95  *   sc_exlock provides a critical section even under the circumstance.
     96  *   "+" in following list indicates the interfaces which necessary to be
     97  *   protected by sc_exlock.
     98  *
     99  * List of hardware interface methods, and which locks are held when each
    100  * is called by this module:
    101  *
    102  *	METHOD			INTR	THREAD  NOTES
    103  *	----------------------- ------- -------	-------------------------
    104  *	open 			x	x +
    105  *	close 			x	x +
    106  *	query_format		-	x
    107  *	set_format		-	x
    108  *	round_blocksize		-	x
    109  *	commit_settings		-	x
    110  *	init_output 		x	x
    111  *	init_input 		x	x
    112  *	start_output 		x	x +
    113  *	start_input 		x	x +
    114  *	halt_output 		x	x +
    115  *	halt_input 		x	x +
    116  *	speaker_ctl 		x	x
    117  *	getdev 			-	x
    118  *	set_port 		-	x +
    119  *	get_port 		-	x +
    120  *	query_devinfo 		-	x
    121  *	allocm 			-	- +
    122  *	freem 			-	- +
    123  *	round_buffersize 	-	x
    124  *	get_props 		-	-	Called at attach time
    125  *	trigger_output 		x	x +
    126  *	trigger_input 		x	x +
    127  *	dev_ioctl 		-	x
    128  *	get_locks 		-	-	Called at attach time
    129  *
    130  * In addition, there is an additional lock.
    131  *
    132  * - track->lock.  This is an atomic variable and is similar to the
    133  *   "interrupt lock".  This is one for each track.  If any thread context
    134  *   (and software interrupt context) and hardware interrupt context who
    135  *   want to access some variables on this track, they must acquire this
    136  *   lock before.  It protects track's consistency between hardware
    137  *   interrupt context and others.
    138  */
    139 
    140 #include <sys/cdefs.h>
    141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.78 2020/08/23 04:20:01 isaki Exp $");
    142 
    143 #ifdef _KERNEL_OPT
    144 #include "audio.h"
    145 #include "midi.h"
    146 #endif
    147 
    148 #if NAUDIO > 0
    149 
    150 #include <sys/types.h>
    151 #include <sys/param.h>
    152 #include <sys/atomic.h>
    153 #include <sys/audioio.h>
    154 #include <sys/conf.h>
    155 #include <sys/cpu.h>
    156 #include <sys/device.h>
    157 #include <sys/fcntl.h>
    158 #include <sys/file.h>
    159 #include <sys/filedesc.h>
    160 #include <sys/intr.h>
    161 #include <sys/ioctl.h>
    162 #include <sys/kauth.h>
    163 #include <sys/kernel.h>
    164 #include <sys/kmem.h>
    165 #include <sys/malloc.h>
    166 #include <sys/mman.h>
    167 #include <sys/module.h>
    168 #include <sys/poll.h>
    169 #include <sys/proc.h>
    170 #include <sys/queue.h>
    171 #include <sys/select.h>
    172 #include <sys/signalvar.h>
    173 #include <sys/stat.h>
    174 #include <sys/sysctl.h>
    175 #include <sys/systm.h>
    176 #include <sys/syslog.h>
    177 #include <sys/vnode.h>
    178 
    179 #include <dev/audio/audio_if.h>
    180 #include <dev/audio/audiovar.h>
    181 #include <dev/audio/audiodef.h>
    182 #include <dev/audio/linear.h>
    183 #include <dev/audio/mulaw.h>
    184 
    185 #include <machine/endian.h>
    186 
    187 #include <uvm/uvm_extern.h>
    188 
    189 #include "ioconf.h"
    190 
    191 /*
    192  * 0: No debug logs
    193  * 1: action changes like open/close/set_format...
    194  * 2: + normal operations like read/write/ioctl...
    195  * 3: + TRACEs except interrupt
    196  * 4: + TRACEs including interrupt
    197  */
    198 //#define AUDIO_DEBUG 1
    199 
    200 #if defined(AUDIO_DEBUG)
    201 
    202 int audiodebug = AUDIO_DEBUG;
    203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
    204 	const char *, va_list);
    205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
    206 	__printflike(3, 4);
    207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
    208 	__printflike(3, 4);
    209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
    210 	__printflike(3, 4);
    211 
    212 /* XXX sloppy memory logger */
    213 static void audio_mlog_init(void);
    214 static void audio_mlog_free(void);
    215 static void audio_mlog_softintr(void *);
    216 extern void audio_mlog_flush(void);
    217 extern void audio_mlog_printf(const char *, ...);
    218 
    219 static int mlog_refs;		/* reference counter */
    220 static char *mlog_buf[2];	/* double buffer */
    221 static int mlog_buflen;		/* buffer length */
    222 static int mlog_used;		/* used length */
    223 static int mlog_full;		/* number of dropped lines by buffer full */
    224 static int mlog_drop;		/* number of dropped lines by busy */
    225 static volatile uint32_t mlog_inuse;	/* in-use */
    226 static int mlog_wpage;		/* active page */
    227 static void *mlog_sih;		/* softint handle */
    228 
    229 static void
    230 audio_mlog_init(void)
    231 {
    232 	mlog_refs++;
    233 	if (mlog_refs > 1)
    234 		return;
    235 	mlog_buflen = 4096;
    236 	mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
    237 	mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
    238 	mlog_used = 0;
    239 	mlog_full = 0;
    240 	mlog_drop = 0;
    241 	mlog_inuse = 0;
    242 	mlog_wpage = 0;
    243 	mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
    244 	if (mlog_sih == NULL)
    245 		printf("%s: softint_establish failed\n", __func__);
    246 }
    247 
    248 static void
    249 audio_mlog_free(void)
    250 {
    251 	mlog_refs--;
    252 	if (mlog_refs > 0)
    253 		return;
    254 
    255 	audio_mlog_flush();
    256 	if (mlog_sih)
    257 		softint_disestablish(mlog_sih);
    258 	kmem_free(mlog_buf[0], mlog_buflen);
    259 	kmem_free(mlog_buf[1], mlog_buflen);
    260 }
    261 
    262 /*
    263  * Flush memory buffer.
    264  * It must not be called from hardware interrupt context.
    265  */
    266 void
    267 audio_mlog_flush(void)
    268 {
    269 	if (mlog_refs == 0)
    270 		return;
    271 
    272 	/* Nothing to do if already in use ? */
    273 	if (atomic_swap_32(&mlog_inuse, 1) == 1)
    274 		return;
    275 
    276 	int rpage = mlog_wpage;
    277 	mlog_wpage ^= 1;
    278 	mlog_buf[mlog_wpage][0] = '\0';
    279 	mlog_used = 0;
    280 
    281 	atomic_swap_32(&mlog_inuse, 0);
    282 
    283 	if (mlog_buf[rpage][0] != '\0') {
    284 		printf("%s", mlog_buf[rpage]);
    285 		if (mlog_drop > 0)
    286 			printf("mlog_drop %d\n", mlog_drop);
    287 		if (mlog_full > 0)
    288 			printf("mlog_full %d\n", mlog_full);
    289 	}
    290 	mlog_full = 0;
    291 	mlog_drop = 0;
    292 }
    293 
    294 static void
    295 audio_mlog_softintr(void *cookie)
    296 {
    297 	audio_mlog_flush();
    298 }
    299 
    300 void
    301 audio_mlog_printf(const char *fmt, ...)
    302 {
    303 	int len;
    304 	va_list ap;
    305 
    306 	if (atomic_swap_32(&mlog_inuse, 1) == 1) {
    307 		/* already inuse */
    308 		mlog_drop++;
    309 		return;
    310 	}
    311 
    312 	va_start(ap, fmt);
    313 	len = vsnprintf(
    314 	    mlog_buf[mlog_wpage] + mlog_used,
    315 	    mlog_buflen - mlog_used,
    316 	    fmt, ap);
    317 	va_end(ap);
    318 
    319 	mlog_used += len;
    320 	if (mlog_buflen - mlog_used <= 1) {
    321 		mlog_full++;
    322 	}
    323 
    324 	atomic_swap_32(&mlog_inuse, 0);
    325 
    326 	if (mlog_sih)
    327 		softint_schedule(mlog_sih);
    328 }
    329 
    330 /* trace functions */
    331 static void
    332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
    333 	const char *fmt, va_list ap)
    334 {
    335 	char buf[256];
    336 	int n;
    337 
    338 	n = 0;
    339 	buf[0] = '\0';
    340 	n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
    341 	    funcname, device_unit(sc->sc_dev), header);
    342 	n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
    343 
    344 	if (cpu_intr_p()) {
    345 		audio_mlog_printf("%s\n", buf);
    346 	} else {
    347 		audio_mlog_flush();
    348 		printf("%s\n", buf);
    349 	}
    350 }
    351 
    352 static void
    353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
    354 {
    355 	va_list ap;
    356 
    357 	va_start(ap, fmt);
    358 	audio_vtrace(sc, funcname, "", fmt, ap);
    359 	va_end(ap);
    360 }
    361 
    362 static void
    363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
    364 {
    365 	char hdr[16];
    366 	va_list ap;
    367 
    368 	snprintf(hdr, sizeof(hdr), "#%d ", track->id);
    369 	va_start(ap, fmt);
    370 	audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
    371 	va_end(ap);
    372 }
    373 
    374 static void
    375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
    376 {
    377 	char hdr[32];
    378 	char phdr[16], rhdr[16];
    379 	va_list ap;
    380 
    381 	phdr[0] = '\0';
    382 	rhdr[0] = '\0';
    383 	if (file->ptrack)
    384 		snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
    385 	if (file->rtrack)
    386 		snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
    387 	snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
    388 
    389 	va_start(ap, fmt);
    390 	audio_vtrace(file->sc, funcname, hdr, fmt, ap);
    391 	va_end(ap);
    392 }
    393 
    394 #define DPRINTF(n, fmt...)	do {	\
    395 	if (audiodebug >= (n)) {	\
    396 		audio_mlog_flush();	\
    397 		printf(fmt);		\
    398 	}				\
    399 } while (0)
    400 #define TRACE(n, fmt...)	do { \
    401 	if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
    402 } while (0)
    403 #define TRACET(n, t, fmt...)	do { \
    404 	if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
    405 } while (0)
    406 #define TRACEF(n, f, fmt...)	do { \
    407 	if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
    408 } while (0)
    409 
    410 struct audio_track_debugbuf {
    411 	char usrbuf[32];
    412 	char codec[32];
    413 	char chvol[32];
    414 	char chmix[32];
    415 	char freq[32];
    416 	char outbuf[32];
    417 };
    418 
    419 static void
    420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
    421 {
    422 
    423 	memset(buf, 0, sizeof(*buf));
    424 
    425 	snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
    426 	    track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
    427 	if (track->freq.filter)
    428 		snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
    429 		    track->freq.srcbuf.head,
    430 		    track->freq.srcbuf.used,
    431 		    track->freq.srcbuf.capacity);
    432 	if (track->chmix.filter)
    433 		snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
    434 		    track->chmix.srcbuf.used);
    435 	if (track->chvol.filter)
    436 		snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
    437 		    track->chvol.srcbuf.used);
    438 	if (track->codec.filter)
    439 		snprintf(buf->codec, sizeof(buf->codec), " e=%d",
    440 		    track->codec.srcbuf.used);
    441 	snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
    442 	    track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
    443 }
    444 #else
    445 #define DPRINTF(n, fmt...)	do { } while (0)
    446 #define TRACE(n, fmt, ...)	do { } while (0)
    447 #define TRACET(n, t, fmt, ...)	do { } while (0)
    448 #define TRACEF(n, f, fmt, ...)	do { } while (0)
    449 #endif
    450 
    451 #define SPECIFIED(x)	((x) != ~0)
    452 #define SPECIFIED_CH(x)	((x) != (u_char)~0)
    453 
    454 /*
    455  * Default hardware blocksize in msec.
    456  *
    457  * We use 10 msec for most modern platforms.  This period is good enough to
    458  * play audio and video synchronizely.
    459  * In contrast, for very old platforms, this is usually too short and too
    460  * severe.  Also such platforms usually can not play video confortably, so
    461  * it's not so important to make the blocksize shorter.  If the platform
    462  * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
    463  * uses this instead.
    464  *
    465  * In either case, you can overwrite AUDIO_BLK_MS by your kernel
    466  * configuration file if you wish.
    467  */
    468 #if !defined(AUDIO_BLK_MS)
    469 # if defined(__AUDIO_BLK_MS)
    470 #  define AUDIO_BLK_MS __AUDIO_BLK_MS
    471 # else
    472 #  define AUDIO_BLK_MS (10)
    473 # endif
    474 #endif
    475 
    476 /* Device timeout in msec */
    477 #define AUDIO_TIMEOUT	(3000)
    478 
    479 /* #define AUDIO_PM_IDLE */
    480 #ifdef AUDIO_PM_IDLE
    481 int audio_idle_timeout = 30;
    482 #endif
    483 
    484 /* Number of elements of async mixer's pid */
    485 #define AM_CAPACITY	(4)
    486 
    487 struct portname {
    488 	const char *name;
    489 	int mask;
    490 };
    491 
    492 static int audiomatch(device_t, cfdata_t, void *);
    493 static void audioattach(device_t, device_t, void *);
    494 static int audiodetach(device_t, int);
    495 static int audioactivate(device_t, enum devact);
    496 static void audiochilddet(device_t, device_t);
    497 static int audiorescan(device_t, const char *, const int *);
    498 
    499 static int audio_modcmd(modcmd_t, void *);
    500 
    501 #ifdef AUDIO_PM_IDLE
    502 static void audio_idle(void *);
    503 static void audio_activity(device_t, devactive_t);
    504 #endif
    505 
    506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
    507 static bool audio_resume(device_t dv, const pmf_qual_t *);
    508 static void audio_volume_down(device_t);
    509 static void audio_volume_up(device_t);
    510 static void audio_volume_toggle(device_t);
    511 
    512 static void audio_mixer_capture(struct audio_softc *);
    513 static void audio_mixer_restore(struct audio_softc *);
    514 
    515 static void audio_softintr_rd(void *);
    516 static void audio_softintr_wr(void *);
    517 
    518 static int audio_exlock_mutex_enter(struct audio_softc *);
    519 static void audio_exlock_mutex_exit(struct audio_softc *);
    520 static int audio_exlock_enter(struct audio_softc *);
    521 static void audio_exlock_exit(struct audio_softc *);
    522 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
    523 static void audio_file_exit(struct audio_softc *, struct psref *);
    524 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
    525 
    526 static int audioclose(struct file *);
    527 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    528 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
    529 static int audioioctl(struct file *, u_long, void *);
    530 static int audiopoll(struct file *, int);
    531 static int audiokqfilter(struct file *, struct knote *);
    532 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
    533 	struct uvm_object **, int *);
    534 static int audiostat(struct file *, struct stat *);
    535 
    536 static void filt_audiowrite_detach(struct knote *);
    537 static int  filt_audiowrite_event(struct knote *, long);
    538 static void filt_audioread_detach(struct knote *);
    539 static int  filt_audioread_event(struct knote *, long);
    540 
    541 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
    542 	audio_file_t **);
    543 static int audio_close(struct audio_softc *, audio_file_t *);
    544 static int audio_unlink(struct audio_softc *, audio_file_t *);
    545 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
    546 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
    547 static void audio_file_clear(struct audio_softc *, audio_file_t *);
    548 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
    549 	struct lwp *, audio_file_t *);
    550 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
    551 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
    552 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
    553 	struct uvm_object **, int *, audio_file_t *);
    554 
    555 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
    556 
    557 static void audio_pintr(void *);
    558 static void audio_rintr(void *);
    559 
    560 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
    561 
    562 static __inline int audio_track_readablebytes(const audio_track_t *);
    563 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
    564 	const struct audio_info *);
    565 static int audio_track_setinfo_check(audio_track_t *,
    566 	audio_format2_t *, const struct audio_prinfo *);
    567 static void audio_track_setinfo_water(audio_track_t *,
    568 	const struct audio_info *);
    569 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
    570 	struct audio_info *);
    571 static int audio_hw_set_format(struct audio_softc *, int,
    572 	const audio_format2_t *, const audio_format2_t *,
    573 	audio_filter_reg_t *, audio_filter_reg_t *);
    574 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
    575 	audio_file_t *);
    576 static bool audio_can_playback(struct audio_softc *);
    577 static bool audio_can_capture(struct audio_softc *);
    578 static int audio_check_params(audio_format2_t *);
    579 static int audio_mixers_init(struct audio_softc *sc, int,
    580 	const audio_format2_t *, const audio_format2_t *,
    581 	const audio_filter_reg_t *, const audio_filter_reg_t *);
    582 static int audio_select_freq(const struct audio_format *);
    583 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
    584 static int audio_hw_validate_format(struct audio_softc *, int,
    585 	const audio_format2_t *);
    586 static int audio_mixers_set_format(struct audio_softc *,
    587 	const struct audio_info *);
    588 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
    589 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
    590 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
    591 #if defined(AUDIO_DEBUG)
    592 static int audio_sysctl_debug(SYSCTLFN_PROTO);
    593 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
    594 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
    595 #endif
    596 
    597 static void *audio_realloc(void *, size_t);
    598 static int audio_realloc_usrbuf(audio_track_t *, int);
    599 static void audio_free_usrbuf(audio_track_t *);
    600 
    601 static audio_track_t *audio_track_create(struct audio_softc *,
    602 	audio_trackmixer_t *);
    603 static void audio_track_destroy(audio_track_t *);
    604 static audio_filter_t audio_track_get_codec(audio_track_t *,
    605 	const audio_format2_t *, const audio_format2_t *);
    606 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
    607 static void audio_track_play(audio_track_t *);
    608 static int audio_track_drain(struct audio_softc *, audio_track_t *);
    609 static void audio_track_record(audio_track_t *);
    610 static void audio_track_clear(struct audio_softc *, audio_track_t *);
    611 
    612 static int audio_mixer_init(struct audio_softc *, int,
    613 	const audio_format2_t *, const audio_filter_reg_t *);
    614 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
    615 static void audio_pmixer_start(struct audio_softc *, bool);
    616 static void audio_pmixer_process(struct audio_softc *);
    617 static void audio_pmixer_agc(audio_trackmixer_t *, int);
    618 static int  audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
    619 static void audio_pmixer_output(struct audio_softc *);
    620 static int  audio_pmixer_halt(struct audio_softc *);
    621 static void audio_rmixer_start(struct audio_softc *);
    622 static void audio_rmixer_process(struct audio_softc *);
    623 static void audio_rmixer_input(struct audio_softc *);
    624 static int  audio_rmixer_halt(struct audio_softc *);
    625 
    626 static void mixer_init(struct audio_softc *);
    627 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
    628 static int mixer_close(struct audio_softc *, audio_file_t *);
    629 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
    630 static void mixer_async_add(struct audio_softc *, pid_t);
    631 static void mixer_async_remove(struct audio_softc *, pid_t);
    632 static void mixer_signal(struct audio_softc *);
    633 
    634 static int au_portof(struct audio_softc *, char *, int);
    635 
    636 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
    637 	mixer_devinfo_t *, const struct portname *);
    638 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
    639 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
    640 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
    641 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
    642 	u_int *, u_char *);
    643 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
    644 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
    645 static int au_set_monitor_gain(struct audio_softc *, int);
    646 static int au_get_monitor_gain(struct audio_softc *);
    647 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
    648 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
    649 
    650 static __inline struct audio_params
    651 format2_to_params(const audio_format2_t *f2)
    652 {
    653 	audio_params_t p;
    654 
    655 	/* validbits/precision <-> precision/stride */
    656 	p.sample_rate = f2->sample_rate;
    657 	p.channels    = f2->channels;
    658 	p.encoding    = f2->encoding;
    659 	p.validbits   = f2->precision;
    660 	p.precision   = f2->stride;
    661 	return p;
    662 }
    663 
    664 static __inline audio_format2_t
    665 params_to_format2(const struct audio_params *p)
    666 {
    667 	audio_format2_t f2;
    668 
    669 	/* precision/stride <-> validbits/precision */
    670 	f2.sample_rate = p->sample_rate;
    671 	f2.channels    = p->channels;
    672 	f2.encoding    = p->encoding;
    673 	f2.precision   = p->validbits;
    674 	f2.stride      = p->precision;
    675 	return f2;
    676 }
    677 
    678 /* Return true if this track is a playback track. */
    679 static __inline bool
    680 audio_track_is_playback(const audio_track_t *track)
    681 {
    682 
    683 	return ((track->mode & AUMODE_PLAY) != 0);
    684 }
    685 
    686 /* Return true if this track is a recording track. */
    687 static __inline bool
    688 audio_track_is_record(const audio_track_t *track)
    689 {
    690 
    691 	return ((track->mode & AUMODE_RECORD) != 0);
    692 }
    693 
    694 #if 0 /* XXX Not used yet */
    695 /*
    696  * Convert 0..255 volume used in userland to internal presentation 0..256.
    697  */
    698 static __inline u_int
    699 audio_volume_to_inner(u_int v)
    700 {
    701 
    702 	return v < 127 ? v : v + 1;
    703 }
    704 
    705 /*
    706  * Convert 0..256 internal presentation to 0..255 volume used in userland.
    707  */
    708 static __inline u_int
    709 audio_volume_to_outer(u_int v)
    710 {
    711 
    712 	return v < 127 ? v : v - 1;
    713 }
    714 #endif /* 0 */
    715 
    716 static dev_type_open(audioopen);
    717 /* XXXMRG use more dev_type_xxx */
    718 
    719 const struct cdevsw audio_cdevsw = {
    720 	.d_open = audioopen,
    721 	.d_close = noclose,
    722 	.d_read = noread,
    723 	.d_write = nowrite,
    724 	.d_ioctl = noioctl,
    725 	.d_stop = nostop,
    726 	.d_tty = notty,
    727 	.d_poll = nopoll,
    728 	.d_mmap = nommap,
    729 	.d_kqfilter = nokqfilter,
    730 	.d_discard = nodiscard,
    731 	.d_flag = D_OTHER | D_MPSAFE
    732 };
    733 
    734 const struct fileops audio_fileops = {
    735 	.fo_name = "audio",
    736 	.fo_read = audioread,
    737 	.fo_write = audiowrite,
    738 	.fo_ioctl = audioioctl,
    739 	.fo_fcntl = fnullop_fcntl,
    740 	.fo_stat = audiostat,
    741 	.fo_poll = audiopoll,
    742 	.fo_close = audioclose,
    743 	.fo_mmap = audiommap,
    744 	.fo_kqfilter = audiokqfilter,
    745 	.fo_restart = fnullop_restart
    746 };
    747 
    748 /* The default audio mode: 8 kHz mono mu-law */
    749 static const struct audio_params audio_default = {
    750 	.sample_rate = 8000,
    751 	.encoding = AUDIO_ENCODING_ULAW,
    752 	.precision = 8,
    753 	.validbits = 8,
    754 	.channels = 1,
    755 };
    756 
    757 static const char *encoding_names[] = {
    758 	"none",
    759 	AudioEmulaw,
    760 	AudioEalaw,
    761 	"pcm16",
    762 	"pcm8",
    763 	AudioEadpcm,
    764 	AudioEslinear_le,
    765 	AudioEslinear_be,
    766 	AudioEulinear_le,
    767 	AudioEulinear_be,
    768 	AudioEslinear,
    769 	AudioEulinear,
    770 	AudioEmpeg_l1_stream,
    771 	AudioEmpeg_l1_packets,
    772 	AudioEmpeg_l1_system,
    773 	AudioEmpeg_l2_stream,
    774 	AudioEmpeg_l2_packets,
    775 	AudioEmpeg_l2_system,
    776 	AudioEac3,
    777 };
    778 
    779 /*
    780  * Returns encoding name corresponding to AUDIO_ENCODING_*.
    781  * Note that it may return a local buffer because it is mainly for debugging.
    782  */
    783 const char *
    784 audio_encoding_name(int encoding)
    785 {
    786 	static char buf[16];
    787 
    788 	if (0 <= encoding && encoding < __arraycount(encoding_names)) {
    789 		return encoding_names[encoding];
    790 	} else {
    791 		snprintf(buf, sizeof(buf), "enc=%d", encoding);
    792 		return buf;
    793 	}
    794 }
    795 
    796 /*
    797  * Supported encodings used by AUDIO_GETENC.
    798  * index and flags are set by code.
    799  * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
    800  */
    801 static const audio_encoding_t audio_encodings[] = {
    802 	{ 0, AudioEmulaw,	AUDIO_ENCODING_ULAW,		8,  0 },
    803 	{ 0, AudioEalaw,	AUDIO_ENCODING_ALAW,		8,  0 },
    804 	{ 0, AudioEslinear,	AUDIO_ENCODING_SLINEAR,		8,  0 },
    805 	{ 0, AudioEulinear,	AUDIO_ENCODING_ULINEAR,		8,  0 },
    806 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	16, 0 },
    807 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	16, 0 },
    808 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	16, 0 },
    809 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	16, 0 },
    810 #if defined(AUDIO_SUPPORT_LINEAR24)
    811 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	24, 0 },
    812 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	24, 0 },
    813 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	24, 0 },
    814 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	24, 0 },
    815 #endif
    816 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	32, 0 },
    817 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	32, 0 },
    818 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	32, 0 },
    819 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	32, 0 },
    820 };
    821 
    822 static const struct portname itable[] = {
    823 	{ AudioNmicrophone,	AUDIO_MICROPHONE },
    824 	{ AudioNline,		AUDIO_LINE_IN },
    825 	{ AudioNcd,		AUDIO_CD },
    826 	{ 0, 0 }
    827 };
    828 static const struct portname otable[] = {
    829 	{ AudioNspeaker,	AUDIO_SPEAKER },
    830 	{ AudioNheadphone,	AUDIO_HEADPHONE },
    831 	{ AudioNline,		AUDIO_LINE_OUT },
    832 	{ 0, 0 }
    833 };
    834 
    835 static struct psref_class *audio_psref_class __read_mostly;
    836 
    837 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
    838     audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
    839     audiochilddet, DVF_DETACH_SHUTDOWN);
    840 
    841 static int
    842 audiomatch(device_t parent, cfdata_t match, void *aux)
    843 {
    844 	struct audio_attach_args *sa;
    845 
    846 	sa = aux;
    847 	DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
    848 	     __func__, sa->type, sa, sa->hwif);
    849 	return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
    850 }
    851 
    852 static void
    853 audioattach(device_t parent, device_t self, void *aux)
    854 {
    855 	struct audio_softc *sc;
    856 	struct audio_attach_args *sa;
    857 	const struct audio_hw_if *hw_if;
    858 	audio_format2_t phwfmt;
    859 	audio_format2_t rhwfmt;
    860 	audio_filter_reg_t pfil;
    861 	audio_filter_reg_t rfil;
    862 	const struct sysctlnode *node;
    863 	void *hdlp;
    864 	bool has_playback;
    865 	bool has_capture;
    866 	bool has_indep;
    867 	bool has_fulldup;
    868 	int mode;
    869 	int error;
    870 
    871 	sc = device_private(self);
    872 	sc->sc_dev = self;
    873 	sa = (struct audio_attach_args *)aux;
    874 	hw_if = sa->hwif;
    875 	hdlp = sa->hdl;
    876 
    877 	if (hw_if == NULL) {
    878 		panic("audioattach: missing hw_if method");
    879 	}
    880 	if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
    881 		aprint_error(": missing mandatory method\n");
    882 		return;
    883 	}
    884 
    885 	hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
    886 	sc->sc_props = hw_if->get_props(hdlp);
    887 
    888 	has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
    889 	has_capture  = (sc->sc_props & AUDIO_PROP_CAPTURE);
    890 	has_indep    = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
    891 	has_fulldup  = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
    892 
    893 #ifdef DIAGNOSTIC
    894 	if (hw_if->query_format == NULL ||
    895 	    hw_if->set_format == NULL ||
    896 	    hw_if->getdev == NULL ||
    897 	    hw_if->set_port == NULL ||
    898 	    hw_if->get_port == NULL ||
    899 	    hw_if->query_devinfo == NULL) {
    900 		aprint_error(": missing mandatory method\n");
    901 		return;
    902 	}
    903 	if (has_playback) {
    904 		if ((hw_if->start_output == NULL &&
    905 		     hw_if->trigger_output == NULL) ||
    906 		    hw_if->halt_output == NULL) {
    907 			aprint_error(": missing playback method\n");
    908 		}
    909 	}
    910 	if (has_capture) {
    911 		if ((hw_if->start_input == NULL &&
    912 		     hw_if->trigger_input == NULL) ||
    913 		    hw_if->halt_input == NULL) {
    914 			aprint_error(": missing capture method\n");
    915 		}
    916 	}
    917 #endif
    918 
    919 	sc->hw_if = hw_if;
    920 	sc->hw_hdl = hdlp;
    921 	sc->hw_dev = parent;
    922 
    923 	sc->sc_exlock = 1;
    924 	sc->sc_blk_ms = AUDIO_BLK_MS;
    925 	SLIST_INIT(&sc->sc_files);
    926 	cv_init(&sc->sc_exlockcv, "audiolk");
    927 	sc->sc_am_capacity = 0;
    928 	sc->sc_am_used = 0;
    929 	sc->sc_am = NULL;
    930 
    931 	/* MMAP is now supported by upper layer.  */
    932 	sc->sc_props |= AUDIO_PROP_MMAP;
    933 
    934 	KASSERT(has_playback || has_capture);
    935 	/* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
    936 	if (!has_playback || !has_capture) {
    937 		KASSERT(!has_indep);
    938 		KASSERT(!has_fulldup);
    939 	}
    940 
    941 	mode = 0;
    942 	if (has_playback) {
    943 		aprint_normal(": playback");
    944 		mode |= AUMODE_PLAY;
    945 	}
    946 	if (has_capture) {
    947 		aprint_normal("%c capture", has_playback ? ',' : ':');
    948 		mode |= AUMODE_RECORD;
    949 	}
    950 	if (has_playback && has_capture) {
    951 		if (has_fulldup)
    952 			aprint_normal(", full duplex");
    953 		else
    954 			aprint_normal(", half duplex");
    955 
    956 		if (has_indep)
    957 			aprint_normal(", independent");
    958 	}
    959 
    960 	aprint_naive("\n");
    961 	aprint_normal("\n");
    962 
    963 	/* probe hw params */
    964 	memset(&phwfmt, 0, sizeof(phwfmt));
    965 	memset(&rhwfmt, 0, sizeof(rhwfmt));
    966 	memset(&pfil, 0, sizeof(pfil));
    967 	memset(&rfil, 0, sizeof(rfil));
    968 	if (has_indep) {
    969 		int perror, rerror;
    970 
    971 		/* On independent devices, probe separately. */
    972 		perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
    973 		rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
    974 		if (perror && rerror) {
    975 			aprint_error_dev(self, "audio_hw_probe failed, "
    976 			    "perror = %d, rerror = %d\n", perror, rerror);
    977 			goto bad;
    978 		}
    979 		if (perror) {
    980 			mode &= ~AUMODE_PLAY;
    981 			aprint_error_dev(self, "audio_hw_probe failed with "
    982 			    "%d, playback disabled\n", perror);
    983 		}
    984 		if (rerror) {
    985 			mode &= ~AUMODE_RECORD;
    986 			aprint_error_dev(self, "audio_hw_probe failed with "
    987 			    "%d, capture disabled\n", rerror);
    988 		}
    989 	} else {
    990 		/*
    991 		 * On non independent devices or uni-directional devices,
    992 		 * probe once (simultaneously).
    993 		 */
    994 		audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
    995 		error = audio_hw_probe(sc, fmt, mode);
    996 		if (error) {
    997 			aprint_error_dev(self, "audio_hw_probe failed, "
    998 			    "error = %d\n", error);
    999 			goto bad;
   1000 		}
   1001 		if (has_playback && has_capture)
   1002 			rhwfmt = phwfmt;
   1003 	}
   1004 
   1005 	/* Init hardware. */
   1006 	/* hw_probe() also validates [pr]hwfmt.  */
   1007 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   1008 	if (error) {
   1009 		aprint_error_dev(self, "audio_hw_set_format failed, "
   1010 		    "error = %d\n", error);
   1011 		goto bad;
   1012 	}
   1013 
   1014 	/*
   1015 	 * Init track mixers.  If at least one direction is available on
   1016 	 * attach time, we assume a success.
   1017 	 */
   1018 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   1019 	if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
   1020 		aprint_error_dev(self, "audio_mixers_init failed, "
   1021 		    "error = %d\n", error);
   1022 		goto bad;
   1023 	}
   1024 
   1025 	sc->sc_psz = pserialize_create();
   1026 	psref_target_init(&sc->sc_psref, audio_psref_class);
   1027 
   1028 	selinit(&sc->sc_wsel);
   1029 	selinit(&sc->sc_rsel);
   1030 
   1031 	/* Initial parameter of /dev/sound */
   1032 	sc->sc_sound_pparams = params_to_format2(&audio_default);
   1033 	sc->sc_sound_rparams = params_to_format2(&audio_default);
   1034 	sc->sc_sound_ppause = false;
   1035 	sc->sc_sound_rpause = false;
   1036 
   1037 	/* XXX TODO: consider about sc_ai */
   1038 
   1039 	mixer_init(sc);
   1040 	TRACE(2, "inputs ports=0x%x, input master=%d, "
   1041 	    "output ports=0x%x, output master=%d",
   1042 	    sc->sc_inports.allports, sc->sc_inports.master,
   1043 	    sc->sc_outports.allports, sc->sc_outports.master);
   1044 
   1045 	sysctl_createv(&sc->sc_log, 0, NULL, &node,
   1046 	    0,
   1047 	    CTLTYPE_NODE, device_xname(sc->sc_dev),
   1048 	    SYSCTL_DESCR("audio test"),
   1049 	    NULL, 0,
   1050 	    NULL, 0,
   1051 	    CTL_HW,
   1052 	    CTL_CREATE, CTL_EOL);
   1053 
   1054 	if (node != NULL) {
   1055 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
   1056 		    CTLFLAG_READWRITE,
   1057 		    CTLTYPE_INT, "blk_ms",
   1058 		    SYSCTL_DESCR("blocksize in msec"),
   1059 		    audio_sysctl_blk_ms, 0, (void *)sc, 0,
   1060 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
   1061 
   1062 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
   1063 		    CTLFLAG_READWRITE,
   1064 		    CTLTYPE_BOOL, "multiuser",
   1065 		    SYSCTL_DESCR("allow multiple user access"),
   1066 		    audio_sysctl_multiuser, 0, (void *)sc, 0,
   1067 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
   1068 
   1069 #if defined(AUDIO_DEBUG)
   1070 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
   1071 		    CTLFLAG_READWRITE,
   1072 		    CTLTYPE_INT, "debug",
   1073 		    SYSCTL_DESCR("debug level (0..4)"),
   1074 		    audio_sysctl_debug, 0, (void *)sc, 0,
   1075 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
   1076 #endif
   1077 	}
   1078 
   1079 #ifdef AUDIO_PM_IDLE
   1080 	callout_init(&sc->sc_idle_counter, 0);
   1081 	callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
   1082 #endif
   1083 
   1084 	if (!pmf_device_register(self, audio_suspend, audio_resume))
   1085 		aprint_error_dev(self, "couldn't establish power handler\n");
   1086 #ifdef AUDIO_PM_IDLE
   1087 	if (!device_active_register(self, audio_activity))
   1088 		aprint_error_dev(self, "couldn't register activity handler\n");
   1089 #endif
   1090 
   1091 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
   1092 	    audio_volume_down, true))
   1093 		aprint_error_dev(self, "couldn't add volume down handler\n");
   1094 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
   1095 	    audio_volume_up, true))
   1096 		aprint_error_dev(self, "couldn't add volume up handler\n");
   1097 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
   1098 	    audio_volume_toggle, true))
   1099 		aprint_error_dev(self, "couldn't add volume toggle handler\n");
   1100 
   1101 #ifdef AUDIO_PM_IDLE
   1102 	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
   1103 #endif
   1104 
   1105 #if defined(AUDIO_DEBUG)
   1106 	audio_mlog_init();
   1107 #endif
   1108 
   1109 	audiorescan(self, "audio", NULL);
   1110 	sc->sc_exlock = 0;
   1111 	return;
   1112 
   1113 bad:
   1114 	/* Clearing hw_if means that device is attached but disabled. */
   1115 	sc->hw_if = NULL;
   1116 	sc->sc_exlock = 0;
   1117 	aprint_error_dev(sc->sc_dev, "disabled\n");
   1118 	return;
   1119 }
   1120 
   1121 /*
   1122  * Initialize hardware mixer.
   1123  * This function is called from audioattach().
   1124  */
   1125 static void
   1126 mixer_init(struct audio_softc *sc)
   1127 {
   1128 	mixer_devinfo_t mi;
   1129 	int iclass, mclass, oclass, rclass;
   1130 	int record_master_found, record_source_found;
   1131 
   1132 	iclass = mclass = oclass = rclass = -1;
   1133 	sc->sc_inports.index = -1;
   1134 	sc->sc_inports.master = -1;
   1135 	sc->sc_inports.nports = 0;
   1136 	sc->sc_inports.isenum = false;
   1137 	sc->sc_inports.allports = 0;
   1138 	sc->sc_inports.isdual = false;
   1139 	sc->sc_inports.mixerout = -1;
   1140 	sc->sc_inports.cur_port = -1;
   1141 	sc->sc_outports.index = -1;
   1142 	sc->sc_outports.master = -1;
   1143 	sc->sc_outports.nports = 0;
   1144 	sc->sc_outports.isenum = false;
   1145 	sc->sc_outports.allports = 0;
   1146 	sc->sc_outports.isdual = false;
   1147 	sc->sc_outports.mixerout = -1;
   1148 	sc->sc_outports.cur_port = -1;
   1149 	sc->sc_monitor_port = -1;
   1150 	/*
   1151 	 * Read through the underlying driver's list, picking out the class
   1152 	 * names from the mixer descriptions. We'll need them to decode the
   1153 	 * mixer descriptions on the next pass through the loop.
   1154 	 */
   1155 	mutex_enter(sc->sc_lock);
   1156 	for(mi.index = 0; ; mi.index++) {
   1157 		if (audio_query_devinfo(sc, &mi) != 0)
   1158 			break;
   1159 		 /*
   1160 		  * The type of AUDIO_MIXER_CLASS merely introduces a class.
   1161 		  * All the other types describe an actual mixer.
   1162 		  */
   1163 		if (mi.type == AUDIO_MIXER_CLASS) {
   1164 			if (strcmp(mi.label.name, AudioCinputs) == 0)
   1165 				iclass = mi.mixer_class;
   1166 			if (strcmp(mi.label.name, AudioCmonitor) == 0)
   1167 				mclass = mi.mixer_class;
   1168 			if (strcmp(mi.label.name, AudioCoutputs) == 0)
   1169 				oclass = mi.mixer_class;
   1170 			if (strcmp(mi.label.name, AudioCrecord) == 0)
   1171 				rclass = mi.mixer_class;
   1172 		}
   1173 	}
   1174 	mutex_exit(sc->sc_lock);
   1175 
   1176 	/* Allocate save area.  Ensure non-zero allocation. */
   1177 	sc->sc_nmixer_states = mi.index;
   1178 	sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
   1179 	    (sc->sc_nmixer_states + 1), KM_SLEEP);
   1180 
   1181 	/*
   1182 	 * This is where we assign each control in the "audio" model, to the
   1183 	 * underlying "mixer" control.  We walk through the whole list once,
   1184 	 * assigning likely candidates as we come across them.
