audio.c revision 1.79.2.1 1 /* $NetBSD: audio.c,v 1.79.2.1 2020/12/14 14:38:05 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - - Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.79.2.1 2020/12/14 14:38:05 thorpej Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #include <sys/types.h>
151 #include <sys/param.h>
152 #include <sys/atomic.h>
153 #include <sys/audioio.h>
154 #include <sys/conf.h>
155 #include <sys/cpu.h>
156 #include <sys/device.h>
157 #include <sys/fcntl.h>
158 #include <sys/file.h>
159 #include <sys/filedesc.h>
160 #include <sys/intr.h>
161 #include <sys/ioctl.h>
162 #include <sys/kauth.h>
163 #include <sys/kernel.h>
164 #include <sys/kmem.h>
165 #include <sys/malloc.h>
166 #include <sys/mman.h>
167 #include <sys/module.h>
168 #include <sys/poll.h>
169 #include <sys/proc.h>
170 #include <sys/queue.h>
171 #include <sys/select.h>
172 #include <sys/signalvar.h>
173 #include <sys/stat.h>
174 #include <sys/sysctl.h>
175 #include <sys/systm.h>
176 #include <sys/syslog.h>
177 #include <sys/vnode.h>
178
179 #include <dev/audio/audio_if.h>
180 #include <dev/audio/audiovar.h>
181 #include <dev/audio/audiodef.h>
182 #include <dev/audio/linear.h>
183 #include <dev/audio/mulaw.h>
184
185 #include <machine/endian.h>
186
187 #include <uvm/uvm_extern.h>
188
189 #include "ioconf.h"
190
191 /*
192 * 0: No debug logs
193 * 1: action changes like open/close/set_format...
194 * 2: + normal operations like read/write/ioctl...
195 * 3: + TRACEs except interrupt
196 * 4: + TRACEs including interrupt
197 */
198 //#define AUDIO_DEBUG 1
199
200 #if defined(AUDIO_DEBUG)
201
202 int audiodebug = AUDIO_DEBUG;
203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
204 const char *, va_list);
205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
206 __printflike(3, 4);
207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
208 __printflike(3, 4);
209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
210 __printflike(3, 4);
211
212 /* XXX sloppy memory logger */
213 static void audio_mlog_init(void);
214 static void audio_mlog_free(void);
215 static void audio_mlog_softintr(void *);
216 extern void audio_mlog_flush(void);
217 extern void audio_mlog_printf(const char *, ...);
218
219 static int mlog_refs; /* reference counter */
220 static char *mlog_buf[2]; /* double buffer */
221 static int mlog_buflen; /* buffer length */
222 static int mlog_used; /* used length */
223 static int mlog_full; /* number of dropped lines by buffer full */
224 static int mlog_drop; /* number of dropped lines by busy */
225 static volatile uint32_t mlog_inuse; /* in-use */
226 static int mlog_wpage; /* active page */
227 static void *mlog_sih; /* softint handle */
228
229 static void
230 audio_mlog_init(void)
231 {
232 mlog_refs++;
233 if (mlog_refs > 1)
234 return;
235 mlog_buflen = 4096;
236 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
237 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
238 mlog_used = 0;
239 mlog_full = 0;
240 mlog_drop = 0;
241 mlog_inuse = 0;
242 mlog_wpage = 0;
243 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
244 if (mlog_sih == NULL)
245 printf("%s: softint_establish failed\n", __func__);
246 }
247
248 static void
249 audio_mlog_free(void)
250 {
251 mlog_refs--;
252 if (mlog_refs > 0)
253 return;
254
255 audio_mlog_flush();
256 if (mlog_sih)
257 softint_disestablish(mlog_sih);
258 kmem_free(mlog_buf[0], mlog_buflen);
259 kmem_free(mlog_buf[1], mlog_buflen);
260 }
261
262 /*
263 * Flush memory buffer.
264 * It must not be called from hardware interrupt context.
265 */
266 void
267 audio_mlog_flush(void)
268 {
269 if (mlog_refs == 0)
270 return;
271
272 /* Nothing to do if already in use ? */
273 if (atomic_swap_32(&mlog_inuse, 1) == 1)
274 return;
275
276 int rpage = mlog_wpage;
277 mlog_wpage ^= 1;
278 mlog_buf[mlog_wpage][0] = '\0';
279 mlog_used = 0;
280
281 atomic_swap_32(&mlog_inuse, 0);
282
283 if (mlog_buf[rpage][0] != '\0') {
284 printf("%s", mlog_buf[rpage]);
285 if (mlog_drop > 0)
286 printf("mlog_drop %d\n", mlog_drop);
287 if (mlog_full > 0)
288 printf("mlog_full %d\n", mlog_full);
289 }
290 mlog_full = 0;
291 mlog_drop = 0;
292 }
293
294 static void
295 audio_mlog_softintr(void *cookie)
296 {
297 audio_mlog_flush();
298 }
299
300 void
301 audio_mlog_printf(const char *fmt, ...)
302 {
303 int len;
304 va_list ap;
305
306 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
307 /* already inuse */
308 mlog_drop++;
309 return;
310 }
311
312 va_start(ap, fmt);
313 len = vsnprintf(
314 mlog_buf[mlog_wpage] + mlog_used,
315 mlog_buflen - mlog_used,
316 fmt, ap);
317 va_end(ap);
318
319 mlog_used += len;
320 if (mlog_buflen - mlog_used <= 1) {
321 mlog_full++;
322 }
323
324 atomic_swap_32(&mlog_inuse, 0);
325
326 if (mlog_sih)
327 softint_schedule(mlog_sih);
328 }
329
330 /* trace functions */
331 static void
332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
333 const char *fmt, va_list ap)
334 {
335 char buf[256];
336 int n;
337
338 n = 0;
339 buf[0] = '\0';
340 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
341 funcname, device_unit(sc->sc_dev), header);
342 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
343
344 if (cpu_intr_p()) {
345 audio_mlog_printf("%s\n", buf);
346 } else {
347 audio_mlog_flush();
348 printf("%s\n", buf);
349 }
350 }
351
352 static void
353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
354 {
355 va_list ap;
356
357 va_start(ap, fmt);
358 audio_vtrace(sc, funcname, "", fmt, ap);
359 va_end(ap);
360 }
361
362 static void
363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
364 {
365 char hdr[16];
366 va_list ap;
367
368 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
369 va_start(ap, fmt);
370 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
371 va_end(ap);
372 }
373
374 static void
375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
376 {
377 char hdr[32];
378 char phdr[16], rhdr[16];
379 va_list ap;
380
381 phdr[0] = '\0';
382 rhdr[0] = '\0';
383 if (file->ptrack)
384 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
385 if (file->rtrack)
386 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
387 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
388
389 va_start(ap, fmt);
390 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
391 va_end(ap);
392 }
393
394 #define DPRINTF(n, fmt...) do { \
395 if (audiodebug >= (n)) { \
396 audio_mlog_flush(); \
397 printf(fmt); \
398 } \
399 } while (0)
400 #define TRACE(n, fmt...) do { \
401 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
402 } while (0)
403 #define TRACET(n, t, fmt...) do { \
404 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
405 } while (0)
406 #define TRACEF(n, f, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
408 } while (0)
409
410 struct audio_track_debugbuf {
411 char usrbuf[32];
412 char codec[32];
413 char chvol[32];
414 char chmix[32];
415 char freq[32];
416 char outbuf[32];
417 };
418
419 static void
420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
421 {
422
423 memset(buf, 0, sizeof(*buf));
424
425 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
426 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
427 if (track->freq.filter)
428 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
429 track->freq.srcbuf.head,
430 track->freq.srcbuf.used,
431 track->freq.srcbuf.capacity);
432 if (track->chmix.filter)
433 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
434 track->chmix.srcbuf.used);
435 if (track->chvol.filter)
436 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
437 track->chvol.srcbuf.used);
438 if (track->codec.filter)
439 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
440 track->codec.srcbuf.used);
441 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
442 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
443 }
444 #else
445 #define DPRINTF(n, fmt...) do { } while (0)
446 #define TRACE(n, fmt, ...) do { } while (0)
447 #define TRACET(n, t, fmt, ...) do { } while (0)
448 #define TRACEF(n, f, fmt, ...) do { } while (0)
449 #endif
450
451 #define SPECIFIED(x) ((x) != ~0)
452 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
453
454 /*
455 * Default hardware blocksize in msec.
456 *
457 * We use 10 msec for most modern platforms. This period is good enough to
458 * play audio and video synchronizely.
459 * In contrast, for very old platforms, this is usually too short and too
460 * severe. Also such platforms usually can not play video confortably, so
461 * it's not so important to make the blocksize shorter. If the platform
462 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
463 * uses this instead.
464 *
465 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
466 * configuration file if you wish.
467 */
468 #if !defined(AUDIO_BLK_MS)
469 # if defined(__AUDIO_BLK_MS)
470 # define AUDIO_BLK_MS __AUDIO_BLK_MS
471 # else
472 # define AUDIO_BLK_MS (10)
473 # endif
474 #endif
475
476 /* Device timeout in msec */
477 #define AUDIO_TIMEOUT (3000)
478
479 /* #define AUDIO_PM_IDLE */
480 #ifdef AUDIO_PM_IDLE
481 int audio_idle_timeout = 30;
482 #endif
483
484 /* Number of elements of async mixer's pid */
485 #define AM_CAPACITY (4)
486
487 struct portname {
488 const char *name;
489 int mask;
490 };
491
492 static int audiomatch(device_t, cfdata_t, void *);
493 static void audioattach(device_t, device_t, void *);
494 static int audiodetach(device_t, int);
495 static int audioactivate(device_t, enum devact);
496 static void audiochilddet(device_t, device_t);
497 static int audiorescan(device_t, const char *, const int *);
498
499 static int audio_modcmd(modcmd_t, void *);
500
501 #ifdef AUDIO_PM_IDLE
502 static void audio_idle(void *);
503 static void audio_activity(device_t, devactive_t);
504 #endif
505
506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
507 static bool audio_resume(device_t dv, const pmf_qual_t *);
508 static void audio_volume_down(device_t);
509 static void audio_volume_up(device_t);
510 static void audio_volume_toggle(device_t);
511
512 static void audio_mixer_capture(struct audio_softc *);
513 static void audio_mixer_restore(struct audio_softc *);
514
515 static void audio_softintr_rd(void *);
516 static void audio_softintr_wr(void *);
517
518 static int audio_exlock_mutex_enter(struct audio_softc *);
519 static void audio_exlock_mutex_exit(struct audio_softc *);
520 static int audio_exlock_enter(struct audio_softc *);
521 static void audio_exlock_exit(struct audio_softc *);
522 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
523 static void audio_file_exit(struct audio_softc *, struct psref *);
524 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
525
526 static int audioclose(struct file *);
527 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
528 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
529 static int audioioctl(struct file *, u_long, void *);
530 static int audiopoll(struct file *, int);
531 static int audiokqfilter(struct file *, struct knote *);
532 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
533 struct uvm_object **, int *);
534 static int audiostat(struct file *, struct stat *);
535
536 static void filt_audiowrite_detach(struct knote *);
537 static int filt_audiowrite_event(struct knote *, long);
538 static void filt_audioread_detach(struct knote *);
539 static int filt_audioread_event(struct knote *, long);
540
541 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
542 audio_file_t **);
543 static int audio_close(struct audio_softc *, audio_file_t *);
544 static int audio_unlink(struct audio_softc *, audio_file_t *);
545 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
546 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
547 static void audio_file_clear(struct audio_softc *, audio_file_t *);
548 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
549 struct lwp *, audio_file_t *);
550 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
551 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
552 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
553 struct uvm_object **, int *, audio_file_t *);
554
555 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
556
557 static void audio_pintr(void *);
558 static void audio_rintr(void *);
559
560 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
561
562 static __inline int audio_track_readablebytes(const audio_track_t *);
563 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
564 const struct audio_info *);
565 static int audio_track_setinfo_check(audio_track_t *,
566 audio_format2_t *, const struct audio_prinfo *);
567 static void audio_track_setinfo_water(audio_track_t *,
568 const struct audio_info *);
569 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
570 struct audio_info *);
571 static int audio_hw_set_format(struct audio_softc *, int,
572 const audio_format2_t *, const audio_format2_t *,
573 audio_filter_reg_t *, audio_filter_reg_t *);
574 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
575 audio_file_t *);
576 static bool audio_can_playback(struct audio_softc *);
577 static bool audio_can_capture(struct audio_softc *);
578 static int audio_check_params(audio_format2_t *);
579 static int audio_mixers_init(struct audio_softc *sc, int,
580 const audio_format2_t *, const audio_format2_t *,
581 const audio_filter_reg_t *, const audio_filter_reg_t *);
582 static int audio_select_freq(const struct audio_format *);
583 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
584 static int audio_hw_validate_format(struct audio_softc *, int,
585 const audio_format2_t *);
586 static int audio_mixers_set_format(struct audio_softc *,
587 const struct audio_info *);
588 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
589 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
590 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
591 #if defined(AUDIO_DEBUG)
592 static int audio_sysctl_debug(SYSCTLFN_PROTO);
593 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
594 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
595 #endif
596
597 static void *audio_realloc(void *, size_t);
598 static int audio_realloc_usrbuf(audio_track_t *, int);
599 static void audio_free_usrbuf(audio_track_t *);
600
601 static audio_track_t *audio_track_create(struct audio_softc *,
602 audio_trackmixer_t *);
603 static void audio_track_destroy(audio_track_t *);
604 static audio_filter_t audio_track_get_codec(audio_track_t *,
605 const audio_format2_t *, const audio_format2_t *);
606 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
607 static void audio_track_play(audio_track_t *);
608 static int audio_track_drain(struct audio_softc *, audio_track_t *);
609 static void audio_track_record(audio_track_t *);
610 static void audio_track_clear(struct audio_softc *, audio_track_t *);
611
612 static int audio_mixer_init(struct audio_softc *, int,
613 const audio_format2_t *, const audio_filter_reg_t *);
614 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
615 static void audio_pmixer_start(struct audio_softc *, bool);
616 static void audio_pmixer_process(struct audio_softc *);
617 static void audio_pmixer_agc(audio_trackmixer_t *, int);
618 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
619 static void audio_pmixer_output(struct audio_softc *);
620 static int audio_pmixer_halt(struct audio_softc *);
621 static void audio_rmixer_start(struct audio_softc *);
622 static void audio_rmixer_process(struct audio_softc *);
623 static void audio_rmixer_input(struct audio_softc *);
624 static int audio_rmixer_halt(struct audio_softc *);
625
626 static void mixer_init(struct audio_softc *);
627 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
628 static int mixer_close(struct audio_softc *, audio_file_t *);
629 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
630 static void mixer_async_add(struct audio_softc *, pid_t);
631 static void mixer_async_remove(struct audio_softc *, pid_t);
632 static void mixer_signal(struct audio_softc *);
633
634 static int au_portof(struct audio_softc *, char *, int);
635
636 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
637 mixer_devinfo_t *, const struct portname *);
638 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
639 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
640 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
641 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
642 u_int *, u_char *);
643 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
644 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
645 static int au_set_monitor_gain(struct audio_softc *, int);
646 static int au_get_monitor_gain(struct audio_softc *);
647 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
648 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
649
650 static __inline struct audio_params
651 format2_to_params(const audio_format2_t *f2)
652 {
653 audio_params_t p;
654
655 /* validbits/precision <-> precision/stride */
656 p.sample_rate = f2->sample_rate;
657 p.channels = f2->channels;
658 p.encoding = f2->encoding;
659 p.validbits = f2->precision;
660 p.precision = f2->stride;
661 return p;
662 }
663
664 static __inline audio_format2_t
665 params_to_format2(const struct audio_params *p)
666 {
667 audio_format2_t f2;
668
669 /* precision/stride <-> validbits/precision */
670 f2.sample_rate = p->sample_rate;
671 f2.channels = p->channels;
672 f2.encoding = p->encoding;
673 f2.precision = p->validbits;
674 f2.stride = p->precision;
675 return f2;
676 }
677
678 /* Return true if this track is a playback track. */
679 static __inline bool
680 audio_track_is_playback(const audio_track_t *track)
681 {
682
683 return ((track->mode & AUMODE_PLAY) != 0);
684 }
685
686 /* Return true if this track is a recording track. */
687 static __inline bool
688 audio_track_is_record(const audio_track_t *track)
689 {
690
691 return ((track->mode & AUMODE_RECORD) != 0);
692 }
693
694 #if 0 /* XXX Not used yet */
695 /*
696 * Convert 0..255 volume used in userland to internal presentation 0..256.
697 */
698 static __inline u_int
699 audio_volume_to_inner(u_int v)
700 {
701
702 return v < 127 ? v : v + 1;
703 }
704
705 /*
706 * Convert 0..256 internal presentation to 0..255 volume used in userland.
707 */
708 static __inline u_int
709 audio_volume_to_outer(u_int v)
710 {
711
712 return v < 127 ? v : v - 1;
713 }
714 #endif /* 0 */
715
716 static dev_type_open(audioopen);
717 /* XXXMRG use more dev_type_xxx */
718
719 const struct cdevsw audio_cdevsw = {
720 .d_open = audioopen,
721 .d_close = noclose,
722 .d_read = noread,
723 .d_write = nowrite,
724 .d_ioctl = noioctl,
725 .d_stop = nostop,
726 .d_tty = notty,
727 .d_poll = nopoll,
728 .d_mmap = nommap,
729 .d_kqfilter = nokqfilter,
730 .d_discard = nodiscard,
731 .d_flag = D_OTHER | D_MPSAFE
732 };
733
734 const struct fileops audio_fileops = {
735 .fo_name = "audio",
736 .fo_read = audioread,
737 .fo_write = audiowrite,
738 .fo_ioctl = audioioctl,
739 .fo_fcntl = fnullop_fcntl,
740 .fo_stat = audiostat,
741 .fo_poll = audiopoll,
742 .fo_close = audioclose,
743 .fo_mmap = audiommap,
744 .fo_kqfilter = audiokqfilter,
745 .fo_restart = fnullop_restart
746 };
747
748 /* The default audio mode: 8 kHz mono mu-law */
749 static const struct audio_params audio_default = {
750 .sample_rate = 8000,
751 .encoding = AUDIO_ENCODING_ULAW,
752 .precision = 8,
753 .validbits = 8,
754 .channels = 1,
755 };
756
757 static const char *encoding_names[] = {
758 "none",
759 AudioEmulaw,
760 AudioEalaw,
761 "pcm16",
762 "pcm8",
763 AudioEadpcm,
764 AudioEslinear_le,
765 AudioEslinear_be,
766 AudioEulinear_le,
767 AudioEulinear_be,
768 AudioEslinear,
769 AudioEulinear,
770 AudioEmpeg_l1_stream,
771 AudioEmpeg_l1_packets,
772 AudioEmpeg_l1_system,
773 AudioEmpeg_l2_stream,
774 AudioEmpeg_l2_packets,
775 AudioEmpeg_l2_system,
776 AudioEac3,
777 };
778
779 /*
780 * Returns encoding name corresponding to AUDIO_ENCODING_*.
781 * Note that it may return a local buffer because it is mainly for debugging.
782 */
783 const char *
784 audio_encoding_name(int encoding)
785 {
786 static char buf[16];
787
788 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
789 return encoding_names[encoding];
790 } else {
791 snprintf(buf, sizeof(buf), "enc=%d", encoding);
792 return buf;
793 }
794 }
795
796 /*
797 * Supported encodings used by AUDIO_GETENC.
798 * index and flags are set by code.
799 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
800 */
801 static const audio_encoding_t audio_encodings[] = {
802 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
803 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
804 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
805 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
806 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
807 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
808 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
809 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
810 #if defined(AUDIO_SUPPORT_LINEAR24)
811 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
812 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
813 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
814 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
815 #endif
816 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
817 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
818 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
819 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
820 };
821
822 static const struct portname itable[] = {
823 { AudioNmicrophone, AUDIO_MICROPHONE },
824 { AudioNline, AUDIO_LINE_IN },
825 { AudioNcd, AUDIO_CD },
826 { 0, 0 }
827 };
828 static const struct portname otable[] = {
829 { AudioNspeaker, AUDIO_SPEAKER },
830 { AudioNheadphone, AUDIO_HEADPHONE },
831 { AudioNline, AUDIO_LINE_OUT },
832 { 0, 0 }
833 };
834
835 static struct psref_class *audio_psref_class __read_mostly;
836
837 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
838 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
839 audiochilddet, DVF_DETACH_SHUTDOWN);
840
841 static int
842 audiomatch(device_t parent, cfdata_t match, void *aux)
843 {
844 struct audio_attach_args *sa;
845
846 sa = aux;
847 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
848 __func__, sa->type, sa, sa->hwif);
849 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
850 }
851
852 static void
853 audioattach(device_t parent, device_t self, void *aux)
854 {
855 struct audio_softc *sc;
856 struct audio_attach_args *sa;
857 const struct audio_hw_if *hw_if;
858 audio_format2_t phwfmt;
859 audio_format2_t rhwfmt;
860 audio_filter_reg_t pfil;
861 audio_filter_reg_t rfil;
862 const struct sysctlnode *node;
863 void *hdlp;
864 bool has_playback;
865 bool has_capture;
866 bool has_indep;
867 bool has_fulldup;
868 int mode;
869 int error;
870
871 sc = device_private(self);
872 sc->sc_dev = self;
873 sa = (struct audio_attach_args *)aux;
874 hw_if = sa->hwif;
875 hdlp = sa->hdl;
876
877 if (hw_if == NULL) {
878 panic("audioattach: missing hw_if method");
879 }
880 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
881 aprint_error(": missing mandatory method\n");
882 return;
883 }
884
885 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
886 sc->sc_props = hw_if->get_props(hdlp);
887
888 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
889 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
890 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
891 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
892
893 #ifdef DIAGNOSTIC
894 if (hw_if->query_format == NULL ||
895 hw_if->set_format == NULL ||
896 hw_if->getdev == NULL ||
897 hw_if->set_port == NULL ||
898 hw_if->get_port == NULL ||
899 hw_if->query_devinfo == NULL) {
900 aprint_error(": missing mandatory method\n");
901 return;
902 }
903 if (has_playback) {
904 if ((hw_if->start_output == NULL &&
905 hw_if->trigger_output == NULL) ||
906 hw_if->halt_output == NULL) {
907 aprint_error(": missing playback method\n");
908 }
909 }
910 if (has_capture) {
911 if ((hw_if->start_input == NULL &&
912 hw_if->trigger_input == NULL) ||
913 hw_if->halt_input == NULL) {
914 aprint_error(": missing capture method\n");
915 }
916 }
917 #endif
918
919 sc->hw_if = hw_if;
920 sc->hw_hdl = hdlp;
921 sc->hw_dev = parent;
922
923 sc->sc_exlock = 1;
924 sc->sc_blk_ms = AUDIO_BLK_MS;
925 SLIST_INIT(&sc->sc_files);
926 cv_init(&sc->sc_exlockcv, "audiolk");
927 sc->sc_am_capacity = 0;
928 sc->sc_am_used = 0;
929 sc->sc_am = NULL;
930
931 /* MMAP is now supported by upper layer. */
932 sc->sc_props |= AUDIO_PROP_MMAP;
933
934 KASSERT(has_playback || has_capture);
935 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
936 if (!has_playback || !has_capture) {
937 KASSERT(!has_indep);
938 KASSERT(!has_fulldup);
939 }
940
941 mode = 0;
942 if (has_playback) {
943 aprint_normal(": playback");
944 mode |= AUMODE_PLAY;
945 }
946 if (has_capture) {
947 aprint_normal("%c capture", has_playback ? ',' : ':');
948 mode |= AUMODE_RECORD;
949 }
950 if (has_playback && has_capture) {
951 if (has_fulldup)
952 aprint_normal(", full duplex");
953 else
954 aprint_normal(", half duplex");
955
956 if (has_indep)
957 aprint_normal(", independent");
958 }
959
960 aprint_naive("\n");
961 aprint_normal("\n");
962
963 /* probe hw params */
964 memset(&phwfmt, 0, sizeof(phwfmt));
965 memset(&rhwfmt, 0, sizeof(rhwfmt));
966 memset(&pfil, 0, sizeof(pfil));
967 memset(&rfil, 0, sizeof(rfil));
968 if (has_indep) {
969 int perror, rerror;
970
971 /* On independent devices, probe separately. */
972 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
973 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
974 if (perror && rerror) {
975 aprint_error_dev(self, "audio_hw_probe failed, "
976 "perror = %d, rerror = %d\n", perror, rerror);
977 goto bad;
978 }
979 if (perror) {
980 mode &= ~AUMODE_PLAY;
981 aprint_error_dev(self, "audio_hw_probe failed with "
982 "%d, playback disabled\n", perror);
983 }
984 if (rerror) {
985 mode &= ~AUMODE_RECORD;
986 aprint_error_dev(self, "audio_hw_probe failed with "
987 "%d, capture disabled\n", rerror);
988 }
989 } else {
990 /*
991 * On non independent devices or uni-directional devices,
992 * probe once (simultaneously).
993 */
994 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
995 error = audio_hw_probe(sc, fmt, mode);
996 if (error) {
997 aprint_error_dev(self, "audio_hw_probe failed, "
998 "error = %d\n", error);
999 goto bad;
1000 }
1001 if (has_playback && has_capture)
1002 rhwfmt = phwfmt;
1003 }
1004
1005 /* Init hardware. */
1006 /* hw_probe() also validates [pr]hwfmt. */
1007 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1008 if (error) {
1009 aprint_error_dev(self, "audio_hw_set_format failed, "
1010 "error = %d\n", error);
1011 goto bad;
1012 }
1013
1014 /*
1015 * Init track mixers. If at least one direction is available on
1016 * attach time, we assume a success.
1017 */
1018 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1019 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1020 aprint_error_dev(self, "audio_mixers_init failed, "
1021 "error = %d\n", error);
1022 goto bad;
1023 }
1024
1025 sc->sc_psz = pserialize_create();
1026 psref_target_init(&sc->sc_psref, audio_psref_class);
1027
1028 selinit(&sc->sc_wsel);
1029 selinit(&sc->sc_rsel);
1030
1031 /* Initial parameter of /dev/sound */
1032 sc->sc_sound_pparams = params_to_format2(&audio_default);
1033 sc->sc_sound_rparams = params_to_format2(&audio_default);
1034 sc->sc_sound_ppause = false;
1035 sc->sc_sound_rpause = false;
1036
1037 /* XXX TODO: consider about sc_ai */
1038
1039 mixer_init(sc);
1040 TRACE(2, "inputs ports=0x%x, input master=%d, "
1041 "output ports=0x%x, output master=%d",
1042 sc->sc_inports.allports, sc->sc_inports.master,
1043 sc->sc_outports.allports, sc->sc_outports.master);
1044
1045 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1046 0,
1047 CTLTYPE_NODE, device_xname(sc->sc_dev),
1048 SYSCTL_DESCR("audio test"),
1049 NULL, 0,
1050 NULL, 0,
1051 CTL_HW,
1052 CTL_CREATE, CTL_EOL);
1053
1054 if (node != NULL) {
1055 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1056 CTLFLAG_READWRITE,
1057 CTLTYPE_INT, "blk_ms",
1058 SYSCTL_DESCR("blocksize in msec"),
1059 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1060 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1061
1062 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1063 CTLFLAG_READWRITE,
1064 CTLTYPE_BOOL, "multiuser",
1065 SYSCTL_DESCR("allow multiple user access"),
1066 audio_sysctl_multiuser, 0, (void *)sc, 0,
1067 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1068
1069 #if defined(AUDIO_DEBUG)
1070 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1071 CTLFLAG_READWRITE,
1072 CTLTYPE_INT, "debug",
1073 SYSCTL_DESCR("debug level (0..4)"),
1074 audio_sysctl_debug, 0, (void *)sc, 0,
1075 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1076 #endif
1077 }
1078
1079 #ifdef AUDIO_PM_IDLE
1080 callout_init(&sc->sc_idle_counter, 0);
1081 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1082 #endif
1083
1084 if (!pmf_device_register(self, audio_suspend, audio_resume))
1085 aprint_error_dev(self, "couldn't establish power handler\n");
1086 #ifdef AUDIO_PM_IDLE
1087 if (!device_active_register(self, audio_activity))
1088 aprint_error_dev(self, "couldn't register activity handler\n");
1089 #endif
1090
1091 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1092 audio_volume_down, true))
1093 aprint_error_dev(self, "couldn't add volume down handler\n");
1094 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1095 audio_volume_up, true))
1096 aprint_error_dev(self, "couldn't add volume up handler\n");
1097 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1098 audio_volume_toggle, true))
1099 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1100
1101 #ifdef AUDIO_PM_IDLE
1102 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1103 #endif
1104
1105 #if defined(AUDIO_DEBUG)
1106 audio_mlog_init();
1107 #endif
1108
1109 audiorescan(self, "audio", NULL);
1110 sc->sc_exlock = 0;
1111 return;
1112
1113 bad:
1114 /* Clearing hw_if means that device is attached but disabled. */
1115 sc->hw_if = NULL;
1116 sc->sc_exlock = 0;
1117 aprint_error_dev(sc->sc_dev, "disabled\n");
1118 return;
1119 }
1120
1121 /*
1122 * Initialize hardware mixer.
1123 * This function is called from audioattach().
1124 */
1125 static void
1126 mixer_init(struct audio_softc *sc)
1127 {
1128 mixer_devinfo_t mi;
1129 int iclass, mclass, oclass, rclass;
1130 int record_master_found, record_source_found;
1131
1132 iclass = mclass = oclass = rclass = -1;
1133 sc->sc_inports.index = -1;
1134 sc->sc_inports.master = -1;
1135 sc->sc_inports.nports = 0;
1136 sc->sc_inports.isenum = false;
1137 sc->sc_inports.allports = 0;
1138 sc->sc_inports.isdual = false;
1139 sc->sc_inports.mixerout = -1;
1140 sc->sc_inports.cur_port = -1;
1141 sc->sc_outports.index = -1;
1142 sc->sc_outports.master = -1;
1143 sc->sc_outports.nports = 0;
1144 sc->sc_outports.isenum = false;
1145 sc->sc_outports.allports = 0;
1146 sc->sc_outports.isdual = false;
1147 sc->sc_outports.mixerout = -1;
1148 sc->sc_outports.cur_port = -1;
1149 sc->sc_monitor_port = -1;
1150 /*
1151 * Read through the underlying driver's list, picking out the class
1152 * names from the mixer descriptions. We'll need them to decode the
1153 * mixer descriptions on the next pass through the loop.
1154 */
1155 mutex_enter(sc->sc_lock);
1156 for(mi.index = 0; ; mi.index++) {
1157 if (audio_query_devinfo(sc, &mi) != 0)
1158 break;
1159 /*
1160 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1161 * All the other types describe an actual mixer.
1162 */
1163 if (mi.type == AUDIO_MIXER_CLASS) {
1164 if (strcmp(mi.label.name, AudioCinputs) == 0)
1165 iclass = mi.mixer_class;
1166 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1167 mclass = mi.mixer_class;
1168 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1169 oclass = mi.mixer_class;
1170 if (strcmp(mi.label.name, AudioCrecord) == 0)
1171 rclass = mi.mixer_class;
1172 }
1173 }
1174 mutex_exit(sc->sc_lock);
1175
1176 /* Allocate save area. Ensure non-zero allocation. */
1177 sc->sc_nmixer_states = mi.index;
1178 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1179 (sc->sc_nmixer_states + 1), KM_SLEEP);
1180
1181 /*
1182 * This is where we assign each control in the "audio" model, to the
1183 * underlying "mixer" control. We walk through the whole list once,
1184 * assigning likely candidates as we come across them.
1185 */
1186 record_master_found = 0;
1187 record_source_found = 0;
1188 mutex_enter(sc->sc_lock);
1189 for(mi.index = 0; ; mi.index++) {
1190 if (audio_query_devinfo(sc, &mi) != 0)
1191 break;
1192 KASSERT(mi.index < sc->sc_nmixer_states);
1193 if (mi.type == AUDIO_MIXER_CLASS)
1194 continue;
1195 if (mi.mixer_class == iclass) {
1196 /*
1197 * AudioCinputs is only a fallback, when we don't
1198 * find what we're looking for in AudioCrecord, so
1199 * check the flags before accepting one of these.
