audio.c revision 1.8 1 /* $NetBSD: audio.c,v 1.8 2019/05/21 12:52:57 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - + (*1)
122 * freem - - + (*1)
123 * round_buffersize - x
124 * get_props - x
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * *1 Note: Before 8.0, since these have been called only at attach time,
131 * neither lock were necessary. Currently, on the other hand, since
132 * these may be also called after attach, the thread lock is required.
133 *
134 * In addition, there are two additional locks.
135 *
136 * - file->lock. This is a variable protected by sc_lock and is similar
137 * to the "thread lock". This is one for each file. If any thread
138 * context and software interrupt context who want to access the file
139 * structure, they must acquire this lock before. It protects
140 * descriptor's consistency among multithreaded accesses. Since this
141 * lock uses sc_lock, don't acquire from hardware interrupt context.
142 *
143 * - track->lock. This is an atomic variable and is similar to the
144 * "interrupt lock". This is one for each track. If any thread context
145 * (and software interrupt context) and hardware interrupt context who
146 * want to access some variables on this track, they must acquire this
147 * lock before. It protects track's consistency between hardware
148 * interrupt context and others.
149 */
150
151 #include <sys/cdefs.h>
152 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.8 2019/05/21 12:52:57 isaki Exp $");
153
154 #ifdef _KERNEL_OPT
155 #include "audio.h"
156 #include "midi.h"
157 #endif
158
159 #if NAUDIO > 0
160
161 #ifdef _KERNEL
162
163 #include <sys/types.h>
164 #include <sys/param.h>
165 #include <sys/atomic.h>
166 #include <sys/audioio.h>
167 #include <sys/conf.h>
168 #include <sys/cpu.h>
169 #include <sys/device.h>
170 #include <sys/fcntl.h>
171 #include <sys/file.h>
172 #include <sys/filedesc.h>
173 #include <sys/intr.h>
174 #include <sys/ioctl.h>
175 #include <sys/kauth.h>
176 #include <sys/kernel.h>
177 #include <sys/kmem.h>
178 #include <sys/malloc.h>
179 #include <sys/mman.h>
180 #include <sys/module.h>
181 #include <sys/poll.h>
182 #include <sys/proc.h>
183 #include <sys/queue.h>
184 #include <sys/select.h>
185 #include <sys/signalvar.h>
186 #include <sys/stat.h>
187 #include <sys/sysctl.h>
188 #include <sys/systm.h>
189 #include <sys/syslog.h>
190 #include <sys/vnode.h>
191
192 #include <dev/audio/audio_if.h>
193 #include <dev/audio/audiovar.h>
194 #include <dev/audio/audiodef.h>
195 #include <dev/audio/linear.h>
196 #include <dev/audio/mulaw.h>
197
198 #include <machine/endian.h>
199
200 #include <uvm/uvm.h>
201
202 #include "ioconf.h"
203 #endif /* _KERNEL */
204
205 /*
206 * 0: No debug logs
207 * 1: action changes like open/close/set_format...
208 * 2: + normal operations like read/write/ioctl...
209 * 3: + TRACEs except interrupt
210 * 4: + TRACEs including interrupt
211 */
212 //#define AUDIO_DEBUG 1
213
214 #if defined(AUDIO_DEBUG)
215
216 int audiodebug = AUDIO_DEBUG;
217 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
218 const char *, va_list);
219 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
220 __printflike(3, 4);
221 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
222 __printflike(3, 4);
223 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
224 __printflike(3, 4);
225
226 /* XXX sloppy memory logger */
227 static void audio_mlog_init(void);
228 static void audio_mlog_free(void);
229 static void audio_mlog_softintr(void *);
230 extern void audio_mlog_flush(void);
231 extern void audio_mlog_printf(const char *, ...);
232
233 static int mlog_refs; /* reference counter */
234 static char *mlog_buf[2]; /* double buffer */
235 static int mlog_buflen; /* buffer length */
236 static int mlog_used; /* used length */
237 static int mlog_full; /* number of dropped lines by buffer full */
238 static int mlog_drop; /* number of dropped lines by busy */
239 static volatile uint32_t mlog_inuse; /* in-use */
240 static int mlog_wpage; /* active page */
241 static void *mlog_sih; /* softint handle */
242
243 static void
244 audio_mlog_init(void)
245 {
246 mlog_refs++;
247 if (mlog_refs > 1)
248 return;
249 mlog_buflen = 4096;
250 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
251 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
252 mlog_used = 0;
253 mlog_full = 0;
254 mlog_drop = 0;
255 mlog_inuse = 0;
256 mlog_wpage = 0;
257 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
258 if (mlog_sih == NULL)
259 printf("%s: softint_establish failed\n", __func__);
260 }
261
262 static void
263 audio_mlog_free(void)
264 {
265 mlog_refs--;
266 if (mlog_refs > 0)
267 return;
268
269 audio_mlog_flush();
270 if (mlog_sih)
271 softint_disestablish(mlog_sih);
272 kmem_free(mlog_buf[0], mlog_buflen);
273 kmem_free(mlog_buf[1], mlog_buflen);
274 }
275
276 /*
277 * Flush memory buffer.
278 * It must not be called from hardware interrupt context.
279 */
280 void
281 audio_mlog_flush(void)
282 {
283 if (mlog_refs == 0)
284 return;
285
286 /* Nothing to do if already in use ? */
287 if (atomic_swap_32(&mlog_inuse, 1) == 1)
288 return;
289
290 int rpage = mlog_wpage;
291 mlog_wpage ^= 1;
292 mlog_buf[mlog_wpage][0] = '\0';
293 mlog_used = 0;
294
295 atomic_swap_32(&mlog_inuse, 0);
296
297 if (mlog_buf[rpage][0] != '\0') {
298 printf("%s", mlog_buf[rpage]);
299 if (mlog_drop > 0)
300 printf("mlog_drop %d\n", mlog_drop);
301 if (mlog_full > 0)
302 printf("mlog_full %d\n", mlog_full);
303 }
304 mlog_full = 0;
305 mlog_drop = 0;
306 }
307
308 static void
309 audio_mlog_softintr(void *cookie)
310 {
311 audio_mlog_flush();
312 }
313
314 void
315 audio_mlog_printf(const char *fmt, ...)
316 {
317 int len;
318 va_list ap;
319
320 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
321 /* already inuse */
322 mlog_drop++;
323 return;
324 }
325
326 va_start(ap, fmt);
327 len = vsnprintf(
328 mlog_buf[mlog_wpage] + mlog_used,
329 mlog_buflen - mlog_used,
330 fmt, ap);
331 va_end(ap);
332
333 mlog_used += len;
334 if (mlog_buflen - mlog_used <= 1) {
335 mlog_full++;
336 }
337
338 atomic_swap_32(&mlog_inuse, 0);
339
340 if (mlog_sih)
341 softint_schedule(mlog_sih);
342 }
343
344 /* trace functions */
345 static void
346 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
347 const char *fmt, va_list ap)
348 {
349 char buf[256];
350 int n;
351
352 n = 0;
353 buf[0] = '\0';
354 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
355 funcname, device_unit(sc->sc_dev), header);
356 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
357
358 if (cpu_intr_p()) {
359 audio_mlog_printf("%s\n", buf);
360 } else {
361 audio_mlog_flush();
362 printf("%s\n", buf);
363 }
364 }
365
366 static void
367 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
368 {
369 va_list ap;
370
371 va_start(ap, fmt);
372 audio_vtrace(sc, funcname, "", fmt, ap);
373 va_end(ap);
374 }
375
376 static void
377 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
378 {
379 char hdr[16];
380 va_list ap;
381
382 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
383 va_start(ap, fmt);
384 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
385 va_end(ap);
386 }
387
388 static void
389 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
390 {
391 char hdr[32];
392 char phdr[16], rhdr[16];
393 va_list ap;
394
395 phdr[0] = '\0';
396 rhdr[0] = '\0';
397 if (file->ptrack)
398 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
399 if (file->rtrack)
400 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
401 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
402
403 va_start(ap, fmt);
404 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
405 va_end(ap);
406 }
407
408 #define DPRINTF(n, fmt...) do { \
409 if (audiodebug >= (n)) { \
410 audio_mlog_flush(); \
411 printf(fmt); \
412 } \
413 } while (0)
414 #define TRACE(n, fmt...) do { \
415 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
416 } while (0)
417 #define TRACET(n, t, fmt...) do { \
418 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
419 } while (0)
420 #define TRACEF(n, f, fmt...) do { \
421 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
422 } while (0)
423
424 struct audio_track_debugbuf {
425 char usrbuf[32];
426 char codec[32];
427 char chvol[32];
428 char chmix[32];
429 char freq[32];
430 char outbuf[32];
431 };
432
433 static void
434 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
435 {
436
437 memset(buf, 0, sizeof(*buf));
438
439 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
440 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
441 if (track->freq.filter)
442 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
443 track->freq.srcbuf.head,
444 track->freq.srcbuf.used,
445 track->freq.srcbuf.capacity);
446 if (track->chmix.filter)
447 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
448 track->chmix.srcbuf.used);
449 if (track->chvol.filter)
450 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
451 track->chvol.srcbuf.used);
452 if (track->codec.filter)
453 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
454 track->codec.srcbuf.used);
455 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
456 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
457 }
458 #else
459 #define DPRINTF(n, fmt...) do { } while (0)
460 #define TRACE(n, fmt, ...) do { } while (0)
461 #define TRACET(n, t, fmt, ...) do { } while (0)
462 #define TRACEF(n, f, fmt, ...) do { } while (0)
463 #endif
464
465 #define SPECIFIED(x) ((x) != ~0)
466 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
467
468 /* Device timeout in msec */
469 #define AUDIO_TIMEOUT (3000)
470
471 /* #define AUDIO_PM_IDLE */
472 #ifdef AUDIO_PM_IDLE
473 int audio_idle_timeout = 30;
474 #endif
475
476 struct portname {
477 const char *name;
478 int mask;
479 };
480
481 static int audiomatch(device_t, cfdata_t, void *);
482 static void audioattach(device_t, device_t, void *);
483 static int audiodetach(device_t, int);
484 static int audioactivate(device_t, enum devact);
485 static void audiochilddet(device_t, device_t);
486 static int audiorescan(device_t, const char *, const int *);
487
488 static int audio_modcmd(modcmd_t, void *);
489
490 #ifdef AUDIO_PM_IDLE
491 static void audio_idle(void *);
492 static void audio_activity(device_t, devactive_t);
493 #endif
494
495 static bool audio_suspend(device_t dv, const pmf_qual_t *);
496 static bool audio_resume(device_t dv, const pmf_qual_t *);
497 static void audio_volume_down(device_t);
498 static void audio_volume_up(device_t);
499 static void audio_volume_toggle(device_t);
500
501 static void audio_mixer_capture(struct audio_softc *);
502 static void audio_mixer_restore(struct audio_softc *);
503
504 static void audio_softintr_rd(void *);
505 static void audio_softintr_wr(void *);
506
507 static int audio_enter_exclusive(struct audio_softc *);
508 static void audio_exit_exclusive(struct audio_softc *);
509 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
510 static int audio_file_acquire(struct audio_softc *, audio_file_t *);
511 static void audio_file_release(struct audio_softc *, audio_file_t *);
512
513 static int audioclose(struct file *);
514 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
515 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
516 static int audioioctl(struct file *, u_long, void *);
517 static int audiopoll(struct file *, int);
518 static int audiokqfilter(struct file *, struct knote *);
519 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
520 struct uvm_object **, int *);
521 static int audiostat(struct file *, struct stat *);
522
523 static void filt_audiowrite_detach(struct knote *);
524 static int filt_audiowrite_event(struct knote *, long);
525 static void filt_audioread_detach(struct knote *);
526 static int filt_audioread_event(struct knote *, long);
527
528 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
529 struct audiobell_arg *);
530 static int audio_close(struct audio_softc *, audio_file_t *);
531 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
532 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
533 static void audio_file_clear(struct audio_softc *, audio_file_t *);
534 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
535 struct lwp *, audio_file_t *);
536 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
537 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
538 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
539 struct uvm_object **, int *, audio_file_t *);
540
541 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
542
543 static void audio_pintr(void *);
544 static void audio_rintr(void *);
545
546 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
547
548 static __inline int audio_track_readablebytes(const audio_track_t *);
549 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
550 const struct audio_info *);
551 static int audio_track_setinfo_check(audio_format2_t *,
552 const struct audio_prinfo *);
553 static void audio_track_setinfo_water(audio_track_t *,
554 const struct audio_info *);
555 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
556 struct audio_info *);
557 static int audio_hw_set_format(struct audio_softc *, int,
558 audio_format2_t *, audio_format2_t *,
559 audio_filter_reg_t *, audio_filter_reg_t *);
560 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
561 audio_file_t *);
562 static int audio_get_props(struct audio_softc *);
563 static bool audio_can_playback(struct audio_softc *);
564 static bool audio_can_capture(struct audio_softc *);
565 static int audio_check_params(audio_format2_t *);
566 static int audio_mixers_init(struct audio_softc *sc, int,
567 const audio_format2_t *, const audio_format2_t *,
568 const audio_filter_reg_t *, const audio_filter_reg_t *);
569 static int audio_select_freq(const struct audio_format *);
570 static int audio_hw_probe(struct audio_softc *, int, int *,
571 audio_format2_t *, audio_format2_t *);
572 static int audio_hw_probe_fmt(struct audio_softc *, audio_format2_t *, int);
573 static int audio_hw_validate_format(struct audio_softc *, int,
574 const audio_format2_t *);
575 static int audio_mixers_set_format(struct audio_softc *,
576 const struct audio_info *);
577 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
578 static int audio_sysctl_volume(SYSCTLFN_PROTO);
579 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
580 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
581 #if defined(AUDIO_DEBUG)
582 static int audio_sysctl_debug(SYSCTLFN_PROTO);
583 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
584 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
585 #endif
586
587 static void *audio_realloc(void *, size_t);
588 static int audio_realloc_usrbuf(audio_track_t *, int);
589 static void audio_free_usrbuf(audio_track_t *);
590
591 static audio_track_t *audio_track_create(struct audio_softc *,
592 audio_trackmixer_t *);
593 static void audio_track_destroy(audio_track_t *);
594 static audio_filter_t audio_track_get_codec(audio_track_t *,
595 const audio_format2_t *, const audio_format2_t *);
596 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
597 static void audio_track_play(audio_track_t *);
598 static int audio_track_drain(struct audio_softc *, audio_track_t *);
599 static void audio_track_record(audio_track_t *);
600 static void audio_track_clear(struct audio_softc *, audio_track_t *);
601
602 static int audio_mixer_init(struct audio_softc *, int,
603 const audio_format2_t *, const audio_filter_reg_t *);
604 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
605 static void audio_pmixer_start(struct audio_softc *, bool);
606 static void audio_pmixer_process(struct audio_softc *);
607 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
608 static void audio_pmixer_output(struct audio_softc *);
609 static int audio_pmixer_halt(struct audio_softc *);
610 static void audio_rmixer_start(struct audio_softc *);
611 static void audio_rmixer_process(struct audio_softc *);
612 static void audio_rmixer_input(struct audio_softc *);
613 static int audio_rmixer_halt(struct audio_softc *);
614
615 static void mixer_init(struct audio_softc *);
616 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
617 static int mixer_close(struct audio_softc *, audio_file_t *);
618 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
619 static void mixer_remove(struct audio_softc *);
620 static void mixer_signal(struct audio_softc *);
621
622 static int au_portof(struct audio_softc *, char *, int);
623
624 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
625 mixer_devinfo_t *, const struct portname *);
626 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
627 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
628 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
629 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
630 u_int *, u_char *);
631 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
632 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
633 static int au_set_monitor_gain(struct audio_softc *, int);
634 static int au_get_monitor_gain(struct audio_softc *);
635 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
636 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
637
638 static __inline struct audio_params
639 format2_to_params(const audio_format2_t *f2)
640 {
641 audio_params_t p;
642
643 /* validbits/precision <-> precision/stride */
644 p.sample_rate = f2->sample_rate;
645 p.channels = f2->channels;
646 p.encoding = f2->encoding;
647 p.validbits = f2->precision;
648 p.precision = f2->stride;
649 return p;
650 }
651
652 static __inline audio_format2_t
653 params_to_format2(const struct audio_params *p)
654 {
655 audio_format2_t f2;
656
657 /* precision/stride <-> validbits/precision */
658 f2.sample_rate = p->sample_rate;
659 f2.channels = p->channels;
660 f2.encoding = p->encoding;
661 f2.precision = p->validbits;
662 f2.stride = p->precision;
663 return f2;
664 }
665
666 /* Return true if this track is a playback track. */
667 static __inline bool
668 audio_track_is_playback(const audio_track_t *track)
669 {
670
671 return ((track->mode & AUMODE_PLAY) != 0);
672 }
673
674 /* Return true if this track is a recording track. */
675 static __inline bool
676 audio_track_is_record(const audio_track_t *track)
677 {
678
679 return ((track->mode & AUMODE_RECORD) != 0);
680 }
681
682 #if 0 /* XXX Not used yet */
683 /*
684 * Convert 0..255 volume used in userland to internal presentation 0..256.
685 */
686 static __inline u_int
687 audio_volume_to_inner(u_int v)
688 {
689
690 return v < 127 ? v : v + 1;
691 }
692
693 /*
694 * Convert 0..256 internal presentation to 0..255 volume used in userland.
695 */
696 static __inline u_int
697 audio_volume_to_outer(u_int v)
698 {
699
700 return v < 127 ? v : v - 1;
701 }
702 #endif /* 0 */
703
704 static dev_type_open(audioopen);
705 /* XXXMRG use more dev_type_xxx */
706
707 const struct cdevsw audio_cdevsw = {
708 .d_open = audioopen,
709 .d_close = noclose,
710 .d_read = noread,
711 .d_write = nowrite,
712 .d_ioctl = noioctl,
713 .d_stop = nostop,
714 .d_tty = notty,
715 .d_poll = nopoll,
716 .d_mmap = nommap,
717 .d_kqfilter = nokqfilter,
718 .d_discard = nodiscard,
719 .d_flag = D_OTHER | D_MPSAFE
720 };
721
722 const struct fileops audio_fileops = {
723 .fo_name = "audio",
724 .fo_read = audioread,
725 .fo_write = audiowrite,
726 .fo_ioctl = audioioctl,
727 .fo_fcntl = fnullop_fcntl,
728 .fo_stat = audiostat,
729 .fo_poll = audiopoll,
730 .fo_close = audioclose,
731 .fo_mmap = audiommap,
732 .fo_kqfilter = audiokqfilter,
733 .fo_restart = fnullop_restart
734 };
735
736 /* The default audio mode: 8 kHz mono mu-law */
737 static const struct audio_params audio_default = {
738 .sample_rate = 8000,
739 .encoding = AUDIO_ENCODING_ULAW,
740 .precision = 8,
741 .validbits = 8,
742 .channels = 1,
743 };
744
745 static const char *encoding_names[] = {
746 "none",
747 AudioEmulaw,
748 AudioEalaw,
749 "pcm16",
750 "pcm8",
751 AudioEadpcm,
752 AudioEslinear_le,
753 AudioEslinear_be,
754 AudioEulinear_le,
755 AudioEulinear_be,
756 AudioEslinear,
757 AudioEulinear,
758 AudioEmpeg_l1_stream,
759 AudioEmpeg_l1_packets,
760 AudioEmpeg_l1_system,
761 AudioEmpeg_l2_stream,
762 AudioEmpeg_l2_packets,
763 AudioEmpeg_l2_system,
764 AudioEac3,
765 };
766
767 /*
768 * Returns encoding name corresponding to AUDIO_ENCODING_*.
769 * Note that it may return a local buffer because it is mainly for debugging.
770 */
771 const char *
772 audio_encoding_name(int encoding)
773 {
774 static char buf[16];
775
776 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
777 return encoding_names[encoding];
778 } else {
779 snprintf(buf, sizeof(buf), "enc=%d", encoding);
780 return buf;
781 }
782 }
783
784 /*
785 * Supported encodings used by AUDIO_GETENC.
786 * index and flags are set by code.
787 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
788 */
789 static const audio_encoding_t audio_encodings[] = {
790 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
791 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
792 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
793 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
794 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
795 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
796 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
797 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
798 #if defined(AUDIO_SUPPORT_LINEAR24)
799 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
800 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
801 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
802 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
803 #endif
804 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
805 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
806 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
807 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
808 };
809
810 static const struct portname itable[] = {
811 { AudioNmicrophone, AUDIO_MICROPHONE },
812 { AudioNline, AUDIO_LINE_IN },
813 { AudioNcd, AUDIO_CD },
814 { 0, 0 }
815 };
816 static const struct portname otable[] = {
817 { AudioNspeaker, AUDIO_SPEAKER },
818 { AudioNheadphone, AUDIO_HEADPHONE },
819 { AudioNline, AUDIO_LINE_OUT },
820 { 0, 0 }
821 };
822
823 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
824 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
825 audiochilddet, DVF_DETACH_SHUTDOWN);
826
827 static int
828 audiomatch(device_t parent, cfdata_t match, void *aux)
829 {
830 struct audio_attach_args *sa;
831
832 sa = aux;
833 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
834 __func__, sa->type, sa, sa->hwif);
835 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
836 }
837
838 static void
839 audioattach(device_t parent, device_t self, void *aux)
840 {
841 struct audio_softc *sc;
842 struct audio_attach_args *sa;
843 const struct audio_hw_if *hw_if;
844 audio_format2_t phwfmt;
845 audio_format2_t rhwfmt;
846 audio_filter_reg_t pfil;
847 audio_filter_reg_t rfil;
848 const struct sysctlnode *node;
849 void *hdlp;
850 bool is_indep;
851 int mode;
852 int props;
853 int error;
854
855 sc = device_private(self);
856 sc->sc_dev = self;
857 sa = (struct audio_attach_args *)aux;
858 hw_if = sa->hwif;
859 hdlp = sa->hdl;
860
861 if (hw_if == NULL || hw_if->get_locks == NULL) {
862 panic("audioattach: missing hw_if method");
863 }
864
865 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
866
867 #ifdef DIAGNOSTIC
868 if (hw_if->query_format == NULL ||
869 hw_if->set_format == NULL ||
870 (hw_if->start_output == NULL && hw_if->trigger_output == NULL) ||
871 (hw_if->start_input == NULL && hw_if->trigger_input == NULL) ||
872 hw_if->halt_output == NULL ||
873 hw_if->halt_input == NULL ||
874 hw_if->getdev == NULL ||
875 hw_if->set_port == NULL ||
876 hw_if->get_port == NULL ||
877 hw_if->query_devinfo == NULL ||
878 hw_if->get_props == NULL) {
879 aprint_error(": missing method\n");
880 return;
881 }
882 #endif
883
884 sc->hw_if = hw_if;
885 sc->hw_hdl = hdlp;
886 sc->hw_dev = parent;
887
888 sc->sc_blk_ms = AUDIO_BLK_MS;
889 SLIST_INIT(&sc->sc_files);
890 cv_init(&sc->sc_exlockcv, "audiolk");
891
892 mutex_enter(sc->sc_lock);
893 props = audio_get_props(sc);
894 mutex_exit(sc->sc_lock);
895
896 if ((props & AUDIO_PROP_FULLDUPLEX))
897 aprint_normal(": full duplex");
898 else
899 aprint_normal(": half duplex");
900
901 is_indep = (props & AUDIO_PROP_INDEPENDENT);
902 mode = 0;
903 if ((props & AUDIO_PROP_PLAYBACK)) {
904 mode |= AUMODE_PLAY;
905 aprint_normal(", playback");
906 }
907 if ((props & AUDIO_PROP_CAPTURE)) {
908 mode |= AUMODE_RECORD;
909 aprint_normal(", capture");
910 }
911 if ((props & AUDIO_PROP_MMAP) != 0)
912 aprint_normal(", mmap");
913 if (is_indep)
914 aprint_normal(", independent");
915
916 aprint_naive("\n");
917 aprint_normal("\n");
918
919 KASSERT((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0);
920
921 /* probe hw params */
922 memset(&phwfmt, 0, sizeof(phwfmt));
923 memset(&rhwfmt, 0, sizeof(rhwfmt));
924 memset(&pfil, 0, sizeof(pfil));
925 memset(&rfil, 0, sizeof(rfil));
926 mutex_enter(sc->sc_lock);
927 error = audio_hw_probe(sc, is_indep, &mode, &phwfmt, &rhwfmt);
928 if (error) {
929 mutex_exit(sc->sc_lock);
930 aprint_error_dev(self, "audio_hw_probe failed, "
931 "error = %d\n", error);
932 goto bad;
933 }
934 if (mode == 0) {
935 mutex_exit(sc->sc_lock);
936 aprint_error_dev(self, "audio_hw_probe failed, no mode\n");
937 goto bad;
938 }
939 /* Init hardware. */
940 /* hw_probe() also validates [pr]hwfmt. */
941 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
942 if (error) {
943 mutex_exit(sc->sc_lock);
944 aprint_error_dev(self, "audio_hw_set_format failed, "
945 "error = %d\n", error);
946 goto bad;
947 }
948
949 /*
950 * Init track mixers. If at least one direction is available on
951 * attach time, we assume a success.
952 */
953 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
954 mutex_exit(sc->sc_lock);
955 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
956 aprint_error_dev(self, "audio_mixers_init failed, "
957 "error = %d\n", error);
958 goto bad;
959 }
960
961 selinit(&sc->sc_wsel);
962 selinit(&sc->sc_rsel);
963
964 /* Initial parameter of /dev/sound */
965 sc->sc_sound_pparams = params_to_format2(&audio_default);
966 sc->sc_sound_rparams = params_to_format2(&audio_default);
967 sc->sc_sound_ppause = false;
968 sc->sc_sound_rpause = false;
969
970 /* XXX TODO: consider about sc_ai */
971
972 mixer_init(sc);
973 TRACE(2, "inputs ports=0x%x, input master=%d, "
974 "output ports=0x%x, output master=%d",
975 sc->sc_inports.allports, sc->sc_inports.master,
976 sc->sc_outports.allports, sc->sc_outports.master);
977
978 sysctl_createv(&sc->sc_log, 0, NULL, &node,
979 0,
980 CTLTYPE_NODE, device_xname(sc->sc_dev),
981 SYSCTL_DESCR("audio test"),
982 NULL, 0,
983 NULL, 0,
984 CTL_HW,
985 CTL_CREATE, CTL_EOL);
986
987 if (node != NULL) {
988 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
989 CTLFLAG_READWRITE,
990 CTLTYPE_INT, "volume",
991 SYSCTL_DESCR("software volume test"),
992 audio_sysctl_volume, 0, (void *)sc, 0,
993 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
994
995 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
996 CTLFLAG_READWRITE,
997 CTLTYPE_INT, "blk_ms",
998 SYSCTL_DESCR("blocksize in msec"),
999 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1000 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1001
1002 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1003 CTLFLAG_READWRITE,
1004 CTLTYPE_BOOL, "multiuser",
1005 SYSCTL_DESCR("allow multiple user access"),
1006 audio_sysctl_multiuser, 0, (void *)sc, 0,
1007 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1008
1009 #if defined(AUDIO_DEBUG)
1010 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1011 CTLFLAG_READWRITE,
1012 CTLTYPE_INT, "debug",
1013 SYSCTL_DESCR("debug level (0..4)"),
1014 audio_sysctl_debug, 0, (void *)sc, 0,
1015 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1016 #endif
1017 }
1018
1019 #ifdef AUDIO_PM_IDLE
1020 callout_init(&sc->sc_idle_counter, 0);
1021 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1022 #endif
1023
1024 if (!pmf_device_register(self, audio_suspend, audio_resume))
1025 aprint_error_dev(self, "couldn't establish power handler\n");
1026 #ifdef AUDIO_PM_IDLE
1027 if (!device_active_register(self, audio_activity))
1028 aprint_error_dev(self, "couldn't register activity handler\n");
1029 #endif
1030
1031 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1032 audio_volume_down, true))
1033 aprint_error_dev(self, "couldn't add volume down handler\n");
1034 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1035 audio_volume_up, true))
1036 aprint_error_dev(self, "couldn't add volume up handler\n");
1037 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1038 audio_volume_toggle, true))
1039 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1040
1041 #ifdef AUDIO_PM_IDLE
1042 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1043 #endif
1044
1045 #if defined(AUDIO_DEBUG)
1046 audio_mlog_init();
1047 #endif
1048
1049 audiorescan(self, "audio", NULL);
1050 return;
1051
1052 bad:
1053 /* Clearing hw_if means that device is attached but disabled. */
1054 sc->hw_if = NULL;
1055 aprint_error_dev(sc->sc_dev, "disabled\n");
1056 return;
1057 }
1058
1059 /*
1060 * Initialize hardware mixer.
1061 * This function is called from audioattach().
1062 */
1063 static void
1064 mixer_init(struct audio_softc *sc)
1065 {
1066 mixer_devinfo_t mi;
1067 int iclass, mclass, oclass, rclass;
1068 int record_master_found, record_source_found;
1069
1070 iclass = mclass = oclass = rclass = -1;
1071 sc->sc_inports.index = -1;
1072 sc->sc_inports.master = -1;
1073 sc->sc_inports.nports = 0;
1074 sc->sc_inports.isenum = false;
1075 sc->sc_inports.allports = 0;
1076 sc->sc_inports.isdual = false;
1077 sc->sc_inports.mixerout = -1;
1078 sc->sc_inports.cur_port = -1;
1079 sc->sc_outports.index = -1;
1080 sc->sc_outports.master = -1;
1081 sc->sc_outports.nports = 0;
1082 sc->sc_outports.isenum = false;
1083 sc->sc_outports.allports = 0;
1084 sc->sc_outports.isdual = false;
1085 sc->sc_outports.mixerout = -1;
1086 sc->sc_outports.cur_port = -1;
1087 sc->sc_monitor_port = -1;
1088 /*
1089 * Read through the underlying driver's list, picking out the class
1090 * names from the mixer descriptions. We'll need them to decode the
1091 * mixer descriptions on the next pass through the loop.
1092 */
1093 mutex_enter(sc->sc_lock);
1094 for(mi.index = 0; ; mi.index++) {
1095 if (audio_query_devinfo(sc, &mi) != 0)
1096 break;
1097 /*
1098 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1099 * All the other types describe an actual mixer.
1100 */
1101 if (mi.type == AUDIO_MIXER_CLASS) {
1102 if (strcmp(mi.label.name, AudioCinputs) == 0)
1103 iclass = mi.mixer_class;
1104 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1105 mclass = mi.mixer_class;
1106 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1107 oclass = mi.mixer_class;
1108 if (strcmp(mi.label.name, AudioCrecord) == 0)
1109 rclass = mi.mixer_class;
1110 }
1111 }
1112 mutex_exit(sc->sc_lock);
1113
1114 /* Allocate save area. Ensure non-zero allocation. */
1115 sc->sc_nmixer_states = mi.index;
1116 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1117 (sc->sc_nmixer_states + 1), KM_SLEEP);
1118
1119 /*
1120 * This is where we assign each control in the "audio" model, to the
1121 * underlying "mixer" control. We walk through the whole list once,
1122 * assigning likely candidates as we come across them.
1123 */
1124 record_master_found = 0;
1125 record_source_found = 0;
1126 mutex_enter(sc->sc_lock);
1127 for(mi.index = 0; ; mi.index++) {
1128 if (audio_query_devinfo(sc, &mi) != 0)
1129 break;
1130 KASSERT(mi.index < sc->sc_nmixer_states);
1131 if (mi.type == AUDIO_MIXER_CLASS)
1132 continue;
1133 if (mi.mixer_class == iclass) {
1134 /*
1135 * AudioCinputs is only a fallback, when we don't
1136 * find what we're looking for in AudioCrecord, so
1137 * check the flags before accepting one of these.
1138 */
1139 if (strcmp(mi.label.name, AudioNmaster) == 0
1140 && record_master_found == 0)
1141 sc->sc_inports.master = mi.index;
1142 if (strcmp(mi.label.name, AudioNsource) == 0
1143 && record_source_found == 0) {
1144 if (mi.type == AUDIO_MIXER_ENUM) {
1145 int i;
1146 for(i = 0; i < mi.un.e.num_mem; i++)
1147 if (strcmp(mi.un.e.member[i].label.name,
1148 AudioNmixerout) == 0)
1149 sc->sc_inports.mixerout =
1150 mi.un.e.member[i].ord;
1151 }
1152 au_setup_ports(sc, &sc->sc_inports, &mi,
1153 itable);
1154 }
1155 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1156 sc->sc_outports.master == -1)
1157 sc->sc_outports.master = mi.index;
1158 } else if (mi.mixer_class == mclass) {
1159 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1160 sc->sc_monitor_port = mi.index;
1161 } else if (mi.mixer_class == oclass) {
1162 if (strcmp(mi.label.name, AudioNmaster) == 0)
1163 sc->sc_outports.master = mi.index;
1164 if (strcmp(mi.label.name, AudioNselect) == 0)
1165 au_setup_ports(sc, &sc->sc_outports, &mi,
1166 otable);
1167 } else if (mi.mixer_class == rclass) {
1168 /*
1169 * These are the preferred mixers for the audio record
1170 * controls, so set the flags here, but don't check.