   1185 	 */
   1186 	record_master_found = 0;
   1187 	record_source_found = 0;
   1188 	mutex_enter(sc->sc_lock);
   1189 	for(mi.index = 0; ; mi.index++) {
   1190 		if (audio_query_devinfo(sc, &mi) != 0)
   1191 			break;
   1192 		KASSERT(mi.index < sc->sc_nmixer_states);
   1193 		if (mi.type == AUDIO_MIXER_CLASS)
   1194 			continue;
   1195 		if (mi.mixer_class == iclass) {
   1196 			/*
   1197 			 * AudioCinputs is only a fallback, when we don't
   1198 			 * find what we're looking for in AudioCrecord, so
   1199 			 * check the flags before accepting one of these.
   1200 			 */
   1201 			if (strcmp(mi.label.name, AudioNmaster) == 0
   1202 			    && record_master_found == 0)
   1203 				sc->sc_inports.master = mi.index;
   1204 			if (strcmp(mi.label.name, AudioNsource) == 0
   1205 			    && record_source_found == 0) {
   1206 				if (mi.type == AUDIO_MIXER_ENUM) {
   1207 				    int i;
   1208 				    for(i = 0; i < mi.un.e.num_mem; i++)
   1209 					if (strcmp(mi.un.e.member[i].label.name,
   1210 						    AudioNmixerout) == 0)
   1211 						sc->sc_inports.mixerout =
   1212 						    mi.un.e.member[i].ord;
   1213 				}
   1214 				au_setup_ports(sc, &sc->sc_inports, &mi,
   1215 				    itable);
   1216 			}
   1217 			if (strcmp(mi.label.name, AudioNdac) == 0 &&
   1218 			    sc->sc_outports.master == -1)
   1219 				sc->sc_outports.master = mi.index;
   1220 		} else if (mi.mixer_class == mclass) {
   1221 			if (strcmp(mi.label.name, AudioNmonitor) == 0)
   1222 				sc->sc_monitor_port = mi.index;
   1223 		} else if (mi.mixer_class == oclass) {
   1224 			if (strcmp(mi.label.name, AudioNmaster) == 0)
   1225 				sc->sc_outports.master = mi.index;
   1226 			if (strcmp(mi.label.name, AudioNselect) == 0)
   1227 				au_setup_ports(sc, &sc->sc_outports, &mi,
   1228 				    otable);
   1229 		} else if (mi.mixer_class == rclass) {
   1230 			/*
   1231 			 * These are the preferred mixers for the audio record
   1232 			 * controls, so set the flags here, but don't check.
   1233 			 */
   1234 			if (strcmp(mi.label.name, AudioNmaster) == 0) {
   1235 				sc->sc_inports.master = mi.index;
   1236 				record_master_found = 1;
   1237 			}
   1238 #if 1	/* Deprecated. Use AudioNmaster. */
   1239 			if (strcmp(mi.label.name, AudioNrecord) == 0) {
   1240 				sc->sc_inports.master = mi.index;
   1241 				record_master_found = 1;
   1242 			}
   1243 			if (strcmp(mi.label.name, AudioNvolume) == 0) {
   1244 				sc->sc_inports.master = mi.index;
   1245 				record_master_found = 1;
   1246 			}
   1247 #endif
   1248 			if (strcmp(mi.label.name, AudioNsource) == 0) {
   1249 				if (mi.type == AUDIO_MIXER_ENUM) {
   1250 				    int i;
   1251 				    for(i = 0; i < mi.un.e.num_mem; i++)
   1252 					if (strcmp(mi.un.e.member[i].label.name,
   1253 						    AudioNmixerout) == 0)
   1254 						sc->sc_inports.mixerout =
   1255 						    mi.un.e.member[i].ord;
   1256 				}
   1257 				au_setup_ports(sc, &sc->sc_inports, &mi,
   1258 				    itable);
   1259 				record_source_found = 1;
   1260 			}
   1261 		}
   1262 	}
   1263 	mutex_exit(sc->sc_lock);
   1264 }
   1265 
   1266 static int
   1267 audioactivate(device_t self, enum devact act)
   1268 {
   1269 	struct audio_softc *sc = device_private(self);
   1270 
   1271 	switch (act) {
   1272 	case DVACT_DEACTIVATE:
   1273 		mutex_enter(sc->sc_lock);
   1274 		sc->sc_dying = true;
   1275 		cv_broadcast(&sc->sc_exlockcv);
   1276 		mutex_exit(sc->sc_lock);
   1277 		return 0;
   1278 	default:
   1279 		return EOPNOTSUPP;
   1280 	}
   1281 }
   1282 
   1283 static int
   1284 audiodetach(device_t self, int flags)
   1285 {
   1286 	struct audio_softc *sc;
   1287 	struct audio_file *file;
   1288 	int error;
   1289 
   1290 	sc = device_private(self);
   1291 	TRACE(2, "flags=%d", flags);
   1292 
   1293 	/* device is not initialized */
   1294 	if (sc->hw_if == NULL)
   1295 		return 0;
   1296 
   1297 	/* Start draining existing accessors of the device. */
   1298 	error = config_detach_children(self, flags);
   1299 	if (error)
   1300 		return error;
   1301 
   1302 	/* delete sysctl nodes */
   1303 	sysctl_teardown(&sc->sc_log);
   1304 
   1305 	mutex_enter(sc->sc_lock);
   1306 	sc->sc_dying = true;
   1307 	cv_broadcast(&sc->sc_exlockcv);
   1308 	if (sc->sc_pmixer)
   1309 		cv_broadcast(&sc->sc_pmixer->outcv);
   1310 	if (sc->sc_rmixer)
   1311 		cv_broadcast(&sc->sc_rmixer->outcv);
   1312 
   1313 	/* Prevent new users */
   1314 	SLIST_FOREACH(file, &sc->sc_files, entry) {
   1315 		atomic_store_relaxed(&file->dying, true);
   1316 	}
   1317 
   1318 	/*
   1319 	 * Wait for existing users to drain.
   1320 	 * - pserialize_perform waits for all pserialize_read sections on
   1321 	 *   all CPUs; after this, no more new psref_acquire can happen.
   1322 	 * - psref_target_destroy waits for all extant acquired psrefs to
   1323 	 *   be psref_released.
   1324 	 */
   1325 	pserialize_perform(sc->sc_psz);
   1326 	mutex_exit(sc->sc_lock);
   1327 	psref_target_destroy(&sc->sc_psref, audio_psref_class);
   1328 
   1329 	/*
   1330 	 * We are now guaranteed that there are no calls to audio fileops
   1331 	 * that hold sc, and any new calls with files that were for sc will
   1332 	 * fail.  Thus, we now have exclusive access to the softc.
   1333 	 */
   1334 	sc->sc_exlock = 1;
   1335 
   1336 	/*
   1337 	 * Nuke all open instances.
   1338 	 * Here, we no longer need any locks to traverse sc_files.
   1339 	 */
   1340 	while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
   1341 		audio_unlink(sc, file);
   1342 	}
   1343 
   1344 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
   1345 	    audio_volume_down, true);
   1346 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
   1347 	    audio_volume_up, true);
   1348 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
   1349 	    audio_volume_toggle, true);
   1350 
   1351 #ifdef AUDIO_PM_IDLE
   1352 	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
   1353 
   1354 	device_active_deregister(self, audio_activity);
   1355 #endif
   1356 
   1357 	pmf_device_deregister(self);
   1358 
   1359 	/* Free resources */
   1360 	if (sc->sc_pmixer) {
   1361 		audio_mixer_destroy(sc, sc->sc_pmixer);
   1362 		kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
   1363 	}
   1364 	if (sc->sc_rmixer) {
   1365 		audio_mixer_destroy(sc, sc->sc_rmixer);
   1366 		kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
   1367 	}
   1368 	if (sc->sc_am)
   1369 		kern_free(sc->sc_am);
   1370 
   1371 	seldestroy(&sc->sc_wsel);
   1372 	seldestroy(&sc->sc_rsel);
   1373 
   1374 #ifdef AUDIO_PM_IDLE
   1375 	callout_destroy(&sc->sc_idle_counter);
   1376 #endif
   1377 
   1378 	cv_destroy(&sc->sc_exlockcv);
   1379 
   1380 #if defined(AUDIO_DEBUG)
   1381 	audio_mlog_free();
   1382 #endif
   1383 
   1384 	return 0;
   1385 }
   1386 
   1387 static void
   1388 audiochilddet(device_t self, device_t child)
   1389 {
   1390 
   1391 	/* we hold no child references, so do nothing */
   1392 }
   1393 
   1394 static int
   1395 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
   1396 {
   1397 
   1398 	if (config_match(parent, cf, aux))
   1399 		config_attach_loc(parent, cf, locs, aux, NULL);
   1400 
   1401 	return 0;
   1402 }
   1403 
   1404 static int
   1405 audiorescan(device_t self, const char *ifattr, const int *flags)
   1406 {
   1407 	struct audio_softc *sc = device_private(self);
   1408 
   1409 	if (!ifattr_match(ifattr, "audio"))
   1410 		return 0;
   1411 
   1412 	config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
   1413 
   1414 	return 0;
   1415 }
   1416 
   1417 /*
   1418  * Called from hardware driver.  This is where the MI audio driver gets
   1419  * probed/attached to the hardware driver.
   1420  */
   1421 device_t
   1422 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
   1423 {
   1424 	struct audio_attach_args arg;
   1425 
   1426 #ifdef DIAGNOSTIC
   1427 	if (ahwp == NULL) {
   1428 		aprint_error("audio_attach_mi: NULL\n");
   1429 		return 0;
   1430 	}
   1431 #endif
   1432 	arg.type = AUDIODEV_TYPE_AUDIO;
   1433 	arg.hwif = ahwp;
   1434 	arg.hdl = hdlp;
   1435 	return config_found(dev, &arg, audioprint);
   1436 }
   1437 
   1438 /*
   1439  * Enter critical section and also keep sc_lock.
   1440  * If successful, returns 0 with sc_lock held.  Otherwise returns errno.
   1441  * Must be called without sc_lock held.
   1442  */
   1443 static int
   1444 audio_exlock_mutex_enter(struct audio_softc *sc)
   1445 {
   1446 	int error;
   1447 
   1448 	mutex_enter(sc->sc_lock);
   1449 	if (sc->sc_dying) {
   1450 		mutex_exit(sc->sc_lock);
   1451 		return EIO;
   1452 	}
   1453 
   1454 	while (__predict_false(sc->sc_exlock != 0)) {
   1455 		error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
   1456 		if (sc->sc_dying)
   1457 			error = EIO;
   1458 		if (error) {
   1459 			mutex_exit(sc->sc_lock);
   1460 			return error;
   1461 		}
   1462 	}
   1463 
   1464 	/* Acquire */
   1465 	sc->sc_exlock = 1;
   1466 	return 0;
   1467 }
   1468 
   1469 /*
   1470  * Exit critical section and exit sc_lock.
   1471  * Must be called with sc_lock held.
   1472  */
   1473 static void
   1474 audio_exlock_mutex_exit(struct audio_softc *sc)
   1475 {
   1476 
   1477 	KASSERT(mutex_owned(sc->sc_lock));
   1478 
   1479 	sc->sc_exlock = 0;
   1480 	cv_broadcast(&sc->sc_exlockcv);
   1481 	mutex_exit(sc->sc_lock);
   1482 }
   1483 
   1484 /*
   1485  * Enter critical section.
   1486  * If successful, it returns 0.  Otherwise returns errno.
   1487  * Must be called without sc_lock held.
   1488  * This function returns without sc_lock held.
   1489  */
   1490 static int
   1491 audio_exlock_enter(struct audio_softc *sc)
   1492 {
   1493 	int error;
   1494 
   1495 	error = audio_exlock_mutex_enter(sc);
   1496 	if (error)
   1497 		return error;
   1498 	mutex_exit(sc->sc_lock);
   1499 	return 0;
   1500 }
   1501 
   1502 /*
   1503  * Exit critical section.
   1504  * Must be called without sc_lock held.
   1505  */
   1506 static void
   1507 audio_exlock_exit(struct audio_softc *sc)
   1508 {
   1509 
   1510 	mutex_enter(sc->sc_lock);
   1511 	audio_exlock_mutex_exit(sc);
   1512 }
   1513 
   1514 /*
   1515  * Acquire sc from file, and increment the psref count.
   1516  * If successful, returns sc.  Otherwise returns NULL.
   1517  */
   1518 struct audio_softc *
   1519 audio_file_enter(audio_file_t *file, struct psref *refp)
   1520 {
   1521 	int s;
   1522 	bool dying;
   1523 
   1524 	/* psref(9) forbids to migrate CPUs */
   1525 	curlwp_bind();
   1526 
   1527 	/* Block audiodetach while we acquire a reference */
   1528 	s = pserialize_read_enter();
   1529 
   1530 	/* If close or audiodetach already ran, tough -- no more audio */
   1531 	dying = atomic_load_relaxed(&file->dying);
   1532 	if (dying) {
   1533 		pserialize_read_exit(s);
   1534 		return NULL;
   1535 	}
   1536 
   1537 	/* Acquire a reference */
   1538 	psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
   1539 
   1540 	/* Now sc won't go away until we drop the reference count */
   1541 	pserialize_read_exit(s);
   1542 
   1543 	return file->sc;
   1544 }
   1545 
   1546 /*
   1547  * Decrement the psref count.
   1548  */
   1549 void
   1550 audio_file_exit(struct audio_softc *sc, struct psref *refp)
   1551 {
   1552 
   1553 	psref_release(refp, &sc->sc_psref, audio_psref_class);
   1554 }
   1555 
   1556 /*
   1557  * Wait for I/O to complete, releasing sc_lock.
   1558  * Must be called with sc_lock held.
   1559  */
   1560 static int
   1561 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
   1562 {
   1563 	int error;
   1564 
   1565 	KASSERT(track);
   1566 	KASSERT(mutex_owned(sc->sc_lock));
   1567 
   1568 	/* Wait for pending I/O to complete. */
   1569 	error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
   1570 	    mstohz(AUDIO_TIMEOUT));
   1571 	if (sc->sc_suspending) {
   1572 		/* If it's about to suspend, ignore timeout error. */
   1573 		if (error == EWOULDBLOCK) {
   1574 			TRACET(2, track, "timeout (suspending)");
   1575 			return 0;
   1576 		}
   1577 	}
   1578 	if (sc->sc_dying) {
   1579 		error = EIO;
   1580 	}
   1581 	if (error) {
   1582 		TRACET(2, track, "cv_timedwait_sig failed %d", error);
   1583 		if (error == EWOULDBLOCK)
   1584 			device_printf(sc->sc_dev, "device timeout\n");
   1585 	} else {
   1586 		TRACET(3, track, "wakeup");
   1587 	}
   1588 	return error;
   1589 }
   1590 
   1591 /*
   1592  * Try to acquire track lock.
   1593  * It doesn't block if the track lock is already aquired.
   1594  * Returns true if the track lock was acquired, or false if the track
   1595  * lock was already acquired.
   1596  */
   1597 static __inline bool
   1598 audio_track_lock_tryenter(audio_track_t *track)
   1599 {
   1600 	return (atomic_cas_uint(&track->lock, 0, 1) == 0);
   1601 }
   1602 
   1603 /*
   1604  * Acquire track lock.
   1605  */
   1606 static __inline void
   1607 audio_track_lock_enter(audio_track_t *track)
   1608 {
   1609 	/* Don't sleep here. */
   1610 	while (audio_track_lock_tryenter(track) == false)
   1611 		;
   1612 }
   1613 
   1614 /*
   1615  * Release track lock.
   1616  */
   1617 static __inline void
   1618 audio_track_lock_exit(audio_track_t *track)
   1619 {
   1620 	atomic_swap_uint(&track->lock, 0);
   1621 }
   1622 
   1623 
   1624 static int
   1625 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
   1626 {
   1627 	struct audio_softc *sc;
   1628 	int error;
   1629 
   1630 	/* Find the device */
   1631 	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
   1632 	if (sc == NULL || sc->hw_if == NULL)
   1633 		return ENXIO;
   1634 
   1635 	error = audio_exlock_enter(sc);
   1636 	if (error)
   1637 		return error;
   1638 
   1639 	device_active(sc->sc_dev, DVA_SYSTEM);
   1640 	switch (AUDIODEV(dev)) {
   1641 	case SOUND_DEVICE:
   1642 	case AUDIO_DEVICE:
   1643 		error = audio_open(dev, sc, flags, ifmt, l, NULL);
   1644 		break;
   1645 	case AUDIOCTL_DEVICE:
   1646 		error = audioctl_open(dev, sc, flags, ifmt, l);
   1647 		break;
   1648 	case MIXER_DEVICE:
   1649 		error = mixer_open(dev, sc, flags, ifmt, l);
   1650 		break;
   1651 	default:
   1652 		error = ENXIO;
   1653 		break;
   1654 	}
   1655 	audio_exlock_exit(sc);
   1656 
   1657 	return error;
   1658 }
   1659 
   1660 static int
   1661 audioclose(struct file *fp)
   1662 {
   1663 	struct audio_softc *sc;
   1664 	struct psref sc_ref;
   1665 	audio_file_t *file;
   1666 	int error;
   1667 	dev_t dev;
   1668 
   1669 	KASSERT(fp->f_audioctx);
   1670 	file = fp->f_audioctx;
   1671 	dev = file->dev;
   1672 	error = 0;
   1673 
   1674 	/*
   1675 	 * audioclose() must
   1676 	 * - unplug track from the trackmixer (and unplug anything from softc),
   1677 	 *   if sc exists.
   1678 	 * - free all memory objects, regardless of sc.
   1679 	 */
   1680 
   1681 	sc = audio_file_enter(file, &sc_ref);
   1682 	if (sc) {
   1683 		switch (AUDIODEV(dev)) {
   1684 		case SOUND_DEVICE:
   1685 		case AUDIO_DEVICE:
   1686 			error = audio_close(sc, file);
   1687 			break;
   1688 		case AUDIOCTL_DEVICE:
   1689 			error = 0;
   1690 			break;
   1691 		case MIXER_DEVICE:
   1692 			error = mixer_close(sc, file);
   1693 			break;
   1694 		default:
   1695 			error = ENXIO;
   1696 			break;
   1697 		}
   1698 
   1699 		audio_file_exit(sc, &sc_ref);
   1700 	}
   1701 
   1702 	/* Free memory objects anyway */
   1703 	TRACEF(2, file, "free memory");
   1704 	if (file->ptrack)
   1705 		audio_track_destroy(file->ptrack);
   1706 	if (file->rtrack)
   1707 		audio_track_destroy(file->rtrack);
   1708 	kmem_free(file, sizeof(*file));
   1709 	fp->f_audioctx = NULL;
   1710 
   1711 	return error;
   1712 }
   1713 
   1714 static int
   1715 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1716 	int ioflag)
   1717 {
   1718 	struct audio_softc *sc;
   1719 	struct psref sc_ref;
   1720 	audio_file_t *file;
   1721 	int error;
   1722 	dev_t dev;
   1723 
   1724 	KASSERT(fp->f_audioctx);
   1725 	file = fp->f_audioctx;
   1726 	dev = file->dev;
   1727 
   1728 	sc = audio_file_enter(file, &sc_ref);
   1729 	if (sc == NULL)
   1730 		return EIO;
   1731 
   1732 	if (fp->f_flag & O_NONBLOCK)
   1733 		ioflag |= IO_NDELAY;
   1734 
   1735 	switch (AUDIODEV(dev)) {
   1736 	case SOUND_DEVICE:
   1737 	case AUDIO_DEVICE:
   1738 		error = audio_read(sc, uio, ioflag, file);
   1739 		break;
   1740 	case AUDIOCTL_DEVICE:
   1741 	case MIXER_DEVICE:
   1742 		error = ENODEV;
   1743 		break;
   1744 	default:
   1745 		error = ENXIO;
   1746 		break;
   1747 	}
   1748 
   1749 	audio_file_exit(sc, &sc_ref);
   1750 	return error;
   1751 }
   1752 
   1753 static int
   1754 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
   1755 	int ioflag)
   1756 {
   1757 	struct audio_softc *sc;
   1758 	struct psref sc_ref;
   1759 	audio_file_t *file;
   1760 	int error;
   1761 	dev_t dev;
   1762 
   1763 	KASSERT(fp->f_audioctx);
   1764 	file = fp->f_audioctx;
   1765 	dev = file->dev;
   1766 
   1767 	sc = audio_file_enter(file, &sc_ref);
   1768 	if (sc == NULL)
   1769 		return EIO;
   1770 
   1771 	if (fp->f_flag & O_NONBLOCK)
   1772 		ioflag |= IO_NDELAY;
   1773 
   1774 	switch (AUDIODEV(dev)) {
   1775 	case SOUND_DEVICE:
   1776 	case AUDIO_DEVICE:
   1777 		error = audio_write(sc, uio, ioflag, file);
   1778 		break;
   1779 	case AUDIOCTL_DEVICE:
   1780 	case MIXER_DEVICE:
   1781 		error = ENODEV;
   1782 		break;
   1783 	default:
   1784 		error = ENXIO;
   1785 		break;
   1786 	}
   1787 
   1788 	audio_file_exit(sc, &sc_ref);
   1789 	return error;
   1790 }
   1791 
   1792 static int
   1793 audioioctl(struct file *fp, u_long cmd, void *addr)
   1794 {
   1795 	struct audio_softc *sc;
   1796 	struct psref sc_ref;
   1797 	audio_file_t *file;
   1798 	struct lwp *l = curlwp;
   1799 	int error;
   1800 	dev_t dev;
   1801 
   1802 	KASSERT(fp->f_audioctx);
   1803 	file = fp->f_audioctx;
   1804 	dev = file->dev;
   1805 
   1806 	sc = audio_file_enter(file, &sc_ref);
   1807 	if (sc == NULL)
   1808 		return EIO;
   1809 
   1810 	switch (AUDIODEV(dev)) {
   1811 	case SOUND_DEVICE:
   1812 	case AUDIO_DEVICE:
   1813 	case AUDIOCTL_DEVICE:
   1814 		mutex_enter(sc->sc_lock);
   1815 		device_active(sc->sc_dev, DVA_SYSTEM);
   1816 		mutex_exit(sc->sc_lock);
   1817 		if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
   1818 			error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
   1819 		else
   1820 			error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
   1821 			    file);
   1822 		break;
   1823 	case MIXER_DEVICE:
   1824 		error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
   1825 		break;
   1826 	default:
   1827 		error = ENXIO;
   1828 		break;
   1829 	}
   1830 
   1831 	audio_file_exit(sc, &sc_ref);
   1832 	return error;
   1833 }
   1834 
   1835 static int
   1836 audiostat(struct file *fp, struct stat *st)
   1837 {
   1838 	struct audio_softc *sc;
   1839 	struct psref sc_ref;
   1840 	audio_file_t *file;
   1841 
   1842 	KASSERT(fp->f_audioctx);
   1843 	file = fp->f_audioctx;
   1844 
   1845 	sc = audio_file_enter(file, &sc_ref);
   1846 	if (sc == NULL)
   1847 		return EIO;
   1848 
   1849 	memset(st, 0, sizeof(*st));
   1850 
   1851 	st->st_dev = file->dev;
   1852 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1853 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1854 	st->st_mode = S_IFCHR;
   1855 
   1856 	audio_file_exit(sc, &sc_ref);
   1857 	return 0;
   1858 }
   1859 
   1860 static int
   1861 audiopoll(struct file *fp, int events)
   1862 {
   1863 	struct audio_softc *sc;
   1864 	struct psref sc_ref;
   1865 	audio_file_t *file;
   1866 	struct lwp *l = curlwp;
   1867 	int revents;
   1868 	dev_t dev;
   1869 
   1870 	KASSERT(fp->f_audioctx);
   1871 	file = fp->f_audioctx;
   1872 	dev = file->dev;
   1873 
   1874 	sc = audio_file_enter(file, &sc_ref);
   1875 	if (sc == NULL)
   1876 		return EIO;
   1877 
   1878 	switch (AUDIODEV(dev)) {
   1879 	case SOUND_DEVICE:
   1880 	case AUDIO_DEVICE:
   1881 		revents = audio_poll(sc, events, l, file);
   1882 		break;
   1883 	case AUDIOCTL_DEVICE:
   1884 	case MIXER_DEVICE:
   1885 		revents = 0;
   1886 		break;
   1887 	default:
   1888 		revents = POLLERR;
   1889 		break;
   1890 	}
   1891 
   1892 	audio_file_exit(sc, &sc_ref);
   1893 	return revents;
   1894 }
   1895 
   1896 static int
   1897 audiokqfilter(struct file *fp, struct knote *kn)
   1898 {
   1899 	struct audio_softc *sc;
   1900 	struct psref sc_ref;
   1901 	audio_file_t *file;
   1902 	dev_t dev;
   1903 	int error;
   1904 
   1905 	KASSERT(fp->f_audioctx);
   1906 	file = fp->f_audioctx;
   1907 	dev = file->dev;
   1908 
   1909 	sc = audio_file_enter(file, &sc_ref);
   1910 	if (sc == NULL)
   1911 		return EIO;
   1912 
   1913 	switch (AUDIODEV(dev)) {
   1914 	case SOUND_DEVICE:
   1915 	case AUDIO_DEVICE:
   1916 		error = audio_kqfilter(sc, file, kn);
   1917 		break;
   1918 	case AUDIOCTL_DEVICE:
   1919 	case MIXER_DEVICE:
   1920 		error = ENODEV;
   1921 		break;
   1922 	default:
   1923 		error = ENXIO;
   1924 		break;
   1925 	}
   1926 
   1927 	audio_file_exit(sc, &sc_ref);
   1928 	return error;
   1929 }
   1930 
   1931 static int
   1932 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
   1933 	int *advicep, struct uvm_object **uobjp, int *maxprotp)
   1934 {
   1935 	struct audio_softc *sc;
   1936 	struct psref sc_ref;
   1937 	audio_file_t *file;
   1938 	dev_t dev;
   1939 	int error;
   1940 
   1941 	KASSERT(fp->f_audioctx);
   1942 	file = fp->f_audioctx;
   1943 	dev = file->dev;
   1944 
   1945 	sc = audio_file_enter(file, &sc_ref);
   1946 	if (sc == NULL)
   1947 		return EIO;
   1948 
   1949 	mutex_enter(sc->sc_lock);
   1950 	device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
   1951 	mutex_exit(sc->sc_lock);
   1952 
   1953 	switch (AUDIODEV(dev)) {
   1954 	case SOUND_DEVICE:
   1955 	case AUDIO_DEVICE:
   1956 		error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
   1957 		    uobjp, maxprotp, file);
   1958 		break;
   1959 	case AUDIOCTL_DEVICE:
   1960 	case MIXER_DEVICE:
   1961 	default:
   1962 		error = ENOTSUP;
   1963 		break;
   1964 	}
   1965 
   1966 	audio_file_exit(sc, &sc_ref);
   1967 	return error;
   1968 }
   1969 
   1970 
   1971 /* Exported interfaces for audiobell. */
   1972 
   1973 /*
   1974  * Open for audiobell.
   1975  * It stores allocated file to *filep.
   1976  * If successful returns 0, otherwise errno.
   1977  */
   1978 int
   1979 audiobellopen(dev_t dev, audio_file_t **filep)
   1980 {
   1981 	struct audio_softc *sc;
   1982 	int error;
   1983 
   1984 	/* Find the device */
   1985 	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
   1986 	if (sc == NULL || sc->hw_if == NULL)
   1987 		return ENXIO;
   1988 
   1989 	error = audio_exlock_enter(sc);
   1990 	if (error)
   1991 		return error;
   1992 
   1993 	device_active(sc->sc_dev, DVA_SYSTEM);
   1994 	error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
   1995 
   1996 	audio_exlock_exit(sc);
   1997 	return error;
   1998 }
   1999 
   2000 /* Close for audiobell */
   2001 int
   2002 audiobellclose(audio_file_t *file)
   2003 {
   2004 	struct audio_softc *sc;
   2005 	struct psref sc_ref;
   2006 	int error;
   2007 
   2008 	sc = audio_file_enter(file, &sc_ref);
   2009 	if (sc == NULL)
   2010 		return EIO;
   2011 
   2012 	error = audio_close(sc, file);
   2013 
   2014 	audio_file_exit(sc, &sc_ref);
   2015 
   2016 	KASSERT(file->ptrack);
   2017 	audio_track_destroy(file->ptrack);
   2018 	KASSERT(file->rtrack == NULL);
   2019 	kmem_free(file, sizeof(*file));
   2020 	return error;
   2021 }
   2022 
   2023 /* Set sample rate for audiobell */
   2024 int
   2025 audiobellsetrate(audio_file_t *file, u_int sample_rate)
   2026 {
   2027 	struct audio_softc *sc;
   2028 	struct psref sc_ref;
   2029 	struct audio_info ai;
   2030 	int error;
   2031 
   2032 	sc = audio_file_enter(file, &sc_ref);
   2033 	if (sc == NULL)
   2034 		return EIO;
   2035 
   2036 	AUDIO_INITINFO(&ai);
   2037 	ai.play.sample_rate = sample_rate;
   2038 
   2039 	error = audio_exlock_enter(sc);
   2040 	if (error)
   2041 		goto done;
   2042 	error = audio_file_setinfo(sc, file, &ai);
   2043 	audio_exlock_exit(sc);
   2044 
   2045 done:
   2046 	audio_file_exit(sc, &sc_ref);
   2047 	return error;
   2048 }
   2049 
   2050 /* Playback for audiobell */
   2051 int
   2052 audiobellwrite(audio_file_t *file, struct uio *uio)
   2053 {
   2054 	struct audio_softc *sc;
   2055 	struct psref sc_ref;
   2056 	int error;
   2057 
   2058 	sc = audio_file_enter(file, &sc_ref);
   2059 	if (sc == NULL)
   2060 		return EIO;
   2061 
   2062 	error = audio_write(sc, uio, 0, file);
   2063 
   2064 	audio_file_exit(sc, &sc_ref);
   2065 	return error;
   2066 }
   2067 
   2068 
   2069 /*
   2070  * Audio driver
   2071  */
   2072 
   2073 /*
   2074  * Must be called with sc_exlock held and without sc_lock held.
   2075  */
   2076 int
   2077 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
   2078 	struct lwp *l, audio_file_t **bellfile)
   2079 {
   2080 	struct audio_info ai;
   2081 	struct file *fp;
   2082 	audio_file_t *af;
   2083 	audio_ring_t *hwbuf;
   2084 	bool fullduplex;
   2085 	int fd;
   2086 	int error;
   2087 
   2088 	KASSERT(sc->sc_exlock);
   2089 
   2090 	TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
   2091 	    (audiodebug >= 3) ? "start " : "",
   2092 	    ISDEVSOUND(dev) ? "sound" : "audio",
   2093 	    flags, sc->sc_popens, sc->sc_ropens);
   2094 
   2095 	af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
   2096 	af->sc = sc;
   2097 	af->dev = dev;
   2098 	if ((flags & FWRITE) != 0 && audio_can_playback(sc))
   2099 		af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
   2100 	if ((flags & FREAD) != 0 && audio_can_capture(sc))
   2101 		af->mode |= AUMODE_RECORD;
   2102 	if (af->mode == 0) {
   2103 		error = ENXIO;
   2104 		goto bad1;
   2105 	}
   2106 
   2107 	fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
   2108 
   2109 	/*
   2110 	 * On half duplex hardware,
   2111 	 * 1. if mode is (PLAY | REC), let mode PLAY.
   2112 	 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
   2113 	 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
   2114 	 */
   2115 	if (fullduplex == false) {
   2116 		if ((af->mode & AUMODE_PLAY)) {
   2117 			if (sc->sc_ropens != 0) {
   2118 				TRACE(1, "record track already exists");
   2119 				error = ENODEV;
   2120 				goto bad1;
   2121 			}
   2122 			/* Play takes precedence */
   2123 			af->mode &= ~AUMODE_RECORD;
   2124 		}
   2125 		if ((af->mode & AUMODE_RECORD)) {
   2126 			if (sc->sc_popens != 0) {
   2127 				TRACE(1, "play track already exists");
   2128 				error = ENODEV;
   2129 				goto bad1;
   2130 			}
   2131 		}
   2132 	}
   2133 
   2134 	/* Create tracks */
   2135 	if ((af->mode & AUMODE_PLAY))
   2136 		af->ptrack = audio_track_create(sc, sc->sc_pmixer);
   2137 	if ((af->mode & AUMODE_RECORD))
   2138 		af->rtrack = audio_track_create(sc, sc->sc_rmixer);
   2139 
   2140 	/* Set parameters */
   2141 	AUDIO_INITINFO(&ai);
   2142 	if (bellfile) {
   2143 		/* If audiobell, only sample_rate will be set later. */
   2144 		ai.play.sample_rate   = audio_default.sample_rate;
   2145 		ai.play.encoding      = AUDIO_ENCODING_SLINEAR_NE;
   2146 		ai.play.channels      = 1;
   2147 		ai.play.precision     = 16;
   2148 		ai.play.pause         = 0;
   2149 	} else if (ISDEVAUDIO(dev)) {
   2150 		/* If /dev/audio, initialize everytime. */
   2151 		ai.play.sample_rate   = audio_default.sample_rate;
   2152 		ai.play.encoding      = audio_default.encoding;
   2153 		ai.play.channels      = audio_default.channels;
   2154 		ai.play.precision     = audio_default.precision;
   2155 		ai.play.pause         = 0;
   2156 		ai.record.sample_rate = audio_default.sample_rate;
   2157 		ai.record.encoding    = audio_default.encoding;
   2158 		ai.record.channels    = audio_default.channels;
   2159 		ai.record.precision   = audio_default.precision;
   2160 		ai.record.pause       = 0;
   2161 	} else {
   2162 		/* If /dev/sound, take over the previous parameters. */
   2163 		ai.play.sample_rate   = sc->sc_sound_pparams.sample_rate;
   2164 		ai.play.encoding      = sc->sc_sound_pparams.encoding;
   2165 		ai.play.channels      = sc->sc_sound_pparams.channels;
   2166 		ai.play.precision     = sc->sc_sound_pparams.precision;
   2167 		ai.play.pause         = sc->sc_sound_ppause;
   2168 		ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
   2169 		ai.record.encoding    = sc->sc_sound_rparams.encoding;
   2170 		ai.record.channels    = sc->sc_sound_rparams.channels;
   2171 		ai.record.precision   = sc->sc_sound_rparams.precision;
   2172 		ai.record.pause       = sc->sc_sound_rpause;
   2173 	}
   2174 	error = audio_file_setinfo(sc, af, &ai);
   2175 	if (error)
   2176 		goto bad2;
   2177 
   2178 	if (sc->sc_popens + sc->sc_ropens == 0) {
   2179 		/* First open */
   2180 
   2181 		sc->sc_cred = kauth_cred_get();
   2182 		kauth_cred_hold(sc->sc_cred);
   2183 
   2184 		if (sc->hw_if->open) {
   2185 			int hwflags;
   2186 
   2187 			/*
   2188 			 * Call hw_if->open() only at first open of
   2189 			 * combination of playback and recording.
   2190 			 * On full duplex hardware, the flags passed to
   2191 			 * hw_if->open() is always (FREAD | FWRITE)
   2192 			 * regardless of this open()'s flags.
   2193 			 * see also dev/isa/aria.c
   2194 			 * On half duplex hardware, the flags passed to
   2195 			 * hw_if->open() is either FREAD or FWRITE.
   2196 			 * see also arch/evbarm/mini2440/audio_mini2440.c
   2197 			 */
   2198 			if (fullduplex) {
   2199 				hwflags = FREAD | FWRITE;
   2200 			} else {
   2201 				/* Construct hwflags from af->mode. */
   2202 				hwflags = 0;
   2203 				if ((af->mode & AUMODE_PLAY) != 0)
   2204 					hwflags |= FWRITE;
   2205 				if ((af->mode & AUMODE_RECORD) != 0)
   2206 					hwflags |= FREAD;
   2207 			}
   2208 
   2209 			mutex_enter(sc->sc_lock);
   2210 			mutex_enter(sc->sc_intr_lock);
   2211 			error = sc->hw_if->open(sc->hw_hdl, hwflags);
   2212 			mutex_exit(sc->sc_intr_lock);
   2213 			mutex_exit(sc->sc_lock);
   2214 			if (error)
   2215 				goto bad2;
   2216 		}
   2217 
   2218 		/*
   2219 		 * Set speaker mode when a half duplex.
   2220 		 * XXX I'm not sure this is correct.
   2221 		 */
   2222 		if (1/*XXX*/) {
   2223 			if (sc->hw_if->speaker_ctl) {
   2224 				int on;
   2225 				if (af->ptrack) {
   2226 					on = 1;
   2227 				} else {
   2228 					on = 0;
   2229 				}
   2230 				mutex_enter(sc->sc_lock);
   2231 				mutex_enter(sc->sc_intr_lock);
   2232 				error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
   2233 				mutex_exit(sc->sc_intr_lock);
   2234 				mutex_exit(sc->sc_lock);
   2235 				if (error)
   2236 					goto bad3;
   2237 			}
   2238 		}
   2239 	} else if (sc->sc_multiuser == false) {
   2240 		uid_t euid = kauth_cred_geteuid(kauth_cred_get());
   2241 		if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
   2242 			error = EPERM;
   2243 			goto bad2;
   2244 		}
   2245 	}
   2246 
   2247 	/* Call init_output if this is the first playback open. */
   2248 	if (af->ptrack && sc->sc_popens == 0) {
   2249 		if (sc->hw_if->init_output) {
   2250 			hwbuf = &sc->sc_pmixer->hwbuf;
   2251 			mutex_enter(sc->sc_lock);
   2252 			mutex_enter(sc->sc_intr_lock);
   2253 			error = sc->hw_if->init_output(sc->hw_hdl,
   2254 			    hwbuf->mem,
   2255 			    hwbuf->capacity *
   2256 			    hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
   2257 			mutex_exit(sc->sc_intr_lock);
   2258 			mutex_exit(sc->sc_lock);
   2259 			if (error)
   2260 				goto bad3;
   2261 		}
   2262 	}
   2263 	/*
   2264 	 * Call init_input and start rmixer, if this is the first recording
   2265 	 * open.  See pause consideration notes.
   2266 	 */
   2267 	if (af->rtrack && sc->sc_ropens == 0) {
   2268 		if (sc->hw_if->init_input) {
   2269 			hwbuf = &sc->sc_rmixer->hwbuf;
   2270 			mutex_enter(sc->sc_lock);
   2271 			mutex_enter(sc->sc_intr_lock);
   2272 			error = sc->hw_if->init_input(sc->hw_hdl,
   2273 			    hwbuf->mem,
   2274 			    hwbuf->capacity *
   2275 			    hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
   2276 			mutex_exit(sc->sc_intr_lock);
   2277 			mutex_exit(sc->sc_lock);
   2278 			if (error)
   2279 				goto bad3;
   2280 		}
   2281 
   2282 		mutex_enter(sc->sc_lock);
   2283 		audio_rmixer_start(sc);
   2284 		mutex_exit(sc->sc_lock);
   2285 	}
   2286 
   2287 	if (bellfile == NULL) {
   2288 		error = fd_allocfile(&fp, &fd);
   2289 		if (error)
   2290 			goto bad3;
   2291 	}
   2292 
   2293 	/*
   2294 	 * Count up finally.
   2295 	 * Don't fail from here.
   2296 	 */
   2297 	mutex_enter(sc->sc_lock);
   2298 	if (af->ptrack)
   2299 		sc->sc_popens++;
   2300 	if (af->rtrack)
   2301 		sc->sc_ropens++;
   2302 	mutex_enter(sc->sc_intr_lock);
   2303 	SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
   2304 	mutex_exit(sc->sc_intr_lock);
   2305 	mutex_exit(sc->sc_lock);
   2306 
   2307 	if (bellfile) {
   2308 		*bellfile = af;
   2309 	} else {
   2310 		error = fd_clone(fp, fd, flags, &audio_fileops, af);
   2311 		KASSERTMSG(error == EMOVEFD, "error=%d", error);
   2312 	}
   2313 
   2314 	TRACEF(3, af, "done");
   2315 	return error;
   2316 
   2317 	/*
   2318 	 * Since track here is not yet linked to sc_files,
   2319 	 * you can call track_destroy() without sc_intr_lock.
