audio.c revision 1.81 1 /* $NetBSD: audio.c,v 1.81 2020/12/09 04:30:39 isaki Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1991-1993 Regents of the University of California.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the Computer Systems
47 * Engineering Group at Lawrence Berkeley Laboratory.
48 * 4. Neither the name of the University nor of the Laboratory may be used
49 * to endorse or promote products derived from this software without
50 * specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 */
64
65 /*
66 * Locking: there are three locks per device.
67 *
68 * - sc_lock, provided by the underlying driver. This is an adaptive lock,
69 * returned in the second parameter to hw_if->get_locks(). It is known
70 * as the "thread lock".
71 *
72 * It serializes access to state in all places except the
73 * driver's interrupt service routine. This lock is taken from process
74 * context (example: access to /dev/audio). It is also taken from soft
75 * interrupt handlers in this module, primarily to serialize delivery of
76 * wakeups. This lock may be used/provided by modules external to the
77 * audio subsystem, so take care not to introduce a lock order problem.
78 * LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
79 *
80 * - sc_intr_lock, provided by the underlying driver. This may be either a
81 * spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
82 * IPL_SOFT*), returned in the first parameter to hw_if->get_locks(). It
83 * is known as the "interrupt lock".
84 *
85 * It provides atomic access to the device's hardware state, and to audio
86 * channel data that may be accessed by the hardware driver's ISR.
87 * In all places outside the ISR, sc_lock must be held before taking
88 * sc_intr_lock. This is to ensure that groups of hardware operations are
89 * made atomically. SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
90 *
91 * - sc_exlock, private to this module. This is a variable protected by
92 * sc_lock. It is known as the "critical section".
93 * Some operations release sc_lock in order to allocate memory, to wait
94 * for in-flight I/O to complete, to copy to/from user context, etc.
95 * sc_exlock provides a critical section even under the circumstance.
96 * "+" in following list indicates the interfaces which necessary to be
97 * protected by sc_exlock.
98 *
99 * List of hardware interface methods, and which locks are held when each
100 * is called by this module:
101 *
102 * METHOD INTR THREAD NOTES
103 * ----------------------- ------- ------- -------------------------
104 * open x x +
105 * close x x +
106 * query_format - x
107 * set_format - x
108 * round_blocksize - x
109 * commit_settings - x
110 * init_output x x
111 * init_input x x
112 * start_output x x +
113 * start_input x x +
114 * halt_output x x +
115 * halt_input x x +
116 * speaker_ctl x x
117 * getdev - x
118 * set_port - x +
119 * get_port - x +
120 * query_devinfo - x
121 * allocm - - +
122 * freem - - +
123 * round_buffersize - x
124 * get_props - - Called at attach time
125 * trigger_output x x +
126 * trigger_input x x +
127 * dev_ioctl - x
128 * get_locks - - Called at attach time
129 *
130 * In addition, there is an additional lock.
131 *
132 * - track->lock. This is an atomic variable and is similar to the
133 * "interrupt lock". This is one for each track. If any thread context
134 * (and software interrupt context) and hardware interrupt context who
135 * want to access some variables on this track, they must acquire this
136 * lock before. It protects track's consistency between hardware
137 * interrupt context and others.
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.81 2020/12/09 04:30:39 isaki Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "audio.h"
145 #include "midi.h"
146 #endif
147
148 #if NAUDIO > 0
149
150 #include <sys/types.h>
151 #include <sys/param.h>
152 #include <sys/atomic.h>
153 #include <sys/audioio.h>
154 #include <sys/conf.h>
155 #include <sys/cpu.h>
156 #include <sys/device.h>
157 #include <sys/fcntl.h>
158 #include <sys/file.h>
159 #include <sys/filedesc.h>
160 #include <sys/intr.h>
161 #include <sys/ioctl.h>
162 #include <sys/kauth.h>
163 #include <sys/kernel.h>
164 #include <sys/kmem.h>
165 #include <sys/malloc.h>
166 #include <sys/mman.h>
167 #include <sys/module.h>
168 #include <sys/poll.h>
169 #include <sys/proc.h>
170 #include <sys/queue.h>
171 #include <sys/select.h>
172 #include <sys/signalvar.h>
173 #include <sys/stat.h>
174 #include <sys/sysctl.h>
175 #include <sys/systm.h>
176 #include <sys/syslog.h>
177 #include <sys/vnode.h>
178
179 #include <dev/audio/audio_if.h>
180 #include <dev/audio/audiovar.h>
181 #include <dev/audio/audiodef.h>
182 #include <dev/audio/linear.h>
183 #include <dev/audio/mulaw.h>
184
185 #include <machine/endian.h>
186
187 #include <uvm/uvm_extern.h>
188
189 #include "ioconf.h"
190
191 /*
192 * 0: No debug logs
193 * 1: action changes like open/close/set_format...
194 * 2: + normal operations like read/write/ioctl...
195 * 3: + TRACEs except interrupt
196 * 4: + TRACEs including interrupt
197 */
198 //#define AUDIO_DEBUG 1
199
200 #if defined(AUDIO_DEBUG)
201
202 int audiodebug = AUDIO_DEBUG;
203 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
204 const char *, va_list);
205 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
206 __printflike(3, 4);
207 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
208 __printflike(3, 4);
209 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
210 __printflike(3, 4);
211
212 /* XXX sloppy memory logger */
213 static void audio_mlog_init(void);
214 static void audio_mlog_free(void);
215 static void audio_mlog_softintr(void *);
216 extern void audio_mlog_flush(void);
217 extern void audio_mlog_printf(const char *, ...);
218
219 static int mlog_refs; /* reference counter */
220 static char *mlog_buf[2]; /* double buffer */
221 static int mlog_buflen; /* buffer length */
222 static int mlog_used; /* used length */
223 static int mlog_full; /* number of dropped lines by buffer full */
224 static int mlog_drop; /* number of dropped lines by busy */
225 static volatile uint32_t mlog_inuse; /* in-use */
226 static int mlog_wpage; /* active page */
227 static void *mlog_sih; /* softint handle */
228
229 static void
230 audio_mlog_init(void)
231 {
232 mlog_refs++;
233 if (mlog_refs > 1)
234 return;
235 mlog_buflen = 4096;
236 mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
237 mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
238 mlog_used = 0;
239 mlog_full = 0;
240 mlog_drop = 0;
241 mlog_inuse = 0;
242 mlog_wpage = 0;
243 mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
244 if (mlog_sih == NULL)
245 printf("%s: softint_establish failed\n", __func__);
246 }
247
248 static void
249 audio_mlog_free(void)
250 {
251 mlog_refs--;
252 if (mlog_refs > 0)
253 return;
254
255 audio_mlog_flush();
256 if (mlog_sih)
257 softint_disestablish(mlog_sih);
258 kmem_free(mlog_buf[0], mlog_buflen);
259 kmem_free(mlog_buf[1], mlog_buflen);
260 }
261
262 /*
263 * Flush memory buffer.
264 * It must not be called from hardware interrupt context.
265 */
266 void
267 audio_mlog_flush(void)
268 {
269 if (mlog_refs == 0)
270 return;
271
272 /* Nothing to do if already in use ? */
273 if (atomic_swap_32(&mlog_inuse, 1) == 1)
274 return;
275
276 int rpage = mlog_wpage;
277 mlog_wpage ^= 1;
278 mlog_buf[mlog_wpage][0] = '\0';
279 mlog_used = 0;
280
281 atomic_swap_32(&mlog_inuse, 0);
282
283 if (mlog_buf[rpage][0] != '\0') {
284 printf("%s", mlog_buf[rpage]);
285 if (mlog_drop > 0)
286 printf("mlog_drop %d\n", mlog_drop);
287 if (mlog_full > 0)
288 printf("mlog_full %d\n", mlog_full);
289 }
290 mlog_full = 0;
291 mlog_drop = 0;
292 }
293
294 static void
295 audio_mlog_softintr(void *cookie)
296 {
297 audio_mlog_flush();
298 }
299
300 void
301 audio_mlog_printf(const char *fmt, ...)
302 {
303 int len;
304 va_list ap;
305
306 if (atomic_swap_32(&mlog_inuse, 1) == 1) {
307 /* already inuse */
308 mlog_drop++;
309 return;
310 }
311
312 va_start(ap, fmt);
313 len = vsnprintf(
314 mlog_buf[mlog_wpage] + mlog_used,
315 mlog_buflen - mlog_used,
316 fmt, ap);
317 va_end(ap);
318
319 mlog_used += len;
320 if (mlog_buflen - mlog_used <= 1) {
321 mlog_full++;
322 }
323
324 atomic_swap_32(&mlog_inuse, 0);
325
326 if (mlog_sih)
327 softint_schedule(mlog_sih);
328 }
329
330 /* trace functions */
331 static void
332 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
333 const char *fmt, va_list ap)
334 {
335 char buf[256];
336 int n;
337
338 n = 0;
339 buf[0] = '\0';
340 n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
341 funcname, device_unit(sc->sc_dev), header);
342 n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
343
344 if (cpu_intr_p()) {
345 audio_mlog_printf("%s\n", buf);
346 } else {
347 audio_mlog_flush();
348 printf("%s\n", buf);
349 }
350 }
351
352 static void
353 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
354 {
355 va_list ap;
356
357 va_start(ap, fmt);
358 audio_vtrace(sc, funcname, "", fmt, ap);
359 va_end(ap);
360 }
361
362 static void
363 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
364 {
365 char hdr[16];
366 va_list ap;
367
368 snprintf(hdr, sizeof(hdr), "#%d ", track->id);
369 va_start(ap, fmt);
370 audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
371 va_end(ap);
372 }
373
374 static void
375 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
376 {
377 char hdr[32];
378 char phdr[16], rhdr[16];
379 va_list ap;
380
381 phdr[0] = '\0';
382 rhdr[0] = '\0';
383 if (file->ptrack)
384 snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
385 if (file->rtrack)
386 snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
387 snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
388
389 va_start(ap, fmt);
390 audio_vtrace(file->sc, funcname, hdr, fmt, ap);
391 va_end(ap);
392 }
393
394 #define DPRINTF(n, fmt...) do { \
395 if (audiodebug >= (n)) { \
396 audio_mlog_flush(); \
397 printf(fmt); \
398 } \
399 } while (0)
400 #define TRACE(n, fmt...) do { \
401 if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
402 } while (0)
403 #define TRACET(n, t, fmt...) do { \
404 if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
405 } while (0)
406 #define TRACEF(n, f, fmt...) do { \
407 if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
408 } while (0)
409
410 struct audio_track_debugbuf {
411 char usrbuf[32];
412 char codec[32];
413 char chvol[32];
414 char chmix[32];
415 char freq[32];
416 char outbuf[32];
417 };
418
419 static void
420 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
421 {
422
423 memset(buf, 0, sizeof(*buf));
424
425 snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
426 track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
427 if (track->freq.filter)
428 snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
429 track->freq.srcbuf.head,
430 track->freq.srcbuf.used,
431 track->freq.srcbuf.capacity);
432 if (track->chmix.filter)
433 snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
434 track->chmix.srcbuf.used);
435 if (track->chvol.filter)
436 snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
437 track->chvol.srcbuf.used);
438 if (track->codec.filter)
439 snprintf(buf->codec, sizeof(buf->codec), " e=%d",
440 track->codec.srcbuf.used);
441 snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
442 track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
443 }
444 #else
445 #define DPRINTF(n, fmt...) do { } while (0)
446 #define TRACE(n, fmt, ...) do { } while (0)
447 #define TRACET(n, t, fmt, ...) do { } while (0)
448 #define TRACEF(n, f, fmt, ...) do { } while (0)
449 #endif
450
451 #define SPECIFIED(x) ((x) != ~0)
452 #define SPECIFIED_CH(x) ((x) != (u_char)~0)
453
454 /*
455 * Default hardware blocksize in msec.
456 *
457 * We use 10 msec for most modern platforms. This period is good enough to
458 * play audio and video synchronizely.
459 * In contrast, for very old platforms, this is usually too short and too
460 * severe. Also such platforms usually can not play video confortably, so
461 * it's not so important to make the blocksize shorter. If the platform
462 * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
463 * uses this instead.
464 *
465 * In either case, you can overwrite AUDIO_BLK_MS by your kernel
466 * configuration file if you wish.
467 */
468 #if !defined(AUDIO_BLK_MS)
469 # if defined(__AUDIO_BLK_MS)
470 # define AUDIO_BLK_MS __AUDIO_BLK_MS
471 # else
472 # define AUDIO_BLK_MS (10)
473 # endif
474 #endif
475
476 /* Device timeout in msec */
477 #define AUDIO_TIMEOUT (3000)
478
479 /* #define AUDIO_PM_IDLE */
480 #ifdef AUDIO_PM_IDLE
481 int audio_idle_timeout = 30;
482 #endif
483
484 /* Number of elements of async mixer's pid */
485 #define AM_CAPACITY (4)
486
487 struct portname {
488 const char *name;
489 int mask;
490 };
491
492 static int audiomatch(device_t, cfdata_t, void *);
493 static void audioattach(device_t, device_t, void *);
494 static int audiodetach(device_t, int);
495 static int audioactivate(device_t, enum devact);
496 static void audiochilddet(device_t, device_t);
497 static int audiorescan(device_t, const char *, const int *);
498
499 static int audio_modcmd(modcmd_t, void *);
500
501 #ifdef AUDIO_PM_IDLE
502 static void audio_idle(void *);
503 static void audio_activity(device_t, devactive_t);
504 #endif
505
506 static bool audio_suspend(device_t dv, const pmf_qual_t *);
507 static bool audio_resume(device_t dv, const pmf_qual_t *);
508 static void audio_volume_down(device_t);
509 static void audio_volume_up(device_t);
510 static void audio_volume_toggle(device_t);
511
512 static void audio_mixer_capture(struct audio_softc *);
513 static void audio_mixer_restore(struct audio_softc *);
514
515 static void audio_softintr_rd(void *);
516 static void audio_softintr_wr(void *);
517
518 static int audio_exlock_mutex_enter(struct audio_softc *);
519 static void audio_exlock_mutex_exit(struct audio_softc *);
520 static int audio_exlock_enter(struct audio_softc *);
521 static void audio_exlock_exit(struct audio_softc *);
522 static struct audio_softc *audio_file_enter(audio_file_t *, struct psref *);
523 static void audio_file_exit(struct audio_softc *, struct psref *);
524 static int audio_track_waitio(struct audio_softc *, audio_track_t *);
525
526 static int audioclose(struct file *);
527 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
528 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
529 static int audioioctl(struct file *, u_long, void *);
530 static int audiopoll(struct file *, int);
531 static int audiokqfilter(struct file *, struct knote *);
532 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
533 struct uvm_object **, int *);
534 static int audiostat(struct file *, struct stat *);
535
536 static void filt_audiowrite_detach(struct knote *);
537 static int filt_audiowrite_event(struct knote *, long);
538 static void filt_audioread_detach(struct knote *);
539 static int filt_audioread_event(struct knote *, long);
540
541 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
542 audio_file_t **);
543 static int audio_close(struct audio_softc *, audio_file_t *);
544 static int audio_unlink(struct audio_softc *, audio_file_t *);
545 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
546 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
547 static void audio_file_clear(struct audio_softc *, audio_file_t *);
548 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
549 struct lwp *, audio_file_t *);
550 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
551 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
552 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
553 struct uvm_object **, int *, audio_file_t *);
554
555 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
556
557 static void audio_pintr(void *);
558 static void audio_rintr(void *);
559
560 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
561
562 static __inline int audio_track_readablebytes(const audio_track_t *);
563 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
564 const struct audio_info *);
565 static int audio_track_setinfo_check(audio_track_t *,
566 audio_format2_t *, const struct audio_prinfo *);
567 static void audio_track_setinfo_water(audio_track_t *,
568 const struct audio_info *);
569 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
570 struct audio_info *);
571 static int audio_hw_set_format(struct audio_softc *, int,
572 const audio_format2_t *, const audio_format2_t *,
573 audio_filter_reg_t *, audio_filter_reg_t *);
574 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
575 audio_file_t *);
576 static bool audio_can_playback(struct audio_softc *);
577 static bool audio_can_capture(struct audio_softc *);
578 static int audio_check_params(audio_format2_t *);
579 static int audio_mixers_init(struct audio_softc *sc, int,
580 const audio_format2_t *, const audio_format2_t *,
581 const audio_filter_reg_t *, const audio_filter_reg_t *);
582 static int audio_select_freq(const struct audio_format *);
583 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
584 static int audio_hw_validate_format(struct audio_softc *, int,
585 const audio_format2_t *);
586 static int audio_mixers_set_format(struct audio_softc *,
587 const struct audio_info *);
588 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
589 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
590 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
591 #if defined(AUDIO_DEBUG)
592 static int audio_sysctl_debug(SYSCTLFN_PROTO);
593 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
594 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
595 #endif
596
597 static void *audio_realloc(void *, size_t);
598 static int audio_realloc_usrbuf(audio_track_t *, int);
599 static void audio_free_usrbuf(audio_track_t *);
600
601 static audio_track_t *audio_track_create(struct audio_softc *,
602 audio_trackmixer_t *);
603 static void audio_track_destroy(audio_track_t *);
604 static audio_filter_t audio_track_get_codec(audio_track_t *,
605 const audio_format2_t *, const audio_format2_t *);
606 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
607 static void audio_track_play(audio_track_t *);
608 static int audio_track_drain(struct audio_softc *, audio_track_t *);
609 static void audio_track_record(audio_track_t *);
610 static void audio_track_clear(struct audio_softc *, audio_track_t *);
611
612 static int audio_mixer_init(struct audio_softc *, int,
613 const audio_format2_t *, const audio_filter_reg_t *);
614 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
615 static void audio_pmixer_start(struct audio_softc *, bool);
616 static void audio_pmixer_process(struct audio_softc *);
617 static void audio_pmixer_agc(audio_trackmixer_t *, int);
618 static int audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
619 static void audio_pmixer_output(struct audio_softc *);
620 static int audio_pmixer_halt(struct audio_softc *);
621 static void audio_rmixer_start(struct audio_softc *);
622 static void audio_rmixer_process(struct audio_softc *);
623 static void audio_rmixer_input(struct audio_softc *);
624 static int audio_rmixer_halt(struct audio_softc *);
625
626 static void mixer_init(struct audio_softc *);
627 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
628 static int mixer_close(struct audio_softc *, audio_file_t *);
629 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
630 static void mixer_async_add(struct audio_softc *, pid_t);
631 static void mixer_async_remove(struct audio_softc *, pid_t);
632 static void mixer_signal(struct audio_softc *);
633
634 static int au_portof(struct audio_softc *, char *, int);
635
636 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
637 mixer_devinfo_t *, const struct portname *);
638 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
639 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
640 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
641 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
642 u_int *, u_char *);
643 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
644 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
645 static int au_set_monitor_gain(struct audio_softc *, int);
646 static int au_get_monitor_gain(struct audio_softc *);
647 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
648 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
649
650 static __inline struct audio_params
651 format2_to_params(const audio_format2_t *f2)
652 {
653 audio_params_t p;
654
655 /* validbits/precision <-> precision/stride */
656 p.sample_rate = f2->sample_rate;
657 p.channels = f2->channels;
658 p.encoding = f2->encoding;
659 p.validbits = f2->precision;
660 p.precision = f2->stride;
661 return p;
662 }
663
664 static __inline audio_format2_t
665 params_to_format2(const struct audio_params *p)
666 {
667 audio_format2_t f2;
668
669 /* precision/stride <-> validbits/precision */
670 f2.sample_rate = p->sample_rate;
671 f2.channels = p->channels;
672 f2.encoding = p->encoding;
673 f2.precision = p->validbits;
674 f2.stride = p->precision;
675 return f2;
676 }
677
678 /* Return true if this track is a playback track. */
679 static __inline bool
680 audio_track_is_playback(const audio_track_t *track)
681 {
682
683 return ((track->mode & AUMODE_PLAY) != 0);
684 }
685
686 /* Return true if this track is a recording track. */
687 static __inline bool
688 audio_track_is_record(const audio_track_t *track)
689 {
690
691 return ((track->mode & AUMODE_RECORD) != 0);
692 }
693
694 #if 0 /* XXX Not used yet */
695 /*
696 * Convert 0..255 volume used in userland to internal presentation 0..256.
697 */
698 static __inline u_int
699 audio_volume_to_inner(u_int v)
700 {
701
702 return v < 127 ? v : v + 1;
703 }
704
705 /*
706 * Convert 0..256 internal presentation to 0..255 volume used in userland.
707 */
708 static __inline u_int
709 audio_volume_to_outer(u_int v)
710 {
711
712 return v < 127 ? v : v - 1;
713 }
714 #endif /* 0 */
715
716 static dev_type_open(audioopen);
717 /* XXXMRG use more dev_type_xxx */
718
719 const struct cdevsw audio_cdevsw = {
720 .d_open = audioopen,
721 .d_close = noclose,
722 .d_read = noread,
723 .d_write = nowrite,
724 .d_ioctl = noioctl,
725 .d_stop = nostop,
726 .d_tty = notty,
727 .d_poll = nopoll,
728 .d_mmap = nommap,
729 .d_kqfilter = nokqfilter,
730 .d_discard = nodiscard,
731 .d_flag = D_OTHER | D_MPSAFE
732 };
733
734 const struct fileops audio_fileops = {
735 .fo_name = "audio",
736 .fo_read = audioread,
737 .fo_write = audiowrite,
738 .fo_ioctl = audioioctl,
739 .fo_fcntl = fnullop_fcntl,
740 .fo_stat = audiostat,
741 .fo_poll = audiopoll,
742 .fo_close = audioclose,
743 .fo_mmap = audiommap,
744 .fo_kqfilter = audiokqfilter,
745 .fo_restart = fnullop_restart
746 };
747
748 /* The default audio mode: 8 kHz mono mu-law */
749 static const struct audio_params audio_default = {
750 .sample_rate = 8000,
751 .encoding = AUDIO_ENCODING_ULAW,
752 .precision = 8,
753 .validbits = 8,
754 .channels = 1,
755 };
756
757 static const char *encoding_names[] = {
758 "none",
759 AudioEmulaw,
760 AudioEalaw,
761 "pcm16",
762 "pcm8",
763 AudioEadpcm,
764 AudioEslinear_le,
765 AudioEslinear_be,
766 AudioEulinear_le,
767 AudioEulinear_be,
768 AudioEslinear,
769 AudioEulinear,
770 AudioEmpeg_l1_stream,
771 AudioEmpeg_l1_packets,
772 AudioEmpeg_l1_system,
773 AudioEmpeg_l2_stream,
774 AudioEmpeg_l2_packets,
775 AudioEmpeg_l2_system,
776 AudioEac3,
777 };
778
779 /*
780 * Returns encoding name corresponding to AUDIO_ENCODING_*.
781 * Note that it may return a local buffer because it is mainly for debugging.
782 */
783 const char *
784 audio_encoding_name(int encoding)
785 {
786 static char buf[16];
787
788 if (0 <= encoding && encoding < __arraycount(encoding_names)) {
789 return encoding_names[encoding];
790 } else {
791 snprintf(buf, sizeof(buf), "enc=%d", encoding);
792 return buf;
793 }
794 }
795
796 /*
797 * Supported encodings used by AUDIO_GETENC.
798 * index and flags are set by code.
799 * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
800 */
801 static const audio_encoding_t audio_encodings[] = {
802 { 0, AudioEmulaw, AUDIO_ENCODING_ULAW, 8, 0 },
803 { 0, AudioEalaw, AUDIO_ENCODING_ALAW, 8, 0 },
804 { 0, AudioEslinear, AUDIO_ENCODING_SLINEAR, 8, 0 },
805 { 0, AudioEulinear, AUDIO_ENCODING_ULINEAR, 8, 0 },
806 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 16, 0 },
807 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 16, 0 },
808 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 16, 0 },
809 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 16, 0 },
810 #if defined(AUDIO_SUPPORT_LINEAR24)
811 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 24, 0 },
812 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 24, 0 },
813 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 24, 0 },
814 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 24, 0 },
815 #endif
816 { 0, AudioEslinear_le, AUDIO_ENCODING_SLINEAR_LE, 32, 0 },
817 { 0, AudioEulinear_le, AUDIO_ENCODING_ULINEAR_LE, 32, 0 },
818 { 0, AudioEslinear_be, AUDIO_ENCODING_SLINEAR_BE, 32, 0 },
819 { 0, AudioEulinear_be, AUDIO_ENCODING_ULINEAR_BE, 32, 0 },
820 };
821
822 static const struct portname itable[] = {
823 { AudioNmicrophone, AUDIO_MICROPHONE },
824 { AudioNline, AUDIO_LINE_IN },
825 { AudioNcd, AUDIO_CD },
826 { 0, 0 }
827 };
828 static const struct portname otable[] = {
829 { AudioNspeaker, AUDIO_SPEAKER },
830 { AudioNheadphone, AUDIO_HEADPHONE },
831 { AudioNline, AUDIO_LINE_OUT },
832 { 0, 0 }
833 };
834
835 static struct psref_class *audio_psref_class __read_mostly;
836
837 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
838 audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
839 audiochilddet, DVF_DETACH_SHUTDOWN);
840
841 static int
842 audiomatch(device_t parent, cfdata_t match, void *aux)
843 {
844 struct audio_attach_args *sa;
845
846 sa = aux;
847 DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
848 __func__, sa->type, sa, sa->hwif);
849 return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
850 }
851
852 static void
853 audioattach(device_t parent, device_t self, void *aux)
854 {
855 struct audio_softc *sc;
856 struct audio_attach_args *sa;
857 const struct audio_hw_if *hw_if;
858 audio_format2_t phwfmt;
859 audio_format2_t rhwfmt;
860 audio_filter_reg_t pfil;
861 audio_filter_reg_t rfil;
862 const struct sysctlnode *node;
863 void *hdlp;
864 bool has_playback;
865 bool has_capture;
866 bool has_indep;
867 bool has_fulldup;
868 int mode;
869 int error;
870
871 sc = device_private(self);
872 sc->sc_dev = self;
873 sa = (struct audio_attach_args *)aux;
874 hw_if = sa->hwif;
875 hdlp = sa->hdl;
876
877 if (hw_if == NULL) {
878 panic("audioattach: missing hw_if method");
879 }
880 if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
881 aprint_error(": missing mandatory method\n");
882 return;
883 }
884
885 hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
886 sc->sc_props = hw_if->get_props(hdlp);
887
888 has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
889 has_capture = (sc->sc_props & AUDIO_PROP_CAPTURE);
890 has_indep = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
891 has_fulldup = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
892
893 #ifdef DIAGNOSTIC
894 if (hw_if->query_format == NULL ||
895 hw_if->set_format == NULL ||
896 hw_if->getdev == NULL ||
897 hw_if->set_port == NULL ||
898 hw_if->get_port == NULL ||
899 hw_if->query_devinfo == NULL) {
900 aprint_error(": missing mandatory method\n");
901 return;
902 }
903 if (has_playback) {
904 if ((hw_if->start_output == NULL &&
905 hw_if->trigger_output == NULL) ||
906 hw_if->halt_output == NULL) {
907 aprint_error(": missing playback method\n");
908 }
909 }
910 if (has_capture) {
911 if ((hw_if->start_input == NULL &&
912 hw_if->trigger_input == NULL) ||
913 hw_if->halt_input == NULL) {
914 aprint_error(": missing capture method\n");
915 }
916 }
917 #endif
918
919 sc->hw_if = hw_if;
920 sc->hw_hdl = hdlp;
921 sc->hw_dev = parent;
922
923 sc->sc_exlock = 1;
924 sc->sc_blk_ms = AUDIO_BLK_MS;
925 SLIST_INIT(&sc->sc_files);
926 cv_init(&sc->sc_exlockcv, "audiolk");
927 sc->sc_am_capacity = 0;
928 sc->sc_am_used = 0;
929 sc->sc_am = NULL;
930
931 /* MMAP is now supported by upper layer. */
932 sc->sc_props |= AUDIO_PROP_MMAP;
933
934 KASSERT(has_playback || has_capture);
935 /* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
936 if (!has_playback || !has_capture) {
937 KASSERT(!has_indep);
938 KASSERT(!has_fulldup);
939 }
940
941 mode = 0;
942 if (has_playback) {
943 aprint_normal(": playback");
944 mode |= AUMODE_PLAY;
945 }
946 if (has_capture) {
947 aprint_normal("%c capture", has_playback ? ',' : ':');
948 mode |= AUMODE_RECORD;
949 }
950 if (has_playback && has_capture) {
951 if (has_fulldup)
952 aprint_normal(", full duplex");
953 else
954 aprint_normal(", half duplex");
955
956 if (has_indep)
957 aprint_normal(", independent");
958 }
959
960 aprint_naive("\n");
961 aprint_normal("\n");
962
963 /* probe hw params */
964 memset(&phwfmt, 0, sizeof(phwfmt));
965 memset(&rhwfmt, 0, sizeof(rhwfmt));
966 memset(&pfil, 0, sizeof(pfil));
967 memset(&rfil, 0, sizeof(rfil));
968 if (has_indep) {
969 int perror, rerror;
970
971 /* On independent devices, probe separately. */
972 perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
973 rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
974 if (perror && rerror) {
975 aprint_error_dev(self, "audio_hw_probe failed, "
976 "perror = %d, rerror = %d\n", perror, rerror);
977 goto bad;
978 }
979 if (perror) {
980 mode &= ~AUMODE_PLAY;
981 aprint_error_dev(self, "audio_hw_probe failed with "
982 "%d, playback disabled\n", perror);
983 }
984 if (rerror) {
985 mode &= ~AUMODE_RECORD;
986 aprint_error_dev(self, "audio_hw_probe failed with "
987 "%d, capture disabled\n", rerror);
988 }
989 } else {
990 /*
991 * On non independent devices or uni-directional devices,
992 * probe once (simultaneously).
993 */
994 audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
995 error = audio_hw_probe(sc, fmt, mode);
996 if (error) {
997 aprint_error_dev(self, "audio_hw_probe failed, "
998 "error = %d\n", error);
999 goto bad;
1000 }
1001 if (has_playback && has_capture)
1002 rhwfmt = phwfmt;
1003 }
1004
1005 /* Init hardware. */
1006 /* hw_probe() also validates [pr]hwfmt. */
1007 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1008 if (error) {
1009 aprint_error_dev(self, "audio_hw_set_format failed, "
1010 "error = %d\n", error);
1011 goto bad;
1012 }
1013
1014 /*
1015 * Init track mixers. If at least one direction is available on
1016 * attach time, we assume a success.
1017 */
1018 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1019 if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1020 aprint_error_dev(self, "audio_mixers_init failed, "
1021 "error = %d\n", error);
1022 goto bad;
1023 }
1024
1025 sc->sc_psz = pserialize_create();
1026 psref_target_init(&sc->sc_psref, audio_psref_class);
1027
1028 selinit(&sc->sc_wsel);
1029 selinit(&sc->sc_rsel);
1030
1031 /* Initial parameter of /dev/sound */
1032 sc->sc_sound_pparams = params_to_format2(&audio_default);
1033 sc->sc_sound_rparams = params_to_format2(&audio_default);
1034 sc->sc_sound_ppause = false;
1035 sc->sc_sound_rpause = false;
1036
1037 /* XXX TODO: consider about sc_ai */
1038
1039 mixer_init(sc);
1040 TRACE(2, "inputs ports=0x%x, input master=%d, "
1041 "output ports=0x%x, output master=%d",
1042 sc->sc_inports.allports, sc->sc_inports.master,
1043 sc->sc_outports.allports, sc->sc_outports.master);
1044
1045 sysctl_createv(&sc->sc_log, 0, NULL, &node,
1046 0,
1047 CTLTYPE_NODE, device_xname(sc->sc_dev),
1048 SYSCTL_DESCR("audio test"),
1049 NULL, 0,
1050 NULL, 0,
1051 CTL_HW,
1052 CTL_CREATE, CTL_EOL);
1053
1054 if (node != NULL) {
1055 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1056 CTLFLAG_READWRITE,
1057 CTLTYPE_INT, "blk_ms",
1058 SYSCTL_DESCR("blocksize in msec"),
1059 audio_sysctl_blk_ms, 0, (void *)sc, 0,
1060 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1061
1062 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1063 CTLFLAG_READWRITE,
1064 CTLTYPE_BOOL, "multiuser",
1065 SYSCTL_DESCR("allow multiple user access"),
1066 audio_sysctl_multiuser, 0, (void *)sc, 0,
1067 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1068
1069 #if defined(AUDIO_DEBUG)
1070 sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1071 CTLFLAG_READWRITE,
1072 CTLTYPE_INT, "debug",
1073 SYSCTL_DESCR("debug level (0..4)"),
1074 audio_sysctl_debug, 0, (void *)sc, 0,
1075 CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1076 #endif
1077 }
1078
1079 #ifdef AUDIO_PM_IDLE
1080 callout_init(&sc->sc_idle_counter, 0);
1081 callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1082 #endif
1083
1084 if (!pmf_device_register(self, audio_suspend, audio_resume))
1085 aprint_error_dev(self, "couldn't establish power handler\n");
1086 #ifdef AUDIO_PM_IDLE
1087 if (!device_active_register(self, audio_activity))
1088 aprint_error_dev(self, "couldn't register activity handler\n");
1089 #endif
1090
1091 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1092 audio_volume_down, true))
1093 aprint_error_dev(self, "couldn't add volume down handler\n");
1094 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1095 audio_volume_up, true))
1096 aprint_error_dev(self, "couldn't add volume up handler\n");
1097 if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1098 audio_volume_toggle, true))
1099 aprint_error_dev(self, "couldn't add volume toggle handler\n");
1100
1101 #ifdef AUDIO_PM_IDLE
1102 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1103 #endif
1104
1105 #if defined(AUDIO_DEBUG)
1106 audio_mlog_init();
1107 #endif
1108
1109 audiorescan(self, "audio", NULL);
1110 sc->sc_exlock = 0;
1111 return;
1112
1113 bad:
1114 /* Clearing hw_if means that device is attached but disabled. */
1115 sc->hw_if = NULL;
1116 sc->sc_exlock = 0;
1117 aprint_error_dev(sc->sc_dev, "disabled\n");
1118 return;
1119 }
1120
1121 /*
1122 * Initialize hardware mixer.
1123 * This function is called from audioattach().
1124 */
1125 static void
1126 mixer_init(struct audio_softc *sc)
1127 {
1128 mixer_devinfo_t mi;
1129 int iclass, mclass, oclass, rclass;
1130 int record_master_found, record_source_found;
1131
1132 iclass = mclass = oclass = rclass = -1;
1133 sc->sc_inports.index = -1;
1134 sc->sc_inports.master = -1;
1135 sc->sc_inports.nports = 0;
1136 sc->sc_inports.isenum = false;
1137 sc->sc_inports.allports = 0;
1138 sc->sc_inports.isdual = false;
1139 sc->sc_inports.mixerout = -1;
1140 sc->sc_inports.cur_port = -1;
1141 sc->sc_outports.index = -1;
1142 sc->sc_outports.master = -1;
1143 sc->sc_outports.nports = 0;
1144 sc->sc_outports.isenum = false;
1145 sc->sc_outports.allports = 0;
1146 sc->sc_outports.isdual = false;
1147 sc->sc_outports.mixerout = -1;
1148 sc->sc_outports.cur_port = -1;
1149 sc->sc_monitor_port = -1;
1150 /*
1151 * Read through the underlying driver's list, picking out the class
1152 * names from the mixer descriptions. We'll need them to decode the
1153 * mixer descriptions on the next pass through the loop.