1171 */
1172 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1173 sc->sc_inports.master = mi.index;
1174 record_master_found = 1;
1175 }
1176 #if 1 /* Deprecated. Use AudioNmaster. */
1177 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1178 sc->sc_inports.master = mi.index;
1179 record_master_found = 1;
1180 }
1181 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1182 sc->sc_inports.master = mi.index;
1183 record_master_found = 1;
1184 }
1185 #endif
1186 if (strcmp(mi.label.name, AudioNsource) == 0) {
1187 if (mi.type == AUDIO_MIXER_ENUM) {
1188 int i;
1189 for(i = 0; i < mi.un.e.num_mem; i++)
1190 if (strcmp(mi.un.e.member[i].label.name,
1191 AudioNmixerout) == 0)
1192 sc->sc_inports.mixerout =
1193 mi.un.e.member[i].ord;
1194 }
1195 au_setup_ports(sc, &sc->sc_inports, &mi,
1196 itable);
1197 record_source_found = 1;
1198 }
1199 }
1200 }
1201 mutex_exit(sc->sc_lock);
1202 }
1203
1204 static int
1205 audioactivate(device_t self, enum devact act)
1206 {
1207 struct audio_softc *sc = device_private(self);
1208
1209 switch (act) {
1210 case DVACT_DEACTIVATE:
1211 mutex_enter(sc->sc_lock);
1212 sc->sc_dying = true;
1213 cv_broadcast(&sc->sc_exlockcv);
1214 mutex_exit(sc->sc_lock);
1215 return 0;
1216 default:
1217 return EOPNOTSUPP;
1218 }
1219 }
1220
1221 static int
1222 audiodetach(device_t self, int flags)
1223 {
1224 struct audio_softc *sc;
1225 int maj, mn;
1226 int error;
1227
1228 sc = device_private(self);
1229 TRACE(2, "flags=%d", flags);
1230
1231 /* device is not initialized */
1232 if (sc->hw_if == NULL)
1233 return 0;
1234
1235 /* Start draining existing accessors of the device. */
1236 error = config_detach_children(self, flags);
1237 if (error)
1238 return error;
1239
1240 mutex_enter(sc->sc_lock);
1241 sc->sc_dying = true;
1242 cv_broadcast(&sc->sc_exlockcv);
1243 if (sc->sc_pmixer)
1244 cv_broadcast(&sc->sc_pmixer->outcv);
1245 if (sc->sc_rmixer)
1246 cv_broadcast(&sc->sc_rmixer->outcv);
1247 mutex_exit(sc->sc_lock);
1248
1249 /* locate the major number */
1250 maj = cdevsw_lookup_major(&audio_cdevsw);
1251
1252 /*
1253 * Nuke the vnodes for any open instances (calls close).
1254 * Will wait until any activity on the device nodes has ceased.
1255 */
1256 mn = device_unit(self);
1257 vdevgone(maj, mn | SOUND_DEVICE, mn | SOUND_DEVICE, VCHR);
1258 vdevgone(maj, mn | AUDIO_DEVICE, mn | AUDIO_DEVICE, VCHR);
1259 vdevgone(maj, mn | AUDIOCTL_DEVICE, mn | AUDIOCTL_DEVICE, VCHR);
1260 vdevgone(maj, mn | MIXER_DEVICE, mn | MIXER_DEVICE, VCHR);
1261
1262 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1263 audio_volume_down, true);
1264 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1265 audio_volume_up, true);
1266 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1267 audio_volume_toggle, true);
1268
1269 #ifdef AUDIO_PM_IDLE
1270 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1271
1272 device_active_deregister(self, audio_activity);
1273 #endif
1274
1275 pmf_device_deregister(self);
1276
1277 /* Free resources */
1278 mutex_enter(sc->sc_lock);
1279 if (sc->sc_pmixer) {
1280 audio_mixer_destroy(sc, sc->sc_pmixer);
1281 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1282 }
1283 if (sc->sc_rmixer) {
1284 audio_mixer_destroy(sc, sc->sc_rmixer);
1285 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1286 }
1287 mutex_exit(sc->sc_lock);
1288
1289 seldestroy(&sc->sc_wsel);
1290 seldestroy(&sc->sc_rsel);
1291
1292 #ifdef AUDIO_PM_IDLE
1293 callout_destroy(&sc->sc_idle_counter);
1294 #endif
1295
1296 cv_destroy(&sc->sc_exlockcv);
1297
1298 #if defined(AUDIO_DEBUG)
1299 audio_mlog_free();
1300 #endif
1301
1302 return 0;
1303 }
1304
1305 static void
1306 audiochilddet(device_t self, device_t child)
1307 {
1308
1309 /* we hold no child references, so do nothing */
1310 }
1311
1312 static int
1313 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1314 {
1315
1316 if (config_match(parent, cf, aux))
1317 config_attach_loc(parent, cf, locs, aux, NULL);
1318
1319 return 0;
1320 }
1321
1322 static int
1323 audiorescan(device_t self, const char *ifattr, const int *flags)
1324 {
1325 struct audio_softc *sc = device_private(self);
1326
1327 if (!ifattr_match(ifattr, "audio"))
1328 return 0;
1329
1330 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1331
1332 return 0;
1333 }
1334
1335 /*
1336 * Called from hardware driver. This is where the MI audio driver gets
1337 * probed/attached to the hardware driver.
1338 */
1339 device_t
1340 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1341 {
1342 struct audio_attach_args arg;
1343
1344 #ifdef DIAGNOSTIC
1345 if (ahwp == NULL) {
1346 aprint_error("audio_attach_mi: NULL\n");
1347 return 0;
1348 }
1349 #endif
1350 arg.type = AUDIODEV_TYPE_AUDIO;
1351 arg.hwif = ahwp;
1352 arg.hdl = hdlp;
1353 return config_found(dev, &arg, audioprint);
1354 }
1355
1356 /*
1357 * Acquire sc_lock and enter exlock critical section.
1358 * If successful, it returns 0. Otherwise returns errno.
1359 */
1360 static int
1361 audio_enter_exclusive(struct audio_softc *sc)
1362 {
1363 int error;
1364
1365 KASSERT(!mutex_owned(sc->sc_lock));
1366
1367 mutex_enter(sc->sc_lock);
1368 if (sc->sc_dying) {
1369 mutex_exit(sc->sc_lock);
1370 return EIO;
1371 }
1372
1373 while (__predict_false(sc->sc_exlock != 0)) {
1374 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1375 if (sc->sc_dying)
1376 error = EIO;
1377 if (error) {
1378 mutex_exit(sc->sc_lock);
1379 return error;
1380 }
1381 }
1382
1383 /* Acquire */
1384 sc->sc_exlock = 1;
1385 return 0;
1386 }
1387
1388 /*
1389 * Leave exlock critical section and release sc_lock.
1390 * Must be called with sc_lock held.
1391 */
1392 static void
1393 audio_exit_exclusive(struct audio_softc *sc)
1394 {
1395
1396 KASSERT(mutex_owned(sc->sc_lock));
1397 KASSERT(sc->sc_exlock);
1398
1399 /* Leave critical section */
1400 sc->sc_exlock = 0;
1401 cv_broadcast(&sc->sc_exlockcv);
1402 mutex_exit(sc->sc_lock);
1403 }
1404
1405 /*
1406 * Wait for I/O to complete, releasing sc_lock.
1407 * Must be called with sc_lock held.
1408 */
1409 static int
1410 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1411 {
1412 int error;
1413
1414 KASSERT(track);
1415 KASSERT(mutex_owned(sc->sc_lock));
1416
1417 /* Wait for pending I/O to complete. */
1418 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1419 mstohz(AUDIO_TIMEOUT));
1420 if (sc->sc_dying) {
1421 error = EIO;
1422 }
1423 if (error) {
1424 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1425 if (error == EWOULDBLOCK)
1426 device_printf(sc->sc_dev, "device timeout\n");
1427 } else {
1428 TRACET(3, track, "wakeup");
1429 }
1430 return error;
1431 }
1432
1433 /*
1434 * Acquire the file lock.
1435 * If file is acquired successfully, returns 0. Otherwise returns errno.
1436 * In both case, sc_lock is released.
1437 */
1438 static int
1439 audio_file_acquire(struct audio_softc *sc, audio_file_t *file)
1440 {
1441 int error;
1442
1443 KASSERT(!mutex_owned(sc->sc_lock));
1444
1445 mutex_enter(sc->sc_lock);
1446 if (sc->sc_dying) {
1447 mutex_exit(sc->sc_lock);
1448 return EIO;
1449 }
1450
1451 while (__predict_false(file->lock != 0)) {
1452 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1453 if (sc->sc_dying)
1454 error = EIO;
1455 if (error) {
1456 mutex_exit(sc->sc_lock);
1457 return error;
1458 }
1459 }
1460
1461 /* Mark this file locked */
1462 file->lock = 1;
1463 mutex_exit(sc->sc_lock);
1464
1465 return 0;
1466 }
1467
1468 /*
1469 * Release the file lock.
1470 */
1471 static void
1472 audio_file_release(struct audio_softc *sc, audio_file_t *file)
1473 {
1474
1475 KASSERT(!mutex_owned(sc->sc_lock));
1476
1477 mutex_enter(sc->sc_lock);
1478 KASSERT(file->lock);
1479 file->lock = 0;
1480 cv_broadcast(&sc->sc_exlockcv);
1481 mutex_exit(sc->sc_lock);
1482 }
1483
1484 /*
1485 * Try to acquire track lock.
1486 * It doesn't block if the track lock is already aquired.
1487 * Returns true if the track lock was acquired, or false if the track
1488 * lock was already acquired.
1489 */
1490 static __inline bool
1491 audio_track_lock_tryenter(audio_track_t *track)
1492 {
1493 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1494 }
1495
1496 /*
1497 * Acquire track lock.
1498 */
1499 static __inline void
1500 audio_track_lock_enter(audio_track_t *track)
1501 {
1502 /* Don't sleep here. */
1503 while (audio_track_lock_tryenter(track) == false)
1504 ;
1505 }
1506
1507 /*
1508 * Release track lock.
1509 */
1510 static __inline void
1511 audio_track_lock_exit(audio_track_t *track)
1512 {
1513 atomic_swap_uint(&track->lock, 0);
1514 }
1515
1516
1517 static int
1518 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1519 {
1520 struct audio_softc *sc;
1521 int error;
1522
1523 /* Find the device */
1524 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1525 if (sc == NULL || sc->hw_if == NULL)
1526 return ENXIO;
1527
1528 error = audio_enter_exclusive(sc);
1529 if (error)
1530 return error;
1531
1532 device_active(sc->sc_dev, DVA_SYSTEM);
1533 switch (AUDIODEV(dev)) {
1534 case SOUND_DEVICE:
1535 case AUDIO_DEVICE:
1536 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1537 break;
1538 case AUDIOCTL_DEVICE:
1539 error = audioctl_open(dev, sc, flags, ifmt, l);
1540 break;
1541 case MIXER_DEVICE:
1542 error = mixer_open(dev, sc, flags, ifmt, l);
1543 break;
1544 default:
1545 error = ENXIO;
1546 break;
1547 }
1548 audio_exit_exclusive(sc);
1549
1550 return error;
1551 }
1552
1553 static int
1554 audioclose(struct file *fp)
1555 {
1556 struct audio_softc *sc;
1557 audio_file_t *file;
1558 int error;
1559 dev_t dev;
1560
1561 KASSERT(fp->f_audioctx);
1562 file = fp->f_audioctx;
1563 sc = file->sc;
1564 dev = file->dev;
1565
1566 /* Acquire file lock and exlock */
1567 /* XXX what should I do when an error occurs? */
1568 error = audio_file_acquire(sc, file);
1569 if (error)
1570 return error;
1571
1572 device_active(sc->sc_dev, DVA_SYSTEM);
1573 switch (AUDIODEV(dev)) {
1574 case SOUND_DEVICE:
1575 case AUDIO_DEVICE:
1576 error = audio_close(sc, file);
1577 break;
1578 case AUDIOCTL_DEVICE:
1579 error = 0;
1580 break;
1581 case MIXER_DEVICE:
1582 error = mixer_close(sc, file);
1583 break;
1584 default:
1585 error = ENXIO;
1586 break;
1587 }
1588 if (error == 0) {
1589 kmem_free(fp->f_audioctx, sizeof(audio_file_t));
1590 fp->f_audioctx = NULL;
1591 }
1592
1593 /*
1594 * Since file has already been destructed,
1595 * audio_file_release() is not necessary.
1596 */
1597
1598 return error;
1599 }
1600
1601 static int
1602 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1603 int ioflag)
1604 {
1605 struct audio_softc *sc;
1606 audio_file_t *file;
1607 int error;
1608 dev_t dev;
1609
1610 KASSERT(fp->f_audioctx);
1611 file = fp->f_audioctx;
1612 sc = file->sc;
1613 dev = file->dev;
1614
1615 error = audio_file_acquire(sc, file);
1616 if (error)
1617 return error;
1618
1619 if (fp->f_flag & O_NONBLOCK)
1620 ioflag |= IO_NDELAY;
1621
1622 switch (AUDIODEV(dev)) {
1623 case SOUND_DEVICE:
1624 case AUDIO_DEVICE:
1625 error = audio_read(sc, uio, ioflag, file);
1626 break;
1627 case AUDIOCTL_DEVICE:
1628 case MIXER_DEVICE:
1629 error = ENODEV;
1630 break;
1631 default:
1632 error = ENXIO;
1633 break;
1634 }
1635 audio_file_release(sc, file);
1636
1637 return error;
1638 }
1639
1640 static int
1641 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1642 int ioflag)
1643 {
1644 struct audio_softc *sc;
1645 audio_file_t *file;
1646 int error;
1647 dev_t dev;
1648
1649 KASSERT(fp->f_audioctx);
1650 file = fp->f_audioctx;
1651 sc = file->sc;
1652 dev = file->dev;
1653
1654 error = audio_file_acquire(sc, file);
1655 if (error)
1656 return error;
1657
1658 if (fp->f_flag & O_NONBLOCK)
1659 ioflag |= IO_NDELAY;
1660
1661 switch (AUDIODEV(dev)) {
1662 case SOUND_DEVICE:
1663 case AUDIO_DEVICE:
1664 error = audio_write(sc, uio, ioflag, file);
1665 break;
1666 case AUDIOCTL_DEVICE:
1667 case MIXER_DEVICE:
1668 error = ENODEV;
1669 break;
1670 default:
1671 error = ENXIO;
1672 break;
1673 }
1674 audio_file_release(sc, file);
1675
1676 return error;
1677 }
1678
1679 static int
1680 audioioctl(struct file *fp, u_long cmd, void *addr)
1681 {
1682 struct audio_softc *sc;
1683 audio_file_t *file;
1684 struct lwp *l = curlwp;
1685 int error;
1686 dev_t dev;
1687
1688 KASSERT(fp->f_audioctx);
1689 file = fp->f_audioctx;
1690 sc = file->sc;
1691 dev = file->dev;
1692
1693 error = audio_file_acquire(sc, file);
1694 if (error)
1695 return error;
1696
1697 switch (AUDIODEV(dev)) {
1698 case SOUND_DEVICE:
1699 case AUDIO_DEVICE:
1700 case AUDIOCTL_DEVICE:
1701 mutex_enter(sc->sc_lock);
1702 device_active(sc->sc_dev, DVA_SYSTEM);
1703 mutex_exit(sc->sc_lock);
1704 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1705 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1706 else
1707 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1708 file);
1709 break;
1710 case MIXER_DEVICE:
1711 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1712 break;
1713 default:
1714 error = ENXIO;
1715 break;
1716 }
1717 audio_file_release(sc, file);
1718
1719 return error;
1720 }
1721
1722 static int
1723 audiostat(struct file *fp, struct stat *st)
1724 {
1725 audio_file_t *file;
1726
1727 KASSERT(fp->f_audioctx);
1728 file = fp->f_audioctx;
1729
1730 memset(st, 0, sizeof(*st));
1731
1732 st->st_dev = file->dev;
1733 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1734 st->st_gid = kauth_cred_getegid(fp->f_cred);
1735 st->st_mode = S_IFCHR;
1736 return 0;
1737 }
1738
1739 static int
1740 audiopoll(struct file *fp, int events)
1741 {
1742 struct audio_softc *sc;
1743 audio_file_t *file;
1744 struct lwp *l = curlwp;
1745 int revents;
1746 dev_t dev;
1747
1748 KASSERT(fp->f_audioctx);
1749 file = fp->f_audioctx;
1750 sc = file->sc;
1751 dev = file->dev;
1752
1753 if (audio_file_acquire(sc, file) != 0)
1754 return 0;
1755
1756 switch (AUDIODEV(dev)) {
1757 case SOUND_DEVICE:
1758 case AUDIO_DEVICE:
1759 revents = audio_poll(sc, events, l, file);
1760 break;
1761 case AUDIOCTL_DEVICE:
1762 case MIXER_DEVICE:
1763 revents = 0;
1764 break;
1765 default:
1766 revents = POLLERR;
1767 break;
1768 }
1769 audio_file_release(sc, file);
1770
1771 return revents;
1772 }
1773
1774 static int
1775 audiokqfilter(struct file *fp, struct knote *kn)
1776 {
1777 struct audio_softc *sc;
1778 audio_file_t *file;
1779 dev_t dev;
1780 int error;
1781
1782 KASSERT(fp->f_audioctx);
1783 file = fp->f_audioctx;
1784 sc = file->sc;
1785 dev = file->dev;
1786
1787 error = audio_file_acquire(sc, file);
1788 if (error)
1789 return error;
1790
1791 switch (AUDIODEV(dev)) {
1792 case SOUND_DEVICE:
1793 case AUDIO_DEVICE:
1794 error = audio_kqfilter(sc, file, kn);
1795 break;
1796 case AUDIOCTL_DEVICE:
1797 case MIXER_DEVICE:
1798 error = ENODEV;
1799 break;
1800 default:
1801 error = ENXIO;
1802 break;
1803 }
1804 audio_file_release(sc, file);
1805
1806 return error;
1807 }
1808
1809 static int
1810 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1811 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1812 {
1813 struct audio_softc *sc;
1814 audio_file_t *file;
1815 dev_t dev;
1816 int error;
1817
1818 KASSERT(fp->f_audioctx);
1819 file = fp->f_audioctx;
1820 sc = file->sc;
1821 dev = file->dev;
1822
1823 error = audio_file_acquire(sc, file);
1824 if (error)
1825 return error;
1826
1827 mutex_enter(sc->sc_lock);
1828 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1829 mutex_exit(sc->sc_lock);
1830
1831 switch (AUDIODEV(dev)) {
1832 case SOUND_DEVICE:
1833 case AUDIO_DEVICE:
1834 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1835 uobjp, maxprotp, file);
1836 break;
1837 case AUDIOCTL_DEVICE:
1838 case MIXER_DEVICE:
1839 default:
1840 error = ENOTSUP;
1841 break;
1842 }
1843 audio_file_release(sc, file);
1844
1845 return error;
1846 }
1847
1848
1849 /* Exported interfaces for audiobell. */
1850
1851 /*
1852 * Open for audiobell.
1853 * sample_rate, encoding, precision and channels in arg are in-parameter
1854 * and indicates input encoding.
1855 * Stores allocated file to arg->file.
1856 * Stores blocksize to arg->blocksize.
1857 * If successful returns 0, otherwise errno.
1858 */
1859 int
1860 audiobellopen(dev_t dev, struct audiobell_arg *arg)
1861 {
1862 struct audio_softc *sc;
1863 int error;
1864
1865 /* Find the device */
1866 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1867 if (sc == NULL || sc->hw_if == NULL)
1868 return ENXIO;
1869
1870 error = audio_enter_exclusive(sc);
1871 if (error)
1872 return error;
1873
1874 device_active(sc->sc_dev, DVA_SYSTEM);
1875 error = audio_open(dev, sc, FWRITE, 0, curlwp, arg);
1876
1877 audio_exit_exclusive(sc);
1878 return error;
1879 }
1880
1881 /* Close for audiobell */
1882 int
1883 audiobellclose(audio_file_t *file)
1884 {
1885 struct audio_softc *sc;
1886 int error;
1887
1888 sc = file->sc;
1889
1890 /* XXX what should I do when an error occurs? */
1891 error = audio_file_acquire(sc, file);
1892 if (error)
1893 return error;
1894
1895 device_active(sc->sc_dev, DVA_SYSTEM);
1896 error = audio_close(sc, file);
1897
1898 /*
1899 * Since file has already been destructed,
1900 * audio_file_release() is not necessary.
1901 */
1902
1903 return error;
1904 }
1905
1906 /* Playback for audiobell */
1907 int
1908 audiobellwrite(audio_file_t *file, struct uio *uio)
1909 {
1910 struct audio_softc *sc;
1911 int error;
1912
1913 sc = file->sc;
1914 error = audio_file_acquire(sc, file);
1915 if (error)
1916 return error;
1917
1918 error = audio_write(sc, uio, 0, file);
1919
1920 audio_file_release(sc, file);
1921 return error;
1922 }
1923
1924
1925 /*
1926 * Audio driver
1927 */
1928 int
1929 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
1930 struct lwp *l, struct audiobell_arg *bell)
1931 {
1932 struct audio_info ai;
1933 struct file *fp;
1934 audio_file_t *af;
1935 audio_ring_t *hwbuf;
1936 bool fullduplex;
1937 int fd;
1938 int error;
1939
1940 KASSERT(mutex_owned(sc->sc_lock));
1941 KASSERT(sc->sc_exlock);
1942
1943 TRACE(1, "%sflags=0x%x po=%d ro=%d",
1944 (audiodebug >= 3) ? "start " : "",
1945 flags, sc->sc_popens, sc->sc_ropens);
1946
1947 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
1948 af->sc = sc;
1949 af->dev = dev;
1950 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
1951 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
1952 if ((flags & FREAD) != 0 && audio_can_capture(sc))
1953 af->mode |= AUMODE_RECORD;
1954 if (af->mode == 0) {
1955 error = ENXIO;
1956 goto bad1;
1957 }
1958
1959 fullduplex = (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX);
1960
1961 /*
1962 * On half duplex hardware,
1963 * 1. if mode is (PLAY | REC), let mode PLAY.
1964 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
1965 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
1966 */
1967 if (fullduplex == false) {
1968 if ((af->mode & AUMODE_PLAY)) {
1969 if (sc->sc_ropens != 0) {
1970 TRACE(1, "record track already exists");
1971 error = ENODEV;
1972 goto bad1;
1973 }
1974 /* Play takes precedence */
1975 af->mode &= ~AUMODE_RECORD;
1976 }
1977 if ((af->mode & AUMODE_RECORD)) {
1978 if (sc->sc_popens != 0) {
1979 TRACE(1, "play track already exists");
1980 error = ENODEV;
1981 goto bad1;
1982 }
1983 }
1984 }
1985
1986 /* Create tracks */
1987 if ((af->mode & AUMODE_PLAY))
1988 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
1989 if ((af->mode & AUMODE_RECORD))
1990 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
1991
1992 /* Set parameters */
1993 AUDIO_INITINFO(&ai);
1994 if (bell) {
1995 ai.play.sample_rate = bell->sample_rate;
1996 ai.play.encoding = bell->encoding;
1997 ai.play.channels = bell->channels;
1998 ai.play.precision = bell->precision;
1999 ai.play.pause = false;
2000 } else if (ISDEVAUDIO(dev)) {
2001 /* If /dev/audio, initialize everytime. */
2002 ai.play.sample_rate = audio_default.sample_rate;
2003 ai.play.encoding = audio_default.encoding;
2004 ai.play.channels = audio_default.channels;
2005 ai.play.precision = audio_default.precision;
2006 ai.play.pause = false;
2007 ai.record.sample_rate = audio_default.sample_rate;
2008 ai.record.encoding = audio_default.encoding;
2009 ai.record.channels = audio_default.channels;
2010 ai.record.precision = audio_default.precision;
2011 ai.record.pause = false;
2012 } else {
2013 /* If /dev/sound, take over the previous parameters. */
2014 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2015 ai.play.encoding = sc->sc_sound_pparams.encoding;
2016 ai.play.channels = sc->sc_sound_pparams.channels;
2017 ai.play.precision = sc->sc_sound_pparams.precision;
2018 ai.play.pause = sc->sc_sound_ppause;
2019 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2020 ai.record.encoding = sc->sc_sound_rparams.encoding;
2021 ai.record.channels = sc->sc_sound_rparams.channels;
2022 ai.record.precision = sc->sc_sound_rparams.precision;
2023 ai.record.pause = sc->sc_sound_rpause;
2024 }
2025 error = audio_file_setinfo(sc, af, &ai);
2026 if (error)
2027 goto bad2;
2028
2029 if (sc->sc_popens + sc->sc_ropens == 0) {
2030 /* First open */
2031
2032 sc->sc_cred = kauth_cred_get();
2033 kauth_cred_hold(sc->sc_cred);
2034
2035 if (sc->hw_if->open) {
2036 int hwflags;
2037
2038 /*
2039 * Call hw_if->open() only at first open of
2040 * combination of playback and recording.
2041 * On full duplex hardware, the flags passed to
2042 * hw_if->open() is always (FREAD | FWRITE)
2043 * regardless of this open()'s flags.
2044 * see also dev/isa/aria.c
2045 * but ckeck its playback or recording capability.
2046 * On half duplex hardware, the flags passed to
2047 * hw_if->open() is either FREAD or FWRITE.
2048 * see also arch/evbarm/mini2440/audio_mini2440.c
2049 */
2050 if (fullduplex) {
2051 hwflags = FREAD | FWRITE;
2052 if (!audio_can_playback(sc))
2053 hwflags &= ~FWRITE;
2054 if (!audio_can_capture(sc))
2055 hwflags &= ~FREAD;
2056 } else {
2057 /* Construct hwflags from af->mode. */
2058 hwflags = 0;
2059 if ((af->mode & AUMODE_PLAY) != 0)
2060 hwflags |= FWRITE;
2061 if ((af->mode & AUMODE_RECORD) != 0)
2062 hwflags |= FREAD;
2063 }
2064
2065 mutex_enter(sc->sc_intr_lock);
2066 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2067 mutex_exit(sc->sc_intr_lock);
2068 if (error)
2069 goto bad2;
2070 }
2071
2072 /*
2073 * Set speaker mode when a half duplex.
2074 * XXX I'm not sure this is correct.
2075 */
2076 if (1/*XXX*/) {
2077 if (sc->hw_if->speaker_ctl) {
2078 int on;
2079 if (af->ptrack) {
2080 on = 1;
2081 } else {
2082 on = 0;
2083 }
2084 mutex_enter(sc->sc_intr_lock);
2085 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2086 mutex_exit(sc->sc_intr_lock);
2087 if (error)
2088 goto bad3;
2089 }
2090 }
2091 } else if (sc->sc_multiuser == false) {
2092 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2093 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2094 error = EPERM;
2095 goto bad2;
2096 }
2097 }
2098
2099 /* Call init_output if this is the first playback open. */
2100 if (af->ptrack && sc->sc_popens == 0) {
2101 if (sc->hw_if->init_output) {
2102 hwbuf = &sc->sc_pmixer->hwbuf;
2103 mutex_enter(sc->sc_intr_lock);
2104 error = sc->hw_if->init_output(sc->hw_hdl,
2105 hwbuf->mem,
2106 hwbuf->capacity *
2107 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2108 mutex_exit(sc->sc_intr_lock);
2109 if (error)
2110 goto bad3;
2111 }
2112 }
2113 /* Call init_input if this is the first recording open. */
2114 if (af->rtrack && sc->sc_ropens == 0) {
2115 if (sc->hw_if->init_input) {
2116 hwbuf = &sc->sc_rmixer->hwbuf;
2117 mutex_enter(sc->sc_intr_lock);
2118 error = sc->hw_if->init_input(sc->hw_hdl,
2119 hwbuf->mem,
2120 hwbuf->capacity *
2121 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2122 mutex_exit(sc->sc_intr_lock);
2123 if (error)
2124 goto bad3;
2125 }
2126 }
2127
2128 if (bell == NULL) {
2129 error = fd_allocfile(&fp, &fd);
2130 if (error)
2131 goto bad3;
2132 }
2133
2134 /*
2135 * Count up finally.
2136 * Don't fail from here.
2137 */
2138 if (af->ptrack)
2139 sc->sc_popens++;
2140 if (af->rtrack)
2141 sc->sc_ropens++;
2142 mutex_enter(sc->sc_intr_lock);
2143 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2144 mutex_exit(sc->sc_intr_lock);
2145
2146 if (bell) {
2147 bell->file = af;
2148 } else {
2149 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2150 KASSERT(error == EMOVEFD);
2151 }
2152
2153 TRACEF(3, af, "done");
2154 return error;
2155
2156 /*
2157 * Since track here is not yet linked to sc_files,
2158 * you can call track_destroy() without sc_intr_lock.
2159 */
2160 bad3:
2161 if (sc->sc_popens + sc->sc_ropens == 0) {
2162 if (sc->hw_if->close) {
2163 mutex_enter(sc->sc_intr_lock);
2164 sc->hw_if->close(sc->hw_hdl);
2165 mutex_exit(sc->sc_intr_lock);
2166 }
2167 }
2168 bad2:
2169 if (af->rtrack) {
2170 audio_track_destroy(af->rtrack);
2171 af->rtrack = NULL;
2172 }
2173 if (af->ptrack) {
2174 audio_track_destroy(af->ptrack);
2175 af->ptrack = NULL;
2176 }
2177 bad1:
2178 kmem_free(af, sizeof(*af));
2179 return error;
2180 }
2181
2182 int
2183 audio_close(struct audio_softc *sc, audio_file_t *file)
2184 {
2185 audio_track_t *oldtrack;
2186 int error;
2187
2188 KASSERT(!mutex_owned(sc->sc_lock));
2189 KASSERT(file->lock);
2190
2191 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2192 (audiodebug >= 3) ? "start " : "",
2193 (int)curproc->p_pid, (int)curlwp->l_lid,
2194 sc->sc_popens, sc->sc_ropens);
2195 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2196 "sc->sc_popens=%d, sc->sc_ropens=%d",
2197 sc->sc_popens, sc->sc_ropens);
2198
2199 /*
2200 * Drain first.
2201 * It must be done before acquiring exclusive lock.
2202 */
2203 if (file->ptrack) {
2204 mutex_enter(sc->sc_lock);
2205 audio_track_drain(sc, file->ptrack);
2206 mutex_exit(sc->sc_lock);
2207 }
2208
2209 /* Then, acquire exclusive lock to protect counters. */
2210 /* XXX what should I do when an error occurs? */
2211 error = audio_enter_exclusive(sc);
2212 if (error) {
2213 audio_file_release(sc, file);
2214 return error;
2215 }
2216
2217 if (file->ptrack) {
2218 /* Call hw halt_output if this is the last playback track. */
2219 if (sc->sc_popens == 1 && sc->sc_pbusy) {
2220 error = audio_pmixer_halt(sc);
2221 if (error) {
2222 device_printf(sc->sc_dev,
2223 "halt_output failed with %d\n", error);
2224 }
2225 }
2226
2227 /* Destroy the track. */
2228 oldtrack = file->ptrack;
2229 mutex_enter(sc->sc_intr_lock);
2230 file->ptrack = NULL;
2231 mutex_exit(sc->sc_intr_lock);
2232 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2233 oldtrack->dropframes);
2234 audio_track_destroy(oldtrack);
2235
2236 KASSERT(sc->sc_popens > 0);
2237 sc->sc_popens--;
2238 }
2239 if (file->rtrack) {
2240 /* Call hw halt_input if this is the last recording track. */
2241 if (sc->sc_ropens == 1 && sc->sc_rbusy) {
2242 error = audio_rmixer_halt(sc);
2243 if (error) {
2244 device_printf(sc->sc_dev,
2245 "halt_input failed with %d\n", error);
2246 }
2247 }
2248
2249 /* Destroy the track. */
2250 oldtrack = file->rtrack;
2251 mutex_enter(sc->sc_intr_lock);
2252 file->rtrack = NULL;
2253 mutex_exit(sc->sc_intr_lock);
2254 TRACET(3, oldtrack, "dropframes=%" PRIu64,
2255 oldtrack->dropframes);
2256 audio_track_destroy(oldtrack);
2257
2258 KASSERT(sc->sc_ropens > 0);
2259 sc->sc_ropens--;
2260 }
2261
2262 /* Call hw close if this is the last track. */
2263 if (sc->sc_popens + sc->sc_ropens == 0) {
2264 if (sc->hw_if->close) {
2265 TRACE(2, "hw_if close");
2266 mutex_enter(sc->sc_intr_lock);
2267 sc->hw_if->close(sc->hw_hdl);
2268 mutex_exit(sc->sc_intr_lock);
2269 }
2270
2271 kauth_cred_free(sc->sc_cred);
2272 }
2273
2274 mutex_enter(sc->sc_intr_lock);
2275 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2276 mutex_exit(sc->sc_intr_lock);
2277
2278 TRACE(3, "done");
2279 audio_exit_exclusive(sc);
2280 return 0;
2281 }
2282
2283 int
2284 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2285 audio_file_t *file)
2286 {
2287 audio_track_t *track;
2288 audio_ring_t *usrbuf;
2289 audio_ring_t *input;
2290 int error;
2291
2292 track = file->rtrack;
2293 KASSERT(track);
2294 TRACET(2, track, "resid=%zd", uio->uio_resid);
2295
2296 KASSERT(!mutex_owned(sc->sc_lock));
2297 KASSERT(file->lock);
2298
2299 /* I think it's better than EINVAL. */
2300 if (track->mmapped)
2301 return EPERM;
2302
2303 #ifdef AUDIO_PM_IDLE
2304 mutex_enter(sc->sc_lock);
2305 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2306 device_active(&sc->sc_dev, DVA_SYSTEM);
2307 mutex_exit(sc->sc_lock);
2308 #endif
2309
2310 /*
2311 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2312 * However read() system call itself can be called because it's
2313 * opened with O_RDWR. So in this case, deny this read().