   2320 	 */
   2321 bad3:
   2322 	if (sc->sc_popens + sc->sc_ropens == 0) {
   2323 		if (sc->hw_if->close) {
   2324 			mutex_enter(sc->sc_lock);
   2325 			mutex_enter(sc->sc_intr_lock);
   2326 			sc->hw_if->close(sc->hw_hdl);
   2327 			mutex_exit(sc->sc_intr_lock);
   2328 			mutex_exit(sc->sc_lock);
   2329 		}
   2330 	}
   2331 bad2:
   2332 	if (af->rtrack) {
   2333 		audio_track_destroy(af->rtrack);
   2334 		af->rtrack = NULL;
   2335 	}
   2336 	if (af->ptrack) {
   2337 		audio_track_destroy(af->ptrack);
   2338 		af->ptrack = NULL;
   2339 	}
   2340 bad1:
   2341 	kmem_free(af, sizeof(*af));
   2342 	return error;
   2343 }
   2344 
   2345 /*
   2346  * Must be called without sc_lock nor sc_exlock held.
   2347  */
   2348 int
   2349 audio_close(struct audio_softc *sc, audio_file_t *file)
   2350 {
   2351 
   2352 	/* Protect entering new fileops to this file */
   2353 	atomic_store_relaxed(&file->dying, true);
   2354 
   2355 	/*
   2356 	 * Drain first.
   2357 	 * It must be done before unlinking(acquiring exlock).
   2358 	 */
   2359 	if (file->ptrack) {
   2360 		mutex_enter(sc->sc_lock);
   2361 		audio_track_drain(sc, file->ptrack);
   2362 		mutex_exit(sc->sc_lock);
   2363 	}
   2364 
   2365 	return audio_unlink(sc, file);
   2366 }
   2367 
   2368 /*
   2369  * Unlink this file, but not freeing memory here.
   2370  * Must be called without sc_lock nor sc_exlock held.
   2371  */
   2372 int
   2373 audio_unlink(struct audio_softc *sc, audio_file_t *file)
   2374 {
   2375 	int error;
   2376 
   2377 	mutex_enter(sc->sc_lock);
   2378 
   2379 	TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
   2380 	    (audiodebug >= 3) ? "start " : "",
   2381 	    (int)curproc->p_pid, (int)curlwp->l_lid,
   2382 	    sc->sc_popens, sc->sc_ropens);
   2383 	KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
   2384 	    "sc->sc_popens=%d, sc->sc_ropens=%d",
   2385 	    sc->sc_popens, sc->sc_ropens);
   2386 
   2387 	/*
   2388 	 * Acquire exlock to protect counters.
   2389 	 * Does not use audio_exlock_enter() due to sc_dying.
   2390 	 */
   2391 	while (__predict_false(sc->sc_exlock != 0)) {
   2392 		error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
   2393 		    mstohz(AUDIO_TIMEOUT));
   2394 		/* XXX what should I do on error? */
   2395 		if (error == EWOULDBLOCK) {
   2396 			mutex_exit(sc->sc_lock);
   2397 			device_printf(sc->sc_dev,
   2398 			    "%s: cv_timedwait_sig failed %d", __func__, error);
   2399 			return error;
   2400 		}
   2401 	}
   2402 	sc->sc_exlock = 1;
   2403 
   2404 	device_active(sc->sc_dev, DVA_SYSTEM);
   2405 
   2406 	mutex_enter(sc->sc_intr_lock);
   2407 	SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
   2408 	mutex_exit(sc->sc_intr_lock);
   2409 
   2410 	if (file->ptrack) {
   2411 		TRACET(3, file->ptrack, "dropframes=%" PRIu64,
   2412 		    file->ptrack->dropframes);
   2413 
   2414 		KASSERT(sc->sc_popens > 0);
   2415 		sc->sc_popens--;
   2416 
   2417 		/* Call hw halt_output if this is the last playback track. */
   2418 		if (sc->sc_popens == 0 && sc->sc_pbusy) {
   2419 			error = audio_pmixer_halt(sc);
   2420 			if (error) {
   2421 				device_printf(sc->sc_dev,
   2422 				    "halt_output failed with %d (ignored)\n",
   2423 				    error);
   2424 			}
   2425 		}
   2426 
   2427 		/* Restore mixing volume if all tracks are gone. */
   2428 		if (sc->sc_popens == 0) {
   2429 			/* intr_lock is not necessary, but just manners. */
   2430 			mutex_enter(sc->sc_intr_lock);
   2431 			sc->sc_pmixer->volume = 256;
   2432 			sc->sc_pmixer->voltimer = 0;
   2433 			mutex_exit(sc->sc_intr_lock);
   2434 		}
   2435 	}
   2436 	if (file->rtrack) {
   2437 		TRACET(3, file->rtrack, "dropframes=%" PRIu64,
   2438 		    file->rtrack->dropframes);
   2439 
   2440 		KASSERT(sc->sc_ropens > 0);
   2441 		sc->sc_ropens--;
   2442 
   2443 		/* Call hw halt_input if this is the last recording track. */
   2444 		if (sc->sc_ropens == 0 && sc->sc_rbusy) {
   2445 			error = audio_rmixer_halt(sc);
   2446 			if (error) {
   2447 				device_printf(sc->sc_dev,
   2448 				    "halt_input failed with %d (ignored)\n",
   2449 				    error);
   2450 			}
   2451 		}
   2452 
   2453 	}
   2454 
   2455 	/* Call hw close if this is the last track. */
   2456 	if (sc->sc_popens + sc->sc_ropens == 0) {
   2457 		if (sc->hw_if->close) {
   2458 			TRACE(2, "hw_if close");
   2459 			mutex_enter(sc->sc_intr_lock);
   2460 			sc->hw_if->close(sc->hw_hdl);
   2461 			mutex_exit(sc->sc_intr_lock);
   2462 		}
   2463 	}
   2464 
   2465 	mutex_exit(sc->sc_lock);
   2466 	if (sc->sc_popens + sc->sc_ropens == 0)
   2467 		kauth_cred_free(sc->sc_cred);
   2468 
   2469 	TRACE(3, "done");
   2470 	audio_exlock_exit(sc);
   2471 
   2472 	return 0;
   2473 }
   2474 
   2475 /*
   2476  * Must be called without sc_lock nor sc_exlock held.
   2477  */
   2478 int
   2479 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
   2480 	audio_file_t *file)
   2481 {
   2482 	audio_track_t *track;
   2483 	audio_ring_t *usrbuf;
   2484 	audio_ring_t *input;
   2485 	int error;
   2486 
   2487 	/*
   2488 	 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
   2489 	 * However read() system call itself can be called because it's
   2490 	 * opened with O_RDWR.  So in this case, deny this read().
   2491 	 */
   2492 	track = file->rtrack;
   2493 	if (track == NULL) {
   2494 		return EBADF;
   2495 	}
   2496 
   2497 	/* I think it's better than EINVAL. */
   2498 	if (track->mmapped)
   2499 		return EPERM;
   2500 
   2501 	TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
   2502 
   2503 #ifdef AUDIO_PM_IDLE
   2504 	error = audio_exlock_mutex_enter(sc);
   2505 	if (error)
   2506 		return error;
   2507 
   2508 	if (device_is_active(&sc->sc_dev) || sc->sc_idle)
   2509 		device_active(&sc->sc_dev, DVA_SYSTEM);
   2510 
   2511 	/* In recording, unlike playback, read() never operates rmixer. */
   2512 
   2513 	audio_exlock_mutex_exit(sc);
   2514 #endif
   2515 
   2516 	usrbuf = &track->usrbuf;
   2517 	input = track->input;
   2518 	error = 0;
   2519 
   2520 	while (uio->uio_resid > 0 && error == 0) {
   2521 		int bytes;
   2522 
   2523 		TRACET(3, track,
   2524 		    "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
   2525 		    uio->uio_resid,
   2526 		    input->head, input->used, input->capacity,
   2527 		    usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
   2528 
   2529 		/* Wait when buffers are empty. */
   2530 		mutex_enter(sc->sc_lock);
   2531 		for (;;) {
   2532 			bool empty;
   2533 			audio_track_lock_enter(track);
   2534 			empty = (input->used == 0 && usrbuf->used == 0);
   2535 			audio_track_lock_exit(track);
   2536 			if (!empty)
   2537 				break;
   2538 
   2539 			if ((ioflag & IO_NDELAY)) {
   2540 				mutex_exit(sc->sc_lock);
   2541 				return EWOULDBLOCK;
   2542 			}
   2543 
   2544 			TRACET(3, track, "sleep");
   2545 			error = audio_track_waitio(sc, track);
   2546 			if (error) {
   2547 				mutex_exit(sc->sc_lock);
   2548 				return error;
   2549 			}
   2550 		}
   2551 		mutex_exit(sc->sc_lock);
   2552 
   2553 		audio_track_lock_enter(track);
   2554 		audio_track_record(track);
   2555 
   2556 		/* uiomove from usrbuf as much as possible. */
   2557 		bytes = uimin(usrbuf->used, uio->uio_resid);
   2558 		while (bytes > 0) {
   2559 			int head = usrbuf->head;
   2560 			int len = uimin(bytes, usrbuf->capacity - head);
   2561 			error = uiomove((uint8_t *)usrbuf->mem + head, len,
   2562 			    uio);
   2563 			if (error) {
   2564 				audio_track_lock_exit(track);
   2565 				device_printf(sc->sc_dev,
   2566 				    "uiomove(len=%d) failed with %d\n",
   2567 				    len, error);
   2568 				goto abort;
   2569 			}
   2570 			auring_take(usrbuf, len);
   2571 			track->useriobytes += len;
   2572 			TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
   2573 			    len,
   2574 			    usrbuf->head, usrbuf->used, usrbuf->capacity);
   2575 			bytes -= len;
   2576 		}
   2577 
   2578 		audio_track_lock_exit(track);
   2579 	}
   2580 
   2581 abort:
   2582 	return error;
   2583 }
   2584 
   2585 
   2586 /*
   2587  * Clear file's playback and/or record track buffer immediately.
   2588  */
   2589 static void
   2590 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
   2591 {
   2592 
   2593 	if (file->ptrack)
   2594 		audio_track_clear(sc, file->ptrack);
   2595 	if (file->rtrack)
   2596 		audio_track_clear(sc, file->rtrack);
   2597 }
   2598 
   2599 /*
   2600  * Must be called without sc_lock nor sc_exlock held.
   2601  */
   2602 int
   2603 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
   2604 	audio_file_t *file)
   2605 {
   2606 	audio_track_t *track;
   2607 	audio_ring_t *usrbuf;
   2608 	audio_ring_t *outbuf;
   2609 	int error;
   2610 
   2611 	track = file->ptrack;
   2612 	KASSERT(track);
   2613 
   2614 	/* I think it's better than EINVAL. */
   2615 	if (track->mmapped)
   2616 		return EPERM;
   2617 
   2618 	TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
   2619 	    audiodebug >= 3 ? "begin " : "",
   2620 	    uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
   2621 
   2622 	if (uio->uio_resid == 0) {
   2623 		track->eofcounter++;
   2624 		return 0;
   2625 	}
   2626 
   2627 	error = audio_exlock_mutex_enter(sc);
   2628 	if (error)
   2629 		return error;
   2630 
   2631 #ifdef AUDIO_PM_IDLE
   2632 	if (device_is_active(&sc->sc_dev) || sc->sc_idle)
   2633 		device_active(&sc->sc_dev, DVA_SYSTEM);
   2634 #endif
   2635 
   2636 	/*
   2637 	 * The first write starts pmixer.
   2638 	 */
   2639 	if (sc->sc_pbusy == false)
   2640 		audio_pmixer_start(sc, false);
   2641 	audio_exlock_mutex_exit(sc);
   2642 
   2643 	usrbuf = &track->usrbuf;
   2644 	outbuf = &track->outbuf;
   2645 	track->pstate = AUDIO_STATE_RUNNING;
   2646 	error = 0;
   2647 
   2648 	while (uio->uio_resid > 0 && error == 0) {
   2649 		int bytes;
   2650 
   2651 		TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
   2652 		    uio->uio_resid,
   2653 		    usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
   2654 
   2655 		/* Wait when buffers are full. */
   2656 		mutex_enter(sc->sc_lock);
   2657 		for (;;) {
   2658 			bool full;
   2659 			audio_track_lock_enter(track);
   2660 			full = (usrbuf->used >= track->usrbuf_usedhigh &&
   2661 			    outbuf->used >= outbuf->capacity);
   2662 			audio_track_lock_exit(track);
   2663 			if (!full)
   2664 				break;
   2665 
   2666 			if ((ioflag & IO_NDELAY)) {
   2667 				error = EWOULDBLOCK;
   2668 				mutex_exit(sc->sc_lock);
   2669 				goto abort;
   2670 			}
   2671 
   2672 			TRACET(3, track, "sleep usrbuf=%d/H%d",
   2673 			    usrbuf->used, track->usrbuf_usedhigh);
   2674 			error = audio_track_waitio(sc, track);
   2675 			if (error) {
   2676 				mutex_exit(sc->sc_lock);
   2677 				goto abort;
   2678 			}
   2679 		}
   2680 		mutex_exit(sc->sc_lock);
   2681 
   2682 		audio_track_lock_enter(track);
   2683 
   2684 		/* uiomove to usrbuf as much as possible. */
   2685 		bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
   2686 		    uio->uio_resid);
   2687 		while (bytes > 0) {
   2688 			int tail = auring_tail(usrbuf);
   2689 			int len = uimin(bytes, usrbuf->capacity - tail);
   2690 			error = uiomove((uint8_t *)usrbuf->mem + tail, len,
   2691 			    uio);
   2692 			if (error) {
   2693 				audio_track_lock_exit(track);
   2694 				device_printf(sc->sc_dev,
   2695 				    "uiomove(len=%d) failed with %d\n",
   2696 				    len, error);
   2697 				goto abort;
   2698 			}
   2699 			auring_push(usrbuf, len);
   2700 			track->useriobytes += len;
   2701 			TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
   2702 			    len,
   2703 			    usrbuf->head, usrbuf->used, usrbuf->capacity);
   2704 			bytes -= len;
   2705 		}
   2706 
   2707 		/* Convert them as much as possible. */
   2708 		while (usrbuf->used >= track->usrbuf_blksize &&
   2709 		    outbuf->used < outbuf->capacity) {
   2710 			audio_track_play(track);
   2711 		}
   2712 
   2713 		audio_track_lock_exit(track);
   2714 	}
   2715 
   2716 abort:
   2717 	TRACET(3, track, "done error=%d", error);
   2718 	return error;
   2719 }
   2720 
   2721 /*
   2722  * Must be called without sc_lock nor sc_exlock held.
   2723  */
   2724 int
   2725 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
   2726 	struct lwp *l, audio_file_t *file)
   2727 {
   2728 	struct audio_offset *ao;
   2729 	struct audio_info ai;
   2730 	audio_track_t *track;
   2731 	audio_encoding_t *ae;
   2732 	audio_format_query_t *query;
   2733 	u_int stamp;
   2734 	u_int offs;
   2735 	int fd;
   2736 	int index;
   2737 	int error;
   2738 
   2739 #if defined(AUDIO_DEBUG)
   2740 	const char *ioctlnames[] = {
   2741 		" AUDIO_GETINFO",	/* 21 */
   2742 		" AUDIO_SETINFO",	/* 22 */
   2743 		" AUDIO_DRAIN",		/* 23 */
   2744 		" AUDIO_FLUSH",		/* 24 */
   2745 		" AUDIO_WSEEK",		/* 25 */
   2746 		" AUDIO_RERROR",	/* 26 */
   2747 		" AUDIO_GETDEV",	/* 27 */
   2748 		" AUDIO_GETENC",	/* 28 */
   2749 		" AUDIO_GETFD",		/* 29 */
   2750 		" AUDIO_SETFD",		/* 30 */
   2751 		" AUDIO_PERROR",	/* 31 */
   2752 		" AUDIO_GETIOFFS",	/* 32 */
   2753 		" AUDIO_GETOOFFS",	/* 33 */
   2754 		" AUDIO_GETPROPS",	/* 34 */
   2755 		" AUDIO_GETBUFINFO",	/* 35 */
   2756 		" AUDIO_SETCHAN",	/* 36 */
   2757 		" AUDIO_GETCHAN",	/* 37 */
   2758 		" AUDIO_QUERYFORMAT",	/* 38 */
   2759 		" AUDIO_GETFORMAT",	/* 39 */
   2760 		" AUDIO_SETFORMAT",	/* 40 */
   2761 	};
   2762 	int nameidx = (cmd & 0xff);
   2763 	const char *ioctlname = "";
   2764 	if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
   2765 		ioctlname = ioctlnames[nameidx - 21];
   2766 	TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
   2767 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
   2768 	    (int)curproc->p_pid, (int)l->l_lid);
   2769 #endif
   2770 
   2771 	error = 0;
   2772 	switch (cmd) {
   2773 	case FIONBIO:
   2774 		/* All handled in the upper FS layer. */
   2775 		break;
   2776 
   2777 	case FIONREAD:
   2778 		/* Get the number of bytes that can be read. */
   2779 		if (file->rtrack) {
   2780 			*(int *)addr = audio_track_readablebytes(file->rtrack);
   2781 		} else {
   2782 			*(int *)addr = 0;
   2783 		}
   2784 		break;
   2785 
   2786 	case FIOASYNC:
   2787 		/* Set/Clear ASYNC I/O. */
   2788 		if (*(int *)addr) {
   2789 			file->async_audio = curproc->p_pid;
   2790 			TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
   2791 		} else {
   2792 			file->async_audio = 0;
   2793 			TRACEF(2, file, "FIOASYNC off");
   2794 		}
   2795 		break;
   2796 
   2797 	case AUDIO_FLUSH:
   2798 		/* XXX TODO: clear errors and restart? */
   2799 		audio_file_clear(sc, file);
   2800 		break;
   2801 
   2802 	case AUDIO_RERROR:
   2803 		/*
   2804 		 * Number of read bytes dropped.  We don't know where
   2805 		 * or when they were dropped (including conversion stage).
   2806 		 * Therefore, the number of accurate bytes or samples is
   2807 		 * also unknown.
   2808 		 */
   2809 		track = file->rtrack;
   2810 		if (track) {
   2811 			*(int *)addr = frametobyte(&track->usrbuf.fmt,
   2812 			    track->dropframes);
   2813 		}
   2814 		break;
   2815 
   2816 	case AUDIO_PERROR:
   2817 		/*
   2818 		 * Number of write bytes dropped.  We don't know where
   2819 		 * or when they were dropped (including conversion stage).
   2820 		 * Therefore, the number of accurate bytes or samples is
   2821 		 * also unknown.
   2822 		 */
   2823 		track = file->ptrack;
   2824 		if (track) {
   2825 			*(int *)addr = frametobyte(&track->usrbuf.fmt,
   2826 			    track->dropframes);
   2827 		}
   2828 		break;
   2829 
   2830 	case AUDIO_GETIOFFS:
   2831 		/* XXX TODO */
   2832 		ao = (struct audio_offset *)addr;
   2833 		ao->samples = 0;
   2834 		ao->deltablks = 0;
   2835 		ao->offset = 0;
   2836 		break;
   2837 
   2838 	case AUDIO_GETOOFFS:
   2839 		ao = (struct audio_offset *)addr;
   2840 		track = file->ptrack;
   2841 		if (track == NULL) {
   2842 			ao->samples = 0;
   2843 			ao->deltablks = 0;
   2844 			ao->offset = 0;
   2845 			break;
   2846 		}
   2847 		mutex_enter(sc->sc_lock);
   2848 		mutex_enter(sc->sc_intr_lock);
   2849 		/* figure out where next DMA will start */
   2850 		stamp = track->usrbuf_stamp;
   2851 		offs = track->usrbuf.head;
   2852 		mutex_exit(sc->sc_intr_lock);
   2853 		mutex_exit(sc->sc_lock);
   2854 
   2855 		ao->samples = stamp;
   2856 		ao->deltablks = (stamp / track->usrbuf_blksize) -
   2857 		    (track->usrbuf_stamp_last / track->usrbuf_blksize);
   2858 		track->usrbuf_stamp_last = stamp;
   2859 		offs = rounddown(offs, track->usrbuf_blksize)
   2860 		    + track->usrbuf_blksize;
   2861 		if (offs >= track->usrbuf.capacity)
   2862 			offs -= track->usrbuf.capacity;
   2863 		ao->offset = offs;
   2864 
   2865 		TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
   2866 		    ao->samples, ao->deltablks, ao->offset);
   2867 		break;
   2868 
   2869 	case AUDIO_WSEEK:
   2870 		/* XXX return value does not include outbuf one. */
   2871 		if (file->ptrack)
   2872 			*(u_long *)addr = file->ptrack->usrbuf.used;
   2873 		break;
   2874 
   2875 	case AUDIO_SETINFO:
   2876 		error = audio_exlock_enter(sc);
   2877 		if (error)
   2878 			break;
   2879 		error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
   2880 		if (error) {
   2881 			audio_exlock_exit(sc);
   2882 			break;
   2883 		}
   2884 		/* XXX TODO: update last_ai if /dev/sound ? */
   2885 		if (ISDEVSOUND(dev))
   2886 			error = audiogetinfo(sc, &sc->sc_ai, 0, file);
   2887 		audio_exlock_exit(sc);
   2888 		break;
   2889 
   2890 	case AUDIO_GETINFO:
   2891 		error = audio_exlock_enter(sc);
   2892 		if (error)
   2893 			break;
   2894 		error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
   2895 		audio_exlock_exit(sc);
   2896 		break;
   2897 
   2898 	case AUDIO_GETBUFINFO:
   2899 		error = audio_exlock_enter(sc);
   2900 		if (error)
   2901 			break;
   2902 		error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
   2903 		audio_exlock_exit(sc);
   2904 		break;
   2905 
   2906 	case AUDIO_DRAIN:
   2907 		if (file->ptrack) {
   2908 			mutex_enter(sc->sc_lock);
   2909 			error = audio_track_drain(sc, file->ptrack);
   2910 			mutex_exit(sc->sc_lock);
   2911 		}
   2912 		break;
   2913 
   2914 	case AUDIO_GETDEV:
   2915 		mutex_enter(sc->sc_lock);
   2916 		error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
   2917 		mutex_exit(sc->sc_lock);
   2918 		break;
   2919 
   2920 	case AUDIO_GETENC:
   2921 		ae = (audio_encoding_t *)addr;
   2922 		index = ae->index;
   2923 		if (index < 0 || index >= __arraycount(audio_encodings)) {
   2924 			error = EINVAL;
   2925 			break;
   2926 		}
   2927 		*ae = audio_encodings[index];
   2928 		ae->index = index;
   2929 		/*
   2930 		 * EMULATED always.
   2931 		 * EMULATED flag at that time used to mean that it could
   2932 		 * not be passed directly to the hardware as-is.  But
   2933 		 * currently, all formats including hardware native is not
   2934 		 * passed directly to the hardware.  So I set EMULATED
   2935 		 * flag for all formats.
   2936 		 */
   2937 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
   2938 		break;
   2939 
   2940 	case AUDIO_GETFD:
   2941 		/*
   2942 		 * Returns the current setting of full duplex mode.
   2943 		 * If HW has full duplex mode and there are two mixers,
   2944 		 * it is full duplex.  Otherwise half duplex.
   2945 		 */
   2946 		error = audio_exlock_enter(sc);
   2947 		if (error)
   2948 			break;
   2949 		fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
   2950 		    && (sc->sc_pmixer && sc->sc_rmixer);
   2951 		audio_exlock_exit(sc);
   2952 		*(int *)addr = fd;
   2953 		break;
   2954 
   2955 	case AUDIO_GETPROPS:
   2956 		*(int *)addr = sc->sc_props;
   2957 		break;
   2958 
   2959 	case AUDIO_QUERYFORMAT:
   2960 		query = (audio_format_query_t *)addr;
   2961 		mutex_enter(sc->sc_lock);
   2962 		error = sc->hw_if->query_format(sc->hw_hdl, query);
   2963 		mutex_exit(sc->sc_lock);
   2964 		/* Hide internal infomations */
   2965 		query->fmt.driver_data = NULL;
   2966 		break;
   2967 
   2968 	case AUDIO_GETFORMAT:
   2969 		error = audio_exlock_enter(sc);
   2970 		if (error)
   2971 			break;
   2972 		audio_mixers_get_format(sc, (struct audio_info *)addr);
   2973 		audio_exlock_exit(sc);
   2974 		break;
   2975 
   2976 	case AUDIO_SETFORMAT:
   2977 		error = audio_exlock_enter(sc);
   2978 		audio_mixers_get_format(sc, &ai);
   2979 		error = audio_mixers_set_format(sc, (struct audio_info *)addr);
   2980 		if (error) {
   2981 			/* Rollback */
   2982 			audio_mixers_set_format(sc, &ai);
   2983 		}
   2984 		audio_exlock_exit(sc);
   2985 		break;
   2986 
   2987 	case AUDIO_SETFD:
   2988 	case AUDIO_SETCHAN:
   2989 	case AUDIO_GETCHAN:
   2990 		/* Obsoleted */
   2991 		break;
   2992 
   2993 	default:
   2994 		if (sc->hw_if->dev_ioctl) {
   2995 			mutex_enter(sc->sc_lock);
   2996 			error = sc->hw_if->dev_ioctl(sc->hw_hdl,
   2997 			    cmd, addr, flag, l);
   2998 			mutex_exit(sc->sc_lock);
   2999 		} else {
   3000 			TRACEF(2, file, "unknown ioctl");
   3001 			error = EINVAL;
   3002 		}
   3003 		break;
   3004 	}
   3005 	TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
   3006 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
   3007 	    error);
   3008 	return error;
   3009 }
   3010 
   3011 /*
   3012  * Returns the number of bytes that can be read on recording buffer.
   3013  */
   3014 static __inline int
   3015 audio_track_readablebytes(const audio_track_t *track)
   3016 {
   3017 	int bytes;
   3018 
   3019 	KASSERT(track);
   3020 	KASSERT(track->mode == AUMODE_RECORD);
   3021 
   3022 	/*
   3023 	 * Although usrbuf is primarily readable data, recorded data
   3024 	 * also stays in track->input until reading.  So it is necessary
   3025 	 * to add it.  track->input is in frame, usrbuf is in byte.
   3026 	 */
   3027 	bytes = track->usrbuf.used +
   3028 	    track->input->used * frametobyte(&track->usrbuf.fmt, 1);
   3029 	return bytes;
   3030 }
   3031 
   3032 /*
   3033  * Must be called without sc_lock nor sc_exlock held.
   3034  */
   3035 int
   3036 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
   3037 	audio_file_t *file)
   3038 {
   3039 	audio_track_t *track;
   3040 	int revents;
   3041 	bool in_is_valid;
   3042 	bool out_is_valid;
   3043 
   3044 #if defined(AUDIO_DEBUG)
   3045 #define POLLEV_BITMAP "\177\020" \
   3046 	    "b\10WRBAND\0" \
   3047 	    "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
   3048 	    "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
   3049 	char evbuf[64];
   3050 	snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
   3051 	TRACEF(2, file, "pid=%d.%d events=%s",
   3052 	    (int)curproc->p_pid, (int)l->l_lid, evbuf);
   3053 #endif
   3054 
   3055 	revents = 0;
   3056 	in_is_valid = false;
   3057 	out_is_valid = false;
   3058 	if (events & (POLLIN | POLLRDNORM)) {
   3059 		track = file->rtrack;
   3060 		if (track) {
   3061 			int used;
   3062 			in_is_valid = true;
   3063 			used = audio_track_readablebytes(track);
   3064 			if (used > 0)
   3065 				revents |= events & (POLLIN | POLLRDNORM);
   3066 		}
   3067 	}
   3068 	if (events & (POLLOUT | POLLWRNORM)) {
   3069 		track = file->ptrack;
   3070 		if (track) {
   3071 			out_is_valid = true;
   3072 			if (track->usrbuf.used <= track->usrbuf_usedlow)
   3073 				revents |= events & (POLLOUT | POLLWRNORM);
   3074 		}
   3075 	}
   3076 
   3077 	if (revents == 0) {
   3078 		mutex_enter(sc->sc_lock);
   3079 		if (in_is_valid) {
   3080 			TRACEF(3, file, "selrecord rsel");
   3081 			selrecord(l, &sc->sc_rsel);
   3082 		}
   3083 		if (out_is_valid) {
   3084 			TRACEF(3, file, "selrecord wsel");
   3085 			selrecord(l, &sc->sc_wsel);
   3086 		}
   3087 		mutex_exit(sc->sc_lock);
   3088 	}
   3089 
   3090 #if defined(AUDIO_DEBUG)
   3091 	snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
   3092 	TRACEF(2, file, "revents=%s", evbuf);
   3093 #endif
   3094 	return revents;
   3095 }
   3096 
   3097 static const struct filterops audioread_filtops = {
   3098 	.f_isfd = 1,
   3099 	.f_attach = NULL,
   3100 	.f_detach = filt_audioread_detach,
   3101 	.f_event = filt_audioread_event,
   3102 };
   3103 
   3104 static void
   3105 filt_audioread_detach(struct knote *kn)
   3106 {
   3107 	struct audio_softc *sc;
   3108 	audio_file_t *file;
   3109 
   3110 	file = kn->kn_hook;
   3111 	sc = file->sc;
   3112 	TRACEF(3, file, "");
   3113 
   3114 	mutex_enter(sc->sc_lock);
   3115 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   3116 	mutex_exit(sc->sc_lock);
   3117 }
   3118 
   3119 static int
   3120 filt_audioread_event(struct knote *kn, long hint)
   3121 {
   3122 	audio_file_t *file;
   3123 	audio_track_t *track;
   3124 
   3125 	file = kn->kn_hook;
   3126 	track = file->rtrack;
   3127 
   3128 	/*
   3129 	 * kn_data must contain the number of bytes can be read.
   3130 	 * The return value indicates whether the event occurs or not.
   3131 	 */
   3132 
   3133 	if (track == NULL) {
   3134 		/* can not read with this descriptor. */
   3135 		kn->kn_data = 0;
   3136 		return 0;
   3137 	}
   3138 
   3139 	kn->kn_data = audio_track_readablebytes(track);
   3140 	TRACEF(3, file, "data=%" PRId64, kn->kn_data);
   3141 	return kn->kn_data > 0;
   3142 }
   3143 
   3144 static const struct filterops audiowrite_filtops = {
   3145 	.f_isfd = 1,
   3146 	.f_attach = NULL,
   3147 	.f_detach = filt_audiowrite_detach,
   3148 	.f_event = filt_audiowrite_event,
   3149 };
   3150 
   3151 static void
   3152 filt_audiowrite_detach(struct knote *kn)
   3153 {
   3154 	struct audio_softc *sc;
   3155 	audio_file_t *file;
   3156 
   3157 	file = kn->kn_hook;
   3158 	sc = file->sc;
   3159 	TRACEF(3, file, "");
   3160 
   3161 	mutex_enter(sc->sc_lock);
   3162 	SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
   3163 	mutex_exit(sc->sc_lock);
   3164 }
   3165 
   3166 static int
   3167 filt_audiowrite_event(struct knote *kn, long hint)
   3168 {
   3169 	audio_file_t *file;
   3170 	audio_track_t *track;
   3171 
   3172 	file = kn->kn_hook;
   3173 	track = file->ptrack;
   3174 
   3175 	/*
   3176 	 * kn_data must contain the number of bytes can be write.
   3177 	 * The return value indicates whether the event occurs or not.
   3178 	 */
   3179 
   3180 	if (track == NULL) {
   3181 		/* can not write with this descriptor. */
   3182 		kn->kn_data = 0;
   3183 		return 0;
   3184 	}
   3185 
   3186 	kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
   3187 	TRACEF(3, file, "data=%" PRId64, kn->kn_data);
   3188 	return (track->usrbuf.used < track->usrbuf_usedlow);
   3189 }
   3190 
   3191 /*
   3192  * Must be called without sc_lock nor sc_exlock held.
   3193  */
   3194 int
   3195 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
   3196 {
   3197 	struct klist *klist;
   3198 
   3199 	TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
   3200 
   3201 	mutex_enter(sc->sc_lock);
   3202 	switch (kn->kn_filter) {
   3203 	case EVFILT_READ:
   3204 		klist = &sc->sc_rsel.sel_klist;
   3205 		kn->kn_fop = &audioread_filtops;
   3206 		break;
   3207 
   3208 	case EVFILT_WRITE:
   3209 		klist = &sc->sc_wsel.sel_klist;
   3210 		kn->kn_fop = &audiowrite_filtops;
   3211 		break;
   3212 
   3213 	default:
   3214 		mutex_exit(sc->sc_lock);
   3215 		return EINVAL;
   3216 	}
   3217 
   3218 	kn->kn_hook = file;
   3219 
   3220 	SLIST_INSERT_HEAD(klist, kn, kn_selnext);
   3221 	mutex_exit(sc->sc_lock);
   3222 
   3223 	return 0;
   3224 }
   3225 
   3226 /*
   3227  * Must be called without sc_lock nor sc_exlock held.
   3228  */
   3229 int
   3230 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
   3231 	int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
   3232 	audio_file_t *file)
   3233 {
   3234 	audio_track_t *track;
   3235 	vsize_t vsize;
   3236 	int error;
   3237 
   3238 	TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
   3239 
   3240 	if (*offp < 0)
   3241 		return EINVAL;
   3242 
   3243 #if 0
   3244 	/* XXX
   3245 	 * The idea here was to use the protection to determine if
   3246 	 * we are mapping the read or write buffer, but it fails.
   3247 	 * The VM system is broken in (at least) two ways.
   3248 	 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
   3249 	 *    when writing to it, so VM_PROT_READ|VM_PROT_WRITE
   3250 	 *    has to be used for mmapping the play buffer.
   3251 	 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
   3252 	 *    audio_mmap will get called at some point with VM_PROT_READ
   3253 	 *    only.
   3254 	 * So, alas, we always map the play buffer for now.
   3255 	 */
   3256 	if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
   3257 	    prot == VM_PROT_WRITE)
   3258 		track = file->ptrack;
   3259 	else if (prot == VM_PROT_READ)
   3260 		track = file->rtrack;
   3261 	else
   3262 		return EINVAL;
   3263 #else
   3264 	track = file->ptrack;
   3265 #endif
   3266 	if (track == NULL)
   3267 		return EACCES;
   3268 
   3269 	vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
   3270 	if (len > vsize)
   3271 		return EOVERFLOW;
   3272 	if (*offp > (uint)(vsize - len))
   3273 		return EOVERFLOW;
   3274 
   3275 	/* XXX TODO: what happens when mmap twice. */
   3276 	if (!track->mmapped) {
   3277 		track->mmapped = true;
   3278 
   3279 		if (!track->is_pause) {
   3280 			error = audio_exlock_mutex_enter(sc);
   3281 			if (error)
   3282 				return error;
   3283 			if (sc->sc_pbusy == false)
   3284 				audio_pmixer_start(sc, true);
   3285 			audio_exlock_mutex_exit(sc);
   3286 		}
   3287 		/* XXX mmapping record buffer is not supported */
   3288 	}
   3289 
   3290 	/* get ringbuffer */
   3291 	*uobjp = track->uobj;
   3292 
   3293 	/* Acquire a reference for the mmap.  munmap will release. */
   3294 	uao_reference(*uobjp);
   3295 	*maxprotp = prot;
   3296 	*advicep = UVM_ADV_RANDOM;
   3297 	*flagsp = MAP_SHARED;
   3298 	return 0;
   3299 }
   3300 
   3301 /*
   3302  * /dev/audioctl has to be able to open at any time without interference
   3303  * with any /dev/audio or /dev/sound.
   3304  * Must be called with sc_exlock held and without sc_lock held.
   3305  */
   3306 static int
   3307 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
   3308 	struct lwp *l)
   3309 {
   3310 	struct file *fp;
   3311 	audio_file_t *af;
   3312 	int fd;
   3313 	int error;
   3314 
   3315 	KASSERT(sc->sc_exlock);
   3316 
   3317 	TRACE(1, "");
   3318 
   3319 	error = fd_allocfile(&fp, &fd);
   3320 	if (error)
   3321 		return error;
   3322 
   3323 	af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
   3324 	af->sc = sc;
   3325 	af->dev = dev;
   3326 
   3327 	/* Not necessary to insert sc_files. */
   3328 
   3329 	error = fd_clone(fp, fd, flags, &audio_fileops, af);
   3330 	KASSERTMSG(error == EMOVEFD, "error=%d", error);
   3331 
   3332 	return error;
   3333 }
   3334 
   3335 /*
   3336  * Free 'mem' if available, and initialize the pointer.
   3337  * For this reason, this is implemented as macro.
   3338  */
   3339 #define audio_free(mem)	do {	\
   3340 	if (mem != NULL) {	\
   3341 		kern_free(mem);	\
   3342 		mem = NULL;	\
   3343 	}	\
   3344 } while (0)
   3345 
   3346 /*
   3347  * (Re)allocate 'memblock' with specified 'bytes'.
   3348  * bytes must not be 0.
   3349  * This function never returns NULL.
   3350  */
   3351 static void *
   3352 audio_realloc(void *memblock, size_t bytes)
   3353 {
   3354 
   3355 	KASSERT(bytes != 0);
   3356 	audio_free(memblock);
   3357 	return kern_malloc(bytes, M_WAITOK);
   3358 }
   3359 
   3360 /*
   3361  * (Re)allocate usrbuf with 'newbufsize' bytes.
   3362  * Use this function for usrbuf because only usrbuf can be mmapped.
   3363  * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
   3364  * returns 0.  Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
   3365  * and returns errno.
   3366  * It must be called before updating usrbuf.capacity.
   3367  */
   3368 static int
   3369 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
   3370 {
   3371 	struct audio_softc *sc;
   3372 	vaddr_t vstart;
   3373 	vsize_t oldvsize;
   3374 	vsize_t newvsize;
   3375 	int error;
   3376 
   3377 	KASSERT(newbufsize > 0);
   3378 	sc = track->mixer->sc;
   3379 
   3380 	/* Get a nonzero multiple of PAGE_SIZE */
   3381 	newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
   3382 
   3383 	if (track->usrbuf.mem != NULL) {
   3384 		oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
   3385 		    PAGE_SIZE);
   3386 		if (oldvsize == newvsize) {
   3387 			track->usrbuf.capacity = newbufsize;
   3388 			return 0;
   3389 		}
   3390 		vstart = (vaddr_t)track->usrbuf.mem;
   3391 		uvm_unmap(kernel_map, vstart, vstart + oldvsize);
   3392 		/* uvm_unmap also detach uobj */
   3393 		track->uobj = NULL;		/* paranoia */
   3394 		track->usrbuf.mem = NULL;
   3395 	}
   3396 
   3397 	/* Create a uvm anonymous object */
   3398 	track->uobj = uao_create(newvsize, 0);
   3399 
   3400 	/* Map it into the kernel virtual address space */
   3401 	vstart = 0;
   3402 	error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
   3403 	    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
   3404 	    UVM_ADV_RANDOM, 0));
   3405 	if (error) {
   3406 		device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
   3407 		uao_detach(track->uobj);	/* release reference */
   3408 		goto abort;
   3409 	}
   3410 
   3411 	error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
   3412 	    false, 0);
   3413 	if (error) {
   3414 		device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
   3415 		    error);
   3416 		uvm_unmap(kernel_map, vstart, vstart + newvsize);
   3417 		/* uvm_unmap also detach uobj */
   3418 		goto abort;
   3419 	}
   3420 
   3421 	track->usrbuf.mem = (void *)vstart;
   3422 	track->usrbuf.capacity = newbufsize;
   3423 	memset(track->usrbuf.mem, 0, newvsize);
   3424 	return 0;
   3425 
   3426 	/* failure */
   3427 abort:
   3428 	track->uobj = NULL;		/* paranoia */
   3429 	track->usrbuf.mem = NULL;
   3430 	track->usrbuf.capacity = 0;
   3431 	return error;
   3432 }
   3433 
   3434 /*
   3435  * Free usrbuf (if available).