1154 */
1155 mutex_enter(sc->sc_lock);
1156 for(mi.index = 0; ; mi.index++) {
1157 if (audio_query_devinfo(sc, &mi) != 0)
1158 break;
1159 /*
1160 * The type of AUDIO_MIXER_CLASS merely introduces a class.
1161 * All the other types describe an actual mixer.
1162 */
1163 if (mi.type == AUDIO_MIXER_CLASS) {
1164 if (strcmp(mi.label.name, AudioCinputs) == 0)
1165 iclass = mi.mixer_class;
1166 if (strcmp(mi.label.name, AudioCmonitor) == 0)
1167 mclass = mi.mixer_class;
1168 if (strcmp(mi.label.name, AudioCoutputs) == 0)
1169 oclass = mi.mixer_class;
1170 if (strcmp(mi.label.name, AudioCrecord) == 0)
1171 rclass = mi.mixer_class;
1172 }
1173 }
1174 mutex_exit(sc->sc_lock);
1175
1176 /* Allocate save area. Ensure non-zero allocation. */
1177 sc->sc_nmixer_states = mi.index;
1178 sc->sc_mixer_state = kmem_zalloc(sizeof(mixer_ctrl_t) *
1179 (sc->sc_nmixer_states + 1), KM_SLEEP);
1180
1181 /*
1182 * This is where we assign each control in the "audio" model, to the
1183 * underlying "mixer" control. We walk through the whole list once,
1184 * assigning likely candidates as we come across them.
1185 */
1186 record_master_found = 0;
1187 record_source_found = 0;
1188 mutex_enter(sc->sc_lock);
1189 for(mi.index = 0; ; mi.index++) {
1190 if (audio_query_devinfo(sc, &mi) != 0)
1191 break;
1192 KASSERT(mi.index < sc->sc_nmixer_states);
1193 if (mi.type == AUDIO_MIXER_CLASS)
1194 continue;
1195 if (mi.mixer_class == iclass) {
1196 /*
1197 * AudioCinputs is only a fallback, when we don't
1198 * find what we're looking for in AudioCrecord, so
1199 * check the flags before accepting one of these.
1200 */
1201 if (strcmp(mi.label.name, AudioNmaster) == 0
1202 && record_master_found == 0)
1203 sc->sc_inports.master = mi.index;
1204 if (strcmp(mi.label.name, AudioNsource) == 0
1205 && record_source_found == 0) {
1206 if (mi.type == AUDIO_MIXER_ENUM) {
1207 int i;
1208 for(i = 0; i < mi.un.e.num_mem; i++)
1209 if (strcmp(mi.un.e.member[i].label.name,
1210 AudioNmixerout) == 0)
1211 sc->sc_inports.mixerout =
1212 mi.un.e.member[i].ord;
1213 }
1214 au_setup_ports(sc, &sc->sc_inports, &mi,
1215 itable);
1216 }
1217 if (strcmp(mi.label.name, AudioNdac) == 0 &&
1218 sc->sc_outports.master == -1)
1219 sc->sc_outports.master = mi.index;
1220 } else if (mi.mixer_class == mclass) {
1221 if (strcmp(mi.label.name, AudioNmonitor) == 0)
1222 sc->sc_monitor_port = mi.index;
1223 } else if (mi.mixer_class == oclass) {
1224 if (strcmp(mi.label.name, AudioNmaster) == 0)
1225 sc->sc_outports.master = mi.index;
1226 if (strcmp(mi.label.name, AudioNselect) == 0)
1227 au_setup_ports(sc, &sc->sc_outports, &mi,
1228 otable);
1229 } else if (mi.mixer_class == rclass) {
1230 /*
1231 * These are the preferred mixers for the audio record
1232 * controls, so set the flags here, but don't check.
1233 */
1234 if (strcmp(mi.label.name, AudioNmaster) == 0) {
1235 sc->sc_inports.master = mi.index;
1236 record_master_found = 1;
1237 }
1238 #if 1 /* Deprecated. Use AudioNmaster. */
1239 if (strcmp(mi.label.name, AudioNrecord) == 0) {
1240 sc->sc_inports.master = mi.index;
1241 record_master_found = 1;
1242 }
1243 if (strcmp(mi.label.name, AudioNvolume) == 0) {
1244 sc->sc_inports.master = mi.index;
1245 record_master_found = 1;
1246 }
1247 #endif
1248 if (strcmp(mi.label.name, AudioNsource) == 0) {
1249 if (mi.type == AUDIO_MIXER_ENUM) {
1250 int i;
1251 for(i = 0; i < mi.un.e.num_mem; i++)
1252 if (strcmp(mi.un.e.member[i].label.name,
1253 AudioNmixerout) == 0)
1254 sc->sc_inports.mixerout =
1255 mi.un.e.member[i].ord;
1256 }
1257 au_setup_ports(sc, &sc->sc_inports, &mi,
1258 itable);
1259 record_source_found = 1;
1260 }
1261 }
1262 }
1263 mutex_exit(sc->sc_lock);
1264 }
1265
1266 static int
1267 audioactivate(device_t self, enum devact act)
1268 {
1269 struct audio_softc *sc = device_private(self);
1270
1271 switch (act) {
1272 case DVACT_DEACTIVATE:
1273 mutex_enter(sc->sc_lock);
1274 sc->sc_dying = true;
1275 cv_broadcast(&sc->sc_exlockcv);
1276 mutex_exit(sc->sc_lock);
1277 return 0;
1278 default:
1279 return EOPNOTSUPP;
1280 }
1281 }
1282
1283 static int
1284 audiodetach(device_t self, int flags)
1285 {
1286 struct audio_softc *sc;
1287 struct audio_file *file;
1288 int error;
1289
1290 sc = device_private(self);
1291 TRACE(2, "flags=%d", flags);
1292
1293 /* device is not initialized */
1294 if (sc->hw_if == NULL)
1295 return 0;
1296
1297 /* Start draining existing accessors of the device. */
1298 error = config_detach_children(self, flags);
1299 if (error)
1300 return error;
1301
1302 /* delete sysctl nodes */
1303 sysctl_teardown(&sc->sc_log);
1304
1305 mutex_enter(sc->sc_lock);
1306 sc->sc_dying = true;
1307 cv_broadcast(&sc->sc_exlockcv);
1308 if (sc->sc_pmixer)
1309 cv_broadcast(&sc->sc_pmixer->outcv);
1310 if (sc->sc_rmixer)
1311 cv_broadcast(&sc->sc_rmixer->outcv);
1312
1313 /* Prevent new users */
1314 SLIST_FOREACH(file, &sc->sc_files, entry) {
1315 atomic_store_relaxed(&file->dying, true);
1316 }
1317
1318 /*
1319 * Wait for existing users to drain.
1320 * - pserialize_perform waits for all pserialize_read sections on
1321 * all CPUs; after this, no more new psref_acquire can happen.
1322 * - psref_target_destroy waits for all extant acquired psrefs to
1323 * be psref_released.
1324 */
1325 pserialize_perform(sc->sc_psz);
1326 mutex_exit(sc->sc_lock);
1327 psref_target_destroy(&sc->sc_psref, audio_psref_class);
1328
1329 /*
1330 * We are now guaranteed that there are no calls to audio fileops
1331 * that hold sc, and any new calls with files that were for sc will
1332 * fail. Thus, we now have exclusive access to the softc.
1333 */
1334 sc->sc_exlock = 1;
1335
1336 /*
1337 * Nuke all open instances.
1338 * Here, we no longer need any locks to traverse sc_files.
1339 */
1340 while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1341 audio_unlink(sc, file);
1342 }
1343
1344 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1345 audio_volume_down, true);
1346 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1347 audio_volume_up, true);
1348 pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1349 audio_volume_toggle, true);
1350
1351 #ifdef AUDIO_PM_IDLE
1352 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1353
1354 device_active_deregister(self, audio_activity);
1355 #endif
1356
1357 pmf_device_deregister(self);
1358
1359 /* Free resources */
1360 if (sc->sc_pmixer) {
1361 audio_mixer_destroy(sc, sc->sc_pmixer);
1362 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1363 }
1364 if (sc->sc_rmixer) {
1365 audio_mixer_destroy(sc, sc->sc_rmixer);
1366 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1367 }
1368 if (sc->sc_am)
1369 kern_free(sc->sc_am);
1370
1371 seldestroy(&sc->sc_wsel);
1372 seldestroy(&sc->sc_rsel);
1373
1374 #ifdef AUDIO_PM_IDLE
1375 callout_destroy(&sc->sc_idle_counter);
1376 #endif
1377
1378 cv_destroy(&sc->sc_exlockcv);
1379
1380 #if defined(AUDIO_DEBUG)
1381 audio_mlog_free();
1382 #endif
1383
1384 return 0;
1385 }
1386
1387 static void
1388 audiochilddet(device_t self, device_t child)
1389 {
1390
1391 /* we hold no child references, so do nothing */
1392 }
1393
1394 static int
1395 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1396 {
1397
1398 if (config_match(parent, cf, aux))
1399 config_attach_loc(parent, cf, locs, aux, NULL);
1400
1401 return 0;
1402 }
1403
1404 static int
1405 audiorescan(device_t self, const char *ifattr, const int *flags)
1406 {
1407 struct audio_softc *sc = device_private(self);
1408
1409 if (!ifattr_match(ifattr, "audio"))
1410 return 0;
1411
1412 config_search_loc(audiosearch, sc->sc_dev, "audio", NULL, NULL);
1413
1414 return 0;
1415 }
1416
1417 /*
1418 * Called from hardware driver. This is where the MI audio driver gets
1419 * probed/attached to the hardware driver.
1420 */
1421 device_t
1422 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1423 {
1424 struct audio_attach_args arg;
1425
1426 #ifdef DIAGNOSTIC
1427 if (ahwp == NULL) {
1428 aprint_error("audio_attach_mi: NULL\n");
1429 return 0;
1430 }
1431 #endif
1432 arg.type = AUDIODEV_TYPE_AUDIO;
1433 arg.hwif = ahwp;
1434 arg.hdl = hdlp;
1435 return config_found(dev, &arg, audioprint);
1436 }
1437
1438 /*
1439 * Enter critical section and also keep sc_lock.
1440 * If successful, returns 0 with sc_lock held. Otherwise returns errno.
1441 * Must be called without sc_lock held.
1442 */
1443 static int
1444 audio_exlock_mutex_enter(struct audio_softc *sc)
1445 {
1446 int error;
1447
1448 mutex_enter(sc->sc_lock);
1449 if (sc->sc_dying) {
1450 mutex_exit(sc->sc_lock);
1451 return EIO;
1452 }
1453
1454 while (__predict_false(sc->sc_exlock != 0)) {
1455 error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1456 if (sc->sc_dying)
1457 error = EIO;
1458 if (error) {
1459 mutex_exit(sc->sc_lock);
1460 return error;
1461 }
1462 }
1463
1464 /* Acquire */
1465 sc->sc_exlock = 1;
1466 return 0;
1467 }
1468
1469 /*
1470 * Exit critical section and exit sc_lock.
1471 * Must be called with sc_lock held.
1472 */
1473 static void
1474 audio_exlock_mutex_exit(struct audio_softc *sc)
1475 {
1476
1477 KASSERT(mutex_owned(sc->sc_lock));
1478
1479 sc->sc_exlock = 0;
1480 cv_broadcast(&sc->sc_exlockcv);
1481 mutex_exit(sc->sc_lock);
1482 }
1483
1484 /*
1485 * Enter critical section.
1486 * If successful, it returns 0. Otherwise returns errno.
1487 * Must be called without sc_lock held.
1488 * This function returns without sc_lock held.
1489 */
1490 static int
1491 audio_exlock_enter(struct audio_softc *sc)
1492 {
1493 int error;
1494
1495 error = audio_exlock_mutex_enter(sc);
1496 if (error)
1497 return error;
1498 mutex_exit(sc->sc_lock);
1499 return 0;
1500 }
1501
1502 /*
1503 * Exit critical section.
1504 * Must be called without sc_lock held.
1505 */
1506 static void
1507 audio_exlock_exit(struct audio_softc *sc)
1508 {
1509
1510 mutex_enter(sc->sc_lock);
1511 audio_exlock_mutex_exit(sc);
1512 }
1513
1514 /*
1515 * Acquire sc from file, and increment the psref count.
1516 * If successful, returns sc. Otherwise returns NULL.
1517 */
1518 struct audio_softc *
1519 audio_file_enter(audio_file_t *file, struct psref *refp)
1520 {
1521 int s;
1522 bool dying;
1523
1524 /* psref(9) forbids to migrate CPUs */
1525 curlwp_bind();
1526
1527 /* Block audiodetach while we acquire a reference */
1528 s = pserialize_read_enter();
1529
1530 /* If close or audiodetach already ran, tough -- no more audio */
1531 dying = atomic_load_relaxed(&file->dying);
1532 if (dying) {
1533 pserialize_read_exit(s);
1534 return NULL;
1535 }
1536
1537 /* Acquire a reference */
1538 psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1539
1540 /* Now sc won't go away until we drop the reference count */
1541 pserialize_read_exit(s);
1542
1543 return file->sc;
1544 }
1545
1546 /*
1547 * Decrement the psref count.
1548 */
1549 void
1550 audio_file_exit(struct audio_softc *sc, struct psref *refp)
1551 {
1552
1553 psref_release(refp, &sc->sc_psref, audio_psref_class);
1554 }
1555
1556 /*
1557 * Wait for I/O to complete, releasing sc_lock.
1558 * Must be called with sc_lock held.
1559 */
1560 static int
1561 audio_track_waitio(struct audio_softc *sc, audio_track_t *track)
1562 {
1563 int error;
1564
1565 KASSERT(track);
1566 KASSERT(mutex_owned(sc->sc_lock));
1567
1568 /* Wait for pending I/O to complete. */
1569 error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1570 mstohz(AUDIO_TIMEOUT));
1571 if (sc->sc_suspending) {
1572 /* If it's about to suspend, ignore timeout error. */
1573 if (error == EWOULDBLOCK) {
1574 TRACET(2, track, "timeout (suspending)");
1575 return 0;
1576 }
1577 }
1578 if (sc->sc_dying) {
1579 error = EIO;
1580 }
1581 if (error) {
1582 TRACET(2, track, "cv_timedwait_sig failed %d", error);
1583 if (error == EWOULDBLOCK)
1584 device_printf(sc->sc_dev, "device timeout\n");
1585 } else {
1586 TRACET(3, track, "wakeup");
1587 }
1588 return error;
1589 }
1590
1591 /*
1592 * Try to acquire track lock.
1593 * It doesn't block if the track lock is already aquired.
1594 * Returns true if the track lock was acquired, or false if the track
1595 * lock was already acquired.
1596 */
1597 static __inline bool
1598 audio_track_lock_tryenter(audio_track_t *track)
1599 {
1600 return (atomic_cas_uint(&track->lock, 0, 1) == 0);
1601 }
1602
1603 /*
1604 * Acquire track lock.
1605 */
1606 static __inline void
1607 audio_track_lock_enter(audio_track_t *track)
1608 {
1609 /* Don't sleep here. */
1610 while (audio_track_lock_tryenter(track) == false)
1611 ;
1612 }
1613
1614 /*
1615 * Release track lock.
1616 */
1617 static __inline void
1618 audio_track_lock_exit(audio_track_t *track)
1619 {
1620 atomic_swap_uint(&track->lock, 0);
1621 }
1622
1623
1624 static int
1625 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1626 {
1627 struct audio_softc *sc;
1628 int error;
1629
1630 /* Find the device */
1631 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1632 if (sc == NULL || sc->hw_if == NULL)
1633 return ENXIO;
1634
1635 error = audio_exlock_enter(sc);
1636 if (error)
1637 return error;
1638
1639 device_active(sc->sc_dev, DVA_SYSTEM);
1640 switch (AUDIODEV(dev)) {
1641 case SOUND_DEVICE:
1642 case AUDIO_DEVICE:
1643 error = audio_open(dev, sc, flags, ifmt, l, NULL);
1644 break;
1645 case AUDIOCTL_DEVICE:
1646 error = audioctl_open(dev, sc, flags, ifmt, l);
1647 break;
1648 case MIXER_DEVICE:
1649 error = mixer_open(dev, sc, flags, ifmt, l);
1650 break;
1651 default:
1652 error = ENXIO;
1653 break;
1654 }
1655 audio_exlock_exit(sc);
1656
1657 return error;
1658 }
1659
1660 static int
1661 audioclose(struct file *fp)
1662 {
1663 struct audio_softc *sc;
1664 struct psref sc_ref;
1665 audio_file_t *file;
1666 int error;
1667 dev_t dev;
1668
1669 KASSERT(fp->f_audioctx);
1670 file = fp->f_audioctx;
1671 dev = file->dev;
1672 error = 0;
1673
1674 /*
1675 * audioclose() must
1676 * - unplug track from the trackmixer (and unplug anything from softc),
1677 * if sc exists.
1678 * - free all memory objects, regardless of sc.
1679 */
1680
1681 sc = audio_file_enter(file, &sc_ref);
1682 if (sc) {
1683 switch (AUDIODEV(dev)) {
1684 case SOUND_DEVICE:
1685 case AUDIO_DEVICE:
1686 error = audio_close(sc, file);
1687 break;
1688 case AUDIOCTL_DEVICE:
1689 error = 0;
1690 break;
1691 case MIXER_DEVICE:
1692 error = mixer_close(sc, file);
1693 break;
1694 default:
1695 error = ENXIO;
1696 break;
1697 }
1698
1699 audio_file_exit(sc, &sc_ref);
1700 }
1701
1702 /* Free memory objects anyway */
1703 TRACEF(2, file, "free memory");
1704 if (file->ptrack)
1705 audio_track_destroy(file->ptrack);
1706 if (file->rtrack)
1707 audio_track_destroy(file->rtrack);
1708 kmem_free(file, sizeof(*file));
1709 fp->f_audioctx = NULL;
1710
1711 return error;
1712 }
1713
1714 static int
1715 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1716 int ioflag)
1717 {
1718 struct audio_softc *sc;
1719 struct psref sc_ref;
1720 audio_file_t *file;
1721 int error;
1722 dev_t dev;
1723
1724 KASSERT(fp->f_audioctx);
1725 file = fp->f_audioctx;
1726 dev = file->dev;
1727
1728 sc = audio_file_enter(file, &sc_ref);
1729 if (sc == NULL)
1730 return EIO;
1731
1732 if (fp->f_flag & O_NONBLOCK)
1733 ioflag |= IO_NDELAY;
1734
1735 switch (AUDIODEV(dev)) {
1736 case SOUND_DEVICE:
1737 case AUDIO_DEVICE:
1738 error = audio_read(sc, uio, ioflag, file);
1739 break;
1740 case AUDIOCTL_DEVICE:
1741 case MIXER_DEVICE:
1742 error = ENODEV;
1743 break;
1744 default:
1745 error = ENXIO;
1746 break;
1747 }
1748
1749 audio_file_exit(sc, &sc_ref);
1750 return error;
1751 }
1752
1753 static int
1754 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1755 int ioflag)
1756 {
1757 struct audio_softc *sc;
1758 struct psref sc_ref;
1759 audio_file_t *file;
1760 int error;
1761 dev_t dev;
1762
1763 KASSERT(fp->f_audioctx);
1764 file = fp->f_audioctx;
1765 dev = file->dev;
1766
1767 sc = audio_file_enter(file, &sc_ref);
1768 if (sc == NULL)
1769 return EIO;
1770
1771 if (fp->f_flag & O_NONBLOCK)
1772 ioflag |= IO_NDELAY;
1773
1774 switch (AUDIODEV(dev)) {
1775 case SOUND_DEVICE:
1776 case AUDIO_DEVICE:
1777 error = audio_write(sc, uio, ioflag, file);
1778 break;
1779 case AUDIOCTL_DEVICE:
1780 case MIXER_DEVICE:
1781 error = ENODEV;
1782 break;
1783 default:
1784 error = ENXIO;
1785 break;
1786 }
1787
1788 audio_file_exit(sc, &sc_ref);
1789 return error;
1790 }
1791
1792 static int
1793 audioioctl(struct file *fp, u_long cmd, void *addr)
1794 {
1795 struct audio_softc *sc;
1796 struct psref sc_ref;
1797 audio_file_t *file;
1798 struct lwp *l = curlwp;
1799 int error;
1800 dev_t dev;
1801
1802 KASSERT(fp->f_audioctx);
1803 file = fp->f_audioctx;
1804 dev = file->dev;
1805
1806 sc = audio_file_enter(file, &sc_ref);
1807 if (sc == NULL)
1808 return EIO;
1809
1810 switch (AUDIODEV(dev)) {
1811 case SOUND_DEVICE:
1812 case AUDIO_DEVICE:
1813 case AUDIOCTL_DEVICE:
1814 mutex_enter(sc->sc_lock);
1815 device_active(sc->sc_dev, DVA_SYSTEM);
1816 mutex_exit(sc->sc_lock);
1817 if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
1818 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1819 else
1820 error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
1821 file);
1822 break;
1823 case MIXER_DEVICE:
1824 error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
1825 break;
1826 default:
1827 error = ENXIO;
1828 break;
1829 }
1830
1831 audio_file_exit(sc, &sc_ref);
1832 return error;
1833 }
1834
1835 static int
1836 audiostat(struct file *fp, struct stat *st)
1837 {
1838 struct audio_softc *sc;
1839 struct psref sc_ref;
1840 audio_file_t *file;
1841
1842 KASSERT(fp->f_audioctx);
1843 file = fp->f_audioctx;
1844
1845 sc = audio_file_enter(file, &sc_ref);
1846 if (sc == NULL)
1847 return EIO;
1848
1849 memset(st, 0, sizeof(*st));
1850
1851 st->st_dev = file->dev;
1852 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1853 st->st_gid = kauth_cred_getegid(fp->f_cred);
1854 st->st_mode = S_IFCHR;
1855
1856 audio_file_exit(sc, &sc_ref);
1857 return 0;
1858 }
1859
1860 static int
1861 audiopoll(struct file *fp, int events)
1862 {
1863 struct audio_softc *sc;
1864 struct psref sc_ref;
1865 audio_file_t *file;
1866 struct lwp *l = curlwp;
1867 int revents;
1868 dev_t dev;
1869
1870 KASSERT(fp->f_audioctx);
1871 file = fp->f_audioctx;
1872 dev = file->dev;
1873
1874 sc = audio_file_enter(file, &sc_ref);
1875 if (sc == NULL)
1876 return EIO;
1877
1878 switch (AUDIODEV(dev)) {
1879 case SOUND_DEVICE:
1880 case AUDIO_DEVICE:
1881 revents = audio_poll(sc, events, l, file);
1882 break;
1883 case AUDIOCTL_DEVICE:
1884 case MIXER_DEVICE:
1885 revents = 0;
1886 break;
1887 default:
1888 revents = POLLERR;
1889 break;
1890 }
1891
1892 audio_file_exit(sc, &sc_ref);
1893 return revents;
1894 }
1895
1896 static int
1897 audiokqfilter(struct file *fp, struct knote *kn)
1898 {
1899 struct audio_softc *sc;
1900 struct psref sc_ref;
1901 audio_file_t *file;
1902 dev_t dev;
1903 int error;
1904
1905 KASSERT(fp->f_audioctx);
1906 file = fp->f_audioctx;
1907 dev = file->dev;
1908
1909 sc = audio_file_enter(file, &sc_ref);
1910 if (sc == NULL)
1911 return EIO;
1912
1913 switch (AUDIODEV(dev)) {
1914 case SOUND_DEVICE:
1915 case AUDIO_DEVICE:
1916 error = audio_kqfilter(sc, file, kn);
1917 break;
1918 case AUDIOCTL_DEVICE:
1919 case MIXER_DEVICE:
1920 error = ENODEV;
1921 break;
1922 default:
1923 error = ENXIO;
1924 break;
1925 }
1926
1927 audio_file_exit(sc, &sc_ref);
1928 return error;
1929 }
1930
1931 static int
1932 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
1933 int *advicep, struct uvm_object **uobjp, int *maxprotp)
1934 {
1935 struct audio_softc *sc;
1936 struct psref sc_ref;
1937 audio_file_t *file;
1938 dev_t dev;
1939 int error;
1940
1941 KASSERT(fp->f_audioctx);
1942 file = fp->f_audioctx;
1943 dev = file->dev;
1944
1945 sc = audio_file_enter(file, &sc_ref);
1946 if (sc == NULL)
1947 return EIO;
1948
1949 mutex_enter(sc->sc_lock);
1950 device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
1951 mutex_exit(sc->sc_lock);
1952
1953 switch (AUDIODEV(dev)) {
1954 case SOUND_DEVICE:
1955 case AUDIO_DEVICE:
1956 error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
1957 uobjp, maxprotp, file);
1958 break;
1959 case AUDIOCTL_DEVICE:
1960 case MIXER_DEVICE:
1961 default:
1962 error = ENOTSUP;
1963 break;
1964 }
1965
1966 audio_file_exit(sc, &sc_ref);
1967 return error;
1968 }
1969
1970
1971 /* Exported interfaces for audiobell. */
1972
1973 /*
1974 * Open for audiobell.
1975 * It stores allocated file to *filep.
1976 * If successful returns 0, otherwise errno.
1977 */
1978 int
1979 audiobellopen(dev_t dev, audio_file_t **filep)
1980 {
1981 struct audio_softc *sc;
1982 int error;
1983
1984 /* Find the device */
1985 sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1986 if (sc == NULL || sc->hw_if == NULL)
1987 return ENXIO;
1988
1989 error = audio_exlock_enter(sc);
1990 if (error)
1991 return error;
1992
1993 device_active(sc->sc_dev, DVA_SYSTEM);
1994 error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
1995
1996 audio_exlock_exit(sc);
1997 return error;
1998 }
1999
2000 /* Close for audiobell */
2001 int
2002 audiobellclose(audio_file_t *file)
2003 {
2004 struct audio_softc *sc;
2005 struct psref sc_ref;
2006 int error;
2007
2008 sc = audio_file_enter(file, &sc_ref);
2009 if (sc == NULL)
2010 return EIO;
2011
2012 error = audio_close(sc, file);
2013
2014 audio_file_exit(sc, &sc_ref);
2015
2016 KASSERT(file->ptrack);
2017 audio_track_destroy(file->ptrack);
2018 KASSERT(file->rtrack == NULL);
2019 kmem_free(file, sizeof(*file));
2020 return error;
2021 }
2022
2023 /* Set sample rate for audiobell */
2024 int
2025 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2026 {
2027 struct audio_softc *sc;
2028 struct psref sc_ref;
2029 struct audio_info ai;
2030 int error;
2031
2032 sc = audio_file_enter(file, &sc_ref);
2033 if (sc == NULL)
2034 return EIO;
2035
2036 AUDIO_INITINFO(&ai);
2037 ai.play.sample_rate = sample_rate;
2038
2039 error = audio_exlock_enter(sc);
2040 if (error)
2041 goto done;
2042 error = audio_file_setinfo(sc, file, &ai);
2043 audio_exlock_exit(sc);
2044
2045 done:
2046 audio_file_exit(sc, &sc_ref);
2047 return error;
2048 }
2049
2050 /* Playback for audiobell */
2051 int
2052 audiobellwrite(audio_file_t *file, struct uio *uio)
2053 {
2054 struct audio_softc *sc;
2055 struct psref sc_ref;
2056 int error;
2057
2058 sc = audio_file_enter(file, &sc_ref);
2059 if (sc == NULL)
2060 return EIO;
2061
2062 error = audio_write(sc, uio, 0, file);
2063
2064 audio_file_exit(sc, &sc_ref);
2065 return error;
2066 }
2067
2068
2069 /*
2070 * Audio driver
2071 */
2072
2073 /*
2074 * Must be called with sc_exlock held and without sc_lock held.
2075 */
2076 int
2077 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2078 struct lwp *l, audio_file_t **bellfile)
2079 {
2080 struct audio_info ai;
2081 struct file *fp;
2082 audio_file_t *af;
2083 audio_ring_t *hwbuf;
2084 bool fullduplex;
2085 bool cred_held;
2086 bool hw_opened;
2087 bool rmixer_started;
2088 int fd;
2089 int error;
2090
2091 KASSERT(sc->sc_exlock);
2092
2093 TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2094 (audiodebug >= 3) ? "start " : "",
2095 ISDEVSOUND(dev) ? "sound" : "audio",
2096 flags, sc->sc_popens, sc->sc_ropens);
2097
2098 fp = NULL;
2099 cred_held = false;
2100 hw_opened = false;
2101 rmixer_started = false;
2102
2103 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
2104 af->sc = sc;
2105 af->dev = dev;
2106 if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2107 af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2108 if ((flags & FREAD) != 0 && audio_can_capture(sc))
2109 af->mode |= AUMODE_RECORD;
2110 if (af->mode == 0) {
2111 error = ENXIO;
2112 goto bad;
2113 }
2114
2115 fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2116
2117 /*
2118 * On half duplex hardware,
2119 * 1. if mode is (PLAY | REC), let mode PLAY.
2120 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2121 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2122 */
2123 if (fullduplex == false) {
2124 if ((af->mode & AUMODE_PLAY)) {
2125 if (sc->sc_ropens != 0) {
2126 TRACE(1, "record track already exists");
2127 error = ENODEV;
2128 goto bad;
2129 }
2130 /* Play takes precedence */
2131 af->mode &= ~AUMODE_RECORD;
2132 }
2133 if ((af->mode & AUMODE_RECORD)) {
2134 if (sc->sc_popens != 0) {
2135 TRACE(1, "play track already exists");
2136 error = ENODEV;
2137 goto bad;
2138 }
2139 }
2140 }
2141
2142 /* Create tracks */
2143 if ((af->mode & AUMODE_PLAY))
2144 af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2145 if ((af->mode & AUMODE_RECORD))
2146 af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2147
2148 /* Set parameters */
2149 AUDIO_INITINFO(&ai);
2150 if (bellfile) {
2151 /* If audiobell, only sample_rate will be set later. */
2152 ai.play.sample_rate = audio_default.sample_rate;
2153 ai.play.encoding = AUDIO_ENCODING_SLINEAR_NE;
2154 ai.play.channels = 1;
2155 ai.play.precision = 16;
2156 ai.play.pause = 0;
2157 } else if (ISDEVAUDIO(dev)) {
2158 /* If /dev/audio, initialize everytime. */
2159 ai.play.sample_rate = audio_default.sample_rate;
2160 ai.play.encoding = audio_default.encoding;
2161 ai.play.channels = audio_default.channels;
2162 ai.play.precision = audio_default.precision;
2163 ai.play.pause = 0;
2164 ai.record.sample_rate = audio_default.sample_rate;
2165 ai.record.encoding = audio_default.encoding;
2166 ai.record.channels = audio_default.channels;
2167 ai.record.precision = audio_default.precision;
2168 ai.record.pause = 0;
2169 } else {
2170 /* If /dev/sound, take over the previous parameters. */
2171 ai.play.sample_rate = sc->sc_sound_pparams.sample_rate;
2172 ai.play.encoding = sc->sc_sound_pparams.encoding;
2173 ai.play.channels = sc->sc_sound_pparams.channels;
2174 ai.play.precision = sc->sc_sound_pparams.precision;
2175 ai.play.pause = sc->sc_sound_ppause;
2176 ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2177 ai.record.encoding = sc->sc_sound_rparams.encoding;
2178 ai.record.channels = sc->sc_sound_rparams.channels;
2179 ai.record.precision = sc->sc_sound_rparams.precision;
2180 ai.record.pause = sc->sc_sound_rpause;
2181 }
2182 error = audio_file_setinfo(sc, af, &ai);
2183 if (error)
2184 goto bad;
2185
2186 if (sc->sc_popens + sc->sc_ropens == 0) {
2187 /* First open */
2188
2189 sc->sc_cred = kauth_cred_get();
2190 kauth_cred_hold(sc->sc_cred);
2191 cred_held = true;
2192
2193 if (sc->hw_if->open) {
2194 int hwflags;
2195
2196 /*
2197 * Call hw_if->open() only at first open of
2198 * combination of playback and recording.
2199 * On full duplex hardware, the flags passed to
2200 * hw_if->open() is always (FREAD | FWRITE)
2201 * regardless of this open()'s flags.
2202 * see also dev/isa/aria.c
2203 * On half duplex hardware, the flags passed to
2204 * hw_if->open() is either FREAD or FWRITE.
2205 * see also arch/evbarm/mini2440/audio_mini2440.c
2206 */
2207 if (fullduplex) {
2208 hwflags = FREAD | FWRITE;
2209 } else {
2210 /* Construct hwflags from af->mode. */
2211 hwflags = 0;
2212 if ((af->mode & AUMODE_PLAY) != 0)
2213 hwflags |= FWRITE;
2214 if ((af->mode & AUMODE_RECORD) != 0)
2215 hwflags |= FREAD;
2216 }
2217
2218 mutex_enter(sc->sc_lock);
2219 mutex_enter(sc->sc_intr_lock);
2220 error = sc->hw_if->open(sc->hw_hdl, hwflags);
2221 mutex_exit(sc->sc_intr_lock);
2222 mutex_exit(sc->sc_lock);
2223 if (error)
2224 goto bad;
2225 }
2226 /*
2227 * Regardless of whether we called hw_if->open (whether
2228 * hw_if->open exists) or not, we move to the Opened phase
2229 * here. Therefore from this point, we have to call
2230 * hw_if->close (if exists) whenever abort.
2231 * Note that both of hw_if->{open,close} are optional.
2232 */
2233 hw_opened = true;
2234
2235 /*
2236 * Set speaker mode when a half duplex.
2237 * XXX I'm not sure this is correct.
2238 */
2239 if (1/*XXX*/) {
2240 if (sc->hw_if->speaker_ctl) {
2241 int on;
2242 if (af->ptrack) {
2243 on = 1;
2244 } else {
2245 on = 0;
2246 }
2247 mutex_enter(sc->sc_lock);
2248 mutex_enter(sc->sc_intr_lock);
2249 error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2250 mutex_exit(sc->sc_intr_lock);
2251 mutex_exit(sc->sc_lock);
2252 if (error)
2253 goto bad;
2254 }
2255 }
2256 } else if (sc->sc_multiuser == false) {
2257 uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2258 if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2259 error = EPERM;
2260 goto bad;
2261 }
2262 }
2263
2264 /* Call init_output if this is the first playback open. */
2265 if (af->ptrack && sc->sc_popens == 0) {
2266 if (sc->hw_if->init_output) {
2267 hwbuf = &sc->sc_pmixer->hwbuf;
2268 mutex_enter(sc->sc_lock);
2269 mutex_enter(sc->sc_intr_lock);
2270 error = sc->hw_if->init_output(sc->hw_hdl,
2271 hwbuf->mem,
2272 hwbuf->capacity *
2273 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2274 mutex_exit(sc->sc_intr_lock);
2275 mutex_exit(sc->sc_lock);
2276 if (error)
2277 goto bad;
2278 }
2279 }
2280 /*
2281 * Call init_input and start rmixer, if this is the first recording
2282 * open. See pause consideration notes.