1200 */
1201 if (strcmp(mi.label.name, AudioNmaster) == 0
1202 && record_master_found == 0)
1203 sc->sc_inports.master = mi.index;
1204 if (strcmp(mi.label.name, AudioNsource) == 0
1205 && record_source_found == 0) {
1206 if (mi.type == AUDIO_MIXER_ENUM) {
1207 int i;
1208 for(i = 0; i < mi.un.e.num_mem; i++)
1209 if (strcmp(mi.un.e.member[i].label.name,
1210 AudioNmixerout) == 0)
1211 sc->sc_inports.mixerout =
1212 mi.un.e.member[i].ord;
1213 }
1214 au_setup_ports(sc, &sc->sc_inports, &mi,
1215 itable);
1216 }
1217 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1218 sc->sc_outports.master == -1)
1219 sc->sc_outports.master = mi.index;
1220 } else if (mi.mixer_class == mclass) {
1221 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1222 sc->sc_monitor_port = mi.index;
1223 } else if (mi.mixer_class == oclass) {
1224 if (strcmp(mi.label.name, AudioNmaster) == 0)
1225 sc->sc_outports.master = mi.index;
1226 if (strcmp(mi.label.name, AudioNselect) == 0)
1227 au_setup_ports(sc, &sc->sc_outports, &mi,
1228 otable);
1229 } else if (mi.mixer_class == rclass) {
1230 /*
1231 * These are the preferred mixers for the audio record
1232 * controls, so set the flags here, but don't check.
1233 */
1234 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1235 sc->sc_inports.master = mi.index;
1236 record_master_found = 1;
1237 }
1238 #if 1 /* Deprecated. Use AudioNmaster. */
1239 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1240 sc->sc_inports.master = mi.index;
1241 record_master_found = 1;
1242 }
1243 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1244 sc->sc_inports.master = mi.index;
1245 record_master_found = 1;
1246 }
1247 #endif
1248 if (strcmp(mi.label.name, AudioNsource) == 0) {
1249 if (mi.type == AUDIO_MIXER_ENUM) {
1250 int i;
1251 for(i = 0; i < mi.un.e.num_mem; i++)
1252 if (strcmp(mi.un.e.member[i].label.name,
1253 AudioNmixerout) == 0)
1254 sc->sc_inports.mixerout =
1255 mi.un.e.member[i].ord;
1256 }
1257 au_setup_ports(sc, &sc->sc_inports, &mi,
1258 itable);
1259 record_source_found = 1;
1260 }
1261 }
1262 }
1263 mutex_exit(sc->sc_lock);
1264 }
1265
1266 static int
1267 audioactivate(device_t self, enum devact act)
1268 {
1269 struct audio_softc *sc = device_private(self);
1270
1271 switch (act) {
1272 case DVACT_DEACTIVATE:
1273 mutex_enter(sc->sc_lock);
1274 sc->sc_dying = true;
1275 cv_broadcast(&sc->sc_exlockcv);
1276 mutex_exit(sc->sc_lock);
1277 return 0;
1278 default:
1279 return EOPNOTSUPP;
1280 }
1281 }
1282
1283 static int
1284 audiodetach(device_t self, int flags)
1285 {
1286 struct audio_softc *sc;
1287 struct audio_file *file;
1288 int error;
1289
1290 sc = device_private(self);
1291 TRACE(2, "flags=%d", flags);
1292
1293 /* device is not initialized */
1294 if (sc->hw_if == NULL)
1295 return 0;
1296
1297 /* Start draining existing accessors of the device. */
1298 error = config_detach_children(self, flags);
1299 if (error)
1300 return error;
1301
1302 /* delete sysctl nodes */
1303 sysctl_teardown(&sc->sc_log);
1304
1305 mutex_enter(sc->sc_lock);
1306 sc->sc_dying = true;
1307 cv_broadcast(&sc->sc_exlockcv);
1308 if (sc->sc_pmixer)
1309 cv_broadcast(&sc->sc_pmixer->outcv);
1310 if (sc->sc_rmixer)
1311 cv_broadcast(&sc->sc_rmixer->outcv);
1312
1313 /* Prevent new users */
1314 SLIST_FOREACH(file, &sc->sc_files, entry) {
1315 atomic_store_relaxed(&file->dying, true);
1316 }
1317
1318 /*
1319 * Wait for existing users to drain.
1320 * - pserialize_perform waits for all pserialize_read sections on
1321 * all CPUs; after this, no more new psref_acquire can happen.
1322 * - psref_target_destroy waits for all extant acquired psrefs to
1323 * be psref_released.
1324 */
1325 pserialize_perform(sc->sc_psz);
1326 mutex_exit(sc->sc_lock);
1327 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1328
1329 /*
1330 * We are now guaranteed that there are no calls to audio fileops
1331 * that hold sc, and any new calls with files that were for sc will
1332 * fail. Thus, we now have exclusive access to the softc.
1333 */
1334
1335 /*
1336 * Nuke all open instances.
1337 * Here, we no longer need any locks to traverse sc_files.
1338 */
1339 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1340 audio_unlink(sc, file);
1341 }
1342
1343 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1344 audio_volume_down, true);
1345 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1346 audio_volume_up, true);
1347 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1348 audio_volume_toggle, true);
1349
1350 #ifdef AUDIO_PM_IDLE
1351 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1352
1353 device_active_deregister(self, audio_activity);
1354 #endif
1355
1356 pmf_device_deregister(self);
1357
1358 /* Free resources */
1359 sc->sc_exlock = 1;
1360 if (sc->sc_pmixer) {
1361 audio_mixer_destroy(sc, sc->sc_pmixer);
1362 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1363 }
1364 if (sc->sc_rmixer) {
1365 audio_mixer_destroy(sc, sc->sc_rmixer);
1366 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1367 }
1368 if (sc->sc_am)
1369 kern_free(sc->sc_am);
1370
1371 seldestroy(&sc->sc_wsel);
1372 seldestroy(&sc->sc_rsel);
1373
1374 #ifdef AUDIO_PM_IDLE
1375 callout_destroy(&sc->sc_idle_counter);
1376 #endif
1377
1378 cv_destroy(&sc->sc_exlockcv);
1379
1380 #if defined(AUDIO_DEBUG)
1381 audio_mlog_free();
1382 #endif
1383
1384 return 0;
1385 }
1386
1387 static void
1388 audiochilddet(device_t self, device_t child)
1389 {
1390
1391 /* we hold no child references, so do nothing */
1392 }
1393
1394 static int
1395 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1396 {
1397
1398 if (config_match(parent, cf, aux))
1399 config_attach_loc(parent, cf, locs, aux, NULL);
1400
1401 return 0;
1402 }
1403
1404 static int
1405 audiorescan(device_t self, const char *ifattr, const int *flags)
1406 {
1407 struct audio_softc *sc = device_private(self);
1408
1409 if (!ifattr_match(ifattr, "audio"))
1410 return 0;
1411
1412 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1413
1414 return 0;
1415 }
1416
1417 /*
1418 * Called from hardware driver. This is where the MI audio driver gets
1419 * probed/attached to the hardware driver.
1420 */
1421 device_t
1422 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1423 {
1424 struct audio_attach_args arg;
1425
1426 #ifdef DIAGNOSTIC
1427 if (ahwp == NULL) {
1428 aprint_error("audio_attach_mi: NULL\n");
1429 return 0;
1430 }
1431 #endif
1432 arg.type = AUDIODEV_TYPE_AUDIO;
1433 arg.hwif = ahwp;
1434 arg.hdl = hdlp;
1435 return config_found(dev, &arg, audioprint);
1436 }
1437
1438 /*
1439 * Enter critical section and also keep sc_lock.
1440 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1441 * Must be called without sc_lock held.
1442 */
1443 static int
1444 audio_exlock_mutex_enter(struct audio_softc *sc)
1445 {
1446 int error;
1447
1448 mutex_enter(sc->sc_lock);
1449 if (sc->sc_dying) {
1450 mutex_exit(sc->sc_lock);
1451 return EIO;
1452 }
1453
1454 while (__predict_false(sc->sc_exlock != 0)) {
1455 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1456 if (sc->sc_dying)
1457 error = EIO;
1458 if (error) {
1459 mutex_exit(sc->sc_lock);
1460 return error;
1461 }
1462 }
1463
1464 /* Acquire */
1465 sc->sc_exlock = 1;
1466 return 0;
1467 }
1468
1469 /*
1470 * Exit critical section and exit sc_lock.
1471 * Must be called with sc_lock held.
1472 */
1473 static void
1474 audio_exlock_mutex_exit(struct audio_softc *sc)
1475 {
1476
1477 KASSERT(mutex_owned(sc->sc_lock));
1478
1479 sc->sc_exlock = 0;
1480 cv_broadcast(&sc->sc_exlockcv);
1481 mutex_exit(sc->sc_lock);
1482 }
1483
1484 /*
1485 * Enter critical section.
1486 * If successful, it returns 0. Otherwise returns errno.
1487 * Must be called without sc_lock held.
1488 * This function returns without sc_lock held.
1489 */
1490 static int
1491 audio_exlock_enter(struct audio_softc *sc)
1492 {
1493 int error;
1494
1495 error = audio_exlock_mutex_enter(sc);
1496 if (error)
1497 return error;
1498 mutex_exit(sc->sc_lock);
1499 return 0;
1500 }
1501
1502 /*
1503 * Exit critical section.
1504 * Must be called without sc_lock held.
1505 */
1506 static void
1507 audio_exlock_exit(struct audio_softc *sc)
1508 {
1509
1510 mutex_enter(sc->sc_lock);
1511 audio_exlock_mutex_exit(sc);
1512 }
1513
1514 /*
1515 * Acquire sc from file, and increment the psref count.
1516 * If successful, returns sc. Otherwise returns NULL.
1517 */
1518 struct audio_softc *
1519 audio_file_enter(audio_file_t *file, struct psref *refp)
1520 {
1521 int s;
1522 bool dying;
1523
1524 /* psref(9) forbids to migrate CPUs */
1525 curlwp_bind();
1526
1527 /* Block audiodetach while we acquire a reference */
1528 s = pserialize_read_enter();
1529
1530 /* If close or audiodetach already ran, tough -- no more audio */
1531 dying = atomic_load_relaxed(&file->dying);
1532 if (dying) {
1533 pserialize_read_exit(s);
1534 return NULL;
1535 }
1536
1537 /* Acquire a reference */
1538 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1539
1540 /* Now sc won't go away until we drop the reference count */
1541 pserialize_read_exit(s);
1542
1543 return file->sc;
1544 }
1545
1546 /*
1547 * Decrement the psref count.
1548 */
1549 void
1550 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1551 {
1552
1553 psref_release(refp, &sc->sc_psref, audio_psref_class);
1554 }
1555
1556 /*
1557 * Wait for I/O to complete, releasing sc_lock.
1558 * Must be called with sc_lock held.
1559 */
1560 static int
1561 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1562 {
1563 int error;
1564
1565 KASSERT(track);
1566 KASSERT(mutex_owned(sc->sc_lock));
1567
1568 /* Wait for pending I/O to complete. */
1569 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1570 mstohz(AUDIO_TIMEOUT));
1571 if (sc->sc_suspending) {
1572 /* If it's about to suspend, ignore timeout error. */
1573 if (error == EWOULDBLOCK) {
1574 TRACET(2, track, "timeout (suspending)");
1575 return 0;
1576 }
1577 }
1578 if (sc->sc_dying) {
1579 error = EIO;
1580 }
1581 if (error) {
1582 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1583 if (error == EWOULDBLOCK)
1584 device_printf(sc->sc_dev, "device timeout\n");
1585 } else {
1586 TRACET(3, track, "wakeup");
1587 }
1588 return error;
1589 }
1590
1591 /*
1592 * Try to acquire track lock.
1593 * It doesn't block if the track lock is already aquired.
1594 * Returns true if the track lock was acquired, or false if the track
1595 * lock was already acquired.
1596 */
1597 static __inline bool
1598 audio_track_lock_tryenter(audio_track_t *track)
1599 {
1600 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1601 }
1602
1603 /*
1604 * Acquire track lock.
1605 */
1606 static __inline void
1607 audio_track_lock_enter(audio_track_t *track)
1608 {
1609 /* Don't sleep here. */
1610 while (audio_track_lock_tryenter(track) == false)
1611 ;
1612 }
1613
1614 /*
1615 * Release track lock.
1616 */
1617 static __inline void
1618 audio_track_lock_exit(audio_track_t *track)
1619 {
1620 atomic_swap_uint(&track->lock, 0);
1621 }
1622
1623
1624 static int
1625 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1626 {
1627 struct audio_softc *sc;
1628 int error;
1629
1630 /* Find the device */
1631 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1632 if (sc == NULL || sc->hw_if == NULL)
1633 return ENXIO;
1634
1635 error = audio_exlock_enter(sc);
1636 if (error)
1637 return error;
1638
1639 device_active(sc->sc_dev, DVA_SYSTEM);
1640 switch (AUDIODEV(dev)) {
1641 case SOUND_DEVICE:
1642 case AUDIO_DEVICE:
1643 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1644 break;
1645 case AUDIOCTL_DEVICE:
1646 error = audioctl_open(dev, sc, flags, ifmt, l);
1647 break;
1648 case MIXER_DEVICE:
1649 error = mixer_open(dev, sc, flags, ifmt, l);
1650 break;
1651 default:
1652 error = ENXIO;
1653 break;
1654 }
1655 audio_exlock_exit(sc);
1656
1657 return error;
1658 }
1659
1660 static int
1661 audioclose(struct file *fp)
1662 {
1663 struct audio_softc *sc;
1664 struct psref sc_ref;
1665 audio_file_t *file;
1666 int error;
1667 dev_t dev;
1668
1669 KASSERT(fp->f_audioctx);
1670 file = fp->f_audioctx;
1671 dev = file->dev;
1672 error = 0;
1673
1674 /*
1675 * audioclose() must
1676 * - unplug track from the trackmixer (and unplug anything from softc),
1677 * if sc exists.
1678 * - free all memory objects, regardless of sc.
1679 */
1680
1681 sc = audio_file_enter(file, &sc_ref);
1682 if (sc) {
1683 switch (AUDIODEV(dev)) {
1684 case SOUND_DEVICE:
1685 case AUDIO_DEVICE:
1686 error = audio_close(sc, file);
1687 break;
1688 case AUDIOCTL_DEVICE:
1689 error = 0;
1690 break;
1691 case MIXER_DEVICE:
1692 error = mixer_close(sc, file);
1693 break;
1694 default:
1695 error = ENXIO;
1696 break;
1697 }
1698
1699 audio_file_exit(sc, &sc_ref);
1700 }
1701
1702 /* Free memory objects anyway */
1703 TRACEF(2, file, "free memory");
1704 if (file->ptrack)
1705 audio_track_destroy(file->ptrack);
1706 if (file->rtrack)
1707 audio_track_destroy(file->rtrack);
1708 kmem_free(file, sizeof(*file));
1709 fp->f_audioctx = NULL;
1710
1711 return error;
1712 }
1713
1714 static int
1715 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1716 int ioflag)
1717 {
1718 struct audio_softc *sc;
1719 struct psref sc_ref;
1720 audio_file_t *file;
1721 int error;
1722 dev_t dev;
1723
1724 KASSERT(fp->f_audioctx);
1725 file = fp->f_audioctx;
1726 dev = file->dev;
1727
1728 sc = audio_file_enter(file, &sc_ref);
1729 if (sc == NULL)
1730 return EIO;
1731
1732 if (fp->f_flag & O_NONBLOCK)
1733 ioflag |= IO_NDELAY;
1734
1735 switch (AUDIODEV(dev)) {
1736 case SOUND_DEVICE:
1737 case AUDIO_DEVICE:
1738 error = audio_read(sc, uio, ioflag, file);
1739 break;
1740 case AUDIOCTL_DEVICE:
1741 case MIXER_DEVICE:
1742 error = ENODEV;
1743 break;
1744 default:
1745 error = ENXIO;
1746 break;
1747 }
1748
1749 audio_file_exit(sc, &sc_ref);
1750 return error;
1751 }
1752
1753 static int
1754 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1755 int ioflag)
1756 {
1757 struct audio_softc *sc;
1758 struct psref sc_ref;
1759 audio_file_t *file;
1760 int error;
1761 dev_t dev;
1762
1763 KASSERT(fp->f_audioctx);
1764 file = fp->f_audioctx;
1765 dev = file->dev;
1766
1767 sc = audio_file_enter(file, &sc_ref);
1768 if (sc == NULL)
1769 return EIO;
1770
1771 if (fp->f_flag & O_NONBLOCK)
1772 ioflag |= IO_NDELAY;
1773
1774 switch (AUDIODEV(dev)) {
1775 case SOUND_DEVICE:
1776 case AUDIO_DEVICE:
1777 error = audio_write(sc, uio, ioflag, file);
1778 break;
1779 case AUDIOCTL_DEVICE:
1780 case MIXER_DEVICE:
1781 error = ENODEV;
1782 break;
1783 default:
1784 error = ENXIO;
1785 break;
1786 }
1787
1788 audio_file_exit(sc, &sc_ref);
1789 return error;
1790 }
1791
1792 static int
1793 audioioctl(struct file *fp, u_long cmd, void *addr)
1794 {
1795 struct audio_softc *sc;
1796 struct psref sc_ref;
1797 audio_file_t *file;
1798 struct lwp *l = curlwp;
1799 int error;
1800 dev_t dev;
1801
1802 KASSERT(fp->f_audioctx);
1803 file = fp->f_audioctx;
1804 dev = file->dev;
1805
1806 sc = audio_file_enter(file, &sc_ref);
1807 if (sc == NULL)
1808 return EIO;
1809
1810 switch (AUDIODEV(dev)) {
1811 case SOUND_DEVICE:
1812 case AUDIO_DEVICE:
1813 case AUDIOCTL_DEVICE:
1814 mutex_enter(sc->sc_lock);
1815 device_active(sc->sc_dev, DVA_SYSTEM);
1816 mutex_exit(sc->sc_lock);
1817 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1818 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1819 else
1820 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1821 file);
1822 break;
1823 case MIXER_DEVICE:
1824 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1825 break;
1826 default:
1827 error = ENXIO;
1828 break;
1829 }
1830
1831 audio_file_exit(sc, &sc_ref);
1832 return error;
1833 }
1834
1835 static int
1836 audiostat(struct file *fp, struct stat *st)
1837 {
1838 struct audio_softc *sc;
1839 struct psref sc_ref;
1840 audio_file_t *file;
1841
1842 KASSERT(fp->f_audioctx);
1843 file = fp->f_audioctx;
1844
1845 sc = audio_file_enter(file, &sc_ref);
1846 if (sc == NULL)
1847 return EIO;
1848
1849 memset(st, 0, sizeof(*st));
1850
1851 st->st_dev = file->dev;
1852 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1853 st->st_gid = kauth_cred_getegid(fp->f_cred);
1854 st->st_mode = S_IFCHR;
1855
1856 audio_file_exit(sc, &sc_ref);
1857 return 0;
1858 }
1859
1860 static int
1861 audiopoll(struct file *fp, int events)
1862 {
1863 struct audio_softc *sc;
1864 struct psref sc_ref;
1865 audio_file_t *file;
1866 struct lwp *l = curlwp;
1867 int revents;
1868 dev_t dev;
1869
1870 KASSERT(fp->f_audioctx);
1871 file = fp->f_audioctx;
1872 dev = file->dev;
1873
1874 sc = audio_file_enter(file, &sc_ref);
1875 if (sc == NULL)
1876 return POLLERR;
1877
1878 switch (AUDIODEV(dev)) {
1879 case SOUND_DEVICE:
1880 case AUDIO_DEVICE:
1881 revents = audio_poll(sc, events, l, file);
1882 break;
1883 case AUDIOCTL_DEVICE:
1884 case MIXER_DEVICE:
1885 revents = 0;
1886 break;
1887 default:
1888 revents = POLLERR;
1889 break;
1890 }
1891
1892 audio_file_exit(sc, &sc_ref);
1893 return revents;
1894 }
1895
1896 static int
1897 audiokqfilter(struct file *fp, struct knote *kn)
1898 {
1899 struct audio_softc *sc;
1900 struct psref sc_ref;
1901 audio_file_t *file;
1902 dev_t dev;
1903 int error;
1904
1905 KASSERT(fp->f_audioctx);
1906 file = fp->f_audioctx;
1907 dev = file->dev;
1908
1909 sc = audio_file_enter(file, &sc_ref);
1910 if (sc == NULL)
1911 return EIO;
1912
1913 switch (AUDIODEV(dev)) {
1914 case SOUND_DEVICE:
1915 case AUDIO_DEVICE:
1916 error = audio_kqfilter(sc, file, kn);
1917 break;
1918 case AUDIOCTL_DEVICE:
1919 case MIXER_DEVICE:
1920 error = ENODEV;
1921 break;
1922 default:
1923 error = ENXIO;
1924 break;
1925 }
1926
1927 audio_file_exit(sc, &sc_ref);
1928 return error;
1929 }
1930
1931 static int
1932 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1933 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1934 {
1935 struct audio_softc *sc;
1936 struct psref sc_ref;
1937 audio_file_t *file;
1938 dev_t dev;
1939 int error;
1940
1941 KASSERT(fp->f_audioctx);
1942 file = fp->f_audioctx;
1943 dev = file->dev;
1944
1945 sc = audio_file_enter(file, &sc_ref);
1946 if (sc == NULL)
1947 return EIO;
1948
1949 mutex_enter(sc->sc_lock);
1950 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1951 mutex_exit(sc->sc_lock);
1952
1953 switch (AUDIODEV(dev)) {
1954 case SOUND_DEVICE:
1955 case AUDIO_DEVICE:
1956 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1957 uobjp, maxprotp, file);
1958 break;
1959 case AUDIOCTL_DEVICE:
1960 case MIXER_DEVICE:
1961 default:
1962 error = ENOTSUP;
1963 break;
1964 }
1965
1966 audio_file_exit(sc, &sc_ref);
1967 return error;
1968 }
1969
1970
1971 /* Exported interfaces for audiobell. */
1972
1973 /*
1974 * Open for audiobell.
1975 * It stores allocated file to *filep.
1976 * If successful returns 0, otherwise errno.
1977 */
1978 int
1979 audiobellopen(dev_t dev, audio_file_t **filep)
1980 {
1981 struct audio_softc *sc;
1982 int error;
1983
1984 /* Find the device */
1985 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1986 if (sc == NULL || sc->hw_if == NULL)
1987 return ENXIO;
1988
1989 error = audio_exlock_enter(sc);
1990 if (error)
1991 return error;
1992
1993 device_active(sc->sc_dev, DVA_SYSTEM);
1994 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1995
1996 audio_exlock_exit(sc);
1997 return error;
1998 }
1999
2000 /* Close for audiobell */
2001 int
2002 audiobellclose(audio_file_t *file)
2003 {
2004 struct audio_softc *sc;
2005 struct psref sc_ref;
2006 int error;
2007
2008 sc = audio_file_enter(file, &sc_ref);
2009 if (sc == NULL)
2010 return EIO;
2011
2012 error = audio_close(sc, file);
2013
2014 audio_file_exit(sc, &sc_ref);
2015
2016 KASSERT(file->ptrack);
2017 audio_track_destroy(file->ptrack);
2018 KASSERT(file->rtrack == NULL);
2019 kmem_free(file, sizeof(*file));
2020 return error;
2021 }
2022
2023 /* Set sample rate for audiobell */
2024 int
2025 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2026 {
2027 struct audio_softc *sc;
2028 struct psref sc_ref;
2029 struct audio_info ai;
2030 int error;
2031
2032 sc = audio_file_enter(file, &sc_ref);
2033 if (sc == NULL)
2034 return EIO;
2035
2036 AUDIO_INITINFO(&ai);
2037 ai.play.sample_rate = sample_rate;
2038
2039 error = audio_exlock_enter(sc);
2040 if (error)
2041 goto done;
2042 error = audio_file_setinfo(sc, file, &ai);
2043 audio_exlock_exit(sc);
2044
2045 done:
2046 audio_file_exit(sc, &sc_ref);
2047 return error;
2048 }
2049
2050 /* Playback for audiobell */
2051 int
2052 audiobellwrite(audio_file_t *file, struct uio *uio)
2053 {
2054 struct audio_softc *sc;
2055 struct psref sc_ref;
2056 int error;
2057
2058 sc = audio_file_enter(file, &sc_ref);
2059 if (sc == NULL)
2060 return EIO;
2061
2062 error = audio_write(sc, uio, 0, file);
2063
2064 audio_file_exit(sc, &sc_ref);
2065 return error;
2066 }
2067
2068
2069 /*
2070 * Audio driver
2071 */
2072
2073 /*
2074 * Must be called with sc_exlock held and without sc_lock held.
2075 */
2076 int
2077 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2078 struct lwp *l, audio_file_t **bellfile)
2079 {
2080 struct audio_info ai;
2081 struct file *fp;
2082 audio_file_t *af;
2083 audio_ring_t *hwbuf;
2084 bool fullduplex;
2085 bool cred_held;
2086 bool hw_opened;
2087 bool rmixer_started;
2088 int fd;
2089 int error;
2090
2091 KASSERT(sc->sc_exlock);
2092
2093 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2094 (audiodebug >= 3) ? "start " : "",
2095 ISDEVSOUND(dev) ? "sound" : "audio",
2096 flags, sc->sc_popens, sc->sc_ropens);
2097
2098 fp = NULL;
2099 cred_held = false;
2100 hw_opened = false;
2101 rmixer_started = false;
2102
2103 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2104 af->sc = sc;
2105 af->dev = dev;
2106 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2107 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2108 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2109 af->mode |= AUMODE_RECORD;
2110 if (af->mode == 0) {
2111 error = ENXIO;
2112 goto bad;
2113 }
2114
2115 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2116
2117 /*
2118 * On half duplex hardware,
2119 * 1. if mode is (PLAY | REC), let mode PLAY.
2120 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2121 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2122 */
2123 if (fullduplex == false) {
2124 if ((af->mode & AUMODE_PLAY)) {
2125 if (sc->sc_ropens != 0) {
2126 TRACE(1, "record track already exists");
2127 error = ENODEV;
2128 goto bad;
2129 }
2130 /* Play takes precedence */
2131 af->mode &= ~AUMODE_RECORD;
2132 }
2133 if ((af->mode & AUMODE_RECORD)) {
2134 if (sc->sc_popens != 0) {
2135 TRACE(1, "play track already exists");
2136 error = ENODEV;
2137 goto bad;
2138 }
2139 }
2140 }
2141
2142 /* Create tracks */
2143 if ((af->mode & AUMODE_PLAY))
2144 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2145 if ((af->mode & AUMODE_RECORD))
2146 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2147
2148 /* Set parameters */
2149 AUDIO_INITINFO(&ai);
2150 if (bellfile) {
2151 /* If audiobell, only sample_rate will be set later. */
2152 ai.play.sample_rate = audio_default.sample_rate;
2153 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2154 ai.play.channels = 1;
2155 ai.play.precision = 16;
2156 ai.play.pause = 0;
2157 } else if (ISDEVAUDIO(dev)) {
2158 /* If /dev/audio, initialize everytime. */
2159 ai.play.sample_rate = audio_default.sample_rate;
2160 ai.play.encoding = audio_default.encoding;
2161 ai.play.channels = audio_default.channels;
2162 ai.play.precision = audio_default.precision;
2163 ai.play.pause = 0;
2164 ai.record.sample_rate = audio_default.sample_rate;
2165 ai.record.encoding = audio_default.encoding;
2166 ai.record.channels = audio_default.channels;
2167 ai.record.precision = audio_default.precision;
2168 ai.record.pause = 0;
2169 } else {
2170 /* If /dev/sound, take over the previous parameters. */
2171 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2172 ai.play.encoding = sc->sc_sound_pparams.encoding;
2173 ai.play.channels = sc->sc_sound_pparams.channels;
2174 ai.play.precision = sc->sc_sound_pparams.precision;
2175 ai.play.pause = sc->sc_sound_ppause;
2176 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2177 ai.record.encoding = sc->sc_sound_rparams.encoding;
2178 ai.record.channels = sc->sc_sound_rparams.channels;
2179 ai.record.precision = sc->sc_sound_rparams.precision;
2180 ai.record.pause = sc->sc_sound_rpause;
2181 }
2182 error = audio_file_setinfo(sc, af, &ai);
2183 if (error)
2184 goto bad;
2185
2186 if (sc->sc_popens + sc->sc_ropens == 0) {
2187 /* First open */
2188
2189 sc->sc_cred = kauth_cred_get();
2190 kauth_cred_hold(sc->sc_cred);
2191 cred_held = true;
2192
2193 if (sc->hw_if->open) {
2194 int hwflags;
2195
2196 /*
2197 * Call hw_if->open() only at first open of
2198 * combination of playback and recording.
2199 * On full duplex hardware, the flags passed to
2200 * hw_if->open() is always (FREAD | FWRITE)
2201 * regardless of this open()'s flags.
2202 * see also dev/isa/aria.c
2203 * On half duplex hardware, the flags passed to
2204 * hw_if->open() is either FREAD or FWRITE.
2205 * see also arch/evbarm/mini2440/audio_mini2440.c
2206 */
2207 if (fullduplex) {
2208 hwflags = FREAD | FWRITE;
2209 } else {
2210 /* Construct hwflags from af->mode. */
2211 hwflags = 0;
2212 if ((af->mode & AUMODE_PLAY) != 0)
2213 hwflags |= FWRITE;
2214 if ((af->mode & AUMODE_RECORD) != 0)
2215 hwflags |= FREAD;
2216 }
2217
2218 mutex_enter(sc->sc_lock);
2219 mutex_enter(sc->sc_intr_lock);
2220 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2221 mutex_exit(sc->sc_intr_lock);
2222 mutex_exit(sc->sc_lock);
2223 if (error)
2224 goto bad;
2225 }
2226 /*
2227 * Regardless of whether we called hw_if->open (whether
2228 * hw_if->open exists) or not, we move to the Opened phase
2229 * here. Therefore from this point, we have to call
2230 * hw_if->close (if exists) whenever abort.
2231 * Note that both of hw_if->{open,close} are optional.
2232 */
2233 hw_opened = true;
2234
2235 /*
2236 * Set speaker mode when a half duplex.
2237 * XXX I'm not sure this is correct.
2238 */
2239 if (1/*XXX*/) {
2240 if (sc->hw_if->speaker_ctl) {
2241 int on;
2242 if (af->ptrack) {
2243 on = 1;
2244 } else {
2245 on = 0;
2246 }
2247 mutex_enter(sc->sc_lock);
2248 mutex_enter(sc->sc_intr_lock);
2249 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2250 mutex_exit(sc->sc_intr_lock);
2251 mutex_exit(sc->sc_lock);
2252 if (error)
2253 goto bad;
2254 }
2255 }
2256 } else if (sc->sc_multiuser == false) {
2257 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2258 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2259 error = EPERM;
2260 goto bad;
2261 }
2262 }
2263
2264 /* Call init_output if this is the first playback open. */
2265 if (af->ptrack && sc->sc_popens == 0) {
2266 if (sc->hw_if->init_output) {
2267 hwbuf = &sc->sc_pmixer->hwbuf;
2268 mutex_enter(sc->sc_lock);
2269 mutex_enter(sc->sc_intr_lock);
2270 error = sc->hw_if->init_output(sc->hw_hdl,
2271 hwbuf->mem,
2272 hwbuf->capacity *
2273 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2274 mutex_exit(sc->sc_intr_lock);
2275 mutex_exit(sc->sc_lock);
2276 if (error)
2277 goto bad;
2278 }
2279 }
2280 /*
2281 * Call init_input and start rmixer, if this is the first recording
2282 * open. See pause consideration notes.
2283 */
2284 if (af->rtrack && sc->sc_ropens == 0) {
2285 if (sc->hw_if->init_input) {
2286 hwbuf = &sc->sc_rmixer->hwbuf;
2287 mutex_enter(sc->sc_lock);
2288 mutex_enter(sc->sc_intr_lock);
2289 error = sc->hw_if->init_input(sc->hw_hdl,
2290 hwbuf->mem,
2291 hwbuf->capacity *
2292 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2293 mutex_exit(sc->sc_intr_lock);
2294 mutex_exit(sc->sc_lock);
2295 if (error)
2296 goto bad;
2297 }
2298
2299 mutex_enter(sc->sc_lock);
2300 audio_rmixer_start(sc);
2301 mutex_exit(sc->sc_lock);
2302 rmixer_started = true;
2303 }
2304
2305 if (bellfile) {
2306 *bellfile = af;
2307 } else {
2308 error = fd_allocfile(&fp, &fd);
2309 if (error)
2310 goto bad;
2311
2312 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2313 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2314 }
2315
2316 /*
2317 * Count up finally.
2318 * Don't fail from here.
2319 */
2320 mutex_enter(sc->sc_lock);
2321 if (af->ptrack)
2322 sc->sc_popens++;
2323 if (af->rtrack)
2324 sc->sc_ropens++;
2325 mutex_enter(sc->sc_intr_lock);
2326 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2327 mutex_exit(sc->sc_intr_lock);
2328 mutex_exit(sc->sc_lock);
2329
2330 TRACEF(3, af, "done");
2331 return error;
2332
2333 bad:
2334 if (fp) {
2335 fd_abort(curproc, fp, fd);
2336 }
2337
2338 if (rmixer_started) {
2339 mutex_enter(sc->sc_lock);
2340 audio_rmixer_halt(sc);
2341 mutex_exit(sc->sc_lock);
2342 }
2343
2344 if (hw_opened) {
2345 if (sc->hw_if->close) {
2346 mutex_enter(sc->sc_lock);
2347 mutex_enter(sc->sc_intr_lock);
2348 sc->hw_if->close(sc->hw_hdl);
2349 mutex_exit(sc->sc_intr_lock);
2350 mutex_exit(sc->sc_lock);
2351 }
2352 }
2353 if (cred_held) {
2354 kauth_cred_free(sc->sc_cred);
2355 }
2356
2357 /*
2358 * Since track here is not yet linked to sc_files,
2359 * you can call track_destroy() without sc_intr_lock.