   3436  */
   3437 static void
   3438 audio_free_usrbuf(audio_track_t *track)
   3439 {
   3440 	vaddr_t vstart;
   3441 	vsize_t vsize;
   3442 
   3443 	vstart = (vaddr_t)track->usrbuf.mem;
   3444 	vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
   3445 	if (track->usrbuf.mem != NULL) {
   3446 		/*
   3447 		 * Unmap the kernel mapping.  uvm_unmap releases the
   3448 		 * reference to the uvm object, and this should be the
   3449 		 * last virtual mapping of the uvm object, so no need
   3450 		 * to explicitly release (`detach') the object.
   3451 		 */
   3452 		uvm_unmap(kernel_map, vstart, vstart + vsize);
   3453 
   3454 		track->uobj = NULL;
   3455 		track->usrbuf.mem = NULL;
   3456 		track->usrbuf.capacity = 0;
   3457 	}
   3458 }
   3459 
   3460 /*
   3461  * This filter changes the volume for each channel.
   3462  * arg->context points track->ch_volume[].
   3463  */
   3464 static void
   3465 audio_track_chvol(audio_filter_arg_t *arg)
   3466 {
   3467 	int16_t *ch_volume;
   3468 	const aint_t *s;
   3469 	aint_t *d;
   3470 	u_int i;
   3471 	u_int ch;
   3472 	u_int channels;
   3473 
   3474 	DIAGNOSTIC_filter_arg(arg);
   3475 	KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
   3476 	    "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
   3477 	    arg->srcfmt->channels, arg->dstfmt->channels);
   3478 	KASSERT(arg->context != NULL);
   3479 	KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
   3480 	    "arg->srcfmt->channels=%d", arg->srcfmt->channels);
   3481 
   3482 	s = arg->src;
   3483 	d = arg->dst;
   3484 	ch_volume = arg->context;
   3485 
   3486 	channels = arg->srcfmt->channels;
   3487 	for (i = 0; i < arg->count; i++) {
   3488 		for (ch = 0; ch < channels; ch++) {
   3489 			aint2_t val;
   3490 			val = *s++;
   3491 			val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
   3492 			*d++ = (aint_t)val;
   3493 		}
   3494 	}
   3495 }
   3496 
   3497 /*
   3498  * This filter performs conversion from stereo (or more channels) to mono.
   3499  */
   3500 static void
   3501 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
   3502 {
   3503 	const aint_t *s;
   3504 	aint_t *d;
   3505 	u_int i;
   3506 
   3507 	DIAGNOSTIC_filter_arg(arg);
   3508 
   3509 	s = arg->src;
   3510 	d = arg->dst;
   3511 
   3512 	for (i = 0; i < arg->count; i++) {
   3513 		*d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
   3514 		s += arg->srcfmt->channels;
   3515 	}
   3516 }
   3517 
   3518 /*
   3519  * This filter performs conversion from mono to stereo (or more channels).
   3520  */
   3521 static void
   3522 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
   3523 {
   3524 	const aint_t *s;
   3525 	aint_t *d;
   3526 	u_int i;
   3527 	u_int ch;
   3528 	u_int dstchannels;
   3529 
   3530 	DIAGNOSTIC_filter_arg(arg);
   3531 
   3532 	s = arg->src;
   3533 	d = arg->dst;
   3534 	dstchannels = arg->dstfmt->channels;
   3535 
   3536 	for (i = 0; i < arg->count; i++) {
   3537 		d[0] = s[0];
   3538 		d[1] = s[0];
   3539 		s++;
   3540 		d += dstchannels;
   3541 	}
   3542 	if (dstchannels > 2) {
   3543 		d = arg->dst;
   3544 		for (i = 0; i < arg->count; i++) {
   3545 			for (ch = 2; ch < dstchannels; ch++) {
   3546 				d[ch] = 0;
   3547 			}
   3548 			d += dstchannels;
   3549 		}
   3550 	}
   3551 }
   3552 
   3553 /*
   3554  * This filter shrinks M channels into N channels.
   3555  * Extra channels are discarded.
   3556  */
   3557 static void
   3558 audio_track_chmix_shrink(audio_filter_arg_t *arg)
   3559 {
   3560 	const aint_t *s;
   3561 	aint_t *d;
   3562 	u_int i;
   3563 	u_int ch;
   3564 
   3565 	DIAGNOSTIC_filter_arg(arg);
   3566 
   3567 	s = arg->src;
   3568 	d = arg->dst;
   3569 
   3570 	for (i = 0; i < arg->count; i++) {
   3571 		for (ch = 0; ch < arg->dstfmt->channels; ch++) {
   3572 			*d++ = s[ch];
   3573 		}
   3574 		s += arg->srcfmt->channels;
   3575 	}
   3576 }
   3577 
   3578 /*
   3579  * This filter expands M channels into N channels.
   3580  * Silence is inserted for missing channels.
   3581  */
   3582 static void
   3583 audio_track_chmix_expand(audio_filter_arg_t *arg)
   3584 {
   3585 	const aint_t *s;
   3586 	aint_t *d;
   3587 	u_int i;
   3588 	u_int ch;
   3589 	u_int srcchannels;
   3590 	u_int dstchannels;
   3591 
   3592 	DIAGNOSTIC_filter_arg(arg);
   3593 
   3594 	s = arg->src;
   3595 	d = arg->dst;
   3596 
   3597 	srcchannels = arg->srcfmt->channels;
   3598 	dstchannels = arg->dstfmt->channels;
   3599 	for (i = 0; i < arg->count; i++) {
   3600 		for (ch = 0; ch < srcchannels; ch++) {
   3601 			*d++ = *s++;
   3602 		}
   3603 		for (; ch < dstchannels; ch++) {
   3604 			*d++ = 0;
   3605 		}
   3606 	}
   3607 }
   3608 
   3609 /*
   3610  * This filter performs frequency conversion (up sampling).
   3611  * It uses linear interpolation.
   3612  */
   3613 static void
   3614 audio_track_freq_up(audio_filter_arg_t *arg)
   3615 {
   3616 	audio_track_t *track;
   3617 	audio_ring_t *src;
   3618 	audio_ring_t *dst;
   3619 	const aint_t *s;
   3620 	aint_t *d;
   3621 	aint_t prev[AUDIO_MAX_CHANNELS];
   3622 	aint_t curr[AUDIO_MAX_CHANNELS];
   3623 	aint_t grad[AUDIO_MAX_CHANNELS];
   3624 	u_int i;
   3625 	u_int t;
   3626 	u_int step;
   3627 	u_int channels;
   3628 	u_int ch;
   3629 	int srcused;
   3630 
   3631 	track = arg->context;
   3632 	KASSERT(track);
   3633 	src = &track->freq.srcbuf;
   3634 	dst = track->freq.dst;
   3635 	DIAGNOSTIC_ring(dst);
   3636 	DIAGNOSTIC_ring(src);
   3637 	KASSERT(src->used > 0);
   3638 	KASSERTMSG(src->fmt.channels == dst->fmt.channels,
   3639 	    "src->fmt.channels=%d dst->fmt.channels=%d",
   3640 	    src->fmt.channels, dst->fmt.channels);
   3641 	KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
   3642 	    "src->head=%d track->mixer->frames_per_block=%d",
   3643 	    src->head, track->mixer->frames_per_block);
   3644 
   3645 	s = arg->src;
   3646 	d = arg->dst;
   3647 
   3648 	/*
   3649 	 * In order to faciliate interpolation for each block, slide (delay)
   3650 	 * input by one sample.  As a result, strictly speaking, the output
   3651 	 * phase is delayed by 1/dstfreq.  However, I believe there is no
   3652 	 * observable impact.
   3653 	 *
   3654 	 * Example)
   3655 	 * srcfreq:dstfreq = 1:3
   3656 	 *
   3657 	 *  A - -
   3658 	 *  |
   3659 	 *  |
   3660 	 *  |     B - -
   3661 	 *  +-----+-----> input timeframe
   3662 	 *  0     1
   3663 	 *
   3664 	 *  0     1
   3665 	 *  +-----+-----> input timeframe
   3666 	 *  |     A
   3667 	 *  |   x   x
   3668 	 *  | x       x
   3669 	 *  x          (B)
   3670 	 *  +-+-+-+-+-+-> output timeframe
   3671 	 *  0 1 2 3 4 5
   3672 	 */
   3673 
   3674 	/* Last samples in previous block */
   3675 	channels = src->fmt.channels;
   3676 	for (ch = 0; ch < channels; ch++) {
   3677 		prev[ch] = track->freq_prev[ch];
   3678 		curr[ch] = track->freq_curr[ch];
   3679 		grad[ch] = curr[ch] - prev[ch];
   3680 	}
   3681 
   3682 	step = track->freq_step;
   3683 	t = track->freq_current;
   3684 //#define FREQ_DEBUG
   3685 #if defined(FREQ_DEBUG)
   3686 #define PRINTF(fmt...)	printf(fmt)
   3687 #else
   3688 #define PRINTF(fmt...)	do { } while (0)
   3689 #endif
   3690 	srcused = src->used;
   3691 	PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
   3692 	PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
   3693 	PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
   3694 	PRINTF(" t=%d\n", t);
   3695 
   3696 	for (i = 0; i < arg->count; i++) {
   3697 		PRINTF("i=%d t=%5d", i, t);
   3698 		if (t >= 65536) {
   3699 			for (ch = 0; ch < channels; ch++) {
   3700 				prev[ch] = curr[ch];
   3701 				curr[ch] = *s++;
   3702 				grad[ch] = curr[ch] - prev[ch];
   3703 			}
   3704 			PRINTF(" prev=%d s[%d]=%d",
   3705 			    prev[0], src->used - srcused, curr[0]);
   3706 
   3707 			/* Update */
   3708 			t -= 65536;
   3709 			srcused--;
   3710 			if (srcused < 0) {
   3711 				PRINTF(" break\n");
   3712 				break;
   3713 			}
   3714 		}
   3715 
   3716 		for (ch = 0; ch < channels; ch++) {
   3717 			*d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
   3718 #if defined(FREQ_DEBUG)
   3719 			if (ch == 0)
   3720 				printf(" t=%5d *d=%d", t, d[-1]);
   3721 #endif
   3722 		}
   3723 		t += step;
   3724 
   3725 		PRINTF("\n");
   3726 	}
   3727 	PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
   3728 
   3729 	auring_take(src, src->used);
   3730 	auring_push(dst, i);
   3731 
   3732 	/* Adjust */
   3733 	t += track->freq_leap;
   3734 
   3735 	track->freq_current = t;
   3736 	for (ch = 0; ch < channels; ch++) {
   3737 		track->freq_prev[ch] = prev[ch];
   3738 		track->freq_curr[ch] = curr[ch];
   3739 	}
   3740 }
   3741 
   3742 /*
   3743  * This filter performs frequency conversion (down sampling).
   3744  * It uses simple thinning.
   3745  */
   3746 static void
   3747 audio_track_freq_down(audio_filter_arg_t *arg)
   3748 {
   3749 	audio_track_t *track;
   3750 	audio_ring_t *src;
   3751 	audio_ring_t *dst;
   3752 	const aint_t *s0;
   3753 	aint_t *d;
   3754 	u_int i;
   3755 	u_int t;
   3756 	u_int step;
   3757 	u_int ch;
   3758 	u_int channels;
   3759 
   3760 	track = arg->context;
   3761 	KASSERT(track);
   3762 	src = &track->freq.srcbuf;
   3763 	dst = track->freq.dst;
   3764 
   3765 	DIAGNOSTIC_ring(dst);
   3766 	DIAGNOSTIC_ring(src);
   3767 	KASSERT(src->used > 0);
   3768 	KASSERTMSG(src->fmt.channels == dst->fmt.channels,
   3769 	    "src->fmt.channels=%d dst->fmt.channels=%d",
   3770 	    src->fmt.channels, dst->fmt.channels);
   3771 	KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
   3772 	    "src->head=%d track->mixer->frames_per_block=%d",
   3773 	    src->head, track->mixer->frames_per_block);
   3774 
   3775 	s0 = arg->src;
   3776 	d = arg->dst;
   3777 	t = track->freq_current;
   3778 	step = track->freq_step;
   3779 	channels = dst->fmt.channels;
   3780 	PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
   3781 	PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
   3782 	PRINTF(" t=%d\n", t);
   3783 
   3784 	for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
   3785 		const aint_t *s;
   3786 		PRINTF("i=%4d t=%10d", i, t);
   3787 		s = s0 + (t / 65536) * channels;
   3788 		PRINTF(" s=%5ld", (s - s0) / channels);
   3789 		for (ch = 0; ch < channels; ch++) {
   3790 			if (ch == 0) PRINTF(" *s=%d", s[ch]);
   3791 			*d++ = s[ch];
   3792 		}
   3793 		PRINTF("\n");
   3794 		t += step;
   3795 	}
   3796 	t += track->freq_leap;
   3797 	PRINTF("end t=%d\n", t);
   3798 	auring_take(src, src->used);
   3799 	auring_push(dst, i);
   3800 	track->freq_current = t % 65536;
   3801 }
   3802 
   3803 /*
   3804  * Creates track and returns it.
   3805  * Must be called without sc_lock held.
   3806  */
   3807 audio_track_t *
   3808 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
   3809 {
   3810 	audio_track_t *track;
   3811 	static int newid = 0;
   3812 
   3813 	track = kmem_zalloc(sizeof(*track), KM_SLEEP);
   3814 
   3815 	track->id = newid++;
   3816 	track->mixer = mixer;
   3817 	track->mode = mixer->mode;
   3818 
   3819 	/* Do TRACE after id is assigned. */
   3820 	TRACET(3, track, "for %s",
   3821 	    mixer->mode == AUMODE_PLAY ? "playback" : "recording");
   3822 
   3823 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
   3824 	track->volume = 256;
   3825 #endif
   3826 	for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
   3827 		track->ch_volume[i] = 256;
   3828 	}
   3829 
   3830 	return track;
   3831 }
   3832 
   3833 /*
   3834  * Release all resources of the track and track itself.
   3835  * track must not be NULL.  Don't specify the track within the file
   3836  * structure linked from sc->sc_files.
   3837  */
   3838 static void
   3839 audio_track_destroy(audio_track_t *track)
   3840 {
   3841 
   3842 	KASSERT(track);
   3843 
   3844 	audio_free_usrbuf(track);
   3845 	audio_free(track->codec.srcbuf.mem);
   3846 	audio_free(track->chvol.srcbuf.mem);
   3847 	audio_free(track->chmix.srcbuf.mem);
   3848 	audio_free(track->freq.srcbuf.mem);
   3849 	audio_free(track->outbuf.mem);
   3850 
   3851 	kmem_free(track, sizeof(*track));
   3852 }
   3853 
   3854 /*
   3855  * It returns encoding conversion filter according to src and dst format.
   3856  * If it is not a convertible pair, it returns NULL.  Either src or dst
   3857  * must be internal format.
   3858  */
   3859 static audio_filter_t
   3860 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
   3861 	const audio_format2_t *dst)
   3862 {
   3863 
   3864 	if (audio_format2_is_internal(src)) {
   3865 		if (dst->encoding == AUDIO_ENCODING_ULAW) {
   3866 			return audio_internal_to_mulaw;
   3867 		} else if (dst->encoding == AUDIO_ENCODING_ALAW) {
   3868 			return audio_internal_to_alaw;
   3869 		} else if (audio_format2_is_linear(dst)) {
   3870 			switch (dst->stride) {
   3871 			case 8:
   3872 				return audio_internal_to_linear8;
   3873 			case 16:
   3874 				return audio_internal_to_linear16;
   3875 #if defined(AUDIO_SUPPORT_LINEAR24)
   3876 			case 24:
   3877 				return audio_internal_to_linear24;
   3878 #endif
   3879 			case 32:
   3880 				return audio_internal_to_linear32;
   3881 			default:
   3882 				TRACET(1, track, "unsupported %s stride %d",
   3883 				    "dst", dst->stride);
   3884 				goto abort;
   3885 			}
   3886 		}
   3887 	} else if (audio_format2_is_internal(dst)) {
   3888 		if (src->encoding == AUDIO_ENCODING_ULAW) {
   3889 			return audio_mulaw_to_internal;
   3890 		} else if (src->encoding == AUDIO_ENCODING_ALAW) {
   3891 			return audio_alaw_to_internal;
   3892 		} else if (audio_format2_is_linear(src)) {
   3893 			switch (src->stride) {
   3894 			case 8:
   3895 				return audio_linear8_to_internal;
   3896 			case 16:
   3897 				return audio_linear16_to_internal;
   3898 #if defined(AUDIO_SUPPORT_LINEAR24)
   3899 			case 24:
   3900 				return audio_linear24_to_internal;
   3901 #endif
   3902 			case 32:
   3903 				return audio_linear32_to_internal;
   3904 			default:
   3905 				TRACET(1, track, "unsupported %s stride %d",
   3906 				    "src", src->stride);
   3907 				goto abort;
   3908 			}
   3909 		}
   3910 	}
   3911 
   3912 	TRACET(1, track, "unsupported encoding");
   3913 abort:
   3914 #if defined(AUDIO_DEBUG)
   3915 	if (audiodebug >= 2) {
   3916 		char buf[100];
   3917 		audio_format2_tostr(buf, sizeof(buf), src);
   3918 		TRACET(2, track, "src %s", buf);
   3919 		audio_format2_tostr(buf, sizeof(buf), dst);
   3920 		TRACET(2, track, "dst %s", buf);
   3921 	}
   3922 #endif
   3923 	return NULL;
   3924 }
   3925 
   3926 /*
   3927  * Initialize the codec stage of this track as necessary.
   3928  * If successful, it initializes the codec stage as necessary, stores updated
   3929  * last_dst in *last_dstp in any case, and returns 0.
   3930  * Otherwise, it returns errno without modifying *last_dstp.
   3931  */
   3932 static int
   3933 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
   3934 {
   3935 	audio_ring_t *last_dst;
   3936 	audio_ring_t *srcbuf;
   3937 	audio_format2_t *srcfmt;
   3938 	audio_format2_t *dstfmt;
   3939 	audio_filter_arg_t *arg;
   3940 	u_int len;
   3941 	int error;
   3942 
   3943 	KASSERT(track);
   3944 
   3945 	last_dst = *last_dstp;
   3946 	dstfmt = &last_dst->fmt;
   3947 	srcfmt = &track->inputfmt;
   3948 	srcbuf = &track->codec.srcbuf;
   3949 	error = 0;
   3950 
   3951 	if (srcfmt->encoding != dstfmt->encoding
   3952 	 || srcfmt->precision != dstfmt->precision
   3953 	 || srcfmt->stride != dstfmt->stride) {
   3954 		track->codec.dst = last_dst;
   3955 
   3956 		srcbuf->fmt = *dstfmt;
   3957 		srcbuf->fmt.encoding = srcfmt->encoding;
   3958 		srcbuf->fmt.precision = srcfmt->precision;
   3959 		srcbuf->fmt.stride = srcfmt->stride;
   3960 
   3961 		track->codec.filter = audio_track_get_codec(track,
   3962 		    &srcbuf->fmt, dstfmt);
   3963 		if (track->codec.filter == NULL) {
   3964 			error = EINVAL;
   3965 			goto abort;
   3966 		}
   3967 
   3968 		srcbuf->head = 0;
   3969 		srcbuf->used = 0;
   3970 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   3971 		len = auring_bytelen(srcbuf);
   3972 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   3973 
   3974 		arg = &track->codec.arg;
   3975 		arg->srcfmt = &srcbuf->fmt;
   3976 		arg->dstfmt = dstfmt;
   3977 		arg->context = NULL;
   3978 
   3979 		*last_dstp = srcbuf;
   3980 		return 0;
   3981 	}
   3982 
   3983 abort:
   3984 	track->codec.filter = NULL;
   3985 	audio_free(srcbuf->mem);
   3986 	return error;
   3987 }
   3988 
   3989 /*
   3990  * Initialize the chvol stage of this track as necessary.
   3991  * If successful, it initializes the chvol stage as necessary, stores updated
   3992  * last_dst in *last_dstp in any case, and returns 0.
   3993  * Otherwise, it returns errno without modifying *last_dstp.
   3994  */
   3995 static int
   3996 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
   3997 {
   3998 	audio_ring_t *last_dst;
   3999 	audio_ring_t *srcbuf;
   4000 	audio_format2_t *srcfmt;
   4001 	audio_format2_t *dstfmt;
   4002 	audio_filter_arg_t *arg;
   4003 	u_int len;
   4004 	int error;
   4005 
   4006 	KASSERT(track);
   4007 
   4008 	last_dst = *last_dstp;
   4009 	dstfmt = &last_dst->fmt;
   4010 	srcfmt = &track->inputfmt;
   4011 	srcbuf = &track->chvol.srcbuf;
   4012 	error = 0;
   4013 
   4014 	/* Check whether channel volume conversion is necessary. */
   4015 	bool use_chvol = false;
   4016 	for (int ch = 0; ch < srcfmt->channels; ch++) {
   4017 		if (track->ch_volume[ch] != 256) {
   4018 			use_chvol = true;
   4019 			break;
   4020 		}
   4021 	}
   4022 
   4023 	if (use_chvol == true) {
   4024 		track->chvol.dst = last_dst;
   4025 		track->chvol.filter = audio_track_chvol;
   4026 
   4027 		srcbuf->fmt = *dstfmt;
   4028 		/* no format conversion occurs */
   4029 
   4030 		srcbuf->head = 0;
   4031 		srcbuf->used = 0;
   4032 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4033 		len = auring_bytelen(srcbuf);
   4034 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4035 
   4036 		arg = &track->chvol.arg;
   4037 		arg->srcfmt = &srcbuf->fmt;
   4038 		arg->dstfmt = dstfmt;
   4039 		arg->context = track->ch_volume;
   4040 
   4041 		*last_dstp = srcbuf;
   4042 		return 0;
   4043 	}
   4044 
   4045 	track->chvol.filter = NULL;
   4046 	audio_free(srcbuf->mem);
   4047 	return error;
   4048 }
   4049 
   4050 /*
   4051  * Initialize the chmix stage of this track as necessary.
   4052  * If successful, it initializes the chmix stage as necessary, stores updated
   4053  * last_dst in *last_dstp in any case, and returns 0.
   4054  * Otherwise, it returns errno without modifying *last_dstp.
   4055  */
   4056 static int
   4057 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
   4058 {
   4059 	audio_ring_t *last_dst;
   4060 	audio_ring_t *srcbuf;
   4061 	audio_format2_t *srcfmt;
   4062 	audio_format2_t *dstfmt;
   4063 	audio_filter_arg_t *arg;
   4064 	u_int srcch;
   4065 	u_int dstch;
   4066 	u_int len;
   4067 	int error;
   4068 
   4069 	KASSERT(track);
   4070 
   4071 	last_dst = *last_dstp;
   4072 	dstfmt = &last_dst->fmt;
   4073 	srcfmt = &track->inputfmt;
   4074 	srcbuf = &track->chmix.srcbuf;
   4075 	error = 0;
   4076 
   4077 	srcch = srcfmt->channels;
   4078 	dstch = dstfmt->channels;
   4079 	if (srcch != dstch) {
   4080 		track->chmix.dst = last_dst;
   4081 
   4082 		if (srcch >= 2 && dstch == 1) {
   4083 			track->chmix.filter = audio_track_chmix_mixLR;
   4084 		} else if (srcch == 1 && dstch >= 2) {
   4085 			track->chmix.filter = audio_track_chmix_dupLR;
   4086 		} else if (srcch > dstch) {
   4087 			track->chmix.filter = audio_track_chmix_shrink;
   4088 		} else {
   4089 			track->chmix.filter = audio_track_chmix_expand;
   4090 		}
   4091 
   4092 		srcbuf->fmt = *dstfmt;
   4093 		srcbuf->fmt.channels = srcch;
   4094 
   4095 		srcbuf->head = 0;
   4096 		srcbuf->used = 0;
   4097 		/* XXX The buffer size should be able to calculate. */
   4098 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4099 		len = auring_bytelen(srcbuf);
   4100 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4101 
   4102 		arg = &track->chmix.arg;
   4103 		arg->srcfmt = &srcbuf->fmt;
   4104 		arg->dstfmt = dstfmt;
   4105 		arg->context = NULL;
   4106 
   4107 		*last_dstp = srcbuf;
   4108 		return 0;
   4109 	}
   4110 
   4111 	track->chmix.filter = NULL;
   4112 	audio_free(srcbuf->mem);
   4113 	return error;
   4114 }
   4115 
   4116 /*
   4117  * Initialize the freq stage of this track as necessary.
   4118  * If successful, it initializes the freq stage as necessary, stores updated
   4119  * last_dst in *last_dstp in any case, and returns 0.
   4120  * Otherwise, it returns errno without modifying *last_dstp.
   4121  */
   4122 static int
   4123 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
   4124 {
   4125 	audio_ring_t *last_dst;
   4126 	audio_ring_t *srcbuf;
   4127 	audio_format2_t *srcfmt;
   4128 	audio_format2_t *dstfmt;
   4129 	audio_filter_arg_t *arg;
   4130 	uint32_t srcfreq;
   4131 	uint32_t dstfreq;
   4132 	u_int dst_capacity;
   4133 	u_int mod;
   4134 	u_int len;
   4135 	int error;
   4136 
   4137 	KASSERT(track);
   4138 
   4139 	last_dst = *last_dstp;
   4140 	dstfmt = &last_dst->fmt;
   4141 	srcfmt = &track->inputfmt;
   4142 	srcbuf = &track->freq.srcbuf;
   4143 	error = 0;
   4144 
   4145 	srcfreq = srcfmt->sample_rate;
   4146 	dstfreq = dstfmt->sample_rate;
   4147 	if (srcfreq != dstfreq) {
   4148 		track->freq.dst = last_dst;
   4149 
   4150 		memset(track->freq_prev, 0, sizeof(track->freq_prev));
   4151 		memset(track->freq_curr, 0, sizeof(track->freq_curr));
   4152 
   4153 		/* freq_step is the ratio of src/dst when let dst 65536. */
   4154 		track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
   4155 
   4156 		dst_capacity = frame_per_block(track->mixer, dstfmt);
   4157 		mod = (uint64_t)srcfreq * 65536 % dstfreq;
   4158 		track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
   4159 
   4160 		if (track->freq_step < 65536) {
   4161 			track->freq.filter = audio_track_freq_up;
   4162 			/* In order to carry at the first time. */
   4163 			track->freq_current = 65536;
   4164 		} else {
   4165 			track->freq.filter = audio_track_freq_down;
   4166 			track->freq_current = 0;
   4167 		}
   4168 
   4169 		srcbuf->fmt = *dstfmt;
   4170 		srcbuf->fmt.sample_rate = srcfreq;
   4171 
   4172 		srcbuf->head = 0;
   4173 		srcbuf->used = 0;
   4174 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
   4175 		len = auring_bytelen(srcbuf);
   4176 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
   4177 
   4178 		arg = &track->freq.arg;
   4179 		arg->srcfmt = &srcbuf->fmt;
   4180 		arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
   4181 		arg->context = track;
   4182 
   4183 		*last_dstp = srcbuf;
   4184 		return 0;
   4185 	}
   4186 
   4187 	track->freq.filter = NULL;
   4188 	audio_free(srcbuf->mem);
   4189 	return error;
   4190 }
   4191 
   4192 /*
   4193  * When playing back: (e.g. if codec and freq stage are valid)
   4194  *
   4195  *               write
   4196  *                | uiomove
   4197  *                v
   4198  *  usrbuf      [...............]  byte ring buffer (mmap-able)
   4199  *                | memcpy
   4200  *                v
   4201  *  codec.srcbuf[....]             1 block (ring) buffer   <-- stage input
   4202  *       .dst ----+
   4203  *                | convert
   4204  *                v
   4205  *  freq.srcbuf [....]             1 block (ring) buffer
   4206  *      .dst  ----+
   4207  *                | convert
   4208  *                v
   4209  *  outbuf      [...............]  NBLKOUT blocks ring buffer
   4210  *
   4211  *
   4212  * When recording:
   4213  *
   4214  *  freq.srcbuf [...............]  NBLKOUT blocks ring buffer <-- stage input
   4215  *      .dst  ----+
   4216  *                | convert
   4217  *                v
   4218  *  codec.srcbuf[.....]            1 block (ring) buffer
   4219  *       .dst ----+
   4220  *                | convert
   4221  *                v
   4222  *  outbuf      [.....]            1 block (ring) buffer
   4223  *                | memcpy
   4224  *                v
   4225  *  usrbuf      [...............]  byte ring buffer (mmap-able *)
   4226  *                | uiomove
   4227  *                v
   4228  *               read
   4229  *
   4230  *    *: usrbuf for recording is also mmap-able due to symmetry with
   4231  *       playback buffer, but for now mmap will never happen for recording.
   4232  */
   4233 
   4234 /*
   4235  * Set the userland format of this track.
   4236  * usrfmt argument should have been previously verified by
   4237  * audio_track_setinfo_check().
   4238  * This function may release and reallocate all internal conversion buffers.
   4239  * It returns 0 if successful.  Otherwise it returns errno with clearing all
   4240  * internal buffers.
   4241  * It must be called without sc_intr_lock since uvm_* routines require non
   4242  * intr_lock state.
   4243  * It must be called with track lock held since it may release and reallocate
   4244  * outbuf.
   4245  */
   4246 static int
   4247 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
   4248 {
   4249 	struct audio_softc *sc;
   4250 	u_int newbufsize;
   4251 	u_int oldblksize;
   4252 	u_int len;
   4253 	int error;
   4254 
   4255 	KASSERT(track);
   4256 	sc = track->mixer->sc;
   4257 
   4258 	/* usrbuf is the closest buffer to the userland. */
   4259 	track->usrbuf.fmt = *usrfmt;
   4260 
   4261 	/*
   4262 	 * For references, one block size (in 40msec) is:
   4263 	 *  320 bytes    = 204 blocks/64KB for mulaw/8kHz/1ch
   4264 	 *  7680 bytes   = 8 blocks/64KB for s16/48kHz/2ch
   4265 	 *  30720 bytes  = 90 KB/3blocks for s16/48kHz/8ch
   4266 	 *  61440 bytes  = 180 KB/3blocks for s16/96kHz/8ch
   4267 	 *  245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
   4268 	 *
   4269 	 * For example,
   4270 	 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
   4271 	 *     newbufsize = rounddown(65536 / 7056) = 63504
   4272 	 *     newvsize = roundup2(63504, PAGE_SIZE) = 65536
   4273 	 *    Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
   4274 	 *
   4275 	 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
   4276 	 *     newbufsize = rounddown(65536 / 7680) = 61440
   4277 	 *     newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
   4278 	 *    Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
   4279 	 */
   4280 	oldblksize = track->usrbuf_blksize;
   4281 	track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
   4282 	    frame_per_block(track->mixer, &track->usrbuf.fmt));
   4283 	track->usrbuf.head = 0;
   4284 	track->usrbuf.used = 0;
   4285 	newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
   4286 	newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
   4287 	error = audio_realloc_usrbuf(track, newbufsize);
   4288 	if (error) {
   4289 		device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
   4290 		    newbufsize);
   4291 		goto error;
   4292 	}
   4293 
   4294 	/* Recalc water mark. */
   4295 	if (track->usrbuf_blksize != oldblksize) {
   4296 		if (audio_track_is_playback(track)) {
   4297 			/* Set high at 100%, low at 75%.  */
   4298 			track->usrbuf_usedhigh = track->usrbuf.capacity;
   4299 			track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
   4300 		} else {
   4301 			/* Set high at 100% minus 1block(?), low at 0% */
   4302 			track->usrbuf_usedhigh = track->usrbuf.capacity -
   4303 			    track->usrbuf_blksize;
   4304 			track->usrbuf_usedlow = 0;
   4305 		}
   4306 	}
   4307 
   4308 	/* Stage buffer */
   4309 	audio_ring_t *last_dst = &track->outbuf;
   4310 	if (audio_track_is_playback(track)) {
   4311 		/* On playback, initialize from the mixer side in order. */
   4312 		track->inputfmt = *usrfmt;
   4313 		track->outbuf.fmt =  track->mixer->track_fmt;
   4314 
   4315 		if ((error = audio_track_init_freq(track, &last_dst)) != 0)
   4316 			goto error;
   4317 		if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
   4318 			goto error;
   4319 		if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
   4320 			goto error;
   4321 		if ((error = audio_track_init_codec(track, &last_dst)) != 0)
   4322 			goto error;
   4323 	} else {
   4324 		/* On recording, initialize from userland side in order. */
   4325 		track->inputfmt = track->mixer->track_fmt;
   4326 		track->outbuf.fmt = *usrfmt;
   4327 
   4328 		if ((error = audio_track_init_codec(track, &last_dst)) != 0)
   4329 			goto error;
   4330 		if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
   4331 			goto error;
   4332 		if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
   4333 			goto error;
   4334 		if ((error = audio_track_init_freq(track, &last_dst)) != 0)
   4335 			goto error;
   4336 	}
   4337 #if 0
   4338 	/* debug */
   4339 	if (track->freq.filter) {
   4340 		audio_print_format2("freq src", &track->freq.srcbuf.fmt);
   4341 		audio_print_format2("freq dst", &track->freq.dst->fmt);
   4342 	}
   4343 	if (track->chmix.filter) {
   4344 		audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
   4345 		audio_print_format2("chmix dst", &track->chmix.dst->fmt);
   4346 	}
   4347 	if (track->chvol.filter) {
   4348 		audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
   4349 		audio_print_format2("chvol dst", &track->chvol.dst->fmt);
   4350 	}
   4351 	if (track->codec.filter) {
   4352 		audio_print_format2("codec src", &track->codec.srcbuf.fmt);
   4353 		audio_print_format2("codec dst", &track->codec.dst->fmt);
   4354 	}
   4355 #endif
   4356 
   4357 	/* Stage input buffer */
   4358 	track->input = last_dst;
   4359 
   4360 	/*
   4361 	 * On the recording track, make the first stage a ring buffer.
   4362 	 * XXX is there a better way?
   4363 	 */
   4364 	if (audio_track_is_record(track)) {
   4365 		track->input->capacity = NBLKOUT *
   4366 		    frame_per_block(track->mixer, &track->input->fmt);
   4367 		len = auring_bytelen(track->input);
   4368 		track->input->mem = audio_realloc(track->input->mem, len);
   4369 	}
   4370 
   4371 	/*
   4372 	 * Output buffer.
   4373 	 * On the playback track, its capacity is NBLKOUT blocks.
   4374 	 * On the recording track, its capacity is 1 block.
   4375 	 */
   4376 	track->outbuf.head = 0;
   4377 	track->outbuf.used = 0;
   4378 	track->outbuf.capacity = frame_per_block(track->mixer,
   4379 	    &track->outbuf.fmt);
   4380 	if (audio_track_is_playback(track))
   4381 		track->outbuf.capacity *= NBLKOUT;
   4382 	len = auring_bytelen(&track->outbuf);
   4383 	track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
   4384 	if (track->outbuf.mem == NULL) {
   4385 		device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
   4386 		error = ENOMEM;
   4387 		goto error;
   4388 	}
   4389 
   4390 #if defined(AUDIO_DEBUG)
   4391 	if (audiodebug >= 3) {
   4392 		struct audio_track_debugbuf m;
   4393 
   4394 		memset(&m, 0, sizeof(m));
   4395 		snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
   4396 		    track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
   4397 		if (track->freq.filter)
   4398 			snprintf(m.freq, sizeof(m.freq), " freq=%d",
   4399 			    track->freq.srcbuf.capacity *
   4400 			    frametobyte(&track->freq.srcbuf.fmt, 1));
   4401 		if (track->chmix.filter)
   4402 			snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
   4403 			    track->chmix.srcbuf.capacity *
   4404 			    frametobyte(&track->chmix.srcbuf.fmt, 1));
   4405 		if (track->chvol.filter)
   4406 			snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
   4407 			    track->chvol.srcbuf.capacity *
   4408 			    frametobyte(&track->chvol.srcbuf.fmt, 1));
   4409 		if (track->codec.filter)
   4410 			snprintf(m.codec, sizeof(m.codec), " codec=%d",
   4411 			    track->codec.srcbuf.capacity *
   4412 			    frametobyte(&track->codec.srcbuf.fmt, 1));
   4413 		snprintf(m.usrbuf, sizeof(m.usrbuf),
   4414 		    " usr=%d", track->usrbuf.capacity);
   4415 
   4416 		if (audio_track_is_playback(track)) {
   4417 			TRACET(0, track, "bufsize%s%s%s%s%s%s",
   4418 			    m.outbuf, m.freq, m.chmix,
   4419 			    m.chvol, m.codec, m.usrbuf);
   4420 		} else {
   4421 			TRACET(0, track, "bufsize%s%s%s%s%s%s",
   4422 			    m.freq, m.chmix, m.chvol,
   4423 			    m.codec, m.outbuf, m.usrbuf);
   4424 		}
   4425 	}
   4426 #endif
   4427 	return 0;
   4428 
   4429 error:
   4430 	audio_free_usrbuf(track);
   4431 	audio_free(track->codec.srcbuf.mem);
   4432 	audio_free(track->chvol.srcbuf.mem);
   4433 	audio_free(track->chmix.srcbuf.mem);
   4434 	audio_free(track->freq.srcbuf.mem);
   4435 	audio_free(track->outbuf.mem);
   4436 	return error;
   4437 }
   4438 
   4439 /*
   4440  * Fill silence frames (as the internal format) up to 1 block
   4441  * if the ring is not empty and less than 1 block.
   4442  * It returns the number of appended frames.
   4443  */
   4444 static int
   4445 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
   4446 {
   4447 	int fpb;
   4448 	int n;
   4449 
   4450 	KASSERT(track);
   4451 	KASSERT(audio_format2_is_internal(&ring->fmt));
   4452 
   4453 	/* XXX is n correct? */
   4454 	/* XXX memset uses frametobyte()? */
   4455 
   4456 	if (ring->used == 0)
   4457 		return 0;
   4458 
   4459 	fpb = frame_per_block(track->mixer, &ring->fmt);
   4460 	if (ring->used >= fpb)
   4461 		return 0;
   4462 
   4463 	n = (ring->capacity - ring->used) % fpb;
   4464 
   4465 	KASSERTMSG(auring_get_contig_free(ring) >= n,
   4466 	    "auring_get_contig_free(ring)=%d n=%d",
   4467 	    auring_get_contig_free(ring), n);
   4468 
   4469 	memset(auring_tailptr_aint(ring), 0,
   4470 	    n * ring->fmt.channels * sizeof(aint_t));
   4471 	auring_push(ring, n);
   4472 	return n;
   4473 }
   4474 
   4475 /*
   4476  * Execute the conversion stage.
   4477  * It prepares arg from this stage and executes stage->filter.
   4478  * It must be called only if stage->filter is not NULL.
   4479  *
   4480  * For stages other than frequency conversion, the function increments
   4481  * src and dst counters here.  For frequency conversion stage, on the
   4482  * other hand, the function does not touch src and dst counters and
   4483  * filter side has to increment them.