2283 */
2284 if (af->rtrack && sc->sc_ropens == 0) {
2285 if (sc->hw_if->init_input) {
2286 hwbuf = &sc->sc_rmixer->hwbuf;
2287 mutex_enter(sc->sc_lock);
2288 mutex_enter(sc->sc_intr_lock);
2289 error = sc->hw_if->init_input(sc->hw_hdl,
2290 hwbuf->mem,
2291 hwbuf->capacity *
2292 hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2293 mutex_exit(sc->sc_intr_lock);
2294 mutex_exit(sc->sc_lock);
2295 if (error)
2296 goto bad;
2297 }
2298
2299 mutex_enter(sc->sc_lock);
2300 audio_rmixer_start(sc);
2301 mutex_exit(sc->sc_lock);
2302 rmixer_started = true;
2303 }
2304
2305 if (bellfile) {
2306 *bellfile = af;
2307 } else {
2308 error = fd_allocfile(&fp, &fd);
2309 if (error)
2310 goto bad;
2311
2312 error = fd_clone(fp, fd, flags, &audio_fileops, af);
2313 KASSERTMSG(error == EMOVEFD, "error=%d", error);
2314 }
2315
2316 /*
2317 * Count up finally.
2318 * Don't fail from here.
2319 */
2320 mutex_enter(sc->sc_lock);
2321 if (af->ptrack)
2322 sc->sc_popens++;
2323 if (af->rtrack)
2324 sc->sc_ropens++;
2325 mutex_enter(sc->sc_intr_lock);
2326 SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2327 mutex_exit(sc->sc_intr_lock);
2328 mutex_exit(sc->sc_lock);
2329
2330 TRACEF(3, af, "done");
2331 return error;
2332
2333 bad:
2334 if (fp) {
2335 fd_abort(curproc, fp, fd);
2336 }
2337
2338 if (rmixer_started) {
2339 mutex_enter(sc->sc_lock);
2340 audio_rmixer_halt(sc);
2341 mutex_exit(sc->sc_lock);
2342 }
2343
2344 if (hw_opened) {
2345 if (sc->hw_if->close) {
2346 mutex_enter(sc->sc_lock);
2347 mutex_enter(sc->sc_intr_lock);
2348 sc->hw_if->close(sc->hw_hdl);
2349 mutex_exit(sc->sc_intr_lock);
2350 mutex_exit(sc->sc_lock);
2351 }
2352 }
2353 if (cred_held) {
2354 kauth_cred_free(sc->sc_cred);
2355 }
2356
2357 /*
2358 * Since track here is not yet linked to sc_files,
2359 * you can call track_destroy() without sc_intr_lock.
2360 */
2361 if (af->rtrack) {
2362 audio_track_destroy(af->rtrack);
2363 af->rtrack = NULL;
2364 }
2365 if (af->ptrack) {
2366 audio_track_destroy(af->ptrack);
2367 af->ptrack = NULL;
2368 }
2369
2370 kmem_free(af, sizeof(*af));
2371 return error;
2372 }
2373
2374 /*
2375 * Must be called without sc_lock nor sc_exlock held.
2376 */
2377 int
2378 audio_close(struct audio_softc *sc, audio_file_t *file)
2379 {
2380
2381 /* Protect entering new fileops to this file */
2382 atomic_store_relaxed(&file->dying, true);
2383
2384 /*
2385 * Drain first.
2386 * It must be done before unlinking(acquiring exlock).
2387 */
2388 if (file->ptrack) {
2389 mutex_enter(sc->sc_lock);
2390 audio_track_drain(sc, file->ptrack);
2391 mutex_exit(sc->sc_lock);
2392 }
2393
2394 return audio_unlink(sc, file);
2395 }
2396
2397 /*
2398 * Unlink this file, but not freeing memory here.
2399 * Must be called without sc_lock nor sc_exlock held.
2400 */
2401 int
2402 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2403 {
2404 int error;
2405
2406 mutex_enter(sc->sc_lock);
2407
2408 TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2409 (audiodebug >= 3) ? "start " : "",
2410 (int)curproc->p_pid, (int)curlwp->l_lid,
2411 sc->sc_popens, sc->sc_ropens);
2412 KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2413 "sc->sc_popens=%d, sc->sc_ropens=%d",
2414 sc->sc_popens, sc->sc_ropens);
2415
2416 /*
2417 * Acquire exlock to protect counters.
2418 * Does not use audio_exlock_enter() due to sc_dying.
2419 */
2420 while (__predict_false(sc->sc_exlock != 0)) {
2421 error = cv_timedwait_sig(&sc->sc_exlockcv, sc->sc_lock,
2422 mstohz(AUDIO_TIMEOUT));
2423 /* XXX what should I do on error? */
2424 if (error == EWOULDBLOCK) {
2425 mutex_exit(sc->sc_lock);
2426 device_printf(sc->sc_dev,
2427 "%s: cv_timedwait_sig failed %d", __func__, error);
2428 return error;
2429 }
2430 }
2431 sc->sc_exlock = 1;
2432
2433 device_active(sc->sc_dev, DVA_SYSTEM);
2434
2435 mutex_enter(sc->sc_intr_lock);
2436 SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2437 mutex_exit(sc->sc_intr_lock);
2438
2439 if (file->ptrack) {
2440 TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2441 file->ptrack->dropframes);
2442
2443 KASSERT(sc->sc_popens > 0);
2444 sc->sc_popens--;
2445
2446 /* Call hw halt_output if this is the last playback track. */
2447 if (sc->sc_popens == 0 && sc->sc_pbusy) {
2448 error = audio_pmixer_halt(sc);
2449 if (error) {
2450 device_printf(sc->sc_dev,
2451 "halt_output failed with %d (ignored)\n",
2452 error);
2453 }
2454 }
2455
2456 /* Restore mixing volume if all tracks are gone. */
2457 if (sc->sc_popens == 0) {
2458 /* intr_lock is not necessary, but just manners. */
2459 mutex_enter(sc->sc_intr_lock);
2460 sc->sc_pmixer->volume = 256;
2461 sc->sc_pmixer->voltimer = 0;
2462 mutex_exit(sc->sc_intr_lock);
2463 }
2464 }
2465 if (file->rtrack) {
2466 TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2467 file->rtrack->dropframes);
2468
2469 KASSERT(sc->sc_ropens > 0);
2470 sc->sc_ropens--;
2471
2472 /* Call hw halt_input if this is the last recording track. */
2473 if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2474 error = audio_rmixer_halt(sc);
2475 if (error) {
2476 device_printf(sc->sc_dev,
2477 "halt_input failed with %d (ignored)\n",
2478 error);
2479 }
2480 }
2481
2482 }
2483
2484 /* Call hw close if this is the last track. */
2485 if (sc->sc_popens + sc->sc_ropens == 0) {
2486 if (sc->hw_if->close) {
2487 TRACE(2, "hw_if close");
2488 mutex_enter(sc->sc_intr_lock);
2489 sc->hw_if->close(sc->hw_hdl);
2490 mutex_exit(sc->sc_intr_lock);
2491 }
2492 }
2493
2494 mutex_exit(sc->sc_lock);
2495 if (sc->sc_popens + sc->sc_ropens == 0)
2496 kauth_cred_free(sc->sc_cred);
2497
2498 TRACE(3, "done");
2499 audio_exlock_exit(sc);
2500
2501 return 0;
2502 }
2503
2504 /*
2505 * Must be called without sc_lock nor sc_exlock held.
2506 */
2507 int
2508 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2509 audio_file_t *file)
2510 {
2511 audio_track_t *track;
2512 audio_ring_t *usrbuf;
2513 audio_ring_t *input;
2514 int error;
2515
2516 /*
2517 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2518 * However read() system call itself can be called because it's
2519 * opened with O_RDWR. So in this case, deny this read().
2520 */
2521 track = file->rtrack;
2522 if (track == NULL) {
2523 return EBADF;
2524 }
2525
2526 /* I think it's better than EINVAL. */
2527 if (track->mmapped)
2528 return EPERM;
2529
2530 TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2531
2532 #ifdef AUDIO_PM_IDLE
2533 error = audio_exlock_mutex_enter(sc);
2534 if (error)
2535 return error;
2536
2537 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2538 device_active(&sc->sc_dev, DVA_SYSTEM);
2539
2540 /* In recording, unlike playback, read() never operates rmixer. */
2541
2542 audio_exlock_mutex_exit(sc);
2543 #endif
2544
2545 usrbuf = &track->usrbuf;
2546 input = track->input;
2547 error = 0;
2548
2549 while (uio->uio_resid > 0 && error == 0) {
2550 int bytes;
2551
2552 TRACET(3, track,
2553 "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/H%d",
2554 uio->uio_resid,
2555 input->head, input->used, input->capacity,
2556 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2557
2558 /* Wait when buffers are empty. */
2559 mutex_enter(sc->sc_lock);
2560 for (;;) {
2561 bool empty;
2562 audio_track_lock_enter(track);
2563 empty = (input->used == 0 && usrbuf->used == 0);
2564 audio_track_lock_exit(track);
2565 if (!empty)
2566 break;
2567
2568 if ((ioflag & IO_NDELAY)) {
2569 mutex_exit(sc->sc_lock);
2570 return EWOULDBLOCK;
2571 }
2572
2573 TRACET(3, track, "sleep");
2574 error = audio_track_waitio(sc, track);
2575 if (error) {
2576 mutex_exit(sc->sc_lock);
2577 return error;
2578 }
2579 }
2580 mutex_exit(sc->sc_lock);
2581
2582 audio_track_lock_enter(track);
2583 audio_track_record(track);
2584
2585 /* uiomove from usrbuf as much as possible. */
2586 bytes = uimin(usrbuf->used, uio->uio_resid);
2587 while (bytes > 0) {
2588 int head = usrbuf->head;
2589 int len = uimin(bytes, usrbuf->capacity - head);
2590 error = uiomove((uint8_t *)usrbuf->mem + head, len,
2591 uio);
2592 if (error) {
2593 audio_track_lock_exit(track);
2594 device_printf(sc->sc_dev,
2595 "uiomove(len=%d) failed with %d\n",
2596 len, error);
2597 goto abort;
2598 }
2599 auring_take(usrbuf, len);
2600 track->useriobytes += len;
2601 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2602 len,
2603 usrbuf->head, usrbuf->used, usrbuf->capacity);
2604 bytes -= len;
2605 }
2606
2607 audio_track_lock_exit(track);
2608 }
2609
2610 abort:
2611 return error;
2612 }
2613
2614
2615 /*
2616 * Clear file's playback and/or record track buffer immediately.
2617 */
2618 static void
2619 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2620 {
2621
2622 if (file->ptrack)
2623 audio_track_clear(sc, file->ptrack);
2624 if (file->rtrack)
2625 audio_track_clear(sc, file->rtrack);
2626 }
2627
2628 /*
2629 * Must be called without sc_lock nor sc_exlock held.
2630 */
2631 int
2632 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2633 audio_file_t *file)
2634 {
2635 audio_track_t *track;
2636 audio_ring_t *usrbuf;
2637 audio_ring_t *outbuf;
2638 int error;
2639
2640 track = file->ptrack;
2641 KASSERT(track);
2642
2643 /* I think it's better than EINVAL. */
2644 if (track->mmapped)
2645 return EPERM;
2646
2647 TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2648 audiodebug >= 3 ? "begin " : "",
2649 uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2650
2651 if (uio->uio_resid == 0) {
2652 track->eofcounter++;
2653 return 0;
2654 }
2655
2656 error = audio_exlock_mutex_enter(sc);
2657 if (error)
2658 return error;
2659
2660 #ifdef AUDIO_PM_IDLE
2661 if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2662 device_active(&sc->sc_dev, DVA_SYSTEM);
2663 #endif
2664
2665 /*
2666 * The first write starts pmixer.
2667 */
2668 if (sc->sc_pbusy == false)
2669 audio_pmixer_start(sc, false);
2670 audio_exlock_mutex_exit(sc);
2671
2672 usrbuf = &track->usrbuf;
2673 outbuf = &track->outbuf;
2674 track->pstate = AUDIO_STATE_RUNNING;
2675 error = 0;
2676
2677 while (uio->uio_resid > 0 && error == 0) {
2678 int bytes;
2679
2680 TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2681 uio->uio_resid,
2682 usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2683
2684 /* Wait when buffers are full. */
2685 mutex_enter(sc->sc_lock);
2686 for (;;) {
2687 bool full;
2688 audio_track_lock_enter(track);
2689 full = (usrbuf->used >= track->usrbuf_usedhigh &&
2690 outbuf->used >= outbuf->capacity);
2691 audio_track_lock_exit(track);
2692 if (!full)
2693 break;
2694
2695 if ((ioflag & IO_NDELAY)) {
2696 error = EWOULDBLOCK;
2697 mutex_exit(sc->sc_lock);
2698 goto abort;
2699 }
2700
2701 TRACET(3, track, "sleep usrbuf=%d/H%d",
2702 usrbuf->used, track->usrbuf_usedhigh);
2703 error = audio_track_waitio(sc, track);
2704 if (error) {
2705 mutex_exit(sc->sc_lock);
2706 goto abort;
2707 }
2708 }
2709 mutex_exit(sc->sc_lock);
2710
2711 audio_track_lock_enter(track);
2712
2713 /* uiomove to usrbuf as much as possible. */
2714 bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2715 uio->uio_resid);
2716 while (bytes > 0) {
2717 int tail = auring_tail(usrbuf);
2718 int len = uimin(bytes, usrbuf->capacity - tail);
2719 error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2720 uio);
2721 if (error) {
2722 audio_track_lock_exit(track);
2723 device_printf(sc->sc_dev,
2724 "uiomove(len=%d) failed with %d\n",
2725 len, error);
2726 goto abort;
2727 }
2728 auring_push(usrbuf, len);
2729 track->useriobytes += len;
2730 TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2731 len,
2732 usrbuf->head, usrbuf->used, usrbuf->capacity);
2733 bytes -= len;
2734 }
2735
2736 /* Convert them as much as possible. */
2737 while (usrbuf->used >= track->usrbuf_blksize &&
2738 outbuf->used < outbuf->capacity) {
2739 audio_track_play(track);
2740 }
2741
2742 audio_track_lock_exit(track);
2743 }
2744
2745 abort:
2746 TRACET(3, track, "done error=%d", error);
2747 return error;
2748 }
2749
2750 /*
2751 * Must be called without sc_lock nor sc_exlock held.
2752 */
2753 int
2754 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
2755 struct lwp *l, audio_file_t *file)
2756 {
2757 struct audio_offset *ao;
2758 struct audio_info ai;
2759 audio_track_t *track;
2760 audio_encoding_t *ae;
2761 audio_format_query_t *query;
2762 u_int stamp;
2763 u_int offs;
2764 int fd;
2765 int index;
2766 int error;
2767
2768 #if defined(AUDIO_DEBUG)
2769 const char *ioctlnames[] = {
2770 " AUDIO_GETINFO", /* 21 */
2771 " AUDIO_SETINFO", /* 22 */
2772 " AUDIO_DRAIN", /* 23 */
2773 " AUDIO_FLUSH", /* 24 */
2774 " AUDIO_WSEEK", /* 25 */
2775 " AUDIO_RERROR", /* 26 */
2776 " AUDIO_GETDEV", /* 27 */
2777 " AUDIO_GETENC", /* 28 */
2778 " AUDIO_GETFD", /* 29 */
2779 " AUDIO_SETFD", /* 30 */
2780 " AUDIO_PERROR", /* 31 */
2781 " AUDIO_GETIOFFS", /* 32 */
2782 " AUDIO_GETOOFFS", /* 33 */
2783 " AUDIO_GETPROPS", /* 34 */
2784 " AUDIO_GETBUFINFO", /* 35 */
2785 " AUDIO_SETCHAN", /* 36 */
2786 " AUDIO_GETCHAN", /* 37 */
2787 " AUDIO_QUERYFORMAT", /* 38 */
2788 " AUDIO_GETFORMAT", /* 39 */
2789 " AUDIO_SETFORMAT", /* 40 */
2790 };
2791 int nameidx = (cmd & 0xff);
2792 const char *ioctlname = "";
2793 if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames))
2794 ioctlname = ioctlnames[nameidx - 21];
2795 TRACEF(2, file, "(%lu,'%c',%lu)%s pid=%d.%d",
2796 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
2797 (int)curproc->p_pid, (int)l->l_lid);
2798 #endif
2799
2800 error = 0;
2801 switch (cmd) {
2802 case FIONBIO:
2803 /* All handled in the upper FS layer. */
2804 break;
2805
2806 case FIONREAD:
2807 /* Get the number of bytes that can be read. */
2808 if (file->rtrack) {
2809 *(int *)addr = audio_track_readablebytes(file->rtrack);
2810 } else {
2811 *(int *)addr = 0;
2812 }
2813 break;
2814
2815 case FIOASYNC:
2816 /* Set/Clear ASYNC I/O. */
2817 if (*(int *)addr) {
2818 file->async_audio = curproc->p_pid;
2819 TRACEF(2, file, "FIOASYNC pid %d", file->async_audio);
2820 } else {
2821 file->async_audio = 0;
2822 TRACEF(2, file, "FIOASYNC off");
2823 }
2824 break;
2825
2826 case AUDIO_FLUSH:
2827 /* XXX TODO: clear errors and restart? */
2828 audio_file_clear(sc, file);
2829 break;
2830
2831 case AUDIO_RERROR:
2832 /*
2833 * Number of read bytes dropped. We don't know where
2834 * or when they were dropped (including conversion stage).
2835 * Therefore, the number of accurate bytes or samples is
2836 * also unknown.
2837 */
2838 track = file->rtrack;
2839 if (track) {
2840 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2841 track->dropframes);
2842 }
2843 break;
2844
2845 case AUDIO_PERROR:
2846 /*
2847 * Number of write bytes dropped. We don't know where
2848 * or when they were dropped (including conversion stage).
2849 * Therefore, the number of accurate bytes or samples is
2850 * also unknown.
2851 */
2852 track = file->ptrack;
2853 if (track) {
2854 *(int *)addr = frametobyte(&track->usrbuf.fmt,
2855 track->dropframes);
2856 }
2857 break;
2858
2859 case AUDIO_GETIOFFS:
2860 /* XXX TODO */
2861 ao = (struct audio_offset *)addr;
2862 ao->samples = 0;
2863 ao->deltablks = 0;
2864 ao->offset = 0;
2865 break;
2866
2867 case AUDIO_GETOOFFS:
2868 ao = (struct audio_offset *)addr;
2869 track = file->ptrack;
2870 if (track == NULL) {
2871 ao->samples = 0;
2872 ao->deltablks = 0;
2873 ao->offset = 0;
2874 break;
2875 }
2876 mutex_enter(sc->sc_lock);
2877 mutex_enter(sc->sc_intr_lock);
2878 /* figure out where next DMA will start */
2879 stamp = track->usrbuf_stamp;
2880 offs = track->usrbuf.head;
2881 mutex_exit(sc->sc_intr_lock);
2882 mutex_exit(sc->sc_lock);
2883
2884 ao->samples = stamp;
2885 ao->deltablks = (stamp / track->usrbuf_blksize) -
2886 (track->usrbuf_stamp_last / track->usrbuf_blksize);
2887 track->usrbuf_stamp_last = stamp;
2888 offs = rounddown(offs, track->usrbuf_blksize)
2889 + track->usrbuf_blksize;
2890 if (offs >= track->usrbuf.capacity)
2891 offs -= track->usrbuf.capacity;
2892 ao->offset = offs;
2893
2894 TRACET(3, track, "GETOOFFS: samples=%u deltablks=%u offset=%u",
2895 ao->samples, ao->deltablks, ao->offset);
2896 break;
2897
2898 case AUDIO_WSEEK:
2899 /* XXX return value does not include outbuf one. */
2900 if (file->ptrack)
2901 *(u_long *)addr = file->ptrack->usrbuf.used;
2902 break;
2903
2904 case AUDIO_SETINFO:
2905 error = audio_exlock_enter(sc);
2906 if (error)
2907 break;
2908 error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
2909 if (error) {
2910 audio_exlock_exit(sc);
2911 break;
2912 }
2913 /* XXX TODO: update last_ai if /dev/sound ? */
2914 if (ISDEVSOUND(dev))
2915 error = audiogetinfo(sc, &sc->sc_ai, 0, file);
2916 audio_exlock_exit(sc);
2917 break;
2918
2919 case AUDIO_GETINFO:
2920 error = audio_exlock_enter(sc);
2921 if (error)
2922 break;
2923 error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
2924 audio_exlock_exit(sc);
2925 break;
2926
2927 case AUDIO_GETBUFINFO:
2928 error = audio_exlock_enter(sc);
2929 if (error)
2930 break;
2931 error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
2932 audio_exlock_exit(sc);
2933 break;
2934
2935 case AUDIO_DRAIN:
2936 if (file->ptrack) {
2937 mutex_enter(sc->sc_lock);
2938 error = audio_track_drain(sc, file->ptrack);
2939 mutex_exit(sc->sc_lock);
2940 }
2941 break;
2942
2943 case AUDIO_GETDEV:
2944 mutex_enter(sc->sc_lock);
2945 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
2946 mutex_exit(sc->sc_lock);
2947 break;
2948
2949 case AUDIO_GETENC:
2950 ae = (audio_encoding_t *)addr;
2951 index = ae->index;
2952 if (index < 0 || index >= __arraycount(audio_encodings)) {
2953 error = EINVAL;
2954 break;
2955 }
2956 *ae = audio_encodings[index];
2957 ae->index = index;
2958 /*
2959 * EMULATED always.
2960 * EMULATED flag at that time used to mean that it could
2961 * not be passed directly to the hardware as-is. But
2962 * currently, all formats including hardware native is not
2963 * passed directly to the hardware. So I set EMULATED
2964 * flag for all formats.
2965 */
2966 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
2967 break;
2968
2969 case AUDIO_GETFD:
2970 /*
2971 * Returns the current setting of full duplex mode.
2972 * If HW has full duplex mode and there are two mixers,
2973 * it is full duplex. Otherwise half duplex.
2974 */
2975 error = audio_exlock_enter(sc);
2976 if (error)
2977 break;
2978 fd = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
2979 && (sc->sc_pmixer && sc->sc_rmixer);
2980 audio_exlock_exit(sc);
2981 *(int *)addr = fd;
2982 break;
2983
2984 case AUDIO_GETPROPS:
2985 *(int *)addr = sc->sc_props;
2986 break;
2987
2988 case AUDIO_QUERYFORMAT:
2989 query = (audio_format_query_t *)addr;
2990 mutex_enter(sc->sc_lock);
2991 error = sc->hw_if->query_format(sc->hw_hdl, query);
2992 mutex_exit(sc->sc_lock);
2993 /* Hide internal information */
2994 query->fmt.driver_data = NULL;
2995 break;
2996
2997 case AUDIO_GETFORMAT:
2998 error = audio_exlock_enter(sc);
2999 if (error)
3000 break;
3001 audio_mixers_get_format(sc, (struct audio_info *)addr);
3002 audio_exlock_exit(sc);
3003 break;
3004
3005 case AUDIO_SETFORMAT:
3006 error = audio_exlock_enter(sc);
3007 audio_mixers_get_format(sc, &ai);
3008 error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3009 if (error) {
3010 /* Rollback */
3011 audio_mixers_set_format(sc, &ai);
3012 }
3013 audio_exlock_exit(sc);
3014 break;
3015
3016 case AUDIO_SETFD:
3017 case AUDIO_SETCHAN:
3018 case AUDIO_GETCHAN:
3019 /* Obsoleted */
3020 break;
3021
3022 default:
3023 if (sc->hw_if->dev_ioctl) {
3024 mutex_enter(sc->sc_lock);
3025 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3026 cmd, addr, flag, l);
3027 mutex_exit(sc->sc_lock);
3028 } else {
3029 TRACEF(2, file, "unknown ioctl");
3030 error = EINVAL;
3031 }
3032 break;
3033 }
3034 TRACEF(2, file, "(%lu,'%c',%lu)%s result %d",
3035 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd&0xff, ioctlname,
3036 error);
3037 return error;
3038 }
3039
3040 /*
3041 * Returns the number of bytes that can be read on recording buffer.
3042 */
3043 static __inline int
3044 audio_track_readablebytes(const audio_track_t *track)
3045 {
3046 int bytes;
3047
3048 KASSERT(track);
3049 KASSERT(track->mode == AUMODE_RECORD);
3050
3051 /*
3052 * Although usrbuf is primarily readable data, recorded data
3053 * also stays in track->input until reading. So it is necessary
3054 * to add it. track->input is in frame, usrbuf is in byte.
3055 */
3056 bytes = track->usrbuf.used +
3057 track->input->used * frametobyte(&track->usrbuf.fmt, 1);
3058 return bytes;
3059 }
3060
3061 /*
3062 * Must be called without sc_lock nor sc_exlock held.
3063 */
3064 int
3065 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3066 audio_file_t *file)
3067 {
3068 audio_track_t *track;
3069 int revents;
3070 bool in_is_valid;
3071 bool out_is_valid;
3072
3073 #if defined(AUDIO_DEBUG)
3074 #define POLLEV_BITMAP "\177\020" \
3075 "b\10WRBAND\0" \
3076 "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3077 "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3078 char evbuf[64];
3079 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3080 TRACEF(2, file, "pid=%d.%d events=%s",
3081 (int)curproc->p_pid, (int)l->l_lid, evbuf);
3082 #endif
3083
3084 revents = 0;
3085 in_is_valid = false;
3086 out_is_valid = false;
3087 if (events & (POLLIN | POLLRDNORM)) {
3088 track = file->rtrack;
3089 if (track) {
3090 int used;
3091 in_is_valid = true;
3092 used = audio_track_readablebytes(track);
3093 if (used > 0)
3094 revents |= events & (POLLIN | POLLRDNORM);
3095 }
3096 }
3097 if (events & (POLLOUT | POLLWRNORM)) {
3098 track = file->ptrack;
3099 if (track) {
3100 out_is_valid = true;
3101 if (track->usrbuf.used <= track->usrbuf_usedlow)
3102 revents |= events & (POLLOUT | POLLWRNORM);
3103 }
3104 }
3105
3106 if (revents == 0) {
3107 mutex_enter(sc->sc_lock);
3108 if (in_is_valid) {
3109 TRACEF(3, file, "selrecord rsel");
3110 selrecord(l, &sc->sc_rsel);
3111 }
3112 if (out_is_valid) {
3113 TRACEF(3, file, "selrecord wsel");
3114 selrecord(l, &sc->sc_wsel);
3115 }
3116 mutex_exit(sc->sc_lock);
3117 }
3118
3119 #if defined(AUDIO_DEBUG)
3120 snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3121 TRACEF(2, file, "revents=%s", evbuf);
3122 #endif
3123 return revents;
3124 }
3125
3126 static const struct filterops audioread_filtops = {
3127 .f_isfd = 1,
3128 .f_attach = NULL,
3129 .f_detach = filt_audioread_detach,
3130 .f_event = filt_audioread_event,
3131 };
3132
3133 static void
3134 filt_audioread_detach(struct knote *kn)
3135 {
3136 struct audio_softc *sc;
3137 audio_file_t *file;
3138
3139 file = kn->kn_hook;
3140 sc = file->sc;
3141 TRACEF(3, file, "");
3142
3143 mutex_enter(sc->sc_lock);
3144 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
3145 mutex_exit(sc->sc_lock);
3146 }
3147
3148 static int
3149 filt_audioread_event(struct knote *kn, long hint)
3150 {
3151 audio_file_t *file;
3152 audio_track_t *track;
3153
3154 file = kn->kn_hook;
3155 track = file->rtrack;
3156
3157 /*
3158 * kn_data must contain the number of bytes can be read.
3159 * The return value indicates whether the event occurs or not.
3160 */
3161
3162 if (track == NULL) {
3163 /* can not read with this descriptor. */
3164 kn->kn_data = 0;
3165 return 0;
3166 }
3167
3168 kn->kn_data = audio_track_readablebytes(track);
3169 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3170 return kn->kn_data > 0;
3171 }
3172
3173 static const struct filterops audiowrite_filtops = {
3174 .f_isfd = 1,
3175 .f_attach = NULL,
3176 .f_detach = filt_audiowrite_detach,
3177 .f_event = filt_audiowrite_event,
3178 };
3179
3180 static void
3181 filt_audiowrite_detach(struct knote *kn)
3182 {
3183 struct audio_softc *sc;
3184 audio_file_t *file;
3185
3186 file = kn->kn_hook;
3187 sc = file->sc;
3188 TRACEF(3, file, "");
3189
3190 mutex_enter(sc->sc_lock);
3191 SLIST_REMOVE(&sc->sc_wsel.sel_klist, kn, knote, kn_selnext);
3192 mutex_exit(sc->sc_lock);
3193 }
3194
3195 static int
3196 filt_audiowrite_event(struct knote *kn, long hint)
3197 {
3198 audio_file_t *file;
3199 audio_track_t *track;
3200
3201 file = kn->kn_hook;
3202 track = file->ptrack;
3203
3204 /*
3205 * kn_data must contain the number of bytes can be write.
3206 * The return value indicates whether the event occurs or not.
3207 */
3208
3209 if (track == NULL) {
3210 /* can not write with this descriptor. */
3211 kn->kn_data = 0;
3212 return 0;
3213 }
3214
3215 kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3216 TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3217 return (track->usrbuf.used < track->usrbuf_usedlow);
3218 }
3219
3220 /*
3221 * Must be called without sc_lock nor sc_exlock held.
3222 */
3223 int
3224 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3225 {
3226 struct klist *klist;
3227
3228 TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3229
3230 mutex_enter(sc->sc_lock);
3231 switch (kn->kn_filter) {
3232 case EVFILT_READ:
3233 klist = &sc->sc_rsel.sel_klist;
3234 kn->kn_fop = &audioread_filtops;
3235 break;
3236
3237 case EVFILT_WRITE:
3238 klist = &sc->sc_wsel.sel_klist;
3239 kn->kn_fop = &audiowrite_filtops;
3240 break;
3241
3242 default:
3243 mutex_exit(sc->sc_lock);
3244 return EINVAL;
3245 }
3246
3247 kn->kn_hook = file;
3248
3249 SLIST_INSERT_HEAD(klist, kn, kn_selnext);
3250 mutex_exit(sc->sc_lock);
3251
3252 return 0;
3253 }
3254
3255 /*
3256 * Must be called without sc_lock nor sc_exlock held.
3257 */
3258 int
3259 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3260 int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3261 audio_file_t *file)
3262 {
3263 audio_track_t *track;
3264 vsize_t vsize;
3265 int error;
3266
3267 TRACEF(2, file, "off=%lld, prot=%d", (long long)(*offp), prot);
3268
3269 if (*offp < 0)
3270 return EINVAL;
3271
3272 #if 0
3273 /* XXX
3274 * The idea here was to use the protection to determine if
3275 * we are mapping the read or write buffer, but it fails.
3276 * The VM system is broken in (at least) two ways.
3277 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3278 * when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3279 * has to be used for mmapping the play buffer.
3280 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3281 * audio_mmap will get called at some point with VM_PROT_READ
3282 * only.
3283 * So, alas, we always map the play buffer for now.
3284 */
3285 if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3286 prot == VM_PROT_WRITE)
3287 track = file->ptrack;
3288 else if (prot == VM_PROT_READ)
3289 track = file->rtrack;
3290 else
3291 return EINVAL;
3292 #else
3293 track = file->ptrack;
3294 #endif
3295 if (track == NULL)
3296 return EACCES;
3297
3298 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3299 if (len > vsize)
3300 return EOVERFLOW;
3301 if (*offp > (uint)(vsize - len))
3302 return EOVERFLOW;
3303
3304 /* XXX TODO: what happens when mmap twice. */
3305 if (!track->mmapped) {
3306 track->mmapped = true;
3307
3308 if (!track->is_pause) {
3309 error = audio_exlock_mutex_enter(sc);
3310 if (error)
3311 return error;
3312 if (sc->sc_pbusy == false)
3313 audio_pmixer_start(sc, true);
3314 audio_exlock_mutex_exit(sc);
3315 }
3316 /* XXX mmapping record buffer is not supported */
3317 }
3318
3319 /* get ringbuffer */
3320 *uobjp = track->uobj;
3321
3322 /* Acquire a reference for the mmap. munmap will release. */
3323 uao_reference(*uobjp);
3324 *maxprotp = prot;
3325 *advicep = UVM_ADV_RANDOM;
3326 *flagsp = MAP_SHARED;
3327 return 0;
3328 }
3329
3330 /*
3331 * /dev/audioctl has to be able to open at any time without interference
3332 * with any /dev/audio or /dev/sound.
3333 * Must be called with sc_exlock held and without sc_lock held.
3334 */
3335 static int
3336 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3337 struct lwp *l)
3338 {
3339 struct file *fp;
3340 audio_file_t *af;
3341 int fd;
3342 int error;
3343
3344 KASSERT(sc->sc_exlock);
3345
3346 TRACE(1, "");
3347
3348 error = fd_allocfile(&fp, &fd);
3349 if (error)
3350 return error;
3351
3352 af = kmem_zalloc(sizeof(audio_file_t), KM_SLEEP);
3353 af->sc = sc;
3354 af->dev = dev;
3355
3356 /* Not necessary to insert sc_files. */
3357
3358 error = fd_clone(fp, fd, flags, &audio_fileops, af);
3359 KASSERTMSG(error == EMOVEFD, "error=%d", error);
3360
3361 return error;
3362 }
3363
3364 /*
3365 * Free 'mem' if available, and initialize the pointer.
3366 * For this reason, this is implemented as macro.
3367 */
3368 #define audio_free(mem) do { \
3369 if (mem != NULL) { \
3370 kern_free(mem); \
3371 mem = NULL; \
3372 } \
3373 } while (0)
3374
3375 /*
3376 * (Re)allocate 'memblock' with specified 'bytes'.
3377 * bytes must not be 0.
3378 * This function never returns NULL.
3379 */
3380 static void *
3381 audio_realloc(void *memblock, size_t bytes)
3382 {
3383
3384 KASSERT(bytes != 0);
3385 audio_free(memblock);
3386 return kern_malloc(bytes, M_WAITOK);
3387 }
3388
3389 /*
3390 * (Re)allocate usrbuf with 'newbufsize' bytes.