2360 */
2361 if (af->rtrack) {
2362 audio_track_destroy(af->rtrack);
2363 af->rtrack = NULL;
2364 }
2365 if (af->ptrack) {
2366 audio_track_destroy(af->ptrack);
2367 af->ptrack = NULL;
2368 }
2369
2370 kmem_free(af, sizeof(*af));
2371 return error;
2372 }
2373
2374 /*
2375 * Must be called without sc_lock nor sc_exlock held.
2376 */
2377 int
2378 audio_close(struct audio_softc *sc, audio_file_t *file)
2379 {
2380
2381 /* Protect entering new fileops to this file */
2382 atomic_store_relaxed(&file->dying, true);
2383
2384 /*
2385 * Drain first.
2386 * It must be done before unlinking(acquiring exlock).
2387 */
2388 if (file->ptrack) {
2389 mutex_enter(sc->sc_lock);
2390 audio_track_drain(sc, file->ptrack);
2391 mutex_exit(sc->sc_lock);
2392 }
2393
2394 return audio_unlink(sc, file);
2395 }
2396
2397 /*
2398 * Unlink this file, but not freeing memory here.
2399 * Must be called without sc_lock nor sc_exlock held.
2400 */
2401 int
2402 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2403 {
2404 int error;
2405
2406 mutex_enter(sc->sc_lock);
2407
2408 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2409 (audiodebug >= 3) ? "start " : "",
2410 (int)curproc->p_pid, (int)curlwp->l_lid,
2411 sc->sc_popens, sc->sc_ropens);
2412 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2413 "sc->sc_popens=%d, sc->sc_ropens=%d",
2414 sc->sc_popens, sc->sc_ropens);
2415
2416 /*
2417 * Acquire exlock to protect counters.
2418 * audio_exlock_enter() cannot be used here because we have to go
2419 * forward even if sc_dying is set.
2420 */
2421 while (__predict_false(sc->sc_exlock != 0)) {
2422 error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
2423 mstohz(AUDIO_TIMEOUT));
2424 /* XXX what should I do on error? */
2425 if (error == EWOULDBLOCK) {
2426 mutex_exit(sc->sc_lock);
2427 device_printf(sc->sc_dev,
2428 "%s: cv_timedwait_sig failed %d\n",
2429 __func__, error);
2430 return error;
2431 }
2432 }
2433 sc->sc_exlock = 1;
2434
2435 device_active(sc->sc_dev, DVA_SYSTEM);
2436
2437 mutex_enter(sc->sc_intr_lock);
2438 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2439 mutex_exit(sc->sc_intr_lock);
2440
2441 if (file->ptrack) {
2442 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2443 file->ptrack->dropframes);
2444
2445 KASSERT(sc->sc_popens > 0);
2446 sc->sc_popens--;
2447
2448 /* Call hw halt_output if this is the last playback track. */
2449 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2450 error = audio_pmixer_halt(sc);
2451 if (error) {
2452 device_printf(sc->sc_dev,
2453 "halt_output failed with %d (ignored)\n",
2454 error);
2455 }
2456 }
2457
2458 /* Restore mixing volume if all tracks are gone. */
2459 if (sc->sc_popens == 0) {
2460 /* intr_lock is not necessary, but just manners. */
2461 mutex_enter(sc->sc_intr_lock);
2462 sc->sc_pmixer->volume = 256;
2463 sc->sc_pmixer->voltimer = 0;
2464 mutex_exit(sc->sc_intr_lock);
2465 }
2466 }
2467 if (file->rtrack) {
2468 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2469 file->rtrack->dropframes);
2470
2471 KASSERT(sc->sc_ropens > 0);
2472 sc->sc_ropens--;
2473
2474 /* Call hw halt_input if this is the last recording track. */
2475 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2476 error = audio_rmixer_halt(sc);
2477 if (error) {
2478 device_printf(sc->sc_dev,
2479 "halt_input failed with %d (ignored)\n",
2480 error);
2481 }
2482 }
2483
2484 }
2485
2486 /* Call hw close if this is the last track. */
2487 if (sc->sc_popens + sc->sc_ropens == 0) {
2488 if (sc->hw_if->close) {
2489 TRACE(2, "hw_if close");
2490 mutex_enter(sc->sc_intr_lock);
2491 sc->hw_if->close(sc->hw_hdl);
2492 mutex_exit(sc->sc_intr_lock);
2493 }
2494 }
2495
2496 mutex_exit(sc->sc_lock);
2497 if (sc->sc_popens + sc->sc_ropens == 0)
2498 kauth_cred_free(sc->sc_cred);
2499
2500 TRACE(3, "done");
2501 audio_exlock_exit(sc);
2502
2503 return 0;
2504 }
2505
2506 /*
2507 * Must be called without sc_lock nor sc_exlock held.
2508 */
2509 int
2510 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2511 audio_file_t *file)
2512 {
2513 audio_track_t *track;
2514 audio_ring_t *usrbuf;
2515 audio_ring_t *input;
2516 int error;
2517
2518 /*
2519 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2520 * However read() system call itself can be called because it's
2521 * opened with O_RDWR. So in this case, deny this read().
2522 */
2523 track = file->rtrack;
2524 if (track == NULL) {
2525 return EBADF;
2526 }
2527
2528 /* I think it's better than EINVAL. */
2529 if (track->mmapped)
2530 return EPERM;
2531
2532 TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2533
2534 #ifdef AUDIO_PM_IDLE
2535 error = audio_exlock_mutex_enter(sc);
2536 if (error)
2537 return error;
2538
2539 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2540 device_active(&sc->sc_dev, DVA_SYSTEM);
2541
2542 /* In recording, unlike playback, read() never operates rmixer. */
2543
2544 audio_exlock_mutex_exit(sc);
2545 #endif
2546
2547 usrbuf = &track->usrbuf;
2548 input = track->input;
2549 error = 0;
2550
2551 while (uio->uio_resid > 0 && error == 0) {
2552 int bytes;
2553
2554 TRACET(3, track,
2555 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2556 uio->uio_resid,
2557 input->head, input->used, input->capacity,
2558 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2559
2560 /* Wait when buffers are empty. */
2561 mutex_enter(sc->sc_lock);
2562 for (;;) {
2563 bool empty;
2564 audio_track_lock_enter(track);
2565 empty = (input->used == 0 && usrbuf->used == 0);
2566 audio_track_lock_exit(track);
2567 if (!empty)
2568 break;
2569
2570 if ((ioflag & IO_NDELAY)) {
2571 mutex_exit(sc->sc_lock);
2572 return EWOULDBLOCK;
2573 }
2574
2575 TRACET(3, track, "sleep");
2576 error = audio_track_waitio(sc, track);
2577 if (error) {
2578 mutex_exit(sc->sc_lock);
2579 return error;
2580 }
2581 }
2582 mutex_exit(sc->sc_lock);
2583
2584 audio_track_lock_enter(track);
2585 audio_track_record(track);
2586
2587 /* uiomove from usrbuf as much as possible. */
2588 bytes = uimin(usrbuf->used, uio->uio_resid);
2589 while (bytes > 0) {
2590 int head = usrbuf->head;
2591 int len = uimin(bytes, usrbuf->capacity - head);
2592 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2593 uio);
2594 if (error) {
2595 audio_track_lock_exit(track);
2596 device_printf(sc->sc_dev,
2597 "uiomove(len=%d) failed with %d\n",
2598 len, error);
2599 goto abort;
2600 }
2601 auring_take(usrbuf, len);
2602 track->useriobytes += len;
2603 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2604 len,
2605 usrbuf->head, usrbuf->used, usrbuf->capacity);
2606 bytes -= len;
2607 }
2608
2609 audio_track_lock_exit(track);
2610 }
2611
2612 abort:
2613 return error;
2614 }
2615
2616
2617 /*
2618 * Clear file's playback and/or record track buffer immediately.
2619 */
2620 static void
2621 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2622 {
2623
2624 if (file->ptrack)
2625 audio_track_clear(sc, file->ptrack);
2626 if (file->rtrack)
2627 audio_track_clear(sc, file->rtrack);
2628 }
2629
2630 /*
2631 * Must be called without sc_lock nor sc_exlock held.
2632 */
2633 int
2634 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2635 audio_file_t *file)
2636 {
2637 audio_track_t *track;
2638 audio_ring_t *usrbuf;
2639 audio_ring_t *outbuf;
2640 int error;
2641
2642 track = file->ptrack;
2643 KASSERT(track);
2644
2645 /* I think it's better than EINVAL. */
2646 if (track->mmapped)
2647 return EPERM;
2648
2649 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2650 audiodebug >= 3 ? "begin " : "",
2651 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2652
2653 if (uio->uio_resid == 0) {
2654 track->eofcounter++;
2655 return 0;
2656 }
2657
2658 error = audio_exlock_mutex_enter(sc);
2659 if (error)
2660 return error;
2661
2662 #ifdef AUDIO_PM_IDLE
2663 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2664 device_active(&sc->sc_dev, DVA_SYSTEM);
2665 #endif
2666
2667 /*
2668 * The first write starts pmixer.
2669 */
2670 if (sc->sc_pbusy == false)
2671 audio_pmixer_start(sc, false);
2672 audio_exlock_mutex_exit(sc);
2673
2674 usrbuf = &track->usrbuf;
2675 outbuf = &track->outbuf;
2676 track->pstate = AUDIO_STATE_RUNNING;
2677 error = 0;
2678
2679 while (uio->uio_resid > 0 && error == 0) {
2680 int bytes;
2681
2682 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2683 uio->uio_resid,
2684 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2685
2686 /* Wait when buffers are full. */
2687 mutex_enter(sc->sc_lock);
2688 for (;;) {
2689 bool full;
2690 audio_track_lock_enter(track);
2691 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2692 outbuf->used >= outbuf->capacity);
2693 audio_track_lock_exit(track);
2694 if (!full)
2695 break;
2696
2697 if ((ioflag & IO_NDELAY)) {
2698 error = EWOULDBLOCK;
2699 mutex_exit(sc->sc_lock);
2700 goto abort;
2701 }
2702
2703 TRACET(3, track, "sleep usrbuf=%d/H%d",
2704 usrbuf->used, track->usrbuf_usedhigh);
2705 error = audio_track_waitio(sc, track);
2706 if (error) {
2707 mutex_exit(sc->sc_lock);
2708 goto abort;
2709 }
2710 }
2711 mutex_exit(sc->sc_lock);
2712
2713 audio_track_lock_enter(track);
2714
2715 /* uiomove to usrbuf as much as possible. */
2716 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2717 uio->uio_resid);
2718 while (bytes > 0) {
2719 int tail = auring_tail(usrbuf);
2720 int len = uimin(bytes, usrbuf->capacity - tail);
2721 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2722 uio);
2723 if (error) {
2724 audio_track_lock_exit(track);
2725 device_printf(sc->sc_dev,
2726 "uiomove(len=%d) failed with %d\n",
2727 len, error);
2728 goto abort;
2729 }
2730 auring_push(usrbuf, len);
2731 track->useriobytes += len;
2732 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2733 len,
2734 usrbuf->head, usrbuf->used, usrbuf->capacity);
2735 bytes -= len;
2736 }
2737
2738 /* Convert them as much as possible. */
2739 while (usrbuf->used >= track->usrbuf_blksize &&
2740 outbuf->used < outbuf->capacity) {
2741 audio_track_play(track);
2742 }
2743
2744 audio_track_lock_exit(track);
2745 }
2746
2747 abort:
2748 TRACET(3, track, "done error=%d", error);
2749 return error;
2750 }
2751
2752 /*
2753 * Must be called without sc_lock nor sc_exlock held.
2754 */
2755 int
2756 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2757 struct lwp *l, audio_file_t *file)
2758 {
2759 struct audio_offset *ao;
2760 struct audio_info ai;
2761 audio_track_t *track;
2762 audio_encoding_t *ae;
2763 audio_format_query_t *query;
2764 u_int stamp;
2765 u_int offs;
2766 int fd;
2767 int index;
2768 int error;
2769
2770 #if defined(AUDIO_DEBUG)
2771 const char *ioctlnames[] = {
2772 " AUDIO_GETINFO", /* 21 */
2773 " AUDIO_SETINFO", /* 22 */
2774 " AUDIO_DRAIN", /* 23 */
2775 " AUDIO_FLUSH", /* 24 */
2776 " AUDIO_WSEEK", /* 25 */
2777 " AUDIO_RERROR", /* 26 */
2778 " AUDIO_GETDEV", /* 27 */
2779 " AUDIO_GETENC", /* 28 */
2780 " AUDIO_GETFD", /* 29 */
2781 " AUDIO_SETFD", /* 30 */
2782 " AUDIO_PERROR", /* 31 */
2783 " AUDIO_GETIOFFS", /* 32 */
2784 " AUDIO_GETOOFFS", /* 33 */
2785 " AUDIO_GETPROPS", /* 34 */
2786 " AUDIO_GETBUFINFO", /* 35 */
2787 " AUDIO_SETCHAN", /* 36 */
2788 " AUDIO_GETCHAN", /* 37 */
2789 " AUDIO_QUERYFORMAT", /* 38 */
2790 " AUDIO_GETFORMAT", /* 39 */
2791 " AUDIO_SETFORMAT", /* 40 */
2792 };
2793 int nameidx = (cmd & 0xff);
2794 const char *ioctlname = "";
2795 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2796 ioctlname = ioctlnames[nameidx - 21];
2797 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2798 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2799 (int)curproc->p_pid, (int)l->l_lid);
2800 #endif
2801
2802 error = 0;
2803 switch (cmd) {
2804 case FIONBIO:
2805 /* All handled in the upper FS layer. */
2806 break;
2807
2808 case FIONREAD:
2809 /* Get the number of bytes that can be read. */
2810 if (file->rtrack) {
2811 *(int *)addr = audio_track_readablebytes(file->rtrack);
2812 } else {
2813 *(int *)addr = 0;
2814 }
2815 break;
2816
2817 case FIOASYNC:
2818 /* Set/Clear ASYNC I/O. */
2819 if (*(int *)addr) {
2820 file->async_audio = curproc->p_pid;
2821 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2822 } else {
2823 file->async_audio = 0;
2824 TRACEF(2, file, "FIOASYNC off");
2825 }
2826 break;
2827
2828 case AUDIO_FLUSH:
2829 /* XXX TODO: clear errors and restart? */
2830 audio_file_clear(sc, file);
2831 break;
2832
2833 case AUDIO_RERROR:
2834 /*
2835 * Number of read bytes dropped. We don't know where
2836 * or when they were dropped (including conversion stage).
2837 * Therefore, the number of accurate bytes or samples is
2838 * also unknown.
2839 */
2840 track = file->rtrack;
2841 if (track) {
2842 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2843 track->dropframes);
2844 }
2845 break;
2846
2847 case AUDIO_PERROR:
2848 /*
2849 * Number of write bytes dropped. We don't know where
2850 * or when they were dropped (including conversion stage).
2851 * Therefore, the number of accurate bytes or samples is
2852 * also unknown.
2853 */
2854 track = file->ptrack;
2855 if (track) {
2856 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2857 track->dropframes);
2858 }
2859 break;
2860
2861 case AUDIO_GETIOFFS:
2862 /* XXX TODO */
2863 ao = (struct audio_offset *)addr;
2864 ao->samples = 0;
2865 ao->deltablks = 0;
2866 ao->offset = 0;
2867 break;
2868
2869 case AUDIO_GETOOFFS:
2870 ao = (struct audio_offset *)addr;
2871 track = file->ptrack;
2872 if (track == NULL) {
2873 ao->samples = 0;
2874 ao->deltablks = 0;
2875 ao->offset = 0;
2876 break;
2877 }
2878 mutex_enter(sc->sc_lock);
2879 mutex_enter(sc->sc_intr_lock);
2880 /* figure out where next DMA will start */
2881 stamp = track->usrbuf_stamp;
2882 offs = track->usrbuf.head;
2883 mutex_exit(sc->sc_intr_lock);
2884 mutex_exit(sc->sc_lock);
2885
2886 ao->samples = stamp;
2887 ao->deltablks = (stamp / track->usrbuf_blksize) -
2888 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2889 track->usrbuf_stamp_last = stamp;
2890 offs = rounddown(offs, track->usrbuf_blksize)
2891 + track->usrbuf_blksize;
2892 if (offs >= track->usrbuf.capacity)
2893 offs -= track->usrbuf.capacity;
2894 ao->offset = offs;
2895
2896 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2897 ao->samples, ao->deltablks, ao->offset);
2898 break;
2899
2900 case AUDIO_WSEEK:
2901 /* XXX return value does not include outbuf one. */
2902 if (file->ptrack)
2903 *(u_long *)addr = file->ptrack->usrbuf.used;
2904 break;
2905
2906 case AUDIO_SETINFO:
2907 error = audio_exlock_enter(sc);
2908 if (error)
2909 break;
2910 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2911 if (error) {
2912 audio_exlock_exit(sc);
2913 break;
2914 }
2915 /* XXX TODO: update last_ai if /dev/sound ? */
2916 if (ISDEVSOUND(dev))
2917 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2918 audio_exlock_exit(sc);
2919 break;
2920
2921 case AUDIO_GETINFO:
2922 error = audio_exlock_enter(sc);
2923 if (error)
2924 break;
2925 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2926 audio_exlock_exit(sc);
2927 break;
2928
2929 case AUDIO_GETBUFINFO:
2930 error = audio_exlock_enter(sc);
2931 if (error)
2932 break;
2933 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2934 audio_exlock_exit(sc);
2935 break;
2936
2937 case AUDIO_DRAIN:
2938 if (file->ptrack) {
2939 mutex_enter(sc->sc_lock);
2940 error = audio_track_drain(sc, file->ptrack);
2941 mutex_exit(sc->sc_lock);
2942 }
2943 break;
2944
2945 case AUDIO_GETDEV:
2946 mutex_enter(sc->sc_lock);
2947 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2948 mutex_exit(sc->sc_lock);
2949 break;
2950
2951 case AUDIO_GETENC:
2952 ae = (audio_encoding_t *)addr;
2953 index = ae->index;
2954 if (index < 0 || index >= __arraycount(audio_encodings)) {
2955 error = EINVAL;
2956 break;
2957 }
2958 *ae = audio_encodings[index];
2959 ae->index = index;
2960 /*
2961 * EMULATED always.
2962 * EMULATED flag at that time used to mean that it could
2963 * not be passed directly to the hardware as-is. But
2964 * currently, all formats including hardware native is not
2965 * passed directly to the hardware. So I set EMULATED
2966 * flag for all formats.
2967 */
2968 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2969 break;
2970
2971 case AUDIO_GETFD:
2972 /*
2973 * Returns the current setting of full duplex mode.
2974 * If HW has full duplex mode and there are two mixers,
2975 * it is full duplex. Otherwise half duplex.
2976 */
2977 error = audio_exlock_enter(sc);
2978 if (error)
2979 break;
2980 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2981 && (sc->sc_pmixer && sc->sc_rmixer);
2982 audio_exlock_exit(sc);
2983 *(int *)addr = fd;
2984 break;
2985
2986 case AUDIO_GETPROPS:
2987 *(int *)addr = sc->sc_props;
2988 break;
2989
2990 case AUDIO_QUERYFORMAT:
2991 query = (audio_format_query_t *)addr;
2992 mutex_enter(sc->sc_lock);
2993 error = sc->hw_if->query_format(sc->hw_hdl, query);
2994 mutex_exit(sc->sc_lock);
2995 /* Hide internal information */
2996 query->fmt.driver_data = NULL;
2997 break;
2998
2999 case AUDIO_GETFORMAT:
3000 error = audio_exlock_enter(sc);
3001 if (error)
3002 break;
3003 audio_mixers_get_format(sc, (struct audio_info *)addr);
3004 audio_exlock_exit(sc);
3005 break;
3006
3007 case AUDIO_SETFORMAT:
3008 error = audio_exlock_enter(sc);
3009 audio_mixers_get_format(sc, &ai);
3010 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3011 if (error) {
3012 /* Rollback */
3013 audio_mixers_set_format(sc, &ai);
3014 }
3015 audio_exlock_exit(sc);
3016 break;
3017
3018 case AUDIO_SETFD:
3019 case AUDIO_SETCHAN:
3020 case AUDIO_GETCHAN:
3021 /* Obsoleted */
3022 break;
3023
3024 default:
3025 if (sc->hw_if->dev_ioctl) {
3026 mutex_enter(sc->sc_lock);
3027 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3028 cmd, addr, flag, l);
3029 mutex_exit(sc->sc_lock);
3030 } else {
3031 TRACEF(2, file, "unknown ioctl");
3032 error = EINVAL;
3033 }
3034 break;
3035 }
3036 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
3037 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
3038 error);
3039 return error;
3040 }
3041
3042 /*
3043 * Returns the number of bytes that can be read on recording buffer.
3044 */
3045 static __inline int
3046 audio_track_readablebytes(const audio_track_t *track)
3047 {
3048 int bytes;
3049
3050 KASSERT(track);
3051 KASSERT(track->mode == AUMODE_RECORD);
3052
3053 /*
3054 * Although usrbuf is primarily readable data, recorded data
3055 * also stays in track->input until reading. So it is necessary
3056 * to add it. track->input is in frame, usrbuf is in byte.
3057 */
3058 bytes = track->usrbuf.used +
3059 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3060 return bytes;
3061 }
3062
3063 /*
3064 * Must be called without sc_lock nor sc_exlock held.
3065 */
3066 int
3067 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3068 audio_file_t *file)
3069 {
3070 audio_track_t *track;
3071 int revents;
3072 bool in_is_valid;
3073 bool out_is_valid;
3074
3075 #if defined(AUDIO_DEBUG)
3076 #define POLLEV_BITMAP "\177\020" \
3077 "b\10WRBAND\0" \
3078 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3079 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3080 char evbuf[64];
3081 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3082 TRACEF(2, file, "pid=%d.%d events=%s",
3083 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3084 #endif
3085
3086 revents = 0;
3087 in_is_valid = false;
3088 out_is_valid = false;
3089 if (events & (POLLIN | POLLRDNORM)) {
3090 track = file->rtrack;
3091 if (track) {
3092 int used;
3093 in_is_valid = true;
3094 used = audio_track_readablebytes(track);
3095 if (used > 0)
3096 revents |= events & (POLLIN | POLLRDNORM);
3097 }
3098 }
3099 if (events & (POLLOUT | POLLWRNORM)) {
3100 track = file->ptrack;
3101 if (track) {
3102 out_is_valid = true;
3103 if (track->usrbuf.used <= track->usrbuf_usedlow)
3104 revents |= events & (POLLOUT | POLLWRNORM);
3105 }
3106 }
3107
3108 if (revents == 0) {
3109 mutex_enter(sc->sc_lock);
3110 if (in_is_valid) {
3111 TRACEF(3, file, "selrecord rsel");
3112 selrecord(l, &sc->sc_rsel);
3113 }
3114 if (out_is_valid) {
3115 TRACEF(3, file, "selrecord wsel");
3116 selrecord(l, &sc->sc_wsel);
3117 }
3118 mutex_exit(sc->sc_lock);
3119 }
3120
3121 #if defined(AUDIO_DEBUG)
3122 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3123 TRACEF(2, file, "revents=%s", evbuf);
3124 #endif
3125 return revents;
3126 }
3127
3128 static const struct filterops audioread_filtops = {
3129 .f_isfd = 1,
3130 .f_attach = NULL,
3131 .f_detach = filt_audioread_detach,
3132 .f_event = filt_audioread_event,
3133 };
3134
3135 static void
3136 filt_audioread_detach(struct knote *kn)
3137 {
3138 struct audio_softc *sc;
3139 audio_file_t *file;
3140
3141 file = kn->kn_hook;
3142 sc = file->sc;
3143 TRACEF(3, file, "");
3144
3145 mutex_enter(sc->sc_lock);
3146 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
3147 mutex_exit(sc->sc_lock);
3148 }
3149
3150 static int
3151 filt_audioread_event(struct knote *kn, long hint)
3152 {
3153 audio_file_t *file;
3154 audio_track_t *track;
3155
3156 file = kn->kn_hook;
3157 track = file->rtrack;
3158
3159 /*
3160 * kn_data must contain the number of bytes can be read.
3161 * The return value indicates whether the event occurs or not.
3162 */
3163
3164 if (track == NULL) {
3165 /* can not read with this descriptor. */
3166 kn->kn_data = 0;
3167 return 0;
3168 }
3169
3170 kn->kn_data = audio_track_readablebytes(track);
3171 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3172 return kn->kn_data > 0;
3173 }
3174
3175 static const struct filterops audiowrite_filtops = {
3176 .f_isfd = 1,
3177 .f_attach = NULL,
3178 .f_detach = filt_audiowrite_detach,
3179 .f_event = filt_audiowrite_event,
3180 };
3181
3182 static void
3183 filt_audiowrite_detach(struct knote *kn)
3184 {
3185 struct audio_softc *sc;
3186 audio_file_t *file;
3187
3188 file = kn->kn_hook;
3189 sc = file->sc;
3190 TRACEF(3, file, "");
3191
3192 mutex_enter(sc->sc_lock);
3193 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
3194 mutex_exit(sc->sc_lock);
3195 }
3196
3197 static int
3198 filt_audiowrite_event(struct knote *kn, long hint)
3199 {
3200 audio_file_t *file;
3201 audio_track_t *track;
3202
3203 file = kn->kn_hook;
3204 track = file->ptrack;
3205
3206 /*
3207 * kn_data must contain the number of bytes can be write.
3208 * The return value indicates whether the event occurs or not.
3209 */
3210
3211 if (track == NULL) {
3212 /* can not write with this descriptor. */
3213 kn->kn_data = 0;
3214 return 0;
3215 }
3216
3217 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3218 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3219 return (track->usrbuf.used < track->usrbuf_usedlow);
3220 }
3221
3222 /*
3223 * Must be called without sc_lock nor sc_exlock held.
3224 */
3225 int
3226 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3227 {
3228 struct klist *klist;
3229
3230 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3231
3232 mutex_enter(sc->sc_lock);
3233 switch (kn->kn_filter) {
3234 case EVFILT_READ:
3235 klist = &sc->sc_rsel.sel_klist;
3236 kn->kn_fop = &audioread_filtops;
3237 break;
3238
3239 case EVFILT_WRITE:
3240 klist = &sc->sc_wsel.sel_klist;
3241 kn->kn_fop = &audiowrite_filtops;
3242 break;
3243
3244 default:
3245 mutex_exit(sc->sc_lock);
3246 return EINVAL;
3247 }
3248
3249 kn->kn_hook = file;
3250
3251 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3252 mutex_exit(sc->sc_lock);
3253
3254 return 0;
3255 }
3256
3257 /*
3258 * Must be called without sc_lock nor sc_exlock held.
3259 */
3260 int
3261 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3262 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3263 audio_file_t *file)
3264 {
3265 audio_track_t *track;
3266 vsize_t vsize;
3267 int error;
3268
3269 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3270
3271 if (*offp < 0)
3272 return EINVAL;
3273
3274 #if 0
3275 /* XXX
3276 * The idea here was to use the protection to determine if
3277 * we are mapping the read or write buffer, but it fails.
3278 * The VM system is broken in (at least) two ways.
3279 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3280 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3281 * has to be used for mmapping the play buffer.
3282 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3283 * audio_mmap will get called at some point with VM_PROT_READ
3284 * only.
3285 * So, alas, we always map the play buffer for now.
3286 */
3287 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3288 prot == VM_PROT_WRITE)
3289 track = file->ptrack;
3290 else if (prot == VM_PROT_READ)
3291 track = file->rtrack;
3292 else
3293 return EINVAL;
3294 #else
3295 track = file->ptrack;
3296 #endif
3297 if (track == NULL)
3298 return EACCES;
3299
3300 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3301 if (len > vsize)
3302 return EOVERFLOW;
3303 if (*offp > (uint)(vsize - len))
3304 return EOVERFLOW;
3305
3306 /* XXX TODO: what happens when mmap twice. */
3307 if (!track->mmapped) {
3308 track->mmapped = true;
3309
3310 if (!track->is_pause) {
3311 error = audio_exlock_mutex_enter(sc);
3312 if (error)
3313 return error;
3314 if (sc->sc_pbusy == false)
3315 audio_pmixer_start(sc, true);
3316 audio_exlock_mutex_exit(sc);
3317 }
3318 /* XXX mmapping record buffer is not supported */
3319 }
3320
3321 /* get ringbuffer */
3322 *uobjp = track->uobj;
3323
3324 /* Acquire a reference for the mmap. munmap will release. */
3325 uao_reference(*uobjp);
3326 *maxprotp = prot;
3327 *advicep = UVM_ADV_RANDOM;
3328 *flagsp = MAP_SHARED;
3329 return 0;
3330 }
3331
3332 /*
3333 * /dev/audioctl has to be able to open at any time without interference
3334 * with any /dev/audio or /dev/sound.
3335 * Must be called with sc_exlock held and without sc_lock held.
3336 */
3337 static int
3338 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3339 struct lwp *l)
3340 {
3341 struct file *fp;
3342 audio_file_t *af;
3343 int fd;
3344 int error;
3345
3346 KASSERT(sc->sc_exlock);
3347
3348 TRACE(1, "");
3349
3350 error = fd_allocfile(&fp, &fd);
3351 if (error)
3352 return error;
3353
3354 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3355 af->sc = sc;
3356 af->dev = dev;
3357
3358 /* Not necessary to insert sc_files. */
3359
3360 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3361 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3362
3363 return error;
3364 }
3365
3366 /*
3367 * Free 'mem' if available, and initialize the pointer.
3368 * For this reason, this is implemented as macro.
3369 */
3370 #define audio_free(mem) do { \
3371 if (mem != NULL) { \
3372 kern_free(mem); \
3373 mem = NULL; \
3374 } \
3375 } while (0)
3376
3377 /*
3378 * (Re)allocate 'memblock' with specified 'bytes'.
3379 * bytes must not be 0.
3380 * This function never returns NULL.
3381 */
3382 static void *
3383 audio_realloc(void *memblock, size_t bytes)
3384 {
3385
3386 KASSERT(bytes != 0);
3387 audio_free(memblock);
3388 return kern_malloc(bytes, M_WAITOK);
3389 }
3390
3391 /*
3392 * (Re)allocate usrbuf with 'newbufsize' bytes.
3393 * Use this function for usrbuf because only usrbuf can be mmapped.
3394 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3395 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3396 * and returns errno.
3397 * It must be called before updating usrbuf.capacity.
3398 */
3399 static int
3400 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3401 {
3402 struct audio_softc *sc;
3403 vaddr_t vstart;
3404 vsize_t oldvsize;
3405 vsize_t newvsize;
3406 int error;
3407
3408 KASSERT(newbufsize > 0);
3409 sc = track->mixer->sc;
3410
3411 /* Get a nonzero multiple of PAGE_SIZE */
3412 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3413
3414 if (track->usrbuf.mem != NULL) {
3415 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3416 PAGE_SIZE);
3417 if (oldvsize == newvsize) {
3418 track->usrbuf.capacity = newbufsize;
3419 return 0;
3420 }
3421 vstart = (vaddr_t)track->usrbuf.mem;
3422 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3423 /* uvm_unmap also detach uobj */
3424 track->uobj = NULL; /* paranoia */
3425 track->usrbuf.mem = NULL;
3426 }
3427
3428 /* Create a uvm anonymous object */
3429 track->uobj = uao_create(newvsize, 0);
3430
3431 /* Map it into the kernel virtual address space */
3432 vstart = 0;
3433 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3434 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3435 UVM_ADV_RANDOM, 0));
3436 if (error) {
3437 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3438 uao_detach(track->uobj); /* release reference */
3439 goto abort;
3440 }
3441
3442 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3443 false, 0);
3444 if (error) {
3445 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3446 error);
3447 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3448 /* uvm_unmap also detach uobj */
3449 goto abort;
3450 }
3451
3452 track->usrbuf.mem = (void *)vstart;
3453 track->usrbuf.capacity = newbufsize;
3454 memset(track->usrbuf.mem, 0, newvsize);
3455 return 0;
3456
3457 /* failure */
3458 abort:
3459 track->uobj = NULL; /* paranoia */
3460 track->usrbuf.mem = NULL;
3461 track->usrbuf.capacity = 0;
3462 return error;
3463 }
3464
3465 /*
3466 * Free usrbuf (if available).