   4484  */
   4485 static void
   4486 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
   4487 {
   4488 	audio_filter_arg_t *arg;
   4489 	int srccount;
   4490 	int dstcount;
   4491 	int count;
   4492 
   4493 	KASSERT(track);
   4494 	KASSERT(stage->filter);
   4495 
   4496 	srccount = auring_get_contig_used(&stage->srcbuf);
   4497 	dstcount = auring_get_contig_free(stage->dst);
   4498 
   4499 	if (isfreq) {
   4500 		KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
   4501 		count = uimin(dstcount, track->mixer->frames_per_block);
   4502 	} else {
   4503 		count = uimin(srccount, dstcount);
   4504 	}
   4505 
   4506 	if (count > 0) {
   4507 		arg = &stage->arg;
   4508 		arg->src = auring_headptr(&stage->srcbuf);
   4509 		arg->dst = auring_tailptr(stage->dst);
   4510 		arg->count = count;
   4511 
   4512 		stage->filter(arg);
   4513 
   4514 		if (!isfreq) {
   4515 			auring_take(&stage->srcbuf, count);
   4516 			auring_push(stage->dst, count);
   4517 		}
   4518 	}
   4519 }
   4520 
   4521 /*
   4522  * Produce output buffer for playback from user input buffer.
   4523  * It must be called only if usrbuf is not empty and outbuf is
   4524  * available at least one free block.
   4525  */
   4526 static void
   4527 audio_track_play(audio_track_t *track)
   4528 {
   4529 	audio_ring_t *usrbuf;
   4530 	audio_ring_t *input;
   4531 	int count;
   4532 	int framesize;
   4533 	int bytes;
   4534 
   4535 	KASSERT(track);
   4536 	KASSERT(track->lock);
   4537 	TRACET(4, track, "start pstate=%d", track->pstate);
   4538 
   4539 	/* At this point usrbuf must not be empty. */
   4540 	KASSERT(track->usrbuf.used > 0);
   4541 	/* Also, outbuf must be available at least one block. */
   4542 	count = auring_get_contig_free(&track->outbuf);
   4543 	KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
   4544 	    "count=%d fpb=%d",
   4545 	    count, frame_per_block(track->mixer, &track->outbuf.fmt));
   4546 
   4547 	/* XXX TODO: is this necessary for now? */
   4548 	int track_count_0 = track->outbuf.used;
   4549 
   4550 	usrbuf = &track->usrbuf;
   4551 	input = track->input;
   4552 
   4553 	/*
   4554 	 * framesize is always 1 byte or more since all formats supported as
   4555 	 * usrfmt(=input) have 8bit or more stride.
   4556 	 */
   4557 	framesize = frametobyte(&input->fmt, 1);
   4558 	KASSERT(framesize >= 1);
   4559 
   4560 	/* The next stage of usrbuf (=input) must be available. */
   4561 	KASSERT(auring_get_contig_free(input) > 0);
   4562 
   4563 	/*
   4564 	 * Copy usrbuf up to 1block to input buffer.
   4565 	 * count is the number of frames to copy from usrbuf.
   4566 	 * bytes is the number of bytes to copy from usrbuf.  However it is
   4567 	 * not copied less than one frame.
   4568 	 */
   4569 	count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
   4570 	bytes = count * framesize;
   4571 
   4572 	track->usrbuf_stamp += bytes;
   4573 
   4574 	if (usrbuf->head + bytes < usrbuf->capacity) {
   4575 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
   4576 		    (uint8_t *)usrbuf->mem + usrbuf->head,
   4577 		    bytes);
   4578 		auring_push(input, count);
   4579 		auring_take(usrbuf, bytes);
   4580 	} else {
   4581 		int bytes1;
   4582 		int bytes2;
   4583 
   4584 		bytes1 = auring_get_contig_used(usrbuf);
   4585 		KASSERTMSG(bytes1 % framesize == 0,
   4586 		    "bytes1=%d framesize=%d", bytes1, framesize);
   4587 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
   4588 		    (uint8_t *)usrbuf->mem + usrbuf->head,
   4589 		    bytes1);
   4590 		auring_push(input, bytes1 / framesize);
   4591 		auring_take(usrbuf, bytes1);
   4592 
   4593 		bytes2 = bytes - bytes1;
   4594 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
   4595 		    (uint8_t *)usrbuf->mem + usrbuf->head,
   4596 		    bytes2);
   4597 		auring_push(input, bytes2 / framesize);
   4598 		auring_take(usrbuf, bytes2);
   4599 	}
   4600 
   4601 	/* Encoding conversion */
   4602 	if (track->codec.filter)
   4603 		audio_apply_stage(track, &track->codec, false);
   4604 
   4605 	/* Channel volume */
   4606 	if (track->chvol.filter)
   4607 		audio_apply_stage(track, &track->chvol, false);
   4608 
   4609 	/* Channel mix */
   4610 	if (track->chmix.filter)
   4611 		audio_apply_stage(track, &track->chmix, false);
   4612 
   4613 	/* Frequency conversion */
   4614 	/*
   4615 	 * Since the frequency conversion needs correction for each block,
   4616 	 * it rounds up to 1 block.
   4617 	 */
   4618 	if (track->freq.filter) {
   4619 		int n;
   4620 		n = audio_append_silence(track, &track->freq.srcbuf);
   4621 		if (n > 0) {
   4622 			TRACET(4, track,
   4623 			    "freq.srcbuf add silence %d -> %d/%d/%d",
   4624 			    n,
   4625 			    track->freq.srcbuf.head,
   4626 			    track->freq.srcbuf.used,
   4627 			    track->freq.srcbuf.capacity);
   4628 		}
   4629 		if (track->freq.srcbuf.used > 0) {
   4630 			audio_apply_stage(track, &track->freq, true);
   4631 		}
   4632 	}
   4633 
   4634 	if (bytes < track->usrbuf_blksize) {
   4635 		/*
   4636 		 * Clear all conversion buffer pointer if the conversion was
   4637 		 * not exactly one block.  These conversion stage buffers are
   4638 		 * certainly circular buffers because of symmetry with the
   4639 		 * previous and next stage buffer.  However, since they are
   4640 		 * treated as simple contiguous buffers in operation, so head
   4641 		 * always should point 0.  This may happen during drain-age.
   4642 		 */
   4643 		TRACET(4, track, "reset stage");
   4644 		if (track->codec.filter) {
   4645 			KASSERT(track->codec.srcbuf.used == 0);
   4646 			track->codec.srcbuf.head = 0;
   4647 		}
   4648 		if (track->chvol.filter) {
   4649 			KASSERT(track->chvol.srcbuf.used == 0);
   4650 			track->chvol.srcbuf.head = 0;
   4651 		}
   4652 		if (track->chmix.filter) {
   4653 			KASSERT(track->chmix.srcbuf.used == 0);
   4654 			track->chmix.srcbuf.head = 0;
   4655 		}
   4656 		if (track->freq.filter) {
   4657 			KASSERT(track->freq.srcbuf.used == 0);
   4658 			track->freq.srcbuf.head = 0;
   4659 		}
   4660 	}
   4661 
   4662 	if (track->input == &track->outbuf) {
   4663 		track->outputcounter = track->inputcounter;
   4664 	} else {
   4665 		track->outputcounter += track->outbuf.used - track_count_0;
   4666 	}
   4667 
   4668 #if defined(AUDIO_DEBUG)
   4669 	if (audiodebug >= 3) {
   4670 		struct audio_track_debugbuf m;
   4671 		audio_track_bufstat(track, &m);
   4672 		TRACET(0, track, "end%s%s%s%s%s%s",
   4673 		    m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
   4674 	}
   4675 #endif
   4676 }
   4677 
   4678 /*
   4679  * Produce user output buffer for recording from input buffer.
   4680  */
   4681 static void
   4682 audio_track_record(audio_track_t *track)
   4683 {
   4684 	audio_ring_t *outbuf;
   4685 	audio_ring_t *usrbuf;
   4686 	int count;
   4687 	int bytes;
   4688 	int framesize;
   4689 
   4690 	KASSERT(track);
   4691 	KASSERT(track->lock);
   4692 
   4693 	/* Number of frames to process */
   4694 	count = auring_get_contig_used(track->input);
   4695 	count = uimin(count, track->mixer->frames_per_block);
   4696 	if (count == 0) {
   4697 		TRACET(4, track, "count == 0");
   4698 		return;
   4699 	}
   4700 
   4701 	/* Frequency conversion */
   4702 	if (track->freq.filter) {
   4703 		if (track->freq.srcbuf.used > 0) {
   4704 			audio_apply_stage(track, &track->freq, true);
   4705 			/* XXX should input of freq be from beginning of buf? */
   4706 		}
   4707 	}
   4708 
   4709 	/* Channel mix */
   4710 	if (track->chmix.filter)
   4711 		audio_apply_stage(track, &track->chmix, false);
   4712 
   4713 	/* Channel volume */
   4714 	if (track->chvol.filter)
   4715 		audio_apply_stage(track, &track->chvol, false);
   4716 
   4717 	/* Encoding conversion */
   4718 	if (track->codec.filter)
   4719 		audio_apply_stage(track, &track->codec, false);
   4720 
   4721 	/* Copy outbuf to usrbuf */
   4722 	outbuf = &track->outbuf;
   4723 	usrbuf = &track->usrbuf;
   4724 	/*
   4725 	 * framesize is always 1 byte or more since all formats supported
   4726 	 * as usrfmt(=output) have 8bit or more stride.
   4727 	 */
   4728 	framesize = frametobyte(&outbuf->fmt, 1);
   4729 	KASSERT(framesize >= 1);
   4730 	/*
   4731 	 * count is the number of frames to copy to usrbuf.
   4732 	 * bytes is the number of bytes to copy to usrbuf.
   4733 	 */
   4734 	count = outbuf->used;
   4735 	count = uimin(count,
   4736 	    (track->usrbuf_usedhigh - usrbuf->used) / framesize);
   4737 	bytes = count * framesize;
   4738 	if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
   4739 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
   4740 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
   4741 		    bytes);
   4742 		auring_push(usrbuf, bytes);
   4743 		auring_take(outbuf, count);
   4744 	} else {
   4745 		int bytes1;
   4746 		int bytes2;
   4747 
   4748 		bytes1 = auring_get_contig_free(usrbuf);
   4749 		KASSERTMSG(bytes1 % framesize == 0,
   4750 		    "bytes1=%d framesize=%d", bytes1, framesize);
   4751 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
   4752 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
   4753 		    bytes1);
   4754 		auring_push(usrbuf, bytes1);
   4755 		auring_take(outbuf, bytes1 / framesize);
   4756 
   4757 		bytes2 = bytes - bytes1;
   4758 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
   4759 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
   4760 		    bytes2);
   4761 		auring_push(usrbuf, bytes2);
   4762 		auring_take(outbuf, bytes2 / framesize);
   4763 	}
   4764 
   4765 	/* XXX TODO: any counters here? */
   4766 
   4767 #if defined(AUDIO_DEBUG)
   4768 	if (audiodebug >= 3) {
   4769 		struct audio_track_debugbuf m;
   4770 		audio_track_bufstat(track, &m);
   4771 		TRACET(0, track, "end%s%s%s%s%s%s",
   4772 		    m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
   4773 	}
   4774 #endif
   4775 }
   4776 
   4777 /*
   4778  * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
   4779  * Must be called with sc_exlock held.
   4780  */
   4781 static u_int
   4782 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
   4783 {
   4784 	audio_format2_t *fmt;
   4785 	u_int blktime;
   4786 	u_int frames_per_block;
   4787 
   4788 	KASSERT(sc->sc_exlock);
   4789 
   4790 	fmt = &mixer->hwbuf.fmt;
   4791 	blktime = sc->sc_blk_ms;
   4792 
   4793 	/*
   4794 	 * If stride is not multiples of 8, special treatment is necessary.
   4795 	 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
   4796 	 */
   4797 	if (fmt->stride == 4) {
   4798 		frames_per_block = fmt->sample_rate * blktime / 1000;
   4799 		if ((frames_per_block & 1) != 0)
   4800 			blktime *= 2;
   4801 	}
   4802 #ifdef DIAGNOSTIC
   4803 	else if (fmt->stride % NBBY != 0) {
   4804 		panic("unsupported HW stride %d", fmt->stride);
   4805 	}
   4806 #endif
   4807 
   4808 	return blktime;
   4809 }
   4810 
   4811 /*
   4812  * Initialize the mixer corresponding to the mode.
   4813  * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
   4814  * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
   4815  * This function returns 0 on successful.  Otherwise returns errno.
   4816  * Must be called with sc_exlock held and without sc_lock held.
   4817  */
   4818 static int
   4819 audio_mixer_init(struct audio_softc *sc, int mode,
   4820 	const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
   4821 {
   4822 	char codecbuf[64];
   4823 	char blkdmsbuf[8];
   4824 	audio_trackmixer_t *mixer;
   4825 	void (*softint_handler)(void *);
   4826 	int len;
   4827 	int blksize;
   4828 	int capacity;
   4829 	size_t bufsize;
   4830 	int hwblks;
   4831 	int blkms;
   4832 	int blkdms;
   4833 	int error;
   4834 
   4835 	KASSERT(hwfmt != NULL);
   4836 	KASSERT(reg != NULL);
   4837 	KASSERT(sc->sc_exlock);
   4838 
   4839 	error = 0;
   4840 	if (mode == AUMODE_PLAY)
   4841 		mixer = sc->sc_pmixer;
   4842 	else
   4843 		mixer = sc->sc_rmixer;
   4844 
   4845 	mixer->sc = sc;
   4846 	mixer->mode = mode;
   4847 
   4848 	mixer->hwbuf.fmt = *hwfmt;
   4849 	mixer->volume = 256;
   4850 	mixer->blktime_d = 1000;
   4851 	mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
   4852 	sc->sc_blk_ms = mixer->blktime_n;
   4853 	hwblks = NBLKHW;
   4854 
   4855 	mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
   4856 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
   4857 	if (sc->hw_if->round_blocksize) {
   4858 		int rounded;
   4859 		audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
   4860 		mutex_enter(sc->sc_lock);
   4861 		rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
   4862 		    mode, &p);
   4863 		mutex_exit(sc->sc_lock);
   4864 		TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
   4865 		if (rounded != blksize) {
   4866 			if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
   4867 			    mixer->hwbuf.fmt.channels) != 0) {
   4868 				device_printf(sc->sc_dev,
   4869 				    "round_blocksize must return blocksize "
   4870 				    "divisible by framesize: "
   4871 				    "blksize=%d rounded=%d "
   4872 				    "stride=%ubit channels=%u\n",
   4873 				    blksize, rounded,
   4874 				    mixer->hwbuf.fmt.stride,
   4875 				    mixer->hwbuf.fmt.channels);
   4876 				return EINVAL;
   4877 			}
   4878 			/* Recalculation */
   4879 			blksize = rounded;
   4880 			mixer->frames_per_block = blksize * NBBY /
   4881 			    (mixer->hwbuf.fmt.stride *
   4882 			     mixer->hwbuf.fmt.channels);
   4883 		}
   4884 	}
   4885 	mixer->blktime_n = mixer->frames_per_block;
   4886 	mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
   4887 
   4888 	capacity = mixer->frames_per_block * hwblks;
   4889 	bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
   4890 	if (sc->hw_if->round_buffersize) {
   4891 		size_t rounded;
   4892 		mutex_enter(sc->sc_lock);
   4893 		rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
   4894 		    bufsize);
   4895 		mutex_exit(sc->sc_lock);
   4896 		TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
   4897 		if (rounded < bufsize) {
   4898 			/* buffersize needs NBLKHW blocks at least. */
   4899 			device_printf(sc->sc_dev,
   4900 			    "buffersize too small: buffersize=%zd blksize=%d\n",
   4901 			    rounded, blksize);
   4902 			return EINVAL;
   4903 		}
   4904 		if (rounded % blksize != 0) {
   4905 			/* buffersize/blksize constraint mismatch? */
   4906 			device_printf(sc->sc_dev,
   4907 			    "buffersize must be multiple of blksize: "
   4908 			    "buffersize=%zu blksize=%d\n",
   4909 			    rounded, blksize);
   4910 			return EINVAL;
   4911 		}
   4912 		if (rounded != bufsize) {
   4913 			/* Recalcuration */
   4914 			bufsize = rounded;
   4915 			hwblks = bufsize / blksize;
   4916 			capacity = mixer->frames_per_block * hwblks;
   4917 		}
   4918 	}
   4919 	TRACE(1, "buffersize for %s = %zu",
   4920 	    (mode == AUMODE_PLAY) ? "playback" : "recording",
   4921 	    bufsize);
   4922 	mixer->hwbuf.capacity = capacity;
   4923 
   4924 	if (sc->hw_if->allocm) {
   4925 		/* sc_lock is not necessary for allocm */
   4926 		mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
   4927 		if (mixer->hwbuf.mem == NULL) {
   4928 			device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
   4929 			    __func__, bufsize);
   4930 			return ENOMEM;
   4931 		}
   4932 	} else {
   4933 		mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
   4934 	}
   4935 
   4936 	/* From here, audio_mixer_destroy is necessary to exit. */
   4937 	if (mode == AUMODE_PLAY) {
   4938 		cv_init(&mixer->outcv, "audiowr");
   4939 	} else {
   4940 		cv_init(&mixer->outcv, "audiord");
   4941 	}
   4942 
   4943 	if (mode == AUMODE_PLAY) {
   4944 		softint_handler = audio_softintr_wr;
   4945 	} else {
   4946 		softint_handler = audio_softintr_rd;
   4947 	}
   4948 	mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
   4949 	    softint_handler, sc);
   4950 	if (mixer->sih == NULL) {
   4951 		device_printf(sc->sc_dev, "softint_establish failed\n");
   4952 		goto abort;
   4953 	}
   4954 
   4955 	mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
   4956 	mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
   4957 	mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
   4958 	mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
   4959 	mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
   4960 
   4961 	if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
   4962 	    mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
   4963 		mixer->swap_endian = true;
   4964 		TRACE(1, "swap_endian");
   4965 	}
   4966 
   4967 	if (mode == AUMODE_PLAY) {
   4968 		/* Mixing buffer */
   4969 		mixer->mixfmt = mixer->track_fmt;
   4970 		mixer->mixfmt.precision *= 2;
   4971 		mixer->mixfmt.stride *= 2;
   4972 		/* XXX TODO: use some macros? */
   4973 		len = mixer->frames_per_block * mixer->mixfmt.channels *
   4974 		    mixer->mixfmt.stride / NBBY;
   4975 		mixer->mixsample = audio_realloc(mixer->mixsample, len);
   4976 	} else {
   4977 		/* No mixing buffer for recording */
   4978 	}
   4979 
   4980 	if (reg->codec) {
   4981 		mixer->codec = reg->codec;
   4982 		mixer->codecarg.context = reg->context;
   4983 		if (mode == AUMODE_PLAY) {
   4984 			mixer->codecarg.srcfmt = &mixer->track_fmt;
   4985 			mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
   4986 		} else {
   4987 			mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
   4988 			mixer->codecarg.dstfmt = &mixer->track_fmt;
   4989 		}
   4990 		mixer->codecbuf.fmt = mixer->track_fmt;
   4991 		mixer->codecbuf.capacity = mixer->frames_per_block;
   4992 		len = auring_bytelen(&mixer->codecbuf);
   4993 		mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
   4994 		if (mixer->codecbuf.mem == NULL) {
   4995 			device_printf(sc->sc_dev,
   4996 			    "%s: malloc codecbuf(%d) failed\n",
   4997 			    __func__, len);
   4998 			error = ENOMEM;
   4999 			goto abort;
   5000 		}
   5001 	}
   5002 
   5003 	/* Succeeded so display it. */
   5004 	codecbuf[0] = '\0';
   5005 	if (mixer->codec || mixer->swap_endian) {
   5006 		snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
   5007 		    (mode == AUMODE_PLAY) ? "->" : "<-",
   5008 		    audio_encoding_name(mixer->hwbuf.fmt.encoding),
   5009 		    mixer->hwbuf.fmt.precision);
   5010 	}
   5011 	blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
   5012 	blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
   5013 	blkdmsbuf[0] = '\0';
   5014 	if (blkdms != 0) {
   5015 		snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
   5016 	}
   5017 	aprint_normal_dev(sc->sc_dev,
   5018 	    "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
   5019 	    audio_encoding_name(mixer->track_fmt.encoding),
   5020 	    mixer->track_fmt.precision,
   5021 	    codecbuf,
   5022 	    mixer->track_fmt.channels,
   5023 	    mixer->track_fmt.sample_rate,
   5024 	    blksize,
   5025 	    blkms, blkdmsbuf,
   5026 	    (mode == AUMODE_PLAY) ? "playback" : "recording");
   5027 
   5028 	return 0;
   5029 
   5030 abort:
   5031 	audio_mixer_destroy(sc, mixer);
   5032 	return error;
   5033 }
   5034 
   5035 /*
   5036  * Releases all resources of 'mixer'.
   5037  * Note that it does not release the memory area of 'mixer' itself.
   5038  * Must be called with sc_exlock held and without sc_lock held.
   5039  */
   5040 static void
   5041 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
   5042 {
   5043 	int bufsize;
   5044 
   5045 	KASSERT(sc->sc_exlock == 1);
   5046 
   5047 	bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
   5048 
   5049 	if (mixer->hwbuf.mem != NULL) {
   5050 		if (sc->hw_if->freem) {
   5051 			/* sc_lock is not necessary for freem */
   5052 			sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
   5053 		} else {
   5054 			kmem_free(mixer->hwbuf.mem, bufsize);
   5055 		}
   5056 		mixer->hwbuf.mem = NULL;
   5057 	}
   5058 
   5059 	audio_free(mixer->codecbuf.mem);
   5060 	audio_free(mixer->mixsample);
   5061 
   5062 	cv_destroy(&mixer->outcv);
   5063 
   5064 	if (mixer->sih) {
   5065 		softint_disestablish(mixer->sih);
   5066 		mixer->sih = NULL;
   5067 	}
   5068 }
   5069 
   5070 /*
   5071  * Starts playback mixer.
   5072  * Must be called only if sc_pbusy is false.
   5073  * Must be called with sc_lock && sc_exlock held.
   5074  * Must not be called from the interrupt context.
   5075  */
   5076 static void
   5077 audio_pmixer_start(struct audio_softc *sc, bool force)
   5078 {
   5079 	audio_trackmixer_t *mixer;
   5080 	int minimum;
   5081 
   5082 	KASSERT(mutex_owned(sc->sc_lock));
   5083 	KASSERT(sc->sc_exlock);
   5084 	KASSERT(sc->sc_pbusy == false);
   5085 
   5086 	mutex_enter(sc->sc_intr_lock);
   5087 
   5088 	mixer = sc->sc_pmixer;
   5089 	TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
   5090 	    (audiodebug >= 3) ? "begin " : "",
   5091 	    (int)mixer->mixseq, (int)mixer->hwseq,
   5092 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
   5093 	    force ? " force" : "");
   5094 
   5095 	/* Need two blocks to start normally. */
   5096 	minimum = (force) ? 1 : 2;
   5097 	while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
   5098 		audio_pmixer_process(sc);
   5099 	}
   5100 
   5101 	/* Start output */
   5102 	audio_pmixer_output(sc);
   5103 	sc->sc_pbusy = true;
   5104 
   5105 	TRACE(3, "end   mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
   5106 	    (int)mixer->mixseq, (int)mixer->hwseq,
   5107 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5108 
   5109 	mutex_exit(sc->sc_intr_lock);
   5110 }
   5111 
   5112 /*
   5113  * When playing back with MD filter:
   5114  *
   5115  *           track track ...
   5116  *               v v
   5117  *                +  mix (with aint2_t)
   5118  *                |  master volume (with aint2_t)
   5119  *                v
   5120  *    mixsample [::::]                  wide-int 1 block (ring) buffer
   5121  *                |
   5122  *                |  convert aint2_t -> aint_t
   5123  *                v
   5124  *    codecbuf  [....]                  1 block (ring) buffer
   5125  *                |
   5126  *                |  convert to hw format
   5127  *                v
   5128  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5129  *
   5130  * When playing back without MD filter:
   5131  *
   5132  *    mixsample [::::]                  wide-int 1 block (ring) buffer
   5133  *                |
   5134  *                |  convert aint2_t -> aint_t
   5135  *                |  (with byte swap if necessary)
   5136  *                v
   5137  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5138  *
   5139  * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
   5140  * codecbuf:  slinear_NE, internal precision,      HW ch, HW freq.
   5141  * hwbuf:     HW encoding, HW precision,           HW ch, HW freq.
   5142  */
   5143 
   5144 /*
   5145  * Performs track mixing and converts it to hwbuf.
   5146  * Note that this function doesn't transfer hwbuf to hardware.
   5147  * Must be called with sc_intr_lock held.
   5148  */
   5149 static void
   5150 audio_pmixer_process(struct audio_softc *sc)
   5151 {
   5152 	audio_trackmixer_t *mixer;
   5153 	audio_file_t *f;
   5154 	int frame_count;
   5155 	int sample_count;
   5156 	int mixed;
   5157 	int i;
   5158 	aint2_t *m;
   5159 	aint_t *h;
   5160 
   5161 	mixer = sc->sc_pmixer;
   5162 
   5163 	frame_count = mixer->frames_per_block;
   5164 	KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
   5165 	    "auring_get_contig_free()=%d frame_count=%d",
   5166 	    auring_get_contig_free(&mixer->hwbuf), frame_count);
   5167 	sample_count = frame_count * mixer->mixfmt.channels;
   5168 
   5169 	mixer->mixseq++;
   5170 
   5171 	/* Mix all tracks */
   5172 	mixed = 0;
   5173 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   5174 		audio_track_t *track = f->ptrack;
   5175 
   5176 		if (track == NULL)
   5177 			continue;
   5178 
   5179 		if (track->is_pause) {
   5180 			TRACET(4, track, "skip; paused");
   5181 			continue;
   5182 		}
   5183 
   5184 		/* Skip if the track is used by process context. */
   5185 		if (audio_track_lock_tryenter(track) == false) {
   5186 			TRACET(4, track, "skip; in use");
   5187 			continue;
   5188 		}
   5189 
   5190 		/* Emulate mmap'ped track */
   5191 		if (track->mmapped) {
   5192 			auring_push(&track->usrbuf, track->usrbuf_blksize);
   5193 			TRACET(4, track, "mmap; usr=%d/%d/C%d",
   5194 			    track->usrbuf.head,
   5195 			    track->usrbuf.used,
   5196 			    track->usrbuf.capacity);
   5197 		}
   5198 
   5199 		if (track->outbuf.used < mixer->frames_per_block &&
   5200 		    track->usrbuf.used > 0) {
   5201 			TRACET(4, track, "process");
   5202 			audio_track_play(track);
   5203 		}
   5204 
   5205 		if (track->outbuf.used > 0) {
   5206 			mixed = audio_pmixer_mix_track(mixer, track, mixed);
   5207 		} else {
   5208 			TRACET(4, track, "skip; empty");
   5209 		}
   5210 
   5211 		audio_track_lock_exit(track);
   5212 	}
   5213 
   5214 	if (mixed == 0) {
   5215 		/* Silence */
   5216 		memset(mixer->mixsample, 0,
   5217 		    frametobyte(&mixer->mixfmt, frame_count));
   5218 	} else {
   5219 		if (mixed > 1) {
   5220 			/* If there are multiple tracks, do auto gain control */
   5221 			audio_pmixer_agc(mixer, sample_count);
   5222 		}
   5223 
   5224 		/* Apply master volume */
   5225 		if (mixer->volume < 256) {
   5226 			m = mixer->mixsample;
   5227 			for (i = 0; i < sample_count; i++) {
   5228 				*m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
   5229 				m++;
   5230 			}
   5231 
   5232 			/*
   5233 			 * Recover the volume gradually at the pace of
   5234 			 * several times per second.  If it's too fast, you
   5235 			 * can recognize that the volume changes up and down
   5236 			 * quickly and it's not so comfortable.
   5237 			 */
   5238 			mixer->voltimer += mixer->blktime_n;
   5239 			if (mixer->voltimer * 4 >= mixer->blktime_d) {
   5240 				mixer->volume++;
   5241 				mixer->voltimer = 0;
   5242 #if defined(AUDIO_DEBUG_AGC)
   5243 				TRACE(1, "volume recover: %d", mixer->volume);
   5244 #endif
   5245 			}
   5246 		}
   5247 	}
   5248 
   5249 	/*
   5250 	 * The rest is the hardware part.
   5251 	 */
   5252 
   5253 	if (mixer->codec) {
   5254 		h = auring_tailptr_aint(&mixer->codecbuf);
   5255 	} else {
   5256 		h = auring_tailptr_aint(&mixer->hwbuf);
   5257 	}
   5258 
   5259 	m = mixer->mixsample;
   5260 	if (mixer->swap_endian) {
   5261 		for (i = 0; i < sample_count; i++) {
   5262 			*h++ = bswap16(*m++);
   5263 		}
   5264 	} else {
   5265 		for (i = 0; i < sample_count; i++) {
   5266 			*h++ = *m++;
   5267 		}
   5268 	}
   5269 
   5270 	/* Hardware driver's codec */
   5271 	if (mixer->codec) {
   5272 		auring_push(&mixer->codecbuf, frame_count);
   5273 		mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
   5274 		mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
   5275 		mixer->codecarg.count = frame_count;
   5276 		mixer->codec(&mixer->codecarg);
   5277 		auring_take(&mixer->codecbuf, mixer->codecarg.count);
   5278 	}
   5279 
   5280 	auring_push(&mixer->hwbuf, frame_count);
   5281 
   5282 	TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
   5283 	    (int)mixer->mixseq,
   5284 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
   5285 	    (mixed == 0) ? " silent" : "");
   5286 }
   5287 
   5288 /*
   5289  * Do auto gain control.
   5290  * Must be called sc_intr_lock held.
   5291  */
   5292 static void
   5293 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
   5294 {
   5295 	struct audio_softc *sc __unused;
   5296 	aint2_t val;
   5297 	aint2_t maxval;
   5298 	aint2_t minval;
   5299 	aint2_t over_plus;
   5300 	aint2_t over_minus;
   5301 	aint2_t *m;
   5302 	int newvol;
   5303 	int i;
   5304 
   5305 	sc = mixer->sc;
   5306 
   5307 	/* Overflow detection */
   5308 	maxval = AINT_T_MAX;
   5309 	minval = AINT_T_MIN;
   5310 	m = mixer->mixsample;
   5311 	for (i = 0; i < sample_count; i++) {
   5312 		val = *m++;
   5313 		if (val > maxval)
   5314 			maxval = val;
   5315 		else if (val < minval)
   5316 			minval = val;
   5317 	}
   5318 
   5319 	/* Absolute value of overflowed amount */
   5320 	over_plus = maxval - AINT_T_MAX;
   5321 	over_minus = AINT_T_MIN - minval;
   5322 
   5323 	if (over_plus > 0 || over_minus > 0) {
   5324 		if (over_plus > over_minus) {
   5325 			newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
   5326 		} else {
   5327 			newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
   5328 		}
   5329 
   5330 		/*
   5331 		 * Change the volume only if new one is smaller.
   5332 		 * Reset the timer even if the volume isn't changed.
   5333 		 */
   5334 		if (newvol <= mixer->volume) {
   5335 			mixer->volume = newvol;
   5336 			mixer->voltimer = 0;
   5337 #if defined(AUDIO_DEBUG_AGC)
   5338 			TRACE(1, "auto volume adjust: %d", mixer->volume);
   5339 #endif
   5340 		}
   5341 	}
   5342 }
   5343 
   5344 /*
   5345  * Mix one track.
   5346  * 'mixed' specifies the number of tracks mixed so far.
   5347  * It returns the number of tracks mixed.  In other words, it returns
   5348  * mixed + 1 if this track is mixed.
   5349  */
   5350 static int
   5351 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
   5352 	int mixed)
   5353 {
   5354 	int count;
   5355 	int sample_count;
   5356 	int remain;
   5357 	int i;
   5358 	const aint_t *s;
   5359 	aint2_t *d;
   5360 
   5361 	/* XXX TODO: Is this necessary for now? */
   5362 	if (mixer->mixseq < track->seq)
   5363 		return mixed;
   5364 
   5365 	count = auring_get_contig_used(&track->outbuf);
   5366 	count = uimin(count, mixer->frames_per_block);
   5367 
   5368 	s = auring_headptr_aint(&track->outbuf);
   5369 	d = mixer->mixsample;
   5370 
   5371 	/*
   5372 	 * Apply track volume with double-sized integer and perform
   5373 	 * additive synthesis.
   5374 	 *
   5375 	 * XXX If you limit the track volume to 1.0 or less (<= 256),
   5376 	 *     it would be better to do this in the track conversion stage
   5377 	 *     rather than here.  However, if you accept the volume to
   5378 	 *     be greater than 1.0 (> 256), it's better to do it here.
   5379 	 *     Because the operation here is done by double-sized integer.
   5380 	 */
   5381 	sample_count = count * mixer->mixfmt.channels;
   5382 	if (mixed == 0) {
   5383 		/* If this is the first track, assignment can be used. */
   5384 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
   5385 		if (track->volume != 256) {
   5386 			for (i = 0; i < sample_count; i++) {
   5387 				aint2_t v;
   5388 				v = *s++;
   5389 				*d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
   5390 			}
   5391 		} else
   5392 #endif
   5393 		{
   5394 			for (i = 0; i < sample_count; i++) {
   5395 				*d++ = ((aint2_t)*s++);
   5396 			}
   5397 		}
   5398 		/* Fill silence if the first track is not filled. */
   5399 		for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
   5400 			*d++ = 0;
   5401 	} else {
   5402 		/* If this is the second or later, add it. */
   5403 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
   5404 		if (track->volume != 256) {
   5405 			for (i = 0; i < sample_count; i++) {
   5406 				aint2_t v;
   5407 				v = *s++;
   5408 				*d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
   5409 			}
   5410 		} else
   5411 #endif
   5412 		{
   5413 			for (i = 0; i < sample_count; i++) {
   5414 				*d++ += ((aint2_t)*s++);
   5415 			}
   5416 		}
   5417 	}
   5418 
   5419 	auring_take(&track->outbuf, count);
   5420 	/*
   5421 	 * The counters have to align block even if outbuf is less than
   5422 	 * one block. XXX Is this still necessary?
   5423 	 */
   5424 	remain = mixer->frames_per_block - count;
   5425 	if (__predict_false(remain != 0)) {
   5426 		auring_push(&track->outbuf, remain);
   5427 		auring_take(&track->outbuf, remain);
   5428 	}
   5429 
   5430 	/*
   5431 	 * Update track sequence.
   5432 	 * mixseq has previous value yet at this point.
   5433 	 */
   5434 	track->seq = mixer->mixseq + 1;
   5435 
   5436 	return mixed + 1;
   5437 }
   5438 
   5439 /*
   5440  * Output one block from hwbuf to HW.
   5441  * Must be called with sc_intr_lock held.
   5442  */
   5443 static void
   5444 audio_pmixer_output(struct audio_softc *sc)
   5445 {
   5446 	audio_trackmixer_t *mixer;
   5447 	audio_params_t params;
   5448 	void *start;
   5449 	void *end;
   5450 	int blksize;
   5451 	int error;
   5452 
   5453 	mixer = sc->sc_pmixer;
   5454 	TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
   5455 	    sc->sc_pbusy,
   5456 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5457 	KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
   5458 	    "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
   5459 	    mixer->hwbuf.used, mixer->frames_per_block);
   5460 
   5461 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
   5462 
   5463 	if (sc->hw_if->trigger_output) {
   5464 		/* trigger (at once) */
   5465 		if (!sc->sc_pbusy) {
   5466 			start = mixer->hwbuf.mem;
   5467 			end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
   5468 			params = format2_to_params(&mixer->hwbuf.fmt);
   5469 
   5470 			error = sc->hw_if->trigger_output(sc->hw_hdl,
   5471 			    start, end, blksize, audio_pintr, sc, &params);
   5472 			if (error) {
   5473 				device_printf(sc->sc_dev,
   5474 				    "trigger_output failed with %d\n", error);
   5475 				return;
   5476 			}
   5477 		}
   5478 	} else {
   5479 		/* start (everytime) */
   5480 		start = auring_headptr(&mixer->hwbuf);
   5481 
   5482 		error = sc->hw_if->start_output(sc->hw_hdl,
   5483 		    start, blksize, audio_pintr, sc);
   5484 		if (error) {
   5485 			device_printf(sc->sc_dev,
   5486 			    "start_output failed with %d\n", error);
   5487 			return;
   5488 		}
   5489 	}
   5490 }
   5491 
   5492 /*
   5493  * This is an interrupt handler for playback.
   5494  * It is called with sc_intr_lock held.
   5495  *
   5496  * It is usually called from hardware interrupt.  However, note that
   5497  * for some drivers (e.g. uaudio) it is called from software interrupt.
   5498  */
   5499 static void
   5500 audio_pintr(void *arg)
   5501 {
   5502 	struct audio_softc *sc;
   5503 	audio_trackmixer_t *mixer;
   5504 
   5505 	sc = arg;
   5506 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5507 
   5508 	if (sc->sc_dying)
   5509 		return;
   5510 	if (sc->sc_pbusy == false) {
   5511 #if defined(DIAGNOSTIC)
   5512 		device_printf(sc->sc_dev,
   5513 		    "DIAGNOSTIC: %s raised stray interrupt\n",
   5514 		    device_xname(sc->hw_dev));
   5515 #endif
   5516 		return;
   5517 	}
   5518 
   5519 	mixer = sc->sc_pmixer;
   5520 	mixer->hw_complete_counter += mixer->frames_per_block;
   5521 	mixer->hwseq++;
   5522 
   5523 	auring_take(&mixer->hwbuf, mixer->frames_per_block);
   5524 
   5525 	TRACE(4,
   5526 	    "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
   5527 	    mixer->hwseq, mixer->hw_complete_counter,
   5528 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5529 
   5530 #if defined(AUDIO_HW_SINGLE_BUFFER)
   5531 	/*
   5532 	 * Create a new block here and output it immediately.
   5533 	 * It makes a latency lower but needs machine power.
   5534 	 */
   5535 	audio_pmixer_process(sc);
   5536 	audio_pmixer_output(sc);
   5537 #else
   5538 	/*
   5539 	 * It is called when block N output is done.
   5540 	 * Output immediately block N+1 created by the last interrupt.
   5541 	 * And then create block N+2 for the next interrupt.
   5542 	 * This method makes playback robust even on slower machines.
   5543 	 * Instead the latency is increased by one block.
   5544 	 */
   5545 
   5546 	/* At first, output ready block. */
   5547 	if (mixer->hwbuf.used >= mixer->frames_per_block) {
   5548 		audio_pmixer_output(sc);
   5549 	}
   5550 
   5551 	bool later = false;
   5552 
   5553 	if (mixer->hwbuf.used < mixer->frames_per_block) {
   5554 		later = true;
   5555 	}
   5556 
   5557 	/* Then, process next block. */
   5558 	audio_pmixer_process(sc);
   5559 
   5560 	if (later) {
   5561 		audio_pmixer_output(sc);
   5562 	}
   5563 #endif
   5564 
   5565 	/*
   5566 	 * When this interrupt is the real hardware interrupt, disabling
   5567 	 * preemption here is not necessary.  But some drivers (e.g. uaudio)
   5568 	 * emulate it by software interrupt, so kpreempt_disable is necessary.
   5569 	 */
   5570 	kpreempt_disable();
   5571 	softint_schedule(mixer->sih);
   5572 	kpreempt_enable();
   5573 }
   5574 
   5575 /*
   5576  * Starts record mixer.
   5577  * Must be called only if sc_rbusy is false.
   5578  * Must be called with sc_lock && sc_exlock held.
   5579  * Must not be called from the interrupt context.