2314 */
2315 if ((file->mode & AUMODE_RECORD) == 0) {
2316 return EBADF;
2317 }
2318
2319 TRACET(3, track, "resid=%zd", uio->uio_resid);
2320
2321 usrbuf = &track->usrbuf;
2322 input = track->input;
2323
2324 /*
2325 * The first read starts rmixer.
2326 */
2327 error = audio_enter_exclusive(sc);
2328 if (error)
2329 return error;
2330 if (sc->sc_rbusy == false)
2331 audio_rmixer_start(sc);
2332 audio_exit_exclusive(sc);
2333
2334 error = 0;
2335 while (uio->uio_resid > 0 && error == 0) {
2336 int bytes;
2337
2338 TRACET(3, track,
2339 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2340 uio->uio_resid,
2341 input->head, input->used, input->capacity,
2342 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2343
2344 /* Wait when buffers are empty. */
2345 mutex_enter(sc->sc_lock);
2346 for (;;) {
2347 bool empty;
2348 audio_track_lock_enter(track);
2349 empty = (input->used == 0 && usrbuf->used == 0);
2350 audio_track_lock_exit(track);
2351 if (!empty)
2352 break;
2353
2354 if ((ioflag & IO_NDELAY)) {
2355 mutex_exit(sc->sc_lock);
2356 return EWOULDBLOCK;
2357 }
2358
2359 TRACET(3, track, "sleep");
2360 error = audio_track_waitio(sc, track);
2361 if (error) {
2362 mutex_exit(sc->sc_lock);
2363 return error;
2364 }
2365 }
2366 mutex_exit(sc->sc_lock);
2367
2368 audio_track_lock_enter(track);
2369 audio_track_record(track);
2370 audio_track_lock_exit(track);
2371
2372 /* uiomove from usrbuf as much as possible. */
2373 bytes = uimin(usrbuf->used, uio->uio_resid);
2374 while (bytes > 0) {
2375 int head = usrbuf->head;
2376 int len = uimin(bytes, usrbuf->capacity - head);
2377 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2378 uio);
2379 if (error) {
2380 device_printf(sc->sc_dev,
2381 "uiomove(len=%d) failed with %d\n",
2382 len, error);
2383 goto abort;
2384 }
2385 auring_take(usrbuf, len);
2386 track->useriobytes += len;
2387 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2388 len,
2389 usrbuf->head, usrbuf->used, usrbuf->capacity);
2390 bytes -= len;
2391 }
2392 }
2393
2394 abort:
2395 return error;
2396 }
2397
2398
2399 /*
2400 * Clear file's playback and/or record track buffer immediately.
2401 */
2402 static void
2403 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2404 {
2405
2406 if (file->ptrack)
2407 audio_track_clear(sc, file->ptrack);
2408 if (file->rtrack)
2409 audio_track_clear(sc, file->rtrack);
2410 }
2411
2412 int
2413 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2414 audio_file_t *file)
2415 {
2416 audio_track_t *track;
2417 audio_ring_t *usrbuf;
2418 audio_ring_t *outbuf;
2419 int error;
2420
2421 track = file->ptrack;
2422 KASSERT(track);
2423 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2424 audiodebug >= 3 ? "begin " : "",
2425 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2426
2427 KASSERT(!mutex_owned(sc->sc_lock));
2428 KASSERT(file->lock);
2429
2430 /* I think it's better than EINVAL. */
2431 if (track->mmapped)
2432 return EPERM;
2433
2434 if (uio->uio_resid == 0) {
2435 track->eofcounter++;
2436 return 0;
2437 }
2438
2439 #ifdef AUDIO_PM_IDLE
2440 mutex_enter(sc->sc_lock);
2441 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2442 device_active(&sc->sc_dev, DVA_SYSTEM);
2443 mutex_exit(sc->sc_lock);
2444 #endif
2445
2446 usrbuf = &track->usrbuf;
2447 outbuf = &track->outbuf;
2448
2449 /*
2450 * The first write starts pmixer.
2451 */
2452 error = audio_enter_exclusive(sc);
2453 if (error)
2454 return error;
2455 if (sc->sc_pbusy == false)
2456 audio_pmixer_start(sc, false);
2457 audio_exit_exclusive(sc);
2458
2459 track->pstate = AUDIO_STATE_RUNNING;
2460 error = 0;
2461 while (uio->uio_resid > 0 && error == 0) {
2462 int bytes;
2463
2464 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2465 uio->uio_resid,
2466 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2467
2468 /* Wait when buffers are full. */
2469 mutex_enter(sc->sc_lock);
2470 for (;;) {
2471 bool full;
2472 audio_track_lock_enter(track);
2473 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2474 outbuf->used >= outbuf->capacity);
2475 audio_track_lock_exit(track);
2476 if (!full)
2477 break;
2478
2479 if ((ioflag & IO_NDELAY)) {
2480 error = EWOULDBLOCK;
2481 mutex_exit(sc->sc_lock);
2482 goto abort;
2483 }
2484
2485 TRACET(3, track, "sleep usrbuf=%d/H%d",
2486 usrbuf->used, track->usrbuf_usedhigh);
2487 error = audio_track_waitio(sc, track);
2488 if (error) {
2489 mutex_exit(sc->sc_lock);
2490 goto abort;
2491 }
2492 }
2493 mutex_exit(sc->sc_lock);
2494
2495 /* uiomove to usrbuf as much as possible. */
2496 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2497 uio->uio_resid);
2498 while (bytes > 0) {
2499 int tail = auring_tail(usrbuf);
2500 int len = uimin(bytes, usrbuf->capacity - tail);
2501 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2502 uio);
2503 if (error) {
2504 device_printf(sc->sc_dev,
2505 "uiomove(len=%d) failed with %d\n",
2506 len, error);
2507 goto abort;
2508 }
2509 auring_push(usrbuf, len);
2510 track->useriobytes += len;
2511 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2512 len,
2513 usrbuf->head, usrbuf->used, usrbuf->capacity);
2514 bytes -= len;
2515 }
2516
2517 /* Convert them as much as possible. */
2518 audio_track_lock_enter(track);
2519 while (usrbuf->used >= track->usrbuf_blksize &&
2520 outbuf->used < outbuf->capacity) {
2521 audio_track_play(track);
2522 }
2523 audio_track_lock_exit(track);
2524 }
2525
2526 abort:
2527 TRACET(3, track, "done error=%d", error);
2528 return error;
2529 }
2530
2531 int
2532 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2533 struct lwp *l, audio_file_t *file)
2534 {
2535 struct audio_offset *ao;
2536 struct audio_info ai;
2537 audio_track_t *track;
2538 audio_encoding_t *ae;
2539 audio_format_query_t *query;
2540 u_int stamp;
2541 u_int offs;
2542 int fd;
2543 int index;
2544 int error;
2545
2546 KASSERT(!mutex_owned(sc->sc_lock));
2547 KASSERT(file->lock);
2548
2549 #if defined(AUDIO_DEBUG)
2550 const char *ioctlnames[] = {
2551 " AUDIO_GETINFO", /* 21 */
2552 " AUDIO_SETINFO", /* 22 */
2553 " AUDIO_DRAIN", /* 23 */
2554 " AUDIO_FLUSH", /* 24 */
2555 " AUDIO_WSEEK", /* 25 */
2556 " AUDIO_RERROR", /* 26 */
2557 " AUDIO_GETDEV", /* 27 */
2558 " AUDIO_GETENC", /* 28 */
2559 " AUDIO_GETFD", /* 29 */
2560 " AUDIO_SETFD", /* 30 */
2561 " AUDIO_PERROR", /* 31 */
2562 " AUDIO_GETIOFFS", /* 32 */
2563 " AUDIO_GETOOFFS", /* 33 */
2564 " AUDIO_GETPROPS", /* 34 */
2565 " AUDIO_GETBUFINFO", /* 35 */
2566 " AUDIO_SETCHAN", /* 36 */
2567 " AUDIO_GETCHAN", /* 37 */
2568 " AUDIO_QUERYFORMAT", /* 38 */
2569 " AUDIO_GETFORMAT", /* 39 */
2570 " AUDIO_SETFORMAT", /* 40 */
2571 };
2572 int nameidx = (cmd & 0xff);
2573 const char *ioctlname = "";
2574 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2575 ioctlname = ioctlnames[nameidx - 21];
2576 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2577 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2578 (int)curproc->p_pid, (int)l->l_lid);
2579 #endif
2580
2581 error = 0;
2582 switch (cmd) {
2583 case FIONBIO:
2584 /* All handled in the upper FS layer. */
2585 break;
2586
2587 case FIONREAD:
2588 /* Get the number of bytes that can be read. */
2589 if (file->rtrack) {
2590 *(int *)addr = audio_track_readablebytes(file->rtrack);
2591 } else {
2592 *(int *)addr = 0;
2593 }
2594 break;
2595
2596 case FIOASYNC:
2597 /* Set/Clear ASYNC I/O. */
2598 if (*(int *)addr) {
2599 file->async_audio = curproc->p_pid;
2600 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2601 } else {
2602 file->async_audio = 0;
2603 TRACEF(2, file, "FIOASYNC off");
2604 }
2605 break;
2606
2607 case AUDIO_FLUSH:
2608 /* XXX TODO: clear errors and restart? */
2609 audio_file_clear(sc, file);
2610 break;
2611
2612 case AUDIO_RERROR:
2613 /*
2614 * Number of read bytes dropped. We don't know where
2615 * or when they were dropped (including conversion stage).
2616 * Therefore, the number of accurate bytes or samples is
2617 * also unknown.
2618 */
2619 track = file->rtrack;
2620 if (track) {
2621 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2622 track->dropframes);
2623 }
2624 break;
2625
2626 case AUDIO_PERROR:
2627 /*
2628 * Number of write bytes dropped. We don't know where
2629 * or when they were dropped (including conversion stage).
2630 * Therefore, the number of accurate bytes or samples is
2631 * also unknown.
2632 */
2633 track = file->ptrack;
2634 if (track) {
2635 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2636 track->dropframes);
2637 }
2638 break;
2639
2640 case AUDIO_GETIOFFS:
2641 /* XXX TODO */
2642 ao = (struct audio_offset *)addr;
2643 ao->samples = 0;
2644 ao->deltablks = 0;
2645 ao->offset = 0;
2646 break;
2647
2648 case AUDIO_GETOOFFS:
2649 ao = (struct audio_offset *)addr;
2650 track = file->ptrack;
2651 if (track == NULL) {
2652 ao->samples = 0;
2653 ao->deltablks = 0;
2654 ao->offset = 0;
2655 break;
2656 }
2657 mutex_enter(sc->sc_lock);
2658 mutex_enter(sc->sc_intr_lock);
2659 /* figure out where next DMA will start */
2660 stamp = track->usrbuf_stamp;
2661 offs = track->usrbuf.head;
2662 mutex_exit(sc->sc_intr_lock);
2663 mutex_exit(sc->sc_lock);
2664
2665 ao->samples = stamp;
2666 ao->deltablks = (stamp / track->usrbuf_blksize) -
2667 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2668 track->usrbuf_stamp_last = stamp;
2669 offs = rounddown(offs, track->usrbuf_blksize)
2670 + track->usrbuf_blksize;
2671 if (offs >= track->usrbuf.capacity)
2672 offs -= track->usrbuf.capacity;
2673 ao->offset = offs;
2674
2675 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2676 ao->samples, ao->deltablks, ao->offset);
2677 break;
2678
2679 case AUDIO_WSEEK:
2680 /* XXX return value does not include outbuf one. */
2681 if (file->ptrack)
2682 *(u_long *)addr = file->ptrack->usrbuf.used;
2683 break;
2684
2685 case AUDIO_SETINFO:
2686 error = audio_enter_exclusive(sc);
2687 if (error)
2688 break;
2689 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2690 if (error) {
2691 audio_exit_exclusive(sc);
2692 break;
2693 }
2694 /* XXX TODO: update last_ai if /dev/sound ? */
2695 if (ISDEVSOUND(dev))
2696 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2697 audio_exit_exclusive(sc);
2698 break;
2699
2700 case AUDIO_GETINFO:
2701 error = audio_enter_exclusive(sc);
2702 if (error)
2703 break;
2704 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2705 audio_exit_exclusive(sc);
2706 break;
2707
2708 case AUDIO_GETBUFINFO:
2709 mutex_enter(sc->sc_lock);
2710 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2711 mutex_exit(sc->sc_lock);
2712 break;
2713
2714 case AUDIO_DRAIN:
2715 if (file->ptrack) {
2716 mutex_enter(sc->sc_lock);
2717 error = audio_track_drain(sc, file->ptrack);
2718 mutex_exit(sc->sc_lock);
2719 }
2720 break;
2721
2722 case AUDIO_GETDEV:
2723 mutex_enter(sc->sc_lock);
2724 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2725 mutex_exit(sc->sc_lock);
2726 break;
2727
2728 case AUDIO_GETENC:
2729 ae = (audio_encoding_t *)addr;
2730 index = ae->index;
2731 if (index < 0 || index >= __arraycount(audio_encodings)) {
2732 error = EINVAL;
2733 break;
2734 }
2735 *ae = audio_encodings[index];
2736 ae->index = index;
2737 /*
2738 * EMULATED always.
2739 * EMULATED flag at that time used to mean that it could
2740 * not be passed directly to the hardware as-is. But
2741 * currently, all formats including hardware native is not
2742 * passed directly to the hardware. So I set EMULATED
2743 * flag for all formats.
2744 */
2745 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2746 break;
2747
2748 case AUDIO_GETFD:
2749 /*
2750 * Returns the current setting of full duplex mode.
2751 * If HW has full duplex mode and there are two mixers,
2752 * it is full duplex. Otherwise half duplex.
2753 */
2754 mutex_enter(sc->sc_lock);
2755 fd = (audio_get_props(sc) & AUDIO_PROP_FULLDUPLEX)
2756 && (sc->sc_pmixer && sc->sc_rmixer);
2757 mutex_exit(sc->sc_lock);
2758 *(int *)addr = fd;
2759 break;
2760
2761 case AUDIO_GETPROPS:
2762 mutex_enter(sc->sc_lock);
2763 *(int *)addr = audio_get_props(sc);
2764 mutex_exit(sc->sc_lock);
2765 break;
2766
2767 case AUDIO_QUERYFORMAT:
2768 query = (audio_format_query_t *)addr;
2769 if (sc->hw_if->query_format) {
2770 mutex_enter(sc->sc_lock);
2771 error = sc->hw_if->query_format(sc->hw_hdl, query);
2772 mutex_exit(sc->sc_lock);
2773 /* Hide internal infomations */
2774 query->fmt.driver_data = NULL;
2775 } else {
2776 error = ENODEV;
2777 }
2778 break;
2779
2780 case AUDIO_GETFORMAT:
2781 audio_mixers_get_format(sc, (struct audio_info *)addr);
2782 break;
2783
2784 case AUDIO_SETFORMAT:
2785 mutex_enter(sc->sc_lock);
2786 audio_mixers_get_format(sc, &ai);
2787 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
2788 if (error) {
2789 /* Rollback */
2790 audio_mixers_set_format(sc, &ai);
2791 }
2792 mutex_exit(sc->sc_lock);
2793 break;
2794
2795 case AUDIO_SETFD:
2796 case AUDIO_SETCHAN:
2797 case AUDIO_GETCHAN:
2798 /* Obsoleted */
2799 break;
2800
2801 default:
2802 if (sc->hw_if->dev_ioctl) {
2803 error = audio_enter_exclusive(sc);
2804 if (error)
2805 break;
2806 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
2807 cmd, addr, flag, l);
2808 audio_exit_exclusive(sc);
2809 } else {
2810 TRACEF(2, file, "unknown ioctl");
2811 error = EINVAL;
2812 }
2813 break;
2814 }
2815 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
2816 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2817 error);
2818 return error;
2819 }
2820
2821 /*
2822 * Returns the number of bytes that can be read on recording buffer.
2823 */
2824 static __inline int
2825 audio_track_readablebytes(const audio_track_t *track)
2826 {
2827 int bytes;
2828
2829 KASSERT(track);
2830 KASSERT(track->mode == AUMODE_RECORD);
2831
2832 /*
2833 * Although usrbuf is primarily readable data, recorded data
2834 * also stays in track->input until reading. So it is necessary
2835 * to add it. track->input is in frame, usrbuf is in byte.
2836 */
2837 bytes = track->usrbuf.used +
2838 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
2839 return bytes;
2840 }
2841
2842 int
2843 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
2844 audio_file_t *file)
2845 {
2846 audio_track_t *track;
2847 int revents;
2848 bool in_is_valid;
2849 bool out_is_valid;
2850
2851 KASSERT(!mutex_owned(sc->sc_lock));
2852 KASSERT(file->lock);
2853
2854 #if defined(AUDIO_DEBUG)
2855 #define POLLEV_BITMAP "\177\020" \
2856 "b\10WRBAND\0" \
2857 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
2858 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
2859 char evbuf[64];
2860 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
2861 TRACEF(2, file, "pid=%d.%d events=%s",
2862 (int)curproc->p_pid, (int)l->l_lid, evbuf);
2863 #endif
2864
2865 revents = 0;
2866 in_is_valid = false;
2867 out_is_valid = false;
2868 if (events & (POLLIN | POLLRDNORM)) {
2869 track = file->rtrack;
2870 if (track) {
2871 int used;
2872 in_is_valid = true;
2873 used = audio_track_readablebytes(track);
2874 if (used > 0)
2875 revents |= events & (POLLIN | POLLRDNORM);
2876 }
2877 }
2878 if (events & (POLLOUT | POLLWRNORM)) {
2879 track = file->ptrack;
2880 if (track) {
2881 out_is_valid = true;
2882 if (track->usrbuf.used <= track->usrbuf_usedlow)
2883 revents |= events & (POLLOUT | POLLWRNORM);
2884 }
2885 }
2886
2887 if (revents == 0) {
2888 mutex_enter(sc->sc_lock);
2889 if (in_is_valid) {
2890 TRACEF(3, file, "selrecord rsel");
2891 selrecord(l, &sc->sc_rsel);
2892 }
2893 if (out_is_valid) {
2894 TRACEF(3, file, "selrecord wsel");
2895 selrecord(l, &sc->sc_wsel);
2896 }
2897 mutex_exit(sc->sc_lock);
2898 }
2899
2900 #if defined(AUDIO_DEBUG)
2901 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
2902 TRACEF(2, file, "revents=%s", evbuf);
2903 #endif
2904 return revents;
2905 }
2906
2907 static const struct filterops audioread_filtops = {
2908 .f_isfd = 1,
2909 .f_attach = NULL,
2910 .f_detach = filt_audioread_detach,
2911 .f_event = filt_audioread_event,
2912 };
2913
2914 static void
2915 filt_audioread_detach(struct knote *kn)
2916 {
2917 struct audio_softc *sc;
2918 audio_file_t *file;
2919
2920 file = kn->kn_hook;
2921 sc = file->sc;
2922 TRACEF(3, file, "");
2923
2924 mutex_enter(sc->sc_lock);
2925 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
2926 mutex_exit(sc->sc_lock);
2927 }
2928
2929 static int
2930 filt_audioread_event(struct knote *kn, long hint)
2931 {
2932 audio_file_t *file;
2933 audio_track_t *track;
2934
2935 file = kn->kn_hook;
2936 track = file->rtrack;
2937
2938 /*
2939 * kn_data must contain the number of bytes can be read.
2940 * The return value indicates whether the event occurs or not.
2941 */
2942
2943 if (track == NULL) {
2944 /* can not read with this descriptor. */
2945 kn->kn_data = 0;
2946 return 0;
2947 }
2948
2949 kn->kn_data = audio_track_readablebytes(track);
2950 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2951 return kn->kn_data > 0;
2952 }
2953
2954 static const struct filterops audiowrite_filtops = {
2955 .f_isfd = 1,
2956 .f_attach = NULL,
2957 .f_detach = filt_audiowrite_detach,
2958 .f_event = filt_audiowrite_event,
2959 };
2960
2961 static void
2962 filt_audiowrite_detach(struct knote *kn)
2963 {
2964 struct audio_softc *sc;
2965 audio_file_t *file;
2966
2967 file = kn->kn_hook;
2968 sc = file->sc;
2969 TRACEF(3, file, "");
2970
2971 mutex_enter(sc->sc_lock);
2972 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
2973 mutex_exit(sc->sc_lock);
2974 }
2975
2976 static int
2977 filt_audiowrite_event(struct knote *kn, long hint)
2978 {
2979 audio_file_t *file;
2980 audio_track_t *track;
2981
2982 file = kn->kn_hook;
2983 track = file->ptrack;
2984
2985 /*
2986 * kn_data must contain the number of bytes can be write.
2987 * The return value indicates whether the event occurs or not.
2988 */
2989
2990 if (track == NULL) {
2991 /* can not write with this descriptor. */
2992 kn->kn_data = 0;
2993 return 0;
2994 }
2995
2996 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
2997 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
2998 return (track->usrbuf.used < track->usrbuf_usedlow);
2999 }
3000
3001 int
3002 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3003 {
3004 struct klist *klist;
3005
3006 KASSERT(!mutex_owned(sc->sc_lock));
3007 KASSERT(file->lock);
3008
3009 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3010
3011 switch (kn->kn_filter) {
3012 case EVFILT_READ:
3013 klist = &sc->sc_rsel.sel_klist;
3014 kn->kn_fop = &audioread_filtops;
3015 break;
3016
3017 case EVFILT_WRITE:
3018 klist = &sc->sc_wsel.sel_klist;
3019 kn->kn_fop = &audiowrite_filtops;
3020 break;
3021
3022 default:
3023 return EINVAL;
3024 }
3025
3026 kn->kn_hook = file;
3027
3028 mutex_enter(sc->sc_lock);
3029 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3030 mutex_exit(sc->sc_lock);
3031
3032 return 0;
3033 }
3034
3035 int
3036 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3037 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3038 audio_file_t *file)
3039 {
3040 audio_track_t *track;
3041 vsize_t vsize;
3042 int error;
3043
3044 KASSERT(!mutex_owned(sc->sc_lock));
3045 KASSERT(file->lock);
3046
3047 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3048
3049 if (*offp < 0)
3050 return EINVAL;
3051
3052 #if 0
3053 /* XXX
3054 * The idea here was to use the protection to determine if
3055 * we are mapping the read or write buffer, but it fails.
3056 * The VM system is broken in (at least) two ways.
3057 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3058 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3059 * has to be used for mmapping the play buffer.
3060 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3061 * audio_mmap will get called at some point with VM_PROT_READ
3062 * only.
3063 * So, alas, we always map the play buffer for now.
3064 */
3065 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3066 prot == VM_PROT_WRITE)
3067 track = file->ptrack;
3068 else if (prot == VM_PROT_READ)
3069 track = file->rtrack;
3070 else
3071 return EINVAL;
3072 #else
3073 track = file->ptrack;
3074 #endif
3075 if (track == NULL)
3076 return EACCES;
3077
3078 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3079 if (len > vsize)
3080 return EOVERFLOW;
3081 if (*offp > (uint)(vsize - len))
3082 return EOVERFLOW;
3083
3084 /* XXX TODO: what happens when mmap twice. */
3085 if (!track->mmapped) {
3086 track->mmapped = true;
3087
3088 if (!track->is_pause) {
3089 error = audio_enter_exclusive(sc);
3090 if (error)
3091 return error;
3092 if (sc->sc_pbusy == false)
3093 audio_pmixer_start(sc, true);
3094 audio_exit_exclusive(sc);
3095 }
3096 /* XXX mmapping record buffer is not supported */
3097 }
3098
3099 /* get ringbuffer */
3100 *uobjp = track->uobj;
3101
3102 /* Acquire a reference for the mmap. munmap will release. */
3103 uao_reference(*uobjp);
3104 *maxprotp = prot;
3105 *advicep = UVM_ADV_RANDOM;
3106 *flagsp = MAP_SHARED;
3107 return 0;
3108 }
3109
3110 /*
3111 * /dev/audioctl has to be able to open at any time without interference
3112 * with any /dev/audio or /dev/sound.
3113 */
3114 static int
3115 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3116 struct lwp *l)
3117 {
3118 struct file *fp;
3119 audio_file_t *af;
3120 int fd;
3121 int error;
3122
3123 KASSERT(mutex_owned(sc->sc_lock));
3124 KASSERT(sc->sc_exlock);
3125
3126 TRACE(1, "");
3127
3128 error = fd_allocfile(&fp, &fd);
3129 if (error)
3130 return error;
3131
3132 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3133 af->sc = sc;
3134 af->dev = dev;
3135
3136 /* Not necessary to insert sc_files. */
3137
3138 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3139 KASSERT(error == EMOVEFD);
3140
3141 return error;
3142 }
3143
3144 /*
3145 * Reallocate 'memblock' with specified 'bytes' if 'bytes' > 0.
3146 * Or free 'memblock' and return NULL if 'byte' is zero.
3147 */
3148 static void *
3149 audio_realloc(void *memblock, size_t bytes)
3150 {
3151
3152 if (memblock != NULL) {
3153 if (bytes != 0) {
3154 return kern_realloc(memblock, bytes, M_NOWAIT);
3155 } else {
3156 kern_free(memblock);
3157 return NULL;
3158 }
3159 } else {
3160 if (bytes != 0) {
3161 return kern_malloc(bytes, M_NOWAIT);
3162 } else {
3163 return NULL;
3164 }
3165 }
3166 }
3167
3168 /*
3169 * Free 'mem' if available, and initialize the pointer.
3170 * For this reason, this is implemented as macro.
3171 */
3172 #define audio_free(mem) do { \
3173 if (mem != NULL) { \
3174 kern_free(mem); \
3175 mem = NULL; \
3176 } \
3177 } while (0)
3178
3179 /*
3180 * (Re)allocate usrbuf with 'newbufsize' bytes.
3181 * Use this function for usrbuf because only usrbuf can be mmapped.
3182 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3183 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3184 * and returns errno.
3185 * It must be called before updating usrbuf.capacity.
3186 */
3187 static int
3188 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3189 {
3190 struct audio_softc *sc;
3191 vaddr_t vstart;
3192 vsize_t oldvsize;
3193 vsize_t newvsize;
3194 int error;
3195
3196 KASSERT(newbufsize > 0);
3197 sc = track->mixer->sc;
3198
3199 /* Get a nonzero multiple of PAGE_SIZE */
3200 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3201
3202 if (track->usrbuf.mem != NULL) {
3203 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3204 PAGE_SIZE);
3205 if (oldvsize == newvsize) {
3206 track->usrbuf.capacity = newbufsize;
3207 return 0;
3208 }
3209 vstart = (vaddr_t)track->usrbuf.mem;
3210 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3211 /* uvm_unmap also detach uobj */
3212 track->uobj = NULL; /* paranoia */
3213 track->usrbuf.mem = NULL;
3214 }
3215
3216 /* Create a uvm anonymous object */
3217 track->uobj = uao_create(newvsize, 0);
3218
3219 /* Map it into the kernel virtual address space */
3220 vstart = 0;
3221 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3222 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3223 UVM_ADV_RANDOM, 0));
3224 if (error) {
3225 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3226 uao_detach(track->uobj); /* release reference */
3227 goto abort;
3228 }
3229
3230 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3231 false, 0);
3232 if (error) {
3233 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3234 error);
3235 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3236 /* uvm_unmap also detach uobj */
3237 goto abort;
3238 }
3239
3240 track->usrbuf.mem = (void *)vstart;
3241 track->usrbuf.capacity = newbufsize;
3242 memset(track->usrbuf.mem, 0, newvsize);
3243 return 0;
3244
3245 /* failure */
3246 abort:
3247 track->uobj = NULL; /* paranoia */
3248 track->usrbuf.mem = NULL;
3249 track->usrbuf.capacity = 0;
3250 return error;
3251 }
3252
3253 /*
3254 * Free usrbuf (if available).
3255 */
3256 static void
3257 audio_free_usrbuf(audio_track_t *track)
3258 {
3259 vaddr_t vstart;
3260 vsize_t vsize;
3261
3262 vstart = (vaddr_t)track->usrbuf.mem;
3263 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3264 if (track->usrbuf.mem != NULL) {
3265 /*
3266 * Unmap the kernel mapping. uvm_unmap releases the
3267 * reference to the uvm object, and this should be the
3268 * last virtual mapping of the uvm object, so no need
3269 * to explicitly release (`detach') the object.
3270 */
3271 uvm_unmap(kernel_map, vstart, vstart + vsize);
3272
3273 track->uobj = NULL;
3274 track->usrbuf.mem = NULL;
3275 track->usrbuf.capacity = 0;
3276 }
3277 }
3278
3279 /*
3280 * This filter changes the volume for each channel.
3281 * arg->context points track->ch_volume[].
3282 */
3283 static void
3284 audio_track_chvol(audio_filter_arg_t *arg)
3285 {
3286 int16_t *ch_volume;
3287 const aint_t *s;
3288 aint_t *d;
3289 u_int i;
3290 u_int ch;
3291 u_int channels;
3292
3293 DIAGNOSTIC_filter_arg(arg);
3294 KASSERT(arg->srcfmt->channels == arg->dstfmt->channels);
3295 KASSERT(arg->context != NULL);
3296 KASSERT(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS);
3297
3298 s = arg->src;
3299 d = arg->dst;
3300 ch_volume = arg->context;
3301
3302 channels = arg->srcfmt->channels;
3303 for (i = 0; i < arg->count; i++) {
3304 for (ch = 0; ch < channels; ch++) {
3305 aint2_t val;
3306 val = *s++;
3307 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
3308 val = val * ch_volume[ch] >> 8;
3309 #else
3310 val = val * ch_volume[ch] / 256;
3311 #endif
3312 *d++ = (aint_t)val;
3313 }
3314 }
3315 }
3316
3317 /*
3318 * This filter performs conversion from stereo (or more channels) to mono.
3319 */
3320 static void
3321 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3322 {
3323 const aint_t *s;
3324 aint_t *d;
3325 u_int i;
3326
3327 DIAGNOSTIC_filter_arg(arg);
3328
3329 s = arg->src;
3330 d = arg->dst;
3331
3332 for (i = 0; i < arg->count; i++) {
3333 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
3334 *d++ = (s[0] >> 1) + (s[1] >> 1);
3335 #else
3336 *d++ = (s[0] / 2) + (s[1] / 2);
3337 #endif
3338 s += arg->srcfmt->channels;
3339 }
3340 }
3341
3342 /*
3343 * This filter performs conversion from mono to stereo (or more channels).
3344 */
3345 static void
3346 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3347 {
3348 const aint_t *s;
3349 aint_t *d;
3350 u_int i;
3351 u_int ch;
3352 u_int dstchannels;
3353
3354 DIAGNOSTIC_filter_arg(arg);
3355
3356 s = arg->src;
3357 d = arg->dst;
3358 dstchannels = arg->dstfmt->channels;
3359
3360 for (i = 0; i < arg->count; i++) {
3361 d[0] = s[0];
3362 d[1] = s[0];
3363 s++;
3364 d += dstchannels;
3365 }
3366 if (dstchannels > 2) {
3367 d = arg->dst;
3368 for (i = 0; i < arg->count; i++) {
3369 for (ch = 2; ch < dstchannels; ch++) {
3370 d[ch] = 0;
3371 }
3372 d += dstchannels;
3373 }
3374 }
3375 }
3376
3377 /*
3378 * This filter shrinks M channels into N channels.