3391 * Use this function for usrbuf because only usrbuf can be mmapped.
3392 * If successful, it updates track->usrbuf.mem, track->usrbuf.capacity and
3393 * returns 0. Otherwise, it clears track->usrbuf.mem, track->usrbuf.capacity
3394 * and returns errno.
3395 * It must be called before updating usrbuf.capacity.
3396 */
3397 static int
3398 audio_realloc_usrbuf(audio_track_t *track, int newbufsize)
3399 {
3400 struct audio_softc *sc;
3401 vaddr_t vstart;
3402 vsize_t oldvsize;
3403 vsize_t newvsize;
3404 int error;
3405
3406 KASSERT(newbufsize > 0);
3407 sc = track->mixer->sc;
3408
3409 /* Get a nonzero multiple of PAGE_SIZE */
3410 newvsize = roundup2(MAX(newbufsize, PAGE_SIZE), PAGE_SIZE);
3411
3412 if (track->usrbuf.mem != NULL) {
3413 oldvsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE),
3414 PAGE_SIZE);
3415 if (oldvsize == newvsize) {
3416 track->usrbuf.capacity = newbufsize;
3417 return 0;
3418 }
3419 vstart = (vaddr_t)track->usrbuf.mem;
3420 uvm_unmap(kernel_map, vstart, vstart + oldvsize);
3421 /* uvm_unmap also detach uobj */
3422 track->uobj = NULL; /* paranoia */
3423 track->usrbuf.mem = NULL;
3424 }
3425
3426 /* Create a uvm anonymous object */
3427 track->uobj = uao_create(newvsize, 0);
3428
3429 /* Map it into the kernel virtual address space */
3430 vstart = 0;
3431 error = uvm_map(kernel_map, &vstart, newvsize, track->uobj, 0, 0,
3432 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3433 UVM_ADV_RANDOM, 0));
3434 if (error) {
3435 device_printf(sc->sc_dev, "uvm_map failed with %d\n", error);
3436 uao_detach(track->uobj); /* release reference */
3437 goto abort;
3438 }
3439
3440 error = uvm_map_pageable(kernel_map, vstart, vstart + newvsize,
3441 false, 0);
3442 if (error) {
3443 device_printf(sc->sc_dev, "uvm_map_pageable failed with %d\n",
3444 error);
3445 uvm_unmap(kernel_map, vstart, vstart + newvsize);
3446 /* uvm_unmap also detach uobj */
3447 goto abort;
3448 }
3449
3450 track->usrbuf.mem = (void *)vstart;
3451 track->usrbuf.capacity = newbufsize;
3452 memset(track->usrbuf.mem, 0, newvsize);
3453 return 0;
3454
3455 /* failure */
3456 abort:
3457 track->uobj = NULL; /* paranoia */
3458 track->usrbuf.mem = NULL;
3459 track->usrbuf.capacity = 0;
3460 return error;
3461 }
3462
3463 /*
3464 * Free usrbuf (if available).
3465 */
3466 static void
3467 audio_free_usrbuf(audio_track_t *track)
3468 {
3469 vaddr_t vstart;
3470 vsize_t vsize;
3471
3472 vstart = (vaddr_t)track->usrbuf.mem;
3473 vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3474 if (track->usrbuf.mem != NULL) {
3475 /*
3476 * Unmap the kernel mapping. uvm_unmap releases the
3477 * reference to the uvm object, and this should be the
3478 * last virtual mapping of the uvm object, so no need
3479 * to explicitly release (`detach') the object.
3480 */
3481 uvm_unmap(kernel_map, vstart, vstart + vsize);
3482
3483 track->uobj = NULL;
3484 track->usrbuf.mem = NULL;
3485 track->usrbuf.capacity = 0;
3486 }
3487 }
3488
3489 /*
3490 * This filter changes the volume for each channel.
3491 * arg->context points track->ch_volume[].
3492 */
3493 static void
3494 audio_track_chvol(audio_filter_arg_t *arg)
3495 {
3496 int16_t *ch_volume;
3497 const aint_t *s;
3498 aint_t *d;
3499 u_int i;
3500 u_int ch;
3501 u_int channels;
3502
3503 DIAGNOSTIC_filter_arg(arg);
3504 KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3505 "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3506 arg->srcfmt->channels, arg->dstfmt->channels);
3507 KASSERT(arg->context != NULL);
3508 KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3509 "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3510
3511 s = arg->src;
3512 d = arg->dst;
3513 ch_volume = arg->context;
3514
3515 channels = arg->srcfmt->channels;
3516 for (i = 0; i < arg->count; i++) {
3517 for (ch = 0; ch < channels; ch++) {
3518 aint2_t val;
3519 val = *s++;
3520 val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3521 *d++ = (aint_t)val;
3522 }
3523 }
3524 }
3525
3526 /*
3527 * This filter performs conversion from stereo (or more channels) to mono.
3528 */
3529 static void
3530 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3531 {
3532 const aint_t *s;
3533 aint_t *d;
3534 u_int i;
3535
3536 DIAGNOSTIC_filter_arg(arg);
3537
3538 s = arg->src;
3539 d = arg->dst;
3540
3541 for (i = 0; i < arg->count; i++) {
3542 *d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3543 s += arg->srcfmt->channels;
3544 }
3545 }
3546
3547 /*
3548 * This filter performs conversion from mono to stereo (or more channels).
3549 */
3550 static void
3551 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3552 {
3553 const aint_t *s;
3554 aint_t *d;
3555 u_int i;
3556 u_int ch;
3557 u_int dstchannels;
3558
3559 DIAGNOSTIC_filter_arg(arg);
3560
3561 s = arg->src;
3562 d = arg->dst;
3563 dstchannels = arg->dstfmt->channels;
3564
3565 for (i = 0; i < arg->count; i++) {
3566 d[0] = s[0];
3567 d[1] = s[0];
3568 s++;
3569 d += dstchannels;
3570 }
3571 if (dstchannels > 2) {
3572 d = arg->dst;
3573 for (i = 0; i < arg->count; i++) {
3574 for (ch = 2; ch < dstchannels; ch++) {
3575 d[ch] = 0;
3576 }
3577 d += dstchannels;
3578 }
3579 }
3580 }
3581
3582 /*
3583 * This filter shrinks M channels into N channels.
3584 * Extra channels are discarded.
3585 */
3586 static void
3587 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3588 {
3589 const aint_t *s;
3590 aint_t *d;
3591 u_int i;
3592 u_int ch;
3593
3594 DIAGNOSTIC_filter_arg(arg);
3595
3596 s = arg->src;
3597 d = arg->dst;
3598
3599 for (i = 0; i < arg->count; i++) {
3600 for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3601 *d++ = s[ch];
3602 }
3603 s += arg->srcfmt->channels;
3604 }
3605 }
3606
3607 /*
3608 * This filter expands M channels into N channels.
3609 * Silence is inserted for missing channels.
3610 */
3611 static void
3612 audio_track_chmix_expand(audio_filter_arg_t *arg)
3613 {
3614 const aint_t *s;
3615 aint_t *d;
3616 u_int i;
3617 u_int ch;
3618 u_int srcchannels;
3619 u_int dstchannels;
3620
3621 DIAGNOSTIC_filter_arg(arg);
3622
3623 s = arg->src;
3624 d = arg->dst;
3625
3626 srcchannels = arg->srcfmt->channels;
3627 dstchannels = arg->dstfmt->channels;
3628 for (i = 0; i < arg->count; i++) {
3629 for (ch = 0; ch < srcchannels; ch++) {
3630 *d++ = *s++;
3631 }
3632 for (; ch < dstchannels; ch++) {
3633 *d++ = 0;
3634 }
3635 }
3636 }
3637
3638 /*
3639 * This filter performs frequency conversion (up sampling).
3640 * It uses linear interpolation.
3641 */
3642 static void
3643 audio_track_freq_up(audio_filter_arg_t *arg)
3644 {
3645 audio_track_t *track;
3646 audio_ring_t *src;
3647 audio_ring_t *dst;
3648 const aint_t *s;
3649 aint_t *d;
3650 aint_t prev[AUDIO_MAX_CHANNELS];
3651 aint_t curr[AUDIO_MAX_CHANNELS];
3652 aint_t grad[AUDIO_MAX_CHANNELS];
3653 u_int i;
3654 u_int t;
3655 u_int step;
3656 u_int channels;
3657 u_int ch;
3658 int srcused;
3659
3660 track = arg->context;
3661 KASSERT(track);
3662 src = &track->freq.srcbuf;
3663 dst = track->freq.dst;
3664 DIAGNOSTIC_ring(dst);
3665 DIAGNOSTIC_ring(src);
3666 KASSERT(src->used > 0);
3667 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3668 "src->fmt.channels=%d dst->fmt.channels=%d",
3669 src->fmt.channels, dst->fmt.channels);
3670 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3671 "src->head=%d track->mixer->frames_per_block=%d",
3672 src->head, track->mixer->frames_per_block);
3673
3674 s = arg->src;
3675 d = arg->dst;
3676
3677 /*
3678 * In order to faciliate interpolation for each block, slide (delay)
3679 * input by one sample. As a result, strictly speaking, the output
3680 * phase is delayed by 1/dstfreq. However, I believe there is no
3681 * observable impact.
3682 *
3683 * Example)
3684 * srcfreq:dstfreq = 1:3
3685 *
3686 * A - -
3687 * |
3688 * |
3689 * | B - -
3690 * +-----+-----> input timeframe
3691 * 0 1
3692 *
3693 * 0 1
3694 * +-----+-----> input timeframe
3695 * | A
3696 * | x x
3697 * | x x
3698 * x (B)
3699 * +-+-+-+-+-+-> output timeframe
3700 * 0 1 2 3 4 5
3701 */
3702
3703 /* Last samples in previous block */
3704 channels = src->fmt.channels;
3705 for (ch = 0; ch < channels; ch++) {
3706 prev[ch] = track->freq_prev[ch];
3707 curr[ch] = track->freq_curr[ch];
3708 grad[ch] = curr[ch] - prev[ch];
3709 }
3710
3711 step = track->freq_step;
3712 t = track->freq_current;
3713 //#define FREQ_DEBUG
3714 #if defined(FREQ_DEBUG)
3715 #define PRINTF(fmt...) printf(fmt)
3716 #else
3717 #define PRINTF(fmt...) do { } while (0)
3718 #endif
3719 srcused = src->used;
3720 PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
3721 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3722 PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
3723 PRINTF(" t=%d\n", t);
3724
3725 for (i = 0; i < arg->count; i++) {
3726 PRINTF("i=%d t=%5d", i, t);
3727 if (t >= 65536) {
3728 for (ch = 0; ch < channels; ch++) {
3729 prev[ch] = curr[ch];
3730 curr[ch] = *s++;
3731 grad[ch] = curr[ch] - prev[ch];
3732 }
3733 PRINTF(" prev=%d s[%d]=%d",
3734 prev[0], src->used - srcused, curr[0]);
3735
3736 /* Update */
3737 t -= 65536;
3738 srcused--;
3739 if (srcused < 0) {
3740 PRINTF(" break\n");
3741 break;
3742 }
3743 }
3744
3745 for (ch = 0; ch < channels; ch++) {
3746 *d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
3747 #if defined(FREQ_DEBUG)
3748 if (ch == 0)
3749 printf(" t=%5d *d=%d", t, d[-1]);
3750 #endif
3751 }
3752 t += step;
3753
3754 PRINTF("\n");
3755 }
3756 PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
3757
3758 auring_take(src, src->used);
3759 auring_push(dst, i);
3760
3761 /* Adjust */
3762 t += track->freq_leap;
3763
3764 track->freq_current = t;
3765 for (ch = 0; ch < channels; ch++) {
3766 track->freq_prev[ch] = prev[ch];
3767 track->freq_curr[ch] = curr[ch];
3768 }
3769 }
3770
3771 /*
3772 * This filter performs frequency conversion (down sampling).
3773 * It uses simple thinning.
3774 */
3775 static void
3776 audio_track_freq_down(audio_filter_arg_t *arg)
3777 {
3778 audio_track_t *track;
3779 audio_ring_t *src;
3780 audio_ring_t *dst;
3781 const aint_t *s0;
3782 aint_t *d;
3783 u_int i;
3784 u_int t;
3785 u_int step;
3786 u_int ch;
3787 u_int channels;
3788
3789 track = arg->context;
3790 KASSERT(track);
3791 src = &track->freq.srcbuf;
3792 dst = track->freq.dst;
3793
3794 DIAGNOSTIC_ring(dst);
3795 DIAGNOSTIC_ring(src);
3796 KASSERT(src->used > 0);
3797 KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3798 "src->fmt.channels=%d dst->fmt.channels=%d",
3799 src->fmt.channels, dst->fmt.channels);
3800 KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3801 "src->head=%d track->mixer->frames_per_block=%d",
3802 src->head, track->mixer->frames_per_block);
3803
3804 s0 = arg->src;
3805 d = arg->dst;
3806 t = track->freq_current;
3807 step = track->freq_step;
3808 channels = dst->fmt.channels;
3809 PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
3810 PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
3811 PRINTF(" t=%d\n", t);
3812
3813 for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
3814 const aint_t *s;
3815 PRINTF("i=%4d t=%10d", i, t);
3816 s = s0 + (t / 65536) * channels;
3817 PRINTF(" s=%5ld", (s - s0) / channels);
3818 for (ch = 0; ch < channels; ch++) {
3819 if (ch == 0) PRINTF(" *s=%d", s[ch]);
3820 *d++ = s[ch];
3821 }
3822 PRINTF("\n");
3823 t += step;
3824 }
3825 t += track->freq_leap;
3826 PRINTF("end t=%d\n", t);
3827 auring_take(src, src->used);
3828 auring_push(dst, i);
3829 track->freq_current = t % 65536;
3830 }
3831
3832 /*
3833 * Creates track and returns it.
3834 * Must be called without sc_lock held.
3835 */
3836 audio_track_t *
3837 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
3838 {
3839 audio_track_t *track;
3840 static int newid = 0;
3841
3842 track = kmem_zalloc(sizeof(*track), KM_SLEEP);
3843
3844 track->id = newid++;
3845 track->mixer = mixer;
3846 track->mode = mixer->mode;
3847
3848 /* Do TRACE after id is assigned. */
3849 TRACET(3, track, "for %s",
3850 mixer->mode == AUMODE_PLAY ? "playback" : "recording");
3851
3852 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
3853 track->volume = 256;
3854 #endif
3855 for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
3856 track->ch_volume[i] = 256;
3857 }
3858
3859 return track;
3860 }
3861
3862 /*
3863 * Release all resources of the track and track itself.
3864 * track must not be NULL. Don't specify the track within the file
3865 * structure linked from sc->sc_files.
3866 */
3867 static void
3868 audio_track_destroy(audio_track_t *track)
3869 {
3870
3871 KASSERT(track);
3872
3873 audio_free_usrbuf(track);
3874 audio_free(track->codec.srcbuf.mem);
3875 audio_free(track->chvol.srcbuf.mem);
3876 audio_free(track->chmix.srcbuf.mem);
3877 audio_free(track->freq.srcbuf.mem);
3878 audio_free(track->outbuf.mem);
3879
3880 kmem_free(track, sizeof(*track));
3881 }
3882
3883 /*
3884 * It returns encoding conversion filter according to src and dst format.
3885 * If it is not a convertible pair, it returns NULL. Either src or dst
3886 * must be internal format.
3887 */
3888 static audio_filter_t
3889 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
3890 const audio_format2_t *dst)
3891 {
3892
3893 if (audio_format2_is_internal(src)) {
3894 if (dst->encoding == AUDIO_ENCODING_ULAW) {
3895 return audio_internal_to_mulaw;
3896 } else if (dst->encoding == AUDIO_ENCODING_ALAW) {
3897 return audio_internal_to_alaw;
3898 } else if (audio_format2_is_linear(dst)) {
3899 switch (dst->stride) {
3900 case 8:
3901 return audio_internal_to_linear8;
3902 case 16:
3903 return audio_internal_to_linear16;
3904 #if defined(AUDIO_SUPPORT_LINEAR24)
3905 case 24:
3906 return audio_internal_to_linear24;
3907 #endif
3908 case 32:
3909 return audio_internal_to_linear32;
3910 default:
3911 TRACET(1, track, "unsupported %s stride %d",
3912 "dst", dst->stride);
3913 goto abort;
3914 }
3915 }
3916 } else if (audio_format2_is_internal(dst)) {
3917 if (src->encoding == AUDIO_ENCODING_ULAW) {
3918 return audio_mulaw_to_internal;
3919 } else if (src->encoding == AUDIO_ENCODING_ALAW) {
3920 return audio_alaw_to_internal;
3921 } else if (audio_format2_is_linear(src)) {
3922 switch (src->stride) {
3923 case 8:
3924 return audio_linear8_to_internal;
3925 case 16:
3926 return audio_linear16_to_internal;
3927 #if defined(AUDIO_SUPPORT_LINEAR24)
3928 case 24:
3929 return audio_linear24_to_internal;
3930 #endif
3931 case 32:
3932 return audio_linear32_to_internal;
3933 default:
3934 TRACET(1, track, "unsupported %s stride %d",
3935 "src", src->stride);
3936 goto abort;
3937 }
3938 }
3939 }
3940
3941 TRACET(1, track, "unsupported encoding");
3942 abort:
3943 #if defined(AUDIO_DEBUG)
3944 if (audiodebug >= 2) {
3945 char buf[100];
3946 audio_format2_tostr(buf, sizeof(buf), src);
3947 TRACET(2, track, "src %s", buf);
3948 audio_format2_tostr(buf, sizeof(buf), dst);
3949 TRACET(2, track, "dst %s", buf);
3950 }
3951 #endif
3952 return NULL;
3953 }
3954
3955 /*
3956 * Initialize the codec stage of this track as necessary.
3957 * If successful, it initializes the codec stage as necessary, stores updated
3958 * last_dst in *last_dstp in any case, and returns 0.
3959 * Otherwise, it returns errno without modifying *last_dstp.
3960 */
3961 static int
3962 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
3963 {
3964 audio_ring_t *last_dst;
3965 audio_ring_t *srcbuf;
3966 audio_format2_t *srcfmt;
3967 audio_format2_t *dstfmt;
3968 audio_filter_arg_t *arg;
3969 u_int len;
3970 int error;
3971
3972 KASSERT(track);
3973
3974 last_dst = *last_dstp;
3975 dstfmt = &last_dst->fmt;
3976 srcfmt = &track->inputfmt;
3977 srcbuf = &track->codec.srcbuf;
3978 error = 0;
3979
3980 if (srcfmt->encoding != dstfmt->encoding
3981 || srcfmt->precision != dstfmt->precision
3982 || srcfmt->stride != dstfmt->stride) {
3983 track->codec.dst = last_dst;
3984
3985 srcbuf->fmt = *dstfmt;
3986 srcbuf->fmt.encoding = srcfmt->encoding;
3987 srcbuf->fmt.precision = srcfmt->precision;
3988 srcbuf->fmt.stride = srcfmt->stride;
3989
3990 track->codec.filter = audio_track_get_codec(track,
3991 &srcbuf->fmt, dstfmt);
3992 if (track->codec.filter == NULL) {
3993 error = EINVAL;
3994 goto abort;
3995 }
3996
3997 srcbuf->head = 0;
3998 srcbuf->used = 0;
3999 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4000 len = auring_bytelen(srcbuf);
4001 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4002
4003 arg = &track->codec.arg;
4004 arg->srcfmt = &srcbuf->fmt;
4005 arg->dstfmt = dstfmt;
4006 arg->context = NULL;
4007
4008 *last_dstp = srcbuf;
4009 return 0;
4010 }
4011
4012 abort:
4013 track->codec.filter = NULL;
4014 audio_free(srcbuf->mem);
4015 return error;
4016 }
4017
4018 /*
4019 * Initialize the chvol stage of this track as necessary.
4020 * If successful, it initializes the chvol stage as necessary, stores updated
4021 * last_dst in *last_dstp in any case, and returns 0.
4022 * Otherwise, it returns errno without modifying *last_dstp.
4023 */
4024 static int
4025 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4026 {
4027 audio_ring_t *last_dst;
4028 audio_ring_t *srcbuf;
4029 audio_format2_t *srcfmt;
4030 audio_format2_t *dstfmt;
4031 audio_filter_arg_t *arg;
4032 u_int len;
4033 int error;
4034
4035 KASSERT(track);
4036
4037 last_dst = *last_dstp;
4038 dstfmt = &last_dst->fmt;
4039 srcfmt = &track->inputfmt;
4040 srcbuf = &track->chvol.srcbuf;
4041 error = 0;
4042
4043 /* Check whether channel volume conversion is necessary. */
4044 bool use_chvol = false;
4045 for (int ch = 0; ch < srcfmt->channels; ch++) {
4046 if (track->ch_volume[ch] != 256) {
4047 use_chvol = true;
4048 break;
4049 }
4050 }
4051
4052 if (use_chvol == true) {
4053 track->chvol.dst = last_dst;
4054 track->chvol.filter = audio_track_chvol;
4055
4056 srcbuf->fmt = *dstfmt;
4057 /* no format conversion occurs */
4058
4059 srcbuf->head = 0;
4060 srcbuf->used = 0;
4061 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4062 len = auring_bytelen(srcbuf);
4063 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4064
4065 arg = &track->chvol.arg;
4066 arg->srcfmt = &srcbuf->fmt;
4067 arg->dstfmt = dstfmt;
4068 arg->context = track->ch_volume;
4069
4070 *last_dstp = srcbuf;
4071 return 0;
4072 }
4073
4074 track->chvol.filter = NULL;
4075 audio_free(srcbuf->mem);
4076 return error;
4077 }
4078
4079 /*
4080 * Initialize the chmix stage of this track as necessary.
4081 * If successful, it initializes the chmix stage as necessary, stores updated
4082 * last_dst in *last_dstp in any case, and returns 0.
4083 * Otherwise, it returns errno without modifying *last_dstp.
4084 */
4085 static int
4086 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4087 {
4088 audio_ring_t *last_dst;
4089 audio_ring_t *srcbuf;
4090 audio_format2_t *srcfmt;
4091 audio_format2_t *dstfmt;
4092 audio_filter_arg_t *arg;
4093 u_int srcch;
4094 u_int dstch;
4095 u_int len;
4096 int error;
4097
4098 KASSERT(track);
4099
4100 last_dst = *last_dstp;
4101 dstfmt = &last_dst->fmt;
4102 srcfmt = &track->inputfmt;
4103 srcbuf = &track->chmix.srcbuf;
4104 error = 0;
4105
4106 srcch = srcfmt->channels;
4107 dstch = dstfmt->channels;
4108 if (srcch != dstch) {
4109 track->chmix.dst = last_dst;
4110
4111 if (srcch >= 2 && dstch == 1) {
4112 track->chmix.filter = audio_track_chmix_mixLR;
4113 } else if (srcch == 1 && dstch >= 2) {
4114 track->chmix.filter = audio_track_chmix_dupLR;
4115 } else if (srcch > dstch) {
4116 track->chmix.filter = audio_track_chmix_shrink;
4117 } else {
4118 track->chmix.filter = audio_track_chmix_expand;
4119 }
4120
4121 srcbuf->fmt = *dstfmt;
4122 srcbuf->fmt.channels = srcch;
4123
4124 srcbuf->head = 0;
4125 srcbuf->used = 0;
4126 /* XXX The buffer size should be able to calculate. */
4127 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4128 len = auring_bytelen(srcbuf);
4129 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4130
4131 arg = &track->chmix.arg;
4132 arg->srcfmt = &srcbuf->fmt;
4133 arg->dstfmt = dstfmt;
4134 arg->context = NULL;
4135
4136 *last_dstp = srcbuf;
4137 return 0;
4138 }
4139
4140 track->chmix.filter = NULL;
4141 audio_free(srcbuf->mem);
4142 return error;
4143 }
4144
4145 /*
4146 * Initialize the freq stage of this track as necessary.
4147 * If successful, it initializes the freq stage as necessary, stores updated
4148 * last_dst in *last_dstp in any case, and returns 0.
4149 * Otherwise, it returns errno without modifying *last_dstp.
4150 */
4151 static int
4152 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4153 {
4154 audio_ring_t *last_dst;
4155 audio_ring_t *srcbuf;
4156 audio_format2_t *srcfmt;
4157 audio_format2_t *dstfmt;
4158 audio_filter_arg_t *arg;
4159 uint32_t srcfreq;
4160 uint32_t dstfreq;
4161 u_int dst_capacity;
4162 u_int mod;
4163 u_int len;
4164 int error;
4165
4166 KASSERT(track);
4167
4168 last_dst = *last_dstp;
4169 dstfmt = &last_dst->fmt;
4170 srcfmt = &track->inputfmt;
4171 srcbuf = &track->freq.srcbuf;
4172 error = 0;
4173
4174 srcfreq = srcfmt->sample_rate;
4175 dstfreq = dstfmt->sample_rate;
4176 if (srcfreq != dstfreq) {
4177 track->freq.dst = last_dst;
4178
4179 memset(track->freq_prev, 0, sizeof(track->freq_prev));
4180 memset(track->freq_curr, 0, sizeof(track->freq_curr));
4181
4182 /* freq_step is the ratio of src/dst when let dst 65536. */
4183 track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4184
4185 dst_capacity = frame_per_block(track->mixer, dstfmt);
4186 mod = (uint64_t)srcfreq * 65536 % dstfreq;
4187 track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4188
4189 if (track->freq_step < 65536) {
4190 track->freq.filter = audio_track_freq_up;
4191 /* In order to carry at the first time. */
4192 track->freq_current = 65536;
4193 } else {
4194 track->freq.filter = audio_track_freq_down;
4195 track->freq_current = 0;
4196 }
4197
4198 srcbuf->fmt = *dstfmt;
4199 srcbuf->fmt.sample_rate = srcfreq;
4200
4201 srcbuf->head = 0;
4202 srcbuf->used = 0;
4203 srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4204 len = auring_bytelen(srcbuf);
4205 srcbuf->mem = audio_realloc(srcbuf->mem, len);
4206
4207 arg = &track->freq.arg;
4208 arg->srcfmt = &srcbuf->fmt;
4209 arg->dstfmt = dstfmt;/*&last_dst->fmt;*/
4210 arg->context = track;
4211
4212 *last_dstp = srcbuf;
4213 return 0;
4214 }
4215
4216 track->freq.filter = NULL;
4217 audio_free(srcbuf->mem);
4218 return error;
4219 }
4220
4221 /*
4222 * When playing back: (e.g. if codec and freq stage are valid)
4223 *
4224 * write
4225 * | uiomove
4226 * v
4227 * usrbuf [...............] byte ring buffer (mmap-able)
4228 * | memcpy
4229 * v
4230 * codec.srcbuf[....] 1 block (ring) buffer <-- stage input
4231 * .dst ----+
4232 * | convert
4233 * v
4234 * freq.srcbuf [....] 1 block (ring) buffer
4235 * .dst ----+
4236 * | convert
4237 * v
4238 * outbuf [...............] NBLKOUT blocks ring buffer
4239 *
4240 *
4241 * When recording:
4242 *
4243 * freq.srcbuf [...............] NBLKOUT blocks ring buffer <-- stage input
4244 * .dst ----+
4245 * | convert
4246 * v
4247 * codec.srcbuf[.....] 1 block (ring) buffer
4248 * .dst ----+
4249 * | convert
4250 * v
4251 * outbuf [.....] 1 block (ring) buffer
4252 * | memcpy
4253 * v
4254 * usrbuf [...............] byte ring buffer (mmap-able *)
4255 * | uiomove
4256 * v
4257 * read
4258 *
4259 * *: usrbuf for recording is also mmap-able due to symmetry with
4260 * playback buffer, but for now mmap will never happen for recording.
4261 */
4262
4263 /*
4264 * Set the userland format of this track.
4265 * usrfmt argument should have been previously verified by
4266 * audio_track_setinfo_check().
4267 * This function may release and reallocate all internal conversion buffers.
4268 * It returns 0 if successful. Otherwise it returns errno with clearing all
4269 * internal buffers.
4270 * It must be called without sc_intr_lock since uvm_* routines require non
4271 * intr_lock state.
4272 * It must be called with track lock held since it may release and reallocate
4273 * outbuf.
4274 */
4275 static int
4276 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4277 {
4278 struct audio_softc *sc;
4279 u_int newbufsize;
4280 u_int oldblksize;
4281 u_int len;
4282 int error;
4283
4284 KASSERT(track);
4285 sc = track->mixer->sc;
4286
4287 /* usrbuf is the closest buffer to the userland. */
4288 track->usrbuf.fmt = *usrfmt;
4289
4290 /*
4291 * For references, one block size (in 40msec) is:
4292 * 320 bytes = 204 blocks/64KB for mulaw/8kHz/1ch
4293 * 7680 bytes = 8 blocks/64KB for s16/48kHz/2ch
4294 * 30720 bytes = 90 KB/3blocks for s16/48kHz/8ch
4295 * 61440 bytes = 180 KB/3blocks for s16/96kHz/8ch
4296 * 245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4297 *
4298 * For example,
4299 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4300 * newbufsize = rounddown(65536 / 7056) = 63504
4301 * newvsize = roundup2(63504, PAGE_SIZE) = 65536
4302 * Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4303 *
4304 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4305 * newbufsize = rounddown(65536 / 7680) = 61440
4306 * newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4307 * Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4308 */
4309 oldblksize = track->usrbuf_blksize;
4310 track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4311 frame_per_block(track->mixer, &track->usrbuf.fmt));
4312 track->usrbuf.head = 0;
4313 track->usrbuf.used = 0;
4314 newbufsize = MAX(track->usrbuf_blksize * AUMINNOBLK, 65536);
4315 newbufsize = rounddown(newbufsize, track->usrbuf_blksize);
4316 error = audio_realloc_usrbuf(track, newbufsize);
4317 if (error) {
4318 device_printf(sc->sc_dev, "malloc usrbuf(%d) failed\n",
4319 newbufsize);
4320 goto error;
4321 }
4322
4323 /* Recalc water mark. */
4324 if (track->usrbuf_blksize != oldblksize) {
4325 if (audio_track_is_playback(track)) {
4326 /* Set high at 100%, low at 75%. */
4327 track->usrbuf_usedhigh = track->usrbuf.capacity;
4328 track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4329 } else {
4330 /* Set high at 100% minus 1block(?), low at 0% */
4331 track->usrbuf_usedhigh = track->usrbuf.capacity -
4332 track->usrbuf_blksize;
4333 track->usrbuf_usedlow = 0;
4334 }
4335 }
4336
4337 /* Stage buffer */
4338 audio_ring_t *last_dst = &track->outbuf;
4339 if (audio_track_is_playback(track)) {
4340 /* On playback, initialize from the mixer side in order. */
4341 track->inputfmt = *usrfmt;
4342 track->outbuf.fmt = track->mixer->track_fmt;
4343
4344 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4345 goto error;
4346 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4347 goto error;
4348 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4349 goto error;
4350 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4351 goto error;
4352 } else {
4353 /* On recording, initialize from userland side in order. */
4354 track->inputfmt = track->mixer->track_fmt;
4355 track->outbuf.fmt = *usrfmt;
4356
4357 if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4358 goto error;
4359 if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4360 goto error;
4361 if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4362 goto error;
4363 if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4364 goto error;
4365 }
4366 #if 0
4367 /* debug */
4368 if (track->freq.filter) {
4369 audio_print_format2("freq src", &track->freq.srcbuf.fmt);
4370 audio_print_format2("freq dst", &track->freq.dst->fmt);
4371 }
4372 if (track->chmix.filter) {
4373 audio_print_format2("chmix src", &track->chmix.srcbuf.fmt);
4374 audio_print_format2("chmix dst", &track->chmix.dst->fmt);
4375 }
4376 if (track->chvol.filter) {
4377 audio_print_format2("chvol src", &track->chvol.srcbuf.fmt);
4378 audio_print_format2("chvol dst", &track->chvol.dst->fmt);
4379 }
4380 if (track->codec.filter) {
4381 audio_print_format2("codec src", &track->codec.srcbuf.fmt);
4382 audio_print_format2("codec dst", &track->codec.dst->fmt);
4383 }
4384 #endif
4385
4386 /* Stage input buffer */
4387 track->input = last_dst;
4388
4389 /*
4390 * On the recording track, make the first stage a ring buffer.
4391 * XXX is there a better way?
4392 */
4393 if (audio_track_is_record(track)) {
4394 track->input->capacity = NBLKOUT *
4395 frame_per_block(track->mixer, &track->input->fmt);
4396 len = auring_bytelen(track->input);
4397 track->input->mem = audio_realloc(track->input->mem, len);
4398 }
4399
4400 /*
4401 * Output buffer.
4402 * On the playback track, its capacity is NBLKOUT blocks.
4403 * On the recording track, its capacity is 1 block.
4404 */
4405 track->outbuf.head = 0;
4406 track->outbuf.used = 0;
4407 track->outbuf.capacity = frame_per_block(track->mixer,
4408 &track->outbuf.fmt);
4409 if (audio_track_is_playback(track))
4410 track->outbuf.capacity *= NBLKOUT;
4411 len = auring_bytelen(&track->outbuf);
4412 track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4413 if (track->outbuf.mem == NULL) {
4414 device_printf(sc->sc_dev, "malloc outbuf(%d) failed\n", len);
4415 error = ENOMEM;
4416 goto error;
4417 }
4418
4419 #if defined(AUDIO_DEBUG)
4420 if (audiodebug >= 3) {
4421 struct audio_track_debugbuf m;
4422
4423 memset(&m, 0, sizeof(m));
4424 snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4425 track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4426 if (track->freq.filter)
4427 snprintf(m.freq, sizeof(m.freq), " freq=%d",
4428 track->freq.srcbuf.capacity *
4429 frametobyte(&track->freq.srcbuf.fmt, 1));
4430 if (track->chmix.filter)
4431 snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4432 track->chmix.srcbuf.capacity *
4433 frametobyte(&track->chmix.srcbuf.fmt, 1));
4434 if (track->chvol.filter)
4435 snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4436 track->chvol.srcbuf.capacity *
4437 frametobyte(&track->chvol.srcbuf.fmt, 1));
4438 if (track->codec.filter)
4439 snprintf(m.codec, sizeof(m.codec), " codec=%d",
4440 track->codec.srcbuf.capacity *
4441 frametobyte(&track->codec.srcbuf.fmt, 1));
4442 snprintf(m.usrbuf, sizeof(m.usrbuf),
4443 " usr=%d", track->usrbuf.capacity);
4444
4445 if (audio_track_is_playback(track)) {
4446 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4447 m.outbuf, m.freq, m.chmix,
4448 m.chvol, m.codec, m.usrbuf);
4449 } else {
4450 TRACET(0, track, "bufsize%s%s%s%s%s%s",
4451 m.freq, m.chmix, m.chvol,
4452 m.codec, m.outbuf, m.usrbuf);
4453 }
4454 }
4455 #endif
4456 return 0;
4457
4458 error:
4459 audio_free_usrbuf(track);
4460 audio_free(track->codec.srcbuf.mem);
4461 audio_free(track->chvol.srcbuf.mem);
4462 audio_free(track->chmix.srcbuf.mem);
4463 audio_free(track->freq.srcbuf.mem);
4464 audio_free(track->outbuf.mem);
4465 return error;
4466 }
4467
4468 /*
4469 * Fill silence frames (as the internal format) up to 1 block
4470 * if the ring is not empty and less than 1 block.