   5580  */
   5581 static void
   5582 audio_rmixer_start(struct audio_softc *sc)
   5583 {
   5584 
   5585 	KASSERT(mutex_owned(sc->sc_lock));
   5586 	KASSERT(sc->sc_exlock);
   5587 	KASSERT(sc->sc_rbusy == false);
   5588 
   5589 	mutex_enter(sc->sc_intr_lock);
   5590 
   5591 	TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
   5592 	audio_rmixer_input(sc);
   5593 	sc->sc_rbusy = true;
   5594 	TRACE(3, "end");
   5595 
   5596 	mutex_exit(sc->sc_intr_lock);
   5597 }
   5598 
   5599 /*
   5600  * When recording with MD filter:
   5601  *
   5602  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5603  *                |
   5604  *                | convert from hw format
   5605  *                v
   5606  *    codecbuf  [....]                  1 block (ring) buffer
   5607  *               |  |
   5608  *               v  v
   5609  *            track track ...
   5610  *
   5611  * When recording without MD filter:
   5612  *
   5613  *    hwbuf     [............]          NBLKHW blocks ring buffer
   5614  *               |  |
   5615  *               v  v
   5616  *            track track ...
   5617  *
   5618  * hwbuf:     HW encoding, HW precision, HW ch, HW freq.
   5619  * codecbuf:  slinear_NE, internal precision, HW ch, HW freq.
   5620  */
   5621 
   5622 /*
   5623  * Distribute a recorded block to all recording tracks.
   5624  */
   5625 static void
   5626 audio_rmixer_process(struct audio_softc *sc)
   5627 {
   5628 	audio_trackmixer_t *mixer;
   5629 	audio_ring_t *mixersrc;
   5630 	audio_file_t *f;
   5631 	aint_t *p;
   5632 	int count;
   5633 	int bytes;
   5634 	int i;
   5635 
   5636 	mixer = sc->sc_rmixer;
   5637 
   5638 	/*
   5639 	 * count is the number of frames to be retrieved this time.
   5640 	 * count should be one block.
   5641 	 */
   5642 	count = auring_get_contig_used(&mixer->hwbuf);
   5643 	count = uimin(count, mixer->frames_per_block);
   5644 	if (count <= 0) {
   5645 		TRACE(4, "count %d: too short", count);
   5646 		return;
   5647 	}
   5648 	bytes = frametobyte(&mixer->track_fmt, count);
   5649 
   5650 	/* Hardware driver's codec */
   5651 	if (mixer->codec) {
   5652 		mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
   5653 		mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
   5654 		mixer->codecarg.count = count;
   5655 		mixer->codec(&mixer->codecarg);
   5656 		auring_take(&mixer->hwbuf, mixer->codecarg.count);
   5657 		auring_push(&mixer->codecbuf, mixer->codecarg.count);
   5658 		mixersrc = &mixer->codecbuf;
   5659 	} else {
   5660 		mixersrc = &mixer->hwbuf;
   5661 	}
   5662 
   5663 	if (mixer->swap_endian) {
   5664 		/* inplace conversion */
   5665 		p = auring_headptr_aint(mixersrc);
   5666 		for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
   5667 			*p = bswap16(*p);
   5668 		}
   5669 	}
   5670 
   5671 	/* Distribute to all tracks. */
   5672 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   5673 		audio_track_t *track = f->rtrack;
   5674 		audio_ring_t *input;
   5675 
   5676 		if (track == NULL)
   5677 			continue;
   5678 
   5679 		if (track->is_pause) {
   5680 			TRACET(4, track, "skip; paused");
   5681 			continue;
   5682 		}
   5683 
   5684 		if (audio_track_lock_tryenter(track) == false) {
   5685 			TRACET(4, track, "skip; in use");
   5686 			continue;
   5687 		}
   5688 
   5689 		/* If the track buffer is full, discard the oldest one? */
   5690 		input = track->input;
   5691 		if (input->capacity - input->used < mixer->frames_per_block) {
   5692 			int drops = mixer->frames_per_block -
   5693 			    (input->capacity - input->used);
   5694 			track->dropframes += drops;
   5695 			TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
   5696 			    drops,
   5697 			    input->head, input->used, input->capacity);
   5698 			auring_take(input, drops);
   5699 		}
   5700 		KASSERTMSG(input->used % mixer->frames_per_block == 0,
   5701 		    "input->used=%d mixer->frames_per_block=%d",
   5702 		    input->used, mixer->frames_per_block);
   5703 
   5704 		memcpy(auring_tailptr_aint(input),
   5705 		    auring_headptr_aint(mixersrc),
   5706 		    bytes);
   5707 		auring_push(input, count);
   5708 
   5709 		/* XXX sequence counter? */
   5710 
   5711 		audio_track_lock_exit(track);
   5712 	}
   5713 
   5714 	auring_take(mixersrc, count);
   5715 }
   5716 
   5717 /*
   5718  * Input one block from HW to hwbuf.
   5719  * Must be called with sc_intr_lock held.
   5720  */
   5721 static void
   5722 audio_rmixer_input(struct audio_softc *sc)
   5723 {
   5724 	audio_trackmixer_t *mixer;
   5725 	audio_params_t params;
   5726 	void *start;
   5727 	void *end;
   5728 	int blksize;
   5729 	int error;
   5730 
   5731 	mixer = sc->sc_rmixer;
   5732 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
   5733 
   5734 	if (sc->hw_if->trigger_input) {
   5735 		/* trigger (at once) */
   5736 		if (!sc->sc_rbusy) {
   5737 			start = mixer->hwbuf.mem;
   5738 			end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
   5739 			params = format2_to_params(&mixer->hwbuf.fmt);
   5740 
   5741 			error = sc->hw_if->trigger_input(sc->hw_hdl,
   5742 			    start, end, blksize, audio_rintr, sc, &params);
   5743 			if (error) {
   5744 				device_printf(sc->sc_dev,
   5745 				    "trigger_input failed with %d\n", error);
   5746 				return;
   5747 			}
   5748 		}
   5749 	} else {
   5750 		/* start (everytime) */
   5751 		start = auring_tailptr(&mixer->hwbuf);
   5752 
   5753 		error = sc->hw_if->start_input(sc->hw_hdl,
   5754 		    start, blksize, audio_rintr, sc);
   5755 		if (error) {
   5756 			device_printf(sc->sc_dev,
   5757 			    "start_input failed with %d\n", error);
   5758 			return;
   5759 		}
   5760 	}
   5761 }
   5762 
   5763 /*
   5764  * This is an interrupt handler for recording.
   5765  * It is called with sc_intr_lock.
   5766  *
   5767  * It is usually called from hardware interrupt.  However, note that
   5768  * for some drivers (e.g. uaudio) it is called from software interrupt.
   5769  */
   5770 static void
   5771 audio_rintr(void *arg)
   5772 {
   5773 	struct audio_softc *sc;
   5774 	audio_trackmixer_t *mixer;
   5775 
   5776 	sc = arg;
   5777 	KASSERT(mutex_owned(sc->sc_intr_lock));
   5778 
   5779 	if (sc->sc_dying)
   5780 		return;
   5781 	if (sc->sc_rbusy == false) {
   5782 #if defined(DIAGNOSTIC)
   5783 		device_printf(sc->sc_dev,
   5784 		    "DIAGNOSTIC: %s raised stray interrupt\n",
   5785 		    device_xname(sc->hw_dev));
   5786 #endif
   5787 		return;
   5788 	}
   5789 
   5790 	mixer = sc->sc_rmixer;
   5791 	mixer->hw_complete_counter += mixer->frames_per_block;
   5792 	mixer->hwseq++;
   5793 
   5794 	auring_push(&mixer->hwbuf, mixer->frames_per_block);
   5795 
   5796 	TRACE(4,
   5797 	    "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
   5798 	    mixer->hwseq, mixer->hw_complete_counter,
   5799 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
   5800 
   5801 	/* Distrubute recorded block */
   5802 	audio_rmixer_process(sc);
   5803 
   5804 	/* Request next block */
   5805 	audio_rmixer_input(sc);
   5806 
   5807 	/*
   5808 	 * When this interrupt is the real hardware interrupt, disabling
   5809 	 * preemption here is not necessary.  But some drivers (e.g. uaudio)
   5810 	 * emulate it by software interrupt, so kpreempt_disable is necessary.
   5811 	 */
   5812 	kpreempt_disable();
   5813 	softint_schedule(mixer->sih);
   5814 	kpreempt_enable();
   5815 }
   5816 
   5817 /*
   5818  * Halts playback mixer.
   5819  * This function also clears related parameters, so call this function
   5820  * instead of calling halt_output directly.
   5821  * Must be called only if sc_pbusy is true.
   5822  * Must be called with sc_lock && sc_exlock held.
   5823  */
   5824 static int
   5825 audio_pmixer_halt(struct audio_softc *sc)
   5826 {
   5827 	int error;
   5828 
   5829 	TRACE(2, "");
   5830 	KASSERT(mutex_owned(sc->sc_lock));
   5831 	KASSERT(sc->sc_exlock);
   5832 
   5833 	mutex_enter(sc->sc_intr_lock);
   5834 	error = sc->hw_if->halt_output(sc->hw_hdl);
   5835 
   5836 	/* Halts anyway even if some error has occurred. */
   5837 	sc->sc_pbusy = false;
   5838 	sc->sc_pmixer->hwbuf.head = 0;
   5839 	sc->sc_pmixer->hwbuf.used = 0;
   5840 	sc->sc_pmixer->mixseq = 0;
   5841 	sc->sc_pmixer->hwseq = 0;
   5842 	mutex_exit(sc->sc_intr_lock);
   5843 
   5844 	return error;
   5845 }
   5846 
   5847 /*
   5848  * Halts recording mixer.
   5849  * This function also clears related parameters, so call this function
   5850  * instead of calling halt_input directly.
   5851  * Must be called only if sc_rbusy is true.
   5852  * Must be called with sc_lock && sc_exlock held.
   5853  */
   5854 static int
   5855 audio_rmixer_halt(struct audio_softc *sc)
   5856 {
   5857 	int error;
   5858 
   5859 	TRACE(2, "");
   5860 	KASSERT(mutex_owned(sc->sc_lock));
   5861 	KASSERT(sc->sc_exlock);
   5862 
   5863 	mutex_enter(sc->sc_intr_lock);
   5864 	error = sc->hw_if->halt_input(sc->hw_hdl);
   5865 
   5866 	/* Halts anyway even if some error has occurred. */
   5867 	sc->sc_rbusy = false;
   5868 	sc->sc_rmixer->hwbuf.head = 0;
   5869 	sc->sc_rmixer->hwbuf.used = 0;
   5870 	sc->sc_rmixer->mixseq = 0;
   5871 	sc->sc_rmixer->hwseq = 0;
   5872 	mutex_exit(sc->sc_intr_lock);
   5873 
   5874 	return error;
   5875 }
   5876 
   5877 /*
   5878  * Flush this track.
   5879  * Halts all operations, clears all buffers, reset error counters.
   5880  * XXX I'm not sure...
   5881  */
   5882 static void
   5883 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
   5884 {
   5885 
   5886 	KASSERT(track);
   5887 	TRACET(3, track, "clear");
   5888 
   5889 	audio_track_lock_enter(track);
   5890 
   5891 	track->usrbuf.used = 0;
   5892 	/* Clear all internal parameters. */
   5893 	if (track->codec.filter) {
   5894 		track->codec.srcbuf.used = 0;
   5895 		track->codec.srcbuf.head = 0;
   5896 	}
   5897 	if (track->chvol.filter) {
   5898 		track->chvol.srcbuf.used = 0;
   5899 		track->chvol.srcbuf.head = 0;
   5900 	}
   5901 	if (track->chmix.filter) {
   5902 		track->chmix.srcbuf.used = 0;
   5903 		track->chmix.srcbuf.head = 0;
   5904 	}
   5905 	if (track->freq.filter) {
   5906 		track->freq.srcbuf.used = 0;
   5907 		track->freq.srcbuf.head = 0;
   5908 		if (track->freq_step < 65536)
   5909 			track->freq_current = 65536;
   5910 		else
   5911 			track->freq_current = 0;
   5912 		memset(track->freq_prev, 0, sizeof(track->freq_prev));
   5913 		memset(track->freq_curr, 0, sizeof(track->freq_curr));
   5914 	}
   5915 	/* Clear buffer, then operation halts naturally. */
   5916 	track->outbuf.used = 0;
   5917 
   5918 	/* Clear counters. */
   5919 	track->dropframes = 0;
   5920 
   5921 	audio_track_lock_exit(track);
   5922 }
   5923 
   5924 /*
   5925  * Drain the track.
   5926  * track must be present and for playback.
   5927  * If successful, it returns 0.  Otherwise returns errno.
   5928  * Must be called with sc_lock held.
   5929  */
   5930 static int
   5931 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
   5932 {
   5933 	audio_trackmixer_t *mixer;
   5934 	int done;
   5935 	int error;
   5936 
   5937 	KASSERT(track);
   5938 	TRACET(3, track, "start");
   5939 	mixer = track->mixer;
   5940 	KASSERT(mutex_owned(sc->sc_lock));
   5941 
   5942 	/* Ignore them if pause. */
   5943 	if (track->is_pause) {
   5944 		TRACET(3, track, "pause -> clear");
   5945 		track->pstate = AUDIO_STATE_CLEAR;
   5946 	}
   5947 	/* Terminate early here if there is no data in the track. */
   5948 	if (track->pstate == AUDIO_STATE_CLEAR) {
   5949 		TRACET(3, track, "no need to drain");
   5950 		return 0;
   5951 	}
   5952 	track->pstate = AUDIO_STATE_DRAINING;
   5953 
   5954 	for (;;) {
   5955 		/* I want to display it before condition evaluation. */
   5956 		TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
   5957 		    (int)curproc->p_pid, (int)curlwp->l_lid,
   5958 		    (int)track->seq, (int)mixer->hwseq,
   5959 		    track->outbuf.head, track->outbuf.used,
   5960 		    track->outbuf.capacity);
   5961 
   5962 		/* Condition to terminate */
   5963 		audio_track_lock_enter(track);
   5964 		done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
   5965 		    track->outbuf.used == 0 &&
   5966 		    track->seq <= mixer->hwseq);
   5967 		audio_track_lock_exit(track);
   5968 		if (done)
   5969 			break;
   5970 
   5971 		TRACET(3, track, "sleep");
   5972 		error = audio_track_waitio(sc, track);
   5973 		if (error)
   5974 			return error;
   5975 
   5976 		/* XXX call audio_track_play here ? */
   5977 	}
   5978 
   5979 	track->pstate = AUDIO_STATE_CLEAR;
   5980 	TRACET(3, track, "done trk_inp=%d trk_out=%d",
   5981 		(int)track->inputcounter, (int)track->outputcounter);
   5982 	return 0;
   5983 }
   5984 
   5985 /*
   5986  * Send signal to process.
   5987  * This is intended to be called only from audio_softintr_{rd,wr}.
   5988  * Must be called without sc_intr_lock held.
   5989  */
   5990 static inline void
   5991 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
   5992 {
   5993 	proc_t *p;
   5994 
   5995 	KASSERT(pid != 0);
   5996 
   5997 	/*
   5998 	 * psignal() must be called without spin lock held.
   5999 	 */
   6000 
   6001 	mutex_enter(&proc_lock);
   6002 	p = proc_find(pid);
   6003 	if (p)
   6004 		psignal(p, signum);
   6005 	mutex_exit(&proc_lock);
   6006 }
   6007 
   6008 /*
   6009  * This is software interrupt handler for record.
   6010  * It is called from recording hardware interrupt everytime.
   6011  * It does:
   6012  * - Deliver SIGIO for all async processes.
   6013  * - Notify to audio_read() that data has arrived.
   6014  * - selnotify() for select/poll-ing processes.
   6015  */
   6016 /*
   6017  * XXX If a process issues FIOASYNC between hardware interrupt and
   6018  *     software interrupt, (stray) SIGIO will be sent to the process
   6019  *     despite the fact that it has not receive recorded data yet.
   6020  */
   6021 static void
   6022 audio_softintr_rd(void *cookie)
   6023 {
   6024 	struct audio_softc *sc = cookie;
   6025 	audio_file_t *f;
   6026 	pid_t pid;
   6027 
   6028 	mutex_enter(sc->sc_lock);
   6029 
   6030 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   6031 		audio_track_t *track = f->rtrack;
   6032 
   6033 		if (track == NULL)
   6034 			continue;
   6035 
   6036 		TRACET(4, track, "broadcast; inp=%d/%d/%d",
   6037 		    track->input->head,
   6038 		    track->input->used,
   6039 		    track->input->capacity);
   6040 
   6041 		pid = f->async_audio;
   6042 		if (pid != 0) {
   6043 			TRACEF(4, f, "sending SIGIO %d", pid);
   6044 			audio_psignal(sc, pid, SIGIO);
   6045 		}
   6046 	}
   6047 
   6048 	/* Notify that data has arrived. */
   6049 	selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
   6050 	KNOTE(&sc->sc_rsel.sel_klist, 0);
   6051 	cv_broadcast(&sc->sc_rmixer->outcv);
   6052 
   6053 	mutex_exit(sc->sc_lock);
   6054 }
   6055 
   6056 /*
   6057  * This is software interrupt handler for playback.
   6058  * It is called from playback hardware interrupt everytime.
   6059  * It does:
   6060  * - Deliver SIGIO for all async and writable (used < lowat) processes.
   6061  * - Notify to audio_write() that outbuf block available.
   6062  * - selnotify() for select/poll-ing processes if there are any writable
   6063  *   (used < lowat) processes.  Checking each descriptor will be done by
   6064  *   filt_audiowrite_event().
   6065  */
   6066 static void
   6067 audio_softintr_wr(void *cookie)
   6068 {
   6069 	struct audio_softc *sc = cookie;
   6070 	audio_file_t *f;
   6071 	bool found;
   6072 	pid_t pid;
   6073 
   6074 	TRACE(4, "called");
   6075 	found = false;
   6076 
   6077 	mutex_enter(sc->sc_lock);
   6078 
   6079 	SLIST_FOREACH(f, &sc->sc_files, entry) {
   6080 		audio_track_t *track = f->ptrack;
   6081 
   6082 		if (track == NULL)
   6083 			continue;
   6084 
   6085 		TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
   6086 		    (int)track->seq,
   6087 		    track->outbuf.head,
   6088 		    track->outbuf.used,
   6089 		    track->outbuf.capacity);
   6090 
   6091 		/*
   6092 		 * Send a signal if the process is async mode and
   6093 		 * used is lower than lowat.
   6094 		 */
   6095 		if (track->usrbuf.used <= track->usrbuf_usedlow &&
   6096 		    !track->is_pause) {
   6097 			/* For selnotify */
   6098 			found = true;
   6099 			/* For SIGIO */
   6100 			pid = f->async_audio;
   6101 			if (pid != 0) {
   6102 				TRACEF(4, f, "sending SIGIO %d", pid);
   6103 				audio_psignal(sc, pid, SIGIO);
   6104 			}
   6105 		}
   6106 	}
   6107 
   6108 	/*
   6109 	 * Notify for select/poll when someone become writable.
   6110 	 * It needs sc_lock (and not sc_intr_lock).
   6111 	 */
   6112 	if (found) {
   6113 		TRACE(4, "selnotify");
   6114 		selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
   6115 		KNOTE(&sc->sc_wsel.sel_klist, 0);
   6116 	}
   6117 
   6118 	/* Notify to audio_write() that outbuf available. */
   6119 	cv_broadcast(&sc->sc_pmixer->outcv);
   6120 
   6121 	mutex_exit(sc->sc_lock);
   6122 }
   6123 
   6124 /*
   6125  * Check (and convert) the format *p came from userland.
   6126  * If successful, it writes back the converted format to *p if necessary
   6127  * and returns 0.  Otherwise returns errno (*p may change even this case).
   6128  */
   6129 static int
   6130 audio_check_params(audio_format2_t *p)
   6131 {
   6132 
   6133 	/*
   6134 	 * Convert obsolete AUDIO_ENCODING_PCM encodings.
   6135 	 *
   6136 	 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
   6137 	 * So, it's always signed, as in SunOS.
   6138 	 *
   6139 	 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
   6140 	 * So, it's always unsigned, as in SunOS.
   6141 	 */
   6142 	if (p->encoding == AUDIO_ENCODING_PCM16) {
   6143 		p->encoding = AUDIO_ENCODING_SLINEAR;
   6144 	} else if (p->encoding == AUDIO_ENCODING_PCM8) {
   6145 		if (p->precision == 8)
   6146 			p->encoding = AUDIO_ENCODING_ULINEAR;
   6147 		else
   6148 			return EINVAL;
   6149 	}
   6150 
   6151 	/*
   6152 	 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
   6153 	 * suffix.
   6154 	 */
   6155 	if (p->encoding == AUDIO_ENCODING_SLINEAR)
   6156 		p->encoding = AUDIO_ENCODING_SLINEAR_NE;
   6157 	if (p->encoding == AUDIO_ENCODING_ULINEAR)
   6158 		p->encoding = AUDIO_ENCODING_ULINEAR_NE;
   6159 
   6160 	switch (p->encoding) {
   6161 	case AUDIO_ENCODING_ULAW:
   6162 	case AUDIO_ENCODING_ALAW:
   6163 		if (p->precision != 8)
   6164 			return EINVAL;
   6165 		break;
   6166 	case AUDIO_ENCODING_ADPCM:
   6167 		if (p->precision != 4 && p->precision != 8)
   6168 			return EINVAL;
   6169 		break;
   6170 	case AUDIO_ENCODING_SLINEAR_LE:
   6171 	case AUDIO_ENCODING_SLINEAR_BE:
   6172 	case AUDIO_ENCODING_ULINEAR_LE:
   6173 	case AUDIO_ENCODING_ULINEAR_BE:
   6174 		if (p->precision !=  8 && p->precision != 16 &&
   6175 		    p->precision != 24 && p->precision != 32)
   6176 			return EINVAL;
   6177 
   6178 		/* 8bit format does not have endianness. */
   6179 		if (p->precision == 8) {
   6180 			if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
   6181 				p->encoding = AUDIO_ENCODING_SLINEAR_NE;
   6182 			if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
   6183 				p->encoding = AUDIO_ENCODING_ULINEAR_NE;
   6184 		}
   6185 
   6186 		if (p->precision > p->stride)
   6187 			return EINVAL;
   6188 		break;
   6189 	case AUDIO_ENCODING_MPEG_L1_STREAM:
   6190 	case AUDIO_ENCODING_MPEG_L1_PACKETS:
   6191 	case AUDIO_ENCODING_MPEG_L1_SYSTEM:
   6192 	case AUDIO_ENCODING_MPEG_L2_STREAM:
   6193 	case AUDIO_ENCODING_MPEG_L2_PACKETS:
   6194 	case AUDIO_ENCODING_MPEG_L2_SYSTEM:
   6195 	case AUDIO_ENCODING_AC3:
   6196 		break;
   6197 	default:
   6198 		return EINVAL;
   6199 	}
   6200 
   6201 	/* sanity check # of channels*/
   6202 	if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
   6203 		return EINVAL;
   6204 
   6205 	return 0;
   6206 }
   6207 
   6208 /*
   6209  * Initialize playback and record mixers.
   6210  * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
   6211  * phwfmt and rhwfmt indicate the hardware format.  pfil and rfil indicate
   6212  * the filter registration information.  These four must not be NULL.
   6213  * If successful returns 0.  Otherwise returns errno.
   6214  * Must be called with sc_exlock held and without sc_lock held.
   6215  * Must not be called if there are any tracks.
   6216  * Caller should check that the initialization succeed by whether
   6217  * sc_[pr]mixer is not NULL.
   6218  */
   6219 static int
   6220 audio_mixers_init(struct audio_softc *sc, int mode,
   6221 	const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
   6222 	const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
   6223 {
   6224 	int error;
   6225 
   6226 	KASSERT(phwfmt != NULL);
   6227 	KASSERT(rhwfmt != NULL);
   6228 	KASSERT(pfil != NULL);
   6229 	KASSERT(rfil != NULL);
   6230 	KASSERT(sc->sc_exlock);
   6231 
   6232 	if ((mode & AUMODE_PLAY)) {
   6233 		if (sc->sc_pmixer == NULL) {
   6234 			sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
   6235 			    KM_SLEEP);
   6236 		} else {
   6237 			/* destroy() doesn't free memory. */
   6238 			audio_mixer_destroy(sc, sc->sc_pmixer);
   6239 			memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
   6240 		}
   6241 		error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
   6242 		if (error) {
   6243 			device_printf(sc->sc_dev,
   6244 			    "configuring playback mode failed with %d\n",
   6245 			    error);
   6246 			kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
   6247 			sc->sc_pmixer = NULL;
   6248 			return error;
   6249 		}
   6250 	}
   6251 	if ((mode & AUMODE_RECORD)) {
   6252 		if (sc->sc_rmixer == NULL) {
   6253 			sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
   6254 			    KM_SLEEP);
   6255 		} else {
   6256 			/* destroy() doesn't free memory. */
   6257 			audio_mixer_destroy(sc, sc->sc_rmixer);
   6258 			memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
   6259 		}
   6260 		error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
   6261 		if (error) {
   6262 			device_printf(sc->sc_dev,
   6263 			    "configuring record mode failed with %d\n",
   6264 			    error);
   6265 			kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
   6266 			sc->sc_rmixer = NULL;
   6267 			return error;
   6268 		}
   6269 	}
   6270 
   6271 	return 0;
   6272 }
   6273 
   6274 /*
   6275  * Select a frequency.
   6276  * Prioritize 48kHz and 44.1kHz.  Otherwise choose the highest one.
   6277  * XXX Better algorithm?
   6278  */
   6279 static int
   6280 audio_select_freq(const struct audio_format *fmt)
   6281 {
   6282 	int freq;
   6283 	int high;
   6284 	int low;
   6285 	int j;
   6286 
   6287 	if (fmt->frequency_type == 0) {
   6288 		low = fmt->frequency[0];
   6289 		high = fmt->frequency[1];
   6290 		freq = 48000;
   6291 		if (low <= freq && freq <= high) {
   6292 			return freq;
   6293 		}
   6294 		freq = 44100;
   6295 		if (low <= freq && freq <= high) {
   6296 			return freq;
   6297 		}
   6298 		return high;
   6299 	} else {
   6300 		for (j = 0; j < fmt->frequency_type; j++) {
   6301 			if (fmt->frequency[j] == 48000) {
   6302 				return fmt->frequency[j];
   6303 			}
   6304 		}
   6305 		high = 0;
   6306 		for (j = 0; j < fmt->frequency_type; j++) {
   6307 			if (fmt->frequency[j] == 44100) {
   6308 				return fmt->frequency[j];
   6309 			}
   6310 			if (fmt->frequency[j] > high) {
   6311 				high = fmt->frequency[j];
   6312 			}
   6313 		}
   6314 		return high;
   6315 	}
   6316 }
   6317 
   6318 /*
   6319  * Choose the most preferred hardware format.
   6320  * If successful, it will store the chosen format into *cand and return 0.
   6321  * Otherwise, return errno.
   6322  * Must be called without sc_lock held.
   6323  */
   6324 static int
   6325 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
   6326 {
   6327 	audio_format_query_t query;
   6328 	int cand_score;
   6329 	int score;
   6330 	int i;
   6331 	int error;
   6332 
   6333 	/*
   6334 	 * Score each formats and choose the highest one.
   6335 	 *
   6336 	 *                 +---- priority(0-3)
   6337 	 *                 |+--- encoding/precision
   6338 	 *                 ||+-- channels
   6339 	 * score = 0x000000PEC
   6340 	 */
   6341 
   6342 	cand_score = 0;
   6343 	for (i = 0; ; i++) {
   6344 		memset(&query, 0, sizeof(query));
   6345 		query.index = i;
   6346 
   6347 		mutex_enter(sc->sc_lock);
   6348 		error = sc->hw_if->query_format(sc->hw_hdl, &query);
   6349 		mutex_exit(sc->sc_lock);
   6350 		if (error == EINVAL)
   6351 			break;
   6352 		if (error)
   6353 			return error;
   6354 
   6355 #if defined(AUDIO_DEBUG)
   6356 		DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
   6357 		    (query.fmt.mode & AUMODE_PLAY)   ? 'P' : '-',
   6358 		    (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
   6359 		    query.fmt.priority,
   6360 		    audio_encoding_name(query.fmt.encoding),
   6361 		    query.fmt.validbits,
   6362 		    query.fmt.precision,
   6363 		    query.fmt.channels);
   6364 		if (query.fmt.frequency_type == 0) {
   6365 			DPRINTF(1, "{%d-%d",
   6366 			    query.fmt.frequency[0], query.fmt.frequency[1]);
   6367 		} else {
   6368 			int j;
   6369 			for (j = 0; j < query.fmt.frequency_type; j++) {
   6370 				DPRINTF(1, "%c%d",
   6371 				    (j == 0) ? '{' : ',',
   6372 				    query.fmt.frequency[j]);
   6373 			}
   6374 		}
   6375 		DPRINTF(1, "}\n");
   6376 #endif
   6377 
   6378 		if ((query.fmt.mode & mode) == 0) {
   6379 			DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
   6380 			    mode);
   6381 			continue;
   6382 		}
   6383 
   6384 		if (query.fmt.priority < 0) {
   6385 			DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
   6386 			continue;
   6387 		}
   6388 
   6389 		/* Score */
   6390 		score = (query.fmt.priority & 3) * 0x100;
   6391 		if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
   6392 		    query.fmt.validbits == AUDIO_INTERNAL_BITS &&
   6393 		    query.fmt.precision == AUDIO_INTERNAL_BITS) {
   6394 			score += 0x20;
   6395 		} else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
   6396 		    query.fmt.validbits == AUDIO_INTERNAL_BITS &&
   6397 		    query.fmt.precision == AUDIO_INTERNAL_BITS) {
   6398 			score += 0x10;
   6399 		}
   6400 		score += query.fmt.channels;
   6401 
   6402 		if (score < cand_score) {
   6403 			DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
   6404 			    score, cand_score);
   6405 			continue;
   6406 		}
   6407 
   6408 		/* Update candidate */
   6409 		cand_score = score;
   6410 		cand->encoding    = query.fmt.encoding;
   6411 		cand->precision   = query.fmt.validbits;
   6412 		cand->stride      = query.fmt.precision;
   6413 		cand->channels    = query.fmt.channels;
   6414 		cand->sample_rate = audio_select_freq(&query.fmt);
   6415 		DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
   6416 		    " pri=%d %s,%d/%d,%dch,%dHz\n", i,
   6417 		    cand_score, query.fmt.priority,
   6418 		    audio_encoding_name(query.fmt.encoding),
   6419 		    cand->precision, cand->stride,
   6420 		    cand->channels, cand->sample_rate);
   6421 	}
   6422 
   6423 	if (cand_score == 0) {
   6424 		DPRINTF(1, "%s no fmt\n", __func__);
   6425 		return ENXIO;
   6426 	}
   6427 	DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
   6428 	    audio_encoding_name(cand->encoding),
   6429 	    cand->precision, cand->stride, cand->channels, cand->sample_rate);
   6430 	return 0;
   6431 }
   6432 
   6433 /*
   6434  * Validate fmt with query_format.
   6435  * If fmt is included in the result of query_format, returns 0.
   6436  * Otherwise returns EINVAL.
   6437  * Must be called without sc_lock held.
   6438  */
   6439 static int
   6440 audio_hw_validate_format(struct audio_softc *sc, int mode,
   6441 	const audio_format2_t *fmt)
   6442 {
   6443 	audio_format_query_t query;
   6444 	struct audio_format *q;
   6445 	int index;
   6446 	int error;
   6447 	int j;
   6448 
   6449 	for (index = 0; ; index++) {
   6450 		query.index = index;
   6451 		mutex_enter(sc->sc_lock);
   6452 		error = sc->hw_if->query_format(sc->hw_hdl, &query);
   6453 		mutex_exit(sc->sc_lock);
   6454 		if (error == EINVAL)
   6455 			break;
   6456 		if (error)
   6457 			return error;
   6458 
   6459 		q = &query.fmt;
   6460 		/*
   6461 		 * Note that fmt is audio_format2_t (precision/stride) but
   6462 		 * q is audio_format_t (validbits/precision).
   6463 		 */
   6464 		if ((q->mode & mode) == 0) {
   6465 			continue;
   6466 		}
   6467 		if (fmt->encoding != q->encoding) {
   6468 			continue;
   6469 		}
   6470 		if (fmt->precision != q->validbits) {
   6471 			continue;
   6472 		}
   6473 		if (fmt->stride != q->precision) {
   6474 			continue;
   6475 		}
   6476 		if (fmt->channels != q->channels) {
   6477 			continue;
   6478 		}
   6479 		if (q->frequency_type == 0) {
   6480 			if (fmt->sample_rate < q->frequency[0] ||
   6481 			    fmt->sample_rate > q->frequency[1]) {
   6482 				continue;
   6483 			}
   6484 		} else {
   6485 			for (j = 0; j < q->frequency_type; j++) {
   6486 				if (fmt->sample_rate == q->frequency[j])
   6487 					break;
   6488 			}
   6489 			if (j == query.fmt.frequency_type) {
   6490 				continue;
   6491 			}
   6492 		}
   6493 
   6494 		/* Matched. */
   6495 		return 0;
   6496 	}
   6497 
   6498 	return EINVAL;
   6499 }
   6500 
   6501 /*
   6502  * Set track mixer's format depending on ai->mode.
   6503  * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
   6504  * with ai.play.*.
   6505  * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
   6506  * with ai.record.*.
   6507  * All other fields in ai are ignored.
   6508  * If successful returns 0.  Otherwise returns errno.
   6509  * This function does not roll back even if it fails.
   6510  * Must be called with sc_exlock held and without sc_lock held.
   6511  */
   6512 static int
   6513 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
   6514 {
   6515 	audio_format2_t phwfmt;
   6516 	audio_format2_t rhwfmt;
   6517 	audio_filter_reg_t pfil;
   6518 	audio_filter_reg_t rfil;
   6519 	int mode;
   6520 	int error;
   6521 
   6522 	KASSERT(sc->sc_exlock);
   6523 
   6524 	/*
   6525 	 * Even when setting either one of playback and recording,
   6526 	 * both must be halted.
   6527 	 */
   6528 	if (sc->sc_popens + sc->sc_ropens > 0)
   6529 		return EBUSY;
   6530 
   6531 	if (!SPECIFIED(ai->mode) || ai->mode == 0)
   6532 		return ENOTTY;
   6533 
   6534 	mode = ai->mode;
   6535 	if ((mode & AUMODE_PLAY)) {
   6536 		phwfmt.encoding    = ai->play.encoding;
   6537 		phwfmt.precision   = ai->play.precision;
   6538 		phwfmt.stride      = ai->play.precision;
   6539 		phwfmt.channels    = ai->play.channels;
   6540 		phwfmt.sample_rate = ai->play.sample_rate;
   6541 	}
   6542 	if ((mode & AUMODE_RECORD)) {
   6543 		rhwfmt.encoding    = ai->record.encoding;
   6544 		rhwfmt.precision   = ai->record.precision;
   6545 		rhwfmt.stride      = ai->record.precision;
   6546 		rhwfmt.channels    = ai->record.channels;
   6547 		rhwfmt.sample_rate = ai->record.sample_rate;
   6548 	}
   6549 
   6550 	/* On non-independent devices, use the same format for both. */
   6551 	if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
   6552 		if (mode == AUMODE_RECORD) {
   6553 			phwfmt = rhwfmt;
   6554 		} else {
   6555 			rhwfmt = phwfmt;
   6556 		}
   6557 		mode = AUMODE_PLAY | AUMODE_RECORD;
   6558 	}
   6559 
   6560 	/* Then, unset the direction not exist on the hardware. */
   6561 	if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
   6562 		mode &= ~AUMODE_PLAY;
   6563 	if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
   6564 		mode &= ~AUMODE_RECORD;
   6565 
   6566 	/* debug */
   6567 	if ((mode & AUMODE_PLAY)) {
   6568 		TRACE(1, "play=%s/%d/%d/%dch/%dHz",
   6569 		    audio_encoding_name(phwfmt.encoding),
   6570 		    phwfmt.precision,
   6571 		    phwfmt.stride,
   6572 		    phwfmt.channels,
   6573 		    phwfmt.sample_rate);
   6574 	}
   6575 	if ((mode & AUMODE_RECORD)) {
   6576 		TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
   6577 		    audio_encoding_name(rhwfmt.encoding),
   6578 		    rhwfmt.precision,
   6579 		    rhwfmt.stride,
   6580 		    rhwfmt.channels,
   6581 		    rhwfmt.sample_rate);
   6582 	}
   6583 
   6584 	/* Check the format */
   6585 	if ((mode & AUMODE_PLAY)) {
   6586 		if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
   6587 			TRACE(1, "invalid format");
   6588 			return EINVAL;
   6589 		}
   6590 	}
   6591 	if ((mode & AUMODE_RECORD)) {
   6592 		if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
   6593 			TRACE(1, "invalid format");
   6594 			return EINVAL;
   6595 		}
   6596 	}
   6597 
   6598 	/* Configure the mixers. */
   6599 	memset(&pfil, 0, sizeof(pfil));
   6600 	memset(&rfil, 0, sizeof(rfil));
   6601 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   6602 	if (error)
   6603 		return error;
   6604 
   6605 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   6606 	if (error)
   6607 		return error;
   6608 
   6609 	/*
   6610 	 * Reinitialize the sticky parameters for /dev/sound.
   6611 	 * If the number of the hardware channels becomes less than the number
   6612 	 * of channels that sticky parameters remember, subsequent /dev/sound
   6613 	 * open will fail.  To prevent this, reinitialize the sticky
   6614 	 * parameters whenever the hardware format is changed.
   6615 	 */
   6616 	sc->sc_sound_pparams = params_to_format2(&audio_default);
   6617 	sc->sc_sound_rparams = params_to_format2(&audio_default);
   6618 	sc->sc_sound_ppause = false;
   6619 	sc->sc_sound_rpause = false;
   6620 
   6621 	return 0;
   6622 }
   6623 
   6624 /*
   6625  * Store current mixers format into *ai.
   6626  * Must be called with sc_exlock held.
   6627  */
   6628 static void
   6629 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
   6630 {
   6631 
   6632 	KASSERT(sc->sc_exlock);
   6633 
   6634 	/*
   6635 	 * There is no stride information in audio_info but it doesn't matter.
   6636 	 * trackmixer always treats stride and precision as the same.
   6637 	 */
   6638 	AUDIO_INITINFO(ai);
   6639 	ai->mode = 0;
   6640 	if (sc->sc_pmixer) {
   6641 		audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
   6642 		ai->play.encoding    = fmt->encoding;
   6643 		ai->play.precision   = fmt->precision;
   6644 		ai->play.channels    = fmt->channels;
   6645 		ai->play.sample_rate = fmt->sample_rate;
   6646 		ai->mode |= AUMODE_PLAY;
   6647 	}
   6648 	if (sc->sc_rmixer) {
   6649 		audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
   6650 		ai->record.encoding    = fmt->encoding;
   6651 		ai->record.precision   = fmt->precision;
   6652 		ai->record.channels    = fmt->channels;
   6653 		ai->record.sample_rate = fmt->sample_rate;
   6654 		ai->mode |= AUMODE_RECORD;
   6655 	}
   6656 }
   6657 
   6658 /*
   6659  * audio_info details:
   6660  *
   6661  * ai.{play,record}.sample_rate		(R/W)
   6662  * ai.{play,record}.encoding		(R/W)
   6663  * ai.{play,record}.precision		(R/W)
   6664  * ai.{play,record}.channels		(R/W)
   6665  *	These specify the playback or recording format.
   6666  *	Ignore members within an inactive track.
   6667  *
   6668  * ai.mode				(R/W)
   6669  *	It specifies the playback or recording mode, AUMODE_*.
   6670  *	Currently, a mode change operation by ai.mode after opening is
   6671  *	prohibited.  In addition, AUMODE_PLAY_ALL no longer makes sense.
   6672  *	However, it's possible to get or to set for backward compatibility.