3379 * Extra channels are discarded.
3380 */
3381 static void
3382 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3383 {
3384 const aint_t *s;
3385 aint_t *d;
3386 u_int i;
3387 u_int ch;
3388
3389 DIAGNOSTIC_filter_arg(arg);
3390
3391 s = arg->src;
3392 d = arg->dst;
3393
3394 for (i = 0; i < arg->count; i++) {
3395 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3396 *d++ = s[ch];
3397 }
3398 s += arg->srcfmt->channels;
3399 }
3400 }
3401
3402 /*
3403 * This filter expands M channels into N channels.
3404 * Silence is inserted for missing channels.
3405 */
3406 static void
3407 audio_track_chmix_expand(audio_filter_arg_t *arg)
3408 {
3409 const aint_t *s;
3410 aint_t *d;
3411 u_int i;
3412 u_int ch;
3413 u_int srcchannels;
3414 u_int dstchannels;
3415
3416 DIAGNOSTIC_filter_arg(arg);
3417
3418 s = arg->src;
3419 d = arg->dst;
3420
3421 srcchannels = arg->srcfmt->channels;
3422 dstchannels = arg->dstfmt->channels;
3423 for (i = 0; i < arg->count; i++) {
3424 for (ch = 0; ch < srcchannels; ch++) {
3425 *d++ = *s++;
3426 }
3427 for (; ch < dstchannels; ch++) {
3428 *d++ = 0;
3429 }
3430 }
3431 }
3432
3433 /*
3434 * This filter performs frequency conversion (up sampling).
3435 * It uses linear interpolation.
3436 */
3437 static void
3438 audio_track_freq_up(audio_filter_arg_t *arg)
3439 {
3440 audio_track_t *track;
3441 audio_ring_t *src;
3442 audio_ring_t *dst;
3443 const aint_t *s;
3444 aint_t *d;
3445 aint_t prev[AUDIO_MAX_CHANNELS];
3446 aint_t curr[AUDIO_MAX_CHANNELS];
3447 aint_t grad[AUDIO_MAX_CHANNELS];
3448 u_int i;
3449 u_int t;
3450 u_int step;
3451 u_int channels;
3452 u_int ch;
3453 int srcused;
3454
3455 track = arg->context;
3456 KASSERT(track);
3457 src = &track->freq.srcbuf;
3458 dst = track->freq.dst;
3459 DIAGNOSTIC_ring(dst);
3460 DIAGNOSTIC_ring(src);
3461 KASSERT(src->used > 0);
3462 KASSERT(src->fmt.channels == dst->fmt.channels);
3463 KASSERT(src->head % track->mixer->frames_per_block == 0);
3464
3465 s = arg->src;
3466 d = arg->dst;
3467
3468 /*
3469 * In order to faciliate interpolation for each block, slide (delay)
3470 * input by one sample. As a result, strictly speaking, the output
3471 * phase is delayed by 1/dstfreq. However, I believe there is no
3472 * observable impact.
3473 *
3474 * Example)
3475 * srcfreq:dstfreq = 1:3
3476 *
3477 * A - -
3478 * |
3479 * |
3480 * | B - -
3481 * +-----+-----> input timeframe
3482 * 0 1
3483 *
3484 * 0 1
3485 * +-----+-----> input timeframe
3486 * | A
3487 * | x x
3488 * | x x
3489 * x (B)
3490 * +-+-+-+-+-+-> output timeframe
3491 * 0 1 2 3 4 5
3492 */
3493
3494 /* Last samples in previous block */
3495 channels = src->fmt.channels;
3496 for (ch = 0; ch < channels; ch++) {
3497 prev[ch] = track->freq_prev[ch];
3498 curr[ch] = track->freq_curr[ch];
3499 grad[ch] = curr[ch] - prev[ch];
3500 }
3501
3502 step = track->freq_step;
3503 t = track->freq_current;
3504 //#define FREQ_DEBUG
3505 #if defined(FREQ_DEBUG)
3506 #define PRINTF(fmt...) printf(fmt)
3507 #else
3508 #define PRINTF(fmt...) do { } while (0)
3509 #endif
3510 srcused = src->used;
3511 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3512 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3513 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3514 PRINTF(" t=%d\n", t);
3515
3516 for (i = 0; i < arg->count; i++) {
3517 PRINTF("i=%d t=%5d", i, t);
3518 if (t >= 65536) {
3519 for (ch = 0; ch < channels; ch++) {
3520 prev[ch] = curr[ch];
3521 curr[ch] = *s++;
3522 grad[ch] = curr[ch] - prev[ch];
3523 }
3524 PRINTF(" prev=%d s[%d]=%d",
3525 prev[0], src->used - srcused, curr[0]);
3526
3527 /* Update */
3528 t -= 65536;
3529 srcused--;
3530 if (srcused < 0) {
3531 PRINTF(" break\n");
3532 break;
3533 }
3534 }
3535
3536 for (ch = 0; ch < channels; ch++) {
3537 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3538 #if defined(FREQ_DEBUG)
3539 if (ch == 0)
3540 printf(" t=%5d *d=%d", t, d[-1]);
3541 #endif
3542 }
3543 t += step;
3544
3545 PRINTF("\n");
3546 }
3547 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3548
3549 auring_take(src, src->used);
3550 auring_push(dst, i);
3551
3552 /* Adjust */
3553 t += track->freq_leap;
3554
3555 track->freq_current = t;
3556 for (ch = 0; ch < channels; ch++) {
3557 track->freq_prev[ch] = prev[ch];
3558 track->freq_curr[ch] = curr[ch];
3559 }
3560 }
3561
3562 /*
3563 * This filter performs frequency conversion (down sampling).
3564 * It uses simple thinning.
3565 */
3566 static void
3567 audio_track_freq_down(audio_filter_arg_t *arg)
3568 {
3569 audio_track_t *track;
3570 audio_ring_t *src;
3571 audio_ring_t *dst;
3572 const aint_t *s0;
3573 aint_t *d;
3574 u_int i;
3575 u_int t;
3576 u_int step;
3577 u_int ch;
3578 u_int channels;
3579
3580 track = arg->context;
3581 KASSERT(track);
3582 src = &track->freq.srcbuf;
3583 dst = track->freq.dst;
3584
3585 DIAGNOSTIC_ring(dst);
3586 DIAGNOSTIC_ring(src);
3587 KASSERT(src->used > 0);
3588 KASSERT(src->fmt.channels == dst->fmt.channels);
3589 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3590 "src->head=%d fpb=%d",
3591 src->head, track->mixer->frames_per_block);
3592
3593 s0 = arg->src;
3594 d = arg->dst;
3595 t = track->freq_current;
3596 step = track->freq_step;
3597 channels = dst->fmt.channels;
3598 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3599 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3600 PRINTF(" t=%d\n", t);
3601
3602 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3603 const aint_t *s;
3604 PRINTF("i=%4d t=%10d", i, t);
3605 s = s0 + (t / 65536) * channels;
3606 PRINTF(" s=%5ld", (s - s0) / channels);
3607 for (ch = 0; ch < channels; ch++) {
3608 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3609 *d++ = s[ch];
3610 }
3611 PRINTF("\n");
3612 t += step;
3613 }
3614 t += track->freq_leap;
3615 PRINTF("end t=%d\n", t);
3616 auring_take(src, src->used);
3617 auring_push(dst, i);
3618 track->freq_current = t % 65536;
3619 }
3620
3621 /*
3622 * Creates track and returns it.
3623 */
3624 audio_track_t *
3625 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3626 {
3627 audio_track_t *track;
3628 static int newid = 0;
3629
3630 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3631
3632 track->id = newid++;
3633 track->mixer = mixer;
3634 track->mode = mixer->mode;
3635
3636 /* Do TRACE after id is assigned. */
3637 TRACET(3, track, "for %s",
3638 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3639
3640 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3641 track->volume = 256;
3642 #endif
3643 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3644 track->ch_volume[i] = 256;
3645 }
3646
3647 return track;
3648 }
3649
3650 /*
3651 * Release all resources of the track and track itself.
3652 * track must not be NULL. Don't specify the track within the file
3653 * structure linked from sc->sc_files.
3654 */
3655 static void
3656 audio_track_destroy(audio_track_t *track)
3657 {
3658
3659 KASSERT(track);
3660
3661 audio_free_usrbuf(track);
3662 audio_free(track->codec.srcbuf.mem);
3663 audio_free(track->chvol.srcbuf.mem);
3664 audio_free(track->chmix.srcbuf.mem);
3665 audio_free(track->freq.srcbuf.mem);
3666 audio_free(track->outbuf.mem);
3667
3668 kmem_free(track, sizeof(*track));
3669 }
3670
3671 /*
3672 * It returns encoding conversion filter according to src and dst format.
3673 * If it is not a convertible pair, it returns NULL. Either src or dst
3674 * must be internal format.
3675 */
3676 static audio_filter_t
3677 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3678 const audio_format2_t *dst)
3679 {
3680
3681 if (audio_format2_is_internal(src)) {
3682 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3683 return audio_internal_to_mulaw;
3684 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3685 return audio_internal_to_alaw;
3686 } else if (audio_format2_is_linear(dst)) {
3687 switch (dst->stride) {
3688 case 8:
3689 return audio_internal_to_linear8;
3690 case 16:
3691 return audio_internal_to_linear16;
3692 #if defined(AUDIO_SUPPORT_LINEAR24)
3693 case 24:
3694 return audio_internal_to_linear24;
3695 #endif
3696 case 32:
3697 return audio_internal_to_linear32;
3698 default:
3699 TRACET(1, track, "unsupported %s stride %d",
3700 "dst", dst->stride);
3701 goto abort;
3702 }
3703 }
3704 } else if (audio_format2_is_internal(dst)) {
3705 if (src->encoding == AUDIO_ENCODING_ULAW) {
3706 return audio_mulaw_to_internal;
3707 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3708 return audio_alaw_to_internal;
3709 } else if (audio_format2_is_linear(src)) {
3710 switch (src->stride) {
3711 case 8:
3712 return audio_linear8_to_internal;
3713 case 16:
3714 return audio_linear16_to_internal;
3715 #if defined(AUDIO_SUPPORT_LINEAR24)
3716 case 24:
3717 return audio_linear24_to_internal;
3718 #endif
3719 case 32:
3720 return audio_linear32_to_internal;
3721 default:
3722 TRACET(1, track, "unsupported %s stride %d",
3723 "src", src->stride);
3724 goto abort;
3725 }
3726 }
3727 }
3728
3729 TRACET(1, track, "unsupported encoding");
3730 abort:
3731 #if defined(AUDIO_DEBUG)
3732 if (audiodebug >= 2) {
3733 char buf[100];
3734 audio_format2_tostr(buf, sizeof(buf), src);
3735 TRACET(2, track, "src %s", buf);
3736 audio_format2_tostr(buf, sizeof(buf), dst);
3737 TRACET(2, track, "dst %s", buf);
3738 }
3739 #endif
3740 return NULL;
3741 }
3742
3743 /*
3744 * Initialize the codec stage of this track as necessary.
3745 * If successful, it initializes the codec stage as necessary, stores updated
3746 * last_dst in *last_dstp in any case, and returns 0.
3747 * Otherwise, it returns errno without modifying *last_dstp.
3748 */
3749 static int
3750 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3751 {
3752 struct audio_softc *sc;
3753 audio_ring_t *last_dst;
3754 audio_ring_t *srcbuf;
3755 audio_format2_t *srcfmt;
3756 audio_format2_t *dstfmt;
3757 audio_filter_arg_t *arg;
3758 u_int len;
3759 int error;
3760
3761 KASSERT(track);
3762
3763 sc = track->mixer->sc;
3764 last_dst = *last_dstp;
3765 dstfmt = &last_dst->fmt;
3766 srcfmt = &track->inputfmt;
3767 srcbuf = &track->codec.srcbuf;
3768 error = 0;
3769
3770 if (srcfmt->encoding != dstfmt->encoding
3771 || srcfmt->precision != dstfmt->precision
3772 || srcfmt->stride != dstfmt->stride) {
3773 track->codec.dst = last_dst;
3774
3775 srcbuf->fmt = *dstfmt;
3776 srcbuf->fmt.encoding = srcfmt->encoding;
3777 srcbuf->fmt.precision = srcfmt->precision;
3778 srcbuf->fmt.stride = srcfmt->stride;
3779
3780 track->codec.filter = audio_track_get_codec(track,
3781 &srcbuf->fmt, dstfmt);
3782 if (track->codec.filter == NULL) {
3783 error = EINVAL;
3784 goto abort;
3785 }
3786
3787 srcbuf->head = 0;
3788 srcbuf->used = 0;
3789 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3790 len = auring_bytelen(srcbuf);
3791 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3792 if (srcbuf->mem == NULL) {
3793 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3794 __func__, len);
3795 error = ENOMEM;
3796 goto abort;
3797 }
3798
3799 arg = &track->codec.arg;
3800 arg->srcfmt = &srcbuf->fmt;
3801 arg->dstfmt = dstfmt;
3802 arg->context = NULL;
3803
3804 *last_dstp = srcbuf;
3805 return 0;
3806 }
3807
3808 abort:
3809 track->codec.filter = NULL;
3810 audio_free(srcbuf->mem);
3811 return error;
3812 }
3813
3814 /*
3815 * Initialize the chvol stage of this track as necessary.
3816 * If successful, it initializes the chvol stage as necessary, stores updated
3817 * last_dst in *last_dstp in any case, and returns 0.
3818 * Otherwise, it returns errno without modifying *last_dstp.
3819 */
3820 static int
3821 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
3822 {
3823 struct audio_softc *sc;
3824 audio_ring_t *last_dst;
3825 audio_ring_t *srcbuf;
3826 audio_format2_t *srcfmt;
3827 audio_format2_t *dstfmt;
3828 audio_filter_arg_t *arg;
3829 u_int len;
3830 int error;
3831
3832 KASSERT(track);
3833
3834 sc = track->mixer->sc;
3835 last_dst = *last_dstp;
3836 dstfmt = &last_dst->fmt;
3837 srcfmt = &track->inputfmt;
3838 srcbuf = &track->chvol.srcbuf;
3839 error = 0;
3840
3841 /* Check whether channel volume conversion is necessary. */
3842 bool use_chvol = false;
3843 for (int ch = 0; ch < srcfmt->channels; ch++) {
3844 if (track->ch_volume[ch] != 256) {
3845 use_chvol = true;
3846 break;
3847 }
3848 }
3849
3850 if (use_chvol == true) {
3851 track->chvol.dst = last_dst;
3852 track->chvol.filter = audio_track_chvol;
3853
3854 srcbuf->fmt = *dstfmt;
3855 /* no format conversion occurs */
3856
3857 srcbuf->head = 0;
3858 srcbuf->used = 0;
3859 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3860 len = auring_bytelen(srcbuf);
3861 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3862 if (srcbuf->mem == NULL) {
3863 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3864 __func__, len);
3865 error = ENOMEM;
3866 goto abort;
3867 }
3868
3869 arg = &track->chvol.arg;
3870 arg->srcfmt = &srcbuf->fmt;
3871 arg->dstfmt = dstfmt;
3872 arg->context = track->ch_volume;
3873
3874 *last_dstp = srcbuf;
3875 return 0;
3876 }
3877
3878 abort:
3879 track->chvol.filter = NULL;
3880 audio_free(srcbuf->mem);
3881 return error;
3882 }
3883
3884 /*
3885 * Initialize the chmix stage of this track as necessary.
3886 * If successful, it initializes the chmix stage as necessary, stores updated
3887 * last_dst in *last_dstp in any case, and returns 0.
3888 * Otherwise, it returns errno without modifying *last_dstp.
3889 */
3890 static int
3891 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
3892 {
3893 struct audio_softc *sc;
3894 audio_ring_t *last_dst;
3895 audio_ring_t *srcbuf;
3896 audio_format2_t *srcfmt;
3897 audio_format2_t *dstfmt;
3898 audio_filter_arg_t *arg;
3899 u_int srcch;
3900 u_int dstch;
3901 u_int len;
3902 int error;
3903
3904 KASSERT(track);
3905
3906 sc = track->mixer->sc;
3907 last_dst = *last_dstp;
3908 dstfmt = &last_dst->fmt;
3909 srcfmt = &track->inputfmt;
3910 srcbuf = &track->chmix.srcbuf;
3911 error = 0;
3912
3913 srcch = srcfmt->channels;
3914 dstch = dstfmt->channels;
3915 if (srcch != dstch) {
3916 track->chmix.dst = last_dst;
3917
3918 if (srcch >= 2 && dstch == 1) {
3919 track->chmix.filter = audio_track_chmix_mixLR;
3920 } else if (srcch == 1 && dstch >= 2) {
3921 track->chmix.filter = audio_track_chmix_dupLR;
3922 } else if (srcch > dstch) {
3923 track->chmix.filter = audio_track_chmix_shrink;
3924 } else {
3925 track->chmix.filter = audio_track_chmix_expand;
3926 }
3927
3928 srcbuf->fmt = *dstfmt;
3929 srcbuf->fmt.channels = srcch;
3930
3931 srcbuf->head = 0;
3932 srcbuf->used = 0;
3933 /* XXX The buffer size should be able to calculate. */
3934 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
3935 len = auring_bytelen(srcbuf);
3936 srcbuf->mem = audio_realloc(srcbuf->mem, len);
3937 if (srcbuf->mem == NULL) {
3938 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
3939 __func__, len);
3940 error = ENOMEM;
3941 goto abort;
3942 }
3943
3944 arg = &track->chmix.arg;
3945 arg->srcfmt = &srcbuf->fmt;
3946 arg->dstfmt = dstfmt;
3947 arg->context = NULL;
3948
3949 *last_dstp = srcbuf;
3950 return 0;
3951 }
3952
3953 abort:
3954 track->chmix.filter = NULL;
3955 audio_free(srcbuf->mem);
3956 return error;
3957 }
3958
3959 /*
3960 * Initialize the freq stage of this track as necessary.
3961 * If successful, it initializes the freq stage as necessary, stores updated
3962 * last_dst in *last_dstp in any case, and returns 0.
3963 * Otherwise, it returns errno without modifying *last_dstp.
3964 */
3965 static int
3966 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
3967 {
3968 struct audio_softc *sc;
3969 audio_ring_t *last_dst;
3970 audio_ring_t *srcbuf;
3971 audio_format2_t *srcfmt;
3972 audio_format2_t *dstfmt;
3973 audio_filter_arg_t *arg;
3974 uint32_t srcfreq;
3975 uint32_t dstfreq;
3976 u_int dst_capacity;
3977 u_int mod;
3978 u_int len;
3979 int error;
3980
3981 KASSERT(track);
3982
3983 sc = track->mixer->sc;
3984 last_dst = *last_dstp;
3985 dstfmt = &last_dst->fmt;
3986 srcfmt = &track->inputfmt;
3987 srcbuf = &track->freq.srcbuf;
3988 error = 0;
3989
3990 srcfreq = srcfmt->sample_rate;
3991 dstfreq = dstfmt->sample_rate;
3992 if (srcfreq != dstfreq) {
3993 track->freq.dst = last_dst;
3994
3995 memset(track->freq_prev, 0, sizeof(track->freq_prev));
3996 memset(track->freq_curr, 0, sizeof(track->freq_curr));
3997
3998 /* freq_step is the ratio of src/dst when let dst 65536. */
3999 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4000
4001 dst_capacity = frame_per_block(track->mixer, dstfmt);
4002 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4003 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4004
4005 if (track->freq_step < 65536) {
4006 track->freq.filter = audio_track_freq_up;
4007 /* In order to carry at the first time. */
4008 track->freq_current = 65536;
4009 } else {
4010 track->freq.filter = audio_track_freq_down;
4011 track->freq_current = 0;
4012 }
4013
4014 srcbuf->fmt = *dstfmt;
4015 srcbuf->fmt.sample_rate = srcfreq;
4016
4017 srcbuf->head = 0;
4018 srcbuf->used = 0;
4019 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4020 len = auring_bytelen(srcbuf);
4021 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4022 if (srcbuf->mem == NULL) {
4023 device_printf(sc->sc_dev, "%s: malloc(%d) failed\n",
4024 __func__, len);
4025 error = ENOMEM;
4026 goto abort;
4027 }
4028
4029 arg = &track->freq.arg;
4030 arg->srcfmt = &srcbuf->fmt;
4031 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4032 arg->context = track;
4033
4034 *last_dstp = srcbuf;
4035 return 0;
4036 }
4037
4038 abort:
4039 track->freq.filter = NULL;
4040 audio_free(srcbuf->mem);
4041 return error;
4042 }
4043
4044 /*
4045 * When playing back: (e.g. if codec and freq stage are valid)
4046 *
4047 * write
4048 * | uiomove
4049 * v
4050 * usrbuf [...............] byte ring buffer (mmap-able)
4051 * | memcpy
4052 * v
4053 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4054 * .dst ----+
4055 * | convert
4056 * v
4057 * freq.srcbuf [....] 1 block (ring) buffer
4058 * .dst ----+
4059 * | convert
4060 * v
4061 * outbuf [...............] NBLKOUT blocks ring buffer
4062 *
4063 *
4064 * When recording:
4065 *
4066 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4067 * .dst ----+
4068 * | convert
4069 * v
4070 * codec.srcbuf[.....] 1 block (ring) buffer
4071 * .dst ----+
4072 * | convert
4073 * v
4074 * outbuf [.....] 1 block (ring) buffer
4075 * | memcpy
4076 * v
4077 * usrbuf [...............] byte ring buffer (mmap-able *)
4078 * | uiomove
4079 * v
4080 * read
4081 *
4082 * *: usrbuf for recording is also mmap-able due to symmetry with
4083 * playback buffer, but for now mmap will never happen for recording.
4084 */
4085
4086 /*
4087 * Set the userland format of this track.
4088 * usrfmt argument should be parameter verified with audio_check_params().
4089 * It will release and reallocate all internal conversion buffers.
4090 * It returns 0 if successful. Otherwise it returns errno with clearing all
4091 * internal buffers.
4092 * It must be called without sc_intr_lock since uvm_* routines require non
4093 * intr_lock state.
4094 * It must be called with track lock held since it may release and reallocate
4095 * outbuf.
4096 */
4097 static int
4098 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4099 {
4100 struct audio_softc *sc;
4101 u_int newbufsize;
4102 u_int oldblksize;
4103 u_int len;
4104 int error;
4105
4106 KASSERT(track);
4107 sc = track->mixer->sc;
4108
4109 /* usrbuf is the closest buffer to the userland. */
4110 track->usrbuf.fmt = *usrfmt;
4111
4112 /*
4113 * For references, one block size (in 40msec) is:
4114 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4115 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4116 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4117 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4118 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4119 *
4120 * For example,
4121 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4122 * newbufsize = rounddown(65536 / 7056) = 63504
4123 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4124 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4125 *
4126 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4127 * newbufsize = rounddown(65536 / 7680) = 61440
4128 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4129 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4130 */
4131 oldblksize = track->usrbuf_blksize;
4132 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4133 frame_per_block(track->mixer, &track->usrbuf.fmt));
4134 track->usrbuf.head = 0;
4135 track->usrbuf.used = 0;
4136 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4137 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4138 error = audio_realloc_usrbuf(track, newbufsize);
4139 if (error) {
4140 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4141 newbufsize);
4142 goto error;
4143 }
4144
4145 /* Recalc water mark. */
4146 if (track->usrbuf_blksize != oldblksize) {
4147 if (audio_track_is_playback(track)) {
4148 /* Set high at 100%, low at 75%. */
4149 track->usrbuf_usedhigh = track->usrbuf.capacity;
4150 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4151 } else {
4152 /* Set high at 100% minus 1block(?), low at 0% */
4153 track->usrbuf_usedhigh = track->usrbuf.capacity -
4154 track->usrbuf_blksize;
4155 track->usrbuf_usedlow = 0;
4156 }
4157 }
4158
4159 /* Stage buffer */
4160 audio_ring_t *last_dst = &track->outbuf;
4161 if (audio_track_is_playback(track)) {
4162 /* On playback, initialize from the mixer side in order. */
4163 track->inputfmt = *usrfmt;
4164 track->outbuf.fmt = track->mixer->track_fmt;
4165
4166 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4167 goto error;
4168 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4169 goto error;
4170 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4171 goto error;
4172 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4173 goto error;
4174 } else {
4175 /* On recording, initialize from userland side in order. */
4176 track->inputfmt = track->mixer->track_fmt;
4177 track->outbuf.fmt = *usrfmt;
4178
4179 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4180 goto error;
4181 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4182 goto error;
4183 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4184 goto error;
4185 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4186 goto error;
4187 }
4188 #if 0
4189 /* debug */
4190 if (track->freq.filter) {
4191 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4192 audio_print_format2("freq dst", &track->freq.dst->fmt);
4193 }
4194 if (track->chmix.filter) {
4195 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4196 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4197 }
4198 if (track->chvol.filter) {
4199 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4200 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4201 }
4202 if (track->codec.filter) {
4203 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4204 audio_print_format2("codec dst", &track->codec.dst->fmt);
4205 }
4206 #endif
4207
4208 /* Stage input buffer */
4209 track->input = last_dst;
4210
4211 /*
4212 * On the recording track, make the first stage a ring buffer.
4213 * XXX is there a better way?
4214 */
4215 if (audio_track_is_record(track)) {
4216 track->input->capacity = NBLKOUT *
4217 frame_per_block(track->mixer, &track->input->fmt);
4218 len = auring_bytelen(track->input);
4219 track->input->mem = audio_realloc(track->input->mem, len);
4220 if (track->input->mem == NULL) {
4221 device_printf(sc->sc_dev, "malloc input(%d) failed\n",
4222 len);
4223 error = ENOMEM;
4224 goto error;
4225 }
4226 }
4227
4228 /*
4229 * Output buffer.
4230 * On the playback track, its capacity is NBLKOUT blocks.
4231 * On the recording track, its capacity is 1 block.
4232 */
4233 track->outbuf.head = 0;
4234 track->outbuf.used = 0;
4235 track->outbuf.capacity = frame_per_block(track->mixer,
4236 &track->outbuf.fmt);
4237 if (audio_track_is_playback(track))
4238 track->outbuf.capacity *= NBLKOUT;
4239 len = auring_bytelen(&track->outbuf);
4240 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4241 if (track->outbuf.mem == NULL) {
4242 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4243 error = ENOMEM;
4244 goto error;
4245 }
4246
4247 #if defined(AUDIO_DEBUG)
4248 if (audiodebug >= 3) {
4249 struct audio_track_debugbuf m;
4250
4251 memset(&m, 0, sizeof(m));
4252 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4253 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4254 if (track->freq.filter)
4255 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4256 track->freq.srcbuf.capacity *
4257 frametobyte(&track->freq.srcbuf.fmt, 1));
4258 if (track->chmix.filter)
4259 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4260 track->chmix.srcbuf.capacity *
4261 frametobyte(&track->chmix.srcbuf.fmt, 1));
4262 if (track->chvol.filter)
4263 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4264 track->chvol.srcbuf.capacity *
4265 frametobyte(&track->chvol.srcbuf.fmt, 1));
4266 if (track->codec.filter)
4267 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4268 track->codec.srcbuf.capacity *
4269 frametobyte(&track->codec.srcbuf.fmt, 1));
4270 snprintf(m.usrbuf, sizeof(m.usrbuf),
4271 " usr=%d", track->usrbuf.capacity);
4272
4273 if (audio_track_is_playback(track)) {
4274 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4275 m.outbuf, m.freq, m.chmix,
4276 m.chvol, m.codec, m.usrbuf);
4277 } else {
4278 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4279 m.freq, m.chmix, m.chvol,
4280 m.codec, m.outbuf, m.usrbuf);
4281 }
4282 }
4283 #endif
4284 return 0;
4285
4286 error:
4287 audio_free_usrbuf(track);
4288 audio_free(track->codec.srcbuf.mem);
4289 audio_free(track->chvol.srcbuf.mem);
4290 audio_free(track->chmix.srcbuf.mem);
4291 audio_free(track->freq.srcbuf.mem);
4292 audio_free(track->outbuf.mem);
4293 return error;
4294 }
4295
4296 /*
4297 * Fill silence frames (as the internal format) up to 1 block
4298 * if the ring is not empty and less than 1 block.
4299 * It returns the number of appended frames.
4300 */
4301 static int
4302 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4303 {
4304 int fpb;
4305 int n;
4306
4307 KASSERT(track);
4308 KASSERT(audio_format2_is_internal(&ring->fmt));
4309
4310 /* XXX is n correct? */
4311 /* XXX memset uses frametobyte()? */
4312
4313 if (ring->used == 0)
4314 return 0;
4315
4316 fpb = frame_per_block(track->mixer, &ring->fmt);
4317 if (ring->used >= fpb)
4318 return 0;
4319
4320 n = (ring->capacity - ring->used) % fpb;
4321
4322 KASSERT(auring_get_contig_free(ring) >= n);
4323
4324 memset(auring_tailptr_aint(ring), 0,
4325 n * ring->fmt.channels * sizeof(aint_t));
4326 auring_push(ring, n);
4327 return n;
4328 }
4329
4330 /*
4331 * Execute the conversion stage.
4332 * It prepares arg from this stage and executes stage->filter.
4333 * It must be called only if stage->filter is not NULL.
4334 *
4335 * For stages other than frequency conversion, the function increments
4336 * src and dst counters here. For frequency conversion stage, on the
4337 * other hand, the function does not touch src and dst counters and
4338 * filter side has to increment them.
4339 */
4340 static void
4341 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4342 {
4343 audio_filter_arg_t *arg;
4344 int srccount;
4345 int dstcount;
4346 int count;
4347
4348 KASSERT(track);
4349 KASSERT(stage->filter);
4350
4351 srccount = auring_get_contig_used(&stage->srcbuf);
4352 dstcount = auring_get_contig_free(stage->dst);
4353
4354 if (isfreq) {
4355 KASSERTMSG(srccount > 0, "freq but srccount == %d", srccount);
4356 count = uimin(dstcount, track->mixer->frames_per_block);
4357 } else {
4358 count = uimin(srccount, dstcount);
4359 }
4360
4361 if (count > 0) {
4362 arg = &stage->arg;
4363 arg->src = auring_headptr(&stage->srcbuf);
4364 arg->dst = auring_tailptr(stage->dst);
4365 arg->count = count;
4366
4367 stage->filter(arg);
4368
4369 if (!isfreq) {
4370 auring_take(&stage->srcbuf, count);
4371 auring_push(stage->dst, count);
4372 }
4373 }
4374 }
4375
4376 /*
4377 * Produce output buffer for playback from user input buffer.
4378 * It must be called only if usrbuf is not empty and outbuf is
4379 * available at least one free block.
4380 */
4381 static void
4382 audio_track_play(audio_track_t *track)
4383 {
4384 audio_ring_t *usrbuf;
4385 audio_ring_t *input;
4386 int count;
4387 int framesize;
4388 int bytes;
4389 u_int dropcount;
4390
4391 KASSERT(track);
4392 KASSERT(track->lock);
4393 TRACET(4, track, "start pstate=%d", track->pstate);
4394
4395 /* At this point usrbuf must not be empty. */
4396 KASSERT(track->usrbuf.used > 0);
4397 /* Also, outbuf must be available at least one block. */
4398 count = auring_get_contig_free(&track->outbuf);
4399 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4400 "count=%d fpb=%d",
4401 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4402
4403 /* XXX TODO: is this necessary for now? */
4404 int track_count_0 = track->outbuf.used;
4405
4406 usrbuf = &track->usrbuf;
4407 input = track->input;
4408 dropcount = 0;
4409
4410 /*
4411 * framesize is always 1 byte or more since all formats supported as
4412 * usrfmt(=input) have 8bit or more stride.
4413 */
4414 framesize = frametobyte(&input->fmt, 1);
4415 KASSERT(framesize >= 1);
4416
4417 /* The next stage of usrbuf (=input) must be available. */
4418 KASSERT(auring_get_contig_free(input) > 0);
4419
4420 /*
4421 * Copy usrbuf up to 1block to input buffer.
4422 * count is the number of frames to copy from usrbuf.
4423 * bytes is the number of bytes to copy from usrbuf. However it is
4424 * not copied less than one frame.
4425 */
4426 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4427 bytes = count * framesize;
4428
4429 /*
4430 * If bytes is less than one block,
4431 * if not draining, buffer is not filled so return.