4471 * It returns the number of appended frames.
4472 */
4473 static int
4474 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4475 {
4476 int fpb;
4477 int n;
4478
4479 KASSERT(track);
4480 KASSERT(audio_format2_is_internal(&ring->fmt));
4481
4482 /* XXX is n correct? */
4483 /* XXX memset uses frametobyte()? */
4484
4485 if (ring->used == 0)
4486 return 0;
4487
4488 fpb = frame_per_block(track->mixer, &ring->fmt);
4489 if (ring->used >= fpb)
4490 return 0;
4491
4492 n = (ring->capacity - ring->used) % fpb;
4493
4494 KASSERTMSG(auring_get_contig_free(ring) >= n,
4495 "auring_get_contig_free(ring)=%d n=%d",
4496 auring_get_contig_free(ring), n);
4497
4498 memset(auring_tailptr_aint(ring), 0,
4499 n * ring->fmt.channels * sizeof(aint_t));
4500 auring_push(ring, n);
4501 return n;
4502 }
4503
4504 /*
4505 * Execute the conversion stage.
4506 * It prepares arg from this stage and executes stage->filter.
4507 * It must be called only if stage->filter is not NULL.
4508 *
4509 * For stages other than frequency conversion, the function increments
4510 * src and dst counters here. For frequency conversion stage, on the
4511 * other hand, the function does not touch src and dst counters and
4512 * filter side has to increment them.
4513 */
4514 static void
4515 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4516 {
4517 audio_filter_arg_t *arg;
4518 int srccount;
4519 int dstcount;
4520 int count;
4521
4522 KASSERT(track);
4523 KASSERT(stage->filter);
4524
4525 srccount = auring_get_contig_used(&stage->srcbuf);
4526 dstcount = auring_get_contig_free(stage->dst);
4527
4528 if (isfreq) {
4529 KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4530 count = uimin(dstcount, track->mixer->frames_per_block);
4531 } else {
4532 count = uimin(srccount, dstcount);
4533 }
4534
4535 if (count > 0) {
4536 arg = &stage->arg;
4537 arg->src = auring_headptr(&stage->srcbuf);
4538 arg->dst = auring_tailptr(stage->dst);
4539 arg->count = count;
4540
4541 stage->filter(arg);
4542
4543 if (!isfreq) {
4544 auring_take(&stage->srcbuf, count);
4545 auring_push(stage->dst, count);
4546 }
4547 }
4548 }
4549
4550 /*
4551 * Produce output buffer for playback from user input buffer.
4552 * It must be called only if usrbuf is not empty and outbuf is
4553 * available at least one free block.
4554 */
4555 static void
4556 audio_track_play(audio_track_t *track)
4557 {
4558 audio_ring_t *usrbuf;
4559 audio_ring_t *input;
4560 int count;
4561 int framesize;
4562 int bytes;
4563
4564 KASSERT(track);
4565 KASSERT(track->lock);
4566 TRACET(4, track, "start pstate=%d", track->pstate);
4567
4568 /* At this point usrbuf must not be empty. */
4569 KASSERT(track->usrbuf.used > 0);
4570 /* Also, outbuf must be available at least one block. */
4571 count = auring_get_contig_free(&track->outbuf);
4572 KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4573 "count=%d fpb=%d",
4574 count, frame_per_block(track->mixer, &track->outbuf.fmt));
4575
4576 /* XXX TODO: is this necessary for now? */
4577 int track_count_0 = track->outbuf.used;
4578
4579 usrbuf = &track->usrbuf;
4580 input = track->input;
4581
4582 /*
4583 * framesize is always 1 byte or more since all formats supported as
4584 * usrfmt(=input) have 8bit or more stride.
4585 */
4586 framesize = frametobyte(&input->fmt, 1);
4587 KASSERT(framesize >= 1);
4588
4589 /* The next stage of usrbuf (=input) must be available. */
4590 KASSERT(auring_get_contig_free(input) > 0);
4591
4592 /*
4593 * Copy usrbuf up to 1block to input buffer.
4594 * count is the number of frames to copy from usrbuf.
4595 * bytes is the number of bytes to copy from usrbuf. However it is
4596 * not copied less than one frame.
4597 */
4598 count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
4599 bytes = count * framesize;
4600
4601 track->usrbuf_stamp += bytes;
4602
4603 if (usrbuf->head + bytes < usrbuf->capacity) {
4604 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4605 (uint8_t *)usrbuf->mem + usrbuf->head,
4606 bytes);
4607 auring_push(input, count);
4608 auring_take(usrbuf, bytes);
4609 } else {
4610 int bytes1;
4611 int bytes2;
4612
4613 bytes1 = auring_get_contig_used(usrbuf);
4614 KASSERTMSG(bytes1 % framesize == 0,
4615 "bytes1=%d framesize=%d", bytes1, framesize);
4616 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4617 (uint8_t *)usrbuf->mem + usrbuf->head,
4618 bytes1);
4619 auring_push(input, bytes1 / framesize);
4620 auring_take(usrbuf, bytes1);
4621
4622 bytes2 = bytes - bytes1;
4623 memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
4624 (uint8_t *)usrbuf->mem + usrbuf->head,
4625 bytes2);
4626 auring_push(input, bytes2 / framesize);
4627 auring_take(usrbuf, bytes2);
4628 }
4629
4630 /* Encoding conversion */
4631 if (track->codec.filter)
4632 audio_apply_stage(track, &track->codec, false);
4633
4634 /* Channel volume */
4635 if (track->chvol.filter)
4636 audio_apply_stage(track, &track->chvol, false);
4637
4638 /* Channel mix */
4639 if (track->chmix.filter)
4640 audio_apply_stage(track, &track->chmix, false);
4641
4642 /* Frequency conversion */
4643 /*
4644 * Since the frequency conversion needs correction for each block,
4645 * it rounds up to 1 block.
4646 */
4647 if (track->freq.filter) {
4648 int n;
4649 n = audio_append_silence(track, &track->freq.srcbuf);
4650 if (n > 0) {
4651 TRACET(4, track,
4652 "freq.srcbuf add silence %d -> %d/%d/%d",
4653 n,
4654 track->freq.srcbuf.head,
4655 track->freq.srcbuf.used,
4656 track->freq.srcbuf.capacity);
4657 }
4658 if (track->freq.srcbuf.used > 0) {
4659 audio_apply_stage(track, &track->freq, true);
4660 }
4661 }
4662
4663 if (bytes < track->usrbuf_blksize) {
4664 /*
4665 * Clear all conversion buffer pointer if the conversion was
4666 * not exactly one block. These conversion stage buffers are
4667 * certainly circular buffers because of symmetry with the
4668 * previous and next stage buffer. However, since they are
4669 * treated as simple contiguous buffers in operation, so head
4670 * always should point 0. This may happen during drain-age.
4671 */
4672 TRACET(4, track, "reset stage");
4673 if (track->codec.filter) {
4674 KASSERT(track->codec.srcbuf.used == 0);
4675 track->codec.srcbuf.head = 0;
4676 }
4677 if (track->chvol.filter) {
4678 KASSERT(track->chvol.srcbuf.used == 0);
4679 track->chvol.srcbuf.head = 0;
4680 }
4681 if (track->chmix.filter) {
4682 KASSERT(track->chmix.srcbuf.used == 0);
4683 track->chmix.srcbuf.head = 0;
4684 }
4685 if (track->freq.filter) {
4686 KASSERT(track->freq.srcbuf.used == 0);
4687 track->freq.srcbuf.head = 0;
4688 }
4689 }
4690
4691 if (track->input == &track->outbuf) {
4692 track->outputcounter = track->inputcounter;
4693 } else {
4694 track->outputcounter += track->outbuf.used - track_count_0;
4695 }
4696
4697 #if defined(AUDIO_DEBUG)
4698 if (audiodebug >= 3) {
4699 struct audio_track_debugbuf m;
4700 audio_track_bufstat(track, &m);
4701 TRACET(0, track, "end%s%s%s%s%s%s",
4702 m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
4703 }
4704 #endif
4705 }
4706
4707 /*
4708 * Produce user output buffer for recording from input buffer.
4709 */
4710 static void
4711 audio_track_record(audio_track_t *track)
4712 {
4713 audio_ring_t *outbuf;
4714 audio_ring_t *usrbuf;
4715 int count;
4716 int bytes;
4717 int framesize;
4718
4719 KASSERT(track);
4720 KASSERT(track->lock);
4721
4722 /* Number of frames to process */
4723 count = auring_get_contig_used(track->input);
4724 count = uimin(count, track->mixer->frames_per_block);
4725 if (count == 0) {
4726 TRACET(4, track, "count == 0");
4727 return;
4728 }
4729
4730 /* Frequency conversion */
4731 if (track->freq.filter) {
4732 if (track->freq.srcbuf.used > 0) {
4733 audio_apply_stage(track, &track->freq, true);
4734 /* XXX should input of freq be from beginning of buf? */
4735 }
4736 }
4737
4738 /* Channel mix */
4739 if (track->chmix.filter)
4740 audio_apply_stage(track, &track->chmix, false);
4741
4742 /* Channel volume */
4743 if (track->chvol.filter)
4744 audio_apply_stage(track, &track->chvol, false);
4745
4746 /* Encoding conversion */
4747 if (track->codec.filter)
4748 audio_apply_stage(track, &track->codec, false);
4749
4750 /* Copy outbuf to usrbuf */
4751 outbuf = &track->outbuf;
4752 usrbuf = &track->usrbuf;
4753 /*
4754 * framesize is always 1 byte or more since all formats supported
4755 * as usrfmt(=output) have 8bit or more stride.
4756 */
4757 framesize = frametobyte(&outbuf->fmt, 1);
4758 KASSERT(framesize >= 1);
4759 /*
4760 * count is the number of frames to copy to usrbuf.
4761 * bytes is the number of bytes to copy to usrbuf.
4762 */
4763 count = outbuf->used;
4764 count = uimin(count,
4765 (track->usrbuf_usedhigh - usrbuf->used) / framesize);
4766 bytes = count * framesize;
4767 if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
4768 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4769 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4770 bytes);
4771 auring_push(usrbuf, bytes);
4772 auring_take(outbuf, count);
4773 } else {
4774 int bytes1;
4775 int bytes2;
4776
4777 bytes1 = auring_get_contig_free(usrbuf);
4778 KASSERTMSG(bytes1 % framesize == 0,
4779 "bytes1=%d framesize=%d", bytes1, framesize);
4780 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4781 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4782 bytes1);
4783 auring_push(usrbuf, bytes1);
4784 auring_take(outbuf, bytes1 / framesize);
4785
4786 bytes2 = bytes - bytes1;
4787 memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
4788 (uint8_t *)outbuf->mem + outbuf->head * framesize,
4789 bytes2);
4790 auring_push(usrbuf, bytes2);
4791 auring_take(outbuf, bytes2 / framesize);
4792 }
4793
4794 /* XXX TODO: any counters here? */
4795
4796 #if defined(AUDIO_DEBUG)
4797 if (audiodebug >= 3) {
4798 struct audio_track_debugbuf m;
4799 audio_track_bufstat(track, &m);
4800 TRACET(0, track, "end%s%s%s%s%s%s",
4801 m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
4802 }
4803 #endif
4804 }
4805
4806 /*
4807 * Calculate blktime [msec] from mixer(.hwbuf.fmt).
4808 * Must be called with sc_exlock held.
4809 */
4810 static u_int
4811 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
4812 {
4813 audio_format2_t *fmt;
4814 u_int blktime;
4815 u_int frames_per_block;
4816
4817 KASSERT(sc->sc_exlock);
4818
4819 fmt = &mixer->hwbuf.fmt;
4820 blktime = sc->sc_blk_ms;
4821
4822 /*
4823 * If stride is not multiples of 8, special treatment is necessary.
4824 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
4825 */
4826 if (fmt->stride == 4) {
4827 frames_per_block = fmt->sample_rate * blktime / 1000;
4828 if ((frames_per_block & 1) != 0)
4829 blktime *= 2;
4830 }
4831 #ifdef DIAGNOSTIC
4832 else if (fmt->stride % NBBY != 0) {
4833 panic("unsupported HW stride %d", fmt->stride);
4834 }
4835 #endif
4836
4837 return blktime;
4838 }
4839
4840 /*
4841 * Initialize the mixer corresponding to the mode.
4842 * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
4843 * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
4844 * This function returns 0 on successful. Otherwise returns errno.
4845 * Must be called with sc_exlock held and without sc_lock held.
4846 */
4847 static int
4848 audio_mixer_init(struct audio_softc *sc, int mode,
4849 const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
4850 {
4851 char codecbuf[64];
4852 char blkdmsbuf[8];
4853 audio_trackmixer_t *mixer;
4854 void (*softint_handler)(void *);
4855 int len;
4856 int blksize;
4857 int capacity;
4858 size_t bufsize;
4859 int hwblks;
4860 int blkms;
4861 int blkdms;
4862 int error;
4863
4864 KASSERT(hwfmt != NULL);
4865 KASSERT(reg != NULL);
4866 KASSERT(sc->sc_exlock);
4867
4868 error = 0;
4869 if (mode == AUMODE_PLAY)
4870 mixer = sc->sc_pmixer;
4871 else
4872 mixer = sc->sc_rmixer;
4873
4874 mixer->sc = sc;
4875 mixer->mode = mode;
4876
4877 mixer->hwbuf.fmt = *hwfmt;
4878 mixer->volume = 256;
4879 mixer->blktime_d = 1000;
4880 mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
4881 sc->sc_blk_ms = mixer->blktime_n;
4882 hwblks = NBLKHW;
4883
4884 mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
4885 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
4886 if (sc->hw_if->round_blocksize) {
4887 int rounded;
4888 audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
4889 mutex_enter(sc->sc_lock);
4890 rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
4891 mode, &p);
4892 mutex_exit(sc->sc_lock);
4893 TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
4894 if (rounded != blksize) {
4895 if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
4896 mixer->hwbuf.fmt.channels) != 0) {
4897 device_printf(sc->sc_dev,
4898 "round_blocksize must return blocksize "
4899 "divisible by framesize: "
4900 "blksize=%d rounded=%d "
4901 "stride=%ubit channels=%u\n",
4902 blksize, rounded,
4903 mixer->hwbuf.fmt.stride,
4904 mixer->hwbuf.fmt.channels);
4905 return EINVAL;
4906 }
4907 /* Recalculation */
4908 blksize = rounded;
4909 mixer->frames_per_block = blksize * NBBY /
4910 (mixer->hwbuf.fmt.stride *
4911 mixer->hwbuf.fmt.channels);
4912 }
4913 }
4914 mixer->blktime_n = mixer->frames_per_block;
4915 mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
4916
4917 capacity = mixer->frames_per_block * hwblks;
4918 bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
4919 if (sc->hw_if->round_buffersize) {
4920 size_t rounded;
4921 mutex_enter(sc->sc_lock);
4922 rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
4923 bufsize);
4924 mutex_exit(sc->sc_lock);
4925 TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
4926 if (rounded < bufsize) {
4927 /* buffersize needs NBLKHW blocks at least. */
4928 device_printf(sc->sc_dev,
4929 "buffersize too small: buffersize=%zd blksize=%d\n",
4930 rounded, blksize);
4931 return EINVAL;
4932 }
4933 if (rounded % blksize != 0) {
4934 /* buffersize/blksize constraint mismatch? */
4935 device_printf(sc->sc_dev,
4936 "buffersize must be multiple of blksize: "
4937 "buffersize=%zu blksize=%d\n",
4938 rounded, blksize);
4939 return EINVAL;
4940 }
4941 if (rounded != bufsize) {
4942 /* Recalculation */
4943 bufsize = rounded;
4944 hwblks = bufsize / blksize;
4945 capacity = mixer->frames_per_block * hwblks;
4946 }
4947 }
4948 TRACE(1, "buffersize for %s = %zu",
4949 (mode == AUMODE_PLAY) ? "playback" : "recording",
4950 bufsize);
4951 mixer->hwbuf.capacity = capacity;
4952
4953 if (sc->hw_if->allocm) {
4954 /* sc_lock is not necessary for allocm */
4955 mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
4956 if (mixer->hwbuf.mem == NULL) {
4957 device_printf(sc->sc_dev, "%s: allocm(%zu) failed\n",
4958 __func__, bufsize);
4959 return ENOMEM;
4960 }
4961 } else {
4962 mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
4963 }
4964
4965 /* From here, audio_mixer_destroy is necessary to exit. */
4966 if (mode == AUMODE_PLAY) {
4967 cv_init(&mixer->outcv, "audiowr");
4968 } else {
4969 cv_init(&mixer->outcv, "audiord");
4970 }
4971
4972 if (mode == AUMODE_PLAY) {
4973 softint_handler = audio_softintr_wr;
4974 } else {
4975 softint_handler = audio_softintr_rd;
4976 }
4977 mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
4978 softint_handler, sc);
4979 if (mixer->sih == NULL) {
4980 device_printf(sc->sc_dev, "softint_establish failed\n");
4981 goto abort;
4982 }
4983
4984 mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
4985 mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
4986 mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
4987 mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
4988 mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
4989
4990 if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
4991 mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
4992 mixer->swap_endian = true;
4993 TRACE(1, "swap_endian");
4994 }
4995
4996 if (mode == AUMODE_PLAY) {
4997 /* Mixing buffer */
4998 mixer->mixfmt = mixer->track_fmt;
4999 mixer->mixfmt.precision *= 2;
5000 mixer->mixfmt.stride *= 2;
5001 /* XXX TODO: use some macros? */
5002 len = mixer->frames_per_block * mixer->mixfmt.channels *
5003 mixer->mixfmt.stride / NBBY;
5004 mixer->mixsample = audio_realloc(mixer->mixsample, len);
5005 } else {
5006 /* No mixing buffer for recording */
5007 }
5008
5009 if (reg->codec) {
5010 mixer->codec = reg->codec;
5011 mixer->codecarg.context = reg->context;
5012 if (mode == AUMODE_PLAY) {
5013 mixer->codecarg.srcfmt = &mixer->track_fmt;
5014 mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5015 } else {
5016 mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5017 mixer->codecarg.dstfmt = &mixer->track_fmt;
5018 }
5019 mixer->codecbuf.fmt = mixer->track_fmt;
5020 mixer->codecbuf.capacity = mixer->frames_per_block;
5021 len = auring_bytelen(&mixer->codecbuf);
5022 mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5023 if (mixer->codecbuf.mem == NULL) {
5024 device_printf(sc->sc_dev,
5025 "%s: malloc codecbuf(%d) failed\n",
5026 __func__, len);
5027 error = ENOMEM;
5028 goto abort;
5029 }
5030 }
5031
5032 /* Succeeded so display it. */
5033 codecbuf[0] = '\0';
5034 if (mixer->codec || mixer->swap_endian) {
5035 snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5036 (mode == AUMODE_PLAY) ? "->" : "<-",
5037 audio_encoding_name(mixer->hwbuf.fmt.encoding),
5038 mixer->hwbuf.fmt.precision);
5039 }
5040 blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5041 blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5042 blkdmsbuf[0] = '\0';
5043 if (blkdms != 0) {
5044 snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5045 }
5046 aprint_normal_dev(sc->sc_dev,
5047 "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5048 audio_encoding_name(mixer->track_fmt.encoding),
5049 mixer->track_fmt.precision,
5050 codecbuf,
5051 mixer->track_fmt.channels,
5052 mixer->track_fmt.sample_rate,
5053 blksize,
5054 blkms, blkdmsbuf,
5055 (mode == AUMODE_PLAY) ? "playback" : "recording");
5056
5057 return 0;
5058
5059 abort:
5060 audio_mixer_destroy(sc, mixer);
5061 return error;
5062 }
5063
5064 /*
5065 * Releases all resources of 'mixer'.
5066 * Note that it does not release the memory area of 'mixer' itself.
5067 * Must be called with sc_exlock held and without sc_lock held.
5068 */
5069 static void
5070 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5071 {
5072 int bufsize;
5073
5074 KASSERT(sc->sc_exlock == 1);
5075
5076 bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5077
5078 if (mixer->hwbuf.mem != NULL) {
5079 if (sc->hw_if->freem) {
5080 /* sc_lock is not necessary for freem */
5081 sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5082 } else {
5083 kmem_free(mixer->hwbuf.mem, bufsize);
5084 }
5085 mixer->hwbuf.mem = NULL;
5086 }
5087
5088 audio_free(mixer->codecbuf.mem);
5089 audio_free(mixer->mixsample);
5090
5091 cv_destroy(&mixer->outcv);
5092
5093 if (mixer->sih) {
5094 softint_disestablish(mixer->sih);
5095 mixer->sih = NULL;
5096 }
5097 }
5098
5099 /*
5100 * Starts playback mixer.
5101 * Must be called only if sc_pbusy is false.
5102 * Must be called with sc_lock && sc_exlock held.
5103 * Must not be called from the interrupt context.
5104 */
5105 static void
5106 audio_pmixer_start(struct audio_softc *sc, bool force)
5107 {
5108 audio_trackmixer_t *mixer;
5109 int minimum;
5110
5111 KASSERT(mutex_owned(sc->sc_lock));
5112 KASSERT(sc->sc_exlock);
5113 KASSERT(sc->sc_pbusy == false);
5114
5115 mutex_enter(sc->sc_intr_lock);
5116
5117 mixer = sc->sc_pmixer;
5118 TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5119 (audiodebug >= 3) ? "begin " : "",
5120 (int)mixer->mixseq, (int)mixer->hwseq,
5121 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5122 force ? " force" : "");
5123
5124 /* Need two blocks to start normally. */
5125 minimum = (force) ? 1 : 2;
5126 while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5127 audio_pmixer_process(sc);
5128 }
5129
5130 /* Start output */
5131 audio_pmixer_output(sc);
5132 sc->sc_pbusy = true;
5133
5134 TRACE(3, "end mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5135 (int)mixer->mixseq, (int)mixer->hwseq,
5136 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5137
5138 mutex_exit(sc->sc_intr_lock);
5139 }
5140
5141 /*
5142 * When playing back with MD filter:
5143 *
5144 * track track ...
5145 * v v
5146 * + mix (with aint2_t)
5147 * | master volume (with aint2_t)
5148 * v
5149 * mixsample [::::] wide-int 1 block (ring) buffer
5150 * |
5151 * | convert aint2_t -> aint_t
5152 * v
5153 * codecbuf [....] 1 block (ring) buffer
5154 * |
5155 * | convert to hw format
5156 * v
5157 * hwbuf [............] NBLKHW blocks ring buffer
5158 *
5159 * When playing back without MD filter:
5160 *
5161 * mixsample [::::] wide-int 1 block (ring) buffer
5162 * |
5163 * | convert aint2_t -> aint_t
5164 * | (with byte swap if necessary)
5165 * v
5166 * hwbuf [............] NBLKHW blocks ring buffer
5167 *
5168 * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5169 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5170 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5171 */
5172
5173 /*
5174 * Performs track mixing and converts it to hwbuf.
5175 * Note that this function doesn't transfer hwbuf to hardware.
5176 * Must be called with sc_intr_lock held.
5177 */
5178 static void
5179 audio_pmixer_process(struct audio_softc *sc)
5180 {
5181 audio_trackmixer_t *mixer;
5182 audio_file_t *f;
5183 int frame_count;
5184 int sample_count;
5185 int mixed;
5186 int i;
5187 aint2_t *m;
5188 aint_t *h;
5189
5190 mixer = sc->sc_pmixer;
5191
5192 frame_count = mixer->frames_per_block;
5193 KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5194 "auring_get_contig_free()=%d frame_count=%d",
5195 auring_get_contig_free(&mixer->hwbuf), frame_count);
5196 sample_count = frame_count * mixer->mixfmt.channels;
5197
5198 mixer->mixseq++;
5199
5200 /* Mix all tracks */
5201 mixed = 0;
5202 SLIST_FOREACH(f, &sc->sc_files, entry) {
5203 audio_track_t *track = f->ptrack;
5204
5205 if (track == NULL)
5206 continue;
5207
5208 if (track->is_pause) {
5209 TRACET(4, track, "skip; paused");
5210 continue;
5211 }
5212
5213 /* Skip if the track is used by process context. */
5214 if (audio_track_lock_tryenter(track) == false) {
5215 TRACET(4, track, "skip; in use");
5216 continue;
5217 }
5218
5219 /* Emulate mmap'ped track */
5220 if (track->mmapped) {
5221 auring_push(&track->usrbuf, track->usrbuf_blksize);
5222 TRACET(4, track, "mmap; usr=%d/%d/C%d",
5223 track->usrbuf.head,
5224 track->usrbuf.used,
5225 track->usrbuf.capacity);
5226 }
5227
5228 if (track->outbuf.used < mixer->frames_per_block &&
5229 track->usrbuf.used > 0) {
5230 TRACET(4, track, "process");
5231 audio_track_play(track);
5232 }
5233
5234 if (track->outbuf.used > 0) {
5235 mixed = audio_pmixer_mix_track(mixer, track, mixed);
5236 } else {
5237 TRACET(4, track, "skip; empty");
5238 }
5239
5240 audio_track_lock_exit(track);
5241 }
5242
5243 if (mixed == 0) {
5244 /* Silence */
5245 memset(mixer->mixsample, 0,
5246 frametobyte(&mixer->mixfmt, frame_count));
5247 } else {
5248 if (mixed > 1) {
5249 /* If there are multiple tracks, do auto gain control */
5250 audio_pmixer_agc(mixer, sample_count);
5251 }
5252
5253 /* Apply master volume */
5254 if (mixer->volume < 256) {
5255 m = mixer->mixsample;
5256 for (i = 0; i < sample_count; i++) {
5257 *m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5258 m++;
5259 }
5260
5261 /*
5262 * Recover the volume gradually at the pace of
5263 * several times per second. If it's too fast, you
5264 * can recognize that the volume changes up and down
5265 * quickly and it's not so comfortable.
5266 */
5267 mixer->voltimer += mixer->blktime_n;
5268 if (mixer->voltimer * 4 >= mixer->blktime_d) {
5269 mixer->volume++;
5270 mixer->voltimer = 0;
5271 #if defined(AUDIO_DEBUG_AGC)
5272 TRACE(1, "volume recover: %d", mixer->volume);
5273 #endif
5274 }
5275 }
5276 }
5277
5278 /*
5279 * The rest is the hardware part.
5280 */
5281
5282 if (mixer->codec) {
5283 h = auring_tailptr_aint(&mixer->codecbuf);
5284 } else {
5285 h = auring_tailptr_aint(&mixer->hwbuf);
5286 }
5287
5288 m = mixer->mixsample;
5289 if (mixer->swap_endian) {
5290 for (i = 0; i < sample_count; i++) {
5291 *h++ = bswap16(*m++);
5292 }
5293 } else {
5294 for (i = 0; i < sample_count; i++) {
5295 *h++ = *m++;
5296 }
5297 }
5298
5299 /* Hardware driver's codec */
5300 if (mixer->codec) {
5301 auring_push(&mixer->codecbuf, frame_count);
5302 mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5303 mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5304 mixer->codecarg.count = frame_count;
5305 mixer->codec(&mixer->codecarg);
5306 auring_take(&mixer->codecbuf, mixer->codecarg.count);
5307 }
5308
5309 auring_push(&mixer->hwbuf, frame_count);
5310
5311 TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5312 (int)mixer->mixseq,
5313 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5314 (mixed == 0) ? " silent" : "");
5315 }
5316
5317 /*
5318 * Do auto gain control.
5319 * Must be called sc_intr_lock held.
5320 */
5321 static void
5322 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5323 {
5324 struct audio_softc *sc __unused;
5325 aint2_t val;
5326 aint2_t maxval;
5327 aint2_t minval;
5328 aint2_t over_plus;
5329 aint2_t over_minus;
5330 aint2_t *m;
5331 int newvol;
5332 int i;
5333
5334 sc = mixer->sc;
5335
5336 /* Overflow detection */
5337 maxval = AINT_T_MAX;
5338 minval = AINT_T_MIN;
5339 m = mixer->mixsample;
5340 for (i = 0; i < sample_count; i++) {
5341 val = *m++;
5342 if (val > maxval)
5343 maxval = val;
5344 else if (val < minval)
5345 minval = val;
5346 }
5347
5348 /* Absolute value of overflowed amount */
5349 over_plus = maxval - AINT_T_MAX;
5350 over_minus = AINT_T_MIN - minval;
5351
5352 if (over_plus > 0 || over_minus > 0) {
5353 if (over_plus > over_minus) {
5354 newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5355 } else {
5356 newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5357 }
5358
5359 /*
5360 * Change the volume only if new one is smaller.
5361 * Reset the timer even if the volume isn't changed.
5362 */
5363 if (newvol <= mixer->volume) {
5364 mixer->volume = newvol;
5365 mixer->voltimer = 0;
5366 #if defined(AUDIO_DEBUG_AGC)
5367 TRACE(1, "auto volume adjust: %d", mixer->volume);
5368 #endif
5369 }
5370 }
5371 }
5372
5373 /*
5374 * Mix one track.
5375 * 'mixed' specifies the number of tracks mixed so far.
5376 * It returns the number of tracks mixed. In other words, it returns
5377 * mixed + 1 if this track is mixed.
5378 */
5379 static int
5380 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5381 int mixed)
5382 {
5383 int count;
5384 int sample_count;
5385 int remain;
5386 int i;
5387 const aint_t *s;
5388 aint2_t *d;
5389
5390 /* XXX TODO: Is this necessary for now? */
5391 if (mixer->mixseq < track->seq)
5392 return mixed;
5393
5394 count = auring_get_contig_used(&track->outbuf);
5395 count = uimin(count, mixer->frames_per_block);
5396
5397 s = auring_headptr_aint(&track->outbuf);
5398 d = mixer->mixsample;
5399
5400 /*
5401 * Apply track volume with double-sized integer and perform
5402 * additive synthesis.
5403 *
5404 * XXX If you limit the track volume to 1.0 or less (<= 256),
5405 * it would be better to do this in the track conversion stage
5406 * rather than here. However, if you accept the volume to
5407 * be greater than 1.0 (> 256), it's better to do it here.
5408 * Because the operation here is done by double-sized integer.
5409 */
5410 sample_count = count * mixer->mixfmt.channels;
5411 if (mixed == 0) {
5412 /* If this is the first track, assignment can be used. */
5413 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5414 if (track->volume != 256) {
5415 for (i = 0; i < sample_count; i++) {
5416 aint2_t v;
5417 v = *s++;
5418 *d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5419 }
5420 } else
5421 #endif
5422 {
5423 for (i = 0; i < sample_count; i++) {
5424 *d++ = ((aint2_t)*s++);
5425 }
5426 }
5427 /* Fill silence if the first track is not filled. */
5428 for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5429 *d++ = 0;
5430 } else {
5431 /* If this is the second or later, add it. */
5432 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5433 if (track->volume != 256) {
5434 for (i = 0; i < sample_count; i++) {
5435 aint2_t v;
5436 v = *s++;
5437 *d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5438 }
5439 } else
5440 #endif
5441 {
5442 for (i = 0; i < sample_count; i++) {
5443 *d++ += ((aint2_t)*s++);
5444 }
5445 }
5446 }
5447
5448 auring_take(&track->outbuf, count);
5449 /*
5450 * The counters have to align block even if outbuf is less than
5451 * one block. XXX Is this still necessary?
5452 */
5453 remain = mixer->frames_per_block - count;
5454 if (__predict_false(remain != 0)) {
5455 auring_push(&track->outbuf, remain);
5456 auring_take(&track->outbuf, remain);
5457 }
5458
5459 /*
5460 * Update track sequence.
5461 * mixseq has previous value yet at this point.
5462 */
5463 track->seq = mixer->mixseq + 1;
5464
5465 return mixed + 1;
5466 }
5467
5468 /*
5469 * Output one block from hwbuf to HW.
5470 * Must be called with sc_intr_lock held.
5471 */
5472 static void
5473 audio_pmixer_output(struct audio_softc *sc)
5474 {
5475 audio_trackmixer_t *mixer;
5476 audio_params_t params;
5477 void *start;
5478 void *end;
5479 int blksize;
5480 int error;
5481
5482 mixer = sc->sc_pmixer;
5483 TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5484 sc->sc_pbusy,
5485 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5486 KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5487 "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5488 mixer->hwbuf.used, mixer->frames_per_block);
5489
5490 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5491
5492 if (sc->hw_if->trigger_output) {
5493 /* trigger (at once) */
5494 if (!sc->sc_pbusy) {
5495 start = mixer->hwbuf.mem;
5496 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5497 params = format2_to_params(&mixer->hwbuf.fmt);
5498
5499 error = sc->hw_if->trigger_output(sc->hw_hdl,
5500 start, end, blksize, audio_pintr, sc, ¶ms);
5501 if (error) {
5502 device_printf(sc->sc_dev,
5503 "trigger_output failed with %d\n", error);
5504 return;
5505 }
5506 }
5507 } else {
5508 /* start (everytime) */
5509 start = auring_headptr(&mixer->hwbuf);
5510
5511 error = sc->hw_if->start_output(sc->hw_hdl,
5512 start, blksize, audio_pintr, sc);
5513 if (error) {
5514 device_printf(sc->sc_dev,
5515 "start_output failed with %d\n", error);
5516 return;
5517 }
5518 }
5519 }
5520
5521 /*
5522 * This is an interrupt handler for playback.
5523 * It is called with sc_intr_lock held.
5524 *
5525 * It is usually called from hardware interrupt. However, note that
5526 * for some drivers (e.g. uaudio) it is called from software interrupt.
5527 */
5528 static void
5529 audio_pintr(void *arg)
5530 {
5531 struct audio_softc *sc;
5532 audio_trackmixer_t *mixer;
5533
5534 sc = arg;
5535 KASSERT(mutex_owned(sc->sc_intr_lock));
5536
5537 if (sc->sc_dying)
5538 return;
5539 if (sc->sc_pbusy == false) {
5540 #if defined(DIAGNOSTIC)
5541 device_printf(sc->sc_dev,
5542 "DIAGNOSTIC: %s raised stray interrupt\n",
5543 device_xname(sc->hw_dev));
5544 #endif
5545 return;
5546 }
5547
5548 mixer = sc->sc_pmixer;
5549 mixer->hw_complete_counter += mixer->frames_per_block;
5550 mixer->hwseq++;
5551
5552 auring_take(&mixer->hwbuf, mixer->frames_per_block);
5553
5554 TRACE(4,
5555 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5556 mixer->hwseq, mixer->hw_complete_counter,
5557 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5558
5559 #if defined(AUDIO_HW_SINGLE_BUFFER)
5560 /*
5561 * Create a new block here and output it immediately.