3467 */
3468 static void
3469 audio_free_usrbuf(audio_track_t *track)
3470 {
3471 vaddr_t vstart;
3472 vsize_t vsize;
3473
3474 vstart = (vaddr_t)track->usrbuf.mem;
3475 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3476 if (track->usrbuf.mem != NULL) {
3477 /*
3478 * Unmap the kernel mapping. uvm_unmap releases the
3479 * reference to the uvm object, and this should be the
3480 * last virtual mapping of the uvm object, so no need
3481 * to explicitly release (`detach') the object.
3482 */
3483 uvm_unmap(kernel_map, vstart, vstart + vsize);
3484
3485 track->uobj = NULL;
3486 track->usrbuf.mem = NULL;
3487 track->usrbuf.capacity = 0;
3488 }
3489 }
3490
3491 /*
3492 * This filter changes the volume for each channel.
3493 * arg->context points track->ch_volume[].
3494 */
3495 static void
3496 audio_track_chvol(audio_filter_arg_t *arg)
3497 {
3498 int16_t *ch_volume;
3499 const aint_t *s;
3500 aint_t *d;
3501 u_int i;
3502 u_int ch;
3503 u_int channels;
3504
3505 DIAGNOSTIC_filter_arg(arg);
3506 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3507 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3508 arg->srcfmt->channels, arg->dstfmt->channels);
3509 KASSERT(arg->context != NULL);
3510 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3511 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3512
3513 s = arg->src;
3514 d = arg->dst;
3515 ch_volume = arg->context;
3516
3517 channels = arg->srcfmt->channels;
3518 for (i = 0; i < arg->count; i++) {
3519 for (ch = 0; ch < channels; ch++) {
3520 aint2_t val;
3521 val = *s++;
3522 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3523 *d++ = (aint_t)val;
3524 }
3525 }
3526 }
3527
3528 /*
3529 * This filter performs conversion from stereo (or more channels) to mono.
3530 */
3531 static void
3532 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3533 {
3534 const aint_t *s;
3535 aint_t *d;
3536 u_int i;
3537
3538 DIAGNOSTIC_filter_arg(arg);
3539
3540 s = arg->src;
3541 d = arg->dst;
3542
3543 for (i = 0; i < arg->count; i++) {
3544 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3545 s += arg->srcfmt->channels;
3546 }
3547 }
3548
3549 /*
3550 * This filter performs conversion from mono to stereo (or more channels).
3551 */
3552 static void
3553 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3554 {
3555 const aint_t *s;
3556 aint_t *d;
3557 u_int i;
3558 u_int ch;
3559 u_int dstchannels;
3560
3561 DIAGNOSTIC_filter_arg(arg);
3562
3563 s = arg->src;
3564 d = arg->dst;
3565 dstchannels = arg->dstfmt->channels;
3566
3567 for (i = 0; i < arg->count; i++) {
3568 d[0] = s[0];
3569 d[1] = s[0];
3570 s++;
3571 d += dstchannels;
3572 }
3573 if (dstchannels > 2) {
3574 d = arg->dst;
3575 for (i = 0; i < arg->count; i++) {
3576 for (ch = 2; ch < dstchannels; ch++) {
3577 d[ch] = 0;
3578 }
3579 d += dstchannels;
3580 }
3581 }
3582 }
3583
3584 /*
3585 * This filter shrinks M channels into N channels.
3586 * Extra channels are discarded.
3587 */
3588 static void
3589 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3590 {
3591 const aint_t *s;
3592 aint_t *d;
3593 u_int i;
3594 u_int ch;
3595
3596 DIAGNOSTIC_filter_arg(arg);
3597
3598 s = arg->src;
3599 d = arg->dst;
3600
3601 for (i = 0; i < arg->count; i++) {
3602 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3603 *d++ = s[ch];
3604 }
3605 s += arg->srcfmt->channels;
3606 }
3607 }
3608
3609 /*
3610 * This filter expands M channels into N channels.
3611 * Silence is inserted for missing channels.
3612 */
3613 static void
3614 audio_track_chmix_expand(audio_filter_arg_t *arg)
3615 {
3616 const aint_t *s;
3617 aint_t *d;
3618 u_int i;
3619 u_int ch;
3620 u_int srcchannels;
3621 u_int dstchannels;
3622
3623 DIAGNOSTIC_filter_arg(arg);
3624
3625 s = arg->src;
3626 d = arg->dst;
3627
3628 srcchannels = arg->srcfmt->channels;
3629 dstchannels = arg->dstfmt->channels;
3630 for (i = 0; i < arg->count; i++) {
3631 for (ch = 0; ch < srcchannels; ch++) {
3632 *d++ = *s++;
3633 }
3634 for (; ch < dstchannels; ch++) {
3635 *d++ = 0;
3636 }
3637 }
3638 }
3639
3640 /*
3641 * This filter performs frequency conversion (up sampling).
3642 * It uses linear interpolation.
3643 */
3644 static void
3645 audio_track_freq_up(audio_filter_arg_t *arg)
3646 {
3647 audio_track_t *track;
3648 audio_ring_t *src;
3649 audio_ring_t *dst;
3650 const aint_t *s;
3651 aint_t *d;
3652 aint_t prev[AUDIO_MAX_CHANNELS];
3653 aint_t curr[AUDIO_MAX_CHANNELS];
3654 aint_t grad[AUDIO_MAX_CHANNELS];
3655 u_int i;
3656 u_int t;
3657 u_int step;
3658 u_int channels;
3659 u_int ch;
3660 int srcused;
3661
3662 track = arg->context;
3663 KASSERT(track);
3664 src = &track->freq.srcbuf;
3665 dst = track->freq.dst;
3666 DIAGNOSTIC_ring(dst);
3667 DIAGNOSTIC_ring(src);
3668 KASSERT(src->used > 0);
3669 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3670 "src->fmt.channels=%d dst->fmt.channels=%d",
3671 src->fmt.channels, dst->fmt.channels);
3672 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3673 "src->head=%d track->mixer->frames_per_block=%d",
3674 src->head, track->mixer->frames_per_block);
3675
3676 s = arg->src;
3677 d = arg->dst;
3678
3679 /*
3680 * In order to faciliate interpolation for each block, slide (delay)
3681 * input by one sample. As a result, strictly speaking, the output
3682 * phase is delayed by 1/dstfreq. However, I believe there is no
3683 * observable impact.
3684 *
3685 * Example)
3686 * srcfreq:dstfreq = 1:3
3687 *
3688 * A - -
3689 * |
3690 * |
3691 * | B - -
3692 * +-----+-----> input timeframe
3693 * 0 1
3694 *
3695 * 0 1
3696 * +-----+-----> input timeframe
3697 * | A
3698 * | x x
3699 * | x x
3700 * x (B)
3701 * +-+-+-+-+-+-> output timeframe
3702 * 0 1 2 3 4 5
3703 */
3704
3705 /* Last samples in previous block */
3706 channels = src->fmt.channels;
3707 for (ch = 0; ch < channels; ch++) {
3708 prev[ch] = track->freq_prev[ch];
3709 curr[ch] = track->freq_curr[ch];
3710 grad[ch] = curr[ch] - prev[ch];
3711 }
3712
3713 step = track->freq_step;
3714 t = track->freq_current;
3715 //#define FREQ_DEBUG
3716 #if defined(FREQ_DEBUG)
3717 #define PRINTF(fmt...) printf(fmt)
3718 #else
3719 #define PRINTF(fmt...) do { } while (0)
3720 #endif
3721 srcused = src->used;
3722 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3723 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3724 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3725 PRINTF(" t=%d\n", t);
3726
3727 for (i = 0; i < arg->count; i++) {
3728 PRINTF("i=%d t=%5d", i, t);
3729 if (t >= 65536) {
3730 for (ch = 0; ch < channels; ch++) {
3731 prev[ch] = curr[ch];
3732 curr[ch] = *s++;
3733 grad[ch] = curr[ch] - prev[ch];
3734 }
3735 PRINTF(" prev=%d s[%d]=%d",
3736 prev[0], src->used - srcused, curr[0]);
3737
3738 /* Update */
3739 t -= 65536;
3740 srcused--;
3741 if (srcused < 0) {
3742 PRINTF(" break\n");
3743 break;
3744 }
3745 }
3746
3747 for (ch = 0; ch < channels; ch++) {
3748 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3749 #if defined(FREQ_DEBUG)
3750 if (ch == 0)
3751 printf(" t=%5d *d=%d", t, d[-1]);
3752 #endif
3753 }
3754 t += step;
3755
3756 PRINTF("\n");
3757 }
3758 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3759
3760 auring_take(src, src->used);
3761 auring_push(dst, i);
3762
3763 /* Adjust */
3764 t += track->freq_leap;
3765
3766 track->freq_current = t;
3767 for (ch = 0; ch < channels; ch++) {
3768 track->freq_prev[ch] = prev[ch];
3769 track->freq_curr[ch] = curr[ch];
3770 }
3771 }
3772
3773 /*
3774 * This filter performs frequency conversion (down sampling).
3775 * It uses simple thinning.
3776 */
3777 static void
3778 audio_track_freq_down(audio_filter_arg_t *arg)
3779 {
3780 audio_track_t *track;
3781 audio_ring_t *src;
3782 audio_ring_t *dst;
3783 const aint_t *s0;
3784 aint_t *d;
3785 u_int i;
3786 u_int t;
3787 u_int step;
3788 u_int ch;
3789 u_int channels;
3790
3791 track = arg->context;
3792 KASSERT(track);
3793 src = &track->freq.srcbuf;
3794 dst = track->freq.dst;
3795
3796 DIAGNOSTIC_ring(dst);
3797 DIAGNOSTIC_ring(src);
3798 KASSERT(src->used > 0);
3799 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3800 "src->fmt.channels=%d dst->fmt.channels=%d",
3801 src->fmt.channels, dst->fmt.channels);
3802 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3803 "src->head=%d track->mixer->frames_per_block=%d",
3804 src->head, track->mixer->frames_per_block);
3805
3806 s0 = arg->src;
3807 d = arg->dst;
3808 t = track->freq_current;
3809 step = track->freq_step;
3810 channels = dst->fmt.channels;
3811 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3812 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3813 PRINTF(" t=%d\n", t);
3814
3815 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3816 const aint_t *s;
3817 PRINTF("i=%4d t=%10d", i, t);
3818 s = s0 + (t / 65536) * channels;
3819 PRINTF(" s=%5ld", (s - s0) / channels);
3820 for (ch = 0; ch < channels; ch++) {
3821 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3822 *d++ = s[ch];
3823 }
3824 PRINTF("\n");
3825 t += step;
3826 }
3827 t += track->freq_leap;
3828 PRINTF("end t=%d\n", t);
3829 auring_take(src, src->used);
3830 auring_push(dst, i);
3831 track->freq_current = t % 65536;
3832 }
3833
3834 /*
3835 * Creates track and returns it.
3836 * Must be called without sc_lock held.
3837 */
3838 audio_track_t *
3839 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3840 {
3841 audio_track_t *track;
3842 static int newid = 0;
3843
3844 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3845
3846 track->id = newid++;
3847 track->mixer = mixer;
3848 track->mode = mixer->mode;
3849
3850 /* Do TRACE after id is assigned. */
3851 TRACET(3, track, "for %s",
3852 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3853
3854 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3855 track->volume = 256;
3856 #endif
3857 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3858 track->ch_volume[i] = 256;
3859 }
3860
3861 return track;
3862 }
3863
3864 /*
3865 * Release all resources of the track and track itself.
3866 * track must not be NULL. Don't specify the track within the file
3867 * structure linked from sc->sc_files.
3868 */
3869 static void
3870 audio_track_destroy(audio_track_t *track)
3871 {
3872
3873 KASSERT(track);
3874
3875 audio_free_usrbuf(track);
3876 audio_free(track->codec.srcbuf.mem);
3877 audio_free(track->chvol.srcbuf.mem);
3878 audio_free(track->chmix.srcbuf.mem);
3879 audio_free(track->freq.srcbuf.mem);
3880 audio_free(track->outbuf.mem);
3881
3882 kmem_free(track, sizeof(*track));
3883 }
3884
3885 /*
3886 * It returns encoding conversion filter according to src and dst format.
3887 * If it is not a convertible pair, it returns NULL. Either src or dst
3888 * must be internal format.
3889 */
3890 static audio_filter_t
3891 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3892 const audio_format2_t *dst)
3893 {
3894
3895 if (audio_format2_is_internal(src)) {
3896 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3897 return audio_internal_to_mulaw;
3898 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3899 return audio_internal_to_alaw;
3900 } else if (audio_format2_is_linear(dst)) {
3901 switch (dst->stride) {
3902 case 8:
3903 return audio_internal_to_linear8;
3904 case 16:
3905 return audio_internal_to_linear16;
3906 #if defined(AUDIO_SUPPORT_LINEAR24)
3907 case 24:
3908 return audio_internal_to_linear24;
3909 #endif
3910 case 32:
3911 return audio_internal_to_linear32;
3912 default:
3913 TRACET(1, track, "unsupported %s stride %d",
3914 "dst", dst->stride);
3915 goto abort;
3916 }
3917 }
3918 } else if (audio_format2_is_internal(dst)) {
3919 if (src->encoding == AUDIO_ENCODING_ULAW) {
3920 return audio_mulaw_to_internal;
3921 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3922 return audio_alaw_to_internal;
3923 } else if (audio_format2_is_linear(src)) {
3924 switch (src->stride) {
3925 case 8:
3926 return audio_linear8_to_internal;
3927 case 16:
3928 return audio_linear16_to_internal;
3929 #if defined(AUDIO_SUPPORT_LINEAR24)
3930 case 24:
3931 return audio_linear24_to_internal;
3932 #endif
3933 case 32:
3934 return audio_linear32_to_internal;
3935 default:
3936 TRACET(1, track, "unsupported %s stride %d",
3937 "src", src->stride);
3938 goto abort;
3939 }
3940 }
3941 }
3942
3943 TRACET(1, track, "unsupported encoding");
3944 abort:
3945 #if defined(AUDIO_DEBUG)
3946 if (audiodebug >= 2) {
3947 char buf[100];
3948 audio_format2_tostr(buf, sizeof(buf), src);
3949 TRACET(2, track, "src %s", buf);
3950 audio_format2_tostr(buf, sizeof(buf), dst);
3951 TRACET(2, track, "dst %s", buf);
3952 }
3953 #endif
3954 return NULL;
3955 }
3956
3957 /*
3958 * Initialize the codec stage of this track as necessary.
3959 * If successful, it initializes the codec stage as necessary, stores updated
3960 * last_dst in *last_dstp in any case, and returns 0.
3961 * Otherwise, it returns errno without modifying *last_dstp.
3962 */
3963 static int
3964 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3965 {
3966 audio_ring_t *last_dst;
3967 audio_ring_t *srcbuf;
3968 audio_format2_t *srcfmt;
3969 audio_format2_t *dstfmt;
3970 audio_filter_arg_t *arg;
3971 u_int len;
3972 int error;
3973
3974 KASSERT(track);
3975
3976 last_dst = *last_dstp;
3977 dstfmt = &last_dst->fmt;
3978 srcfmt = &track->inputfmt;
3979 srcbuf = &track->codec.srcbuf;
3980 error = 0;
3981
3982 if (srcfmt->encoding != dstfmt->encoding
3983 || srcfmt->precision != dstfmt->precision
3984 || srcfmt->stride != dstfmt->stride) {
3985 track->codec.dst = last_dst;
3986
3987 srcbuf->fmt = *dstfmt;
3988 srcbuf->fmt.encoding = srcfmt->encoding;
3989 srcbuf->fmt.precision = srcfmt->precision;
3990 srcbuf->fmt.stride = srcfmt->stride;
3991
3992 track->codec.filter = audio_track_get_codec(track,
3993 &srcbuf->fmt, dstfmt);
3994 if (track->codec.filter == NULL) {
3995 error = EINVAL;
3996 goto abort;
3997 }
3998
3999 srcbuf->head = 0;
4000 srcbuf->used = 0;
4001 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4002 len = auring_bytelen(srcbuf);
4003 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4004
4005 arg = &track->codec.arg;
4006 arg->srcfmt = &srcbuf->fmt;
4007 arg->dstfmt = dstfmt;
4008 arg->context = NULL;
4009
4010 *last_dstp = srcbuf;
4011 return 0;
4012 }
4013
4014 abort:
4015 track->codec.filter = NULL;
4016 audio_free(srcbuf->mem);
4017 return error;
4018 }
4019
4020 /*
4021 * Initialize the chvol stage of this track as necessary.
4022 * If successful, it initializes the chvol stage as necessary, stores updated
4023 * last_dst in *last_dstp in any case, and returns 0.
4024 * Otherwise, it returns errno without modifying *last_dstp.
4025 */
4026 static int
4027 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4028 {
4029 audio_ring_t *last_dst;
4030 audio_ring_t *srcbuf;
4031 audio_format2_t *srcfmt;
4032 audio_format2_t *dstfmt;
4033 audio_filter_arg_t *arg;
4034 u_int len;
4035 int error;
4036
4037 KASSERT(track);
4038
4039 last_dst = *last_dstp;
4040 dstfmt = &last_dst->fmt;
4041 srcfmt = &track->inputfmt;
4042 srcbuf = &track->chvol.srcbuf;
4043 error = 0;
4044
4045 /* Check whether channel volume conversion is necessary. */
4046 bool use_chvol = false;
4047 for (int ch = 0; ch < srcfmt->channels; ch++) {
4048 if (track->ch_volume[ch] != 256) {
4049 use_chvol = true;
4050 break;
4051 }
4052 }
4053
4054 if (use_chvol == true) {
4055 track->chvol.dst = last_dst;
4056 track->chvol.filter = audio_track_chvol;
4057
4058 srcbuf->fmt = *dstfmt;
4059 /* no format conversion occurs */
4060
4061 srcbuf->head = 0;
4062 srcbuf->used = 0;
4063 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4064 len = auring_bytelen(srcbuf);
4065 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4066
4067 arg = &track->chvol.arg;
4068 arg->srcfmt = &srcbuf->fmt;
4069 arg->dstfmt = dstfmt;
4070 arg->context = track->ch_volume;
4071
4072 *last_dstp = srcbuf;
4073 return 0;
4074 }
4075
4076 track->chvol.filter = NULL;
4077 audio_free(srcbuf->mem);
4078 return error;
4079 }
4080
4081 /*
4082 * Initialize the chmix stage of this track as necessary.
4083 * If successful, it initializes the chmix stage as necessary, stores updated
4084 * last_dst in *last_dstp in any case, and returns 0.
4085 * Otherwise, it returns errno without modifying *last_dstp.
4086 */
4087 static int
4088 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4089 {
4090 audio_ring_t *last_dst;
4091 audio_ring_t *srcbuf;
4092 audio_format2_t *srcfmt;
4093 audio_format2_t *dstfmt;
4094 audio_filter_arg_t *arg;
4095 u_int srcch;
4096 u_int dstch;
4097 u_int len;
4098 int error;
4099
4100 KASSERT(track);
4101
4102 last_dst = *last_dstp;
4103 dstfmt = &last_dst->fmt;
4104 srcfmt = &track->inputfmt;
4105 srcbuf = &track->chmix.srcbuf;
4106 error = 0;
4107
4108 srcch = srcfmt->channels;
4109 dstch = dstfmt->channels;
4110 if (srcch != dstch) {
4111 track->chmix.dst = last_dst;
4112
4113 if (srcch >= 2 && dstch == 1) {
4114 track->chmix.filter = audio_track_chmix_mixLR;
4115 } else if (srcch == 1 && dstch >= 2) {
4116 track->chmix.filter = audio_track_chmix_dupLR;
4117 } else if (srcch > dstch) {
4118 track->chmix.filter = audio_track_chmix_shrink;
4119 } else {
4120 track->chmix.filter = audio_track_chmix_expand;
4121 }
4122
4123 srcbuf->fmt = *dstfmt;
4124 srcbuf->fmt.channels = srcch;
4125
4126 srcbuf->head = 0;
4127 srcbuf->used = 0;
4128 /* XXX The buffer size should be able to calculate. */
4129 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4130 len = auring_bytelen(srcbuf);
4131 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4132
4133 arg = &track->chmix.arg;
4134 arg->srcfmt = &srcbuf->fmt;
4135 arg->dstfmt = dstfmt;
4136 arg->context = NULL;
4137
4138 *last_dstp = srcbuf;
4139 return 0;
4140 }
4141
4142 track->chmix.filter = NULL;
4143 audio_free(srcbuf->mem);
4144 return error;
4145 }
4146
4147 /*
4148 * Initialize the freq stage of this track as necessary.
4149 * If successful, it initializes the freq stage as necessary, stores updated
4150 * last_dst in *last_dstp in any case, and returns 0.
4151 * Otherwise, it returns errno without modifying *last_dstp.
4152 */
4153 static int
4154 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4155 {
4156 audio_ring_t *last_dst;
4157 audio_ring_t *srcbuf;
4158 audio_format2_t *srcfmt;
4159 audio_format2_t *dstfmt;
4160 audio_filter_arg_t *arg;
4161 uint32_t srcfreq;
4162 uint32_t dstfreq;
4163 u_int dst_capacity;
4164 u_int mod;
4165 u_int len;
4166 int error;
4167
4168 KASSERT(track);
4169
4170 last_dst = *last_dstp;
4171 dstfmt = &last_dst->fmt;
4172 srcfmt = &track->inputfmt;
4173 srcbuf = &track->freq.srcbuf;
4174 error = 0;
4175
4176 srcfreq = srcfmt->sample_rate;
4177 dstfreq = dstfmt->sample_rate;
4178 if (srcfreq != dstfreq) {
4179 track->freq.dst = last_dst;
4180
4181 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4182 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4183
4184 /* freq_step is the ratio of src/dst when let dst 65536. */
4185 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4186
4187 dst_capacity = frame_per_block(track->mixer, dstfmt);
4188 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4189 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4190
4191 if (track->freq_step < 65536) {
4192 track->freq.filter = audio_track_freq_up;
4193 /* In order to carry at the first time. */
4194 track->freq_current = 65536;
4195 } else {
4196 track->freq.filter = audio_track_freq_down;
4197 track->freq_current = 0;
4198 }
4199
4200 srcbuf->fmt = *dstfmt;
4201 srcbuf->fmt.sample_rate = srcfreq;
4202
4203 srcbuf->head = 0;
4204 srcbuf->used = 0;
4205 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4206 len = auring_bytelen(srcbuf);
4207 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4208
4209 arg = &track->freq.arg;
4210 arg->srcfmt = &srcbuf->fmt;
4211 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4212 arg->context = track;
4213
4214 *last_dstp = srcbuf;
4215 return 0;
4216 }
4217
4218 track->freq.filter = NULL;
4219 audio_free(srcbuf->mem);
4220 return error;
4221 }
4222
4223 /*
4224 * When playing back: (e.g. if codec and freq stage are valid)
4225 *
4226 * write
4227 * | uiomove
4228 * v
4229 * usrbuf [...............] byte ring buffer (mmap-able)
4230 * | memcpy
4231 * v
4232 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4233 * .dst ----+
4234 * | convert
4235 * v
4236 * freq.srcbuf [....] 1 block (ring) buffer
4237 * .dst ----+
4238 * | convert
4239 * v
4240 * outbuf [...............] NBLKOUT blocks ring buffer
4241 *
4242 *
4243 * When recording:
4244 *
4245 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4246 * .dst ----+
4247 * | convert
4248 * v
4249 * codec.srcbuf[.....] 1 block (ring) buffer
4250 * .dst ----+
4251 * | convert
4252 * v
4253 * outbuf [.....] 1 block (ring) buffer
4254 * | memcpy
4255 * v
4256 * usrbuf [...............] byte ring buffer (mmap-able *)
4257 * | uiomove
4258 * v
4259 * read
4260 *
4261 * *: usrbuf for recording is also mmap-able due to symmetry with
4262 * playback buffer, but for now mmap will never happen for recording.
4263 */
4264
4265 /*
4266 * Set the userland format of this track.
4267 * usrfmt argument should have been previously verified by
4268 * audio_track_setinfo_check().
4269 * This function may release and reallocate all internal conversion buffers.
4270 * It returns 0 if successful. Otherwise it returns errno with clearing all
4271 * internal buffers.
4272 * It must be called without sc_intr_lock since uvm_* routines require non
4273 * intr_lock state.
4274 * It must be called with track lock held since it may release and reallocate
4275 * outbuf.
4276 */
4277 static int
4278 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4279 {
4280 struct audio_softc *sc;
4281 u_int newbufsize;
4282 u_int oldblksize;
4283 u_int len;
4284 int error;
4285
4286 KASSERT(track);
4287 sc = track->mixer->sc;
4288
4289 /* usrbuf is the closest buffer to the userland. */
4290 track->usrbuf.fmt = *usrfmt;
4291
4292 /*
4293 * For references, one block size (in 40msec) is:
4294 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4295 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4296 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4297 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4298 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4299 *
4300 * For example,
4301 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4302 * newbufsize = rounddown(65536 / 7056) = 63504
4303 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4304 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4305 *
4306 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4307 * newbufsize = rounddown(65536 / 7680) = 61440
4308 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4309 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4310 */
4311 oldblksize = track->usrbuf_blksize;
4312 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4313 frame_per_block(track->mixer, &track->usrbuf.fmt));
4314 track->usrbuf.head = 0;
4315 track->usrbuf.used = 0;
4316 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4317 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4318 error = audio_realloc_usrbuf(track, newbufsize);
4319 if (error) {
4320 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4321 newbufsize);
4322 goto error;
4323 }
4324
4325 /* Recalc water mark. */
4326 if (track->usrbuf_blksize != oldblksize) {
4327 if (audio_track_is_playback(track)) {
4328 /* Set high at 100%, low at 75%. */
4329 track->usrbuf_usedhigh = track->usrbuf.capacity;
4330 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4331 } else {
4332 /* Set high at 100% minus 1block(?), low at 0% */
4333 track->usrbuf_usedhigh = track->usrbuf.capacity -
4334 track->usrbuf_blksize;
4335 track->usrbuf_usedlow = 0;
4336 }
4337 }
4338
4339 /* Stage buffer */
4340 audio_ring_t *last_dst = &track->outbuf;
4341 if (audio_track_is_playback(track)) {
4342 /* On playback, initialize from the mixer side in order. */
4343 track->inputfmt = *usrfmt;
4344 track->outbuf.fmt = track->mixer->track_fmt;
4345
4346 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4347 goto error;
4348 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4349 goto error;
4350 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4351 goto error;
4352 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4353 goto error;
4354 } else {
4355 /* On recording, initialize from userland side in order. */
4356 track->inputfmt = track->mixer->track_fmt;
4357 track->outbuf.fmt = *usrfmt;
4358
4359 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4360 goto error;
4361 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4362 goto error;
4363 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4364 goto error;
4365 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4366 goto error;
4367 }
4368 #if 0
4369 /* debug */
4370 if (track->freq.filter) {
4371 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4372 audio_print_format2("freq dst", &track->freq.dst->fmt);
4373 }
4374 if (track->chmix.filter) {
4375 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4376 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4377 }
4378 if (track->chvol.filter) {
4379 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4380 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4381 }
4382 if (track->codec.filter) {
4383 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4384 audio_print_format2("codec dst", &track->codec.dst->fmt);
4385 }
4386 #endif
4387
4388 /* Stage input buffer */
4389 track->input = last_dst;
4390
4391 /*
4392 * On the recording track, make the first stage a ring buffer.
4393 * XXX is there a better way?
4394 */
4395 if (audio_track_is_record(track)) {
4396 track->input->capacity = NBLKOUT *
4397 frame_per_block(track->mixer, &track->input->fmt);
4398 len = auring_bytelen(track->input);
4399 track->input->mem = audio_realloc(track->input->mem, len);
4400 }
4401
4402 /*
4403 * Output buffer.
4404 * On the playback track, its capacity is NBLKOUT blocks.
4405 * On the recording track, its capacity is 1 block.
4406 */
4407 track->outbuf.head = 0;
4408 track->outbuf.used = 0;
4409 track->outbuf.capacity = frame_per_block(track->mixer,
4410 &track->outbuf.fmt);
4411 if (audio_track_is_playback(track))
4412 track->outbuf.capacity *= NBLKOUT;
4413 len = auring_bytelen(&track->outbuf);
4414 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4415 if (track->outbuf.mem == NULL) {
4416 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4417 error = ENOMEM;
4418 goto error;
4419 }
4420
4421 #if defined(AUDIO_DEBUG)
4422 if (audiodebug >= 3) {
4423 struct audio_track_debugbuf m;
4424
4425 memset(&m, 0, sizeof(m));
4426 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4427 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4428 if (track->freq.filter)
4429 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4430 track->freq.srcbuf.capacity *
4431 frametobyte(&track->freq.srcbuf.fmt, 1));
4432 if (track->chmix.filter)
4433 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4434 track->chmix.srcbuf.capacity *
4435 frametobyte(&track->chmix.srcbuf.fmt, 1));
4436 if (track->chvol.filter)
4437 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4438 track->chvol.srcbuf.capacity *
4439 frametobyte(&track->chvol.srcbuf.fmt, 1));
4440 if (track->codec.filter)
4441 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4442 track->codec.srcbuf.capacity *
4443 frametobyte(&track->codec.srcbuf.fmt, 1));
4444 snprintf(m.usrbuf, sizeof(m.usrbuf),
4445 " usr=%d", track->usrbuf.capacity);
4446
4447 if (audio_track_is_playback(track)) {
4448 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4449 m.outbuf, m.freq, m.chmix,
4450 m.chvol, m.codec, m.usrbuf);
4451 } else {
4452 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4453 m.freq, m.chmix, m.chvol,
4454 m.codec, m.outbuf, m.usrbuf);
4455 }
4456 }
4457 #endif
4458 return 0;
4459
4460 error:
4461 audio_free_usrbuf(track);
4462 audio_free(track->codec.srcbuf.mem);
4463 audio_free(track->chvol.srcbuf.mem);
4464 audio_free(track->chmix.srcbuf.mem);
4465 audio_free(track->freq.srcbuf.mem);
4466 audio_free(track->outbuf.mem);
4467 return error;
4468 }
4469
4470 /*
4471 * Fill silence frames (as the internal format) up to 1 block
4472 * if the ring is not empty and less than 1 block.
4473 * It returns the number of appended frames.
4474 */
4475 static int
4476 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4477 {
4478 int fpb;
4479 int n;
4480
4481 KASSERT(track);
4482 KASSERT(audio_format2_is_internal(&ring->fmt));
4483
4484 /* XXX is n correct? */
4485 /* XXX memset uses frametobyte()? */
4486
4487 if (ring->used == 0)
4488 return 0;
4489
4490 fpb = frame_per_block(track->mixer, &ring->fmt);
4491 if (ring->used >= fpb)
4492 return 0;
4493
4494 n = (ring->capacity - ring->used) % fpb;
4495
4496 KASSERTMSG(auring_get_contig_free(ring) >= n,
4497 "auring_get_contig_free(ring)=%d n=%d",
4498 auring_get_contig_free(ring), n);
4499
4500 memset(auring_tailptr_aint(ring), 0,
4501 n * ring->fmt.channels * sizeof(aint_t));
4502 auring_push(ring, n);
4503 return n;
4504 }
4505
4506 /*
4507 * Execute the conversion stage.
4508 * It prepares arg from this stage and executes stage->filter.
4509 * It must be called only if stage->filter is not NULL.
4510 *
4511 * For stages other than frequency conversion, the function increments
4512 * src and dst counters here. For frequency conversion stage, on the
4513 * other hand, the function does not touch src and dst counters and
4514 * filter side has to increment them.
4515 */
4516 static void
4517 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4518 {
4519 audio_filter_arg_t *arg;
4520 int srccount;
4521 int dstcount;
4522 int count;
4523
4524 KASSERT(track);
4525 KASSERT(stage->filter);
4526
4527 srccount = auring_get_contig_used(&stage->srcbuf);
4528 dstcount = auring_get_contig_free(stage->dst);
4529
4530 if (isfreq) {
4531 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4532 count = uimin(dstcount, track->mixer->frames_per_block);
4533 } else {
4534 count = uimin(srccount, dstcount);
4535 }
4536
4537 if (count > 0) {
4538 arg = &stage->arg;
4539 arg->src = auring_headptr(&stage->srcbuf);
4540 arg->dst = auring_tailptr(stage->dst);
4541 arg->count = count;
4542
4543 stage->filter(arg);
4544
4545 if (!isfreq) {
4546 auring_take(&stage->srcbuf, count);
4547 auring_push(stage->dst, count);
4548 }
4549 }
4550 }
4551
4552 /*
4553 * Produce output buffer for playback from user input buffer.
4554 * It must be called only if usrbuf is not empty and outbuf is
4555 * available at least one free block.