4432 * if draining, fall through.
4433 */
4434 if (count < track->usrbuf_blksize / framesize) {
4435 dropcount = track->usrbuf_blksize / framesize - count;
4436
4437 if (track->pstate != AUDIO_STATE_DRAINING) {
4438 /* Wait until filled. */
4439 TRACET(4, track, "not enough; return");
4440 return;
4441 }
4442 }
4443
4444 track->usrbuf_stamp += bytes;
4445
4446 if (usrbuf->head + bytes < usrbuf->capacity) {
4447 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4448 (uint8_t *)usrbuf->mem + usrbuf->head,
4449 bytes);
4450 auring_push(input, count);
4451 auring_take(usrbuf, bytes);
4452 } else {
4453 int bytes1;
4454 int bytes2;
4455
4456 bytes1 = auring_get_contig_used(usrbuf);
4457 KASSERT(bytes1 % framesize == 0);
4458 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4459 (uint8_t *)usrbuf->mem + usrbuf->head,
4460 bytes1);
4461 auring_push(input, bytes1 / framesize);
4462 auring_take(usrbuf, bytes1);
4463
4464 bytes2 = bytes - bytes1;
4465 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4466 (uint8_t *)usrbuf->mem + usrbuf->head,
4467 bytes2);
4468 auring_push(input, bytes2 / framesize);
4469 auring_take(usrbuf, bytes2);
4470 }
4471
4472 /* Encoding conversion */
4473 if (track->codec.filter)
4474 audio_apply_stage(track, &track->codec, false);
4475
4476 /* Channel volume */
4477 if (track->chvol.filter)
4478 audio_apply_stage(track, &track->chvol, false);
4479
4480 /* Channel mix */
4481 if (track->chmix.filter)
4482 audio_apply_stage(track, &track->chmix, false);
4483
4484 /* Frequency conversion */
4485 /*
4486 * Since the frequency conversion needs correction for each block,
4487 * it rounds up to 1 block.
4488 */
4489 if (track->freq.filter) {
4490 int n;
4491 n = audio_append_silence(track, &track->freq.srcbuf);
4492 if (n > 0) {
4493 TRACET(4, track,
4494 "freq.srcbuf add silence %d -> %d/%d/%d",
4495 n,
4496 track->freq.srcbuf.head,
4497 track->freq.srcbuf.used,
4498 track->freq.srcbuf.capacity);
4499 }
4500 if (track->freq.srcbuf.used > 0) {
4501 audio_apply_stage(track, &track->freq, true);
4502 }
4503 }
4504
4505 if (dropcount != 0) {
4506 /*
4507 * Clear all conversion buffer pointer if the conversion was
4508 * not exactly one block. These conversion stage buffers are
4509 * certainly circular buffers because of symmetry with the
4510 * previous and next stage buffer. However, since they are
4511 * treated as simple contiguous buffers in operation, so head
4512 * always should point 0. This may happen during drain-age.
4513 */
4514 TRACET(4, track, "reset stage");
4515 if (track->codec.filter) {
4516 KASSERT(track->codec.srcbuf.used == 0);
4517 track->codec.srcbuf.head = 0;
4518 }
4519 if (track->chvol.filter) {
4520 KASSERT(track->chvol.srcbuf.used == 0);
4521 track->chvol.srcbuf.head = 0;
4522 }
4523 if (track->chmix.filter) {
4524 KASSERT(track->chmix.srcbuf.used == 0);
4525 track->chmix.srcbuf.head = 0;
4526 }
4527 if (track->freq.filter) {
4528 KASSERT(track->freq.srcbuf.used == 0);
4529 track->freq.srcbuf.head = 0;
4530 }
4531 }
4532
4533 if (track->input == &track->outbuf) {
4534 track->outputcounter = track->inputcounter;
4535 } else {
4536 track->outputcounter += track->outbuf.used - track_count_0;
4537 }
4538
4539 #if defined(AUDIO_DEBUG)
4540 if (audiodebug >= 3) {
4541 struct audio_track_debugbuf m;
4542 audio_track_bufstat(track, &m);
4543 TRACET(0, track, "end%s%s%s%s%s%s",
4544 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4545 }
4546 #endif
4547 }
4548
4549 /*
4550 * Produce user output buffer for recording from input buffer.
4551 */
4552 static void
4553 audio_track_record(audio_track_t *track)
4554 {
4555 audio_ring_t *outbuf;
4556 audio_ring_t *usrbuf;
4557 int count;
4558 int bytes;
4559 int framesize;
4560
4561 KASSERT(track);
4562 KASSERT(track->lock);
4563
4564 /* Number of frames to process */
4565 count = auring_get_contig_used(track->input);
4566 count = uimin(count, track->mixer->frames_per_block);
4567 if (count == 0) {
4568 TRACET(4, track, "count == 0");
4569 return;
4570 }
4571
4572 /* Frequency conversion */
4573 if (track->freq.filter) {
4574 if (track->freq.srcbuf.used > 0) {
4575 audio_apply_stage(track, &track->freq, true);
4576 /* XXX should input of freq be from beginning of buf? */
4577 }
4578 }
4579
4580 /* Channel mix */
4581 if (track->chmix.filter)
4582 audio_apply_stage(track, &track->chmix, false);
4583
4584 /* Channel volume */
4585 if (track->chvol.filter)
4586 audio_apply_stage(track, &track->chvol, false);
4587
4588 /* Encoding conversion */
4589 if (track->codec.filter)
4590 audio_apply_stage(track, &track->codec, false);
4591
4592 /* Copy outbuf to usrbuf */
4593 outbuf = &track->outbuf;
4594 usrbuf = &track->usrbuf;
4595 /*
4596 * framesize is always 1 byte or more since all formats supported
4597 * as usrfmt(=output) have 8bit or more stride.
4598 */
4599 framesize = frametobyte(&outbuf->fmt, 1);
4600 KASSERT(framesize >= 1);
4601 /*
4602 * count is the number of frames to copy to usrbuf.
4603 * bytes is the number of bytes to copy to usrbuf.
4604 */
4605 count = outbuf->used;
4606 count = uimin(count,
4607 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4608 bytes = count * framesize;
4609 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4610 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4611 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4612 bytes);
4613 auring_push(usrbuf, bytes);
4614 auring_take(outbuf, count);
4615 } else {
4616 int bytes1;
4617 int bytes2;
4618
4619 bytes1 = auring_get_contig_used(usrbuf);
4620 KASSERT(bytes1 % framesize == 0);
4621 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4622 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4623 bytes1);
4624 auring_push(usrbuf, bytes1);
4625 auring_take(outbuf, bytes1 / framesize);
4626
4627 bytes2 = bytes - bytes1;
4628 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4629 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4630 bytes2);
4631 auring_push(usrbuf, bytes2);
4632 auring_take(outbuf, bytes2 / framesize);
4633 }
4634
4635 /* XXX TODO: any counters here? */
4636
4637 #if defined(AUDIO_DEBUG)
4638 if (audiodebug >= 3) {
4639 struct audio_track_debugbuf m;
4640 audio_track_bufstat(track, &m);
4641 TRACET(0, track, "end%s%s%s%s%s%s",
4642 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4643 }
4644 #endif
4645 }
4646
4647 /*
4648 * Calcurate blktime [msec] from mixer(.hwbuf.fmt).
4649 * Must be called with sc_lock held.
4650 */
4651 static u_int
4652 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4653 {
4654 audio_format2_t *fmt;
4655 u_int blktime;
4656 u_int frames_per_block;
4657
4658 KASSERT(mutex_owned(sc->sc_lock));
4659
4660 fmt = &mixer->hwbuf.fmt;
4661 blktime = sc->sc_blk_ms;
4662
4663 /*
4664 * If stride is not multiples of 8, special treatment is necessary.
4665 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4666 */
4667 if (fmt->stride == 4) {
4668 frames_per_block = fmt->sample_rate * blktime / 1000;
4669 if ((frames_per_block & 1) != 0)
4670 blktime *= 2;
4671 }
4672 #ifdef DIAGNOSTIC
4673 else if (fmt->stride % NBBY != 0) {
4674 panic("unsupported HW stride %d", fmt->stride);
4675 }
4676 #endif
4677
4678 return blktime;
4679 }
4680
4681 /*
4682 * Initialize the mixer corresponding to the mode.
4683 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4684 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4685 * This function returns 0 on sucessful. Otherwise returns errno.
4686 * Must be called with sc_lock held.
4687 */
4688 static int
4689 audio_mixer_init(struct audio_softc *sc, int mode,
4690 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4691 {
4692 char codecbuf[64];
4693 audio_trackmixer_t *mixer;
4694 void (*softint_handler)(void *);
4695 int len;
4696 int blksize;
4697 int capacity;
4698 size_t bufsize;
4699 int hwblks;
4700 int blkms;
4701 int error;
4702
4703 KASSERT(hwfmt != NULL);
4704 KASSERT(reg != NULL);
4705 KASSERT(mutex_owned(sc->sc_lock));
4706
4707 error = 0;
4708 if (mode == AUMODE_PLAY)
4709 mixer = sc->sc_pmixer;
4710 else
4711 mixer = sc->sc_rmixer;
4712
4713 mixer->sc = sc;
4714 mixer->mode = mode;
4715
4716 mixer->hwbuf.fmt = *hwfmt;
4717 mixer->volume = 256;
4718 mixer->blktime_d = 1000;
4719 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4720 sc->sc_blk_ms = mixer->blktime_n;
4721 hwblks = NBLKHW;
4722
4723 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4724 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4725 if (sc->hw_if->round_blocksize) {
4726 int rounded;
4727 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4728 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4729 mode, &p);
4730 TRACE(2, "round_blocksize %d -> %d", blksize, rounded);
4731 if (rounded != blksize) {
4732 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4733 mixer->hwbuf.fmt.channels) != 0) {
4734 device_printf(sc->sc_dev,
4735 "blksize not configured %d -> %d\n",
4736 blksize, rounded);
4737 return EINVAL;
4738 }
4739 /* Recalculation */
4740 blksize = rounded;
4741 mixer->frames_per_block = blksize * NBBY /
4742 (mixer->hwbuf.fmt.stride *
4743 mixer->hwbuf.fmt.channels);
4744 }
4745 }
4746 mixer->blktime_n = mixer->frames_per_block;
4747 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4748
4749 capacity = mixer->frames_per_block * hwblks;
4750 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4751 if (sc->hw_if->round_buffersize) {
4752 size_t rounded;
4753 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4754 bufsize);
4755 TRACE(2, "round_buffersize %zd -> %zd", bufsize, rounded);
4756 if (rounded < bufsize) {
4757 /* buffersize needs NBLKHW blocks at least. */
4758 device_printf(sc->sc_dev,
4759 "buffersize too small: buffersize=%zd blksize=%d\n",
4760 rounded, blksize);
4761 return EINVAL;
4762 }
4763 if (rounded % blksize != 0) {
4764 /* buffersize/blksize constraint mismatch? */
4765 device_printf(sc->sc_dev,
4766 "buffersize must be multiple of blksize: "
4767 "buffersize=%zu blksize=%d\n",
4768 rounded, blksize);
4769 return EINVAL;
4770 }
4771 if (rounded != bufsize) {
4772 /* Recalcuration */
4773 bufsize = rounded;
4774 hwblks = bufsize / blksize;
4775 capacity = mixer->frames_per_block * hwblks;
4776 }
4777 }
4778 TRACE(2, "buffersize for %s = %zu",
4779 (mode == AUMODE_PLAY) ? "playback" : "recording",
4780 bufsize);
4781 mixer->hwbuf.capacity = capacity;
4782
4783 /*
4784 * XXX need to release sc_lock for compatibility?
4785 */
4786 if (sc->hw_if->allocm) {
4787 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4788 if (mixer->hwbuf.mem == NULL) {
4789 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4790 __func__, bufsize);
4791 return ENOMEM;
4792 }
4793 } else {
4794 mixer->hwbuf.mem = kern_malloc(bufsize, M_NOWAIT);
4795 if (mixer->hwbuf.mem == NULL) {
4796 device_printf(sc->sc_dev,
4797 "%s: malloc hwbuf(%zu) failed\n",
4798 __func__, bufsize);
4799 return ENOMEM;
4800 }
4801 }
4802
4803 /* From here, audio_mixer_destroy is necessary to exit. */
4804 if (mode == AUMODE_PLAY) {
4805 cv_init(&mixer->outcv, "audiowr");
4806 } else {
4807 cv_init(&mixer->outcv, "audiord");
4808 }
4809
4810 if (mode == AUMODE_PLAY) {
4811 softint_handler = audio_softintr_wr;
4812 } else {
4813 softint_handler = audio_softintr_rd;
4814 }
4815 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4816 softint_handler, sc);
4817 if (mixer->sih == NULL) {
4818 device_printf(sc->sc_dev, "softint_establish failed\n");
4819 goto abort;
4820 }
4821
4822 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4823 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4824 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4825 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4826 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4827
4828 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4829 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4830 mixer->swap_endian = true;
4831 TRACE(1, "swap_endian");
4832 }
4833
4834 if (mode == AUMODE_PLAY) {
4835 /* Mixing buffer */
4836 mixer->mixfmt = mixer->track_fmt;
4837 mixer->mixfmt.precision *= 2;
4838 mixer->mixfmt.stride *= 2;
4839 /* XXX TODO: use some macros? */
4840 len = mixer->frames_per_block * mixer->mixfmt.channels *
4841 mixer->mixfmt.stride / NBBY;
4842 mixer->mixsample = audio_realloc(mixer->mixsample, len);
4843 if (mixer->mixsample == NULL) {
4844 device_printf(sc->sc_dev,
4845 "%s: malloc mixsample(%d) failed\n",
4846 __func__, len);
4847 error = ENOMEM;
4848 goto abort;
4849 }
4850 } else {
4851 /* No mixing buffer for recording */
4852 }
4853
4854 if (reg->codec) {
4855 mixer->codec = reg->codec;
4856 mixer->codecarg.context = reg->context;
4857 if (mode == AUMODE_PLAY) {
4858 mixer->codecarg.srcfmt = &mixer->track_fmt;
4859 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
4860 } else {
4861 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
4862 mixer->codecarg.dstfmt = &mixer->track_fmt;
4863 }
4864 mixer->codecbuf.fmt = mixer->track_fmt;
4865 mixer->codecbuf.capacity = mixer->frames_per_block;
4866 len = auring_bytelen(&mixer->codecbuf);
4867 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
4868 if (mixer->codecbuf.mem == NULL) {
4869 device_printf(sc->sc_dev,
4870 "%s: malloc codecbuf(%d) failed\n",
4871 __func__, len);
4872 error = ENOMEM;
4873 goto abort;
4874 }
4875 }
4876
4877 /* Succeeded so display it. */
4878 codecbuf[0] = '\0';
4879 if (mixer->codec || mixer->swap_endian) {
4880 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
4881 (mode == AUMODE_PLAY) ? "->" : "<-",
4882 audio_encoding_name(mixer->hwbuf.fmt.encoding),
4883 mixer->hwbuf.fmt.precision);
4884 }
4885 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
4886 aprint_normal_dev(sc->sc_dev, "%s:%d%s %dch %dHz, blk %dms for %s\n",
4887 audio_encoding_name(mixer->track_fmt.encoding),
4888 mixer->track_fmt.precision,
4889 codecbuf,
4890 mixer->track_fmt.channels,
4891 mixer->track_fmt.sample_rate,
4892 blkms,
4893 (mode == AUMODE_PLAY) ? "playback" : "recording");
4894
4895 return 0;
4896
4897 abort:
4898 audio_mixer_destroy(sc, mixer);
4899 return error;
4900 }
4901
4902 /*
4903 * Releases all resources of 'mixer'.
4904 * Note that it does not release the memory area of 'mixer' itself.
4905 * Must be called with sc_lock held.
4906 */
4907 static void
4908 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
4909 {
4910 int mode;
4911
4912 KASSERT(mutex_owned(sc->sc_lock));
4913
4914 mode = mixer->mode;
4915 KASSERT(mode == AUMODE_PLAY || mode == AUMODE_RECORD);
4916
4917 if (mixer->hwbuf.mem != NULL) {
4918 if (sc->hw_if->freem) {
4919 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, mode);
4920 } else {
4921 kern_free(mixer->hwbuf.mem);
4922 }
4923 mixer->hwbuf.mem = NULL;
4924 }
4925
4926 audio_free(mixer->codecbuf.mem);
4927 audio_free(mixer->mixsample);
4928
4929 cv_destroy(&mixer->outcv);
4930
4931 if (mixer->sih) {
4932 softint_disestablish(mixer->sih);
4933 mixer->sih = NULL;
4934 }
4935 }
4936
4937 /*
4938 * Starts playback mixer.
4939 * Must be called only if sc_pbusy is false.
4940 * Must be called with sc_lock held.
4941 * Must not be called from the interrupt context.
4942 */
4943 static void
4944 audio_pmixer_start(struct audio_softc *sc, bool force)
4945 {
4946 audio_trackmixer_t *mixer;
4947 int minimum;
4948
4949 KASSERT(mutex_owned(sc->sc_lock));
4950 KASSERT(sc->sc_pbusy == false);
4951
4952 mutex_enter(sc->sc_intr_lock);
4953
4954 mixer = sc->sc_pmixer;
4955 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
4956 (audiodebug >= 3) ? "begin " : "",
4957 (int)mixer->mixseq, (int)mixer->hwseq,
4958 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
4959 force ? " force" : "");
4960
4961 /* Need two blocks to start normally. */
4962 minimum = (force) ? 1 : 2;
4963 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
4964 audio_pmixer_process(sc);
4965 }
4966
4967 /* Start output */
4968 audio_pmixer_output(sc);
4969 sc->sc_pbusy = true;
4970
4971 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
4972 (int)mixer->mixseq, (int)mixer->hwseq,
4973 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
4974
4975 mutex_exit(sc->sc_intr_lock);
4976 }
4977
4978 /*
4979 * When playing back with MD filter:
4980 *
4981 * track track ...
4982 * v v
4983 * + mix (with aint2_t)
4984 * | master volume (with aint2_t)
4985 * v
4986 * mixsample [::::] wide-int 1 block (ring) buffer
4987 * |
4988 * | convert aint2_t -> aint_t
4989 * v
4990 * codecbuf [....] 1 block (ring) buffer
4991 * |
4992 * | convert to hw format
4993 * v
4994 * hwbuf [............] NBLKHW blocks ring buffer
4995 *
4996 * When playing back without MD filter:
4997 *
4998 * mixsample [::::] wide-int 1 block (ring) buffer
4999 * |
5000 * | convert aint2_t -> aint_t
5001 * | (with byte swap if necessary)
5002 * v
5003 * hwbuf [............] NBLKHW blocks ring buffer
5004 *
5005 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5006 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5007 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5008 */
5009
5010 /*
5011 * Performs track mixing and converts it to hwbuf.
5012 * Note that this function doesn't transfer hwbuf to hardware.
5013 * Must be called with sc_intr_lock held.
5014 */
5015 static void
5016 audio_pmixer_process(struct audio_softc *sc)
5017 {
5018 audio_trackmixer_t *mixer;
5019 audio_file_t *f;
5020 int frame_count;
5021 int sample_count;
5022 int mixed;
5023 int i;
5024 aint2_t *m;
5025 aint_t *h;
5026
5027 mixer = sc->sc_pmixer;
5028
5029 frame_count = mixer->frames_per_block;
5030 KASSERT(auring_get_contig_free(&mixer->hwbuf) >= frame_count);
5031 sample_count = frame_count * mixer->mixfmt.channels;
5032
5033 mixer->mixseq++;
5034
5035 /* Mix all tracks */
5036 mixed = 0;
5037 SLIST_FOREACH(f, &sc->sc_files, entry) {
5038 audio_track_t *track = f->ptrack;
5039
5040 if (track == NULL)
5041 continue;
5042
5043 if (track->is_pause) {
5044 TRACET(4, track, "skip; paused");
5045 continue;
5046 }
5047
5048 /* Skip if the track is used by process context. */
5049 if (audio_track_lock_tryenter(track) == false) {
5050 TRACET(4, track, "skip; in use");
5051 continue;
5052 }
5053
5054 /* Emulate mmap'ped track */
5055 if (track->mmapped) {
5056 auring_push(&track->usrbuf, track->usrbuf_blksize);
5057 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5058 track->usrbuf.head,
5059 track->usrbuf.used,
5060 track->usrbuf.capacity);
5061 }
5062
5063 if (track->outbuf.used < mixer->frames_per_block &&
5064 track->usrbuf.used > 0) {
5065 TRACET(4, track, "process");
5066 audio_track_play(track);
5067 }
5068
5069 if (track->outbuf.used > 0) {
5070 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5071 } else {
5072 TRACET(4, track, "skip; empty");
5073 }
5074
5075 audio_track_lock_exit(track);
5076 }
5077
5078 if (mixed == 0) {
5079 /* Silence */
5080 memset(mixer->mixsample, 0,
5081 frametobyte(&mixer->mixfmt, frame_count));
5082 } else {
5083 aint2_t ovf_plus;
5084 aint2_t ovf_minus;
5085 int vol;
5086
5087 /* Overflow detection */
5088 ovf_plus = AINT_T_MAX;
5089 ovf_minus = AINT_T_MIN;
5090 m = mixer->mixsample;
5091 for (i = 0; i < sample_count; i++) {
5092 aint2_t val;
5093
5094 val = *m++;
5095 if (val > ovf_plus)
5096 ovf_plus = val;
5097 else if (val < ovf_minus)
5098 ovf_minus = val;
5099 }
5100
5101 /* Master Volume Auto Adjust */
5102 vol = mixer->volume;
5103 if (ovf_plus > (aint2_t)AINT_T_MAX
5104 || ovf_minus < (aint2_t)AINT_T_MIN) {
5105 aint2_t ovf;
5106 int vol2;
5107
5108 /* XXX TODO: Check AINT2_T_MIN ? */
5109 ovf = ovf_plus;
5110 if (ovf < -ovf_minus)
5111 ovf = -ovf_minus;
5112
5113 /* Turn down the volume if overflow occured. */
5114 vol2 = (int)((aint2_t)AINT_T_MAX * 256 / ovf);
5115 if (vol2 < vol)
5116 vol = vol2;
5117
5118 if (vol < mixer->volume) {
5119 /* Turn down gradually to 128. */
5120 if (mixer->volume > 128) {
5121 mixer->volume =
5122 (mixer->volume * 95) / 100;
5123 device_printf(sc->sc_dev,
5124 "auto volume adjust: volume %d\n",
5125 mixer->volume);
5126 }
5127 }
5128 }
5129
5130 /* Apply Master Volume. */
5131 if (vol != 256) {
5132 m = mixer->mixsample;
5133 for (i = 0; i < sample_count; i++) {
5134 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5135 *m = *m * vol >> 8;
5136 #else
5137 *m = *m * vol / 256;
5138 #endif
5139 m++;
5140 }
5141 }
5142 }
5143
5144 /*
5145 * The rest is the hardware part.
5146 */
5147
5148 if (mixer->codec) {
5149 h = auring_tailptr_aint(&mixer->codecbuf);
5150 } else {
5151 h = auring_tailptr_aint(&mixer->hwbuf);
5152 }
5153
5154 m = mixer->mixsample;
5155 if (mixer->swap_endian) {
5156 for (i = 0; i < sample_count; i++) {
5157 *h++ = bswap16(*m++);
5158 }
5159 } else {
5160 for (i = 0; i < sample_count; i++) {
5161 *h++ = *m++;
5162 }
5163 }
5164
5165 /* Hardware driver's codec */
5166 if (mixer->codec) {
5167 auring_push(&mixer->codecbuf, frame_count);
5168 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5169 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5170 mixer->codecarg.count = frame_count;
5171 mixer->codec(&mixer->codecarg);
5172 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5173 }
5174
5175 auring_push(&mixer->hwbuf, frame_count);
5176
5177 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5178 (int)mixer->mixseq,
5179 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5180 (mixed == 0) ? " silent" : "");
5181 }
5182
5183 /*
5184 * Mix one track.
5185 * 'mixed' specifies the number of tracks mixed so far.
5186 * It returns the number of tracks mixed. In other words, it returns
5187 * mixed + 1 if this track is mixed.
5188 */
5189 static int
5190 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5191 int mixed)
5192 {
5193 int count;
5194 int sample_count;
5195 int remain;
5196 int i;
5197 const aint_t *s;
5198 aint2_t *d;
5199
5200 /* XXX TODO: Is this necessary for now? */
5201 if (mixer->mixseq < track->seq)
5202 return mixed;
5203
5204 count = auring_get_contig_used(&track->outbuf);
5205 count = uimin(count, mixer->frames_per_block);
5206
5207 s = auring_headptr_aint(&track->outbuf);
5208 d = mixer->mixsample;
5209
5210 /*
5211 * Apply track volume with double-sized integer and perform
5212 * additive synthesis.
5213 *
5214 * XXX If you limit the track volume to 1.0 or less (<= 256),
5215 * it would be better to do this in the track conversion stage
5216 * rather than here. However, if you accept the volume to
5217 * be greater than 1.0 (> 256), it's better to do it here.
5218 * Because the operation here is done by double-sized integer.
5219 */
5220 sample_count = count * mixer->mixfmt.channels;
5221 if (mixed == 0) {
5222 /* If this is the first track, assignment can be used. */
5223 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5224 if (track->volume != 256) {
5225 for (i = 0; i < sample_count; i++) {
5226 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5227 *d++ = ((aint2_t)*s++) * track->volume >> 8;
5228 #else
5229 *d++ = ((aint2_t)*s++) * track->volume / 256;
5230 #endif
5231 }
5232 } else
5233 #endif
5234 {
5235 for (i = 0; i < sample_count; i++) {
5236 *d++ = ((aint2_t)*s++);
5237 }
5238 }
5239 } else {
5240 /* If this is the second or later, add it. */
5241 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5242 if (track->volume != 256) {
5243 for (i = 0; i < sample_count; i++) {
5244 #if defined(AUDIO_USE_C_IMPLEMENTATION_DEFINED_BEHAVIOR) && defined(__GNUC__)
5245 *d++ += ((aint2_t)*s++) * track->volume >> 8;
5246 #else
5247 *d++ += ((aint2_t)*s++) * track->volume / 256;
5248 #endif
5249 }
5250 } else
5251 #endif
5252 {
5253 for (i = 0; i < sample_count; i++) {
5254 *d++ += ((aint2_t)*s++);
5255 }
5256 }
5257 }
5258
5259 auring_take(&track->outbuf, count);
5260 /*
5261 * The counters have to align block even if outbuf is less than
5262 * one block. XXX Is this still necessary?
5263 */
5264 remain = mixer->frames_per_block - count;
5265 if (__predict_false(remain != 0)) {
5266 auring_push(&track->outbuf, remain);
5267 auring_take(&track->outbuf, remain);
5268 }
5269
5270 /*
5271 * Update track sequence.
5272 * mixseq has previous value yet at this point.
5273 */
5274 track->seq = mixer->mixseq + 1;
5275
5276 return mixed + 1;
5277 }
5278
5279 /*
5280 * Output one block from hwbuf to HW.
5281 * Must be called with sc_intr_lock held.
5282 */
5283 static void
5284 audio_pmixer_output(struct audio_softc *sc)
5285 {
5286 audio_trackmixer_t *mixer;
5287 audio_params_t params;
5288 void *start;
5289 void *end;
5290 int blksize;
5291 int error;
5292
5293 mixer = sc->sc_pmixer;
5294 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5295 sc->sc_pbusy,
5296 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5297 KASSERT(mixer->hwbuf.used >= mixer->frames_per_block);
5298
5299 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5300
5301 if (sc->hw_if->trigger_output) {
5302 /* trigger (at once) */
5303 if (!sc->sc_pbusy) {
5304 start = mixer->hwbuf.mem;
5305 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5306 params = format2_to_params(&mixer->hwbuf.fmt);
5307
5308 error = sc->hw_if->trigger_output(sc->hw_hdl,
5309 start, end, blksize, audio_pintr, sc, ¶ms);
5310 if (error) {
5311 device_printf(sc->sc_dev,
5312 "trigger_output failed with %d", error);
5313 return;
5314 }
5315 }
5316 } else {
5317 /* start (everytime) */
5318 start = auring_headptr(&mixer->hwbuf);
5319
5320 error = sc->hw_if->start_output(sc->hw_hdl,
5321 start, blksize, audio_pintr, sc);
5322 if (error) {
5323 device_printf(sc->sc_dev,
5324 "start_output failed with %d", error);
5325 return;
5326 }
5327 }
5328 }
5329
5330 /*
5331 * This is an interrupt handler for playback.
5332 * It is called with sc_intr_lock held.
5333 *
5334 * It is usually called from hardware interrupt. However, note that
5335 * for some drivers (e.g. uaudio) it is called from software interrupt.
5336 */
5337 static void
5338 audio_pintr(void *arg)
5339 {
5340 struct audio_softc *sc;
5341 audio_trackmixer_t *mixer;
5342
5343 sc = arg;
5344 KASSERT(mutex_owned(sc->sc_intr_lock));
5345
5346 if (sc->sc_dying)
5347 return;
5348 #if defined(DIAGNOSTIC)
5349 if (sc->sc_pbusy == false) {
5350 device_printf(sc->sc_dev, "stray interrupt\n");
5351 return;
5352 }
5353 #endif
5354
5355 mixer = sc->sc_pmixer;
5356 mixer->hw_complete_counter += mixer->frames_per_block;
5357 mixer->hwseq++;
5358
5359 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5360
5361 TRACE(4,
5362 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5363 mixer->hwseq, mixer->hw_complete_counter,
5364 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5365
5366 #if !defined(_KERNEL)
5367 /* This is a debug code for userland test. */
5368 return;
5369 #endif
5370
5371 #if defined(AUDIO_HW_SINGLE_BUFFER)
5372 /*
5373 * Create a new block here and output it immediately.
5374 * It makes a latency lower but needs machine power.
5375 */
5376 audio_pmixer_process(sc);
5377 audio_pmixer_output(sc);
5378 #else
5379 /*
5380 * It is called when block N output is done.
5381 * Output immediately block N+1 created by the last interrupt.
5382 * And then create block N+2 for the next interrupt.
5383 * This method makes playback robust even on slower machines.
5384 * Instead the latency is increased by one block.
5385 */
5386
5387 /* At first, output ready block. */
5388 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5389 audio_pmixer_output(sc);
5390 }
5391
5392 bool later = false;
5393
5394 if (mixer->hwbuf.used < mixer->frames_per_block) {
5395 later = true;
5396 }
5397
5398 /* Then, process next block. */
5399 audio_pmixer_process(sc);
5400
5401 if (later) {
5402 audio_pmixer_output(sc);
5403 }
5404 #endif
5405
5406 /*
5407 * When this interrupt is the real hardware interrupt, disabling
5408 * preemption here is not necessary. But some drivers (e.g. uaudio)
5409 * emulate it by software interrupt, so kpreempt_disable is necessary.
5410 */
5411 kpreempt_disable();
5412 softint_schedule(mixer->sih);
5413 kpreempt_enable();
5414 }
5415
5416 /*
5417 * Starts record mixer.
5418 * Must be called only if sc_rbusy is false.
5419 * Must be called with sc_lock held.
5420 * Must not be called from the interrupt context.
5421 */
5422 static void
5423 audio_rmixer_start(struct audio_softc *sc)
5424 {
5425
5426 KASSERT(mutex_owned(sc->sc_lock));
5427 KASSERT(sc->sc_rbusy == false);
5428
5429 mutex_enter(sc->sc_intr_lock);
5430
5431 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5432 audio_rmixer_input(sc);
5433 sc->sc_rbusy = true;
5434 TRACE(3, "end");
5435
5436 mutex_exit(sc->sc_intr_lock);
5437 }
5438
5439 /*
5440 * When recording with MD filter:
5441 *
5442 * hwbuf [............] NBLKHW blocks ring buffer
5443 * |
5444 * | convert from hw format
5445 * v
5446 * codecbuf [....] 1 block (ring) buffer
5447 * | |
5448 * v v
5449 * track track ...
5450 *
5451 * When recording without MD filter:
5452 *
5453 * hwbuf [............] NBLKHW blocks ring buffer
5454 * | |
5455 * v v
5456 * track track ...
5457 *
5458 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5459 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5460 */
5461
5462 /*
5463 * Distribute a recorded block to all recording tracks.
5464 */
5465 static void
5466 audio_rmixer_process(struct audio_softc *sc)
5467 {
5468 audio_trackmixer_t *mixer;
5469 audio_ring_t *mixersrc;
5470 audio_file_t *f;
5471 aint_t *p;
5472 int count;
5473 int bytes;
5474 int i;
5475
5476 mixer = sc->sc_rmixer;
5477
5478 /*
5479 * count is the number of frames to be retrieved this time.