5562 * It makes a latency lower but needs machine power.
5563 */
5564 audio_pmixer_process(sc);
5565 audio_pmixer_output(sc);
5566 #else
5567 /*
5568 * It is called when block N output is done.
5569 * Output immediately block N+1 created by the last interrupt.
5570 * And then create block N+2 for the next interrupt.
5571 * This method makes playback robust even on slower machines.
5572 * Instead the latency is increased by one block.
5573 */
5574
5575 /* At first, output ready block. */
5576 if (mixer->hwbuf.used >= mixer->frames_per_block) {
5577 audio_pmixer_output(sc);
5578 }
5579
5580 bool later = false;
5581
5582 if (mixer->hwbuf.used < mixer->frames_per_block) {
5583 later = true;
5584 }
5585
5586 /* Then, process next block. */
5587 audio_pmixer_process(sc);
5588
5589 if (later) {
5590 audio_pmixer_output(sc);
5591 }
5592 #endif
5593
5594 /*
5595 * When this interrupt is the real hardware interrupt, disabling
5596 * preemption here is not necessary. But some drivers (e.g. uaudio)
5597 * emulate it by software interrupt, so kpreempt_disable is necessary.
5598 */
5599 kpreempt_disable();
5600 softint_schedule(mixer->sih);
5601 kpreempt_enable();
5602 }
5603
5604 /*
5605 * Starts record mixer.
5606 * Must be called only if sc_rbusy is false.
5607 * Must be called with sc_lock && sc_exlock held.
5608 * Must not be called from the interrupt context.
5609 */
5610 static void
5611 audio_rmixer_start(struct audio_softc *sc)
5612 {
5613
5614 KASSERT(mutex_owned(sc->sc_lock));
5615 KASSERT(sc->sc_exlock);
5616 KASSERT(sc->sc_rbusy == false);
5617
5618 mutex_enter(sc->sc_intr_lock);
5619
5620 TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
5621 audio_rmixer_input(sc);
5622 sc->sc_rbusy = true;
5623 TRACE(3, "end");
5624
5625 mutex_exit(sc->sc_intr_lock);
5626 }
5627
5628 /*
5629 * When recording with MD filter:
5630 *
5631 * hwbuf [............] NBLKHW blocks ring buffer
5632 * |
5633 * | convert from hw format
5634 * v
5635 * codecbuf [....] 1 block (ring) buffer
5636 * | |
5637 * v v
5638 * track track ...
5639 *
5640 * When recording without MD filter:
5641 *
5642 * hwbuf [............] NBLKHW blocks ring buffer
5643 * | |
5644 * v v
5645 * track track ...
5646 *
5647 * hwbuf: HW encoding, HW precision, HW ch, HW freq.
5648 * codecbuf: slinear_NE, internal precision, HW ch, HW freq.
5649 */
5650
5651 /*
5652 * Distribute a recorded block to all recording tracks.
5653 */
5654 static void
5655 audio_rmixer_process(struct audio_softc *sc)
5656 {
5657 audio_trackmixer_t *mixer;
5658 audio_ring_t *mixersrc;
5659 audio_file_t *f;
5660 aint_t *p;
5661 int count;
5662 int bytes;
5663 int i;
5664
5665 mixer = sc->sc_rmixer;
5666
5667 /*
5668 * count is the number of frames to be retrieved this time.
5669 * count should be one block.
5670 */
5671 count = auring_get_contig_used(&mixer->hwbuf);
5672 count = uimin(count, mixer->frames_per_block);
5673 if (count <= 0) {
5674 TRACE(4, "count %d: too short", count);
5675 return;
5676 }
5677 bytes = frametobyte(&mixer->track_fmt, count);
5678
5679 /* Hardware driver's codec */
5680 if (mixer->codec) {
5681 mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
5682 mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
5683 mixer->codecarg.count = count;
5684 mixer->codec(&mixer->codecarg);
5685 auring_take(&mixer->hwbuf, mixer->codecarg.count);
5686 auring_push(&mixer->codecbuf, mixer->codecarg.count);
5687 mixersrc = &mixer->codecbuf;
5688 } else {
5689 mixersrc = &mixer->hwbuf;
5690 }
5691
5692 if (mixer->swap_endian) {
5693 /* inplace conversion */
5694 p = auring_headptr_aint(mixersrc);
5695 for (i = 0; i < count * mixer->track_fmt.channels; i++, p++) {
5696 *p = bswap16(*p);
5697 }
5698 }
5699
5700 /* Distribute to all tracks. */
5701 SLIST_FOREACH(f, &sc->sc_files, entry) {
5702 audio_track_t *track = f->rtrack;
5703 audio_ring_t *input;
5704
5705 if (track == NULL)
5706 continue;
5707
5708 if (track->is_pause) {
5709 TRACET(4, track, "skip; paused");
5710 continue;
5711 }
5712
5713 if (audio_track_lock_tryenter(track) == false) {
5714 TRACET(4, track, "skip; in use");
5715 continue;
5716 }
5717
5718 /* If the track buffer is full, discard the oldest one? */
5719 input = track->input;
5720 if (input->capacity - input->used < mixer->frames_per_block) {
5721 int drops = mixer->frames_per_block -
5722 (input->capacity - input->used);
5723 track->dropframes += drops;
5724 TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
5725 drops,
5726 input->head, input->used, input->capacity);
5727 auring_take(input, drops);
5728 }
5729 KASSERTMSG(input->used % mixer->frames_per_block == 0,
5730 "input->used=%d mixer->frames_per_block=%d",
5731 input->used, mixer->frames_per_block);
5732
5733 memcpy(auring_tailptr_aint(input),
5734 auring_headptr_aint(mixersrc),
5735 bytes);
5736 auring_push(input, count);
5737
5738 /* XXX sequence counter? */
5739
5740 audio_track_lock_exit(track);
5741 }
5742
5743 auring_take(mixersrc, count);
5744 }
5745
5746 /*
5747 * Input one block from HW to hwbuf.
5748 * Must be called with sc_intr_lock held.
5749 */
5750 static void
5751 audio_rmixer_input(struct audio_softc *sc)
5752 {
5753 audio_trackmixer_t *mixer;
5754 audio_params_t params;
5755 void *start;
5756 void *end;
5757 int blksize;
5758 int error;
5759
5760 mixer = sc->sc_rmixer;
5761 blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5762
5763 if (sc->hw_if->trigger_input) {
5764 /* trigger (at once) */
5765 if (!sc->sc_rbusy) {
5766 start = mixer->hwbuf.mem;
5767 end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5768 params = format2_to_params(&mixer->hwbuf.fmt);
5769
5770 error = sc->hw_if->trigger_input(sc->hw_hdl,
5771 start, end, blksize, audio_rintr, sc, ¶ms);
5772 if (error) {
5773 device_printf(sc->sc_dev,
5774 "trigger_input failed with %d\n", error);
5775 return;
5776 }
5777 }
5778 } else {
5779 /* start (everytime) */
5780 start = auring_tailptr(&mixer->hwbuf);
5781
5782 error = sc->hw_if->start_input(sc->hw_hdl,
5783 start, blksize, audio_rintr, sc);
5784 if (error) {
5785 device_printf(sc->sc_dev,
5786 "start_input failed with %d\n", error);
5787 return;
5788 }
5789 }
5790 }
5791
5792 /*
5793 * This is an interrupt handler for recording.
5794 * It is called with sc_intr_lock.
5795 *
5796 * It is usually called from hardware interrupt. However, note that
5797 * for some drivers (e.g. uaudio) it is called from software interrupt.
5798 */
5799 static void
5800 audio_rintr(void *arg)
5801 {
5802 struct audio_softc *sc;
5803 audio_trackmixer_t *mixer;
5804
5805 sc = arg;
5806 KASSERT(mutex_owned(sc->sc_intr_lock));
5807
5808 if (sc->sc_dying)
5809 return;
5810 if (sc->sc_rbusy == false) {
5811 #if defined(DIAGNOSTIC)
5812 device_printf(sc->sc_dev,
5813 "DIAGNOSTIC: %s raised stray interrupt\n",
5814 device_xname(sc->hw_dev));
5815 #endif
5816 return;
5817 }
5818
5819 mixer = sc->sc_rmixer;
5820 mixer->hw_complete_counter += mixer->frames_per_block;
5821 mixer->hwseq++;
5822
5823 auring_push(&mixer->hwbuf, mixer->frames_per_block);
5824
5825 TRACE(4,
5826 "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5827 mixer->hwseq, mixer->hw_complete_counter,
5828 mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5829
5830 /* Distrubute recorded block */
5831 audio_rmixer_process(sc);
5832
5833 /* Request next block */
5834 audio_rmixer_input(sc);
5835
5836 /*
5837 * When this interrupt is the real hardware interrupt, disabling
5838 * preemption here is not necessary. But some drivers (e.g. uaudio)
5839 * emulate it by software interrupt, so kpreempt_disable is necessary.
5840 */
5841 kpreempt_disable();
5842 softint_schedule(mixer->sih);
5843 kpreempt_enable();
5844 }
5845
5846 /*
5847 * Halts playback mixer.
5848 * This function also clears related parameters, so call this function
5849 * instead of calling halt_output directly.
5850 * Must be called only if sc_pbusy is true.
5851 * Must be called with sc_lock && sc_exlock held.
5852 */
5853 static int
5854 audio_pmixer_halt(struct audio_softc *sc)
5855 {
5856 int error;
5857
5858 TRACE(2, "");
5859 KASSERT(mutex_owned(sc->sc_lock));
5860 KASSERT(sc->sc_exlock);
5861
5862 mutex_enter(sc->sc_intr_lock);
5863 error = sc->hw_if->halt_output(sc->hw_hdl);
5864
5865 /* Halts anyway even if some error has occurred. */
5866 sc->sc_pbusy = false;
5867 sc->sc_pmixer->hwbuf.head = 0;
5868 sc->sc_pmixer->hwbuf.used = 0;
5869 sc->sc_pmixer->mixseq = 0;
5870 sc->sc_pmixer->hwseq = 0;
5871 mutex_exit(sc->sc_intr_lock);
5872
5873 return error;
5874 }
5875
5876 /*
5877 * Halts recording mixer.
5878 * This function also clears related parameters, so call this function
5879 * instead of calling halt_input directly.
5880 * Must be called only if sc_rbusy is true.
5881 * Must be called with sc_lock && sc_exlock held.
5882 */
5883 static int
5884 audio_rmixer_halt(struct audio_softc *sc)
5885 {
5886 int error;
5887
5888 TRACE(2, "");
5889 KASSERT(mutex_owned(sc->sc_lock));
5890 KASSERT(sc->sc_exlock);
5891
5892 mutex_enter(sc->sc_intr_lock);
5893 error = sc->hw_if->halt_input(sc->hw_hdl);
5894
5895 /* Halts anyway even if some error has occurred. */
5896 sc->sc_rbusy = false;
5897 sc->sc_rmixer->hwbuf.head = 0;
5898 sc->sc_rmixer->hwbuf.used = 0;
5899 sc->sc_rmixer->mixseq = 0;
5900 sc->sc_rmixer->hwseq = 0;
5901 mutex_exit(sc->sc_intr_lock);
5902
5903 return error;
5904 }
5905
5906 /*
5907 * Flush this track.
5908 * Halts all operations, clears all buffers, reset error counters.
5909 * XXX I'm not sure...
5910 */
5911 static void
5912 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
5913 {
5914
5915 KASSERT(track);
5916 TRACET(3, track, "clear");
5917
5918 audio_track_lock_enter(track);
5919
5920 track->usrbuf.used = 0;
5921 /* Clear all internal parameters. */
5922 if (track->codec.filter) {
5923 track->codec.srcbuf.used = 0;
5924 track->codec.srcbuf.head = 0;
5925 }
5926 if (track->chvol.filter) {
5927 track->chvol.srcbuf.used = 0;
5928 track->chvol.srcbuf.head = 0;
5929 }
5930 if (track->chmix.filter) {
5931 track->chmix.srcbuf.used = 0;
5932 track->chmix.srcbuf.head = 0;
5933 }
5934 if (track->freq.filter) {
5935 track->freq.srcbuf.used = 0;
5936 track->freq.srcbuf.head = 0;
5937 if (track->freq_step < 65536)
5938 track->freq_current = 65536;
5939 else
5940 track->freq_current = 0;
5941 memset(track->freq_prev, 0, sizeof(track->freq_prev));
5942 memset(track->freq_curr, 0, sizeof(track->freq_curr));
5943 }
5944 /* Clear buffer, then operation halts naturally. */
5945 track->outbuf.used = 0;
5946
5947 /* Clear counters. */
5948 track->dropframes = 0;
5949
5950 audio_track_lock_exit(track);
5951 }
5952
5953 /*
5954 * Drain the track.
5955 * track must be present and for playback.
5956 * If successful, it returns 0. Otherwise returns errno.
5957 * Must be called with sc_lock held.
5958 */
5959 static int
5960 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
5961 {
5962 audio_trackmixer_t *mixer;
5963 int done;
5964 int error;
5965
5966 KASSERT(track);
5967 TRACET(3, track, "start");
5968 mixer = track->mixer;
5969 KASSERT(mutex_owned(sc->sc_lock));
5970
5971 /* Ignore them if pause. */
5972 if (track->is_pause) {
5973 TRACET(3, track, "pause -> clear");
5974 track->pstate = AUDIO_STATE_CLEAR;
5975 }
5976 /* Terminate early here if there is no data in the track. */
5977 if (track->pstate == AUDIO_STATE_CLEAR) {
5978 TRACET(3, track, "no need to drain");
5979 return 0;
5980 }
5981 track->pstate = AUDIO_STATE_DRAINING;
5982
5983 for (;;) {
5984 /* I want to display it before condition evaluation. */
5985 TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
5986 (int)curproc->p_pid, (int)curlwp->l_lid,
5987 (int)track->seq, (int)mixer->hwseq,
5988 track->outbuf.head, track->outbuf.used,
5989 track->outbuf.capacity);
5990
5991 /* Condition to terminate */
5992 audio_track_lock_enter(track);
5993 done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
5994 track->outbuf.used == 0 &&
5995 track->seq <= mixer->hwseq);
5996 audio_track_lock_exit(track);
5997 if (done)
5998 break;
5999
6000 TRACET(3, track, "sleep");
6001 error = audio_track_waitio(sc, track);
6002 if (error)
6003 return error;
6004
6005 /* XXX call audio_track_play here ? */
6006 }
6007
6008 track->pstate = AUDIO_STATE_CLEAR;
6009 TRACET(3, track, "done trk_inp=%d trk_out=%d",
6010 (int)track->inputcounter, (int)track->outputcounter);
6011 return 0;
6012 }
6013
6014 /*
6015 * Send signal to process.
6016 * This is intended to be called only from audio_softintr_{rd,wr}.
6017 * Must be called without sc_intr_lock held.
6018 */
6019 static inline void
6020 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6021 {
6022 proc_t *p;
6023
6024 KASSERT(pid != 0);
6025
6026 /*
6027 * psignal() must be called without spin lock held.
6028 */
6029
6030 mutex_enter(&proc_lock);
6031 p = proc_find(pid);
6032 if (p)
6033 psignal(p, signum);
6034 mutex_exit(&proc_lock);
6035 }
6036
6037 /*
6038 * This is software interrupt handler for record.
6039 * It is called from recording hardware interrupt everytime.
6040 * It does:
6041 * - Deliver SIGIO for all async processes.
6042 * - Notify to audio_read() that data has arrived.
6043 * - selnotify() for select/poll-ing processes.
6044 */
6045 /*
6046 * XXX If a process issues FIOASYNC between hardware interrupt and
6047 * software interrupt, (stray) SIGIO will be sent to the process
6048 * despite the fact that it has not receive recorded data yet.
6049 */
6050 static void
6051 audio_softintr_rd(void *cookie)
6052 {
6053 struct audio_softc *sc = cookie;
6054 audio_file_t *f;
6055 pid_t pid;
6056
6057 mutex_enter(sc->sc_lock);
6058
6059 SLIST_FOREACH(f, &sc->sc_files, entry) {
6060 audio_track_t *track = f->rtrack;
6061
6062 if (track == NULL)
6063 continue;
6064
6065 TRACET(4, track, "broadcast; inp=%d/%d/%d",
6066 track->input->head,
6067 track->input->used,
6068 track->input->capacity);
6069
6070 pid = f->async_audio;
6071 if (pid != 0) {
6072 TRACEF(4, f, "sending SIGIO %d", pid);
6073 audio_psignal(sc, pid, SIGIO);
6074 }
6075 }
6076
6077 /* Notify that data has arrived. */
6078 selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6079 KNOTE(&sc->sc_rsel.sel_klist, 0);
6080 cv_broadcast(&sc->sc_rmixer->outcv);
6081
6082 mutex_exit(sc->sc_lock);
6083 }
6084
6085 /*
6086 * This is software interrupt handler for playback.
6087 * It is called from playback hardware interrupt everytime.
6088 * It does:
6089 * - Deliver SIGIO for all async and writable (used < lowat) processes.
6090 * - Notify to audio_write() that outbuf block available.
6091 * - selnotify() for select/poll-ing processes if there are any writable
6092 * (used < lowat) processes. Checking each descriptor will be done by
6093 * filt_audiowrite_event().
6094 */
6095 static void
6096 audio_softintr_wr(void *cookie)
6097 {
6098 struct audio_softc *sc = cookie;
6099 audio_file_t *f;
6100 bool found;
6101 pid_t pid;
6102
6103 TRACE(4, "called");
6104 found = false;
6105
6106 mutex_enter(sc->sc_lock);
6107
6108 SLIST_FOREACH(f, &sc->sc_files, entry) {
6109 audio_track_t *track = f->ptrack;
6110
6111 if (track == NULL)
6112 continue;
6113
6114 TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6115 (int)track->seq,
6116 track->outbuf.head,
6117 track->outbuf.used,
6118 track->outbuf.capacity);
6119
6120 /*
6121 * Send a signal if the process is async mode and
6122 * used is lower than lowat.
6123 */
6124 if (track->usrbuf.used <= track->usrbuf_usedlow &&
6125 !track->is_pause) {
6126 /* For selnotify */
6127 found = true;
6128 /* For SIGIO */
6129 pid = f->async_audio;
6130 if (pid != 0) {
6131 TRACEF(4, f, "sending SIGIO %d", pid);
6132 audio_psignal(sc, pid, SIGIO);
6133 }
6134 }
6135 }
6136
6137 /*
6138 * Notify for select/poll when someone become writable.
6139 * It needs sc_lock (and not sc_intr_lock).
6140 */
6141 if (found) {
6142 TRACE(4, "selnotify");
6143 selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6144 KNOTE(&sc->sc_wsel.sel_klist, 0);
6145 }
6146
6147 /* Notify to audio_write() that outbuf available. */
6148 cv_broadcast(&sc->sc_pmixer->outcv);
6149
6150 mutex_exit(sc->sc_lock);
6151 }
6152
6153 /*
6154 * Check (and convert) the format *p came from userland.
6155 * If successful, it writes back the converted format to *p if necessary
6156 * and returns 0. Otherwise returns errno (*p may change even this case).
6157 */
6158 static int
6159 audio_check_params(audio_format2_t *p)
6160 {
6161
6162 /*
6163 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6164 *
6165 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6166 * So, it's always signed, as in SunOS.
6167 *
6168 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6169 * So, it's always unsigned, as in SunOS.
6170 */
6171 if (p->encoding == AUDIO_ENCODING_PCM16) {
6172 p->encoding = AUDIO_ENCODING_SLINEAR;
6173 } else if (p->encoding == AUDIO_ENCODING_PCM8) {
6174 if (p->precision == 8)
6175 p->encoding = AUDIO_ENCODING_ULINEAR;
6176 else
6177 return EINVAL;
6178 }
6179
6180 /*
6181 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6182 * suffix.
6183 */
6184 if (p->encoding == AUDIO_ENCODING_SLINEAR)
6185 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6186 if (p->encoding == AUDIO_ENCODING_ULINEAR)
6187 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6188
6189 switch (p->encoding) {
6190 case AUDIO_ENCODING_ULAW:
6191 case AUDIO_ENCODING_ALAW:
6192 if (p->precision != 8)
6193 return EINVAL;
6194 break;
6195 case AUDIO_ENCODING_ADPCM:
6196 if (p->precision != 4 && p->precision != 8)
6197 return EINVAL;
6198 break;
6199 case AUDIO_ENCODING_SLINEAR_LE:
6200 case AUDIO_ENCODING_SLINEAR_BE:
6201 case AUDIO_ENCODING_ULINEAR_LE:
6202 case AUDIO_ENCODING_ULINEAR_BE:
6203 if (p->precision != 8 && p->precision != 16 &&
6204 p->precision != 24 && p->precision != 32)
6205 return EINVAL;
6206
6207 /* 8bit format does not have endianness. */
6208 if (p->precision == 8) {
6209 if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6210 p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6211 if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6212 p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6213 }
6214
6215 if (p->precision > p->stride)
6216 return EINVAL;
6217 break;
6218 case AUDIO_ENCODING_MPEG_L1_STREAM:
6219 case AUDIO_ENCODING_MPEG_L1_PACKETS:
6220 case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6221 case AUDIO_ENCODING_MPEG_L2_STREAM:
6222 case AUDIO_ENCODING_MPEG_L2_PACKETS:
6223 case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6224 case AUDIO_ENCODING_AC3:
6225 break;
6226 default:
6227 return EINVAL;
6228 }
6229
6230 /* sanity check # of channels*/
6231 if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6232 return EINVAL;
6233
6234 return 0;
6235 }
6236
6237 /*
6238 * Initialize playback and record mixers.
6239 * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6240 * phwfmt and rhwfmt indicate the hardware format. pfil and rfil indicate
6241 * the filter registration information. These four must not be NULL.
6242 * If successful returns 0. Otherwise returns errno.
6243 * Must be called with sc_exlock held and without sc_lock held.
6244 * Must not be called if there are any tracks.
6245 * Caller should check that the initialization succeed by whether
6246 * sc_[pr]mixer is not NULL.
6247 */
6248 static int
6249 audio_mixers_init(struct audio_softc *sc, int mode,
6250 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6251 const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6252 {
6253 int error;
6254
6255 KASSERT(phwfmt != NULL);
6256 KASSERT(rhwfmt != NULL);
6257 KASSERT(pfil != NULL);
6258 KASSERT(rfil != NULL);
6259 KASSERT(sc->sc_exlock);
6260
6261 if ((mode & AUMODE_PLAY)) {
6262 if (sc->sc_pmixer == NULL) {
6263 sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6264 KM_SLEEP);
6265 } else {
6266 /* destroy() doesn't free memory. */
6267 audio_mixer_destroy(sc, sc->sc_pmixer);
6268 memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6269 }
6270 error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6271 if (error) {
6272 device_printf(sc->sc_dev,
6273 "configuring playback mode failed with %d\n",
6274 error);
6275 kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6276 sc->sc_pmixer = NULL;
6277 return error;
6278 }
6279 }
6280 if ((mode & AUMODE_RECORD)) {
6281 if (sc->sc_rmixer == NULL) {
6282 sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6283 KM_SLEEP);
6284 } else {
6285 /* destroy() doesn't free memory. */
6286 audio_mixer_destroy(sc, sc->sc_rmixer);
6287 memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6288 }
6289 error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6290 if (error) {
6291 device_printf(sc->sc_dev,
6292 "configuring record mode failed with %d\n",
6293 error);
6294 kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6295 sc->sc_rmixer = NULL;
6296 return error;
6297 }
6298 }
6299
6300 return 0;
6301 }
6302
6303 /*
6304 * Select a frequency.
6305 * Prioritize 48kHz and 44.1kHz. Otherwise choose the highest one.
6306 * XXX Better algorithm?
6307 */
6308 static int
6309 audio_select_freq(const struct audio_format *fmt)
6310 {
6311 int freq;
6312 int high;
6313 int low;
6314 int j;
6315
6316 if (fmt->frequency_type == 0) {
6317 low = fmt->frequency[0];
6318 high = fmt->frequency[1];
6319 freq = 48000;
6320 if (low <= freq && freq <= high) {
6321 return freq;
6322 }
6323 freq = 44100;
6324 if (low <= freq && freq <= high) {
6325 return freq;
6326 }
6327 return high;
6328 } else {
6329 for (j = 0; j < fmt->frequency_type; j++) {
6330 if (fmt->frequency[j] == 48000) {
6331 return fmt->frequency[j];
6332 }
6333 }
6334 high = 0;
6335 for (j = 0; j < fmt->frequency_type; j++) {
6336 if (fmt->frequency[j] == 44100) {
6337 return fmt->frequency[j];
6338 }
6339 if (fmt->frequency[j] > high) {
6340 high = fmt->frequency[j];
6341 }
6342 }
6343 return high;
6344 }
6345 }
6346
6347 /*
6348 * Choose the most preferred hardware format.
6349 * If successful, it will store the chosen format into *cand and return 0.
6350 * Otherwise, return errno.
6351 * Must be called without sc_lock held.
6352 */
6353 static int
6354 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6355 {
6356 audio_format_query_t query;
6357 int cand_score;
6358 int score;
6359 int i;
6360 int error;
6361
6362 /*
6363 * Score each formats and choose the highest one.
6364 *
6365 * +---- priority(0-3)
6366 * |+--- encoding/precision
6367 * ||+-- channels
6368 * score = 0x000000PEC
6369 */
6370
6371 cand_score = 0;
6372 for (i = 0; ; i++) {
6373 memset(&query, 0, sizeof(query));
6374 query.index = i;
6375
6376 mutex_enter(sc->sc_lock);
6377 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6378 mutex_exit(sc->sc_lock);
6379 if (error == EINVAL)
6380 break;
6381 if (error)
6382 return error;
6383
6384 #if defined(AUDIO_DEBUG)
6385 DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6386 (query.fmt.mode & AUMODE_PLAY) ? 'P' : '-',
6387 (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6388 query.fmt.priority,
6389 audio_encoding_name(query.fmt.encoding),
6390 query.fmt.validbits,
6391 query.fmt.precision,
6392 query.fmt.channels);
6393 if (query.fmt.frequency_type == 0) {
6394 DPRINTF(1, "{%d-%d",
6395 query.fmt.frequency[0], query.fmt.frequency[1]);
6396 } else {
6397 int j;
6398 for (j = 0; j < query.fmt.frequency_type; j++) {
6399 DPRINTF(1, "%c%d",
6400 (j == 0) ? '{' : ',',
6401 query.fmt.frequency[j]);
6402 }
6403 }
6404 DPRINTF(1, "}\n");
6405 #endif
6406
6407 if ((query.fmt.mode & mode) == 0) {
6408 DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6409 mode);
6410 continue;
6411 }
6412
6413 if (query.fmt.priority < 0) {
6414 DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6415 continue;
6416 }
6417
6418 /* Score */
6419 score = (query.fmt.priority & 3) * 0x100;
6420 if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6421 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6422 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6423 score += 0x20;
6424 } else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6425 query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6426 query.fmt.precision == AUDIO_INTERNAL_BITS) {
6427 score += 0x10;
6428 }
6429 score += query.fmt.channels;
6430
6431 if (score < cand_score) {
6432 DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6433 score, cand_score);
6434 continue;
6435 }
6436
6437 /* Update candidate */
6438 cand_score = score;
6439 cand->encoding = query.fmt.encoding;
6440 cand->precision = query.fmt.validbits;
6441 cand->stride = query.fmt.precision;
6442 cand->channels = query.fmt.channels;
6443 cand->sample_rate = audio_select_freq(&query.fmt);
6444 DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6445 " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6446 cand_score, query.fmt.priority,
6447 audio_encoding_name(query.fmt.encoding),
6448 cand->precision, cand->stride,
6449 cand->channels, cand->sample_rate);
6450 }
6451
6452 if (cand_score == 0) {
6453 DPRINTF(1, "%s no fmt\n", __func__);
6454 return ENXIO;
6455 }
6456 DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6457 audio_encoding_name(cand->encoding),
6458 cand->precision, cand->stride, cand->channels, cand->sample_rate);
6459 return 0;
6460 }
6461
6462 /*
6463 * Validate fmt with query_format.
6464 * If fmt is included in the result of query_format, returns 0.
6465 * Otherwise returns EINVAL.
6466 * Must be called without sc_lock held.
6467 */
6468 static int
6469 audio_hw_validate_format(struct audio_softc *sc, int mode,
6470 const audio_format2_t *fmt)
6471 {
6472 audio_format_query_t query;
6473 struct audio_format *q;
6474 int index;
6475 int error;
6476 int j;
6477
6478 for (index = 0; ; index++) {
6479 query.index = index;
6480 mutex_enter(sc->sc_lock);
6481 error = sc->hw_if->query_format(sc->hw_hdl, &query);
6482 mutex_exit(sc->sc_lock);
6483 if (error == EINVAL)
6484 break;
6485 if (error)
6486 return error;
6487
6488 q = &query.fmt;
6489 /*
6490 * Note that fmt is audio_format2_t (precision/stride) but
6491 * q is audio_format_t (validbits/precision).
6492 */
6493 if ((q->mode & mode) == 0) {
6494 continue;
6495 }
6496 if (fmt->encoding != q->encoding) {
6497 continue;
6498 }
6499 if (fmt->precision != q->validbits) {
6500 continue;
6501 }
6502 if (fmt->stride != q->precision) {
6503 continue;
6504 }
6505 if (fmt->channels != q->channels) {
6506 continue;
6507 }
6508 if (q->frequency_type == 0) {
6509 if (fmt->sample_rate < q->frequency[0] ||
6510 fmt->sample_rate > q->frequency[1]) {
6511 continue;
6512 }
6513 } else {
6514 for (j = 0; j < q->frequency_type; j++) {
6515 if (fmt->sample_rate == q->frequency[j])
6516 break;
6517 }
6518 if (j == query.fmt.frequency_type) {
6519 continue;
6520 }
6521 }
6522
6523 /* Matched. */
6524 return 0;
6525 }
6526
6527 return EINVAL;
6528 }
6529
6530 /*
6531 * Set track mixer's format depending on ai->mode.
6532 * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6533 * with ai.play.*.
6534 * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6535 * with ai.record.*.
6536 * All other fields in ai are ignored.
6537 * If successful returns 0. Otherwise returns errno.
6538 * This function does not roll back even if it fails.
6539 * Must be called with sc_exlock held and without sc_lock held.
6540 */
6541 static int
6542 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6543 {
6544 audio_format2_t phwfmt;
6545 audio_format2_t rhwfmt;
6546 audio_filter_reg_t pfil;
6547 audio_filter_reg_t rfil;
6548 int mode;
6549 int error;
6550
6551 KASSERT(sc->sc_exlock);
6552
6553 /*
6554 * Even when setting either one of playback and recording,
6555 * both must be halted.
6556 */
6557 if (sc->sc_popens + sc->sc_ropens > 0)
6558 return EBUSY;
6559
6560 if (!SPECIFIED(ai->mode) || ai->mode == 0)
6561 return ENOTTY;
6562
6563 mode = ai->mode;
6564 if ((mode & AUMODE_PLAY)) {
6565 phwfmt.encoding = ai->play.encoding;
6566 phwfmt.precision = ai->play.precision;
6567 phwfmt.stride = ai->play.precision;
6568 phwfmt.channels = ai->play.channels;
6569 phwfmt.sample_rate = ai->play.sample_rate;
6570 }
6571 if ((mode & AUMODE_RECORD)) {
6572 rhwfmt.encoding = ai->record.encoding;
6573 rhwfmt.precision = ai->record.precision;
6574 rhwfmt.stride = ai->record.precision;
6575 rhwfmt.channels = ai->record.channels;
6576 rhwfmt.sample_rate = ai->record.sample_rate;
6577 }
6578
6579 /* On non-independent devices, use the same format for both. */
6580 if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
6581 if (mode == AUMODE_RECORD) {
6582 phwfmt = rhwfmt;
6583 } else {
6584 rhwfmt = phwfmt;
6585 }
6586 mode = AUMODE_PLAY | AUMODE_RECORD;
6587 }
6588
6589 /* Then, unset the direction not exist on the hardware. */
6590 if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
6591 mode &= ~AUMODE_PLAY;
6592 if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
6593 mode &= ~AUMODE_RECORD;
6594
6595 /* debug */
6596 if ((mode & AUMODE_PLAY)) {
6597 TRACE(1, "play=%s/%d/%d/%dch/%dHz",
6598 audio_encoding_name(phwfmt.encoding),
6599 phwfmt.precision,
6600 phwfmt.stride,
6601 phwfmt.channels,
6602 phwfmt.sample_rate);
6603 }
6604 if ((mode & AUMODE_RECORD)) {
6605 TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
6606 audio_encoding_name(rhwfmt.encoding),
6607 rhwfmt.precision,
6608 rhwfmt.stride,
6609 rhwfmt.channels,
6610 rhwfmt.sample_rate);
6611 }
6612
6613 /* Check the format */
6614 if ((mode & AUMODE_PLAY)) {
6615 if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
6616 TRACE(1, "invalid format");
6617 return EINVAL;
6618 }
6619 }
6620 if ((mode & AUMODE_RECORD)) {
6621 if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
6622 TRACE(1, "invalid format");
6623 return EINVAL;
6624 }
6625 }
6626
6627 /* Configure the mixers. */
6628 memset(&pfil, 0, sizeof(pfil));
6629 memset(&rfil, 0, sizeof(rfil));
6630 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6631 if (error)
6632 return error;
6633
6634 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
6635 if (error)
6636 return error;
6637
6638 /*
6639 * Reinitialize the sticky parameters for /dev/sound.
6640 * If the number of the hardware channels becomes less than the number
6641 * of channels that sticky parameters remember, subsequent /dev/sound
6642 * open will fail. To prevent this, reinitialize the sticky
6643 * parameters whenever the hardware format is changed.
6644 */
6645 sc->sc_sound_pparams = params_to_format2(&audio_default);
6646 sc->sc_sound_rparams = params_to_format2(&audio_default);
6647 sc->sc_sound_ppause = false;
6648 sc->sc_sound_rpause = false;
6649
6650 return 0;
6651 }
6652
6653 /*
6654 * Store current mixers format into *ai.
6655 * Must be called with sc_exlock held.
6656 */
6657 static void
6658 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
6659 {
6660
6661 KASSERT(sc->sc_exlock);
6662
6663 /*
6664 * There is no stride information in audio_info but it doesn't matter.
6665 * trackmixer always treats stride and precision as the same.