4556 */
4557 static void
4558 audio_track_play(audio_track_t *track)
4559 {
4560 audio_ring_t *usrbuf;
4561 audio_ring_t *input;
4562 int count;
4563 int framesize;
4564 int bytes;
4565
4566 KASSERT(track);
4567 KASSERT(track->lock);
4568 TRACET(4, track, "start pstate=%d", track->pstate);
4569
4570 /* At this point usrbuf must not be empty. */
4571 KASSERT(track->usrbuf.used > 0);
4572 /* Also, outbuf must be available at least one block. */
4573 count = auring_get_contig_free(&track->outbuf);
4574 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4575 "count=%d fpb=%d",
4576 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4577
4578 /* XXX TODO: is this necessary for now? */
4579 int track_count_0 = track->outbuf.used;
4580
4581 usrbuf = &track->usrbuf;
4582 input = track->input;
4583
4584 /*
4585 * framesize is always 1 byte or more since all formats supported as
4586 * usrfmt(=input) have 8bit or more stride.
4587 */
4588 framesize = frametobyte(&input->fmt, 1);
4589 KASSERT(framesize >= 1);
4590
4591 /* The next stage of usrbuf (=input) must be available. */
4592 KASSERT(auring_get_contig_free(input) > 0);
4593
4594 /*
4595 * Copy usrbuf up to 1block to input buffer.
4596 * count is the number of frames to copy from usrbuf.
4597 * bytes is the number of bytes to copy from usrbuf. However it is
4598 * not copied less than one frame.
4599 */
4600 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4601 bytes = count * framesize;
4602
4603 track->usrbuf_stamp += bytes;
4604
4605 if (usrbuf->head + bytes < usrbuf->capacity) {
4606 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4607 (uint8_t *)usrbuf->mem + usrbuf->head,
4608 bytes);
4609 auring_push(input, count);
4610 auring_take(usrbuf, bytes);
4611 } else {
4612 int bytes1;
4613 int bytes2;
4614
4615 bytes1 = auring_get_contig_used(usrbuf);
4616 KASSERTMSG(bytes1 % framesize == 0,
4617 "bytes1=%d framesize=%d", bytes1, framesize);
4618 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4619 (uint8_t *)usrbuf->mem + usrbuf->head,
4620 bytes1);
4621 auring_push(input, bytes1 / framesize);
4622 auring_take(usrbuf, bytes1);
4623
4624 bytes2 = bytes - bytes1;
4625 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4626 (uint8_t *)usrbuf->mem + usrbuf->head,
4627 bytes2);
4628 auring_push(input, bytes2 / framesize);
4629 auring_take(usrbuf, bytes2);
4630 }
4631
4632 /* Encoding conversion */
4633 if (track->codec.filter)
4634 audio_apply_stage(track, &track->codec, false);
4635
4636 /* Channel volume */
4637 if (track->chvol.filter)
4638 audio_apply_stage(track, &track->chvol, false);
4639
4640 /* Channel mix */
4641 if (track->chmix.filter)
4642 audio_apply_stage(track, &track->chmix, false);
4643
4644 /* Frequency conversion */
4645 /*
4646 * Since the frequency conversion needs correction for each block,
4647 * it rounds up to 1 block.
4648 */
4649 if (track->freq.filter) {
4650 int n;
4651 n = audio_append_silence(track, &track->freq.srcbuf);
4652 if (n > 0) {
4653 TRACET(4, track,
4654 "freq.srcbuf add silence %d -> %d/%d/%d",
4655 n,
4656 track->freq.srcbuf.head,
4657 track->freq.srcbuf.used,
4658 track->freq.srcbuf.capacity);
4659 }
4660 if (track->freq.srcbuf.used > 0) {
4661 audio_apply_stage(track, &track->freq, true);
4662 }
4663 }
4664
4665 if (bytes < track->usrbuf_blksize) {
4666 /*
4667 * Clear all conversion buffer pointer if the conversion was
4668 * not exactly one block. These conversion stage buffers are
4669 * certainly circular buffers because of symmetry with the
4670 * previous and next stage buffer. However, since they are
4671 * treated as simple contiguous buffers in operation, so head
4672 * always should point 0. This may happen during drain-age.
4673 */
4674 TRACET(4, track, "reset stage");
4675 if (track->codec.filter) {
4676 KASSERT(track->codec.srcbuf.used == 0);
4677 track->codec.srcbuf.head = 0;
4678 }
4679 if (track->chvol.filter) {
4680 KASSERT(track->chvol.srcbuf.used == 0);
4681 track->chvol.srcbuf.head = 0;
4682 }
4683 if (track->chmix.filter) {
4684 KASSERT(track->chmix.srcbuf.used == 0);
4685 track->chmix.srcbuf.head = 0;
4686 }
4687 if (track->freq.filter) {
4688 KASSERT(track->freq.srcbuf.used == 0);
4689 track->freq.srcbuf.head = 0;
4690 }
4691 }
4692
4693 if (track->input == &track->outbuf) {
4694 track->outputcounter = track->inputcounter;
4695 } else {
4696 track->outputcounter += track->outbuf.used - track_count_0;
4697 }
4698
4699 #if defined(AUDIO_DEBUG)
4700 if (audiodebug >= 3) {
4701 struct audio_track_debugbuf m;
4702 audio_track_bufstat(track, &m);
4703 TRACET(0, track, "end%s%s%s%s%s%s",
4704 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4705 }
4706 #endif
4707 }
4708
4709 /*
4710 * Produce user output buffer for recording from input buffer.
4711 */
4712 static void
4713 audio_track_record(audio_track_t *track)
4714 {
4715 audio_ring_t *outbuf;
4716 audio_ring_t *usrbuf;
4717 int count;
4718 int bytes;
4719 int framesize;
4720
4721 KASSERT(track);
4722 KASSERT(track->lock);
4723
4724 /* Number of frames to process */
4725 count = auring_get_contig_used(track->input);
4726 count = uimin(count, track->mixer->frames_per_block);
4727 if (count == 0) {
4728 TRACET(4, track, "count == 0");
4729 return;
4730 }
4731
4732 /* Frequency conversion */
4733 if (track->freq.filter) {
4734 if (track->freq.srcbuf.used > 0) {
4735 audio_apply_stage(track, &track->freq, true);
4736 /* XXX should input of freq be from beginning of buf? */
4737 }
4738 }
4739
4740 /* Channel mix */
4741 if (track->chmix.filter)
4742 audio_apply_stage(track, &track->chmix, false);
4743
4744 /* Channel volume */
4745 if (track->chvol.filter)
4746 audio_apply_stage(track, &track->chvol, false);
4747
4748 /* Encoding conversion */
4749 if (track->codec.filter)
4750 audio_apply_stage(track, &track->codec, false);
4751
4752 /* Copy outbuf to usrbuf */
4753 outbuf = &track->outbuf;
4754 usrbuf = &track->usrbuf;
4755 /*
4756 * framesize is always 1 byte or more since all formats supported
4757 * as usrfmt(=output) have 8bit or more stride.
4758 */
4759 framesize = frametobyte(&outbuf->fmt, 1);
4760 KASSERT(framesize >= 1);
4761 /*
4762 * count is the number of frames to copy to usrbuf.
4763 * bytes is the number of bytes to copy to usrbuf.
4764 */
4765 count = outbuf->used;
4766 count = uimin(count,
4767 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4768 bytes = count * framesize;
4769 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4770 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4771 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4772 bytes);
4773 auring_push(usrbuf, bytes);
4774 auring_take(outbuf, count);
4775 } else {
4776 int bytes1;
4777 int bytes2;
4778
4779 bytes1 = auring_get_contig_free(usrbuf);
4780 KASSERTMSG(bytes1 % framesize == 0,
4781 "bytes1=%d framesize=%d", bytes1, framesize);
4782 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4783 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4784 bytes1);
4785 auring_push(usrbuf, bytes1);
4786 auring_take(outbuf, bytes1 / framesize);
4787
4788 bytes2 = bytes - bytes1;
4789 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4790 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4791 bytes2);
4792 auring_push(usrbuf, bytes2);
4793 auring_take(outbuf, bytes2 / framesize);
4794 }
4795
4796 /* XXX TODO: any counters here? */
4797
4798 #if defined(AUDIO_DEBUG)
4799 if (audiodebug >= 3) {
4800 struct audio_track_debugbuf m;
4801 audio_track_bufstat(track, &m);
4802 TRACET(0, track, "end%s%s%s%s%s%s",
4803 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4804 }
4805 #endif
4806 }
4807
4808 /*
4809 * Calculate blktime [msec] from mixer(.hwbuf.fmt).
4810 * Must be called with sc_exlock held.
4811 */
4812 static u_int
4813 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4814 {
4815 audio_format2_t *fmt;
4816 u_int blktime;
4817 u_int frames_per_block;
4818
4819 KASSERT(sc->sc_exlock);
4820
4821 fmt = &mixer->hwbuf.fmt;
4822 blktime = sc->sc_blk_ms;
4823
4824 /*
4825 * If stride is not multiples of 8, special treatment is necessary.
4826 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4827 */
4828 if (fmt->stride == 4) {
4829 frames_per_block = fmt->sample_rate * blktime / 1000;
4830 if ((frames_per_block & 1) != 0)
4831 blktime *= 2;
4832 }
4833 #ifdef DIAGNOSTIC
4834 else if (fmt->stride % NBBY != 0) {
4835 panic("unsupported HW stride %d", fmt->stride);
4836 }
4837 #endif
4838
4839 return blktime;
4840 }
4841
4842 /*
4843 * Initialize the mixer corresponding to the mode.
4844 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4845 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4846 * This function returns 0 on successful. Otherwise returns errno.
4847 * Must be called with sc_exlock held and without sc_lock held.
4848 */
4849 static int
4850 audio_mixer_init(struct audio_softc *sc, int mode,
4851 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4852 {
4853 char codecbuf[64];
4854 char blkdmsbuf[8];
4855 audio_trackmixer_t *mixer;
4856 void (*softint_handler)(void *);
4857 int len;
4858 int blksize;
4859 int capacity;
4860 size_t bufsize;
4861 int hwblks;
4862 int blkms;
4863 int blkdms;
4864 int error;
4865
4866 KASSERT(hwfmt != NULL);
4867 KASSERT(reg != NULL);
4868 KASSERT(sc->sc_exlock);
4869
4870 error = 0;
4871 if (mode == AUMODE_PLAY)
4872 mixer = sc->sc_pmixer;
4873 else
4874 mixer = sc->sc_rmixer;
4875
4876 mixer->sc = sc;
4877 mixer->mode = mode;
4878
4879 mixer->hwbuf.fmt = *hwfmt;
4880 mixer->volume = 256;
4881 mixer->blktime_d = 1000;
4882 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4883 sc->sc_blk_ms = mixer->blktime_n;
4884 hwblks = NBLKHW;
4885
4886 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4887 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4888 if (sc->hw_if->round_blocksize) {
4889 int rounded;
4890 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4891 mutex_enter(sc->sc_lock);
4892 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4893 mode, &p);
4894 mutex_exit(sc->sc_lock);
4895 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4896 if (rounded != blksize) {
4897 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4898 mixer->hwbuf.fmt.channels) != 0) {
4899 device_printf(sc->sc_dev,
4900 "round_blocksize must return blocksize "
4901 "divisible by framesize: "
4902 "blksize=%d rounded=%d "
4903 "stride=%ubit channels=%u\n",
4904 blksize, rounded,
4905 mixer->hwbuf.fmt.stride,
4906 mixer->hwbuf.fmt.channels);
4907 return EINVAL;
4908 }
4909 /* Recalculation */
4910 blksize = rounded;
4911 mixer->frames_per_block = blksize * NBBY /
4912 (mixer->hwbuf.fmt.stride *
4913 mixer->hwbuf.fmt.channels);
4914 }
4915 }
4916 mixer->blktime_n = mixer->frames_per_block;
4917 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4918
4919 capacity = mixer->frames_per_block * hwblks;
4920 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4921 if (sc->hw_if->round_buffersize) {
4922 size_t rounded;
4923 mutex_enter(sc->sc_lock);
4924 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4925 bufsize);
4926 mutex_exit(sc->sc_lock);
4927 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4928 if (rounded < bufsize) {
4929 /* buffersize needs NBLKHW blocks at least. */
4930 device_printf(sc->sc_dev,
4931 "buffersize too small: buffersize=%zd blksize=%d\n",
4932 rounded, blksize);
4933 return EINVAL;
4934 }
4935 if (rounded % blksize != 0) {
4936 /* buffersize/blksize constraint mismatch? */
4937 device_printf(sc->sc_dev,
4938 "buffersize must be multiple of blksize: "
4939 "buffersize=%zu blksize=%d\n",
4940 rounded, blksize);
4941 return EINVAL;
4942 }
4943 if (rounded != bufsize) {
4944 /* Recalculation */
4945 bufsize = rounded;
4946 hwblks = bufsize / blksize;
4947 capacity = mixer->frames_per_block * hwblks;
4948 }
4949 }
4950 TRACE(1, "buffersize for %s = %zu",
4951 (mode == AUMODE_PLAY) ? "playback" : "recording",
4952 bufsize);
4953 mixer->hwbuf.capacity = capacity;
4954
4955 if (sc->hw_if->allocm) {
4956 /* sc_lock is not necessary for allocm */
4957 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4958 if (mixer->hwbuf.mem == NULL) {
4959 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4960 __func__, bufsize);
4961 return ENOMEM;
4962 }
4963 } else {
4964 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4965 }
4966
4967 /* From here, audio_mixer_destroy is necessary to exit. */
4968 if (mode == AUMODE_PLAY) {
4969 cv_init(&mixer->outcv, "audiowr");
4970 } else {
4971 cv_init(&mixer->outcv, "audiord");
4972 }
4973
4974 if (mode == AUMODE_PLAY) {
4975 softint_handler = audio_softintr_wr;
4976 } else {
4977 softint_handler = audio_softintr_rd;
4978 }
4979 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4980 softint_handler, sc);
4981 if (mixer->sih == NULL) {
4982 device_printf(sc->sc_dev, "softint_establish failed\n");
4983 goto abort;
4984 }
4985
4986 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4987 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4988 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4989 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4990 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4991
4992 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4993 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4994 mixer->swap_endian = true;
4995 TRACE(1, "swap_endian");
4996 }
4997
4998 if (mode == AUMODE_PLAY) {
4999 /* Mixing buffer */
5000 mixer->mixfmt = mixer->track_fmt;
5001 mixer->mixfmt.precision *= 2;
5002 mixer->mixfmt.stride *= 2;
5003 /* XXX TODO: use some macros? */
5004 len = mixer->frames_per_block * mixer->mixfmt.channels *
5005 mixer->mixfmt.stride / NBBY;
5006 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5007 } else {
5008 /* No mixing buffer for recording */
5009 }
5010
5011 if (reg->codec) {
5012 mixer->codec = reg->codec;
5013 mixer->codecarg.context = reg->context;
5014 if (mode == AUMODE_PLAY) {
5015 mixer->codecarg.srcfmt = &mixer->track_fmt;
5016 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5017 } else {
5018 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5019 mixer->codecarg.dstfmt = &mixer->track_fmt;
5020 }
5021 mixer->codecbuf.fmt = mixer->track_fmt;
5022 mixer->codecbuf.capacity = mixer->frames_per_block;
5023 len = auring_bytelen(&mixer->codecbuf);
5024 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5025 if (mixer->codecbuf.mem == NULL) {
5026 device_printf(sc->sc_dev,
5027 "%s: malloc codecbuf(%d) failed\n",
5028 __func__, len);
5029 error = ENOMEM;
5030 goto abort;
5031 }
5032 }
5033
5034 /* Succeeded so display it. */
5035 codecbuf[0] = '\0';
5036 if (mixer->codec || mixer->swap_endian) {
5037 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5038 (mode == AUMODE_PLAY) ? "->" : "<-",
5039 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5040 mixer->hwbuf.fmt.precision);
5041 }
5042 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5043 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5044 blkdmsbuf[0] = '\0';
5045 if (blkdms != 0) {
5046 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5047 }
5048 aprint_normal_dev(sc->sc_dev,
5049 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5050 audio_encoding_name(mixer->track_fmt.encoding),
5051 mixer->track_fmt.precision,
5052 codecbuf,
5053 mixer->track_fmt.channels,
5054 mixer->track_fmt.sample_rate,
5055 blksize,
5056 blkms, blkdmsbuf,
5057 (mode == AUMODE_PLAY) ? "playback" : "recording");
5058
5059 return 0;
5060
5061 abort:
5062 audio_mixer_destroy(sc, mixer);
5063 return error;
5064 }
5065
5066 /*
5067 * Releases all resources of 'mixer'.
5068 * Note that it does not release the memory area of 'mixer' itself.
5069 * Must be called with sc_exlock held and without sc_lock held.
5070 */
5071 static void
5072 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5073 {
5074 int bufsize;
5075
5076 KASSERT(sc->sc_exlock == 1);
5077
5078 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5079
5080 if (mixer->hwbuf.mem != NULL) {
5081 if (sc->hw_if->freem) {
5082 /* sc_lock is not necessary for freem */
5083 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5084 } else {
5085 kmem_free(mixer->hwbuf.mem, bufsize);
5086 }
5087 mixer->hwbuf.mem = NULL;
5088 }
5089
5090 audio_free(mixer->codecbuf.mem);
5091 audio_free(mixer->mixsample);
5092
5093 cv_destroy(&mixer->outcv);
5094
5095 if (mixer->sih) {
5096 softint_disestablish(mixer->sih);
5097 mixer->sih = NULL;
5098 }
5099 }
5100
5101 /*
5102 * Starts playback mixer.
5103 * Must be called only if sc_pbusy is false.
5104 * Must be called with sc_lock && sc_exlock held.
5105 * Must not be called from the interrupt context.
5106 */
5107 static void
5108 audio_pmixer_start(struct audio_softc *sc, bool force)
5109 {
5110 audio_trackmixer_t *mixer;
5111 int minimum;
5112
5113 KASSERT(mutex_owned(sc->sc_lock));
5114 KASSERT(sc->sc_exlock);
5115 KASSERT(sc->sc_pbusy == false);
5116
5117 mutex_enter(sc->sc_intr_lock);
5118
5119 mixer = sc->sc_pmixer;
5120 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5121 (audiodebug >= 3) ? "begin " : "",
5122 (int)mixer->mixseq, (int)mixer->hwseq,
5123 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5124 force ? " force" : "");
5125
5126 /* Need two blocks to start normally. */
5127 minimum = (force) ? 1 : 2;
5128 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5129 audio_pmixer_process(sc);
5130 }
5131
5132 /* Start output */
5133 audio_pmixer_output(sc);
5134 sc->sc_pbusy = true;
5135
5136 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5137 (int)mixer->mixseq, (int)mixer->hwseq,
5138 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5139
5140 mutex_exit(sc->sc_intr_lock);
5141 }
5142
5143 /*
5144 * When playing back with MD filter:
5145 *
5146 * track track ...
5147 * v v
5148 * + mix (with aint2_t)
5149 * | master volume (with aint2_t)
5150 * v
5151 * mixsample [::::] wide-int 1 block (ring) buffer
5152 * |
5153 * | convert aint2_t -> aint_t
5154 * v
5155 * codecbuf [....] 1 block (ring) buffer
5156 * |
5157 * | convert to hw format
5158 * v
5159 * hwbuf [............] NBLKHW blocks ring buffer
5160 *
5161 * When playing back without MD filter:
5162 *
5163 * mixsample [::::] wide-int 1 block (ring) buffer
5164 * |
5165 * | convert aint2_t -> aint_t
5166 * | (with byte swap if necessary)
5167 * v
5168 * hwbuf [............] NBLKHW blocks ring buffer
5169 *
5170 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5171 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5172 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5173 */
5174
5175 /*
5176 * Performs track mixing and converts it to hwbuf.
5177 * Note that this function doesn't transfer hwbuf to hardware.
5178 * Must be called with sc_intr_lock held.
5179 */
5180 static void
5181 audio_pmixer_process(struct audio_softc *sc)
5182 {
5183 audio_trackmixer_t *mixer;
5184 audio_file_t *f;
5185 int frame_count;
5186 int sample_count;
5187 int mixed;
5188 int i;
5189 aint2_t *m;
5190 aint_t *h;
5191
5192 mixer = sc->sc_pmixer;
5193
5194 frame_count = mixer->frames_per_block;
5195 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5196 "auring_get_contig_free()=%d frame_count=%d",
5197 auring_get_contig_free(&mixer->hwbuf), frame_count);
5198 sample_count = frame_count * mixer->mixfmt.channels;
5199
5200 mixer->mixseq++;
5201
5202 /* Mix all tracks */
5203 mixed = 0;
5204 SLIST_FOREACH(f, &sc->sc_files, entry) {
5205 audio_track_t *track = f->ptrack;
5206
5207 if (track == NULL)
5208 continue;
5209
5210 if (track->is_pause) {
5211 TRACET(4, track, "skip; paused");
5212 continue;
5213 }
5214
5215 /* Skip if the track is used by process context. */
5216 if (audio_track_lock_tryenter(track) == false) {
5217 TRACET(4, track, "skip; in use");
5218 continue;
5219 }
5220
5221 /* Emulate mmap'ped track */
5222 if (track->mmapped) {
5223 auring_push(&track->usrbuf, track->usrbuf_blksize);
5224 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5225 track->usrbuf.head,
5226 track->usrbuf.used,
5227 track->usrbuf.capacity);
5228 }
5229
5230 if (track->outbuf.used < mixer->frames_per_block &&
5231 track->usrbuf.used > 0) {
5232 TRACET(4, track, "process");
5233 audio_track_play(track);
5234 }
5235
5236 if (track->outbuf.used > 0) {
5237 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5238 } else {
5239 TRACET(4, track, "skip; empty");
5240 }
5241
5242 audio_track_lock_exit(track);
5243 }
5244
5245 if (mixed == 0) {
5246 /* Silence */
5247 memset(mixer->mixsample, 0,
5248 frametobyte(&mixer->mixfmt, frame_count));
5249 } else {
5250 if (mixed > 1) {
5251 /* If there are multiple tracks, do auto gain control */
5252 audio_pmixer_agc(mixer, sample_count);
5253 }
5254
5255 /* Apply master volume */
5256 if (mixer->volume < 256) {
5257 m = mixer->mixsample;
5258 for (i = 0; i < sample_count; i++) {
5259 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5260 m++;
5261 }
5262
5263 /*
5264 * Recover the volume gradually at the pace of
5265 * several times per second. If it's too fast, you
5266 * can recognize that the volume changes up and down
5267 * quickly and it's not so comfortable.
5268 */
5269 mixer->voltimer += mixer->blktime_n;
5270 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5271 mixer->volume++;
5272 mixer->voltimer = 0;
5273 #if defined(AUDIO_DEBUG_AGC)
5274 TRACE(1, "volume recover: %d", mixer->volume);
5275 #endif
5276 }
5277 }
5278 }
5279
5280 /*
5281 * The rest is the hardware part.
5282 */
5283
5284 if (mixer->codec) {
5285 h = auring_tailptr_aint(&mixer->codecbuf);
5286 } else {
5287 h = auring_tailptr_aint(&mixer->hwbuf);
5288 }
5289
5290 m = mixer->mixsample;
5291 if (mixer->swap_endian) {
5292 for (i = 0; i < sample_count; i++) {
5293 *h++ = bswap16(*m++);
5294 }
5295 } else {
5296 for (i = 0; i < sample_count; i++) {
5297 *h++ = *m++;
5298 }
5299 }
5300
5301 /* Hardware driver's codec */
5302 if (mixer->codec) {
5303 auring_push(&mixer->codecbuf, frame_count);
5304 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5305 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5306 mixer->codecarg.count = frame_count;
5307 mixer->codec(&mixer->codecarg);
5308 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5309 }
5310
5311 auring_push(&mixer->hwbuf, frame_count);
5312
5313 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5314 (int)mixer->mixseq,
5315 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5316 (mixed == 0) ? " silent" : "");
5317 }
5318
5319 /*
5320 * Do auto gain control.
5321 * Must be called sc_intr_lock held.
5322 */
5323 static void
5324 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5325 {
5326 struct audio_softc *sc __unused;
5327 aint2_t val;
5328 aint2_t maxval;
5329 aint2_t minval;
5330 aint2_t over_plus;
5331 aint2_t over_minus;
5332 aint2_t *m;
5333 int newvol;
5334 int i;
5335
5336 sc = mixer->sc;
5337
5338 /* Overflow detection */
5339 maxval = AINT_T_MAX;
5340 minval = AINT_T_MIN;
5341 m = mixer->mixsample;
5342 for (i = 0; i < sample_count; i++) {
5343 val = *m++;
5344 if (val > maxval)
5345 maxval = val;
5346 else if (val < minval)
5347 minval = val;
5348 }
5349
5350 /* Absolute value of overflowed amount */
5351 over_plus = maxval - AINT_T_MAX;
5352 over_minus = AINT_T_MIN - minval;
5353
5354 if (over_plus > 0 || over_minus > 0) {
5355 if (over_plus > over_minus) {
5356 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5357 } else {
5358 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5359 }
5360
5361 /*
5362 * Change the volume only if new one is smaller.
5363 * Reset the timer even if the volume isn't changed.
5364 */
5365 if (newvol <= mixer->volume) {
5366 mixer->volume = newvol;
5367 mixer->voltimer = 0;
5368 #if defined(AUDIO_DEBUG_AGC)
5369 TRACE(1, "auto volume adjust: %d", mixer->volume);
5370 #endif
5371 }
5372 }
5373 }
5374
5375 /*
5376 * Mix one track.
5377 * 'mixed' specifies the number of tracks mixed so far.
5378 * It returns the number of tracks mixed. In other words, it returns
5379 * mixed + 1 if this track is mixed.
5380 */
5381 static int
5382 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5383 int mixed)
5384 {
5385 int count;
5386 int sample_count;
5387 int remain;
5388 int i;
5389 const aint_t *s;
5390 aint2_t *d;
5391
5392 /* XXX TODO: Is this necessary for now? */
5393 if (mixer->mixseq < track->seq)
5394 return mixed;
5395
5396 count = auring_get_contig_used(&track->outbuf);
5397 count = uimin(count, mixer->frames_per_block);
5398
5399 s = auring_headptr_aint(&track->outbuf);
5400 d = mixer->mixsample;
5401
5402 /*
5403 * Apply track volume with double-sized integer and perform
5404 * additive synthesis.
5405 *
5406 * XXX If you limit the track volume to 1.0 or less (<= 256),
5407 * it would be better to do this in the track conversion stage
5408 * rather than here. However, if you accept the volume to
5409 * be greater than 1.0 (> 256), it's better to do it here.
5410 * Because the operation here is done by double-sized integer.
5411 */
5412 sample_count = count * mixer->mixfmt.channels;
5413 if (mixed == 0) {
5414 /* If this is the first track, assignment can be used. */
5415 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5416 if (track->volume != 256) {
5417 for (i = 0; i < sample_count; i++) {
5418 aint2_t v;
5419 v = *s++;
5420 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5421 }
5422 } else
5423 #endif
5424 {
5425 for (i = 0; i < sample_count; i++) {
5426 *d++ = ((aint2_t)*s++);
5427 }
5428 }
5429 /* Fill silence if the first track is not filled. */
5430 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5431 *d++ = 0;
5432 } else {
5433 /* If this is the second or later, add it. */
5434 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5435 if (track->volume != 256) {
5436 for (i = 0; i < sample_count; i++) {
5437 aint2_t v;
5438 v = *s++;
5439 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5440 }
5441 } else
5442 #endif
5443 {
5444 for (i = 0; i < sample_count; i++) {
5445 *d++ += ((aint2_t)*s++);
5446 }
5447 }
5448 }
5449
5450 auring_take(&track->outbuf, count);
5451 /*
5452 * The counters have to align block even if outbuf is less than
5453 * one block. XXX Is this still necessary?
5454 */
5455 remain = mixer->frames_per_block - count;
5456 if (__predict_false(remain != 0)) {
5457 auring_push(&track->outbuf, remain);
5458 auring_take(&track->outbuf, remain);
5459 }
5460
5461 /*
5462 * Update track sequence.
5463 * mixseq has previous value yet at this point.
5464 */
5465 track->seq = mixer->mixseq + 1;
5466
5467 return mixed + 1;
5468 }
5469
5470 /*
5471 * Output one block from hwbuf to HW.
5472 * Must be called with sc_intr_lock held.
5473 */
5474 static void
5475 audio_pmixer_output(struct audio_softc *sc)
5476 {
5477 audio_trackmixer_t *mixer;
5478 audio_params_t params;
5479 void *start;
5480 void *end;
5481 int blksize;
5482 int error;
5483
5484 mixer = sc->sc_pmixer;
5485 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5486 sc->sc_pbusy,
5487 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5488 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5489 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5490 mixer->hwbuf.used, mixer->frames_per_block);
5491
5492 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5493
5494 if (sc->hw_if->trigger_output) {
5495 /* trigger (at once) */
5496 if (!sc->sc_pbusy) {
5497 start = mixer->hwbuf.mem;
5498 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5499 params = format2_to_params(&mixer->hwbuf.fmt);
5500
5501 error = sc->hw_if->trigger_output(sc->hw_hdl,
5502 start, end, blksize, audio_pintr, sc, ¶ms);
5503 if (error) {
5504 device_printf(sc->sc_dev,
5505 "trigger_output failed with %d\n", error);
5506 return;
5507 }
5508 }
5509 } else {
5510 /* start (everytime) */
5511 start = auring_headptr(&mixer->hwbuf);
5512
5513 error = sc->hw_if->start_output(sc->hw_hdl,
5514 start, blksize, audio_pintr, sc);
5515 if (error) {
5516 device_printf(sc->sc_dev,
5517 "start_output failed with %d\n", error);
5518 return;
5519 }
5520 }
5521 }
5522
5523 /*
5524 * This is an interrupt handler for playback.
5525 * It is called with sc_intr_lock held.
5526 *
5527 * It is usually called from hardware interrupt. However, note that
5528 * for some drivers (e.g. uaudio) it is called from software interrupt.
5529 */
5530 static void
5531 audio_pintr(void *arg)
5532 {
5533 struct audio_softc *sc;
5534 audio_trackmixer_t *mixer;
5535
5536 sc = arg;
5537 KASSERT(mutex_owned(sc->sc_intr_lock));
5538
5539 if (sc->sc_dying)
5540 return;
5541 if (sc->sc_pbusy == false) {
5542 #if defined(DIAGNOSTIC)
5543 device_printf(sc->sc_dev,
5544 "DIAGNOSTIC: %s raised stray interrupt\n",
5545 device_xname(sc->hw_dev));
5546 #endif
5547 return;
5548 }
5549
5550 mixer = sc->sc_pmixer;
5551 mixer->hw_complete_counter += mixer->frames_per_block;
5552 mixer->hwseq++;
5553
5554 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5555
5556 TRACE(4,
5557 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5558 mixer->hwseq, mixer->hw_complete_counter,
5559 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5560
5561 #if defined(AUDIO_HW_SINGLE_BUFFER)
5562 /*
5563 * Create a new block here and output it immediately.
5564 * It makes a latency lower but needs machine power.
5565 */
5566 audio_pmixer_process(sc);
5567 audio_pmixer_output(sc);
5568 #else
5569 /*
5570 * It is called when block N output is done.
5571 * Output immediately block N+1 created by the last interrupt.
5572 * And then create block N+2 for the next interrupt.
5573 * This method makes playback robust even on slower machines.
5574 * Instead the latency is increased by one block.
5575 */
5576
5577 /* At first, output ready block. */
5578 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5579 audio_pmixer_output(sc);
5580 }
5581
5582 bool later = false;
5583
5584 if (mixer->hwbuf.used < mixer->frames_per_block) {
5585 later = true;
5586 }
5587
5588 /* Then, process next block. */
5589 audio_pmixer_process(sc);
5590
5591 if (later) {
5592 audio_pmixer_output(sc);
5593 }
5594 #endif
5595
5596 /*
5597 * When this interrupt is the real hardware interrupt, disabling
5598 * preemption here is not necessary. But some drivers (e.g. uaudio)
5599 * emulate it by software interrupt, so kpreempt_disable is necessary.
5600 */
5601 kpreempt_disable();
5602 softint_schedule(mixer->sih);
5603 kpreempt_enable();
5604 }
5605
5606 /*
5607 * Starts record mixer.
5608 * Must be called only if sc_rbusy is false.
5609 * Must be called with sc_lock && sc_exlock held.
5610 * Must not be called from the interrupt context.
5611 */
5612 static void
5613 audio_rmixer_start(struct audio_softc *sc)
5614 {
5615
5616 KASSERT(mutex_owned(sc->sc_lock));
5617 KASSERT(sc->sc_exlock);
5618 KASSERT(sc->sc_rbusy == false);
5619
5620 mutex_enter(sc->sc_intr_lock);
5621
5622 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5623 audio_rmixer_input(sc);
5624 sc->sc_rbusy = true;
5625 TRACE(3, "end");
5626
5627 mutex_exit(sc->sc_intr_lock);
5628 }
5629
5630 /*
5631 * When recording with MD filter:
5632 *
5633 * hwbuf [............] NBLKHW blocks ring buffer
5634 * |
5635 * | convert from hw format
5636 * v
5637 * codecbuf [....] 1 block (ring) buffer
5638 * | |
5639 * v v
5640 * track track ...