5480 * count should be one block.
5481 */
5482 count = auring_get_contig_used(&mixer->hwbuf);
5483 count = uimin(count, mixer->frames_per_block);
5484 if (count <= 0) {
5485 TRACE(4, "count %d: too short", count);
5486 return;
5487 }
5488 bytes = frametobyte(&mixer->track_fmt, count);
5489
5490 /* Hardware driver's codec */
5491 if (mixer->codec) {
5492 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5493 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5494 mixer->codecarg.count = count;
5495 mixer->codec(&mixer->codecarg);
5496 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5497 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5498 mixersrc = &mixer->codecbuf;
5499 } else {
5500 mixersrc = &mixer->hwbuf;
5501 }
5502
5503 if (mixer->swap_endian) {
5504 /* inplace conversion */
5505 p = auring_headptr_aint(mixersrc);
5506 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5507 *p = bswap16(*p);
5508 }
5509 }
5510
5511 /* Distribute to all tracks. */
5512 SLIST_FOREACH(f, &sc->sc_files, entry) {
5513 audio_track_t *track = f->rtrack;
5514 audio_ring_t *input;
5515
5516 if (track == NULL)
5517 continue;
5518
5519 if (track->is_pause) {
5520 TRACET(4, track, "skip; paused");
5521 continue;
5522 }
5523
5524 if (audio_track_lock_tryenter(track) == false) {
5525 TRACET(4, track, "skip; in use");
5526 continue;
5527 }
5528
5529 /* If the track buffer is full, discard the oldest one? */
5530 input = track->input;
5531 if (input->capacity - input->used < mixer->frames_per_block) {
5532 int drops = mixer->frames_per_block -
5533 (input->capacity - input->used);
5534 track->dropframes += drops;
5535 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5536 drops,
5537 input->head, input->used, input->capacity);
5538 auring_take(input, drops);
5539 }
5540 KASSERT(input->used % mixer->frames_per_block == 0);
5541
5542 memcpy(auring_tailptr_aint(input),
5543 auring_headptr_aint(mixersrc),
5544 bytes);
5545 auring_push(input, count);
5546
5547 /* XXX sequence counter? */
5548
5549 audio_track_lock_exit(track);
5550 }
5551
5552 auring_take(mixersrc, count);
5553 }
5554
5555 /*
5556 * Input one block from HW to hwbuf.
5557 * Must be called with sc_intr_lock held.
5558 */
5559 static void
5560 audio_rmixer_input(struct audio_softc *sc)
5561 {
5562 audio_trackmixer_t *mixer;
5563 audio_params_t params;
5564 void *start;
5565 void *end;
5566 int blksize;
5567 int error;
5568
5569 mixer = sc->sc_rmixer;
5570 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5571
5572 if (sc->hw_if->trigger_input) {
5573 /* trigger (at once) */
5574 if (!sc->sc_rbusy) {
5575 start = mixer->hwbuf.mem;
5576 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5577 params = format2_to_params(&mixer->hwbuf.fmt);
5578
5579 error = sc->hw_if->trigger_input(sc->hw_hdl,
5580 start, end, blksize, audio_rintr, sc, ¶ms);
5581 if (error) {
5582 device_printf(sc->sc_dev,
5583 "trigger_input failed with %d", error);
5584 return;
5585 }
5586 }
5587 } else {
5588 /* start (everytime) */
5589 start = auring_tailptr(&mixer->hwbuf);
5590
5591 error = sc->hw_if->start_input(sc->hw_hdl,
5592 start, blksize, audio_rintr, sc);
5593 if (error) {
5594 device_printf(sc->sc_dev,
5595 "start_input failed with %d", error);
5596 return;
5597 }
5598 }
5599 }
5600
5601 /*
5602 * This is an interrupt handler for recording.
5603 * It is called with sc_intr_lock.
5604 *
5605 * It is usually called from hardware interrupt. However, note that
5606 * for some drivers (e.g. uaudio) it is called from software interrupt.
5607 */
5608 static void
5609 audio_rintr(void *arg)
5610 {
5611 struct audio_softc *sc;
5612 audio_trackmixer_t *mixer;
5613
5614 sc = arg;
5615 KASSERT(mutex_owned(sc->sc_intr_lock));
5616
5617 if (sc->sc_dying)
5618 return;
5619 #if defined(DIAGNOSTIC)
5620 if (sc->sc_rbusy == false) {
5621 device_printf(sc->sc_dev, "stray interrupt\n");
5622 return;
5623 }
5624 #endif
5625
5626 mixer = sc->sc_rmixer;
5627 mixer->hw_complete_counter += mixer->frames_per_block;
5628 mixer->hwseq++;
5629
5630 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5631
5632 TRACE(4,
5633 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5634 mixer->hwseq, mixer->hw_complete_counter,
5635 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5636
5637 /* Distrubute recorded block */
5638 audio_rmixer_process(sc);
5639
5640 /* Request next block */
5641 audio_rmixer_input(sc);
5642
5643 /*
5644 * When this interrupt is the real hardware interrupt, disabling
5645 * preemption here is not necessary. But some drivers (e.g. uaudio)
5646 * emulate it by software interrupt, so kpreempt_disable is necessary.
5647 */
5648 kpreempt_disable();
5649 softint_schedule(mixer->sih);
5650 kpreempt_enable();
5651 }
5652
5653 /*
5654 * Halts playback mixer.
5655 * This function also clears related parameters, so call this function
5656 * instead of calling halt_output directly.
5657 * Must be called only if sc_pbusy is true.
5658 * Must be called with sc_lock && sc_exlock held.
5659 */
5660 static int
5661 audio_pmixer_halt(struct audio_softc *sc)
5662 {
5663 int error;
5664
5665 TRACE(2, "");
5666 KASSERT(mutex_owned(sc->sc_lock));
5667 KASSERT(sc->sc_exlock);
5668
5669 mutex_enter(sc->sc_intr_lock);
5670 error = sc->hw_if->halt_output(sc->hw_hdl);
5671 mutex_exit(sc->sc_intr_lock);
5672
5673 /* Halts anyway even if some error has occurred. */
5674 sc->sc_pbusy = false;
5675 sc->sc_pmixer->hwbuf.head = 0;
5676 sc->sc_pmixer->hwbuf.used = 0;
5677 sc->sc_pmixer->mixseq = 0;
5678 sc->sc_pmixer->hwseq = 0;
5679
5680 return error;
5681 }
5682
5683 /*
5684 * Halts recording mixer.
5685 * This function also clears related parameters, so call this function
5686 * instead of calling halt_input directly.
5687 * Must be called only if sc_rbusy is true.
5688 * Must be called with sc_lock && sc_exlock held.
5689 */
5690 static int
5691 audio_rmixer_halt(struct audio_softc *sc)
5692 {
5693 int error;
5694
5695 TRACE(2, "");
5696 KASSERT(mutex_owned(sc->sc_lock));
5697 KASSERT(sc->sc_exlock);
5698
5699 mutex_enter(sc->sc_intr_lock);
5700 error = sc->hw_if->halt_input(sc->hw_hdl);
5701 mutex_exit(sc->sc_intr_lock);
5702
5703 /* Halts anyway even if some error has occurred. */
5704 sc->sc_rbusy = false;
5705 sc->sc_rmixer->hwbuf.head = 0;
5706 sc->sc_rmixer->hwbuf.used = 0;
5707 sc->sc_rmixer->mixseq = 0;
5708 sc->sc_rmixer->hwseq = 0;
5709
5710 return error;
5711 }
5712
5713 /*
5714 * Flush this track.
5715 * Halts all operations, clears all buffers, reset error counters.
5716 * XXX I'm not sure...
5717 */
5718 static void
5719 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5720 {
5721
5722 KASSERT(track);
5723 TRACET(3, track, "clear");
5724
5725 audio_track_lock_enter(track);
5726
5727 track->usrbuf.used = 0;
5728 /* Clear all internal parameters. */
5729 if (track->codec.filter) {
5730 track->codec.srcbuf.used = 0;
5731 track->codec.srcbuf.head = 0;
5732 }
5733 if (track->chvol.filter) {
5734 track->chvol.srcbuf.used = 0;
5735 track->chvol.srcbuf.head = 0;
5736 }
5737 if (track->chmix.filter) {
5738 track->chmix.srcbuf.used = 0;
5739 track->chmix.srcbuf.head = 0;
5740 }
5741 if (track->freq.filter) {
5742 track->freq.srcbuf.used = 0;
5743 track->freq.srcbuf.head = 0;
5744 if (track->freq_step < 65536)
5745 track->freq_current = 65536;
5746 else
5747 track->freq_current = 0;
5748 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5749 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5750 }
5751 /* Clear buffer, then operation halts naturally. */
5752 track->outbuf.used = 0;
5753
5754 /* Clear counters. */
5755 track->dropframes = 0;
5756
5757 audio_track_lock_exit(track);
5758 }
5759
5760 /*
5761 * Drain the track.
5762 * track must be present and for playback.
5763 * If successful, it returns 0. Otherwise returns errno.
5764 * Must be called with sc_lock held.
5765 */
5766 static int
5767 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5768 {
5769 audio_trackmixer_t *mixer;
5770 int done;
5771 int error;
5772
5773 KASSERT(track);
5774 TRACET(3, track, "start");
5775 mixer = track->mixer;
5776 KASSERT(mutex_owned(sc->sc_lock));
5777
5778 /* Ignore them if pause. */
5779 if (track->is_pause) {
5780 TRACET(3, track, "pause -> clear");
5781 track->pstate = AUDIO_STATE_CLEAR;
5782 }
5783 /* Terminate early here if there is no data in the track. */
5784 if (track->pstate == AUDIO_STATE_CLEAR) {
5785 TRACET(3, track, "no need to drain");
5786 return 0;
5787 }
5788 track->pstate = AUDIO_STATE_DRAINING;
5789
5790 for (;;) {
5791 /* I want to display it bofore condition evaluation. */
5792 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5793 (int)curproc->p_pid, (int)curlwp->l_lid,
5794 (int)track->seq, (int)mixer->hwseq,
5795 track->outbuf.head, track->outbuf.used,
5796 track->outbuf.capacity);
5797
5798 /* Condition to terminate */
5799 audio_track_lock_enter(track);
5800 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5801 track->outbuf.used == 0 &&
5802 track->seq <= mixer->hwseq);
5803 audio_track_lock_exit(track);
5804 if (done)
5805 break;
5806
5807 TRACET(3, track, "sleep");
5808 error = audio_track_waitio(sc, track);
5809 if (error)
5810 return error;
5811
5812 /* XXX call audio_track_play here ? */
5813 }
5814
5815 track->pstate = AUDIO_STATE_CLEAR;
5816 TRACET(3, track, "done trk_inp=%d trk_out=%d",
5817 (int)track->inputcounter, (int)track->outputcounter);
5818 return 0;
5819 }
5820
5821 /*
5822 * This is software interrupt handler for record.
5823 * It is called from recording hardware interrupt everytime.
5824 * It does:
5825 * - Deliver SIGIO for all async processes.
5826 * - Notify to audio_read() that data has arrived.
5827 * - selnotify() for select/poll-ing processes.
5828 */
5829 /*
5830 * XXX If a process issues FIOASYNC between hardware interrupt and
5831 * software interrupt, (stray) SIGIO will be sent to the process
5832 * despite the fact that it has not receive recorded data yet.
5833 */
5834 static void
5835 audio_softintr_rd(void *cookie)
5836 {
5837 struct audio_softc *sc = cookie;
5838 audio_file_t *f;
5839 proc_t *p;
5840 pid_t pid;
5841
5842 mutex_enter(sc->sc_lock);
5843 mutex_enter(sc->sc_intr_lock);
5844
5845 SLIST_FOREACH(f, &sc->sc_files, entry) {
5846 audio_track_t *track = f->rtrack;
5847
5848 if (track == NULL)
5849 continue;
5850
5851 TRACET(4, track, "broadcast; inp=%d/%d/%d",
5852 track->input->head,
5853 track->input->used,
5854 track->input->capacity);
5855
5856 pid = f->async_audio;
5857 if (pid != 0) {
5858 TRACEF(4, f, "sending SIGIO %d", pid);
5859 mutex_enter(proc_lock);
5860 if ((p = proc_find(pid)) != NULL)
5861 psignal(p, SIGIO);
5862 mutex_exit(proc_lock);
5863 }
5864 }
5865 mutex_exit(sc->sc_intr_lock);
5866
5867 /* Notify that data has arrived. */
5868 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
5869 KNOTE(&sc->sc_rsel.sel_klist, 0);
5870 cv_broadcast(&sc->sc_rmixer->outcv);
5871
5872 mutex_exit(sc->sc_lock);
5873 }
5874
5875 /*
5876 * This is software interrupt handler for playback.
5877 * It is called from playback hardware interrupt everytime.
5878 * It does:
5879 * - Deliver SIGIO for all async and writable (used < lowat) processes.
5880 * - Notify to audio_write() that outbuf block available.
5881 * - selnotify() for select/poll-ing processes if there are any writable
5882 * (used < lowat) processes. Checking each descriptor will be done by
5883 * filt_audiowrite_event().
5884 */
5885 static void
5886 audio_softintr_wr(void *cookie)
5887 {
5888 struct audio_softc *sc = cookie;
5889 audio_file_t *f;
5890 bool found;
5891 proc_t *p;
5892 pid_t pid;
5893
5894 TRACE(4, "called");
5895 found = false;
5896
5897 mutex_enter(sc->sc_lock);
5898 mutex_enter(sc->sc_intr_lock);
5899
5900 SLIST_FOREACH(f, &sc->sc_files, entry) {
5901 audio_track_t *track = f->ptrack;
5902
5903 if (track == NULL)
5904 continue;
5905
5906 TRACET(4, track, "broadcast; trseq=%d out=%d/%d/%d",
5907 (int)track->seq,
5908 track->outbuf.head,
5909 track->outbuf.used,
5910 track->outbuf.capacity);
5911
5912 /*
5913 * Send a signal if the process is async mode and
5914 * used is lower than lowat.
5915 */
5916 if (track->usrbuf.used <= track->usrbuf_usedlow &&
5917 !track->is_pause) {
5918 found = true;
5919 pid = f->async_audio;
5920 if (pid != 0) {
5921 TRACEF(4, f, "sending SIGIO %d", pid);
5922 mutex_enter(proc_lock);
5923 if ((p = proc_find(pid)) != NULL)
5924 psignal(p, SIGIO);
5925 mutex_exit(proc_lock);
5926 }
5927 }
5928 }
5929 mutex_exit(sc->sc_intr_lock);
5930
5931 /*
5932 * Notify for select/poll when someone become writable.
5933 * It needs sc_lock (and not sc_intr_lock).
5934 */
5935 if (found) {
5936 TRACE(4, "selnotify");
5937 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
5938 KNOTE(&sc->sc_wsel.sel_klist, 0);
5939 }
5940
5941 /* Notify to audio_write() that outbuf available. */
5942 cv_broadcast(&sc->sc_pmixer->outcv);
5943
5944 mutex_exit(sc->sc_lock);
5945 }
5946
5947 /*
5948 * Check (and convert) the format *p came from userland.
5949 * If successful, it writes back the converted format to *p if necessary
5950 * and returns 0. Otherwise returns errno (*p may change even this case).
5951 */
5952 static int
5953 audio_check_params(audio_format2_t *p)
5954 {
5955
5956 /* Convert obsoleted AUDIO_ENCODING_PCM* */
5957 /* XXX Is this conversion right? */
5958 if (p->encoding == AUDIO_ENCODING_PCM16) {
5959 if (p->precision == 8)
5960 p->encoding = AUDIO_ENCODING_ULINEAR;
5961 else
5962 p->encoding = AUDIO_ENCODING_SLINEAR;
5963 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
5964 if (p->precision == 8)
5965 p->encoding = AUDIO_ENCODING_ULINEAR;
5966 else
5967 return EINVAL;
5968 }
5969
5970 /*
5971 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
5972 * suffix.
5973 */
5974 if (p->encoding == AUDIO_ENCODING_SLINEAR)
5975 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
5976 if (p->encoding == AUDIO_ENCODING_ULINEAR)
5977 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
5978
5979 switch (p->encoding) {
5980 case AUDIO_ENCODING_ULAW:
5981 case AUDIO_ENCODING_ALAW:
5982 if (p->precision != 8)
5983 return EINVAL;
5984 break;
5985 case AUDIO_ENCODING_ADPCM:
5986 if (p->precision != 4 && p->precision != 8)
5987 return EINVAL;
5988 break;
5989 case AUDIO_ENCODING_SLINEAR_LE:
5990 case AUDIO_ENCODING_SLINEAR_BE:
5991 case AUDIO_ENCODING_ULINEAR_LE:
5992 case AUDIO_ENCODING_ULINEAR_BE:
5993 if (p->precision != 8 && p->precision != 16 &&
5994 p->precision != 24 && p->precision != 32)
5995 return EINVAL;
5996
5997 /* 8bit format does not have endianness. */
5998 if (p->precision == 8) {
5999 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6000 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6001 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6002 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6003 }
6004
6005 if (p->precision > p->stride)
6006 return EINVAL;
6007 break;
6008 case AUDIO_ENCODING_MPEG_L1_STREAM:
6009 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6010 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6011 case AUDIO_ENCODING_MPEG_L2_STREAM:
6012 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6013 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6014 case AUDIO_ENCODING_AC3:
6015 break;
6016 default:
6017 return EINVAL;
6018 }
6019
6020 /* sanity check # of channels*/
6021 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6022 return EINVAL;
6023
6024 return 0;
6025 }
6026
6027 /*
6028 * Initialize playback and record mixers.
6029 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initalized.
6030 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6031 * the filter registration information. These four must not be NULL.
6032 * If successful returns 0. Otherwise returns errno.
6033 * Must be called with sc_lock held.
6034 * Must not be called if there are any tracks.
6035 * Caller should check that the initialization succeed by whether
6036 * sc_[pr]mixer is not NULL.
6037 */
6038 static int
6039 audio_mixers_init(struct audio_softc *sc, int mode,
6040 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6041 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6042 {
6043 int error;
6044
6045 KASSERT(phwfmt != NULL);
6046 KASSERT(rhwfmt != NULL);
6047 KASSERT(pfil != NULL);
6048 KASSERT(rfil != NULL);
6049 KASSERT(mutex_owned(sc->sc_lock));
6050
6051 if ((mode & AUMODE_PLAY)) {
6052 if (sc->sc_pmixer) {
6053 audio_mixer_destroy(sc, sc->sc_pmixer);
6054 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6055 }
6056 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer), KM_SLEEP);
6057 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6058 if (error) {
6059 aprint_error_dev(sc->sc_dev,
6060 "configuring playback mode failed\n");
6061 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6062 sc->sc_pmixer = NULL;
6063 return error;
6064 }
6065 }
6066 if ((mode & AUMODE_RECORD)) {
6067 if (sc->sc_rmixer) {
6068 audio_mixer_destroy(sc, sc->sc_rmixer);
6069 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6070 }
6071 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer), KM_SLEEP);
6072 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6073 if (error) {
6074 aprint_error_dev(sc->sc_dev,
6075 "configuring record mode failed\n");
6076 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6077 sc->sc_rmixer = NULL;
6078 return error;
6079 }
6080 }
6081
6082 return 0;
6083 }
6084
6085 /*
6086 * Select a frequency.
6087 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6088 * XXX Better algorithm?
6089 */
6090 static int
6091 audio_select_freq(const struct audio_format *fmt)
6092 {
6093 int freq;
6094 int high;
6095 int low;
6096 int j;
6097
6098 if (fmt->frequency_type == 0) {
6099 low = fmt->frequency[0];
6100 high = fmt->frequency[1];
6101 freq = 48000;
6102 if (low <= freq && freq <= high) {
6103 return freq;
6104 }
6105 freq = 44100;
6106 if (low <= freq && freq <= high) {
6107 return freq;
6108 }
6109 return high;
6110 } else {
6111 for (j = 0; j < fmt->frequency_type; j++) {
6112 if (fmt->frequency[j] == 48000) {
6113 return fmt->frequency[j];
6114 }
6115 }
6116 high = 0;
6117 for (j = 0; j < fmt->frequency_type; j++) {
6118 if (fmt->frequency[j] == 44100) {
6119 return fmt->frequency[j];
6120 }
6121 if (fmt->frequency[j] > high) {
6122 high = fmt->frequency[j];
6123 }
6124 }
6125 return high;
6126 }
6127 }
6128
6129 /*
6130 * Probe playback and/or recording format (depending on *modep).
6131 * *modep is an in-out parameter. It indicates the direction to configure
6132 * as an argument, and the direction configured is written back as out
6133 * parameter.
6134 * If successful, probed hardware format is stored into *phwfmt, *rhwfmt
6135 * depending on *modep, and return 0. Otherwise it returns errno.
6136 * Must be called with sc_lock held.
6137 */
6138 static int
6139 audio_hw_probe(struct audio_softc *sc, int is_indep, int *modep,
6140 audio_format2_t *phwfmt, audio_format2_t *rhwfmt)
6141 {
6142 audio_format2_t fmt;
6143 int mode;
6144 int error = 0;
6145
6146 KASSERT(mutex_owned(sc->sc_lock));
6147
6148 mode = *modep;
6149 KASSERTMSG((mode & (AUMODE_PLAY | AUMODE_RECORD)) != 0,
6150 "invalid mode = %x", mode);
6151
6152 if (is_indep) {
6153 int errorp = 0, errorr = 0;
6154
6155 /* On independent devices, probe separately. */
6156 if ((mode & AUMODE_PLAY) != 0) {
6157 errorp = audio_hw_probe_fmt(sc, phwfmt, AUMODE_PLAY);
6158 if (errorp)
6159 mode &= ~AUMODE_PLAY;
6160 }
6161 if ((mode & AUMODE_RECORD) != 0) {
6162 errorr = audio_hw_probe_fmt(sc, rhwfmt, AUMODE_RECORD);
6163 if (errorr)
6164 mode &= ~AUMODE_RECORD;
6165 }
6166
6167 /* Return error if both play and record probes failed. */
6168 if (errorp && errorr)
6169 error = errorp;
6170 } else {
6171 /* On non independent devices, probe simultaneously. */
6172 error = audio_hw_probe_fmt(sc, &fmt, mode);
6173 if (error) {
6174 mode = 0;
6175 } else {
6176 *phwfmt = fmt;
6177 *rhwfmt = fmt;
6178 }
6179 }
6180
6181 *modep = mode;
6182 return error;
6183 }
6184
6185 /*
6186 * Choose the most preferred hardware format.
6187 * If successful, it will store the chosen format into *cand and return 0.
6188 * Otherwise, return errno.
6189 * Must be called with sc_lock held.
6190 */
6191 static int
6192 audio_hw_probe_fmt(struct audio_softc *sc, audio_format2_t *cand, int mode)
6193 {
6194 audio_format_query_t query;
6195 int cand_score;
6196 int score;
6197 int i;
6198 int error;
6199
6200 KASSERT(mutex_owned(sc->sc_lock));
6201
6202 /*
6203 * Score each formats and choose the highest one.
6204 *
6205 * +---- priority(0-3)
6206 * |+--- encoding/precision
6207 * ||+-- channels
6208 * score = 0x000000PEC
6209 */
6210
6211 cand_score = 0;
6212 for (i = 0; ; i++) {
6213 memset(&query, 0, sizeof(query));
6214 query.index = i;
6215
6216 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6217 if (error == EINVAL)
6218 break;
6219 if (error)
6220 return error;
6221
6222 #if defined(AUDIO_DEBUG)
6223 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6224 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6225 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6226 query.fmt.priority,
6227 audio_encoding_name(query.fmt.encoding),
6228 query.fmt.validbits,
6229 query.fmt.precision,
6230 query.fmt.channels);
6231 if (query.fmt.frequency_type == 0) {
6232 DPRINTF(1, "{%d-%d",
6233 query.fmt.frequency[0], query.fmt.frequency[1]);
6234 } else {
6235 int j;
6236 for (j = 0; j < query.fmt.frequency_type; j++) {
6237 DPRINTF(1, "%c%d",
6238 (j == 0) ? '{' : ',',
6239 query.fmt.frequency[j]);
6240 }
6241 }
6242 DPRINTF(1, "}\n");
6243 #endif
6244
6245 if ((query.fmt.mode & mode) == 0) {
6246 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6247 mode);
6248 continue;
6249 }
6250
6251 if (query.fmt.priority < 0) {
6252 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6253 continue;
6254 }
6255
6256 /* Score */
6257 score = (query.fmt.priority & 3) * 0x100;
6258 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6259 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6260 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6261 score += 0x20;
6262 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6263 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6264 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6265 score += 0x10;
6266 }
6267 score += query.fmt.channels;
6268
6269 if (score < cand_score) {
6270 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6271 score, cand_score);
6272 continue;
6273 }
6274
6275 /* Update candidate */
6276 cand_score = score;
6277 cand->encoding = query.fmt.encoding;
6278 cand->precision = query.fmt.validbits;
6279 cand->stride = query.fmt.precision;
6280 cand->channels = query.fmt.channels;
6281 cand->sample_rate = audio_select_freq(&query.fmt);
6282 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6283 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6284 cand_score, query.fmt.priority,
6285 audio_encoding_name(query.fmt.encoding),
6286 cand->precision, cand->stride,
6287 cand->channels, cand->sample_rate);
6288 }
6289
6290 if (cand_score == 0) {
6291 DPRINTF(1, "%s no fmt\n", __func__);
6292 return ENXIO;
6293 }
6294 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6295 audio_encoding_name(cand->encoding),
6296 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6297 return 0;
6298 }
6299
6300 /*
6301 * Validate fmt with query_format.
6302 * If fmt is included in the result of query_format, returns 0.
6303 * Otherwise returns EINVAL.
6304 * Must be called with sc_lock held.
6305 */
6306 static int
6307 audio_hw_validate_format(struct audio_softc *sc, int mode,
6308 const audio_format2_t *fmt)
6309 {
6310 audio_format_query_t query;
6311 struct audio_format *q;
6312 int index;
6313 int error;
6314 int j;
6315
6316 KASSERT(mutex_owned(sc->sc_lock));
6317
6318 /*
6319 * If query_format is not supported by hardware driver,
6320 * a rough check instead will be performed.
6321 * XXX This will gone in the future.
6322 */
6323 if (sc->hw_if->query_format == NULL) {
6324 if (fmt->encoding != AUDIO_ENCODING_SLINEAR_NE)
6325 return EINVAL;
6326 if (fmt->precision != AUDIO_INTERNAL_BITS)
6327 return EINVAL;
6328 if (fmt->stride != AUDIO_INTERNAL_BITS)
6329 return EINVAL;
6330 return 0;
6331 }
6332
6333 for (index = 0; ; index++) {
6334 query.index = index;
6335 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6336 if (error == EINVAL)
6337 break;
6338 if (error)
6339 return error;
6340
6341 q = &query.fmt;
6342 /*
6343 * Note that fmt is audio_format2_t (precision/stride) but
6344 * q is audio_format_t (validbits/precision).
6345 */
6346 if ((q->mode & mode) == 0) {
6347 continue;
6348 }
6349 if (fmt->encoding != q->encoding) {
6350 continue;
6351 }
6352 if (fmt->precision != q->validbits) {
6353 continue;
6354 }
6355 if (fmt->stride != q->precision) {
6356 continue;
6357 }
6358 if (fmt->channels != q->channels) {
6359 continue;
6360 }
6361 if (q->frequency_type == 0) {
6362 if (fmt->sample_rate < q->frequency[0] ||
6363 fmt->sample_rate > q->frequency[1]) {
6364 continue;
6365 }
6366 } else {
6367 for (j = 0; j < q->frequency_type; j++) {
6368 if (fmt->sample_rate == q->frequency[j])
6369 break;
6370 }
6371 if (j == query.fmt.frequency_type) {
6372 continue;
6373 }
6374 }
6375
6376 /* Matched. */
6377 return 0;
6378 }
6379
6380 return EINVAL;
6381 }
6382
6383 /*
6384 * Set track mixer's format depending on ai->mode.
6385 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6386 * with ai.play.{channels, sample_rate}.
6387 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6388 * with ai.record.{channels, sample_rate}.
6389 * All other fields in ai are ignored.
6390 * If successful returns 0. Otherwise returns errno.
6391 * This function does not roll back even if it fails.
6392 * Must be called with sc_lock held.
6393 */
6394 static int
6395 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6396 {
6397 audio_format2_t phwfmt;
6398 audio_format2_t rhwfmt;
6399 audio_filter_reg_t pfil;
6400 audio_filter_reg_t rfil;
6401 int mode;
6402 int props;
6403 int error;
6404
6405 KASSERT(mutex_owned(sc->sc_lock));
6406
6407 /*
6408 * Even when setting either one of playback and recording,
6409 * both must be halted.
6410 */
6411 if (sc->sc_popens + sc->sc_ropens > 0)
6412 return EBUSY;
6413
6414 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6415 return ENOTTY;
6416
6417 /* Only channels and sample_rate are changeable. */
6418 mode = ai->mode;
6419 if ((mode & AUMODE_PLAY)) {
6420 phwfmt.encoding = ai->play.encoding;
6421 phwfmt.precision = ai->play.precision;
6422 phwfmt.stride = ai->play.precision;
6423 phwfmt.channels = ai->play.channels;
6424 phwfmt.sample_rate = ai->play.sample_rate;
6425 }
6426 if ((mode & AUMODE_RECORD)) {
6427 rhwfmt.encoding = ai->record.encoding;
6428 rhwfmt.precision = ai->record.precision;
6429 rhwfmt.stride = ai->record.precision;
6430 rhwfmt.channels = ai->record.channels;
6431 rhwfmt.sample_rate = ai->record.sample_rate;
6432 }
6433
6434 /* On non-independent devices, use the same format for both. */
6435 props = audio_get_props(sc);
6436 if ((props & AUDIO_PROP_INDEPENDENT) == 0) {
6437 if (mode == AUMODE_RECORD) {
6438 phwfmt = rhwfmt;
6439 } else {
6440 rhwfmt = phwfmt;
6441 }
6442 mode = AUMODE_PLAY | AUMODE_RECORD;
6443 }
6444
6445 /* Then, unset the direction not exist on the hardware. */
6446 if ((props & AUDIO_PROP_PLAYBACK) == 0)
6447 mode &= ~AUMODE_PLAY;
6448 if ((props & AUDIO_PROP_CAPTURE) == 0)
6449 mode &= ~AUMODE_RECORD;
6450
6451 /* debug */
6452 if ((mode & AUMODE_PLAY)) {
6453 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6454 audio_encoding_name(phwfmt.encoding),
6455 phwfmt.precision,
6456 phwfmt.stride,
6457 phwfmt.channels,
6458 phwfmt.sample_rate);
6459 }
6460 if ((mode & AUMODE_RECORD)) {
6461 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6462 audio_encoding_name(rhwfmt.encoding),
6463 rhwfmt.precision,
6464 rhwfmt.stride,
6465 rhwfmt.channels,
6466 rhwfmt.sample_rate);
6467 }
6468
6469 /* Check the format */
6470 if ((mode & AUMODE_PLAY)) {
6471 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6472 TRACE(1, "invalid format");
6473 return EINVAL;
6474 }
6475 }
6476 if ((mode & AUMODE_RECORD)) {
6477 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6478 TRACE(1, "invalid format");
6479 return EINVAL;
6480 }
6481 }
6482
6483 /* Configure the mixers. */
6484 memset(&pfil, 0, sizeof(pfil));
6485 memset(&rfil, 0, sizeof(rfil));
6486 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6487 if (error)
6488 return error;
6489
6490 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6491 if (error)
6492 return error;
6493
6494 return 0;
6495 }
6496
6497 /*
6498 * Store current mixers format into *ai.
6499 */
6500 static void
6501 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6502 {
6503 /*
6504 * There is no stride information in audio_info but it doesn't matter.
6505 * trackmixer always treats stride and precision as the same.
6506 */
6507 AUDIO_INITINFO(ai);
6508 ai->mode = 0;
6509 if (sc->sc_pmixer) {
6510 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6511 ai->play.encoding = fmt->encoding;
6512 ai->play.precision = fmt->precision;
6513 ai->play.channels = fmt->channels;
6514 ai->play.sample_rate = fmt->sample_rate;
6515 ai->mode |= AUMODE_PLAY;
6516 }
6517 if (sc->sc_rmixer) {
6518 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6519 ai->record.encoding = fmt->encoding;
6520 ai->record.precision = fmt->precision;
6521 ai->record.channels = fmt->channels;
6522 ai->record.sample_rate = fmt->sample_rate;
6523 ai->mode |= AUMODE_RECORD;
6524 }
6525 }
6526
6527 /*
6528 * audio_info details:
6529 *
6530 * ai.{play,record}.sample_rate (R/W)
6531 * ai.{play,record}.encoding (R/W)
6532 * ai.{play,record}.precision (R/W)
6533 * ai.{play,record}.channels (R/W)
6534 * These specify the playback or recording format.