6666 */
6667 AUDIO_INITINFO(ai);
6668 ai->mode = 0;
6669 if (sc->sc_pmixer) {
6670 audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
6671 ai->play.encoding = fmt->encoding;
6672 ai->play.precision = fmt->precision;
6673 ai->play.channels = fmt->channels;
6674 ai->play.sample_rate = fmt->sample_rate;
6675 ai->mode |= AUMODE_PLAY;
6676 }
6677 if (sc->sc_rmixer) {
6678 audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
6679 ai->record.encoding = fmt->encoding;
6680 ai->record.precision = fmt->precision;
6681 ai->record.channels = fmt->channels;
6682 ai->record.sample_rate = fmt->sample_rate;
6683 ai->mode |= AUMODE_RECORD;
6684 }
6685 }
6686
6687 /*
6688 * audio_info details:
6689 *
6690 * ai.{play,record}.sample_rate (R/W)
6691 * ai.{play,record}.encoding (R/W)
6692 * ai.{play,record}.precision (R/W)
6693 * ai.{play,record}.channels (R/W)
6694 * These specify the playback or recording format.
6695 * Ignore members within an inactive track.
6696 *
6697 * ai.mode (R/W)
6698 * It specifies the playback or recording mode, AUMODE_*.
6699 * Currently, a mode change operation by ai.mode after opening is
6700 * prohibited. In addition, AUMODE_PLAY_ALL no longer makes sense.
6701 * However, it's possible to get or to set for backward compatibility.
6702 *
6703 * ai.{hiwat,lowat} (R/W)
6704 * These specify the high water mark and low water mark for playback
6705 * track. The unit is block.
6706 *
6707 * ai.{play,record}.gain (R/W)
6708 * It specifies the HW mixer volume in 0-255.
6709 * It is historical reason that the gain is connected to HW mixer.
6710 *
6711 * ai.{play,record}.balance (R/W)
6712 * It specifies the left-right balance of HW mixer in 0-64.
6713 * 32 means the center.
6714 * It is historical reason that the balance is connected to HW mixer.
6715 *
6716 * ai.{play,record}.port (R/W)
6717 * It specifies the input/output port of HW mixer.
6718 *
6719 * ai.monitor_gain (R/W)
6720 * It specifies the recording monitor gain(?) of HW mixer.
6721 *
6722 * ai.{play,record}.pause (R/W)
6723 * Non-zero means the track is paused.
6724 *
6725 * ai.play.seek (R/-)
6726 * It indicates the number of bytes written but not processed.
6727 * ai.record.seek (R/-)
6728 * It indicates the number of bytes to be able to read.
6729 *
6730 * ai.{play,record}.avail_ports (R/-)
6731 * Mixer info.
6732 *
6733 * ai.{play,record}.buffer_size (R/-)
6734 * It indicates the buffer size in bytes. Internally it means usrbuf.
6735 *
6736 * ai.{play,record}.samples (R/-)
6737 * It indicates the total number of bytes played or recorded.
6738 *
6739 * ai.{play,record}.eof (R/-)
6740 * It indicates the number of times reached EOF(?).
6741 *
6742 * ai.{play,record}.error (R/-)
6743 * Non-zero indicates overflow/underflow has occured.
6744 *
6745 * ai.{play,record}.waiting (R/-)
6746 * Non-zero indicates that other process waits to open.
6747 * It will never happen anymore.
6748 *
6749 * ai.{play,record}.open (R/-)
6750 * Non-zero indicates the direction is opened by this process(?).
6751 * XXX Is this better to indicate that "the device is opened by
6752 * at least one process"?
6753 *
6754 * ai.{play,record}.active (R/-)
6755 * Non-zero indicates that I/O is currently active.
6756 *
6757 * ai.blocksize (R/-)
6758 * It indicates the block size in bytes.
6759 * XXX The blocksize of playback and recording may be different.
6760 */
6761
6762 /*
6763 * Pause consideration:
6764 *
6765 * Pausing/unpausing never affect [pr]mixer. This single rule makes
6766 * operation simple. Note that playback and recording are asymmetric.
6767 *
6768 * For playback,
6769 * 1. Any playback open doesn't start pmixer regardless of initial pause
6770 * state of this track.
6771 * 2. The first write access among playback tracks only starts pmixer
6772 * regardless of this track's pause state.
6773 * 3. Even a pause of the last playback track doesn't stop pmixer.
6774 * 4. The last close of all playback tracks only stops pmixer.
6775 *
6776 * For recording,
6777 * 1. The first recording open only starts rmixer regardless of initial
6778 * pause state of this track.
6779 * 2. Even a pause of the last track doesn't stop rmixer.
6780 * 3. The last close of all recording tracks only stops rmixer.
6781 */
6782
6783 /*
6784 * Set both track's parameters within a file depending on ai.
6785 * Update sc_sound_[pr]* if set.
6786 * Must be called with sc_exlock held and without sc_lock held.
6787 */
6788 static int
6789 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
6790 const struct audio_info *ai)
6791 {
6792 const struct audio_prinfo *pi;
6793 const struct audio_prinfo *ri;
6794 audio_track_t *ptrack;
6795 audio_track_t *rtrack;
6796 audio_format2_t pfmt;
6797 audio_format2_t rfmt;
6798 int pchanges;
6799 int rchanges;
6800 int mode;
6801 struct audio_info saved_ai;
6802 audio_format2_t saved_pfmt;
6803 audio_format2_t saved_rfmt;
6804 int error;
6805
6806 KASSERT(sc->sc_exlock);
6807
6808 pi = &ai->play;
6809 ri = &ai->record;
6810 pchanges = 0;
6811 rchanges = 0;
6812
6813 ptrack = file->ptrack;
6814 rtrack = file->rtrack;
6815
6816 #if defined(AUDIO_DEBUG)
6817 if (audiodebug >= 2) {
6818 char buf[256];
6819 char p[64];
6820 int buflen;
6821 int plen;
6822 #define SPRINTF(var, fmt...) do { \
6823 var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
6824 } while (0)
6825
6826 buflen = 0;
6827 plen = 0;
6828 if (SPECIFIED(pi->encoding))
6829 SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
6830 if (SPECIFIED(pi->precision))
6831 SPRINTF(p, "/%dbit", pi->precision);
6832 if (SPECIFIED(pi->channels))
6833 SPRINTF(p, "/%dch", pi->channels);
6834 if (SPECIFIED(pi->sample_rate))
6835 SPRINTF(p, "/%dHz", pi->sample_rate);
6836 if (plen > 0)
6837 SPRINTF(buf, ",play.param=%s", p + 1);
6838
6839 plen = 0;
6840 if (SPECIFIED(ri->encoding))
6841 SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
6842 if (SPECIFIED(ri->precision))
6843 SPRINTF(p, "/%dbit", ri->precision);
6844 if (SPECIFIED(ri->channels))
6845 SPRINTF(p, "/%dch", ri->channels);
6846 if (SPECIFIED(ri->sample_rate))
6847 SPRINTF(p, "/%dHz", ri->sample_rate);
6848 if (plen > 0)
6849 SPRINTF(buf, ",record.param=%s", p + 1);
6850
6851 if (SPECIFIED(ai->mode))
6852 SPRINTF(buf, ",mode=%d", ai->mode);
6853 if (SPECIFIED(ai->hiwat))
6854 SPRINTF(buf, ",hiwat=%d", ai->hiwat);
6855 if (SPECIFIED(ai->lowat))
6856 SPRINTF(buf, ",lowat=%d", ai->lowat);
6857 if (SPECIFIED(ai->play.gain))
6858 SPRINTF(buf, ",play.gain=%d", ai->play.gain);
6859 if (SPECIFIED(ai->record.gain))
6860 SPRINTF(buf, ",record.gain=%d", ai->record.gain);
6861 if (SPECIFIED_CH(ai->play.balance))
6862 SPRINTF(buf, ",play.balance=%d", ai->play.balance);
6863 if (SPECIFIED_CH(ai->record.balance))
6864 SPRINTF(buf, ",record.balance=%d", ai->record.balance);
6865 if (SPECIFIED(ai->play.port))
6866 SPRINTF(buf, ",play.port=%d", ai->play.port);
6867 if (SPECIFIED(ai->record.port))
6868 SPRINTF(buf, ",record.port=%d", ai->record.port);
6869 if (SPECIFIED(ai->monitor_gain))
6870 SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
6871 if (SPECIFIED_CH(ai->play.pause))
6872 SPRINTF(buf, ",play.pause=%d", ai->play.pause);
6873 if (SPECIFIED_CH(ai->record.pause))
6874 SPRINTF(buf, ",record.pause=%d", ai->record.pause);
6875
6876 if (buflen > 0)
6877 TRACE(2, "specified %s", buf + 1);
6878 }
6879 #endif
6880
6881 AUDIO_INITINFO(&saved_ai);
6882 /* XXX shut up gcc */
6883 memset(&saved_pfmt, 0, sizeof(saved_pfmt));
6884 memset(&saved_rfmt, 0, sizeof(saved_rfmt));
6885
6886 /*
6887 * Set default value and save current parameters.
6888 * For backward compatibility, use sticky parameters for nonexistent
6889 * track.
6890 */
6891 if (ptrack) {
6892 pfmt = ptrack->usrbuf.fmt;
6893 saved_pfmt = ptrack->usrbuf.fmt;
6894 saved_ai.play.pause = ptrack->is_pause;
6895 } else {
6896 pfmt = sc->sc_sound_pparams;
6897 }
6898 if (rtrack) {
6899 rfmt = rtrack->usrbuf.fmt;
6900 saved_rfmt = rtrack->usrbuf.fmt;
6901 saved_ai.record.pause = rtrack->is_pause;
6902 } else {
6903 rfmt = sc->sc_sound_rparams;
6904 }
6905 saved_ai.mode = file->mode;
6906
6907 /*
6908 * Overwrite if specified.
6909 */
6910 mode = file->mode;
6911 if (SPECIFIED(ai->mode)) {
6912 /*
6913 * Setting ai->mode no longer does anything because it's
6914 * prohibited to change playback/recording mode after open
6915 * and AUMODE_PLAY_ALL is obsoleted. However, it still
6916 * keeps the state of AUMODE_PLAY_ALL itself for backward
6917 * compatibility.
6918 * In the internal, only file->mode has the state of
6919 * AUMODE_PLAY_ALL flag and track->mode in both track does
6920 * not have.
6921 */
6922 if ((file->mode & AUMODE_PLAY)) {
6923 mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
6924 | (ai->mode & AUMODE_PLAY_ALL);
6925 }
6926 }
6927
6928 pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
6929 if (pchanges == -1) {
6930 #if defined(AUDIO_DEBUG)
6931 TRACEF(1, file, "check play.params failed: "
6932 "%s %ubit %uch %uHz",
6933 audio_encoding_name(pi->encoding),
6934 pi->precision,
6935 pi->channels,
6936 pi->sample_rate);
6937 #endif
6938 return EINVAL;
6939 }
6940
6941 rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
6942 if (rchanges == -1) {
6943 #if defined(AUDIO_DEBUG)
6944 TRACEF(1, file, "check record.params failed: "
6945 "%s %ubit %uch %uHz",
6946 audio_encoding_name(ri->encoding),
6947 ri->precision,
6948 ri->channels,
6949 ri->sample_rate);
6950 #endif
6951 return EINVAL;
6952 }
6953
6954 if (SPECIFIED(ai->mode)) {
6955 pchanges = 1;
6956 rchanges = 1;
6957 }
6958
6959 /*
6960 * Even when setting either one of playback and recording,
6961 * both track must be halted.
6962 */
6963 if (pchanges || rchanges) {
6964 audio_file_clear(sc, file);
6965 #if defined(AUDIO_DEBUG)
6966 char nbuf[16];
6967 char fmtbuf[64];
6968 if (pchanges) {
6969 if (ptrack) {
6970 snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
6971 } else {
6972 snprintf(nbuf, sizeof(nbuf), "-");
6973 }
6974 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
6975 DPRINTF(1, "audio track#%s play mode: %s\n",
6976 nbuf, fmtbuf);
6977 }
6978 if (rchanges) {
6979 if (rtrack) {
6980 snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
6981 } else {
6982 snprintf(nbuf, sizeof(nbuf), "-");
6983 }
6984 audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
6985 DPRINTF(1, "audio track#%s rec mode: %s\n",
6986 nbuf, fmtbuf);
6987 }
6988 #endif
6989 }
6990
6991 /* Set mixer parameters */
6992 mutex_enter(sc->sc_lock);
6993 error = audio_hw_setinfo(sc, ai, &saved_ai);
6994 mutex_exit(sc->sc_lock);
6995 if (error)
6996 goto abort1;
6997
6998 /*
6999 * Set to track and update sticky parameters.
7000 */
7001 error = 0;
7002 file->mode = mode;
7003
7004 if (SPECIFIED_CH(pi->pause)) {
7005 if (ptrack)
7006 ptrack->is_pause = pi->pause;
7007 sc->sc_sound_ppause = pi->pause;
7008 }
7009 if (pchanges) {
7010 if (ptrack) {
7011 audio_track_lock_enter(ptrack);
7012 error = audio_track_set_format(ptrack, &pfmt);
7013 audio_track_lock_exit(ptrack);
7014 if (error) {
7015 TRACET(1, ptrack, "set play.params failed");
7016 goto abort2;
7017 }
7018 }
7019 sc->sc_sound_pparams = pfmt;
7020 }
7021 /* Change water marks after initializing the buffers. */
7022 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7023 if (ptrack)
7024 audio_track_setinfo_water(ptrack, ai);
7025 }
7026
7027 if (SPECIFIED_CH(ri->pause)) {
7028 if (rtrack)
7029 rtrack->is_pause = ri->pause;
7030 sc->sc_sound_rpause = ri->pause;
7031 }
7032 if (rchanges) {
7033 if (rtrack) {
7034 audio_track_lock_enter(rtrack);
7035 error = audio_track_set_format(rtrack, &rfmt);
7036 audio_track_lock_exit(rtrack);
7037 if (error) {
7038 TRACET(1, rtrack, "set record.params failed");
7039 goto abort3;
7040 }
7041 }
7042 sc->sc_sound_rparams = rfmt;
7043 }
7044
7045 return 0;
7046
7047 /* Rollback */
7048 abort3:
7049 if (error != ENOMEM) {
7050 rtrack->is_pause = saved_ai.record.pause;
7051 audio_track_lock_enter(rtrack);
7052 audio_track_set_format(rtrack, &saved_rfmt);
7053 audio_track_lock_exit(rtrack);
7054 }
7055 sc->sc_sound_rpause = saved_ai.record.pause;
7056 sc->sc_sound_rparams = saved_rfmt;
7057 abort2:
7058 if (ptrack && error != ENOMEM) {
7059 ptrack->is_pause = saved_ai.play.pause;
7060 audio_track_lock_enter(ptrack);
7061 audio_track_set_format(ptrack, &saved_pfmt);
7062 audio_track_lock_exit(ptrack);
7063 }
7064 sc->sc_sound_ppause = saved_ai.play.pause;
7065 sc->sc_sound_pparams = saved_pfmt;
7066 file->mode = saved_ai.mode;
7067 abort1:
7068 mutex_enter(sc->sc_lock);
7069 audio_hw_setinfo(sc, &saved_ai, NULL);
7070 mutex_exit(sc->sc_lock);
7071
7072 return error;
7073 }
7074
7075 /*
7076 * Write SPECIFIED() parameters within info back to fmt.
7077 * Note that track can be NULL here.
7078 * Return value of 1 indicates that fmt is modified.
7079 * Return value of 0 indicates that fmt is not modified.
7080 * Return value of -1 indicates that error EINVAL has occurred.
7081 */
7082 static int
7083 audio_track_setinfo_check(audio_track_t *track,
7084 audio_format2_t *fmt, const struct audio_prinfo *info)
7085 {
7086 const audio_format2_t *hwfmt;
7087 int changes;
7088
7089 changes = 0;
7090 if (SPECIFIED(info->sample_rate)) {
7091 if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7092 return -1;
7093 if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7094 return -1;
7095 fmt->sample_rate = info->sample_rate;
7096 changes = 1;
7097 }
7098 if (SPECIFIED(info->encoding)) {
7099 fmt->encoding = info->encoding;
7100 changes = 1;
7101 }
7102 if (SPECIFIED(info->precision)) {
7103 fmt->precision = info->precision;
7104 /* we don't have API to specify stride */
7105 fmt->stride = info->precision;
7106 changes = 1;
7107 }
7108 if (SPECIFIED(info->channels)) {
7109 /*
7110 * We can convert between monaural and stereo each other.
7111 * We can reduce than the number of channels that the hardware
7112 * supports.
7113 */
7114 if (info->channels > 2) {
7115 if (track) {
7116 hwfmt = &track->mixer->hwbuf.fmt;
7117 if (info->channels > hwfmt->channels)
7118 return -1;
7119 } else {
7120 /*
7121 * This should never happen.
7122 * If track == NULL, channels should be <= 2.
7123 */
7124 return -1;
7125 }
7126 }
7127 fmt->channels = info->channels;
7128 changes = 1;
7129 }
7130
7131 if (changes) {
7132 if (audio_check_params(fmt) != 0)
7133 return -1;
7134 }
7135
7136 return changes;
7137 }
7138
7139 /*
7140 * Change water marks for playback track if specfied.
7141 */
7142 static void
7143 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7144 {
7145 u_int blks;
7146 u_int maxblks;
7147 u_int blksize;
7148
7149 KASSERT(audio_track_is_playback(track));
7150
7151 blksize = track->usrbuf_blksize;
7152 maxblks = track->usrbuf.capacity / blksize;
7153
7154 if (SPECIFIED(ai->hiwat)) {
7155 blks = ai->hiwat;
7156 if (blks > maxblks)
7157 blks = maxblks;
7158 if (blks < 2)
7159 blks = 2;
7160 track->usrbuf_usedhigh = blks * blksize;
7161 }
7162 if (SPECIFIED(ai->lowat)) {
7163 blks = ai->lowat;
7164 if (blks > maxblks - 1)
7165 blks = maxblks - 1;
7166 track->usrbuf_usedlow = blks * blksize;
7167 }
7168 if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7169 if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7170 track->usrbuf_usedlow = track->usrbuf_usedhigh -
7171 blksize;
7172 }
7173 }
7174 }
7175
7176 /*
7177 * Set hardware part of *newai.
7178 * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7179 * If oldai is specified, previous parameters are stored.
7180 * This function itself does not roll back if error occurred.
7181 * Must be called with sc_lock && sc_exlock held.
7182 */
7183 static int
7184 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7185 struct audio_info *oldai)
7186 {
7187 const struct audio_prinfo *newpi;
7188 const struct audio_prinfo *newri;
7189 struct audio_prinfo *oldpi;
7190 struct audio_prinfo *oldri;
7191 u_int pgain;
7192 u_int rgain;
7193 u_char pbalance;
7194 u_char rbalance;
7195 int error;
7196
7197 KASSERT(mutex_owned(sc->sc_lock));
7198 KASSERT(sc->sc_exlock);
7199
7200 /* XXX shut up gcc */
7201 oldpi = NULL;
7202 oldri = NULL;
7203
7204 newpi = &newai->play;
7205 newri = &newai->record;
7206 if (oldai) {
7207 oldpi = &oldai->play;
7208 oldri = &oldai->record;
7209 }
7210 error = 0;
7211
7212 /*
7213 * It looks like unnecessary to halt HW mixers to set HW mixers.
7214 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7215 */
7216
7217 if (SPECIFIED(newpi->port)) {
7218 if (oldai)
7219 oldpi->port = au_get_port(sc, &sc->sc_outports);
7220 error = au_set_port(sc, &sc->sc_outports, newpi->port);
7221 if (error) {
7222 device_printf(sc->sc_dev,
7223 "setting play.port=%d failed with %d\n",
7224 newpi->port, error);
7225 goto abort;
7226 }
7227 }
7228 if (SPECIFIED(newri->port)) {
7229 if (oldai)
7230 oldri->port = au_get_port(sc, &sc->sc_inports);
7231 error = au_set_port(sc, &sc->sc_inports, newri->port);
7232 if (error) {
7233 device_printf(sc->sc_dev,
7234 "setting record.port=%d failed with %d\n",
7235 newri->port, error);
7236 goto abort;
7237 }
7238 }
7239
7240 /* Backup play.{gain,balance} */
7241 if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7242 au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7243 if (oldai) {
7244 oldpi->gain = pgain;
7245 oldpi->balance = pbalance;
7246 }
7247 }
7248 /* Backup record.{gain,balance} */
7249 if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7250 au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7251 if (oldai) {
7252 oldri->gain = rgain;
7253 oldri->balance = rbalance;
7254 }
7255 }
7256 if (SPECIFIED(newpi->gain)) {
7257 error = au_set_gain(sc, &sc->sc_outports,
7258 newpi->gain, pbalance);
7259 if (error) {
7260 device_printf(sc->sc_dev,
7261 "setting play.gain=%d failed with %d\n",
7262 newpi->gain, error);
7263 goto abort;
7264 }
7265 }
7266 if (SPECIFIED(newri->gain)) {
7267 error = au_set_gain(sc, &sc->sc_inports,
7268 newri->gain, rbalance);
7269 if (error) {
7270 device_printf(sc->sc_dev,
7271 "setting record.gain=%d failed with %d\n",
7272 newri->gain, error);
7273 goto abort;
7274 }
7275 }
7276 if (SPECIFIED_CH(newpi->balance)) {
7277 error = au_set_gain(sc, &sc->sc_outports,
7278 pgain, newpi->balance);
7279 if (error) {
7280 device_printf(sc->sc_dev,
7281 "setting play.balance=%d failed with %d\n",
7282 newpi->balance, error);
7283 goto abort;
7284 }
7285 }
7286 if (SPECIFIED_CH(newri->balance)) {
7287 error = au_set_gain(sc, &sc->sc_inports,
7288 rgain, newri->balance);
7289 if (error) {
7290 device_printf(sc->sc_dev,
7291 "setting record.balance=%d failed with %d\n",
7292 newri->balance, error);
7293 goto abort;
7294 }
7295 }
7296
7297 if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7298 if (oldai)
7299 oldai->monitor_gain = au_get_monitor_gain(sc);
7300 error = au_set_monitor_gain(sc, newai->monitor_gain);
7301 if (error) {
7302 device_printf(sc->sc_dev,
7303 "setting monitor_gain=%d failed with %d\n",
7304 newai->monitor_gain, error);
7305 goto abort;
7306 }
7307 }
7308
7309 /* XXX TODO */
7310 /* sc->sc_ai = *ai; */
7311
7312 error = 0;
7313 abort:
7314 return error;
7315 }
7316
7317 /*
7318 * Setup the hardware with mixer format phwfmt, rhwfmt.
7319 * The arguments have following restrictions:
7320 * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7321 * or both.
7322 * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7323 * - On non-independent devices, phwfmt and rhwfmt must have the same
7324 * parameters.
7325 * - pfil and rfil must be zero-filled.
7326 * If successful,
7327 * - pfil, rfil will be filled with filter information specified by the
7328 * hardware driver if necessary.
7329 * and then returns 0. Otherwise returns errno.
7330 * Must be called without sc_lock held.
7331 */
7332 static int
7333 audio_hw_set_format(struct audio_softc *sc, int setmode,
7334 const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7335 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7336 {
7337 audio_params_t pp, rp;
7338 int error;
7339
7340 KASSERT(phwfmt != NULL);
7341 KASSERT(rhwfmt != NULL);
7342
7343 pp = format2_to_params(phwfmt);
7344 rp = format2_to_params(rhwfmt);
7345
7346 mutex_enter(sc->sc_lock);
7347 error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7348 &pp, &rp, pfil, rfil);
7349 if (error) {
7350 mutex_exit(sc->sc_lock);
7351 device_printf(sc->sc_dev,
7352 "set_format failed with %d\n", error);
7353 return error;
7354 }
7355
7356 if (sc->hw_if->commit_settings) {
7357 error = sc->hw_if->commit_settings(sc->hw_hdl);
7358 if (error) {
7359 mutex_exit(sc->sc_lock);
7360 device_printf(sc->sc_dev,
7361 "commit_settings failed with %d\n", error);
7362 return error;
7363 }
7364 }
7365 mutex_exit(sc->sc_lock);
7366
7367 return 0;
7368 }
7369
7370 /*
7371 * Fill audio_info structure. If need_mixerinfo is true, it will also
7372 * fill the hardware mixer information.
7373 * Must be called with sc_exlock held and without sc_lock held.
7374 */
7375 static int
7376 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7377 audio_file_t *file)
7378 {
7379 struct audio_prinfo *ri, *pi;
7380 audio_track_t *track;
7381 audio_track_t *ptrack;
7382 audio_track_t *rtrack;
7383 int gain;
7384
7385 KASSERT(sc->sc_exlock);
7386
7387 ri = &ai->record;
7388 pi = &ai->play;
7389 ptrack = file->ptrack;
7390 rtrack = file->rtrack;
7391
7392 memset(ai, 0, sizeof(*ai));
7393
7394 if (ptrack) {
7395 pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7396 pi->channels = ptrack->usrbuf.fmt.channels;
7397 pi->precision = ptrack->usrbuf.fmt.precision;
7398 pi->encoding = ptrack->usrbuf.fmt.encoding;
7399 pi->pause = ptrack->is_pause;
7400 } else {
7401 /* Use sticky parameters if the track is not available. */
7402 pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7403 pi->channels = sc->sc_sound_pparams.channels;
7404 pi->precision = sc->sc_sound_pparams.precision;
7405 pi->encoding = sc->sc_sound_pparams.encoding;
7406 pi->pause = sc->sc_sound_ppause;
7407 }
7408 if (rtrack) {
7409 ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7410 ri->channels = rtrack->usrbuf.fmt.channels;
7411 ri->precision = rtrack->usrbuf.fmt.precision;
7412 ri->encoding = rtrack->usrbuf.fmt.encoding;
7413 ri->pause = rtrack->is_pause;
7414 } else {
7415 /* Use sticky parameters if the track is not available. */
7416 ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7417 ri->channels = sc->sc_sound_rparams.channels;
7418 ri->precision = sc->sc_sound_rparams.precision;
7419 ri->encoding = sc->sc_sound_rparams.encoding;
7420 ri->pause = sc->sc_sound_rpause;
7421 }
7422
7423 if (ptrack) {
7424 pi->seek = ptrack->usrbuf.used;
7425 pi->samples = ptrack->usrbuf_stamp;
7426 pi->eof = ptrack->eofcounter;
7427 pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7428 pi->open = 1;
7429 pi->buffer_size = ptrack->usrbuf.capacity;
7430 }
7431 pi->waiting = 0; /* open never hangs */
7432 pi->active = sc->sc_pbusy;
7433
7434 if (rtrack) {
7435 ri->seek = rtrack->usrbuf.used;
7436 ri->samples = rtrack->usrbuf_stamp;
7437 ri->eof = 0;
7438 ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7439 ri->open = 1;
7440 ri->buffer_size = rtrack->usrbuf.capacity;
7441 }
7442 ri->waiting = 0; /* open never hangs */
7443 ri->active = sc->sc_rbusy;
7444
7445 /*
7446 * XXX There may be different number of channels between playback
7447 * and recording, so that blocksize also may be different.
7448 * But struct audio_info has an united blocksize...
7449 * Here, I use play info precedencely if ptrack is available,
7450 * otherwise record info.
7451 *
7452 * XXX hiwat/lowat is a playback-only parameter. What should I
7453 * return for a record-only descriptor?
7454 */
7455 track = ptrack ? ptrack : rtrack;
7456 if (track) {
7457 ai->blocksize = track->usrbuf_blksize;
7458 ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7459 ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7460 }
7461 ai->mode = file->mode;
7462
7463 /*
7464 * For backward compatibility, we have to pad these five fields
7465 * a fake non-zero value even if there are no tracks.
7466 */
7467 if (ptrack == NULL)
7468 pi->buffer_size = 65536;
7469 if (rtrack == NULL)
7470 ri->buffer_size = 65536;
7471 if (ptrack == NULL && rtrack == NULL) {
7472 ai->blocksize = 2048;
7473 ai->hiwat = ai->play.buffer_size / ai->blocksize;
7474 ai->lowat = ai->hiwat * 3 / 4;
7475 }
7476
7477 if (need_mixerinfo) {
7478 mutex_enter(sc->sc_lock);
7479
7480 pi->port = au_get_port(sc, &sc->sc_outports);
7481 ri->port = au_get_port(sc, &sc->sc_inports);
7482
7483 pi->avail_ports = sc->sc_outports.allports;
7484 ri->avail_ports = sc->sc_inports.allports;
7485
7486 au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7487 au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7488
7489 if (sc->sc_monitor_port != -1) {
7490 gain = au_get_monitor_gain(sc);
7491 if (gain != -1)
7492 ai->monitor_gain = gain;
7493 }
7494 mutex_exit(sc->sc_lock);
7495 }
7496
7497 return 0;
7498 }
7499
7500 /*
7501 * Return true if playback is configured.
7502 * This function can be used after audioattach.
7503 */
7504 static bool
7505 audio_can_playback(struct audio_softc *sc)
7506 {
7507
7508 return (sc->sc_pmixer != NULL);
7509 }
7510
7511 /*
7512 * Return true if recording is configured.
7513 * This function can be used after audioattach.
7514 */
7515 static bool
7516 audio_can_capture(struct audio_softc *sc)
7517 {
7518
7519 return (sc->sc_rmixer != NULL);
7520 }
7521
7522 /*
7523 * Get the afp->index'th item from the valid one of format[].
7524 * If found, stores it to afp->fmt and returns 0. Otherwise return EINVAL.
7525 *
7526 * This is common routines for query_format.
7527 * If your hardware driver has struct audio_format[], the simplest case
7528 * you can write your query_format interface as follows:
7529 *
7530 * struct audio_format foo_format[] = { ... };
7531 *
7532 * int
7533 * foo_query_format(void *hdl, audio_format_query_t *afp)
7534 * {
7535 * return audio_query_format(foo_format, __arraycount(foo_format), afp);
7536 * }
7537 */
7538 int
7539 audio_query_format(const struct audio_format *format, int nformats,
7540 audio_format_query_t *afp)
7541 {
7542 const struct audio_format *f;
7543 int idx;
7544 int i;
7545
7546 idx = 0;
7547 for (i = 0; i < nformats; i++) {
7548 f = &format[i];
7549 if (!AUFMT_IS_VALID(f))
7550 continue;
7551 if (afp->index == idx) {
7552 afp->fmt = *f;
7553 return 0;
7554 }
7555 idx++;
7556 }
7557 return EINVAL;
7558 }
7559
7560 /*
7561 * This function is provided for the hardware driver's set_format() to
7562 * find index matches with 'param' from array of audio_format_t 'formats'.
7563 * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7564 * It returns the matched index and never fails. Because param passed to
7565 * set_format() is selected from query_format().
7566 * This function will be an alternative to auconv_set_converter() to
7567 * find index.
7568 */
7569 int
7570 audio_indexof_format(const struct audio_format *formats, int nformats,
7571 int mode, const audio_params_t *param)
7572 {
7573 const struct audio_format *f;
7574 int index;
7575 int j;
7576
7577 for (index = 0; index < nformats; index++) {
7578 f = &formats[index];
7579
7580 if (!AUFMT_IS_VALID(f))
7581 continue;
7582 if ((f->mode & mode) == 0)
7583 continue;
7584 if (f->encoding != param->encoding)
7585 continue;
7586 if (f->validbits != param->precision)
7587 continue;
7588 if (f->channels != param->channels)
7589 continue;
7590
7591 if (f->frequency_type == 0) {
7592 if (param->sample_rate < f->frequency[0] ||
7593 param->sample_rate > f->frequency[1])
7594 continue;
7595 } else {
7596 for (j = 0; j < f->frequency_type; j++) {
7597 if (param->sample_rate == f->frequency[j])
7598 break;
7599 }
7600 if (j == f->frequency_type)
7601 continue;
7602 }
7603
7604 /* Then, matched */
7605 return index;
7606 }
7607
7608 /* Not matched. This should not be happened. */
7609 panic("%s: cannot find matched format\n", __func__);
7610 }
7611
7612 /*
7613 * Get or set hardware blocksize in msec.
7614 * XXX It's for debug.
7615 */
7616 static int
7617 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
7618 {
7619 struct sysctlnode node;
7620 struct audio_softc *sc;
7621 audio_format2_t phwfmt;
7622 audio_format2_t rhwfmt;
7623 audio_filter_reg_t pfil;
7624 audio_filter_reg_t rfil;
7625 int t;
7626 int old_blk_ms;
7627 int mode;
7628 int error;
7629
7630 node = *rnode;
7631 sc = node.sysctl_data;
7632
7633 error = audio_exlock_enter(sc);
7634 if (error)
7635 return error;
7636
7637 old_blk_ms = sc->sc_blk_ms;
7638 t = old_blk_ms;
7639 node.sysctl_data = &t;
7640 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7641 if (error || newp == NULL)
7642 goto abort;
7643
7644 if (t < 0) {
7645 error = EINVAL;
7646 goto abort;
7647 }
7648
7649 if (sc->sc_popens + sc->sc_ropens > 0) {
7650 error = EBUSY;
7651 goto abort;
7652 }
7653 sc->sc_blk_ms = t;
7654 mode = 0;
7655 if (sc->sc_pmixer) {
7656 mode |= AUMODE_PLAY;
7657 phwfmt = sc->sc_pmixer->hwbuf.fmt;
7658 }
7659 if (sc->sc_rmixer) {
7660 mode |= AUMODE_RECORD;
7661 rhwfmt = sc->sc_rmixer->hwbuf.fmt;
7662 }
7663
7664 /* re-init hardware */
7665 memset(&pfil, 0, sizeof(pfil));
7666 memset(&rfil, 0, sizeof(rfil));
7667 error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7668 if (error) {
7669 goto abort;
7670 }
7671
7672 /* re-init track mixer */
7673 error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7674 if (error) {
7675 /* Rollback */
7676 sc->sc_blk_ms = old_blk_ms;
7677 audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7678 goto abort;
7679 }
7680 error = 0;
7681 abort:
7682 audio_exlock_exit(sc);
7683 return error;
7684 }
7685
7686 /*
7687 * Get or set multiuser mode.
7688 */
7689 static int
7690 audio_sysctl_multiuser(SYSCTLFN_ARGS)
7691 {
7692 struct sysctlnode node;
7693 struct audio_softc *sc;
7694 bool t;
7695 int error;
7696
7697 node = *rnode;
7698 sc = node.sysctl_data;
7699
7700 error = audio_exlock_enter(sc);
7701 if (error)
7702 return error;
7703
7704 t = sc->sc_multiuser;
7705 node.sysctl_data = &t;
7706 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7707 if (error || newp == NULL)
7708 goto abort;
7709
7710 sc->sc_multiuser = t;
7711 error = 0;
7712 abort:
7713 audio_exlock_exit(sc);
7714 return error;
7715 }
7716
7717 #if defined(AUDIO_DEBUG)
7718 /*
7719 * Get or set debug verbose level. (0..4)
7720 * XXX It's for debug.
7721 * XXX It is not separated per device.