   6673  *
   6674  * ai.{hiwat,lowat}			(R/W)
   6675  *	These specify the high water mark and low water mark for playback
   6676  *	track.  The unit is block.
   6677  *
   6678  * ai.{play,record}.gain		(R/W)
   6679  *	It specifies the HW mixer volume in 0-255.
   6680  *	It is historical reason that the gain is connected to HW mixer.
   6681  *
   6682  * ai.{play,record}.balance		(R/W)
   6683  *	It specifies the left-right balance of HW mixer in 0-64.
   6684  *	32 means the center.
   6685  *	It is historical reason that the balance is connected to HW mixer.
   6686  *
   6687  * ai.{play,record}.port		(R/W)
   6688  *	It specifies the input/output port of HW mixer.
   6689  *
   6690  * ai.monitor_gain			(R/W)
   6691  *	It specifies the recording monitor gain(?) of HW mixer.
   6692  *
   6693  * ai.{play,record}.pause		(R/W)
   6694  *	Non-zero means the track is paused.
   6695  *
   6696  * ai.play.seek				(R/-)
   6697  *	It indicates the number of bytes written but not processed.
   6698  * ai.record.seek			(R/-)
   6699  *	It indicates the number of bytes to be able to read.
   6700  *
   6701  * ai.{play,record}.avail_ports		(R/-)
   6702  *	Mixer info.
   6703  *
   6704  * ai.{play,record}.buffer_size		(R/-)
   6705  *	It indicates the buffer size in bytes.  Internally it means usrbuf.
   6706  *
   6707  * ai.{play,record}.samples		(R/-)
   6708  *	It indicates the total number of bytes played or recorded.
   6709  *
   6710  * ai.{play,record}.eof			(R/-)
   6711  *	It indicates the number of times reached EOF(?).
   6712  *
   6713  * ai.{play,record}.error		(R/-)
   6714  *	Non-zero indicates overflow/underflow has occured.
   6715  *
   6716  * ai.{play,record}.waiting		(R/-)
   6717  *	Non-zero indicates that other process waits to open.
   6718  *	It will never happen anymore.
   6719  *
   6720  * ai.{play,record}.open		(R/-)
   6721  *	Non-zero indicates the direction is opened by this process(?).
   6722  *	XXX Is this better to indicate that "the device is opened by
   6723  *	at least one process"?
   6724  *
   6725  * ai.{play,record}.active		(R/-)
   6726  *	Non-zero indicates that I/O is currently active.
   6727  *
   6728  * ai.blocksize				(R/-)
   6729  *	It indicates the block size in bytes.
   6730  *	XXX The blocksize of playback and recording may be different.
   6731  */
   6732 
   6733 /*
   6734  * Pause consideration:
   6735  *
   6736  * Pausing/unpausing never affect [pr]mixer.  This single rule makes
   6737  * operation simple.  Note that playback and recording are asymmetric.
   6738  *
   6739  * For playback,
   6740  *  1. Any playback open doesn't start pmixer regardless of initial pause
   6741  *     state of this track.
   6742  *  2. The first write access among playback tracks only starts pmixer
   6743  *     regardless of this track's pause state.
   6744  *  3. Even a pause of the last playback track doesn't stop pmixer.
   6745  *  4. The last close of all playback tracks only stops pmixer.
   6746  *
   6747  * For recording,
   6748  *  1. The first recording open only starts rmixer regardless of initial
   6749  *     pause state of this track.
   6750  *  2. Even a pause of the last track doesn't stop rmixer.
   6751  *  3. The last close of all recording tracks only stops rmixer.
   6752  */
   6753 
   6754 /*
   6755  * Set both track's parameters within a file depending on ai.
   6756  * Update sc_sound_[pr]* if set.
   6757  * Must be called with sc_exlock held and without sc_lock held.
   6758  */
   6759 static int
   6760 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
   6761 	const struct audio_info *ai)
   6762 {
   6763 	const struct audio_prinfo *pi;
   6764 	const struct audio_prinfo *ri;
   6765 	audio_track_t *ptrack;
   6766 	audio_track_t *rtrack;
   6767 	audio_format2_t pfmt;
   6768 	audio_format2_t rfmt;
   6769 	int pchanges;
   6770 	int rchanges;
   6771 	int mode;
   6772 	struct audio_info saved_ai;
   6773 	audio_format2_t saved_pfmt;
   6774 	audio_format2_t saved_rfmt;
   6775 	int error;
   6776 
   6777 	KASSERT(sc->sc_exlock);
   6778 
   6779 	pi = &ai->play;
   6780 	ri = &ai->record;
   6781 	pchanges = 0;
   6782 	rchanges = 0;
   6783 
   6784 	ptrack = file->ptrack;
   6785 	rtrack = file->rtrack;
   6786 
   6787 #if defined(AUDIO_DEBUG)
   6788 	if (audiodebug >= 2) {
   6789 		char buf[256];
   6790 		char p[64];
   6791 		int buflen;
   6792 		int plen;
   6793 #define SPRINTF(var, fmt...) do {	\
   6794 	var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
   6795 } while (0)
   6796 
   6797 		buflen = 0;
   6798 		plen = 0;
   6799 		if (SPECIFIED(pi->encoding))
   6800 			SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
   6801 		if (SPECIFIED(pi->precision))
   6802 			SPRINTF(p, "/%dbit", pi->precision);
   6803 		if (SPECIFIED(pi->channels))
   6804 			SPRINTF(p, "/%dch", pi->channels);
   6805 		if (SPECIFIED(pi->sample_rate))
   6806 			SPRINTF(p, "/%dHz", pi->sample_rate);
   6807 		if (plen > 0)
   6808 			SPRINTF(buf, ",play.param=%s", p + 1);
   6809 
   6810 		plen = 0;
   6811 		if (SPECIFIED(ri->encoding))
   6812 			SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
   6813 		if (SPECIFIED(ri->precision))
   6814 			SPRINTF(p, "/%dbit", ri->precision);
   6815 		if (SPECIFIED(ri->channels))
   6816 			SPRINTF(p, "/%dch", ri->channels);
   6817 		if (SPECIFIED(ri->sample_rate))
   6818 			SPRINTF(p, "/%dHz", ri->sample_rate);
   6819 		if (plen > 0)
   6820 			SPRINTF(buf, ",record.param=%s", p + 1);
   6821 
   6822 		if (SPECIFIED(ai->mode))
   6823 			SPRINTF(buf, ",mode=%d", ai->mode);
   6824 		if (SPECIFIED(ai->hiwat))
   6825 			SPRINTF(buf, ",hiwat=%d", ai->hiwat);
   6826 		if (SPECIFIED(ai->lowat))
   6827 			SPRINTF(buf, ",lowat=%d", ai->lowat);
   6828 		if (SPECIFIED(ai->play.gain))
   6829 			SPRINTF(buf, ",play.gain=%d", ai->play.gain);
   6830 		if (SPECIFIED(ai->record.gain))
   6831 			SPRINTF(buf, ",record.gain=%d", ai->record.gain);
   6832 		if (SPECIFIED_CH(ai->play.balance))
   6833 			SPRINTF(buf, ",play.balance=%d", ai->play.balance);
   6834 		if (SPECIFIED_CH(ai->record.balance))
   6835 			SPRINTF(buf, ",record.balance=%d", ai->record.balance);
   6836 		if (SPECIFIED(ai->play.port))
   6837 			SPRINTF(buf, ",play.port=%d", ai->play.port);
   6838 		if (SPECIFIED(ai->record.port))
   6839 			SPRINTF(buf, ",record.port=%d", ai->record.port);
   6840 		if (SPECIFIED(ai->monitor_gain))
   6841 			SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
   6842 		if (SPECIFIED_CH(ai->play.pause))
   6843 			SPRINTF(buf, ",play.pause=%d", ai->play.pause);
   6844 		if (SPECIFIED_CH(ai->record.pause))
   6845 			SPRINTF(buf, ",record.pause=%d", ai->record.pause);
   6846 
   6847 		if (buflen > 0)
   6848 			TRACE(2, "specified %s", buf + 1);
   6849 	}
   6850 #endif
   6851 
   6852 	AUDIO_INITINFO(&saved_ai);
   6853 	/* XXX shut up gcc */
   6854 	memset(&saved_pfmt, 0, sizeof(saved_pfmt));
   6855 	memset(&saved_rfmt, 0, sizeof(saved_rfmt));
   6856 
   6857 	/*
   6858 	 * Set default value and save current parameters.
   6859 	 * For backward compatibility, use sticky parameters for nonexistent
   6860 	 * track.
   6861 	 */
   6862 	if (ptrack) {
   6863 		pfmt = ptrack->usrbuf.fmt;
   6864 		saved_pfmt = ptrack->usrbuf.fmt;
   6865 		saved_ai.play.pause = ptrack->is_pause;
   6866 	} else {
   6867 		pfmt = sc->sc_sound_pparams;
   6868 	}
   6869 	if (rtrack) {
   6870 		rfmt = rtrack->usrbuf.fmt;
   6871 		saved_rfmt = rtrack->usrbuf.fmt;
   6872 		saved_ai.record.pause = rtrack->is_pause;
   6873 	} else {
   6874 		rfmt = sc->sc_sound_rparams;
   6875 	}
   6876 	saved_ai.mode = file->mode;
   6877 
   6878 	/*
   6879 	 * Overwrite if specified.
   6880 	 */
   6881 	mode = file->mode;
   6882 	if (SPECIFIED(ai->mode)) {
   6883 		/*
   6884 		 * Setting ai->mode no longer does anything because it's
   6885 		 * prohibited to change playback/recording mode after open
   6886 		 * and AUMODE_PLAY_ALL is obsoleted.  However, it still
   6887 		 * keeps the state of AUMODE_PLAY_ALL itself for backward
   6888 		 * compatibility.
   6889 		 * In the internal, only file->mode has the state of
   6890 		 * AUMODE_PLAY_ALL flag and track->mode in both track does
   6891 		 * not have.
   6892 		 */
   6893 		if ((file->mode & AUMODE_PLAY)) {
   6894 			mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
   6895 			    | (ai->mode & AUMODE_PLAY_ALL);
   6896 		}
   6897 	}
   6898 
   6899 	pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
   6900 	if (pchanges == -1) {
   6901 #if defined(AUDIO_DEBUG)
   6902 		TRACEF(1, file, "check play.params failed: "
   6903 		    "%s %ubit %uch %uHz",
   6904 		    audio_encoding_name(pi->encoding),
   6905 		    pi->precision,
   6906 		    pi->channels,
   6907 		    pi->sample_rate);
   6908 #endif
   6909 		return EINVAL;
   6910 	}
   6911 
   6912 	rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
   6913 	if (rchanges == -1) {
   6914 #if defined(AUDIO_DEBUG)
   6915 		TRACEF(1, file, "check record.params failed: "
   6916 		    "%s %ubit %uch %uHz",
   6917 		    audio_encoding_name(ri->encoding),
   6918 		    ri->precision,
   6919 		    ri->channels,
   6920 		    ri->sample_rate);
   6921 #endif
   6922 		return EINVAL;
   6923 	}
   6924 
   6925 	if (SPECIFIED(ai->mode)) {
   6926 		pchanges = 1;
   6927 		rchanges = 1;
   6928 	}
   6929 
   6930 	/*
   6931 	 * Even when setting either one of playback and recording,
   6932 	 * both track must be halted.
   6933 	 */
   6934 	if (pchanges || rchanges) {
   6935 		audio_file_clear(sc, file);
   6936 #if defined(AUDIO_DEBUG)
   6937 		char nbuf[16];
   6938 		char fmtbuf[64];
   6939 		if (pchanges) {
   6940 			if (ptrack) {
   6941 				snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
   6942 			} else {
   6943 				snprintf(nbuf, sizeof(nbuf), "-");
   6944 			}
   6945 			audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
   6946 			DPRINTF(1, "audio track#%s play mode: %s\n",
   6947 			    nbuf, fmtbuf);
   6948 		}
   6949 		if (rchanges) {
   6950 			if (rtrack) {
   6951 				snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
   6952 			} else {
   6953 				snprintf(nbuf, sizeof(nbuf), "-");
   6954 			}
   6955 			audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
   6956 			DPRINTF(1, "audio track#%s rec  mode: %s\n",
   6957 			    nbuf, fmtbuf);
   6958 		}
   6959 #endif
   6960 	}
   6961 
   6962 	/* Set mixer parameters */
   6963 	mutex_enter(sc->sc_lock);
   6964 	error = audio_hw_setinfo(sc, ai, &saved_ai);
   6965 	mutex_exit(sc->sc_lock);
   6966 	if (error)
   6967 		goto abort1;
   6968 
   6969 	/*
   6970 	 * Set to track and update sticky parameters.
   6971 	 */
   6972 	error = 0;
   6973 	file->mode = mode;
   6974 
   6975 	if (SPECIFIED_CH(pi->pause)) {
   6976 		if (ptrack)
   6977 			ptrack->is_pause = pi->pause;
   6978 		sc->sc_sound_ppause = pi->pause;
   6979 	}
   6980 	if (pchanges) {
   6981 		if (ptrack) {
   6982 			audio_track_lock_enter(ptrack);
   6983 			error = audio_track_set_format(ptrack, &pfmt);
   6984 			audio_track_lock_exit(ptrack);
   6985 			if (error) {
   6986 				TRACET(1, ptrack, "set play.params failed");
   6987 				goto abort2;
   6988 			}
   6989 		}
   6990 		sc->sc_sound_pparams = pfmt;
   6991 	}
   6992 	/* Change water marks after initializing the buffers. */
   6993 	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
   6994 		if (ptrack)
   6995 			audio_track_setinfo_water(ptrack, ai);
   6996 	}
   6997 
   6998 	if (SPECIFIED_CH(ri->pause)) {
   6999 		if (rtrack)
   7000 			rtrack->is_pause = ri->pause;
   7001 		sc->sc_sound_rpause = ri->pause;
   7002 	}
   7003 	if (rchanges) {
   7004 		if (rtrack) {
   7005 			audio_track_lock_enter(rtrack);
   7006 			error = audio_track_set_format(rtrack, &rfmt);
   7007 			audio_track_lock_exit(rtrack);
   7008 			if (error) {
   7009 				TRACET(1, rtrack, "set record.params failed");
   7010 				goto abort3;
   7011 			}
   7012 		}
   7013 		sc->sc_sound_rparams = rfmt;
   7014 	}
   7015 
   7016 	return 0;
   7017 
   7018 	/* Rollback */
   7019 abort3:
   7020 	if (error != ENOMEM) {
   7021 		rtrack->is_pause = saved_ai.record.pause;
   7022 		audio_track_lock_enter(rtrack);
   7023 		audio_track_set_format(rtrack, &saved_rfmt);
   7024 		audio_track_lock_exit(rtrack);
   7025 	}
   7026 	sc->sc_sound_rpause = saved_ai.record.pause;
   7027 	sc->sc_sound_rparams = saved_rfmt;
   7028 abort2:
   7029 	if (ptrack && error != ENOMEM) {
   7030 		ptrack->is_pause = saved_ai.play.pause;
   7031 		audio_track_lock_enter(ptrack);
   7032 		audio_track_set_format(ptrack, &saved_pfmt);
   7033 		audio_track_lock_exit(ptrack);
   7034 	}
   7035 	sc->sc_sound_ppause = saved_ai.play.pause;
   7036 	sc->sc_sound_pparams = saved_pfmt;
   7037 	file->mode = saved_ai.mode;
   7038 abort1:
   7039 	mutex_enter(sc->sc_lock);
   7040 	audio_hw_setinfo(sc, &saved_ai, NULL);
   7041 	mutex_exit(sc->sc_lock);
   7042 
   7043 	return error;
   7044 }
   7045 
   7046 /*
   7047  * Write SPECIFIED() parameters within info back to fmt.
   7048  * Note that track can be NULL here.
   7049  * Return value of 1 indicates that fmt is modified.
   7050  * Return value of 0 indicates that fmt is not modified.
   7051  * Return value of -1 indicates that error EINVAL has occurred.
   7052  */
   7053 static int
   7054 audio_track_setinfo_check(audio_track_t *track,
   7055 	audio_format2_t *fmt, const struct audio_prinfo *info)
   7056 {
   7057 	const audio_format2_t *hwfmt;
   7058 	int changes;
   7059 
   7060 	changes = 0;
   7061 	if (SPECIFIED(info->sample_rate)) {
   7062 		if (info->sample_rate < AUDIO_MIN_FREQUENCY)
   7063 			return -1;
   7064 		if (info->sample_rate > AUDIO_MAX_FREQUENCY)
   7065 			return -1;
   7066 		fmt->sample_rate = info->sample_rate;
   7067 		changes = 1;
   7068 	}
   7069 	if (SPECIFIED(info->encoding)) {
   7070 		fmt->encoding = info->encoding;
   7071 		changes = 1;
   7072 	}
   7073 	if (SPECIFIED(info->precision)) {
   7074 		fmt->precision = info->precision;
   7075 		/* we don't have API to specify stride */
   7076 		fmt->stride = info->precision;
   7077 		changes = 1;
   7078 	}
   7079 	if (SPECIFIED(info->channels)) {
   7080 		/*
   7081 		 * We can convert between monaural and stereo each other.
   7082 		 * We can reduce than the number of channels that the hardware
   7083 		 * supports.
   7084 		 */
   7085 		if (info->channels > 2) {
   7086 			if (track) {
   7087 				hwfmt = &track->mixer->hwbuf.fmt;
   7088 				if (info->channels > hwfmt->channels)
   7089 					return -1;
   7090 			} else {
   7091 				/*
   7092 				 * This should never happen.
   7093 				 * If track == NULL, channels should be <= 2.
   7094 				 */
   7095 				return -1;
   7096 			}
   7097 		}
   7098 		fmt->channels = info->channels;
   7099 		changes = 1;
   7100 	}
   7101 
   7102 	if (changes) {
   7103 		if (audio_check_params(fmt) != 0)
   7104 			return -1;
   7105 	}
   7106 
   7107 	return changes;
   7108 }
   7109 
   7110 /*
   7111  * Change water marks for playback track if specfied.
   7112  */
   7113 static void
   7114 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
   7115 {
   7116 	u_int blks;
   7117 	u_int maxblks;
   7118 	u_int blksize;
   7119 
   7120 	KASSERT(audio_track_is_playback(track));
   7121 
   7122 	blksize = track->usrbuf_blksize;
   7123 	maxblks = track->usrbuf.capacity / blksize;
   7124 
   7125 	if (SPECIFIED(ai->hiwat)) {
   7126 		blks = ai->hiwat;
   7127 		if (blks > maxblks)
   7128 			blks = maxblks;
   7129 		if (blks < 2)
   7130 			blks = 2;
   7131 		track->usrbuf_usedhigh = blks * blksize;
   7132 	}
   7133 	if (SPECIFIED(ai->lowat)) {
   7134 		blks = ai->lowat;
   7135 		if (blks > maxblks - 1)
   7136 			blks = maxblks - 1;
   7137 		track->usrbuf_usedlow = blks * blksize;
   7138 	}
   7139 	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
   7140 		if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
   7141 			track->usrbuf_usedlow = track->usrbuf_usedhigh -
   7142 			    blksize;
   7143 		}
   7144 	}
   7145 }
   7146 
   7147 /*
   7148  * Set hardware part of *newai.
   7149  * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
   7150  * If oldai is specified, previous parameters are stored.
   7151  * This function itself does not roll back if error occurred.
   7152  * Must be called with sc_lock && sc_exlock held.
   7153  */
   7154 static int
   7155 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
   7156 	struct audio_info *oldai)
   7157 {
   7158 	const struct audio_prinfo *newpi;
   7159 	const struct audio_prinfo *newri;
   7160 	struct audio_prinfo *oldpi;
   7161 	struct audio_prinfo *oldri;
   7162 	u_int pgain;
   7163 	u_int rgain;
   7164 	u_char pbalance;
   7165 	u_char rbalance;
   7166 	int error;
   7167 
   7168 	KASSERT(mutex_owned(sc->sc_lock));
   7169 	KASSERT(sc->sc_exlock);
   7170 
   7171 	/* XXX shut up gcc */
   7172 	oldpi = NULL;
   7173 	oldri = NULL;
   7174 
   7175 	newpi = &newai->play;
   7176 	newri = &newai->record;
   7177 	if (oldai) {
   7178 		oldpi = &oldai->play;
   7179 		oldri = &oldai->record;
   7180 	}
   7181 	error = 0;
   7182 
   7183 	/*
   7184 	 * It looks like unnecessary to halt HW mixers to set HW mixers.
   7185 	 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
   7186 	 */
   7187 
   7188 	if (SPECIFIED(newpi->port)) {
   7189 		if (oldai)
   7190 			oldpi->port = au_get_port(sc, &sc->sc_outports);
   7191 		error = au_set_port(sc, &sc->sc_outports, newpi->port);
   7192 		if (error) {
   7193 			device_printf(sc->sc_dev,
   7194 			    "setting play.port=%d failed with %d\n",
   7195 			    newpi->port, error);
   7196 			goto abort;
   7197 		}
   7198 	}
   7199 	if (SPECIFIED(newri->port)) {
   7200 		if (oldai)
   7201 			oldri->port = au_get_port(sc, &sc->sc_inports);
   7202 		error = au_set_port(sc, &sc->sc_inports, newri->port);
   7203 		if (error) {
   7204 			device_printf(sc->sc_dev,
   7205 			    "setting record.port=%d failed with %d\n",
   7206 			    newri->port, error);
   7207 			goto abort;
   7208 		}
   7209 	}
   7210 
   7211 	/* Backup play.{gain,balance} */
   7212 	if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
   7213 		au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
   7214 		if (oldai) {
   7215 			oldpi->gain = pgain;
   7216 			oldpi->balance = pbalance;
   7217 		}
   7218 	}
   7219 	/* Backup record.{gain,balance} */
   7220 	if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
   7221 		au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
   7222 		if (oldai) {
   7223 			oldri->gain = rgain;
   7224 			oldri->balance = rbalance;
   7225 		}
   7226 	}
   7227 	if (SPECIFIED(newpi->gain)) {
   7228 		error = au_set_gain(sc, &sc->sc_outports,
   7229 		    newpi->gain, pbalance);
   7230 		if (error) {
   7231 			device_printf(sc->sc_dev,
   7232 			    "setting play.gain=%d failed with %d\n",
   7233 			    newpi->gain, error);
   7234 			goto abort;
   7235 		}
   7236 	}
   7237 	if (SPECIFIED(newri->gain)) {
   7238 		error = au_set_gain(sc, &sc->sc_inports,
   7239 		    newri->gain, rbalance);
   7240 		if (error) {
   7241 			device_printf(sc->sc_dev,
   7242 			    "setting record.gain=%d failed with %d\n",
   7243 			    newri->gain, error);
   7244 			goto abort;
   7245 		}
   7246 	}
   7247 	if (SPECIFIED_CH(newpi->balance)) {
   7248 		error = au_set_gain(sc, &sc->sc_outports,
   7249 		    pgain, newpi->balance);
   7250 		if (error) {
   7251 			device_printf(sc->sc_dev,
   7252 			    "setting play.balance=%d failed with %d\n",
   7253 			    newpi->balance, error);
   7254 			goto abort;
   7255 		}
   7256 	}
   7257 	if (SPECIFIED_CH(newri->balance)) {
   7258 		error = au_set_gain(sc, &sc->sc_inports,
   7259 		    rgain, newri->balance);
   7260 		if (error) {
   7261 			device_printf(sc->sc_dev,
   7262 			    "setting record.balance=%d failed with %d\n",
   7263 			    newri->balance, error);
   7264 			goto abort;
   7265 		}
   7266 	}
   7267 
   7268 	if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
   7269 		if (oldai)
   7270 			oldai->monitor_gain = au_get_monitor_gain(sc);
   7271 		error = au_set_monitor_gain(sc, newai->monitor_gain);
   7272 		if (error) {
   7273 			device_printf(sc->sc_dev,
   7274 			    "setting monitor_gain=%d failed with %d\n",
   7275 			    newai->monitor_gain, error);
   7276 			goto abort;
   7277 		}
   7278 	}
   7279 
   7280 	/* XXX TODO */
   7281 	/* sc->sc_ai = *ai; */
   7282 
   7283 	error = 0;
   7284 abort:
   7285 	return error;
   7286 }
   7287 
   7288 /*
   7289  * Setup the hardware with mixer format phwfmt, rhwfmt.
   7290  * The arguments have following restrictions:
   7291  * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
   7292  *   or both.
   7293  * - phwfmt and rhwfmt must not be NULL regardless of setmode.
   7294  * - On non-independent devices, phwfmt and rhwfmt must have the same
   7295  *   parameters.
   7296  * - pfil and rfil must be zero-filled.
   7297  * If successful,
   7298  * - pfil, rfil will be filled with filter information specified by the
   7299  *   hardware driver if necessary.
   7300  * and then returns 0.  Otherwise returns errno.
   7301  * Must be called without sc_lock held.
   7302  */
   7303 static int
   7304 audio_hw_set_format(struct audio_softc *sc, int setmode,
   7305 	const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
   7306 	audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
   7307 {
   7308 	audio_params_t pp, rp;
   7309 	int error;
   7310 
   7311 	KASSERT(phwfmt != NULL);
   7312 	KASSERT(rhwfmt != NULL);
   7313 
   7314 	pp = format2_to_params(phwfmt);
   7315 	rp = format2_to_params(rhwfmt);
   7316 
   7317 	mutex_enter(sc->sc_lock);
   7318 	error = sc->hw_if->set_format(sc->hw_hdl, setmode,
   7319 	    &pp, &rp, pfil, rfil);
   7320 	if (error) {
   7321 		mutex_exit(sc->sc_lock);
   7322 		device_printf(sc->sc_dev,
   7323 		    "set_format failed with %d\n", error);
   7324 		return error;
   7325 	}
   7326 
   7327 	if (sc->hw_if->commit_settings) {
   7328 		error = sc->hw_if->commit_settings(sc->hw_hdl);
   7329 		if (error) {
   7330 			mutex_exit(sc->sc_lock);
   7331 			device_printf(sc->sc_dev,
   7332 			    "commit_settings failed with %d\n", error);
   7333 			return error;
   7334 		}
   7335 	}
   7336 	mutex_exit(sc->sc_lock);
   7337 
   7338 	return 0;
   7339 }
   7340 
   7341 /*
   7342  * Fill audio_info structure.  If need_mixerinfo is true, it will also
   7343  * fill the hardware mixer information.
   7344  * Must be called with sc_exlock held and without sc_lock held.
   7345  */
   7346 static int
   7347 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
   7348 	audio_file_t *file)
   7349 {
   7350 	struct audio_prinfo *ri, *pi;
   7351 	audio_track_t *track;
   7352 	audio_track_t *ptrack;
   7353 	audio_track_t *rtrack;
   7354 	int gain;
   7355 
   7356 	KASSERT(sc->sc_exlock);
   7357 
   7358 	ri = &ai->record;
   7359 	pi = &ai->play;
   7360 	ptrack = file->ptrack;
   7361 	rtrack = file->rtrack;
   7362 
   7363 	memset(ai, 0, sizeof(*ai));
   7364 
   7365 	if (ptrack) {
   7366 		pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
   7367 		pi->channels    = ptrack->usrbuf.fmt.channels;
   7368 		pi->precision   = ptrack->usrbuf.fmt.precision;
   7369 		pi->encoding    = ptrack->usrbuf.fmt.encoding;
   7370 		pi->pause       = ptrack->is_pause;
   7371 	} else {
   7372 		/* Use sticky parameters if the track is not available. */
   7373 		pi->sample_rate = sc->sc_sound_pparams.sample_rate;
   7374 		pi->channels    = sc->sc_sound_pparams.channels;
   7375 		pi->precision   = sc->sc_sound_pparams.precision;
   7376 		pi->encoding    = sc->sc_sound_pparams.encoding;
   7377 		pi->pause       = sc->sc_sound_ppause;
   7378 	}
   7379 	if (rtrack) {
   7380 		ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
   7381 		ri->channels    = rtrack->usrbuf.fmt.channels;
   7382 		ri->precision   = rtrack->usrbuf.fmt.precision;
   7383 		ri->encoding    = rtrack->usrbuf.fmt.encoding;
   7384 		ri->pause       = rtrack->is_pause;
   7385 	} else {
   7386 		/* Use sticky parameters if the track is not available. */
   7387 		ri->sample_rate = sc->sc_sound_rparams.sample_rate;
   7388 		ri->channels    = sc->sc_sound_rparams.channels;
   7389 		ri->precision   = sc->sc_sound_rparams.precision;
   7390 		ri->encoding    = sc->sc_sound_rparams.encoding;
   7391 		ri->pause       = sc->sc_sound_rpause;
   7392 	}
   7393 
   7394 	if (ptrack) {
   7395 		pi->seek = ptrack->usrbuf.used;
   7396 		pi->samples = ptrack->usrbuf_stamp;
   7397 		pi->eof = ptrack->eofcounter;
   7398 		pi->error = (ptrack->dropframes != 0) ? 1 : 0;
   7399 		pi->open = 1;
   7400 		pi->buffer_size = ptrack->usrbuf.capacity;
   7401 	}
   7402 	pi->waiting = 0;		/* open never hangs */
   7403 	pi->active = sc->sc_pbusy;
   7404 
   7405 	if (rtrack) {
   7406 		ri->seek = rtrack->usrbuf.used;
   7407 		ri->samples = rtrack->usrbuf_stamp;
   7408 		ri->eof = 0;
   7409 		ri->error = (rtrack->dropframes != 0) ? 1 : 0;
   7410 		ri->open = 1;
   7411 		ri->buffer_size = rtrack->usrbuf.capacity;
   7412 	}
   7413 	ri->waiting = 0;		/* open never hangs */
   7414 	ri->active = sc->sc_rbusy;
   7415 
   7416 	/*
   7417 	 * XXX There may be different number of channels between playback
   7418 	 *     and recording, so that blocksize also may be different.
   7419 	 *     But struct audio_info has an united blocksize...
   7420 	 *     Here, I use play info precedencely if ptrack is available,
   7421 	 *     otherwise record info.
   7422 	 *
   7423 	 * XXX hiwat/lowat is a playback-only parameter.  What should I
   7424 	 *     return for a record-only descriptor?
   7425 	 */
   7426 	track = ptrack ? ptrack : rtrack;
   7427 	if (track) {
   7428 		ai->blocksize = track->usrbuf_blksize;
   7429 		ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
   7430 		ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
   7431 	}
   7432 	ai->mode = file->mode;
   7433 
   7434 	/*
   7435 	 * For backward compatibility, we have to pad these five fields
   7436 	 * a fake non-zero value even if there are no tracks.
   7437 	 */
   7438 	if (ptrack == NULL)
   7439 		pi->buffer_size = 65536;
   7440 	if (rtrack == NULL)
   7441 		ri->buffer_size = 65536;
   7442 	if (ptrack == NULL && rtrack == NULL) {
   7443 		ai->blocksize = 2048;
   7444 		ai->hiwat = ai->play.buffer_size / ai->blocksize;
   7445 		ai->lowat = ai->hiwat * 3 / 4;
   7446 	}
   7447 
   7448 	if (need_mixerinfo) {
   7449 		mutex_enter(sc->sc_lock);
   7450 
   7451 		pi->port = au_get_port(sc, &sc->sc_outports);
   7452 		ri->port = au_get_port(sc, &sc->sc_inports);
   7453 
   7454 		pi->avail_ports = sc->sc_outports.allports;
   7455 		ri->avail_ports = sc->sc_inports.allports;
   7456 
   7457 		au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
   7458 		au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
   7459 
   7460 		if (sc->sc_monitor_port != -1) {
   7461 			gain = au_get_monitor_gain(sc);
   7462 			if (gain != -1)
   7463 				ai->monitor_gain = gain;
   7464 		}
   7465 		mutex_exit(sc->sc_lock);
   7466 	}
   7467 
   7468 	return 0;
   7469 }
   7470 
   7471 /*
   7472  * Return true if playback is configured.
   7473  * This function can be used after audioattach.
   7474  */
   7475 static bool
   7476 audio_can_playback(struct audio_softc *sc)
   7477 {
   7478 
   7479 	return (sc->sc_pmixer != NULL);
   7480 }
   7481 
   7482 /*
   7483  * Return true if recording is configured.
   7484  * This function can be used after audioattach.
   7485  */
   7486 static bool
   7487 audio_can_capture(struct audio_softc *sc)
   7488 {
   7489 
   7490 	return (sc->sc_rmixer != NULL);
   7491 }
   7492 
   7493 /*
   7494  * Get the afp->index'th item from the valid one of format[].
   7495  * If found, stores it to afp->fmt and returns 0.  Otherwise return EINVAL.
   7496  *
   7497  * This is common routines for query_format.
   7498  * If your hardware driver has struct audio_format[], the simplest case
   7499  * you can write your query_format interface as follows:
   7500  *
   7501  * struct audio_format foo_format[] = { ... };
   7502  *
   7503  * int
   7504  * foo_query_format(void *hdl, audio_format_query_t *afp)
   7505  * {
   7506  *   return audio_query_format(foo_format, __arraycount(foo_format), afp);
   7507  * }
   7508  */
   7509 int
   7510 audio_query_format(const struct audio_format *format, int nformats,
   7511 	audio_format_query_t *afp)
   7512 {
   7513 	const struct audio_format *f;
   7514 	int idx;
   7515 	int i;
   7516 
   7517 	idx = 0;
   7518 	for (i = 0; i < nformats; i++) {
   7519 		f = &format[i];
   7520 		if (!AUFMT_IS_VALID(f))
   7521 			continue;
   7522 		if (afp->index == idx) {
   7523 			afp->fmt = *f;
   7524 			return 0;
   7525 		}
   7526 		idx++;
   7527 	}
   7528 	return EINVAL;
   7529 }
   7530 
   7531 /*
   7532  * This function is provided for the hardware driver's set_format() to
   7533  * find index matches with 'param' from array of audio_format_t 'formats'.
   7534  * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
   7535  * It returns the matched index and never fails.  Because param passed to
   7536  * set_format() is selected from query_format().
   7537  * This function will be an alternative to auconv_set_converter() to
   7538  * find index.
   7539  */
   7540 int
   7541 audio_indexof_format(const struct audio_format *formats, int nformats,
   7542 	int mode, const audio_params_t *param)
   7543 {
   7544 	const struct audio_format *f;
   7545 	int index;
   7546 	int j;
   7547 
   7548 	for (index = 0; index < nformats; index++) {
   7549 		f = &formats[index];
   7550 
   7551 		if (!AUFMT_IS_VALID(f))
   7552 			continue;
   7553 		if ((f->mode & mode) == 0)
   7554 			continue;
   7555 		if (f->encoding != param->encoding)
   7556 			continue;
   7557 		if (f->validbits != param->precision)
   7558 			continue;
   7559 		if (f->channels != param->channels)
   7560 			continue;
   7561 
   7562 		if (f->frequency_type == 0) {
   7563 			if (param->sample_rate < f->frequency[0] ||
   7564 			    param->sample_rate > f->frequency[1])
   7565 				continue;
   7566 		} else {
   7567 			for (j = 0; j < f->frequency_type; j++) {
   7568 				if (param->sample_rate == f->frequency[j])
   7569 					break;
   7570 			}
   7571 			if (j == f->frequency_type)
   7572 				continue;
   7573 		}
   7574 
   7575 		/* Then, matched */
   7576 		return index;
   7577 	}
   7578 
   7579 	/* Not matched.  This should not be happened. */
   7580 	panic("%s: cannot find matched format\n", __func__);
   7581 }
   7582 
   7583 /*
   7584  * Get or set hardware blocksize in msec.
   7585  * XXX It's for debug.
   7586  */
   7587 static int
   7588 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
   7589 {
   7590 	struct sysctlnode node;
   7591 	struct audio_softc *sc;
   7592 	audio_format2_t phwfmt;
   7593 	audio_format2_t rhwfmt;
   7594 	audio_filter_reg_t pfil;
   7595 	audio_filter_reg_t rfil;
   7596 	int t;
   7597 	int old_blk_ms;
   7598 	int mode;
   7599 	int error;
   7600 
   7601 	node = *rnode;
   7602 	sc = node.sysctl_data;
   7603 
   7604 	error = audio_exlock_enter(sc);
   7605 	if (error)
   7606 		return error;
   7607 
   7608 	old_blk_ms = sc->sc_blk_ms;
   7609 	t = old_blk_ms;
   7610 	node.sysctl_data = &t;
   7611 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   7612 	if (error || newp == NULL)
   7613 		goto abort;
   7614 
   7615 	if (t < 0) {
   7616 		error = EINVAL;
   7617 		goto abort;
   7618 	}
   7619 
   7620 	if (sc->sc_popens + sc->sc_ropens > 0) {
   7621 		error = EBUSY;
   7622 		goto abort;
   7623 	}
   7624 	sc->sc_blk_ms = t;
   7625 	mode = 0;
   7626 	if (sc->sc_pmixer) {
   7627 		mode |= AUMODE_PLAY;
   7628 		phwfmt = sc->sc_pmixer->hwbuf.fmt;
   7629 	}
   7630 	if (sc->sc_rmixer) {
   7631 		mode |= AUMODE_RECORD;
   7632 		rhwfmt = sc->sc_rmixer->hwbuf.fmt;
   7633 	}
   7634 
   7635 	/* re-init hardware */
   7636 	memset(&pfil, 0, sizeof(pfil));
   7637 	memset(&rfil, 0, sizeof(rfil));
   7638 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   7639 	if (error) {
   7640 		goto abort;
   7641 	}
   7642 
   7643 	/* re-init track mixer */
   7644 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   7645 	if (error) {
   7646 		/* Rollback */
   7647 		sc->sc_blk_ms = old_blk_ms;
   7648 		audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
   7649 		goto abort;
   7650 	}
   7651 	error = 0;
   7652 abort:
   7653 	audio_exlock_exit(sc);
   7654 	return error;
   7655 }
   7656 
   7657 /*
   7658  * Get or set multiuser mode.
   7659  */
   7660 static int
   7661 audio_sysctl_multiuser(SYSCTLFN_ARGS)
   7662 {
   7663 	struct sysctlnode node;
   7664 	struct audio_softc *sc;
   7665 	bool t;
   7666 	int error;
   7667 
   7668 	node = *rnode;
   7669 	sc = node.sysctl_data;
   7670 
   7671 	error = audio_exlock_enter(sc);
   7672 	if (error)
   7673 		return error;
   7674 
   7675 	t = sc->sc_multiuser;
   7676 	node.sysctl_data = &t;
   7677 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   7678 	if (error || newp == NULL)
   7679 		goto abort;
   7680 
   7681 	sc->sc_multiuser = t;
   7682 	error = 0;
   7683 abort:
   7684 	audio_exlock_exit(sc);
   7685 	return error;
   7686 }
   7687 
   7688 #if defined(AUDIO_DEBUG)
   7689 /*
   7690  * Get or set debug verbose level. (0..4)
   7691  * XXX It's for debug.
   7692  * XXX It is not separated per device.