6535 * Ignore members within an inactive track.
6536 *
6537 * ai.mode (R/W)
6538 * It specifies the playback or recording mode, AUMODE_*.
6539 * Currently, a mode change operation by ai.mode after opening is
6540 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6541 * However, it's possible to get or to set for backward compatibility.
6542 *
6543 * ai.{hiwat,lowat} (R/W)
6544 * These specify the high water mark and low water mark for playback
6545 * track. The unit is block.
6546 *
6547 * ai.{play,record}.gain (R/W)
6548 * It specifies the HW mixer volume in 0-255.
6549 * It is historical reason that the gain is connected to HW mixer.
6550 *
6551 * ai.{play,record}.balance (R/W)
6552 * It specifies the left-right balance of HW mixer in 0-64.
6553 * 32 means the center.
6554 * It is historical reason that the balance is connected to HW mixer.
6555 *
6556 * ai.{play,record}.port (R/W)
6557 * It specifies the input/output port of HW mixer.
6558 *
6559 * ai.monitor_gain (R/W)
6560 * It specifies the recording monitor gain(?) of HW mixer.
6561 *
6562 * ai.{play,record}.pause (R/W)
6563 * Non-zero means the track is paused.
6564 *
6565 * ai.play.seek (R/-)
6566 * It indicates the number of bytes written but not processed.
6567 * ai.record.seek (R/-)
6568 * It indicates the number of bytes to be able to read.
6569 *
6570 * ai.{play,record}.avail_ports (R/-)
6571 * Mixer info.
6572 *
6573 * ai.{play,record}.buffer_size (R/-)
6574 * It indicates the buffer size in bytes. Internally it means usrbuf.
6575 *
6576 * ai.{play,record}.samples (R/-)
6577 * It indicates the total number of bytes played or recorded.
6578 *
6579 * ai.{play,record}.eof (R/-)
6580 * It indicates the number of times reached EOF(?).
6581 *
6582 * ai.{play,record}.error (R/-)
6583 * Non-zero indicates overflow/underflow has occured.
6584 *
6585 * ai.{play,record}.waiting (R/-)
6586 * Non-zero indicates that other process waits to open.
6587 * It will never happen anymore.
6588 *
6589 * ai.{play,record}.open (R/-)
6590 * Non-zero indicates the direction is opened by this process(?).
6591 * XXX Is this better to indicate that "the device is opened by
6592 * at least one process"?
6593 *
6594 * ai.{play,record}.active (R/-)
6595 * Non-zero indicates that I/O is currently active.
6596 *
6597 * ai.blocksize (R/-)
6598 * It indicates the block size in bytes.
6599 * XXX The blocksize of playback and recording may be different.
6600 */
6601
6602 /*
6603 * Pause consideration:
6604 *
6605 * The introduction of these two behavior makes pause/unpause operation
6606 * simple.
6607 * 1. The first read/write access of the first track makes mixer start.
6608 * 2. A pause of the last track doesn't make mixer stop.
6609 */
6610
6611 /*
6612 * Set both track's parameters within a file depending on ai.
6613 * Update sc_sound_[pr]* if set.
6614 * Must be called with sc_lock and sc_exlock held.
6615 */
6616 static int
6617 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6618 const struct audio_info *ai)
6619 {
6620 const struct audio_prinfo *pi;
6621 const struct audio_prinfo *ri;
6622 audio_track_t *ptrack;
6623 audio_track_t *rtrack;
6624 audio_format2_t pfmt;
6625 audio_format2_t rfmt;
6626 int pchanges;
6627 int rchanges;
6628 int mode;
6629 struct audio_info saved_ai;
6630 audio_format2_t saved_pfmt;
6631 audio_format2_t saved_rfmt;
6632 int error;
6633
6634 KASSERT(mutex_owned(sc->sc_lock));
6635 KASSERT(sc->sc_exlock);
6636
6637 pi = &ai->play;
6638 ri = &ai->record;
6639 pchanges = 0;
6640 rchanges = 0;
6641
6642 ptrack = file->ptrack;
6643 rtrack = file->rtrack;
6644
6645 #if defined(AUDIO_DEBUG)
6646 if (audiodebug >= 2) {
6647 char buf[256];
6648 char p[64];
6649 int buflen;
6650 int plen;
6651 #define SPRINTF(var, fmt...) do { \
6652 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6653 } while (0)
6654
6655 buflen = 0;
6656 plen = 0;
6657 if (SPECIFIED(pi->encoding))
6658 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6659 if (SPECIFIED(pi->precision))
6660 SPRINTF(p, "/%dbit", pi->precision);
6661 if (SPECIFIED(pi->channels))
6662 SPRINTF(p, "/%dch", pi->channels);
6663 if (SPECIFIED(pi->sample_rate))
6664 SPRINTF(p, "/%dHz", pi->sample_rate);
6665 if (plen > 0)
6666 SPRINTF(buf, ",play.param=%s", p + 1);
6667
6668 plen = 0;
6669 if (SPECIFIED(ri->encoding))
6670 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6671 if (SPECIFIED(ri->precision))
6672 SPRINTF(p, "/%dbit", ri->precision);
6673 if (SPECIFIED(ri->channels))
6674 SPRINTF(p, "/%dch", ri->channels);
6675 if (SPECIFIED(ri->sample_rate))
6676 SPRINTF(p, "/%dHz", ri->sample_rate);
6677 if (plen > 0)
6678 SPRINTF(buf, ",record.param=%s", p + 1);
6679
6680 if (SPECIFIED(ai->mode))
6681 SPRINTF(buf, ",mode=%d", ai->mode);
6682 if (SPECIFIED(ai->hiwat))
6683 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6684 if (SPECIFIED(ai->lowat))
6685 SPRINTF(buf, ",lowat=%d", ai->lowat);
6686 if (SPECIFIED(ai->play.gain))
6687 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6688 if (SPECIFIED(ai->record.gain))
6689 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6690 if (SPECIFIED_CH(ai->play.balance))
6691 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6692 if (SPECIFIED_CH(ai->record.balance))
6693 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6694 if (SPECIFIED(ai->play.port))
6695 SPRINTF(buf, ",play.port=%d", ai->play.port);
6696 if (SPECIFIED(ai->record.port))
6697 SPRINTF(buf, ",record.port=%d", ai->record.port);
6698 if (SPECIFIED(ai->monitor_gain))
6699 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6700 if (SPECIFIED_CH(ai->play.pause))
6701 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6702 if (SPECIFIED_CH(ai->record.pause))
6703 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6704
6705 if (buflen > 0)
6706 TRACE(2, "specified %s", buf + 1);
6707 }
6708 #endif
6709
6710 AUDIO_INITINFO(&saved_ai);
6711 /* XXX shut up gcc */
6712 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6713 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6714
6715 /* Set default value and save current parameters */
6716 if (ptrack) {
6717 pfmt = ptrack->usrbuf.fmt;
6718 saved_pfmt = ptrack->usrbuf.fmt;
6719 saved_ai.play.pause = ptrack->is_pause;
6720 }
6721 if (rtrack) {
6722 rfmt = rtrack->usrbuf.fmt;
6723 saved_rfmt = rtrack->usrbuf.fmt;
6724 saved_ai.record.pause = rtrack->is_pause;
6725 }
6726 saved_ai.mode = file->mode;
6727
6728 /* Overwrite if specified */
6729 mode = file->mode;
6730 if (SPECIFIED(ai->mode)) {
6731 /*
6732 * Setting ai->mode no longer does anything because it's
6733 * prohibited to change playback/recording mode after open
6734 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6735 * keeps the state of AUMODE_PLAY_ALL itself for backward
6736 * compatibility.
6737 * In the internal, only file->mode has the state of
6738 * AUMODE_PLAY_ALL flag and track->mode in both track does
6739 * not have.
6740 */
6741 if ((file->mode & AUMODE_PLAY)) {
6742 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6743 | (ai->mode & AUMODE_PLAY_ALL);
6744 }
6745 }
6746
6747 if (ptrack) {
6748 pchanges = audio_track_setinfo_check(&pfmt, pi);
6749 if (pchanges == -1) {
6750 #if defined(AUDIO_DEBUG)
6751 char fmtbuf[64];
6752 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6753 TRACET(1, ptrack, "check play.params failed: %s",
6754 fmtbuf);
6755 #endif
6756 return EINVAL;
6757 }
6758 if (SPECIFIED(ai->mode))
6759 pchanges = 1;
6760 }
6761 if (rtrack) {
6762 rchanges = audio_track_setinfo_check(&rfmt, ri);
6763 if (rchanges == -1) {
6764 #if defined(AUDIO_DEBUG)
6765 char fmtbuf[64];
6766 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6767 TRACET(1, rtrack, "check record.params failed: %s",
6768 fmtbuf);
6769 #endif
6770 return EINVAL;
6771 }
6772 if (SPECIFIED(ai->mode))
6773 rchanges = 1;
6774 }
6775
6776 /*
6777 * Even when setting either one of playback and recording,
6778 * both track must be halted.
6779 */
6780 if (pchanges || rchanges) {
6781 audio_file_clear(sc, file);
6782 #if defined(AUDIO_DEBUG)
6783 char fmtbuf[64];
6784 if (pchanges) {
6785 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6786 DPRINTF(1, "audio track#%d play mode: %s\n",
6787 ptrack->id, fmtbuf);
6788 }
6789 if (rchanges) {
6790 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6791 DPRINTF(1, "audio track#%d rec mode: %s\n",
6792 rtrack->id, fmtbuf);
6793 }
6794 #endif
6795 }
6796
6797 /* Set mixer parameters */
6798 error = audio_hw_setinfo(sc, ai, &saved_ai);
6799 if (error)
6800 goto abort1;
6801
6802 /* Set to track and update sticky parameters */
6803 error = 0;
6804 file->mode = mode;
6805 if (ptrack) {
6806 if (SPECIFIED_CH(pi->pause)) {
6807 ptrack->is_pause = pi->pause;
6808 sc->sc_sound_ppause = pi->pause;
6809 }
6810 if (pchanges) {
6811 audio_track_lock_enter(ptrack);
6812 error = audio_track_set_format(ptrack, &pfmt);
6813 audio_track_lock_exit(ptrack);
6814 if (error) {
6815 TRACET(1, ptrack, "set play.params failed");
6816 goto abort2;
6817 }
6818 sc->sc_sound_pparams = pfmt;
6819 }
6820 /* Change water marks after initializing the buffers. */
6821 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat))
6822 audio_track_setinfo_water(ptrack, ai);
6823 }
6824 if (rtrack) {
6825 if (SPECIFIED_CH(ri->pause)) {
6826 rtrack->is_pause = ri->pause;
6827 sc->sc_sound_rpause = ri->pause;
6828 }
6829 if (rchanges) {
6830 audio_track_lock_enter(rtrack);
6831 error = audio_track_set_format(rtrack, &rfmt);
6832 audio_track_lock_exit(rtrack);
6833 if (error) {
6834 TRACET(1, rtrack, "set record.params failed");
6835 goto abort3;
6836 }
6837 sc->sc_sound_rparams = rfmt;
6838 }
6839 }
6840
6841 return 0;
6842
6843 /* Rollback */
6844 abort3:
6845 if (error != ENOMEM) {
6846 rtrack->is_pause = saved_ai.record.pause;
6847 audio_track_lock_enter(rtrack);
6848 audio_track_set_format(rtrack, &saved_rfmt);
6849 audio_track_lock_exit(rtrack);
6850 }
6851 abort2:
6852 if (ptrack && error != ENOMEM) {
6853 ptrack->is_pause = saved_ai.play.pause;
6854 audio_track_lock_enter(ptrack);
6855 audio_track_set_format(ptrack, &saved_pfmt);
6856 audio_track_lock_exit(ptrack);
6857 sc->sc_sound_pparams = saved_pfmt;
6858 sc->sc_sound_ppause = saved_ai.play.pause;
6859 }
6860 file->mode = saved_ai.mode;
6861 abort1:
6862 audio_hw_setinfo(sc, &saved_ai, NULL);
6863
6864 return error;
6865 }
6866
6867 /*
6868 * Write SPECIFIED() parameters within info back to fmt.
6869 * Return value of 1 indicates that fmt is modified.
6870 * Return value of 0 indicates that fmt is not modified.
6871 * Return value of -1 indicates that error EINVAL has occurred.
6872 */
6873 static int
6874 audio_track_setinfo_check(audio_format2_t *fmt, const struct audio_prinfo *info)
6875 {
6876 int changes;
6877
6878 changes = 0;
6879 if (SPECIFIED(info->sample_rate)) {
6880 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
6881 return -1;
6882 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
6883 return -1;
6884 fmt->sample_rate = info->sample_rate;
6885 changes = 1;
6886 }
6887 if (SPECIFIED(info->encoding)) {
6888 fmt->encoding = info->encoding;
6889 changes = 1;
6890 }
6891 if (SPECIFIED(info->precision)) {
6892 fmt->precision = info->precision;
6893 /* we don't have API to specify stride */
6894 fmt->stride = info->precision;
6895 changes = 1;
6896 }
6897 if (SPECIFIED(info->channels)) {
6898 fmt->channels = info->channels;
6899 changes = 1;
6900 }
6901
6902 if (changes) {
6903 if (audio_check_params(fmt) != 0)
6904 return -1;
6905 }
6906
6907 return changes;
6908 }
6909
6910 /*
6911 * Change water marks for playback track if specfied.
6912 */
6913 static void
6914 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
6915 {
6916 u_int blks;
6917 u_int maxblks;
6918 u_int blksize;
6919
6920 KASSERT(audio_track_is_playback(track));
6921
6922 blksize = track->usrbuf_blksize;
6923 maxblks = track->usrbuf.capacity / blksize;
6924
6925 if (SPECIFIED(ai->hiwat)) {
6926 blks = ai->hiwat;
6927 if (blks > maxblks)
6928 blks = maxblks;
6929 if (blks < 2)
6930 blks = 2;
6931 track->usrbuf_usedhigh = blks * blksize;
6932 }
6933 if (SPECIFIED(ai->lowat)) {
6934 blks = ai->lowat;
6935 if (blks > maxblks - 1)
6936 blks = maxblks - 1;
6937 track->usrbuf_usedlow = blks * blksize;
6938 }
6939 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
6940 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
6941 track->usrbuf_usedlow = track->usrbuf_usedhigh -
6942 blksize;
6943 }
6944 }
6945 }
6946
6947 /*
6948 * Set hardware part of *ai.
6949 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
6950 * If oldai is specified, previous parameters are stored.
6951 * This function itself does not roll back if error occurred.
6952 * Must be called with sc_lock and sc_exlock held.
6953 */
6954 static int
6955 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
6956 struct audio_info *oldai)
6957 {
6958 const struct audio_prinfo *newpi;
6959 const struct audio_prinfo *newri;
6960 struct audio_prinfo *oldpi;
6961 struct audio_prinfo *oldri;
6962 u_int pgain;
6963 u_int rgain;
6964 u_char pbalance;
6965 u_char rbalance;
6966 int error;
6967
6968 KASSERT(mutex_owned(sc->sc_lock));
6969 KASSERT(sc->sc_exlock);
6970
6971 /* XXX shut up gcc */
6972 oldpi = NULL;
6973 oldri = NULL;
6974
6975 newpi = &newai->play;
6976 newri = &newai->record;
6977 if (oldai) {
6978 oldpi = &oldai->play;
6979 oldri = &oldai->record;
6980 }
6981 error = 0;
6982
6983 /*
6984 * It looks like unnecessary to halt HW mixers to set HW mixers.
6985 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
6986 */
6987
6988 if (SPECIFIED(newpi->port)) {
6989 if (oldai)
6990 oldpi->port = au_get_port(sc, &sc->sc_outports);
6991 error = au_set_port(sc, &sc->sc_outports, newpi->port);
6992 if (error) {
6993 device_printf(sc->sc_dev,
6994 "setting play.port=%d failed with %d\n",
6995 newpi->port, error);
6996 goto abort;
6997 }
6998 }
6999 if (SPECIFIED(newri->port)) {
7000 if (oldai)
7001 oldri->port = au_get_port(sc, &sc->sc_inports);
7002 error = au_set_port(sc, &sc->sc_inports, newri->port);
7003 if (error) {
7004 device_printf(sc->sc_dev,
7005 "setting record.port=%d failed with %d\n",
7006 newri->port, error);
7007 goto abort;
7008 }
7009 }
7010
7011 /* Backup play.{gain,balance} */
7012 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7013 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7014 if (oldai) {
7015 oldpi->gain = pgain;
7016 oldpi->balance = pbalance;
7017 }
7018 }
7019 /* Backup record.{gain,balance} */
7020 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7021 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7022 if (oldai) {
7023 oldri->gain = rgain;
7024 oldri->balance = rbalance;
7025 }
7026 }
7027 if (SPECIFIED(newpi->gain)) {
7028 error = au_set_gain(sc, &sc->sc_outports,
7029 newpi->gain, pbalance);
7030 if (error) {
7031 device_printf(sc->sc_dev,
7032 "setting play.gain=%d failed with %d\n",
7033 newpi->gain, error);
7034 goto abort;
7035 }
7036 }
7037 if (SPECIFIED(newri->gain)) {
7038 error = au_set_gain(sc, &sc->sc_inports,
7039 newri->gain, rbalance);
7040 if (error) {
7041 device_printf(sc->sc_dev,
7042 "setting record.gain=%d failed with %d\n",
7043 newri->gain, error);
7044 goto abort;
7045 }
7046 }
7047 if (SPECIFIED_CH(newpi->balance)) {
7048 error = au_set_gain(sc, &sc->sc_outports,
7049 pgain, newpi->balance);
7050 if (error) {
7051 device_printf(sc->sc_dev,
7052 "setting play.balance=%d failed with %d\n",
7053 newpi->balance, error);
7054 goto abort;
7055 }
7056 }
7057 if (SPECIFIED_CH(newri->balance)) {
7058 error = au_set_gain(sc, &sc->sc_inports,
7059 rgain, newri->balance);
7060 if (error) {
7061 device_printf(sc->sc_dev,
7062 "setting record.balance=%d failed with %d\n",
7063 newri->balance, error);
7064 goto abort;
7065 }
7066 }
7067
7068 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7069 if (oldai)
7070 oldai->monitor_gain = au_get_monitor_gain(sc);
7071 error = au_set_monitor_gain(sc, newai->monitor_gain);
7072 if (error) {
7073 device_printf(sc->sc_dev,
7074 "setting monitor_gain=%d failed with %d\n",
7075 newai->monitor_gain, error);
7076 goto abort;
7077 }
7078 }
7079
7080 /* XXX TODO */
7081 /* sc->sc_ai = *ai; */
7082
7083 error = 0;
7084 abort:
7085 return error;
7086 }
7087
7088 /*
7089 * Setup the hardware with mixer format phwfmt, rhwfmt.
7090 * The arguments have following restrictions:
7091 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7092 * or both.
7093 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7094 * - On non-independent devices, phwfmt and rhwfmt must have the same
7095 * parameters.
7096 * - pfil and rfil must be zero-filled.
7097 * If successful,
7098 * - phwfmt, rhwfmt will be overwritten by hardware format.
7099 * - pfil, rfil will be filled with filter information specified by the
7100 * hardware driver.
7101 * and then returns 0. Otherwise returns errno.
7102 * Must be called with sc_lock held.
7103 */
7104 static int
7105 audio_hw_set_format(struct audio_softc *sc, int setmode,
7106 audio_format2_t *phwfmt, audio_format2_t *rhwfmt,
7107 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7108 {
7109 audio_params_t pp, rp;
7110 int error;
7111
7112 KASSERT(mutex_owned(sc->sc_lock));
7113 KASSERT(phwfmt != NULL);
7114 KASSERT(rhwfmt != NULL);
7115
7116 pp = format2_to_params(phwfmt);
7117 rp = format2_to_params(rhwfmt);
7118
7119 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7120 &pp, &rp, pfil, rfil);
7121 if (error) {
7122 device_printf(sc->sc_dev,
7123 "set_format failed with %d\n", error);
7124 return error;
7125 }
7126
7127 if (sc->hw_if->commit_settings) {
7128 error = sc->hw_if->commit_settings(sc->hw_hdl);
7129 if (error) {
7130 device_printf(sc->sc_dev,
7131 "commit_settings failed with %d\n", error);
7132 return error;
7133 }
7134 }
7135
7136 return 0;
7137 }
7138
7139 /*
7140 * Fill audio_info structure. If need_mixerinfo is true, it will also
7141 * fill the hardware mixer information.
7142 * Must be called with sc_lock held.
7143 * Must be called with sc_exlock held, in addition, if need_mixerinfo is
7144 * true.
7145 */
7146 static int
7147 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7148 audio_file_t *file)
7149 {
7150 struct audio_prinfo *ri, *pi;
7151 audio_track_t *track;
7152 audio_track_t *ptrack;
7153 audio_track_t *rtrack;
7154 int gain;
7155
7156 KASSERT(mutex_owned(sc->sc_lock));
7157
7158 ri = &ai->record;
7159 pi = &ai->play;
7160 ptrack = file->ptrack;
7161 rtrack = file->rtrack;
7162
7163 memset(ai, 0, sizeof(*ai));
7164
7165 if (ptrack) {
7166 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7167 pi->channels = ptrack->usrbuf.fmt.channels;
7168 pi->precision = ptrack->usrbuf.fmt.precision;
7169 pi->encoding = ptrack->usrbuf.fmt.encoding;
7170 } else {
7171 /* Set default parameters if the track is not available. */
7172 if (ISDEVAUDIO(file->dev)) {
7173 pi->sample_rate = audio_default.sample_rate;
7174 pi->channels = audio_default.channels;
7175 pi->precision = audio_default.precision;
7176 pi->encoding = audio_default.encoding;
7177 } else {
7178 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7179 pi->channels = sc->sc_sound_pparams.channels;
7180 pi->precision = sc->sc_sound_pparams.precision;
7181 pi->encoding = sc->sc_sound_pparams.encoding;
7182 }
7183 }
7184 if (rtrack) {
7185 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7186 ri->channels = rtrack->usrbuf.fmt.channels;
7187 ri->precision = rtrack->usrbuf.fmt.precision;
7188 ri->encoding = rtrack->usrbuf.fmt.encoding;
7189 } else {
7190 /* Set default parameters if the track is not available. */
7191 if (ISDEVAUDIO(file->dev)) {
7192 ri->sample_rate = audio_default.sample_rate;
7193 ri->channels = audio_default.channels;
7194 ri->precision = audio_default.precision;
7195 ri->encoding = audio_default.encoding;
7196 } else {
7197 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7198 ri->channels = sc->sc_sound_rparams.channels;
7199 ri->precision = sc->sc_sound_rparams.precision;
7200 ri->encoding = sc->sc_sound_rparams.encoding;
7201 }
7202 }
7203
7204 if (ptrack) {
7205 pi->seek = ptrack->usrbuf.used;
7206 pi->samples = ptrack->usrbuf_stamp;
7207 pi->eof = ptrack->eofcounter;
7208 pi->pause = ptrack->is_pause;
7209 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7210 pi->waiting = 0; /* open never hangs */
7211 pi->open = 1;
7212 pi->active = sc->sc_pbusy;
7213 pi->buffer_size = ptrack->usrbuf.capacity;
7214 }
7215 if (rtrack) {
7216 ri->seek = rtrack->usrbuf.used;
7217 ri->samples = rtrack->usrbuf_stamp;
7218 ri->eof = 0;
7219 ri->pause = rtrack->is_pause;
7220 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7221 ri->waiting = 0; /* open never hangs */
7222 ri->open = 1;
7223 ri->active = sc->sc_rbusy;
7224 ri->buffer_size = rtrack->usrbuf.capacity;
7225 }
7226
7227 /*
7228 * XXX There may be different number of channels between playback
7229 * and recording, so that blocksize also may be different.
7230 * But struct audio_info has an united blocksize...
7231 * Here, I use play info precedencely if ptrack is available,
7232 * otherwise record info.
7233 *
7234 * XXX hiwat/lowat is a playback-only parameter. What should I
7235 * return for a record-only descriptor?
7236 */
7237 track = ptrack ? ptrack : rtrack;
7238 if (track) {
7239 ai->blocksize = track->usrbuf_blksize;
7240 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7241 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7242 }
7243 ai->mode = file->mode;
7244
7245 if (need_mixerinfo) {
7246 KASSERT(sc->sc_exlock);
7247
7248 pi->port = au_get_port(sc, &sc->sc_outports);
7249 ri->port = au_get_port(sc, &sc->sc_inports);
7250
7251 pi->avail_ports = sc->sc_outports.allports;
7252 ri->avail_ports = sc->sc_inports.allports;
7253
7254 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7255 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7256
7257 if (sc->sc_monitor_port != -1) {
7258 gain = au_get_monitor_gain(sc);
7259 if (gain != -1)
7260 ai->monitor_gain = gain;
7261 }
7262 }
7263
7264 return 0;
7265 }
7266
7267 /*
7268 * Must be called with sc_lock held.
7269 */
7270 static int
7271 audio_get_props(struct audio_softc *sc)
7272 {
7273 const struct audio_hw_if *hw;
7274 int props;
7275
7276 KASSERT(mutex_owned(sc->sc_lock));
7277
7278 hw = sc->hw_if;
7279 props = hw->get_props(sc->hw_hdl);
7280
7281 /*
7282 * For historical reasons, if neither playback nor capture
7283 * properties are reported, assume both are supported.
7284 * XXX Ideally (all) hardware driver should be updated...
7285 */
7286 if ((props & (AUDIO_PROP_PLAYBACK|AUDIO_PROP_CAPTURE)) == 0)
7287 props |= (AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE);
7288
7289 /* MMAP is now supported by upper layer. */
7290 props |= AUDIO_PROP_MMAP;
7291
7292 return props;
7293 }
7294
7295 /*
7296 * Return true if playback is configured.
7297 * This function can be used after audioattach.
7298 */
7299 static bool
7300 audio_can_playback(struct audio_softc *sc)
7301 {
7302
7303 return (sc->sc_pmixer != NULL);
7304 }
7305
7306 /*
7307 * Return true if recording is configured.
7308 * This function can be used after audioattach.
7309 */
7310 static bool
7311 audio_can_capture(struct audio_softc *sc)
7312 {
7313
7314 return (sc->sc_rmixer != NULL);
7315 }
7316
7317 /*
7318 * Get the afp->index'th item from the valid one of format[].
7319 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7320 *
7321 * This is common routines for query_format.
7322 * If your hardware driver has struct audio_format[], the simplest case
7323 * you can write your query_format interface as follows:
7324 *
7325 * struct audio_format foo_format[] = { ... };
7326 *
7327 * int
7328 * foo_query_format(void *hdl, audio_format_query_t *afp)
7329 * {
7330 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7331 * }
7332 */
7333 int
7334 audio_query_format(const struct audio_format *format, int nformats,
7335 audio_format_query_t *afp)
7336 {
7337 const struct audio_format *f;
7338 int idx;
7339 int i;
7340
7341 idx = 0;
7342 for (i = 0; i < nformats; i++) {
7343 f = &format[i];
7344 if (!AUFMT_IS_VALID(f))
7345 continue;
7346 if (afp->index == idx) {
7347 afp->fmt = *f;
7348 return 0;
7349 }
7350 idx++;
7351 }
7352 return EINVAL;
7353 }
7354
7355 /*
7356 * This function is provided for the hardware driver's set_format() to
7357 * find index matches with 'param' from array of audio_format_t 'formats'.
7358 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7359 * It returns the matched index and never fails. Because param passed to
7360 * set_format() is selected from query_format().
7361 * This function will be an alternative to auconv_set_converter() to
7362 * find index.
7363 */
7364 int
7365 audio_indexof_format(const struct audio_format *formats, int nformats,
7366 int mode, const audio_params_t *param)
7367 {
7368 const struct audio_format *f;
7369 int index;
7370 int j;
7371
7372 for (index = 0; index < nformats; index++) {
7373 f = &formats[index];
7374
7375 if (!AUFMT_IS_VALID(f))
7376 continue;
7377 if ((f->mode & mode) == 0)
7378 continue;
7379 if (f->encoding != param->encoding)
7380 continue;
7381 if (f->validbits != param->precision)
7382 continue;
7383 if (f->channels != param->channels)
7384 continue;
7385
7386 if (f->frequency_type == 0) {
7387 if (param->sample_rate < f->frequency[0] ||
7388 param->sample_rate > f->frequency[1])
7389 continue;
7390 } else {
7391 for (j = 0; j < f->frequency_type; j++) {
7392 if (param->sample_rate == f->frequency[j])
7393 break;
7394 }
7395 if (j == f->frequency_type)
7396 continue;
7397 }
7398
7399 /* Then, matched */
7400 return index;
7401 }
7402
7403 /* Not matched. This should not be happened. */
7404 panic("%s: cannot find matched format\n", __func__);
7405 }
7406
7407 /*
7408 * Get or set software master volume: 0..256
7409 * XXX It's for debug.
7410 */
7411 static int
7412 audio_sysctl_volume(SYSCTLFN_ARGS)
7413 {
7414 struct sysctlnode node;
7415 struct audio_softc *sc;
7416 int t, error;
7417
7418 node = *rnode;
7419 sc = node.sysctl_data;
7420
7421 if (sc->sc_pmixer)
7422 t = sc->sc_pmixer->volume;
7423 else
7424 t = -1;
7425 node.sysctl_data = &t;
7426 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7427 if (error || newp == NULL)
7428 return error;
7429
7430 if (sc->sc_pmixer == NULL)
7431 return EINVAL;
7432 if (t < 0)
7433 return EINVAL;
7434
7435 sc->sc_pmixer->volume = t;
7436 return 0;
7437 }
7438
7439 /*
7440 * Get or set hardware blocksize in msec.
7441 * XXX It's for debug.
7442 */
7443 static int
7444 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7445 {
7446 struct sysctlnode node;
7447 struct audio_softc *sc;
7448 audio_format2_t phwfmt;
7449 audio_format2_t rhwfmt;
7450 audio_filter_reg_t pfil;
7451 audio_filter_reg_t rfil;
7452 int t;
7453 int old_blk_ms;
7454 int mode;
7455 int error;
7456
7457 node = *rnode;
7458 sc = node.sysctl_data;
7459
7460 mutex_enter(sc->sc_lock);
7461
7462 old_blk_ms = sc->sc_blk_ms;
7463 t = old_blk_ms;
7464 node.sysctl_data = &t;
7465 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7466 if (error || newp == NULL)
7467 goto abort;
7468
7469 if (t < 0) {
7470 error = EINVAL;
7471 goto abort;
7472 }
7473
7474 if (sc->sc_popens + sc->sc_ropens > 0) {
7475 error = EBUSY;
7476 goto abort;
7477 }
7478 sc->sc_blk_ms = t;
7479 mode = 0;
7480 if (sc->sc_pmixer) {
7481 mode |= AUMODE_PLAY;
7482 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7483 }
7484 if (sc->sc_rmixer) {
7485 mode |= AUMODE_RECORD;
7486 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7487 }
7488
7489 /* re-init hardware */
7490 memset(&pfil, 0, sizeof(pfil));
7491 memset(&rfil, 0, sizeof(rfil));
7492 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7493 if (error) {
7494 goto abort;
7495 }
7496
7497 /* re-init track mixer */
7498 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7499 if (error) {
7500 /* Rollback */
7501 sc->sc_blk_ms = old_blk_ms;
7502 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7503 goto abort;
7504 }
7505 error = 0;
7506 abort:
7507 mutex_exit(sc->sc_lock);
7508 return error;
7509 }
7510
7511 /*
7512 * Get or set multiuser mode.
7513 */
7514 static int
7515 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7516 {
7517 struct sysctlnode node;
7518 struct audio_softc *sc;
7519 bool t;
7520 int error;
7521
7522 node = *rnode;
7523 sc = node.sysctl_data;
7524
7525 mutex_enter(sc->sc_lock);
7526
7527 t = sc->sc_multiuser;
7528 node.sysctl_data = &t;
7529 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7530 if (error || newp == NULL)
7531 goto abort;
7532
7533 sc->sc_multiuser = t;
7534 error = 0;
7535 abort:
7536 mutex_exit(sc->sc_lock);
7537 return error;
7538 }
7539
7540 #if defined(AUDIO_DEBUG)
7541 /*
7542 * Get or set debug verbose level. (0..4)
7543 * XXX It's for debug.
7544 * XXX It is not separated per device.