5641 *
5642 * When recording without MD filter:
5643 *
5644 * hwbuf [............] NBLKHW blocks ring buffer
5645 * | |
5646 * v v
5647 * track track ...
5648 *
5649 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5650 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5651 */
5652
5653 /*
5654 * Distribute a recorded block to all recording tracks.
5655 */
5656 static void
5657 audio_rmixer_process(struct audio_softc *sc)
5658 {
5659 audio_trackmixer_t *mixer;
5660 audio_ring_t *mixersrc;
5661 audio_file_t *f;
5662 aint_t *p;
5663 int count;
5664 int bytes;
5665 int i;
5666
5667 mixer = sc->sc_rmixer;
5668
5669 /*
5670 * count is the number of frames to be retrieved this time.
5671 * count should be one block.
5672 */
5673 count = auring_get_contig_used(&mixer->hwbuf);
5674 count = uimin(count, mixer->frames_per_block);
5675 if (count <= 0) {
5676 TRACE(4, "count %d: too short", count);
5677 return;
5678 }
5679 bytes = frametobyte(&mixer->track_fmt, count);
5680
5681 /* Hardware driver's codec */
5682 if (mixer->codec) {
5683 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5684 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5685 mixer->codecarg.count = count;
5686 mixer->codec(&mixer->codecarg);
5687 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5688 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5689 mixersrc = &mixer->codecbuf;
5690 } else {
5691 mixersrc = &mixer->hwbuf;
5692 }
5693
5694 if (mixer->swap_endian) {
5695 /* inplace conversion */
5696 p = auring_headptr_aint(mixersrc);
5697 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5698 *p = bswap16(*p);
5699 }
5700 }
5701
5702 /* Distribute to all tracks. */
5703 SLIST_FOREACH(f, &sc->sc_files, entry) {
5704 audio_track_t *track = f->rtrack;
5705 audio_ring_t *input;
5706
5707 if (track == NULL)
5708 continue;
5709
5710 if (track->is_pause) {
5711 TRACET(4, track, "skip; paused");
5712 continue;
5713 }
5714
5715 if (audio_track_lock_tryenter(track) == false) {
5716 TRACET(4, track, "skip; in use");
5717 continue;
5718 }
5719
5720 /* If the track buffer is full, discard the oldest one? */
5721 input = track->input;
5722 if (input->capacity - input->used < mixer->frames_per_block) {
5723 int drops = mixer->frames_per_block -
5724 (input->capacity - input->used);
5725 track->dropframes += drops;
5726 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5727 drops,
5728 input->head, input->used, input->capacity);
5729 auring_take(input, drops);
5730 }
5731 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5732 "input->used=%d mixer->frames_per_block=%d",
5733 input->used, mixer->frames_per_block);
5734
5735 memcpy(auring_tailptr_aint(input),
5736 auring_headptr_aint(mixersrc),
5737 bytes);
5738 auring_push(input, count);
5739
5740 /* XXX sequence counter? */
5741
5742 audio_track_lock_exit(track);
5743 }
5744
5745 auring_take(mixersrc, count);
5746 }
5747
5748 /*
5749 * Input one block from HW to hwbuf.
5750 * Must be called with sc_intr_lock held.
5751 */
5752 static void
5753 audio_rmixer_input(struct audio_softc *sc)
5754 {
5755 audio_trackmixer_t *mixer;
5756 audio_params_t params;
5757 void *start;
5758 void *end;
5759 int blksize;
5760 int error;
5761
5762 mixer = sc->sc_rmixer;
5763 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5764
5765 if (sc->hw_if->trigger_input) {
5766 /* trigger (at once) */
5767 if (!sc->sc_rbusy) {
5768 start = mixer->hwbuf.mem;
5769 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5770 params = format2_to_params(&mixer->hwbuf.fmt);
5771
5772 error = sc->hw_if->trigger_input(sc->hw_hdl,
5773 start, end, blksize, audio_rintr, sc, ¶ms);
5774 if (error) {
5775 device_printf(sc->sc_dev,
5776 "trigger_input failed with %d\n", error);
5777 return;
5778 }
5779 }
5780 } else {
5781 /* start (everytime) */
5782 start = auring_tailptr(&mixer->hwbuf);
5783
5784 error = sc->hw_if->start_input(sc->hw_hdl,
5785 start, blksize, audio_rintr, sc);
5786 if (error) {
5787 device_printf(sc->sc_dev,
5788 "start_input failed with %d\n", error);
5789 return;
5790 }
5791 }
5792 }
5793
5794 /*
5795 * This is an interrupt handler for recording.
5796 * It is called with sc_intr_lock.
5797 *
5798 * It is usually called from hardware interrupt. However, note that
5799 * for some drivers (e.g. uaudio) it is called from software interrupt.
5800 */
5801 static void
5802 audio_rintr(void *arg)
5803 {
5804 struct audio_softc *sc;
5805 audio_trackmixer_t *mixer;
5806
5807 sc = arg;
5808 KASSERT(mutex_owned(sc->sc_intr_lock));
5809
5810 if (sc->sc_dying)
5811 return;
5812 if (sc->sc_rbusy == false) {
5813 #if defined(DIAGNOSTIC)
5814 device_printf(sc->sc_dev,
5815 "DIAGNOSTIC: %s raised stray interrupt\n",
5816 device_xname(sc->hw_dev));
5817 #endif
5818 return;
5819 }
5820
5821 mixer = sc->sc_rmixer;
5822 mixer->hw_complete_counter += mixer->frames_per_block;
5823 mixer->hwseq++;
5824
5825 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5826
5827 TRACE(4,
5828 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5829 mixer->hwseq, mixer->hw_complete_counter,
5830 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5831
5832 /* Distrubute recorded block */
5833 audio_rmixer_process(sc);
5834
5835 /* Request next block */
5836 audio_rmixer_input(sc);
5837
5838 /*
5839 * When this interrupt is the real hardware interrupt, disabling
5840 * preemption here is not necessary. But some drivers (e.g. uaudio)
5841 * emulate it by software interrupt, so kpreempt_disable is necessary.
5842 */
5843 kpreempt_disable();
5844 softint_schedule(mixer->sih);
5845 kpreempt_enable();
5846 }
5847
5848 /*
5849 * Halts playback mixer.
5850 * This function also clears related parameters, so call this function
5851 * instead of calling halt_output directly.
5852 * Must be called only if sc_pbusy is true.
5853 * Must be called with sc_lock && sc_exlock held.
5854 */
5855 static int
5856 audio_pmixer_halt(struct audio_softc *sc)
5857 {
5858 int error;
5859
5860 TRACE(2, "");
5861 KASSERT(mutex_owned(sc->sc_lock));
5862 KASSERT(sc->sc_exlock);
5863
5864 mutex_enter(sc->sc_intr_lock);
5865 error = sc->hw_if->halt_output(sc->hw_hdl);
5866
5867 /* Halts anyway even if some error has occurred. */
5868 sc->sc_pbusy = false;
5869 sc->sc_pmixer->hwbuf.head = 0;
5870 sc->sc_pmixer->hwbuf.used = 0;
5871 sc->sc_pmixer->mixseq = 0;
5872 sc->sc_pmixer->hwseq = 0;
5873 mutex_exit(sc->sc_intr_lock);
5874
5875 return error;
5876 }
5877
5878 /*
5879 * Halts recording mixer.
5880 * This function also clears related parameters, so call this function
5881 * instead of calling halt_input directly.
5882 * Must be called only if sc_rbusy is true.
5883 * Must be called with sc_lock && sc_exlock held.
5884 */
5885 static int
5886 audio_rmixer_halt(struct audio_softc *sc)
5887 {
5888 int error;
5889
5890 TRACE(2, "");
5891 KASSERT(mutex_owned(sc->sc_lock));
5892 KASSERT(sc->sc_exlock);
5893
5894 mutex_enter(sc->sc_intr_lock);
5895 error = sc->hw_if->halt_input(sc->hw_hdl);
5896
5897 /* Halts anyway even if some error has occurred. */
5898 sc->sc_rbusy = false;
5899 sc->sc_rmixer->hwbuf.head = 0;
5900 sc->sc_rmixer->hwbuf.used = 0;
5901 sc->sc_rmixer->mixseq = 0;
5902 sc->sc_rmixer->hwseq = 0;
5903 mutex_exit(sc->sc_intr_lock);
5904
5905 return error;
5906 }
5907
5908 /*
5909 * Flush this track.
5910 * Halts all operations, clears all buffers, reset error counters.
5911 * XXX I'm not sure...
5912 */
5913 static void
5914 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5915 {
5916
5917 KASSERT(track);
5918 TRACET(3, track, "clear");
5919
5920 audio_track_lock_enter(track);
5921
5922 track->usrbuf.used = 0;
5923 /* Clear all internal parameters. */
5924 if (track->codec.filter) {
5925 track->codec.srcbuf.used = 0;
5926 track->codec.srcbuf.head = 0;
5927 }
5928 if (track->chvol.filter) {
5929 track->chvol.srcbuf.used = 0;
5930 track->chvol.srcbuf.head = 0;
5931 }
5932 if (track->chmix.filter) {
5933 track->chmix.srcbuf.used = 0;
5934 track->chmix.srcbuf.head = 0;
5935 }
5936 if (track->freq.filter) {
5937 track->freq.srcbuf.used = 0;
5938 track->freq.srcbuf.head = 0;
5939 if (track->freq_step < 65536)
5940 track->freq_current = 65536;
5941 else
5942 track->freq_current = 0;
5943 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5944 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5945 }
5946 /* Clear buffer, then operation halts naturally. */
5947 track->outbuf.used = 0;
5948
5949 /* Clear counters. */
5950 track->dropframes = 0;
5951
5952 audio_track_lock_exit(track);
5953 }
5954
5955 /*
5956 * Drain the track.
5957 * track must be present and for playback.
5958 * If successful, it returns 0. Otherwise returns errno.
5959 * Must be called with sc_lock held.
5960 */
5961 static int
5962 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5963 {
5964 audio_trackmixer_t *mixer;
5965 int done;
5966 int error;
5967
5968 KASSERT(track);
5969 TRACET(3, track, "start");
5970 mixer = track->mixer;
5971 KASSERT(mutex_owned(sc->sc_lock));
5972
5973 /* Ignore them if pause. */
5974 if (track->is_pause) {
5975 TRACET(3, track, "pause -> clear");
5976 track->pstate = AUDIO_STATE_CLEAR;
5977 }
5978 /* Terminate early here if there is no data in the track. */
5979 if (track->pstate == AUDIO_STATE_CLEAR) {
5980 TRACET(3, track, "no need to drain");
5981 return 0;
5982 }
5983 track->pstate = AUDIO_STATE_DRAINING;
5984
5985 for (;;) {
5986 /* I want to display it before condition evaluation. */
5987 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5988 (int)curproc->p_pid, (int)curlwp->l_lid,
5989 (int)track->seq, (int)mixer->hwseq,
5990 track->outbuf.head, track->outbuf.used,
5991 track->outbuf.capacity);
5992
5993 /* Condition to terminate */
5994 audio_track_lock_enter(track);
5995 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5996 track->outbuf.used == 0 &&
5997 track->seq <= mixer->hwseq);
5998 audio_track_lock_exit(track);
5999 if (done)
6000 break;
6001
6002 TRACET(3, track, "sleep");
6003 error = audio_track_waitio(sc, track);
6004 if (error)
6005 return error;
6006
6007 /* XXX call audio_track_play here ? */
6008 }
6009
6010 track->pstate = AUDIO_STATE_CLEAR;
6011 TRACET(3, track, "done trk_inp=%d trk_out=%d",
6012 (int)track->inputcounter, (int)track->outputcounter);
6013 return 0;
6014 }
6015
6016 /*
6017 * Send signal to process.
6018 * This is intended to be called only from audio_softintr_{rd,wr}.
6019 * Must be called without sc_intr_lock held.
6020 */
6021 static inline void
6022 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6023 {
6024 proc_t *p;
6025
6026 KASSERT(pid != 0);
6027
6028 /*
6029 * psignal() must be called without spin lock held.
6030 */
6031
6032 mutex_enter(&proc_lock);
6033 p = proc_find(pid);
6034 if (p)
6035 psignal(p, signum);
6036 mutex_exit(&proc_lock);
6037 }
6038
6039 /*
6040 * This is software interrupt handler for record.
6041 * It is called from recording hardware interrupt everytime.
6042 * It does:
6043 * - Deliver SIGIO for all async processes.
6044 * - Notify to audio_read() that data has arrived.
6045 * - selnotify() for select/poll-ing processes.
6046 */
6047 /*
6048 * XXX If a process issues FIOASYNC between hardware interrupt and
6049 * software interrupt, (stray) SIGIO will be sent to the process
6050 * despite the fact that it has not receive recorded data yet.
6051 */
6052 static void
6053 audio_softintr_rd(void *cookie)
6054 {
6055 struct audio_softc *sc = cookie;
6056 audio_file_t *f;
6057 pid_t pid;
6058
6059 mutex_enter(sc->sc_lock);
6060
6061 SLIST_FOREACH(f, &sc->sc_files, entry) {
6062 audio_track_t *track = f->rtrack;
6063
6064 if (track == NULL)
6065 continue;
6066
6067 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6068 track->input->head,
6069 track->input->used,
6070 track->input->capacity);
6071
6072 pid = f->async_audio;
6073 if (pid != 0) {
6074 TRACEF(4, f, "sending SIGIO %d", pid);
6075 audio_psignal(sc, pid, SIGIO);
6076 }
6077 }
6078
6079 /* Notify that data has arrived. */
6080 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6081 KNOTE(&sc->sc_rsel.sel_klist, 0);
6082 cv_broadcast(&sc->sc_rmixer->outcv);
6083
6084 mutex_exit(sc->sc_lock);
6085 }
6086
6087 /*
6088 * This is software interrupt handler for playback.
6089 * It is called from playback hardware interrupt everytime.
6090 * It does:
6091 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6092 * - Notify to audio_write() that outbuf block available.
6093 * - selnotify() for select/poll-ing processes if there are any writable
6094 * (used < lowat) processes. Checking each descriptor will be done by
6095 * filt_audiowrite_event().
6096 */
6097 static void
6098 audio_softintr_wr(void *cookie)
6099 {
6100 struct audio_softc *sc = cookie;
6101 audio_file_t *f;
6102 bool found;
6103 pid_t pid;
6104
6105 TRACE(4, "called");
6106 found = false;
6107
6108 mutex_enter(sc->sc_lock);
6109
6110 SLIST_FOREACH(f, &sc->sc_files, entry) {
6111 audio_track_t *track = f->ptrack;
6112
6113 if (track == NULL)
6114 continue;
6115
6116 TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6117 (int)track->seq,
6118 track->outbuf.head,
6119 track->outbuf.used,
6120 track->outbuf.capacity);
6121
6122 /*
6123 * Send a signal if the process is async mode and
6124 * used is lower than lowat.
6125 */
6126 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6127 !track->is_pause) {
6128 /* For selnotify */
6129 found = true;
6130 /* For SIGIO */
6131 pid = f->async_audio;
6132 if (pid != 0) {
6133 TRACEF(4, f, "sending SIGIO %d", pid);
6134 audio_psignal(sc, pid, SIGIO);
6135 }
6136 }
6137 }
6138
6139 /*
6140 * Notify for select/poll when someone become writable.
6141 * It needs sc_lock (and not sc_intr_lock).
6142 */
6143 if (found) {
6144 TRACE(4, "selnotify");
6145 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6146 KNOTE(&sc->sc_wsel.sel_klist, 0);
6147 }
6148
6149 /* Notify to audio_write() that outbuf available. */
6150 cv_broadcast(&sc->sc_pmixer->outcv);
6151
6152 mutex_exit(sc->sc_lock);
6153 }
6154
6155 /*
6156 * Check (and convert) the format *p came from userland.
6157 * If successful, it writes back the converted format to *p if necessary and
6158 * returns 0. Otherwise returns errno (*p may be changed even in this case).
6159 */
6160 static int
6161 audio_check_params(audio_format2_t *p)
6162 {
6163
6164 /*
6165 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6166 *
6167 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6168 * So, it's always signed, as in SunOS.
6169 *
6170 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6171 * So, it's always unsigned, as in SunOS.
6172 */
6173 if (p->encoding == AUDIO_ENCODING_PCM16) {
6174 p->encoding = AUDIO_ENCODING_SLINEAR;
6175 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6176 if (p->precision == 8)
6177 p->encoding = AUDIO_ENCODING_ULINEAR;
6178 else
6179 return EINVAL;
6180 }
6181
6182 /*
6183 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6184 * suffix.
6185 */
6186 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6187 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6188 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6189 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6190
6191 switch (p->encoding) {
6192 case AUDIO_ENCODING_ULAW:
6193 case AUDIO_ENCODING_ALAW:
6194 if (p->precision != 8)
6195 return EINVAL;
6196 break;
6197 case AUDIO_ENCODING_ADPCM:
6198 if (p->precision != 4 && p->precision != 8)
6199 return EINVAL;
6200 break;
6201 case AUDIO_ENCODING_SLINEAR_LE:
6202 case AUDIO_ENCODING_SLINEAR_BE:
6203 case AUDIO_ENCODING_ULINEAR_LE:
6204 case AUDIO_ENCODING_ULINEAR_BE:
6205 if (p->precision != 8 && p->precision != 16 &&
6206 p->precision != 24 && p->precision != 32)
6207 return EINVAL;
6208
6209 /* 8bit format does not have endianness. */
6210 if (p->precision == 8) {
6211 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6212 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6213 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6214 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6215 }
6216
6217 if (p->precision > p->stride)
6218 return EINVAL;
6219 break;
6220 case AUDIO_ENCODING_MPEG_L1_STREAM:
6221 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6222 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6223 case AUDIO_ENCODING_MPEG_L2_STREAM:
6224 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6225 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6226 case AUDIO_ENCODING_AC3:
6227 break;
6228 default:
6229 return EINVAL;
6230 }
6231
6232 /* sanity check # of channels*/
6233 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6234 return EINVAL;
6235
6236 return 0;
6237 }
6238
6239 /*
6240 * Initialize playback and record mixers.
6241 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6242 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6243 * the filter registration information. These four must not be NULL.
6244 * If successful returns 0. Otherwise returns errno.
6245 * Must be called with sc_exlock held and without sc_lock held.
6246 * Must not be called if there are any tracks.
6247 * Caller should check that the initialization succeed by whether
6248 * sc_[pr]mixer is not NULL.
6249 */
6250 static int
6251 audio_mixers_init(struct audio_softc *sc, int mode,
6252 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6253 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6254 {
6255 int error;
6256
6257 KASSERT(phwfmt != NULL);
6258 KASSERT(rhwfmt != NULL);
6259 KASSERT(pfil != NULL);
6260 KASSERT(rfil != NULL);
6261 KASSERT(sc->sc_exlock);
6262
6263 if ((mode & AUMODE_PLAY)) {
6264 if (sc->sc_pmixer == NULL) {
6265 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6266 KM_SLEEP);
6267 } else {
6268 /* destroy() doesn't free memory. */
6269 audio_mixer_destroy(sc, sc->sc_pmixer);
6270 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6271 }
6272 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6273 if (error) {
6274 device_printf(sc->sc_dev,
6275 "configuring playback mode failed with %d\n",
6276 error);
6277 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6278 sc->sc_pmixer = NULL;
6279 return error;
6280 }
6281 }
6282 if ((mode & AUMODE_RECORD)) {
6283 if (sc->sc_rmixer == NULL) {
6284 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6285 KM_SLEEP);
6286 } else {
6287 /* destroy() doesn't free memory. */
6288 audio_mixer_destroy(sc, sc->sc_rmixer);
6289 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6290 }
6291 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6292 if (error) {
6293 device_printf(sc->sc_dev,
6294 "configuring record mode failed with %d\n",
6295 error);
6296 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6297 sc->sc_rmixer = NULL;
6298 return error;
6299 }
6300 }
6301
6302 return 0;
6303 }
6304
6305 /*
6306 * Select a frequency.
6307 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6308 * XXX Better algorithm?
6309 */
6310 static int
6311 audio_select_freq(const struct audio_format *fmt)
6312 {
6313 int freq;
6314 int high;
6315 int low;
6316 int j;
6317
6318 if (fmt->frequency_type == 0) {
6319 low = fmt->frequency[0];
6320 high = fmt->frequency[1];
6321 freq = 48000;
6322 if (low <= freq && freq <= high) {
6323 return freq;
6324 }
6325 freq = 44100;
6326 if (low <= freq && freq <= high) {
6327 return freq;
6328 }
6329 return high;
6330 } else {
6331 for (j = 0; j < fmt->frequency_type; j++) {
6332 if (fmt->frequency[j] == 48000) {
6333 return fmt->frequency[j];
6334 }
6335 }
6336 high = 0;
6337 for (j = 0; j < fmt->frequency_type; j++) {
6338 if (fmt->frequency[j] == 44100) {
6339 return fmt->frequency[j];
6340 }
6341 if (fmt->frequency[j] > high) {
6342 high = fmt->frequency[j];
6343 }
6344 }
6345 return high;
6346 }
6347 }
6348
6349 /*
6350 * Choose the most preferred hardware format.
6351 * If successful, it will store the chosen format into *cand and return 0.
6352 * Otherwise, return errno.
6353 * Must be called without sc_lock held.
6354 */
6355 static int
6356 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6357 {
6358 audio_format_query_t query;
6359 int cand_score;
6360 int score;
6361 int i;
6362 int error;
6363
6364 /*
6365 * Score each formats and choose the highest one.
6366 *
6367 * +---- priority(0-3)
6368 * |+--- encoding/precision
6369 * ||+-- channels
6370 * score = 0x000000PEC
6371 */
6372
6373 cand_score = 0;
6374 for (i = 0; ; i++) {
6375 memset(&query, 0, sizeof(query));
6376 query.index = i;
6377
6378 mutex_enter(sc->sc_lock);
6379 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6380 mutex_exit(sc->sc_lock);
6381 if (error == EINVAL)
6382 break;
6383 if (error)
6384 return error;
6385
6386 #if defined(AUDIO_DEBUG)
6387 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6388 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6389 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6390 query.fmt.priority,
6391 audio_encoding_name(query.fmt.encoding),
6392 query.fmt.validbits,
6393 query.fmt.precision,
6394 query.fmt.channels);
6395 if (query.fmt.frequency_type == 0) {
6396 DPRINTF(1, "{%d-%d",
6397 query.fmt.frequency[0], query.fmt.frequency[1]);
6398 } else {
6399 int j;
6400 for (j = 0; j < query.fmt.frequency_type; j++) {
6401 DPRINTF(1, "%c%d",
6402 (j == 0) ? '{' : ',',
6403 query.fmt.frequency[j]);
6404 }
6405 }
6406 DPRINTF(1, "}\n");
6407 #endif
6408
6409 if ((query.fmt.mode & mode) == 0) {
6410 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6411 mode);
6412 continue;
6413 }
6414
6415 if (query.fmt.priority < 0) {
6416 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6417 continue;
6418 }
6419
6420 /* Score */
6421 score = (query.fmt.priority & 3) * 0x100;
6422 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6423 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6424 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6425 score += 0x20;
6426 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6427 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6428 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6429 score += 0x10;
6430 }
6431 score += query.fmt.channels;
6432
6433 if (score < cand_score) {
6434 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6435 score, cand_score);
6436 continue;
6437 }
6438
6439 /* Update candidate */
6440 cand_score = score;
6441 cand->encoding = query.fmt.encoding;
6442 cand->precision = query.fmt.validbits;
6443 cand->stride = query.fmt.precision;
6444 cand->channels = query.fmt.channels;
6445 cand->sample_rate = audio_select_freq(&query.fmt);
6446 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6447 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6448 cand_score, query.fmt.priority,
6449 audio_encoding_name(query.fmt.encoding),
6450 cand->precision, cand->stride,
6451 cand->channels, cand->sample_rate);
6452 }
6453
6454 if (cand_score == 0) {
6455 DPRINTF(1, "%s no fmt\n", __func__);
6456 return ENXIO;
6457 }
6458 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6459 audio_encoding_name(cand->encoding),
6460 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6461 return 0;
6462 }
6463
6464 /*
6465 * Validate fmt with query_format.
6466 * If fmt is included in the result of query_format, returns 0.
6467 * Otherwise returns EINVAL.
6468 * Must be called without sc_lock held.
6469 */
6470 static int
6471 audio_hw_validate_format(struct audio_softc *sc, int mode,
6472 const audio_format2_t *fmt)
6473 {
6474 audio_format_query_t query;
6475 struct audio_format *q;
6476 int index;
6477 int error;
6478 int j;
6479
6480 for (index = 0; ; index++) {
6481 query.index = index;
6482 mutex_enter(sc->sc_lock);
6483 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6484 mutex_exit(sc->sc_lock);
6485 if (error == EINVAL)
6486 break;
6487 if (error)
6488 return error;
6489
6490 q = &query.fmt;
6491 /*
6492 * Note that fmt is audio_format2_t (precision/stride) but
6493 * q is audio_format_t (validbits/precision).
6494 */
6495 if ((q->mode & mode) == 0) {
6496 continue;
6497 }
6498 if (fmt->encoding != q->encoding) {
6499 continue;
6500 }
6501 if (fmt->precision != q->validbits) {
6502 continue;
6503 }
6504 if (fmt->stride != q->precision) {
6505 continue;
6506 }
6507 if (fmt->channels != q->channels) {
6508 continue;
6509 }
6510 if (q->frequency_type == 0) {
6511 if (fmt->sample_rate < q->frequency[0] ||
6512 fmt->sample_rate > q->frequency[1]) {
6513 continue;
6514 }
6515 } else {
6516 for (j = 0; j < q->frequency_type; j++) {
6517 if (fmt->sample_rate == q->frequency[j])
6518 break;
6519 }
6520 if (j == query.fmt.frequency_type) {
6521 continue;
6522 }
6523 }
6524
6525 /* Matched. */
6526 return 0;
6527 }
6528
6529 return EINVAL;
6530 }
6531
6532 /*
6533 * Set track mixer's format depending on ai->mode.
6534 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6535 * with ai.play.*.
6536 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6537 * with ai.record.*.
6538 * All other fields in ai are ignored.
6539 * If successful returns 0. Otherwise returns errno.
6540 * This function does not roll back even if it fails.
6541 * Must be called with sc_exlock held and without sc_lock held.
6542 */
6543 static int
6544 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6545 {
6546 audio_format2_t phwfmt;
6547 audio_format2_t rhwfmt;
6548 audio_filter_reg_t pfil;
6549 audio_filter_reg_t rfil;
6550 int mode;
6551 int error;
6552
6553 KASSERT(sc->sc_exlock);
6554
6555 /*
6556 * Even when setting either one of playback and recording,
6557 * both must be halted.
6558 */
6559 if (sc->sc_popens + sc->sc_ropens > 0)
6560 return EBUSY;
6561
6562 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6563 return ENOTTY;
6564
6565 mode = ai->mode;
6566 if ((mode & AUMODE_PLAY)) {
6567 phwfmt.encoding = ai->play.encoding;
6568 phwfmt.precision = ai->play.precision;
6569 phwfmt.stride = ai->play.precision;
6570 phwfmt.channels = ai->play.channels;
6571 phwfmt.sample_rate = ai->play.sample_rate;
6572 }
6573 if ((mode & AUMODE_RECORD)) {
6574 rhwfmt.encoding = ai->record.encoding;
6575 rhwfmt.precision = ai->record.precision;
6576 rhwfmt.stride = ai->record.precision;
6577 rhwfmt.channels = ai->record.channels;
6578 rhwfmt.sample_rate = ai->record.sample_rate;
6579 }
6580
6581 /* On non-independent devices, use the same format for both. */
6582 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6583 if (mode == AUMODE_RECORD) {
6584 phwfmt = rhwfmt;
6585 } else {
6586 rhwfmt = phwfmt;
6587 }
6588 mode = AUMODE_PLAY | AUMODE_RECORD;
6589 }
6590
6591 /* Then, unset the direction not exist on the hardware. */
6592 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6593 mode &= ~AUMODE_PLAY;
6594 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6595 mode &= ~AUMODE_RECORD;
6596
6597 /* debug */
6598 if ((mode & AUMODE_PLAY)) {
6599 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6600 audio_encoding_name(phwfmt.encoding),
6601 phwfmt.precision,
6602 phwfmt.stride,
6603 phwfmt.channels,
6604 phwfmt.sample_rate);
6605 }
6606 if ((mode & AUMODE_RECORD)) {
6607 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6608 audio_encoding_name(rhwfmt.encoding),
6609 rhwfmt.precision,
6610 rhwfmt.stride,
6611 rhwfmt.channels,
6612 rhwfmt.sample_rate);
6613 }
6614
6615 /* Check the format */
6616 if ((mode & AUMODE_PLAY)) {
6617 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6618 TRACE(1, "invalid format");
6619 return EINVAL;
6620 }
6621 }
6622 if ((mode & AUMODE_RECORD)) {
6623 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6624 TRACE(1, "invalid format");
6625 return EINVAL;
6626 }
6627 }
6628
6629 /* Configure the mixers. */
6630 memset(&pfil, 0, sizeof(pfil));
6631 memset(&rfil, 0, sizeof(rfil));
6632 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6633 if (error)
6634 return error;
6635
6636 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6637 if (error)
6638 return error;
6639
6640 /*
6641 * Reinitialize the sticky parameters for /dev/sound.
6642 * If the number of the hardware channels becomes less than the number
6643 * of channels that sticky parameters remember, subsequent /dev/sound
6644 * open will fail. To prevent this, reinitialize the sticky
6645 * parameters whenever the hardware format is changed.
6646 */
6647 sc->sc_sound_pparams = params_to_format2(&audio_default);
6648 sc->sc_sound_rparams = params_to_format2(&audio_default);
6649 sc->sc_sound_ppause = false;
6650 sc->sc_sound_rpause = false;
6651
6652 return 0;
6653 }
6654
6655 /*
6656 * Store current mixers format into *ai.
6657 * Must be called with sc_exlock held.
6658 */
6659 static void
6660 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6661 {
6662
6663 KASSERT(sc->sc_exlock);
6664
6665 /*
6666 * There is no stride information in audio_info but it doesn't matter.
6667 * trackmixer always treats stride and precision as the same.
6668 */
6669 AUDIO_INITINFO(ai);
6670 ai->mode = 0;
6671 if (sc->sc_pmixer) {
6672 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6673 ai->play.encoding = fmt->encoding;
6674 ai->play.precision = fmt->precision;
6675 ai->play.channels = fmt->channels;
6676 ai->play.sample_rate = fmt->sample_rate;
6677 ai->mode |= AUMODE_PLAY;
6678 }
6679 if (sc->sc_rmixer) {
6680 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6681 ai->record.encoding = fmt->encoding;
6682 ai->record.precision = fmt->precision;
6683 ai->record.channels = fmt->channels;
6684 ai->record.sample_rate = fmt->sample_rate;
6685 ai->mode |= AUMODE_RECORD;
6686 }
6687 }
6688
6689 /*
6690 * audio_info details:
6691 *
6692 * ai.{play,record}.sample_rate (R/W)
6693 * ai.{play,record}.encoding (R/W)
6694 * ai.{play,record}.precision (R/W)
6695 * ai.{play,record}.channels (R/W)
6696 * These specify the playback or recording format.
6697 * Ignore members within an inactive track.
6698 *
6699 * ai.mode (R/W)
6700 * It specifies the playback or recording mode, AUMODE_*.
6701 * Currently, a mode change operation by ai.mode after opening is
6702 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6703 * However, it's possible to get or to set for backward compatibility.
6704 *
6705 * ai.{hiwat,lowat} (R/W)
6706 * These specify the high water mark and low water mark for playback
6707 * track. The unit is block.
6708 *
6709 * ai.{play,record}.gain (R/W)
6710 * It specifies the HW mixer volume in 0-255.
6711 * It is historical reason that the gain is connected to HW mixer.
6712 *
6713 * ai.{play,record}.balance (R/W)
6714 * It specifies the left-right balance of HW mixer in 0-64.
6715 * 32 means the center.
6716 * It is historical reason that the balance is connected to HW mixer.
6717 *
6718 * ai.{play,record}.port (R/W)
6719 * It specifies the input/output port of HW mixer.
6720 *
6721 * ai.monitor_gain (R/W)
6722 * It specifies the recording monitor gain(?) of HW mixer.
6723 *
6724 * ai.{play,record}.pause (R/W)
6725 * Non-zero means the track is paused.
6726 *
6727 * ai.play.seek (R/-)
6728 * It indicates the number of bytes written but not processed.