7722 */
7723 static int
7724 audio_sysctl_debug(SYSCTLFN_ARGS)
7725 {
7726 struct sysctlnode node;
7727 int t;
7728 int error;
7729
7730 node = *rnode;
7731 t = audiodebug;
7732 node.sysctl_data = &t;
7733 error = sysctl_lookup(SYSCTLFN_CALL(&node));
7734 if (error || newp == NULL)
7735 return error;
7736
7737 if (t < 0 || t > 4)
7738 return EINVAL;
7739 audiodebug = t;
7740 printf("audio: audiodebug = %d\n", audiodebug);
7741 return 0;
7742 }
7743 #endif /* AUDIO_DEBUG */
7744
7745 #ifdef AUDIO_PM_IDLE
7746 static void
7747 audio_idle(void *arg)
7748 {
7749 device_t dv = arg;
7750 struct audio_softc *sc = device_private(dv);
7751
7752 #ifdef PNP_DEBUG
7753 extern int pnp_debug_idle;
7754 if (pnp_debug_idle)
7755 printf("%s: idle handler called\n", device_xname(dv));
7756 #endif
7757
7758 sc->sc_idle = true;
7759
7760 /* XXX joerg Make pmf_device_suspend handle children? */
7761 if (!pmf_device_suspend(dv, PMF_Q_SELF))
7762 return;
7763
7764 if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
7765 pmf_device_resume(dv, PMF_Q_SELF);
7766 }
7767
7768 static void
7769 audio_activity(device_t dv, devactive_t type)
7770 {
7771 struct audio_softc *sc = device_private(dv);
7772
7773 if (type != DVA_SYSTEM)
7774 return;
7775
7776 callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
7777
7778 sc->sc_idle = false;
7779 if (!device_is_active(dv)) {
7780 /* XXX joerg How to deal with a failing resume... */
7781 pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
7782 pmf_device_resume(dv, PMF_Q_SELF);
7783 }
7784 }
7785 #endif
7786
7787 static bool
7788 audio_suspend(device_t dv, const pmf_qual_t *qual)
7789 {
7790 struct audio_softc *sc = device_private(dv);
7791 int error;
7792
7793 error = audio_exlock_mutex_enter(sc);
7794 if (error)
7795 return error;
7796 sc->sc_suspending = true;
7797 audio_mixer_capture(sc);
7798
7799 if (sc->sc_pbusy) {
7800 audio_pmixer_halt(sc);
7801 /* Reuse this as need-to-restart flag while suspending */
7802 sc->sc_pbusy = true;
7803 }
7804 if (sc->sc_rbusy) {
7805 audio_rmixer_halt(sc);
7806 /* Reuse this as need-to-restart flag while suspending */
7807 sc->sc_rbusy = true;
7808 }
7809
7810 #ifdef AUDIO_PM_IDLE
7811 callout_halt(&sc->sc_idle_counter, sc->sc_lock);
7812 #endif
7813 audio_exlock_mutex_exit(sc);
7814
7815 return true;
7816 }
7817
7818 static bool
7819 audio_resume(device_t dv, const pmf_qual_t *qual)
7820 {
7821 struct audio_softc *sc = device_private(dv);
7822 struct audio_info ai;
7823 int error;
7824
7825 error = audio_exlock_mutex_enter(sc);
7826 if (error)
7827 return error;
7828
7829 sc->sc_suspending = false;
7830 audio_mixer_restore(sc);
7831 /* XXX ? */
7832 AUDIO_INITINFO(&ai);
7833 audio_hw_setinfo(sc, &ai, NULL);
7834
7835 /*
7836 * During from suspend to resume here, sc_[pr]busy is used as
7837 * need-to-restart flag temporarily. After this point,
7838 * sc_[pr]busy is returned to its original usage (busy flag).
7839 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
7840 */
7841 if (sc->sc_pbusy) {
7842 /* pmixer_start() requires pbusy is false */
7843 sc->sc_pbusy = false;
7844 audio_pmixer_start(sc, true);
7845 }
7846 if (sc->sc_rbusy) {
7847 /* rmixer_start() requires rbusy is false */
7848 sc->sc_rbusy = false;
7849 audio_rmixer_start(sc);
7850 }
7851
7852 audio_exlock_mutex_exit(sc);
7853
7854 return true;
7855 }
7856
7857 #if defined(AUDIO_DEBUG)
7858 static void
7859 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
7860 {
7861 int n;
7862
7863 n = 0;
7864 n += snprintf(buf + n, bufsize - n, "%s",
7865 audio_encoding_name(fmt->encoding));
7866 if (fmt->precision == fmt->stride) {
7867 n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
7868 } else {
7869 n += snprintf(buf + n, bufsize - n, " %d/%dbit",
7870 fmt->precision, fmt->stride);
7871 }
7872
7873 snprintf(buf + n, bufsize - n, " %uch %uHz",
7874 fmt->channels, fmt->sample_rate);
7875 }
7876 #endif
7877
7878 #if defined(AUDIO_DEBUG)
7879 static void
7880 audio_print_format2(const char *s, const audio_format2_t *fmt)
7881 {
7882 char fmtstr[64];
7883
7884 audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
7885 printf("%s %s\n", s, fmtstr);
7886 }
7887 #endif
7888
7889 #ifdef DIAGNOSTIC
7890 void
7891 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
7892 {
7893
7894 KASSERTMSG(fmt, "called from %s", where);
7895
7896 /* XXX MSM6258 vs(4) only has 4bit stride format. */
7897 if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
7898 KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
7899 "called from %s: fmt->stride=%d", where, fmt->stride);
7900 } else {
7901 KASSERTMSG(fmt->stride % NBBY == 0,
7902 "called from %s: fmt->stride=%d", where, fmt->stride);
7903 }
7904 KASSERTMSG(fmt->precision <= fmt->stride,
7905 "called from %s: fmt->precision=%d fmt->stride=%d",
7906 where, fmt->precision, fmt->stride);
7907 KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
7908 "called from %s: fmt->channels=%d", where, fmt->channels);
7909
7910 /* XXX No check for encodings? */
7911 }
7912
7913 void
7914 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
7915 {
7916
7917 KASSERT(arg != NULL);
7918 KASSERT(arg->src != NULL);
7919 KASSERT(arg->dst != NULL);
7920 audio_diagnostic_format2(where, arg->srcfmt);
7921 audio_diagnostic_format2(where, arg->dstfmt);
7922 KASSERT(arg->count > 0);
7923 }
7924
7925 void
7926 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
7927 {
7928
7929 KASSERTMSG(ring, "called from %s", where);
7930 audio_diagnostic_format2(where, &ring->fmt);
7931 KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
7932 "called from %s: ring->capacity=%d", where, ring->capacity);
7933 KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
7934 "called from %s: ring->used=%d ring->capacity=%d",
7935 where, ring->used, ring->capacity);
7936 if (ring->capacity == 0) {
7937 KASSERTMSG(ring->mem == NULL,
7938 "called from %s: capacity == 0 but mem != NULL", where);
7939 } else {
7940 KASSERTMSG(ring->mem != NULL,
7941 "called from %s: capacity != 0 but mem == NULL", where);
7942 KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
7943 "called from %s: ring->head=%d ring->capacity=%d",
7944 where, ring->head, ring->capacity);
7945 }
7946 }
7947 #endif /* DIAGNOSTIC */
7948
7949
7950 /*
7951 * Mixer driver
7952 */
7953
7954 /*
7955 * Must be called without sc_lock held.
7956 */
7957 int
7958 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
7959 struct lwp *l)
7960 {
7961 struct file *fp;
7962 audio_file_t *af;
7963 int error, fd;
7964
7965 TRACE(1, "flags=0x%x", flags);
7966
7967 error = fd_allocfile(&fp, &fd);
7968 if (error)
7969 return error;
7970
7971 af = kmem_zalloc(sizeof(*af), KM_SLEEP);
7972 af->sc = sc;
7973 af->dev = dev;
7974
7975 error = fd_clone(fp, fd, flags, &audio_fileops, af);
7976 KASSERT(error == EMOVEFD);
7977
7978 return error;
7979 }
7980
7981 /*
7982 * Add a process to those to be signalled on mixer activity.
7983 * If the process has already been added, do nothing.
7984 * Must be called with sc_exlock held and without sc_lock held.
7985 */
7986 static void
7987 mixer_async_add(struct audio_softc *sc, pid_t pid)
7988 {
7989 int i;
7990
7991 KASSERT(sc->sc_exlock);
7992
7993 /* If already exists, returns without doing anything. */
7994 for (i = 0; i < sc->sc_am_used; i++) {
7995 if (sc->sc_am[i] == pid)
7996 return;
7997 }
7998
7999 /* Extend array if necessary. */
8000 if (sc->sc_am_used >= sc->sc_am_capacity) {
8001 sc->sc_am_capacity += AM_CAPACITY;
8002 sc->sc_am = kern_realloc(sc->sc_am,
8003 sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8004 TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8005 }
8006
8007 TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8008 sc->sc_am[sc->sc_am_used++] = pid;
8009 }
8010
8011 /*
8012 * Remove a process from those to be signalled on mixer activity.
8013 * If the process has not been added, do nothing.
8014 * Must be called with sc_exlock held and without sc_lock held.
8015 */
8016 static void
8017 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8018 {
8019 int i;
8020
8021 KASSERT(sc->sc_exlock);
8022
8023 for (i = 0; i < sc->sc_am_used; i++) {
8024 if (sc->sc_am[i] == pid) {
8025 sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8026 TRACE(2, "am[%d](%d) removed, used=%d",
8027 i, (int)pid, sc->sc_am_used);
8028
8029 /* Empty array if no longer necessary. */
8030 if (sc->sc_am_used == 0) {
8031 kern_free(sc->sc_am);
8032 sc->sc_am = NULL;
8033 sc->sc_am_capacity = 0;
8034 TRACE(2, "released");
8035 }
8036 return;
8037 }
8038 }
8039 }
8040
8041 /*
8042 * Signal all processes waiting for the mixer.
8043 * Must be called with sc_exlock held.
8044 */
8045 static void
8046 mixer_signal(struct audio_softc *sc)
8047 {
8048 proc_t *p;
8049 int i;
8050
8051 KASSERT(sc->sc_exlock);
8052
8053 for (i = 0; i < sc->sc_am_used; i++) {
8054 mutex_enter(&proc_lock);
8055 p = proc_find(sc->sc_am[i]);
8056 if (p)
8057 psignal(p, SIGIO);
8058 mutex_exit(&proc_lock);
8059 }
8060 }
8061
8062 /*
8063 * Close a mixer device
8064 */
8065 int
8066 mixer_close(struct audio_softc *sc, audio_file_t *file)
8067 {
8068 int error;
8069
8070 error = audio_exlock_enter(sc);
8071 if (error)
8072 return error;
8073 TRACE(1, "");
8074 mixer_async_remove(sc, curproc->p_pid);
8075 audio_exlock_exit(sc);
8076
8077 return 0;
8078 }
8079
8080 /*
8081 * Must be called without sc_lock nor sc_exlock held.
8082 */
8083 int
8084 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8085 struct lwp *l)
8086 {
8087 mixer_devinfo_t *mi;
8088 mixer_ctrl_t *mc;
8089 int error;
8090
8091 TRACE(2, "(%lu,'%c',%lu)",
8092 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8093 error = EINVAL;
8094
8095 /* we can return cached values if we are sleeping */
8096 if (cmd != AUDIO_MIXER_READ) {
8097 mutex_enter(sc->sc_lock);
8098 device_active(sc->sc_dev, DVA_SYSTEM);
8099 mutex_exit(sc->sc_lock);
8100 }
8101
8102 switch (cmd) {
8103 case FIOASYNC:
8104 error = audio_exlock_enter(sc);
8105 if (error)
8106 break;
8107 if (*(int *)addr) {
8108 mixer_async_add(sc, curproc->p_pid);
8109 } else {
8110 mixer_async_remove(sc, curproc->p_pid);
8111 }
8112 audio_exlock_exit(sc);
8113 break;
8114
8115 case AUDIO_GETDEV:
8116 TRACE(2, "AUDIO_GETDEV");
8117 mutex_enter(sc->sc_lock);
8118 error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8119 mutex_exit(sc->sc_lock);
8120 break;
8121
8122 case AUDIO_MIXER_DEVINFO:
8123 TRACE(2, "AUDIO_MIXER_DEVINFO");
8124 mi = (mixer_devinfo_t *)addr;
8125
8126 mi->un.v.delta = 0; /* default */
8127 mutex_enter(sc->sc_lock);
8128 error = audio_query_devinfo(sc, mi);
8129 mutex_exit(sc->sc_lock);
8130 break;
8131
8132 case AUDIO_MIXER_READ:
8133 TRACE(2, "AUDIO_MIXER_READ");
8134 mc = (mixer_ctrl_t *)addr;
8135
8136 error = audio_exlock_mutex_enter(sc);
8137 if (error)
8138 break;
8139 if (device_is_active(sc->hw_dev))
8140 error = audio_get_port(sc, mc);
8141 else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8142 error = ENXIO;
8143 else {
8144 int dev = mc->dev;
8145 memcpy(mc, &sc->sc_mixer_state[dev],
8146 sizeof(mixer_ctrl_t));
8147 error = 0;
8148 }
8149 audio_exlock_mutex_exit(sc);
8150 break;
8151
8152 case AUDIO_MIXER_WRITE:
8153 TRACE(2, "AUDIO_MIXER_WRITE");
8154 error = audio_exlock_mutex_enter(sc);
8155 if (error)
8156 break;
8157 error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8158 if (error) {
8159 audio_exlock_mutex_exit(sc);
8160 break;
8161 }
8162
8163 if (sc->hw_if->commit_settings) {
8164 error = sc->hw_if->commit_settings(sc->hw_hdl);
8165 if (error) {
8166 audio_exlock_mutex_exit(sc);
8167 break;
8168 }
8169 }
8170 mutex_exit(sc->sc_lock);
8171 mixer_signal(sc);
8172 audio_exlock_exit(sc);
8173 break;
8174
8175 default:
8176 if (sc->hw_if->dev_ioctl) {
8177 mutex_enter(sc->sc_lock);
8178 error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8179 cmd, addr, flag, l);
8180 mutex_exit(sc->sc_lock);
8181 } else
8182 error = EINVAL;
8183 break;
8184 }
8185 TRACE(2, "(%lu,'%c',%lu) result %d",
8186 IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff, error);
8187 return error;
8188 }
8189
8190 /*
8191 * Must be called with sc_lock held.
8192 */
8193 int
8194 au_portof(struct audio_softc *sc, char *name, int class)
8195 {
8196 mixer_devinfo_t mi;
8197
8198 KASSERT(mutex_owned(sc->sc_lock));
8199
8200 for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8201 if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8202 return mi.index;
8203 }
8204 return -1;
8205 }
8206
8207 /*
8208 * Must be called with sc_lock held.
8209 */
8210 void
8211 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8212 mixer_devinfo_t *mi, const struct portname *tbl)
8213 {
8214 int i, j;
8215
8216 KASSERT(mutex_owned(sc->sc_lock));
8217
8218 ports->index = mi->index;
8219 if (mi->type == AUDIO_MIXER_ENUM) {
8220 ports->isenum = true;
8221 for(i = 0; tbl[i].name; i++)
8222 for(j = 0; j < mi->un.e.num_mem; j++)
8223 if (strcmp(mi->un.e.member[j].label.name,
8224 tbl[i].name) == 0) {
8225 ports->allports |= tbl[i].mask;
8226 ports->aumask[ports->nports] = tbl[i].mask;
8227 ports->misel[ports->nports] =
8228 mi->un.e.member[j].ord;
8229 ports->miport[ports->nports] =
8230 au_portof(sc, mi->un.e.member[j].label.name,
8231 mi->mixer_class);
8232 if (ports->mixerout != -1 &&
8233 ports->miport[ports->nports] != -1)
8234 ports->isdual = true;
8235 ++ports->nports;
8236 }
8237 } else if (mi->type == AUDIO_MIXER_SET) {
8238 for(i = 0; tbl[i].name; i++)
8239 for(j = 0; j < mi->un.s.num_mem; j++)
8240 if (strcmp(mi->un.s.member[j].label.name,
8241 tbl[i].name) == 0) {
8242 ports->allports |= tbl[i].mask;
8243 ports->aumask[ports->nports] = tbl[i].mask;
8244 ports->misel[ports->nports] =
8245 mi->un.s.member[j].mask;
8246 ports->miport[ports->nports] =
8247 au_portof(sc, mi->un.s.member[j].label.name,
8248 mi->mixer_class);
8249 ++ports->nports;
8250 }
8251 }
8252 }
8253
8254 /*
8255 * Must be called with sc_lock && sc_exlock held.
8256 */
8257 int
8258 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8259 {
8260
8261 KASSERT(mutex_owned(sc->sc_lock));
8262 KASSERT(sc->sc_exlock);
8263
8264 ct->type = AUDIO_MIXER_VALUE;
8265 ct->un.value.num_channels = 2;
8266 ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8267 ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8268 if (audio_set_port(sc, ct) == 0)
8269 return 0;
8270 ct->un.value.num_channels = 1;
8271 ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8272 return audio_set_port(sc, ct);
8273 }
8274
8275 /*
8276 * Must be called with sc_lock && sc_exlock held.
8277 */
8278 int
8279 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8280 {
8281 int error;
8282
8283 KASSERT(mutex_owned(sc->sc_lock));
8284 KASSERT(sc->sc_exlock);
8285
8286 ct->un.value.num_channels = 2;
8287 if (audio_get_port(sc, ct) == 0) {
8288 *l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8289 *r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8290 } else {
8291 ct->un.value.num_channels = 1;
8292 error = audio_get_port(sc, ct);
8293 if (error)
8294 return error;
8295 *r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8296 }
8297 return 0;
8298 }
8299
8300 /*
8301 * Must be called with sc_lock && sc_exlock held.
8302 */
8303 int
8304 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8305 int gain, int balance)
8306 {
8307 mixer_ctrl_t ct;
8308 int i, error;
8309 int l, r;
8310 u_int mask;
8311 int nset;
8312
8313 KASSERT(mutex_owned(sc->sc_lock));
8314 KASSERT(sc->sc_exlock);
8315
8316 if (balance == AUDIO_MID_BALANCE) {
8317 l = r = gain;
8318 } else if (balance < AUDIO_MID_BALANCE) {
8319 l = gain;
8320 r = (balance * gain) / AUDIO_MID_BALANCE;
8321 } else {
8322 r = gain;
8323 l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8324 / AUDIO_MID_BALANCE;
8325 }
8326 TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8327
8328 if (ports->index == -1) {
8329 usemaster:
8330 if (ports->master == -1)
8331 return 0; /* just ignore it silently */
8332 ct.dev = ports->master;
8333 error = au_set_lr_value(sc, &ct, l, r);
8334 } else {
8335 ct.dev = ports->index;
8336 if (ports->isenum) {
8337 ct.type = AUDIO_MIXER_ENUM;
8338 error = audio_get_port(sc, &ct);
8339 if (error)
8340 return error;
8341 if (ports->isdual) {
8342 if (ports->cur_port == -1)
8343 ct.dev = ports->master;
8344 else
8345 ct.dev = ports->miport[ports->cur_port];
8346 error = au_set_lr_value(sc, &ct, l, r);
8347 } else {
8348 for(i = 0; i < ports->nports; i++)
8349 if (ports->misel[i] == ct.un.ord) {
8350 ct.dev = ports->miport[i];
8351 if (ct.dev == -1 ||
8352 au_set_lr_value(sc, &ct, l, r))
8353 goto usemaster;
8354 else
8355 break;
8356 }
8357 }
8358 } else {
8359 ct.type = AUDIO_MIXER_SET;
8360 error = audio_get_port(sc, &ct);
8361 if (error)
8362 return error;
8363 mask = ct.un.mask;
8364 nset = 0;
8365 for(i = 0; i < ports->nports; i++) {
8366 if (ports->misel[i] & mask) {
8367 ct.dev = ports->miport[i];
8368 if (ct.dev != -1 &&
8369 au_set_lr_value(sc, &ct, l, r) == 0)
8370 nset++;
8371 }
8372 }
8373 if (nset == 0)
8374 goto usemaster;
8375 }
8376 }
8377 if (!error)
8378 mixer_signal(sc);
8379 return error;
8380 }
8381
8382 /*
8383 * Must be called with sc_lock && sc_exlock held.
8384 */
8385 void
8386 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8387 u_int *pgain, u_char *pbalance)
8388 {
8389 mixer_ctrl_t ct;
8390 int i, l, r, n;
8391 int lgain, rgain;
8392
8393 KASSERT(mutex_owned(sc->sc_lock));
8394 KASSERT(sc->sc_exlock);
8395
8396 lgain = AUDIO_MAX_GAIN / 2;
8397 rgain = AUDIO_MAX_GAIN / 2;
8398 if (ports->index == -1) {
8399 usemaster:
8400 if (ports->master == -1)
8401 goto bad;
8402 ct.dev = ports->master;
8403 ct.type = AUDIO_MIXER_VALUE;
8404 if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8405 goto bad;
8406 } else {
8407 ct.dev = ports->index;
8408 if (ports->isenum) {
8409 ct.type = AUDIO_MIXER_ENUM;
8410 if (audio_get_port(sc, &ct))
8411 goto bad;
8412 ct.type = AUDIO_MIXER_VALUE;
8413 if (ports->isdual) {
8414 if (ports->cur_port == -1)
8415 ct.dev = ports->master;
8416 else
8417 ct.dev = ports->miport[ports->cur_port];
8418 au_get_lr_value(sc, &ct, &lgain, &rgain);
8419 } else {
8420 for(i = 0; i < ports->nports; i++)
8421 if (ports->misel[i] == ct.un.ord) {
8422 ct.dev = ports->miport[i];
8423 if (ct.dev == -1 ||
8424 au_get_lr_value(sc, &ct,
8425 &lgain, &rgain))
8426 goto usemaster;
8427 else
8428 break;
8429 }
8430 }
8431 } else {
8432 ct.type = AUDIO_MIXER_SET;
8433 if (audio_get_port(sc, &ct))
8434 goto bad;
8435 ct.type = AUDIO_MIXER_VALUE;
8436 lgain = rgain = n = 0;
8437 for(i = 0; i < ports->nports; i++) {
8438 if (ports->misel[i] & ct.un.mask) {
8439 ct.dev = ports->miport[i];
8440 if (ct.dev == -1 ||
8441 au_get_lr_value(sc, &ct, &l, &r))
8442 goto usemaster;
8443 else {
8444 lgain += l;
8445 rgain += r;
8446 n++;
8447 }
8448 }
8449 }
8450 if (n != 0) {
8451 lgain /= n;
8452 rgain /= n;
8453 }
8454 }
8455 }
8456 bad:
8457 if (lgain == rgain) { /* handles lgain==rgain==0 */
8458 *pgain = lgain;
8459 *pbalance = AUDIO_MID_BALANCE;
8460 } else if (lgain < rgain) {
8461 *pgain = rgain;
8462 /* balance should be > AUDIO_MID_BALANCE */
8463 *pbalance = AUDIO_RIGHT_BALANCE -
8464 (AUDIO_MID_BALANCE * lgain) / rgain;
8465 } else /* lgain > rgain */ {
8466 *pgain = lgain;
8467 /* balance should be < AUDIO_MID_BALANCE */
8468 *pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8469 }
8470 }
8471
8472 /*
8473 * Must be called with sc_lock && sc_exlock held.
8474 */
8475 int
8476 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8477 {
8478 mixer_ctrl_t ct;
8479 int i, error, use_mixerout;
8480
8481 KASSERT(mutex_owned(sc->sc_lock));
8482 KASSERT(sc->sc_exlock);
8483
8484 use_mixerout = 1;
8485 if (port == 0) {
8486 if (ports->allports == 0)
8487 return 0; /* Allow this special case. */
8488 else if (ports->isdual) {
8489 if (ports->cur_port == -1) {
8490 return 0;
8491 } else {
8492 port = ports->aumask[ports->cur_port];
8493 ports->cur_port = -1;
8494 use_mixerout = 0;
8495 }
8496 }
8497 }
8498 if (ports->index == -1)
8499 return EINVAL;
8500 ct.dev = ports->index;
8501 if (ports->isenum) {
8502 if (port & (port-1))
8503 return EINVAL; /* Only one port allowed */
8504 ct.type = AUDIO_MIXER_ENUM;
8505 error = EINVAL;
8506 for(i = 0; i < ports->nports; i++)
8507 if (ports->aumask[i] == port) {
8508 if (ports->isdual && use_mixerout) {
8509 ct.un.ord = ports->mixerout;
8510 ports->cur_port = i;
8511 } else {
8512 ct.un.ord = ports->misel[i];
8513 }
8514 error = audio_set_port(sc, &ct);
8515 break;
8516 }
8517 } else {
8518 ct.type = AUDIO_MIXER_SET;
8519 ct.un.mask = 0;
8520 for(i = 0; i < ports->nports; i++)
8521 if (ports->aumask[i] & port)
8522 ct.un.mask |= ports->misel[i];
8523 if (port != 0 && ct.un.mask == 0)
8524 error = EINVAL;
8525 else
8526 error = audio_set_port(sc, &ct);
8527 }
8528 if (!error)
8529 mixer_signal(sc);
8530 return error;
8531 }
8532
8533 /*
8534 * Must be called with sc_lock && sc_exlock held.
8535 */
8536 int
8537 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8538 {
8539 mixer_ctrl_t ct;
8540 int i, aumask;
8541
8542 KASSERT(mutex_owned(sc->sc_lock));
8543 KASSERT(sc->sc_exlock);
8544
8545 if (ports->index == -1)
8546 return 0;
8547 ct.dev = ports->index;
8548 ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8549 if (audio_get_port(sc, &ct))
8550 return 0;
8551 aumask = 0;
8552 if (ports->isenum) {
8553 if (ports->isdual && ports->cur_port != -1) {
8554 if (ports->mixerout == ct.un.ord)
8555 aumask = ports->aumask[ports->cur_port];
8556 else
8557 ports->cur_port = -1;
8558 }
8559 if (aumask == 0)
8560 for(i = 0; i < ports->nports; i++)
8561 if (ports->misel[i] == ct.un.ord)
8562 aumask = ports->aumask[i];
8563 } else {
8564 for(i = 0; i < ports->nports; i++)
8565 if (ct.un.mask & ports->misel[i])
8566 aumask |= ports->aumask[i];
8567 }
8568 return aumask;
8569 }
8570
8571 /*
8572 * It returns 0 if success, otherwise errno.
8573 * Must be called only if sc->sc_monitor_port != -1.
8574 * Must be called with sc_lock && sc_exlock held.
8575 */
8576 static int
8577 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
8578 {
8579 mixer_ctrl_t ct;
8580
8581 KASSERT(mutex_owned(sc->sc_lock));
8582 KASSERT(sc->sc_exlock);
8583
8584 ct.dev = sc->sc_monitor_port;
8585 ct.type = AUDIO_MIXER_VALUE;
8586 ct.un.value.num_channels = 1;
8587 ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
8588 return audio_set_port(sc, &ct);
8589 }
8590
8591 /*
8592 * It returns monitor gain if success, otherwise -1.
8593 * Must be called only if sc->sc_monitor_port != -1.
8594 * Must be called with sc_lock && sc_exlock held.
8595 */
8596 static int
8597 au_get_monitor_gain(struct audio_softc *sc)
8598 {
8599 mixer_ctrl_t ct;
8600
8601 KASSERT(mutex_owned(sc->sc_lock));
8602 KASSERT(sc->sc_exlock);
8603
8604 ct.dev = sc->sc_monitor_port;
8605 ct.type = AUDIO_MIXER_VALUE;
8606 ct.un.value.num_channels = 1;
8607 if (audio_get_port(sc, &ct))
8608 return -1;
8609 return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
8610 }
8611
8612 /*
8613 * Must be called with sc_lock && sc_exlock held.
8614 */
8615 static int
8616 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8617 {
8618
8619 KASSERT(mutex_owned(sc->sc_lock));
8620 KASSERT(sc->sc_exlock);
8621
8622 return sc->hw_if->set_port(sc->hw_hdl, mc);
8623 }
8624
8625 /*
8626 * Must be called with sc_lock && sc_exlock held.
8627 */
8628 static int
8629 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
8630 {
8631
8632 KASSERT(mutex_owned(sc->sc_lock));
8633 KASSERT(sc->sc_exlock);
8634
8635 return sc->hw_if->get_port(sc->hw_hdl, mc);
8636 }
8637
8638 /*
8639 * Must be called with sc_lock && sc_exlock held.
8640 */
8641 static void
8642 audio_mixer_capture(struct audio_softc *sc)
8643 {
8644 mixer_devinfo_t mi;
8645 mixer_ctrl_t *mc;
8646
8647 KASSERT(mutex_owned(sc->sc_lock));
8648 KASSERT(sc->sc_exlock);
8649
8650 for (mi.index = 0;; mi.index++) {
8651 if (audio_query_devinfo(sc, &mi) != 0)
8652 break;
8653 KASSERT(mi.index < sc->sc_nmixer_states);
8654 if (mi.type == AUDIO_MIXER_CLASS)
8655 continue;
8656 mc = &sc->sc_mixer_state[mi.index];
8657 mc->dev = mi.index;
8658 mc->type = mi.type;
8659 mc->un.value.num_channels = mi.un.v.num_channels;
8660 (void)audio_get_port(sc, mc);
8661 }
8662
8663 return;
8664 }
8665
8666 /*
8667 * Must be called with sc_lock && sc_exlock held.
8668 */
8669 static void
8670 audio_mixer_restore(struct audio_softc *sc)
8671 {
8672 mixer_devinfo_t mi;
8673 mixer_ctrl_t *mc;
8674
8675 KASSERT(mutex_owned(sc->sc_lock));
8676 KASSERT(sc->sc_exlock);
8677
8678 for (mi.index = 0; ; mi.index++) {
8679 if (audio_query_devinfo(sc, &mi) != 0)
8680 break;
8681 if (mi.type == AUDIO_MIXER_CLASS)
8682 continue;
8683 mc = &sc->sc_mixer_state[mi.index];
8684 (void)audio_set_port(sc, mc);
8685 }
8686 if (sc->hw_if->commit_settings)
8687 sc->hw_if->commit_settings(sc->hw_hdl);
8688
8689 return;
8690 }
8691
8692 static void
8693 audio_volume_down(device_t dv)
8694 {
8695 struct audio_softc *sc = device_private(dv);
8696 mixer_devinfo_t mi;
8697 int newgain;
8698 u_int gain;
8699 u_char balance;
8700
8701 if (audio_exlock_mutex_enter(sc) != 0)
8702 return;
8703 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8704 mi.index = sc->sc_outports.master;
8705 mi.un.v.delta = 0;
8706 if (audio_query_devinfo(sc, &mi) == 0) {
8707 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8708 newgain = gain - mi.un.v.delta;
8709 if (newgain < AUDIO_MIN_GAIN)
8710 newgain = AUDIO_MIN_GAIN;
8711 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8712 }
8713 }
8714 audio_exlock_mutex_exit(sc);
8715 }
8716
8717 static void
8718 audio_volume_up(device_t dv)
8719 {
8720 struct audio_softc *sc = device_private(dv);
8721 mixer_devinfo_t mi;
8722 u_int gain, newgain;
8723 u_char balance;
8724
8725 if (audio_exlock_mutex_enter(sc) != 0)
8726 return;
8727 if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
8728 mi.index = sc->sc_outports.master;
8729 mi.un.v.delta = 0;
8730 if (audio_query_devinfo(sc, &mi) == 0) {
8731 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8732 newgain = gain + mi.un.v.delta;
8733 if (newgain > AUDIO_MAX_GAIN)
8734 newgain = AUDIO_MAX_GAIN;
8735 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8736 }
8737 }
8738 audio_exlock_mutex_exit(sc);
8739 }
8740
8741 static void
8742 audio_volume_toggle(device_t dv)
8743 {
8744 struct audio_softc *sc = device_private(dv);
8745 u_int gain, newgain;
8746 u_char balance;
8747
8748 if (audio_exlock_mutex_enter(sc) != 0)
8749 return;
8750 au_get_gain(sc, &sc->sc_outports, &gain, &balance);
8751 if (gain != 0) {
8752 sc->sc_lastgain = gain;
8753 newgain = 0;
8754 } else
8755 newgain = sc->sc_lastgain;
8756 au_set_gain(sc, &sc->sc_outports, newgain, balance);
8757 audio_exlock_mutex_exit(sc);
8758 }
8759
8760 /*
8761 * Must be called with sc_lock held.
8762 */
8763 static int
8764 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
8765 {
8766
8767 KASSERT(mutex_owned(sc->sc_lock));
8768
8769 return sc->hw_if->query_devinfo(sc->hw_hdl, di);
8770 }
8771
8772 #endif /* NAUDIO > 0 */
8773
8774 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
8775 #include <sys/param.h>
8776 #include <sys/systm.h>
8777 #include <sys/device.h>
8778 #include <sys/audioio.h>
8779 #include <dev/audio/audio_if.h>
8780 #endif
8781
8782 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
8783 int
8784 audioprint(void *aux, const char *pnp)
8785 {
8786 struct audio_attach_args *arg;
8787 const char *type;
8788
8789 if (pnp != NULL) {
8790 arg = aux;
8791 switch (arg->type) {
8792 case AUDIODEV_TYPE_AUDIO:
8793 type = "audio";
8794 break;
8795 case AUDIODEV_TYPE_MIDI:
8796 type = "midi";
8797 break;
8798 case AUDIODEV_TYPE_OPL:
8799 type = "opl";
8800 break;
8801 case AUDIODEV_TYPE_MPU:
8802 type = "mpu";
8803 break;
8804 default:
8805 panic("audioprint: unknown type %d", arg->type);
8806 }
8807 aprint_normal("%s at %s", type, pnp);
8808 }
8809 return UNCONF;
8810 }
8811
8812 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
8813
8814 #ifdef _MODULE
8815
8816 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
8817
8818 #include "ioconf.c"
8819
8820 #endif
8821
8822 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
8823
8824 static int
8825 audio_modcmd(modcmd_t cmd, void *arg)
8826 {
8827 int error = 0;
8828
8829 switch (cmd) {
8830 case MODULE_CMD_INIT:
8831 /* XXX interrupt level? */
8832 audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
8833 #ifdef _MODULE
8834 error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8835 &audio_cdevsw, &audio_cmajor);
8836 if (error)
8837 break;
8838
8839 error = config_init_component(cfdriver_ioconf_audio,
8840 cfattach_ioconf_audio, cfdata_ioconf_audio);
8841 if (error) {
8842 devsw_detach(NULL, &audio_cdevsw);
8843 }
8844 #endif
8845 break;
8846 case MODULE_CMD_FINI:
8847 #ifdef _MODULE
8848 devsw_detach(NULL, &audio_cdevsw);
8849 error = config_fini_component(cfdriver_ioconf_audio,
8850 cfattach_ioconf_audio, cfdata_ioconf_audio);
8851 if (error)
8852 devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
8853 &audio_cdevsw, &audio_cmajor);
8854 #endif
8855 psref_class_destroy(audio_psref_class);
8856 break;
8857 default:
8858 error = ENOTTY;
8859 break;
8860 }
8861
8862 return error;
8863 }
8864