7545 */
7546 static int
7547 audio_sysctl_debug(SYSCTLFN_ARGS)
7548 {
7549 struct sysctlnode node;
7550 int t;
7551 int error;
7552
7553 node = *rnode;
7554 t = audiodebug;
7555 node.sysctl_data = &t;
7556 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7557 if (error || newp == NULL)
7558 return error;
7559
7560 if (t < 0 || t > 4)
7561 return EINVAL;
7562 audiodebug = t;
7563 printf("audio: audiodebug = %d\n", audiodebug);
7564 return 0;
7565 }
7566 #endif /* AUDIO_DEBUG */
7567
7568 #ifdef AUDIO_PM_IDLE
7569 static void
7570 audio_idle(void *arg)
7571 {
7572 device_t dv = arg;
7573 struct audio_softc *sc = device_private(dv);
7574
7575 #ifdef PNP_DEBUG
7576 extern int pnp_debug_idle;
7577 if (pnp_debug_idle)
7578 printf("%s: idle handler called\n", device_xname(dv));
7579 #endif
7580
7581 sc->sc_idle = true;
7582
7583 /* XXX joerg Make pmf_device_suspend handle children? */
7584 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7585 return;
7586
7587 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7588 pmf_device_resume(dv, PMF_Q_SELF);
7589 }
7590
7591 static void
7592 audio_activity(device_t dv, devactive_t type)
7593 {
7594 struct audio_softc *sc = device_private(dv);
7595
7596 if (type != DVA_SYSTEM)
7597 return;
7598
7599 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7600
7601 sc->sc_idle = false;
7602 if (!device_is_active(dv)) {
7603 /* XXX joerg How to deal with a failing resume... */
7604 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7605 pmf_device_resume(dv, PMF_Q_SELF);
7606 }
7607 }
7608 #endif
7609
7610 static bool
7611 audio_suspend(device_t dv, const pmf_qual_t *qual)
7612 {
7613 struct audio_softc *sc = device_private(dv);
7614 int error;
7615
7616 error = audio_enter_exclusive(sc);
7617 if (error)
7618 return error;
7619 audio_mixer_capture(sc);
7620
7621 /* Halts mixers but don't clear busy flag for resume */
7622 if (sc->sc_pbusy) {
7623 audio_pmixer_halt(sc);
7624 sc->sc_pbusy = true;
7625 }
7626 if (sc->sc_rbusy) {
7627 audio_rmixer_halt(sc);
7628 sc->sc_rbusy = true;
7629 }
7630
7631 #ifdef AUDIO_PM_IDLE
7632 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7633 #endif
7634 audio_exit_exclusive(sc);
7635
7636 return true;
7637 }
7638
7639 static bool
7640 audio_resume(device_t dv, const pmf_qual_t *qual)
7641 {
7642 struct audio_softc *sc = device_private(dv);
7643 struct audio_info ai;
7644 int error;
7645
7646 error = audio_enter_exclusive(sc);
7647 if (error)
7648 return error;
7649
7650 audio_mixer_restore(sc);
7651 /* XXX ? */
7652 AUDIO_INITINFO(&ai);
7653 audio_hw_setinfo(sc, &ai, NULL);
7654
7655 if (sc->sc_pbusy)
7656 audio_pmixer_start(sc, true);
7657 if (sc->sc_rbusy)
7658 audio_rmixer_start(sc);
7659
7660 audio_exit_exclusive(sc);
7661
7662 return true;
7663 }
7664
7665 #if defined(AUDIO_DEBUG)
7666 static void
7667 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7668 {
7669 int n;
7670
7671 n = 0;
7672 n += snprintf(buf + n, bufsize - n, "%s",
7673 audio_encoding_name(fmt->encoding));
7674 if (fmt->precision == fmt->stride) {
7675 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7676 } else {
7677 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7678 fmt->precision, fmt->stride);
7679 }
7680
7681 snprintf(buf + n, bufsize - n, " %uch %uHz",
7682 fmt->channels, fmt->sample_rate);
7683 }
7684 #endif
7685
7686 #if defined(AUDIO_DEBUG)
7687 static void
7688 audio_print_format2(const char *s, const audio_format2_t *fmt)
7689 {
7690 char fmtstr[64];
7691
7692 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7693 printf("%s %s\n", s, fmtstr);
7694 }
7695 #endif
7696
7697 #ifdef DIAGNOSTIC
7698 void
7699 audio_diagnostic_format2(const char *func, const audio_format2_t *fmt)
7700 {
7701
7702 KASSERTMSG(fmt, "%s: fmt == NULL", func);
7703
7704 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7705 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7706 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7707 "%s: stride(%d) is invalid", func, fmt->stride);
7708 } else {
7709 KASSERTMSG(fmt->stride % NBBY == 0,
7710 "%s: stride(%d) is invalid", func, fmt->stride);
7711 }
7712 KASSERTMSG(fmt->precision <= fmt->stride,
7713 "%s: precision(%d) <= stride(%d)",
7714 func, fmt->precision, fmt->stride);
7715 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7716 "%s: channels(%d) is out of range",
7717 func, fmt->channels);
7718
7719 /* XXX No check for encodings? */
7720 }
7721
7722 void
7723 audio_diagnostic_filter_arg(const char *func, const audio_filter_arg_t *arg)
7724 {
7725
7726 KASSERT(arg != NULL);
7727 KASSERT(arg->src != NULL);
7728 KASSERT(arg->dst != NULL);
7729 DIAGNOSTIC_format2(arg->srcfmt);
7730 DIAGNOSTIC_format2(arg->dstfmt);
7731 KASSERTMSG(arg->count > 0,
7732 "%s: count(%d) is out of range", func, arg->count);
7733 }
7734
7735 void
7736 audio_diagnostic_ring(const char *func, const audio_ring_t *ring)
7737 {
7738
7739 KASSERTMSG(ring, "%s: ring == NULL", func);
7740 DIAGNOSTIC_format2(&ring->fmt);
7741 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7742 "%s: capacity(%d) is out of range", func, ring->capacity);
7743 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7744 "%s: used(%d) is out of range (capacity:%d)",
7745 func, ring->used, ring->capacity);
7746 if (ring->capacity == 0) {
7747 KASSERTMSG(ring->mem == NULL,
7748 "%s: capacity == 0 but mem != NULL", func);
7749 } else {
7750 KASSERTMSG(ring->mem != NULL,
7751 "%s: capacity != 0 but mem == NULL", func);
7752 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7753 "%s: head(%d) is out of range (capacity:%d)",
7754 func, ring->head, ring->capacity);
7755 }
7756 }
7757 #endif /* DIAGNOSTIC */
7758
7759
7760 /*
7761 * Mixer driver
7762 */
7763 int
7764 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7765 struct lwp *l)
7766 {
7767 struct file *fp;
7768 audio_file_t *af;
7769 int error, fd;
7770
7771 KASSERT(mutex_owned(sc->sc_lock));
7772
7773 TRACE(1, "flags=0x%x", flags);
7774
7775 error = fd_allocfile(&fp, &fd);
7776 if (error)
7777 return error;
7778
7779 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7780 af->sc = sc;
7781 af->dev = dev;
7782
7783 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7784 KASSERT(error == EMOVEFD);
7785
7786 return error;
7787 }
7788
7789 /*
7790 * Remove a process from those to be signalled on mixer activity.
7791 * Must be called with sc_lock held.
7792 */
7793 static void
7794 mixer_remove(struct audio_softc *sc)
7795 {
7796 struct mixer_asyncs **pm, *m;
7797 pid_t pid;
7798
7799 KASSERT(mutex_owned(sc->sc_lock));
7800
7801 pid = curproc->p_pid;
7802 for (pm = &sc->sc_async_mixer; *pm; pm = &(*pm)->next) {
7803 if ((*pm)->pid == pid) {
7804 m = *pm;
7805 *pm = m->next;
7806 kmem_free(m, sizeof(*m));
7807 return;
7808 }
7809 }
7810 }
7811
7812 /*
7813 * Signal all processes waiting for the mixer.
7814 * Must be called with sc_lock held.
7815 */
7816 static void
7817 mixer_signal(struct audio_softc *sc)
7818 {
7819 struct mixer_asyncs *m;
7820 proc_t *p;
7821
7822 for (m = sc->sc_async_mixer; m; m = m->next) {
7823 mutex_enter(proc_lock);
7824 if ((p = proc_find(m->pid)) != NULL)
7825 psignal(p, SIGIO);
7826 mutex_exit(proc_lock);
7827 }
7828 }
7829
7830 /*
7831 * Close a mixer device
7832 */
7833 int
7834 mixer_close(struct audio_softc *sc, audio_file_t *file)
7835 {
7836
7837 mutex_enter(sc->sc_lock);
7838 TRACE(1, "");
7839 mixer_remove(sc);
7840 mutex_exit(sc->sc_lock);
7841
7842 return 0;
7843 }
7844
7845 int
7846 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
7847 struct lwp *l)
7848 {
7849 struct mixer_asyncs *ma;
7850 mixer_devinfo_t *mi;
7851 mixer_ctrl_t *mc;
7852 int error;
7853
7854 KASSERT(!mutex_owned(sc->sc_lock));
7855
7856 TRACE(2, "(%lu,'%c',%lu)",
7857 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
7858 error = EINVAL;
7859
7860 /* we can return cached values if we are sleeping */
7861 if (cmd != AUDIO_MIXER_READ) {
7862 mutex_enter(sc->sc_lock);
7863 device_active(sc->sc_dev, DVA_SYSTEM);
7864 mutex_exit(sc->sc_lock);
7865 }
7866
7867 switch (cmd) {
7868 case FIOASYNC:
7869 if (*(int *)addr) {
7870 ma = kmem_alloc(sizeof(struct mixer_asyncs), KM_SLEEP);
7871 } else {
7872 ma = NULL;
7873 }
7874 mixer_remove(sc); /* remove old entry */
7875 if (ma != NULL) {
7876 ma->next = sc->sc_async_mixer;
7877 ma->pid = curproc->p_pid;
7878 sc->sc_async_mixer = ma;
7879 }
7880 error = 0;
7881 break;
7882
7883 case AUDIO_GETDEV:
7884 TRACE(2, "AUDIO_GETDEV");
7885 error = audio_enter_exclusive(sc);
7886 if (error)
7887 break;
7888 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
7889 audio_exit_exclusive(sc);
7890 break;
7891
7892 case AUDIO_MIXER_DEVINFO:
7893 TRACE(2, "AUDIO_MIXER_DEVINFO");
7894 mi = (mixer_devinfo_t *)addr;
7895
7896 mi->un.v.delta = 0; /* default */
7897 mutex_enter(sc->sc_lock);
7898 error = audio_query_devinfo(sc, mi);
7899 mutex_exit(sc->sc_lock);
7900 break;
7901
7902 case AUDIO_MIXER_READ:
7903 TRACE(2, "AUDIO_MIXER_READ");
7904 mc = (mixer_ctrl_t *)addr;
7905
7906 error = audio_enter_exclusive(sc);
7907 if (error)
7908 break;
7909 if (device_is_active(sc->hw_dev))
7910 error = audio_get_port(sc, mc);
7911 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
7912 error = ENXIO;
7913 else {
7914 int dev = mc->dev;
7915 memcpy(mc, &sc->sc_mixer_state[dev],
7916 sizeof(mixer_ctrl_t));
7917 error = 0;
7918 }
7919 audio_exit_exclusive(sc);
7920 break;
7921
7922 case AUDIO_MIXER_WRITE:
7923 TRACE(2, "AUDIO_MIXER_WRITE");
7924 error = audio_enter_exclusive(sc);
7925 if (error)
7926 break;
7927 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
7928 if (error) {
7929 audio_exit_exclusive(sc);
7930 break;
7931 }
7932
7933 if (sc->hw_if->commit_settings) {
7934 error = sc->hw_if->commit_settings(sc->hw_hdl);
7935 if (error) {
7936 audio_exit_exclusive(sc);
7937 break;
7938 }
7939 }
7940 mixer_signal(sc);
7941 audio_exit_exclusive(sc);
7942 break;
7943
7944 default:
7945 if (sc->hw_if->dev_ioctl) {
7946 error = audio_enter_exclusive(sc);
7947 if (error)
7948 break;
7949 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
7950 cmd, addr, flag, l);
7951 audio_exit_exclusive(sc);
7952 } else
7953 error = EINVAL;
7954 break;
7955 }
7956 TRACE(2, "(%lu,'%c',%lu) result %d",
7957 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
7958 return error;
7959 }
7960
7961 /*
7962 * Must be called with sc_lock held.
7963 */
7964 int
7965 au_portof(struct audio_softc *sc, char *name, int class)
7966 {
7967 mixer_devinfo_t mi;
7968
7969 KASSERT(mutex_owned(sc->sc_lock));
7970
7971 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
7972 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
7973 return mi.index;
7974 }
7975 return -1;
7976 }
7977
7978 /*
7979 * Must be called with sc_lock held.
7980 */
7981 void
7982 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
7983 mixer_devinfo_t *mi, const struct portname *tbl)
7984 {
7985 int i, j;
7986
7987 KASSERT(mutex_owned(sc->sc_lock));
7988
7989 ports->index = mi->index;
7990 if (mi->type == AUDIO_MIXER_ENUM) {
7991 ports->isenum = true;
7992 for(i = 0; tbl[i].name; i++)
7993 for(j = 0; j < mi->un.e.num_mem; j++)
7994 if (strcmp(mi->un.e.member[j].label.name,
7995 tbl[i].name) == 0) {
7996 ports->allports |= tbl[i].mask;
7997 ports->aumask[ports->nports] = tbl[i].mask;
7998 ports->misel[ports->nports] =
7999 mi->un.e.member[j].ord;
8000 ports->miport[ports->nports] =
8001 au_portof(sc, mi->un.e.member[j].label.name,
8002 mi->mixer_class);
8003 if (ports->mixerout != -1 &&
8004 ports->miport[ports->nports] != -1)
8005 ports->isdual = true;
8006 ++ports->nports;
8007 }
8008 } else if (mi->type == AUDIO_MIXER_SET) {
8009 for(i = 0; tbl[i].name; i++)
8010 for(j = 0; j < mi->un.s.num_mem; j++)
8011 if (strcmp(mi->un.s.member[j].label.name,
8012 tbl[i].name) == 0) {
8013 ports->allports |= tbl[i].mask;
8014 ports->aumask[ports->nports] = tbl[i].mask;
8015 ports->misel[ports->nports] =
8016 mi->un.s.member[j].mask;
8017 ports->miport[ports->nports] =
8018 au_portof(sc, mi->un.s.member[j].label.name,
8019 mi->mixer_class);
8020 ++ports->nports;
8021 }
8022 }
8023 }
8024
8025 /*
8026 * Must be called with sc_lock && sc_exlock held.
8027 */
8028 int
8029 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8030 {
8031
8032 KASSERT(mutex_owned(sc->sc_lock));
8033 KASSERT(sc->sc_exlock);
8034
8035 ct->type = AUDIO_MIXER_VALUE;
8036 ct->un.value.num_channels = 2;
8037 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8038 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8039 if (audio_set_port(sc, ct) == 0)
8040 return 0;
8041 ct->un.value.num_channels = 1;
8042 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8043 return audio_set_port(sc, ct);
8044 }
8045
8046 /*
8047 * Must be called with sc_lock && sc_exlock held.
8048 */
8049 int
8050 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8051 {
8052 int error;
8053
8054 KASSERT(mutex_owned(sc->sc_lock));
8055 KASSERT(sc->sc_exlock);
8056
8057 ct->un.value.num_channels = 2;
8058 if (audio_get_port(sc, ct) == 0) {
8059 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8060 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8061 } else {
8062 ct->un.value.num_channels = 1;
8063 error = audio_get_port(sc, ct);
8064 if (error)
8065 return error;
8066 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8067 }
8068 return 0;
8069 }
8070
8071 /*
8072 * Must be called with sc_lock && sc_exlock held.
8073 */
8074 int
8075 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8076 int gain, int balance)
8077 {
8078 mixer_ctrl_t ct;
8079 int i, error;
8080 int l, r;
8081 u_int mask;
8082 int nset;
8083
8084 KASSERT(mutex_owned(sc->sc_lock));
8085 KASSERT(sc->sc_exlock);
8086
8087 if (balance == AUDIO_MID_BALANCE) {
8088 l = r = gain;
8089 } else if (balance < AUDIO_MID_BALANCE) {
8090 l = gain;
8091 r = (balance * gain) / AUDIO_MID_BALANCE;
8092 } else {
8093 r = gain;
8094 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8095 / AUDIO_MID_BALANCE;
8096 }
8097 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8098
8099 if (ports->index == -1) {
8100 usemaster:
8101 if (ports->master == -1)
8102 return 0; /* just ignore it silently */
8103 ct.dev = ports->master;
8104 error = au_set_lr_value(sc, &ct, l, r);
8105 } else {
8106 ct.dev = ports->index;
8107 if (ports->isenum) {
8108 ct.type = AUDIO_MIXER_ENUM;
8109 error = audio_get_port(sc, &ct);
8110 if (error)
8111 return error;
8112 if (ports->isdual) {
8113 if (ports->cur_port == -1)
8114 ct.dev = ports->master;
8115 else
8116 ct.dev = ports->miport[ports->cur_port];
8117 error = au_set_lr_value(sc, &ct, l, r);
8118 } else {
8119 for(i = 0; i < ports->nports; i++)
8120 if (ports->misel[i] == ct.un.ord) {
8121 ct.dev = ports->miport[i];
8122 if (ct.dev == -1 ||
8123 au_set_lr_value(sc, &ct, l, r))
8124 goto usemaster;
8125 else
8126 break;
8127 }
8128 }
8129 } else {
8130 ct.type = AUDIO_MIXER_SET;
8131 error = audio_get_port(sc, &ct);
8132 if (error)
8133 return error;
8134 mask = ct.un.mask;
8135 nset = 0;
8136 for(i = 0; i < ports->nports; i++) {
8137 if (ports->misel[i] & mask) {
8138 ct.dev = ports->miport[i];
8139 if (ct.dev != -1 &&
8140 au_set_lr_value(sc, &ct, l, r) == 0)
8141 nset++;
8142 }
8143 }
8144 if (nset == 0)
8145 goto usemaster;
8146 }
8147 }
8148 if (!error)
8149 mixer_signal(sc);
8150 return error;
8151 }
8152
8153 /*
8154 * Must be called with sc_lock && sc_exlock held.
8155 */
8156 void
8157 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8158 u_int *pgain, u_char *pbalance)
8159 {
8160 mixer_ctrl_t ct;
8161 int i, l, r, n;
8162 int lgain, rgain;
8163
8164 KASSERT(mutex_owned(sc->sc_lock));
8165 KASSERT(sc->sc_exlock);
8166
8167 lgain = AUDIO_MAX_GAIN / 2;
8168 rgain = AUDIO_MAX_GAIN / 2;
8169 if (ports->index == -1) {
8170 usemaster:
8171 if (ports->master == -1)
8172 goto bad;
8173 ct.dev = ports->master;
8174 ct.type = AUDIO_MIXER_VALUE;
8175 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8176 goto bad;
8177 } else {
8178 ct.dev = ports->index;
8179 if (ports->isenum) {
8180 ct.type = AUDIO_MIXER_ENUM;
8181 if (audio_get_port(sc, &ct))
8182 goto bad;
8183 ct.type = AUDIO_MIXER_VALUE;
8184 if (ports->isdual) {
8185 if (ports->cur_port == -1)
8186 ct.dev = ports->master;
8187 else
8188 ct.dev = ports->miport[ports->cur_port];
8189 au_get_lr_value(sc, &ct, &lgain, &rgain);
8190 } else {
8191 for(i = 0; i < ports->nports; i++)
8192 if (ports->misel[i] == ct.un.ord) {
8193 ct.dev = ports->miport[i];
8194 if (ct.dev == -1 ||
8195 au_get_lr_value(sc, &ct,
8196 &lgain, &rgain))
8197 goto usemaster;
8198 else
8199 break;
8200 }
8201 }
8202 } else {
8203 ct.type = AUDIO_MIXER_SET;
8204 if (audio_get_port(sc, &ct))
8205 goto bad;
8206 ct.type = AUDIO_MIXER_VALUE;
8207 lgain = rgain = n = 0;
8208 for(i = 0; i < ports->nports; i++) {
8209 if (ports->misel[i] & ct.un.mask) {
8210 ct.dev = ports->miport[i];
8211 if (ct.dev == -1 ||
8212 au_get_lr_value(sc, &ct, &l, &r))
8213 goto usemaster;
8214 else {
8215 lgain += l;
8216 rgain += r;
8217 n++;
8218 }
8219 }
8220 }
8221 if (n != 0) {
8222 lgain /= n;
8223 rgain /= n;
8224 }
8225 }
8226 }
8227 bad:
8228 if (lgain == rgain) { /* handles lgain==rgain==0 */
8229 *pgain = lgain;
8230 *pbalance = AUDIO_MID_BALANCE;
8231 } else if (lgain < rgain) {
8232 *pgain = rgain;
8233 /* balance should be > AUDIO_MID_BALANCE */
8234 *pbalance = AUDIO_RIGHT_BALANCE -
8235 (AUDIO_MID_BALANCE * lgain) / rgain;
8236 } else /* lgain > rgain */ {
8237 *pgain = lgain;
8238 /* balance should be < AUDIO_MID_BALANCE */
8239 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8240 }
8241 }
8242
8243 /*
8244 * Must be called with sc_lock && sc_exlock held.
8245 */
8246 int
8247 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8248 {
8249 mixer_ctrl_t ct;
8250 int i, error, use_mixerout;
8251
8252 KASSERT(mutex_owned(sc->sc_lock));
8253 KASSERT(sc->sc_exlock);
8254
8255 use_mixerout = 1;
8256 if (port == 0) {
8257 if (ports->allports == 0)
8258 return 0; /* Allow this special case. */
8259 else if (ports->isdual) {
8260 if (ports->cur_port == -1) {
8261 return 0;
8262 } else {
8263 port = ports->aumask[ports->cur_port];
8264 ports->cur_port = -1;
8265 use_mixerout = 0;
8266 }
8267 }
8268 }
8269 if (ports->index == -1)
8270 return EINVAL;
8271 ct.dev = ports->index;
8272 if (ports->isenum) {
8273 if (port & (port-1))
8274 return EINVAL; /* Only one port allowed */
8275 ct.type = AUDIO_MIXER_ENUM;
8276 error = EINVAL;
8277 for(i = 0; i < ports->nports; i++)
8278 if (ports->aumask[i] == port) {
8279 if (ports->isdual && use_mixerout) {
8280 ct.un.ord = ports->mixerout;
8281 ports->cur_port = i;
8282 } else {
8283 ct.un.ord = ports->misel[i];
8284 }
8285 error = audio_set_port(sc, &ct);
8286 break;
8287 }
8288 } else {
8289 ct.type = AUDIO_MIXER_SET;
8290 ct.un.mask = 0;
8291 for(i = 0; i < ports->nports; i++)
8292 if (ports->aumask[i] & port)
8293 ct.un.mask |= ports->misel[i];
8294 if (port != 0 && ct.un.mask == 0)
8295 error = EINVAL;
8296 else
8297 error = audio_set_port(sc, &ct);
8298 }
8299 if (!error)
8300 mixer_signal(sc);
8301 return error;
8302 }
8303
8304 /*
8305 * Must be called with sc_lock && sc_exlock held.
8306 */
8307 int
8308 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8309 {
8310 mixer_ctrl_t ct;
8311 int i, aumask;
8312
8313 KASSERT(mutex_owned(sc->sc_lock));
8314 KASSERT(sc->sc_exlock);
8315
8316 if (ports->index == -1)
8317 return 0;
8318 ct.dev = ports->index;
8319 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8320 if (audio_get_port(sc, &ct))
8321 return 0;
8322 aumask = 0;
8323 if (ports->isenum) {
8324 if (ports->isdual && ports->cur_port != -1) {
8325 if (ports->mixerout == ct.un.ord)
8326 aumask = ports->aumask[ports->cur_port];
8327 else
8328 ports->cur_port = -1;
8329 }
8330 if (aumask == 0)
8331 for(i = 0; i < ports->nports; i++)
8332 if (ports->misel[i] == ct.un.ord)
8333 aumask = ports->aumask[i];
8334 } else {
8335 for(i = 0; i < ports->nports; i++)
8336 if (ct.un.mask & ports->misel[i])
8337 aumask |= ports->aumask[i];
8338 }
8339 return aumask;
8340 }
8341
8342 /*
8343 * It returns 0 if success, otherwise errno.
8344 * Must be called only if sc->sc_monitor_port != -1.
8345 * Must be called with sc_lock && sc_exlock held.
8346 */
8347 static int
8348 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8349 {
8350 mixer_ctrl_t ct;
8351
8352 KASSERT(mutex_owned(sc->sc_lock));
8353 KASSERT(sc->sc_exlock);
8354
8355 ct.dev = sc->sc_monitor_port;
8356 ct.type = AUDIO_MIXER_VALUE;
8357 ct.un.value.num_channels = 1;
8358 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8359 return audio_set_port(sc, &ct);
8360 }
8361
8362 /*
8363 * It returns monitor gain if success, otherwise -1.
8364 * Must be called only if sc->sc_monitor_port != -1.
8365 * Must be called with sc_lock && sc_exlock held.
8366 */
8367 static int
8368 au_get_monitor_gain(struct audio_softc *sc)
8369 {
8370 mixer_ctrl_t ct;
8371
8372 KASSERT(mutex_owned(sc->sc_lock));
8373 KASSERT(sc->sc_exlock);
8374
8375 ct.dev = sc->sc_monitor_port;
8376 ct.type = AUDIO_MIXER_VALUE;
8377 ct.un.value.num_channels = 1;
8378 if (audio_get_port(sc, &ct))
8379 return -1;
8380 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8381 }
8382
8383 /*
8384 * Must be called with sc_lock && sc_exlock held.
8385 */
8386 static int
8387 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8388 {
8389
8390 KASSERT(mutex_owned(sc->sc_lock));
8391 KASSERT(sc->sc_exlock);
8392
8393 return sc->hw_if->set_port(sc->hw_hdl, mc);
8394 }
8395
8396 /*
8397 * Must be called with sc_lock && sc_exlock held.
8398 */
8399 static int
8400 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8401 {
8402
8403 KASSERT(mutex_owned(sc->sc_lock));
8404 KASSERT(sc->sc_exlock);
8405
8406 return sc->hw_if->get_port(sc->hw_hdl, mc);
8407 }
8408
8409 /*
8410 * Must be called with sc_lock && sc_exlock held.
8411 */
8412 static void
8413 audio_mixer_capture(struct audio_softc *sc)
8414 {
8415 mixer_devinfo_t mi;
8416 mixer_ctrl_t *mc;
8417
8418 KASSERT(mutex_owned(sc->sc_lock));
8419 KASSERT(sc->sc_exlock);
8420
8421 for (mi.index = 0;; mi.index++) {
8422 if (audio_query_devinfo(sc, &mi) != 0)
8423 break;
8424 KASSERT(mi.index < sc->sc_nmixer_states);
8425 if (mi.type == AUDIO_MIXER_CLASS)
8426 continue;
8427 mc = &sc->sc_mixer_state[mi.index];
8428 mc->dev = mi.index;
8429 mc->type = mi.type;
8430 mc->un.value.num_channels = mi.un.v.num_channels;
8431 (void)audio_get_port(sc, mc);
8432 }
8433
8434 return;
8435 }
8436
8437 /*
8438 * Must be called with sc_lock && sc_exlock held.
8439 */
8440 static void
8441 audio_mixer_restore(struct audio_softc *sc)
8442 {
8443 mixer_devinfo_t mi;
8444 mixer_ctrl_t *mc;
8445
8446 KASSERT(mutex_owned(sc->sc_lock));
8447 KASSERT(sc->sc_exlock);
8448
8449 for (mi.index = 0; ; mi.index++) {
8450 if (audio_query_devinfo(sc, &mi) != 0)
8451 break;
8452 if (mi.type == AUDIO_MIXER_CLASS)
8453 continue;
8454 mc = &sc->sc_mixer_state[mi.index];
8455 (void)audio_set_port(sc, mc);
8456 }
8457 if (sc->hw_if->commit_settings)
8458 sc->hw_if->commit_settings(sc->hw_hdl);
8459
8460 return;
8461 }
8462
8463 static void
8464 audio_volume_down(device_t dv)
8465 {
8466 struct audio_softc *sc = device_private(dv);
8467 mixer_devinfo_t mi;
8468 int newgain;
8469 u_int gain;
8470 u_char balance;
8471
8472 if (audio_enter_exclusive(sc) != 0)
8473 return;
8474 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8475 mi.index = sc->sc_outports.master;
8476 mi.un.v.delta = 0;
8477 if (audio_query_devinfo(sc, &mi) == 0) {
8478 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8479 newgain = gain - mi.un.v.delta;
8480 if (newgain < AUDIO_MIN_GAIN)
8481 newgain = AUDIO_MIN_GAIN;
8482 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8483 }
8484 }
8485 audio_exit_exclusive(sc);
8486 }
8487
8488 static void
8489 audio_volume_up(device_t dv)
8490 {
8491 struct audio_softc *sc = device_private(dv);
8492 mixer_devinfo_t mi;
8493 u_int gain, newgain;
8494 u_char balance;
8495
8496 if (audio_enter_exclusive(sc) != 0)
8497 return;
8498 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8499 mi.index = sc->sc_outports.master;
8500 mi.un.v.delta = 0;
8501 if (audio_query_devinfo(sc, &mi) == 0) {
8502 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8503 newgain = gain + mi.un.v.delta;
8504 if (newgain > AUDIO_MAX_GAIN)
8505 newgain = AUDIO_MAX_GAIN;
8506 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8507 }
8508 }
8509 audio_exit_exclusive(sc);
8510 }
8511
8512 static void
8513 audio_volume_toggle(device_t dv)
8514 {
8515 struct audio_softc *sc = device_private(dv);
8516 u_int gain, newgain;
8517 u_char balance;
8518
8519 if (audio_enter_exclusive(sc) != 0)
8520 return;
8521 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8522 if (gain != 0) {
8523 sc->sc_lastgain = gain;
8524 newgain = 0;
8525 } else
8526 newgain = sc->sc_lastgain;
8527 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8528 audio_exit_exclusive(sc);
8529 }
8530
8531 static int
8532 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8533 {
8534
8535 KASSERT(mutex_owned(sc->sc_lock));
8536
8537 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8538 }
8539
8540 #endif /* NAUDIO > 0 */
8541
8542 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8543 #include <sys/param.h>
8544 #include <sys/systm.h>
8545 #include <sys/device.h>
8546 #include <sys/audioio.h>
8547 #include <dev/audio/audio_if.h>
8548 #endif
8549
8550 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8551 int
8552 audioprint(void *aux, const char *pnp)
8553 {
8554 struct audio_attach_args *arg;
8555 const char *type;
8556
8557 if (pnp != NULL) {
8558 arg = aux;
8559 switch (arg->type) {
8560 case AUDIODEV_TYPE_AUDIO:
8561 type = "audio";
8562 break;
8563 case AUDIODEV_TYPE_MIDI:
8564 type = "midi";
8565 break;
8566 case AUDIODEV_TYPE_OPL:
8567 type = "opl";
8568 break;
8569 case AUDIODEV_TYPE_MPU:
8570 type = "mpu";
8571 break;
8572 default:
8573 panic("audioprint: unknown type %d", arg->type);
8574 }
8575 aprint_normal("%s at %s", type, pnp);
8576 }
8577 return UNCONF;
8578 }
8579
8580 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8581
8582 #ifdef _MODULE
8583
8584 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8585
8586 #include "ioconf.c"
8587
8588 #endif
8589
8590 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8591
8592 static int
8593 audio_modcmd(modcmd_t cmd, void *arg)
8594 {
8595 int error = 0;
8596
8597 #ifdef _MODULE
8598 switch (cmd) {
8599 case MODULE_CMD_INIT:
8600 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8601 &audio_cdevsw, &audio_cmajor);
8602 if (error)
8603 break;
8604
8605 error = config_init_component(cfdriver_ioconf_audio,
8606 cfattach_ioconf_audio, cfdata_ioconf_audio);
8607 if (error) {
8608 devsw_detach(NULL, &audio_cdevsw);
8609 }
8610 break;
8611 case MODULE_CMD_FINI:
8612 devsw_detach(NULL, &audio_cdevsw);
8613 error = config_fini_component(cfdriver_ioconf_audio,
8614 cfattach_ioconf_audio, cfdata_ioconf_audio);
8615 if (error)
8616 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8617 &audio_cdevsw, &audio_cmajor);
8618 break;
8619 default:
8620 error = ENOTTY;
8621 break;
8622 }
8623 #endif
8624
8625 return error;
8626 }
8627