6729 * ai.record.seek (R/-)
6730 * It indicates the number of bytes to be able to read.
6731 *
6732 * ai.{play,record}.avail_ports (R/-)
6733 * Mixer info.
6734 *
6735 * ai.{play,record}.buffer_size (R/-)
6736 * It indicates the buffer size in bytes. Internally it means usrbuf.
6737 *
6738 * ai.{play,record}.samples (R/-)
6739 * It indicates the total number of bytes played or recorded.
6740 *
6741 * ai.{play,record}.eof (R/-)
6742 * It indicates the number of times reached EOF(?).
6743 *
6744 * ai.{play,record}.error (R/-)
6745 * Non-zero indicates overflow/underflow has occured.
6746 *
6747 * ai.{play,record}.waiting (R/-)
6748 * Non-zero indicates that other process waits to open.
6749 * It will never happen anymore.
6750 *
6751 * ai.{play,record}.open (R/-)
6752 * Non-zero indicates the direction is opened by this process(?).
6753 * XXX Is this better to indicate that "the device is opened by
6754 * at least one process"?
6755 *
6756 * ai.{play,record}.active (R/-)
6757 * Non-zero indicates that I/O is currently active.
6758 *
6759 * ai.blocksize (R/-)
6760 * It indicates the block size in bytes.
6761 * XXX The blocksize of playback and recording may be different.
6762 */
6763
6764 /*
6765 * Pause consideration:
6766 *
6767 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6768 * operation simple. Note that playback and recording are asymmetric.
6769 *
6770 * For playback,
6771 * 1. Any playback open doesn't start pmixer regardless of initial pause
6772 * state of this track.
6773 * 2. The first write access among playback tracks only starts pmixer
6774 * regardless of this track's pause state.
6775 * 3. Even a pause of the last playback track doesn't stop pmixer.
6776 * 4. The last close of all playback tracks only stops pmixer.
6777 *
6778 * For recording,
6779 * 1. The first recording open only starts rmixer regardless of initial
6780 * pause state of this track.
6781 * 2. Even a pause of the last track doesn't stop rmixer.
6782 * 3. The last close of all recording tracks only stops rmixer.
6783 */
6784
6785 /*
6786 * Set both track's parameters within a file depending on ai.
6787 * Update sc_sound_[pr]* if set.
6788 * Must be called with sc_exlock held and without sc_lock held.
6789 */
6790 static int
6791 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6792 const struct audio_info *ai)
6793 {
6794 const struct audio_prinfo *pi;
6795 const struct audio_prinfo *ri;
6796 audio_track_t *ptrack;
6797 audio_track_t *rtrack;
6798 audio_format2_t pfmt;
6799 audio_format2_t rfmt;
6800 int pchanges;
6801 int rchanges;
6802 int mode;
6803 struct audio_info saved_ai;
6804 audio_format2_t saved_pfmt;
6805 audio_format2_t saved_rfmt;
6806 int error;
6807
6808 KASSERT(sc->sc_exlock);
6809
6810 pi = &ai->play;
6811 ri = &ai->record;
6812 pchanges = 0;
6813 rchanges = 0;
6814
6815 ptrack = file->ptrack;
6816 rtrack = file->rtrack;
6817
6818 #if defined(AUDIO_DEBUG)
6819 if (audiodebug >= 2) {
6820 char buf[256];
6821 char p[64];
6822 int buflen;
6823 int plen;
6824 #define SPRINTF(var, fmt...) do { \
6825 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6826 } while (0)
6827
6828 buflen = 0;
6829 plen = 0;
6830 if (SPECIFIED(pi->encoding))
6831 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6832 if (SPECIFIED(pi->precision))
6833 SPRINTF(p, "/%dbit", pi->precision);
6834 if (SPECIFIED(pi->channels))
6835 SPRINTF(p, "/%dch", pi->channels);
6836 if (SPECIFIED(pi->sample_rate))
6837 SPRINTF(p, "/%dHz", pi->sample_rate);
6838 if (plen > 0)
6839 SPRINTF(buf, ",play.param=%s", p + 1);
6840
6841 plen = 0;
6842 if (SPECIFIED(ri->encoding))
6843 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6844 if (SPECIFIED(ri->precision))
6845 SPRINTF(p, "/%dbit", ri->precision);
6846 if (SPECIFIED(ri->channels))
6847 SPRINTF(p, "/%dch", ri->channels);
6848 if (SPECIFIED(ri->sample_rate))
6849 SPRINTF(p, "/%dHz", ri->sample_rate);
6850 if (plen > 0)
6851 SPRINTF(buf, ",record.param=%s", p + 1);
6852
6853 if (SPECIFIED(ai->mode))
6854 SPRINTF(buf, ",mode=%d", ai->mode);
6855 if (SPECIFIED(ai->hiwat))
6856 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6857 if (SPECIFIED(ai->lowat))
6858 SPRINTF(buf, ",lowat=%d", ai->lowat);
6859 if (SPECIFIED(ai->play.gain))
6860 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6861 if (SPECIFIED(ai->record.gain))
6862 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6863 if (SPECIFIED_CH(ai->play.balance))
6864 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6865 if (SPECIFIED_CH(ai->record.balance))
6866 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6867 if (SPECIFIED(ai->play.port))
6868 SPRINTF(buf, ",play.port=%d", ai->play.port);
6869 if (SPECIFIED(ai->record.port))
6870 SPRINTF(buf, ",record.port=%d", ai->record.port);
6871 if (SPECIFIED(ai->monitor_gain))
6872 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6873 if (SPECIFIED_CH(ai->play.pause))
6874 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6875 if (SPECIFIED_CH(ai->record.pause))
6876 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6877
6878 if (buflen > 0)
6879 TRACE(2, "specified %s", buf + 1);
6880 }
6881 #endif
6882
6883 AUDIO_INITINFO(&saved_ai);
6884 /* XXX shut up gcc */
6885 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6886 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6887
6888 /*
6889 * Set default value and save current parameters.
6890 * For backward compatibility, use sticky parameters for nonexistent
6891 * track.
6892 */
6893 if (ptrack) {
6894 pfmt = ptrack->usrbuf.fmt;
6895 saved_pfmt = ptrack->usrbuf.fmt;
6896 saved_ai.play.pause = ptrack->is_pause;
6897 } else {
6898 pfmt = sc->sc_sound_pparams;
6899 }
6900 if (rtrack) {
6901 rfmt = rtrack->usrbuf.fmt;
6902 saved_rfmt = rtrack->usrbuf.fmt;
6903 saved_ai.record.pause = rtrack->is_pause;
6904 } else {
6905 rfmt = sc->sc_sound_rparams;
6906 }
6907 saved_ai.mode = file->mode;
6908
6909 /*
6910 * Overwrite if specified.
6911 */
6912 mode = file->mode;
6913 if (SPECIFIED(ai->mode)) {
6914 /*
6915 * Setting ai->mode no longer does anything because it's
6916 * prohibited to change playback/recording mode after open
6917 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6918 * keeps the state of AUMODE_PLAY_ALL itself for backward
6919 * compatibility.
6920 * In the internal, only file->mode has the state of
6921 * AUMODE_PLAY_ALL flag and track->mode in both track does
6922 * not have.
6923 */
6924 if ((file->mode & AUMODE_PLAY)) {
6925 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6926 | (ai->mode & AUMODE_PLAY_ALL);
6927 }
6928 }
6929
6930 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
6931 if (pchanges == -1) {
6932 #if defined(AUDIO_DEBUG)
6933 TRACEF(1, file, "check play.params failed: "
6934 "%s %ubit %uch %uHz",
6935 audio_encoding_name(pi->encoding),
6936 pi->precision,
6937 pi->channels,
6938 pi->sample_rate);
6939 #endif
6940 return EINVAL;
6941 }
6942
6943 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
6944 if (rchanges == -1) {
6945 #if defined(AUDIO_DEBUG)
6946 TRACEF(1, file, "check record.params failed: "
6947 "%s %ubit %uch %uHz",
6948 audio_encoding_name(ri->encoding),
6949 ri->precision,
6950 ri->channels,
6951 ri->sample_rate);
6952 #endif
6953 return EINVAL;
6954 }
6955
6956 if (SPECIFIED(ai->mode)) {
6957 pchanges = 1;
6958 rchanges = 1;
6959 }
6960
6961 /*
6962 * Even when setting either one of playback and recording,
6963 * both track must be halted.
6964 */
6965 if (pchanges || rchanges) {
6966 audio_file_clear(sc, file);
6967 #if defined(AUDIO_DEBUG)
6968 char nbuf[16];
6969 char fmtbuf[64];
6970 if (pchanges) {
6971 if (ptrack) {
6972 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
6973 } else {
6974 snprintf(nbuf, sizeof(nbuf), "-");
6975 }
6976 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6977 DPRINTF(1, "audio track#%s play mode: %s\n",
6978 nbuf, fmtbuf);
6979 }
6980 if (rchanges) {
6981 if (rtrack) {
6982 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
6983 } else {
6984 snprintf(nbuf, sizeof(nbuf), "-");
6985 }
6986 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6987 DPRINTF(1, "audio track#%s rec mode: %s\n",
6988 nbuf, fmtbuf);
6989 }
6990 #endif
6991 }
6992
6993 /* Set mixer parameters */
6994 mutex_enter(sc->sc_lock);
6995 error = audio_hw_setinfo(sc, ai, &saved_ai);
6996 mutex_exit(sc->sc_lock);
6997 if (error)
6998 goto abort1;
6999
7000 /*
7001 * Set to track and update sticky parameters.
7002 */
7003 error = 0;
7004 file->mode = mode;
7005
7006 if (SPECIFIED_CH(pi->pause)) {
7007 if (ptrack)
7008 ptrack->is_pause = pi->pause;
7009 sc->sc_sound_ppause = pi->pause;
7010 }
7011 if (pchanges) {
7012 if (ptrack) {
7013 audio_track_lock_enter(ptrack);
7014 error = audio_track_set_format(ptrack, &pfmt);
7015 audio_track_lock_exit(ptrack);
7016 if (error) {
7017 TRACET(1, ptrack, "set play.params failed");
7018 goto abort2;
7019 }
7020 }
7021 sc->sc_sound_pparams = pfmt;
7022 }
7023 /* Change water marks after initializing the buffers. */
7024 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7025 if (ptrack)
7026 audio_track_setinfo_water(ptrack, ai);
7027 }
7028
7029 if (SPECIFIED_CH(ri->pause)) {
7030 if (rtrack)
7031 rtrack->is_pause = ri->pause;
7032 sc->sc_sound_rpause = ri->pause;
7033 }
7034 if (rchanges) {
7035 if (rtrack) {
7036 audio_track_lock_enter(rtrack);
7037 error = audio_track_set_format(rtrack, &rfmt);
7038 audio_track_lock_exit(rtrack);
7039 if (error) {
7040 TRACET(1, rtrack, "set record.params failed");
7041 goto abort3;
7042 }
7043 }
7044 sc->sc_sound_rparams = rfmt;
7045 }
7046
7047 return 0;
7048
7049 /* Rollback */
7050 abort3:
7051 if (error != ENOMEM) {
7052 rtrack->is_pause = saved_ai.record.pause;
7053 audio_track_lock_enter(rtrack);
7054 audio_track_set_format(rtrack, &saved_rfmt);
7055 audio_track_lock_exit(rtrack);
7056 }
7057 sc->sc_sound_rpause = saved_ai.record.pause;
7058 sc->sc_sound_rparams = saved_rfmt;
7059 abort2:
7060 if (ptrack && error != ENOMEM) {
7061 ptrack->is_pause = saved_ai.play.pause;
7062 audio_track_lock_enter(ptrack);
7063 audio_track_set_format(ptrack, &saved_pfmt);
7064 audio_track_lock_exit(ptrack);
7065 }
7066 sc->sc_sound_ppause = saved_ai.play.pause;
7067 sc->sc_sound_pparams = saved_pfmt;
7068 file->mode = saved_ai.mode;
7069 abort1:
7070 mutex_enter(sc->sc_lock);
7071 audio_hw_setinfo(sc, &saved_ai, NULL);
7072 mutex_exit(sc->sc_lock);
7073
7074 return error;
7075 }
7076
7077 /*
7078 * Write SPECIFIED() parameters within info back to fmt.
7079 * Note that track can be NULL here.
7080 * Return value of 1 indicates that fmt is modified.
7081 * Return value of 0 indicates that fmt is not modified.
7082 * Return value of -1 indicates that error EINVAL has occurred.
7083 */
7084 static int
7085 audio_track_setinfo_check(audio_track_t *track,
7086 audio_format2_t *fmt, const struct audio_prinfo *info)
7087 {
7088 const audio_format2_t *hwfmt;
7089 int changes;
7090
7091 changes = 0;
7092 if (SPECIFIED(info->sample_rate)) {
7093 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7094 return -1;
7095 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7096 return -1;
7097 fmt->sample_rate = info->sample_rate;
7098 changes = 1;
7099 }
7100 if (SPECIFIED(info->encoding)) {
7101 fmt->encoding = info->encoding;
7102 changes = 1;
7103 }
7104 if (SPECIFIED(info->precision)) {
7105 fmt->precision = info->precision;
7106 /* we don't have API to specify stride */
7107 fmt->stride = info->precision;
7108 changes = 1;
7109 }
7110 if (SPECIFIED(info->channels)) {
7111 /*
7112 * We can convert between monaural and stereo each other.
7113 * We can reduce than the number of channels that the hardware
7114 * supports.
7115 */
7116 if (info->channels > 2) {
7117 if (track) {
7118 hwfmt = &track->mixer->hwbuf.fmt;
7119 if (info->channels > hwfmt->channels)
7120 return -1;
7121 } else {
7122 /*
7123 * This should never happen.
7124 * If track == NULL, channels should be <= 2.
7125 */
7126 return -1;
7127 }
7128 }
7129 fmt->channels = info->channels;
7130 changes = 1;
7131 }
7132
7133 if (changes) {
7134 if (audio_check_params(fmt) != 0)
7135 return -1;
7136 }
7137
7138 return changes;
7139 }
7140
7141 /*
7142 * Change water marks for playback track if specfied.
7143 */
7144 static void
7145 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7146 {
7147 u_int blks;
7148 u_int maxblks;
7149 u_int blksize;
7150
7151 KASSERT(audio_track_is_playback(track));
7152
7153 blksize = track->usrbuf_blksize;
7154 maxblks = track->usrbuf.capacity / blksize;
7155
7156 if (SPECIFIED(ai->hiwat)) {
7157 blks = ai->hiwat;
7158 if (blks > maxblks)
7159 blks = maxblks;
7160 if (blks < 2)
7161 blks = 2;
7162 track->usrbuf_usedhigh = blks * blksize;
7163 }
7164 if (SPECIFIED(ai->lowat)) {
7165 blks = ai->lowat;
7166 if (blks > maxblks - 1)
7167 blks = maxblks - 1;
7168 track->usrbuf_usedlow = blks * blksize;
7169 }
7170 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7171 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7172 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7173 blksize;
7174 }
7175 }
7176 }
7177
7178 /*
7179 * Set hardware part of *newai.
7180 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7181 * If oldai is specified, previous parameters are stored.
7182 * This function itself does not roll back if error occurred.
7183 * Must be called with sc_lock && sc_exlock held.
7184 */
7185 static int
7186 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7187 struct audio_info *oldai)
7188 {
7189 const struct audio_prinfo *newpi;
7190 const struct audio_prinfo *newri;
7191 struct audio_prinfo *oldpi;
7192 struct audio_prinfo *oldri;
7193 u_int pgain;
7194 u_int rgain;
7195 u_char pbalance;
7196 u_char rbalance;
7197 int error;
7198
7199 KASSERT(mutex_owned(sc->sc_lock));
7200 KASSERT(sc->sc_exlock);
7201
7202 /* XXX shut up gcc */
7203 oldpi = NULL;
7204 oldri = NULL;
7205
7206 newpi = &newai->play;
7207 newri = &newai->record;
7208 if (oldai) {
7209 oldpi = &oldai->play;
7210 oldri = &oldai->record;
7211 }
7212 error = 0;
7213
7214 /*
7215 * It looks like unnecessary to halt HW mixers to set HW mixers.
7216 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7217 */
7218
7219 if (SPECIFIED(newpi->port)) {
7220 if (oldai)
7221 oldpi->port = au_get_port(sc, &sc->sc_outports);
7222 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7223 if (error) {
7224 device_printf(sc->sc_dev,
7225 "setting play.port=%d failed with %d\n",
7226 newpi->port, error);
7227 goto abort;
7228 }
7229 }
7230 if (SPECIFIED(newri->port)) {
7231 if (oldai)
7232 oldri->port = au_get_port(sc, &sc->sc_inports);
7233 error = au_set_port(sc, &sc->sc_inports, newri->port);
7234 if (error) {
7235 device_printf(sc->sc_dev,
7236 "setting record.port=%d failed with %d\n",
7237 newri->port, error);
7238 goto abort;
7239 }
7240 }
7241
7242 /* Backup play.{gain,balance} */
7243 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7244 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7245 if (oldai) {
7246 oldpi->gain = pgain;
7247 oldpi->balance = pbalance;
7248 }
7249 }
7250 /* Backup record.{gain,balance} */
7251 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7252 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7253 if (oldai) {
7254 oldri->gain = rgain;
7255 oldri->balance = rbalance;
7256 }
7257 }
7258 if (SPECIFIED(newpi->gain)) {
7259 error = au_set_gain(sc, &sc->sc_outports,
7260 newpi->gain, pbalance);
7261 if (error) {
7262 device_printf(sc->sc_dev,
7263 "setting play.gain=%d failed with %d\n",
7264 newpi->gain, error);
7265 goto abort;
7266 }
7267 }
7268 if (SPECIFIED(newri->gain)) {
7269 error = au_set_gain(sc, &sc->sc_inports,
7270 newri->gain, rbalance);
7271 if (error) {
7272 device_printf(sc->sc_dev,
7273 "setting record.gain=%d failed with %d\n",
7274 newri->gain, error);
7275 goto abort;
7276 }
7277 }
7278 if (SPECIFIED_CH(newpi->balance)) {
7279 error = au_set_gain(sc, &sc->sc_outports,
7280 pgain, newpi->balance);
7281 if (error) {
7282 device_printf(sc->sc_dev,
7283 "setting play.balance=%d failed with %d\n",
7284 newpi->balance, error);
7285 goto abort;
7286 }
7287 }
7288 if (SPECIFIED_CH(newri->balance)) {
7289 error = au_set_gain(sc, &sc->sc_inports,
7290 rgain, newri->balance);
7291 if (error) {
7292 device_printf(sc->sc_dev,
7293 "setting record.balance=%d failed with %d\n",
7294 newri->balance, error);
7295 goto abort;
7296 }
7297 }
7298
7299 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7300 if (oldai)
7301 oldai->monitor_gain = au_get_monitor_gain(sc);
7302 error = au_set_monitor_gain(sc, newai->monitor_gain);
7303 if (error) {
7304 device_printf(sc->sc_dev,
7305 "setting monitor_gain=%d failed with %d\n",
7306 newai->monitor_gain, error);
7307 goto abort;
7308 }
7309 }
7310
7311 /* XXX TODO */
7312 /* sc->sc_ai = *ai; */
7313
7314 error = 0;
7315 abort:
7316 return error;
7317 }
7318
7319 /*
7320 * Setup the hardware with mixer format phwfmt, rhwfmt.
7321 * The arguments have following restrictions:
7322 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7323 * or both.
7324 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7325 * - On non-independent devices, phwfmt and rhwfmt must have the same
7326 * parameters.
7327 * - pfil and rfil must be zero-filled.
7328 * If successful,
7329 * - pfil, rfil will be filled with filter information specified by the
7330 * hardware driver if necessary.
7331 * and then returns 0. Otherwise returns errno.
7332 * Must be called without sc_lock held.
7333 */
7334 static int
7335 audio_hw_set_format(struct audio_softc *sc, int setmode,
7336 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7337 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7338 {
7339 audio_params_t pp, rp;
7340 int error;
7341
7342 KASSERT(phwfmt != NULL);
7343 KASSERT(rhwfmt != NULL);
7344
7345 pp = format2_to_params(phwfmt);
7346 rp = format2_to_params(rhwfmt);
7347
7348 mutex_enter(sc->sc_lock);
7349 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7350 &pp, &rp, pfil, rfil);
7351 if (error) {
7352 mutex_exit(sc->sc_lock);
7353 device_printf(sc->sc_dev,
7354 "set_format failed with %d\n", error);
7355 return error;
7356 }
7357
7358 if (sc->hw_if->commit_settings) {
7359 error = sc->hw_if->commit_settings(sc->hw_hdl);
7360 if (error) {
7361 mutex_exit(sc->sc_lock);
7362 device_printf(sc->sc_dev,
7363 "commit_settings failed with %d\n", error);
7364 return error;
7365 }
7366 }
7367 mutex_exit(sc->sc_lock);
7368
7369 return 0;
7370 }
7371
7372 /*
7373 * Fill audio_info structure. If need_mixerinfo is true, it will also
7374 * fill the hardware mixer information.
7375 * Must be called with sc_exlock held and without sc_lock held.
7376 */
7377 static int
7378 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7379 audio_file_t *file)
7380 {
7381 struct audio_prinfo *ri, *pi;
7382 audio_track_t *track;
7383 audio_track_t *ptrack;
7384 audio_track_t *rtrack;
7385 int gain;
7386
7387 KASSERT(sc->sc_exlock);
7388
7389 ri = &ai->record;
7390 pi = &ai->play;
7391 ptrack = file->ptrack;
7392 rtrack = file->rtrack;
7393
7394 memset(ai, 0, sizeof(*ai));
7395
7396 if (ptrack) {
7397 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7398 pi->channels = ptrack->usrbuf.fmt.channels;
7399 pi->precision = ptrack->usrbuf.fmt.precision;
7400 pi->encoding = ptrack->usrbuf.fmt.encoding;
7401 pi->pause = ptrack->is_pause;
7402 } else {
7403 /* Use sticky parameters if the track is not available. */
7404 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7405 pi->channels = sc->sc_sound_pparams.channels;
7406 pi->precision = sc->sc_sound_pparams.precision;
7407 pi->encoding = sc->sc_sound_pparams.encoding;
7408 pi->pause = sc->sc_sound_ppause;
7409 }
7410 if (rtrack) {
7411 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7412 ri->channels = rtrack->usrbuf.fmt.channels;
7413 ri->precision = rtrack->usrbuf.fmt.precision;
7414 ri->encoding = rtrack->usrbuf.fmt.encoding;
7415 ri->pause = rtrack->is_pause;
7416 } else {
7417 /* Use sticky parameters if the track is not available. */
7418 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7419 ri->channels = sc->sc_sound_rparams.channels;
7420 ri->precision = sc->sc_sound_rparams.precision;
7421 ri->encoding = sc->sc_sound_rparams.encoding;
7422 ri->pause = sc->sc_sound_rpause;
7423 }
7424
7425 if (ptrack) {
7426 pi->seek = ptrack->usrbuf.used;
7427 pi->samples = ptrack->usrbuf_stamp;
7428 pi->eof = ptrack->eofcounter;
7429 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7430 pi->open = 1;
7431 pi->buffer_size = ptrack->usrbuf.capacity;
7432 }
7433 pi->waiting = 0; /* open never hangs */
7434 pi->active = sc->sc_pbusy;
7435
7436 if (rtrack) {
7437 ri->seek = rtrack->usrbuf.used;
7438 ri->samples = rtrack->usrbuf_stamp;
7439 ri->eof = 0;
7440 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7441 ri->open = 1;
7442 ri->buffer_size = rtrack->usrbuf.capacity;
7443 }
7444 ri->waiting = 0; /* open never hangs */
7445 ri->active = sc->sc_rbusy;
7446
7447 /*
7448 * XXX There may be different number of channels between playback
7449 * and recording, so that blocksize also may be different.
7450 * But struct audio_info has an united blocksize...
7451 * Here, I use play info precedencely if ptrack is available,
7452 * otherwise record info.
7453 *
7454 * XXX hiwat/lowat is a playback-only parameter. What should I
7455 * return for a record-only descriptor?
7456 */
7457 track = ptrack ? ptrack : rtrack;
7458 if (track) {
7459 ai->blocksize = track->usrbuf_blksize;
7460 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7461 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7462 }
7463 ai->mode = file->mode;
7464
7465 /*
7466 * For backward compatibility, we have to pad these five fields
7467 * a fake non-zero value even if there are no tracks.
7468 */
7469 if (ptrack == NULL)
7470 pi->buffer_size = 65536;
7471 if (rtrack == NULL)
7472 ri->buffer_size = 65536;
7473 if (ptrack == NULL && rtrack == NULL) {
7474 ai->blocksize = 2048;
7475 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7476 ai->lowat = ai->hiwat * 3 / 4;
7477 }
7478
7479 if (need_mixerinfo) {
7480 mutex_enter(sc->sc_lock);
7481
7482 pi->port = au_get_port(sc, &sc->sc_outports);
7483 ri->port = au_get_port(sc, &sc->sc_inports);
7484
7485 pi->avail_ports = sc->sc_outports.allports;
7486 ri->avail_ports = sc->sc_inports.allports;
7487
7488 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7489 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7490
7491 if (sc->sc_monitor_port != -1) {
7492 gain = au_get_monitor_gain(sc);
7493 if (gain != -1)
7494 ai->monitor_gain = gain;
7495 }
7496 mutex_exit(sc->sc_lock);
7497 }
7498
7499 return 0;
7500 }
7501
7502 /*
7503 * Return true if playback is configured.
7504 * This function can be used after audioattach.
7505 */
7506 static bool
7507 audio_can_playback(struct audio_softc *sc)
7508 {
7509
7510 return (sc->sc_pmixer != NULL);
7511 }
7512
7513 /*
7514 * Return true if recording is configured.
7515 * This function can be used after audioattach.
7516 */
7517 static bool
7518 audio_can_capture(struct audio_softc *sc)
7519 {
7520
7521 return (sc->sc_rmixer != NULL);
7522 }
7523
7524 /*
7525 * Get the afp->index'th item from the valid one of format[].
7526 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7527 *
7528 * This is common routines for query_format.
7529 * If your hardware driver has struct audio_format[], the simplest case
7530 * you can write your query_format interface as follows:
7531 *
7532 * struct audio_format foo_format[] = { ... };
7533 *
7534 * int
7535 * foo_query_format(void *hdl, audio_format_query_t *afp)
7536 * {
7537 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7538 * }
7539 */
7540 int
7541 audio_query_format(const struct audio_format *format, int nformats,
7542 audio_format_query_t *afp)
7543 {
7544 const struct audio_format *f;
7545 int idx;
7546 int i;
7547
7548 idx = 0;
7549 for (i = 0; i < nformats; i++) {
7550 f = &format[i];
7551 if (!AUFMT_IS_VALID(f))
7552 continue;
7553 if (afp->index == idx) {
7554 afp->fmt = *f;
7555 return 0;
7556 }
7557 idx++;
7558 }
7559 return EINVAL;
7560 }
7561
7562 /*
7563 * This function is provided for the hardware driver's set_format() to
7564 * find index matches with 'param' from array of audio_format_t 'formats'.
7565 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7566 * It returns the matched index and never fails. Because param passed to
7567 * set_format() is selected from query_format().
7568 * This function will be an alternative to auconv_set_converter() to
7569 * find index.
7570 */
7571 int
7572 audio_indexof_format(const struct audio_format *formats, int nformats,
7573 int mode, const audio_params_t *param)
7574 {
7575 const struct audio_format *f;
7576 int index;
7577 int j;
7578
7579 for (index = 0; index < nformats; index++) {
7580 f = &formats[index];
7581
7582 if (!AUFMT_IS_VALID(f))
7583 continue;
7584 if ((f->mode & mode) == 0)
7585 continue;
7586 if (f->encoding != param->encoding)
7587 continue;
7588 if (f->validbits != param->precision)
7589 continue;
7590 if (f->channels != param->channels)
7591 continue;
7592
7593 if (f->frequency_type == 0) {
7594 if (param->sample_rate < f->frequency[0] ||
7595 param->sample_rate > f->frequency[1])
7596 continue;
7597 } else {
7598 for (j = 0; j < f->frequency_type; j++) {
7599 if (param->sample_rate == f->frequency[j])
7600 break;
7601 }
7602 if (j == f->frequency_type)
7603 continue;
7604 }
7605
7606 /* Then, matched */
7607 return index;
7608 }
7609
7610 /* Not matched. This should not be happened. */
7611 panic("%s: cannot find matched format\n", __func__);
7612 }
7613
7614 /*
7615 * Get or set hardware blocksize in msec.
7616 * XXX It's for debug.
7617 */
7618 static int
7619 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7620 {
7621 struct sysctlnode node;
7622 struct audio_softc *sc;
7623 audio_format2_t phwfmt;
7624 audio_format2_t rhwfmt;
7625 audio_filter_reg_t pfil;
7626 audio_filter_reg_t rfil;
7627 int t;
7628 int old_blk_ms;
7629 int mode;
7630 int error;
7631
7632 node = *rnode;
7633 sc = node.sysctl_data;
7634
7635 error = audio_exlock_enter(sc);
7636 if (error)
7637 return error;
7638
7639 old_blk_ms = sc->sc_blk_ms;
7640 t = old_blk_ms;
7641 node.sysctl_data = &t;
7642 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7643 if (error || newp == NULL)
7644 goto abort;
7645
7646 if (t < 0) {
7647 error = EINVAL;
7648 goto abort;
7649 }
7650
7651 if (sc->sc_popens + sc->sc_ropens > 0) {
7652 error = EBUSY;
7653 goto abort;
7654 }
7655 sc->sc_blk_ms = t;
7656 mode = 0;
7657 if (sc->sc_pmixer) {
7658 mode |= AUMODE_PLAY;
7659 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7660 }
7661 if (sc->sc_rmixer) {
7662 mode |= AUMODE_RECORD;
7663 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7664 }
7665
7666 /* re-init hardware */
7667 memset(&pfil, 0, sizeof(pfil));
7668 memset(&rfil, 0, sizeof(rfil));
7669 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7670 if (error) {
7671 goto abort;
7672 }
7673
7674 /* re-init track mixer */
7675 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7676 if (error) {
7677 /* Rollback */
7678 sc->sc_blk_ms = old_blk_ms;
7679 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7680 goto abort;
7681 }
7682 error = 0;
7683 abort:
7684 audio_exlock_exit(sc);
7685 return error;
7686 }
7687
7688 /*
7689 * Get or set multiuser mode.
7690 */
7691 static int
7692 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7693 {
7694 struct sysctlnode node;
7695 struct audio_softc *sc;
7696 bool t;
7697 int error;
7698
7699 node = *rnode;
7700 sc = node.sysctl_data;
7701
7702 error = audio_exlock_enter(sc);
7703 if (error)
7704 return error;
7705
7706 t = sc->sc_multiuser;
7707 node.sysctl_data = &t;
7708 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7709 if (error || newp == NULL)
7710 goto abort;
7711
7712 sc->sc_multiuser = t;
7713 error = 0;
7714 abort:
7715 audio_exlock_exit(sc);
7716 return error;
7717 }
7718
7719 #if defined(AUDIO_DEBUG)
7720 /*
7721 * Get or set debug verbose level. (0..4)
7722 * XXX It's for debug.
7723 * XXX It is not separated per device.