   7693  */
   7694 static int
   7695 audio_sysctl_debug(SYSCTLFN_ARGS)
   7696 {
   7697 	struct sysctlnode node;
   7698 	int t;
   7699 	int error;
   7700 
   7701 	node = *rnode;
   7702 	t = audiodebug;
   7703 	node.sysctl_data = &t;
   7704 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   7705 	if (error || newp == NULL)
   7706 		return error;
   7707 
   7708 	if (t < 0 || t > 4)
   7709 		return EINVAL;
   7710 	audiodebug = t;
   7711 	printf("audio: audiodebug = %d\n", audiodebug);
   7712 	return 0;
   7713 }
   7714 #endif /* AUDIO_DEBUG */
   7715 
   7716 #ifdef AUDIO_PM_IDLE
   7717 static void
   7718 audio_idle(void *arg)
   7719 {
   7720 	device_t dv = arg;
   7721 	struct audio_softc *sc = device_private(dv);
   7722 
   7723 #ifdef PNP_DEBUG
   7724 	extern int pnp_debug_idle;
   7725 	if (pnp_debug_idle)
   7726 		printf("%s: idle handler called\n", device_xname(dv));
   7727 #endif
   7728 
   7729 	sc->sc_idle = true;
   7730 
   7731 	/* XXX joerg Make pmf_device_suspend handle children? */
   7732 	if (!pmf_device_suspend(dv, PMF_Q_SELF))
   7733 		return;
   7734 
   7735 	if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
   7736 		pmf_device_resume(dv, PMF_Q_SELF);
   7737 }
   7738 
   7739 static void
   7740 audio_activity(device_t dv, devactive_t type)
   7741 {
   7742 	struct audio_softc *sc = device_private(dv);
   7743 
   7744 	if (type != DVA_SYSTEM)
   7745 		return;
   7746 
   7747 	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
   7748 
   7749 	sc->sc_idle = false;
   7750 	if (!device_is_active(dv)) {
   7751 		/* XXX joerg How to deal with a failing resume... */
   7752 		pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
   7753 		pmf_device_resume(dv, PMF_Q_SELF);
   7754 	}
   7755 }
   7756 #endif
   7757 
   7758 static bool
   7759 audio_suspend(device_t dv, const pmf_qual_t *qual)
   7760 {
   7761 	struct audio_softc *sc = device_private(dv);
   7762 	int error;
   7763 
   7764 	error = audio_exlock_mutex_enter(sc);
   7765 	if (error)
   7766 		return error;
   7767 	sc->sc_suspending = true;
   7768 	audio_mixer_capture(sc);
   7769 
   7770 	if (sc->sc_pbusy) {
   7771 		audio_pmixer_halt(sc);
   7772 		/* Reuse this as need-to-restart flag while suspending */
   7773 		sc->sc_pbusy = true;
   7774 	}
   7775 	if (sc->sc_rbusy) {
   7776 		audio_rmixer_halt(sc);
   7777 		/* Reuse this as need-to-restart flag while suspending */
   7778 		sc->sc_rbusy = true;
   7779 	}
   7780 
   7781 #ifdef AUDIO_PM_IDLE
   7782 	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
   7783 #endif
   7784 	audio_exlock_mutex_exit(sc);
   7785 
   7786 	return true;
   7787 }
   7788 
   7789 static bool
   7790 audio_resume(device_t dv, const pmf_qual_t *qual)
   7791 {
   7792 	struct audio_softc *sc = device_private(dv);
   7793 	struct audio_info ai;
   7794 	int error;
   7795 
   7796 	error = audio_exlock_mutex_enter(sc);
   7797 	if (error)
   7798 		return error;
   7799 
   7800 	sc->sc_suspending = false;
   7801 	audio_mixer_restore(sc);
   7802 	/* XXX ? */
   7803 	AUDIO_INITINFO(&ai);
   7804 	audio_hw_setinfo(sc, &ai, NULL);
   7805 
   7806 	/*
   7807 	 * During from suspend to resume here, sc_[pr]busy is used as
   7808 	 * need-to-restart flag temporarily.  After this point,
   7809 	 * sc_[pr]busy is returned to its original usage (busy flag).
   7810 	 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
   7811 	 */
   7812 	if (sc->sc_pbusy) {
   7813 		/* pmixer_start() requires pbusy is false */
   7814 		sc->sc_pbusy = false;
   7815 		audio_pmixer_start(sc, true);
   7816 	}
   7817 	if (sc->sc_rbusy) {
   7818 		/* rmixer_start() requires rbusy is false */
   7819 		sc->sc_rbusy = false;
   7820 		audio_rmixer_start(sc);
   7821 	}
   7822 
   7823 	audio_exlock_mutex_exit(sc);
   7824 
   7825 	return true;
   7826 }
   7827 
   7828 #if defined(AUDIO_DEBUG)
   7829 static void
   7830 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
   7831 {
   7832 	int n;
   7833 
   7834 	n = 0;
   7835 	n += snprintf(buf + n, bufsize - n, "%s",
   7836 	    audio_encoding_name(fmt->encoding));
   7837 	if (fmt->precision == fmt->stride) {
   7838 		n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
   7839 	} else {
   7840 		n += snprintf(buf + n, bufsize - n, " %d/%dbit",
   7841 			fmt->precision, fmt->stride);
   7842 	}
   7843 
   7844 	snprintf(buf + n, bufsize - n, " %uch %uHz",
   7845 	    fmt->channels, fmt->sample_rate);
   7846 }
   7847 #endif
   7848 
   7849 #if defined(AUDIO_DEBUG)
   7850 static void
   7851 audio_print_format2(const char *s, const audio_format2_t *fmt)
   7852 {
   7853 	char fmtstr[64];
   7854 
   7855 	audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
   7856 	printf("%s %s\n", s, fmtstr);
   7857 }
   7858 #endif
   7859 
   7860 #ifdef DIAGNOSTIC
   7861 void
   7862 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
   7863 {
   7864 
   7865 	KASSERTMSG(fmt, "called from %s", where);
   7866 
   7867 	/* XXX MSM6258 vs(4) only has 4bit stride format. */
   7868 	if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
   7869 		KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
   7870 		    "called from %s: fmt->stride=%d", where, fmt->stride);
   7871 	} else {
   7872 		KASSERTMSG(fmt->stride % NBBY == 0,
   7873 		    "called from %s: fmt->stride=%d", where, fmt->stride);
   7874 	}
   7875 	KASSERTMSG(fmt->precision <= fmt->stride,
   7876 	    "called from %s: fmt->precision=%d fmt->stride=%d",
   7877 	    where, fmt->precision, fmt->stride);
   7878 	KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
   7879 	    "called from %s: fmt->channels=%d", where, fmt->channels);
   7880 
   7881 	/* XXX No check for encodings? */
   7882 }
   7883 
   7884 void
   7885 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
   7886 {
   7887 
   7888 	KASSERT(arg != NULL);
   7889 	KASSERT(arg->src != NULL);
   7890 	KASSERT(arg->dst != NULL);
   7891 	audio_diagnostic_format2(where, arg->srcfmt);
   7892 	audio_diagnostic_format2(where, arg->dstfmt);
   7893 	KASSERT(arg->count > 0);
   7894 }
   7895 
   7896 void
   7897 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
   7898 {
   7899 
   7900 	KASSERTMSG(ring, "called from %s", where);
   7901 	audio_diagnostic_format2(where, &ring->fmt);
   7902 	KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
   7903 	    "called from %s: ring->capacity=%d", where, ring->capacity);
   7904 	KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
   7905 	    "called from %s: ring->used=%d ring->capacity=%d",
   7906 	    where, ring->used, ring->capacity);
   7907 	if (ring->capacity == 0) {
   7908 		KASSERTMSG(ring->mem == NULL,
   7909 		    "called from %s: capacity == 0 but mem != NULL", where);
   7910 	} else {
   7911 		KASSERTMSG(ring->mem != NULL,
   7912 		    "called from %s: capacity != 0 but mem == NULL", where);
   7913 		KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
   7914 		    "called from %s: ring->head=%d ring->capacity=%d",
   7915 		    where, ring->head, ring->capacity);
   7916 	}
   7917 }
   7918 #endif /* DIAGNOSTIC */
   7919 
   7920 
   7921 /*
   7922  * Mixer driver
   7923  */
   7924 
   7925 /*
   7926  * Must be called without sc_lock held.
   7927  */
   7928 int
   7929 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
   7930 	struct lwp *l)
   7931 {
   7932 	struct file *fp;
   7933 	audio_file_t *af;
   7934 	int error, fd;
   7935 
   7936 	TRACE(1, "flags=0x%x", flags);
   7937 
   7938 	error = fd_allocfile(&fp, &fd);
   7939 	if (error)
   7940 		return error;
   7941 
   7942 	af = kmem_zalloc(sizeof(*af), KM_SLEEP);
   7943 	af->sc = sc;
   7944 	af->dev = dev;
   7945 
   7946 	error = fd_clone(fp, fd, flags, &audio_fileops, af);
   7947 	KASSERT(error == EMOVEFD);
   7948 
   7949 	return error;
   7950 }
   7951 
   7952 /*
   7953  * Add a process to those to be signalled on mixer activity.
   7954  * If the process has already been added, do nothing.
   7955  * Must be called with sc_exlock held and without sc_lock held.
   7956  */
   7957 static void
   7958 mixer_async_add(struct audio_softc *sc, pid_t pid)
   7959 {
   7960 	int i;
   7961 
   7962 	KASSERT(sc->sc_exlock);
   7963 
   7964 	/* If already exists, returns without doing anything. */
   7965 	for (i = 0; i < sc->sc_am_used; i++) {
   7966 		if (sc->sc_am[i] == pid)
   7967 			return;
   7968 	}
   7969 
   7970 	/* Extend array if necessary. */
   7971 	if (sc->sc_am_used >= sc->sc_am_capacity) {
   7972 		sc->sc_am_capacity += AM_CAPACITY;
   7973 		sc->sc_am = kern_realloc(sc->sc_am,
   7974 		    sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
   7975 		TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
   7976 	}
   7977 
   7978 	TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
   7979 	sc->sc_am[sc->sc_am_used++] = pid;
   7980 }
   7981 
   7982 /*
   7983  * Remove a process from those to be signalled on mixer activity.
   7984  * If the process has not been added, do nothing.
   7985  * Must be called with sc_exlock held and without sc_lock held.
   7986  */
   7987 static void
   7988 mixer_async_remove(struct audio_softc *sc, pid_t pid)
   7989 {
   7990 	int i;
   7991 
   7992 	KASSERT(sc->sc_exlock);
   7993 
   7994 	for (i = 0; i < sc->sc_am_used; i++) {
   7995 		if (sc->sc_am[i] == pid) {
   7996 			sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
   7997 			TRACE(2, "am[%d](%d) removed, used=%d",
   7998 			    i, (int)pid, sc->sc_am_used);
   7999 
   8000 			/* Empty array if no longer necessary. */
   8001 			if (sc->sc_am_used == 0) {
   8002 				kern_free(sc->sc_am);
   8003 				sc->sc_am = NULL;
   8004 				sc->sc_am_capacity = 0;
   8005 				TRACE(2, "released");
   8006 			}
   8007 			return;
   8008 		}
   8009 	}
   8010 }
   8011 
   8012 /*
   8013  * Signal all processes waiting for the mixer.
   8014  * Must be called with sc_exlock held.
   8015  */
   8016 static void
   8017 mixer_signal(struct audio_softc *sc)
   8018 {
   8019 	proc_t *p;
   8020 	int i;
   8021 
   8022 	KASSERT(sc->sc_exlock);
   8023 
   8024 	for (i = 0; i < sc->sc_am_used; i++) {
   8025 		mutex_enter(&proc_lock);
   8026 		p = proc_find(sc->sc_am[i]);
   8027 		if (p)
   8028 			psignal(p, SIGIO);
   8029 		mutex_exit(&proc_lock);
   8030 	}
   8031 }
   8032 
   8033 /*
   8034  * Close a mixer device
   8035  */
   8036 int
   8037 mixer_close(struct audio_softc *sc, audio_file_t *file)
   8038 {
   8039 	int error;
   8040 
   8041 	error = audio_exlock_enter(sc);
   8042 	if (error)
   8043 		return error;
   8044 	TRACE(1, "");
   8045 	mixer_async_remove(sc, curproc->p_pid);
   8046 	audio_exlock_exit(sc);
   8047 
   8048 	return 0;
   8049 }
   8050 
   8051 /*
   8052  * Must be called without sc_lock nor sc_exlock held.
   8053  */
   8054 int
   8055 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
   8056 	struct lwp *l)
   8057 {
   8058 	mixer_devinfo_t *mi;
   8059 	mixer_ctrl_t *mc;
   8060 	int error;
   8061 
   8062 	TRACE(2, "(%lu,'%c',%lu)",
   8063 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
   8064 	error = EINVAL;
   8065 
   8066 	/* we can return cached values if we are sleeping */
   8067 	if (cmd != AUDIO_MIXER_READ) {
   8068 		mutex_enter(sc->sc_lock);
   8069 		device_active(sc->sc_dev, DVA_SYSTEM);
   8070 		mutex_exit(sc->sc_lock);
   8071 	}
   8072 
   8073 	switch (cmd) {
   8074 	case FIOASYNC:
   8075 		error = audio_exlock_enter(sc);
   8076 		if (error)
   8077 			break;
   8078 		if (*(int *)addr) {
   8079 			mixer_async_add(sc, curproc->p_pid);
   8080 		} else {
   8081 			mixer_async_remove(sc, curproc->p_pid);
   8082 		}
   8083 		audio_exlock_exit(sc);
   8084 		break;
   8085 
   8086 	case AUDIO_GETDEV:
   8087 		TRACE(2, "AUDIO_GETDEV");
   8088 		mutex_enter(sc->sc_lock);
   8089 		error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
   8090 		mutex_exit(sc->sc_lock);
   8091 		break;
   8092 
   8093 	case AUDIO_MIXER_DEVINFO:
   8094 		TRACE(2, "AUDIO_MIXER_DEVINFO");
   8095 		mi = (mixer_devinfo_t *)addr;
   8096 
   8097 		mi->un.v.delta = 0; /* default */
   8098 		mutex_enter(sc->sc_lock);
   8099 		error = audio_query_devinfo(sc, mi);
   8100 		mutex_exit(sc->sc_lock);
   8101 		break;
   8102 
   8103 	case AUDIO_MIXER_READ:
   8104 		TRACE(2, "AUDIO_MIXER_READ");
   8105 		mc = (mixer_ctrl_t *)addr;
   8106 
   8107 		error = audio_exlock_mutex_enter(sc);
   8108 		if (error)
   8109 			break;
   8110 		if (device_is_active(sc->hw_dev))
   8111 			error = audio_get_port(sc, mc);
   8112 		else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
   8113 			error = ENXIO;
   8114 		else {
   8115 			int dev = mc->dev;
   8116 			memcpy(mc, &sc->sc_mixer_state[dev],
   8117 			    sizeof(mixer_ctrl_t));
   8118 			error = 0;
   8119 		}
   8120 		audio_exlock_mutex_exit(sc);
   8121 		break;
   8122 
   8123 	case AUDIO_MIXER_WRITE:
   8124 		TRACE(2, "AUDIO_MIXER_WRITE");
   8125 		error = audio_exlock_mutex_enter(sc);
   8126 		if (error)
   8127 			break;
   8128 		error = audio_set_port(sc, (mixer_ctrl_t *)addr);
   8129 		if (error) {
   8130 			audio_exlock_mutex_exit(sc);
   8131 			break;
   8132 		}
   8133 
   8134 		if (sc->hw_if->commit_settings) {
   8135 			error = sc->hw_if->commit_settings(sc->hw_hdl);
   8136 			if (error) {
   8137 				audio_exlock_mutex_exit(sc);
   8138 				break;
   8139 			}
   8140 		}
   8141 		mutex_exit(sc->sc_lock);
   8142 		mixer_signal(sc);
   8143 		audio_exlock_exit(sc);
   8144 		break;
   8145 
   8146 	default:
   8147 		if (sc->hw_if->dev_ioctl) {
   8148 			mutex_enter(sc->sc_lock);
   8149 			error = sc->hw_if->dev_ioctl(sc->hw_hdl,
   8150 			    cmd, addr, flag, l);
   8151 			mutex_exit(sc->sc_lock);
   8152 		} else
   8153 			error = EINVAL;
   8154 		break;
   8155 	}
   8156 	TRACE(2, "(%lu,'%c',%lu) result %d",
   8157 	    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
   8158 	return error;
   8159 }
   8160 
   8161 /*
   8162  * Must be called with sc_lock held.
   8163  */
   8164 int
   8165 au_portof(struct audio_softc *sc, char *name, int class)
   8166 {
   8167 	mixer_devinfo_t mi;
   8168 
   8169 	KASSERT(mutex_owned(sc->sc_lock));
   8170 
   8171 	for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
   8172 		if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
   8173 			return mi.index;
   8174 	}
   8175 	return -1;
   8176 }
   8177 
   8178 /*
   8179  * Must be called with sc_lock held.
   8180  */
   8181 void
   8182 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
   8183 	mixer_devinfo_t *mi, const struct portname *tbl)
   8184 {
   8185 	int i, j;
   8186 
   8187 	KASSERT(mutex_owned(sc->sc_lock));
   8188 
   8189 	ports->index = mi->index;
   8190 	if (mi->type == AUDIO_MIXER_ENUM) {
   8191 		ports->isenum = true;
   8192 		for(i = 0; tbl[i].name; i++)
   8193 		    for(j = 0; j < mi->un.e.num_mem; j++)
   8194 			if (strcmp(mi->un.e.member[j].label.name,
   8195 						    tbl[i].name) == 0) {
   8196 				ports->allports |= tbl[i].mask;
   8197 				ports->aumask[ports->nports] = tbl[i].mask;
   8198 				ports->misel[ports->nports] =
   8199 				    mi->un.e.member[j].ord;
   8200 				ports->miport[ports->nports] =
   8201 				    au_portof(sc, mi->un.e.member[j].label.name,
   8202 				    mi->mixer_class);
   8203 				if (ports->mixerout != -1 &&
   8204 				    ports->miport[ports->nports] != -1)
   8205 					ports->isdual = true;
   8206 				++ports->nports;
   8207 			}
   8208 	} else if (mi->type == AUDIO_MIXER_SET) {
   8209 		for(i = 0; tbl[i].name; i++)
   8210 		    for(j = 0; j < mi->un.s.num_mem; j++)
   8211 			if (strcmp(mi->un.s.member[j].label.name,
   8212 						tbl[i].name) == 0) {
   8213 				ports->allports |= tbl[i].mask;
   8214 				ports->aumask[ports->nports] = tbl[i].mask;
   8215 				ports->misel[ports->nports] =
   8216 				    mi->un.s.member[j].mask;
   8217 				ports->miport[ports->nports] =
   8218 				    au_portof(sc, mi->un.s.member[j].label.name,
   8219 				    mi->mixer_class);
   8220 				++ports->nports;
   8221 			}
   8222 	}
   8223 }
   8224 
   8225 /*
   8226  * Must be called with sc_lock && sc_exlock held.
   8227  */
   8228 int
   8229 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
   8230 {
   8231 
   8232 	KASSERT(mutex_owned(sc->sc_lock));
   8233 	KASSERT(sc->sc_exlock);
   8234 
   8235 	ct->type = AUDIO_MIXER_VALUE;
   8236 	ct->un.value.num_channels = 2;
   8237 	ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
   8238 	ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
   8239 	if (audio_set_port(sc, ct) == 0)
   8240 		return 0;
   8241 	ct->un.value.num_channels = 1;
   8242 	ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
   8243 	return audio_set_port(sc, ct);
   8244 }
   8245 
   8246 /*
   8247  * Must be called with sc_lock && sc_exlock held.
   8248  */
   8249 int
   8250 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
   8251 {
   8252 	int error;
   8253 
   8254 	KASSERT(mutex_owned(sc->sc_lock));
   8255 	KASSERT(sc->sc_exlock);
   8256 
   8257 	ct->un.value.num_channels = 2;
   8258 	if (audio_get_port(sc, ct) == 0) {
   8259 		*l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
   8260 		*r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
   8261 	} else {
   8262 		ct->un.value.num_channels = 1;
   8263 		error = audio_get_port(sc, ct);
   8264 		if (error)
   8265 			return error;
   8266 		*r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
   8267 	}
   8268 	return 0;
   8269 }
   8270 
   8271 /*
   8272  * Must be called with sc_lock && sc_exlock held.
   8273  */
   8274 int
   8275 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
   8276 	int gain, int balance)
   8277 {
   8278 	mixer_ctrl_t ct;
   8279 	int i, error;
   8280 	int l, r;
   8281 	u_int mask;
   8282 	int nset;
   8283 
   8284 	KASSERT(mutex_owned(sc->sc_lock));
   8285 	KASSERT(sc->sc_exlock);
   8286 
   8287 	if (balance == AUDIO_MID_BALANCE) {
   8288 		l = r = gain;
   8289 	} else if (balance < AUDIO_MID_BALANCE) {
   8290 		l = gain;
   8291 		r = (balance * gain) / AUDIO_MID_BALANCE;
   8292 	} else {
   8293 		r = gain;
   8294 		l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
   8295 		    / AUDIO_MID_BALANCE;
   8296 	}
   8297 	TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
   8298 
   8299 	if (ports->index == -1) {
   8300 	usemaster:
   8301 		if (ports->master == -1)
   8302 			return 0; /* just ignore it silently */
   8303 		ct.dev = ports->master;
   8304 		error = au_set_lr_value(sc, &ct, l, r);
   8305 	} else {
   8306 		ct.dev = ports->index;
   8307 		if (ports->isenum) {
   8308 			ct.type = AUDIO_MIXER_ENUM;
   8309 			error = audio_get_port(sc, &ct);
   8310 			if (error)
   8311 				return error;
   8312 			if (ports->isdual) {
   8313 				if (ports->cur_port == -1)
   8314 					ct.dev = ports->master;
   8315 				else
   8316 					ct.dev = ports->miport[ports->cur_port];
   8317 				error = au_set_lr_value(sc, &ct, l, r);
   8318 			} else {
   8319 				for(i = 0; i < ports->nports; i++)
   8320 				    if (ports->misel[i] == ct.un.ord) {
   8321 					    ct.dev = ports->miport[i];
   8322 					    if (ct.dev == -1 ||
   8323 						au_set_lr_value(sc, &ct, l, r))
   8324 						    goto usemaster;
   8325 					    else
   8326 						    break;
   8327 				    }
   8328 			}
   8329 		} else {
   8330 			ct.type = AUDIO_MIXER_SET;
   8331 			error = audio_get_port(sc, &ct);
   8332 			if (error)
   8333 				return error;
   8334 			mask = ct.un.mask;
   8335 			nset = 0;
   8336 			for(i = 0; i < ports->nports; i++) {
   8337 				if (ports->misel[i] & mask) {
   8338 				    ct.dev = ports->miport[i];
   8339 				    if (ct.dev != -1 &&
   8340 					au_set_lr_value(sc, &ct, l, r) == 0)
   8341 					    nset++;
   8342 				}
   8343 			}
   8344 			if (nset == 0)
   8345 				goto usemaster;
   8346 		}
   8347 	}
   8348 	if (!error)
   8349 		mixer_signal(sc);
   8350 	return error;
   8351 }
   8352 
   8353 /*
   8354  * Must be called with sc_lock && sc_exlock held.
   8355  */
   8356 void
   8357 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
   8358 	u_int *pgain, u_char *pbalance)
   8359 {
   8360 	mixer_ctrl_t ct;
   8361 	int i, l, r, n;
   8362 	int lgain, rgain;
   8363 
   8364 	KASSERT(mutex_owned(sc->sc_lock));
   8365 	KASSERT(sc->sc_exlock);
   8366 
   8367 	lgain = AUDIO_MAX_GAIN / 2;
   8368 	rgain = AUDIO_MAX_GAIN / 2;
   8369 	if (ports->index == -1) {
   8370 	usemaster:
   8371 		if (ports->master == -1)
   8372 			goto bad;
   8373 		ct.dev = ports->master;
   8374 		ct.type = AUDIO_MIXER_VALUE;
   8375 		if (au_get_lr_value(sc, &ct, &lgain, &rgain))
   8376 			goto bad;
   8377 	} else {
   8378 		ct.dev = ports->index;
   8379 		if (ports->isenum) {
   8380 			ct.type = AUDIO_MIXER_ENUM;
   8381 			if (audio_get_port(sc, &ct))
   8382 				goto bad;
   8383 			ct.type = AUDIO_MIXER_VALUE;
   8384 			if (ports->isdual) {
   8385 				if (ports->cur_port == -1)
   8386 					ct.dev = ports->master;
   8387 				else
   8388 					ct.dev = ports->miport[ports->cur_port];
   8389 				au_get_lr_value(sc, &ct, &lgain, &rgain);
   8390 			} else {
   8391 				for(i = 0; i < ports->nports; i++)
   8392 				    if (ports->misel[i] == ct.un.ord) {
   8393 					    ct.dev = ports->miport[i];
   8394 					    if (ct.dev == -1 ||
   8395 						au_get_lr_value(sc, &ct,
   8396 								&lgain, &rgain))
   8397 						    goto usemaster;
   8398 					    else
   8399 						    break;
   8400 				    }
   8401 			}
   8402 		} else {
   8403 			ct.type = AUDIO_MIXER_SET;
   8404 			if (audio_get_port(sc, &ct))
   8405 				goto bad;
   8406 			ct.type = AUDIO_MIXER_VALUE;
   8407 			lgain = rgain = n = 0;
   8408 			for(i = 0; i < ports->nports; i++) {
   8409 				if (ports->misel[i] & ct.un.mask) {
   8410 					ct.dev = ports->miport[i];
   8411 					if (ct.dev == -1 ||
   8412 					    au_get_lr_value(sc, &ct, &l, &r))
   8413 						goto usemaster;
   8414 					else {
   8415 						lgain += l;
   8416 						rgain += r;
   8417 						n++;
   8418 					}
   8419 				}
   8420 			}
   8421 			if (n != 0) {
   8422 				lgain /= n;
   8423 				rgain /= n;
   8424 			}
   8425 		}
   8426 	}
   8427 bad:
   8428 	if (lgain == rgain) {	/* handles lgain==rgain==0 */
   8429 		*pgain = lgain;
   8430 		*pbalance = AUDIO_MID_BALANCE;
   8431 	} else if (lgain < rgain) {
   8432 		*pgain = rgain;
   8433 		/* balance should be > AUDIO_MID_BALANCE */
   8434 		*pbalance = AUDIO_RIGHT_BALANCE -
   8435 			(AUDIO_MID_BALANCE * lgain) / rgain;
   8436 	} else /* lgain > rgain */ {
   8437 		*pgain = lgain;
   8438 		/* balance should be < AUDIO_MID_BALANCE */
   8439 		*pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
   8440 	}
   8441 }
   8442 
   8443 /*
   8444  * Must be called with sc_lock && sc_exlock held.
   8445  */
   8446 int
   8447 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
   8448 {
   8449 	mixer_ctrl_t ct;
   8450 	int i, error, use_mixerout;
   8451 
   8452 	KASSERT(mutex_owned(sc->sc_lock));
   8453 	KASSERT(sc->sc_exlock);
   8454 
   8455 	use_mixerout = 1;
   8456 	if (port == 0) {
   8457 		if (ports->allports == 0)
   8458 			return 0;		/* Allow this special case. */
   8459 		else if (ports->isdual) {
   8460 			if (ports->cur_port == -1) {
   8461 				return 0;
   8462 			} else {
   8463 				port = ports->aumask[ports->cur_port];
   8464 				ports->cur_port = -1;
   8465 				use_mixerout = 0;
   8466 			}
   8467 		}
   8468 	}
   8469 	if (ports->index == -1)
   8470 		return EINVAL;
   8471 	ct.dev = ports->index;
   8472 	if (ports->isenum) {
   8473 		if (port & (port-1))
   8474 			return EINVAL; /* Only one port allowed */
   8475 		ct.type = AUDIO_MIXER_ENUM;
   8476 		error = EINVAL;
   8477 		for(i = 0; i < ports->nports; i++)
   8478 			if (ports->aumask[i] == port) {
   8479 				if (ports->isdual && use_mixerout) {
   8480 					ct.un.ord = ports->mixerout;
   8481 					ports->cur_port = i;
   8482 				} else {
   8483 					ct.un.ord = ports->misel[i];
   8484 				}
   8485 				error = audio_set_port(sc, &ct);
   8486 				break;
   8487 			}
   8488 	} else {
   8489 		ct.type = AUDIO_MIXER_SET;
   8490 		ct.un.mask = 0;
   8491 		for(i = 0; i < ports->nports; i++)
   8492 			if (ports->aumask[i] & port)
   8493 				ct.un.mask |= ports->misel[i];
   8494 		if (port != 0 && ct.un.mask == 0)
   8495 			error = EINVAL;
   8496 		else
   8497 			error = audio_set_port(sc, &ct);
   8498 	}
   8499 	if (!error)
   8500 		mixer_signal(sc);
   8501 	return error;
   8502 }
   8503 
   8504 /*
   8505  * Must be called with sc_lock && sc_exlock held.
   8506  */
   8507 int
   8508 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
   8509 {
   8510 	mixer_ctrl_t ct;
   8511 	int i, aumask;
   8512 
   8513 	KASSERT(mutex_owned(sc->sc_lock));
   8514 	KASSERT(sc->sc_exlock);
   8515 
   8516 	if (ports->index == -1)
   8517 		return 0;
   8518 	ct.dev = ports->index;
   8519 	ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
   8520 	if (audio_get_port(sc, &ct))
   8521 		return 0;
   8522 	aumask = 0;
   8523 	if (ports->isenum) {
   8524 		if (ports->isdual && ports->cur_port != -1) {
   8525 			if (ports->mixerout == ct.un.ord)
   8526 				aumask = ports->aumask[ports->cur_port];
   8527 			else
   8528 				ports->cur_port = -1;
   8529 		}
   8530 		if (aumask == 0)
   8531 			for(i = 0; i < ports->nports; i++)
   8532 				if (ports->misel[i] == ct.un.ord)
   8533 					aumask = ports->aumask[i];
   8534 	} else {
   8535 		for(i = 0; i < ports->nports; i++)
   8536 			if (ct.un.mask & ports->misel[i])
   8537 				aumask |= ports->aumask[i];
   8538 	}
   8539 	return aumask;
   8540 }
   8541 
   8542 /*
   8543  * It returns 0 if success, otherwise errno.
   8544  * Must be called only if sc->sc_monitor_port != -1.
   8545  * Must be called with sc_lock && sc_exlock held.
   8546  */
   8547 static int
   8548 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
   8549 {
   8550 	mixer_ctrl_t ct;
   8551 
   8552 	KASSERT(mutex_owned(sc->sc_lock));
   8553 	KASSERT(sc->sc_exlock);
   8554 
   8555 	ct.dev = sc->sc_monitor_port;
   8556 	ct.type = AUDIO_MIXER_VALUE;
   8557 	ct.un.value.num_channels = 1;
   8558 	ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
   8559 	return audio_set_port(sc, &ct);
   8560 }
   8561 
   8562 /*
   8563  * It returns monitor gain if success, otherwise -1.
   8564  * Must be called only if sc->sc_monitor_port != -1.
   8565  * Must be called with sc_lock && sc_exlock held.
   8566  */
   8567 static int
   8568 au_get_monitor_gain(struct audio_softc *sc)
   8569 {
   8570 	mixer_ctrl_t ct;
   8571 
   8572 	KASSERT(mutex_owned(sc->sc_lock));
   8573 	KASSERT(sc->sc_exlock);
   8574 
   8575 	ct.dev = sc->sc_monitor_port;
   8576 	ct.type = AUDIO_MIXER_VALUE;
   8577 	ct.un.value.num_channels = 1;
   8578 	if (audio_get_port(sc, &ct))
   8579 		return -1;
   8580 	return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
   8581 }
   8582 
   8583 /*
   8584  * Must be called with sc_lock && sc_exlock held.
   8585  */
   8586 static int
   8587 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
   8588 {
   8589 
   8590 	KASSERT(mutex_owned(sc->sc_lock));
   8591 	KASSERT(sc->sc_exlock);
   8592 
   8593 	return sc->hw_if->set_port(sc->hw_hdl, mc);
   8594 }
   8595 
   8596 /*
   8597  * Must be called with sc_lock && sc_exlock held.
   8598  */
   8599 static int
   8600 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
   8601 {
   8602 
   8603 	KASSERT(mutex_owned(sc->sc_lock));
   8604 	KASSERT(sc->sc_exlock);
   8605 
   8606 	return sc->hw_if->get_port(sc->hw_hdl, mc);
   8607 }
   8608 
   8609 /*
   8610  * Must be called with sc_lock && sc_exlock held.
   8611  */
   8612 static void
   8613 audio_mixer_capture(struct audio_softc *sc)
   8614 {
   8615 	mixer_devinfo_t mi;
   8616 	mixer_ctrl_t *mc;
   8617 
   8618 	KASSERT(mutex_owned(sc->sc_lock));
   8619 	KASSERT(sc->sc_exlock);
   8620 
   8621 	for (mi.index = 0;; mi.index++) {
   8622 		if (audio_query_devinfo(sc, &mi) != 0)
   8623 			break;
   8624 		KASSERT(mi.index < sc->sc_nmixer_states);
   8625 		if (mi.type == AUDIO_MIXER_CLASS)
   8626 			continue;
   8627 		mc = &sc->sc_mixer_state[mi.index];
   8628 		mc->dev = mi.index;
   8629 		mc->type = mi.type;
   8630 		mc->un.value.num_channels = mi.un.v.num_channels;
   8631 		(void)audio_get_port(sc, mc);
   8632 	}
   8633 
   8634 	return;
   8635 }
   8636 
   8637 /*
   8638  * Must be called with sc_lock && sc_exlock held.
   8639  */
   8640 static void
   8641 audio_mixer_restore(struct audio_softc *sc)
   8642 {
   8643 	mixer_devinfo_t mi;
   8644 	mixer_ctrl_t *mc;
   8645 
   8646 	KASSERT(mutex_owned(sc->sc_lock));
   8647 	KASSERT(sc->sc_exlock);
   8648 
   8649 	for (mi.index = 0; ; mi.index++) {
   8650 		if (audio_query_devinfo(sc, &mi) != 0)
   8651 			break;
   8652 		if (mi.type == AUDIO_MIXER_CLASS)
   8653 			continue;
   8654 		mc = &sc->sc_mixer_state[mi.index];
   8655 		(void)audio_set_port(sc, mc);
   8656 	}
   8657 	if (sc->hw_if->commit_settings)
   8658 		sc->hw_if->commit_settings(sc->hw_hdl);
   8659 
   8660 	return;
   8661 }
   8662 
   8663 static void
   8664 audio_volume_down(device_t dv)
   8665 {
   8666 	struct audio_softc *sc = device_private(dv);
   8667 	mixer_devinfo_t mi;
   8668 	int newgain;
   8669 	u_int gain;
   8670 	u_char balance;
   8671 
   8672 	if (audio_exlock_mutex_enter(sc) != 0)
   8673 		return;
   8674 	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
   8675 		mi.index = sc->sc_outports.master;
   8676 		mi.un.v.delta = 0;
   8677 		if (audio_query_devinfo(sc, &mi) == 0) {
   8678 			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
   8679 			newgain = gain - mi.un.v.delta;
   8680 			if (newgain < AUDIO_MIN_GAIN)
   8681 				newgain = AUDIO_MIN_GAIN;
   8682 			au_set_gain(sc, &sc->sc_outports, newgain, balance);
   8683 		}
   8684 	}
   8685 	audio_exlock_mutex_exit(sc);
   8686 }
   8687 
   8688 static void
   8689 audio_volume_up(device_t dv)
   8690 {
   8691 	struct audio_softc *sc = device_private(dv);
   8692 	mixer_devinfo_t mi;
   8693 	u_int gain, newgain;
   8694 	u_char balance;
   8695 
   8696 	if (audio_exlock_mutex_enter(sc) != 0)
   8697 		return;
   8698 	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
   8699 		mi.index = sc->sc_outports.master;
   8700 		mi.un.v.delta = 0;
   8701 		if (audio_query_devinfo(sc, &mi) == 0) {
   8702 			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
   8703 			newgain = gain + mi.un.v.delta;
   8704 			if (newgain > AUDIO_MAX_GAIN)
   8705 				newgain = AUDIO_MAX_GAIN;
   8706 			au_set_gain(sc, &sc->sc_outports, newgain, balance);
   8707 		}
   8708 	}
   8709 	audio_exlock_mutex_exit(sc);
   8710 }
   8711 
   8712 static void
   8713 audio_volume_toggle(device_t dv)
   8714 {
   8715 	struct audio_softc *sc = device_private(dv);
   8716 	u_int gain, newgain;
   8717 	u_char balance;
   8718 
   8719 	if (audio_exlock_mutex_enter(sc) != 0)
   8720 		return;
   8721 	au_get_gain(sc, &sc->sc_outports, &gain, &balance);
   8722 	if (gain != 0) {
   8723 		sc->sc_lastgain = gain;
   8724 		newgain = 0;
   8725 	} else
   8726 		newgain = sc->sc_lastgain;
   8727 	au_set_gain(sc, &sc->sc_outports, newgain, balance);
   8728 	audio_exlock_mutex_exit(sc);
   8729 }
   8730 
   8731 /*
   8732  * Must be called with sc_lock held.
   8733  */
   8734 static int
   8735 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
   8736 {
   8737 
   8738 	KASSERT(mutex_owned(sc->sc_lock));
   8739 
   8740 	return sc->hw_if->query_devinfo(sc->hw_hdl, di);
   8741 }
   8742 
   8743 #endif /* NAUDIO > 0 */
   8744 
   8745 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
   8746 #include <sys/param.h>
   8747 #include <sys/systm.h>
   8748 #include <sys/device.h>
   8749 #include <sys/audioio.h>
   8750 #include <dev/audio/audio_if.h>
   8751 #endif
   8752 
   8753 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
   8754 int
   8755 audioprint(void *aux, const char *pnp)
   8756 {
   8757 	struct audio_attach_args *arg;
   8758 	const char *type;
   8759 
   8760 	if (pnp != NULL) {
   8761 		arg = aux;
   8762 		switch (arg->type) {
   8763 		case AUDIODEV_TYPE_AUDIO:
   8764 			type = "audio";
   8765 			break;
   8766 		case AUDIODEV_TYPE_MIDI:
   8767 			type = "midi";
   8768 			break;
   8769 		case AUDIODEV_TYPE_OPL:
   8770 			type = "opl";
   8771 			break;
   8772 		case AUDIODEV_TYPE_MPU:
   8773 			type = "mpu";
   8774 			break;
   8775 		default:
   8776 			panic("audioprint: unknown type %d", arg->type);
   8777 		}
   8778 		aprint_normal("%s at %s", type, pnp);
   8779 	}
   8780 	return UNCONF;
   8781 }
   8782 
   8783 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
   8784 
   8785 #ifdef _MODULE
   8786 
   8787 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
   8788 
   8789 #include "ioconf.c"
   8790 
   8791 #endif
   8792 
   8793 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
   8794 
   8795 static int
   8796 audio_modcmd(modcmd_t cmd, void *arg)
   8797 {
   8798 	int error = 0;
   8799 
   8800 	switch (cmd) {
   8801 	case MODULE_CMD_INIT:
   8802 		/* XXX interrupt level? */
   8803 		audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
   8804 #ifdef _MODULE
   8805 		error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
   8806 		    &audio_cdevsw, &audio_cmajor);
   8807 		if (error)
   8808 			break;
   8809 
   8810 		error = config_init_component(cfdriver_ioconf_audio,
   8811 		    cfattach_ioconf_audio, cfdata_ioconf_audio);
   8812 		if (error) {
   8813 			devsw_detach(NULL, &audio_cdevsw);
   8814 		}
   8815 #endif
   8816 		break;
   8817 	case MODULE_CMD_FINI:
   8818 #ifdef _MODULE
   8819 		devsw_detach(NULL, &audio_cdevsw);
   8820 		error = config_fini_component(cfdriver_ioconf_audio,
   8821 		   cfattach_ioconf_audio, cfdata_ioconf_audio);
   8822 		if (error)
   8823 			devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
   8824 			    &audio_cdevsw, &audio_cmajor);
   8825 #endif
   8826 		psref_class_destroy(audio_psref_class);
   8827 		break;
   8828 	default:
   8829 		error = ENOTTY;
   8830 		break;
   8831 	}
   8832 
   8833 	return error;
   8834 }
   8835