7724 */
7725 static int
7726 audio_sysctl_debug(SYSCTLFN_ARGS)
7727 {
7728 struct sysctlnode node;
7729 int t;
7730 int error;
7731
7732 node = *rnode;
7733 t = audiodebug;
7734 node.sysctl_data = &t;
7735 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7736 if (error || newp == NULL)
7737 return error;
7738
7739 if (t < 0 || t > 4)
7740 return EINVAL;
7741 audiodebug = t;
7742 printf("audio: audiodebug = %d\n", audiodebug);
7743 return 0;
7744 }
7745 #endif /* AUDIO_DEBUG */
7746
7747 #ifdef AUDIO_PM_IDLE
7748 static void
7749 audio_idle(void *arg)
7750 {
7751 device_t dv = arg;
7752 struct audio_softc *sc = device_private(dv);
7753
7754 #ifdef PNP_DEBUG
7755 extern int pnp_debug_idle;
7756 if (pnp_debug_idle)
7757 printf("%s: idle handler called\n", device_xname(dv));
7758 #endif
7759
7760 sc->sc_idle = true;
7761
7762 /* XXX joerg Make pmf_device_suspend handle children? */
7763 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7764 return;
7765
7766 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7767 pmf_device_resume(dv, PMF_Q_SELF);
7768 }
7769
7770 static void
7771 audio_activity(device_t dv, devactive_t type)
7772 {
7773 struct audio_softc *sc = device_private(dv);
7774
7775 if (type != DVA_SYSTEM)
7776 return;
7777
7778 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7779
7780 sc->sc_idle = false;
7781 if (!device_is_active(dv)) {
7782 /* XXX joerg How to deal with a failing resume... */
7783 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7784 pmf_device_resume(dv, PMF_Q_SELF);
7785 }
7786 }
7787 #endif
7788
7789 static bool
7790 audio_suspend(device_t dv, const pmf_qual_t *qual)
7791 {
7792 struct audio_softc *sc = device_private(dv);
7793 int error;
7794
7795 error = audio_exlock_mutex_enter(sc);
7796 if (error)
7797 return error;
7798 sc->sc_suspending = true;
7799 audio_mixer_capture(sc);
7800
7801 if (sc->sc_pbusy) {
7802 audio_pmixer_halt(sc);
7803 /* Reuse this as need-to-restart flag while suspending */
7804 sc->sc_pbusy = true;
7805 }
7806 if (sc->sc_rbusy) {
7807 audio_rmixer_halt(sc);
7808 /* Reuse this as need-to-restart flag while suspending */
7809 sc->sc_rbusy = true;
7810 }
7811
7812 #ifdef AUDIO_PM_IDLE
7813 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7814 #endif
7815 audio_exlock_mutex_exit(sc);
7816
7817 return true;
7818 }
7819
7820 static bool
7821 audio_resume(device_t dv, const pmf_qual_t *qual)
7822 {
7823 struct audio_softc *sc = device_private(dv);
7824 struct audio_info ai;
7825 int error;
7826
7827 error = audio_exlock_mutex_enter(sc);
7828 if (error)
7829 return error;
7830
7831 sc->sc_suspending = false;
7832 audio_mixer_restore(sc);
7833 /* XXX ? */
7834 AUDIO_INITINFO(&ai);
7835 audio_hw_setinfo(sc, &ai, NULL);
7836
7837 /*
7838 * During from suspend to resume here, sc_[pr]busy is used as
7839 * need-to-restart flag temporarily. After this point,
7840 * sc_[pr]busy is returned to its original usage (busy flag).
7841 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
7842 */
7843 if (sc->sc_pbusy) {
7844 /* pmixer_start() requires pbusy is false */
7845 sc->sc_pbusy = false;
7846 audio_pmixer_start(sc, true);
7847 }
7848 if (sc->sc_rbusy) {
7849 /* rmixer_start() requires rbusy is false */
7850 sc->sc_rbusy = false;
7851 audio_rmixer_start(sc);
7852 }
7853
7854 audio_exlock_mutex_exit(sc);
7855
7856 return true;
7857 }
7858
7859 #if defined(AUDIO_DEBUG)
7860 static void
7861 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7862 {
7863 int n;
7864
7865 n = 0;
7866 n += snprintf(buf + n, bufsize - n, "%s",
7867 audio_encoding_name(fmt->encoding));
7868 if (fmt->precision == fmt->stride) {
7869 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7870 } else {
7871 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7872 fmt->precision, fmt->stride);
7873 }
7874
7875 snprintf(buf + n, bufsize - n, " %uch %uHz",
7876 fmt->channels, fmt->sample_rate);
7877 }
7878 #endif
7879
7880 #if defined(AUDIO_DEBUG)
7881 static void
7882 audio_print_format2(const char *s, const audio_format2_t *fmt)
7883 {
7884 char fmtstr[64];
7885
7886 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7887 printf("%s %s\n", s, fmtstr);
7888 }
7889 #endif
7890
7891 #ifdef DIAGNOSTIC
7892 void
7893 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7894 {
7895
7896 KASSERTMSG(fmt, "called from %s", where);
7897
7898 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7899 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7900 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7901 "called from %s: fmt->stride=%d", where, fmt->stride);
7902 } else {
7903 KASSERTMSG(fmt->stride % NBBY == 0,
7904 "called from %s: fmt->stride=%d", where, fmt->stride);
7905 }
7906 KASSERTMSG(fmt->precision <= fmt->stride,
7907 "called from %s: fmt->precision=%d fmt->stride=%d",
7908 where, fmt->precision, fmt->stride);
7909 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7910 "called from %s: fmt->channels=%d", where, fmt->channels);
7911
7912 /* XXX No check for encodings? */
7913 }
7914
7915 void
7916 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7917 {
7918
7919 KASSERT(arg != NULL);
7920 KASSERT(arg->src != NULL);
7921 KASSERT(arg->dst != NULL);
7922 audio_diagnostic_format2(where, arg->srcfmt);
7923 audio_diagnostic_format2(where, arg->dstfmt);
7924 KASSERT(arg->count > 0);
7925 }
7926
7927 void
7928 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7929 {
7930
7931 KASSERTMSG(ring, "called from %s", where);
7932 audio_diagnostic_format2(where, &ring->fmt);
7933 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7934 "called from %s: ring->capacity=%d", where, ring->capacity);
7935 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7936 "called from %s: ring->used=%d ring->capacity=%d",
7937 where, ring->used, ring->capacity);
7938 if (ring->capacity == 0) {
7939 KASSERTMSG(ring->mem == NULL,
7940 "called from %s: capacity == 0 but mem != NULL", where);
7941 } else {
7942 KASSERTMSG(ring->mem != NULL,
7943 "called from %s: capacity != 0 but mem == NULL", where);
7944 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7945 "called from %s: ring->head=%d ring->capacity=%d",
7946 where, ring->head, ring->capacity);
7947 }
7948 }
7949 #endif /* DIAGNOSTIC */
7950
7951
7952 /*
7953 * Mixer driver
7954 */
7955
7956 /*
7957 * Must be called without sc_lock held.
7958 */
7959 int
7960 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7961 struct lwp *l)
7962 {
7963 struct file *fp;
7964 audio_file_t *af;
7965 int error, fd;
7966
7967 TRACE(1, "flags=0x%x", flags);
7968
7969 error = fd_allocfile(&fp, &fd);
7970 if (error)
7971 return error;
7972
7973 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7974 af->sc = sc;
7975 af->dev = dev;
7976
7977 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7978 KASSERT(error == EMOVEFD);
7979
7980 return error;
7981 }
7982
7983 /*
7984 * Add a process to those to be signalled on mixer activity.
7985 * If the process has already been added, do nothing.
7986 * Must be called with sc_exlock held and without sc_lock held.
7987 */
7988 static void
7989 mixer_async_add(struct audio_softc *sc, pid_t pid)
7990 {
7991 int i;
7992
7993 KASSERT(sc->sc_exlock);
7994
7995 /* If already exists, returns without doing anything. */
7996 for (i = 0; i < sc->sc_am_used; i++) {
7997 if (sc->sc_am[i] == pid)
7998 return;
7999 }
8000
8001 /* Extend array if necessary. */
8002 if (sc->sc_am_used >= sc->sc_am_capacity) {
8003 sc->sc_am_capacity += AM_CAPACITY;
8004 sc->sc_am = kern_realloc(sc->sc_am,
8005 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8006 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8007 }
8008
8009 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8010 sc->sc_am[sc->sc_am_used++] = pid;
8011 }
8012
8013 /*
8014 * Remove a process from those to be signalled on mixer activity.
8015 * If the process has not been added, do nothing.
8016 * Must be called with sc_exlock held and without sc_lock held.
8017 */
8018 static void
8019 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8020 {
8021 int i;
8022
8023 KASSERT(sc->sc_exlock);
8024
8025 for (i = 0; i < sc->sc_am_used; i++) {
8026 if (sc->sc_am[i] == pid) {
8027 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8028 TRACE(2, "am[%d](%d) removed, used=%d",
8029 i, (int)pid, sc->sc_am_used);
8030
8031 /* Empty array if no longer necessary. */
8032 if (sc->sc_am_used == 0) {
8033 kern_free(sc->sc_am);
8034 sc->sc_am = NULL;
8035 sc->sc_am_capacity = 0;
8036 TRACE(2, "released");
8037 }
8038 return;
8039 }
8040 }
8041 }
8042
8043 /*
8044 * Signal all processes waiting for the mixer.
8045 * Must be called with sc_exlock held.
8046 */
8047 static void
8048 mixer_signal(struct audio_softc *sc)
8049 {
8050 proc_t *p;
8051 int i;
8052
8053 KASSERT(sc->sc_exlock);
8054
8055 for (i = 0; i < sc->sc_am_used; i++) {
8056 mutex_enter(&proc_lock);
8057 p = proc_find(sc->sc_am[i]);
8058 if (p)
8059 psignal(p, SIGIO);
8060 mutex_exit(&proc_lock);
8061 }
8062 }
8063
8064 /*
8065 * Close a mixer device
8066 */
8067 int
8068 mixer_close(struct audio_softc *sc, audio_file_t *file)
8069 {
8070 int error;
8071
8072 error = audio_exlock_enter(sc);
8073 if (error)
8074 return error;
8075 TRACE(1, "");
8076 mixer_async_remove(sc, curproc->p_pid);
8077 audio_exlock_exit(sc);
8078
8079 return 0;
8080 }
8081
8082 /*
8083 * Must be called without sc_lock nor sc_exlock held.
8084 */
8085 int
8086 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8087 struct lwp *l)
8088 {
8089 mixer_devinfo_t *mi;
8090 mixer_ctrl_t *mc;
8091 int error;
8092
8093 TRACE(2, "(%lu,'%c',%lu)",
8094 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8095 error = EINVAL;
8096
8097 /* we can return cached values if we are sleeping */
8098 if (cmd != AUDIO_MIXER_READ) {
8099 mutex_enter(sc->sc_lock);
8100 device_active(sc->sc_dev, DVA_SYSTEM);
8101 mutex_exit(sc->sc_lock);
8102 }
8103
8104 switch (cmd) {
8105 case FIOASYNC:
8106 error = audio_exlock_enter(sc);
8107 if (error)
8108 break;
8109 if (*(int *)addr) {
8110 mixer_async_add(sc, curproc->p_pid);
8111 } else {
8112 mixer_async_remove(sc, curproc->p_pid);
8113 }
8114 audio_exlock_exit(sc);
8115 break;
8116
8117 case AUDIO_GETDEV:
8118 TRACE(2, "AUDIO_GETDEV");
8119 mutex_enter(sc->sc_lock);
8120 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8121 mutex_exit(sc->sc_lock);
8122 break;
8123
8124 case AUDIO_MIXER_DEVINFO:
8125 TRACE(2, "AUDIO_MIXER_DEVINFO");
8126 mi = (mixer_devinfo_t *)addr;
8127
8128 mi->un.v.delta = 0; /* default */
8129 mutex_enter(sc->sc_lock);
8130 error = audio_query_devinfo(sc, mi);
8131 mutex_exit(sc->sc_lock);
8132 break;
8133
8134 case AUDIO_MIXER_READ:
8135 TRACE(2, "AUDIO_MIXER_READ");
8136 mc = (mixer_ctrl_t *)addr;
8137
8138 error = audio_exlock_mutex_enter(sc);
8139 if (error)
8140 break;
8141 if (device_is_active(sc->hw_dev))
8142 error = audio_get_port(sc, mc);
8143 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8144 error = ENXIO;
8145 else {
8146 int dev = mc->dev;
8147 memcpy(mc, &sc->sc_mixer_state[dev],
8148 sizeof(mixer_ctrl_t));
8149 error = 0;
8150 }
8151 audio_exlock_mutex_exit(sc);
8152 break;
8153
8154 case AUDIO_MIXER_WRITE:
8155 TRACE(2, "AUDIO_MIXER_WRITE");
8156 error = audio_exlock_mutex_enter(sc);
8157 if (error)
8158 break;
8159 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8160 if (error) {
8161 audio_exlock_mutex_exit(sc);
8162 break;
8163 }
8164
8165 if (sc->hw_if->commit_settings) {
8166 error = sc->hw_if->commit_settings(sc->hw_hdl);
8167 if (error) {
8168 audio_exlock_mutex_exit(sc);
8169 break;
8170 }
8171 }
8172 mutex_exit(sc->sc_lock);
8173 mixer_signal(sc);
8174 audio_exlock_exit(sc);
8175 break;
8176
8177 default:
8178 if (sc->hw_if->dev_ioctl) {
8179 mutex_enter(sc->sc_lock);
8180 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8181 cmd, addr, flag, l);
8182 mutex_exit(sc->sc_lock);
8183 } else
8184 error = EINVAL;
8185 break;
8186 }
8187 TRACE(2, "(%lu,'%c',%lu) result %d",
8188 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8189 return error;
8190 }
8191
8192 /*
8193 * Must be called with sc_lock held.
8194 */
8195 int
8196 au_portof(struct audio_softc *sc, char *name, int class)
8197 {
8198 mixer_devinfo_t mi;
8199
8200 KASSERT(mutex_owned(sc->sc_lock));
8201
8202 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8203 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8204 return mi.index;
8205 }
8206 return -1;
8207 }
8208
8209 /*
8210 * Must be called with sc_lock held.
8211 */
8212 void
8213 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8214 mixer_devinfo_t *mi, const struct portname *tbl)
8215 {
8216 int i, j;
8217
8218 KASSERT(mutex_owned(sc->sc_lock));
8219
8220 ports->index = mi->index;
8221 if (mi->type == AUDIO_MIXER_ENUM) {
8222 ports->isenum = true;
8223 for(i = 0; tbl[i].name; i++)
8224 for(j = 0; j < mi->un.e.num_mem; j++)
8225 if (strcmp(mi->un.e.member[j].label.name,
8226 tbl[i].name) == 0) {
8227 ports->allports |= tbl[i].mask;
8228 ports->aumask[ports->nports] = tbl[i].mask;
8229 ports->misel[ports->nports] =
8230 mi->un.e.member[j].ord;
8231 ports->miport[ports->nports] =
8232 au_portof(sc, mi->un.e.member[j].label.name,
8233 mi->mixer_class);
8234 if (ports->mixerout != -1 &&
8235 ports->miport[ports->nports] != -1)
8236 ports->isdual = true;
8237 ++ports->nports;
8238 }
8239 } else if (mi->type == AUDIO_MIXER_SET) {
8240 for(i = 0; tbl[i].name; i++)
8241 for(j = 0; j < mi->un.s.num_mem; j++)
8242 if (strcmp(mi->un.s.member[j].label.name,
8243 tbl[i].name) == 0) {
8244 ports->allports |= tbl[i].mask;
8245 ports->aumask[ports->nports] = tbl[i].mask;
8246 ports->misel[ports->nports] =
8247 mi->un.s.member[j].mask;
8248 ports->miport[ports->nports] =
8249 au_portof(sc, mi->un.s.member[j].label.name,
8250 mi->mixer_class);
8251 ++ports->nports;
8252 }
8253 }
8254 }
8255
8256 /*
8257 * Must be called with sc_lock && sc_exlock held.
8258 */
8259 int
8260 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8261 {
8262
8263 KASSERT(mutex_owned(sc->sc_lock));
8264 KASSERT(sc->sc_exlock);
8265
8266 ct->type = AUDIO_MIXER_VALUE;
8267 ct->un.value.num_channels = 2;
8268 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8269 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8270 if (audio_set_port(sc, ct) == 0)
8271 return 0;
8272 ct->un.value.num_channels = 1;
8273 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8274 return audio_set_port(sc, ct);
8275 }
8276
8277 /*
8278 * Must be called with sc_lock && sc_exlock held.
8279 */
8280 int
8281 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8282 {
8283 int error;
8284
8285 KASSERT(mutex_owned(sc->sc_lock));
8286 KASSERT(sc->sc_exlock);
8287
8288 ct->un.value.num_channels = 2;
8289 if (audio_get_port(sc, ct) == 0) {
8290 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8291 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8292 } else {
8293 ct->un.value.num_channels = 1;
8294 error = audio_get_port(sc, ct);
8295 if (error)
8296 return error;
8297 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8298 }
8299 return 0;
8300 }
8301
8302 /*
8303 * Must be called with sc_lock && sc_exlock held.
8304 */
8305 int
8306 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8307 int gain, int balance)
8308 {
8309 mixer_ctrl_t ct;
8310 int i, error;
8311 int l, r;
8312 u_int mask;
8313 int nset;
8314
8315 KASSERT(mutex_owned(sc->sc_lock));
8316 KASSERT(sc->sc_exlock);
8317
8318 if (balance == AUDIO_MID_BALANCE) {
8319 l = r = gain;
8320 } else if (balance < AUDIO_MID_BALANCE) {
8321 l = gain;
8322 r = (balance * gain) / AUDIO_MID_BALANCE;
8323 } else {
8324 r = gain;
8325 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8326 / AUDIO_MID_BALANCE;
8327 }
8328 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8329
8330 if (ports->index == -1) {
8331 usemaster:
8332 if (ports->master == -1)
8333 return 0; /* just ignore it silently */
8334 ct.dev = ports->master;
8335 error = au_set_lr_value(sc, &ct, l, r);
8336 } else {
8337 ct.dev = ports->index;
8338 if (ports->isenum) {
8339 ct.type = AUDIO_MIXER_ENUM;
8340 error = audio_get_port(sc, &ct);
8341 if (error)
8342 return error;
8343 if (ports->isdual) {
8344 if (ports->cur_port == -1)
8345 ct.dev = ports->master;
8346 else
8347 ct.dev = ports->miport[ports->cur_port];
8348 error = au_set_lr_value(sc, &ct, l, r);
8349 } else {
8350 for(i = 0; i < ports->nports; i++)
8351 if (ports->misel[i] == ct.un.ord) {
8352 ct.dev = ports->miport[i];
8353 if (ct.dev == -1 ||
8354 au_set_lr_value(sc, &ct, l, r))
8355 goto usemaster;
8356 else
8357 break;
8358 }
8359 }
8360 } else {
8361 ct.type = AUDIO_MIXER_SET;
8362 error = audio_get_port(sc, &ct);
8363 if (error)
8364 return error;
8365 mask = ct.un.mask;
8366 nset = 0;
8367 for(i = 0; i < ports->nports; i++) {
8368 if (ports->misel[i] & mask) {
8369 ct.dev = ports->miport[i];
8370 if (ct.dev != -1 &&
8371 au_set_lr_value(sc, &ct, l, r) == 0)
8372 nset++;
8373 }
8374 }
8375 if (nset == 0)
8376 goto usemaster;
8377 }
8378 }
8379 if (!error)
8380 mixer_signal(sc);
8381 return error;
8382 }
8383
8384 /*
8385 * Must be called with sc_lock && sc_exlock held.
8386 */
8387 void
8388 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8389 u_int *pgain, u_char *pbalance)
8390 {
8391 mixer_ctrl_t ct;
8392 int i, l, r, n;
8393 int lgain, rgain;
8394
8395 KASSERT(mutex_owned(sc->sc_lock));
8396 KASSERT(sc->sc_exlock);
8397
8398 lgain = AUDIO_MAX_GAIN / 2;
8399 rgain = AUDIO_MAX_GAIN / 2;
8400 if (ports->index == -1) {
8401 usemaster:
8402 if (ports->master == -1)
8403 goto bad;
8404 ct.dev = ports->master;
8405 ct.type = AUDIO_MIXER_VALUE;
8406 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8407 goto bad;
8408 } else {
8409 ct.dev = ports->index;
8410 if (ports->isenum) {
8411 ct.type = AUDIO_MIXER_ENUM;
8412 if (audio_get_port(sc, &ct))
8413 goto bad;
8414 ct.type = AUDIO_MIXER_VALUE;
8415 if (ports->isdual) {
8416 if (ports->cur_port == -1)
8417 ct.dev = ports->master;
8418 else
8419 ct.dev = ports->miport[ports->cur_port];
8420 au_get_lr_value(sc, &ct, &lgain, &rgain);
8421 } else {
8422 for(i = 0; i < ports->nports; i++)
8423 if (ports->misel[i] == ct.un.ord) {
8424 ct.dev = ports->miport[i];
8425 if (ct.dev == -1 ||
8426 au_get_lr_value(sc, &ct,
8427 &lgain, &rgain))
8428 goto usemaster;
8429 else
8430 break;
8431 }
8432 }
8433 } else {
8434 ct.type = AUDIO_MIXER_SET;
8435 if (audio_get_port(sc, &ct))
8436 goto bad;
8437 ct.type = AUDIO_MIXER_VALUE;
8438 lgain = rgain = n = 0;
8439 for(i = 0; i < ports->nports; i++) {
8440 if (ports->misel[i] & ct.un.mask) {
8441 ct.dev = ports->miport[i];
8442 if (ct.dev == -1 ||
8443 au_get_lr_value(sc, &ct, &l, &r))
8444 goto usemaster;
8445 else {
8446 lgain += l;
8447 rgain += r;
8448 n++;
8449 }
8450 }
8451 }
8452 if (n != 0) {
8453 lgain /= n;
8454 rgain /= n;
8455 }
8456 }
8457 }
8458 bad:
8459 if (lgain == rgain) { /* handles lgain==rgain==0 */
8460 *pgain = lgain;
8461 *pbalance = AUDIO_MID_BALANCE;
8462 } else if (lgain < rgain) {
8463 *pgain = rgain;
8464 /* balance should be > AUDIO_MID_BALANCE */
8465 *pbalance = AUDIO_RIGHT_BALANCE -
8466 (AUDIO_MID_BALANCE * lgain) / rgain;
8467 } else /* lgain > rgain */ {
8468 *pgain = lgain;
8469 /* balance should be < AUDIO_MID_BALANCE */
8470 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8471 }
8472 }
8473
8474 /*
8475 * Must be called with sc_lock && sc_exlock held.
8476 */
8477 int
8478 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8479 {
8480 mixer_ctrl_t ct;
8481 int i, error, use_mixerout;
8482
8483 KASSERT(mutex_owned(sc->sc_lock));
8484 KASSERT(sc->sc_exlock);
8485
8486 use_mixerout = 1;
8487 if (port == 0) {
8488 if (ports->allports == 0)
8489 return 0; /* Allow this special case. */
8490 else if (ports->isdual) {
8491 if (ports->cur_port == -1) {
8492 return 0;
8493 } else {
8494 port = ports->aumask[ports->cur_port];
8495 ports->cur_port = -1;
8496 use_mixerout = 0;
8497 }
8498 }
8499 }
8500 if (ports->index == -1)
8501 return EINVAL;
8502 ct.dev = ports->index;
8503 if (ports->isenum) {
8504 if (port & (port-1))
8505 return EINVAL; /* Only one port allowed */
8506 ct.type = AUDIO_MIXER_ENUM;
8507 error = EINVAL;
8508 for(i = 0; i < ports->nports; i++)
8509 if (ports->aumask[i] == port) {
8510 if (ports->isdual && use_mixerout) {
8511 ct.un.ord = ports->mixerout;
8512 ports->cur_port = i;
8513 } else {
8514 ct.un.ord = ports->misel[i];
8515 }
8516 error = audio_set_port(sc, &ct);
8517 break;
8518 }
8519 } else {
8520 ct.type = AUDIO_MIXER_SET;
8521 ct.un.mask = 0;
8522 for(i = 0; i < ports->nports; i++)
8523 if (ports->aumask[i] & port)
8524 ct.un.mask |= ports->misel[i];
8525 if (port != 0 && ct.un.mask == 0)
8526 error = EINVAL;
8527 else
8528 error = audio_set_port(sc, &ct);
8529 }
8530 if (!error)
8531 mixer_signal(sc);
8532 return error;
8533 }
8534
8535 /*
8536 * Must be called with sc_lock && sc_exlock held.
8537 */
8538 int
8539 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8540 {
8541 mixer_ctrl_t ct;
8542 int i, aumask;
8543
8544 KASSERT(mutex_owned(sc->sc_lock));
8545 KASSERT(sc->sc_exlock);
8546
8547 if (ports->index == -1)
8548 return 0;
8549 ct.dev = ports->index;
8550 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8551 if (audio_get_port(sc, &ct))
8552 return 0;
8553 aumask = 0;
8554 if (ports->isenum) {
8555 if (ports->isdual && ports->cur_port != -1) {
8556 if (ports->mixerout == ct.un.ord)
8557 aumask = ports->aumask[ports->cur_port];
8558 else
8559 ports->cur_port = -1;
8560 }
8561 if (aumask == 0)
8562 for(i = 0; i < ports->nports; i++)
8563 if (ports->misel[i] == ct.un.ord)
8564 aumask = ports->aumask[i];
8565 } else {
8566 for(i = 0; i < ports->nports; i++)
8567 if (ct.un.mask & ports->misel[i])
8568 aumask |= ports->aumask[i];
8569 }
8570 return aumask;
8571 }
8572
8573 /*
8574 * It returns 0 if success, otherwise errno.
8575 * Must be called only if sc->sc_monitor_port != -1.
8576 * Must be called with sc_lock && sc_exlock held.
8577 */
8578 static int
8579 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8580 {
8581 mixer_ctrl_t ct;
8582
8583 KASSERT(mutex_owned(sc->sc_lock));
8584 KASSERT(sc->sc_exlock);
8585
8586 ct.dev = sc->sc_monitor_port;
8587 ct.type = AUDIO_MIXER_VALUE;
8588 ct.un.value.num_channels = 1;
8589 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8590 return audio_set_port(sc, &ct);
8591 }
8592
8593 /*
8594 * It returns monitor gain if success, otherwise -1.
8595 * Must be called only if sc->sc_monitor_port != -1.
8596 * Must be called with sc_lock && sc_exlock held.
8597 */
8598 static int
8599 au_get_monitor_gain(struct audio_softc *sc)
8600 {
8601 mixer_ctrl_t ct;
8602
8603 KASSERT(mutex_owned(sc->sc_lock));
8604 KASSERT(sc->sc_exlock);
8605
8606 ct.dev = sc->sc_monitor_port;
8607 ct.type = AUDIO_MIXER_VALUE;
8608 ct.un.value.num_channels = 1;
8609 if (audio_get_port(sc, &ct))
8610 return -1;
8611 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8612 }
8613
8614 /*
8615 * Must be called with sc_lock && sc_exlock held.
8616 */
8617 static int
8618 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8619 {
8620
8621 KASSERT(mutex_owned(sc->sc_lock));
8622 KASSERT(sc->sc_exlock);
8623
8624 return sc->hw_if->set_port(sc->hw_hdl, mc);
8625 }
8626
8627 /*
8628 * Must be called with sc_lock && sc_exlock held.
8629 */
8630 static int
8631 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8632 {
8633
8634 KASSERT(mutex_owned(sc->sc_lock));
8635 KASSERT(sc->sc_exlock);
8636
8637 return sc->hw_if->get_port(sc->hw_hdl, mc);
8638 }
8639
8640 /*
8641 * Must be called with sc_lock && sc_exlock held.
8642 */
8643 static void
8644 audio_mixer_capture(struct audio_softc *sc)
8645 {
8646 mixer_devinfo_t mi;
8647 mixer_ctrl_t *mc;
8648
8649 KASSERT(mutex_owned(sc->sc_lock));
8650 KASSERT(sc->sc_exlock);
8651
8652 for (mi.index = 0;; mi.index++) {
8653 if (audio_query_devinfo(sc, &mi) != 0)
8654 break;
8655 KASSERT(mi.index < sc->sc_nmixer_states);
8656 if (mi.type == AUDIO_MIXER_CLASS)
8657 continue;
8658 mc = &sc->sc_mixer_state[mi.index];
8659 mc->dev = mi.index;
8660 mc->type = mi.type;
8661 mc->un.value.num_channels = mi.un.v.num_channels;
8662 (void)audio_get_port(sc, mc);
8663 }
8664
8665 return;
8666 }
8667
8668 /*
8669 * Must be called with sc_lock && sc_exlock held.
8670 */
8671 static void
8672 audio_mixer_restore(struct audio_softc *sc)
8673 {
8674 mixer_devinfo_t mi;
8675 mixer_ctrl_t *mc;
8676
8677 KASSERT(mutex_owned(sc->sc_lock));
8678 KASSERT(sc->sc_exlock);
8679
8680 for (mi.index = 0; ; mi.index++) {
8681 if (audio_query_devinfo(sc, &mi) != 0)
8682 break;
8683 if (mi.type == AUDIO_MIXER_CLASS)
8684 continue;
8685 mc = &sc->sc_mixer_state[mi.index];
8686 (void)audio_set_port(sc, mc);
8687 }
8688 if (sc->hw_if->commit_settings)
8689 sc->hw_if->commit_settings(sc->hw_hdl);
8690
8691 return;
8692 }
8693
8694 static void
8695 audio_volume_down(device_t dv)
8696 {
8697 struct audio_softc *sc = device_private(dv);
8698 mixer_devinfo_t mi;
8699 int newgain;
8700 u_int gain;
8701 u_char balance;
8702
8703 if (audio_exlock_mutex_enter(sc) != 0)
8704 return;
8705 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8706 mi.index = sc->sc_outports.master;
8707 mi.un.v.delta = 0;
8708 if (audio_query_devinfo(sc, &mi) == 0) {
8709 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8710 newgain = gain - mi.un.v.delta;
8711 if (newgain < AUDIO_MIN_GAIN)
8712 newgain = AUDIO_MIN_GAIN;
8713 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8714 }
8715 }
8716 audio_exlock_mutex_exit(sc);
8717 }
8718
8719 static void
8720 audio_volume_up(device_t dv)
8721 {
8722 struct audio_softc *sc = device_private(dv);
8723 mixer_devinfo_t mi;
8724 u_int gain, newgain;
8725 u_char balance;
8726
8727 if (audio_exlock_mutex_enter(sc) != 0)
8728 return;
8729 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8730 mi.index = sc->sc_outports.master;
8731 mi.un.v.delta = 0;
8732 if (audio_query_devinfo(sc, &mi) == 0) {
8733 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8734 newgain = gain + mi.un.v.delta;
8735 if (newgain > AUDIO_MAX_GAIN)
8736 newgain = AUDIO_MAX_GAIN;
8737 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8738 }
8739 }
8740 audio_exlock_mutex_exit(sc);
8741 }
8742
8743 static void
8744 audio_volume_toggle(device_t dv)
8745 {
8746 struct audio_softc *sc = device_private(dv);
8747 u_int gain, newgain;
8748 u_char balance;
8749
8750 if (audio_exlock_mutex_enter(sc) != 0)
8751 return;
8752 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8753 if (gain != 0) {
8754 sc->sc_lastgain = gain;
8755 newgain = 0;
8756 } else
8757 newgain = sc->sc_lastgain;
8758 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8759 audio_exlock_mutex_exit(sc);
8760 }
8761
8762 /*
8763 * Must be called with sc_lock held.
8764 */
8765 static int
8766 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8767 {
8768
8769 KASSERT(mutex_owned(sc->sc_lock));
8770
8771 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8772 }
8773
8774 #endif /* NAUDIO > 0 */
8775
8776 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8777 #include <sys/param.h>
8778 #include <sys/systm.h>
8779 #include <sys/device.h>
8780 #include <sys/audioio.h>
8781 #include <dev/audio/audio_if.h>
8782 #endif
8783
8784 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8785 int
8786 audioprint(void *aux, const char *pnp)
8787 {
8788 struct audio_attach_args *arg;
8789 const char *type;
8790
8791 if (pnp != NULL) {
8792 arg = aux;
8793 switch (arg->type) {
8794 case AUDIODEV_TYPE_AUDIO:
8795 type = "audio";
8796 break;
8797 case AUDIODEV_TYPE_MIDI:
8798 type = "midi";
8799 break;
8800 case AUDIODEV_TYPE_OPL:
8801 type = "opl";
8802 break;
8803 case AUDIODEV_TYPE_MPU:
8804 type = "mpu";
8805 break;
8806 default:
8807 panic("audioprint: unknown type %d", arg->type);
8808 }
8809 aprint_normal("%s at %s", type, pnp);
8810 }
8811 return UNCONF;
8812 }
8813
8814 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8815
8816 #ifdef _MODULE
8817
8818 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8819
8820 #include "ioconf.c"
8821
8822 #endif
8823
8824 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8825
8826 static int
8827 audio_modcmd(modcmd_t cmd, void *arg)
8828 {
8829 int error = 0;
8830
8831 switch (cmd) {
8832 case MODULE_CMD_INIT:
8833 /* XXX interrupt level? */
8834 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8835 #ifdef _MODULE
8836 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8837 &audio_cdevsw, &audio_cmajor);
8838 if (error)
8839 break;
8840
8841 error = config_init_component(cfdriver_ioconf_audio,
8842 cfattach_ioconf_audio, cfdata_ioconf_audio);
8843 if (error) {
8844 devsw_detach(NULL, &audio_cdevsw);
8845 }
8846 #endif
8847 break;
8848 case MODULE_CMD_FINI:
8849 #ifdef _MODULE
8850 devsw_detach(NULL, &audio_cdevsw);
8851 error = config_fini_component(cfdriver_ioconf_audio,
8852 cfattach_ioconf_audio, cfdata_ioconf_audio);
8853 if (error)
8854 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8855 &audio_cdevsw, &audio_cmajor);
8856 #endif
8857 psref_class_destroy(audio_psref_class);
8858 break;
8859 default:
8860 error = ENOTTY;
8861 break;
8862 }
8863
8864 return error;
8865 }
8866